VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

REAL TIME CONTROL IN LINUX

UNIVERSITY
of
GLASGOW

Xiaoyu Duan

A Thesis Submitted to the Faculty of Engineering of the

University of Glasgow for the Degree of Master of Science

©Xiaoyu Duan, August 2005, Glasgow, Scotland

ProQuest Numler: 10320733

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 10390733

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346

GLASGOW
UNIVERSITY
LIBRARY:

RO L

Acknowledgements

The author wishes to express appreciation to Dr. Donald Ballance for his
guidance and support throughout the whole project work. Thanks 1o Mr. Chunming
Xia and Miss. Xiaoyun Zang for the advice regarding control theory. Also thanks to
Mr. Kenneth Stevenson for all the help in terms of computer and experimental
cquipment. Finally, I wish to give special thank to Dr. Yubin Shi for his constructive
suggestion for the graphical interface part and I wish to acknowledge all the support
of staff in the Depariment of Mechanical Engineering throughout my study in

University of Glasgow.

Abstract

In this thesis, the approaches to achieving real time control under Linux operating
platform are presented and fowr different real time control applications are discussed.
The driver of the ADS512 data acquisition card is programmed to enhance hardware
supported by COMEDI through which the connection between computer and DAQ
boards are built up. A simple project combining RTAI (Real Time Application
Interface) with COMEDI is introduccd together with the discussion of one SISO
(Single-Input Single-Output) countrol project and two SIMO (Single-Inputs Muiti-
Oulput) control projects based on different controilers, and RTLab is selected to
provide us with real time functionalities as it combines COMEDI with RTAI or
RTLinx very well in Linux. Further more, to enhance the observability and
maneuverability of RTLab, additional custom plugin graphic windows have also been

made for every application in the project.

Table of Contents

Ackll OWIedgelllelltS lllllll P0G AGIREAARROPRRRRIIENGRNPGRGBAAEPENANPISPPRRNGOINIOSPPIARSRORRS i

ADSIIACE . cvvreresesseensansssssssssorensasssenseresssaseee ressnsrannresesrenseronnnssrunsennars ii

Table Of Contellts IIIIIIIIIIII soRARES COORNNSONNNENGGONLERBPIRINIRICALPEVNOITELIDEORRRICGOPY iii

List Ot. Fig“res.. lllllllllll PASEPRESEIRDS POENSIIGHCA 0040040t REG NNV ORAGIIIRIIOGIUARS ...Oxi

Chapter 1 Introduction POV — 1

1.1 BACKGROUND

1.2 THE OVERALL OBJIECTIVE ceueerivneeeerereenesernsseaemesssaesnrsennssnessnassnnes 1

1.3 OUTLINE OF THE THESTIS . ettt eeeeeeteeeennerereresenaseesessssroneersesnsssins 2

1.4 WORK IN THIS PROTECT v cveeeeemieeeremmersressiseesensseesssnssssssemnnnssssons 4

Chapter 2 Background to Linux and Real Time Linux.........7

2.1 HISTORY OF OPERATING SYSTEMS tittuevsireneenneenernreesssssnssnneenesanssnns 7

ifi

2.2 LINUX OPERATING SYSTEM

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

2.2.7

2.3 REeEAL TME LINUX

2.3.1

2.3.2

2.3.3 RTOS Designing

2.3.4 How Does Real Timne Litttx WOrk? .oveoeeereeresereereeeeesrereerseenessrereses

General Description 6f LIBUX ... sissansnnnens

General Distribution Versions of Linux

LRTx COMPQIUAS covvvv e coeeeeirover et eiiesisies s s tsissssssensserebearasssrsninrassrrents

The Linux Kernel

...

Linux Loader (LILO) ...t sieseesssssaescvneeanans

Programming (0 LIRUXcccovvrvciiiiiiiiiiii i e ssansinns

...

What is a Real Time Operating SYSem? ...oooveveveeecoiiorineironecrnennens

Some Popitlar RTOSS «ooooeeeeeeee e

..

w4

12

. 14

16

.. 21

.. 23

26

e 28

2.3.5 Linux Loadable Kernel Module (LEM)..oovoeeeceveoneeererrerersercnnnnns 30

2.4 REAL TIME LINUX—RTAT..ccotiiiieireiresaeeieaerriieeeeervieeeeeesaens 35

2.4.1 General Description Of RTAL.......coesiorconsssisinsasssssesssssinsssssens 35

2.2 RTAIMOGUIES c.o.oeoreeaeeeeeeeeeereerereserseresesessissssessssneesereeseeeerarsesrinneers 36

2 3 LR T eooeeeeeeeereeie e rer e reres et e s en e ares s s enee et eeeeerererereeeeeenannens 38

2.4.4 The Official Website of RTAL uvcorivoneevessisvnsssensnsevieissnessosansiins 40

2.5 REAL TIME LINUX—RTILINUX .ottt eeeeeeeeeeeeseeeeeeeeeaeeansseeennns 41

2.5.1 General Description of RTLINUX «.....covveevevieviseesnssasssesssssssssssssssssens 41

2.5.2 RTLinux Siandard MOQUICSoo..coeeeeerereeeeesesrererisisssressesssvessessonens &1

2.5.3 The Official Websites of RTLIUX....coevverirereeseeeeesiessssecssessseeses s eeee 42

2.6 INTER-PROCESS PROCESS COMMUNICATION (IPC) .o 43

Chapter 3 Data Acquisition and Physical Equipment.........45

3.1 TJARDWARE FOR DATA ACQUISITIONcoeevvvvnevenneererrnriressrnmrenner. 43

3.1.1 Data Acquisition (DAQ) BOGEAScooeeeeeciiciririrreirice v veraeeeees 40

3.1.2 Control Plants and Other Physical FQUIPIMEREvviecvvvirevriiceceee. 47

3.2 SOFTWARE FOR DATA ACQUISITION...coiiiieiiiiiiriiecieeeeeecneee e eneeeaee 52

32,7 DA ACGUISTHOM c..evvvivveerereieeisesneeerieinasisisessssensesenessnesneenssonsasns e aneesece D2

3.2.3 Drivers for Data Acquisition Cardscccconiiciiciiniiiincccecnn. 35

3.2.4 Writing a New Driver in COmedi.....ooniiriiniinaniininiiicae e 30

Chapter 4 Graphical User Interface (GUI) and RTLab......59

4.1 GRAPHICAL USER INTERFACE {GUI) ..coeeiireeeiecetierecee e, 59

4.1.1 General DeScription Of Q... cceriiioririnimrcciresnsssssessseaseessaneesrneens O3

4.1.2 A Simple QF EXQIRPLE...ovioooorerirrcrimeeeeescvieervneassinseeneecaeincnecinsssnissierans 02

4.2 RTLAB v R ue s tr e e e n e RS R e 63

4.2.1 General Description of RTLGDc.covvcovivnevivcrririecciiniciirincivereeccieeane, 03

vi

4.2.2 How Does Qt Work in Conjunction with RTLADccoiivicncccccannnn, 67

Chapter 5 Discussion of Real Time Solutions.....c.ccuceeicnineccs 77

5.1

5.2

54

5.5

RT_COM_LERT uutteesiirerivrreeeessisasssnserssssossssmsrnsaessssarsseesassorsrnaseraes 78
RTAIL_COMEDI_LXRT «.ivvusiiiiiiieeeeriiiiessesirsiessessnsacrsesssasersssessssiesees 81
RTAIL-LAB. .ottt erearesessamaa st vvtabnbse e s e s snnmansaeases 81
RTLAB o1ttt teeessreierraeseinae s essrrscsesssebssrsaesesstaranssessrasns 82
REAL TIME CONTROE SOLUTTIONS ...cecoiieriremreaeeceeeaseeesnnnnnnessnnnes 82

Chapter 6 AppHCationS......eicccccrcserssicsssnsesessnsssssssarssssssnessssssess 38

6.1 A SiMPLE COMEDI + RTAI LXRT PROGRAM.cccovivrrirannnnee. 88
.11 DeSCrIPHON cocviiiiv it e s OO
0.1.2 Mathematic Model...............oooverviviniiiriiiiiicni s e vr s 89
0.1.3 Control SYSIEHL IDESIGIL coccveveveieveeevereereeveriernsreneeiessirsssesessssssssrnesssssnesses 9]
6.1.4 Real Time Control Program 0 LiNUX . .o 92

vii

6.1.5

6.2 A SISO PID CONTROL APPLICATION WITH GUI

0.2.1

6.2.3

6.2.4

6.2.5

6.2.6

0.3 A SIMO PID CONTROL APPLICATION WITH GUIccocoveennn...

0.3.1

6.3.2

6.3.3

6.3.4

DIESCTIPHION vvvivivcies eiciiveereeaiiee et a st s saessn e s mae e ns s asnesenare s vessns

Mathematioal MOAEL..........ccooorrveiceiiirir v erraranesseine s

Control System DESIGI ..ocvovvviirreeee e iereeseieiicssese e eisenier s

Real Time Control Program it LintX........ovnin i,

Custom Graph in Plugin Graphical Interface.......cvvevvirveinininnns

ReStliS..ccooovvevcviiiniiirinann.

DCSCHIPTION coc..ooeieveei ittt ettt e e e st n e et s e e s aren

MAREINATICOL MO ...ccveviivieaaerieeeeeieeee e seieaias e iv st e ererere et s

Control Systemn Design—=PID Controller.....vireevoariacinnon,

Real Time Control Prograint in LIRUX..........coromeoneccinnecnnnan,

viii

............

97

.97

--------------- 9:

102

w112

w117

123

123

123

0.3.5 RESHIES oo eeeeeertvatniaen e sseessinesersassssnnssstenstnnnnseesnees 130

6.4 A SIMO LQR CONTROL APPLICATION WITH GUI......ccco.ceee 136

6. 4.1 DIESCFIPHON ooovivveceeitee e eearraaaccstnss e is s st eaeesar e e sasenesasssnsessaeessunarerarsens 136

6.4.2 Mathemabical] MOUE aoivvivcireisisireirisssisisssnessisssssararasssissssssinsssnanes 430

0.4.3 Control System Design—LOR Controller.........cooviiiiviiiiinniiiinnnnn 137

6.4.4 Real Time Control Program in LiuX..o.ecveccviiviveneiinviciininncnenccnnns 141

6.4.5 Results

0.5 STUMMARY e eeeiee et e e e aeaaasraertsseaa s saaatnsssmtassssanssstsnesanasaans 148

Chapter 7 Conclusions and DiScussion......ineinccsccanns 149

T VY LINUX T sttt iiiinereeeeneneermeesseetenenaaresserensessanneseentsssesstnsssennans 149

7.2 WHYRTAI? oo 150

7.3 COMEDI DRIVERS ...ocovecireetiriressrinsssesessssersassssersesesssriisrsssoness 150

TA RTLAB oot 151

7.5 REAIL TME SOLUTIONS

Chapter 8 Fl‘ture Work SEBROGSORSSANSACEREIPEACOTRIDIRERPRRECENEEPERER NGO ERAD 154

References BERENOP ORISR IR NN E RN PR RN PP RO PR R GG I NSRS ECEGER AU SR ERORPRISIRRSRTDROAN 158

Appendices SRR RNRERECR PR R RN PRAP PPN PRGOSO RO PRARCINAGIIRIGIACRAINAEPEAROGNONNENEESES 163

A PPENDIX A evrteeerieeeneeeeieaesseresnaeseenesesessssetstssssssnssnsesunssinsmseensorssnrarssnes 163

APPENDIX B

APPENDIX C

List of Figures

Figure 1.1: The refationship between major components in the project ... cnnsn.

Figure 2.1: Relationship between subsystems ...

Figure 2.2: The relationship between real time kernel and normal Linux kernel

Figure 3.1: MultiQ3 data acquisition boardc...oovvmiccerniie

Figure 3.2 Rotary position motor servo SRVO2 ..o iveisicciccciissseniinnn

Figure 3.3 System parameters ol servo SRVOZ. ..,

Figure 3.4 Rotary flexible Iink with motor servo SRVO2..............

Figure 3.5 System parameters of the flexgage module ...,

Figure 3.6 Power amplifier UPMI1503 ...

Figure 4.1: Elements 1l Q. ..eueceiiniiiieinnecscieicnriirrieriseesnresmrreeserasnermiesssaesssssesnis

Figure 4.2 A screenshot of QU Designer ...

Xi

14

30

46

.48

49

e 50

.51

52

60

.61

Figure 4.3 A snapshot of "hello world” eXample ...t

Figure 4.4: RTLab graphical inlerfaceoooioioviviievnnriesin e

Figure 4.5 A snapshol of iest plugin windows in RTLab....cooeee v

Figure 4.6 Plugin window of "testing program" cXample......cocoevveeieiiieveeceie e

Figure 5.]: Scheduling in kernel SPace.......coviiiiiiiiinineneioici e

Figure 5.2: Scheduling Il USEr SPACEooiiiiiracrmirrirens e ctee e aresne s sresnsaens srene

62

o1

.84

Figure 5.3 Setting up scheduler in "module initial"” part....covimieiien e 85
Figure 5.4 Setting up scheduler with LXRT extension (hard real time)c.ocecncneee. 86
Figure 6.1: Testing module in SEMULINK ... 100
Figure 6.2: Servo03 module in SIMULINK........ccoconiiiniiicccciincieni e neerene 101
Figure 6.3: Outputs of testing module in SIMULINK 102
Figure 6.4: Block diagram of piddxy.hl e 103
Figure 6.5; Block diagram of piddxy_private.h ... 103

it

Figure 6.6: Block diagram of piddxy.C...cocoeriiiiiicicienn, 104
Figure 6.7: Block diagram of piddxy.cpp.. oo 105
Figure 6.8 Custom window in RTLab plugin......c.oinn v 113
Figure 6.9 Load plugin module in RTLab ..., 118
Figure 6.10 Piddxy plugin Windowcooiiiiiniiiiiieccccceevee e eeceaeeeeeeees 118
Figurc 6.11 Setpoints available in piddxy plugin ... 119
Figure 6.12 Control results of a square wave ..o, 120
Figure 6.13 Angular position of motor servo SRV02 (theta)......cocovvcveevreccrarinninnen, 121
Figure 6.14 SetpOifll (SGUATE WERVE) .orvrirveriimimimireireenvrmeesnsensasenanetsasencossessentsssesns 122
Figure 6.15 Angular velocity of motor servo SRVO2 ...oooiiiiinirarrerencnnnenens 122
Figurc 6.16: A schematic picture of the flexible link ..., 125
Figure 6.17: Block diagram for the entire System........ocvvivininenninnnnnnis, 127
Figure 6.18 Plugin window of pidstrain_gagecccocioireininiesiscccicnrc e 131

X

Figurc 6.19 Control results of a square wave (1) .o, 131

Figure 6,20 Control results of a square wave (2) ...coocvvvnccieimmncricnienncnenerenen. 132

Figure 6.21 Angular position of motor servo SRVO2Z (theta) ..oovvvviniveiiiiiniiiniens 133

Figure 6.22 Setpoint (SqUATE WAVE)cocarvririinerirororernsmemanmsensisssssssvimainsssssnsssens 134

Figure 6.23 Angular velocity of motor servo SRVO2 ..o, 134

Figure 6.24 Displacement of the tip of the straingage (alpha) ... 135

Figure 6,25 Relative angular tip position to the whole system (theta+alpha)........... 135
Figure 6.26: LQR control simulation model in SIMULINKcccoimiiniccnnnncinnn 139
Figurc 6.27: Output of theta in LOR CONIOL.c.ciirciicriniirircricrmrcnnrneeinrneiseen e nens 140
Tigure 6,28: Output of beta In LOQR COMIOL .coviireriiinrer i 140

Figure 6.29: Output of alpha in LOR CORUOl....cccrirvirivirninrceccensicccisinseciecrrnnneennes. 141

Figiae 6.30 Plugin window of 1QUstrain._Sagecoccveerivenrcrsseneiesenrerneicvneernnerearvesennns 143

Figure 6.31 Cantrol results of a square wave (1) ..o 144

xiv

Figure 6.32 Control results of a square wave (2) ..o i

Figure 6.33 Angular position of motor servo SRVO2 (theta) ..o,

Figure 6.34 Angular velocity of motor servo SRVO2 ...,

Figure 6.35 Displacement of the tip of the straingage (alpha)occooviviviirmiinncnnenn

Figure 6.36 Relative angular lip position to the whole system (theta+alpha)...........

XY

145

145

146

147

Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background

Along with the development of modern industry, the demands on contro] systems are
getting higher and higher. Accuracy is no more the only requirement of the control
system. Real time operating system (RTOS) shows its great potential and becomes an
overwhelming trend of modern science technology. The requirement of stability,
reliability, real time capability and mancuverability makes Linux the first choice for

real time operating system irresistibly.

1.2 The Overall Objective

This thesis advances several Linux operating system based real time conirolling
approaches, using different controllers applied to ditferent systems. Several virtual

applications are also introduced to enhance the discussion.

The demands of real time require the system to respond and process quickly and
accurately. This means that the result of controlling not only relies on the control
accuracy but also on the time of responding. A real tirne scheduler arranges ihe

rcsponse priority i real time Linux system. FIFO and other Inter Process

Chapter 1 Introduction

Communication (IPC) methods have been used to achieve data transfer between real
time and non-real time paris. Following is the connection and relationship between the

najor components.

Conguies . Real Tine Linux Schedulex
" Conixel Algoritms rc

|
Dirivers

Data Acquisition

. ADS512 Cand

cards
A== | NuIHQ3 hoard
'
Conirol Plants +~——— | S50kt

+—— | 540 plant

Kigure 1.1: 'The relationship between major components in the project

1.3 OQutline of The Thesis

Chapter 2 contains some fundamental background to Linux and real time Linux
which is the basis of the thesis. As the operating platform, Linux has a number of
characterisiics that make it different from other OSs. 1o equip Linux with real time

functionalities, real time Linux has to be involved in the project. The reason why

Chapter 1 Introduction

Linux was selected, and why real time Linux is needed will be discussed later in this

chapler.

The principles, equipment and software ol data zcquisition are described in Chapler
3. The two data acquisition (DAQ) cards, and COMEDI, the software for data
acquisition in Linux are also introduced in this chapter. A driver {or an AD312 card,
which is one of the DAQ cards used in the project, was written to enhance the support
hardware of COMEDI. A briel description about writing drivers for COMEDI is given

and physical hardware used in the applications in this project 1s also introduced.

Chapter 4 introduces RTLab, which was one of the major software packages required
for the project. It combines COMEDI with real time Linux to achieve real {ime
contro} using the Linux operating system. Currently the graphical interface in RTLab
is only available for inputting information, the user is able (o inpui parameters o
system Dbut unable to get any feedback from the system. A feedback graph was
therefore added into the original parameter window to display the current status of

control plant in the form of graphics.

By applying alternative scheduling policies, different results may be obtained. For
instance, the response time in hard real may be quite different from that in soft real

time. A discussion about the approaches achieving control in real time with different

Chapter I Introduction

schedulers is given in Chapter 3.

Chapter 6 will detail four real time control applications: one simple program which
combines COMEDI with RTAI LXRT but without graphical interface, and three
applications in the form of RTLab plugins in which dilferent controllers are used
according to the complexity of the applications, and meanwhile the plugin windows

have also been altered to meet the requirement discussed in Chapter 4.

The discussion and conclusions will be made in Chapter 7 and some future directions

will be suggested in the last chapter, Chapter 8.

1.4 Work in This Project

The following work has been done in this project based on the previous work:

e Driver of AD512 data acquisition card. The driver of MultiQ3 data acquisition
board is provided with Comedi distribution package (with bugs, fixed in this
thesis) however that of ADS12 is not included. This was programmed in order

to use ADS12 card in this project.

¢ A Real Time control program by combining Comedi with RTAI LXRT. There

are a number of methods to combining Comedi with RTAI to achieve real time

Chapter 1 Introduction

performance under Linux. All these methods have been discussed in chapter 4
and with a real time control program discussed. A motor servo is controlled to
change its rotating velocity as a sine wave via DAQ board in the program and
RTAI LXRT was used together with Comedi. User can change the controlling

setpoint by simply changing the counterpart code in the program.

Control programs for three different conirol applications in RTLab. Three
different control algorithms were adopted with separate controller for different

conirol projects in this project:

o Control object - Motor servo. Controller- -PID controller.
o Conirol objec—Rotary Tlexible Link with Straingage. Controlier—
PID controller,
o Control object—Rotary Flexible Link with Straingage. Controller—
LOR controller,
The custom graphic window in RTLab plugin. Only control parameters wese
displayed in the original plugin window, which means, the original graphical
interface for RTLab is purely for inputting information, and by which users
can only change control parameters online. In this project, a custom graph has
been added into the original graphical interface in which a graph of the motor

servo is displayed. The current angular position will appear in the graph and it

Chapter 1 Introduction

changes along with the virtual plant. Users may also designate its refreshing

frequency. The graphical interface can be either for inpuiting or for outputting.

Chapter 2 Background to Linux and Real Time Linux

Chapter 2 Background to Linux and Real
Time Linux

This chapter contains some [undamental background information on Linux and real
time Linux that forms the basis of this thesis. The history, characteristics and the
functionalities of Linux will be introduced. This chapter also addresses the concept,
catcgories and usage of real time Linux that provides us with real time abilities.
Finally, two of the most commonly used real time Linux branches, RTAI and
RTLinux, and the Inter-process Communication (IPC) methods availabie in real time

Linux will be discussed.

2.1 History of Operating Systems

Computer technology has progressed rapidly over the past several decades, from the
first Mini compuier lo Microcomputer, from Apple to Pentium. Operating systems
have also progressed as well as the computer itself. DOS (Disk operating system) is
probably the earliest popular operating system. It is based on the basic command line
input mode, and requires users to remember quife a number of commands with

predefined formats. Windows scries are the milestone in the history of operating

Chapter 2 Background to Linux and Real Time Linux

system. These systems allow users to execute commands, run programs, or perform
certain operalions simply by clicking on the icons in the screen, and this makes it a

suitable operating system for all-level users.

Linux came forth in the late 1980s, It was pioneered by a Finnish university student,
Linus Torvalds, who was studying an operating system named Minix which was
developed by computer scientist Andrew S. Tanenbaum at that time. In the early days,
Linux was regarded as an operating system used by hackers and was put onto an F1'P
server free for download. It has now become a POSIX compatibie operating system

with all UNIX characters,

2.2 Linux Operating System

2.2.1 General Description of Linux

When Linus was studying Minix, he noticed that the functionalities of Minix were
not complete and he therefore programmed another operating system running in

protection mode, and that was the prototype of Linux.

Linus announced his first version of Linux, version 0.02 on Gct 5, 1991. At that time,
nothing could be done in Linux except running bash (the GNU Bourne Again Sheli}

and gee (the GNU C compiler), and the development was focused on the kernel part

Chapter 2 Background to Linux and Real Time Linux

as it was just rcgarded as a hacker’s system. Linus made the source code of Linux
public since its first appearance, and also put it onto some FTP servers where it is free
for download. The Administrator figured it as the Minix of Linus hence he named it

Linux. Linux has its own name since {{14]).

In the next few years, Linux developed at an amaving speed and far from what Finus
expected. On March 14 1994 its first official version, version 1.0 was announced;
Linux forum has become once of the most popular forums in USENET. Meanwhile, the
kernel version developed rapidly as well, the latest kernel version is 2.6 and is still

developing rapidly,

2.2.2 Linux and GNU

It is bard to describe Linux without the introduction of GNU., GNU is the
abbreviation of GNU's Not Unix. It was initially established by Richard M. Stallman,
the chairman of Free Software Foundation, in 1984. Stallman worked in the Artificial
Intelligence laboyatory of Massachusetts Institute of Technology at that time and he is
regarded as one of the top class programmers in the world. He was convinced that
even if UNIX is not the best operating system in the world, it was not too bad, and it
had the potential to be something more than it showed. The major goal of the

development on this system is making it free to every user, that is to say everyone can

Chapter 2 Background o Linux and Real Time Linux

acquire, copy, modify and redistribute the source code with no cxtra cost.

GNU also has the copyright announcement of its own, General Public License
(GPL), saying famous copylefl. Il states “one can redistribute this library and/or
modify it under the terms of the GPL as published by the Free Software Foundation;
either version 2 of the License, or any later version, and it is distributed in thc hope
that it will be useful, but without any warranty; without even the implied warranty of
merchantability or fitness for a particular purpose ({14]). At a word, GPL cnsures

GN1J is always free and public.

2.2.3 General Distribution Versions of Linux

(1). Debian GNU/Linux

Distributed by Free Software Foundation (FSF), suitable for high-level users.

Wehsite: hup:/www.debian.org. fip://tp.debian.org/debian.

(2). Redhat Linux

Created Redhat Package Manager (RPM) to manage softwarc, the best choice for

beginners.

http://www.debian.org
ftp://ftp.debian.org/debian

Chapter 2 Background to Linux and Real Time Linux

Website: hitp//www.redhat.com. fip://fip.redhat.com

(3). Slackware

Website: hilp//www.slack ware.com.

(4). Mandrake

Website: htip://www.mandrakelinux.com.

(5). SuSe

Now owned by Novell. In addition o systems and application sofiware for private

users, SUSE Linux provides services to the deployment in the enterprise.

Wehsite: http://www.suse.com/us/.

2.2.4 Linux Commands

Diffcrent from other operating systems, LINUX is not directly intuitive, Many
coimmands have seemingly queer names or formats, and may have different effect
from that of their MS-DOS counterparts even though thcy may appear to be similar.
Benefiting from years of experience with standard UNIX wtilities and advances in

computer scienee, programmers on the GNU project have managed to create versions

11

http://www.rcdhat.com
http://www.slackware.com
http://www.mandrakelinux.com
http://www.suse.com/us/

Chapter 2 Background to Linux and Real Time [inux

of standard tools that have more featurcs, run faster and more efficiently, and lack the

bugs or inconsistencies that persist in the original standard versions ({9]).

The Shell is not only used to accept and execute commands as a command
interpreter in Linux, but also works as an interface between operating system and
users ([2]). Different shells may provide dissimilar commands. The familiar shells

under Linux are:

» Boume shell, /bin/sh;
» (Cshell, /bin/csh;
s Kaomshell, /bin/ksh;

e Bourne again shell, /bin/bash.

The shell currently being used can be determined by the command echo GSshell.
The most commonly used shell is Bourne again shell, which is provided by almost all

Linux systems.

User can use “-help” argument to acquire online help for every command, or “man”

to browse more detailed information.

2.2.5 The Linux Kernel

The 1.inux kerel is the central part of Linux. Tt is the code that controls the interface

12

Chapter 2 Background to Linux and Real Time Linux

between user programs and hardware devices, schedules multitask processes, and
manages many of the other functionalities of the system ([14]). Similar 1o other Unix

kernels, Linux kernel needs to accomplish:

« Managing file system and /O operations;

o Munaging processes, allocaling resource for program, and communicating
between programs;

e Managing and allocating memory and virtual memory;

* Managing network, connections.

The kernel allocates hardware resources to tasks running simultaneously, and has
them running individuaily and safely. Linux kernel is known as a monolithic kernel
because all device drivers are components of the kernel properties, Some operating
systems make use of microkernel architecture, in which device drivers or other code
are toaded and executed on demand, and with no necessity to reside in the memory all

the time.

Linux kernel is composed of 5 subsystems ([14]):

s Process scheduling (SCHED). This 1s the heart of an operating systein and the
objective of it is managing the access to CPU;

e Memory Management (MM}, MM controls the access (o sysicm memory;

Chapter 2 Background to Linux and Real Time Linux

» Virtual File System (VES). It provides a uniform interface for all hardware
equipment;

s Network Interface (NET). It gives Linux the access to network;

* InterProcess Communication (IPC). In case of multiprocess, communication

between processes 1s niccessary.

MM
L o
VFS | SCHED | IPC
-~
e
- NET + Dependencies E

Figure 2,1: Relationship between subsystems

2.2.6 Linux Loader (LILO)

LILO is a general-purpose boot manager which can be used to boot almost every

operating system in current use including Linux ([2]).

Chapter 2 Background to Linux and Real Time Linux

There are several ways of configuring LILO. Two most common methods arc:

» installing LILO on the master boot record (MBR) of the hard drive;

e Installing LILO as a secondary hoot loader for Linux only.

The most common way to boot Linux from the hard drive is doing it by LILO. The
kemel itself is stored on the hard drive so that no boot floppy is nceded, Once the
kernel is loaded into the memory, control will be transferred to the kernel instantly. If
L.JLO is installed in the master boot record of the drive, it will be executed first when
the hard drive is booted. The user can then select the operating system they prefer
such as Windows or Linux at boot time, However it must be noted, if the user desires
to have both Windows or OS/2 and Linux residing in the same machine
simultaneously, it is recommended to install Windows prior to installing Linux. This is
because both OS/2 and Windows have their own boot managers which occupy the
MRBR. If the user is using one of these systems, he may have to install LILO as the
“secondary” boot loader for Linux ouly in order to boot Linux from the hard drive. In
this case LILO is installed in the boot record for the Linux root partition only, and the
boot manager software will run LILO from thete when the user wishes to boot Linux.
If however Windows is installed after Linux, it will occupy the master boot record
despotically and destroy what Linux has sct before. This will result in the machine not

being able to boot from Linux unless the user uses a boot tloppy or re-installs it.

Chapter 2 Background (o Linux and Real Time Linux

2.2.7 Programming in Linux

(1) C and Linux

C is probably the most common used programming language nowadays. It is not
only suitable in terms of application program producing but also in system software
programming. In the early days, Programmers were using assembly languages which
relied on the hardware to a great extent to program system software such as the
operating system (including UNIX operation system), and this caused bad readability
and portability. Therefore high-level languages began to be used. The C langvage
came into being in the early 1970s, almost concurrently with the early development ol
thc Unix operating system. In 1978, the first description work of the C language
appeared--The C Programming Language, often called the “white book’ or "K&R'".
Soon after, it was officially standardized by the ANSI X3J11 committee who made the
further changes in the mid 1980s. Today it has become one of the most prevalent

fanguages in the computer industry ({13]).

C’s popularity and tremendous vitality come from its distinctive characteristics (13):

e Conly has 32 keywords, 9 kinds of scripts. 'This makes it simple and flexible;
» It has abundant operation symbols and data structures, can achieve operations

which other programming languages are unable to accomplish;

16

Chapter 2 Background to Linux and Real Time Linux

¢ C allows user to access physical addresses divectly and achteve many
functions which were only avaitable to assembly language before;

*» (Good portability

As the clone of UNIX, Linux has a very closc relationship with the C language.
Actually, Linux itself is actually written in C. All the Linux systems support C/C+-

well in spite of some of the characteristics that may differ from system to system.

(2) GCC Compiler

GNU C compiler (GCC) is a tull-functional ANSI C compatible compiler. Enter
command gce - v after shelt prompt and the version will be shown on the screen.
GCC 1s based on cornmand line input mode, and is often used together with options

and filenames as paramelers.

Following is an example of general gec structure:

Gee foptions] [filenames]

GCC provides over 100 compiling arguments for instance:

User can specify a filename which will be created after compiling by using —o

argument:

17

Chapter 2 Background to Linux and Real Time Linux

gee -0 test test.c

Or use —¢ argument to omit compiling and linking stages

T3]

It must be noted, that the symbol “-” must be nsed for only onc argument rather than

a set of arguments each time.

(3) Using GDB

GDB is the abbreviation of GNU project DeBugger, it allows users (o inspect what
happens “inside” a program when the program is running, or what is causing the

program to crash.

The functions GDB can achieve are ([14]):

o Observing the variable value when the program is running;
e Stopping the program at any specific step by sctting setpoints;

¢ FExamining what is happening when program stops.

‘The program debugged can be written in C, C++, Pascal and many of other
languages. They can be executed either on the same machine in which GDB (local)

locates or another machine (remote), and GDB can nun in most of UNIX and

Microsoft Windows operating systems.

Chapter 2 Background to Linux and Real Time Linux

{4) Using makefile

In Linux, creation and maintenance of the object program is achieved by the
command make. make is a general-purpose program that builds target files from
object files. The target file could be an executable program, a postscript document, etc.

The object file can be C code, a text file, and so on.

The Example Makefile ([31]):

project. exe : main.obj io.obj
tlink ¢0s main.obj io.0bj, project.exe,, c¢s /LIF:\bec\lib
main.obj : main. ¢
bcc -ms —c main.c
io.obj @ io.c
bee -ms -c¢ io.¢
make reads its instructions from text files. An initialisation file is read first, it holds
the instructions for make and is used to customize the operation of make. muke
antomatically rcads the default initialisation file (normally named Makefile)

whenever it starts up, and user can also specify it to other filenames by the command

with the format as:

make - f myfile

The basic goal of make is to fet the user built a file in small steps. If the final

executable file is made up of many source [iles, make can give a user the flexibility of

19

Chapter 2 Background to Linux and Real Time Linux

changing one of them and rebuilding the executable file without having to recompile

everything.

This makefile file has three main rules, one each for making project. exe,
main. obj, and io0. obi. These rules are called explicit rules since they are supplied
explicitly in the makefile. make also has inference rules that generalize the make
process. The lines within the colon " are called dependency lines, the filename in
the left hand side of colon *;” is the target of the dependency, and the {ilename in right
side is the source needed to make the target. For example, project. exe: main. obj
i0.0bj means “project. exe depends on main, obj and io. ohj”. Atrun time make
compares the time that project.exe was last changed to that of main.obj and
io. obj. If cither source is newer than project. exe, make rebuilds project. exe

{31D.

The lines that follow each dependency line are called shell lines. Shell lines tell make

how to build the target.

When cach shell line has been executed, make checks the shell line exit status. By
convention, programs return an exit status of zero if they finish without error and non-

zero if an error occurs ([31]).

The user can also employ macro definitions in makeflie. This makes it very

20

Chapter 2 Background to Linux and Real Time Linux

convenient and flexible to change compiling requirement without ve-typing long
compiling commands each time. A macro definition line is a makefile line with a

LU

macro rame, an equals sign “=", and a macro vafue. In the makefile, the form
$(name) or ${name} is replaced with value. If the macro name is a single letter, the

parentheses or braces are optional (i.e, $X, S(X) and ${X} all mean “the value of macro

xsz\).

makefile can also be used to save to list of filenames, executable filenames,
compiler command arguments and s¢ on, it is an important component of the program

and programming could be much more efficient if makefile is made good use of.

2.3 Real Time Linux

2.3.1 What is a Real Time Operalting System?

A Real time operating system is a system that must respond to inputs or events with
predefined time limits. The system must operate within a specific time constraints and
be capable of predicting and coutrolling plants when different computation algorithms
are applied ([14]). It is the vital component of the technological infrastructure of an
industrial nation and is widely used in modern telecommunication systems, automated

factories, defence systems, power plants, aircraft, airports, spacecraft, mecdical

Chapter 2 Background to Linux and Real Time Linux

insirumentation, and SCADA systems.

The biggest diffcrence between a Real Time Operating System (RTOS) and a normal
operating system is that the Real Time Operating System must satisfy the relationship
between processing and time ([14]). In real (ime computation, the accuracy of the
system not anly relies on the correct resull of the computation, but alse on the time in
which results are generated. Real time system must respond to urgent events guickly

and predictably, have high-level schedulability, and stability under transient overload.

The most important requirement for a RTOS is that it must have the capability of
responding to and processing internal or external events in a pre-defined time (| 14]).

An RTOS it must have elfective capability of:

¢ Processing interiupt;
+ High efficiency 1O ability;
* Processing asynchronism;

» Receiving data and sending application within strict time Iimitation.

The detailed requirements are:

« System should be capable of distinguishing and processing discrete events in a

pre-defined time;

22

Chapter 2 Background to Linux and Real Time Linux

e System can process and store a huge amount of data that the contro! system

needs.

The most important compenent in RTOS is the Real Time Multi-task Kemel, which

is used to accomplish the functions of:

s Tasks management;

* Timer management;

= NMemory management;
+ Resource management;
s Events management

e System management;

e Message management;
e Queue management;

» Semaphore management;

2.3.2 Some Popular RTOSs

e (QNX

QNX is an embedded, expandable real time operating system. It abides by POSIX.1

(programming interface), POSIX.2 (shell and tools), and POSIX.1b (real time

Chapter 2 Background to Linux and Real Timme Linux

expansion} partially. QNX was pioncered in 1980, and has developed rapidly in recent

years [14].

QNX is a microkerncl real time operating system. The QNX kernel provides 4 kinds
of services: process scheduling, inter-process communication, network
communication and interrupt processing. All the OS services are regarded as
cooperative user processes therefore QNX kernel is very small (about 12 KB for

QNX4.x) and rapid [14].
o LynxOS

Similar 10 QNX, LynxOS is also an embedded, expandable real time operating
system. It abides by POSIX.1a, POSIX.1b, and POSIX.1¢ standard, pioncered in 1988.
The rmicrokernel (28 KB) of LynxOS provides the services as: kernel startup and

termination, memory management, crror processing, cte [141,

LynxOS supports threads concept ([4]), uses hard real time priority scheduling and

preecmptable RTOS kernel.
* VxWorks

VxWorks is a real time operating system which was developed by a company named

Wind River Systems in United States. It is widely used in the area with high real time

24

Chapter 2 Background to Linux and Real Time Linux

requircments such as communication and aviation [14].

¢ RT-Linux

RT-Linux is an embedded hard real time system, support POSIX.1b standard

partially [14].

A small, simple, real-time kernel is inserted beneath the normal Lisux kernel in RT-
Linux, having Linux as a task which only runs when there is no real-time task running
at the same time. Different from the microkernel and normal kernel, RT-Linux

belongs to real time EXE structure. A more detailed description will be given later.

e RTAI

RTAI is another real time extension which is dcveloped by Dipartimento di
Ingegneria Aerospaziale - Politecnico di Milano (Department of Aerospace
Engineering-Polytechnic of Milan). It is selected to provide real time functions in this

project.

« KURT-lLinux

KURT-Linux is a *stricl” real time systern, The KURT-Linux kernel includes (wo

major parts: Kemel and Real time modules. The kernel is responsible for real time

Chapter 2 Background 1o Linux and Real Time Linux

tasks scheduling, provides specific real time services for user processes. KURT-L.inux
can run in two different modes: normal and real time. All processes can run in normal
mode, but some of the kernel scrvices might cause unexpected interrupt. In real time

mode, the only process allowed to run is real time process [14].

KURT-Linux Supports the scheduling method of: FIFO (First In First Out)
scheduling, recursive scheduling, UNIX time-shared scheduling and SCHED-KURT

[14].

2.3.3 RTOS Designing

There are a number of ways io design RTOS according to applications. For instance,
a RTOS can be a periodic (time-sharing) or an aperiodic (event-driven) systcm,,
Periodic system means the system uses a sensor to probe external changes periodically,
and then responds to it. Apeviodic means external events take place recursively but not
regularly ([14]). Time-sharing means the operating system will change at time
inlervals, and event-driven means the system will only change in response to events or
interrupts, and it is commonly associated with cooperative operating system in which

system waits for a process to surrender control.

There are two main ways to react to an event: polling method and interrupt driven

method. In polling mode, the application program continually poils the different

Chapter 2 Background to Linux and Real Time Linux

system peripherals to check if they nccd scrvice. When a peripheral is ready for
servicing, it must wait until the software polls this peripheral. Therefore, polling-
mode peripherals experience longer response time from the processor as more
peripherals are added to the system. Therefore polling-mode systcins can become
unstable in this case since the response time of each peripherat is affecied. Generally
it is only appropriate when the system is small enough. In interrupt-driven mode, each
peripheral usually has onc interrupt indirec(ly feeding into the processor's interrupt
porl via an interrupt controller. ‘fhe interrupts coming from peripherals can be
prioritized. The processor always services the interrupt with the highest priority {irst.
Conscquently, the response time of an interrupt-driven system is much faster.
However, in interrupt-driven systems there is the possibility that lower-priority
peripherals are never serviced. Thereby interrupt-driven systems must be carelully
designed according to the real time requirements of various peripherals. There is
generally more stability with interrupt-driven systems since the response time for cach
interrupt can be estimated with more accuracy and peripherals can be added to the
system without affecting the response time of exisiing peripherals. Usually real time

operating systems use interrupt-driven methodology.

A RTOS can alse be a hard real time or soft rcal time system. Hard real time system
means the system must respond to the affair in time to avoid major damage. For

example, the pilot system of an airplanc has to respond to the control signal

27

Chapter 2 Background to Linux and Real Time Linux

quickly to ensure safe flying. In soft real time system, system is allowed to respond to
the event a bit later than the responding deadiine in case of overloading, and this may
not result in big loss or disaster. For example, in communication systeni, one call it

allows 1o omit one call among 105 calls.

The biggest difference between hard real lime system and soft real time system is the
scheduling policy. User can use static periodic scheduling or FIFO (First In First Out)
scheduling 1o schedule tasks. However both static periodic scheduling and FIFO
scheduling are monopolized algorithms. In other words, neither of them allows

preempting. This will be introduced in detail in later chapters.

2.3.4 How Does Real Time Linux Work?

It is possible to take control of a camera, robot, or other scientific equipments by a
personal PC via Linux. However, Linux itself cannot control devices with hard real
time requirement reliably, For example, connecting a speaker to a pin of parallcl
interface, and then run a program to play music. If this program is the only onc
running, speaker will emit stable music. If refreshes of the window occur every 2
seconds, user can notice that the music may change slightly. The sound will become
irregular if two or more windows are being opened at the sume time. Further more, if

running Netscape m one of the windows, the music will become discrete and distorted.

28

Chapter 2 Background to Linux and Real Time Linux

1.ike some of other operating systems, Linux optimizes every function and tries Lo
allocate time to each process cqually. This is cssential to normal operating system, but
in real time (;perati011, counting and forecasting functions are much more important
than others. For example, a camera is required to fill the buffer every one
microsecond, and it may cause data loss if the process taking charge of filling the

buffer is delayed for just for even a small time.

Linux with real time [unction can achieve lots of tasks and operations as the uscr
desires. In real time Linux, Linux must be cleared from the CPU whenever real time
task needs it. Generally, there is no need for Linux to know how the RTOS runs, how
it sends interrupts or controls hardware devices, but real time tasks can run in a high
accuracy level. In a 120-MHz Intel Pentium (P120) testing system, a series of tasks

can run orderly with an error of just 20 microseconds.

The following graph shows the relationship belween Real Time Kernel and Linux

Kernel.

29

Chapter 2 Background to Linux and Real Time Linux

Vi shE wew mias and

| RT Linux Kernal

e LR L2 T T P P

LS

Linnx Process

! i

R indonae

Linux Eernel

¢ !

Dieplay | | Disk

Diesrge

Softwaty
Level

Havdware
Level

) NomR’I’ Progase

IR X Ty SRR KT o F

4

‘ .
FIFO) l

1 BT Proce ss

A~

*

Clerwsddi B Fae gon
{ Drevvie s Dirivery

v]

Boaxd{ hulti 32, AT 512

Figure 2.2: The relationship between real time kerael and normal Linux kerncl

There are two primary variants of hard real time Linux available: RTA and

RTLinux. The real time kernel in RTAI is called Real Time Hardware Abstraction

Layer (RTHAL), it intercepts all hardware intercupts and routs them either standard

Linux or to real time tasks depending on the requirements of the RTAI schedulers

(|6]). Compared to RTHAL, the real time kernel in RTLinux is known as RTCore

which allows users to get hardware-limit real time performance with all of the

flexibility provided by Linux. Details about RTAT and RTLinux will be introduced

later.

2.3.5 Linux Loadable Kernel Module (LKM)

30

Chapter 2 Background to Linux and Real Time Linux

The simplest method of adding code into a Linux kernel is to add some source files
to the kernel source tree and recompile the kernel. The file which should be included

for compiling is sct in the kernel configuration.

i is also possibie however to add code into the Linux Kernel dircetly while it is
running. A chunk of code added in this way is called a loadable kernel module (LKM),

and this module can be a device driver, a file system driver or even a system call.

All the drivers and plugins are integrated in the form of .LKMs in this project.

I.oadable kernel modules have a lot of advantages ({17], [5]):

s Not necessary to rebuild kernel time after time. This prevents the user from
wasting too much time on rebuilding and reinstalling the base kernel;

* LKMs help uscr to diagnosc system problems. A bug in a device driver which
is bound into the kernel can stop the system from booting, and it is very hard
to know where the problem resides in such a casc. If the device driver is
inserted as LKM, the base kernel could run before the device driver is loaded,
and if the system crashed after a certain module was loaded, it is easy to track
and fix the problem,;

s [KMs save memory. Kemel modules will be loaded only when actually

nceded;

Chapter 2 Background to Linux and Real Time Linux

Tt is very fast to maintain and debug LKMs;

Running [.KMs is nol slower than running base kernel modules.

1.KMs can be used for [17]:

Device drivers. The kernel uses a device driver which is designed for a
specific piece of hardware to communicate with that piece of hardware
without having to know any detail about how that hardware works;
Filesystem drivers. Filesysiem is the content of a disk drive generally. A
filesystem driver interprets the content of a filesystem as files and directories.
Files and directories can be stored on disk drives, network servers or other
places, but for each case, a file system driver is needed;

System calls. User spacc programs use system calls to get services from the
kernel. Although most of the system calls are integrated into the system and
are very standard, users can make system calls of their own;

Network drivers. A network driver inlerprets & network protocol;
Executable inlerpreters, An executable inlerpreter is used to load and run
an executable file or task;

TTY line disciplines.

After creating the desired LKMs, user can operate on them with the following

32

Chapter 2 Background to Linux and Real Time Linux

ulilities:

¢ insmod. Insert an LKM into the kernel;

s rmmod. Remove an [LKM {rom the kernel;

o depmod. Determine interdependencies between LKMs;

o kerneid. Kernel daemon program, it allows kernel modules to be loaded
automatically;

e ksyms. Display symbols that are exported by the kernel for use by new LKMs;

e Ismod. List currently loaded LKMs;

» modinfo. Display content of modinfo section in an LKM object file;

e modprobe, Insert or remove an LKM or set of LKMs intelligently;

A user can use command cat /proc/ksyms (o list cvery symbol that is cxported by

the kernel and command and cat /proc/modules to see the presently loaded LKMs.

Generally, module files can be found in the directory JAib/modules, divided into

subdirectories.

The kernel initialises an LKM when the kernel is loaded, and it initialises a bound-in

modztle at boot time.

It is necessary to introduce the concept of kernel space and user space here. User

33

Chapter 2 Background to Linux and Real Time Linux

space 18 a term for combined address of all user-level applications. The kernel itself
has its own address space called kernel space. Generally speaking, kernel space is
where the kernel code resides, and user space is where the user programs live. A
kernel is all about access Lo resources which might be a sound card, a video card, a
hard drive or memory. Programs often compete for the same resource and the ketnel
needs to keep everything in order. A CPU can run in different modes, and each mode
gives a differcnt freedom level. A user space is an environment where low-priority
tasks run. Basically, library functions are used in user mode. The library function calls
one or more system calls, and these system calls execute on the library function’s
behalf, but they do this in supervisor mode because they are part of the kernel. Once
the system call completes its task, it returns and execution is transferred back to user

mode,

Working in user space provides a better system stability, casicr access to library
functions such as math-library and compared to working in kernel space, it is also
casicr to debug in user spacc when problems occur. However, it provides a better
access to resources when working in kernel space. Clearly, one of the main
advantages of RTAI over RTLinux (which are discussed later) is that RTAI provides a

means of developing in user space (via LXRT).

The main advantages of RTHAL are [6]:

34

Chapter 2 Background to Linux and Real Time Linux

* The changes needed to the standard Linux kernel are minimal, This improves
the code maintainability and makes easier to keep the real time modifications
up-to-date with the latest release of the Linux kernel.

e The real time cxtensions can be easily removed by replacing the interrupt
function with the original Linux routines. This is especially useful in certain
debugging situations when it is necessary to remove the extensions and when
verifying the performance of standard Linux with or without the real time

extensions.

2.4 Real Time Linux—RTAI

2.4.1 General Description of RTAI

RTAI (Real Time Application Interface), was initially developed by The
Dipartimento di Ingeneria Aerospaziale Politecnico di Milan (DIAPM- Department of
Aerospace Engineering-Polytechnic of Milan) as a variant of RTL.inux developed by
the New Mexico Institute of Technology (NMT), at that time neither floating point

support nor periodic mode scheduling was provided by RTLinux (§6]).

RTAL is not an intrusive modification of the kerncl, it uses HAL (Hardwarc

Abstraction Layer) {o provide fundamental functions and get information from Linux,

35

Chapter 2 Background to Linux and Real Time Linux

HAL does not depend greatly on the Linux kernel and this provides RTAI with a very

good portability.

2.4.2 RTAI Modules

There are a numbers of modules provided by RTAIJL and the user can load the

modules to accomplish every required RTAI functionality ({6]).

1) rial. rtal module is the hasic RTAT framework. Tt initialises all of its
control variables and structures, makes copies of the idt_table and the Linux
irq handlers’ cniry addresses, and initialises the interrupt chips management

functions.

2) rtai_sched this is a real time, pre-emptive, priority-based scheduler module,
rtai_sched is in charge of distributing the CPU resource to different tasks in
the systern. The scheduling occurs when tasks perform certain system calls
and timer handler activates, Tasks with different priorities will be arranged at
different time. RTAI regards the priority 0 as the highest priority and

Ox3{f1F1tT the lowest. Linux is given priority Ox7H1F{It.

RTAI supports both periodic and one-shot modes for the real time scheduler.

36

Chapter 2 Background to Linux and Real 'I'ime Linux

Three schedulers are available in RTAL:

o UP, only for uniproccssors;
o SMP, for multiprocessors;

o MUP, only for multiprocessors.

The scheduler services are:

o Task functions;

o Timing functions;

o Semaphore functions;
o Mailbox functions;

o Iniertask communication functions;

3} rtai_fifos. This is the module that implements the FIFOs and semaphores
services for RTAL It is used to achieve communication between the real time
system and Linux side, such as managing the data logging and displaying. The
real time interface includes creation, destruction, reading and writing functions
which are performed by rtai_fifos module. User processes consider real

time fifos as ordinary character devices.

4) rtai_shm. This s a RTAI specific module that allows sharing memory

37

Chapter 2 Background to Linux and Real Time Linux

among different real time tasks and Linux processes. The first allocation does
a real allocation, Any subsequent call to allocate with the same namc from
Linux processes just maps the area to the user space or retwrn the related
pointer to the space already allocated in kernel space. A user can also use the

‘mbuff’ module for access to shared memory.

5) LXRT. The LX (LinuX) RT (Real Time) module, which implements services
to make any of the RTAJ schedulers functions available to Linux processes.

Users can share memory, send messages, use semaphores and Umings between

Linux and Linux, Linux and RTAI, or RTAI and RTAIL

6) rtai_pqueue. Posix RTAI modules. rlai_pthread. o provides hard real-
time threads, where each thread is a RTAI task. All threads are executed in the
samc address space and work simultaneously on shared data. rtai_pqueue. o

offers kernel-safe message queues.

7) rt_mem_mgr. Dynamic memory management for real time.,

2.4.3 LXRT

LLXRT provides the same set of RTAI API calls available for RTAI applications in

user space ({6]). Tt enhances its ‘soft’ real-timc performance by requiring the

38

Chapter 2 Background to Linux and Real Time Linux

programmer (o change the Linux scheduler’s policy from SCHED_OTHIER to

SCHED_FIFO.

SCHED_OTHER is the standard Linux default scheduling policy used by most
processes. SCHED FIFO and SCHED_RR are used for special, time-critical
applications which have high requirement on control precision. Processes scheduled
with SCHED_OTHER have a static priority of 0. The scheduler selects which process
to run from a waiting list by the level of thesc processes. Processes scheduled with
SCHED_FIFO are assigned static priorities in the range 1 to 99. When a process
begins ruonning it will pre-empt a rumning SCHED_OTHER processes or a
SCHED_FIFO process of lower priority. A FIFO (fivst in first out) policy is applied to
processes of the same priority. And SCHED_RR is a simple enhancement to
SCHED_FIFO, cach process is only allowed to run for a maximum time period before

being re-scheduled, this type of scheduling policy is seldom used in LXRT.
LXRT has the important features as following:

e The tasks can execute under the Linux memory protection scheme;

» LXRT allows a system to be easily divided into hard real-time and soft real-
time parts in that the LXRT modules will execute at a higher priority than
normal Linux processes;

e The tasks can be debugged using standard Linux user-space debug

30

Chapter 2 Background to Linux and Real Time Linux

tools;

= ljser can move a task into kemel space right alter debugging it;

e The iasks can use the standurd RTAI API, which muakes il very easy to move
tagks belween hard real time and soft real time parts;

s Once a rool user has installed the required modules, these modules can be
called by normal users;

* Real time tasks no longer carry kernel dependencies because they are no

longer implemented as kernel modules.

Under LXRT, the real time task is implemented as a user space task, but actually, it is
scheduled by the real time scheduler after being moved into hard real time. User can
achieve this simply by inserting the LXRT module and using LXRT API within user

space task.

It must be noted that there is a fixed sequence of inserting RTAL modules, riai.o must
be inserted (irst, and rtai_sched.o, lxrt.o last, otherwise “unresolved symbol™ errors

will oceur due Lo module dependencies and insertion wilk fail.

2.4.4 The Official Website of RTAI

Webstle: htlp://www.rtai.org/.

http://www.rtai.ors/

Chapier 2 Background to Linux and Real Time Linux

2.5 Real Time Linux-—RTLinux

2.5.1 General Description of RTLinux

RTLinux was initially developed by Victor Yodaiken and Michael Brananov who
worked in the Computer Science Department of University of New Mexico in United
States at that time. It is another rcal time branch of Real Time Linux. RTLinux has the

same principle as the RTAI but they have different API functions #nd modules.

From the poiut of view of compatibility with the data acquisition software used in
this project-—COMEDI, RTAI is selected as it is supported better for the COMEDI

nowadays. The detail of COMEDI will be introduced later.

2.5.2 RTLinux Standard Modules

RTLinux provides the following modules ([14]):

» rtl_sched provides scheduling methods based on priority, supports POSIX

interface and version 1.0 RTLinux API functions;
e 1tl_time provides real time timers;
e rtl_posixio provides the read, write and call operations of driver in POSIX

means;

Chapter 2 Background to Linux and Real Time Linux

tl_fifo provides the communication interface between real time tasks and
Linux processes;

Semaphore is the module which gives information value to real time tasks;
Mbuff is the shared memory driver for the communication between Linux user

process and kernel process.

In these modules, following API functions are provided:

Interrupt controlling API functions;

Clock controlling and acquiring;

Thread creating and deleting, priority and schedule controlling API functions;
POSIX interface;

FIFQ driver,

Series port driver API functions;

mbuff driver API functions;

Floating point number support API functions

2.5.3 The Official Websites of RTLinux

Website:

e hitp://www.rtlinux.cony,

42

http://www.rtlinux.com/

Chapter 2 Background to Linux and Real Time Linux

o htipd/www.rtlinux.ory/,

o Dhitp://www. fsmiabs.com/

All the three websites above direct to the same webpage.

2.6 Inter-process Process Communication (IPC)

There are a number of approaches to achieving Inter-Process Communication (IPC)
between reallime (asks and non-real time lasks within real time Linux operating
system. Inter-Process Communication (IPC) means passing messages between active
processes or between tasks. FIFO is probably currently the most commonly used IPC
approach in real time process. Semaphores, mailboxes, shared memory remote
procedure call (RPC) functions and POSIX APIs are also available for the same

purpose:

¢ Real time FIFO: A FIFO (First In First Out) is a read/write buffer used to
asynchronously transfer data between real time Linux tasks and processes.
Similar to a pipe, one end opened for writing, and another end opened for
reading operation ([10]). RTATI supports two RT_FIFO implementations,
“oldfifos™ and “newfifos”. Oldfifos are based on the original NMT-RTL FIFQs,

while newfifos are based on completely new code but maintain fully

43

http://www.rtlinux.org/

Chapter 2 Background to Linux and Real Time Linux

compatibility with the basic services provided by its original NMT-RTL
counterpar while adding some additional features ([10]).

» Semaphores; They are used to achieve synchronization between tasks either
with regard to access to shared resources or as a simple binary, message-
passing system.

* Mailboxes: They provide the capability to transfer data of user-defined sizes
between Linux and RTAIL

» Shared memory: They provide a means of transferring data between real time
and user space tasks, in which a portion of physical memory is sct aside for

sharing between them.

s RPCs: RPCs are similar in operation 1o QNX-style messages available to real
time tasks. They can either transfer an unsigned integer or a pointer to the

destination task.

Shared memory is selected in this project and this will be detailed in later chapters.

44

Chapter 3 Data Acquisition and Physical Cquipment

Chapter 3 Data Acquisition and Physical
Equipment

Both hardware and software are crucial for data acquisition in a control systen:.
MultiQQ3 and AD512 are two of the data acquisition (DAQ) boards used in this project
by which the user is able to build up data transfer between the physical environment
and the computer. As the interface between DAQ hoards and the computer, COMEDI
links the 2 sides by adding drivers for the DAQ boards which the user wishes Lo use
into the COMEDI driver library. The iniroduction of MultiQ3 board, AD512 card, and

control plants will be given in (his chapier,

3.1 Hardware for Data Acquisition

3.1.1 Data Acquisition (DAQ) Boards
3111 Quanser Consulting MultiQ3 Board

The MultiQ3 is a general purpose data acquisition and control board which has 8
single ended analogue inputs, 8 analogue outputs, 16 bits of digital input, 16 bits of
digital output, 3 programmable tumers and up to 8 encoder inputs decoded in

guadrature. Interrupts can be generated by any of the three clocks, one digital input

45

Chapter 3 Data Acquisition and Physical Equipment

line and the end of conversion from the A/D ([27]).

The system is accessed through the ISA slot and is addressable via 16 consecutive
memory mapped locations which are selected through a DIP switch located on the

board.

] *) 7

& LA W Jam

Figure 3.1: MultiQ3 data acquisition board

An online manual is available at:

http://mechanical.poly.edu/faculty/vkapila/ME325%5CMultiQ%5Cmqg3 _manual.pdf

3.1.1.2 Humusoft AD512 Data Acquisition Card

46

http://mechanical.polv.edu/facultv/vkapila/ME325%5CMultiQ%5Cmq3

Chapter 3 Data Acquisition and Physical Equipment

The AD512 data acquisition card is another general dala acquisition and control
board. 11 contains a 100 kHz throughput 12 bit A/D converter with sample/hold circuit,
four software selectable input ranges and 8 channel input multiplexer, 2 independent
double huflered 12 bit D/A converlers, 8 bit digital input port and § bit digital output

port ([26]).

The ADS512 card is designed for standard data acquisition and control applications
and optimized for use with Real Time Tooibox for MATLAB ([7]). The AD512 can be
used not oy in desktop computers but also in portable compulers due to its small
size and low power consumption {[26]). To be aware, when working with notebooks,
it can only be used in ones which have device such as docking station with ISA slot. It

is recommended to use PCMCIA boards in this case.

An online manual is available at:

http:/fwww2 humusoft.cz/www/datacy/manuals/ad 51 2um.pdf

3.1.2 Control Plants and Other Physical Equipment

Two scts of plants will be controlled in this project: a rotary position motor servo
(single —input single-output) and a rotary flexible straingage with a motor servo

{single-input mukti-output). Both of them are manufactured by Quanser and driven by

47

Chapter 3 Data Acquisition and Physical Equipment

an UPM-15-03 power module.

3.1.2.1 Rotary Position Motor Servo SRV02

The rotary position servo consists of a DC servomotor and a built-in gearbox whose
ratio is 14 to 1. The output of the gearbox drives a potentiometer and an independent
output shaft to which a load can be attached. SRV02 is equipped with only one
potentiometer and has a tachometer attached to the back of the motor. The position of

motor shaft is measured by a sensor attached to the shaft.

The control objective for this plant is to implement a controller to control the

position of the output shaft

Figure 3.2 Rotary position motor servo SRV02

48

Chapter 3 Data Acquisition and Physical Equipment

System parameters of servo SRV02:

Epecitication Value Units
Plant imensions 16 % 15 x 18 cin?
Plant weight T e kg
Rited Voilage 6 Virlls
Faxinsum Torinucus Cument] 2y
I axioity Spsod Fecommended) GEOn [E=N) B
Crppurajing Tempaiolu s -20 1o +3b g
Falentiometar Bias Fower £)13 Yolts
Polentioniete] Kapsuisimonl Rangs £ Volts
Tachorsatar Blas Pown 12 Veolts
Tagharnater Maasuremant Banos +5 YHIts
Taghomater Sensilivity 1.6 my Jrpm.
Erncoder Resomiion (E ~ opliont A0S0 Counts 7 Rav.
0.BRye Gian) f Carm
Encoder Rosolution (EHR - opttond |19z Counls § Rev.
0.42¢ Owg ! Count

Figure 3.3 Systcm paramcters of servo SRV(2

3.1.2.2

Rotary Flexible Link with Motor Servo SRY(02

A straingage is mounted at the clamped end of a flexible link. The output is an

analog signal which is proportional to the deflection of the link. This system is

mounted on a motor servo plant (SRV2 in this project) te perform flexible link control

experiments, The siraingage is calibrated to give 1 volt per inch ol the defllection at

the tip.

49

Chapter 3 Data Acquisition and Physical Equipment

Figure 3.4 Rotary flexible link with motor servo SRV02

This control project involves positioning the flexible link to a set point using a
feedback controller to damp out the vibration at the tip of the link as quickly as

possible with minimal vibrations ([20]). The objectives of this project are:

e To obtain a linear state-space model for the Flexible Link module.

e To design a state feedback controller that damps out the vibrations at the tip of

the beam.

System parameters of the flexgage module:

50

Chapter 3 Data Acquisition and Physical Cquipment

Symbol Walue nits
T ongue OO 7EYT W radisee)
GOr&tant} . . N

2 {Wotor 20 £2
resistancs)

Hop (gear ratio G0 S EY

S aior 267 a7 K
irartiay

Jhub 68019 Ky e
Jisad | acos Kg m?
Ll lengtk 04825]

¥y lErak 0,065 Ky

K& {stiffrass) 2 Winérad

FFigure 3.5 System parameters of the tlexgage module

3.1.2.3 Power Amplifier and Supply

A Quanser UPMI1503 is the power module used in this project. The module is
equipped with a l-ampere +/- 12-voll regulated DC power supply for signal

conditioning of external analog sensors.

51

Chapter 3 Data Acquisition and Physical Equipment

Figure 3.6 Power amplifier UPM1503

3.2 Software for Data Acquisition

3.2.1 Data Acquisition

Data acquisition is the most elementary work in this project. In control systems, the
first and one of the most important tasks is acquiring data from the control plant
accurately and promptly. The control signal will be sent back after comparing with
desired setpoints with successful data acquisition. Data is transferred from the output
interface of the plant to computer environment through analogue input channels and

some kind of interface between computer environment and data acquisition card in the

wn
(3]

Chapter 3 Data Acquisition and Physical Equipment

format which is recognizable to the computer.

3.2.2 COMEDI

Comedi is a Linux control and measurement device interface, its project develops

open-source drivers, tools, and libraries for data acquisition (| 11}). It includes:

¢ Comedi. A collection of drivers for a variety of common data acquisition plug-
in boards. The drivers are implemented as a core Linux kernel module
providing commeoen functionality and individual low-level driver modules;

o Comedilib. A user-space library that provides a developer-friendly interface to
Comedi devices, Included in the Comedilib distribution is documentation,
configuration and calibration utilities, and demonstration programs;

*» Kcomedilib. A Linux kernel module (distributed with Comedi) that provides
the same interface as Comedilib in kernel space, suitable for real-time tasks. It

is effectively a “kernel library” for using Comedi from real-time tasks.

Comedi has the following features:

+ Integrated real-time support for most hardware;
» High-level library (comedilib);

* Application-level device independence;

53

Chapter 3 Data Acquisition and Physical Equipment

« Works with Linux 2.0, 2.2, and 2.4 kernels.

The latest version (20/06/05) of Comedi and Comedilib are:

o comedi-0.7.70;

s comedilib-0.7.22.

Comedi designates a separate subdevice number to every subdevice in the board like
analogue input, encoder, and 4 separate channel number for every channel residing in
the same subdevice as well. The user can talk to whichever subdevice or channel by
giving the proper number as parameter i Comedi function calls. For example,
sending a voltage value out through analogue output (subdevice 1} channel () by
Joutp -s 1 -¢ 0 xx (xx is the voliage value). The user can observe the
information such as subdevice and channel numbers of the board by command cat

/proc/comedi.

It should be noted that 2 different Comedi libraries are provided in the same release
package: Comedilib and Kcomedilib. Both of them provide almost the same
functionalities however they should be used in different cases. Comedilib is a user-
spacc library and Kcomedilib is a Linux kernel! module that provides the same
interface as Comedilib in kernel space, whereas it should be used for real-time process

only. Misusing of the library will cause errors in compilation.

54

Chapter 3 Data Acquisition and Physical Equipment

3.2.3 Drivers for Data Acquisition Cards

3.2.3.1 Quanser Consulting MultiQ-3 Board Driver

The Comedi driver for MultiQQ-3 board is provided with Comedi distribution, usually

in file /$ComediDR$/comedi/drivers/multig3.c.

There is no necessity to put the whole driver program here however, it must be
pointed out that there are 2 bugs in the original MultiQ3 driver provided with Comedi

0.7.66: Oneisinrmultiqg2_ai_insn_read{) function:

for{n=0;n<insn->n;n++) {
hi = inb(dev-»iobase + MULTIQ3_AD_CS};

lo = inb({dev->iobase + MULNILQ3I_AN_CS);
datalnl = ((hi << 8) | lo) & Ox£fff;

This code results in the cutting off of minus input part and only (0 and positive

voltage input can be read in. During the project it was modified to the following:

for{n=0;n<insn->n;nt+} {
hi = inb{dev-~->icbhase + MULTIQ3_AD_CS) &Oxff;

lo = inb(dev->iobase + MULTIQ3_AD_CS) &0xff;
datafnl = (((hi << 8) | lo 1 0x1000) & Ox1Eff;

35

Chapicr 3 Data Acquisition and Physical Equipment

This ensures the whole range of the input is kept during reading-in.

Another bug resided in multig3_ai_insn_read() function. The last line of

the function return i; causes error messages as following in kernel space:

Oct
Qct
Qct
QclL
Oct
Oct
Oct
Oct

NONNNN N

(AW V]

16:16:
16:16:
16:16:
16:16:
16:16:
16:16:
16:%6:
16:.6:

16
16
16
16
16
16
16
16

Ctrlée-PrC
Ctri6-PC
Ctrlé6-pC
Ctrle-pC
Ctrloe-pC
Ctrle-pC
Ctrle-pC
Ctrl6-PC

kernel: BUG:
last message
kernel: RBIG:
last message
kerrnel: BUG:
last message
last message

kernel: BUG:

result c¢f insn!=insn.n
repeated L689 times
result of ingn!-insn.n
repeated 122 times
result in insn!=insn.n
repeated in insn!=insn.n
repeated 123 times

result in insn!-insn.n

Even thought it is just a simple consistency check and does not affect the acquisition,

it can be easily fixed by changing return i Mo return n.

3.2.3.2

Humusoft AD512 Data Acquisition Card

The ADS12 card is not in the supported hardwarc lst of the Comed: distribution. A

driver for the board was therefore written (see Appendix B).

3.2.4 Writing a New Driver in Comedi

To write a new driver in Comedi, scveral steps need to be followed:

Chapter 3 Data Acquisition and Physical Equipment

1. Put the dover inlo /$ComediDIRS /comedl /drivers/mydriver.

2. Edit /comedi/config.in and add a ncw “dep_Ltristalte” line. Invent

a meaningful name for the drivei’s variable.

3. Add a line with the name of new driver to

/comedi/drivers/Makefile.

LEach driver has to register iwo [unctions which are called when conliguring and
deconliguring the DAQ board: mydriver_attach{) amnd mydriver_detach. In
mydriver_attach{) function all properties of the device and subdevice and defined,

mydriver_detach destroys all the seltings and definition.

Instructions (insns) are low-level functions for accessing all kinds of channels.

Drivers for digital inputs and outputs must have the following two functions ([32]):

insn_bits (3—Drivers set this if reading and writing multiple bits in a digital /O

subdevice al the same time is supported.

insn_config ()—Implements INSN_CONFIG instructions, used for configuring the

direction of digital /O lines.

Similarly, drivers for analogue inputs and outputs must implement the following two

57

Chapter 3 Data Acquisition and Physical Lquipment

functions:

insn_read ()—Required for analogue inputs.

insn_write ()—Required for analogue outputs.

Several of tasks need to be done in the initialisation function of the driver ([32}):

e Announce that the hardware driver has begun initialisation by a
printk("comedi %d: driver: ", minor);

e Check and request the I/O port region, IRQ, DMA, and other hardware
resources. It is convenient here if user verifies the existence of the hardware
and the correctness of the other information given;

o il in the comedi_device suructure,

* Allocate user privale data structure and subdevices;
* Sect up each subdevice;

e Return 0, indicating success. If there were any errors along the way, the
appropriate error number should be returned. In this case, the _detach function
is cajled. The _detach function should check any resources that may have
been allocated and release them as necessary. dev->subdevices and dev-

>private do not need to be freed in _detach as the comedi core does that.

58

Chapter 4 Graphical Interface (GUI) and RTLab

Chapter 4 Graphical User Interface (GUI)
and RTLab

RTLAB is onc of the major software package required in this project which
combines COMEDI with real time Linux to achieve real time centrol using the Linux
operating system. Qt is adopted as the graphical interface which makes it possible to
have additional custom windows within RTLab plugins. The introduction about
R’1Lab and Qt, and & simple example that shows how Qt works in conjunction with

RTLab is given in this chapter.

4.1 Graphical User Interface (GUI)

4.1.1 General Description of Ot

User interface plays a very important role in software development. There are
different GUIs for different programming languages as well as different operating

systems.

A comprehensive introduction to GUls is given in

39

Chapter 4 Graphical Interface (GUI) and RTLab

http://iwww.ococities.com/Siticon Valley/ Vista/7 1 84/euitool.himl.

In this project, Q1 is adopted as the graphical interface teolbox. Qt is a multiplatform,
C++ application frame work that lets developers write one application which can run

in different platforms such as Windows, Linux/Unix, Mac OS X, and so on ([33]).

Qt includes a rich set of Widgets (visual elements that are combined to create user
interfaces) that provide standard GUI functionality. Signals and Slots are used o
achieve inter-object communication. Qt also offers a conventional Event model to
handle mouse clicks, key presses, and so on. The relationship between each element

in Qt is in Figure 5.1:

[Q_Objac‘t)____"__
! OTimar] I“m__._hmmt:j QWidget]_M
(@ebg) ™ (oFame) {OSinber)
(oa) (onera)

Figure 4.1: Elements in Qt

The QWidget class is the base class of all user interface objects. It receives events
like mouse, keyboard from the window system, and paints on the screen. QObject,
QDialog, Ql.abel, QFrame, QLineEdit, and QSpinBox arc all the classes which can be

used for a QWidget and each class has its own function. For instance, QLabel

60

http://www.geocities.coin/SiliconVallev/Vista/7184/guitool.html

Chapter 4 Graphical Interface (GUI) and RTLab

provides a text or image display, QLineEdit is a one-line text editor, and the

QSpinBox class provides a pop-up menu.

To make programming simpler and more convenient, Qt provides Qt Designer, a

graphical designing tool for user interfaces. It allows users to build interfaces with

layout tools that move and scale widgets automatically at runtime, and generates code

with its built-in code editor.

- ‘ b gilaies hasTelizasy, S o |
e A Gl PR R s PR i e bk,
Eiie Edn Project §earch Inols Layout Preview Window Help {
D § G ssistant S \Q;
e Ty
Common Wid... <5}
*
o] Pusheutton N s SRR
: - YFindDialog: finddialog.ui i
@ RadioButton ~ [EER . T RO TSR ST L I I\ ndaaionin -t 4
o Ched o e ¢ 1 EQHelpDialogease: holpdualoo.un ,
(] Buttoncroup showLinl{ Gstring(ginstallPathDocs() } + TEEIMe d dow.ul ‘?
Bumc.. “htinlzdasigner-manual btind”); i Sotbnmbulooea": setungs.. i
Si3Listvien [EITEekChoaseBase: fotk oo
dj Table L voit Mainwindow: :showLinl.FromClient{ const QString Bk,) . Y docuparser.cpp =)
| docuparser.h
pul] UneEdit raised); 1| 3 helpdialogimpl.cop
ﬂ Spingo: setactivevvindow(); e
showLink{ hnl.); 1 :av!‘velod‘ualoqnnol.h
@ TetEdit helpwindow.cpp |
Buttons ‘ol Mainviindow: ishowlink{ const QString Bhinl.) L 2 |
index.cop
Codvalnany QString filename = lin. Jeft{ finl.find(‘%'));
Views SFizlnfo fif flename);
1 1 ingvodues a G fadenos found sue
ki it (th.esists()) i
Input browser->setSource(“mnda« ntmi”); D i Pf°le Value |
Display eise | name hdioForward :
browser->setSource{ linl’) i| enabled ITrue |
Display (KDE) 3 — _— s : " " HU sizaPolicy Minmuryrice | 4f
rowser->s T : i |
Buttons (kDE) % i @ minimumsize (0.0] |
Tk (eoE] gna: | s ,|(Eind) | (@ maximumsize (32767, 327, |
3 b i
Views (KDE) old Malinwing Qptions T D,-ruoon fias il @ paletteForegrou... (
= ! = L2) | 31l paletteBacigrou. .
Container (KDE) L \hole words only. | '3) Forard 5| == 31| palettsBadgrou
| | i
Graphics (KDE) O Gy 0 Bociward ; [palette [Jjel
Custom Widgets : ..i_ i > |
‘heady et o 7t 118 e B T S A M p

Figure 4.2 A screenshot of Qt Designer

61

00NN AW =

[I
w N - O O

Chapter 4 Graphical Interface (GUI) and RTLab

Qt is a very powerful and convenient tool in GUI designing. In this project, Qt works
together with RTAI and COMEDI in RTLab. More details will be given later in the

thesis.

4.1.2 A Simple Qt Example

Here is a simple “hello world” example. It shows the basic rule by which a Qt

application is working.

G ><|

Hello world! h

Figure 4.3 A snapshot of "hello world" example

/******************‘k**i*****************************i************

* %

** Hello World Example

* %

t*******/

#include <gapplication.h>

#include <gpushbutton.h>

int main(int argc, char **argv)
{
QApplication a(argc, argv);

QPushButton hello("Hello world!", 0);
hello.resize(80, 25);

a.setMainWidget (&hello);

hello.show() ;

62

14
15

Chapter 4 Graphical Intcrface (GUI) and RTLab

return a.exed ()}

The first 2 lines include the QApplication and QPushButton class definitions. There
has to be exactly one QApplication object in every application. QPushButton is a
standard GUI push button that the user can press and release. There are a scries of
classes available in Qt such as QSlider, QLabel, QLineEdit, and QComboBox besides

QPushButton.

Line @ and line 10 define the contens. and size of the QPushButton which will appear

in the graph of this QApplication.

Lines 12 to 14 set up and show the mam widget. A widget is a user interface object
that can process user input and draw graphs. In this example, A QPushBuiton is all
that in the main widget. One thing to be noted, line 13 is essential because a widget is

never visible until show() is called.

4.2 RTLab

4.2.1 General Description of RTLab

RTLab is an ongoing project to develop a general-purpose, open-source, hard real-

0H3

Chapter 4 Graphical Interface (GUI) and RTLab

time experiment interface software system ([19]). All applications in RTLab exist in
the form of RTLab plugin modules. The following graphical interface will appear
after invoked RTLab by entering **./daq_system” in the RTLab source directory and

the plugin module loaded:

% ETETY =] | secs. vt [i0 3

Time; 27571 sec 2758 1 sec. 2750 1 sec. 2780.1 ae¢;

g Wywahatd 0743V Lot Shw D374 Val 2764407 ke B 8550 BPW{ 10072 o TO00 D0 b

AO1 Controls

g:’D_” (ms) deita Pl (ms): A) channel to measure APDs: [1]

P ‘énAi’Da-Dl(ms) gél(a g " Pacing ON Nominal PI: 500 &
r~ Link control to AQQ pacing AOO to AO1 conduction (ms) F-?
- Control ON - Continue underlying pacing
 Only negative perturbations I~ Target shorter APD initially
a |0.5 F Adustg Only Manusdy deltag: 0.010])

APD control experiment notes:

x-axis displays 500 points { 100 points
0-400 'i

[o-a00]
0-400 ‘l 0-400 -
0-400 - 0-400 =

0-400 'I

‘All APDs' Graph Ranae:

Figure 4.4: RTLab graphical interface

The top half of the graph shows the signals echoed back from analogue input
channel 0, 1 and 2, generally this part is the same to every plugin. The bottom half is

the plugin window in which the control parameters can be set, and all the contents in

64

Chapter 4 Graphical Interface (GUI) and RTLab

this window are decided by the plugin program.

There are several files in RTLab source directory such as: plugin.h, plugin_score.h,
plugin_scannerh, plugin_scanncr.cpp, and so on. These files work together with
certain pre-defined plugin mechanism and some variables in dag_system files, to
ensure that the user plugins can be recognized automatically so long as these plugins

were compiled correctly and placed in /SRFLABDIRS$/plugins.

Generally, an RTLab plugin is composed of 4 files:

¢ mypluginc—Module initialisation and cleanup functions. Shared memory
initialisation function, process read function, and control algorithm (usually
do_control [unction) are given in this file. It is the major control
implementation part of the plugin.

¢ myplugin.h—Cailback frequency, macros of maximum and minimum values
of control signal (in volts), and shared memory structure is defined and
declared in this file.

« myplugin.cpp—thc main cutry of user plugin graphical interface, user plugin
constrnuctor, destructor, widgets, signals and slots are declared and called in
this file.

o myplugin_privale.h - mainly used for user plugin widget declaration.

05

Chapter 4 Graphical Intesface (GUI) and RTLab

Each plugin must contain the following symbols ([12}):

e "ds_plugin_ver” int value, indicating the version of the plugin engine this
plugin was written for. Must equal DS_PLUGIN_VER pre-processor symbol
defined in this file;

e entry”. The entry function of type plugin_enrty_fn_t, should return a valid
Piug-in * reference;

» ‘"name". The const char * friendly name of the plugin.

Any piugin missing the above symbols will fail to load.

Optional symbols:

e "flags” inl value, indicating what flags this plugin has set;

* "description” const char *, a brief description of the plugin's functionality;

e "author” const char *, authors of this plugin;

e requires” const char * a descriptive string explaining what is required to

properly load this module.

Shared memory is used to achieve inter-process communication in RTLab.

In this project, the plugin window needed to be altered to show the plant’s working

66

wn & W N -

O 00 3 O

Chapter 4 Graphical Interface (GUI) and RTLab

status, and this will be detailed in Chapter 6.

4.2.2 How Does Qt Work in Conjunction with RTLab

Here is a simple example that shows how Qt works in conjunction with RTLab:

T mm».ﬂT-Y B E——— :
AQ Channel: Help
Al Channel to monitor: 1 MRS S0 AR i A B e

Sq. wave period (ms):{ 1000 ;j
4 Analog oulput enabled

Spke Blarklng (ms) »

| Secs. vnslb;e’s'

%l Spke 'Polarity’s *_

Al Scanned Plugns
Plugln Name
Proport»onal + Inxegral Controller
{Proportional + Integral Controller for different

i Proportional Controller

{S1S2838485 Stimulator

Wave Ma(er

Plugln Namo Tes(lng Program (tesl so)
‘Fllename fhome/xduan/

| rlab_exp_tk-0.65.2/test.s0

| Related Kernel Module:

lDescrlptlon A simple reference plugin
)mal does the following: Kemel code: Writes
LA 2 unit clnnal ta DA(rhannal N whan

Figure 4.5 A snapshot of test plugin windows in RTLab

test.c (see Appendix C for source code):

/* This file is a part of an example showing how Qt works in
conjunction with RTLab

* Copyright (C) 2004 Xiaoyu Duan

*y
) xx

* Example RTLab plugin -- Kernel side.

* This plugin does the following:

* Kernel code:

= Writes a 2 volts signal to DAC channel 0 when receiving a signal

67

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50

Chapter 4 Graphical Interface (GUT) and RTLab

of any value but 0 trom ADC Chamnmel 0.
-
* GUI (test.upp):
* 3imple GUT to change AI online.
*/

#include

fdefine

Set module author

Sct module description
int ..;
module_init{init};
module_exit (cleanup)
Sore private 'global' wvariables...
static ..;

static const int ..

static struct ..;

int init (void)
{
Corsistency check
Reglster callback
shared mamory
Sel callback rate

the rilab_comedl_ context convenience struct

Jurn callback on

void cleanup (vold)

68

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

Chapter 4 Graphical Interface (GUI) and RTLab

Deactive and unregistcer do_contzol function

Detach shared memory

static int init_shared mem{void)
{

Set shared memory structure

static int proc_read (chaxr *page, char **start, off_t off, inl count,

int *eof, wvoid *data}

Set the information of each elemenz in shared memory
1
22

* This function does the followirg:

* Kernel code:

* Writes a 2 volts signal to DAC channel 1 when receiving a signal
of any value but 0 from ADC Channel 1.

* This function is called by rtlab's core... see
rtp_register_function()

*/
static void do_control (MultiSampleStruct *)
£

double ..;

SampleStruct ..;

Get value from DAQ device
Calculate output voltage value

Return value to DAQ device

Lines 1 to 33 are the variable and constant declarations and the explanation for the

69

00~ O\ L P DY e

N =
W b= O WO

Chapter 4 Graphical Interface (GUI) and RTLab

program.

Lines 35 to 48 are the initialisation part for the module. Each kernel module must
have an “initialisation” part and a “cleaning up” part in which the working
environment for the module may be d and cleared when the module is insetted into
and removed from the kernel. The scheduler is set up inside the “initialisation” part in

the program.

Lines 56 to 59 the shared memory structure which accomptishes the communication

between real time processes and non-real time processes.

Lines 61 to 65 set the information of each element in shared metory structure.

Lincs 75 to 85 do the control task—output a 2 volts signal to the control piant.

test.cpp (see Appendix C for source code):

/*

* Thig file ig a part of an example showing how Qt works in
conjuncticn with RTLab

*

* Copyright (C) 2004 Xiacyu Duan

=/
#include ..

#define ..
aextorn "C" (

Set some information needed hy plugin

70

14
i5
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Chapter 4 Graphical Interface (GUI) and RTLab

Plugin * entry{QObject =*o}
{

and show the plugin widget
}

Test: :Test (DAQSystem *d)
QWidget (d, PLIJGIN NAME, Qt::Wlype_'l'oplevel}, ds(d)

Attach to Shared mcmory
Create plugin widget variable
Build up plugin widget buy calling element "bulldCUI”
Connecit signals with slots
Set caption
Test::~Test ()}
{
Detach shared memory
Delete widget
void Test::ouildGui ()
{
Create layout variable
Set the number of AI channels
Set subwidgets and add them to the layout
void Test::connect.Signals{)

{

Connect signals with slols

Chapter 4 Graphical Interface (GUI) and RTLab

55

56 Set parameters in the shared memory region by slots

This cpp file is the program actually written using Qt to create the GUI within

RTLab. It adds the following window into the RTLab graphical interface.

a ‘ Testng Program -

AO Channel:
Al Channel to monitor:

Sq. wave period (ms):i 1000
Analog output enabled

— —

Figure 4.6 Plugin window of "testing program'' example

After some definitions and declarations, lines 15 to 18 define the “‘entry” party of the

plugin in which the main Qwidget is created and displayed.

Lines 21 to 33 are the “constructor” of the plugin widget. A constructor is a standard
Qt widget constructor that builds up everything needed for the widget. The test

Qwidget is set to top-level widget here.

Lines 35 to 40 are the “destructor” which does the tidying up work when the widget

is no longer needed.

Lines 42 to 49 set up the graphical window as Figure 4.6 shows. There are 7
elements in this plugin window: QLabel “AO Channel:”, “1”, “Al Channel to

monitor”, “1”, “Sq. wave period (ms):”, QSpinBox “1000”, and QCheckBox *“*Analog

72

O o~ O\ b b WS e

= T
N - O

13
14
135
16
17
18
19
20
21
22
23
24
25

Chapter 4 Graphical Interface (GUI) and RTLab

output enabled”.

Lines 51 to 54 connect the widgets with correspondent signals.

Lines 56 sct the parameters in the shared memory region by slots.

Here are the 2 header files needed for this plugin:

test.h

/* ¥Xilaoyu Examrple plugin - The kernel gide defs.. */

/¥ This file is a part of an example showing how Qt works in
conjunction with RTLab

*

* Copyright (C) 2004 Xiaoyu Duan

*/’

#1fndef TEST_H
define TEST_H

#include "rilab.h"

#ifdef __cplusplus

extern "C" {

#endil

/¥* Callback frequency —- basically the granularity of our
monitoring.. */

#define TEST CALLBACK FREQUENCY EZ 1000

/* Max and Min values of control signal (V) */

#define MAX OUT 5.0

$define MIN_OUT -5.0

/** The shared memory */

73

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

ENENTCR

W

Chapter 4 Graphical Interface (GUI) and RTLab

struct TestShm {

int magic; /*< Should always cgual TBEST SHM MAGIC */

volatile /** R/W value */

int period_milliseconds; /* The period *)

volatile /%% R/W value */

char wave_on; /% if nonzero, do the actual output */

int regserved[4]); /% ZJust so0 1 can look like i know what i am
doing... */

Y

#ifndef _ cplusplus
typedei struct TestShm TestShm;
#endit

ttdefine TEST_SHM _NAME "Test Shm"

#define TEST_SHM MAGIC (0Oxf0015555) /*« Magic to. for shm...

'foolzzzz' */

#ifdef ___cplusplus

}

fendif

fendif

Lines 8 to 23 are some constant definitions are consistency checks. Lines 26 (o 37

defined a structure of the shared memory variables which will be used in test.c and

test.cpp.

test_private.h

/‘k
* This fiile is a part of an example showing how Qt works in

conjunction with RYLab

* Copyright (C) 2004 Xiaoyu Duan
*/

74

oo R B e

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Chapter 4 Graphical Interface (GUI) and RTLab

#ifndef _TEST. PRIVATE H
#deTine _TRST_PRIVATE_H

#include <gwidget.h>
#innclude "plugin.h"

class DAQSystem;

skruct TestShm;

struct TestWidgets; /* struct to store all the widgets this class has
~- forces header files into .cpp file

*/

class lest: public QWidoet, public Plugln
{
O_OBJECT

public:
Test (DAQSysLen *d) ;

~Test {);

consi char *name{) censt: /* overrides Plugin parent class */
const char *description{} const; /* overrides Plugin parent class
*/

privatc: /* mcthods */
volid pulldGuUr () ;

void connectSignals{);

vrivale slols: /* A QL-ism -- these methods set variables in the SHM
*/
void setPeriod(int);

voild getAld(bool);

private: /* data */
DAQSystem *ds;
TestShm *shm;
TestWidgets *widgets;
}i

ftendif

75

Chapter 6 Applications

Lines 18 to 44 defined the Qwidget that will be used in graphical interface. Users are

able to talk to the control program by this Qwidget.

76

Chapter 5 Discussion of Real Time Solutions

Chapter 5 Discussion of Real Time
Solutions

There are two different approaches which provide Linux with real time performance,
giving the Linux kernel pre-emption ability and adding a new software layer beneath

the Linux kemel with full conirol of interrupts.

For the first approach, TimeSys (website: hip://www.timesys.com/) and Linux

kernel pre-emption project (website: http://sourceforge.net/projects/kpreempt/) is the

software available, and for the second one, the most commenly used approach is

RTLinux or RTAI, which has been intreduction in previous chapters.

Both RTAT and RTLinux have similar scheduling, inter-task communication methods,
and API functions. Although from an academic point of view, RTAI and RTLinux are
the same, user can use and modify the code at will, there are still some ditferences

between the two ([28], [291):

The RTAI team trics Lo allow proprietary development for zero price (by using LGPPL

license) while RTLinux does not.

RTAI is based on the GPL mode and it is iinpossible to change the license without

77

http://www.timesYS.com/
http://sourceforge.net/proiects/knreempt/

Chapter 5 Discussion of Real Time Solutions

the permission of all the code copyright holders. In other words, work derived from

GPL code cannot be released under a different license.

Real Time Linux was developed to provide Linux with Real Time functionalities in
its early days. As a variant of RTLinux, RTAl appeared later however is supported
better today, and it works better with COMEDI, thus why RTAI is selected for this

project.

There arc scveral schemes with which COMEDI can be integrated with RTAIL

s rl_com_lxrt.
e rtai_comedi_ixrt
o RTAI-Lab

+ RTLab

5.1 rt_com_lxrt

This is a somewhat out-of-date solution which is integrated in RTAI-2.4.0-0.26.
ri_com_lxrt strengthens the RTAI approach of symmeltric usage of all services in
kernel-user space for soft-hard real time. ‘The files for rt_com_lxrt could be found in
the directory /SRTAIDIR$/rt_com Ixrt/. rt_com also has a version number of its own.

The rt_com package can be easily linked to user space applications by including

o B I

[e T T
b AW -~ O O

16
17
18
19
20
21
22
23
24
25
26
27
2R
29
30
31

Chapter 5 Discussion of Real Time Solutions

ri_com_lxrt in the files using it. To use r(_com_lxrl, several modules like rtai,
rtai_sched, rt_com, Ixrt have to be inserted into the kernel, and it is required to

“make” rt_com_lxit before using.

Herc is an example extracted from rt_com_Ixrt directory:

% r1_com-LXRT (cst

* Adaptation of rt_com test modules te provide the same examples in

RTAI environment using LXRT.

s
#includc
#include
#include
tinclude
#include
#include

frinclude

#define KEEP_STATIC_INLINE
#include <rtai_lxrt_user.h>

#include <rtai_lxre.h>

#include

#include

int main{int argc,

r
L

uvnsigned long testcomtsk_name = namZnum("TESTCOM") ;
RT TASK *testcombsX;
char hello(] = "Hello Worldin\x";

<gtdio.h>
<stdlib.h>
<unistd.h>
<gys/types.h>
<sys/mman. h>
<sys/stat.h>

<fentl . h>

"ri_com_lxrt.h"

"rt_com.h"

int retval = 0;

char **azgv)

R'-Hinux kernei madule for communication across serial lines.

79

Chapter 5 Discussion of Real Time Solutions

32 mlockall (MCL_CURRENT | MCL_FUTURE) ;

33

34 if (! (testcomtsk = rt_task_init{testcomtsk _nama, 1, 0, 0})) {
35 printf ("CANNOT INIT MASTER TASK\n"):

36 exit (1) ;

37 }

38 rb_se'_onesaot_mode!();

39 start_rt_timer(0};

40 //rt_make hard_real_time();

4] // 'This example use the rt_com _setup() on port 0 so it needs
42 // that you have compiled rit_com.c¢ with rt_com_table[D].used=1
43 // otherwise the rt com setup() fails

44

45 if{ rt_com_setup(0, 9500, RT_COM_NO_LAND_SHAKE,

46 RT_COM_PARITY_NONL, 1, 8, -1 } « 0) [

47 printf('hello_world_lxrt: error in rt_com_sctup{)\n");
48 retval = 1;

49] clse {

50 rL_com_write(0, hello, sizeof(hello)});

51 rt_sleep (nano2count (500000000}) ;

52 printf{'rt_com_lxrt test: »>%g<< gent.\n", hello };

33 rt_com_setup (0, -1, 0, G, 0, 0, 0); // release port

54 printf{"rt_com_lxrt test: finished\n");

35 }

56 //xt_make_soft_rcal_time();

57 stop_rt_timer!);

58 rt_task delete{testcomtsk);

59 exit(retval);

60 }

There is only one function—main() in this example. Lines 27 to 39 some variables
and the real time task. Lincs 45 to 55 do the task which prints a word “hello™ out on
the screen on success. User can have the task running either in soft real time ail the

way or in hard real time first and then back in soft real time by adding corresponding

80

Chapter 3 Discussion of Real Time Solutions

script sentences as in line 40 and 56.

5.2 rtai comedi Ixrt

This is a porting of COMEDI to LXRT/NEWLXRT which is done by using the
standard cxtension feature of LXRT/NEWLXRT. rtai_comedi_lxrt makes COMEDI
symmelrically usable in kernel and user space within RTAL i soft and hard real time.
As with LXRT/NEWLXRT and its cxtensions it is possible to use rtai_kcomedi_ixit
both using static inlines (by adding “define KEEP_STATIC_INLINES” before
including rtai comedi Ixet.h) and using libkcomedia found in directory
comedi_lxrt/lib. Two simple examples called testa.c and tests.c are available in
/SRTAIDIRS$/comedi_Ixrt/ and an application using this approach will be detailed in

Chapter 6.1.

5.3 RTAIl-Lab

RTAI-Lab is a tool that allows the usc of any sct of real time controllers/simulators
automatically generated by Matlab/Simulink/RTW. Release 2.24.11 of RTAI allows
the integration of COMEDI drivers in Simulink (18]) schemas and to gencrate code
for (X)RTAI-Lab. If there is no Matlab/Simulink/RTW available, the same thing could

also be done under Scilab/Scicos. In this case however an unofficial release of RTAI

81

Chaptler 5 Discussion of Real Time Solutions

(at least 2.24,12prel) is needed, and two files rt_scilab.tgz and xrtailab.pp are also

required.

The basic concept of RTAI-Lab is to allow any couple of separaled sysicins, the host
and the target, to communicate with cach other ([24]). In a distributed
implementation, the host is the machine where the generated hard real time codes run,
it sends/receives messages, requests the target to accept parameters. The host and the

target could be the same machine.

5.4 RTLab

As introduced in Chapter 4, RTLab is an ongoing project to develop a general-
purposc, open-source, hard rcal-time experiment interface software system ([19]).
Comedi, RTLinux or RTAI and Qt are integrated in this rapidly developing projeci
and user applications reside in the form of plugins for RTLab. The detailed

applications will be given in Chapter 6.

5.5 Real Time Control Solations

There are several approaches 1o setting the scheduler up, either in kernel space or

user space, either in hard real time or soft real time. Scheduling in ketnel space means

82

Chapter 5 Discussion of Real Time Solutions

setting up the scheduler in the initialisation part of the module therefore the
scheduling is set right after the module is inserted into the kernel, the tasks then run in
the user space repeatedly according to the tick period. Scheduling in user space means
setting up the scheduler in the main part of the program rather than in the initialisation
part. The system will wait for a fixed interval when the task finishes. That is to say,
the whole tick period may be different each time. Hard-real time means giving a
Linux process, or a pthread (POSIX thread) bard real tuime execution capabilitics
allowing futl kernel pre-emption ([25]). Running in soft-real time means giving
processes standard Linux behavionrs. The kemel allows other processes to run at the

same time, and this is forbidden in hard real time.

Figure 5.1 and Figure 5.2 show the difference between ihe scheduling in kernel

space and scheduling in user space.

Tick Period
3 Schednled
Perind ‘" Tcit:e“ 1—’
Task Task ’ Tite

Figure 5.1: Scheduling in kernel space

83

Chapter 5 Discussion of Real Time Solutions

In Figure 5.1, the task exccutes within the fixed tick period and it will repeat no
matter whether the task has finished or not when period ends. Generally however, the

scheduled period is long enough tor the task to run.

Detiod Period
\ }—H—"";,—

Task l Task Time

Figure 5.2: Scheduling in user space

In Figure 5.2, the system waits for a period after the task finishes. The period is fixed

but the time for the task to run may be unpredictable,

In COMEDI] + RTAI schemes, the scheduler may be set up in the following 4 ways:

1) Setting up scheduler in “meodule initial” part for RT scheduling, do not use

LXRT extensions, which means, scheduling in kernel space (Figure 5.3).

&4

Chapter 5 Discussion of Real Time Solutions

B 1t_procers ¢ - WordPad

E?. Edl View |rwed Fomat Help

Slslo) oin) Al | iai-| 8]

Pinclude

fdefine ONESHOT

pdefine TICK _PERIOD 25000 /" 40 khz v/
Hdefine

#define STACK SIZ2E

steric RT_TA3SK thread;

int init_module (void)
{

RTINE now, tick period;

re_taak. read, intr_handler, 0, 3 0, 0, 0)
Tset_oneshot mode():
tick_period = start rt_timer (nano2count (TICK_PERIOD)):
ngv = rt_get time() ¢+ 10*tick period;

re oo periodic (sthread, now, tick pe

recurn O;
)

void cleanup module (void)

atop_rt_timer ()

rt_busy sleep{10000000) ;
rt_task delete ({thread);
printk

return 0;
)

For Help, press F1

NUM

Figure 5.3 Setting up scheduler in "module initial"" part

2) Use LXRT extension with hard-real time process (Figure 5.4).

85

Chapter 5 Discussion of Real Time Solutions

B sche.c - WordPad

EW_ RO Yo st fome _Hee, |

¥include
#include

NHdefine

int main({int argc, char **argv)
¢
RT_TASK *comed:i task:
vold vdev;
ABE Lok
lsampl t data:

char

if (! (comedi tesk = rt_rask init (nam2num(“COMEDI™), 1, O, 0)))
printf ("CANNOT INIT COMEDI TASK\n"):
exit(l):

)

rt_set_oneshot_mode ()
stert_rt_timer (0);

milockall (ECL_CURRENT | NMCL_FUTURE):

dev = comedi open("/dev/comediO"):

ard real time();
rt_comedi wait_ timed(sem, nanoZcount (10BQ00), £semcnt):

REF_GROUND, 2048):

comedi close (dev):

stop_rt_timer():
rt_teask_delece (comedi_task):

recurn 0

Fot Help, peoss F1

Figure 5.4 Setting up scheduler with LXRT extension (hard real time)

3) Use LXRT extension with soft-real time process.

4) Non-real time Loop—without timing.

In approach (1), a scheduler is set up in “module initial” part and the whole process
runs in kernel space at a fixed time interval, as the approach shown in Figure 5.1. A
“module initial” is a function in the module program by which the environment
variables are d when the module is inserted into the kernel. The system ensures that

the process run at an exact time period and allocates the rest of time for other tasks.

86

Chapter 5 Discussion of Real Time Solutions

As in Figwre 5.3, the scheduler 1s set up by “rt_task_make_periodic()” statement

in function “init_module ()", and the tick period is set to 25 milliseconds.

In approach (2), it adopts the real time solution shown in Figure 5.2, the process runs
in an unknown time period which is relatively very short, then waits for an exact tick
period. This may cause a small time error which might be ignored however. As shown,
in Figure 5.4, the process is set to run in hard real time by calling
“ri_make_hard_real_time(}” and can be set back to run in soft real time at any time

by calling “rt_make_soft_real_time()}".

Approach (3) is almost the same as approach (2) except that the process runs in sofi-

real time rather than hard-real time.

Approach (4) is the simplest method however it provides the worst performance. A
user can neither assign the process an exact time interval nor keep the kermnel waiting
after the loop is finished. The program execution will fall into an infinite loop, and the
systern will crash when owt of resource. In real time control the control accuracy and
promptaess are highly required which means this approach could never be used in this

project,

R7

Chapter 6 Applications

Chapter 6 Applications

In this chapter, tour real time conirol applications will be discussed. One simple
program combining COMEDI with RTAI LXRT without graphical interface, and
three applications in the form of RTLab plugins in which different controllers are used
according to the control complexity. Meanwhile the plugin windows have also been

altercd to meet the requirement discussed in Chapter 4.

6.1 A Simple COMEDI + RTAI LXRT Program

Following is a simple control program that combines COMEDI with RTAI LXR'T by
rtal_comedi_lxrt which was introduced in Chapter 5. The application is without GUI
and all the inputs are via the comimand line mode. A motor sexvo is controlled to reach
the angular position designated by the user via DAQ board (either MuitiQ}3 board ar

AD512 card).
6.1.1 Description

As introduced in Chapter 4, the rotary position servo consists of a DC servomotor
and a built-in gearbox whose ratio is 14 to 1. The output of the gearbox drives a

potentiometer and an independent output shait to which a load can be attached. A

R8

Chapter 6 Applications

controller wil be implemented to control the position of the output shaft, as shown in

Figure 3.2.

6.1.2 Mathematic Model

The modcl is derived [rom the basic equations of a DC motor ([181):

V. Input voltage
I, Motor current
R, Motor resistance
K Torquc constant

W Angular velocity of motor shaft
@ Angular position of output shaft
8, Desire angular position of output shaft
@, Angular velocity of output shaft

K Gear ratio

Electrically:

V,=I,R,+K, o, (6.1)

in m*

=I,R,+K,K,0 (6.2)

Nl " n

89

Chapter 6 Applications

Mechanically:

T, Torque generated by motor
T, Torque at the output after the gearbox
J Motor inertia

"

I, T.oad inertia

TU = KgT n K;; (_fm d)m + J.' _E:J_L) (63)
-8

=J,K 0+], 6.4)

=@,(J,K:+J)) 6.5)

But 1., =K [_then

" (LI g

7 T - K?Jm + Jl . Je{
Im :_.__‘f“f_.-_-,__ ° = a)a’ : =0 . (66)
Km Kng Kng Kng

2
J o K 2 J,, + 4, is the equivalent inertia seen at the output of the gearbox.

Then Laplace transform is applicd (s is the Laplace operator):

O(s) 1 o
) RJ (o.
‘i/m (5) S(S mY eq + KmK)
Kng ’

90

Chapter 6 Applications

with the given parameters:

B(s) _ 1
V. (s) $(0.00265+0.1081)

B2

(6.8)

6.1.3 Control System Design

According to the transfer function, it is ebvious that the plant is unstable due to the

pole at the origin. A proportional plus derivate controller is selected in this case:

V, =K, (8,-0)-K, @ (6.9)

The feedback gain K, and K, are used to design the response of the system.

Substituting the Laplace Transtorm of Equation 6.9 into Equation 6.8 vields:

0 K,
= . (6.10)
6, 0.00265 +(0.108+ K)s+ K,

If the required rise time is 100 milliseconds and let the damping ratio equal 0.6, The

desired characteristic polynomial is:
s+ 20wy + (6.11)

7 \ -
And f,=———=—-.=01, { =06

@y (1-¢*)

al

WX R LN e

W o 1 n R W =D

Chapter 6 Applications

Salving for K, and X, results in:

K, =0.00260) =4, K, =0.0052{w, —0.108 = 0.015

6.1.4 Real Time Control Program in Linux

There are two source programs in this application: mainpro.c and mailbox.c.
mainpro.c (see Appendix C) is for output, it does filtering, calculation and sends
control signal to the plant. mailbox.c {((see Appendix C)) is for input, it asks the user
for the desired angular position value, then sends the value to mailbox. The maiibox is

in charge of the communication between these two programs in real time.

Mainpro.c (see Appendix C for source code)
#include ..

fdefine ..

double ..;

int ..;

char *subdevice. typesi] = {

1

double control_algrithm{double volls)
{

doublte ..;

Convert hinary value to actual voltage value

Save praovious filtered output

Save o0ld sample

92

Chapter 6 Applications

20

21 filtering

22

23 Compute outvut voltage valiue
24

25 Convert it back to binary value
26

27 Return voltage value;

28

29 }

30

31 int main(int argc, char **argv)
32 {

33 RT.TASK ..;

34 int ..;

35 doukle ..;

36 lsampl_ bt . .;

37 SEM ..;

38

39 et mailbox name /* use mail box to achieve Interprocess
40 commuwiication here */

41

42 Set scheduling prierity

43

44 Recognize mailbox

45

46 Get DAQ device information

47

48 Start control

49

50 Receive value from mailbox

51

52 daza = controvl_algrithm(data); /* Computation®*/
53

54 Return value Lo DAQ device

55

56 Cleanup

57 %

93

N7 TG B N S SO FUR N gy

PN OIS — = = e e e e e e e
— O G D0 SR W N = O

Chapter 6 Applications

This program consists of three main blocks. These are definitions and declarations
(lines 1-9), control algorithm (lines 11- 29), and the main program (lines 31 to 57). It
is fairly straightforward—initialise constants, sample the sensor voltage from A/D,
convert voltage to desired unit (degree), fitter and numericalty differentiate data, then
compare the angle value acquired with the desired setpoint, calculate the required

voltage and output to D/A interface.

Following is the companion program of mainpro.c (mailbox part).

Mailboxpro.c (sec Appendix C [or source code):

#include ..

#define ..

int wmain{int arge, char **argv[])
{
Set task nane

Set mailbox name

double ..;

int ..;

RT_TASK ..;

MBX ..;

Set scheduling priority

real time task

Set timer

Create maillbox

94

22
23
24
25
26
27
28
29
30
31
32
33
34

W oW =

Chapter 6 Applications

count=5; /* It is possible to enter dasired value for 5 times. */
while(count) {
Send value to mailbox
Delay for a short period
count--;

Cleanun;
}

Lines 6 to 20 d the real time task, mail box, and set up the scheduler. Once the
mainpro sltarts to run, it checks the devices information and searches the value in
mailbox. Meanwhile when the mailboxpro runs, it prompts the user for the desired
angle value, and then sends it to the real time process. ‘The user is allowed to enter
desired a value 5 times. The system will prompt for the next input after 2 seconds, this

is accomplished in lines 22 to 31.

The following commands are required to the environment for running the

application.

TN :

aync

/sbin/insmod . ./modules/rtai.o
/sbhin/insmod ../modules/rtai_sched.o
/sbin/insmod ../moduleg/rtai_lxrt.o

/sbin/insmed ../medules/rtai_shm.o

95

Mol B e SRV S TS

—
-0

Chapler 6 Applications

/sbin/insmod /lib/modules/’uname ~r’/COMEDIDIR/comedi/comedi.o
/sbin/insmod /lib/modules/'unamre -

' /COMADINTR/kcomedi /keomedilib. o

/sbin/insmod /lib/modules/ uname -r‘ /COMEDIDIR/drivers/nultigl.o
/sbin/insmod /lik/modules/ uname —r’ /COMEDIDIR/drivers/adbl2.o
/usr/sbin/comedil_config /dev/ceomedild multig3d 0x320, 3
fusr/sbin/comedi_config /dev/comedil adb512 0x300

/shin/insmod | /rtail_comedi_lxrt.c

“COMEDIDRIR™ is the directory name in which comedi is installed. Lines 2 to 5 are
required to insert RTAI moduie, lines 6-9 insert the COMEDI library and drivers into
the kernel, lines 10 and 11 the two data acquisition boards, and line 12 links the

RTAI and COMEDI installation.

rem:

sync

/sbin/rmmod rtai_comedi_lxrt
/sbin/rmmod ad512
/sbin/romod mulbig3
/sbhin/rmmod kcomedilib
/sbin/rmmod comedi
/abin/rmmod rtai_shm
/sbin/rmmod rtai_lxrt
/shin/ramod riai_sched
/sbir/rmmod rtai

sync

There commands are used to do the cleaning up job when the application finished,

remove all the modules from the kernel.

To run the process, do the following in comedi_lxrt directory in sequence after

96

Chapter 6 Applications

compilation:

Jran

Jmainpro

Jmailboxpro (run this in another window in order to run al the same time as mainpro)
Jrem (lidy up when programs finished)

6.1.5 Result

The system failed to perform well with the values of X, and K, obtained in

Chapter 6.1.3. Thereby the system was adjusted manually and it gave a decent

performance, the final values are XK, =0.025, K, =-0.007.

6.2 A SISO PID Control Application with GUI

6.2.1 Description

The control plant in this application is completely same as that was used in Chapter
6.1. The only difference is in this section control is achieved through RTLab and a
graphic user interface is provided, and this gives a better observability and

manecuverability.
6.2.2 Moathematical Model
As discussed in Chapter 6.1.2, the mathematical model for this application is:

97

Chapter 6 Applications

O(s) i
v, (s) $(0.0026s+0.1081)

(6.12)

6.2.3 Control System Design

Considering the effects of the clearance characteristic belween gears, dead zone dry
friction characteristic, saturation characteristic of the amplificr, and nonlincar error in
the conversion between Analogue signal and digital signal in practical use, it is
relatively difficult to acquire the controller parameters simply by computation. In real
conirol experiment a traditional PID controller (1], [15], [16]) is used to get an

acceptable degree of error reduction simultancously with accepiable stability and

damping:
=K (8,-6 ! 0—-8,)dt+K 46
V, =K, (6, -)+EZ'I(—6,)dt+ K, —= (6.13)
Substitute u for v, , y for 9.
u=(K, +1}(K,)+ K, -5)-e (6.14)
¢ Error. Equals u-w.
U Control variable {output voltage)
w Desired voltage value
¥ Read-in value from analogue input

08

Chaptcr 6 Applications

Substiute g for ¥ 7 for ¥, 7 for ¥, and introduce 7, for filtering, then:
pr d { (f g

u=K(w—y)+u/(1+sT)—sT, [(1+5T,)y {6.13)

The systemn response is affected by the combination of four coefficients— X ,7,,7,,
and T, . By ivcreasing K faster responses can bc achicved but the response may
become more oscillatory and lead to instability. The introduction of Td and Tf brings
a stabilizing effect to the system. Theoretically TT is equal to 0 however in practical
use it is nceded to balance the physical effect. By adjusting Ti the overshoot and

decay ratio can by diminished.

Following parameters are chosen after being adjusted in virtul plant:

K =15
7, =0.12
T, =0.03
T, =0.1

This is tested in the virtual system through SIMULINK. Figure 6.1 is the simulation
system in SIMULINK; SRV-3 is the block which is connected to the virtual motor
servo equipment. The input to this block will be sent to the motor servo equipment

and the output of the motor servo will be feedback to the Matlab workspace via

99

Chapter 6 Applications

“theta” and “theta dot” outputs in the block. The transfer function of the system is

shown on the bottom of the diagram.

fle £ Vew Simdston Fomat Took Help 3

b -

DEES LB 2 REY ® > = o

J‘i]—- ’I al_thets D

Fitter

' v ¥ 9

rcopel

24,400,086 101.0.0.3.3.0,0:3.3.0|

From
Wokspace

0.0020¢+0 1081

Transter Fon

Figure 6.1: Testing module in SIMULINK

The outputs of the system can be observed in the scope block. The output after
filtering, angle velocity output of the real equipment, angle output of the real
equipment, output after simulation, and the original input are compared with each

other in the scope block.

Chapter 6 Applications

et /ARy
I SmAdtion Peur ToW"

O @&

i
ot

REN . IR)

=% e o IO

O et Sy w7 o

' L/ Thata
Covbipton
[(o | e

<
Caraarct

Rowdy

bR o |

Figure 6.2: Servo03 module in SIMULINK

SRV-3 block is provided with rotary servo plant SRV-03 which is used in this project

ADS512 data acquisition card is used as adapter in the system.

When a square wave signal is used as input, the counterpart outputs in “scope2”

block in Figure 6.1 will be:

101

Chapter 6 Applications

8@ LLL AEE B -~ -

Figure 6.3: Outputs of testing module in SIMULINK

6.2.4 Real Time Control Program in Linux

As mentioned above, a real time control program in Linux resides in the form of
RTLab plugin, and it can be detected automatically when all of the 4 files—
PluginName.c (where the major do_control part resides), PluginName.cpp (graphical
interface program), PluginName.h (shared memory declaration), and PluginName

_private.h (plugin widget declaration) are placed in plugin directory properly.

For this application, the corresponding files are piddxy.c, piddxy.cpp, piddxy.h, and

102

Chapter 6 Applications

piddxy_private.h. Following arc the block diagrams [or cach file, the major parl as
control algorithm and graphical interface Jayout setting will be introduced in details

separately later:

piddxy.h:

Callhack frequency and vnltag»:
scale setiing

Shared memory definition

Figurc 6.4: Block diagram of piddxy.h

piddxy_private.h:

Piddxy Qwidzet declaration {Declared as public Chvidget and pluginy

Figure 6.5; Block diagram of piddxy_private.h

103

Chapter 6 Applications

piddxy.c:

Aodule name and descripton
declarations

Module inik) fiunction definitisn

|

Module cleanup(y function
definition.

Shared memory siructure
definition

Process read function definition

|

Conirol algorithm—de_control()
functien

Figure 6.6: Block diagram of piddxy.c

piddxy.cpp:

104

Chapter 6 Applications

Plugin informaton—name,
description, flags...

|

Plugin eniry function

|

piddxy Widget structure
definition

Definitions ofeach elementin
piddxy Q Widget

i

Figure 6.7: Block diagram of piddxy.cpp

Psendo code of do_control(} function(in piddxy.c):

/**

* his plugin does the following:

*

* A Proportional + integral + derivative controller

* Kernel code:

* 1. Generates difterent waves with the counterpart pericds and
amplitudes.

* 2. Reads ADC channel shm->ai_chan and calls Lhe voltage 'y'.

* 3. Computes u = k*(w-y) + u/(1l+sTi) - sTd/ (1+sTE) vy.

* 4. Writes u to DAC channel shm->ao_chan.

* GUIL (piddxy.cpp):

* Simple GUI to change parameters on-line

Chapler 6 Applications

7

constants

Def ine
Define

Define

static
{

module initialisation function
mocdule cleanup funcz-ion
shared memory initialisation function

void do_control {MultiSampleStruct * m)

constants

Declare phase length, sampling rate, and amplitude of Sguare wave.

Check if the plugin is ready Lo run

Check the operation wish to perform, input wave type selection:

0-Fixed position, designated through graphical interface.

1 -Square wave, amplitude and frequency are designated through

graphical interface.

2—waves from signal generator, modify wave paraneter via adjustin
Nl

signal generstor

If (the input is a square wave

Cct the phase length and frequency of the wave

Compute the desired voltage value

}

Elsc

if (the input is signal [rom signal generator) {

Sample from signal generator

Check 1f the input wvoltage is in the valid range

}

eisel

Check if the input voltage is in the valid range

Input

gignal is a fixed value ir relation to the angular position

of the motor sexvo

}

Read

input voltage value from aralog input channel

Check if AT monitoring is of{f or the channel they want to monitor

106

Chapter 6 Applications

is not found

Get error value through dividing desirced voltage value by input

voltage valie

Compute contrel. Get angular position and angular velocity of motor

ServVo
Filtering
Clip

Optionally echo cesired voltayge value back to an AI channel for the
UT

Zcho angle velocity back to channel 2 so that it can be observed
in Grapaical interface.

Cutput control signal

Save output

The do control function is the main part of .c file. In this function, dala is read
trom the DAQ board, and calculated as certain algorithm, then sent back to the DAQ
board. There arc three options for seipoints available in this program, 0—fixed
position, 1-—square wave, and 2—waves from signal generator. For the first and the
second option, the detailed values for setpoints may be given via graphical interface,
and for the third option, these values are set through the signal generator. The user is
able to echo any value back to whichever channel for observation by calling

rtlab get sample_by_chan (ChannelNumber, Value) inside the do_control ()

107

Chapter 6 Applications

function in .c {ile.

Graphica] interface layout sctting (in piddxy.cpp):

rlugin name, description and entry function declaration

extern “C" {

Declare some stuff needed by plugin engine, Lhese symbols are read
by 1ibdl/dlsym{}*/

ds_plugin_ver ls DS_PLUGIN_VER
Flag is Plugin::RequiresRT_ab
Plugin name iz PLUGIN_NAME

Plugin description is

"A Proportiona- + integral + derivative controller\n"

"Keracl code:\n"

" 1. Generates different waves with the counterpart periods and
amplitudes.\n"

v 2. Reads ADC channel shm-»ai_chan and calls the voltage 'y'.\n"

" 3. Computes u = k*(w-y) = u/(l+sTi} - s1'd/(1+sf) y.\n"

N 1. Writes u to DAC channel shm->ac_chan.\n"

"An\n"

*GUI (piddxy.cpp):"

* Simple GUI to change square wave and PiD parameters ou-line”,
#* author = "Xiaocyu Duan",
¥ requires =

"piddxy.o be loaded into the kernel. P+I+D control®;

Plugin * entry{QCbject *o)
{

/* This ig & top-level widget, and the parent is rool */
Issue warning message iZ plugin loading failed.
Show the widget

108

Chapter 6 Applications

};
Store some widgets that we need pointers to for
{dis) connectSignals () and updateStats ()

struct PiddxyWidgets

Deciare all the elements needed in Lhis plugin
Y;

/* PLugin comstructor */
Piddxy: : Piddxy (DAQSystem *Ad)
Widget (d, PLUGIK_NAME, Qt::WType_TopLevel), ds{d)
Attach to shared memnory
Declare new vlugin widget
Build GUZ
Connect Signals
Set caption name
/* DPlugin destructor */
Piddxy: :~Piddxy ()
{
Set wave on to 0
Selb wave_tvype to -1
Set channel number for signal generator to -:

Detach shared memoxy

Delete plugin widget; just delele the struct, not the actual widget

Return plugin name

109

Chapter 6 Applications

Return nlugin description

/* Setting up the main Zayout */
void Piddxy: :buildGul ()

{

Creale new layout

Create shared memory contrcller constant

Get

adad

Add

Add

Add

Add

Add

Ada

Add

Add

Add

Add

Add

number of analogue input channels

AO Channesl QLzbel to the main layout

AY Channcl QLabel and QCombollox to the main layout

wave tyvpe QLabel and QComboBox to the main layout

wave period QLabel and QSpinBox to the main layout

wave amplitude QLabel and QLineEdit Zo the maln layout

R valuc QLabel and QLineEdit te the main layout

Td wvaluvue QLabel and QLineBdit Lo the main layout

Tf value QLabel and QLingEdit to the main layout

maximum voltage QLabel and QLineEdit Lo the main layout

minimum voltage QLabel and QLineldit to the main layout

Echo ocutput wave to DAQSystem AT chan QLabel tco the main layout

wave on QcheckBox to the main layout

input channel number for signal generator QLabel and QeomboBox

Lo Lthe main layout

Set

text in each element

110

Chapter 6 Applications

/* Corncct signals wikth slots */
vold Piddxy::connectSignals ()
{

Connect each signal to the councerpart slot

Slots below set parameters in the shared menory region for
notifying kthe

real-time process
SetaIChannel slot declaration
SetWaveType slot declaration
SetGene slot declaration
SetAngle slot declaration
SetPeriod slot declaration
Sethmplitude slot declaration
SetK slot deciaration
SetTi slot declaration
SetTd slot declaration
SetTf slot declaration
SetU_max slot declaration
SetU_min slot declaration
SetAIEcho slot declaration

SetAl slot: deciaration

111

Chapter 6 Applications

This program is broken down into several parts: entry (Qobject *o) is the eniry to
the plugin, the widget is displayed by calling show() in this function.
Piddxy: : Piddxy (DAQSystem *d) and Piddxy::~Piddxy () are the constructor and
the destructor of the widget which constiucts and destroys the widget.
Piddxy: :buildeUi (), Piddxy: :connectSignals (), and the other
Piddxy: :set* {int «) [unctions are all the elements of the constructor. The main
layout of the graphical interface are built up in Piddxy::buildcui() and the
paramelers in the shared memory are set by Priddxy::set* slots.
Piddxy::connectSignals () 15 in charge of connecting the slots with the signals

generated by the operations on the graphical interface.

6.2.5 Custom Graph in Plugin Graphical Interface

In order to make the screen output more straighttorward for observation when
controlling the angular velocity, a custom graph was added into the window for plugin
settings (Figure 6.10) in which both the graph of the angular position of motor servo
and a numerical text are displayed (in real lime). The graph will show the servo
angular position as it changes and the curent angular position of the motor servo wiil
be displayed in the graph (Figure 6.8). The graph refreshes every 50 millisecond in
this project and the user can set it to any kind of desired time interval by changing the

corresponding code in the program.

112

Chapter 6 Applications

Theta = 70,54

Figure 6.8 Custon: window in RTLab plugin

T'o do this, the following code needs to be added:

In _private.h file:

In Pcon widget class declaration, add “void setAng(void);” in “private slots”, and

“Qtimer * AngTimer;” in “private”.

Then declare widget class for motor servo:

1 Class ServoField : public Qwidget

2 q

3 Q_OBRJECT

4 public:

5 ServoField(Qwidget *parent=0, const char *name=0 };
6

7 /*QsizePolicy sizerlolicy() const; */

8

Q@ public slots:

10

i1 private slots:

12 void refresh(); /* Use to refresh widget */
i3

113

14
i5
16
17
18
19
20
21

22

ok W -

O o 2 O

10
11
12
13
14
15
16
17

Chapter 6 Applications

sigrnals:

protected:

void paintEvent{ QpaintEvent *);
private:
QRect servoRect{) const; /* return motor serve rectangle */

QTimer * RefreshPimer;

):

refresh() is used to refresh the graph, it is connected to a timer—RefreshTimer which
makes sure that the time refreshes the window each time when it times out. In pcon
widget, AngChange() and AngTimer arc used to renew the value of global variable

ang.

In .cpp file:

Piddxy: :buildGUI ()

{
int n_ai_chan...... {ComediSubDevice: :AnalogInput), 1i;
AngTimer = new Qtimer (this, “ang changing handler”);
AngTimer~>start {50);

} RN

void Piddxy: :connectSignals{)
{

connect {(Widgets->wave_on,Sl.0T{sethc{bool)}};

connect. {(AngTimer, SIGNAL(timeout ()}, this, SLOT(setang()));

ii4

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
a2
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Chapter 6 Applications

SeyvoField::Servolrield{ QWidget *parent, corsi char *name)

: QWidget (parent, name)

setMinimumSize(200, 200 };
setMaximumSize({ 200, 200 };

RcireshTimer = new QTimer(thuis, "Graphic refreshing Landler');
connect { RefreshTimer, SIGNAL{timeout()),

this, SLOT(refresh()) }; /¥ connect refresh slot to time
oul signal */
Refreshlimer->start (50); /* unit in millisecond */
VA setPalette{ QPalette(QColour({ 250, 250, 200}) };*/ /* sat

Lackground colour here, or ignore it Lo use default colour */

}

void Piddxy::setdng (void)
{
ang = shm->angle ;

void Servorield::refresh({)
{

QRegion r (servoRect ());

QORect Servoll = servoRect()}; '

r = r.unite(QRegion{ServoR}}: /* "unit” returns the bounding
reclLangle ¥/

repaint(r);

void ServoField::paintBEvent(QPaintEvent *)

{
QReclL cr = servoRect();
QString s = "“heta = " + QString::number(ang };
QPixmap pix{ ar.sizel()); /* crecate pixmap */

pix.fill(this, cr.LopLeft{) }:

QRainter p{ &pix);

s

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Chapter 6 Applications

p.setBrush(white }; /* set brush */

QPen pn=p.pen(}; /* set pen */
pn.gsetWidth (2} ;
pn.secColor (black) ;

p.setPeu{ pn):

p.transliate(100, pix.heigbht()/2 }; /* move coordinate */
p.drawlkect { QRect (~100,-100, 200, 200)); /* draw rectangle */
p.drawArc({ QRect (-100, -100, 200, 20C), 0, 360*i6); /* draw arc
*/
p.rotate({ ang}; /* wotate coordinate */
p.drawline(0, 0, 0, 100}; /% draw lines */
p.end(};
p.begin{ this }; /* draw pixmap */
p.drawPixmap(cr.topLefi{), pix);
p.drawText(100,150, s); /* draw text */
}
QRoct ServoField::servoRect (] const
{

QRcct x{ 0, ©0, 200, 200);
r.moveBoLcomLellL(rect() . .bolLormefi{));

return r;

At first we declare and start a Qtimer called AngTimer, which restarts timer after
every 50 milliseconds. Connect this timey with a setAng slot in which the value of
shm->angle is passed to a global variable ang. The content of setAng will be exccuted

each time when the time times out.

The next is the constructor of the custom widget called ServoField, The maximiun

and the minimum size are set here, and they are of the same value here which means

116

Chapter 6 Applications

the size of this widget is not changeable.

In refresh() slot 1t repaints the rectangular region of ServoField. In paintEvent(), a
nurnerical (ext is declared first, it shows the angutar position of the motor servo in the
form of number, then a pixmap is created where the profile of motor servo is drawn.
We can also draw it directly here rather than via a pixmap however a pixmap is useful

for reducing {lickering, this makes the graph looks smoother.

Lincs 55 to 84 are fairly straightforward: Fill the pixmap with widget background, set
brush colour, set pen, place lhe coordinate origin in the centre of motor servo
rectangle, and draw this rectangle, draw arc, draw line, then display the pixmap. In the

last section the motor servo rectangle is defined.

One thing to be noted is that the Qtime uscd to refresh the pixmap must have a
relatively longer period than that of the timer used to renew the value of ang, this

ensures the pixmap is drawn cach time the value of ang is refreshed.

6.2.6 Results

The module is inserted into kernel by loading it in the plugin menu window within

RTLab (Figure 6.9) and the parameters are set in the plugin window (Tligure 6.10):

F7

Chapter 6 Applications

ST mEoeea
1o monitor: 0
Square Wave 5 ;0

2 A T e R

.Propornonal + Integral + Dertvative Con\rollel | eriod (ms): “000 i

| Proportional + Integral Controller | {implitude (volts): 2

| Proportional + Integral Controller for different| | 1%

| Proportional Controlier Fos

! mylatoe 1 0.12

- - s =) = no derivative): 0.03

| Plugin Name: Proportional + Integral + =) :

| Derivative Controller for ditfersnt waves | jp = 1 deeiv. fiter): 0.1

(plddxy s0) L 5

| Filename: /home/xduary f l o

rtlab_exp_k-0.65.2/piddxy.so Pt wave to DAQSystem Al chan:1

%olal:d :(om:lPModu:o: Fe e butput snabled

I Dascrintion roannrinnal + intenral + 5 ol 1o monitor: off i ,

K 3 201
‘Spke Threshold: -V [Last Spke
S Theta = -70/6

‘AO Channel:
/Al Channel to monitor: 0 -
Set point:
Sq. wave period (ms): |
8q. wave amplitude (volts): i2
'K value: ;
T value:
Td value (0 = no derivative):
TF value {0 = no deriv. filter):
fu_max": |5
*u_min':
Echo output wave to DAQSystem Al oﬁan 1
77 Analog output enabled
‘Sig_gene Channel to monitor:

ey

Theta = 70,44

Help

Figure 6.10 Piddxy plugin window

118

Chapter 6 Applications

The graph at bottorn left comner is the custom graph window introduced in Chapter
6.2.5. It shows the current angular position of the motor servo SRV02 both in the
torm of graph and numeral (theta). The period, amplitude, voltage range, channels,

and the controller parameteys are set in the plugin window.

There are three selections for setpoints available in this application: fixed position,
which can be set by entering value in the box at right hand side of the setpoint type

hox, square wave, and any wave type generated by the signal generator.

Figure 6.11 Setpoings available in piddxy plugin

The following graphs show the control results of this SISO application when a

square wave i selected as the set point:

119

Chapter 6 Applications

e B oreve e —rmarenrevet Q
Elie Log Channels Window Help
d&d

Ch 1 gp | Change Scale: -5V - 5V = | Secs. Visible[5 3 Spke ‘Polarity: *_| Spke Blarking (ms): »

1627.0 sec,
Spke Thieshold: -\

1628.0 sec. 16250 sac. 1

% 3 . y;_soc. X 16: R i .0 sec
'Spke Threshold: -ViLastSpke -Viat ~ -iSpkeFreq: -BPM({ -hzor

- mefspke)]

mping Rate: 1000 Hz Scan Index 1682903 &2

Sal

ple FIFO Is 15% full Mouse pos: 1624.0 sec, 3.387 V

X o | pon e, X 14:44

] N N

Figure 6.12 Control results of a square wave

Channel O is the Al channel to monitor and it can be set to whichever channel by
selecting in the plugin window (Figure 6.10). The graph in this channel shows the
angular position of the motor servo. As (-5, 5) is used for the scale of all channels in
RTLab, the scale for angular position is also converted into this range. The original
scale is (-176 deg, 176 deg). Channel 1 is the wave of desired voltage value, saying
setpoint. Channel 2 is the angular velocity of the motor servo, it can be acquired either
by differentiating the angular position or by reading from encoder subdevice instead

of analog output device directly, the original range is (-880 deg/s, 880 deg/s).

Following are the enlarged graphs for each channel:

120

Chapter 6 Applications

=) T—— aran
+ File Log Channels Window Help =iv x
2D &[

Ch0 [| Change Scale: -5V - 5V .| Secs. Visible|5 :| Spke 'Polarity’: *_ | Spke Blarking (ms): »

oV

Osec, 19030sec. 19040sec. 19050 sec, 1906.0 sec.
Spke T c -VilastSpke -Vat -iSpkeFreqq -BPM(-hzor - ms/spke)
‘Sampling Rate! 1000 Hz Scan Index 1844505 Sample FIFO'is 27% full Mouse pos: 1904.9 sec, 4.974 V

14:49:12

et 2 3 k) ' N X ~ N # Qi ©

Figure 6.13 Angular position of motor servo SRV02 (theta)

The gains are implemented in the controller running at 2000Hz. The response of the
system is shown in Figure 6.13. Compared with the corresponding graph in Figure 6.3
(second top), this result provides a shorter settling time and a smaller overshoot

apparently, and the system response matches the design closely.

Chapter 6 Applications

ﬂ m-;::~ ; QO
+ FEile Log Channels Window Help wixixi
Ch 1 pg | Change Scale; -5V - 5V _.:J Secs. Visble|5 7| Spke 'Polarity: +_ | Spke Blanking (ms): »

oV

5V
1837.0 sec. 1938.0 sec, 1939.0 sec. 1940.0 sec. 184 1.0 sec.

Spke Threshold: - VilastSpke -Vat = -SpkeFreqq -BPM(-hzor - ms/spke)

Sampling Rate; 1000 Hz Scan Index 1844505 Sample FIFO is 27% full Mouse pos: 19358 sec, 4.844 V

Figure 6.14 Setpoint (square wave)

@ : : B onco o~ 7o/ ure 5~ Lo =1 G0Q
+ File Log Channels Window Help »ix
sed
ich 2 g | Change Scale: -5V - 5V | Secs. Visible[5 3| Spke 'Polarity’: *+_| Spke Blarking (ms): »

oV

-5V
1967.0 sec, 1963.0 sec. 1864.0 sec, 1965.0 sec.

Spke Threshold: - V(lastSpke ~ -Vat ~ -SpkefFreqq -BPM{ -1

[Sampling Rate: 1000 Hz Scan |

e Wil | A

Figure 6.15 Angular velocity of motor servo SRV02

Chapter 6 Applications

According to the graphs it is observed that this controller gives a decent loop

performance and scttling time.

6.3 A SIMO PID Control Application with GUI

6.3.1 Description

As introduced in Chapter 4, this control application involves positioning the {texible
link t0 a set point using a output feedback controller to damp out the vibration at the
tip of the link as quickly as possible with minimal vibrations ([34]). The objectives of

this project are:

e To obtain a transfer function model for the Flexible Link module.

¢ To design a PID controller that damps out the vibrations at the tip of the beam.

The Flexgage module consists of a stainless steel link instrumented with a straingage,

the straingage is calibrated to give 1 volt per inch of the deflection at the tip.

6.3.2 Mathematical Model

6.3.2.1 Servomotor Model

123

Chapter 6 Applications

The servomotor in this control project is the same as in motor servo control project,

and all of the parameters are identical.

6.3.2.2 Flexible Link Model

The parameters of the flexible module are defined as follows {[20]):

e Servo gear angular displacement
@ Servo gear angular velocity

o Link angular deflection

v Link angular velocity

B Total deflection (S = +8)
{. Flexible link length (L =19 inches =0.4826 m)
D End point arc length deflection (12 = al)

m Mass of flexible link (72 =65gm)
J - . . _ 1 2 _ 3 6 -7 2
mw Link’s moment of inertia (J ,, = gmL =3.67¢" kg-m?)

Mr; Link’s damped natural frequency

K, Link’s stiffness (K = a)iLJM =2 Nm/rad)

stiff

K e Straingage calibration factor (1 Voit/inch)

TL Qut put torque

Beq Equivalent viscous friction referred to the secondary gear

Chapter 6 Applications

Ra Armature inertia

J eg Lquivalent inertia seen at the output of the gearbox
7, Motor efficiency due to rotational loss 77, = 0.87
7, Gearbox efficiency Mg, = 0.85

=10, 1M, =0.7395

V, Input voltage

Figure 6.16: A schematic picture of the flexible link

1t g, is the link’s moment of inertia, the torquc duc to the link acceleration is:

_y ap

Jws J’mh dt 2

= Jhnb (9+ (X) = Jimb ((0+ V) (616)

125

Chapter 6 Applications

‘The link torque due to torsional spring stiffness K. is assumed to be proportional

10 the link’s deflection o

The servomotor output torque in addition to overcoming the inertia torque due to

Jo and frictional torque, it is assumed to overcome the torque duc to link’s

acceleration, then,

ch (.0" wa‘l' Jlmb (a)i V) = :{L
Then,

. 2 g2 :
Ko a_“nX,,,Kg+B R w+HK"‘K“

& [
w= J

vy
J J R J R

oy eq'ta oq*ta

And

___Ksliﬂ(‘]cq""fhub) _’7K;K:+B R @ ﬂKng

oy A

124
J if J Iy J R J 2] R(I

at'ta

6.3.3 Control System Design—PID Coniroller

The block diagram for the entire system:

(6.17)

(6.18)

(6.19)

Chapter 6 Applications

D e u a P

K (8 +T) K, (8 +T,)
PID Controllex = “ » a £ -
\:I-*~..5‘2+23md+m: ST+28wy; +w;

Figore 6.17: Block diagram lox the enlire system

Different from the SISO application discussed in Chapter 6.2, we have two outputs
in Flexible link model project—the angular position output of motor servo () and the
displacement output of the straingage tip (o). Taking into account the relationship
between these two outputs, Sum of these two outputs () is used as the control

variable, and almost all the other parts are kept the same.

The coniroller is the same:

u=KOw—y)+u/t+sT)— 5T, [(1+5T,) y (6.20)
u Control variable (output voltage).
W Desired vatue (The desired position of tip)
y Actual p:)siti(m ol the tip (alpha + theta)

127

e e e N s R R N

—
—t

Chapter 6 Applications

The system response is affected by the combination of four coefficients-— K ,7.,7T,,

and T, then the following value are obtained aller adjusting:

K=2
7,=02
T, = 0.05
T, =0

6.3.4 Real Time Control Program in Linux

Same as the SISO application discussed in Chapter 6.2, the control programs for this
plugin include 4 files: pidstrain_gage.c, pidstrain_gage.cpp, pidstrain_gage.h, and
pidstrain_gage_private.h. The programns for these Lwo applications are similar and the
main difference is the control algorithm. In this application, the control variable is the
sum of both of the two fcedback variables so that the corresponding part in

do_control {) {unction in pidstrain_gage.c will be:

static void do_control (MultiSampleStruclk * m)

if (Msample) v = 0; /% AL monitoring 1s off
OR the channal they want to monitor
is not found, so ignore vAT term.. */

else v = sample->data; /* sample is not NULL, use VAL term.. */

theta=y/s_ser;: /* convert voltage to degree. */

shm->feedbacx_angle = theta; /* this value will bhe showed in the

i28

Chapter 6 Applications

11 custom window >/

12

13 betabDesired = vbesired/s_ser;

14

15 sample = rtlab_get_samplie_by_chan (shm->Displacenent_inp_channel,
16 m;

17 i (1sample) alpha = 0;

18 else alpha = sample->data/(s_gag*L);

19 beta = theta + alpha;

20

21 e = betaDesired-beta;

22 /=% Compute conlrol */

23 u = shm->k*e + u_f;

24 ...

25

26 /**% Now, optionally echo it BACK to an AT channel for the UI */
27 sample = rtlab_get_sample by _chan(shm->echo to ai, m);
28 if (sample) sample->data = vDesired:

29

30 sample = rtlab_get_sample_by_chan{2, m);

31 if (sample) sample->data = wvel;

32

33 sample = rtlab get sample by chan{(3, m);

34 if (sample) sample->data = beta*5/176;

35

36 rtlab_data_writo{&kctx, u);

37

38 y_old = v; /* Save output ¥/

39

Lines 4 to 18 get the voltage values from two of the analog input channels and
convert the unit into degrees. Lines 21 to0 23 compute the control. Lines 27 to 34 echo

the values to diflerent channels for observation.

In terms of graphical interface, one more element has been added into the main

widget so that the user is able to sclect the analog input channel to get the feedback of

129

W oW

O X~

11
12
13

Chapter 6 Applications

the displacement at the Llip of the straingage.

void Pidstrain_gage: :buildGUI ()

layout-raddwidget (new QLabel ("Displaccement input Channel to

monitor:", this), 14, 0};

widgets->Displacement__inp channel = new QComboBox{this,

"DISPLACEMENT _TNP Chan CBox“}:

for (i = 0; 1 < n_ai_chans; i++)

widgels->Displacement_inp_chammel>ingertTtem{QString: :munbar {i)) ;

widgets->Displacement_inp_channel->insertItem("OLfE")
layout->adoWidget (widgets->Digplacement_inp_channel,

6.3.5 Results

Following is the plugin window of this application:

130

1<,

1);

Chapter 6 Applications

L0¢
Helg

AO Channet: 0

Al Channgl to monitor: 0 =
Set point: Square Wave — fo
Sq. wave period (ms); 2000 1
Sq. wave amplitude (volts): {1

'K value:

T value:

Td value (0 = no derivative):
TF value (0 = no deriv, filter):
'u_max";

LA

nmy‘:+___1 Spke Blarking (ms): 13
| T SRR | o (x|

=1L

ol olo

'u_min"; -5

Echo output wave to DAQSystem Al chan: 1

I Analog output enabled

Sig_gene Channel to monitor: ot

Displacement input Channel to monitor:

Figure 6.18 Plugin window of pidstrain_gage

- s e e W e s
VvEIIe Log Channels Window t ’ BRSO, i s e Helr
2ol

che J!‘l;cnangosm: 5V~ 5V | Secs. Visile[5 2| Spke ‘Polarity’ +_| Spke Blarking (ms)] 15

v fal]

165984 .0 sec. 165880.0 sec.
- -vat -iSpke Freq: -BPM{ - h spke

D s 1% full Mouse pos: 1650786 06, 4,030 Y

I N

Figure 6.19 Control results of a square wave (1)

131

Chapter 6 Applications

Same as the channels in Figure 6.12, when the voltage changes as a square wave,
channel O is the Al channel to monitor and it can be set to whichever channel by
selecting in the plugin window (Figure 6.18). The graph in this channel shows the
angular position of the motor servo. Its original range is (-176 deg, 176 deg). Channel
1 is the setpoint, and Channel 2 is the angular velocity of the motor servo. Its original

range is (-880 deg/s, 880 deg/s).

Ele Log Channels Window Heip
@

Ch3 | Change Scale: -5V - 5V | Secs. Visible[5 3| Spke ‘Polarlty" +_| spke Blanking (ms){1:
1661920 sec. 166193.0 sec, 166194.0 sec. 166190.0 sec. 166191.0 sec.

Spke Threshold:
on'z
5V
oV
-5V
166192.0 sec. B A 56194 . 166191.0 sec.
Spke Threshold: - ke Fi - ms/spke)

(v]]x]

-ViastSpke -Vat ~ -[SpkeFreq: -BPM{ -hzor - ms/spke)

M

166183.0 sec. 166194.0 sec. 166190.0 sec. 166181.0 sec.

A/ a0t Snkve 3 Sl o Fran - R, ~hrar . me a
12 Scan Index 186548755 Sample FIFG Is 46% full Mouss pos: 166102.0 86c, .4 258

Figure 6.20 Control results of a square wave (2)

Channel 3 is the relative angular tip position of the straingage to the whole plant
system. Its original range is (-176 deg, 176 deg). Channel 5 is the displacement of the

tip, original range (-5 inch, 5 inch), or (-12.7cm, 12.7cm).

Chapter 6 Applications

Following are the enlarged graphs for each channel:

“ SRS I Y=Y
+ Eile Log Channels Window Help »ixi»
SR
ChO g | Change Scale: -5V - 5V . | Secs, Visible5 %] Spke 'Polarity: *+_| Spke Blarking (ms):/1:
5V

oV

166022.0 - 1660230 sec. 166018.0 sec. 166020.0 sec. 168021.0 sec.
Spke Threshold: - V[LastSpke -V at - -ISpkeFreq: -BPM{ -hzor - ms/spke)
sampling R 000 Hz [Scan Index 166023421 /Sample FIFO Is 18% full Mouse pos: 166020.6 sec, 2.688 V

Figure 6.21 Angular position of motor servo SRV02 (theta)

Chapter 6 Applications

@ o e Ra(
+ Elle Log Channels Window Help wiwi»
® & [d

Ch 1 gg | Change Scale -5V - 5V | Secs.Visble|5] Spke ‘Polarty: +_|| Spke Blarking (ms); 1:

166042.0 sec. 166043.0 sec. 166044.0 sec. 166045.0 sec. 1660486.0 sec.
Spke Threshold: - ViLast Spke -Vat - Spke Freq: -BPM(-hzor - ms/spke)
Sampling Rate: 1000 Hz|Scan Index 166060736 'Sample FIFO is 23% full Mouse pos: 166044 .2 sec, 4.896 V

Figure 6.22 Setpoint (square wave)

=3 R gy remee-7 et et ehvee <A, L0
+ File Log Channels Window Help wivi»

Ch2 || Change Scale: -5V~ 5V . | Secs. Visible[5 2 Spke 'Polarity: +_| Spke Blanking (ms){ 1>

166087.0 sec, 166083.0 sec. 166084.0 sec. 1660850 sec. 166088.0 sec.
Spke Threshold: - V(LastSpke -Vat -Spke Freq: -BPM{ -hzor - ms/spke)

Sampling Rate: 1000 HziS Index 1661088 7 Mouse pos: 1660853 sec, 5.000 V

Figure 6.23 Angular velocity of motor servo SRV02

Chapter 6 Applications

+ Elle Log Channels Window Help »iw »
@@

Ch 5 g { Change Scale: -5V - 5V | Secs. Visible{5) Spke 'Polarity": +_| Spke Blarking (ms): 1
svig '

SV ¥]

166112.0 sec. 166108.0 sec. 166108.0 sec. 166110.0 sec, 166111.0 sec.
Spke Threshold: - V|LastSpke -Vat -'Spke Freq: -BPM(-hzor - ms/spke)
Sampling Rate: 1000 Hz Scan Index 166168780 Sample FIFO is 37% full Mouse pos: 166109.8 sec, 4.870

Figure 6.24 Displacement of the tip of the straingage (alpha)

+ Eile Log Channels Window Help wixi»
2@
Ch3 | Change Scale: -5V - 5V | Secs. Visibie[5 3 Spke ‘Polarity’; +_| Spke Blarking (ms){ 1:

oV

5V

166142 .0 sec, 166138.0 sec. 166138.0 sec. 166140.0 sec. 1661410 sec.
Spke Threshold: - V[LastSpke ~ -Vat -ISpke Freq: -BPM(-hzor - ms/spke)
Sampling Rate: 1000 Hz [Scan Index 166168780 Sample FIFO is 37% full Mouse pos: 166139.3 sec, 5.000 V

Figure 6.25 Relative angular tip position to the whole system (theta+alpha)

Chapter 6 Applications

As the straingage is always vibrating when controlling therefore it is very difficult to
have a completely steady response for this system and as shown in above graphs, the

propased controller gives an acceptable performance,

6.4 A SIMO LQR Control Application with GUI

6.4.1 Description

The control object is completely the same as that in Chapter 6.3, the only difference
is that the controlier is designed by an optimal regulator—Linear Quadratic Regulator

(LQR) instead of traditional PID method. ‘This introduces a better contral result.

6.4.2 Mathematical Mode

This application addresses the problem of controlling a flexible link with a state

feedback controller ([201). A state-space model:

J‘c(t) = Ax(f) + Bu(t) (6.21)
y() = Cx(¥) (6.22)
=6 o o v (6.23)

136

Chapter 6 Applications

-7 o 0 ! 0] B

? 0 0 0 116 0

| |, Ky ﬂ:r,rKjiK;'+BmR" ol @], 7K, K, . 624
= I, IR, ® J R, T

{.p Kog Ueg ¥ aw) KK + B R, ol _nKL K,

RANE Jeq‘]hub Jc’qRa J Jqua

After substituting system parameters then obtain the following iinear model:

0.0 0.0 1.0 00
0.0 0.0 00 10
0.0 10589.1 =576 0.0
00 -14634 576 00

B=[00 00 1072 -107.2)
X = [9 174 0 a}
6.4.3 Control System Design—LQR Controller

Lineal Quadratic Regulator (LQR) is a kind of controller which is designed by the
approach of optimal controller designing ([3]). In LQR control, the object is to
determine the optimal controller u(¢) = —Kx(t) such that a given performance index
J= I(xTQ.x+zt7'R14)rll is minimized. This performance index is selected to give the

best performance. The balance which consists of the effects of each state variables

137

Chapter 6 Applications

and individual control inputs will change along with the change of etements Q and R.

For example, using an identily malrix Q for weights all the states equally, a diagonal
matrix O = diag (f260 3600 2 1]) and R =1 are used here to calculate the optimai
feedback matrix K. These values were obtained after optimisation. In Matlab, this
can be achieved by using the function [k, S]=1lgr2(A, B, @, R) and it

minimizes the cost function J subject to the constraint defined by the state equation.

The design is performed using state feedback controller in the form of V =—%X , a

LQR controller is used and the resulting feedback gain is:

K =[200 -130.0 36 1.5]

The deflection in the tip of gage could be obtained by:

o =.§_—_ 0'0254("!Q)OHWS(VOH) in the unit of radians, where Vs is the input
fink

voltage from the sensor in the joint end of straingage and L_link is the length of the

link in metres,

Following is the test model in SIMULINK:

133

Chapter 6 Applications

L5 har_check [={g]x]
EI6 TR oy [t Foun Yoo

DSA@ =@ 2:2 b = | B

[—fean]
(-] .

Square Wave Degioes to

Radiam
State-Space
Radians Beta_s
to Dugrawst
pha_s
%‘
=55 1e2
=]
—<}=
A

. 100% odeds e

Figure 6.26: LQR control simulation model in SIMULINK

And the outputs:

Theta—The position of motor servo (the upper scope in Figure 6.26):

139

Chapter 6 Applications

Figure 6.27: Output of theta in LQR control

Beta—The position of tip relative to whole plant (the central scope in Figure 6.26):

Figure 6.28: Output of beta in LQR control

Alpha—The position of tip relative to joint (The lower scope in Figure 6.26)

140

W N = O 0O W & WN —

[

Chapter 6 Applications

Time offset: 0

Figure 6.29: Output of alpha in LQR control

6.4.4 Real Time Control Program in Linux

A different controller was adopted in this application therefore the major difference
between this project and previous application is the control algorithm. In

do_control () function in Igrstrain_gage.c:

static void do_control (MultiSampleStruct * m)
{

/** Formula is u = v-kx

Status Feedback

sample = rtlab_get_sample_ by chan(shm->ai_chan, m);

if (!sample) y = 0; /* AI monitoring is off
OR the channel they want to monitor
is not found, so ignore vAI term.. */

else y = sample->data; /* sample is not NULL, use VvAI term.. oy

141

14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
a1
42
43

Chapter 6 Applications

theta = y*D2R/s_ser;

sample = rtlab_get sample by_char (shm->Displacement_inp_ channel,
m) ;
if (!sample) alpha = 0; /* AI monitoring is off
OR the channel they want to monitor
is not found, so ignore vAI term,. */
else alpha = sample->data*0.0254/%L; /* Change unit from inch Lo
metre, then compute alpha */

......

shm->feedback_angle = (theiLa+alpha) *R2D;
/* Compute coniroli */
u = (vDesired*D2R*shm->kl/s_ser - (shm-»kl*thcta_f + shm-
>k2*alpha £ + shm->k3
*theta_fd + shm->k4*alpha_£d))*0.1;
/** Now, optionally echo i1t BACK to an AI channel tor the U */
sample = rtlab_get_sample by _ chan{shm-»echo_to_ai, m);

if (sample} sample->data = vDesired;

sample = rtlab_get_sample_by_chani(2, m);
il (sample) sample->data = theta_fd;

sample = rtlab_get_sample_by_chan(3, m);

1f (gample) sample->data = u;

rtlab_data_writei{&ctx, u):;

Lines 7 to 23 get the voltage values from two of the analog input channels and
convert the values into those in the unit of radians. Lines 29 to 31 compute the control.

Lines 34 to 41 echo the values to different channels for observation

In terms of graphical window, K1, K2, K3 and K4 are showed as control parameters

142

Chapter 6 Applications

instead of K, Ti, Td, and Tf, as shown in Figure 6.30.

6.4.5 Results

There are four control parameters in the plugin window: K1, K2, K3 and K4. Same
as previous applications, three selections for setpoints are available in the application:
fixed position, square wave, and any wave type generated by the signal generator. The
channel for displacement feedback is set to channel 5 here, and the user can set it to

any other spare channels.

Set point: Square Wav

Sq. wave period (ms): | 1000

Sq. wave amplitude (volts): {2A

K 1" value: Jobis e

K2 value: [130°

'K3' value: |36

K4' value: Jos i
‘u_max"; 5

u_min'; 55—
Echo output wave to DAQSystem Al chan: 1

F Analog output enabled

Sig_gene Channel to monitor: Off |

Displacement input Channel to monitor:

156 pos: 3481528 sec, 1200V _

Figure 6.30 Plugin window of Iqrstrain_gage

As shown in Figure 6.31, Channel 0 shows the angular position of the motor servo.

143

Chapter 6 Applications

Its original scale is (-176, 176). Channel 1 is the setpoint, and Channel 2 is the angular

velocity of the motor servo. The original range is (-880 deg/s, 880 deg/s).

& v e e 00
Efle Log Channels Window Helg
2@

|cn . -5V - 5V | Secs. Visble5s 2 Polarity: +_| Spke Blarkl 13

08 gl s 50 gliue s lebEay: .| ook perkeg (]

P

wialx

~ 263781.0 sec, 2637820'sec. 2637 . 2637790 sec. 263780.0 sec.
Spke Threshold: - ViLastSpke -Vat efreq: -BPM(-hzor - ms/spke)

wiaix

" 263781.0 sec. 263782.0 sec, 263778.0 sec. 63779.0 sec. 263780.0 sec. :
Spke Threshoid: -V LastSpke ~ -Val -SpkeFreq: -BPM(-hzor - ms/spke) |

v]afx]

5V]
0Vy

8.0 sec. 83779.0 sec. 263780.0 sec.
~_ -[SpkeFreq’ -BPM{ -hzor - ms/spke)
i ooo
ple FIFO Is 23% il Mouse pos: 263777 6 sec, 4.194 v

Figure 6.31 Control results of a square wave (1)

Channel 3 is the relative angular tip position of the straingage to the whole plant

system, its original range is (-176 deg, 176deg). Channel 5 is the displacement of the

tip, original scale (-12.7 cm, 12.7cm) (Figure 6.32).

Chapter 6 Applications

(=) - onassmrmn - emso0te - | Q00
File Log Channels Window Help

Ch5 gp | Change Scale: -5V - 5V - || Secs. Visble| 5) -;}‘Spke ‘Polarity: +_ | Spke Blarking {ms): »
SpKeTITEsNoI0: - viLastSpKe - var _ISpKerreq -BPMTT -nzor - MS/SPKe) [y

' ,

wiaix

512752.0 sec 512753.0 sec. 5127540 sec. 512755.0 sec. 512756.0 sec. !
Spke Threshold - VLast Spke -SpkeFreq: -BPM(-hzor - mslspke) |

P

5127520 sec. 512753.0 sec. 4.0 s 8 512?56.0sec_.
Spke Threshold: -ViastSpke -Vat = I{ -hzor s/spke) |

512752.0 sec. 5127530 sec. 512754 0 sec. 512755,0 sec. 512756.0 sec. i

Spke Threshold; - ViLast Spke -SpkeFreq: -BPM{ -hzor - ms/spke) |-/
| = (o

YA e~ R Ty = -
Samping Rate: 1000 Hz Scan Index 51275887 use pos: 512753.2 sec, 3871V

Figure 6.32 Control results of a square wave (2)

Following are the enlarged graphs for each channel:

a i
& File Log Channels Window Help wix»
GEIr
Cho gg | Change Scale: -5v - 5V . | Secs. Visbis[5 2| Spke Polarity; *_| Spke Blanking (ms){ >

Figure 6.33 Angular position of motor servo SRV02 (theta)

Chapter 6 Applications

The setpoint is the same as that in Chapter 6.2 (Figure 6.14) and Chapter 6.3 (Figure

6.22).

=% - omanyer A e-icwel (+T+T1
+ File Log Channels Window Help = v »
a2

Ch2 g | Change Scale: -5V~ 5V | Secs. Visible|5 3| Spke 'Polarity’; *_ | Spke Blanking (ms): 1>

5V

oV

5V

263496.0 sec. 63497.0 sec. 263493.0 sec. 263494 0 sec. 2634950 sec.

Spke Threshold: - V[lastSpke -Vat = -[SpkeFreq: -BPM(-hzor - ms/spke)
Sampling Rate: 1000 Hz!Scan Index 268517268 Sample FIFO Is 14% fullMouse pos: 263494.0 sec,

Figure 6.34 Angular velocity of motor servo SRV02

146

Chapter 6 Applications

e e e e e e QO¢
+ Eile Log Channels Window Help wixi»
® &[> :
Ch 5 [| Change Scale: -5V - 5V | Secs. Visible|5 < Spke 'Polarity: +_| Spke Blarking (ms)y 1
5 v '

oV

-5V
263526.0 sec. 263527 0 sec. 2635280 sec, 263524 .0 sec. 2635250 sec.

Spke Threshold: - ViLastSpke -Vat -Spke Freq: -BPM(-hzor - ms/spke)

Sampling Rate: 1000 Hz/Scan Index 263548885 Sample FIFO is 18% ful Mouse pos: 263526.7 sec, 4.896 V

NONGXX: X @RI X X X X X

Figure 6.35 Displacement of the tip of the straingage (alpha)

=) oonampronosrimpm e g ehe)) T T
+ Elle Log Channels Window Help =iwi»
Ch3 g | Change Scale: -5V - 5V | Secs. Visible|5 | Spke Polarity; +_| Spke Blanking (ms){1>

oV

512767.0 sec. : X 512765.0 sec, 5127686.0 sec.
Spke Threshold: - ViLastSpke -Vat -Spke Freq: -BPM({ -hzor - ms/spke)
C 2/Sca : - 10% full Mouse pos: 512764.2 sec, 4.844 V

Figure 6.36 Relative angular tip position to the whole system (theta+alpha)

147

Chapter 6 Applications

The system is found to perform well. It is very sensitive to variations in low pass
filter cutotf trequency, sampling rate and derivative feedback gains. The system can
be tuned by changing the gains K2 and K4, bigger K2 causes larger overshoot and too

much K4 will lead to instability.

6.5 Summary

In this chapter [ouwr control applications with different controllers and user interfaces
are presenied. One simple command-linc mode program which combines COMEDI
with RTAI LXRT, and thrce applications in the form of RTLab plugins in which

different controliers are used based on the complexity of the applications.

According to the results shown in differcnt scctions. A tradition PID control may
provide a short settling time and a small overshoot when a singie-input single-output
object (motor servo) is controlled. However it is very difficult to have a steady
response for a single-input multi-output system (flexible link with motor servo) with
the same controller, therefore a LQR controller is introduced in chapter 6.4 and it

provides decent stability, overshoot and scttling time.

148

Chapter 7 Conclusions And Discussions

Chapter 7 Conclusions and Discussion

7.1 Why Linux?

Aside from Windows, Linux is probably currently the most popular operating system
in the world. It is being adopted more and more in modern industries due to its huge
potential and good real time capability. We chosce Linux as the platform in this project

as its features of ([30]):

* Multitasking—It allows several tasks running at the same time.

* Multiuser—Several users on the same machine at the same time.

¢ Multiprocessor—SMP support is available on the Intel and SPARC platforms,

¢ Multithreading—Multiple independent threads are allowed to run in a single
Memory space.

¢ POSIX job control.

® Muliiple virtual consoles—I.inux allows several indcpendent login sessions

through the console, and the user can switch between them via hotkeys.

Linux supports secveral common filesystems such as Minix, Xenix, and all the

common system V filesystems. It provides memory protection between processes, and

149

Chapter 7 Conclusions And Discussions

this cnsures the system would not be brought down by just one progran, further more,

Linux is open source software, which means its source codce is vpened to every user.

7.2 Why RTAI?

As introduced in Chapter 2, RTLinux and RTAI aic two of the most popular major
real time Linux branches available currently. Both of them have similar scheduling
methods and APl functions however RTAI is supporled better today and it works
better with COMED], therefore it is chosen to provide real time performances in this

project.

7.3 COMEDI Drivers

There are a numbers of drivers provided in COMEDI which could be found in
$COMEDIDIR$/comedi/drivers/, including the driver of MuttiQ3 board used in this
project. However the driver of AD512 card is not provided with current COMEDI

distributions. A driver program was thus written io carry ont this function.

One thing to note, COMEDI provides two different libraries, Comedilib and
Kcomidilib, Comedilib is a user-space library while Kcomedilib is a Linux kernel

module that provides the same interface as Comedilib in kernel space, i.e. for real-

150

Chapter 7 Conclusions And 1Discussions

time tasks. When using Comedilib, include comedilib.h as head file but when using
Kcomedilib, inscrt kcomedilib.o into kernel. Misusage of the COMEDI library may

causc “unresolved symbol” errors during compiling.

7.4 RTLab

As introduced in chapter 5, RTLab is an ongoing project to develop a general-
purpose, open-source, hard real-time experiment interface software system ({19]). All
applications in RTLab exist in the form of RTLab plugin modules. In order to get

RTT.ab compiling and running properly, users need to have ([21], [22]):

* A Real Time Linux variant, either RTLinux v3.1 (or later) or RTAI 24,1.9 (or
later). For RTLinux, shared memory driver, POSIX standard 10, and floating
point support should be enabled, and for RTAl, floating point support, POSIX
AP, RT memory manager, and FIFOs need to be enabled when configuring.

* Comedi0.7.65 or later with comedilib or kcomedilib. Enable real time support,
of course.

¢ Qt3.5. The GUI software

e Suitable compiler. GNU g++-2.96 and gcc 2.95 are recommended {or best
results as C++ and rcgular C compiler. If RTAI is used with RTLab g++-2.95

and gce-2,95, user had better try g++-2.96 and gee-2.95 instead.

151

Chapter 7 Conclusions And Discussions

When running RTLab, the following modules are required to be loaded into the

kernel;

o For RTLinux

kcomedilib, comedi, mbuff, rtl_fifo, rti_sched, rtl_posixio, 1tl_time, rtl

e TFor RTAJ

comedi, kcomedilib, rtai, rtai_sched, rtai_pthread, rtai_fifos, rtai_shm

During cxperiments, the error message "unresolved symbols inil_z_apps > and
free z apps" appeared when only the modules mentioned above were loaded. T'he

problem was solved when another module rtai _lxrl was inserted into Kernel.

7.5 Real Time Solutions

Users can either achieve real time control in hard real time or soft real time. Hard-
real time controlling gives a Linux process, or a pthread (POSIX thread) hard real
time execution capability allowing full kernel pre-emption, while soft-real time
controlling gives processes standard Linux behaviour and, allows other processes to

run at the same time, this being forbidden in hard real time. Different scheduling

152

Chapter 7 Conclusions And Discussions

methods are used for different real time solutions. Refer to Chapter 4 for more details.

Chapter 8 Future work

Chapter 8 Future Work

Towards # better understanding and research in the field of real time confrol under

Linux, there are a numbers of topics which could be considered for further research:
(1) RTAI + COMEDI solutions.

The integration of COMEDI under RTAI can be developed using RTAILAB and
MATLAB. Release of 2.24.11 of RTAI allows the integration of COMEDI drivers in
SIMULINK schemas and to generate code for (X)RTAILAB. If there is no
MATI.AB/SIMULINK/RTW, the same thing can be donc under Scilab/Scicos also. In
this case, the unofficial release of RTAI (2.24.12prel) and two of other files,
rt_scilab.tgz and a moedificd xrtailab.cpp are needed. In this project COMEDI + RTAI

LXRT was adopted and other ways may be explored in future works.
(2) Math functions in RTLab.

Some of the math functions are not available in RTLab because they live in the math
library which is a user space library. One possible solution to use them in kernel space
is linking libm.a to the custom module by ar x user/lib/libm.a, get dozens of .o files

oul then fink all of them to the custom module. However this will cause some errors

154

Chapter 8 Future work

of undefined symbols as fputs(), fprint(), etc. Therefore it might be worthwhile to
create of stripped down version libm and release it with the RTLab resources, so that

the people wishing to use libm can casily do so without extra effort.

(3) Qt Designer in RTLab.

The graphical interface software Qt provides a very convenient and powerful tool
named Qt Designer by which nser can build their own graphs simply by clicking the
mouse in the graphical interface of Qt Designer, instead of writing hundreds lines of
laborious scripts. All the custom widgets will be put inte one .ui file by Qt Designer
and compiled later. Although this kind of .ui file cannot be picked up properly by the
build system in RTLab, uscr can compile them manually. That means, create a .ui file
by Qt Designer then convert it to a .cpp file then compile it. An alternative way is
changing around the RTLab build sysiem to make it as painless as possible to create

plugins with the designer. Thus adding plugins to RTLab will be much casicr.

(4) Mouse movement feedback in RTLab plugin.

In this project, the setpoints are input in RTLab plugin by inpuiting them in plugin
graphical interface through keyboard. Further work can be done using a mouse event
function to feedback the current position of the mouse, then connecting it to another

function in which the setpoint is replaced by the position of the mouse. The setpoint

155

Chapter 8 Fulure work

will change cach time uscr click the left (or right, depends on the settings) mousec
button on certain part of the graphical interface. The plant will then be directed to the
next supposed control position, and all of these could be available for observation in
the graphical interface. Similarly, It is possible to add other mouse events in R'T'Lab
such as mouseup, mousedown, mousernove, etc, by modifying the corresponding code

in .cpp file.

(5) Separate plugin windows in RTLab.

User can have as many windows as required in RTLab plugin. Everything is this
project is in one window, however. Include Wtype Toplevel in Wilags if a top-level
window is needed, or alternatively make the window’s parent ‘0” (or root level). If the
user wants the plugin window to also have an eniry in the ‘“Window’ menu of

DAQsystem, call these mcthods on the dag_system for instance:

int windowMenuAddWindow(QWidget *w); /* returns window id */

void windowMenuRemoveWindow(int window_id);

Call the first onc when constructing the plugin therefore the window gets an entry in
the DAQSystem window menu, and call the second one when removing the plugin so

that its cntry is removed from the window menu.

Chapter & Future work

(6) Encoders in RTLab.

The DAQ card subdevices used in RTLab to input and output voltages currently are
analogue input and output channels. It is also possible to use encoders {(provided by
some cards) instead. The encoders are used to measure positions of moving axcs in a
machine by counting pulses generated by the motion. The software (ransforms these
pulses into linear or rotational displacement. The difference between occupying
encoders and analogue input subdevices is the encoder reduces the dead zone effect
when plant (such as servo) is moving {or rotating). By use of encoders, user can not
only reduce the dead zone effect but also acquire additional measurements. This has

not been included in the updated version however it scems to be in progress.

Method (1), (2)and (6) are generally ongoing by other developers and method (3),

(4) and (5) are the ways in which to take the work of this thesis further,

137

References

References

Franklin Gene F., Powell J.David and Emami-Naeini Abbas, “Fecdback
Control of Dynamic Systems”, 3", Addison-Wesley Publishing Company Inc.,

1994, Massachusetis, USA.

. Welsh Matt and Kaufman Lar, “Running Linux”, pnd Ed, O'Reilly &

Associates Inc., 1996, California, USA.

. Dutton Ken, Thompson Steve and Barraclough Bill, *“fhe Art of Control

Engineering”, Addison Wesley Longman Limited, 1997, Massachusetts, USA.,

“Posix Threads Prograrnming”, (raining material from Lawrence Livermore
National Laboratory,

htep:/Awww.lInl. eov/computing/tutorials/workshops/workshop/pthreads/MAIN

html, last visited 21 September 2004.

. Salzman Peler Jay and Pomerantz Ori, “The Linux Kernel Module

Programming Guide”, 2001, http://www.fags.org/docs/kemel/, last visited 20

June 2005.

“DIAPM RTAI Programming Guide 1.0”, Lineo Inc., 2000, Utah, USA,

“MATLAB—High-Performance Numeric Computation and Visualization

158

http://www.llnl.goy/computing/tutorials/workshops/workshoD/pthreads/MAIN
http://www.faqs.org/docs/kernel/

References

10.

11.

12,

13.

14.

Software (For UNIX Warkstations) User’s Guide™, The MATH WORKS, Inc.,

1992, Massachusetts, UJSA.

“SIMULINK-—A Program for Simulating Dynamic Systemns (For the X

Window System™)”, The MATH WORKS, Inc., 1992, Massachusetts, USA.

flekiman Jessica Perry, “LINUX IN A NUTSHELL”, O'Reilly & Associates

Inc., 1997, California, USA.

“DIAPM RTAI - Beginner’s Guide”, The RTAI Development Teamn, 2002,

http://www.aero.polimi.it/~riai/documentation/articles/enide.himl, last visited

19 June 2005.

Schleef David, Hess Frank and Bruyninckx Herman, “Comedi
Documentation—The Control and Measurement Device Interface handbook™,

2003, http://www.comedi.org/doc/index.html, last visited 20 June 2005.

Culianu Calin, “RTLab_plugin.h™, Retricved (rom R'TLab distribution

package, http://www.rtlab.org/download.jsp, last visited 20 June 20035,

Tan Haogiang, “C I.anguage Programming”, Tsing Hua University Press,
1988, Beijing, PRC.
Zou Siyi, “Linux Designing and Application”, Tsing Hua University Press,

2002, Beijing, PRC.

159

http://www.rtlab.org/download.isp
http://www.aero.polimi.it/~rtai/documentation/articles/guide.htmk

References

15.

16.

17.

18.

19.

20.

21.

22.

23.

Hu Shousong, “Automatic Control Theory”, Detense Industry Press, Beijing,

1998, PRC.

Yu Changguan, “Modern Controi Theory”, Hacrbin Polytechnic University

press, 1998, Haerbin, PRC.

Henderson Bryan, “Linux Loadable Kernel Module HOWTO”, 2003,

http:/fwww. tldp.org/ HOWTO/Module-HOWTOY/, last visited 20 June 2005.

Apkarian Jacob, “A Comprehensive and Modular Laboratory for Control

Systems Design and Implementation”, Quanser Consulting Inc., 1994, 1997,

Ontario, USA.,

Culianu Calin und Christini David J., “Real-Time Experiment Interface

System: RTLab”, 2002, http://www.rtlab.org/NEBC_2003_Paper.pdf, last

visiled 18 June 2005.

“Rotary Flexible Link with SRV02”, Quanscr Consulting Inc., Ontario, USA.

Culianu Calin, “How to Install RTLab”, Retrieved from RTLab distribution

package, 2002, http://www.rtlab.ors/downioad.jsp, last visited 20 Junc 2005.

Culianu Calin, “How to Compile RTLab”, Retrieved trom RTLab distribution

package, 2002, http://www.rtlab.org/download.isp, last visited 20 June 2005.

“RTAI_KCOMEDI_LXRT?, 2002,

160

http://www.tldn.org/HOWTO/ModuIe-HOWTO/
http://www.rtlab.org/NEBC
http://www.rtlab.org/download.isp
http://www.rtlab.org/download.isp

References

http://cvs.atai.org/index.cgi/eta/comedi IXrt/ README?rev=1.12, last visited

06 August 2003.

24. Dozio Lorenzo and Mantegazza Paolo, “RTAI-Lab™, 2002,

http://cvs.rtai.org/index cgi/stromboli/rtailab/README?rev=1.10&content-

type=text/x-cvsweb-markup, last visited 06 August 2004,

25, Dozio E. Bianchi, 1.. and Mantegazza P., “*A Hard Real Time Support for
LINUX™, 2002, Retrieved from RTAI distribution package,

http://download. gna.org/rtai/ |, last visited 20 June 2005.

26. “AD512 data acquisition cards user’s manual”’, HUMUSOFT s.r.0., 1997,

Czech Republic.
27. “MultiQ—3Wl Programming Manual”, Quanscr Consulting Inc., Ontario, USA.

28. Bird Tim, “Comparing Two Approaches to Real Time Linux™, 2000,

hitp://www. linuxdevices.com/articles/AT7005360270.html, last visited 19

June 2005.

29. Ripoll Ismael, “RTLinux versus RTAT”, 2002,

http://bernia.disca.upv.es/riportal/comparative/rtl vs rtaihtml, last visited 20

June 2005.

30. Johnson Michael K.,“Linux Information Sheet”, 1998,

htip://www.tldp.org/HOWTO/INFO-SHEET .html, last visited 20 June 2005.

161

http://cvs.rtai.org/index.cgi/etna/comedi
http://cvs.rtai.org/index.cgi/stromboli/rtailab/README?rev=1.10&content-
http://download.gna.org/rtai/
http://www.linuxdevices.com/articles/AT7005360270.htmI
http://bemia.disca.upv.es/rtportaI/comparative/rtl
http://www.tldp.org/HQWTO/INFQ-SHEET.html

References

31. “The Makefile”, webpage from Opus Sollware Inc.,

htip://www.opussoftware.com/lutorial/ TutMakefile hom, last visited 20 June

2005.

32. Schleef David, “Hardware Driver.[1OWT0”,

hitp://www.comedi.org/downtoad.php. Retrieved from Comedi distribution

package. Last visited 20 June 2005.

33, The trolltech, “Product Overview™,
http://www.trolitech.com/products/index.html, last visited 20 June 2005.

34. Hadi Saadat, “EE-479 Digital Control System Project 1 Flexible Link”,

19 June 2005.

162

http://www.opussoftware.com/tutorial/TutMakefile.htm
http://www.comedi.org/download.php
http://www.trolltech.com/products/index.html
http://people.msoe.edu/~saadat/l%20Flexible

Appendix A

Appendices

Appendix A

Block Diagram and pseudo code of the programs for SIMO-PID control project

(Pidstraingage) and SIMO-LQR (Lqrstraingage) control project.
Pidstraingage program:

pidstraingage.h:

Callback frequency and voliage
scale setting

'

Shared memory definition

pidstraingage_private.h:

Pidstraingage Qwidget
declaration

163

Appendix A

pidstraingage.c:

Module name and description
declarations

)

Module infiQ function definition

'

Module cleanup() function

definition
|

Shared memory sirueture

definition
|

Process read function definition

¢

Conirol algorithm—do_conirolQ)
function

164

Appendix A

pidstraingage.cpp:

Plugin information—name,
description, flags...

|

Plugin eniry funciion

¢

Pidstraingage Widget siructure
definttion

Definitions ofeach elementin
pidstraingage QWidget

Pseudo code of do_control() function (in pidstraingage.c):

‘/**
* This plugin does the following:
"
* A Proportional + integral + derivative controller
* Kerrel code:
* 1. Generates different waves with the counterpart periods and

amplitudes.

* 2. Reads ADC channel shm-»ai_chan and calls the voltage 'y'.
* 3. Computes u = k*({w-y} + u/(1+s8Ti} - s7Td/{1+s1*f) V.
* 4, Wriltes u to DAC channel shm->ao_chan.

*

* GUI (pidstrain_gage.cpp}:

* simple GUI to change parameters on-]line
*/

static void do_control (MultiSamrpleStruct * m)
{

consltanks

Appendix A

Declare phase lergth, sampling rate, and amplitude of Sguare wave.

Check if Lhe piugin is ready Lo run

Check the operation wish to perform, input wave type salection:
0—Fixed position, designated through graphical interface.
1—Sguare wave, amplitude and frequency are designated through
graphical interface.

2-wave from signal gencrator, medify wave parameter via adiusting

signal generator

if {the input is a square wave
Get the piase length and freguency of the wave
Compute the degired voltage value

)
I

Else if (thc input is signral from signal generator) {

Sample Zrom signal generator

Check if the input voltage is in the val:id range
}

elsel

Check if the input voltage is in the valid raagc

Input signal igs a fixed value in relalion to the angular position
of the motor servo

)

Read input voltage value from analog input channel

Check if A1 monitoring is off or the channel they want to monitor

s not found

Get errcor value through dividing desired wvoitage value by input

voltage value

Compute control. Getb angular position and angular velocity of motor

sServo

I'iltering

166

Appendix A

Clip

Opizionally echo desired voltage value back to an AI channel for the
U1

Echo anrgle veleocity back wo channel 2 80 that it can be chserved
in Graphical interface.

Cutput control signal

Save output

Graphical interface layout setting (in pidstraingage.cpp):

Plugin name, descriplion and enlry [unction declaration

extern """ {

Declare some stuff needed by plugin engine, these symbols are read
by libdl/dlsym()*/

de_plugin_ver is DS_PLUCIN_VER
Flag is Plugin::ReguiresRTLab
Plugin name is PLUGIN NAME
Plugin description is

"A Proporticnal + integral + derivative controllerin®

"Kernel code:\n"

" 1. Generatez different waves with the counterpart periods and

arrplitudes.\n"

" 2. Reads AGC channel shm-»ai chan and calls the voltage 'y’ .\n"

" 3. Computes u - k*{w-y) + u/{1+sTi) - sT&/{(1l+sTEf) vw.\n"
" 4. %Writes u to DAC chamnel shm->ao_chan.\n"
“\n\n"

"GUT (pidstrain_gage.cpp):"

Simple GUI to change sgquare wave and PID paramcters on-line”,

167

Appendix A

* authoyr = "Xiaoyu Duan".
¥ reguires =

"piddxy.o be loaded into the kernel. P+I+D control™;

Piugin * entry(QObject *o)
{

/* This is a top-level widget, and the parent i1s root */
Tssue warning message if plugin loading failed.

Show the widget

}
}i

Store some widgets that we neead pointers
(dis)connectSignais{) ard updateStats(}

struct Pidstrain gageWidgets

Declare all the elements needed in this plugin
}i

/% Plugin conslLructor */
Pidstrain_gage::Pidstrain_gage (DAQSystem *d)
QWidget (d, PLUGIN_NAME, Qt::Wl'vpe_TovLevel), ds(d)
Attach to shared memory
Declare new plugin widget
Build GUI
Connect Signals
Set caption name
/* Plugin destructor */
Pidscrain_gage::~Pidstrain_ gage()

{

168

o

for

Appendix A

Sel wave_on to (
Sat wave_type Lo ~1

Set channel aumber for signal generater to -1

Detach shared memory

Delele plugin widget; just delete Lhe struct, not the actual widget

Return plugin name

Return plugin description

/* Setting up the main layout */
void Pidstrain_gage::builidGUI ()
{
Create new layout
Create shared memory controller constant
Cct number aof analogue input channels
Add AQ Channel QLabel Lo the main layout
Add Al Channel QLabel and QComboBox Lo the main layveut
Add wave type QLabel and QComboBox to the main layout
Add wave period QLabel and QSpinBox to the main layout
Add wave amplitude QLabel and QLineEdit to the main layout
Add K value QlLabel and QLinelidit to the main layout
Add Ti value QLabel and QlLineEdit to the main layout
Add I'd value QLabel and QLineEdit to the main layout
2add Tf£ value QLabel and QLineEdit Lo the main layout
Add waximum voltage Qlabel and QLineldit to the main layout
Add minimum voltage QLabel and QiincREdic to the main layout
Add lcho outpul wave to DAQSystem AL chan QLabel to the main layout
2dd wave on QrheckBox to the main lLayout
Add inpul channel number for signal generator QLabel and Qcombolox
ta the main layout
Add input channel number for displacement zIfeedback Qlabel and
QcomboBox to tiie main layout
Set text in each element
}
/* Connoct signals withh slots */
void PidslLrain_gage::connectS8ignals ()
{

Connect cach signal to the counterpart slot

169

Appendix A

Sleots below set parameters in the shared memory region for
notilyling the real-time process

SetAaIChamme: slot daclaration
SetWave'lype s-ob declaration
SetGene slot declaration
SelDisp_inp slot Geclavation
SetAngle slot declaration
SetPeriod slot declaration
Sctamplitude slot declaration
SelK slol declaration

SetTi slot declaration

Setid sleot declaration

SetTf slcot decclaration
SelU_max slot declzration
SetU_min siot declaration
SetAlEcho slot declaration

SetAC slct declaration

Lgrsiraingage program:

Igrstraingage.h:

Callback frequency and veltage
scale sefiing

Shared memory defmition

170

Appendix A

lgrstraingage_private.h:

lgrstraingage.c:

Igrsiraingage Qwidget
declaraiion

Kodule name and deseription
declarations

|

Module inii) function definiiion

;

Module cleanup() funetion

definition
}

Shared memory strucinre
definition

}

Process read function definition

v

Conirol algoxithm—do_conirol(}
function

171

Appendix A

Igrstraingage.cpp:

Plugin infornation—name,
description, flags...

!

“Phqﬁnenhy1hncﬁun

!

lyrsiraingage Widget siructure
definition

Definitions ofeach elenwntin
Igrsiraingage QWidget

Pseudo code of do_control() function(in pidstraingage.c):

VAR

* This plugin does the following:

* A Linecar Quadratic Regulator controller for straingage

* Kernel code:

* 1. Generates different waves with the counterpart periods and
amplitudes.

* 2. Reads ADC chramnel shm->ail_chan and calls the voltage 'y'.

w 3. Computes u = v-kx.

* 4, Wriles u to DAC channel shm->ao_chan.

* GUI (lgrstrain gage.cpp) :
* Simple CGUI to change parameters on-line
*/

172

Appendix A

static vold do, control (MalLiSampleStruct * m)

{

/*% Trormula is u = wv-kx
Status Feedback
*/

conskants

Declare phase length, sampling rate, and amplitude of Square wave.

Check if the plugin is rcady to run

Check the operation wish to perform, input wave type selection:
0—Fixcd position, designated through graphical interface.
l-Square wave, amplitude and frequency are designated through
graphical interface.

2—wave [ron signal generator, modify wave parameter via adjusting

signal gencrator

If (the input is a square wave
Get the phase length and freguency of the wave
Compute the desired voltage value

}

Rlse if {(the input is sig¢gnral from signal generator){

Samplce from signal generator

Check if the input voltage is in the valid range

}

elsef

Check if the input voltage is in the wvalid range

Input signa> is a fixed value in relation to the angular position
of the motor servo

}

Read irput voltage value from analog input channel

Check if AI monitoring is off or the channel they wanlk to monitor

is not found

Appendix A

Get error value through dividing desired voltage vaiue by input
voltage value

Compute control. Get angular position and angular velocily of motor
servo

Filtering

Clip

Optionally echo desired voltage value back Lo wn AT channel for the
Ul

Echo angle velocity back to channel 2 so that it can be obscrved
in Graphical interface.

Ouzptt controi signal

Save output

Graphical interface layout setting (in lqrstraingage.cpp):

Plugin name, description and entry function declaraticn

extern "C" {

Declare some stuff needed by plugin engine, these symbols arve read
by 1ibdl/dlsym()*/

ds_plugin_ver is DS_PLUCIN VER
Flag is Plugin::ReguiresX'liLab
FPlugin name is PHUGIN_NAME
Plugin description is

A Lincar Quadratic Regulator controllerin
"Kernel code:\n"

11

1. Generates different waves with the counterpar: periods and

amplitudes.\n"

174

Appendix A

" 2. Reads ANC channel shwm->ail chan and calls Lhe velbage 'y’ .\n"
" 3. Computes u = v-kx.\n"

" 4. Wriles 1 to DAC channel ghm-»ao_chan.\n"

"A\n\n"

"GUI (_grstrain gage.cpp):"

" Simple GUI to change sguare wave and LOR paramcters on-line",
¥ author = "Xiaoyu Duan',

* requires =

"lgrscrain_gage.o be loaded into the kernel. LOR contzrol";

Plugin * entry{QUbject *o)
{

/* This is a Lop-level widget, and the parent is root */
Issue warning message if plugin loading falled.

show the widgel
}

Yi

Plugin * entry(QObjecct *o}
{

/* This is a top-level widget, and the parent is root */
Issue warning nessage if plugin loading failed.

Show the widget

1
¥

Store gome widgels that we need pointers te for
{dis)conmectSignals () and updateStats({)

struct Lgrstrain_gageWidgets

Declarc all the elements needed in this plugin
}:

175

Appendix A

/* Plugin constructor */
Lgrstrain_gage::Lgrstrain_gage (DAQSystem *d)
OwWwidget (d, PLUGIN_NAME, QL::WType TcpLevel), ds(d)
Attach to shared memory
Declare new plugin widget
Build GUI
Coanect Signals
Set caption name
/* Plugin destructor */
Lgrstrain_gage: :~Lgrstrain_gage()
{
Sel. wave_mm Lo 0
Set wave_type to -1
Sel channel number for signal generator to -1

Detach shared memory

Delete plugin widget; just delete the strucl, not Lhe actual widget

et

Return plugin name

Return plugin descripihion
s/* getting up the main Iayout */
vold Lgrstrain_gage: :bu' 1dGUL ()

Create new layout

Create shared memory controller constant

176

Appendix A

Add

Add

Add

Add

add

add

Add

Add

Add

Add

Add

Add

Add

numher of analogue input channels

AO Channel QLabel Lo the main layout

Al Channel QLabel and QComboRox to the main layout

wave Lype QLabel and QComboBox to the main layout

wave perind QLabel and OSpinBox to the main layout

wave arplitude Ql.ahel and QLineEdiz to the main layout

Ki value QLabel and QLineEdit to the main layout

K2 wvalue QLabel and QiineEdit to the main layout

K3 waluc QLabel and QLineEdit to the main layout

K4 value QLabe” and QLineEdit to the main layoul

maximum voltage QLabel and QLineEdit to the main Jlayout

minimum voltage QLabel and QLineEdit to the main layout

Echo output wave te DAQSystem AL chan QLabel to the main layout

wave on QcheckBox to the main layout

input channel number for signal generator QLabel and QcomboBox

to the main layoul

Add

input channel number for displacement feedback Qlabel and

QcomboBox to the main layout

Set

text in each element

void Lgrstrainr_gage: :connectSignals ()

{

Connect each signal to the counterpart slot

177

Appendix A

Slots helow set parameters in the shared memory region

notifying the

real-tire process

SevAIChannel sloit declaration

SetWaveType slot declaration

SetGene slot declaration

Setbisp_ inp slot declaration

SetAngle slot declaration

SetPeriod slot declaracion

SetAmplitude slot. declaration

SetKl slot declaration

Setk®2 slot declaration

SacX3 glor declaration

SerK4 slot declaration

SetU_max slot declaration

SetU_min sTot declaration

SetAlEcno slobt declarxation

SetAQ0 slot declaration

178

for

Appendix B

Appendix B

~omedi driver tor AD512 card:

rodule/adsiz . c

hardware driver for ADS12 data acauisition card.

This prograr is free software; vou can redistribute il and/or

modify

by

*/

/*

it urder the terms of the GWU General Public License as published

the Free Software Foundation; eithexr versicn 2 of the License, or

(At your option) any later versilon.

This program is distributed in the hope that it will be aseful,
but WITHOUY ANY WARRANTY; wilLhoul even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU Gerecral Public License for more details.

Driver:adkl12.0

Descrivtion: [HUMUSOFT) 2D512 data acquisition card

Author: Xiaoyu Duan

Status: unknown

Devices: [HUMUSOFT]adbi2

*/

#include <linux/comedidev.h>

#include <linux/ioport.h>

tdefine ADS12_SIZE 16

178

Appendix B

Iz
* ADS12 port offsets
ny

$define ADNSi2_ADLO 0

tdefine ADS12_ADHI 1

#deline ADS12_DAQLO 0

#detine BD512_ DACEI 1

#define ADKI2_DAITO 2

#define ADS512_DALEI 3

#define AD512_DACTRL 4

#detine ADS512_ADSTAT 5

fdefine ADS12_ADCTRL 5

#define AD512_DIN 7

#define ADS12_DOUT 7

/*
* flags for S8TATUS register
*/
$define ADS12_STATUS 080
tdefine ADS12_TIMEOUT 30

static int ad512_attach{comedi_device *dev,comedi_devconfig *it);
static int adblZ_detach (comedi_device *dev);

static comedi_driver driver_ads512=<

driver_name: radS12",

module: THIS_MODULDE,
attach: ad5l2_attach,
detach: ads12_detach,

}:
COM=DL_INLICLEANUP (Ariver_adbl2) ;

struct ad512 private{
lsampl _t ao_readback[Z];
1

#define devpriv ({(struct adbl2_private *}ldev-s>private)

static int adbiZ_al_insn_recad(conedi_device *dev, comedi_subdevice *s,

comedi_insn Yiuspn, lsampl_t *data)

‘nt i,ny

180

Appendix B

int chan;

tnsigned int hi, lo;

chan = CR_CHAN(insn->chanspec);
ovth({ (chan | 0x48),

dev->ilobase+ADS12_ADCTRL) ;

for{i = 0; i < ADSI12_TIMEOUT; i++) {

if (! (inb (dev->iokase+ADS12_ADSTAT) & ADS512 _STATUS)H)

brecalk;
}
£ {i==ADS12_TIMEQUT)return -kIIMEDOUT;

for{n=0;n<insn-»>n;n++) {
hi

inb (dev-—>iobase + AD512_ADHI) & OxEL;

lo = inb{dev->iohase + ADS5L2 _ADLQO) & Oxff;
data(n] = (((thi << 8) | lo) + 0x800) & Cxff:Z;

return i;

static int adb12_ac_insn_readicomedi_device *dev,

*S,

comedi_inesn *insn, lsampl_t *data)

int i;

int chan = CR CHAN(insn->chanspec):

for{i=0;i<ingn->n;i++}{

datal[li]=devpriv-~>ao_readback [chan] ;

return i;

static int ad51l2_ao_insn_write(comedi_device *dev,

*sl

comedi_insn *insn, lsampl_f *data)

int i;

181

comadi_subdevice

comedi_subdevice

Appendix B

int chan = CR_CHAN (insn-»chanspec);
for{i=0;i<insn->n;i++) {
outw((datali] & Uxfff}), dev->icbasc+AD512_DAQLO+2*chan);

outb{0x48, dev->iohase+ADS12_DACIRL) ;

devpriv-rao_readbacki{chan) = datali];

return i;

options [0} - I/0 port
options[l}] - irqg

options[21 - number of encoder chips installed

static int ad5l2_attach{comedi_device * dev, comed:i deveonfig * it)

int result = 0;
int ilobase;

comedi_subdevice *s;

iobase = ilL->options([0];

printk("comedi%d: ad512: 0x%04x ", dev->nminor, ilobase);

if (check_regicn(iobase, ADS12_ _SIZE) < 0) {
printk("comedi%d: I/O0 port conflictin", dev->minox);

refurn —-EIQ;

roguest_regicn (lobase, ADA1I2_SIZE, "adbi2");

dev->ichase = iobase;

dev->board _name = "adbla";
dev->n_subdevices = 2;
result = alloc_subdevices{dev);

Lf{result<0)return result;

result = alloc_privatce{dev,sizeof (struct ads12_private));
r

if{result<d)return result;

182

Appendix B

g = dev->gubdevices + 0;

/* ai subdevice */

s->Lype = COMEDI_SUBD_AT;
s-»subdev_flags - SDF_READABLE;
s-»>1_chan = 8;

s—>»inen_read = adbl2_ail_insn_read;
s->maxdata = (x£ff;

s->range_table = &range bipolars;

8 = dev->»gubdevices + 1:

/* ao subdevice */

s->type = COMEDI_SUBD_A0;

g->gubdev_ flags = SDF_WRITAELE;
s-->n_chan = 2:

s->insn_xread = ad512_ao_insn_read;
s->»insn_write = adbl2_ao_insn_write;
s->maxdata - Oxfff;

s-»range_table = &range_bipolars;

return 0;

L)

static int adbl2_detach{comedi_device * d&ev)

{

printk{ comredi%d: adbl2: remove\n", dev->minor);

17

{dev~->iobase) { release_regionidev->ichase, AD512_SIZE);

return 0;

183

}

Chapter 6 Applications

Appendix C

test.c:

/* This file s a part o an example showing how Qt works in
conjunction with RTLab

* Copyright (C) 2004 Xiaovu Duan

*/
]k

* Example RTLab plugin -- Kernel side.

* This plugin does the Zollowing:

* Kernel code:

* Writes a 2 volts signal to DAC channcl 0 when receiving a sigral
of any wvalue but 0 from anC Channel 0.

*

* GUI (test.cpp):

* Simple GUI to change AI online.

*/
#include "rtlab_kmodule.h*

/** Kernel-side defs [or Lest plugins */

#include "test.h"

#define MODULE_NAME "test®

MODULE_AUTHOR ("Xiaoyu Duan");

MODULE_DESCRIPTION (MODULE_NAME “": An example showing now Qt works in
conjunction with RTLab. Made as an example of a simple RTLab

plugin\ns$Id: test.c 18/11/2004 16:12:552 Xiaoyu $");

int irit{veid); /**< data structures ard register callback */

voild cleanup(void); /**< Cleanup.. */
static int init_shared_mem{void);

/* The callback called by rtlab core every millisecond... */
static void do_control (MultiSampleStruct * m);

184

Chapter 6 Applications

/* Called whenever the /proa/rtlab/test proc file is read */
static int preoc_read (char *, char ~*, off_t, int, int *, void
*data) ;

module_init{init);

module _exit {cieanup) ;

Some privalte *global' variables...

/¥ NB: This module needs at least a 1000 hz sampling rate!
It will faiX if that is not the case at module initialisation,
anc may produce undefined results 1f that is not the cage while
the module is running. */

static TestShm *shm = 0;

static const int REQUIRED_SAMPL.TNG_RATE = 1000;

static struct proc_dir_entry *proc_ent = 0;

static struct rtlab comedi_context ctx = {0, 0, 0, 0, 0}:;

int init ({(void)
{

int rcetval = 0;

if {rtp_shm->sampling rate_hv < REQUILRED_SAMPLING RATE) ¢
printk (MODULE_NAME ": cannot start the module because sampling
rate of "
"rtlab s not %d hz! "MODULE NAME" *requires* a %4 Hz rate "
"on the RT loop Zorxr its own internal simplicity. The current
"rate that rtlab is looping at is: zd»,
REQUIRED SAMPLING_RATLE, REQUIRED _SAMPLING RATE,
{int)rtp_shm->sanpling_ rate_ 2z} ;
return -ETIME;

if { (retval = rtp_register_function(do_contrel)) /% register
callback */

|} (retval = init_shared_mem(})

185

Chapter 6 Applications

/*% Tell ritlab core to call the callback at this rate.. */

|| {retval = rtp_set_callback_freqguency(do_control,
REQUIRED_SAMPLING_RATE))

/%% the rtlab_comecdi_context convenience struct.. */

|| tretval = rilab iril ctx(&clx, COMEDI SUBD_AQ, ¢, 0.0,
AREF_GROUND))

|} tretval = rtp_activate function{do_control}} /* turn callback
on */
}
1
cleanup () ;
return retval;
3

proc_ent = c¢reate_proc_entry {MODULE_NAME, S_IFREG|S”IRUGO,
rtlab proc_root);

:f {proc_en=) /* if proc_ent is zero, we silently ignoro... */

proc_ent-»read_proc = proc_xead;

return retval;

s

voild cleanup {void)

{
it (proc_ent!}
remove_proc_entry (MODULE_WAME, rtlab_proc_root);
rtp_deactivate_function(dc_control};
rip_unregister function{do_control};
if (shm) { rtos_shm_detach(shm); shm = 0; }
}

static int init_shared_mem(void)
{
shm =
{TestSkm *} rtos_shm_attach (TEST_SHM_NAME,
sizeof (TestShun)) ;
if (! shm) return -ENOMEM;

memset {shm, {0, sizeof (TestShm});

186

Chapter 6 Applications

shm->period_milliseconds = 1000;
shim~>wave_on = 0;

shm->magic = TRST_SHM _MAGIC;

return 0O;

static int proc_read (char *page, char **gtart, off_t off, int count,

int *eol, wvoid *data)
PROC_PRINT_VARS;

PROC_PRINT ("%s Module\n\n"
“magic: %x\n"
"ao_chan: 1\n"
"ai_chan: 1\n"
"pericd_milliseconds: %dA\n"
'wave 1s on?: %s\n",
MODUZE_NAME,
ghm->magic, shm->period_rilliscconds, shm->wave_on ?
“Yes* : "No");
PROC_PRINT_DONE;
}
/%
* This function deoes the following:
* Rernel code:
* Writes a 2 volts signal to DAC channel 1 when receiving a signal
of any value but 0 from ADIC Channel 1.
%
* This function is called by rtiab's core... see
rtp_register_function{}
*/
static void do_control {(MultiSampieStruct * m}
{
double wvOut, vAIL;

SampleStruct *sample;
if (!shm->wave_on) return;

samp.le = rtlab_get_sample_by chan(l, m);

187

Chapter 6 Applications

1% {(!sawrple) vAT = 0; /* AI
OR

ig

]

/* our ocutput voltage */

else vOut = 28€6; /¥ sample

+ 2047 = 2866 }. */

monitoring is off
zhe channe” they wanrt to monitor

not found, so ignore vaAI term.. */

is not NULL, oulput 2 volts {2 * 2048/5

rtlab_data_write{&ctx, wvOut};

tesl.cpp:

ad

* This file is a part of an example showing how Qt works in

conjunction with RTLab

W

* Copyright (C) 2004 Xiaoyu

*/
#include <gwidget.h>
$include =<glayvout.h>
finclude <glabel . h>
#include <gfont.h>
#include <gstring.h>
#include <ggroupbox.h>
#include <Qtimer.h>
#include <gcheckbox.h>
#include <gbutlLongroup.h>
#include <gradiohutton.h>
#include «gaspinbox.h»
#include <gcombobox.h>
finclude <ghbox.h>
#include <gvbox.h>
#include <qglineedit.h>
#irclude <cgvalidator.h>
#include <gscrollbar.h>
#include <gmenubar.h>
#include <gpopunment.h>

#include <amessagebox.h>

Nuan

188

Chapter 6 Applications

#include <gfiledialog.h>
#include <gfile.h>
$include <Qtextstreanm.h>
¥include <goen.h>

#include =<gcolor.h>
#include <set>

ffinclude <unistd.h>
#include <sys/types.h>
#include <«<sys/stat.h>
#include <fecntl.h>
finclude <gtdio.h>
#include <errrno.h>

#include <string.h>

#include "common.h"
#include "daq _systeam.h"
#include "shra.h"
#include "ecggraph.h™
#include "plugin.h*
#include "exception.h"
finclude "tempspooler.h"
finclude "test.h"

firclude "test_private.h"
finclude °mgearchable_combo_box.h"

finclude "plugin_utility.h"

#define RCS_VERSION_STRING "$14d: test.cpp 18/11/2004 16:37:22%
Xiaoyu 5°

using nanespace std;
fdefine PLUGIN_NAME "Testing Program"
extern "C" {
/* Stuff needed by plugin engine... these symbols are read by
libdl/disym{} */

int ds_plugin_ver = NS_PLHUGIN_VER;

185

Chapter 6 Applications

int flags = Plugin::RequiresRTLab;

const char * name = PLUGLN_NAMS,
* description =
"A simple reference plugin that does the following:\n"
"Kernel code:\n"
" Writes a 2 volts signal to DAC channel 0 when receiving a signal
of any valte but 0 from ADC Channel 0.\n"
"GUL (test.cpp):"
" Simple GUI to change AI online.",
* author = "Xiaoyu Duan.",
* requlres =
"test.¢ be loaded into the kernel. Analog input and output.®;

const char * kmodules = "test.o";

Plugin * entry{QObject *o)
{

/¥ Top-level widget.. parent ‘g roob */
DAQSystem *d = dynamic_cast<DAQSvsbLem *> (o)

Assert<Pluginkxception> (d, PLUGIN NAME " Load Error",
"The " PLUGIN_NAME " plugin can only be
used in "
"canjunction with dag system! Sorryin");
Test ¥g = new Test(d}; ;
it (g} g->show(};
return g;

};

/* Store some widgets that we need pointers to for
{dig)connectSignals ()and updateStatcs({) ~/
struct TestWidgets
{
QSpinBox *period_milliseconds;
QChceckBox *wave_on;

};
Test: :Test (DAQSystem *d)

190

Chapter 6 Applications

Qwidget {d, PLUGIN NAME, Qt::WTlype_‘lopLevel), ds{d)

{
// attach to Shm
som = PluginUtilisy::shmAttach<l'estSam> (TEST _SHM NAME,
TEST_SEM MACIC,
PLUGIN_NAME,
"test.o");
widgets = new TestWidgets;
buildGuil () ;
connectSignals () ;
setCaption{name(});
}

Test::~Test ()
{
shin—>wave_on = 0;
PluginUtility: :shmbDetach (shm) ;
delete widgets; /* just deletes the struct, not the actual widgets
*/
}

const chnar *Test::name{) const { return ::name; }

const char *Test::description() const { return ::description; }

void Test::buildGurl ()
{
QGridLayour *layout = new QGridLayout (Lhis);

const ShmController & rtliab_shm = ds->shmController();
int r_ai_chans =

rtlab_shm.numCharnels (ComediSubDevice: :AnalogInput), 1i;

layout-»>addwidgetl (new QLabel {"AD Channel:", this), 0, 0);

layout->addWidget (new QLabel("1", this), 0, 1)};

layout-raddWidget (new QLabel {"AI Channel to monitor:*, this), 1,
0);

layout->addWidget (new QLabel ("1", this), 1, 1);

layocut-»>adéWidget {new QLabel ("Sg. wave period {(ms):", this), 2, 0);

191

Chapter 6 Applications

widgets->period_milliseconds = new QSpinBox (10, 10000, 1, vhis);

layout->addwidget {widgets-rperiod_milliseconds, 2, 1);

widgets->wave_on = new QChceckBox("Analog outpubt enabled", this);

layout-»addMultiCellwidges {(widgets-»wave_oa, 3, 3, 0, 1);

widgetgs->period_milliseconds~>sctValuei{skm-»>period_milliseconds)

widgetls-»wave_on~->setChecked (shm->wave. on) ;

voild Test::coanectSignals()
{
connect (widgets—>period_milliseconds, SIGNAL(valueChanged{int)),
this, SLOT(setPeriod(int)));
cornect {(widgets-»wave_on, SIGNAL(toggled(bool)), this,
SLOT (setA0 (bool))) ;

Slots below sel parameters in the shared memory region for
netifying the

real-time process

e e kM v v v v T Tt ey 4 e e o k. Ab Ah

void Test::setPericd{int period)
{
if (peried » 0) shm->period milliseconds = period;
3
vaid Test::setAC{bvol on)
{

shm->wave_on = on;

NMainpro.c:

/a‘r
COPYRIGHT (C) 2003 Xiaovu Duan (xduan@mech.gla.ac.uk)

This library is free software; yvou can redistribute it and/or

192

mailto:xduan@mech.gla.ac.uk

Chapter 6 Applications

modify it under the terms of the GNU Lesser General Public
License as published oy the Free Software Foundation; either

vergion 2 of the License, or (at your optiorn) any later version.

Thig library Is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; withcut cven the implied warranty of

MERCHANTABILITY or FITHNESS FOR A PARTICULAR 2URPOSE. See the GNU

Lesser General Public License foxr more details.

*/

#include <stdio.h>

#:nclude <math,in>

#include <unistd.h>

#include <sys/types.h>

#include <gys/mman. h>

#include <sysg/stal.ho

#include <fentl.h>

fdefine KEEP_STATIC_TNLINK /% undel Lhis to use libcomedilxri

#include <rtai_lxrt_user.h>

#include <rtail_lxrt.h>

#include <rtai_comedi_lxrt.h> /* comment this when using

libcomedilxrt */

#include <riLal comedi_lxrtlib.h> /* include Lhis to use
libcomedilxrt */

#define ts 0.002 /* time interval */

#define kp 0.025

tdefine kd -0.007

$define k 35.2

#define s 0.00284 /* seusitivity of motor servo Y/

#define £ 253 /% cutoff Ffregquency */

#define SAMPLE _LENGTH 10000C

#define S=COND 10000000000

#define MSG_DELAY 1000

double t = (.00;
double theta = 0.00, theta desired = 0.00;
double theta_fp = 0.00, theta_f = 0.00;
double theta_fd = 0.00, theta p = 0.00, volts = 0.Q0;
int second;
c¢har *subdevice_types[] = {
"tnused",

"analog input",

193

Chapter 6 Applications

"aralog output",
*digital input",
*digital output”,
"digital L/0v,
"counter",
"timer",
"memory",
"calibration®,
"procassor"

}i

double control_alerithm(double volts)

{

double af, bf, omega, volts_in, wvolts_out;

omaga = 2*M PI*f;
count = 0;
volts_in = (volts-4095)*5.00/4096; /* convert binary wvalue to

actual voltage wvalue */
theta = volts_in/s; /* convert veltage to degree */
theta_fr = theta_ [/*save previcus filtered output */
theta_p = theta; /* save old sample */
af = (omega*is)/{omega*ts+l);
hf = (omega*ts-2) (omega*tsg+2);
theta f = af*{Lhela ftilheta_p)-bf*theta_Ffp; /¥ filtering */
if (cheta_£>176.00){
theca £ = 176.00;
}else if(theta_f£<~-176.00)
theta_f ~176.,00;
}
theta_fd = (theta_f-theta_f£fp)/ts;
/* theta_desired = 5.00%sin{M_PI*t/3); give desired theta here,

it

use this if sine wave is desired. */
t = t+ts;
volts_out = kp*{k*theta_desired theta f}-kd*theta_£d; /* compute
output voltags value */
if (volts_out>5,00)
volts_out = 5.00;
else if (volts_ouL<-5.00)

volts_out = -5.00;
volts_out = (volts*Z048/5.00)+2047; /* convert it back to binary
value*/

194

Chapter 6 Applications

return volts_out;

}

int main{int argc, char **argv)

{

RT_TASK *comedi_ task;

void *dev;

int i, n_subdevs, type;

double theta_ temp;

int subdev_al, subdev_ao, subdev_dio;

lgampl_t dalta;

int 0, nch, semcnt;

char nameib0];

SEM *sem;

Unsigned Zong mbx name = namZnum{“*M3X“); /* use mail box to
achieve Interprocess communication here ¥/

MBX *mbx;

/* set schedule priovity */

struct sched_param aysched;

il (schead_setschednler{Q, SCH=D FIFD, &mysched)==-1){
puts ({"ERROR IN SETTING THE SCHEDULER UP"};
perror(t*ervor”) ;

oxit (Q);

)

if {lcomadi_task = ri_task init(nam2rum(“COMEDI”, 1, ¢, 0})}!
printf (*CANNOT INIT COMEDI TASK\n");

exit (1) ;

}

mbx = rt_get_adr (mbx_name); /* recognize mailbox */
sem = rt_sem_inil (namZ2num{"SEM*), 0);
rt_set_oneshot_mode () ;

starc_rt_timer(0);

second = nano2ccunt (SECOND) ;

mlockall (MCL_CURRENT [MCL_ZFUTURE}) ;

dev = comedi _open{"/dev/comedi"});

printf{"\n OVERALL INFO:\n");

printf (" Version code : 0x%06x\n",

comedl, get_version_codef{dev}};

195

Chapter 6 Applications

ri_comedi_get_noard _namel(dev, name);

priotf(" Board name : %s\n", name);
rt_comedi_get_driver_name{dev, name);

printf{" Driver rames : %s\n", name);

printf{" Number of subdevices : %d\n", n_subdev =

comedi_get_n_subdevices (dev)) ;

for (i = 0; 1 < n_subdevs; i++) {

printf{"\n Subdevice : %d\n", i}):

type = comedi_get_subdevice_type(dev, i);

printZ(" Type : %d (%s)\n", type, subdsvice_ types|[type]);

printt (" Number of channels : %$d\n", nch =
comedi_get n channels(dev, i));

prinzf (" Maxdata : %d\n", comedi_ge:_maxdata(dev, i, 0));

printf (" Number of ranges : %d\n", comedi_get_n_ranges (dev, 1,
0}}:

}

subdev_ail

[t}

comedi_find_subdevice_ by_type(dev, COMEDI_SUBD_AI, 0);
subdev_ao comedi_find_subdevice_by_type(dev, COMEDI_SUBD A0, 0);
subdev_dio = comedi_find_subdevice_byv_type(dev, COMEDI_SUBRBD_DIO,

0}

u

printf {"\n Start contral ..."};
fflush (stdout) ;

comedi_lock{dev, subdev_zl):

for{n = 0; n<SAMPLL_LENGTE; n++){

ri_comedi_walt_timed (sem, nano2count{Ll00000), &semcnt);

ro. mbx _receive timed{mbx, &theta_temp, sizeof (theta_temp),

nano2count. (MSG_DELAY)) ; /*receive desired theta value via mailbox
*7

printf (*name: %x, address%p \n”, mbx name, mbx);

printf ("RECEIVED THETZ_DESIRED = %ZI¢, theta_temp);

theta_desired = Lhela_temp;

coredi_data_write{dev, subdev_szo, 0, 0, AREF_GROUND, &data);

data = control_algrithm{data);

comedi_date_write{dcv, subdev_ao, 1, 0, AREF_CROUND, data);

ri_sleep(0.002xsecond) ;

}

coredi_data_write{dev, subdev_ao, 0, 0, AREF_GROQUND, 2048};

196

Chapter 6 Applicalions

comedl_data_writc(dev, subdev_ac, 1, 0, RREF_CROUND, 2048);
printli{" QK.\n"}:

comedi_unlock(dev, subdev_ai};

comedi_close(dev);

rt_sonm_delete(sem) ;

rt._task_delete(comedi_task);

return 0;

Mailboxpro.<:

/*
COPYRIGHT (C) 2003 Xiaoyu Duan (xduan@mech.gla.ac.uk)

This library s free software; you can redistribute it and/or
modify it under the tcrms of the GNU Lesser General Public
License as published by the Free Softwarc Foundation; either
version 2 of the License, or {at your option) any later version.
This library ig distributed in the hope that it will be useful,
buat WITICUT ANY WARRANTY; without even the impiied warranty of
MERCHANTABILITY or FITNESS FOR A 2ARTICULAR PURPOSE. See the GNU
Lesser General Public License for more detaills.

*/

#include <stdio.h>

#include <stdiolib.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/mman.h>

#include <gys/user.h>

#include <sys/stat.h>

#include <fcontl.h=

#include <sched.h>

#define KEEP_STATIC__INLINE /% undef this to use libcomedilxrt */
#include <rtai_lxrt_user.h>

#include <rtai_lxrt.h>

#define MSG_DELAY 2000000000

int main{int argc, char **argvi{])

197

mailto:xduan@mech.gla.ac.uk

Chapter 6 Applications

unsigned long runisk name = nam2num(*RUNTSK”) ;
unsigned long mbx_namre = nam2num{“MBX”) ;
double theta_desired;

int count;

RT_TASK *runtsk;

MBX *mbx;

struckt sched_paramn mysched;

if (sched_setscheduler (0, SCHED_FIFQ, &mysched)==-1){
puts (*ERROR IN SETTING THE SCILDULER UP”);
perroxr (“errar”);

exit(0);

}

mlockall (MCL_CURRENT | MCL_IUTURE) ;

if (!runtsk = rt_task_init(runtsk_name, 0, 0, 0}))(
printf (‘CANNOT INIT MAILBOXPRO ‘\r”) :
exit{l);

}

rt_set_oneshot_mode () ;

start_rt_timer (nano2count (1000000000} ;

if (! (mbx=rt_mbx_inil obx_name, 1})};
printf {*CANNOT CREAT MAILBOX %/x\n”, mbx_name} ;
exit{i);

}

printf {*name: %/x, address:%/x. \n”, xbx_name, mbx):

counkt=5; /* It is possible to enter desired value for B times., */

while (count) {

printf (*PLEASE ENTER DESIRED THETA\n");

scanf (*%1f”, stheta_desired);
rt_mbx_send{mbx, &theta_desired, sizeo:s (theta_desired));
printI (*DESIRED THETA IS %f \n”, theta desired):
rt_sleep (nanoZcount (DELAY)} } ;

count.—-;

stop_rt_timex();
rt_mbx delete (mbx};

198

Chapter 6 Applications

rt_task_delete{-unlLsk):
return 0;
}

R ARG
NIVERSITY ‘
¥

FRE AT

