

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

REAL TIME CONTROL IN LINUX

EiamsO

UNIVERSITY
of

GLASGOW

Xiaoyu Duan

A Thesis Submitted to the Faculty of Engineering of the

University of Glasgow for the Degree of Master of Science

©Xiaoyu Duan, August 2005, Glasgow, Scotland

ProQuest Number: 10390733

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10390733

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

GLASGOW ̂
UNIVERSITY
LIBRARY:

Acknowledgements

The author wishes to express appreciation to Dr. Donald Ballance for his

guidance and support throughout the whole project work. Thanks to Mr. Chunming

Xia and Miss. Xiaoyun Zang for the advice regarding control theory. Also thanks to

Mr. Kenneth Stevenson for all the help in terms of computer and experimental

equipment. Finally, I wish to give special thank to Dr. Yubin Shi for his constructive

suggestion for the graphical interface part and I wish to acknowledge all the support

of staff in the Department of Mechanical Engineering throughout my study in

University of Glasgow.

i:

Abstract

In this thesis, the approaches to achieving real time control under Linux operating

platform are presented and four different real time control applications are discussed.

The driver of the AD512 data acquisition card is programmed to enhance hardware

supported by COMEDI through which the connection between computer and DAQ

boards are built up. A simple project combining RTAI (Real Time Application

Interface) with COMEDI is introduced together with the discussion of one SISO

(Single-Input Single-Output) control project and two SIMO (Single-Inputs Multi-

Output) control projects based on different controllers, and RTLab is selected to

provide us with real time functionalities as it combines COMEDI with RTAI or

RTLinx very well in Linux. Further more, to enhance the observability and

maneuverability of RTLab, additional custom plugin graphic windows have also been

made for every application in the project.

Table of Contents

Acknowledgements.. i

Abstract... ii

Table of Contents... iii

List of Figures..xi

Chapter 1 Introduction...1

1.1 B a c k g r o u n d ... 1

1.2 The O verall Ob je c t iv e ..1

1.3 Outline of T he Th e s is ... 2

1.4 W ork in T his P r o je c t .. 4

Chapter 2 Background to Linux and Real Time Linux 7

2.1 H istory of Operating Sy s t e m s .. 7

2.2 L inux Operating Sy st e m ...8

2.2.1 General Description o f Linux ...8

2.2.2 Linux and GNU... 9

2.2.3 General Distribution Versions o f L inux ...10

2.2.4 Linux Commands..11

2.2.5 The Linux Kernel.. 12

2.2.6 Linux Loader (LILO)...14

2.2.7 Programming in L inux .. 16

2.3 Rea l T ime L in u x ..21

2.3.1 What is a Real Time Operating System? .. 21

2.3.2 Some Popular RTO Ss ..23

2.3.3 RTOS D esigning ..26

2.3.4 How Does Real Time Linux W ork? ..28

2,3.5 Linux Loadable Kernel Module (LKM)

2.4 R e a l Time L in u x — RTAI

2.4.1 General Description o f RTAI.

2.4.2 RTAI Modules 36

2.4.3 LXRT 38

2.4.4 The Official Website o f RTAI.

2.5 R e a l Time L in u x — RTLiNUX

2.5.1 General Description o f RTLinux

2.5.2 RTLinux Standard Modules

2.5.3 The Official Websites o f RTLinux.

2.6 In te r -p ro c e s s P ro c e s s C o m m u n ica tio n (IRC)

Chapter 3 Data Acquisition and Physical Equipment

3.1 Hardw are for D ata A cquisition

3.1.1 Data Acquisition (DAQ) Boards

3.1.2 Control Plants and Other Physical Equipment 47

3.2 Softw are for D a ta A cquisition

523.2.1 Data Acquisition

3.2.2 COMEDI.

553.2.3 Drivers fo r Data Acquisition Cards

563.2.4 Writing a New Driver in Comedi.

Chapter 4 Graphical User Interface (GUI) and RTLab 59

4.1 G r a p h ic a l U s e r I n t e r f a c e (GUI)

594.1.1 General Description o f Qt

4.1.2 A Simple Qt Example

4.2 RTLab

634.2.1 General Description o f RTLab

If
'i*

I
4.2.2 How Does Qt Work in Conjunction with RTLab .. 67

f l

Chapter 5 Discussion of Real Time Solutions........................77

5.1 RT_COM_LXRT.. 78

5 2 RTAI_COMEDI_LXRT..81

5.3 RTAI-Lab... 81

5.4 RTLa b ... 82

5.5 RE a l T im e C o n t r o l S o l u t io n s .. 82

Chapter 6 Applications..88

6.1 A S im ple COMEDI + RTAI LXRT Pr o g r a m88

6.1.1 Description ,

6.1,2 Mathematic M odel... 89

6.1.3 Control System D esign ...91

6.1.4 Real Time Control Program in Linux... 92

VII

6.1.5 Result... 97

6.2 A SISO PÎD C o n tr o l A pplic a tio n w ith GUI....................... 97

6.2.1 Description .. 97

6.2.2 Mathematical Model...97

6.2.3 Control System D esign .. 98

6.2.4 Real Time Control Program in Linux...102

6.2.5 Custom Graph in Plugin Graphical Interface...112

6.2.6 Results.. 117

6.3 A SIMO PID C o n tr o l A pplic a tio n w ith GUI.....................123

6.3.1 Description .. 123

6.3.2 Mathematical M odel... 123

6.3.3 Control System Design—PID Controller..126

6.3.4 Real Time Control Program in Linux... 128

6.3.5 Results... 130

6.4 A SIMO LQR C o n tr o l A pplicatio n w ith GUI.................... 136

6.4.1 Description ... 136

6.4.2 Mathematical M ode ... 136

6.4.3 Control System Design—LQR Controller..137

6.4.4 Real Time Control Program in Linux.. 141

6.4.5 Results..143

6.5 S u m m a r y ... 148

Chapter 7 Conclusions and Discussion.................................149

7.1 W h y L in u x ? ..149

7.2 W hy RTAI?.. 150

7.3 COMEDI D r i v e r s ..150

7.4 RTLab...151

1527.5 R e a l T im e S o l u t io n s

154Chapter 8 Future Work

158References

163Appendices

163A ppe n d ix A

179A ppe n d ix B

A p pe n d ix C 184

List of Figures

Figure 1.1: The relationship between major components in the pro ject.......................... 2

I
Figure 2.1: Relationship between subsystems...14

Figure 2.2: The relationship between real time kernel and normal Linux kernel 30

Figure 3.1: MultiQ3 data acquisition b o a id ..46

Figure 3.2 Rotary position motor servo SRV02... 48

Figure 3.3 System parameters of servo SRV02.. 49

Figure 3.4 Rotary flexible link with motor servo SRV 02...50

Figure 3,5 System parameters of the flexgage m odule...51

Figure 3.6 Power amplifier U PM 1503...52

Figure 4.1: Elements in Q t..60

Figure 4.2 A screenshot of Qt Designer.. 61

.

Figure 4.3 A snapshot of "hello world" exam ple...62

Figure 4.4: RTLab graphical interface...64

Figure 4.5 A snapshot of test plugin windows in RTLab..67

Figure 4.6 Plugin window of "testing program" example.. 72

Figure 5.1: Scheduling in kernel space... 83

Figure 5.2: Scheduling in user space.. 84

Figure 5.3 Setting up scheduler in "module initial" p art...85

Figure 5.4 Setting up scheduler with LXRT extension (hard real tim e)......................... 86

Figure 6.1: Testing module in SIM ULINK... 100

Figure 6.2: Servo03 module in SIMULINK.. 101

Figure 6.3: Outputs of testing module in SIM ULINK.. 102

Figure 6.4: Block diagram of p iddxy.h ..103

Figure 6.5: Block diagram of piddxy„private.h... 103

y

I

■

Figure 6.6: Block diagram of piddxy.c 104

Figure 6.7: Block diagram of piddxy.cpp 105

Figure 6.8 Custom window in RTLab plugin 113

Figure 6.9 Load plugin module in RTLab 118

Figure 6.10 Piddxy plugin window 118

Figure 6.11 Setpoints available in piddxy plugin 119

Figure 6.12 Control results of a square wave 120

Figure 6.13 Angular position of motor servo SRV02 (theta) 121

Figure 6.14 Setpoint (square wave) 122

Figure 6.15 Angular velocity of motor servo SRV02 122

Figure 6.16: A schematic picture of the flexible link 125

Figure 6.17: Block diagram for the entire system 127

Figure 6.18 Plugin window of pidstrain_gage 131

xni

Figure 6.19 Control results of a square wave (1) 131

Figure 6.20 Control results of a square wave (2) 132

Figure 6.21 Angular position of motor servo SRV02 (theta) 133 ■

134Figure 6.22 Setpoint (square wave)

Figure 6.23 Angular velocity of motor servo SRV02 134

Figure 6.24 Displacement of the tip of the straingage (alpha) 135

Figure 6.25 Relative angular tip position to the whole system (theta+alpha) 135

Figure 6.26: LQR control simulation model in SIMULINK 139

Figure 6.27: Output of theta in LQR control 140

Figure 6.28: Output of beta in LQR control 140

Figure 6.29: Output of alpha in LQR control 141

Figure 6.30 Plugin window of lqrstrain__gage 143

Figure 6.31 Control results of a square wave (1) 144

XIV

Figure 6.32 Control results of a square wave (2) ...145

Figure 6.33 Angular position of motor servo SRV02 (theta).......................................145

Figure 6.34 Angular velocity of motor servo SR V 02...146

Figure 6.35 Displacement of the tip of the straingage (alpha)......................................147

Figure 6.36 Relative angular tip position to the whole system (theta+alpha) 147

Chapter 1 Introduction

3

■8

Chapter 1 Introduction

«

1.1 Background
8

Along with the development of modern industry, the demands on control systems are

getting higher and higher. Accuracy is no more the only requirement of the control |

system. Real time operating system (RTOS) shows its great potential and becomes an

overwhelming trend of modem science technology. The requirement of stability,

reliability, real time capability and maneuverability makes Linux the first choice for

real time operating system irresistibly.

1.2 The Overall Objective

This thesis advances several Linux operating system based real time controlling

approaches, using different controllers applied to different systems. Several virtual

applications are also introduced to enhance the discussion.

The demands of real time require the system to respond and process quickly and

accurately. This means that the result of controlling not only relies on the control

accuracy but also on the time of responding. A real time scheduler arranges the

response priority in real time Linux system. FIFO and other Inter Process

■

Chapter 1 Introduction

Communication (IPC) methods have been used to achieve data transfer between real

time and non-real time parts. Following is the connection and relationship between the

major components.

Conqmter

Drivers

Da.ta. Âcq îiisition.
cards

Control Hants

Real Time Lmiix

Control Algmiduns

AD512 Card

SUSOpW

SIMO

Scheduler

IPC

Figure 1.1: The relationship between major components in the project

1.3 Outline of The Thesis

Chapter 2 contains some fundamental background to Linux and real time Linux

which is the basis of the thesis. As the operating platform, Linux has a number of

characteristics that make it different from other OS s. To equip Linux with real time

functionalities, real time Linux has to be involved in the project. The reason why

'■■«83

:
Chapter 1 Introduction

Linux was selected, and why real time Linux is needed will be discussed later in this

chapter.

■J

The principles, equipment and software of data acquisition are described in Chapter

3. The two data acquisition (DAQ) cards, and COMEDI, the software for data

acquisition in Linux are also introduced in this chapter. A driver for an AD512 card,

which is one of the DAQ cards used in the project, was written to enhance the support

hardware of COMEDI. A brief description about writing drivers for COMEDI is given

and physical hardware used in the applications in this project is also introduced.

Chapter 4 introduces RTLab, which was one of the major software packages required

for the project. It combines COMEDI with real time Linux to achieve real time

control using the Linux operating system. Currently the graphical interface in RTLab

is only available for inputting information, the user is able to input parameters to

system but unable to get any feedback from the system. A feedback graph was

therefore added into the original parameter window to display the current status of

control plant in the form of graphics.

By applying alternative scheduling policies, different results may be obtained. Foi-

instance, the response time in hard real may be quite different from that in soft real

time. A discussion about the approaches achieving control in real time with different

Chapter 1 Introduction

schedulers is given in Chapter 5.

Chapter 6 will detail four real time control applications: one simple program which

combines COMEDI with RTAI LXRT but without graphical interface, and three

applications in the form of RTLab plugins in which different controllers are used

according to the complexity of the applications, and meanwhile the plugin windows

have also been altered to meet the requirement discussed in Chapter 4.

. '-a

,f8;

The discussion and conclusions will be made in Chapter 7 and some future directions

will be suggested in the last chapter. Chapter 8.

1.4 Work in This Project

The following work has been done in this project based on the previous work:

Driver of AD512 data acquisition card. The driver of MultiQS data acquisition

board is provided with Comedi distribution package (with bugs, fixed in this

thesis) however that of AD512 is not included. This was programmed in order

to use AD5I2 card in this project.

A Real Time control program by combining Comedi with RTAI LXRT. There

are a number of methods to combining Comedi with RTAI to achieve real time

. .Tit'-. > r . 8 ri;.;

Chapter 1 Introduction

performance under Linux. All these methods have been discussed in chapter 4

and with a real time control program discussed. A motor servo is controlled to

change its rotating velocity as a sine wave via DAQ board in the program and

RTAI LXRT was used together with Comedi. User can change the controlling p

setpoint by simply changing the counterpart code in the program.

Control programs for three different control applications in RTLab. Three

different control algorithms were adopted with separate controller for different

control projects in this project;

o Control object—Motor servo. Controller— PID controller.

o Control object— Rotary Flexible Link with Straingage. Controller—

PID controller.

o Control object— Rotary Flexible Link with Straingage. Controller—

LQR controller.

The custom graphic window in RTLab plugin. Only control parameters were

displayed in the original plugin window, which means, the original graphical

interface for RTLab is purely for inputting information, and by which users

can only change control parameters online. In this project, a custom graph has

been added into the original graphical interface in which a graph of the motor

servo is displayed. The current angular position will appear in the graph and it

Chapter 1 Introduction

changes along with the virtual plant. Users may also designate its refreshing

frequency. The graphical interface can be either for inputting or for outputting.

'"■ÿ'-i'î

Chapter 2 Background to Linux and Real Time Linux

This chapter contains some fundamental background information on Linux and real

time Linux that forms the basis of this thesis. The history, characteristics and the

functionalities of Linux will be introduced. This chapter also addresses the concept,

categories and usage of real time Linux that provides us with real time abilities.

Finally, two of the most commonly used real time Linux branches, RTAI and

RTLinux, and the Inter-process Communication (IPC) methods available in real time

Linux will be discussed.

2.1 History of Operating Systems

Computer technology has progressed rapidly over the past several decades, from the

first Mini computer to Microcomputer, from Apple to Pentium. Operating systems

have also progressed as well as the computer itself. DOS (Disk operating system) is

probably the earliest popular operating system. It is based on the basic command line

input mode, and requires users to remember quite a number of commands with

predefined formats. Windows series are the milestone in the history of operating

I
I

Chapter 2 Background to Linux and Real
Time Linux

m

.■V. ' _____ _____ _________

Chapter 2 Background to Linux and Real Time Linux

system. These systems allow users to execute commands, run programs, or perform

certain operations simply by clicking on the icons in the screen, and this makes it a

suitable operating system for all-level users.

Linux came forth in the late 1980s. It was pioneered by a Finnish university student,

Linus Torvalds, who was studying an operating system named Minix which was

developed by computer scientist Andrew S. Tanenbaum at that time. In the early days,

Linux was regarded as an operating system used by hackers and was put onto an FTP

server free for download. It has now become a POSIX compatible operating system

with all UNIX characters.

2.2 Linux Operating System

2,2,1 General Description of Linux

When Linus was studying Minix, he noticed that the functionalities of Minix were

not complete and he therefore programmed another operating system running in

protection mode, and that was the prototype of Linux.

Linus announced his first version of Linux, version 0.02 on Oct 5, 1991. At that time,

nothing could be done in Linux except running bash (the GNU Bourne Again Shell)

and gcc (the GNU C compiler), and the development was focused on the kernel part

Chapter 2 Background to Linux and Real Time Linux

as it was just regarded as a hacker’s system. Linus made the source code of Linux

public since its first appearance, and also put it onto some FTP servers where it is free

for download. The Administrator figured it as the Minix of Linus hence he named it

Linux. Linux has its own name since ([14]).

In the next few years, Linux developed at an amazing speed and far from what Linus

expected. On March 14 1994 its first official version, version 1.0 was announced;

Linux forum has become one of the most popular forums in USENET. Meanwhile, the

kernel version developed rapidly as well, the latest kernel version is 2.6 and is still

developing rapidly.

2.2.2 Linux and GNU

It is hard to describe Linux without the introduction of GNU. GNU is the

abbreviation of GNU’s Not Unix. It was initially established by Richard M. Stallman,

the chairman of Free Software Foundation, in 1984. Stallman worked in the Artificial

Intelligence laboratory of Massachusetts Institute of Technology at that time and he is

regarded as one of the top class programmers in the world. He was convinced that

even if UNIX is not the best operating system in the world, it was not too bad, and it

had the potential to be something more than it showed. The major goal of the

development on this system is making it free to every user, that is to say everyone can

Chapter 2 Background to Linux and Real Time Linux

acquire, copy, modify and redistribute the source code with no extra cost.

GNU also has the copyright announcement of its own, General Public License

(GPL), saying famous copyleft. It states ‘one can redistribute this library and/or

modify it under the terms of the GPL as published by the Free Software Foundation;

either version 2 of the License, or any later version, and it is distributed in the hope

that it will be useful, but without any warranty; without even the implied waiTanty of

merchantability or fitness for a particular purpose ([14]). At a word, GPL ensures

GNU is always free and public.

2.2.3 General Distribution Versions o f Linux

(1). Debian GNU/Linux

Distributed by Free Software Foundation (FSF), suitable for high-level users.

Website: http://www.debian.org. ftp://ftp.debian.org/debian.

(2). Redhat Linux

Created Redhat Package Manager (RPM) to manage software, the best choice for

beginners.

10

http://www.debian.org
ftp://ftp.debian.org/debian

Chapter 2 Background to Linux and Real Time Linux

Website: http://www.rcdhat.com. ftp : //ftp. redhat .com

(3). Slackware

Website: http://www.slackware.com.

(4). Mandrake

Website: http://www.mandrakelinux.com.

(5). SuSe

Now owned by Novell. In addition to systems and application software for private

users, SUSE Linux provides services to the deployment in the enterprise.

Website: http://www.suse.com/us/.

2 .2 .4 Linux Commands

Different from other operating systems, LINUX is not directly intuitive. Many

commands have seemingly queer names or formats, and may have different effect

from that of their MS-DOS counterparts even though they may appear to be similar.

Benefiting from years of experience with standard UNIX utilities and advances in

computer science, programmers on the GNU project have managed to create versions

11

http://www.rcdhat.com
http://www.slackware.com
http://www.mandrakelinux.com
http://www.suse.com/us/

Chapter 2 Background to Linux and Real Time Linux

of standard tools that have more features, run faster and more efficiently, and lack the

bugs or inconsistencies that persist in the original standard versions ([9]).

The S h e l l is not only used to accept and execute commands as a command

interpreter in Linux, but also works as an interface between operating system and

users (12]). Different shells may provide dissimilar commands. The familiar shells

under Linux are:

■

Bourne shell, /bin/sh;

Cshell, /bin/csh;

• Komshell, /bin/ksh;

Bourne again shell, /bin/bash.

The shell currently being used can be determined by the command e c h o $ s h e l l .

The most commonly used shell is Bourne again shell, which is provided by almost all

Linux systems.

User can use “-help” argument to acquire online help for every command, or “man”

to browse more detailed information.

2.2 .5 The Linux Kernel

The Linux kernel is the central part of Linux. It is the code that controls the interface

12

Chapter 2 Background to Linux and Real Time Linux

between user programs and hardware devices, schedules multitask processes, and

manages many of the other functionalities of the system ([14]). Similar to other Unix

kernels, Linux kernel needs to accomplish:

• Managing file system and I/O operations;

• Managing processes, allocating resource for program, and communicating

between programs;

• Managing and allocating memory and virtual memory;

• Managing network, connections.

The kernel allocates hardware resources to tasks rumiing simultaneously, and has

them running individually and safely. Linux kernel is known as a monolithic kernel

because all device drivers are components of the kernel properties. Some operating

systems make use of microkernel architecture, in which device drivers or other code

are loaded and executed on demand, and with no necessity to reside in the memory all

the time.

Linux kernel is composed of 5 subsystems ([14]):

• Process scheduling (SCHED). This is the heart of an operating system and the

objective of it is managing the access to CPU;

• Memory Management (MM). MM controls the access to system memory;

13

if:

Chapter 2 Background to Linux and Real Time Linux

• Virtual File System (VFS). It provides a uniform interface for all hardware

equipment;

• Network Interface (NET). It gives Linux the access to network;

• InterProcess Communication (IPC). In case of multiprocess, communication

between processes is necessary.

VFS SCHED IPC

MM

NET

Figure 2.1: Relationship between subsystems

2 ,2 ,6 Linux Loader (LILO)

LILO is a generaLpurpose boot manager which can be used to boot almost every

operating system in current use including Linux ([2]).

14

I
■■

-

1

I

*

I

Chapter 2 Background to Linux and Real Time Linux

There are several ways of configuring LILO. Two most common methods are:

• Installing LILO on the master boot record (MBR) of the hard drive;

• Installing LILO as a secondary boot loader for Linux only.

The most common way to boot Linux from the hard drive is doing it by LILO. The

kernel itself is stored on the hard drive so that no boot floppy is needed. Once the

kernel is loaded into the memory, control will be transferred to the kernel instantly. If

LILO is installed in the master boot record of the drive, it will be executed first when

the hard drive is booted. The user can then select the operating system they prefer

such as Windows or Linux at boot time. However it must be noted, if the user desires

to have both Windows or OS/2 and Linux residing in the same machine

simultaneously, it is recommended to install Windows prior to installing Linux. This is

because both OS/2 and Windows have their own boot managers which occupy the

MBR. If the user is using one of these systems, he may have to install LILO as the

“secondary” boot loader for Linux only in order to boot Linux from the hard drive. In

this case LILO is installed in the boot record for the Linux root partition only, and the

boot manager software will run LILO from there when the user wishes to boot Linux.

If however Windows is installed after Linux, it will occupy the master boot record

despotically and destroy what Linux has set before. This will result in the machine not

being able to boot from Linux unless the user uses a boot floppy or re-installs it.

15

Chapter 2 Background to Linux and Real Time Linux

2.2 .7 Programming in Linux

(1) C and Linux

C is probably the most common used programming language nowadays. It is not

only suitable in terms of application program producing but also in system software

programming. In the early days, Programmers were using assembly languages which

relied on the hardware to a great extent to program system software such as the

operating system (including UNIX operation system), and this caused bad readability

and portability. Therefore high-level languages began to be used. The C language

came into being in the early 1970s, almost concurrently with the early development of

the Unix operating system. In 1978, the first description work of the C language

appeared— The C Programming Language, often called the "white book' or "K&R'.

Soon after, it was officially standardized by the ANSI X3J11 committee who made the

further changes in the mid 1980s. Today it has become one of the most prevalent

languages in the computer industry ([13]).

C’s popularity and tremendous vitality come from its distinctive characteristics (13):

• C only has 32 keywords, 9 kinds of scripts. This makes it simple and flexible;

• It has abundant operation symbols and data structures, can achieve operations

which other programming languages are unable to accomplish;

16

Chapter 2 Background to Linux and Real Time Linux

C allows user to access physical addresses directly and achieve many

functions which were only available to assembly language before;

Good portability

As the clone of UNIX, Linux has a very close relationship with the C language.

Actually, Linux itself is actually written in C. All the Linux systems support C/C++

well in spite of some of the characteristics that may differ from system to system.

(2) GCC Compiler

GNU C compiler (GCC) is a full-functional ANSI C compatible compiler. Enter

command gcc - v after s h e l l prompt and the version will be shown on the screen.

GCC is based on command line input mode, and is often used together with options

and filenames as parameters.

Following is an example of general gcc stmcture:

Gcc [o p tio n s] [filen am es]

GCC provides over 100 compiling arguments for instance:

User can specify a filename which will be created after compiling by using -o

argument:

17

Chapter 2 Background to Linux and Real Time Linux

gcc - 0 t e s t t e s t . c

Or use - c argument to omit compiling and linking stages

It must be noted, that the symbol must be used for only one argument rather than

a set of arguments each time.

(3) Using GDB

GDB is the abbreviation of GNU project DeBugger, it allows users to inspect what

happens “inside” a program when the program is mnning, or what is causing the

program to crash.

The functions GDB can achieve are ([14]):

Observing the variable value when the program is running;

Stopping the program at any specific step by setting setpoints;

Examining what is happening when program stops.

The program debugged can be written in C, C++, Pascal and many of other

languages- They can be executed either on the same machine in which GDB (local)

locates or another machine (remote), and GDB can iiin in most of UNIX and

Microsoft Windows operating systems.

18

Chapter 2 Background to Linux and Real Time Linux

(4) Using makefile

In Linux, creation and maintenance of the object program is achieved by th e

command make, make is a general-purpose program that builds target files from

object files. The target file could be an executable program, a postscript document, etc.

The object file can be C code, a text file, and so on.

The Example M akefile ([3 1]) :

p ro je c t .e x e : m ain .ob j io .o b j
t l i n k cOs main, obj io . obj, p r o je c t . e x e , , cs /L F : \b c \ l ib

main, obj : main, c
bcc - ms - c main, c

io .o b j : io .c
bcc - ms - c io . c

make reads its instructions from text files. An initialisation file is read first, it holds

the instructions for make and is used to customize the operation of make, make

automatically reads the default initialisation file (normally named M akefile)

whenever it starts up, and user can also specify it to other filenames by the command

with the format as:

make - f m yfile

The basic goal of make is to let the user built a file in small steps. If the final

executable file is made up of many source files, make can give a user the flexibility of

19

I

Chapter 2 Background to Linux and Real Time Linux

changing one of them and rebuilding the executable file without having to recompile

everything.

This m akefile file has three main rules, one each for making p ro je c t , exe,

main, obj, and io. obj. These rules are called explicit rules since they are supplied

explicitly in the makefile, make also has inference rules that generalize the make

process. The lines within the colon are called dependency lines, the filename in

the left hand side of colon is the target of the dependency, and the filename in right

side is the source needed to make the target. For example, p ro je c t , exe: main, obj

io, obj means “p ro je c t , exe depends on main, obj and io . o b j”. At m n time make

compares the time that p ro je c t , exe was last changed to that of main, obj and

io . obj. If either source is newer than p ro je c t , exe, make rebuilds p ro je c t , exe

([31]).

The lines that follow each dependency line are called shell lines. Shell lines tell make

how to build the target.

When each shell line has been executed, make checks the shell line exit status. By

convention, programs return an exit status of zero if they finish without eiTor and non

zero if an error occurs ([31]).

The user can also employ macro definitions in m akefile . This makes it very

20

Chapter 2 Background to Linux and Real Time Linux

convenient and flexible to change compiling requirement without re-typing long

compiling commands each time. A macro definition line is a makef i le line with a

macro name, an equals sign and a macro value. In the makefi le , the form

%{name) or %{name) is replaced with value. If the macro name is a single letter, the

parentheses or braces are optional {i.e. $X, $(X) and ${X} all mean “the value of macro

X”).

makef i le can also be used to save to list of filenames, executable filenames,

compiler command arguments and so on, it is an important component of the program

and programming could be much more efficient if makef i l e is made good use of.

2.3 Real Time Linux

2 3 ,1 What is a Real Time Operating System?

A Real time operating system is a system that must respond to inputs or events with

predefined time limits. The system must operate within a specific time constraints and

be capable of predicting and controlling plants when different computation algorithms

are applied ([14]). It is the vital component of the technological infrastructure of an

industrial nation and is widely used in modern telecommunication systems, automated

factories, defence systems, power plants, aircraft, airports, spacecraft, medical

21

Chapter 2 Background to Linux and Real Time Linux

I

instrumentation, and SC AD A systems.
I

The biggest difference between a Real Time Operating System (RTOS) and a normal

operating system is that the Real Time Operating System must satisfy the relationship

between processing and time ([14]). In real time computation, the accuracy of the

system not only relies on the conect result of the computation, but also on the time in

which results are generated. Real time system must respond to urgent events quickly

and predictably, have high-level schedulability, and stability under transient overload.

The most important requirement for a RTOS is that it must have the capability of

responding to and processing internal or external events in a pre-defined time ([14]).

An RTOS it must have effective capability of:

Processing interrupt;

• High efficiency I/O ability;

Processing asynchronism;

Receiving data and sending application within strict time limitation.

The detailed requirements are:

System should be capable of distinguishing and processing discrete events in a

pre-defined time;

22

 _ _ :

Chapter 2 Background to Linux and Real Time Linux

• System can process and store a huge amount of data that the control system

needs.

The most important component in RTOS is the Real Time Multi-task Kernel, whieh

is used to accomplish the functions of:

• Tasks management;

• Timer management;

• Memory management;

• Resource management;

• Events management

• System management;

• Message management;

• Queue management;

• Semaphore management;

2,3.2 Some Popular RTOSs

• QNX

QNX is an embedded, expandable real time operating system. It abides by POSIX.l

(programming interface), P0SIX.2 (shell and tools), and POSIX. lb (real time

23

Chapter 2 Background to Linux and Real Time Linux

I
expansion) partially. QNX was pioneered in 1980, and has developed rapidly in recent

years [14].

QNX is a microkernel real time operating system. The QNX kernel provides 4 kinds

I
of services: process scheduling, inter-process communication, network

communication and interrupt processing. All the OS services are regarded as
"■'I

cooperative user processes therefore QNX kernel is very small (about 12 KB for

QNX4.X) and rapid [14].

• LynxOS

Similar to QNX, LynxOS is also an embedded, expandable real time operating

system. It abides by POSIX.la, POSIX.lb, and POSIX.Ic standard, pioneered in 1988.

The microkernel (28 KB) of LynxOS provides the services as: kernel startup and

termination, memory management, error processing, etc [14].

LynxOS supports threads concept ([4]), uses hard real time priority scheduling and

preemptable RTOS kernel.

• Vx Works

VxWorks is a real time operating system which was developed by a company named

Wind River Systems in United States. It is widely used in the area with high real time

24

Chapter 2 Background to Linux and Real Time Linux

requirements such as communication and aviation [14].

• RT-Linux

RT-Linux is an embedded hard real time system, support POSIX.lb standard

partially [14].

A small, simple, real-time kernel is inserted beneath the normal Linux kernel in RT-

Linux, having Linux as a task which only runs when there is no real-time task running

at the same time. Different from the microkernel and normal kernel, RT-Linux

belongs to real time EXE structure. A more detailed description will be given later.

• RTAI

RTAI is another real time extension which is developed by Dipartimento di

Ingegneria Aerospaziale - Politecnico di Milano (Department of Aerospace

Engineering-Polytechnic of Milan). It is selected to provide real time functions in this

project.

• KURT-Linux

KURT-Linux is a “strict” real time system. The KURT-Linux kernel includes two

major parts: Kernel and Real time modules. The kernel is responsible for real time

25

Chapter 2 Background to Linux and Real Time Linux

tasks scheduling, provides specific real time services for user processes. KURT-Linux

can run in two different modes: normal and real time. All processes can run in normal

mode, but some of the kernel services might cause unexpected inteiTupt. In real time

mode, the only process allowed to run is real time process [14].

KURT-Linux Supports the scheduling method of: FIFO (First In First Out)

scheduling, recursive scheduling, UNIX time-shared scheduling and SCHED-KURT

[14].

2,3,3 RTOS Designing

There are a number of ways to design RTOS according to applications. For instance,

a RTOS can be a periodic (time-sharing) or an aperiodic (event-driven) system,.

Periodic system means the system uses a sensor to probe external changes periodically,

and then responds to it. Aperiodic means external events take place recursively but not

regularly ([14]). Time-sharing means the operating system will change at time

intervals, and event-driven means the system will only change in response to events or

interrupts, and it is commonly associated with cooperative operating system in which

system waits for a process to suri’ender control.

There are two main ways to react to an event: polling method and interrupt driven

method. In polling mode, the application program continually polls the different

26

27

I

■"s

Chapter 2 Background to Linux and Real Time Linux

system peripherals to check if they need service. When a peripheral is ready for

servicing, it must wait until the software polls this peripheral. Therefore, polling-

mode peripherals experience longer response time from the processor as more

■
peripherals are added to the system. Therefore polling-mode systems can become 1

unstable in this case since the response time of each peripheral is affected. Generally

it is only appropriate when the system is small enough. In interrupt-driven mode, each

peripheral usually has one intenupt indirectly feeding into the processor's interrupt

port via an intermpt controller. The intenupts coming from peripherals can be

prioritized. The processor always services the interrupt with the highest priority first.

Consequently, the response time of an interrupt-driven system is much faster.

However, in interrupt-driven systems there is the possibility that lower-priority

peripherals are never serviced. Thereby inteixupt-driven systems must be carefully

designed according to the real time requirements of various peripherals. There is

generally more stability with interrupt-driven systems since the response time for each

interrupt can be estimated with more accuracy and peripherals can be added to the

system without affecting the response time of existing peripherals. Usually real time

operating systems use inteiTupt-driven methodology.

A RTOS can also be a hard real time or soft real time system. Hard real time system

means the system must respond to the affair in time to avoid major damage. For

example, the pilot system of an airplane has to respond to the control signal

Chapter 2 Background to Linux and Real Time Linux

quickly to ensure safe flying. In soft real time system, system is allowed to respond to

the event a bit later than the responding deadline in case of overloading, and this may

not result in big loss or disaster. For example, in communication system, one call it

allows to omit one call among 105 calls.

The biggest difference between hard real time system and soft real time system is the

scheduling policy. User can use static periodic scheduling or FIFO (First In First Out)

scheduling to schedule tasks. However both static periodic scheduling and FIFO

scheduling are monopolized algorithms. In other words, neither of them allows

preempting. This will be introduced in detail in later chapters.

2 ,3 ,4 How Does Real Time Linux Work?

It is possible to take control of a camera, robot, or other scientific equipments by a

personal PC via Linux. However, Linux itself cannot control devices with hard real

time requirement reliably. For example, connecting a speaker to a pin of parallel

interface, and then run a program to play music. If this program is the only one

running, speaker will emit stable music. If refreshes of the window occur every 2

seconds, user can notice that the music may change slightly. The sound will become

irregular if two or more windows are being opened at the same time. Further more, if

running Netscape in one of the windows, the music will become discrete and distorted.

28

Chapter 2 Background to Linux and Real Time Linux

Like some of other operating systems, Linux optimizes every function and tries to

allocate time to each process equally. This is essential to normal operating system, but

in real time operation, counting and forecasting functions are much more important

than others. For example, a camera is required to fill the buffer every one

microsecond, and it may cause data loss if the process taking charge of filling the

buffer is delayed for just for even a small time.

Linux with real time function can achieve lots of tasks and operations as the user

desires. In real time Linux, Linux must be cleared from the CPU whenever real time

task needs it. Generally, there is no need for Linux to know how the RTOS runs, how

it sends inteiTupts or controls hardware devices, but real time tasks can run in a high

accuracy level. In a 120-MHz Intel Pentium (P I20) testing system, a series of tasks

can mn orderly with an error of just 20 microseconds.
/A

The following graph shows the relationship between Real Time Kernel and Linux

Kernel.

29

Chapter 2 Background to Linux and Real Time Linux

RT Lmtix Kemdl RT^FIFO

t
Llatix Pmcees

Software
Lev&l

RTPmceæ

1]r
I

Data
X-WWbws LiïKiix Ejernel r

,_i____
D i s p l a y I D

J) ___;1 Device

r

 ̂ Level

Com&di lib Ftmetioii
rDevicù DïP/fepj

Boai-di:^MtiltiQ3,iy3512)

Figure 2.2: The relationship between real time kernel and normal Linux kernel

There are two primary variants of hard real time Linux available; RTAI and

RTLinux. The real time kernel in RTAI is called Real Time Hardware Abstraction

Layer (RTHAL), it intercepts all hardware interrupts and routs them either standard

Linux or to real time tasks depending on the requirements of the RTAI schedulers

([6]). Compared to RTHAL, the real time kernel in RTLinux is known as RTCore

which allows users to get hardware-limit real time performance with all of the

flexibility provided by Linux. Details about RTAI and RTLinux will be introduced

later.

2.3 .5 Linux Loadable Kernel Module (LKM)

30

Chapter 2 Background to Linux and Real Time Linux

The simplest method of adding code into a Linux kernel is to add some source files

to the kernel source tree and recompile the kernel. The file which should be included

for compiling is set in the kernel configuration.

It is also possible however to add code into the Linux kernel directly while it is

running. A chunk of code added in this way is called a loadable kernel module (LKM),

and this module can be a device driver, a file system driver or even a system call.

All the drivers and plugins are integrated in the form of LKMs in this project.

Loadable kernel modules have a lot of advantages ([17], [5]):

• Not necessary to rebuild kernel time after time. This prevents the user from

wasting too much time on rebuilding and reinstalling the base kernel;

• LKMs help user to diagnose system problems. A bug in a device driver which

is bound into the kernel can stop the system from booting, and it is very hard

to know where the problem resides in such a case. If the device driver is

inserted as LKM, the base kernel could run before the device driver is loaded,

and if the system crashed after a certain module was loaded, it is easy to track

and fix the problem;

• LKMs save memory. Kernel modules will be loaded only when actually

needed;

31

3
Chapter 2 Background to Linux and Real Time Linux

• Device d r iv e rs . The kernel uses a device driver which is designed for a

specific piece of hardwaie to communicate with that piece of hardware

without having to know any detail about how that hardware works;

• F ile sy stem d r iv e rs . Filesystem is the content of a disk drive generally. A

filesystem driver interprets the content of a filesystem as files and directories.

Files and directories can be stored on disk drives, network servers or other

places, but for each case, a file system driver is needed;

• System c a l l s . User space programs use system calls to get services from the

kernel. Although most of the system calls are integrated into the system and

are very standard, users can make system calls of their own;

• Network d r iv e rs . A network driver interprets a network protocol;

• E xecutab le in t e r p r e te r s . An executable interpreter is used to load and run

an executable file or task;

• TTY l in e d is c ip l in e s .

After creating the desired LKMs, user can operate on them with the following

32

• 3
It is very fast to maintain and debug LKMs;

: |
Running LKMs is not slower than running base kernel modules.

y : r
LKMs can be used for [17]: %

't:

Chapter 2 Background to Linux and Real Time Linux

utilities:

Insmod. Insert an LKM into the kernel;

A user can use command c a t /p roc/ksym s to list every symbol that is exported by

the kernel and command and c a t /p roc/m odu les to see the presently loaded LKMs.

Generally, module files can be found in the directory /lib/modules, divided into

subdirectories.

The kernel initialises an LKM when the kernel is loaded, and it initialises a bound-in

module at boot time.

It is necessary to introduce the concept of kernel space and user space here. User

33

I
• rmmod. Remove an LKM from the kernel;

• depmod. Determine interdependencies between LKMs;

• kerneld . Kernel daemon program, it allows kernel modules to be loaded

automatically; |

• ksyms. Display symbols that are exported by the kernel for use by new LKMs;

• Ismod. List currently loaded LKMs;

• modinfo. Display content of modinfo section in an LKM object file;

• modprobe. hrsert or remove an LKM or set of LKMs intelligently;

■ j.-:îÿ

Chapter 2 Background to Linux and Real Time Linux

space is a term for combined address of all user-level applications. The kernel itself

has its own address space called kernel space. Generally speaking, kernel space is

where the kernel code resides, and user space is where the user programs live. A

kernel is all about access to resources which might be a sound card, a video card, a

hard drive or memory. Programs often compete for the same resource and the kernel

needs to keep everything in order. A CPU can run in different modes, and each mode

-

:

■

■Î

gives a different freedom level. A user space is an environment where low-priority

tasks run. Basically, library functions are used in user mode. The library function calls

one or more system calls, and these system calls execute on the library function’s

behalf, but they do this in supervisor mode because they are part of the kernel. Once

the system call completes its task, it returns and execution is transferred back to user

mode.

Working in user space provides a better system stability, easier aecess to library

functions such as math-library and compared to working in kernel space, it is also

easier to debug in user space when problems occur. However, it provides a better

access to resources when working in kernel space. Clearly, one of the main

advantages of RTAI over RTLinux (which are discussed later) is that RTAI provides a

means of developing in user space (via LXRT).

The main advantages of RTHAL are [6]:

34

Chapter 2 Background to Linux and Real Time Linux

• The changes needed to the standard Linux kernel are minimal. This improves

the code maintainability and makes easier to keep the real time modifications

1up-to-date with the latest release of the Linux kernel. 3

• The real time extensions can be easily removed by replacing the interrupt

function with the original Linux routines. This is especially useful in certain

debugging situations when it is necessary to remove the extensions and when

verifying the performance of standard Linux with or without the real time

extensions.

2.4 Real Time Linux—RTAI

2,4,1 General Description o f RTAI

RTAI (Real Time Application Interface), was initially developed by The

Dipartimento di Ingeneria Aerospaziale Politecnico di Milan (DIAPM- Department of

Aerospace Engineering-Polytechnic of Milan) as a vaiiant of RTLinux developed by

the New Mexico Institute of Technology (NMT), at that time neither floating point

support nor periodic mode scheduling was provided by RTLinux ([6]).

RTAI is not an intrusive modification of the kernel, it uses HAL (Hardware

Abstraction Layer) to provide fundamental functions and get information from Linux,

35

RTAI supports both periodic and one-shot modes for the real time scheduler.

36

' '■V.

Chapter 2 Background to Linux and Real Time Linux

HAL does not depend greatly on the Linux kernel and this provides RTAI with a very

good portability. |
li

2,4,2 RTAI Modules
%

,

;
There are a numbers of modules provided by RTAI, and the user can load the

modules to accomplish every required RTAI functionality ([6]).

1) r t a i . r t a i module is the basic RTAI framework. It initialises all of its

control variables and structures, makes copies of the id t_ ta b le and the Linux

irq handlers’ entry addresses, and initialises the intenupt chips management

functions.

2) r t a i sched this is a real time, pre-emptive, priority-based scheduler module.

r ta i_ s c h e d is in charge of distributing the CPU resource to different tasks in

the system. The scheduling occurs when tasks perform certain system calls

and timer handler activates. Tasks with different priorities will be arranged at

different time. RTAI regards the priority 0 as the highest priority and

OxSfffFfff the lowest. Linux is given priority 0x7fffFfff.

' 4 ' S 3

Chapter 2 Background to Linux and Real Time Linux

Three schedulers are available in RTAI:

o UP, only for uniprocessors;

o SMP, for multiprocessors;

o MUP, only for multiprocessors.

The scheduler services are:

o Task functions;

o Timing functions;

o Semaphore functions;

o Mailbox functions;

o Intertask communication functions;

3) r t a i _ f i f o s . This is the module that implements the FIFOs and semaphores

seiwices for RTAI. It is used to achieve communication between the real time

system and Linux side, such as managing the data logging and displaying. The

real time interface includes creation, destruction, reading and writing functions

which are performed by r t a i _ f i f o s module. User processes consider real

time fifos as ordinary character devices.

4) rta i_shm . This is a RTAI specific module that allows sharing memory

37

Chapter 2 Background to Linux and Real Time Linux

among different real time tasks and Linux processes. The first allocation does

a real allocation, Any subsequent call to allocate with the same name from

Linux processes just maps the area to the user space or return the related

pointer to the space already allocated in kernel space. A user can also use the

‘mbuff ’ module for access to shared memory.

5) LXRT. The LX (LinuX) RT (Real Time) module, which implements services

to make any of the RTAI schedulers functions available to Linux processes.

Users can share memory, send messages, use semaphores and timings between

Linux and Linux, Linux and RTAI, or RTAI and RTAI.

6) r ta i_ p q u eu e . Posix RTAI modules. r ta i_ p th re a d . o provides hard real

time threads, where each thread is a RTAI task. All threads are executed in the

same address space and work simultaneously on shared data. r ta i_ p q u eu e . o

offers kernel-safe message queues.

7) rt_mein_mgr. Dynamic memory management for real time.

2,4 .3 LXRT

LXRT provides the same set of RTAI API calls available for RTAI applications in

user space ([6]). It enhances its ‘soft’ real-time performance by requiring the

38

Chapter 2 Background to Linux and Real Time Linux

programmer to change the Linux scheduler’s policy from SCHED_OTHER to

SCHED FIFO.

SCHED_OTHER is the standard Linux default scheduling policy used by most

processes. SCHED„FIFO and SCHED_RR are used for special, time-critical

applications which have high requirement on control precision. Processes scheduled

with SCHED_OTHER have a static priority of 0. The scheduler selects which process

to run from a waiting list by the level of these processes. Processes scheduled with

SCHED_FIFO are assigned static priorities in the range 1 to 99. When a process

begins running it will pre-empt a running SCHED_OTHER processes or a

SCHED_FIFO process of lower priority. A FIFO (first in first out) policy is applied to

processes of the same priority. And SCHED^RR is a simple enhanceiuent to

SCHED_FIFO, each process is only allowed to run for a maximum time period before

being re-scheduled, this type of scheduling policy is seldom used in LXRT.

LXRT has the important features as following;

• The tasks can execute under the Linux memory protection scheme;

• LXRT allows a system to be easily divided into hard real-time and soft real

time parts in that the LXRT modules will execute at a higher priority than

normal Linux processes;

The tasks can be debugged using standard Linux user-space debug

39

Chapter 2 Background to Linux and Real Time Linux

tools;

• User can move a task into kernel space right after debugging it;

• The tasks can use the standard RTAI API, which makes it very easy to move

tasks between hard real time and soft real time parts;

• Once a root user has installed the required modules, these modules can be

called by normal users;

• Real time tasks no longer carry kernel dependencies because they are no

longer implemented as kernel modules.

Under LXRT, the real time task is implemented as a user space task, but actually, it is

scheduled by the real time scheduler after being moved into hard real time. User can

achieve this simply by inserting the LXRT module and using LXRT API within user

space task.

It must be noted that there is a fixed sequence of inserting RTAI modules, rtai.o must

be inserted first, and rtai_sched.o, Ixrt.o last, otherwise “unresolved symbol” eiTors

will occur due to module dependencies and insertion will fail.

2 .4 .4 The Official Website of RTAI

Website: http://www.rtai.ors/.

40

http://www.rtai.ors/

Chapter 2 Background to Linux and Real Time Linux

2.5 Real Time Linux—RTLinux

2.5.1 General Description o f RTLinux

RTLinux was initially developed by Victor Yodaiken and Michael Brananov who

worked in the Computer Science Department of University of New Mexico in United

States at that time. It is another real time branch of Real Time Linux. RTLinux has the

same principle as the RTAI but they have different API functions and modules.

From the point of view of compatibility with the data acquisition software used in

this project—COMEDI, RTAI is selected as it is supported better for the COMEDI

nowadays. The detail of COMEDI will be introduced later.

2.5 .2 RTLinux Standard Modules

RTLinux provides the following modules ([14]):

• rtl_sched provides scheduling methods based on priority, supports POSIX

interface and version 1.0 RTLinux API functions;

• itLtim e provides real time timers;

• rtLposixio provides the read, write and call operations of driver in POSIX

means;

41

1
Chapter 2 Background to Linux and Real Time Linux

• rtl_fifo provides the communication interface between real time tasks and

Linux processes;

• Semaphore is the module which gives information value to real time tasks;

• Mbuff is the shared memory driver for the communication between Linux user ;l

process and kernel process.

In these modules, following API functions are provided:

• Interrupt controlling API functions;

• Clock controlling and acquiring;

• Thread creating and deleting, priority and schedule controlling API functions;

• POSIX interface;

• FIFO driver;

• Series port driver API functions;

• mbuff driver API functions;

• Floating point number support API functions

2.5.3 The Official Websites o f RTLinux

Website:

http://www.rtlinux.com/.

4 2

y LTCA: :

http://www.rtlinux.com/

Chapter 2 Background to Linux and Real Time Linux

• http://www.rtlinux.org/.

• http ://W W W , fsm labs, com/

All the three websites above direct to the same webpage.

2.6 Inter-process Process Communication (IPC)

There are a number of approaches to achieving Inter-Process Communication (IPC)

between realtime tasks and non-real time tasks within real time Linux operating

system. Inter-Process Communication (IPC) means passing messages between active

processes or between tasks. FIFO is probably cunently the most commonly used IPC

approach in real time process. Semaphores, mailboxes, shared memory remote

procedure call (RPC) functions and POSIX APIs ai*e also available for the same

purpose:

• Real time FIFO: A FIFO (First In First Out) is a read/write buffer used to

asynchronously transfer data between real time Linux tasks and processes.

Similar to a pipe, one end opened for writing, and another end opened for

reading operation ([10]). RTAI supports two RT_FIFO implementations,

dldfifos” and “newfifos”. Oldfifos are based on the original NMT-RTL FIFOs,

while newfifos are based on completely new code but maintain fully

■ h & i

http://www.rtlinux.org/

Chapter 2 Background to Linux and Real Time Linux

compatibility with the basic services provided by its original NMT-RTL

counterpart while adding some additional features ([10]).

Semaphores: They are used to achieve synchronization between tasks either

with regard to access to shared resources or as a simple binary, message-

passing system.

Mailboxes: They provide the capability to transfer data of user-defined sizes

between Linux and RTAI.

Shared memory: They provide a means of transferring data between real time

and user space tasks, in which a portion of physical memory is set aside for

sharing between them.

RPCs: RPCs are similar in operation to QNX-style messages available to real

time tasks. They can either transfer an unsigned integer or a pointer to the

destination task.

Shared memory is selected in this project and this will be detailed in later chapters.

44

dL.l.LÏi

Chapter 3 Data Acquisition and Physical Equipment

Chapter 3 Data Acquisition and Physical
Eqnipment

Both hardware and software are crucial for data acquisition in a control system.

MultiQS and AD512 are two of the data acquisition (DAQ) boards used in this project

by which the user is able to build up data transfer between the physical environment

and the computer. As the interface between DAQ boards and the computer, COMEDI

links the 2 sides by adding drivers for the DAQ boards which the user wishes to use

into the COMEDI driver library. The introduction of MultiQS board, AD512 card, and

control plants will be given in this chapter.

3.1 Hardware for Data Acquisition

3.1.1 Data Acquisition (DAQ) Boards

3.1.1.1 Quanser Consulting MultiQS Board

The MultiQS is a general purpose data acquisition and control board which has 8

single ended analogue inputs, 8 analogue outputs, 16 bits of digital input, 16 bits of

digital output, S programmable timers and up to 8 encoder inputs decoded in

quadrature. Interrupts can be generated by any of the three clocks, one digital input

' A A A:

Chapter 3 Data Acquisition and Physical Equipment

line and the end o f conversion from the A /D (127]).

The system is accessed through the ISA slot and is addressable via 16 consecutive

memory mapped locations which are selected through a DIP switch located on the

board.

Figure 3.1: MultiQS data acquisition board

An online manual is available at:

http://mechanical.polv.edu/facultv/vkapila/M E325% 5CM ultiQ% 5Cmq3 manual.pdf

3.1.1.2 Humusoft AD512 Data Acquisition Card

46

http://mechanical.polv.edu/facultv/vkapila/ME325%5CMultiQ%5Cmq3

Chapter 3 Data Acquisition and Physical Equipment

The AD512 data acquisition card is another general data acquisition and control

board. It contains a 100 kHz throughput 12 bit A/D converter with sample/hold circuit,

four software selectable input ranges and 8 channel input multiplexer, 2 independent

double buffered 12 bit D/A converters, 8 bit digital input port and 8 bit digital output

port ([26]).

The AD512 card is designed for standard data acquisition and control applications

and optimized for use with Real Time Toolbox for MATLAB ([7]). The AD512 can be

used not only in desktop computers but also in portable computers due to its small

size and low power consumption ([26]). To be aware, when working with notebooks,

it can only be used in ones which have device such as docking station with ISA slot. It

is recommended to use PCMCIA boards in this case.

An online manual is available at:

http ://www2 .humusoft.cz/www/datacq/manuals/ad512um.pdf

3.1.2 Control Plants and Other Physical Equipment

Two sets of plants will be controlled in this project: a rotary position motor servo

(single -input single-output) and a rotary flexible straingage with a motor servo

(single-input multi-output). Both of them are manufactured by Quanser and driven by

47

Chapter 3 Data Acquisition and Physical Equipment

an U P M -15-03 power module.

3.1.2.1 Rotary Position Motor Servo SRV02

The rotary position servo consists o f a DC servomotor and a built-in gearbox w hose

ratio is 14 to 1. The output o f the gearbox drives a potentiometer and an independent

output shaft to which a load can be attached. SRV02 is equipped with only one

potentiometer and has a tachometer attached to the back o f the motor. The position o f

motor shaft is measured by a sensor attached to the shaft.

The control objective for this plant is to implement a controller to control the

position o f the output shaft

Figure 3.2 Rotary position motor servo SRV02

48

Chapter 3 Data Acquisition and Physical Equipment

System parameters of servo SRV02:

S p e c i f ic a t io n Vaiue U n its

Plant DîhiÈjnsions 15 X 1 5 x 1 8 c n P

Plant W e i g h t 1.2 kg
Rat ed Vol t age 6 Vol ts

Ma x i mu m Cont inuous , Current 1 A
titaxiimum S p e e d R e c o m m e n d e d) 6 0 0 0 t.p.rn.

O p e [a 1 ing Ternp e rature - 3 0 to + 8 5 *C

P o t e n t i o m e t e r Bias P o we r ± 1 2 Vol t s

P o t o n l i o m o t e t Moasute i r t ont Rango ± 5 Vol t s

Tachonroto i B i a s Povvoi ± 1 2 Vol t s

T a c h o m â t e i M e a s u r e m e n t R a n g e ± 5 Vol t s

T ac h o m e t e r Se ns i t i v i t y 1.5 mV / r .p.m.

En c o d e r R e s o l u t i o n (E - opt ion) 4 0 9 6 C o u n t s ! Rev.

0 . 0 8 7 9 Dog / Count

Enc ode r R e s o l u t i o n (EHR - opt i on) 8 1 9 2 Cotj i i l s / Rev.

0 . 0 4 3 9 Dog / Count

Figure 3.3 System parameters of servo SRV02

3.1.2.2 Rotary Flexible Link with Motor Servo SRV02

A straingage is mounted at the clamped end of a flexible link. The output is an

analog signal which is proportional to the deflection of the link. This system is

mounted on a motor servo plant (SRV2 in this project) to perform flexible link control

experiments. The straingage is calibrated to give 1 volt per inch of the deflection at

the tip.

49

..

Chapter 3 Data Acquisition and Physical Equipment

%

Figure 3.4 Rotary flexible link with motor servo SRV02

This control project involves positioning the flexible link to a set point using a

feedback controller to damp out the vibration at the tip o f the link as quickly as

possible with minimal vibrations ([20]). The objectives o f this project are:

To obtain a linear state-space model for the Flexible Link module.

To design a state feedback controller that damps out the vibrations at the tip o f

the beam.

System parameters o f the flexgage module:

50

Chapter 3 Data Acquisition and Physical Equipment

S y m b o l V a l u e U n i t s

Krri (T o r q u e
c o n s t a n t)

0 .0 0 7 6 7 V / (r a d /a e c)

R m (M o to r
r é s i s t a n c e)

2 .6 O

Kg (g e a r ra t io) 6 0 NA

dm (M o to r
in e r t ia)

3.G7 e - 7 Kg rif"̂

J h u b 0 .0 0 IB Kg

Jioaci 0 .0 0 5 Kg m '*'

L (liink l e n g th) 0 . 4 8 2 6 in

0 .0 6 5 Kg

2 N m /ra d

Figure 3.5 System parameters of the flexgage module

3.1.2.3 Power Amplifier and Supply

A Quanser UPM 1503 is the power module used in this project. The module is

equipped with a 1-ampere +/- 12-volt regulated DC power supply for signal

conditioning of external analog sensors.

51

Chapter 3 Data Acquisition and Physical Equipment

Figure 3.6 Power amplifier UPM 1503

3.2 Software for Data Acquisition

3.2.1 Data Acquisition

Data acquisition is the m ost elementary work in this project. In control system s, the

first and one o f the most important tasks is acquiring data from the control plant

accurately and promptly. The control signal w ill be sent back after comparing with

desired setpoints with successful data acquisition. Data is transferred from the output

interface o f the plant to computer environment through analogue input channels and

som e kind o f interface between computer environment and data acquisition card in the

52

Chapter 3 Data Acquisition and Physical Equipment

format which is recognizable to the computer.

3.2.2 COMEDI

Comedi is a Linux control and measurement device interface, its project develops

open-source drivers, tools, and libraries for data acquisition ([11]). It includes:

• Comedi. A collection of drivers for a variety of common data acquisition plug

in boards. The drivers are implemented as a core Linux kernel module

providing common functionality and individual low-level driver modules;

• Comedilib. A user-space library that provides a developer-friendly interface to

Comedi devices. Included in the Comedilib distribution is documentation,

configuration and calibration utilities, and demonstration programs;

• Kcomedilib. A Linux kernel module (distributed with Comedi) that provides

the same interface as Comedilib in kernel space, suitable for real-time tasks. It

is effectively a “kernel library” for using Comedi from real-time tasks.

Comedi has the following features:

Integrated real-time support for most hardware;

High-level library (comedilib);

Application-level device independence;

53

Chapter 3 Data Acquisition and Physical Equipment

Works with Linux 2.0, 2.2, and 2.4 kernels.

The latest version (20/06/05) of Comedi and Comedilib aie:

• comedi-0.7.70;

• comedilib-0.7.22.

Comedi designates a separate subdevice number to every subdevice in the board like

analogue input, encoder, and a separate channel number for every channel residing in

the same subdevice as well. The user can talk to whichever subdevice or channel by

giving the proper number as parameter in Comedi function calls. For example,

sending a voltage value out through analogue output (subdevice 1) channel 0 by

./outp - s i - c 0 XX (xx is th e v o ltag e v a lu e). The user can observe the

information such as subdevice and channel numbers of the board by command c a t

/p roc/com edi.

J

It should be noted that 2 different Comedi libraries are provided in the same release

package: Comedilib and Kcomedilib. Both of them provide almost the same

functionalities however they should be used in different cases. Comedilib is a user-

space library and Kcomedilib is a Linux kernel module that provides the same

interface as Comedilib in kernel space, whereas it should be used for real-time process

only. Misusing of the library will cause eiTors in compilation.

54

Chapter 3 Data Acquisition and Physical Equipment

3.2.3 Drivers for Data Acquisition Cards

3.2.3.1 Quanser Consulting MuItiQ-3 Board Driver

The Comedi driver for MultiQ-3 board is provided with Comedi distribution, usually

in file /$ComediDIR$/comedi/drivers/multiq3.c.

There is no necessity to put the whole driver program here however, it must be

pointed out that there are 2 bugs in the original MultiQ3 driver provided with Comedi

’.T-

1

0.7.66: One is in m u l t i q 3 „ a i „ i n s n _ r e a d () function:

for(n=0;n<insn->n;n++){

hi - inb{dev->iobase + MULTIQ3_AD_CS);
lo = inb(dev->iobase + MÜLTIQ3_AD_CS);
data[n] = ((hi << 8) I lo) & Oxfff;

This code results in the cutting off of minus input part and only 0 and positive

voltage input can be read in. During the project it was modified to the following:

for(n=0;n<insn->n;n++){

hi = inb(dev->iobase + MULTIQ3_AD_CS) &Oxff;
lo = inb(dev->iobase + MULTIQ3_AD_CS) &Oxff;
data[n] = (((hi « 8) I lo + 0x1000) & Oxlfff;

55

Chapter 3 Data Acquisition and Physical Equipment

This ensures the whole range of the input is kept during reading-in.

Another bug resided in m u l t i q 3 _ a i _ i n s n _ r e a d {) function. The last line of

the function r e t u r n i ; causes error messages as following in kernel space:

Oct 2
Oct 2
Oct 2
Oct 2
Oct 2
Oct 2
Oct 2
Oct 2

16:16
16:16
16:16
16:16
16:16
16:16
16:16
16:16

16 Ctrl6-
16 Ctrl6-
16 Ctrl6-
16 Ctrl6-
16 Ctrl6-
16 Ctrl6-
16 Ctrl6-
16 Ctrl6-

PC kernel: BUG:
PC last message
PC kernel: BUG:
PC last message
PC kernel: BUG:
•PC last message
■PC last message
■PC kernel: BUG:

result of insn!=insn.n
repeated 1689 times
result of insn!=insn.n
repeated 122 times
result in insn!=insn.n
repeated in insn!=insn.n
repeated 123 times
result in insnl=insn.n

Even thought it is just a simple consistency check and does not affect the acquisition,

it can be easily fixed by changing return i into return n.

3.2.3.2 Humusoft AD512 Data Acquisition Card

The AD512 card is not in the supported hardware list of the Comedi distribution. A

driver for the board was therefore written (see Appendix B).

3.2.4 Writing a New Driver in Comedi

To write a new driver in Comedi, several steps need to be followed:

56

Chapter 3 Data Acquisition and Physical Equipment

1. Put the driver into /$ComediDIR$/comedi/drivers/mYdriver . c

2. Edit /comedi/conf ig. in and add a new “dep_tristate” line. Invent

a meaningful name for the driver’s variable.

3. Add a line with the name of new driver to

/comedi/drivers/Makefile.

Each driver has to register two functions which are called when configuring and

deconfiguring the DAQ board: mydriver_attach() and mydriver_detach. In

mydriver„attach() function all properties of the device and subdevice and defined,

mydriver_detach destroys all the settings and definition.

Instructions (insns) are low-level functions for accessing all kinds of channels.

Drivers for digital inputs and outputs must have the following two functions ([32]):

insn_bits ()—Drivers set this if reading and writing multiple bits in a digital I/O

sub device at the same time is supported.

insn_config ()— Implements INSN^CONFIG instructions, used for configuring the

direction of digital I/O lines.

Similarly, drivers for analogue inputs and outputs must implement the following two

57

' ' I’.:-.' -

Chapter 3 Data Acquisition and Physical Equipment

functions:

insn_read ()—Required for analogue inputs.

insn„write ()—Required for analogue outputs.

Several of tasks need to be done in the initialisation function of the driver ([32]):

• Announce that the hardware driver has begun initialisation by a

printk("comedi %d: driver: ", minor);

• Check and request the I/O port region, IRQ, DMA, and other hardware

resources. It is convenient here if user verifies the existence of the hardware

and the correctness of the other information given;

• Fill in the comedi_device structure,

• Allocate user private data structure and sub devices;

• Set up each subdevice;

• Return 0, indicating success. If there were any errors along the way, the

appropriate error number should be returned. In this case, the „detach function

is called. The _detach function should check any resources that may have

been allocated and release them as necessary. dev->subdevices and dev-

>private do not need to be freed in _detach as the comedi core does that.

I

58

Chapter 4 Graphical Interface (GUI) and RTLab

Chapter 4 Graphical User Interface (GUI)
and RTLab

RTLAB is one of the major software package required in this project which

combines COMEDI with real time Linux to achieve real time control using the Linux

operating system. Qt is adopted as the graphical interface which makes it possible to

have additional custom windows within RTLab plugins. The introduction about

RTLab and Qt, and a simple example that shows how Qt works in conjunction with

RTLab is given in this chapter.

4.1 Graphical User Interface (GUI)

4.1.1 General Description o f Qt

User interface plays a very important role in software development. There are

different GUIs for different programming languages as well as different operating

systems.

A comprehensive introduction to GUIs is given in

59

A .':..

Chapter 4 Graphical Interface (GUI) and RTLab

http://www.geocities.coin/SiliconVallev/Vista/7184/guitool.html.

In this project, Qt is adopted as the graphical interface toolbox. Qt is a multi platform,

C++ application frame work that lets developers write one application which can run

in different platforms such as Windows, Linux/Unix, Mac OS X, and so on ([33]).

Qt includes a rich set of Widgets (visual elements that are combined to create user

interfaces) that provide standard GUI functionality. Signals and Slots are used to

achieve inter-object communication. Qt also offers a conventional Event model to

handle mouse clicks, key presses, and so on. The relationship between each element

in Qt is in Figure 5.1:

^ 0 Object

f OTimer] " f QW idget

I^QDiabg'] ^ O F ra m eJ

Figure 4.1: Elements in Qt

O S pin Box

QLineEdit

The QWidget class is the base class of all user interface objects. It receives events

like mouse, keyboard from the window system, and paints on the screen. QObject,

QDialog, QLabel, QFrame, QLineEdit, and QSpinBox are all the classes which can be

used for a QWidget and each class has its own function. For instance, QLabel

60

http://www.geocities.coin/SiliconVallev/Vista/7184/guitool.html

Chapter 4 Graphical Interface (GUI) and RTLab

provides a text or image display, QLineEdit is a one-line text editor, and the

QSpinBox class provides a pop-up menu.

To make programming simpler and more convenient, Qt provides Qt Designer, a

graphical designing tool for user interfaces. It allows users to build interfaces with

layout tools that m ove and scale w idgets automatically at runtime, and generates code

with its built-in code editor.

File Edit Project Search lools Layout Ereview lamdow Help

I Qt Assistant bv Trolltech

■lie Edit Project Search lools Layout Ere

Q ^ H I ^^S '«ant *jj ^ l3 ®»|
j TeolboK
Comm on W id...

""I PushButton

vÿ RadioButton

Ched Box

ButtonGroup

g ÜstBox

^l^üsCVievy

U Table

egl LineEdit

22^ SpinBox

|%U Te -tEdit

file Edit yiew £o goolm aris Help

o ^ a Nf?
& Mainvvindow

shoyvUnl (QStiing(qInstallPathDocsO) -i-
"/htihl'desigr.ei HTanual hbhl");

void MainWindow::showLinl,FromClient(const QString SJinl.)
{

raiseO;
setActlvev.’IndoviiO;
showLint,(linl.);

}

Buttons

Containers

Database

Input

Display

Display (KDE)

Buttons (KDE)

Input (KDE)

Views (KDE)

Container (KDE)

Graphics (KDE)

Custom Widgets

[Ready........ ""

ind Main'Winc

ghnmUnI 11

rw PyMMt Ow*nt««

assistant.pro

fWDimOO: finddialog.ui
Qbnddialog.ul.h

V" void Mam Window ::showUnl,(const QF’tring Blinl,)
;(

QString filename - linl. lefH linl ,find('*!’)):
QFilelnfo fi(filename);
// rccrodocc a frtod srce
it (ifi.existsO)

browser->setSource("index.html");
else {

browser->setSource(linl);
}
browser->s„

□
3 Qt Assistant - Find Text c=j iA (&

lEind; [| u t Eind]

r- Qptjons -------------------! p Direction------

C j y£hole words only j J i . Forward ■

Case sensitive | U Bad ward

nH elpD ialogB ase: helpdialog.ui
r^M a ln W ln d o w c m alnw lndow .iil

T]SettingsD ialogBase: settings..

r*1 TopicChooserBase : topicchoo

[^docuparser.cpp

P i docuparsei'.h

P J helpdialogimpl.h

Q j helpwindow.cpp

P helpwindow .h

Q index.cpp

editer/$ton«l M#nai#i%
P ropertie s I Signal H andlers

Property
^diororward
Tru«enabled

ffl sizePohcy
E minimumSize

Mmimum/Fi/e

[0 .0 J
I 32767, 327E maximum Size

E paletteForegrou..
E paletteBad grou

paietteBackgrûu
palette
bflfLoraupdOnoni Widn^fOnoin

Figure 4.2 A screenshot of Qt Designer

61

Chapter 4 Graphical Interface (GUI) and RTLab

Qt is a very powerful and convenient tool in GUI designing. In this project, Qt works

together with RTAI and COMEDI in RTLab. More details will be given later in the

thesis.

4.1.2 A Simple Qt Example

Here is a simple “hello world” example. It shows the basic rule by which a Qt

application is working.

" X
Hello worldl

Figure 4.3 A snapshot of "hello world" example

** Hello World Example

* y

1 #include <qapplication.h>
2 #include <qpushbutton.h>
3
4
5 int main(int argc, char **argv)
6 {

7 QApplication a (argc, argv);
8
9 QPushButton hello("Hello world!", 0);
10 hello.resize(80, 2 5) ;

11
12 a .setMainWidget(&hello);
13 hello.show();

62

Chapter 4 Graphical Interface (GUI) and RTLab

14 return a.exec();
15 }

The first 2 lines include the QApplication and QPushButton class definitions. There

has to be exactly one QApplication object in every application. QPushButton is a

standard GUI push button that the user can press and release. There are a series of

classes available in Qt such as QSlider, QLabel, QLineEdit, and QComboBox besides

QPushButton.

Line 9 and line 10 define the content and size of the QPushButton which will appear

in the graph of this QApplication.

Lines 12 to 14 set up and show the main widget. A widget is a user interface object

that can process user input and draw graphs. In this example, A QPushButton is all

that in the main widget. One thing to be noted, line 13 is essential because a widget is

never visible until show() is called.

4.2 RTLab

4.2.1 General Description of RTLab

RTLab is an ongoing project to develop a general-purpose, open-source, hard real-

63

Chapter 4 Graphical Interface (GUI) and RTLab

time experiment interface software system ([19]). All applications in RTLab exist in

the form o f RTLab plugin m odules. The follow ing graphical interface will appear

after invoked RTLab by entering “7daq_system ” in the RTLab source directory and

the plugin module loaded:

Bh Log Bomeb v/noa. g*

ijCNmel 4 [][] j| Chany Scate: |* tv - IV j |lO ^ j Spfce‘Pohfiy: 4 ^ | 8pik« BhnWng <m»): |lO ^ P X'AwW P 8t«hi9bar

MFC I a.w»Mi

\l«]\
* m * :2 7 S 7 l» c 2758,1 s « , 27SB1 m . 2780.1 « # 2781.1 «w. 27*2,1 MC 2783.11
^ 1 h r « # « W : 0.143V f » î ï S k r î 3 Î 4 V 5 27è«07 W » I'Voq: *6jilOÉfM< IjW h io t 1 0 * 0 0

f- A 0 1 Controls
|A P D _ n (m s): delta PI (ms): AI channel to m easure APDs: Fi 4

r P a d n g O NPI = APD+DI(ms): delta g:
r Link control to AGO pacing
r Control ON
P Only negative perturbations

g: |0 T

0 400 J
0 400 40 400 i
0 400 3

Nominal PI: |500 g

AGO to A 01 conduction (ms): [s ^
r Continue underlying pacing
r Target shorter APD Initially

P Adjust g Only Manually delta g: 0.010 j J J

0 -4 0 0 J

0 - 4 0 0 2 j

0 - 4 0 0 3

jAPD control experiment notes

|0 - 4 0 0
‘All APDs’ Graoh Ranae: 10 - 400

Figure 4.4: RTLab graphical interface

The top half o f the graph show s the signals echoed back from analogue input

channel 0, 1 and 2, generally this part is the same to every plugin. The bottom half is

the plugin window in which the control parameters can be set, and all the contents in

64

Chapter 4 Graphical Interface (GUI) and RTLab

this window are decided by the plugin program.

There are several files in RTLab source directory such as: plugin.h, plugin_score.h,

plugin_scanner.h, plugin_scanner.cpp, and so on. These files work together with

certain pre-defined plugin mechanism and some variables in daq_system files, to

ensure that the user plugins can be recognized automatically so long as these plugins

were compiled correctly and placed in /$RTLABDIR$/plugins.

Generally, an RTLab plugin is composed of 4 files:

• myplugin.c—Module initialisation and cleanup functions. Shared memory

initialisation function, process read function, and control algorithm (usually

do_control function) are given in this file. It is the major control

implementation part of the plugin.

• myplugin.h— Callback frequency, macros of maximum and minimum values

of control signal (in volts), and shared memory structure is defined and

declared in this file.

• myplugin.cpp— the main entry of user plugin graphical interface, user plugin

constructor, destructor, widgets, signals and slots are declared and called in

this file.

• myplugin_private.h— mainly used for user plugin widget declaration.

65

, t
Chapter 4 Graphical Interface (GUI) and RTLab

"ds_plugin„ver" int value, indicating the version of the plugin engine this

plugin was written for. Must equal DS_PLUGIN_VER pre-processor symbol

Any plugin missing the above symbols will fail to load.

Optional symbols:

• "flags" int value, indicating what flags this plugin has set;

• "description" const char a brief description of the plugin’s functionality;

• "author" const char *, authors of this plugin;

• "requires" const char *, a descriptive string explaining what is required to

properly load this module.

Shared memory is used to achieve inter-process communication in RTLab.

In this project, the plugin window needed to be altered to show the plant’s working

66

Each plugin must contain the following symbols ([12]): If

'Ï
defined in this file; 1

"entry". The entry function of type plugin_enrty„fn„t, should return a valid

Plug-in * reference;

"name". The const char * friendly name of the plugin.

Chapter 4 Graphical Interface (GUI) and RTLab

status, and this will be detailed in Chapter 6.

4.2.2 How Does Qt Work in Conjunction with RTLab

Here is a simple exam ple that show s how Qt works in conjunction with RTLab:

jfibQLGt
AO Channel: 1
AI Channel to monitor: t
Sq. wave period (m s);11000
_i Analog output enabled______

IB
5V
OV.-sv

Help

5V ^ j Secs. Vlsiblejs j] S p k e ’Polarity*: + _ j; S pke Blanking {ms) »

All S c a rin g Plugim:________________
I Plugin Name __

Proportional + Integral Controller
I Proportional + Integral Controller for different
I Proportional Controller
iS1S2S3S4S5 Stimulator

e s tn : ro ram
I Wave Maker

5.0 sec. 66.0 sec. 67.0 sec.
51 - :Spke Freq; ’ - gPM li...... -Tiz or - m s/spke)|

.Ü sec sec.
-BPM

.u sec
hz or - ms/spke^„i

>5.0 sec. 66.0 sec. 67.0 sec.
S pke Freq: - BPM (- hz or - m s/spke

Plugin Name; Testing Program (test.so)
; Filename: /home/xduarV
I rtlab_exp_lk-0 65.2/ test.so
I Related Kernel Module:
; Description: A simple reference plugin
I that does the following: Kernel code: Writes
! a 9 vnlts qinnal fn DAT rh an n e l 0 w han

Load Selected i Unload selected ^ l e FIFO Is 4% full M ouse 64.5 sec, 3^065 V

Figure 4.5 A snapshot of test plugin windows in RTLab

test.c (see Appendix C for source code):

1 /* This file is a part of an example showing how Qt works in
2 conjunction with RTLab
3 * Copyright (C) 2 004 Xiaoyu Duan
4 */
5 /* *
6 * Example RTLab plugin -- Kernel side.
7 * This plugin does the following:
8 * Kernel code:
9 * Writes a 2 volts signal to DAC channel 0 when receiving a signal

67

Chapter 4 Graphical Interface (GUI) and RTLab

10 of any value but 0 from ADC Channel 0.
11
12 * GUI (test.cpp):
13 * Simple GUI to change AI online.
14 */
15 #include ..
16 #define ..
17
18 Set module author
19 Set module description
20
21 int ..;
22
23 module„init{init);
24 module_exit(cleanup);
25
26 /*---
27 Some private 'global' variables...
28 V
29 static ..;
30 static const int ..;
31 static struct ..;
32 /*---
3 3 * /

34
35 int init (void)
36 {
37 Consistency check
38
39 Register callback
40
41 shared memory
42
43 Set callback rate
44
45 the rtlab_comedi_context convenience struct
46
47 Turn callback on
48 }
49
50 void cleanup (void)

68

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

Chapter 4 Graphical Interface (GUI) and RTLab

Deactive and unregister do_control function
Detach shared memory

}

static int init_shared_mem(void)
{

Set shared memory structure
}

static int proc_read (char *page, char **start, off_t off, int count,
int *eof, void *data)

{
Set the information of each element in shared memory

}
/**
* This function does the following:
* Kernel code :
* Writes a 2 volts signal to DAC channel 1 when receiving a signal

of any value but 0 from ADC Channel 1.

* This function is called by rtlab's core... see
rtp_register_function()

static void do_control (MultiSamplestruet * m)
C

double ..;
Samplestruet ..;

Get value from DAQ device

Calculate output voltage value

Return value to DAQ device

I

Lines 1 to 33 are the variable and constant declarations and the explanation for the

69

..'I.,.., i:-:'

Chapter 4 Graphical Interface (GUI) and RTLab

program.

Lines 35 to 48 are the initialisation part for the module. Each kernel module must

have an “initialisation” part and a “cleaning up” part in which the working

environment for the module may be d and cleared when the module is inserted into

and removed from the kernel. The scheduler is set up inside the “initialisation” part in

the program.

Lines 56 to 59 the shared memory structure which accomplishes the communication

between real time processes and non-real time processes.

Lines 61 to 65 set the information of each element in shared memory structure.

Lines 75 to 85 do the control task-output a 2 volts signal to the control plant.

test.cpp (see Appendix C for source code):

1 / *

2 * This file is a part of an example showing how Qt works in
3 conjunction with RTLab
4 *

5 * Copyright (C) 2 004 Xiaoyu Duan
6 */
7 #include ..
8 #define . .
9
10 extern "C" {
11
12 Set some information needed by plugin
13

70

■ ' -

Chapter 4 Graphical Interface (GUI) and RTLab

14 Plugin * entry(QObject *o)
15 {
16 and show the plugin widget
17 }
18
19 };
20
21 Test::Test(DAQSystem *d)
22 : QWidget(d, PLUGIN„NAME, Q t : :WType_TopLevel) , ds(d)
23 {
24 Attach to Shared memory
25
26 Create plugin widget variable
27
28 Build up plugin widget buy calling element "buildGUI'
29
30 Connect signals with slots
31
32 Set caption
33 }
34
35 Test : :-Test()
36 {
37 Detach shared memory
38
39 Delete widget
40 }
41
42 void Test : :buildGUI()
43 {
44 Create layout variable
45
46 Set the number of AI channels
47
48 Set subwidgets and add them to the layout
49 }
50
51 void Test : :connectSignals{)
52 {
53 Connect signals with slots
54 }

71

Chapter 4 Graphical Interface (GUI) and RTLab

55
56 Set parameters in the shared memory region by slots

This cpp file is the program actually written using Qt to create the GUI within

RTLab. It adds the follow ing w indow into the RTLab graphical interface.

m
AO Channel: 1
A! Channel to monitor: 1
Sq. w ave period (m s):| 1000
J Analog output enabled

Figure 4.6 Plugin window of "testing program" example

After som e definitions and declarations, lines 15 to 18 define the “entry” party o f the

plugin in which the main Qwidget is created and displayed.

Lines 21 to 33 are the “constructor” o f the plugin widget. A constructor is a standard

Qt widget constructor that builds up everything needed for the widget. The test

Q widget is set to top-level widget here.

Lines 35 to 40 are the “destructor” which does the tidying up work when the w idget

is no longer needed.

Lines 42 to 49 set up the graphical window as Figure 4 .6 shows. There are 7

elem ents in this plugin window: QLabel “AO Channel:”, “ 1”, “AI Channel to

monitor”, “ 1”, “Sq. wave period (m s):”, Q SpinBox “ 1000”, and Q CheckBox “A nalog

72

Chapter 4 Graphical Interface (GUI) and RTLab

'1

I
output enabled”.

Lines 51 to 54 connect the widgets with con'espondent signals.

Lines 56 set the parameters in the shared memory region by slots.

Here are the 2 header files needed for this plugin: |

test.h

1 /* xiaoyu Example plugin - The kernel side defs.. */
2 /* This file is a part of an example showing how Qt works in
3 conjunction with RTLab
4

5 * Copyright (C) 2004 Xiaoyu Duan
6 * I

1
8 #ifndef TEST_H
9 # define TEST_H

10
11 #include "rtlab.h"
12
13 #ifdef cplusplus
14 extern "C" {
15 #endi f
16
17 /** Callback frequency -- basically the granularity of our
18 monitoring.. * /

19 #define TEST_CALLBACK_FREQUENCY_HZ 1000
20
21 /* Max and Min values of control signal (V) */
22 #define MAX_OUT 5.0
23 #define MIN_OUT -5.0 '
24
25 /* * The shared memory */

73

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Chapter 4 Graphical Interface (GUI) and RTLab

struct TestShm {
int magic; /*< Should always equal TEST_SHM_MAGIC */

volatile / * * R/W value
int period_milliseconds; /* The period

volatile
char wave_on;

/** R/W value */
/* if nonzero, do the actual output * /

int reserved[4]; /* just so i can look like i know what i am
doing... */
};

#ifndef cplusplus
typedef struct TestShm TestShm;

#endif

#define TEST_SHM_NAME "Test Shm"
#define TEST_SHM_MAGIC (Oxf0015555) /*< Magic no. for shm. ..
'foolzzzz' * I

#ifdef cplusplus
}
#endif

#endif

Lines 8 to 23 are some constant definitions are consistency checks. Lines 26 to 37

defined a structure of the shared memory variables which will be used in test.c and

test.cpp.

I

test_private.h

1 /*
2 * This file is a part of an example showing how Qt works in
3 conjunction with RTLab
4 * Copyright (C) 2 004 Xiaoyu Duan
5 V

■i

74

4

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Chapter 4 Graphical Interface (GUI) and RTLab

#ifndef _TEST„PRIVATE_H
#define _TEST_PRIVATE_H

#include <qwidget.h>
#include "plugin.h"

class DAQSystem;
struct TestShm;
struct TestWidgets; /* struct to store all the widgets this class has

-- forces header files into .cpp file
*!

class Test: public QWidget, public Plugin
{

Q_OBJECT

public :
Test(DAQSystem *d);
-Test();

const char *name() const; /* overrides Plugin parent class */
const char *description() const; /* overrides Plugin parent class

*/

private: /* methods */
void buildGUI();
void connectSignals();

private slots : / * A Qt-ism -- these methods set variables in the SHM
*/

void setPeriod(int);
void setAO(bool);

private: /* data */
DAQSystem *ds;
TestShm *shm;
TestWidgets *widgets;

};

#endif

75

Chapter 6 Applications

Lines 18 to 44 defined the Qwidget that will be used in graphical interface. Users are

able to talk to the control program by this Qwidget.

Chapter 5 Discussion of Real Time Solutions

Chapter 5 Discussion of Real Time
Solutions

There are two different approaches which provide Linux with real time performance,

giving the Linux kernel pre-emption ability and adding a new software layer beneath

the Linux kernel with full control of interrupts.

For the first approach, TimeSys (website: http://www.timesYS.com/) and Linux

kernel pre-emption project (website: http://sourceforge.net/proiects/knreempt/) is the

software available, and for the second one, the most commonly used approach is

RTLinux or RTAI, which has been introduction in previous chapters.

Both RTAI and RTLinux have similar scheduling, inter-task communication methods,

and API functions. Although from an academic point of view, RTAI and RTLinux are

the same, user can use and modify the code at will, there are still some differences

between the two ([28], [29]);

The RTAI team tries to allow proprietary development for zero price (by using LGPL

license) while RTLinux does not.

RTAI is based on the GPL mode and it is impossible to change the license without

77

http://www.timesYS.com/
http://sourceforge.net/proiects/knreempt/

Chapter 5 Discussion of Real Time Solutions

the permission of all the code copyright holders. In other words, work derived from

GPL code cannot be released under a different license.

Real Time Linux was developed to provide Linux with Real Time functionalities in

its early days. As a variant of RTLinux, RTAI appeared later however is supported

better today, and it works better with COMEDI, thus why RTAI is selected for this

project.

There are several schemes with which COMEDI can be integrated with RTAI:

• rt_com_lxrt.

• rtai_comedi_lxrt

• RTAI-Lab

• RTLab

5.1 rt_com_lxrt

This is a somewhat out-of-date solution which is integrated in RTAI-2.4.0-0.26.

rt_com_lxrt strengthens the RTAI approach of symmetric usage of all services in

kernel-user space for soft-hard real time. The files for rt_com_lxrt could be found in

the directory /$RTAIDIR$/rt_com„lxrt/. rt_com also has a version number of its own.

The rt_com package can be easily linked to user space applications by including

78

■ ïl

Chapter 5 Discussion of Real Time Solutions

rt_com_lxrt in the files using it. To use rt_com_lxrt, several modules like rtai,

rtaLsched, rt_com, Ixrt have to be inserted into the kernel, and it is required to

‘make” rt_com_lxrt before using.

Here is an example extracted from rt_com_lxrt directory:

1 /'’= rt_com-LXRT test
2
3
4
5
6
7

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

* RT-Linux kernel module for communication across serial lines.
*

* Adaptation of rt„com test modules to provide the same examples in
* RTAI environment using LXRT.

*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>

ttdefine KEEP_STATIC_INLINE
#include <rtai_lxrt_user.h>
#include <rtai_lxrt.h>

#include "rt_com_lxrt.h"
#include "rt_com.h"

int main(int argc, char **argv)
{

unsigned long testcomtsk_name = nam2num("TESTCOM");
RT„TASK *testCOmtsk;
char hello[] = "Hello World\n\r";
int retval = 0;

79

_______ . '

Chapter 5 Discussion of Real Time Solutions

32 mlockall{MCL_CURRENT I MCL„FUTURE);
33
34 if (!(testcomtsk = rt_task_init(testcomtsk_name, 1, 0, 0))) {
35 printf{"CANNOT INIT MASTER TASK\n");
36 exit(1);
37 }
38 rt„set_oneshot_mode();
39 start_rt_timer(0);
40 //rt„make„hard_real_time();
41 // This example use the rt_com_setup() on port 0 so it needs
42 // that you have compiled rt_com.c with rt_com__table[0].used=l
43 // otherwise the rt_com_setup() fails
44
45 if(rt_com_setup(0, 9600, RT_COM_NO_HAND„SHAKE,
46 RT_COM_PARITY_NONE, 1, 8, -1) < 0) {
47 printf("hello_wor1d_lxrt: error in rt_com_setup()\n");
48 retval = 1;
49 1 else {
50 rt_com_write(0, hello, sizeof(hello));
51 rt„sleep(nano2count(500000000)) ;
52 printf("rt_com_lxrt test: >>%s<< sent.\n", hello);
53 rt__com_setup (0, -1, 0, 0, 0, 0, 0); // release port
54 printf("rt_com_lxrt test: finished\n");
55 }
56 //rt_make_soft_real_time();
57 stop_rt_timer();
58 rt„task_delete(testcomtsk);
59 exit(retval);
60 }

There is only one function— main() in this example. Lines 27 to 39 some variables

and the real time task. Lines 45 to 55 do the task which prints a word “hello” out on

the screen on success. User can have the task running either in soft real time all the

way or in hard real time first and then back in soft real time by adding corresponding

80

script sentences as in line 40 and 56.

5.2 rtai_coinedi_lxrt

This is a porting of COMEDI to LXRT/NEWLXRT which is done by using the

standard extension feature of LXRT/NEWLXRT. rtai_comedi_lxrt makes COMEDI

symmetrically usable in kernel and user space within RTAI, in soft and hard real time.

As with LXRT/NEWLXRT and its extensions it is possible to use rtai_kcomedi_.lxit

both using static inlines (by adding “define KEEP_STATIC_INLINES” before

including rtai com edijxrt.h) and using libkcomedi.a found in directory

comedi_lxrt/lib. Two simple examples called testa.c and tests.c are available in

/$RTAIDIR$/comedLlxrt/ and an application using this approach will be detailed in

Chapter 6.1.

5.3 RTAI-Lab

RTAI-Lab is a tool that allows the use of any set of real time controllers/simulators

automatically generated by Matlab/Simulink/RTW. Release 2.24.11 of RTAI allows

the integration of COMEDI drivers in Simuliiik ([8]) schemas and to generate code

for (x)RTAl-Lab. If there is no Matlab/Simulink/RTW available, the same thing could

also be done under Scilab/Scicos. In this case however an unofficial release of RTAI

81

Chapter 5 Discussion of Real Time Solutions |

Chapter 5 Discussion of Real Time Solutions

(at least 2.24.12prel) is needed, and two files rt_seilab.tgz and xrtailab.pp are also

required.

The basic concept of RTAI-Lab is to allow any couple of separated systems, the host

and the target, to communicate with each other ([24]). In a distributed

implementation, the host is the machine where the generated hard real time codes i*un,

it sends/receives messages, requests the target to accept parameters. The host and the

target could be the same machine.

5.4 RTLab

As introduced in Chapter 4, RTLab is an ongoing project to develop a general-

purpose, open-source, hard real-time experiment interface software system ([19]).

Comedi, RTLinux or RTAI and Qt are integrated in this rapidly developing project

and user applications reside in the form of plugins for RTLab. The detailed

applications will be given in Chapter 6.

5.5 Real Time Control Solutions

There are several approaches to setting the scheduler up, either in kernel space or

user space, either in hard real time or soft real time. Scheduling in kernel space means

82

_____ ___

Chapter 5 Discussion of Real Time Solutions

setting up the scheduler in the initialisation part of the module therefore the

scheduling is set right after the module is inserted into the kernel, the tasks then run in

the user space repeatedly according to the tick period. Scheduling in user space means

setting up the scheduler in the main part of the program rather than in the initialisation

part. The system will wait for a fixed interval when the task finishes. That is to say,

the whole tick period may be different each time. Hard-real time means giving a

Linux process, or a pthread (POSIX thread) hard real time execution capabilities

allowing full kernel pre-emption ([25]). Running in soft-real time means giving

processes standard Linux behaviours. The kernel allows other processes to run at the

same time, and this is forbidden in hard real time.

Figure 5.1 and Figure 5.2 show the difference between the scheduling in kernel

space and scheduling in user space.

Tick Peiiod

PerÎDd
Scliednlsd
Time

Task Task Tiitie

Figure 5.1: Scheduling in kernel space

83

Chapter 5 Discussion of Real Time Solutions

In Figure 5.1, the task executes within the fixed tick period and it will repeat no

matter whether the task has finished or not when period ends. Generally however, the

scheduled period is long enough for the task to run.

Period

Task

Period

Task Time

3

Figure 5.2: Scheduling in user space

In Figure 5.2, the system waits for a period after the task finishes. The period is fixed

but the time for the task to run may be unpredictable.

In COMEDI + RTAI schemes, the scheduler may be set up in the following 4 ways:

1) Setting up scheduler in “module initial” part for RT scheduling, do not use

LXRT extensions, which means, scheduling in kernel space (Figure 5.3).

84

. _

Chapter 5 Discussion of Real Time Solutions

Q il^pfocc** c - W 04(IFAd U£üû
£(# V » , Inwt Fsimaf Jjrtp ____ ___

DIg»IhI a l a f Ml 4 %l
i n c l u d e

«define ONESHOT
«define TICK_PERIOD 25000 / « 4 0 khz •/

«define STACK_SI2E

static RT_TA3K thread;

Int i n l t m o d u i e (v o i d)

RTIBE now, tlck p e n o d ;

rt tithread, intr handler, 0, ü l l t R “
^ e t _ o n e s h o t _ m o d e () ;

clck period • start rt t liner (nano2count (TICK PERIOD)) ;
r t g e t t i m e () + 10*tick_period:

rr^TTTtk ninKr [irrirnlli ffrlnmrl now, t lck^ peg

return 0;

lid cleanup module(void)

s t o p r t ^ t i m e r ();
r t _ b u 3 y _ 3 l e e p (10000000);
r t t a s k d e l e t e ((t h r e a d) ;

int main(void)

For Hdp. pie»i FI

Figure 5.3 Setting up scheduler in "module initial" part

2) Use LXRT extension with hard-real time process (Figure 5.4).

85

Chapter 5 Discussion of Real Time Solutions

|Q «che c ■ WoiflHart

Irttgrt Fymat Help

int main(Int argc, char **argv)

dev ■ comedl^open("/dev/comediO");

rt_comedl_#alt_timed(sem, nano2count(10QÛ00), caemcnt):

comedi data write(dev, aubdevao, 0, O.^Ir eF^GPOUND, 2048);

toft real time(J;

comedl_ciose(dev);

3top_rt_tlmer 0 ;
rt task delete(comedl_taak);

r""NUM

Figure 5.4 Setting up scheduler with LXRT extension (hard real time)

3) Use LXRT extension with soft-real time process.

4) Non-real time Loop— without timing.

In approach (1), a scheduler is set up in “module initial” part and the whole process

runs in kernel space at a fixed time interval, as the approach shown in Figure 5.1. A

“module initial” is a function in the module program by which the environment

variables are d when the module is inserted into the kernel. The system ensures that

the process run at an exact time period and allocates the rest of time for other tasks.

86

Chapter 5 Discussion of Real Time Solutions

As in Figure 5.3, the scheduler is set up by “rt_task_make_periodic()” statement

in function “init_module () ”, and the tick period is set to 25 milliseconds.

In approach (2), it adopts the real time solution shown in Figure 5.2, the process runs

in an unknown time period which is relatively very short, then waits for an exact tick

period. This may cause a small time eiTor which might be ignored however. As shown

■H

•I

=:lï

in Figure 5.4, the process is set to run in hard real time by calling

“rt„make_hard_real_time () ” and can be set back to run in soft real time at any time

by calling “rt_make_sof t„real„time () ”.

Approach (3) is almost the same as approach (2) except that the process runs in soft-

real time rather than hard-real time.

Approach (4) is the simplest method however it provides the worst performance. A

user can neither assign the process an exact time interval nor keep the kernel waiting

after the loop is finished. The program execution will fall into an infinite loop, and the

system will crash when out of resource. In real time control the control accuracy and

promptness are highly required which means this approach could never be used in this

project.

87

Chapter 6 Applications

Chapter 6 Applications

In this chapter, four real time control applications will be discussed. One simple

program combining COMEDI with RTAI LXRT without graphical interface, and

three applications in the form of RTLab plugins in which different controllers are used

■s'

according to the control complexity. Meanwhile the plugin windows have also been if

altered to meet the requirement discussed in Chapter 4.

6.1 A Simple COMEDI + RTAI LXRT Program

Following is a simple control program that combines COMEDI with RTAI LXRT by

rtai_comedi_lxrt which was introduced in Chapter 5. The application is without GUI
■

and all the inputs are via the command line mode. A motor servo is controlled to reach

the angular position designated by the user via DAQ board (either MultiQS board or

AD512 card).

6.1.1 Description

As introduced in Chapter 4, the rotary position servo consists of a DC servomotor

and a built-in gearbox whose ratio is 14 to 1. The output of the gearbox drives a

potentiometer and an independent output shaft to which a load can be attached. A

Chapter 6 Applications

%» = l n K + ^ m ^ m (6-1)

= (6.2)

89

-

Î

.1

controller will be implemented to control the position of the output shaft, as shown in

Figure 3.2.

6.1.2 Mathematic Model

The model is derived from the basic equations of a DC motor ([18]):

Input voltage

/ Motor currentm

R Motor resistancem

Torque constant

Angular velocity of motor shaft

6 Angular position of output shaft

0^ Desire angular position of output shaft

cô Angular velocity of output shaft

K Gear ratiog

Electrically:

 :

Chapter 6 Applications

Mechanically:

Torque generated by motor

7̂ , Torque at the output after the gearbox

Motor inertia

JI Load inertia

= J„,Klo),+J,W, (6.4)

= œ ,(J „ ,K l + J ,) (6,5)

But r„, = K J „^, then

eg ~ ^g'^in + is the equivalent inertia seen at the output of the gearbox.

Then Laplace transform is applied (s is the Laplace operator):

(6.7)

90

Chapter 6 Applications

with the given parameters:

0{s) 1
(6.8)y,,(^) .5(0.00265 + 0.1081)

6.1.3 Control System Design

According to the transfer function, it is obvious that the plant is unstable due to the

pole at the origin. A proportional plus derivate controller is selected in this case:

= (6.9)

The feedback gain and are used to design the response of the system.

Substituting the Laplace Transform of Equation 6.9 into Equation 6.8 yields:

— = 2 — (6 .10)
o .o o 2 6 î^ + (o .io 8 + ;f^) j’+A:„

If the required rise time is 100 milliseconds and let the damping ratio equal 0.6. The

desired characteristic polynomial is:

+ 2 (cOqS + cOq (6.11)

And t = ----- ^ . = 0.1, Ç — 0.6

91

Chapter 6 Applications

Solving for K and results in:

= 0.00266ÜO = 4 , K j = 0.0052fryQ-0 .1 0 8 = 0.015

6.1.4 Real Time Control Program in Linux

There are two source programs in this application: mainpro.c and mailbox.c.

mainpro.c (see Appendix C) is for output, it does filtering, calculation and sends

Ï

control signal to the plant, mailbox.c ((see Appendix C)) is for input, it asks the user

for the desired angular position value, then sends the value to mailbox. The mailbox is

in charge of the communication between these two programs in real time.

Mainpro. c (see Appendix C for source code)
#include ..
#define ..

double .,;
int ..;
char *subdevice_types[] = {

9
10
11
12
13
14
15
16
17
18
19

double control_algrithm(double volts)
{
double ..;

Convert binary value to actual voltage value

Save previous filtered output

Save old sample

92

Chapter 6 Applications

20
21 filtering
22
23 Compute output voltage value
24
25 Convert it back to binary value
26
27 Return voltage value;
28
29 }
30
31 int main(int argc, char **argv)
32 {
33 RT_TASK ..;
34 int ..;
35 double ..;
36 lsampl_t ..;
37 SEM ..;
38
39 Set mailbox name /* use mail box to achieve Interprocess
40 communication here */
41
42 Set scheduling priority
43
44 Recognize mailbox
45
46 Get DAQ device information
47
48 start control
49
50 Receive value from mailbox
51
52 data = control_algrithm(data); /* Computation*/
53
54 Return value to DAQ device
55
56 cleanup
57 }

93

"■ •«

Chapter 6 Applications

This program consists of three main blocks. These are definitions and declarations

I
(lines 1-9), control algorithm (lines 11- 29), and the main program (lines 31 to 57). It v|

I
is fairly straightforward— initialise constants, sample the sensor voltage from A/D, ft

convert voltage to desired unit (degree), filter and numerically differentiate data, then

compare the angle value acquired with the desired setpoint, calculate the required

voltage and output to D/A interface.

Following is the companion program of mainpro.c (mailbox part).

Mailboxpro.c (see Appendix C for source code);

1 #include ..
2 #define ..
3
4 int main{int argc, char **argv[])
5 {
6 Set task name
7 Set mailbox name
8
9 double ..;
10 int ..;
11 RT_TASK ..;
12 MBX . . ;
13
14 Set scheduling priority
15
16 real time task
17
18 Set timer
19
20 Create mailbox
21

94

.1 ' - : ‘ V . j:.-- j ■ : _ _ ______ ___

Chapter 6 Applications

22 count=5; /* It is possible to enter desired value for 5 times. */
23
24 while(count){
25
26 Send value to mailbox
27
28 Delay for a short period
29
30 count--;
31 }
32
33 Cleanup;
34 }

Lines 6 to 20 d the real time task, mail box, and set up the scheduler. Once the

m a in p r o staits to run, it checks the devices information and searches the value in

mailbox. Meanwhile when the m a i lb o x p r o runs, it prompts the user for the desired

angle value, and then sends it to the real time process. The user is allowed to enter

desired a value 5 times. The system will prompt for the next input after 2 seconds, this

is accomplished in lines 22 to 31.

The following commands are required to the environment for running the

application.

run:
1 sync
2 /sbin/insmod ../modules/rtai.o
3 /sbin/insmod ../modules/rtai_sched.o
4 /sbin/insmod ../modules/rtai_lxrt.o
5 /sbin/insmod ../modules/rtai shm.o

95

Chapter 6 Applications

6 /sbin/insmod /lib/modules/'uname -r'/COMEDIDIR/comedi/comedi.o
7 /sbin/insmod /lib/modules/'uname -
8 r'/COMEDIDIR/kcomedi/kcomedilib.o
9 /sbin/insmod /lib/modules/ ' uname -r ' /C0MEDIDIR/drivers/multiq3.o
10 /sbin/insmod /lib/modules/'uname -r'/COMEDIDIR/drivers/ad512.o
11 /usr/sbin/comedi_Gonfig /dev/comediO multiqS 0x320, 5
12 /usr/sbin/comedi_config /dev/comedi1 ad512 0x300
13 /sbin/insmod ./rtai_comedi_lxrt.o

“COMEDIDIR” is the directory name in which comedi is installed. Lines 2 to 5 are

required to insert RTAI module, lines 6-9 insert the COMEDI library and drivers into

the kernel, lines 10 and 11 the two data acquisition boards, and line 12 links the

RTAI and COMEDI installation.

rem:
1 sync
2 /sbin/rmmod rtai_comedi_lxrt
3 /sbin/rmmod ad512
4 /sbin/rmmod multiq3
5 /sbin/rmmod kcomedilib
6 /sbin/rmmod comedi
7 /sbin/rmmod rtai_shm
8 /sbin/rmmod rtai„lxrt
9 /sbin/rmmod rtai_sched

10 /sbin/rmmod rtai
11 sync

There commands are used to do the cleaning up job when the application finished,

remove all the modules from the kernel.

To run the process, do the following in comedi_lxit directory in sequence after

.'/f!

Chapter 6 Applications

compilation:

./run

./mainpro

./mailboxpro (run this in another window in order to run at the same time as mainpro)

./rem (tidy up when programs finished)

6.1.5 Result

The system failed to perform well with the values of and obtained in

Chapter 6.1.3. Thereby the system was adjusted manually and it gave a decent

performance, the final values are = 0.025, = -0.007 .

6.2 A SISO PID Control Application with GUI

6.2.1 Description

The control plant in this application is completely same as that was used in Chapter

6.1. The only difference is in this section control is achieved through RTLab and a

graphic user interface is provided, and this gives a better observability and

maneuverability.

6.2.2 Mathematical M odel

As discussed in Chapter 6.1.2, the mathematical model for this application is;

97

Chapter 6 Applications

<9(5) _________ 1_________

V„is) ~ ^(0 .0026j + 0.1081)

6.2.3 Control System Design

Considering the effects of the clearance characteristic between gears, dead zone dry

friction characteristic, saturation characteristic of the amplifier, and nonlinear error in

the conversion between Analogue signal and digital signal in practical use, it is

relatively difficult to acquire the controller parameters simply by computation. In real

control experiment a traditional PID controller ([1], [15], [16]) is used to get an

acceptable degree of error reduction simultaneously with acceptable stability and

damping;

v , „ = K ^ { e „ - e) + ~ \ (e - e M t + K , ^ (6.i3>

Substitute u for , y for 0\

u = s) + K̂ ̂ ■ s) -e (6.14)

e EiTor. Equals u-w.

u Control variable (output voltage)

w Desired voltage value

y Read-in value from analogue input

98

Chapter 6 Applications

Substitute K for 7), for K ,̂, 7] for K., and introduce for filtering, then:

u = K { w - y) + ul{\ + sT.) - sTj j{\ + sTj) y (6.15)

The system response is affected by the combination of four coefficients— A7, 7|., 7],,

and Tj . By increasing K faster responses can be achieved but the response may

become more oscillatory and lead to instability. The introduction of Td and T f brings

a stabilizing effect to the system. Theoretically Tf is equal to 0 however in practical

use it is needed to balance the physical effect. By adjusting Ti the overshoot and

decay ratio can by diminished.

Following parameters are chosen after being adjusted in virtual plant:

Tf = 15

T. =0.12

T, = 0.03

7} =0.1

This is tested in the virtual system through SIMULINK. Figure 6.1 is the simulation

system in SIMULINK; SRV-3 is the block which is connected to the virtual motor

servo equipment. The input to this block will be sent to the motor servo equipment

and the output of the motor servo will be feedback to the Matlab workspace via

99

'

:
-,

i

Chapter 6 Applications

“theta” and “theta dot” outputs in the block. The transfer function o f the system is

shown on the bottom o f the diagram.

pto E * View Jmialion Fgrmtl l o o k Help

Ü Qg H @ m * m 3

(3—►

l i . o . «. 8. B. 8 8, 10] p 0. 3. 3.0.0; 3 3 0

im r

Figure 6.1: Testing module in SIMULINK

The outputs o f the system can be observed in the scope block. The output after

filtering, angle velocity output o f the real equipment, angle output o f the real

equipment, output after simulation, and the original input are compared with each

other in the scope block.

100

Chapter 6 Applications

rm C« »HMan (V»n« To*
II'D j tf B ! > >tT « a| » . I R

 f T ’Wm»~

Figure 6.2; Servo03 module in SIMULINK

SRV-3 block is provided with rotary servo plant SRV-03 which is used in this project.

A D 512 data acquisition card is used as adapter in the system.

When a square wave signal is used as input, the counterpart outputs in “scope2”

block in Figure 6.1 w ill be:

101

Chapter 6 Applications

ÔÜj lPPPi A S S 0 f

Figure 6.3: Outputs of testing module in SIMULINK

6.2,4 Real Time Control Program in Linux

A s mentioned above, a real time control program in Linux resides in the form o f

RTLab plugin, and it can be detected automatically when all o f the 4 files—

PluginNam e.c (where the major do_control part resides), PluginNam e.cpp (graphical

interface program), PluginNam e.h (shared memory declaration), and PluginN am e

_private.h (plugin widget declaration) are placed in plugin directory properly.

For this application, the corresponding files are piddxy.c, piddxy.cpp, piddxy.h, and

102

Chapter 6 Applications

piddxy_private.h. Following are the block diagrams for each file, the major part as

control algorithm and graphical interface layout setting will be introduced in details

separately later:

piddxy.h:

CalBback frequenucy aiud voltage
scale setting

i
Shared jixemorj'̂ definition.

piddxy_pr i vate.h :

Figure 6.4: Block diagram of piddxy.h

Piddj^ QTiiidget declaration (Declared as pubHc Qtvidget and plugin)

Figure 6.5: Block diagram of piddxy„private.h

103

Chapter 6 Applications

p iddxy.c:

[Module name and description
declarations

I

Module initO function definition

1
Module cleanupO function
definition

i
Shared memory structure
definition

i
Process read function definition

i
Control algorithm—do controlO
function

piddxy.cpp:

Figure 6.6: Block diagram of piddxy.c

104

Chapter 6 Applications

Plugin information.—name,
descr^üon, flag!...

i
Plugin entiy function

i
piddxy Widget structure
definition

i
Definitions of each element in
piddxy Q Widget

Figure 6.7: Block diagram of piddxy.cpp

Pseudo code of do_control() function(in piddxy.c):

/ * *

* This plugin does the following:
*

* A Proportional + integral + derivative controller
* Kernel code:
* 1. Generates different waves with the counterpart periods and

amplitudes.
* 2. Reads ADC channel shm->ai_chan and calls the voltage 'y'.
* 3. Computes u = k*(w-y) + u/(l+sTi) - sTd/(l+sTf) y .
* 4. Writes u to DAC channel shm~>ao_chan.

* GUI (piddxy.cpp):
* Simple GUI to change parameters on-line

105

Chapter 6 Applications

constants
Define module initialisation function
Define module cleanup function
Define shared memory initialisation function
static void do_control (MultiSampleStruct * m)
{

constants
Declare phase length, sampling rate, and amplitude of Square wave.

Check if the plugin is ready to run

Check the operation wish to perform, input wave type selection :
0—Fixed position, designated through graphical interface.
1— Square wave, amplitude and frequency are designated through
graphical interface.
2—waves from signal generator, modify wave parameter via adjusting
signal generator

If (the input is a square wave
Get the phase length and frequency of the wave
Compute the desired voltage value

}

Else if (the input is signal from signal generator){
Sample from signal generator

Check if the input voltage is in the valid range
}

else{
Check if the input voltage is in the valid range
Input signal is a fixed value in relation to the angular position
of the motor servo
}

Read input voltage value from analog input channel

Check if AI monitoring is off or the channel they want to monitor

106

Chapter 6 Applications

is not found

Get error value through dividing desired voltage value by input
voltage value

Compute control. Get angular position and angular velocity of motor
servo

Filtering

Clip

Optionally echo desired voltage value back to an AI channel for the
UI

Echo angle velocity back to channel 2 so that it can be observed
in Graphical interface.
Output control signal

Save output
}

The do_control function is the main part of .c file. In this function, data is read

from the DAQ boai'd, and calculated as certain algorithm, then sent back to the DAQ

board. There are three options for setpoints available in this program, 0— fixed

position, 1— square wave, and 2— waves from signal generator. For the first and the

second option, the detailed values for setpoints may be given via graphical interface,

and for the third option, these values are set through the signal generator. The user is

able to echo any value back to whichever channel for observation by calling

rtlab_get_sample_by„chan (ChannelNumber, Value) inside the do_control {)

107

Chapter 6 Applications

function in .c file.

Graphical interface layout setting (in p iddxy.cpp):

Plugin name, description and entry function declaration
extern "C" {

Declare some stuff needed by plugin engine, these symbols are read
by libdl/dlsym()*/

ds_plugin_ver is DS„PLUGIN_VER

Flag is Plugin:: RequiresRTLab

Plugin name is PLUGIN_NAME

Plugin description is
"A Proportional + integral + derivative controller\n"
"Kernel code:\n"
" 1- Generates different waves with the counterpart periods and

amplitudes.\n"
" 2. Reads ADC channel shm->ai_chan and calls the voltage 'y'.\n"
" 3. Computes u = k*(w-y) + u/{l+sTi) - sTd/(l+sTf) y.\n"
" 4. Writes u to DAC channel shm->ao_chan.\n"
"\n\n"
"GUI (piddxy.cpp):"
" Simple GUI to change square wave and PID parameters on-line",
* author = "Xiaoyu Duan",
* requires =

"piddxy.o be loaded into the kernel. P+I+D control";

Plugin * entry(QObject *o)
{

/* This is a top-level widget, and the parent is root */

Issue warning message if plugin loading failed.

Show the widget

108

Chapter 6 Applications

};

Store some widgets that we need pointers to for
(dis)connectSignals() and updateStats()
struct PiddxyWidgets

{
Declare all the elements needed in this plugin

} ;

/* Plugin constructor */
Piddxy: :Piddxy(DAQSystem *d)

: QWidget(d, PLUGIN_NAME, Q t : :WType„TopLevel) , ds(d)
{
Attach to shared memory

Declare new plugin widget

Build GUI

Connect Signals

Set caption name
)

/* Plugin destructor */
Piddxy::-Piddxy()
{

Set wave„on to 0

Set wave_type to -1

Set channel number for signal generator to -1

Detach shared memory

Delete plugin widget; just delete the struct, not the actual widget
}

Return plugin name

109

Chapter 6 Applications

Return plugin description

/* Setting up the main layout */
void Piddxy::buildGUI()
{

Create new layout

Create shared memory controller constant

Get number of analogue input channels

Add AO Channel QLabel to the main layout

Add AI Channel QLabel and QComboBox to the main layout

Add wave type QLabel and QComboBox to the main layout

Add wave period QLabel and QSpinBox to the main layout

Add wave amplitude QLabel and QLineEdit to the main layout

Add K value QLabel and QLineEdit to the main layout

Add Td value QLabel and QLineEdit to the main layout

Add Tf value QLabel and QLineEdit to the main layout

Add maximum voltage QLabel and QLineEdit to the main layout

Add minimum voltage QLabel and QLineEdit to the main layout

Add Echo output wave to DAQSystem AI chan QLabel to the main layout

Add wave on QcheckBox to the main layout

Add input channel number for signal generator QLabel and QcomboBox
to the main layout

Set text in each element
}

110

Chapter 6 Applications

/* Connect signals with slots */
void Piddxy::connectSignals()
{

Connect each signal to the counterpart slot
}

/ ■

Slots below set parameters in the shared memory region for
notifying the

real-time process

 */

SetAIChannel slot declaration

SetWaveType slot declaration

SetGene slot declaration

SetAngle slot declaration

SetPeriod slot declaration

SetAmplitude slot declaration

SetK slot declaration

SetTi slot declaration

SetTd slot declaration

SetTf slot declaration

SetU_max slot declaration

SetU_min slot declaration

SetAIEcho slot declaration

SetAO slot declaration

111

Chapter 6 Applications

This program is broken down into several parts: entry (QObject *o) is the entry to

the plugin, the widget is displayed by calling show () in this function.

Piddxy: : Piddxy (DAQSystem *d) and Piddxy: :-Piddxy (} are the constructor and

the destructor of the widget which constructs and destroys the widget.

Piddxy::buildGUI0, Piddxy::connectSignals() , and the Other

Piddxy: :set*(int c) functions are all the elements of the constructor. The main

layout of the graphical interface are built up in Piddxy: :buildGUi () and the

parameters in the shared memory are set by Piddxy:: set* slots.

Piddxy: : connectSignals () is in charge of connecting the slots with the signals

generated by the operations on the graphical interface.

6.2.5 Custom Graph in Plugin Graphical Interface

In order to make the screen output more straightforward for observation when

controlling the angular velocity, a custom graph was added into the window for plugin

settings (Figure 6.10) in which both the graph of the angular position of motor servo

and a numerical text aie displayed (in real time). The graph will show the servo

angular position as it changes and the cunent angular position of the motor servo will

be displayed in the graph (Figure 6.8). The graph refreshes every 50 millisecond in

this project and the user can set it to any kind of desired time interval by changing the

corresponding code in the program.

112

Chapter 6 Applications

Figure 6.8 Custom window in RTLab plugin

To do this, the following code needs to be added:

In _private.h file:

In Peon widget class declaration, add “void setAng(void);” in “private slots”, and

“Qtimer * AngTimer;” in “private”.

Then declare widget class for motor servo:

1 Class ServoField : public Qwidget
2 {
3 Q„OBJECT
4 public:
5 ServoField(Qwidget *parent=0, const char *name=0
6
7 /*QsizePolicy sizePlolicy() const; */
8
9 public slots:

10
11 private slots:
12 void refreshO; /* Use to refresh widget */
13

1 1 3

Chapter 6 Applications

refreshO is used to refresh the graph, it is connected to a timer— RefreshTimer which

makes sure that the time refreshes the window each time when it times out. hi peon

widget, AngChangeO and AngTimer are used to renew the value of global variable

ang.

In .cpp file:

1 Piddxy::buildGUI()
2 {

4 int n„ai_chan (ComediSubDevice: :Analoglnput), i;
5
6 AngTimer = new Qtimer (this, "ang changing handler");
7 AngTimer~>start(50) ;

9 }
10
11 void Piddxy::connectSignals()
12 {
13
14 connect(Widgets->wave_on, SLOT{setAo{bool)));
15
16 connect (AngTimer, SIGNAL(timeout()), this, SLOT(setAng()));
17 }

114

14 signals: If
15 I
16 protected: k
17 void paintEvent(QpaintEvent *); rt
18 I
19 private:
20 QRect servoRect {) const; /* return motor servo rectangle * / - ' I

21 QTimer * RefreshTimer; :;|
22) ;

Chapter 6 Applications

18
19 ServoField::ServoField{ QWidget *parent, const char *name)
20 : QWidget(parent, name)
21 {
22 setMinimumSize(200, 200);
23 setMaximumSize(200, 200);
24
25 RefreshTimer = new QTimer{ this, "Graphic refreshing handler");
26 connect(RefreshTimer, SIGNAL(timeout()),
27 this, SLOT(refresh())); / * connect refresh slot to time
28 out signal */
29 RefreshTimer->start(50); /* unit in millisecond */
30
31 /* setPalette(QPalette(QColour(250, 250, 200)));*/ /* set
32 background colour here, or ignore it to use default colour */
33 }
34
35 void Piddxy::setAng(void)
36 {
37 ang - shm->angle ;
38 }
39
40 void ServoField::refresh()
41 {
42 QRegion r (servoRect());
43 QRect ServoR = servoRect();
44 r = r.unite(QRegion(ServoR)); /* "unit" returns the bounding
45 rectangle */
46 repaint(r);
47 }
48
49 void ServoField::paintEvent(QPaintEvent *)
50 {
51 QRect cr = servoRect{);
52 QString s = "Theta = " + QString::number(ang);
53
54 QPixmap pix(cr.sizeO); /* create pixmap */
55 pix.fill(this, cr.topLeftO);
56
57 QPainter p (&pix);
58

1 1 5

Chapter 6 Applications

59 p.setBrush(white); / * set brush */
60
61 QPen pn=p.pen(); /* set pen */
62 p n .setWidth(2);
63 p n .setColor(black);
64 p.setPen(pn);
65
66 p.translate(100, pix.height()/2); /* move coordinate */
67 p.drawRect(QRect(-100,-100, 200, 200)); /* draw rectangle */
68 p .drawArc(QRect(-100, -100, 200, 200), 0, 360*16); /* draw arc
69 */
70 p.rotate(ang); /* rotate coordinate */
71 p .drawLine(0, 0, 0, 100); /* draw line */
72 p.end();
73
74 p.begin(this); /* draw pixmap */
75 p . drawPixmap (cr.topLeftO, pix) ;
76
77 p.drawText(100,150, s); /* draw text */
78 }
79 QRect ServoField::servoRect() const
80 {
81 QRect r (0, 0, 200, 200) ;
82 r.moveBottomLeft(rect() .bottomLeft{)) ;
83 return r ;
84)

At first we declare and start a Qtimer called AngTimer, which restarts timer after

every 50 milliseconds. Connect this timer with a setAng slot in which the value of

shm->angle is passed to a global variable ang. The content of setAng will be executed

each time when the time times out.

The next is the constructor of the custom widget called ServoField. The maximum

and the minimum size are set here, and they are of the same value here which means

116

Chapter 6 Applications

the size of this widget is not changeable.

hi refreshO slot it repaints the rectangular region of ServoField. In paintEvent(), a

numerical text is declared first, it shows the angular position of the motor servo in the

form of number, then a pixmap is created where the profile of motor servo is drawn.

We can also draw it directly here rather than via a pixmap however a pixmap is useful

for reducing flickering, this makes the graph looks smoother.

Lines 55 to 84 are fairly straightforward: fill the pixmap with widget background, set

brush colour, set pen, place the coordinate origin in the centre of motor servo

rectangle, and draw this rectangle, draw arc, draw line, then display the pixmap. In the

last section the motor servo rectangle is defined.

One thing to be noted is that the Qtime used to refresh the pixmap must have a

relatively longer period than that of the timer used to renew the value of ang, this

ensures the pixmap is drawn each time the value of ang is refreshed.

6.2.6 Results

The module is inserted into kernel by loading it in the plugin menu window within

RTLab (Figure 6.9) and the parameters are set in the plugin window (Figure 6.10):

117

Chapter 6 Applications

All S canne
Plugin Name

BBUiWJMBBCaû
Proportional + Integral + Derivative Controlle [t
Proportional + Integral Controller
Proportional + Integral Controller for different!
Proportional Controller

Q M m ,ilatA r
X

Plugin Name: Proportional + Integral +
Derivative Controller for different waves
(piddxy .so)
Filename: /fiome/xduan/
rtlab_exp_lk-0.65.2/piddxy.so
Related Kernel Module:
r> e < » rrin H n n - A P m n n rM n n a l 4- in tp n ra l +

Load Selected I Unload selected

to monitor:

erlod (ms);

mplltude (volts):

0 = no derivative):
) = no dertv. filter):

Square Wave -, 0
|2000 4
|2
|15

It wave to DAQSystem Al chan: 1
output enabled
Channel to monitor:

|0.12

[0.03
lo.i

R

*
5V
OV

2017.0 sec,
Spke Threshold:

2018.0 sei
- V L ast S oke

Theta = -70

Off

Sampling Rate: 1000 Hz Scan lnde>

ip; S - 1

Figure 6.9 Load plugin module in RTLab

AO Channel:
Al Channel to monitor:
S e t point:
Sq. wave period (ms):
Sq wave amplitude (volts):
■’K' value:
T r value:

jTd" value (0 = no derivative):

Trr value (0 = no derlv. filter):
fu_max’;

'u_mln':
Echo output wave to DAQSystem Al chan: 1
>£ Analog output enabled

mam

Square Wave

2000_

15

0.12

0.03

Spke Blanking (ms): »

I sec.
BPM(

1806.0 sec.
- hz or - m s/spkêï

-5

iSlg_gene Channel to monitor:

Theta = 70,/f

Off
1806.0 sec. i

BPM(-h z o r -m s/spke) 1

sec. 1806.0 sec.
BPM (- hz or MTts/spkejj

u s e ’pos: 1795.5~sec, 4.516 V
let’.'A4 s q

Figure 6.10 Piddxy plugin window

118

Chapter 6 Applications

The graph at bottom left corner is the custom graph window introduced in Chapter

6.2.5. It shows the current angular position of the motor servo SRV02 both in the

form of graph and numeral (theta). The period, amplitude, voltage range, channels,

and the controller parameters are set in the plugin window.

There are three selections for setpoints available in this application: fixed position,

which can be set by entering value in the box at right hand side of the setpoint type

box, square wave, and any wave type generated by the signal generator.

0 ■> y
Fixed PoWon
Square Wave 1 ^ 0

From Signal Generator|-$l

Figure 6.11 Setpoints available in piddxy plugin

The following graphs show the control results of this SISO application when a

square wave is selected as the set point:

119

Chapter 6 Applications

lâ.
Elle Log Channels Wkidow Help

3
Ch 1 Qo I Change Scale: -5V - 5V y | Secs. Vistblejs |}| Spke 'Polarity': +_. 1 Spke Blanking (ms): :

1627.0 sec. 1628.0 sec. 1824.0 sec. 1625.0 sec. 1626.0 sec.
S pke Threshold: - V Last S p k e V at -iS pkeF req: -B PM (-h z o r - nis/spke^

1627.0 sec. 1628.0 sec, 1624.0 sec. 1625.0 sec. 1626.0 sec.
Spke Thresholdr” - V Last S pke % 'V 'a r ' - j S ^ e Freq: - BPM (’ - hz or - ms^spKeiJ

1628.0 sec. .0 sec. 1625.0 sec 1626.0 sec.1627.0 sec.
fSp<e threshold: - V Last S pke ' " - V a T — ^ " ^ j S p k ë T r ê ^ ' - BPM (Z hz 'w '

[mMÉ̂:<mjBÈÊÊÊtÊÊÊÊÊmÊÊÊÊÊÊmÊÊÊÊÊÊÊÊÊÊÊmÊÊÊÊÊÊÊÊÊÊm
{Sampling Raté: 1000 Hz Scan index 1682903 Sârripié FIFO is 15% fuN Mouse pds: 1624.0 sec, 3 387 V

Figure 6.12 Control results of a square wave

Channel 0 is the A l channel to monitor and it can be set to whichever channel by

selecting in the plugin w indow (Figure 6.10). The graph in this channel shows the

angular position o f the motor servo. A s (-5, 5) is used for the scale o f all channels in

RTLab, the scale for angular position is also converted into this range. The original

scale is (-176 deg, 176 deg). Channel 1 is the wave o f desired voltage value, saying

setpoint. Channel 2 is the angular velocity o f the motor servo, it can be acquired either

by differentiating the angular position or by reading from encoder subdevice instead

o f analog output device directly, the original range is (-880 deg/s, 880 deg/s).

Follow ing are the enlarged graphs for each channel:

120

Chapter 6 Applications

s a .
* File Log Channels Window

.........
Ch 0 QQ I Change Scale: -5V - 5V ^ j Secs

5V

Help 1.1*1

^ Spke'Polarity': i S pke Blanking (ms): »

1907.0 sec. 1903.0 sec. 1904.0 sec. 1905.0 sec. 1906.0 sec.
S pke Thiréshoicir : V Last Spke - V a t" - -Spike Friq: - BPM'(-Tiz'or -1rns/spke)
Sampibig Rate: lOOO Hz S ^ Index i944505[Sample FIFO is 27% fuH M ouse' 1904.9 sec. 4.974 V

Figure 6.13 Angular position of motor servo SRV02 (theta)

The gains are implemented in the controller running at 2000Hz. The response of the

system is shown in Figure 6.13. Compared with the corresponding graph in Figure 6.3

(second top), this result provides a shorter settling time and a smaller overshoot

apparently, and the system response matches the design closely.

121

Chapter 6 Applications

Elle Log Channels Window Help .rJii.*)

C h i QQ f Change Scale: -5V- 5V -> |ISecs. VlsiblejS R Spke'Polarity': + _j, Spke Blanking (ms): »

1937.0 sec. 1938.0 sec. 1939.0 sec. 1940.0 sec. 1941.0 sec.
Spke Threshold: - V C ast Spke V at - 'Spke FreqT - BPM (- hï~or -Ins/spke)
Sampling Rate: 1000 Hz Scan index 1944505 Sample FIFO is 27% full.Motie pos: i 935.8 sec, 4.844 V

% S- ‘j- '* \ . X- . X X-.- X X -. X X- • t , 0 .. i* DM % Pr X Th

Figure 6.14 Setpoint (square wave)

*■ Eile Log Channels Window

 ̂
;|Ch 2 0 0 [: Change Scale: -5V- 5V Secs. Vlsiblejs Spke 'PolariV: L .

Help

S pke Blanking (ms): »

— ^ \f'

-5V
1967.0 sec. 1963.0 sec. 1964.0 sec. 1965.0 sec.

Spke ThmshdW: - V fa sfS ^ lk e :V at -iSpke Freq:........: BPM |
1966.0 sec.

hz or TTns/spke)
jSam f^ig 'Pate: 1000 Hz ;Scan Index 1997548 l^afnpe F lFd is 32% tuiliMoüsë*po8; 1964.8 sec, 4.688 V

Figure 6.15 Angular velocity of motor servo SRV02

122

Chapter 6 Applications

According to the graphs it is observed that this controller gives a decent loop

performance and settling time.

6.3 A SIMO PID Control Application with GUI

6.3.1 Description

As introduced in Chapter 4, this control application involves positioning the flexible

link to a set point using a output feedback controller to damp out the vibration at the

tip of the link as quickly as possible with minimal vibrations ([34]). The objectives of

this project are:

• To obtain a transfer function model for the Flexible Link module.

• To design a FID controller that damps out the vibrations at the tip of the beam.

The Flexgage module consists of a stainless steel link instrumented with a straingage,

the straingage is calibrated to give 1 volt per inch of the deflection at the tip.

6.3.2 Mathematical Model

6.3.2.1 Servomotor Model

123

Chapter 6 Applications

The servomotor in this control project is the same as in motor servo control project,

and all of the parameters are identical,

6.3.2.2 Flexible Link Model

The parameters of the flexible module are defined as follows ([20]);

0 Servo gear angular displacement

0) Servo gear angular velocity

a Link angular deflection

V Link angular velocity

P Total deflection { p =

L Flexible link length (L =19 inches =0.4826 m)

D End point arc length deflection { D = oL)

m Mass of flexible link (m =65gm)

Jjjnij Link’s moment of inertia (J k g

COfl Link’s damped natural frequency

Link’s stiffness (~ hub ~ ^ ' Wm / r a d)

^Gagc Straingage calibration factor (1 Volt/inch)

Out put torque

Beq Equivalent viscous friction refeiTed to the secondary gear

124

Chapter 6 Applications

Armature inertia

Jeg Equivalent inertia seen at the output of the gearbox

'Hmr Motor efficiency due to rotational loss ~ 0.87

'tlgiy Gearbox efficiency 'Hgb ~ 0.85

V = V,„r ■ Vsb = 0.7395

y Input voltage

Jhul

Figure 6.16: A schematic picture of the flexible link

If y is the link’s moment of inertia, the torque due to the link acceleration is:

(6 .16)

125

Chapter 6 Applications

The link torque due to torsional spring stiffness is assumed to be proportional

to the link’s deflection a.

The servomotor output torque in addition to overcoming the inertia torque due to

and frictional torque, it is assumed to overcome the torque due to link’s

acceleration, then,

^ 7 (AH' v) = Tg (6.17)

Then,

V. (6.18)
J., '

And

■ _ _ riKlK] 7]K„,K̂
V — -------------- 6 c -------------— -------------------- 0) --------------------

eq hub eq ̂a eq^ a

6.3,3 Control System Design—PID Controller

The block diagram for the entire system;

(6.19)

126

Chapter 6 Applications

P a

PID ControU er

Figure 6.17: Block diagram for the entire system

Different from the SISO application discussed in Chapter 6.2, we have two outputs

in Flexible link model project— the angular position output of motor servo (0) and the

displacement output of the straingage tip (a). Taking into account the relationship

between these two outputs, Sum of these two outputs (p) is used as the control

variable, and almost all the other parts are kept the same.

The controller is the same;

u = K { w - y) + ul{\ + sTf)-sT^I{\ + sT j)y (6 .20)

u Control variable (output voltage).

w Desired value (The desired position of tip)

y Actual position of the tip (alpha + theta)

127

Chapter 6 Applications

The system response is affected by the combination of four coefficients— K

and Tj , then the following value are obtained after adjusting:

K ^ 2

7;. = 0 .2

T, = 0.05

Tj =0

6,3.4 Real Time Control Program in Linux

Same as the SISO application discussed in Chapter 6.2, the control programs for this

plugin include 4 files: pidstrain_gage.c, pidstrain_gage.cpp, pidstrain_gage.h, and

pidstrain_gage_private.h. The programs for these two applications are similar and the

main difference is the control algorithm. In this application, the control variable is the

sum of both of the two feedback variables so that the corresponding part in

do_controi {) function in pidstrain_gage.c will be:

1 static void do_control (MultiSampleStruct * m)
2 {
3
4 if (!sample) y = 0; /* AI monitoring is off
5 OR the channel they want to monitor
6 is not found, so ignore vAI term.. */
7 else y = sample->data; /* sample is not NULL, use vAI term.. */
8
9 theta=y/s_ser; /* convert voltage to degree. */
10 shm->feedback_angle = theta; /* this value will be showed in the

128

Chapter 6 Applications

11 custom window */
12
13 betaDesired = vDesired/s_ser;
14
15 sample = rtlab_get_sample_by_chan (shm->Displacement„inp__channel,
16 m) ;
17 if (1 sample) alpha = 0;
18 else alpha = 8ample->data/(s_gag*L);
19 beta = theta + alpha;
20
21 e = betaDesired-beta;
22 /** Compute control */
23 u = shm->k*e + u_f;
24
25
26 /** Now, optionally echo it BACK to an Al channel for the UI */
27 sample = rtlab_get__sample_by_chan(shm->echo„to„ai, m);
28 if (sample) sample->data = vDesired;
29
30 sample = rtlab„get„sample_by_chan(2, m) ;
31 if (sample) sample->data = vel;
32
33 sample = rtlab„get_sample„by_chan(3, m) ;
34 if (sample) sample->data = beta*5/176;
35
36 rtlab_data_write (ScCtx, u) ;
37
38 y_old = y; /* Save output */
39 }

Lines 4 to 18 get the voltage values from two of the analog input chamiels and

convert the unit into degrees. Lines 21 to 23 compute the control. Lines 27 to 34 echo

the values to different channels for observation.

In terms of graphical interface, one more element has been added into the main

widget so that the user is able to select the analog input channel to get the feedback of

129

Chapter 6 Applications

the displacement at the tip of the straingage.

void Pidstrain_gage::buildGUI{}

layout->addWidget(new QLabel("Displacement input Channel to

widgets->Displacement__inp„channel = new QCojntiboBox {this,
DISPLACEMENT_INP Chan CBox");

widgets->Displacement_inp_channel>insertItem(QString::number(i));
widgets->Displacement„inp_channel->insertItem("Off");
layout->addWidget(widgets->Displacement_inp_channel, 14, 1);

6,3.5 Results

Following is the plugin window of this application:

130

Chapter 6 Applications

AO Channel: 0
Al Channel to monitor; 0 □ l
S et point: Square Wave
Sq. wave period (ms): 2000
Sq. wave amplitude (volts): 1

’K’ value: 2
’Tr value: 0.2
Tcf value (0 « no derivative): 0.05
T f value (0 = no derlv. filter): 0
’u_max’: 5
’u_mln’: -5
Echo output wave to DAQSystem Al chan: 1
W- Analog output enabled
SIg gene Channel to monitor; Off -J
Displacement Input Channel to monitor: 5 -J

J2âi
Help

" a irlty’: + _ j S pke Blanking (ms);fl j

) 0 sec. 165971.0 sec.
BPM (- hz or - ms/spke) |

0 sec. 165971.0 sec.
BPM (- hz or' tm ^ s p k e)

0 sec. 165971.0 sec.
BPM (- ’hYor " - ms/spke)

louse pos: 165960,9 sec, 2.581 V

Figure 6.18 Plugin window of pidstrain_gage

a m
HelpElle Log Channels iùtindow

:i9 ^ o a |
Ch 2 qdJ Change Scale: -5V - 5V | i Secs. Visible^ ^ Spke ’Polarity’: + _ j S pke Blanking (ms):[i

165982.0 sec. 165983.0 sec. 165984 .0 sec. 165980.0 sec
Spke Threshold: -V Last S pke - V at - SpkeFreq : - BPM |

165981.0 sec.
hz or - ms/sp>ke) j

165982.0 sec. 165983.0 sec. 165984.0 sec. 165980 0 sec.
Spke Threshed:------ : V|Lâst S pke ~ V at -.Spke Freq!-- 6PM {

165981.0 sec.
hz or - m s/spke) j

165982.0 sec. 185983.0 sec. 165984.0 sec. 165980 0 sec. 16598 i.O sec. 1
Spke Threshold; V la s t S pke - V at -.Spke Freq: - BPM (- hz or - m s /^ k e) 1

lllli l li ll llH r iljll '« ’fh 'M B

Sampling Rate: 1000 H zjScai Index 165993922 Sample FIFO is 13% full Mouse pos: 165978.6 sec, 4.032 V

e ‘Î X X X X X

Figure 6.19 Control results of a square wave (1)

131

Chapter 6 Applications

Same as the channels in Figure 6.12, when the voltage changes as a square wave,

channel 0 is the AI channel to monitor and it can be set to whichever channel by

selecting in the plugin window (Figure 6.18). The graph in this channel show s the

angular position o f the motor servo. Its original range is (-176 deg, 176 deg). Channel

1 is the setpoint, and Channel 2 is the angular velocity o f the motor servo. Its original

range is (-880 deg/s, 880 deg/s).

Elle Log Channels Jû l̂ndow

C h 3 QQ I, Change Scale: -5V- 5V j : Secs, Vlslble[5 | | Spke'Polarity': +_

tlelf

S pke Blanking (ms):[*l >

166192,0 sec. 166193.0 sec, 166194.0 sec. 166190.0 sec.
Spke Threshold." -V Last S pke /V at F req :"" -B PM (

1661£1_j0 sec.
hz or -’ma/spke) :

Spke Threshold; - V l a s t Spke - V at hz or - ms/spke)

166192.0 sec. 166193.0 sec , 168194.0 sec. 166190.0 sec.
S pke Threshold: V l û t Spke - - y

g T '
5V
OV
-5V

1 6 6 1^ .0 sec.
'hz'or'" T 'it«/epke) I

166192.0 sec. 166193.0 sec. 166194.0 sec. 166190.0 sec,
C n L a th r o c K ^ lH - . \ l a c t C n k a . \ / o T ----------------- I K K K P S T - ; ' R ! « Î 7 ' " -
Sampling Rate: 1000 Hz Scan Index 166243T25ISample FIFO Is 46% fiill Mouse pos:

1661910 sec. _ H
h*? n r - mc/e*rvi^oi
166192.0 sec, -3.226 V

Figure 6.20 Control results of a square wave (2)

Channel 3 is the relative angular tip position o f the straingage to the w hole plant

system . Its original range is (-176 deg, 176 deg). Channel 5 is the displacem ent o f the

tip, original range (-5 inch, 5 inch), or (-12.7cm , 12.7cm).

132

Chapter 6 Applications

Following are the enlarged graphs for each channel:

j m
Help T i3 j»*• Eil® Log Channels Window

 '
Ch 0 Qo ji C hange Scale: -5V- 5V Secs. VIslblefs | | | Spke 'Polarity': + _ f S pke Blanking (m s):j 1 j

166022.0 sec. 166023.0 sec. 166019.0 sec. 166020.0 sec. 166021.0 sec.
Spke Threshold: ” - V [Last Spke - V a t - fSpike Freq: - BPM (..... - hz'or '^"rh^spke)
Sampling Rate: 1000 H z} 8 cû lridÛ '166023421 i^ w ip e FIFO is 18% ftjlliM ciûsëpôsr166020.6 s e c 2.688 V

% S.- i X X X X X

Figure 6.21 Angular position of motor servo SRV02 (theta)

133

Chapter 6 Applications

Elle Log Channels Window Help *

}j: S pke Blanking (ms)C h i nn Change Scale: -5V- 5V j 1 Secs. Vlstoiejs 5 Spke'Polarity

166042.0 sec. 166043.0 sec. 168044.0 sec. 166045.0 sec. 186046.0 sec.
Spke Threshold: - VjLast Spke - V at -iSpke Freq:" - BPM (- hz or ' -m s/spke)

Sampling Rate; 1000 Hz|Scan Index 166060736 Sample FIFO Is 23% full Mouse pos: 166044.2 sec. 4.896 V

Figure 6.22 Setpoint (square wave)

mm
*• Elle Log Channels Window Help zLsjj?

Ch 2 QQ ji Change Scale: -5V - 5V ..< { Secs. VIslblejs ^ Spke ’Polarity’: + „ p S pke Blanking (m s)f i >

5vj

I I if A ' \ ’'^vV/r>

-5 V ______ ________ ____________________________________
166087.0 sec. 166083.0 sec. 166084 0 sec. 1%085.0 sec. 1660868 sec.

Spke Threshold:........- VfLast S pke - V at ' -iS pke Freq: :B PM '(: hz * -' m s/spke)
iSimpIng R ûè: 1600 HzlScan Index 166l08810SamipgT}FO Is 29% fu « ;M Ô ü i> p û r i6 ^ 5 .3 sec. 5.000V

X X X X

Figure 6.23 Angular velocity of motor servo SRV02

134

Chapter 6 Applications

mm
*■ Eile Log Channels Window Help .TÜ3J f

Ch 5 QQ I Change Scale: -5V - 5V j |: Secs. Visible] 5 ^ S p k e ’Polarity’: I S pke Blanking (m s) | la

5 V l

-5V
166112.0 sec. 166108.0 sec. 166109.0 sec. 166110.0 sec. 166111 0 sec.

Spke Threshold: -V 'L â itS p k ê : V a t - 'S p k e F riq l - B P M * (- T i z or -m s/spke)
S a m p k ^ R a te : 1000 HzjScan Index 166168780 Sample FIFO is 37% full Mouse pos:~166109.8 û c . 4.870 V

ke'.VW 1% S 1 '

Figure 6.24 Displacement of the tip of the straingage (alpha)

Jûâll
Elle Log Channels Window Help zlaJ.»

Ch 3 QO I Change Scale; -5V- 5V . j j; Secs. VIslblefs ^ S p k e ’Polarity’: + _ | S pke Blanking (m s)f i a

"5V l

166142,0 sec. 166138.0 sec. 166139.0 sec. 166140.0 sec. 166141.0 sec.
Spke Threshold: ■ - VfLa4t Spke^’~* '^V it'~ “ ' ^S f^eF req :"^" - BPM (- h T * ' - mi/Tpke)
SampWng Rate: 1000 H ziS c û l i ïd w 166168780] S a ^ ^ 1^37% full Mouse pos: 166139.3 sec, 5.000 V

Figure 6.25 Relative angular tip position to the whole system (theta+alpha)

135

Chapter 6 Applications

As the straingage is always vibrating when controlling therefore it is very difficult to

have a completely steady response for this system and as shown in above graphs, the

proposed controller gives an acceptable performance.

6.4 A SIMO LQR Control Application with GUI

6.4.1 Description

The control object is completely the same as that in Chapter 6.3, the only difference

is that the controller is designed by an optimal regulator—Linear Quadratic Regulator

(LQR) instead of traditional PID method. This introduces a better control result.

6.4.2 Mathematical Mode

This application addresses the problem of controlling a flexible link with a state

feedback controller ([20]). A state-space model:

x(t) = Ax{t) + Bu(t) (6.21)

y(t) = Cx(t) (6.22)

a:(/) = [0 a CO v]^ (6.23)

136

Chapter 6 Applications

r ' 1
9

a

CO

V

0
0

^ s t i f f eastif f V ecj

e q " ^ hub

e q ^ a

'^eq^a

"0
\9~ 0
a +
CO 3 cq^ a
V

3 cq^ a

V . (6.24)

After substituting system parameters then obtain the following linear model:

A =

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0
0.0 1059.1 -5 7 .6 0.0
0.0 -1463.4 57.6 0.0

B = [O.O 0.0 107.2 -1 0 7 .2 f

X = 9 a 6 a

6.4.3 Control System Design—LQR Controller

Lineal Quadratic Regulator (LQR) is a kind of controller which is designed by the

approach of optimal controller designing ([3]). In LQR control, the object is to

determine the optimal controller u{t) = -Kx{t) such that a given performance index

J = Qx + Ru)dt is minimized. This performance index is selected to give the

best performance. The balance which consists of the effects of each state variables

137

Chapter 6 Applications

and individual control inputs will change along with the change of elements Q and R.

For example, using an identity matrix Q for weights all the states equally, a diagonal

matrix Q = diag([260 3600 2 l]) and R = 1 are used here to calculate the optimal

feedback matrix K . These values were obtained after optimisation. In Matlab, this

can be achieved by using the function [&, S] = lqr2(A, B, Q, R) and it

minimizes the cost function J subject to the constraint defined by the state equation.

The design is performed using state feedback controller in the form of V - - k X , a

LQR controller is used and the resulting feedback gain is:

a: = [20.0 -130 .0 36 1.5]

The deflection in the tip of gage could be obtained by:

D 0.0254(m/volt)Vs(volt) . ̂ .
a — — = -------------------------------- in the unit of radians, where Vs is the input

^ Link

voltage from the sensor in the joint end of straingage and L_link is the length of the

link in metres.

Following is the test model in SIMULINK:

138

Chapter 6 Applications

Ek W Simiabon Fomnal Tgok

|Dic# B â:'*
i&ia

► • I t *

"Ç— □

□

□

100% r r ■

Figure 6.26: LQR control simulation model in SIMULINK

And the outputs:

Theta— The position o f motor servo (the upper scope in Figure 6.26):

139

Chapter 6 Applications

'/ iBela_s

Figure 6.27: Output of theta in LQR control

Beta— The position o f tip relative to whole plant (the central scope in Figure 6.26):

4 theta.»

Figure 6.28: Output of beta in LQR control

Alpha— The position o f tip relative to joint (The lower scope in Figure 6 .26)

140

Chapter 6 Applications

^ A #

Figure 6.29: Output of alpha in LQR control

6.4.4 Real Time Control Program in Linux

A different controller was adopted in this application therefore the major difference

between this project and previous application is the control algorithm. In

do_control () function in lqrstrain__gage.c:

static void do_control (MultiSamplestract * m)
{

/** Formula is u = v-kx
Status Feedback

* /

sample = rtlab_get_sample_by_chan(shm->ai_chan, m)

9
10
1 1
12
13

if (! sample) y = 0 ; /* AI monitoring is off
OR the channel they want to monitor
is not found, so ignore vAI term.. */

else y = sample->data; /* sample is not NULL, use vAI term.. */

141

Chapter 6 Applications

14 theta = y*D2R/s.ser;
15
16
17 sample = rtlab.get__sample_by_chan (shm->Displacement_inp.channel,
18 m) ;
19 if (! sample) alpha = 0; /* AI monitoring is off
20 OR the channel they want to monitor
21 is not found, so ignore vAI term., */
22 else alpha = sample->data*0.0254/L; /* Change unit from inch to
23 metre, then compute alpha */
24
25 shm->feedback.angle = (theta+alpha)*R2D;
26
27 /* Compute control */
28
29 u = (vDesired*D2R*shm~>kl/s_ser - (shm->kl*theta_f + shm-
30 >k2*alpha.f + shm->k3
31 *theta_fd + shm->k4*alpha_fd))*0.1 ;
32
33 /** Now, optionally echo it BACK to an AI channel for the UI */
34 sample = rtlab_get_sample_by_chan{shm->echo_to_ai, m) ;
35 if (sample) sample->data - vDesired;
36
37 sample = rtlab_get_sample_by.chan(2, m) ;
38 if (sample) sample->data = theta.fd;
39
40 sample = rtlab_get_sample.by.chan(3, m);
41 if (sample) sample->data = u;
42 rtlab_data_write(&ctx, u) ;
43 }

Lines 7 to 23 get the voltage values from two of the analog input channels and

convert the values into those in the unit of radians. Lines 29 to 31 compute the control.

Lines 34 to 41 echo the values to different channels for observation

In terms of graphical window, K l, K2, K3 and K4 are showed as control parameters

142

Chapter 6 Applications

instead o f K, Ti, Td, and Tf, as shown in Figure 6.30.

6.4.5 Results

There are four control parameters in the plugin window: K l, K2, K3 and K4. Same

as previous applications, three selections for setpoints are available in the application:

fixed position, square w ave, and any wave type generated by the signal generator. The

channel for displacem ent feedback is set to channel 5 here, and the user can set it to

any other spare channels.

a m
AO Channel:
A! Channel to monitor.
Set point:

Sq. wave period (ms):

Sq. wave amplitude (volts):
^ 1’ value:
'K2" value:
’K3’ value:
’K4’ value:

!*u_max’:
-u_mln’:
Echo output wave to DAQSystem AI chan: 1
r Analog output enabled
Slg_gene Channel to monitor:

Displacement input Channel to monitor:

 Help
Square Wave _ ij 1

1000 fit/: i Spke Blanking (ms): »

20
-130

3.6
1.5

-5

Theta = 21

Off

m s/spke

348224.0 sec.
(- hz or - rris/spke

1.0 sec. 346224X) sec.
BPM (- hz o r - m s /s ^ e j

IceWM % JS ® ̂ X-<-- \x* -\.x- Xx-. X’*’
i a ^ p o i - 348152.8 sScTl .290 V

Figure 6.30 Plugin window of lqrstrain_gage

As shown in Figure 6 .31 , Channel 0 shows the angular position o f the motor servo.

143

Chapter 6 Applications

Its original scale is (-176, 176). Channel 1 is the setpoint, and Channel 2 is the angular

velocity o f the motor servo. The original range is (-880 deg/s, 880 deg/s).

Elle Log Channels 5fi(indow

...
tielp

'C h 3 Qfl 11 Change Scale: -5V - 5V -> { Secs. N/lslblejS Spke'Polarity': + _ I Spke Blanking (ms):[i :

263781,0 sec. 2 ^ 7 8 2 .0 sec_ 2 6 3 ^ 8 .0 sec. 263779.0 sec._^ 263780.0 sec.
S pke Threshold: - V ’Last S pke ~ - V a t -jSpke Freq: - BPM (- hz or - ms/spke) îj .
r m m xrzv-':':' -
5V
OV
-5V

263781.0 sec. 263782.0 sec. 263778.0 sec. 263779.0 sec. 263780.0 sec
-iS pke Freq: - BPM (- hz or ms/spke) ||

■ ■
S pke threshold: - V Last Spke - V at

5 V |
ovl

-5 VI

r-.x-— , ----- 1 r
</-•— ^ W ^

V/ (, V ' " -

% 3781 .0sec. 268782.0 sec. 263778 0 sec. 283779.0 sec 263780.0 sec.
S p k e threshold: - V la s tS p k e - V à t ' : j § p k i T r ë q r : B PM (- h z o r - ms/spke) M

Sampling P6te:1000 HzlScan lridek 2 ^ 7 9 5 4 7 2 iSam pe FlFO Is 2 3 ^ M l 263777. 6 sec :4 .l9 4 V

Figure 6.31 Control results of a square wave (1)

Channel 3 is the relative angular tip position o f the straingage to the whole plant

system , its original range is (-176 deg, 176deg). Channel 5 is the displacement o f the

tip, original scale (-12.7 cm , 12.7cm) (Figure 6.32).

144

Chapter 6 Applications

Elle Log Channels Whdow

 '

Ch 5 QQ I Change Sc^e; -5V - 5V -i | Secs. VIslbtefs Spke ’Polarity’; +_ |j

Help

spKeTnrSsnoia: - v Last ypxe - v at" -•.i^érreq; -erMnr"-
Spke Blarklng{ms):|»
nz or - ms/spK0)j'ĵ

512752.0 sec
Spke Threshold:

%
5V
OV

512752.0 sec.
Spke Threshofd?

512753.0 sec. 512754.0 sec. 512755.0 sec
- V Last Spke - V at - Spke Freq: - BPM (

512756.0 sec. i
- hz or - ms/spke) |

512753.0 sec. 512754.0 sec. 512755.0 sec.
•V L astSpke * - V a t .SpK FR eqf— ^"èPM(

512756.0 sec.
hzor ms/spke) I

5V
OV
-5V

512752.0 sec
Spke Threshold:""

512753.0 sec. 512754.0 sec, 512755.0 sec.
ViLast Spke " - V at ^ ~ iS f* e Ftiq; " BPM (

512756^0 sec. I i
- hz Of "- ms/spke): '

l-c.
Sampling Rate: 1000 HzlScan Index 512758872jSa?hp1è P lF Ô T s ? % lü g » V

k c ’rtW % g '1 ' ' \ XX... X̂ to.

Figure 6.32 Control results of a square wave (2)

Follow ing are the enlarged graphs for each channel:

rs'mwiyrii-ijjraiuiiUii" Mm
Help zHUj!*■ Elle Log Channels y/indow

« Çî S
lijCh 0 QQ I Change Scale: -5V - 5V .u | Secs. VlsWejs Spke ’Polariy: + _ j Spke Blar*:lng (ms):|l)

5 V |

263471.0 sec. 263472.0 sec. 263473,0 sec. 263474.0 sec. 263475.0 sec.
Spke T hre^kJ: "'-"V Last S p k r " - V a t "" '- l^ e 'F r e q ; BPM (- hz or -"ms/spke)
S a r h ^ Rate; ÏOOÔ Hz Scan lnd«x '2 iK i49^rsiw npii^ sec, 1.312 V

Figure 6.33 Angular position of motor servo SRV02 (theta)

145

Chapter 6 Applications

The setpoint is the same as that in Chapter 6.2 (Figure 6.14) and Chapter 6.3 (Figure

6 .22).

jAfii
Eile Log Channels Window Help jtLsJ »

^ e g
Ch 2 OQ i Change Scale; -SV - 5V w ji Secs. Vlslble[5 Spke ’Polarity’: +_ j Spke Blanking (m s):|l :

263496 0 s e a 263497.0 sec. 263493.0 sec. 283494.0 sec. ^6349570 sëcT
SpkT fhreshbid :' -"V[LasfSpke - \ 7 a t - 'S pke F req :' - BPM’(“ 'hz 'or rhs/spke)
Sarr^Ung PtateT 1000 HzIScam Inde^ÊOSS 17269[^im pie FIFO is 14% M l-M ouse'^s: 263494.0'iecT-3.857 V

X X X X X %. X X X X

Figure 6.34 Angular velocity of motor servo SRV02

146

Chapter 6 Applications

*• Eile Log Channels Window Help *L?J »

;Ch 5 Qo \. Change Scale: -5V - 5V _< j: Secs. VlslblejS | | , Spke 'Polarity': t _ P Spke Blanking (m s) |i j

5 V |

-5 V ____________________ __________________________ _______
263526.0 sec. 263527.0 s e a 263528.0 sec. 2®3524.0 sec. 263525.0 sec.

S p k i Threshold: - VfLast Spke - V at - :Spke Freq: “ BPM ("T.' rns/èpké)
Sampling Rate: 1000 H zjScai Index 263548885 Sample FIFO Is 19% full Mouse pos?263526.7 sec, 4.896 V

Figure 6.35 Displacement of the tip of the straingage (alpha)

mm
Elle Log Channels Window __ ___ üelp zlaj*

Ch 3 QQ ji Change Scale; -5V - 5V ,j jlSecs. VlslblejS {j S p k e ’Polarity’: + _ |: Spke Blanking (ms) f l j

5V1

-5 V _________________________________
5 i 2767.0 sec. 512768.0 sec.

Spke threshbid: “ V[Last S p k i - V it*
512769.0 sec. 512765.0 sec. 512766.0 sec.

" IS p k e F re q " B P M |~ * - hz'or rns/ipke)
ISamplIng Rate: 1000 Hz-Scan Index 512774928IS im ^e FIFO is*10% full Mouse pos: 512764.2 s'ec74.844 V

kc'.VWf % # 1 ̂ " X X X X X t .

Figure 6.36 Relative angular tip position to the whole system (theta+alpha)

147

Chapter 6 Applications

The system is found to perform well. It is very sensitive to variations in low pass

filter cutoff frequency, sampling rate and derivative feedback gains. The system can

be tuned by changing the gains K2 and K4, bigger K2 causes larger overshoot and too

much K4 will lead to instability.

6.5 Summary

In this chapter four control applications with different controllers and user interfaces

are presented. One simple command-line mode program which combines COMEDI

with RTAI LXRT, and three applications in the form of RTLab plugins in which

different controllers are used based on the complexity of the applications.

According to the results shown in different sections. A tradition PID control may

provide a short settling time and a small overshoot when a single-input single-output

object (motor servo) is controlled. However it is very difficult to have a steady

response for a single-input multi-output system (flexible link with motor servo) with

the same controller, therefore a LQR controller is introduced in chapter 6.4 and it

provides decent stability, overshoot and settling time.

148

Chapter 7 Conclusions And Discussions

Chapter 7 Conclusions and Discussion

7.1 Why Linux?

Aside from Windows, Linux is probably cuiTently the most popular operating system

in the world. It is being adopted more and more in modern industries due to its huge

potential and good real time capability. We chose Linux as the platform in this project

as its features of ([30]);

• Multitasking— It allows several tasks rumring at the same time.

• Multiuser— Several users on the same machine at the same time.

• Multiprocessor— SMP support is available on the Intel and SPARC platforms.

• Multithreading— Multiple independent threads are allowed to run in a single

memory space.

• POSIX job control.

• Multiple virtual consoles— Linux allows several independent login sessions

through the console, and the user can switch between them via hotkeys.

Linux supports several common filesystems such as Minix, Xenix, and all the

common system V filesystems. It provides memory protection between processes, and

149

Chapter 7 Conclusions And Discussions

this ensures the system would not be brought down by just one program, further more,

Linux is open source software, which means its source code is opened to every user.

7.2 Why RTAI?

As introduced in Chapter 2, RTLinux and RTAI are two of the most popular major

real time Linux branches available currently. Both of them have similar scheduling

methods and API functions however RTAI is supported better today and it works

better with COMEDI, therefore it is chosen to provide real time performances in this

project.

- 1

' I

7.3 COMEDI Drivers

There are a numbers of drivers provided in COMEDI which could be found in

$COMEDIDIR$/comedi/drivers/, including the driver of MultiQS board used in this

project. However the driver of AD512 card is not provided with cunent COMEDI

distributions. A driver program was thus written to cany out this function.

One thing to note, COMEDI provides two different libraries, Comedilib and

Kcomidilib, Comedilib is a user-space library while Kcomedilib is a Linux kernel

module that provides the same interface as Comedilib in kernel space, i.e. for real

150

Chapter 7 Conclusions And Discussions

time tasks. When using Comedilib, include comedilib.h as head file but when using

Kcomedilib, insert kcomedilib.o into kernel. Misusage of the COMEDI library may

cause “unresolved symbol” eiTors during compiling.

7.4 RTLab

As introduced in chapter 5, RTLab is an ongoing project to develop a general-

purpose, open-source, hard real-time experiment interface software system ([19]). All

applications in RTLab exist in the form of RTLab plugin modules. In order to get

RTLab compiling and running properly, users need to have ([21], [22]):

• A Real Time Linux variant, either RTLinux v3.1 (or later) or RTAI 24.1.9 (or

later). For RTLinux, shared memory driver, POSIX standard IQ, and floating

point support should be enabled, and for RTAI, floating point support, POSIX

API, RT memory manager, and FIFOs need to be enabled when configuring.

• ComediO.7.65 or later with comedilib or kcomedilib. Enable real time support,

of course.

• Qt 3.x. The GUI software

• Suitable compiler. GNU g++-2.96 and gcc 2.95 are recommended for best

results as C-f+ and regular C compiler. If RTAI is used with RTLab g++-2.95

and gcc-2.95, user had better try g++-2.96 and gcc-2.95 instead.

151

Chapter 7 Conclusions And Discussions

When running RTLab, the following modules are required to be loaded into the

kernel:

• For RTLinux

kcomedilib, comedi, mbuff, rtl_fifo, rtl__sched, rtl_posixio, rtl_time, itl

• For RTAI

comedi, kcomedilib, rtai, rtai„sched, rtai_pthread, rtai__fifos, rtai_shm

During experiments, the error message "unresolved symbols init_z_apps > and

free_z„apps" appeared when only the modules mentioned above were loaded. The

problem was solved when another module rtai_lxrt was inserted into Kernel.

7.5 Real Time Solutions

Users can either achieve real time control in hard real time or soft real time. Hard-

real time controlling gives a Linux process, or a pthread (POSIX thread) hard real

time execution capability allowing full kernel pre-emption, while soft-real time

controlling gives processes standard Linux behaviour and, allows other processes to

run at the same time, this being forbidden in hard real time. Different scheduling

152

Chapter 7 Conclusions And Discussions I

methods are used for different real time solutions. Refer to Chapter 4 for more details.

153

Chapter 8 Future work

Chapter 8 Future Work

Towards a better understanding and research in the field of real time control under

Linux, there are a numbers of topics which could be considered for further research:

(1) RTAI + COMEDI solutions.

The integration of COMEDI under RTAI can be developed using RTAILAB and

MATLAB. Release of 2.24.11 of RTAI allows the integration of COMEDI drivers in

SIMULINK schemas and to generate code for (X)RTAILAB. If there is no

MATLAB/SIMULINK/RTW, the same thing can be done under Scilab/Scicos also. In

this case, the unofficial release of RTAI (2.24.12prel) and two of other files,

rt_scilab.tgz and a modified xrtailab.cpp are needed. In this project COMEDI + RTAI

LXRT was adopted and other ways may be explored in future works.

(2) Math functions in RTLab.

Some of the math functions are not available in RTLab because they live in the math

library which is a user space library. One possible solution to use them in kernel space

is linking libm.a to the custom module by ar x user/lib/libm.a, get dozens of .o files

out then link all of them to the custom module. However this will cause some errors

154

Chapter 8 Future work

of undefined symbols as fputs(), fprint(), etc. Therefore it might be worthwhile to

create of stripped down version libm and release it with the RTLab resources, so that

the people wishing to use libm can easily do so without extra effort.

(3) Qt Designer in RTLab.

The graphical interface software Qt provides a very convenient and powerful tool

named Qt Designer by which user can build their own graphs simply by clicking the

mouse in the graphical interface of Qt Designer, instead of writing hundreds lines of

laborious scripts. All the custom widgets will be put into one .ui file by Qt Designer

and compiled later. Although this kind of .ui file cannot be picked up properly by the

build system in RTLab, user can compile them manually. That means, create a .ui file

by Qt Designer then convert it to a ,cpp file then compile it. An alternative way is

changing around the RTLab build system to make it as painless as possible to create

plugins with the designer. Thus adding plugins to RTLab will be much easier.

(4) Mouse movement feedback in RTLab plugin.

In this project, the setpoints are input in RTLab plugin by inputting them in plugin

graphical interface through keyboard. Further work can be done using a mouse event

function to feedback the cunent position of the mouse, then connecting it to another

function in which the setpoint is replaced by the position of the mouse. The setpoint

J55

Chapter 8 Future work

will change each time user click the left (or right, depends on the settings) mouse

button on certain part of the graphical interface. The plant will then be directed to the

next supposed control position, and all of these could be available for observation in

the graphical interface. Similarly, It is possible to add other mouse events in RTLab

such as mouseup, mousedown, mousemove, etc, by modifying the corresponding code

in .cpp file.

' I

I

I

(5) Separate plugin windows in RTLab.

User can have as many windows as required in RTLab plugin. Everything is this

project is in one window, however. Include Wtype_TopLevel in Wflags if a top-level

window is needed, or alternatively make the window’s parent ‘0 ’ (or root level). If the

user wants the plugin window to also have an entry in the ‘W indow’ menu of

DAQsystem, call these methods on the daq_system for instance:

int windowMenuAddWindow(QWidget *w); /* returns window id */

void windowMenuRemoveWindow(int window_id);

Call the first one when constructing the plugin therefore the window gets an entry in

the DAQSystem window menu, and call the second one when removing the plugin so

that its entry is removed from the window menu.

156

Chapter 8 Future work

(6) Encoders in RTLab.

The DAQ card subdevices used in RTLab to input and output voltages currently are

analogue input and output channels. It is also possible to use encoders (provided by

some cards) instead. The encoders are used to measure positions of moving axes in a

machine by counting pulses generated by the motion. The software transforms these

pulses into linear or rotational displacement. The difference between occupying

encoders and analogue input subdevices is the encoder reduces the dead zone effect

when plant (such as servo) is moving (or rotating). By use of encoders, user can not

only reduce the dead zone effect but also acquire additional measurements. This has

not been included in the updated version however it seems to be in progress.

Method (1), (2)and (6) aie generally ongoing by other developers and method (3),

(4) and (5) are the ways in which to take the work of this thesis further.

157

References

References

6. “DIAPM RTAI Programming Guide 1.0”, Lineo Inc., 2000, Utah, USA.

7. “MATLAB—High-Performance Numeric Computation and Visualization

158

€

1. Franklin Gene F., Powell I .David and Emami-Naeini Abbas, “Feedback
%

Control of Dynamic Systems”, 3*̂ , Addison-Wesley Publishing Company Inc.,
.1

1994, Massachusetts, USA.

2. Welsh Matt and Kaufman Ear, “Running Linux”, 2"^ Ed, O’Reilly &

Associates Inc., 1996, California, USA.

3. Dutton Ken, Thompson Steve and Banaclough Bill, “The Art of Control

Engineering”, Addison Wesley Longman Limited, 1997, Massachusetts, USA.

4. “Posix Threads Programming”, training material from Lawrence Livermore

National Laboratory,

http://www.llnl.goy/computing/tutorials/workshops/workshoD/pthreads/MAIN

.html, last visited 21 September 2004.

5. Salzman Peter Jay and Pomerantz Ori, “The Linux Kernel Module

Programming Guide”, 2001, http://www.faqs.org/docs/kernel/. last visited 20

June 2005.

http://www.llnl.goy/computing/tutorials/workshops/workshoD/pthreads/MAIN
http://www.faqs.org/docs/kernel/

' f
References

11. Schleef David, Hess Frank and Bniyninckx Herman, “Comedi

Documentation—The Control and Measurement Device Interface handbook”,

2003, http ://ww w . comedi. or g/doc/index .html. last visited 20 June 2005.

12. Culianu Câlin, “RTLab__plugin.h”, Retrieved from RTLab distribution

package, http://www.rtlab.org/download.isp, last visited 20 June 2005.

13. Tan Haoqiang, “C Language Programming”, Tsing Hu a University Press,

1988, Beijing, PRC.

14. Zou Siyi, “Linux Designing and Application”, Tsing Hua University Press,

2002, Beijing, PRC.

159

ISoftware (For UNIX Workstations) User’s Guide”, The MATH WORKS, Inc.,

1992, Massachusetts, USA. É

8. “SIMULINK— A Program for Simulating Dynamic Systems (For the X

Window System™)”, The MATH WORKS, Inc., 1992, Massachusetts, USA.

9. Hekman Jessica Perry, “LINUX IN A NUTSHELL”, O’Reilly & Associates f

Inc., 1997, California, USA. |

10. “DIAPM RTAI - Beginner’s Guide”, The RTAI Development Team, 2002,

http://www.aero.polimi.it/~rtai/documentation/articles/guide.htmk last visited

19 June 2005.

■I

http://www.rtlab.org/download.isp
http://www.aero.polimi.it/~rtai/documentation/articles/guide.htmk

References

15. Hu Shousong, “Automatic Control Theory”, Defense Industry Press, Beijing,

1998, PRC.

16. Yu Changguan, “Modern Control Theory”, Haerbin Polytechnic University

press, 1998, Haerbin, PRC.

17. Henderson Bryan, “Linux Loadable Kernel Module HOWTO”, 2003,

httD://www.tldn.org/HOWTO/ModuIe-HOWTO/. last visited 20 June 2005.

18. Apkarian Jacob, “A Comprehensive and Modular Laboratory for Control

Systems Design and Implementation”, Quanser Consulting Inc., 1994, 1997,

Ontario, USA.

19. Culianu Calin and Christini David J., “Real-Time Experiment Interface

System: RTLab”, 2002, http://www.rtlab.org/NEBC 2003 Paper.pdf. last

visited 18 June 2005.

20. “Rotary Flexible Link with SRV02”, Quanser Consulting Inc., Ontario, USA.

21. Culianu Calin, “How to Install RTLab”, Retrieved from RTLab distribution

package, 2002, http://www.rtlab.org/download.isp. last visited 20 June 2005.

22. Culianu Calin, “How to Compile RTLab”, Retrieved from RTLab distribution

package, 2002, http://www.rtlab.org/download.isp. last visited 20 June 2005.

23. “RTAI_KCOMEDI_LXRT”, 2002,

160

http://www.tldn.org/HOWTO/ModuIe-HOWTO/
http://www.rtlab.org/NEBC
http://www.rtlab.org/download.isp
http://www.rtlab.org/download.isp

" 1

References

http://cvs.rtai.org/index.cgi/etna/comedi Ixrt/README?rev=l .12, last visited

06 August 2003.

,

24. Dozio Lorenzo and Mantegazza Paolo, “RTAI-Lab”, 2002,

http://cvs.rtai.org/index.cgi/stromboli/rtailab/README?rev=1.10&content-

type=text/x-cvsweb-markup, last visited 06 August 2004.

25. Dozio E. Bianchi, L. and Mantegazza P., “A Hard Real Time Support for

LINUX”, 2002. Retrieved from RTAI distribution package,

http://download.gna.org/rtai/, last visited 20 June 2005.

26. “AD512 data acquisition cards user’s manual”, HUMUS OFT s.r.o., 1997,

Czech Republic.

27. “MultiQ-3™ Programming Manual”, Quanser Consulting Inc., Ontario, USA.

i
I

£

28. Bird Tim, “Comparing Two Approaches to Real Time Linux”, 2000,

http://www.linuxdevices.com/articles/AT7005360270.htmI, last visited 19

June 2005.

29. Ripoll Ismael, “RTLinux versus RTAI”, 2002,

http://bemia.disca.upv.es/rtportaI/comparative/rtl vs rtai.html, last visited 20

June 2005.

30. Johnson Michael K.,“Linux Information Sheet”, 1998,

http://www.tldp.org/HQWTO/INFQ-SHEET.html, last visited 20 June 2005.

161

http://cvs.rtai.org/index.cgi/etna/comedi
http://cvs.rtai.org/index.cgi/stromboli/rtailab/README?rev=1.10&content-
http://download.gna.org/rtai/
http://www.linuxdevices.com/articles/AT7005360270.htmI
http://bemia.disca.upv.es/rtportaI/comparative/rtl
http://www.tldp.org/HQWTO/INFQ-SHEET.html

References

31. “The Makefile”, webpage from Opus Software Inc.,

http://www.opussoftware.com/tutorial/TutMakefile.htm, last visited 20 June

2005.

32. Schleef David, “Hardware_Driver.HOWTO”,

http://www.comedi.org/download.php. Retrieved from Comedi distribution

package. Last visited 20 June 2005.

33. The trolltech, “Product Overview”,

http://www.trolltech.com/products/index.html, last visited 20 June 2005.

34. Hadi Saadat, “EE-479 Digital Control System Project 1 Flexible Link”,

http://people.msoe.edu/~saadat/l%20Flexible Link Proiect.pdf, last visited

19 June 2005.

162

http://www.opussoftware.com/tutorial/TutMakefile.htm
http://www.comedi.org/download.php
http://www.trolltech.com/products/index.html
http://people.msoe.edu/~saadat/l%20Flexible

Appendix A

Appendices

Appendix A

Block Diagram and pseudo code of the programs for SIMO-PID control project

(Pidstraingage) and SIMO-LQR (Lqrstraingage) control project.

Pidstraingage program:

pidstraingage.h:

Callback fiequency and wlta^
scale setting

Skaied memory definition

pidstraingage_private.h :

Pidstraingage Qwidget
declaration

163

Appendix A

pidstraiiigage.c:

Module name and description
declarations

Module initO function definition

Module cleanrpO function
definitian

Shared nienioiy structure
definition

Process read function definition

Control algorithm—do controlO
function

164

Appendix A

pidstraingage.cpp:

Flugm information—name,
description, flag;...

Plugin entiy function

Pidstraingage Vfidget structure
definition

i
Definitions of each element in
pidstraingage QWidget

Pseudo code of do_controI() function (in pidstraingage.c):

* This plugin does the following:
*

* A Proportional + integral + derivative controller
* Kernel code:
* 1. Generates different waves with the counterpart periods and

amplitudes.
* 2. Reads ADC channel shm->ai_chan and calls the voltage 'y'.
* 3. Computes u = k*(w-y) + u/(l+sTi) - sTd/(l+sTf) y.
* 4. Writes u to DAC channel shm->ao_chan.

* GUI (pidstrain__gage. Gpp) :
* Simple GUI to change parameters on-line
*/

static void do_control (MultiSamplestruet * m)
{

constants

165

Appendix A

Declare phase length, sampling rate, and amplitude of Square wave.

Check if the plugin is ready to run

Check the operation wish to perform, input wave type selection;
0—Fixed position, designated through graphical interface.
1— Square wave, amplitude and frequency are designated through
graphical interface.
2—wave from signal generator, modify wave parameter via adjusting
signal generator

If (the input is a square wave
Get the phase length and frequency of the wave
Compute the desired voltage value

}

Else if (the input is signal from signal generator){
Sample from signal generator

Check if the input voltage is in the valid range
}

else{
Check if the input voltage is in the valid range
Input signal is a fixed value in relation to the angular position
of the motor servo
}

Read input voltage value from analog input channel

Check if AI monitoring is off or the channel they want to monitor
is not found

Get error value through dividing desired voltage value by input
voltage value

Compute control. Get angular position and angular velocity of motor
servo

Filtering

166

Appendix A

Graphical interface layout setting (in pidstraingage.cpp):

Plugin name, description and entry function declaration
extern "C " {

Declare some stuff needed by plugin engine, these symbols are read
by libdl/dlsym()*/

ds_plugin_ver is DS_PLUGIN„VER

Flag is Plugin::RequiresRTLab

Plugin name is PLUGIN_NAME

Plugin description is
"A Proportional + integral + derivative controllerXn"
"Kernel code :\n"
" 1. Generates different waves with the counterpart periods and

amplitudes.\n"
" 2. Reads ADC channel shm->ai_chan and calls the voltage 'y ',\n"
" 3. Computes u - k*(w-y) + u/(l+sTi) - sTd/(l+sTf) y.\n"
" 4. Writes u to DAC channel shm->ao„chan.\n"
"\n\n"
"GUI (pidstrain__gage . cpp) : "

Simple GUI to change square wave and PID parameters on-line",

167

Clip

Optionally echo desired voltage value back to an AI channel for the
UI

■IEcho angle velocity back to channel 2 so that it can be observed ;
in Graphical interface.
Output control signal

Save output

I

Appendix A

* author = "Xiaoyu Duan",
* requires =

"piddxy.o be loaded into the kernel. P+I+D control";

Plugin * entry(QObject *o)
{

/* This is a top-level widget, and the parent is root */

Issue warning message if plugin loading failed.

Show the widget
}

};

Store some widgets that we need pointers to for
(dis)connectSignals() and updateStats()
struct Pidstrain„gageWidgets

{
Declare all the elements needed in this plugin

};

/* Plugin constructor */
Pidstrain„gage::Pidstrain__gage(DAQSystem *d)

: QWidget(d, PLUGIN_NAME, Qt: :WType_TopLevel) , ds(d)
{
Attach to shared memory

Declare new plugin widget

Build GUI

Connect Signals

Set caption name
}

/* Plugin destructor */
Pidstrain_gage: :~Pidstrain_gage()
{

168

Appendix A

Set wave_on to 0
Set wave_type to -1
Set channel number for signal generator to -1

Detach shared memory
Delete plugin widget; just delete the struct, not the actual widget

}

Return plugin name
Return plugin description

/* Setting up the main layout */
void Pidstrain_gage::buildGUI()
{

Create new layout
Create shared memory controller constant
Get number of analogue input channels
Add AO Channel QLabel to the main layout
Add AI Channel QLabel and QComboBox to the main layout
Add wave type QLabel and QComboBox to the main layout
Add wave period QLabel and QSpinBox to the main layout
Add wave amplitude QLabel and QLineEdit to the main layout
Add K value QLabel and QLineEdit to the main layout
Add Ti value QLabel and QLineEdit to the main layout
Add Td value QLabel and QLineEdit to the main layout
Add Tf value QLabel and QLineEdit to the main layout
Add maximum voltage QLabel and QLineEdit to the main layout
Add minimum voltage QLabel and QLineEdit to the main layout
Add Echo output wave to DAQSystem AI chan QLabel to the main layout
Add wave on QcheckBox to the main layout
Add input channel number for signal generator QLabel and QcomboBox

to the main layout
Add input channel number for displacement feedback Qlabel and

QcomboBox to the main layout
Set text in each element

}
/* Connect signals with slots */
void Pidstrain_gage: :connectSignals()
{
Connect each signal to the counterpart slot

}

169

Appendix A

Slots below set parameters in the shared memory region for
notifying the real-time process

 */
SetAIChannel slot declaration
SetWaveType slot declaration
SetGene slot declaration
SetDisp_inp slot declaration
SetAngle slot declaration
SetPeriod slot declaration
SetAmplitude slot declaration
SetK slot declaration
SetTi slot declaration
SetTd slot declaration
SetTf slot declaration
SetU_max slot declaration
SetU__min slot declaration
SetAIEcho slot declaration
SetAO slot declaration

Lqrstraingage program:

Iqrstraingage.h:

Callback frequency and voltage
scale setting

jSdiared memory definition

170

Appendix A

lqrstraingage_private.h :

Iqrstraingagp Qwidget
declaration

Iqrstraingage.c:

Module name and descr^tion
declaratmm

Module initO fimction definition

Module cleanupO function
definition

Shared memory structure
definition

Process read function definition

Control algorithm—do controlQ
function

Appendix A

Iqrstraingagexpp:

ELugin. information—name,
description, flag;.,.

Plugin entry function

i
lqrstraingage Viidget structure
definition

Definitions of each element in
lqrstraingage QWidget

Pseudo code of do„control() function(in pidstraingage.c):

/**
* This plugin does the following:

* A Linear Quadratic Regulator controller for straingage
* Kernel code :
* 1. Generates different waves with the counterpart periods and

amplitudes.
* 2. Reads ADC channel shm->ai_chan and calls the voltage 'y'.
* 3. Computes u = v-kx.
* 4. Writes u to DAC channel shm->ao_chan.
*

* GUI (lqrstrain_gage.cpp):
* Simple GUI to change parameters on-line
*/

172

Appendix A

Î
5'

I

Static void do_control (MultiSampleStruct * m)
{

/** Formula is u = v-kx
Status Feedback

*/

constants
Declare phase length, sampling rate, and amplitude of Square wave,

Check if the plugin is ready to run

Check the operation wish to perform, input wave type selection:
0—Fixed position, designated through graphical interface.
1— Square wave, amplitude and frequency are designated through
graphical interface.
2—wave from signal generator, modify wave parameter via adjusting
signal generator

If (the input is a square wave
Get the phase length and frequency of the wave
Compute the desired voltage value

}

Else if (the input is signal from signal generator){
Sample from signal generator

Check if the input voltage is in the valid range
}

else{
Check if the input voltage is in the valid range
Input signal is a fixed value in relation to the angular position
of the motor servo
}

Read input voltage value from analog input channel

Check if AI monitoring is off or the channel they want to monitor
is not found

J73

Appendix A

Get error value through dividing desired voltage value by input
voltage value

Compute control. Get angular position and angular velocity of motor
servo

Filtering

Clip

Optionally echo desired voltage value back to an AI channel for the
UI

Echo angle velocity back to channel 2 so that it can be observed
in Graphical interface.
Output control signal

Save output
}

Graphical interface layout setting (in Iqrstraingagexpp):

Plugin name, description and entry function declaration
extern "C" {

Declare some stuff needed by plugin engine, these symbols are read
by libdl/dlsym{)*/

ds_plugin_ver is DS_PLUGIN_VER

Flag is Plugin::RequiresRTLab

Plugin name is PLUGIN_NAME

Plugin description is
"A Linear Quadratic Regulator controller\n"
"Kernel code :\n"
" 1. Generates different waves with the counterpart periods and

amplitudes.\n"

174

_____________________________ :-- :— i —

Appendix A

2. Reads ADC channel shm->ai_chan and calls the voltage 'y'.\n"
3. Computes u = v-kx.\n"
4. Writes u to DAC channel shm->ao_chan.\n"

\n\n"
GUI (lqrstrain_gage.cpp):"

Simple GUI to change square wave and LQR parameters on-line",
* author = "Xiaoyu Duan",
* requires =

"lqrstrain„gage.o be loaded into the kernel. LQR control";

Plugin * entry(QObject *o)
{

/* This is a top-level widget, and the parent is root */

Issue warning message if plugin loading failed.

Show the widget
}

};

Plugin * entry(QObject *o)
{

/* This is a top-level widget, and the parent is root */

Issue warning message if plugin loading failed.

Show the widget
}

} ;

Store some widgets that we need pointers to for
(dis)connectSignals() and updateStats()
struct Lqrstrain_gageWidgets

{
Declare all the elements needed in this plugin

} ;

175

Appendix A

/ * Plugin constructor */
Lqrstrain_gage: :Lqrstrain_gage(DAQSystem *d)

: QWidget(d, PLUGIN_NAME, Qt; :WType_TopLevel) , ds(d)
{

Attach to shared memory

Declare new plugin widget

Build GUI

Connect Signals

Set caption name

/* Plugin destructor */
Lqrstrain_gage: :~Lqrstrain_gage()
{

Set wave__on to 0

Set wave_type to -1

Set channel number for signal generator to -1

Detach shared memory

Delete plugin widget; just delete the struct, not the actual widget

Return plugin name
Return plugin description

s/* setting up the main layout */

void Lqrstrain_gage:rbuildGUI()
{
Create new layout

Create shared memory controller constant

176

Appendix A

Get number of analogue input channels

Add AO Channel QLabel to the main layout

Add AI Channel QLabel and QComboBox to the main layout

Add wave type QLabel and QComboBox to the main layout

Add wave period QLabel and QSpinBox to the main layout

Add wave amplitude QLabel and QLineEdit to the main layout

Add Ki value QLabel and QLineEdit to the main layout

Add K2 value QLabel and QLineEdit to the main layout

Add K3 value QLabel and QLineEdit to the main layout

Add K4 value QLabel and QLineEdit to the main layout

Add maximum voltage QLabel and QLineEdit to the main layout

Add minimum voltage QLabel and QLineEdit to the main layout

Add Echo output wave to DAQSystem AI chan QLabel to the main layout

Add wave on QcheckBox to the main layout

I
a

Add input channel number for signal generator QLabel and QcomboBox
to the main layout

Add input channel number for displacement feedback Qlabel and
QcomboBox to the main layout

Set text in each element

void Lqrstrain_gage: :connectSignals()
{
Connect each signal to the counterpart slot

}

177

Appendix A

Slots below set parameters in the shared memory region for
notifying the

real-time process

 */

SetAIChannel slot declaration

SetWaveType slot declaration

SetGene slot declaration

SetDisp_inp slot declaration

SetAngle slot declaration

SetPeriod slot declaration

SetAmplitude slot declaration

SetKl slot declaration

SetK2 slot declaration

SetK3 slot declaration

SetK4 slot declaration

SetU„max slot declaration

SetU_min slot declaration

SetAIEcho slot declaration

SetAO slot declaration

178

Appendix B

Appendix B

Comedi driver for AD512 card:

module/ads12.c
hardware driver for ADS12 data acquisition card.

This program is free software; you can redistribute it and/or
modify

it under the terms of the GNU General Public License as published
by

the Free Software Foundation; either version 2 of the License, or
(At your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

*/
/*
Driver :adS12.o
Description;[HUMUSOFT] AD512 data acquisition card
Author : Xiaoyu Duan
Status : unknown
Devices:[HUMUSOFT]ad512

#include <11nux/comedidev.h>

#include <linux/ioport.h>

#define AD512_SIZE 16

179

Appendix B

/*
* AD512 port offsets
*/

#define AD512„ADLO 0
#define AD512_ADHI 1
#define AD512_DAOLO 0
#define AD512_DA0HI 1
#define AD512_DA1L0 2
#define AD512_DA1HI 3
#define AD512_DACTRL 4
#define AD512_ADSTAT 5
#define AD512„ADCTRL 5
#define AD512„DIN 7
#define AD512_DOUT 7

/*
* flags for STATUS register
*/

#define AD512_STATUS 0x80
#define AD512 TIMEOUT 3 0

static int ad512_attach(comedi_device *dev,comedi_devconfig *it);
static int ad512_detach(Gomedi_device *dev);
static comedi„driver driver_ad512={

driver_name: "adS12",
module : THIS__MODULE,
attach: ad512_attach,
detach: ad512__detach,

};
COMEDI_INITCLEANUP(driver_ad512);

struct ad512__private{
lsampl_t ao_readback[2];

};
idefine devpriv ({struct ad512_private *)dev->private)

static int ad512_ai_insn_read(comedi„device *dev,comedi_subdevice *s
comedi_insn *insn, lsampl_t *data)

{
int i,n;

180

Appendix B

int chan;
unsigned int hi, lo;

chan = CR_CHAN(insn->chanspec);
outb((chan | 0x48),

dev->iobase+AD512_ADCTRL);

tor(i = 0 ; i < AD512_TIMEOUT; i++) {
i f (1(inb(dev->iobase+AD512_ADSTAT) & AD512_STATUS))

break;
}

if(i==AD512_TIMEOUT)return -ETIMEDOUT;

for(n=0;n<insn->n;n++){
hi = inb(dev->iobase + AD512_ADHI) & Oxff;
lo = inb(dev“>iobase + AD512_ADLO) & Oxff;
data[n] = (((hi << 8) | lo) + 0x800) & Oxfff;

}

return i ;
}

static int ad512_ao_insn_read(comedi„device *dev, comedi_subdevice
*s,

comedi__insn *insn, lsampl_t *data)
{

int i;
int chan = CR_CHAN(insn->chanspec);

for(i=0;i<insn->n;i++){
data[i]=devpriv->ao_readback[chan];

}

return i ;
}

static int ad512„ao„insn„write(comedi_device *dev, comedi_subdevice
s,

comedi_insn *insn, lsampl_t *data)
{

i n t i ;

181

Appendix B

int chan = CR_CHAN(insn->chanspec);

for(i=0;i<insn->n;i++){
outw((data[i] & Oxfff), dev~>iobase+AD512__DAOLO+2*chan);
outb(0x4 8, dev->iobase+AD512_DACTRL);

devpriv->ao__readback [chan] = data[i];

return i;

options[0] - I/O port
options[1] “ irq
options[2] - number of encoder chips installed

7

static int ad512„attach(comedi_device * dev, comedi_devconfig * it;
{

int result = 0;
int iobase;

comedi„subdevice *s;

iobase = it->options[0];
printk{"comedi%d: ad512: 0x%04x ", dev->minor, iobase);
if (check_region(iobase, AD512_SIZE) < 0) {

printk("comedi%d: I/O port conflict\n", dev->minor);
return -EIO;

}

request_region(iobase, AD512_SIZE, "ad512");
dev->iobase = iobase;

dev->board_name = "ad512";
dev~>n_subdevices = 2 ;
result = alloc_subdevices(dev);
if(result<0)return result;

result = alloc_private(dev,sizeof(struct ad512_private))
if(result<0)return result;

182

' .. ' - ■ r ' ■■ . /, ■. k::

Appendix B

s = dev->subdevices + 0;
/* ai subdevice */
s->type = COMEDI„SUBD„AI;
s->subdev_flags = SDP_READABLE;
s->n_chan = 8;
s->insn_read = ad512_ai_insn_read;
s->maxdata = Oxfff;
s->range_table = &range_bipolar5;

s = dev“>subdevices + 1;
/* ao subdevice */
s->type = COMEDI_SUBD„AO;
s->subdev_flags = SDF_WRITABLE;
S">n_chan = 2;
s->insn_read = ad512_ao_insn_read;
s->insn_write = ad512_ao_insn_write;
s->maxdata - Oxfff;
s->range_table = &range_bipolar5;

return 0 ;

static int ad512_detach(comedi_device * dev)
{

printk("comedi%d: ad512: remove\n", dev->minor);

if (dev->iobase) { release_region(dev->iobase, AD512_SIZE); }

return 0 ;

183

Chapter 6 Applications

Appendix C

teste:

/* This file is a part of an example showing how Qt works in
conjunction with RTLab
* Copyright (C) 2004 Xiaoyu Duan
*/

/ * *

* Example RTLab plugin -- Kernel side.
* This plugin does the following:
* Kernel code:
* Writes a 2 volts signal to DAG channel 0 when receiving a signal

of any value but 0 from ADC Channel 0.
-k

* GUI (test.cpp):
* Simple GUI to change AI online.
*/

#include "rtlab_kmodule.h"
/** Kernel-side defs for test plugins * /

#include "test.h"

#define MODULE_NAME "test"

MODULE_AUTHOR("Xiaoyu Duan");
MODULE__DESCRIPTION{MODULE„NAME ": An example showing how Qt works in
conjunction with RTLab. Made as an example of a simple RTLab
plugin\n$Id: test.c 18/11/2004 16:12:552 Xiaoyu $");

int init(void); / * * < data structures and register callback */
void cleanup(void); / * * < Cleanup.. */

static int init_shared_mem(void);

/ * The callback called by rtlab core every millisecond... * /

static void do_control (MultiSampleStruct * m);

184

Chapter 6 Applications

/* Called whenever the /proc/rtlab/test proc file is read */
static int proc_read (char * , char , off_t, int, int *, void
*data);

module_init(init);
module_exit(cleanup);

Some private 'global' variables...

 */
/ * NB: This module needs at least a 1000 hz sampling rate!

It will fail if that is not the case at module initialisation,
and may produce undefined results if that is not the case while
the module is running. */

static TestShm *shm = 0 ;
static const int REQUIRED_SAMPLING_RATE = 1000;
static struct proc_dir_entry *proc_ent = 0;
static struct rtlab_comedi_context ctx = {0, 0, 0, 0, 0};
/ * ---

 */

int init (void)
{

int retval = 0 ;

if (rtp_shm->sampling__rate_hz < REQUIRED_SAMPLING„RATE) {
printk(MODULE_NAME cannot start the module because sampling

rate of "
"rtlab is not %d h z ! "MODULE__NAME" ^requires* a %d Hz rate "
"on the RT loop for its own internal simplicity. The current "
"rate that rtlab is looping at is: %d",
REQUIRED_SAMPLING_RATE, REQUIRED_SAMPLING„RATE,
(int)rtp_shm“>sampling_rate_hz);
return -ETIME;

}

if ((retval = rtp_register_function(do_control)) /* register
callback */

I I (retval = init_shared_mem())

185

■'/■Tïi:

Chapter 6 Applications

/** Tell rtlab core to call the callback at this rate.. * /

I I (retval = rtp„set_callback_.frequency(do_control,
REQUIRED_SAMPLING„RATE))

/ * * the rtlab_comedi_context convenience struct.. */
I I (retval = rtlab„init_ctx(&ctx, COMEDI„SUBD_AO, 0, 0.0,

AREF_GROUND))
II (retval = rtp_activate_function(do_control)) /* turn callback

on * /

cleanup();
return retval;

proc_ent = create_proc_entry(MODULE_NAME, S_IFREG|S_IRUGO,
rtlab p roc root);

if (proc_ent) / * if proc_ent is zero, we silently ignore..
proc_ent->read_proc = proc_read;

return retval;
}

void cleanup (void)
{

if (proc_ent)
remove_proc„entry(MODULE_NAME, rtlab_proc_root);

rtp„deactivate_function(do_control);
rtp_unregister_function(do_control);
if (shm) { rtos_shm_detach(shm); shm = 0; }

}

static int init_shared_mem(void)
{

shm =
(TestShm *) rtos_shm_attach (TEST_SHM_NAME,

sizeof(TestShm))
if (! shm) return -ENOMEM;

memset(shm, 0, sizeof(TestShm));

186

Chapter 6 Applications

shm“>period_milliseconds = 1000;
shm~>wave_on = 0 ;
shm->magic = TEST_SHM_MAGIC;

return 0 ;
}

static int proc_read (char *page, char **start, off_t off, int count,
int *eof, void *data)

{
PROC„PRINT_VARS;

PROC_PRINT("%s Module\n\n"
"magic; %x\n"
"ao_chan: l\n"
"ai_chan: l\n"
"period_milliseconds: %d\n"
"wave is on?: %s\n",
MODULE„NAME,
shm->magic, shm->period_milliseconds, shm->wave_on ?

"Yes" : "No");
PROC_PRINT_DONE;

}
/**
* This function does the following:
* Kernel code:
* Writes a 2 volts signal to DAC channel 1 when receiving a signal

of any value but 0 from ADC Channel 1.

* This function is called by rtlab's core... see
rtp_register_function()

*/
static void do„control (MultiSampleStruct * m)
{

double vOut, vAI;
SampleStruct ^sample;

if (!shm->wave_on) return;

sample = rtlab_get_sample_by_chan(1, m);

187

' 3

Chapter 6 Applications

if (!sample) vAI = 0; /* AI monitoring is off
OR the channel they want to monitor
is not found, so ignore vAI term.. */

/* our output voltage */
else vOut = 2866; /* sample is not NULL, output 2 volts (2 * 2048/5

+ 2047 = 2866). */

rtlab_data_write(&ctx, vOut);

test.cpp:

/*
* This file is a part of an example showing how Qt works in

conjunction with RTLab

* Copyright (C) 2 004 Xiaoyu Duan
*/

#include <qwidget.h>
iinclude <qlayout.h>
iinclude <qlabel.h>
#include <qfont.h>
#include <qstring.h>
#include <qgroupbox.h>
#include <Qtimer.h>
#include <qcheckbox.h>
#include <qbuttongroup.h>
iinclude <qradiobutton.h>
iinclude <qspinbox.h>
iinclude <qcombobox.h>
iinclude <qhbox.h>
iinclude <qvbox.h>
iinclude <qlineedit.h>
iinclude <qvalidator.h>
iinclude <qscrollbar.h>
iinclude <qmenubar.h>
iinclude <qpopupmenu.h>
iinclude <qmessagebox.h>

188

 : :------------------

Chapter 6 Applications

iinclude <qfiledialog.h>
iinclude <qfile.h>
iinclude <Qtextstream.h>
iinclude <qpen.h>
iinclude <qcolor.h>

iinclude <set>

iinclude <unistd.h>
iinclude <sys/types.h>
iinclude <sys/stat.h>
iinclude <fcntl.h>
iinclude <stdio.h>
iinclude <errno.h>
iinclude <string.h>

iinclude "common.h"
iinclude "daq_system.h"
iinclude "shm.h"
iinclude "ecggraph.h"
iinclude "plugin.h"
iinclude "exception.h"
iinclude "tempspooler.h"
iinclude "test.h"

iinclude "test_private.h"
iinclude "searchable_combo_box.h"
iinclude "plugin_utility.h"

idefine RCS_VERSION_STRING "$Id: test.cpp 18/11/2004 16:37:222
Xiaoyu $"

using namespace std;

idefine PLUGIN__NAME "Testing Program"

extern "C" {

/* Stuff needed by plugin engine... these symbols are read by
libdl/dlsym()*/

int ds_plugin__ver - DS_PLUGIN_VER;

189

Chapter 6 Applications

int flags = Plugin::RequiresRTLab;

const char * name - PLUGIN__NAME,
* description =

"A simple reference plugin that does the following:\n"
"Kernel code:\n"
" Writes a 2 volts signal to DAC channel 0 when receiving a signal

of any value but 0 from ADC Channel 0.\n"
"GUI (test.cpp):"
" Simple GUI to change AI online.",

* author = "Xiaoyu Duan.",
* requires =

"test.o be loaded into the kernel. Analog input and output.";
const char * kmodules = "test.o";

Plugin * entry(QObject *o)
{

/* Top-level widget., parent is root */
DAQSystem *d = dynamic_cast<DAQSystem *>(o);

Assert<PluginException>(d, PLUGIN__NAME " Load Error",
"The " PLUGIN_NAME " plugin can only be

used in "
"conjunction with daq_system! Sorry!");

Test *g - new Test(d); ;
if (g) g->show();
return g;

}

};

/* Store some widgets that we need pointers to for
(dis)connectSignals()and updateStats() */
struct TestWidgets
{
QSpinBox *period_milliseconds;
QCheckBox *wave„on;

} ;

Test::Test(DAQSystem *d)

190

' - : - h - i- .. . f r

Chapter 6 Applications

: QWidgetCd, PLUGIN„NAME, Q t : :WType_TopLevel) , ds(d)
{

// attach to Shm
shm = PluginUtility: :shmAttach<TestShm>(TEST_SHM_NAME,

TEST__SHM_MAGIC ,
PLUGIN_NAME,
"test.o");

widgets = new TestWidgets;

buildGUI0 ;
connectSignals(};

setCaption(name());
}

Test : :-Test()
{

shm->wave_on = 0;
PluginUtility::shmDetach(shm);
delete widgets; /* just deletes the struct, not the actual widgets

*/
)

const char *Test::name () const { return ::name; }
const char *Test::description() const { return ::description; }

void Test::buildGUI()
{

QGridLayout *layout = new QGridLayout(this);

const ShmController & rtlab_shm = ds->shmController();
int n_ai_chans =

rtlab„shm.numChannels(ComediSubDevice: :Analoglnput), i;

layout->addWidget(new QLabel("AO Channel:", this), 0, 0);
layout->addWidget(new QLabel("1", this), 0, 1);
layout~>addWidget(new QLabel("AI Channel to monitor:", this), 1,

0) ;

layout->addWidget(new QLabel("1", this), 1, 1);
layout">addWidget(new QLabel("Sq. wave period (ms):", this), 2, 0);

191

Chapter 6 Applications

widgetS">period_milliseconds = new QSpinBox(10, 10000, 1, this);
layout->addWidget{widgets->period_milliseconds, 2, 1);

widgetS“>wave_on = new QCheckBox("Analog output enabled", this);
layout->addMultiCellWidget{widgets->wave_on, 3, 3, 0, 1);

widgets->period_milliseconds->setValue{shm->period_milliseconds)
widgets->wave_on~>setChecked(shin->wave„on);

}

void T e s t c o n nectSignals()
{

connect(widgets->period_milliseconds, SIGNAL(valueChanged(int)),
this, SLOT(setPeriod(int)));

connect(widgets->wave_on, SIGNAL(toggled(bool)), this,
SLOT(setAO(bool)));
}

/

Slots below set parameters in the shared memory region for
notifying the

real-time process

 */
void Test::setPeriod(int period)
C

if (period > 0) shm->period_milliseconds = period;
}
void Test::setAO(bool on)
{

shm->wave_on = on;

Mainpro.c :

COPYRIGHT (C) 2003 Xiaoyu Duan (xduan@mech.gla.ac.uk)
This library is free software; you can redistribute it and/or

192

mailto:xduan@mech.gla.ac.uk

Chapter 6 Applications

modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
*/
#include <stdio.h>
#include <math.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman,h>
#include <sys/stat.h>
#include <fcntl.h>
#define KEEP_STATIC__INLINE /* undef this to use libcomedilxrt */
#include <rtai_lxrt_user.h>
#include <rtai_lxrt.h>
#include <rtai_comedi_lxrt.h> /* comment this when using
libcomedilxrt */
#include <rtai„comedi_lxrtlib.h> /* include this to use

libcomedilxrt */
#define ts 0.002 /* time interval */
#define kp 0.025
#define kd -0.007
idefine k 3 5.2
idefine s 0.00284 / * sensitivity of motor servo */
idefine f 25 /* cutoff frequency */
idefine SAMPLE_LENGTH 10000
idefine SECOND 10000000000
idefine MSG_DELAY 1000

double t = 0.00;
double theta = 0.00, theta_desired = 0.00;
double theta_fp = 0.00, theta_f = 0.00;
double theta_fd = 0.00, theta_p = 0.00, volts = 0.00;
int second;
char *subdevice„types[] = {

"unused",
"analog input".

193

Chapter 6 Applications

1

'I

"analog output",
"digital input",
"digital output",
"digital I/O",
"counter", If
"timer", it

ft"memory",
"calibration", 1
"processor" t

}

double control_algrithm(double volts)

1, :

{
double af, bf, omega, volts__in, volts_out;
omega = 2 *M_PI* f;
count = 0 ;
volts„in = (volts-4095)*5.00/4096; / * convert binary value to

actual voltage value */
theta = volts_in/s; / * convert voltage to degree */
theta_fp = theta_f; /*save previous filtered output * /

theta_p = theta; / * save old sample * /

af = (omega*ts)/ (omega*ts+2);
bf = (omega*ts-2) (omega*ts+2);
theta_f = af*(theta_f+theta_p)”bf*theta„fp; /* filtering */
if (theta„f>176.00){

theta_f = 17 6,00;
}else i f (theta_f<“176.00)
theta„f = “176.00;

}
theta_fd = (theta_f-theta_fp)/ts;
/* theta__desired = 5.00*sin(M_Pl*t/5); give desired theta here,

use this if sine wave is desired. */
t = t+ts;
volts_out = kp*(k*theta_desired_theta_f)“kd*theta_fd; /* compute

output voltage value */
if(volts_out>5.00)

volts_out = 5.00;
else if(volts_out<-5.00)

volts_out = -5.00;
volts__out = (volts*2048/5.00)+2047 ; /* convert it back to binary

value*/

194

 :

Chapter 6 Applications

return volts_out;
}

int main(int argc, char **argv)
(
RT_TASK *comedi_task;
void *dev;
int i, n_subdevs, type;
double theta_temp;
int subdev„ai, subdev_ao, subdev_dio;
lsampl„t data;
int n, nch, semcnt;
char name[50];
SEM *sem;
Unsigned long mbx„name = nam2num("MBX"); /* use mail box to

achieve Interprocess communication here */
MBX *mbx;

/* set schedule priority */
struct sched__param mysched;
if (sched_setscheduler(0, SCHED_FIFO, &mysched)==-1){
puts("ERROR IN SETTING THE SCHEDULER UP");
perror("error");
exit(0);
)

i f (!comedi_task = rt_task„init(nam2num("COMEDI", 1, 0, 0))){
printf("CANNOT INIT COMEDI TASK\n");

exit(1);
}

mbx = rt_get_adr(mbx_name); /* recognize mailbox */
sem = rt_sem_init(nam2num("SEM"), 0);
rt_set„oneshot_mode();
start_rt_timer(0);
second = nano2count(SECOND);
mlockall(MCL_CURRENT 1 MCL„FUTURE);
dev = comedi„open("/dev/comediO");
printf("\n OVERALL INFO :\n") ;
printf(" Version code : 0x%06x\n",

comedi_get__version_code (dev)) ;

195

Chapter 6 Applications

rt_comedi_get_board_name(dev, name);
printf(" Board name : %s\n", name);
rt_comedi_get_driver_name(dev, name);
printf(" Driver name : %s\n", name);
printf(" Number of subdevices : %d\n", n_subdev =

comedi_get_n_subdevices(dev));

for (i = 0; i < n_subdevs; i++) {
printf("\n Subdevice : %d\n", i);
type = comedi_get_subdevice_type(dev, i) ;
printf(" Type : %d (%s)\n", type, subdevice„types[type]);
printf(" Number of channels ; %d\n", nch =

comedi_get_n_channels(dev, i));
printf(" Maxdata : %d\n", comedi_get„maxdata(dev, i, 0));
printf(" Number of ranges : %d\n", comedi_get_n_ranges(dev, i,

0)) ;

}

subdev_ai = comedi_find__subdevice_by_type(dev, COMEDI_SUBD_AI, 0);
subdev_ao = comedi_find__subdevice_by_type(dev, COMEDI„SUBD_AO, 0);
subdev_dio comedi_find_subdevice„by_type(dev, COMEDI_SUBDJDIO,

0) ;

printf("\n Start control
fflush(stdout);
comedi_lock(dev, subdev_ai);

for(n = 0; n<SAMPLE_LENGTH; n++){
rt_comedi_wait_timed(sem, nano2count(100000), &semcnt);
rt_mbx_receive_timed(mbx, &theta_temp, sizeof(theta_temp),
nano2count(MSG_DELAY)); /^receive desired theta value via mailbox

*/
printf("name: %x, address%p \n", mbx_name, mbx);
printf("RECEIVED THETA„DESIRED = %f", theta_temp);
theta_desired = theta„temp;
comedi„data_write(dev, subdev_ao, 0, 0, AREF_GROUND, &data);
data = control_algrithm(data);
comedi_data__write(dev, subdev_ao, 1, 0, AREF__GROUND, data) ;
rt„sleep(0.002xsecond);
}

comedi„data_write(dev, subdev_ao, 0, 0, AREF_GROUND, 2048);

196

Chapter 6 Applications

comedi_data_write(dev, subdev„ao, 1, 0, AREF_GROUND, 2048!
printf(" OK.\n");
comedi_unlock(dev, subdev_ai);
comedi_close(dev);
rt_sem_delete(sem);
stop_rt_timer();
rt_task_delete(comedi_task);
return 0 ;

Mailboxpro.c:

/*
COPYRIGHT (C) 2003 Xiaoyu Duan (xduan@mech.gla.ac.uk)

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
*/
#include <stdio.h>
#include <stdiolib.h>
#include <unistd,h>
#include <sys/types.h>
#include <sys/mman.h>
iinclude <sys/user.h>
iinclude <sys/stat.h>
iinclude <fcntl.h>
iinclude <sched.h>

idefine KEEP_STATIC_INLINE /* undef this to use libcomedilxrt */
iinclude <rtai_lxrt_user.h>
iinclude <rtai_lxrt.h>
idefine MSG_DELAY 2000000000

int main(int argc, char **argv[])

197

mailto:xduan@mech.gla.ac.uk

Chapter 6 Applications

unsigned long runtsk_nanne = nam2num ("RUNTSK") ;
unsigned long mbx_name = naiu2num ("MBX") ;
double theta_desired;
int count;
RT_TASK *runtsk;
MBX *mbx;
Struct sched_param mysched;
if (sched_setscheduler(0, SCHED_FIFO, &mysched)==-1){
puts("ERROR IN SETTING THE SCHEDULER UP");
perror("error");
exit{0);
)

mlockall(MCL^CURRENT | MCL_FUTURE);

if(!runtsk = rt_task_init(runtsk„name, 0, 0, 0))){
printf("CANNOT INIT MAILBOXPRO \n");
exit(1);
}

rt„set_oneshot_mode();
start_rt_timer(nano2count(1000000000);
if (! (mbx=rt_mbx_init (mbx__name, 1))) ;

printf("CANNOT CREAT MAILBOX %/x\n", mbx_name);
exit(1);

}
printf("name: %/x, address:%/x. \n", mbx_name, mbx);
count=5; /* It is possible to enter desired value for 5 times. */

while(count){
printf("PLEASE ENTER DESIRED THETA\n");
scanf("%lf", &theta_desired);

rt_mbx_send(mbx, &theta_desired, sizeof(theta_desired));
printf("DESIRED THETA IS %f \n", theta_desired);
rt_sleep(nano2count(DELAY));
count--;

}

stop_rt_timer();
rt_mbx„delete(mbx);

198

Chapter 6 Applications

rt_task_delete(runtsk)
return 0;
}

=1

