

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Enlighten: Theses <u>https://theses.gla.ac.uk/</u> research-enlighten@glasgow.ac.uk

Investigation of genes that may contribute to

disease tropism in Leishmania species

Walide I. F. Saad

Wellcome Centre for Molecular Parasitology Glasgow Biomedical Research Centre University of Glasgow Glasgow Gl2 8TA

This thesis is presented in submission for the degree of Master of Science (MSc) in the Faculty of Veterinary Medicine.

Submitted September 2007

ProQuest Number: 10390745

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10390745

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

SUMMARY

Ŋ

Leishmania parasites cause a wide spectrum of diseases known collectively as the leishmaniases. The three main forms of the disease are cutaneous (CL), mucocutaneous (MCL) and visceral (VL) leishmaniasis and particular species are usually associated with particular disease tropism. A better understanding of the mechanisms of disease would be beneficial in identifying potential drug targets and vaccine candidates. Genome projects for three species have now been completed: L. major (CL), L. infantum (VL) and L. braziliensis (MCL) and analysis of the highly syntenic genomes has revealed a small subset of species-specific genes that are hypothesised to contribute in some way to the tropism of that species. Four L. infantum-specific genes were investigated in this project (LinJ28.0330, LinJ36.2750, LinJ20.1200 and LinJ36.2050). All four genes, which are pseudogenes (or absent) in L. major and L. braziliensis, were found to be intact in L. donovani, another species that can cause VL. All genes except LinJ20.1200 are expressed in all three main life cycle stages, procyclic promastigote, metacyclic promastigote and amastigote. LinJ20.1200 appears to be promastigote-specific. LinJ36.2050 encodes a protein that is a putative orthologue of yeast SEC14. A LinJ36.2050 null mutant (Δ SEC14) was generated. No defect in growth or in vitro infectivity of macrophages phenotype was observed with the $\Delta SEC14$ cells. They were unable to establish cutaneous infection in mice and at the time of writing, it is not yet known if $\triangle SEC14$ clones can be recovered from the spleens of hamsters at 4 months post-infection. Further detailed analysis is required to determine if the $\triangle SEC14$ cells have a phenotype at the cellular level.

2

DECLARATION

1. 1. A. &

and the second

1

1

a substance .

I declare that the work presented in this thesis is my own work except where otherwise stated.

Walide Saad

September 2007

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof Jeremy Mottram who gave me the opportunity to do this MSc at the University of Glasgow. I would also like to thank Dr Jim Hilley for his support and advice. Thank you also to the people in the Mottram Lab who helped me throughout my time in Glasgow.

I have to say a big thank you to my parents and my wife for their support, encouragement throughout my study since we arrived in Scotland.

TABLE OF CONTENTS

SUMMARY	2
DECLARATION	3
ACKNOWLEDGEMENTS	4
TABLE OF CONTENTS	5
CHAPTER 1 - INTRODUCTION	7
1.1 Leishmania and Leishmaniasis	7
1.1.1 Leishmania Life Cycle	7
1.1.2 Species Description and Disease Forms	8
1.1.3 Visceral Leishmaniasis	.10
1.1.4 Cutaneous Leishmaniasis	.10
1.1.5 Mucocutaneous Leishmaniasis	.11
1.1.6 Factors that May Give Risc to Different Disease Tropism	.12
1.2 Modes of Infection	.12
1.2.1 Host-Parasite Interaction	.12
1.3 Genomics	.14
1.3.1 Genome Projects	.14
1.3.2 Genes Differentially Distributed Between Three Leishmania Species	.17
1.3.3. L. infantum-Specific Genes of Interest.	.18
1.3.4 Project Aim	.25
CHAPTER 2 - MATERIALS AND METHODS	.26
2.1 Molecular Methods	.26
2.1.1 Bacterial Strains	.26
2.1.2 Bacterial Culture Methods	.26
2.1.3 Long Term Storage of Bacteria	.27
2.1.4 Preparation of Competent Bacteria Using CaCL ₂	.27
2.1.5 Plasmid Purification	.27
2.1.6 Polymerase Chain Reaction (PCR)	.28
2.1.7 Restriction Digests	.29
2.1.8 DNA Gel Electrophoresis	.30
2.1.9 Purification of DNA from Agarose Gels	.30
2.1.10 Phosphatase Treatment of Digested Plasmids	.30
2,1.11 DNA Ligation ,,	.31
2.1.12 Transformation of Competent Bacteria	.31
2.1.13 DNA Sequencing	.31
2.2 Leishmania infantum Methods	.32
2.2.1 Cell Lines	.32
2.2.2 Leishmania Tissue Culture	.32
2.2.3 Long Term Storage of L. infantum Cell Lines	.34
2.2.4 Transfection of L. infantum	.35
2.3 DNA Manipulation	.36
2.3.1 Isolation of Genomic DNA from L.infantum	.36
2.3.2 Precipitation of DNA	.36
2.3.3 Southern Blotting of DNA Fragments	.37
2.3.4 FACS Analysis to Assess DNA Content	.38
2.4 Buffers and Reagents	.38

2.5 Oligos Used in This Study	40
CHAPTER 3 - RESULTS	42
3.1. Cloning and Sequencing of Four L. infantum-Specific Genes	42
3.1.1 Bioinformatic Analysis of the Encoded Proteins of Each Gene	43
3.1.2 Cloning and Sequencing of the Four Genes from L. infantum	49
3.1.3 Sequence Analysis	51
3.1.2 Cloning and Sequencing of the Four Genes from L. donovani	
3.1.3 L. donovani ORF Sequence Analysis	
3.1.4 Analysis of Equivalent L. major Loci	61
3.2 Expression Profile in L. infantum	61
3.2.1 RT-PCR of L. infantum-Specific Genes	61
3.2.2 RT-PCR Results	63
3.3 Knockout of SEC14 in L. infantum (JPCM5)	
3.3.1 Preparation of SEC14 Knockout Constructs	66
3.3.2 Preparation for Targeted Gene Replacement of SEC14	68
3.4 Phenotype analysis of SEC14 Null Mutants	81
3.4.1 Growth Curves	81
3.4.2 In Vitro Macrophage Infections with $\Delta SEC14$ Promastigotes	82
3.4.3 Hamster Infections	84
3.4.4 Mice Infections	85
CHAPTER 4 - DISCUSSION	86
REFERENCES.	93

a short in the

and the second rank a

Stor Bride and a second

and the second second

THE REPORT OF

101 AN AN TAN

,

ł

.

-

CHAPTER 1 - INTRODUCTION

and the second second

1.1 Leishmania and Leishmaniasis

Leishmaniasis represents a complex system of diseases with clinical and epidemiological diversity. It is caused by the kinetoplastid parasite *Leishmania*, and is endemic in 88 countries (22 in the "New World" (the Americas) and 66 in the "Old World" (Africa, Asia and southern Europe)). 16 of these are developed countries, 72 are developing countries (13 of them are among the least developed) (Desjeux, 1996). There are thirty known species of *Leishmania* and the majority are of them are human-infective (Banuls et al., 2007). They are grouped into either the *Leishmania* or *Viannia* subgenus, the latter being solely "New World". The *Leishmania* subgenus is generally "Old World" with the exception of *Leishmania* (*L.) mexicana* complex (Table 1.1). *Leishmania* species can also be grouped according to the general disease forms associated with that species (see Section 1.1.2).

1.1.1 Leishmania Life Cycle

Leishmaniasis is transmitted by blood-feeding female sand flies, as extracellular, flagellated promastigotes that differentiate into biologically distinct metacyclic forms prior to inoculation into the mammalian host. Transformation into proliferating intracellular, aflagellated amastigotes then occurs within the phagolysosome of host mononuclear phagocytes, which can facilitate the dissemination of parasites to different tissue site (Desjeux, 1996).

Parasites of the *Leishmania* species are obligate intra macrophage protozoan parasites with two life-cycle stages. Promastigotes are flagellated forms found in sandflies, and amastigotes are non-flagellated forms, which replicate in macrophage phagosomes in mammalian hosts (Lipoldova and Demant, 2006) (Figure 1.1).

Figure 1.1: The life cycle of *Leishmania* (picture taken from the Centre for Disease Control, USA website).

1.1.2 Species Description and Disease Forms

Depending on which species is initiating the infection and on the immunological status of the host, *Leishmania* causes a wide spectrum of diseases. Clinical forms of leishmaniasis range from cutaneous (CL) and mucocutaneous (MCL) to diffuse cutaneous (DCL) and visceral (VL) and these are described in more detail below.

Three species have been identified as causing the visceral form of the disease and several other distinct *Leishmania* species cause the cutaneous and mucocutaneous forms (McMahon-Pratt and Alexander, 2004). More than 90% of the VL cases in the world are reported in Bangladesh, Brazil, India and Sudan and more than 90% of the CL cases occur in Afghanistan, Iran, Saudi Arabia and Syrian Arab Republic in the Old World and Brazil and Peru in the New World. This places an estimated 350 million people at risk (Desjeux, 1996).

Disease form	New World Species	Old World Species
Cutaneous	L. (L.) mexicana complex L. (L.) mexicana L. (L.) amazonensis L. (L.) pifanoi L. (L.) venezuelensis	L (L) major complex L. (L.) major L. (L.) tropica L. (L.) aethiopica
	L. (Viannia) subgenus L. (V.) braziliensis L. (V.) peruviana I. (V.) lansoni L. (V.) naiff L. (V.) panamensis L. (V.) guyanensis	
Mucocutancous	L. (V.) braziliensis	
Diffuse cutaneous	L. (L.) amazonensis L. (L.) pifanoi	L. (L.) aethiopica
Visceral	L. (L.) chagasi*	L. (L.) donovani complex L. (L.) infantum L. (L.) donovani

Table 1.1: Different Leishmania species and associated diseases

* - Note that L. (L.) chagasi is widely considered to be a synonym of L. (L.) infantum as no evidence of ancient lineage can be found (Mauricio et al., 2000). Rather it is held that the species has been introduced from dogs/rodents by European settlers.

1.1.3 Visceral Leishmaniasis

Also known as kala-azar, this form of the disease is caused by species of the *L*. *donovani* complex and is the most severe form. The disease is characterised by fever, enlargement of the spleen (splenomegaly) and liver (hepatomegaly), anaemia and severe weight loss. This form of the disease is usually fatal if left untreated. Serious epidemics of VL have occurred in India and East Africa in recent years, while the number of cases of VL is currently increasing in Brazil (Desjeux, 1996).

Figure 1.2: Sudanese woman with visceral Leishmaniasis (Taken from Herwaldt (1999)).

1.1.4 Cutaneous Leishmaniasis

Cutaneous Leishmaniasis in the Old World is due to *L. major* which produces selfhealing lesions as the parasites remain at the sites of infection, the sand fly bite (Figure 1.3). The mechanisms involved in cutaneous disease caused by for example, *L. major* and *L. mexicana*, are limited. Cutaneous infection can remain sub-clinical or become clinically apparent after a variable incubation period that averages several weeks. Lesions can form at the site of infection and are usually self-healing (Herwaldt, 1999).

Figure 1.3: Patient suffering from cutaneous leishmaniasis (Taken from Herwaldt (1999)).

1.1.5 Mucocutaneous Leishmaniasis

Mucocutaneous Leishmaniasis is caused by parasites of the *Viannia* subgenus, for example *L. braziliensis*. Clinical symptoms can indicate extensive destruction of the oral-nasal and pharyngeal cavities resulting in severe disfigurement (Figure 1.4). Typically, mucosal disease becomes evident because of chronic nasal symptoms, in context of a hyperactive immune response. The disease is not normally self-limiting and requires treatment, however, diagnosis is difficult, even when clinically active. MCL is more difficult to treat than CL. Currently, the best treatment options are pentavalent antimony drugs (Herwaldt, 1999).

Figure 1.4: Mucocutaneous Leishmaniasis sufferer with perforation of the nasal septum. (Taken from Herwaldt (1999)).

1.1.6 Factors that May Give Rise to Different Disease Tropism

The different disease tropisms caused by different *Leishmania* species are thought to be determined by a number of factors (McMahon-Pratt and Alexander, 2004):

- Immune status of the host
- Genetic differences between Leishmania species

The extent to which these parasites are able to resist the host's innate and acquired immunity will directly contribute to their establishment in the host and consequently to disease severity (Campos-Ponce et al., 2005). For example, although species of the *L. donovani* complex generally cause visceral disease, there have been reports of cases of cutaneous infection by these species (McMahon-Pratt and Alexander, 2004; Siriwardana et al., 2007).

1.2 Modes of Infection

1.2.1 Host-Parasite Interaction

The macrophage is the immune-effector cell that, upon activation, is normally able to kill foreign pathogens. This cell, however, is the main mammalian host cell for all *Leishmania*.

1.2.1.1 Uptake by Macrophages (Phagocytosis)

Upon first exposure to the mammalian host during sand fly feeding, *Leishmania* promastigotes encounter host macrophages which can bind to (via *Leishmania* surface molecules – see Section 1.2.1.2) and internalise the parasite cells in the same way other pathogens are taken up. *Leishmania* spp are remarkably resistant to macrophages and can survive, differentiate and proliferate in the parasitophorous vacuole of the macrophage. Other host cells can take up *Leishmania* promastigotes,

also (see Section 1.2.1.4), but the macrophage is the cell type in which the parasites can differentiate and proliferate within the mammalian host.

1.2.1.2 Surface Molecules & Parasite Interaction with Host Cells

There are two major families of promastigote surface molecules: -

- GP63:- The major surface metallopeptidase, found in large numbers on the promastigote surface, but not the amastigote surface
- Phosphoglycans: Includes glycolipids such as lipophosphoglycan (LPG), phosphoglycosylated proteins and proteophosphoglycans (Flandman and Bullen, 2002).

These have been proposed to be required for binding to macrophages, the initial step for establishment of infection (Kelleher et al., 1995). They have also been implicated in the resistance of promastigotes to complement-mediated lysis prior to uptake by macrophages (Ilgoutz and McConville, 2001).

1.2.1.3 Amastigote Invasion of Macrophages

L. major LPG has been found to be involved in initial survival of promastigotes in the host prior to and following cell invasion by promastigotes but are less important to amastigotes, where LPGs are strongly downregulated (Spath et al., 2003; Ilgoutz and McConville, 2001). It is believed that infected macrophages in mammalian hosts eventually rupture, releasing amastigotes which then go on to infect more macrophages, however, little is known about the mechanism and molecules involved in amastigote invasion and survival in these cells (Handman and Bullen, 2002).

1.2.1.4 Uptake by Other Cells (Trojan Horses)

As already discussed the mammalian stage amastigotes exist intracellularly, and the preferred host cell is the macrophage. *Letshmania* promastigotes are quickly killed in the extracellular tissue environment and can only survive if they enter phagocytic cells. Often, polymorphonuclear neutrophil (PMN) granulocytes, rather than macrophages are the first cells *Leishmania* will encounter (van Zandbergen et al., 2004). *L. major* has been shown to be capable of entering and surviving as promastigotes within PMN. This causes apoptosis of the PMN, which is then taken up by macrophages, together with the surviving *L. major*. Thus, the parasite appears to be using the PMN as an intermediate host cell for up to 42 hours post-infection, prior to uptake of infected PMN by macrophages (van Zandbergen et al., 2004).

1.3 Genomics

1.3.1 Genome Projects

The Wellcome Trust Sanger Institute has sequenced the *L. major* genome to completion and more than 8000 genes have been annotated in the ~33.6Mb genome (Ivens et al., 2005). The genomes of *L. infantum* and *L. braziliensis* were the next genome projects to be completed (Peacock et al., 2007) and *L. mexicana* will be the fourth, although this project is in the early stages at the time of writing (http://www.sanger.ac.uk/sequencing/Leishmania/mexicana/).

The number of chromosomes and genes in each species is summarised in Table 1.2. L. braziliensis has 35 chromosomes compared with 36 in both L. major and L. infantum and this is due to the apparent fusion of chromosomes 20 and 34 in L. braziliensis (Peacock et al., 2007).

14

Leishmania species	L. infantum	L. major	L. braziliensis	
Number of chromosomes	36	36	35	
Number of genes	8154	8298	8153	

Table 1.2: Genomes of three Leishmania species in summary

1.3.1.1 Comparative Gene Content Analysis of Leishmania

The organisation of the genes in all three species of *Leishmania* sequenced to date has shown to have a high degree of synteny i.e. the positions of genes relative to one another is highly conserved in all species studied (Peacock et al., 2007). An example of this synteny is shown in Figure 1.5.

Figure 1.5: An example of the high degree of synteny between the three species of *Leishmania* with genomes sequenced to date. The example shown is the genomic locus of a putative RNA Binding Protein (LinJ32.1150) (green arrow) and the genes surrounding it.

This has made it possible to directly compare the genes found in each species and identifies those that are specific to each species. Peacock et al (2007) have reported that the number of species-specific genes is remarkably small (Figure 1.6).

Figure 1.6: Venn Diagram showing the number of genes that are unique to each species as well as those genes that are common to two or more species. The majority of these genes are hypothetical.

Despite the vastly different disease forms, a surprisingly small number of genes have been found to be unique to each species: 26 *L. infantum*-specific genes, 5 *L. major*specific genes, and 49 *L. braziliensis*-specific genes (Figure 1.6). The hypothesis underlying the program of study, of which this project is a part, is that at least some of these genes will contribute to the molecular mechanisms giving rise to the disease tropism of a particular species.

1.3.2 Genes Differentially Distributed Between Three Leishmania Species

1

To date the multi-copy A2 gene (LinJ22.0680) is the only gene shown to be involved in *L. donovani* visceral disease tropism (Zhang and Matlashewski, 1997; Zhang and Matlashewski, 2001; Zhang et al., 2003). The gene is not expressed in *L. major* and detailed characterisation of the *L. donovani* and *L. major* A2 loci revealed that the multiple amino acid repeat sequences found in the *L. donovani* protein are absent from *L. major*; the gene is truncated containing only a single amino acid repeat region. The A2 gene has been shown to be necessary for survival of *L. donovani* in visceral organs and loss of several copies of the A2 array results in compromised BALB/c mouse infections (Zhang and Matlashewski, 2001). Interestingly, heterologous expression of the *L. donovani* A2 gene in *L. major* prevented the cutaneous infection being established in both resistant and susceptible mice. This indicates that disease tropism can be influenced by just a single gene. The full mechanism of visceralisation will almost certainly require additional genes. The genes that are unique to *L. infantum* are listed in Table 1.3. **Table 1.3:** The unique genes of L. infantum (Peacock et al., 2007). The genes that

 will be examined in this study are highlighted in red.

Product	L. infantum	Product	L. infantum
Hypothetical protein	LinJ02.0670	Multidrug resistance protein	LinJ30.1840
Hypothetical protein	LinJ08.0140	n-acyl-l-amino acid amidohydrolase	LinJ31.1490
Tuzin	LinJ08.0750	Hypothetical protein	LinJ31.2630
Hypothetical protein	LinJ10.1430	p-nitrophenyl-phosphatase	LinJ31.3030
Phosphatidylinositol 3-kinase	LinJ14.0020	Hypothetical protein	LinJ31.3160
Hypothetical protein	LinJ15.0890	Hypothetical protein	LinJ32.1900
Hypothetical protein	LinJ20.1210	Hypothetical protein	LinJ33.2710
Methylenetrahydrofolate dehydrogenase	LinJ22.0330	Hypothetical protein	LinJ34.3170
Hypothetical protein	LinJ22.0410	Phosphatidylinositol/ phosphatidylcholine SEC14 cytosolic factor	LinJ36.2050
Hypothetical protein	LinJ22.0680	Hypothetical protein	LinJ36.2060
Hypothetical protein	LinJ24.1430	Glyceraldehyde 3-phosphate	LinJ36.4900
Glutathionyl-spermidine synthase	LinJ25.2500	Hypothetical protein	LinJ36.2750
Hypothetical protein	LinJ28.0330	Endo-1,4-β-Xylanase	LinJ20.1200

1.3.3. L. infantum-Specific Genes of Interest

There are four specific genes of interest that were analysed during this project, they

are:-

- LinJ28.0330 encodes a hypothetical protein
- LinJ36.2750 encodes a hypothetical protein
- LinJ20.1200 encodes a putative endo-1,4-β-xylanase precursor protein
- LinJ36.2050 encodes putative SEC14 cytosolic factor

These four genes were chosen from the 27 unique genes in *L. infantum* for further study in this project. The two hypothetical genes were selected at random (although LinJ36.2750 was chosen because it has a homologous domain (TRF4) that may provide a handle for further study (see Section 1.3.3.2). LinJ36.2050 was selected as it is potentially involved in trafficking, a process that could influence host-parasite interactions and therefore potentially, disease tropism (see Section 1.3.3.4). LinJ20.1200 was selected as a poor candidate for involvement in disease tropism that could quickly be eliminated from the overall study (see Section 1.3.3.3).

and the state of the state of

. .†

a subserved a second subserved as a subserved second second second second second second second second second se

<u>ې</u>

1.3.3.1. LinJ28.0330

This gene encodes a hypothetical protein and according to GeneDB it is intact in *L. infantum*, whereas the gene in the equivalent position in both *L. major* and *L. braziliensis* contains frameshifts and/or introduced stop codons (Figure 1.7). Presumably, the latter two species, by contrast with *L. infantum*, have lost a biologically relevant function for this protein, if indeed it is expressed in *L. infantum*. There are no recognisable domains in the primary amino acid sequence to yield any clues to the potential role of this protein.

Figure 1.7: LinJ28.0330 Locus of chromosome 28 (in all three species) showing the pseudogene orthologues (grey) in both *L. major* and *L. braziliensis*. This also highlights the high degree of synteny of each species.

1.3.3.2. LinJ36.2750

This gene also encodes a hypothetical protein and is present in *L. infantum* but is apparently missing from both *L. major* and *L. braziliensis* (Figure 1.8). Similarly to LinJ28.0330, if LinJ36.2750 is expressed in *L. infantum*, then the other species are likely to have lost a biological requirement for the gene and it has undergone mutation such that the gene is no longer intact.

Figure 1.8: LinJ36.2750 locus on chromosome 36 in *L*. infantum and L. *major* and chromosome 35 of *L*. braziliensis. This schematic demonstrates that the gene is apparently missing from both *L. major* and *L. braziliensis*.

On closer inspection, remnants of the gene can be identified in the gap region where the gene ought to be in *L. major*. There are also remnants of the gene in *L. braziliensis* but these are even more divergent than the *L. major* sequence suggesting that the gene was lost long ago in evolutionary terms.

The encoded protein, although hypothetical, contains a domain that has homology to TRF4, a domain related to the TRF4 proteins of the yeast *Saccharomyces cerevisiae*. These form part of a nuclear poly adenylation complex that can mediate the polyadenylation and degradation of ribosomal RNA (rRNA) and/or small nucleolar RNA (snoRNA) precursors (LaCava et al., 2005). Reciprocal BLAST analysis with the *S. cerevisiae* TRF4 amino acid sequence (GeneDB Omniblast against predicted proteins in *L. infantum*, *L. major* and *L. braziliensis*) has revealed several genes encoding TRF4 domains. LinJ36.2750 was the third highest hit.

1.3.3.3. Endo-1,4-β-Xylanase

This gene encodes a protein with predicted function based on homology with other characterised proteins and is present in *L. infantum*. It appears to be a pseudogene in *L. major* and *L. braziliensis* (Figure 1.9). Xylanases are enzymes that degrade the polysaccharide xylan, a major component of some plant cell walls. Xylanases are also present in fungi for the degradation of plant matter as part of the plant pathogenesis mechanism or to assimilate usable nutrients (Brito et al., 2006). Some species of sand flies (e.g. *Phlebotomus papatasi*) are known to consume plant matter between blood meals for sustenance (Schlein and Jacobson, 2002) and one of the major components of the cell walls of one species of plant, *Proposis farcta*, consumed by these sand flies is xylan (Schlein and Jacobson, 1995; Pasiccznik et al., 2001). One might therefore predict that this *L. infantum*-specific enzyme will be preferentially expressed in the promastigote (sand fly) life-cycle stage, because it is during this stage that the cells are most likely to encounter plant material, in the midgut of the sandfly.

100

Figure 1.9: The genomic locus of chromosome 20 containing LinJ20.1200 (endo-1,4- β -xylanase precursor) in *L. infantum* compared with the locus in *L. major* and *L. braziliensis*. The gene has become a pseudogene in the latter two species but is intact in *L. infantum*.

1.3.3.4. LinJ36.2050 - SEC14 Cytosolic Factor

LinJ36.2050 has been annotated on GeneDB as encoding SEC14 cytosolic factor. This gene is not annotated in *L. major* and only remnants of the gene have been identified in *L. braziliensis* (Figure 1.10).

Figure 1.10: The genomic locus of the SEC14 gene in three species of *Leishmania*. The gene is apparently intact in *L. infantum* but is "missing" from *L. major* and remnants of the gene have been identified in *L. braziliensis*.

The annotation of the gene in GeneDB as SEC14 Cytosolic Factor indicates that it is a possible orthologue of the SEC14 gene of the budding yeast *Saccharomyces cerevisiae*. The encoded protein (Sec14p) is the main phosphatidylinositol transfer protein (PITP) in this organism and plays an essential role in protein transport from the trans-Golgi network (TGN) to the plasma membrane. This was originally demonstrated in yeast temperature sensitive mutants that exhibit a block in secretory vesicle formation at the TGN at non-permissive temperatures (Bankaitis et al., 1989). To date over 500 SEC14-like proteins all within eukaryotic species have been identified with roles in processes such as vesicle trafficking and phospholipid metabolism (Mousley et al., 2007; Phillips et al., 2006). At the most basic level of activity, these PITPs can extract a single phosphatidylinositol molecule (PI) from membrane and transfer it to another by an unknown mechanism (Figure 1.11). Yeast Sec14p can also extract and transfer phosphatidylcholine (PC) molecules (Hsuan and Cockcroft, 2001). Five other SEC14 homologues (Sfh1-5) have been identified in yeast and most have retained their ability to transfer PI but not PC (Phillips et al., 2006).

The *L. infantum SEC14* gene encodes a protein with approximately 16% identity and 26% similarity to yeast Sec14p. If this protein is involved in the secretory pathway as it is in yeast, then it could potentially influence molecules that are either secreted or found on the surface of the parasite and so contribute to host-parasite interactions.

Figure 1.11: The phosphatidylinositol/phosphatidylcholine transfer activity of PITPs such as yeast Sec14p. Taken from (Hsuan and Cockcroft, 2001).

1.3.4 Project Aim

The aim of this project is to test the hypothesis that some of the *L. infantum*-specific genes contribute to the disease tropism of that species. Four of the 26 *L. infantum*-specific genes (Figure 1.6) were selected to study in more detail. These are highlighted in red in Table 1.3.

CHAPTER 2 – MATERIALS AND METHODS

2.1 Molecular Methods

2.1.1 Bacterial Strains

Two strains of bacteria were used during this study as described in Table 2.1.

Strain	Uses	Reference
XL1-Blue cells	Supercompetent cells for high- efficiency transformation	Stratagene
XL10-Gold	Ultracompetent cells for high- efficiency transformation	Stratagene

Table 2.1: Bacterial strains

2.1.2 Bacterial Culture Methods

Approximately 10ml of Luria-Bertani (LB) broth containing appropriate antibiotics in a sterile glass test tube was inoculated with a single colony using a sterilised toothpick. Cultures were grown overnight at 37°C in a rotary incubator. Where medium-scale plasmid preparation was required, 1-2ml of an overnight culture (grown from a single colony) was used to inoculate 25-50ml of fresh LB broth.

,在1995年,1975年,191**8年後,1918年時,1919年,1919年**月,1919年,1919年,1919年,1917年,191

2.1.3 Long Term Storage of Bacteria

Cells were plated on Luria-Bertani (LB)-agar plates with appropriate antibiotics and incubated overnight at 37° C. A single colony was used to inoculate 5ml of LB broth with antibiotics and cells were grown overnight at 37° C. 1.0ml of the overnight culture was mixed with 1.0ml 2% peptone, 40% glycerol and cells were stored at -80° C.

2.1.4 Preparation of Competent Bacteria Using CaCL₂

A single colony of XL1 *E*. coli strain was used to inoculate a 5ml LB plus appropriate antibiotic and shake overnight at 37°C. 25ml LB plus antibiotic was inoculated with overnight culture. Cells were centrifuged for 10 minutes at 4°C. Then pellet was suspended in 0.5 original volume cold, sterile 50 mM CaCl₂ (12.5ml) and resuspended gently by pipetting up and down a few times with a wide bore pipet. Cells were left on ice for 30 minutes and centrifuged as before at 4°C. The pellet was resuspended in 0.1 original volume of CaCl₂ and split into 50-200µl aliquots. 50µl was used for each transformation.

2.1.5 Plasmid Purification

Several different kits were used to purify plasmid depending on requirements:

- Qiagen Qiaprep Spin Miniprep Kit was used for small scale plasmid purification.
- Qiagen Hispeed Plasmid Midi Kit was used for larger-scale plasmid purification.

The quality and quantity of the purified DNA was assessed spectrophotometrically by recording absorbance at 260nm and 280nm wavelength.

DNA concentration was calculated as follows: $A_{260} \ge 50 \ge 0$ dilution factor (generally 50 fold dilutions of mini-prep DNA so the concentration in ng/µl would be calculated by $A_{260} \ge 50 \ge 50$.

2.1.6 Polymerase Chain Reaction (PCR)

PCR was used to amplify DNA fragments for subsequent cloning and analysis or for the colony-screening of transformed bacteria. For general PCR analysis a 20μ l reaction was set up with the non-proofreading Taq DNA Polymerase (NEB) as shown in the Table 2.2.

Component	Volume/ 20µl reaction
10x PCR mix (See Section 2.4)	2µl
Primer A (0.1µg/ml)	2µl
Primer B (0.1µg/ml)	2µl
Template DNA	0.5µl
MilliQ H ₂ O	13µl
Taq DNA Poylmerase	0.5µl

Table 2.2: Contents of a Standard PCR Reaction

Where high sequence fidelity was required, the polymerase was replaced with one of several proof-reading DNA polymerases available (Table 2.3) according to

28

manufacturer's instructions. Wherever possible, the reaction buffer supplied with the proof-reading enzyme was used instead of 10x PCR Buffer

Table 2.3: Proof-reading	DNA Polymerases	Used in	this Study
--------------------------	-----------------	---------	------------

Enzyme	Manufacturer
Pfu Turbo	Stratagene
Deep Vent	NEB
Phusion	NEB (Finnzymes)
Pfx50	Invitrogen

Products generated by high-fidelity PCR that were to be cloned into T-vectors such as pGEM-T Easy (Promega) or pCR2.1 TOPO (Invitrogen) required the addition of A-overhangs. This was accomplished by adding $0.5-1.0\mu$ l of Taq DNA Polymerase (NEB) directly to the PCR reactions at the end of the final cycle and incubating for a further 10-20 minutes at 72°C prior to electrophoresis and gel-extraction. and the second secon

2.1.7 Restriction Digests

Restriction enzymes were obtained from New England Biolabs and used according to manufacturer's instructions with the buffers supplied/recommended. Generally, 1-5µg of plasmid DNA was digested in a single 20µl reaction for 1-2 hours at 37°C. Larger-scale digests were scaled up in volume and/or digest-time.

2.1.8 DNA Gel Electrophoresis

Gels were prepared by dissolving 0.8-1.2 % (w/v) agarose in $0.5 \times \text{TBE}$ buffer. Prior to pouring the gels, 2μ l of SYBR Safe DNA Gel Stain (Invitrogen) was added per 100ml of molten gel. DNA samples were mixed with 10 x DNA loading buffer and were electrophoresed at 60-170V until the dye in the loading buffer had migrated approximately two thirds of the length of the gel. Gels were viewed under UV illumination and images obtained by using a Bio-Rad gel documentation system. If required, DNA bands were cut from the gels for purification and subsequent cloning.

2.1.9 Purification of DNA from Agarose Gels

DNA cut from agarose gels was purified using the Qiaquick Gel Extraction Kit (Qiagen) according to manufacturer's instructions.

2.1.10 Phosphatase Treatment of Digested Plasmids

Plasmids digested with a single restriction enzyme were treated with calf intestinal alkaline phosphatase or CIAP (NEB) prior to ligation. This removes the 5' terminal phosphate in order to reduce the chances of plasmid re-ligation, rather than ligation with the added DNA fragment of interest. This was done as follows:

Plasmid digests were incubated at 65°C for 20 minutes to heat-inactivate the restriction enzymes (where possible). 1µl of CIAP was added directly to the heat-inactivated restriction digest mix and incubated at 37°C for 30-60 minutes. The digests were run out on DNA agarose gels and appropriate bands were excised form the gel for subsequent use.

2.1.11 DNA Ligation

Ligation of DNA fragments with available T vectors such as pCR2.1 TOPO TA (Invitrogen) and pGEM-T or pGEM-T Easy (Promega) was carried out according to manufacturer's instructions. Other ligations were carried out by adding various volumes of plasmid and insert in a total volume of 10µl containing 1x T4 DNA ligase buffer and 0.5µl T4 DNA ligase (New England Biolabs). Reactions were either incubated at room temperature for 30-120 minutes or overnight at 16°C (4°C for pGEM-T cloning).

2.1.12 Transformation of Competent Bacteria

Chemically competent cells made from the XL1-blue strain by the $CaCl_2$ method were used for routine transformations. For lower efficiency ligations, commercially available XL1-Blue Supercompetent Cells and XL10-Gold Ultracompetent cells (Stratagene) were used. Cells were mixed with 5µl of ligation reaction and transformed by heat shock for 30 seconds (chemically-competent bacteria) or according to manufacturer's protocol for cells obtained from Stratagene.

2.1.13 DNA Sequencing

The DNA Sequencing Facility at the University of Dundee was used for all sequence analysis (http://www.dnaseq.co.uk). Plasmid concentration was assessed by A_{260}/A_{280} absorbance. 250-300ng of high-quality plasmid DNA in 15µl was required per sequencing reaction. "Standard" primers such as M13 Forward (-20), M13 Reverse, T7, T3 and SP6 were provided by the DNA Sequencing Facility. Genespecific primers were prepared by diluting primers to 3.2pmoles/µl in water and

31

these were sent to the DNA Sequencing Facility along with the plasmids to be sequenced.

Sequences were analysed using Vector-NTI Advance 10 software package (Invitrogen).

2.2 Leishmania infantum Methods

2.2.1 Cell Lines

The following Leishmania cell lines were used in this study (Table 2.4).

Species	Strai	in	Notes
L. infantum	JPCM5		Genome project strain
L. donovani	BPK206/0	(Clone	Field Isolate from bone marrow
	10)		of Nepalese VL patient, 2003.
			Provided by Lesley McCaig,
			University of Glasgow

Table 2.4: Leishmania Spec	cies and Strains
----------------------------	------------------

2.2.2 Leishmania Tissue Culture

L. infantum and *L. donovani* promastigotes were grown at 25°C in HOMEM medium (Gibco BRL) supplemented with 10% heat-inactivated foetal calf serum (FCS) and 1% Penicillin-Streptomycin (Sigma). Cells were inoculated into fresh medium at approximately 5×10^5 cells/ml and were sub-passaged into fresh medium when cultures reached late-log or early stationary phase.

2.2.2.1 Leishmania Cell Counts

Cells were diluted and fixed by adding 10µl of cells to 10µl of PBS/ 1% formaldehyde. 10µl of fixed cells were loaded into each chamber of an improved Neubauer haemocytometer and counted under microscopy.

2.2.2.2 Harvesting Leishmania

Cells in culture were generally harvested by centrifugation at 1200xg for 5 minutes followed by two washes in PBS (both followed by centrifugation as before). Cells were used immediately or frozen at -80°C. For RNA extraction, 1 x 10^9 cells were resuspended in 1ml of Trizol (Invitrogen) immediately following the first centrifugation (i.e. before any PBS washes).

2.2.2.3 Harvesting L. infuntum Amastigotes for RNA Collection

To purify amastigotes from infected hamsters, the buffers and the sephadex were prepared and swelled overnight at 4°C before the purification.

Component	Volume
NaCl	15.75g
Glucose	15g
EDTA	0.285g
MgCl2.6H ₂ O	3.04g
KCI	1.11g
Albumin (Bovine)	0.30g
Buffer X (0.02M Na ₂ HPO ₄ .2H2O)	108ml
Buffer Y (0.02M NaH ₂ PO ₄ .2H2O)	34.5ml
H ₂ O	1357ml

 Table 2.5: Component for purification (PSGEMKA)

2.5g of Sephadex was swelled overnight in 100ml of PSGEMKA buffer. Hamster spleen was removed using standard asceptic techniques. The spleen and was cut into
small fragments which were broken up in the tissue grinder with the gradual addition of 400mls of PSGEMKA until no solid pieces of lesion remained. 100µ1 of crude extract was removed for counting amastigotes. 50mg of Saponin was resuspended in 5-10 ml PSGEMKA and was mixed with the 400ml crude amastigote suspension. The suspension was split in to 8x50ml falcon tubes and centrifuged for 10 minutes at 3.400rpm in a swing bucket rotor (approximately 1500xg). Supernatant was removed with 25ml pipette and the pellets washed two more times and resuspended in a final volume of 100ml. 100µ1 of this suspension was collected for counting (pre-column). The amastigote purification column was prepared and PSGEMKA used to remove air bubbles before the Sephadex solution was poured in the column. The column was washed with 100ml PSGEMKA. Then the amastigote suspension was added to the column. The amastigotes flow through the column, while the tissue debris and host cells remain in the column. 50ml of PSGEMKA was added to flush amastigotes through and the flow through was collected. 100µ1 of the flow through was used to count cell numbers (post column). Purified amastigotes were centrifuged and washed twice with PBS and resuspended at 5 x 10^8 cells per ml of Trizol.

2.2.3 Long Term Storage of L. infantum Cell Lines

0.5ml of a log phase culture was diluted with an equal volume of fresh medium containing 10% DMSO. Samples were stored overnight at -20°C and stored overnight at -80 °C and then transferred to liquid nitrogen for long-term storage.

2.2.4 Transfection of L. infantum

Cells were harvested and washed before being resuspended at $2x10^8$ cells/ml in cytomix (Reference Ngo etal 1998, Robinson and Beverley 2003) and kept on ice. $1x10^8$ cells in 500µl were transferred to a pre-chilled 0.4cm electroporation cuvette. Target DNA (either an episome or a linearised knockout cassette) or water (control transfection) was added to each cuvette and cells were electroporated with 2 pulses, 10 seconds apart (1.50kV and 25μ F capacitance) in a Gene Pulser II Electroporation System (Bio-Rad). Cells were allowed to recover on ice for 10 minutes before being transferred to 10ml fresh medium and immediately split into 2 flasks (5ml each). Control transfection cultures were not split in this way but remained in 10ml of medium. Flasks were incubated overnight at 25°C overnight. Cells were then plated on 96 well plates by serial dilution in fresh medium containing the appropriate antibiotics (see Table 2.6).

54 1

To obtain clones, 4ml of each overnight culture was diluted into 20ml HOMEM/FCS + antibiotics (Dilution 1). 2ml of Dilution 1 was added to 22ml of HOMEM/FCS + antibiotics (Dilution 2) and 2ml of Dilution 2 was then added to 22ml of HOMEM/FCS + antibiotics (Dilution 3). 200µl of Dilution 1 was added to every well on a 96 well plate. The same was done for Dilutions 2 and 3, giving 3 plates for each overnight culture. To the remaining 1ml in each overnight flask, 9ml of fresh HOMEM/FCS + antibiotics was added – a transfected population. Cells growing up in this culture are unlikely to be clonal so further serial dilution is generally required. For the control (no DNA) transfections, 1ml of these cells were added to 9ml of fresh HOMEM/FCS + antibiotics. This dilution was necessary to prevent the cells reaching stationary phase before antibiotic selection was complete.

2.2.4.1 Antibiotics Used for Selection of Leishmania Transfectants.

The antibiotics used in this study are detailed in Table 2.6.

Resistance Mark	er Antibiotic	Reference
Gene		
SAT	Nourseothricin	Hans Knoll Inst.,
		Germany
BLE	Phleomycin	Zeocin (Invitrogen)
NEO	G418 (analogue of	Merck
	neomycin)	

Table 2.6: Antibiotics Used for Selection of Leishmania infantum

2.3 DNA Manipulation

2.3.1 Isolation of Genomic DNA from L.infantum

Genomic DNA was generally isolated from 10ml of late log phase or stationary phase cultures using the DNEasy Blood and Tissue Kit (Qiagen) according to manufacturer's protocol for cultured animal cells. For larger scale DNA preparation, larger volumes or cells were used with multiple DNEasy preps and the isolated genomic DNA was pooled.

and the second of the second se

and some with the left of the second states of the second s

2.3.2 Precipitation of DNA

DNA precipitation was used to concentrate DNA samples that were too dilute for practical analysis or experimentation. Generally, isopropanol precipitation was used as follows: 0.7 volumes of isopropanol was added to DNA and incubated at room temperature for 15 minutes. DNA was pelleted by centrifugation at 12,000xg for 15 minutes. Pellets were washed in 70% ethanol and centrifuged again. Pellets were

allowed to air-dry for 5 minutes before resuspending in MilliQ water or appropriate buffer.

Concentration and quality of DNA was assessed by spectrophotometer (A_{260}/A_{280}) and/or by DNA gel electrophoresis.

2011

2.3.3 Southern Blotting of DNA Fragments

3-5µg genomic DNA was digested overnight with appropriate restriction enzymes and digested products were electrophoresed on a 0.7% agarose gel. The gel was incubated with 0.3µg/ml ethidium bromide and analysed under UV to allow a scale image of the gel to be obtained. The gel was washed in distilled water for a few minutes before incubation for 30 minutes in depurination solution. The gel was then rinsed in distilled water and incubated for 30 minutes in denaturation solution. After another wash in water the gel washed for 10 minutes in 20xSSC .DNA was transferred to nylon membrane overnight. The transferred DNA fragment on nylon membrane was attached to the membrane by using UV for 20 seconds. The membrane was added to 5ml of Church-Gilbert solution and incubated at 100°C. The probe was radiolabeled and purified by using the Megaprime DNA Labeling Kit (Amersham). The probe was added to the Church-Gilbert solution and Southern blot membrane in the hybridisation tube and incubated overnight at 65°C. The blot was washed 3 times for 15 minutes in 2 x SSC/0.1% SDS followed by 3 x 15 minutes washes with $0.1 \ge SSC/0.1$ %SDS. The membrane was exposed to autoradiography film for a few days and developed.

2.3.4 FACS Analysis to Assess DNA Content

1ml of log phase promastigotes were pelleted by slow-speed centrifugation (1000xg for 5 minutes) and resuspended in 70% methanol/PBS overnight to fix. Fixed cells were washed with PBS followed by slow-speed centrifugation. Cells were resuspended in 1ml of PBS containing 10 μ g/ml propidium iodide (Sigma-Aldrich) and 10 μ g/ml RNase A and incubated at 37°C for 1 hour protected from the light. Cells were then immediately analysed in FACScalibur System (BD Biosciences) for DNA content.

2.4 Buffers and Reagents

10x PCR Mix: 45mM Tris-IICl (pH8.8), 11mM Ammonium phosphate, 4.5 mM MgCl₂, 6.7mM β-mercaptocthanol, 4.4mM EDTA (pH8.0), 1mM dATP, 1mM dCTP, 1mM dGTP, 1mM dTTP and 113µg/ml BSA. Store at -20°C.

Ampicillin: Stock solution is 100mg/ml in distilled water. Storage at -20C. Used at 1µg/ml.

Church-Gilbert's solution: 340mM Na₂HPO₄, 158mM NaH₂PO₄, 240Mm SDS, 1mM EDTA .Heated gently to solubilise components. Store at room temperature.

Cytomix: 120mM KCi2, 0.15mM CaCl2, 10mM K2HPO4, 25mM HEPES, 2mM EDTA and MgCi2; pH 7.6

DNA loading buffer (10x): 25% Ficoll, 0.42% bromophenol blue. Store at room temperature.

Depurination solution: 0.250M HCl. Store at room temperature.

Denaturation solution: 1.5M NaCl, 0.5M NaOH. Store at room temperature.

Ethidium bromide: 10mg/ml stock solution in distilled water. Store at room temperature.

Luria-Bertani (LB) broth: LB broth plus 0.8% (w/v) agar. Autoclaved to sterilise and store at room temperature.

Neutralisation solution: 1.5M NaCl, 0.5 M Tris-HCl pH7.0, store at room temperature.

PBS: 10mM phosphate buffer, 2.7Mm KCl, 137Mm NaCl, Ph 7.4. Autoclaved when required for tissue culture. Store at room temperature.

SSC (20 x): 3M NaCl, 0.3M Tri-sodium citrate pH7.0. Store at room temperature.

TBE (10x): 0.9M Tris-HCl, 0.9M boric acid, 25 mM EDTA. Store at room temperature.

and the strength of the second strength of the strength of the strength of the strength of the second strength

2.5 Oligos Used in This Study

All oligos used in this study are listed in Table 2.7.

Primer	Sequence	Description
- ··· ·		Forward primer for 36.2050 (SEC14) ORF in L.
OL1984	GCACCCGGGATGGCGGCAACTCATCTTAC	infantum
		Reverse primer for 36.2050 (SEC14) ORF in L.
OL1985	GCAGGATCCTCACTTCGGCAAACCGTTCTTTC	infantum
		Forward primer for 20.100 (Xylanase) ORF in L.
OL1986	GCACCCGGGATGTCCGCCATCATCATCAC	<i>infantum</i>
		Reverse primer for 20.100 (Xylanase) ORF in L.
OL1987	GCAGGATCCTCAGTGACGAGGAAGAAAGC	infantum
		Forward PCR primer for amplifying SEC14 5'
<u>OL1997</u>	GCAAAGCTCCTCTAACTCTTTCTCTATCGCTG	flanking region of L. infantum
		Reverse PCR primer for amplifying SEC14 5'
01998	GCAGTCGACGGTGAGTGACACGTCCTTTCCG	Hanking region of L. infantum
01.1000		Forward PCR primer for amplifying SEC14 3'
0L1999	GCACCCOGGCTACGGATGCCCGTGTGCTGG	Tianking region of L. infantum
01 2000		Reverse PCR primer for amplifying SEC14 3 ⁻
OL2000	GCAAGATCTAAAAGGGAAAAGGAGTCCATCAC	Tianking region of L. mantum
013051		Discovered and an area of 0220 ODE in L information
01.2051	GCACCEGGGATGGCCGATGTGCAGCTCTCC	Polyard primer for 28,0550 ORF in L. injunium
01 2052		L infantam
012032	GCAGGAICEGICACATAICEAICAAGAITICG	Lingantum
01.2053	GCACCCCCCATCCCCCCCCCCCCCCCCCCCCCCCCCCCC	Forward primer for 36 2750 ORE in L. Infontum
012005		Toruna princi ter 50.2750 OKT in 2, njunun
OL2054	GCAGGATCCTCAAGAGTTAGTCGGCAGCCGAG	Reverse primer for 36.2750 ORF in <i>L. infantum</i>
		Forward sequencing primer for xylanase
OL2095	GGCTCCAGCGGGCAAACTAC	L. infantum
		Reverse sequencing primer for xylanase
OL2096	GACGTTCACCTTACCCTGCTG	L. infantum
		Forward sequencing primer for xylanase
OL2097	GACAACCACTACCGCACCGAG	L. infantum
		Forward sequencing primer for 28.0330
OL2098	GGCGTTATGAGGATGCGGGAAG	L. infantum
		Reverse sequencing primer for 28.0330
OL2099	CTTCCCGCATCCTCATAACGCC	L. infantum
		Forward sequencing primer for 28.0330
OL2100	CATCIGCCTCGCCTTTAACG	L. infantum
01.0101		Reverse sequencing primer for 28.0330
012101	CGTTAAAGGCGAGGCAGATG	L. infantum
01.2102		Forward sequencing primer for 36.2/50
012102	CATGAGGAAGCGGCACGGGAG	L. Wyamum
01 2103	anacaanaaaaamaanaana	<i>L</i> infontum
012103	CICCOFICCEUTICOTCATG	Forward sequencing primer for 26 2750
01.2104	CACGCATCGCCCCCCATCG	I inforton
		Reverse sequencing primer for 36 2750
OL2105	CGATSCGGCGATGCGTG	L infantum
		Forward sequencing primer for 36.2750
OL2106	GGAGCACGATGAGCAGCACG	L. infantum
		Reverse sequencing primer for 36.2750
OL2107	CGTGCTGCT'CA'ICG'IGCTCC	L infantum

Table 2.7: Details of all oligos used in this study.

OL2112	ATGGGTCCAATCGACTCCTC	Forward primer for 36.2750 equivalent pseudogene in <i>L. major</i>
OL2113	GAACAGATCCACAGCGCCAC	Reverse primer for 36.2750 equivalent pseudogene in L. major
OL2114	CTCCGGTGTACATTGACCAAG	Forward primer for 28.0330 equivalent pseudogene in <i>L. major</i>
OL2115	TCACATATCCATCAAGATTTCG	Reverse primer for 28.0330 equivalent pseudogene in <i>L. major</i>
OL2116	ATGTCCACCATCATCATCAC	Forward primer for xylanase equivalent pseudogene in <i>L. major</i>
OL2117	CGGCTGCCTCAGTGACGAG	Reverse primer for xylanase equivalent pseudogene in <i>L. major</i>
OL2285	CAAAGCGCTCCCGTAGCAT	Reverse primer for PCR and sequencing SEC14 in L. infantum
OL2300	GGACGCCAACTTTTACCATCTTTC	Forward PCR primer for 5' integration check at SEC14 locus of <i>L. infantum</i>
OL2301	AGAAGCAAGGGCACTGGGCG	Reverse PCR primer for 3' integration check at SEC14 locus of <i>L. infantum</i>
OL2403	GACGGTGGAGCACGACAAC	Forward sequencing primer for SEC 14 ORF of L. infantum
OL2404	GTTGTCCTGCTCCACCGTC	Reverse sequencing primer for SEC 14 ORF of L. infantum

Š

;

5.

ł

1

CHAPTER 3 - RESULTS

3.1. Cloning and Sequencing of Four L. infantum-Specific Genes

With the recent publication of the genomes of L. infantum and L. braziliensis, together with the comparative analysis of the gene content compared with L. major, a small subset of genes have been identified as being specific to L. infantum (Peacock et al., 2007). More than two thirds of all genes in Leishmania encode hypothetical proteins and roughly the same proportion of hypothetical genes is represented in the subset of L. infantum specific genes. It is therefore important not to neglect the hypothetical genes when further characterisation is made.

To this end, the four L infantum genes selected for this study were:

- LinJ28.0330 (hypothetical)
- LinJ36.2750 (hypothetical, with some domain homology (TRF4))
- LinJ20.1200 (putative endo-1,4-β-xylanase precursor)
- LinJ36.2050 (putative SEC14 cytosolic factor)

The analysis of these genes consists of three parts:

- 1. Sequence analysis of GeneDB sequence for each gene and encoded protein;
- Amplification, cloning and sequencing of each gene from L. infantum to confirm GeneDB data as well as to ensure PCR products can be used for further experiments and

 Amplification, cloning and sequencing of each gene from L. donovani to determine if genes are intact in another species that can cause visceral leishmaniasis.

3.1.1 Bioinformatic Analysis of the Encoded Proteins of Each Gene

3.1.1.1 LinJ28.0330 Protein

Protein BLAST searches (http://www.ncbi.nlm.nih.gov/BLAST/) with the amino acid sequence of LinJ28.0330 protein against the non-redundant protein sequences database revealed no significant homology to any other protein known. Moreover, checks against the Conserved Domain Database (NCBI) revealed no significant homology to any known protein domain, so nothing can be surmised about the potential role of this protein in *L. infantum* without further study.

3.1.1.2 LinJ36.2750 Protein

I

The amino acid sequence of LinJ36.2750 was also checked against the nonredundant protein sequences database and the Conserved Domain Database. The encoded protein, although hypothetical, contains a domain that has homology to Topoisomerase-Related Function 4 (TRF4), a domain related to the TRF4 proteins of the yeast *Saccharomyces cerevisiae* (Figure 3.1.1A). Reciprocal BLAST analysis with the *S. cerevisiae* TRF4 amino acid sequence against predicted proteins in *L. infantum*, *L. major* and *L. braziliensis* (GeneDB Omniblast) revealed several genes encoding TRF4 domains, of which LinJ36.2750 was the third highest hit (Figure 3.1.1B). This provides a good basis on which to plan future experiments, beyond the scope of this thesis. A 1 1 1 1 1 25 1 250 1 375 560 1 625 739 TRF4

ref XP 686065.2 PREDICTED: similar to topoisomerase-related	72.0	1e-10
gb AAH76872.1 LOC445836 protein [Xenopus laevis]	71.6	2e-10
emb CAN88001.1 novel protein similar to vertebrate polymeras	71.2	2e-10
gb AAI33102.1 LOC568678 protein [Danio rerio]	70.9	3e-10
ref XP 697115.1 PREDICTED: similar to PAP-associated domain	70.5	5e-10
ref XP 001083145.1 PREDICTED: similar to PAP associated doma	69.7	6e-10
sp Q8NDF8 PAPD5 HUMAN PAP-associated domain-containing protei	69.7	7e-10
ref XP 535307.2 PREDICTED: similar to PAP associated domain	69.7	7e-10
gb AAD45198.1 AF089896 1 topoisomerase-related function protein	69.3	9e-10
ref XP 001371537.1 PREDICTED: similar to POLS protein [Monodelp	69.3	9e-10
gb EAW82749.1 PAP associated domain containing 5, isoform CR	69.3	1e-09
gb EAW82750.1 PAP associated domain containing 5, isoform CR	69.3	1e-09
ref XP 001256516.1 PREDICTED: similar to PAP-associated doma	69.3	1e-09
ref XP 001501238.1 PREDICTED: similar to LAK-1 [Equus caballus]	68.9	1e-09
sp Q68ED3 PAD5 MOUSE PAP-associated domain-containing protein	68.2	2e-09
ref XP 134422.8 PREDICTED: similar to PAP-associated domain	68.2	2e-09
gb AAH80314.1 Papd5 protein [Mus musculus]	68.2	2e-09
gb EAW82747.1 PAP associated domain containing 5, isoform CR	68.2	2e-09
ref XP 001062703.1 PREDICTED: similar to DNA polymerase sigma [67.8	3e-09

B

			Sum	
		High	Probabi	lity
Sequences produ	cing High-scoring Segment Pairs:	Score	P(N)	N
LinJ07 V3.0780	topoisomerase-related function protein	292	2.6e-24	2
LinJ26 V3.0480	DNA polymerase sigma-like protein Leish	136	6.6e-12	3
LinJ36 V3.4190	hypothetical protein Leishmania infantu	98	1.3e-07	2
LinJ04 V3.0490	hypothetical protein, conserved Leishma	102	6.5e-06	2
LinJ32 V3.2600	hypothetical protein, conserved Leishma	112	4.8e-05	1
LinJ14 V3.1260	poly(A) polymerase, putative Leishmania	102	0.0016	1
LinJ29 V3.2710	poly(A) polymerase, putative Leishmania	99	0.0021	1
LinJ21 V3.2110	hypothetical protein, conserved Leishma	99	0.0027	2
LinJ20 V3.0670	hypothetical protein, conserved Leishma	84	0.068	1
LinJ28 V3.0840	hypothetical protein, conserved Leishma	68	0.72	2
LinJ26 V3.0380	[RET2] [RNA editing 3' terminal uridylyl tr	59	0.84	2
LinJ14 V3.1020	3'TUTASE RNA editing 3' terminal uridyly	77	0.98	2
LinJ24 V3.0250	hvpothetical protein, conserved Leishma	74	0.9998	1
LinJ31 V3.0230	hypothetical protein, conserved Leishma	61	0.9999	1
and the second				

Figure 3.1.2: Analysis of LinJ36.2750 sequence. A) Protein BLAST analysis of LinJ36.2750 was carried out (http://www.ncbi.nlm.nih.gov/BLAST/) showing the known proteins with significant homology. B) Reciprocal BLAST with *S. cerevisiae* TRF4. Note that Linj36.2750 has been renamed Linj36 V3.4190 (shown in bold typeface) in the latest release of the *L. infantum* genome.

3.1.1.3 LinJ20.1200 (Endo-1,4-β-xylanase precursor)

BLASTp analysis of the amino acid sequence of this *L. infantum*-specific protein reveals that the most similar proteins are bacterial (Figure 3.1.2A). The proteins with highest homology are found in *Solibacter usitatus* and *Acidobacteria bacterium*, raising the possibility that the genes were acquired by horizontal gene transfer as has been seen previously with the *L. major*-specific gene encoding PFP1 (Eschenlauer et al., 2006). Reciprocal BLAST of the *Solibacter usitatus* amino acid sequence against predicted protein databases in GeneDB for *L. infantum*, *L. major* and *L. braziliensis* has identified LinJ20.1200 as the top hit in *L, infantum* (with a P/N value of 5.4e-37) but has no significant homology to proteins in either of the other two species (Figure 3.1.2B).

ų.

:|

	Score	E
Α		
Sequences producing significant alignments:	(Bits)	Value
ref YP_823348.1 putative esterase [Solibacter usitatus Ellin	149	5e-34
ref YP_592320.1 putative esterase [Acidobacteria bacterium E	145	5e-33
ref ZP_01718065.1 predicted xylanase [Algoriphagus sp. PR1]	134	1 e- 29
gb ED010802.1] hypothetical protein BACOVA 03435 [Bacteroides	129	4e-28
ref YP 825710.1 putative esterase [Solibacter usitatus Ellin	127	1e-27
ref YP_824333.1 putative esterase [Solibacter usitatus Ellin	127	1e-27
emb [CAJ19109.1] putative acetyl xylan esterase [unidentified mic	125	6e-27
ref YP_824260.1 putative esterase [Solibacter usitatus Ellin	124	1e-26
ref ZP_02025871.1 hypothetical protein EUBVEN_01126 [Eubacte	120	$1e_{-}25$
ref YP_824257.1 putative esterase [Solibacter usitatus Ellin	119	3e-25
ref YP 590934.1 putative esterase [Acidobacteria bacterium B	119	6e-25
ref YP_001297384.1 glycoside hydrolase family 43 {Bacteroide	114	2e-23
ref 2P_01720999.1 Possible xylan degradation enzyme (alpha/b	112	4e-23
ref YP_001196208.1 putative esterase [Flavobacterium johnson	112	5e-23
ref 2P_01718160.1 putative glycosyl hydrolase excenzyme [Alg	111	7e-23
ref ZP_01718170.1 predicted xylanase [Algoriphagus sp. PR1]	110	3e-22
ref 3P_01120522.1 putative glycosyl hydrolase excenzyme [Rob	108	6e-22
ref YP_001303364.1 putative xylanase [Parabacteroides distas	103	2e-20
rcf[YP_824332.1] putative esterase [Solibacter usitatus Ellin	103	2e-20
ref ZP_01882216.1 putative esterase [Pedobacter sp. BAL39] >	103	2e-20
embiCAJ19122 1 scetul vulau estorace funidentified microorcania	100	10 10

В

Summary	Tor: L. Drasmensis j	predicted p	LOFEIL	is įwai	otastp	j, 10r qi	uery: (ANOWN-QUERY
Name:	LbrM23.0510	Sec	re:	77	(P/N): 0.1	6	N:	1
Name:	LbrM22.0760	Sec	re:	83	(P/N): 0.2	22	N:	I
Name:	LbrM35.5610	Sec	ore:	78	(P/N): 0.2	29	N:	ł
Name:	sequence orphan	Sec	re:	67	(P/N): 0.9)4	N:	1
Name:	LbrM26.1220	Sec	re:	71	(P/N): 0.9	96	N:	1
Summar	y for: L. infantum p	redicted pro	oteins	s (wub)	lastp],	for qu	ery: U	NK	NOWN-QUERY
Name:	LinJ20.1200	Score:	382	(P	/N):	5.4e-3	7	N;	1
Name:	LinJ28.0850	Score:	68	(P	/N):	0.38		N:	1
Name:	LinJ32.2890	Score:	77	(P	/N):	0.43		N:	1
Name:	Lin123.0520	Score:	72	(P	/N):	0.58		N;	1
Name:	LinJ08.0490	Score:	69	(P	/N):	0.76		N:	1
Summar	y for: L. major pred	icted protei	ins [w	ublast	p], foi	. query	: UNK	NO	WN-QUERY
Name:	LmjF16.0630	Score:	80) (I	P/N):	0.24	N:	1	
Name:	LmjF06.0470	Score:	82	. (1	P/N):	0.27	N:	1	
Name:	LmjF23.0490	Score:	74	(1	P/N):	0.32	N:	ł	
Name:	LinjF28.0825	Score:	68	; a	P/N):	0.38	N:	1	
Name:	LmjF35.5000	Score:	71	0	P/N):	0.57	N:	1	
					7-		-		

Summary for: L. brasiliensis predicted proteins [wublastp], for query: UNKNOWN-QUERY

Figure 3.1.2: Analysis of LinJ20.1200 sequence. A Protein BLAST analysis of LinJ20.1200 (xylanase) was carried out (http://www.ncbi.nlm.nih.gov/BLAST/) showing the known proteins with significant homology. B Reciprocal BLAST (Omniblast) analysis of the *Solibacter usitatus* amino acid sequence against the *L. braziliensis, L. infantum* and *L. major* predicted protein databases in GeneDB.

3.1.1.4 LinJ36.2050 (SEC14 Cytosolic Factor)

This gene has been identified as encoding a putative orthologue of the yeast Sec14p protein, which is involved in membrane restructuring and secretory vesicle formation at the trans-Golgi network (TGN). Interestingly, when the yeast amino acid sequence is reciprocally blasted against the predicted proteins database for L.

infantum, *L. major and L. braziliensis*, the protein encoded by LinJ36.2050 is actually the second most significant hit (Figure 3.1.3).

a da al barda da karanan a mada sa da sa

てんたい ちゅう

Name:	LinJ35.3630	Score:	116	(P/N):	1.7e-13	N:	2
Name:	LinJ36.2050	Score:	176	(P/N):	1.3e-12	N:	1
Name:	LinJ15.0640	Score:	117	(P/N):	9.2e-10	N:	2
Name:	LinJ30.2020	Score:	99	(P/N):	1.4e-08	N:	2
Name:	LinJ36.3340	Score:	121	(P/N):	6.4 c- 06	N:	1

Summary for: L. infantum predicted proteins [wublastp], for query: UNKNOWN-QUERY

	Summary for: I	L. <i>major</i> predic	led proteins	[wublastp], fo	or query:	UNKNOWN -0	QUERY
--	----------------	------------------------	--------------	----------------	-----------	------------	-------

LmjF35.3560	Score:	117	(P/N):	6.4e-14	N:	2
LmjF15.0610	Score:	120	(P/N):	2.2e-10	N:	3
LmjF36.3430	Score:	134	(P/N):	2.3e-07	N:	1
LmjF30.1680	Score:	90	(P/N):	2.7e-07	N:	2
LmjF31.2050	Score:	72	(P/N):	0.0060	N:	3
	LmjF35.3560 LmjF15.0610 LmjF36.3430 LmjF30.1680 LmjF31.2050	LmjF35.3560 Score: LmjF15.0610 Score: LmjF36.3430 Score: LmjF30.1680 Score: LmjF31.2050 Score:	LmjF35.3560 Score: 117 LmjF15.0610 Score: 120 LmjF36.3430 Score: 134 LmjF30.1680 Score: 90 LmjF31.2050 Score: 72	LmjF35.3560 Score: 117 (P/N): LmjF15.0610 Score: 120 (P/N): LmjF36.3430 Score: 134 (P/N): LmjF30.1680 Score: 90 (P/N): LmjF31.2050 Score: 72 (P/N):	LmjF35.3560Score:117(P/N):6.4e-14LmjF15.0610Score:120(P/N):2.2e-10LmjF36.3430Score:134(P/N):2.3e-07LmjF30.1680Score:90(P/N):2.7e-07LmjF31.2050Score:72(P/N):0.0060	LmjF35.3560 Score: 117 (P/N): 6.4e-14 N: LmjF15.0610 Score: 120 (P/N): 2.2e-10 N: LmjF36.3430 Score: 134 (P/N): 2.3e-07 N: LmjF30.1680 Score: 90 (P/N): 2.7e-07 N: LmjF31.2050 Score: 72 (P/N): 0.0060 N:

Summary for: L. brasiliensis predicted proteins [wublastp], for query; UNKNOWN-QUERY

Name:	LbrM32_V2.1420	Score:	160	(P/N):	4.5e-12	N:	2
Name:	LbrM34_V2.3490	Score:	111	(P/N):	1.1e-11	N:	2
Name:	LbrM15_V2.0650	Score:	132	(P/N):	1.1e-10	N:	2
Name:	LbrM35_V2.3660	Score:	142	(P/N):	2.8e-08	N:	1
Name:	LbrM31_V2.2310	Score:	91	(P/N):	3.9e-06	N:	3

Figure 3.1.3: OmniBLAST output from analysis of the amino acid sequence of yeast Sec14p against the predicted protein databases for all three *Leishmania* species in GeneDB.

The top hit in *L. infantum* and *L. major* is LinJ35.3630 and LmjF35.3560 (which are orthologues of each other). Closer analysis of the proteins has revealed that the domain structure of these two proteins is, perhaps unsurprisingly, more similar to yeast Sec14p than the *L. infantum*-specific gene (LinJ36.2050) under investigation (Figure 3.1.4). The domains identified in this analysis are the CRAL TRIO domain

and the SEC14 domain. These domains are lipid binding domains and they are thought to be part of the same domain (Saito et al., 2007) even though they are annotated as separate domains in the NCBI Conserved Domain Database. This is because not all SEC14 domain containing proteins possess the CRAL_TRIO portion (Saito et al., 2007). This seems to be true of the *L. infantum*-specific LinJ36.2050, which has a "CAP_GLY" domain instead. These domains have been shown in other systems to be involved in associating CAP_GLY-containing proteins with elements of the cytoskeleton, notably microtubules (Mishima et al., 2007). Interestingly, the only known proteins with this domain structure are found in *L. infantum* and its orthologue in *T. cruzi*. The gene is also missing from *T. brucei*.

Figure 3.1.4: Domain structure of putative Sec14p orthologues in *Leishmania*. Protein BLAST analysis was carried out using the NCBI Blast server.

(http://www.ncbi.nlm.nih.gov/BLAST/).

3.1.2 Cloning and Sequencing of the Four Genes from L. infantum

In order to confirm that the sequence held on GeneDB for each of the four genes mentioned above, the open reading frames must be isolated and characterised by sequencing. To this end, primers were designed to each of the four genes in order to amplify the complete open reading frames (ORFs) (Table 3.1.1). *Xma*I and *Bam*HI restriction sites were engineered onto the 5' and 3' ends respectively, of the primers and therefore the PCR products, to allow eventual cloning and expression from the *Leishmania* episomal vector pXG.

÷.

Table 3.1.1: Designed primers	for PC.	R foi	four	genes	from	L.	infantum	(restrict	ion
sites are underlined)									

GeneDB	Designed	Primer Sequence
Designation	Primers	
LinJ28.0330	OL2051	GCACCCGGGATGGCCGATGTGCAGCTCTCC
	OL2052	GCAGGATCCGTCACATATCCATCAAGATTTCG
LinJ36.2750	OL2053	GCA <u>CCCGGG</u> ATGGGGCGAATCGACTCCTC
	OL2054	GCA <u>GGATCC</u> TCAAGAGTTAGTCGGCAGCCGAG
LinJ20.1200	OL1986	GCACCCGGGATGTCCGCCATCATCATCAC
(Xylanase)	OL1987	GCA <u>GGATCC</u> TCAGTGACGAGGAAGAAGC
LinJ36.2050	OL1984	GCA <u>CCCGGG</u> ATGGCGGCAACTCATCTTAC
(SEC14)	OL1985	GCAGGATCCTCACTTCGGCAAACCGTTCTTTC

3.1.2.1 PCR of Four L. infantum-Specific Genes

Polymerase chain reaction (PCR) was carried out to amplify the fragments. The primers were initially tested at a range of annealing temperatures to determine the optimal conditions. This was done with a variety of proof-reading enzymes in either the supplied PCR buffer or in the 10x PCR buffer commonly used in the Mottram laboratory. The fragments were amplified and cloned by using T-Vector such as pGEM-T Easy (Promega) or pCR2.1 TOPO TA (Invitrogen). This required the addition of A-overhangs by the inclusion of Taq DNA polymerase at the end of the PCR with a 10 minutes incubation step at 72°C, as the proof-reading enzymes do not leave overhanging A-residues. Reactions were electrophoresed on gels to visualise and allow purification of the appropriate DNA fragment by gel extraction (Figure 3.1.5).

Figure 3.1.5: PCR Amplification for each of the four genes under investigation. A) LinJ28.0330 ORF PCR product (predicted size is ~1.4kb). B) LinJ36.2750 ORF PCR product (predicted size is ~2.2kb). C) LinJ20.1200 (Xylanase) ORF PCR product (predicted size is ~1.3kb). D) LinJ36.2050 (SEC14) ORF PCR product (predicted size is ~1.3kb).

Once PCR products were cloned into a T-vector, they were sent to the University of Dundee Sequencing Service to be sequenced using a variety of primers both internal to the gene and external, within the plasmid backbone.

3.1.3 Sequence Analysis

Sequence fragments for each gene were assembled into contigs and analysed using the ContigExpress Software (Vector-NTI Advance v10, Invitrogen). Contiguous sequence of each open reading frame was aligned with the published sequence on GeneDB using Align-X software (Vector-NTI, Invitrogen) and these are shown in Figure 3.1.6. Note that only a single PCR fragment was cloned and sequenced for each ORF, so errors may have been introduced by PCR. Independent clones would need to be sequenced to confirm this.

A LinJ28.0330 (Hypothetical) Alignment

			1 50
Cloned	28.0330 Seq	(1)	ATGGCCGATGTGCAGCTCTCCAACTCCAGCAATGTCAAGGCTGTCTATGC
	LinJ28.0330	(1)	ATGGCCGATGTGCAGCTCTCCAACTCCAGCAATGTCAAGGCTGTCTATGC
			51 100
Cloned	28.0330 Seq	(51)	AGGACACAGCTTGAGCCTCTTCATGGACCTCCGCCCGCCGGCGGAGGTGC
	LinJ28.0330	(51)	AGGACACAGCTTGAGCCTCTTCATGGACCTCCGCCCGCCGGCGGAGGTGC
			101 150
Cloned	28.0330 Seq	(101)	TGGCGACGTGCAGCGGCTCCGTTGTCGAGGACCTGCCCGTGACACTAAGT
	LinJ28.0330	(101)	TGGCGACGTGCAGCGGCTCCGTTGTCGAGGACCTGCCCGTGACACTAAGT
			151 200
Cloned	28.0330 Seq	(151)	GTCATGCTGCGTCGCATCCATAGCGAAAGCGAGACCCCGCTTTCGTTTCG
	LinJ28.0330	(151)	GTCATGCTGCGTCGCATCCATAGCGAAAGCGAGACCCCGCTTTCGTTTCG
		1000	201 250
Cloned	28.0330 Seq	(201)	TTGTTCTTCCTCGCATCGACTTCTCACCTACGTGCAGTGCGAAGACGGTG
	LinJ28.0330	(201)	TTGTTCTTCGCATCGACTTCTCACCTACGTGCAGTGCGAAGACGGTG
a 1	00 0000 0	(053)	251 300
Cloned	28.0330 Seq	(251)	CTGGCGGCGATGCTGTCCAGCTGGGAATGAGCGGTAACAACCTGCTCAAG
	L111028.0330	(251)	201 250
Cloned	20 0220 000	(201)	301 350 GTOX CTX TX CX COTTO CTX COTTO COCK COCCUTTO CX COX CTX CCX CC
croned	Lin T28 0330	(301)	GTCACTATAGACCTTGCTACCTTCCCGGACCGGTTGCACCGACTAGCACC
	111020.0000	(001)	351 400
Cloned	28 0330 Sec	(351)	GGCCGATGTCGCTGCAGCTGAGCATGCCTTGCTTGATCAGTCGTGGGGTGA
or orroa	LinJ28.0330	(351)	GCCCGATGTCGCTGCAGCTGAGCATGCCTTGCTTGATCAGTCGTGGGTGA
		1	401 450
Cloned	28.0330 Sea	(401)	TCGGCTCGCGGTTCCGCCTCTCAATGCAGCTGCGTACCAGAGCGCGTGCC
	LinJ28.0330	(401)	TCGGCTCGCGGTTCCGCCTCTCAATGCAGCTGCGTACCAGAGCGCGTGCC
			451 500
Cloned	28.0330 Seq	(451)	GAGTGGCCACCCCCGCGCCGCAGTGGAGCGAGTCCAGTGACGGCTG
	LinJ28.0330	(451)	GAGTGGCCACCCTCGTCGCCCCGCAGTGGAGCGAGTCCAGTGACGGCTG
			501 550
Cloned	28.0330 Seq	(501)	CCTTGTCCCGACACCTTGCAGCCATCACATGGACAATCATGACAGCGCGG
	LinJ28.0330	(501)	CCTTGTCCCGACACCTTGCAGCCATCACATGGACAATCATGACAGCGCGG
			551 600
Cloned	28.0330 Seq	(551)	GCGTTATGAGGATGCGGGGAAGAGTTCGCCGCGAAGGGCGTATCCGCGTCG
	LinJ28.0330	(551)	GCGTTATGAGGATGCGGGAAGAGTTCGCCGCGAAGGGCGTATCCGCGTCG

			601 650
Cloned	28.0330 Seq	(601)	CCCAGTATCGTTCGGCGGAATCGGCCACTGTCTCTATACGACAAGTCAGC
	LinJ28.0330	(601)	CCCAGTATEGTTEGGEGGAATEGGECAETGTETETATAEGAEAAGTEAGE
			651 700
Cloned	28.0330 Seq	(651)	ACCGCGCTCTCAGTTGAAGGGTCCGGTGTACATTGACCAAGAGCTGTTCC
	LinJ28.0330	(651)	ACCGCGCTCTCAGTTGAAGGGTCCGGTGTACATTGACCAAGAGCTGTTCC
			701 750
Cloned	28.0330 Seq	(701)	CGATCGTTCGTATTTTGTTTGTTCCTCAACTCTACACGGAGGCCATCCCG
	LinJ28.0330	(701)	CGATCGTTCGTATTTTGTTTGTTCCTCAACTCTACACGGAGGCCATCCCG
			751 800
Cloned	28.0330 Seq	(751)	ACGGCAACGGCGGTGTTGCGGAGCATGACGGTGCAAGTCGGAGTGGAGCG
	LinJ28.0330	(751)	ACGGCAACGGCGGTGTTGCGGAGCATGACGGTGCAAGTCGGAGTGGAGCG
			801 850
Cloned	28.0330 Seq	(801)	TTGCCGCGAGAGCCGCGGCGGCGAGCCGCTTCGTCGCGCCCTGCGAGACC
	LinJ28.0330	(801)	TTGCCGCGAGAGCCGCGGCGGCAAGCCGCTTCGTCGCGCCCTGCGAGACC
			851 900
Cloned	28.0330 Seq	(851)	GCAGCACTAAAGACAACGTCGCCGTGCTCGATCGCGTGCCGGCAAGTAGC
	LinJ28.0330	(851)	GCAGCACTAAAGACAACGTCGCCGTGCTCGATCGCGTGCCGGCAAGTAGC
			901 950
Cloned	28.0330 Seq	(901)	AGCACGTTAGATGAGGAGAGCAAAGCCCTACTGCAACCGTACGAGGCCAT
	LinJ28.0330	(901)	AGCACGTTAGATGAGGAGAGCAAAGCCCTACTGCAACCGTACGAGGCCAT
			951 1000
Cloned	28.0330 Seq	(951)	CTGCCTCGCCTTTAACGCCCATGTTCGTCAGCCCTCAATGACGTCGGTCA
	LinJ28.0330	(951)	CTGCCTCGCCTTTAACGCCCATGTTCGTCAGCCCTCAATGACGTCGGTCA
2 3			1001 1050
Cloned	28.0330 Seq	(1001)	CTGCCTACGACGTGGCACACGCGAGGCGACTTGTTGTGCAGGACTACACC
	LinJ28.0330	(1001)	CTGCCTACGACGTGGCACACGCGAGGCGACTTGTTGTGCAGGACTACACC
			1051 1100
Cloned	28.0330 Seq	(1051)	TTTGAGGTGATGGTCACGGCAGCGAGGATGAAAAGCGAAACCGTGGAGAC
	LinJ28.0330	(1051)	TTTGAGGTGATGGTCACGGCAGCGAGGATGAAAAGCGAAACCGTGGAGAC
			1101 1150
Cloned	28.0330 Seq	(1101)	CGTGCAGCGCGCTATTCAGGCCTATCAGTACGAGAGCGGCGATGCAGATG
	LinJ28.0330	(1101)	CGTGCAGCGCGCTATTCAGGCCTATCAGTACGAGAGCGGCGATGCAGATG
01 A		(1151 1200
Cloned	28.0330 Seq	(1151)	TGCTGGGCATGAACCTCGATGAAGCCGTCAGCTCCGTCGAAGAGCGGTTT
	L1NJ28.0330	(1151)	TGCTGGGCATGAACCTCGATGAAGCCGTCAGCTCCGTCGAAGAGCGGTTT
(1)	20 0220 000	(1001)	1201 1250
Cloned	28.0330 Seq	(1201)	GGCTACATGAAGGACGCGCCGTCGGTGGACTTGATGAGCTTTCACCATGT
	L1NJ28.0330	(1201)	GGCTACATGAAGGACGCGCCGTCGGTGGACTTGATGAGCTTTCACCATGT
Cloned	20 0220 000	(1051)	1251 1300
croned	20.0330 Seq	(1251)	1GT11GGGAGGCGATGCGAGCATGCATGGTGGCCGACGTCACTTCCAGTG
	111028.0330	(1221)	1011166GA66CGATGCGAGCATGCAT6GTGGCCGACGTCACTTCCAGTG
Cloned	28 0220 800	(1201)	13501 1350
croned	Lin.728 0320	(1201)	CACT TO CARACORACTOGACGAGO TO CACCOCTATGAGGACCGCATC
	BTT050.0330	(1901)	1351 1374
Cloned	28 0330 500	(1351)	
eroned.	Linton oppo	(1001)	THIS CALLS AND

B LinJ36.2750 (Hypothetical) Alignment

			1 50
Cloned	36.2750 Seq	(1)	ATGGGGCGAATCGACTCCTCTTGTGTCGCTGCCACGGTGACGCCTAGCAA
	LinJ36.2750	(1)	ATGGGGCGAATCGACTCCTCTTGTGTCGCTGCCACGGTGACGCCTAGCAA
			51 100
Cloned	36.2750 Seq	(51)	GGTCGGCGCATCGTCGTCTTGTCCCGGCACGGCGACAAGCACTGGCAAGA
	LinJ36.2750	(51)	GGTCGGCGCATCGTCGTCTTGTCCCGGCACGGCGACAAGCACTGGCAAGA
			101 150
Cloned	36.2750 Seq	(101)	TAGACGAGCCTGCTTCTCGCGCCGCTGCCCCCCAGGGCCGGGCGCAGCGA
	LinJ36.2750	(101)	TAGACGAGCCTGCTTCTCGCGCCGCTGCCCCGCAGGGCCGGGCGCAGCGA
			151 200
Cloned	36.2750 Seq	(151)	TGTGGCCGAGCGCGACCCGCCCAGATGCACAACAGCCTCAGTGCGGGGAT
	LinJ36.2750	(151)	TGTGGCCGAGCGCGACCCGCCCAGATGCACAACAGCCTCAGTGCGGGGAT
			201 250
Cloned	36.2750 Seq	(201)	GTGTGATAACCAACAGCAGCACGCCGCAGGCGTTTGGAAGTTGATTGCAG
	LinJ36.2750	(201)	GTGTGATAACCAACAGCAGCACGCCGCAGGCGTTTGGAAGTTGATTGCAG
			251 300
Cloned	36.2750 Seq	(251)	GGCCGCAGAGCGCCTCCACGACTCCGCCGCCGCTCGTGATGGGTGACGGC
	LinJ36.2750	(251)	GGCCGCAGAGCGCCTCCACGACTCCGCCGCCGCCGCTCGTGATGGGTGACGGC
			301 350
Cloned	36.2750 Seq	(301)	ACAGGCGGCGAGGATCATGCGCAGGCTGCCCACACCGGCGTCCGGTGGAC
	LinJ36.2750	(301)	ACAGGCGGCGAGGATCATGCGCAGGCTGCCCACACCGGCGTCCGGTGGAC

			351 400
Cloned	36.2750 Seq	(351)	TAAGCACGCGTGGGAAAAGGGCAACGACTGCCCTGCGGGTAGCGCGTACG
	LinJ36.2750	(351)	TAAGCACGCGTGGGAAAAGGGCAACGACTGCCCTGCGGGTAGCGCGTACG
			401 450
Cloned	36.2750 Sea	(401)	GGTCTTTTGTAGGCGCGCCGCTGCGCAGGCTGCCGCCAACGCCTCCGTTC
	LinJ36.2750	(401)	GGTCTTTTGTAGGCGCGCCGCTGCGCAGGCTGCCGCCAACGCCTCCCTTC
		5-0-0-0-5	451 500
Cloned	36.2750 Seg	(451)	CCTGGTGTGCGTCTTCCCGCCTGGTGTCCGCGTCCGCGTCGGCGACGGCGACGGCGT
	Lin.136 2750	(451)	CCTRGTGTGTGTGTTCCCCGCTGCTGCGCGCGTCGCGGCGTCGCGGCG
		(101)	501 501
Cloned	36 3750 000	(EOT)	501 550
C1 OIICU	110726 2750	(501)	TCCGCTCTCCGAGGATGGCCTCACAAACGAGCTGCTGGACTTCTTCTATT
	штпо 56.2750	(201)	TECGETETECGAGGATGGEETCACAAACGAGETGETGGACTTETTETATT
Cloned	36 3750 000	1001	551 600
CIONED	110726 2750	(551)	ATCTGCAGTTGACCTCCCATGAGGAAGCGGCACGGGAGCGGCTGCTTGGC
	LIN036.2750	(551)	ATCIGLAGITGALCTUCCATGAGGAAGCGGCACGGGAGCGGCTGCTTGGC
Cloned	26 2750 000	(501)	650
croned	140726 2750	(601)	TACGTGCAGGCGTGCGTGGCGAAGTTGTGGGGGCCCCTGTAAACCGGGGGG
	LIII036.2/50	(601)	TALGIGLAGGLGIGLGIGGLGAAGITGIGGGGCCCCTGTAAACCGGGGAG
Glanad	26 2750 000	10001	651 700
croned	36.2750 Seq	(651)	CGAAGCCGAGGGAACAGCACAGGTGATGCTGTACGGCAGCTACGCTCTAG
	LinJ36.2750	(651)	CGAAGCCGAGGGAACAGCACAGGTGATGCTGTACGGCAGCTACGCTCTAG
(1) A	26 0050 0	10000	701 750
Cloned	36.2750 Seq	(701)	GGCTTTCTCTTCCAAGCAGCGACATTGATCTTGCCCTGACTTTCCCGGCC
	LinJ36.2750	(701)	GGCTITCTCTTCCAAGCAGCGACATTGATCTTGCCCTGACTTTCCCGGCC
		112/22/02 2012	751 800
Cloned	36.2750 Seq	(751)	GAGGAGCAGGTGGACGTCGCGACCATTGCAGTTGAGGAAAGGAGTGGGGA
	LinJ36.2750	(751)	GAGGAGCAGGTGGACGTCGCGACCATTGCAGTTGAGGAAAGGAGTGGGGA
			801 850
Cloned	36.2750 Seq	(801)	TCGCGCTCTCCTGGCGCCGGCGGTCTCGAAGAAACGCCAGGCGCTGCACC
	LinJ36.2750	(801)	TCGCGCTCTCCTGGCGCCGGCGGTCTCGAAGAAACGCCAGGCGCTGCACC
			851 900
Cloned	36.2750 Seq	(851)	TTGAGCGGCTCCACGATCTTGCCGAGCAGCTGCGGAACTCTGCGACGTTT
	LinJ36.2750	(851)	TTGAGCGGCTCCACGATCTTGCCGAGCAGCTGCGGAACTCTGCGACGTTT
			901 950
Cloned	36.2750 Seq	(901)	CCCGAGTTGGAGGTAGAGGTGTATGATCAGTGCCGTGTGCCGCGCATTCA
	LinJ36.2750	(901)	CCCGAGTTGGAGGTAGAGGTGTATGATCAGTGCCGTGTGCCGCGCATTCA
			951 1000
Cloned	36.2750 Seq	(951)	TCTACGAGACAGGACTTGTGGTGGCGTGTCGTGTGACATCAACAGCTCCT
	LinJ36.2750	(951)	TCTACGAGACAGGACTTGTGGTGGCGTGTCGTGTGACATCAACAGCTCCT
			1001 1050
Cloned	36.2750 Seq	(1001)	TCGCCTCAGCACGCATCGCCCCGCATCGTGGCGCGGCAGCGGCTATGGCTA
	LinJ36.2750	(1001)	TCGCCTCAGCACGCATCGCCCGCATCGTGGCGCGGCAGCGGCTATGGCTA
			1051 1100
Cloned	36.2750 Seq	(1051)	CAGGACTCCCCGCTCGCGGGGTTCCTCGTGCGCGTCACCAAGGCAGCCGT
	LinJ36.2750	(1051)	CAGGACTCCCCGCTCGCGGCGTTCCTCGTGCGCGTCACCAAGGCAGCCGT
			1101 1150
Cloned	36.2750 Seq	(1101)	GAAGCAGTGAGGCCTCCACGAAGTGTTCTGGGGGGGGGG
	LinJ36.2750	(1101)	GAAGCAGTGGGGCCTCCACGAAGTGTTCTGGGGCGGCGTCGCCTCCACT
			1151 1200
Cloned	36.2750 Seq	(1151)	CGCTGTACTGCCTAGTGCTCCGCCTCCGCCCAGATGGAACAGCTTTGC
	LinJ36.2750	(1151)	CGCTGTACTGCCTAGTGCTCCGCCTCGCCCAGATGGAACAGCTTTGC
			1201 1250
Cloned	36.2750 Seq	(1201)	CGACACGCGCAGGTGGAGGAGAATTTGTCTCCACCGCGCTACGCGGAGGC
	LinJ36.2750	(1201)	CGACACGCGCAGGTGGAGGAGAATTTGTCTCCACCGCGCTACGCGGAGGC
		SC 23	1251 1300
Cloned	36.2750 Seg	(1251)	CGCCGCCGCGCATGTCGCAACGCAGCTCTCTTCGTTGGCTTGTTCGTCAC
	LinJ36.2750	(1251)	CGCCGCCGCGCATGTCGCAACGCAGCTCTCTTCGTTGGCTTGTTCGTCAC
		and the second	1301 1350
Cloned	36.2750 Seg	(1301)	CGTTGTCTTCACCACAACTCTCCATGCCACACCCAGCCAACCCACCC
	Lin.136.2750	(1301)	CGTTGTCTTCACCACACTCTCCATCCCATCCCACCCACCC
		(====)	1351 1400
Cloned	36,2750 Sec	(1351)	GOAGCCTTTACCCACTTCCACCCCCCCCCCCCCCCCCCCC
	LinJ36.2750	(1351)	GCAGOGTTTACCCCAGTTCCAGCCGCCCCGCGCCTTCCACTCCTCGCGGCCCT
		120021	1401 1460
Cloned	36.2750 Sec	(1401)	CAACAGGCTAAGCGCGGCGCCACCCCTTCCTTCATTATCTACCCACCC
	LinJ36 2750	(1401)	CAACAGGCTAAGCGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCG
		(1101)	1451 1500
Cloned	36.2750 500	(1451)	TETGAATAGCAGGAAGCACCACTTCAACAACTACTTCAACAACTACTTCAACAACTACCACC
Ja Jacob	Lin.136 2750	(1451)	TTGTGAATAGCAGGAGGAGCACGACTTGAAGAAGTCGTCGTCGTCGTGGGGAT
	2210000072730	(1101)	1501
Cloned	36.2750 Sea	(1501)	ATTGLA AGA AGA GOGOGOTOTOTOCOCOTOTO COCOTOTO COCOTOTO
-+oneu	Lin.T36 2750	(1501)	ATGACA AGA AGA COCCOTOTOCCOTOTOCA OF THE ACCOCTTOCTCOCT
		(1001)	1551
Cloned	36.2750 Sea	(1551)	TTCCGATTGGACCACGATGACCACGACGACGACGACGACGACGACGACGACGACGACG
	LinJ36 2750	(1551)	TTCCGATTGCACCACGATGAGCACGACGACGAGGAGGGGGGGG
		1	and a superior and a superior acour and an independences

			1601 1650
Cloned	36.2750 Seq	(1601)	ACGACGAGGTGGATGGCTACACGCAGGCGGGTCTCACGCGCACCTCCGGC
	LinJ36.2750	(1601)	ACGACGAGGTGGATGGCTACACGCAGGCGGGTCTCACGCGCACCTCCGGC
			1651 1700
Cloned	36.2750 Seq	(1651)	GCCACCACCGCGACTACGCCGATCTCTCGCACCGCGGCGAGCACACC
	LinJ36.2750	(1651)	GCCACCACCACTGCGACTACGCCGATCTCTCGCACCGCGGCGAGCACACC
			1701 1750
Cloned	36.2750 Seq	(1701)	GATGCCGGCTGCAAGCGAAGCGCATGAGGGAGGCACAGCGACCGCATCGA
	LinJ36.2750	(1701)	GATGCCGGCTGCAAGCGAAGCGCATGAGGGAGGCACAGCGACCGCATCGA
			1751 1800
Cloned	36.2750 Seq	(1751)	GTGCCTTGGCACCACCAGTGAGCGTCAATTCTGCTGCGCTTCGCGAGGGC
	LinJ36.2750	(1751)	GTGCCTTGGCACCACCAGTGAGCGTCAATTCTGCTGCGCTTCGCGAGGGC
			1801 1850
Cloned	36.2750 Seq	(1801)	GTGTTTCCCAGTGCGGATGGACTTACTCAGATCGCGCGATCACGGTATGG
	LinJ36.2750	(1801)	GTGTTTCCCAGTGCGGATGGACTTACTCAGATCGCGCGATCACGGTATGG
			1851 7 1900
Cloned	36.2750 Seq	(1851)	CGCGTCGCCAGCGCGTCTACTGCTGAAGCTGTGGAAGTTCCTTTCTGCCG
	LinJ36.2750	(1851)	CGCGTCGCCAGCGCGTCTACTGCTGAAGCTGTGGAAGTTTCTTCTGCCG
			1901 1950
Cloned	36.2750 Seq	(1901)	ACGCTTTTGCGAACGGGTATCAGGTAGCAGATGCCTTTGGAGATGACGCG
	LinJ36.2750	(1901)	ACGCTTTTGCGAACGGGTATCAGGTAGCAGATGCCTTTGGAGATGACGCG
			1951 2000
Cloned	36.2750 Seq	(1951)	GTGTGGTGCGACTGCGGCGAGGCGGGCGACTCGGCCGCGCTACCAAAGCA
	LinJ36.2750	(1951)	GTGTGGTGCGACTGCGGCGAGGCGGCGACTCGGCCGCGCTACCAAAGCA
			2001 2050
Cloned	36.2750 Seq	(2001)	GCTTCCGCTCATGGCGTCGCTTGAACTGGCCACGATTGCGGGCATGAGCA
	LinJ36.2750	(2001)	GCTTCCGCTCATGGCGTCGCTTGAACTGGCCACGATTGCGGGCATGAGCA
			2051 2100
Cloned	36.2750 Seq	(2051)	GCGCCGACCTCTCCGCTGCATCTTTTCGGCTTCCTGAGCTACTGGCACTC
	LinJ36.2750	(2051)	GCGCCGACCTCTCCGCTGCATCTTTTCGGCTTCCTGAGCTACTGGCACTC
			2101 2150
Cloned	36.2750 Seq	(2101)	TTTCGCCACTCGAGCACGTCACTGGAGAGCATGCTCCGGTATCAGCGCTA
	LinJ36.2750	(2101)	TTTCGCCACTCGAGCACGTCACTGGAGAGCATGCTCCGGTATCAGCGCTA
			2151 2200
Cloned	36.2750 Seq	(2151)	CCCGCGGCGCACCGTGCCAACGATGCTCTCTACCATCTTTGTCGACCCTC
	LinJ36.2750	(2151)	CCCGCGCGCGCACCGTGCCAACGATGCTCTCTACCATCTTTGTCGACCCTC
			2201 2220
Cloned	36.2750 Seq	(2201)	GGCTGCCGACTAACTCTTGA
	LinJ36.2750	(2201)	GGCTGCCGACTAACTCTTGA

C LinJ20.1200 (Xylanase) Alignment

			1	50
	LinJ20.1200	(1)	ATGTCCGCCATCATCATCACCCCGTTGCTCCTGCGACGAC	GCCGCCCAC
Cloned	Linf Xyl Seq	(1)	ATGTCCGCCATCATCATCACCCCGTTGCTCCTGCGACGAC	GCCGCCCAC
			51	100
	LinJ20.1200	(51)	TCGCACCCCTGCAATGCATCTGCATAGCTTTAGCCAACCCA	CTCAAGCAC
Cloned	Linf Xyl Seq	(51)	TCGCACCCCTGCAATGCATCTGCATAGCTTTAGCCAACCCA	CTCAAGCAC
			101	150
	LinJ20.1200	(101)	AGCAGCAGCAGCAGCAGCTCCTTTTCCGGCCGCGCTGCGAG	GAGGGGGTG
Cloned	Linf Xyl Seq	(101)	AGCAGCAGCAGCAGCAGCTCCTTTTCCGGCCGCGCGCGCG	GAGGGGGTG
			151	200
	LinJ20.1200	(151)	ACATATAGCGAAGACAACAACGGCACCGTGCACTACCGTTT	CTACCTTCC
Cloned	Linf Xyl Seq	(151)	ACATATAGCGAAGACAACAACGGCACCGTGCACTACCGTT	CTACCTTCC
			201	250
	LinJ20.1200	(201)	CCATGCCAGCTCTGTTGTTGTCGCTCCTGTGAAGGTTTGCC	TGGTGGACA
Cloned	Linf Xyl Seq	(201)	CCATGCCAGCTCTGTTGTTGTCGCTCCTGTGAAGGTTTGCC	TGGTGGACA
			251	300
	LinJ20.1200	(251)	GCGATGGTGGCACGGTCCCTGTCGCCTCCATCGGCGCCGCC	GCACCCATG
Cloned	Linf Xyl Seq	(251)	GCGATGGTGGCACGGTCCCTGTCGCCTCCATCGGCGCCGCC	GCACCCATO
			301	350
	LinJ20.1200	(301)	ACAAAGCACCAAGACGGAGTGTGGGTCGGAACCGTGTCCGG	ACCAGTCGC
Cloned	Linf Xyl Seq	(301)	ACAAAGCACCAAGACGGAGTGTGGGTCGGAACCGTGTCCGC	ACCAGTCGC
			351	400
	LinJ20.1200	(351)	ACTGCAGTGTGTCGTCCTCATGGTGGACGGCAACCCTGTGC	TCACGCCCC
Cloned	Linf Xyl Seq	(351)	ACTGCAGTGTGTCGTCCTCATGGTGGACGGCAACCCTGTGC	TCACGCCCC
			401	450
	LinJ20.1200	(401)	ACCTCAGCATCGGGTGCCTGCATGGGCTCCAGCGGGCAAAC	TACATCGAT
Cloned	Linf Xyl Seq	(401)	ACCTCAGCATCGGGTGCCTGCATGGGCTCCAGCGGGCAAAC	TACATCGAT
			451	500
	LinJ20.1200	(451)	GTCCCGCCACCGAACCCAAATCGATGTGTCTACGCCATGCC	GCCCTCCGT
Cloned	Linf Xyl Seq	(451)	GTCCCGCCACCGAACCCAAATCGATGTGTCTACGCCATGC	GCCCTCCG

			501 550
	LinJ20.1200	(501)	CGAGCACGGGATGGTGGCCCACAACTACTTGACGTCCTACACAATGGACA
Cloned	Linf Xyl Seq	(501)	CGAGCACGGGATGGTGGCCCACAACTACTTGACGTCCTACACAATGGACA
			551 600
	LinJ20.1200	(551)	CAACCGAGGAAGTTCTTATCTACGTGCCGCCCTCGTATCACAAGGCGAGC
Cloned	Linf Xyl Seq	(551)	CAACCGAGGAAGTTCTTATCTACGTGCCGCCCTCGTATCACAAGGCGAGC
			601 650
	LinJ20.1200	(601)	AGCGCAACACGTCGGTACCCCGTGCTCTACCTCCTGCACGACGACCGCGA
Cloned	Linf Xyl Seq	(601)	AGCGCAACACGTCGGTACCCCGTGCTCTACCTCCTGCACGACGACCGCGA
			651 700
	LinJ20.1200	(651)	GTACCCAATGAACTGCGTACAGCAGGGTAAGGTGAACGTCATCGCCGACA
Cloned	Linf Xyl Seq	(651)	GTACCCAATGAACTGCGTACAGCAGGGTAAGGTGAACGTCATCGCCGACA
	T	(201)	701 750
al an ad	LinJ20.1200	(701)	ACCTCATCGCCGACGGCAAGATGACGGGAGATGATCATCGTAATGAAGAGT
croned	Lini Ayi Seq	(701)	ACCTCATCGCCGACGGCAAGATGACGGAGATGATCATCGTAATGAAGAGT
	Tim T20 1200	(751)	
Cloned	Linf Vul Cor	(751)	AGTGTGAGCGCCACGCGCCAATGGTGAATGCATTCCATGCGATGCGGCCAA
CTOHED	nun var sed	(751)	AGIGIGAGCGCACGCACCAATGGIGAATGCATTCCATGCGATGCG
	Tin T20 1200	(001)	801 850
Cloned	Linf Vul Cog	(001)	GCTCTGCGAAGACCTGACGGAGGACATCATTCCGTACGTCGACAACCACT
cronea	DIUL VAL DEG	(801)	851 000
	LinJ20.1200	(851)	ACCGCACCGAGGCAGATCGCGACAACCGCGCCATCGCCGGCCATCTCTACATC
Cloned	Linf Xvl Seg	(851)	ACCGCACCGAGGCAGATCGCGACAACCGCGCCATCGCCGCTCTCTACATC
		(8,7:7:7-8)	901 950
	LinJ20.1200	(901)	GGCTCCATACAAGCCAGCAGGCTCTGCATAACACGCCACGATCTCTTCGC
Cloned	Linf Xyl Seq	(901)	GGCTCCATACAAGCCAGCAGGCTCTGCATAACACGCCACGATCTCTTCGC
			951 1000
	LinJ20.1200	(951)	CTACGCCGGCATGTTCTCCGGCTTCCTGAGGAGCAACTGGAACGGCATCA
Cloned	Linf Xyl Seq	(951)	CTACGCCGGCATGTTCTCCGGCTTCCTGAGGAGCAACTGGAACGGCATCA
			1001 1050
	LinJ20.1200	(1001)	GTACGGACAGCGACCACATCGAAGCCCTCCGCCGCGATCCCGTAGCCTTC
Cloned	Linf Xyl Seq	(1001)	GTACGGACAGCGACCACATCGAAGCCCTCCGCCGCGATCCCGTAGCCTTC
			1051 1100
28122 049	LinJ20.1200	(1051)	CAGGCCGCCATGAAAGTGCTCTTCCGTTGCATTGGCGACGACAACACCCCA
Cloned	Linf Xyl Seq	(1051)	CAGGCCGCCATGAAAGTGCTCTTCCGTTGCATTGGCGACGACAACACCCA
			1101 1150
	LinJ20.1200	(1101)	CCGCGCCGCGTTCGAGGCGGACGACGCTCTGCTGGCGGAGCTGGGCGTGG
Cloned	Linf Xyl Seq	(1101)	CCGCGCCGCGTTCGAGGCGGACGACGCTCTGCTGGCGGAGCTGGGCGTGG
	Tin T20 1200	(1151)	1151 1200
Cloned	Linf Vul Cog	(1151)	COTOCOAGCOGOCATCTACGCGGGCTCACATAGCTGGCAGGTATGGCGC
eroned	num var bed	(TTDT)	1201
	LinJ20.1200	(1201)	CAGGCCAGCCAGCCCATTCCABCCCATCCABCCACCTATCCABCCACCTABCCCCCCACCCCACCCCACCCCACCCCACCCCACCCCACCCC
Cloned	Linf Xvl Sec	(1201)	CAGGCCGCAGCCGATTTCCTGCCCAATGCTATTCAAGGACCTAAGCTTTCT
		(THOT /	1251 1263
	LinJ20.1200	(1251)	TCCTCGTCACTGA
al anad	Tinf Val Com	(1051)	TO CHICAGE CHICAS

D LinJ36.2050 (SEC14) Alignment

		1 50
Cloned SEC14 Seq	(1)	ATGGCGGCAACTCATCTTACCTTTGATGATGCGAAGGTGGGCATGCGCGT
LinJ36.2050	(1)	ATGGCGGCAACTCATCTTACCTTTGATGATGCGAAGGTGGGCATGCGCGT
		51 100
Cloned SEC14 Seq	(51)	CCAGGATTACTGGGGCTGCTGCGGCACGCTACGTTGGATGGGGAAGCTCG
LinJ36.2050	(51)	CCAGGATTACTGGGGCTGCTGCGGCACGCTACGTTGGATGGGGAAGCTCC
		101 150
Cloned SEC14 Seq	(101)	AGAAGAACAATTCGCCTAACAAGGAAACAGGCAAGTTCTTCGGTATCGAG
LinJ36.2050	(101)	AGAAGAACAATTCGCCTAACAAGGAAACAGGCAAGTTCTTCGGTATCGAG
		151 200
Cloned SEC14 Seq	(151)	TACGACGACGAGAGTGACAATCCGCTGCGCAGCAATGGCACGTGGAACGG
LinJ36.2050	(151)	TACGACGACGAGAGTGACAATCCGCTGCGCAGCAATGGCACGTGGAACGG
		201 250
Cloned SEC14 Seq	(201)	CTGCAAGTACTTTGAGTGCGGGCCGCGTAAGGGCCGTCTTGTGAAGGTAG
LinJ36.2050	(201)	CTGCAAGTACTTTGAGTGCGGGGCCGCGTAAGGGCCGTCTTGTGAAGGTAG
		251 300
Cloned SEC14 Seq	(251)	GCCAAGTTTACGCCGAGATCAACACCGAGCGGGTGGCGATGCTACGGGAG
LinJ36.2050	(251)	GCCAAGTTTACGCCGAGATCAACACCGAGCGGGTGGCGATGCTACCGGAG

		301 350
Cloned SEC14 Seq	(301)	CGCTTTGGGGAGCGCGTCGCGACATGGCACGACTTTGAGCTGGTGAAGTT
LinJ36.2050	(301)	CGCTTTGGGGAGCGCGTCGCGACATGGCACGACTTTGAGCTGGTGAAGTT
		351 400
Cloned SEC14 Seq	(351)	CTGCATTGCGCGACAGTTCGATATGGAAAAGGTCTATGAGATGCTGGAGA
LinJ36.2050	(351)	CTGCATTGCGCGACAGTTCGATATGGAAAAGGTCTATGAGATGCTGGAGA
		401 450
Cloned SEC14 Seq	(401)	GGCACCTGCAGTGGCGCGGGGGGGGGGTCCCGCCGACGAGTACTTC
LinJ36.2050	(401)	GGCACCTGCAGTGGCGCGGGGGGGGGGGGGGCCGGCCGGC
		451 500
Cloned SEC14 Seq	(451)	CCTCAGACGATTCGTGAGGATTACCCGTGCGGCTACACAGGCACTACAGA
LinJ36.2050	(451)	CCTCAGACGATTCGTGAGGATTACCCGTGCGGCTACACAGGCACTACAGA
		501 550
Cloned SEC14 Seq	(501)	TTACGACGAGAACCTCATTTACTGCGAACGCCCCGGCAATGCTGGCCACT
LinJ36.2050	(501)	TTACGACGAGAACCTCATTTACTGCGAACGCCCCGGCAATGCTGGCCACT
		551 600
Cloned SEC14 Seq	(551)	GCCAACCGTCCGAGTTTGTGCGCGAGTACACGCTACCGGTAATTGCGCGG
LinJ36.2050	(551)	GCCAACCGTCCGAGTTTGTGCGCGAGTACACGCTACCGGTAATTGCGCGG
	na ostan tast	601 650
Cloned SEC14 Seq	(601)	TGGCACGCGTGCGCTATCGAGATGGGCATTGCGCGCATGCGCGCCACGAA
LinJ36.2050	(601)	TGGCACGCGTGCGCTATCGAGATGGGCATTGCGCGCATGCGCGCCACGAA
	1000	651 700
Cloned SEC14 Seq	(651)	CTACCGCTCCAAGCGAGTGTGCTGCATTGTGGATCTGTTGAACGTAAAAG
LinJ36.2050	(651)	CTACCGCTCCAAGCGAGTGTGCTGCATTGTGGATCTGTTGAACGTAAAAG
al	(202)	701 750
Cloned SEC14 Seq	(701)	CCATGTCGCGTTCGATGATCGGCTTTGCGCAGACGCTGGCGACGGTGGAG
LIN036.2050	(101)	CCATGTCGCGTTCGATGATCGGCTTGCGCAGACGCTGGCGACGGTGGAG
Cloned CEC14 Cor	(751)	751 800 03.001.03.3.003.03.03.5.5.0005.0000000000
Lintae 2050	(751)	CAGGACAACTACCCTGAGAACCTAGGGTGCGTCTTTTATAGTGAACTGCCC
111036.2050	(121)	CAGGACAACIACCCIGAGAACCIAGGGIGCGICIIIAIAGIGAACIGCCC
Cloned SEC14 Sec	(901)	
LinT36 2050	(801)	CATGITTTTTCTGCTTTTCCCTGGAAGCTGCTGCAGAAGATCTTCATCGACGAAC
B11050.2050	(001)	851 900
Cloned SEC14 Sec	(851)	CCACCAATAAAAACATTAATTTCTCCCCCCAAACAACCCCCC
LinJ36 2050	(851)	CACCALTA A A AGATTA ATTTCTCCCCTCCA A ACA ACCCCCTCCA A ACCCCCCTCCA A ACCCCCCCC
111050.2050	(001)	901 950
Cloned SEC14 Sec	(901)	ATGCTGCCGGTGATGCGGAAGGAGGAGACATACCGAACTTCTGCGGCGGGAC
LinJ36.2050	(901)	ATGCTGCCGGTGATGCGGAAGGAGGACATACCGAACTTCTGCGGCGGGAC
	10001	951 1000
Cloned SEC14 Seq	(951)	CAGCAACAAGTGGATGGAAACGGCCAACGGCATCATCGGCTCGACAAACC
LinJ36.2050	(951)	CAGCAACAAGTGGATGGAAACGGCCAACGGCATCATCGGCTCGACAAACC
		1001 1050
Cloned SEC14 Seg	(1001)	CGAAAAAGGTCTACAGGGGGGGGGGGGGGGGGGGCCCAGCCCGCCC
LinJ36.2050	(1001)	CGAAAAAGGTCTACAGGGGCGAGGACTACAGCCCGCCCAGCATGACGAGC
		1051 1100
Cloned SEC14 Seq	(1051)	GAAGAGCTGAATGAGACGCAGTTGCGAGCCGATAGTGAGAGCCCCCACAG
LinJ36.2050	(1051)	GAAGAGCTGAATGAGACGCAGTTGCGAGCCGATAGTGAGAGCCCCCACAG
		1101 1150
Cloned SEC14 Seq	(1101)	GAGCCTCCGCGAAGGTGAGGCACCGACGACCACGCGCTTCATCGCGCCCG
LinJ36.2050	(1101)	GAGCCTCCGCGAAGGTGAGGCACCGACGACCACGCGCTTCATCGCGCCCG
		1151 1200
Cloned SEC14 Seq	(1151)	ACGCGGTGTCCTTGAGCTTCACGCCCACCAGTAGCTCCAAATCGCCTGAG
LinJ36.2050	(1151)	ACGCGGTGTCCTTGAGCTTCACGCCCACCAGTAGCTCCAAATCGCCTGAG
		1201 1250
Cloned SEC14 Seq	(1201)	GAGCCCAAGATGACGTCTGGGGGCGCAGAGCAGCAGCGACACGGCAAGCGG
LinJ36.2050	(1201)	GAGCCCAAGATGACGTCTGGGGGGGGGAGAGCAGCAGCGACACGGCAAGCGG
		1251 1281
Cloned SEC14 Seq	(1251)	CAAGAAGCGAAAGAACGGTTTGCCGAAGTGA
LinJ36.2050	(1251)	CAAGAAGCGAAAGAACGGTTTGCCGAAGTGA

Figure 3.1.6: Alignment of the published sequence of genes with the sequence of cloned ORFs A) LinJ20.1200 (xylanase); B) LinJ36.2750 (hypothetical); C) LinJ28.0330 (hypothetical) and D) LinJ36.2050 (*SEC14*) on GeneDB compared with the sequence of the cloned ORF PCR product. Differences are highlighted by red arrowheads.

3.1.2 Cloning and Sequencing of the Four Genes from L. donovani

In order to confirm that these four genes are could be involved in disease tropism we had to confirm that the genes were intact in another species of *Leishmania* that causes the visceral form of the disease. The *L. donovani* strain BPK206/0 (Clone 10), is a field isolate from bone marrow biopsy of a 12 year old Nepalese patient in 2003. These cells were grown up in culture and genomic DNA was isolated for use as template in the PCR reactions. *L. donovani* ORFs for all four genes were amplified by PCR, using the same primers used to amplify the ORFs from *L. infantum* (see Table 3.1.1) together with the proof-reading polymerase Phusion (NEB). Two independent PCR reactions were carried out for each gene and A-overhangs were added to all PCR products. Both independent PCR products for each gene were gel-extracted and cloned into T-vectors before being sent sequencing in complete, double stranded form (the University of Dundee Sequencing Service). Note - the data presented in this section was obtained with the help and assistance of Elaine Brown, technician in the Mottram lab.

ć

3.1.3 L. donovani ORF Sequence Analysis

Sequences were analysed using ContigExpress (Vector-NTI Advance 10, Invitrogen) and contiguous sequences were translated into protein sequences in Vector-NTI. These protein sequences were compared with the published *L. infantum* protein sequences using Align-X software (Vector-NTI Advance 10, Invitrogen) and these are shown in Figure 3.1.7.

A L. infantum versus L. donovani 28.0330 Proteins

			1 50
L.	inf 28.0330	(1)	MADVQLSNSSNVKAVYAGHSLSLFMDLRPPAEVLATCSGSVVEDLPVTLS
L.	don 28.0330	(1)	MADVQLSNSSNVKAVYAGHSLSLFMDLRPPAEVLATCSGSVVEDLPVTLS
	Consensus	(1)	MADVQLSNSSNVKAVYAGHSLSLFMDLRPPAEVLATCSGSVVEDLPVTLS
			51 100
L.	inf 28.0330	(51)	VMLRRIHSESETPLSFRCSSSHRLLTYVQCEDGAGGDAVQLGMSGNNLLK
L.	don 28.0330	(51)	VMLRRIHSESETPLSFRCSSSHRLLTYVQCEDGAGGDAVQLGMSGNNLLK
	Consensus	(51)	VMLRRIHSESETPLSFRCSSSHRLLTYVQCEDGAGGDAVQLGMSGNNLLK
			101 150
L.	inf 28.0330	(101)	VTIDLATFPDRLQRLAAADVAAAEHALLDQSWVIGSRFRLSMQLRTRARA
L.	don 28.0330	(101)	VTIDLATFPDRLQRLAAADVAAAEHALLDQSWVIGSRFRLSMQLRTRARA
	Consensus	(101)	VTIDLATFPDRLQRLAAADVAAAEHALLDQSWVIGSRFRLSMQLRTRARA
			151 200
L.	inf 28.0330	(151)	EWPPLVAPQWSESSDGCLVPTPCSHHMDNHDSAGVMRMREEFAAKGVSAS
L.	don 28.0330	(151)	EWPPLVAPQWSESSDGCLVPTPCSHHMGNHDSAGVMRMREEFAAKGVSAS
	Consensus	(151)	EWPPLVAPQWSESSDGCLVPTPCSHHM NHDSAGVMRMREEFAAKGVSAS
			201 250
ц.	inf 28.0330	(201)	PSIVRRNRPLSLYDKSAPRSQLKGPVYIDQELFPIVRILFVPQLYTEAIP
L.	don 28.0330	(201)	PSIVRRNRPLSLYDKSAPRSQLKGPVYIDQELFPIVRILFVPQLYTEAIP
	Consensus	(201)	PSIVRRNRPLSLYDKSAPRSQLKGPVYIDQELFPIVRILFVPQLYTEAIP
			251 300
L.	inf 28.0330	(251)	TATAVLRSMTVQVGVERCRESRGGKPLRRALRDRSTKDNVAVLDRVPASS
L.	don 28.0330	(251)	TATAVLRSMTVQVGVERCRESRGGKPLRRALRDRSTKDNVAVLDRVPASS
	Consensus	(251)	TATAVLRSMTVQVGVERCRESRGGKPLRRALRDRSTKDNVAVLDRVPASS
	20 S		301 350
L.	inf 28.0330	(301)	STLDEESKALLQPYEAICLAFNAHVRQPSMTSVTAYDVAHARRLVVQDYT
L.	don 28.0330	(301)	STLDEESKALLQPYEAICLAFNAHVRQPSMTSVTAYDVAHARRLVVQDYT
	Consensus	(301)	STLDEESKALLQPYEAICLAFNAHVRQPSMTSVTAYDVAHARRLVVQDYT
	8 8 51 515		351 400
L.	inf 28.0330	(351)	FEVMVTAARMKSETVETVQRAIQAYQYESGDADVLGMNLDEAVSSVEERF
L.	don 28.0330	(351)	FEVMVTAARMKSETVETVQRAIQAYQYESGDADVLGMNLDEAVSSVEERF
	Consensus	(351)	FEVMVTAARMKSETVETVQRAIQAYQYESGDADVLGMNLDEAVSSVEERF
	N BOOM MARK		401 450
L.	inf 28.0330	(401)	GYMKDAPSVDLMSFHHVVWEAMRACMVADVTSSALANELEDELDRYEDRI
L.	don 28.0330	(401)	GYMKDAPSVDLMSFHHVVWEAMRACMVADVTSSALANELEDELDRYEDRI
	Consensus	(401)	GYMKDAPSVDLMSFHHVVWEAMRACMVADVTSSALANELEDELDRYEDRI
		1012-011	451
L.	inf 28.0330	(451)	NEILMDM-
L.	don 28.0330	(451)	NEILMDM-

Consensus (451) NEILMDM

B L. infantum versus L. donovani 36.2750 Proteins

				1 50
L.	inf	36.2750	(1)	MGRIDSSCVAATVTPSKVGASSSCPGTATSTGKIDEPASRAAAPOGRAOR
L.	don	36.2750	(1)	MGRIDSSCVAATVTPSKVGASSSCPGTATSTGKIDEPASRAAAPOGRAOR
Co	onsei	nsus	(1)	MGRIDSSCVAATVTPSKVGASSSCPGTATSTGKIDEPASRAAAPQGRAQR 51 100
L.	inf	36.2750	(51)	CGRARPAQMHNSLSAGMCDNQQQHAAGVWKLIAGPQSASTTPPPLVMGDG
L.	don	36.2750	(51)	CGRARPAOMHNGLSAGMCDNOOQHAAGVWOLIAGPOSASTTPPPLVMGDG
Co	nsei	isus	(51)	CGRARPAQMHN LSAGMCDNQQQHAAGVW LIAGPQSASTTPPPLVMGDG 101 150
L.	inf	36.2750	(101)	TGGEDHAQAAHTGVRWTKHAWEKGNDCPAGSAYGSFVGAPLRRLPPTPPF
L.	don	36.2750	(101)	TGGEDHAQAAHAGVRWTKHEWEKGNDCPAGSAYGSFVGAPLRRLPPTPPF
Co	onsei	isus	(101)	TGGEDHAQAAH GVRWTKHAWEKGNDCPAGSAYGSFVGAPLRRLPPTPPF 151 200
L.	inf	36.2750	(151)	PGVRLPAWCRSASATAYPLSEDGLTNELLDFFYYLQLTSHEEAARERLLG
L.	don	36.2750	(151)	PGVRLPAWCRSASATAYPLSEDGLTNELLDFFYYLQLTSHEEAARERLLG
Co	nsei	isus	(151)	PGVRLPAWCRSASATAYPLSEDGLTNELLDFFYYLQLTSHEEAARERLLG 201 250
L.	inf	36.2750	(201)	YVQACVAKLWGPCKPGSEAEGTAQVMLYGSYALGLSLPSSDIDLALTFPA
L.	don	36.2750	(201)	YVQACVAKLWGPCKPGSEAEGTAQVMLYGSYALGLSLPSSDIDLALTFPA
Co	onsei	isus	(201)	YVQACVAKLWGPCKPGSEAEGTAQVMLYGSYALGLSLPSSDIDLALTFPA 251 300
L.	inf	36.2750	(251)	EEQVDVATIAVEERSGDRALLAPAVSKKRQALHLERLHDLAEQLRNSATF
L.	don	36.2750	(251)	EEQVDVATIAVEERSGDRALLAPAVSKKRQALHLERLHDLAEQLRNSATF
Co	nsei	19118	(251)	EEOVDVATTAVEERSGDRALLAPAVSKKROALHLERLHDLAFOLRNSATE

		301 350
L. inf 36.2750	(301)	PELEVEVYDQCRVPRIHLRDRTCGGVSCDINSSFASARIARIVARQRLWL
L. don 36.2750	(301)	PELEVEVYDQCRVPRIHLRDRTCGGVSCDINSSFASARIARIVARQRLWL
Consensus	(301)	PELEVEVYDQCRVPRIHLRDRTCGGVSCDINSSFASARIARIVARQRLWL
		351 400
L. inf 36.2750	(351)	QDSPLAAFLVRVTKAAVKQWGLHEVFWGGVASTALYCLVLRFLAQMEQLC
L. don 36.2750	(351)	QDSPLAAFLVRVTKAAVKQWGLHEVFWGGVASTALYCLVLRFLAQMEQLC
Consensus	(351)	QDSPLAAFLVRVTKAAVKQWGLHEVFWGGVASTALYCLVLRFLAQMEQLC
		401 450
L. inf 36.2750	(401)	RHAQVEENLSPPRYAEAAAAHVATQLSSLACSSPLSSPQLSMPHPANESF
L. don 36.2750	(401)	RHAQVEENLSPPRYEEAAAAHVATQLSSLACSSPLSSPQLSMPHPANESF
Consensus	(401)	RHAQVEENLSPPRY EAAAAHVATQLSSLACSSPLSSPQLSMPHPANESF
		451 500
L. inf 36.2750	(451)	AAFTPVPAGTASTARGLNRLSAAAAVPSYVPSWVVNSRKHDLNKSSSLCD
L. don 36.2750	(451)	AAFTPVPAGTASTARGLNRLSAAAAVPSYVPSWVVNSRKHGLSKSSSLCD
Consensus	(451)	AAFTPVPAGTASTARGLNRLSAAAAVPSYVPSWVVNSRKH L KSSSLCD
		501 550
L. inf 36.2750	(501)	MDKNSALCPVSUTACSLSDWSTMSSTCDEDREADDEVDGYTQAGLTRTSG
L. don 36.2750	(501)	MDKNSALCPVSWTACSLSDWSTMSSTCDEDREADDEVDGYTQAGLTRTSG
Consensus	(501)	MDKNSALCPVSLTACSLSDWSTMSSTCDEDREADDEVDGYTQAGLTRTSG
		551 600
L. inf 36.2750	(551)	ATTTATTPISRTAASTPMPAASEAHEGGTATASSALAPPVSVNSAALREG
L. don 36.2750	(551)	ATTTATTPISRTAASTPMPAASEAHEGGTATASSALAPPVSVNSAALREG
Consensus	(551)	ATTTATTPISRTAASTPMPAASEAHEGGTATASSALAPPVSVNSAALREG
		601 650
L. inf 36.2750	(601)	VFPSADGLTQIARSRYGASPARLLLKLWKFLSADAFANGYQVADAFGDDA
L. don 36.2750	(601)	VFPSADGLTHIARSRYGASPARLLLKLWKFLSADAFANGYQVADAFGDDT
Consensus	(601)	VFPSADGLT IARSRYGASPARLLLKLWKFLSADAFANGYQVADAFGDD
		651 700
L. inf 36.2750	(651)	VWCDCGEAGDSAALPKQLPLMASLELATIAGMSSADLSAASFRLPEL
L. don 36.2750	(651)	VWCDCGEAGDSAALPKQLPLMASLELATIAGMSSADLSAASFRLPELMAL
Consensus	(651)	VWCDCGEAGDSAALPKQLPLMASLELATIAGMSSADLSAASFRLPELLAL
		701 740
L. inf 36.2750	(701)	FRHSSTSLESMLRYQRYPRRTVPTMLSTIFVDPRLPTNS-
L. don 36.2750	(701)	FRHSSTSLENMLRYQRYPRRTVPTMLSTIFVDPRLPTNS-
Consensus	(701)	FRHSSTSLE MLRYQRYPRRTVPTMLSTIFVDPRLPTNS

C L. infantum versus L. donovani 20.1200 (Xylanase) Proteins

		*
L. inf Xyl	(1)	MSAIIITPVAPATTPPTRTPAMHLHSFSQPTQAQQQQQQLLFRPRCEEGV
L. don Xyl	(1)	MSAIIITPAAPATTPPTRTPAMHLHSFSQPTQAQQQQQ-LLFRPRCEEGV
Consensus	(1)	MSAIIITP APATTPPTRTPAMHLHSFSQPTQAQQQQQ LLFRPRCEEGV
		51 100
L. inf Xyl	(51)	TYSEDNNGTVHYRFYLPHASSVVVAPVKVCLVDSDGGTVPVASIGAAAPM
L. don Xyl	(50)	TYSEDNNSTVHYRFYLPHASSVVVAPVKVCLVDSDGGTVPVASIGAAAPM
Consensus	(51)	TYSEDNN TVHYRFYLPHASSVVVAPVKVCLVDSDGGTVPVASIGAAAPM
		101 150
L. inf Xyl	(101)	TKHQDGVWVGTVSAPVGLQCVVLMVDGNPVLTPHLSIGCLHGLQRANYID
L. don Xyl	(100)	TKHQDGVWVGTVSAPVGLQCVVLMVDGNPVLTPHLSIGCLHGLQRANYID
Consensus	(101)	TKHQDGVWVGTVSAPVGLQCVVLMVDGNPVLTPHLSIGCLHGLQRANYID
		151 200
L. inf Xyl	(151)	VPPPNPNRCVYAMRPSVEHGMVAHNYLTSYTMDTTEEVLIYVPPSYHKAS
L. don Xyl	(150)	VPPPNPNRCVYAMRPSVEHGMVAHNYL/TSYTMDTTEEVLIYVPPSYHKAS
Consensus	(151)	VPPPNPNRCVYAMRPSVEHGMVAHNYLTSYTMDTTEEVLIYVPPSYHKAS
	0.000	201 250
L. inf Xyl	(201)	SATRRYPVLYLLHDDREYPMNCVQQGKVNVIADNLIADGKMTEMIIVMKS
L. don Xyl	(200)	SATRRYPVLYLLHDDREYPMNCVQQGKVNVIADNLIADGKMTEMIIVMKS
Consensus	(201)	SATRRYPVLYLLHDDREYPMNCVQQGKVNVIADNLIADGKMTEMIIVMKS
		251 300
L. don Xyl	(250)	SVSARANGECIPCDAAKLCEDLTEDIIPYVDNHYRTEADRDNRAIAGLYM
L. inf Xyl	(251)	SVSARANGECIPCDAAKLCEDLTEDIIPYVDNHYRTEADRDNRAIAGLYM
Consensus	(251)	SVSARANGECIPCDAAKLCEDLTEDIIPYVDNHYRTEADRDNRAIAGLYM
		301 350
L. inf Xyl	(301)	GSIQASRLCITRHDLFAYAGMFSGFLRSNWNGISTDSDHIEALRRDPVAF
L. don Xyl	(300)	GSIQASRLCITRHDLFAYAGMFSGFLRSNWNGISTDSDHIEALRRDPVAF
Consensus	(301)	GSIQASRLCITRHDLFAYAGMFSGFLRSNWNGISTDSDHIEALRRDPVAF
		351 400
L. inf Xyl	(351)	QAAMKVLFRCIGDDNTHRAAFEADDALLAELGVACERRIYAGSHSWQVWR
L. don Xyl	(350)	QAAMKVLFRCIGDDNTHRAAFEADDALLAELGVACERRIYAGSHSWQVWR
Consensus	(351)	QAAMKVLFRCIGDDNTHRAAFEADDALLAELGVACERRIYAGSHSWQVWR
		401 421
L. inf Xyl	(401)	QAAADFLPMLFKDLSFLPRH-
L. don Xyl	(400)	QAAADFLPMLFKDLSFLFRH-
Consensus	(401)	QAAADFLPMLFKDLSFLPRH

D L. infantum versus L. donovani 36.2050 (SEC14) Proteins

		1 50
L. inf SEC14	(1)	MAATHLTFDDAKVGMRVQDYWGCCGTLRWMGKLEKNNSPNKETGKFFGIE
L. don SEC14	(1)	MAATHLTFDDAKVGMRVQDYWGCCGTLRWMGKLEKDNSPNKETGKFFGIE
Consensus	(1)	MAATHLTFDDAKVGMRVQDYWGCCGTLRWMGKLEK NSPNKETGKFFGIE
		51 100
L. inf SEC14	(51)	YDDESDNPLRSNGTWNGCKYFECGPRKGRLVKVGQVYAEINTERVAMLRE
L. don SEC14	(51)	YDDESDNPLRSNGTWNGRKYFECGPRKGRLVKVGQVYAEINTERVAMLRE
Consensus	(51)	YDDESDNPLRSNGTWNG KYFECGPRKGRLVKVGQVYAEINTERVAMLRE
		101 150
L. inf SEC14	(101)	RFGERVATWHDFELVKFCIARQFDMEKVYEMLERHLQWRGRFQPCADEYF
L. don SEC14	(101)	RFGERVATWHDFELVKFCIARQFDMEKVYEMLERHLQWRGRFQPCVDEYF
Consensus	(101)	RFGERVATWHDFELVKFCIARQFDMEKVYEMLERHLQWRGRFQPC DEYF
		151 200
L. inf SEC14	(151)	PQTIREDYPCGYTGTTDYDENLIYCERPGNAGHCQPSEFVRKYTLPVIAR
L. don SEC14	(151)	PQTIREDYPCGYTGTTDYDENLIYCERPGNAGHCQPSEFVRKYTLPVIAR
Consensus	(151)	PQTIREDYPCGYTGTTDYDENLIYCERPGNAGHCQPSEFVRKYTLPVIAR
		201 250
L. inf SEC14	(201)	WHACAIEMGIARMRATNYRSKRVCCIVDLLNVKAMSRSMIGFAQTLATVE
L. don SEC14	(201)	WHACAIEMGIARMRATNYRSKRVCCIVDLLNVKAMSRSMIGFAQTLATVE
Consensus	(201)	WHACAIEMGIARMRATNYRSKRVCCIVDLLNVKAMSRSMIGFAQTLATVE
		251 300
L. inf SEC14	(251)	QDNYPENLGCVFIVNCPMFFCFAWKLLKIFIDERTNKKINFCAPNKAVEA
L. don SEC14	(251)	QDNYPENLGCVFIVNCPMFFCFAWKLLKIFIDERTNKKINFCAPNKAVEA
Consensus	(251)	QDNYPENLGCVFIVNCPMFFCFAWKLLKIFIDERTNKKINFCAPNKAVEA
		301 350
L. inf SEC14	(301)	MLPVMRKEDIPNFCGGTSNKWMETANGIIGSTNPKKVYRGEDYSPPSMTS
L. don SEC14	(301)	MLPVMRKEDIPNFCGGTSNKWMETANGIIGSTNPKKVYRGEDYSPPSMKS
Consensus	(301)	MLPVMRKEDIPNFCGGTSNKWMETANGIIGSTNPKKVYRGEDYSPPSM S
		351 400
L. inf SEC14	(351)	EELNETQLRADSESPHRSLREGEAPTTTRFIAPDAVSLSFTPTSSSKSPE
L. don SEC14	(351)	EELNETQSRADSESPHRSLREGEAPTTTRFIAPDAVSLSFTPTSSSKSPE
Consensus	(351)	EELNETQ RADSESPHRSLREGEAPTTTRFIAPDAVSLSFTPTSSSKSPE
		401 427
L. inf SEC14	(401)	EPKMTSGAQSSSDTASGKKRKNGLPK-
L. don SEC14	(401)	EPKMTSEAQSSSDTASGKKRKNGLPK-
Consensus	(401)	EPKMTS AQSSSDTASGKKRKNGLPK

Figure 3.1.7: Alignments of the four *L. infantum* proteins with *L. donovani* orthologues. A) 28.0330 alignment: A single amino acid difference between these proteins. B) 36.2750 alignment: 11 amino acid differences between *L. infantum* and *L. donovani* proteins. C) 20.1220 (xylanase) alignment: 3 amino acid differences. D) 36.2050 alignment: 6 amino acid differences.

Notably, all four genes are intact in *L. donovani*, another species that can cause visceral Leishmaniasis. This is an important finding, as it adds support to the hypothesis that the genes could be involved in influencing disease tropism. The primary sequence of each gene is also well conserved between the species.

3.1.4 Analysis of Equivalent L. major Loci

Attempts were made to amplify and clone fragments of DNA from L major, equivalent to the positions where the L infantum-specific genes exist to confirm that the L major sequence held in GeneDB is correct and that the genes have indeed been lost rather than simply misassembled. Unfortunately insufficient time was available to repeat this and it will be carried out in the future.

3.2 Expression Profile in L. infantum

This work was carried out in collaboration with Dr. Jim Hilley of the University of Glasgow. Life cycle specific cDNA was prepare previously by Dr. Jim Hilley and sufficient amounts were provided for these experiments. Briefly, procyclic promastigotes, metacyclic promastigotes (purified by the peanut agglutination method) and amastigotes (extracted and purified from the spleen of an infected hamster) were lysed and stored at -80°C in Trizol (Invitrogen). Total RNA was extracted from Trizol according to manufacturer's instructions. A quantity of total RNA was used to prepare first strand cDNA by SuperscriptIII Reverse Transcriptase (Invitrogen) according to manufacturer's protocol.

3.2.1 RT-PCR of L. infantum-Specific Genes

Nested PCR was used as a way of increasing the specificity and sensitivity of the polymerase chain reaction. In the first round of PCR the primer combinations (see Table 3.2.1) were used with procyclic promastigote, metacyclic promastigote and amastigote first strand cDNA at an annealing temperature of 54°C. The forward primer in all reactions was OL1760, which is a primer that anneals to the splice leader sequence of processed mRNA molecules. The reverse primer in all cases was a gene-

specific primer. This is an added layer of control over non-specific PCR from contaminating genomic DNA since the splice leader sequence is not found immediately upstream of genes in genomic DNA, only in processed messenger RNA, and thus in cDNA. On completion, the first round reactions were diluted ten-fold with water and 1µl of these dilutions was used as a template in second round PCRs with different primer combinations (Table 3.2.1), under the same conditions as the first round PCR. The forward primer in the second round of PCR was, again OL1760, and was used with a gene-specific primer that anneals to a region within the amplified fragment in the first round PCR. This method has the added benefit of allowing the splice acceptor site to be identified and thus to confirm that the GeneDB sequence data held for each gene is annotated correctly i.e. that the correct start codon has been identified.

Gene	First round reaction	Second round reaction		
LinJ28.0330	OL1760 + OL2101	OL1760 + OL2099		
LinJ36.2750	OL1760 + OL2105	OL1760 + OL2103		
LinJ20.1200	OI 1760 + OI 1097	QL 1760 + QL 2006		
(Xylanase)	011760 + 011987	OL1760 + OL2096		
LinJ36.2050	OI 1760 - OI 1985	$OI 1760 \pm OI 2285$		
(SEC14)	011/00 - 011985			
Primer	Seg	uence		
OL1760	AACTAACGCTATATAAGTATCAGTTTCTGTACTTTATTG			
OL1985	GCAGGATCCTCACTTCGGCAAACCGTTCTTTC			
OL1987	GCAGGATCCTCAGTGACGAGGAAGAAAGC			
OL2096	GACGTTCACCTTACCCTGCTG			
OL2099	CTTCCCGCATCCTCATAACGCC			
OL2101	CGTTAAAGGCGAGGCAGATG			
OL2103	CTCCCGTGCCGCTTCCTCATG			
OL2105	CGATGCGGGCGATGCGTG			
OL2285	CAAAGCGCTCCCGTAGCAT			

Table 3.2.1: Primer combinations used for nested PCR with cDNA to confirm

 expression for the four L. infantum genes and sequences of the primers used.

3.2.2 RT-PCR Results

The reactions were electrophoresed on an agarose gel and DNA fragments in the correct size range were detected (Figure 3.2.1). The exact size of the bands is unpredictable since the position of the splice acceptor site relative to the start of the gene is unknown. The sizes shown in the schematic of each locus (Figure 3.2.1A-D) refer to the size of the fragment from the start of the gene to the reverse primer used in the second round of PCR and amplicons should be similar to or larger than these since they will correspond to these fragments in addition to any upstream sequence between the splice acceptor site and the start codon.

Bands in the appropriate size range and of approximately equal intensity were produced from cDNA from each life cycle stage for all genes except LinJ20.1200, which appears to be strongly downregulated in amastigote forms (Figure 3.2.1 A-D).

In order to clarify these expression profiles in more detail, it would be necessary to carry out Quantitative PCR for each gene, relative to a house-keeping control gene, and this will be carried out in the future. Furthermore, the identity of the amplified fragments must also be confirmed by cloning and sequencing of the PCR products. This was done for LinJ36.2050, but has not yet been done for the other three genes. The identity of LinJ36.2050 (*SEC14*) has been confirmed in each life cycle stage and the splice acceptor and start codon have been identified. The annotated sequence on GeneDB has been confirmed (Figure 3.2.2).

Figure 3.2.1: RT-PCR Analysis to determine expression profile of the four genes in different life cycle stages. Note the exact size of the bands is variable since the position of the splice acceptor site relative to the start of the gene is unknown. The band sizes shown refer to the size of the fragment from start of the gene to the reverse primer. Reaction conditions - Taq DNA polymerase was used with 10x PCR buffer:

94°C, 5 minutes x 1
94°C, 1 minute
54°C, 4 minutes
$$x = 25$$
 cycles
72°C, 1 minute $x = 1$

Figure 3.2.2: The sequencing of the RT-PCR fragments for LinJ36.2050. The sequences were identical for PCR products for each life cycle stage. The sequence highlighted in yellow represents the position of the spliced leader primer, <u>OL1760</u> while the sequence highlighted in blue is **DU2288**. The start codon of the gene is highlighted in red (**ATG**). This is the first start codon downstream of the spliced leader sequence.

The presence of transcripts of all genes except LinJ20.1200 (xylanase) in all three life cycle stages indicates that these genes are expressed and they no longer need to be considered as hypothetical. Rather they are considered to be expressed genes of unknown function. Furthermore, the presence of amastigote transcripts means that a potential role for encoded proteins in the visceralisation mechanism is still a possibility. By contrast, LinJ20.1200 appears to be downregulated in amastigote stages meaning that it is less likely to be involved in a visceralisation mechanism. The quantification of transcripts at each life cycle stage by real-time quantitative PCR analysis will be carried out in the future.

3.3 Knockout of SEC14 in L. infantum (JPCM5)

3.3.1 Preparation of SEC14 Knockout Constructs

Leishmania is an organism that is amenable to the removal of genes through targeted gene disruption or replacement (Cruz et al., 1991; Cruz et al., 1993). Because *Leishmania* is diploid, there are two allelic copies of each gene and both must be replaced by sequential rounds of targeted gene replacement using two antibiotic-selectable markers (Figure 3.3.2) as has been done previously within the Mottram lab (Hilley et al., 2000; Denise et al., 2006).

Figure 3.3.2: Overview of the SEC14 knockout process. The diagram shows the first allele being knocked out independently with each KO cassette (SAT and BLE) during the first round of transfection. The second round of transfection utilises the opposite KO cassette to the first round to replace the remaining copy of the gene.

In order to knock out both alleles of *SEC14* in *L. infantum*, two knockout constructs were produced. The starting point for these constructs was pGL1028, a knockout construct used previously to knock out a *Leishmania major* serine peptidase inhibitor protein, ISP1 in the Mottram lab (unpublished data). The first construct, pGL1534 (Figure 3.3.3) was made by dropping out the 5' (*Hind*III and *Sal*I) and 3' (*Xmal* and *Bgl*II) flanking regions of pGL1028 in turn and replacing them with 5' and 3' flanking regions of the *L. infantum* SEC14 gene. These flanking regions were produced by PCR and were first cloned into a T-vector before being subcloned into the knockout construct. Correct insertion of the 5' and 3' flanking regions was confirmed by PCR and sequencing. The second knockout construct was obtained by dropping out the SAT antibiotic resistance marker (using *SpeI* and *Bam*HI) and replacing it with the BLE antibiotic resistance marker. The BLE gene was obtained by digesting an independent knockout construct containing the BLE gene (pGL1422) with the same restriction enzymes (*SpeI* and *Bam*HI) and subcloning into pGL1534 to yield pGL1535 (Figure 3.3.3).

No Carlos

A CONTRACTOR OF A

Berling and a second state of the second state of the second second second second second second second second s

. Т

'n

1

Figure 3.3.3: Schematic of constructs containing *SAT* and *BLE* genes flanked by *SEC14* 5' and 3' flanking regions. The constructs pGL1534 (A) and pGL1535 (B) were prepared by removing the existing 3' (*Xma*I and *BgI*II) and 5' (*Hind*III and *Sal*I) flanks of a construct containing the SAT antibiotic resistance gene and replacing them with 3'and 5' *SEC14* flanking regions. Once obtained, pIGI.1534 was used to obtain pGL1535 by dropping out the antibiotic resistance gene (*Spe*I and *Bam*HI) and replacing it with a BLE-resistance gene from a similar KO construct used previously in the Mottram lab (pGL1442). This approach was taken because of an internal *Xma*I site within the BLE gene interfering with the cloning of the 3' flanking sequence.

3.3.2 Preparation for Targeted Gene Replacement of SEC14

In order to transfect efficiently, approximately $10\mu g$ of each knockout cassette was required. Medium-scale production of pGL1534 and pGL1535 was performed from 50ml of *E. coli* overnight cultures using the Qiagen HiSpeed Midi Kit. 40-60 μg of each plasmid was digested overnight with 15 μ l each of *Hind*III and *Bg/*II in a 500 μ l reaction volume. Digests were electrophoresed on 0.7% agarose TBE gels. The

knockout cassette, which was approximately 4.4kb was extracted from the gel using multiple Qiagen Gel Extraction Kit columns. The eluted DNA from each column was pooled and ethanol-precipitated prior to transfection with wild type *L. infantum* cells.

3.3.2.1 First Round Transfection to Knockout SEC14 First Allele

The first round of transfection was carried out using the method of Beverley and Robinson (2003). Wild type *L. infantum* JPCM5 cells were transfected with either the SAT resistance cassette (from pGL1534) or the BLE resistance cassette (from pGL1535) and cultures were split immediately following transfection (S1 and S2). After several weeks of selection at 75µg/ml nourseothricin, resistant cells were growing and dividing well in both cultures, whereas the cells in the control transfections had died. The former were grown up and stabilates were made (WCMP 5599 and WCMP 5600). Additionally, BLE-resistant cells were also recovering from the first-round transfections with the BLE cassette, however these succumbed to contamination when growing up to make stabilates so were discarded and attention was focused on the SAT-resistant cells. Genomic DNA was isolated from transfected cells after a single sub-passage and subject to analysis for integration using PCR.

3.3.2.2 Check for Correct Integration by PCR

Primers were designed to anneal upstream (OL2300) and downstream (OL2301) of the 5' and 3' flanking regions of the knockout cassettes. These were used with
primers that hybridise within the knockout cassette itself to check for integration (Figure 3.3.4).

PCR using primers OL2301 and OL1031 has produced bands of the expected size (approximately 2.0kb) with genomic DNA obtained from both S1 and S2 cultures (Figure 3.3.4 C, Lanes 2 and 3). The additional bands visible in these reactions are presumably due to non-specific primer hybridisation as they are also present in the wild type control lane (Figure 3.3.4C, Lane 1). Primers OL2300 and OL1294 also gave PCR products of the predicted size of 0.7kb (Figure 3.3.4, Lanes 4 and 5) strongly suggesting successful integration.

These putative *SEC14/SAT* heterozygote cells were used in another round of transfection in an attempt to remove the second allele copy of the *SEC14* gene.

70

Figure 3.3.4: PCR analysis of clones resulting from first round transfection. SAT resistant clones were isolated and grown from stationary phase. 2μ l of each lysate was used as DNA template in 20μ l PCR reactions under the conditions described below:

95°C, 5 minutes x1
95°C, 1 minute
54°C, 1 minute
72°C, 2 minutes x1
$$72^{\circ}C$$
, 10minutes x1

A) A map of the *L. infantum Sec14* gene in genome locus. B) Map of the *L.infantum SEC14* locus showing primer positions used in this PCR. C) Agarose gel showing the expected bands. Gel layout is as follows: Lane 1: Wild type OL2301+1031; Lane 2: S1-3`Flank region OL2301+1031; Lane 3: S2-3`Flank region OL2301+1031 (expected size is 2.0kb); Lane 4: S1-5`Flank region OL2300+1294; Lane 5: S2-5`Flank region OL2300+1294 (expected size is 0.7kb); Lane M DNA Size markers (1kb DNA Ladder (Invitrogen)). There are some multiple bands which are probably due to non-specific primer hybridisation.

- 111 J

a kush waa a sa a sa

and the second second and the second of the second second second second second second second second second seco

3.3.2.3 Second Round Transfection to Completely Remove SEC14

The nourseothricin-resistant SEC14 +/- cells were transfected as before with the BLE knockout cassette. Immediately following transfection, the cultures were split (2x5ml cultures for each, except control transfections) and recovered overnight in the absence of antibiotics. 1ml of each overnight culture was added to 9ml of fresh HOMEM plus 10% FCS (plus penicillin/streptomycin) and 10% conditioned medium (CM) with 75µg/ml nourseothricin and 10µg/ml phleomycin. The remaining 4ml of the overnight cultures was added to 20ml of fresh HOMEM/FCS/CM plus antibiotics, as above (Dilution A). 2ml of Dilution A was added to a further 22ml of fresh HOMEM/FCS/CM plus antibiotics (Dilution B). Finally 2ml of Dilution B was added to another 22ml of fresh HOMEM/FCS/CM + antibiotics. Each dilution was plated out on 96 well plates in order to obtain clones.

Three clones were obtained from the plate containing Dilution B (Δ SEC14-1, Δ SEC14-2 and Δ SEC14-3). These were grown up in fresh HOMEM plus 10% FCS and nourseothricin/phleomycin. These cultures sub-passaged and the remainder was

used to prepare stabilates (WCMP 5813, 5814 and 5815) and to isolate genomic DNA to test for integration by PCR (Figure 3.3.5).

÷

PCRs on genomic DNA from wild type and Δ SEC14-1, 2 and 3 were carried out using a range of diagnostic primers to test for the correct integration of both KO cassettes (see Table 3.3.1 for details of primers as well as predicted fragment sizes). These PCRs shown in Figure 3.3.5 (D-K) strongly suggest that both KO cassettes have integrated correctly. Reactions D, G and II (Figure 3.3.5) are testing for the correct integration of the 5' portion of the KO cassettes. Reactions E, F, I and J are testing integration at the 3' end of the KO cassettes. Reaction K tests for the presence of a complete *SEC14* open reading frame. In most cases, PCR products corresponding to the predicted sizes (see Table 3.3.1) are present in all three Δ SEC14 clones but absent in the wild type negative control lanes. There are additional bands in many of the reactions but these are likely to be non-specific PCR products that are, in all cases, also present in the wild type lanes. Integration is best shown by the apparent loss of the *SEC14* ORFs shown in Figure 3.5.5K as well as the 5' integration of the SAT cassette (Figure 3.3.5D) and the 5' integration of the BLE cassette (Figure 3.3.5G).

i

i

It is likely that both copies of *SEC14* have been replaced with the two knockout cassettes and that SEC14 has been lost. This can be confirmed by Southern analysis.

Figure 3.3.5: PCR tests to check for integration of both the SAT and BLE KO Cassettes at the *SEC14* Locus. A) The schematic of the *SEC14* locus with the SAT KO Cassette integrated. B) The schematic of the *SEC14* locus with the BLE KO Cassette integrated. C) The schematic of the *SEC14* locus with *SEC14* gene in place. The predicted fragment positions are marked by a black arrowhead in each case. Predicted fragment sizes and a summary of the above PCR experiments (D-K) are shown in Table 3.3.1. Lane W: Wild Type; Lane 1: $\Delta SEC14$ Clone 1; Lane 2: $\Delta SEC14$ Clone 2; Lane 3: $\Delta SEC14$ Clone 3

Table 3.3.1: Test PCRs to check for the integration of both the SAT and BLE KO cassettes in all three $\Delta SEC14$ clones, compared with wild type.

Figure 3.3.5	Primer Päir	KO Cassette Tested	Predicted Fragment Size	Positive ∆SEC14 Clones
Ref			(kb)	
D	OL2300	SAT 51	1.7	1, 2 and 3
	OL17			
E	OL2301	SAT 3'	2.5	1, 2 and 3
	OL18			
F	OL2301	SAT 3'	2.5	1, 2 and 3
	OL1031			
G	OL2300	BLE 5'	1.7	1, 2 and 3
,	OL11		·	
Н	OL2300	BLE 5'	2.0	Possibly 1, 2 and
	OL1290			3
1	OL2301	BLE 3'	2.5	2 and 3
	OL12			
J	OL2301	BLE 3'	2.8	None
	OL512	L		
ĸ	OL1984	WT SEC14 ORF	1.3	WT only
	OL1985			

and the second of the second second

an the state of the second

大学学 学校 一部

5 100

3.3.3.2 Southern blot analysis of SEC14 mutants

In order to confirm the PCR data, Southern analysis was used to examine the SEC14 locus to confirm integration of the knockout cassettes and the subsequent loss of the SEC14 ORF. The sequence of the SEC14 locus (the ORF and 10kb each of 5' and 3' flanking sequence) was obtained from the *L. infantum* database in GeneDB (http://www.genedb.org/genedb/linfantum/) and used in Vector NTi software (Invitrogen) to generate a restriction map of the locus (Figure 3.3.6).

Genomic DNA was extracted from a 30ml culture of stationary-phase wild type *L*. *infantum* (JPCM5) and the three putative $\Delta SEC14$ clones. Genomic DNA (3µg per digest) was digested overnight with either *Xho*I or HindIII. Digests were run out on a medium sized 0.7% agarose TBE gel and the gel was treated and blotted overnight by capillary transfer. The blot was blocked and probed using a radiolabeled fragment corresponding to the *SEC14* 3' flanking region (Figure 3.3.6A). The blot was exposed to autoradiography film overnight and then for 3 days and is shown in Figure 3.3.6B.

おおんちもんでん へんちょう

1997年後年19月1日

ASS I CAL

The predicted fragment sizes for the various alleles are listed in Table 3.3.2.

 Table 3.3.2: Predicted and Approximate Observed Fragment Size for Each Allele

	Hin	Dig Z∭	sest X	iol
Allele	Predicted	Observed	Predicted	Observed
Wild Type	3.2kb	~ 3.2kb	2.3kb	~2.3kb
SAT KO	4.8kb	~ 4.8kb	3.4kb	~ 3.4kb
BLE KO	4.7kb	~4.8kb	3.3kb	~3.3kb

Figure 3.3.6: Southern analysis of $\Delta SEC14$ mutants. The schematic structure of the *SEC14* locus is containing the wild type gene showing the fragments expected when digesting with *Hind*III (A) and *XhoI* (B). The fragment sizes with the SAT KO cassette integrated correctly is also shown with predicted fragment sizes for *Hind*III (C) and *XhoI* (D). Genomic DNA from wild type *L. infantum* as well as each of the three Δ SEC14 clones was digested with *Hind*III or *XhoI*. Digests were run out on 0.7% agarose gels and the DNA was blotted onto Hibond-N membrane. A probe corresponding to part of the 3' flanking region (indicated by double headed red arrow

in A-D) was radiolabeled with 32P-CTP (Amersham) and the probe was hybridised with the membrane overnight at 65° C. Blots were washed with high stringency washing solution (0.1x SSC, 0.1% SDS) at 65° C then exposed to autoradiography film for 3 days. The *Hin*dIII and the *Xho*I Southern blots are shown in (E) and (F) respectively. The arrangement of lanes is the same for each blot:

Lane W: Wild type gDNA

Lane 1: Clone1 gDNA

Lane 2: Clone2 gDNA

Lane 3: Clone3 gDNA

The observed band sizes appear to match the predicted fragment sizes. The signal in the Clone 3 lane is very weak, although it was visible on the original autoradiogram. This is likely to be due to uneven loading of DNA between lanes as well as loss of resolution during image scanning. There is only a small difference in size between the SAT and BLE cassettes meaning that the bands are unlikely to be distinguishable from one another with these combinations of probe and restriction enzymes, hence the observed single band. When taken together with the PCR data above, this strongly indicates that the knockout cassettes have integrated at the correct position and successfully replaced both copies of *SEC14*, which has been lost from the three $\Delta SEC14$ clones.

Due to the well-documented plasticity of the *Leishmania* genome (Cruz et al., 1993; Smith et al., 2007) it is necessary to confirm that the ploidy of the three ASEC14 clones is unaffected. This was done using Flow Cytometry (see Section 3.3.3.3).

79

3.3.3.3 DNA Content Analysis of *DSEC14* Mutants by FACS

Mid log-phase cells were methanol-fixed and stained with propidium iodide for FACS analysis to determine the DNA content of all three *L. infantum* $\Delta SEC14$ clones with respect to the DNA content of wild type *L. infantum*. The peaks corresponding to cells in G1 and G2 phase of the cell cycle in the mutant cells occur in the same position as those of wild type cells indicating that the DNA content of the mutants is normal (Figure 3.3.7). This suggests that *SEC14* is not an essential gene to promastigotes grown in culture.

Figure 3.3.7: Analysis of the DNA content of wild type and $\triangle SEC14$ cells by Flow Cytometry. Wild type *L. infantum* cells together with 3 $\triangle SEC14$ knockout clones were propidium iodide stained and analysed by Flow Cytometry to determine if there were any abnormalities in the DNA content.

The SEC14 knockout clones were then analysed further to determine if loss of SEC14 results in a detectable phenotype in terms of growth and *in vitro* infectivity to macrophages.

3.4 Phenotype analysis of SEC14 Null Mutants

3.4.1 Growth Curves

To determine the growth rate of Δ SEC14 promastigotes in culture, four 10ml replicate cultures were set up at 5 x 10⁵ cells/ml for wild type and three clones (16 cultures in total). Cells were prepared for counting at 24h intervals for seven days by formaldehyde fixation and were counted using a haemocytometer. One observation was that Δ SEC14-1 consistently took longer to recover from the initial lag-phase but did recover and reached stationary phase at about the same time as the other knockout clones as well as wild type *L. infantum*. Overall, no significant variation between wild type and three mutants was noted (Figure 3.4.1).

Figure 3.4.1: Growth curves for $\triangle SEC14$ clones 1-3 compared with wild type *L*. *infantum*. All growth cultures were set up at a density of 5 x 10⁵ cells/ml. Cells were incubated at 25°C and counted at 24 hour intervals for seven days.

3.4.2 In Vitro Macrophage Infections with *\Delta SEC14* Promastigotes

Intra-peritoneal macrophages were harvested from a single immunocompromised CD1/ICR1 mouse. These were counted and resuspended at a density of 5 x 10^5 cells/ml in RPMI medium + 10% FCS and allowed to adhere for 24 hours to the surface of 16-well chamber slides with covers (Labtek). After adhering, macrophages were washed in fresh RPMI/FCS and exposed to stationary phase wild type *L. infantum* and $\Delta SEC14$ 1-3 (four replicate wells for each cell line). After 24 hours, slides were washed with RPMI to remove free promastigotes and infection was allowed to proceed for 7 days. Three timepoints were taken (1 day, 4 days and 7

days post infection) at which time, macrophages and promastigotes were methanolfixed. Once all timepoints had been taken and all wells were methanol-fixed, slides were stained with Giemsa for 10 minutes before rinsing with distilled water. 100 macrophages were counted for each well and the number of infected macrophages was recorded (Figure 3.4.2). The infection rate at day 1 and day 4 for wild type cells remained fairly constant at approximately 10% of macrophages infected with one or more *L. infantum* cells per macrophage. Giemsa staining of the day 7 samples revealed extensive damage to macrophages, which is likely to have been inflicted during preparation of the slides and were unfortunately too degraded to get meaningful data. This experiment will be repeated at a later date.

Figure 3.4.2: *In vitro* macrophage infection data. Intra-peritoneal macrophages from CD1/ICR1 mouse were infected with wild type and Δ SEC14 1-3 clones at a ratio of 8 promastigotes to1 macrophage as described in the text. Macrophages were fixed at 1 day, 4 days and 7 days post-infection and Giemsa-stained to allow

and the second of the second second second second <u></u> 1. A. S. W. C. 1. A. S. at the state of the state of the

visualisation of infected macrophages. Note that the Day 4 time point for KO3 was not suitable for counting due to sample degradation and is not included in this Figure. Day 7 timepoints were also degraded and could not be accurately counted. Error bars are +/- standard deviations.

The infection rate at day 1 and day 4 for wild type cells remained fairly constant at approximately 10% of macrophages infected with one or more *L. infantum* cells per macrophage. The apparent reduction of the rate of macrophage infectivity by clone 2 falls within experimental error making it impossible to draw conclusions. Giemsa staining of the day 7 samples revealed extensive damage to macrophages, which is likely to have been inflicted during preparation of the slides and were unfortunately too degraded to get meaningful data. This experiment will be repeated at a later date. Alternative sources for macrophages will also be used in future experiments as mose peritoneal exudate-derived macrophages may not be the best source visceralising species of *Leishmania*.

3.4.3 Hamster Infections

The next stage was to test whether $\Delta SEC14$ promastigotes are capable of establishing infection in animals. The animal model for visceral infection is the Golden Syrian hamster. Three *L. infantum* cell lines, wild type and $\Delta SEC14$ clones 2 and 3 were each inoculated into two hamsters. Inoculations were carried out by intraperitoneal (i.p.) injection with 400µl of stationary phase promastigotes in PBS at a density of 2.5 x 10⁷ cells/ml (a total of 10⁷ stationary phase promastigotes per hamster). Spleens were extracted from one hamster for each cell line at 4 months post-injection and a small section of tissue from each was transferred to fresh HOMEM + 20%

FCS in order to determine if amastigotes could be recovered and differentiated to promastigotes. At 2 weeks post inoculation of the HOMEM culture medium, no promastigotes could be detected, however, these cultures will be incubated for longer to determine if promastigotes can eventually be recovered. At the time of writing, spleens of hamsters infected with wild type *L. infantum* and $\Delta SEC14$ -3 (also at 4 months post-inoculation) were extracted and used to inoculate culture medium as before. It remains to be seen whether promastigotes can be recovered from these tissue samples. and the substitution of th

alta interessiones and and alta frank and

AVEL IN ACCOUNTS

3.4.4 Mice Infections

In order to test the virulence of one of the $\triangle SEC14$ clones ($\triangle SEC14$ -1) and to see if the loss of *SEC14* results in cutaneous infection rather than visceral infection, six mice were inoculated in the right footpad with 20µl of stationary phase $\triangle SEC14$ -1 promastigotes at a density of 2.5 x10⁷ ml of stationary phase promastigotes (a total of 5x10⁵ promastigotes per footpad). As a negative control for infection, a further six mice were footpad-inoculated with 40µl stationary phase wild type *L. infantum* at density of 2.5x10⁷ cells/ml. At 5 months post-inoculation, no lesions were observed at the inoculation site for either cell line in any of the mice and the experiment was terminated.

Loss of *SEC14* does not appear to cause a switch in tropism from visceral to cutaneous disease.

CHAPTER 4 - DISCUSSION

Contraction and

The second s

and the second second

The aim of this project was to begin the analysis of four genes that are specific to L. infantum and that may have a role in the visceralisation mechanism. Analysis of the published sequence has revealed little about a potential role for LinJ28.0330, however the other hypothetical protein, LinJ36.2750 has a domain that has homology to the S. cerevisiae topoisomerase related function 4 protein (Trf4p). This protein is a component of the yeast nuclear exosome complex. The protein has been shown to have poly(A) RNA polymerase activity and is involved in the polyadenylation of tRNA and rRNA as well as small nucleolar RNAs (snoRNAs), which facilitates their degradation by the nuclear exosome complex (Haracska et al., 2005; LaCava et al., 2005). Reciprocal BLASTp scarches of the L. infantum predicted proteins database have revealed several Leishmania genes that encode proteins with TRF4 domains and LinJ36.2750 is the third highest hit. The first two predicted proteins, LinJ07.0750 and LinJ26.0480 (known as LinJ07 V3.0780 and LinJ26 V3.0480 respectively in the most recent release of the L. infantum database in GeneDB (www.genedb.org), are also found in L. major and L. braziliensis.

Analysis of the amino acid sequence of LinJ36.2050 (SEC14) has shown a domain structure quite unlike any other known SEC14-like protein identified to date. Instead of the N-terminal CRAL_TRIO domain, which is an extension of the lipid binding SEC14 domain found in yeast Sec14p (Saito et al., 2007), the *L. infantum* protein has a CAP_GLY domain (Cytoskeleton Associated Protein). This domain has been identified and structurally characterised in proteins such as the mammalian cytoplasmic linker protein 170 (CLIP-170), where it mediates binding at the + end of

the microtubule (the end that is moving away from the microtubule organising centre (MTOC) (Mishima et al., 2007). This combination of CAP_GLY and SEC14 lipid binding domains might indicate a potential role in trafficking of vesicles within the cell. To date over 500 SEC14-like proteins all within eukaryotic species have been identified with roles in processes such as vesicle trafficking and phospholipid metabolism (Mousley et al., 2007; Phillips et al., 2006). Only two proteins with the CAP_GLY domain and the SEC14 domain have been identified to date: LinJ36.2050 and the orthologue of this gene in *Trypanosoma cruzi*. The reason why *T. cruzi* also has an intracellular stage to its life cycle within mammalian hosts, so perhaps this is where the influence on disease tropism is taking place.

ĊŢ

Same and

Manager and Artic

age rates Recording and the

In order to determine if the GeneDB sequences were correct, the four genes were amplified by PCR, cloned and sequenced. The sequences for all four genes were a good match for the published sequences in GeneDB and where differences were observed, these could be explained by PCR-introduced mutations. To confirm this, an independent PCR clone for each ORF that had sequence variation, namely LinJ36.2750 and LinJ20.1200, should be sequenced and this will be carried out as part of follow up work on this project. These differences result in amino acid changes but not in frameshifts or the introduction of stop codons. If these genes were to have a potential role in the visceralisation mechanism, one would predict that the genes will be intact in other *Leishmania* species that cause VL. The four genes were therefore amplified and cloned from a strain of *L. donovani* that was available within the lab, BPK206/0. Cloning and analysis of two independent PCR products for each gene has revealed that the genes are indeed intact in *L. donovani* and that

they are well conserved between the species, indicating that they are likely have a biologically-relevant function to both species. It remains to be determined if this function forms part of the visceralisation mechanism. It is a formal albeit unlikely possibility that although these genes have been reported as pseudogenes or indeed missing for *L. major* genome project strain (MHOM/IL/80/Friedlin) that they may be intact in other strains of *L. major*, which would almost certainly rule out a role in visceralisation. Future work will involve analysing the loci of these genes in another strain of *L. major* that is available within the Mottram lab (MRHO/IR/75/ER, a strain isolated in Iran and chosen by the WHO as the vaccine challenge strain (Davoudi et al., 2005)) to confirm or otherwise, that these genes are also pseudogenes in *L. major* IR-75.

ī,

All four genes were shown to be expressed in procyclic and metacyclic promastigote stages of the life cycle and only LinJ20.1200 (endo-1,4- β -xylanase precursor) appeared to be downregulated in the amastigote stage. This strongly suggests that the requirement for an enzyme capable of degrading components of plant cell walls is not required by amastigote forms of *L. infantum*. This is in keeping with the hypothesis that this protein would most likely be required in the insect (promastigote) stages of the life cycle since it has been documented that the insect host, the female sand fly feeds on plant material between blood meals (Brito et al., 2006). In this respect it is noteworthy that a number genes encoding enzymes suitable for metabolising plant sugars have been identified in the *Leishmania* genomes, but are absent in *T. brucei* (Opperdoes and Coombs, 2007). This correlates with the feeding habits of tsetse, which are blood-sucking insects and do not feed on plant material. Whether the parasite utilises LinJ20.1200 for nutrition or for some

88

other purpose within the sand fly midgut and/or mouthparts remains to be determined.

Service of the servic

and the state of the state of the state of the

ALANDAR CONTRACTOR

1. S. C. C. C. C.

10.00

LinJ36.2050 (SEC14) was confirmed as being expressed in the amastigote life cycle stage and was therefore selected as the main focus of the remainder of the project. Leishmania infantum ASEC14 mutants were generated by two rounds of homologous recombination with drug selectable markers using established procedures (Hilley et al., 2000; Denise et al., 2006). As SEC14 null mutants could be isolated, this indicates that SEC14 is not essential to promastigotes growing in culture and indeed, growth curves revealed that cells are capable of growing and dividing in culture at a similar rate to wild type L. infantum. Furthermore, in vitro mouse peritoneal macrophage infections with all three ASEC14 clones together with wild type has shown that mutant promastigotes can infect macrophages to about the same degree as wild type cells. This experiment must be repeated in order to determine if $\Delta SEC14$ cells can persist and proliferate as amastigotes in macrophages. The infection rate at day 1 and day 4 for wild type cells remained fairly constant at approximately 10% of macrophages infected with one or more L. infantum cells per macrophage. Any variation in this, for example, the apparent reduction in infection rates of clones 2 and 3, falls within the experimental error range and are therefore inconclusive. The extensive damage to macrophages of the day 7 timepoint means that it is not known whether amastigotes can persist and proliferate. This experiment will be repeated in the future, probably using alternative sources for macrophages. BALB/c mouse bone-marrow macrophages have been used successfully in L. infantum in vitro infection studies by collaborators (D.F. Smith, personal communication).

 $\Delta SEC14-1$ and wild type stationary phase promastigotes were inoculated into the footpads of 6 BALB/c mice each. No sign of cutaneous infection could be seen in any of these mice after 5 months, suggesting that the loss of SEC14 does not cause a switch in tropism from visceral to cutaneous disease. BALB/c mice are not good mammalian hosts for L. infantum, so it is unsurprising that no infection was observed with either wild type or $\triangle SEC14$ -1 parasites. Whilst dogs provide an excellent experimental model for visceral disease with the genome strain JPC L, infantum (Poot et al., 2005), hamsters can also provide a suitable infection model (Denise Hubert et al., 2006). As it was not possible to carry out experiments on dogs in Glasgow, the $\triangle SEC14-2$ and 3 mutants were each inoculated into 2 hamsters. One hamster containing $\Delta SEC14$ -2 was culled and a segment of spleen was removed to inoculate promastigote growth medium. At the time of writing (2 weeks after culture inoculation), no promastigotes could be detected in the growth medium, however it has been found within this laboratory that differentiation of L. infantum from spleen segments, can often take several weeks. Spleen samples have now been extracted from hamsters infected with wild type L. infantum and $\triangle SEC14-3$ and transferred to growth medium. It remains to be seen whether promastigotes can be recovered from these tissue samples and until then, nothing can be concluded about the ability of $\Delta SEC14$ cells to infect hamsters.

a to a support of the state part is we have a long to the second state when

a Carlos and

Constraints -

A. 1. 1. 1. 1.

A CARLES AND A CAR

To date, only one *L. donovani*-specific protein has been implicated in disease tropism – the A2 protein (Charest and Matlashewski, 1994). It has been shown that heterologous expression of the A2 gene in *L. major*, which lacks a functional copy of this gene, leads to an increased ability of *L. major* to survive within the spleen of BALB/c mice as well as reduced ability to establish cutaneous infection (Zhang and Matlashewski, 2001; Zhang et al., 2003). This body of work indicates that disease tropism in *Leishmania*, although likely to involve numerous different proteins, can be influenced by the presence or absence of a single gene and is validation of the approach taken in this project. Similar to the A2 gene experiments, heterologous expression of the four *L. infantum*-specific genes in *L. major* will be carried out in future work.

いった。 おうさいろう ほんたい

「大学に行き」

and the state of the

By contrast with yeast Sec14p, which is essential, *L. infantum* LinJ36.2050 is not essential which raises the possibility that the encoded protein is not the true orthologue of the yeast protein. This is in agreement with unusual domain structure observed in *L. infantum* SEC14 and the discovery that there is another protein with a slightly higher degree of homology, as well as a more similar domain structure to yeast Sec14p (LinJ35.3630), that is also found in both *L. major* and *L. braziliensis* (LmjF35.3560 and LbrM32_V2.1420 respectively, see above). Yeast Sec14p is involved in the budding of secretory vesicles from the trans-Golgi network (TGN) to the plasma membrane (Bankaitis et al., 1989). One might predict that a protein involved in such a central process as secretory vesicle budding would be more likely to exist in all species of *Leishmania* rather than just *L. infantum*. It is possible that *L. infantum* has a subclass of LinJ36.2050-containing secretory vesicles that contain *L. infantum* specific virulence factors that influence disease progression.

Further experiments that will be carried out in time will involve targeted gene replacement of the two hypothetical genes, LinJ28.0330 and LinJ36.2750 and subsequent phenotype analysis of mutant lines. These genes as well as LinJ36.2050 will also be expressed heterologously in *L. major* to determine if the disease tropism of that species (CL) can be influenced. More detailed analysis of the role of LinJ36.2050 is ongoing and involves the localisation of the protein in *L. infantum* promastigotes by expression of tagged versions of the protein, as well as expression of recombinant protein for antibody production. The original *S. cerevisiae* temperature sensitive mutant has been provided by Professor Vytas Bankaitis of the University of North Carolina at Chapel Hill and yeast complementation studies will be used to determine if LinJ36.2050 and/or the putative true orthologue of Sec14p, LinJ35.3630 can rescue the yeast mutant phenotype.

South of the second second

÷

and the set of the set

であたがです。

Constrained and Sound the Addin Sound the

While host immunity undoubtedly plays a part in tropism, it is likely that the parasites themselves have some form of control over disease progression. The ongoing project of which the presented work is a small part, aims to determine whether parasite factors indeed contribute to the disease tropism of L. *infantum* and to begin to unravel the roles of these species-specific genes.

14 - 14 - 14 - 1 14 - 14 - 14 - 1 and the second and a little of the 小学である おきまたい 1999 N. 1998 Subsection of and the second field

REFERENCES

Bankaitis, V.A., Malehorn, D.E., Emr, S.D., and Greene, R. (1989). The *Saccharomyces cerevisiae* SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex. J. Cell Biol. *108*, 1271-1281.

Banuls,A.L., Hide,M., and Prugnolle,F. (2007). *Leishmania* and the Leishmaniases: A Parasite Genetic Update and Advances in Taxonomy, Epidemiology and Pathogenicity in Humans. In Advances in Parasitology, J.R.Baker, ed. Academic Press), pp. 1-458.

Brito, N., Espino, J.J., and Gonzalez, C. (2006). The Endo-beta-1,4-Xylanase Xyn11A Is Required for Virulence in *Botrytis cinerea*. Molecular Plant-Microbe Interactions 19, 25-32.

Campos-Ponce, M., Ponce, C., Ponce, E., and Maingon, R.D.C. (2005). *Leishmania chagasi/infantum*: further investigations on Leishmania tropisms in atypical cutaneous and visceral leishmaniasis foci in Central America. Experimental Parasitology *109*, 209-219.

Charest,H. and Matlashewski,G. (1994). Developmental gene expression in *Leishmania donovani*: differential cloning and analysis of an amastigote-stage-specific gene. Mol. Cell. Biol. *14*, 2975-2984.

Cruz, A., Coburn, C.M., and Beverley, S.M. (1991). Double Targeted Gene Replacement for Creating Null Mutants. PNAS *88*, 7170-7174.

Cruz, A.K., Titus, R., and Beverley, S.M. (1993). Plasticity in Chromosome Number and Testing of Essential Genes in *Leishmania* by Targeting. PNAS 90, 1599-1603.

Davoudi,N., Tate,C.A., Warburton,C., Murray,A., Mahboudi,F., and McMaster,W.R. (2005). Development of a recombinant *Leishmania major* strain sensitive to ganciclovir and 5-fluorocytosine for use as a live vaccine challenge in clinical trials. Vaccine 23, 1170-1177.

Denise Hubert, Poot Jacqueline, Jimenez Maribel, Ambit Audrey, Herrmann Daland C., Vermuelen Arno N., Coombs Graham H., and Mottram Jeremy C. (2006). Studies on the CPA cysteine peptidase in the *Leishmania infantum* genome strain JPCM5. BMC Molecular Biology 7.

Desjeux, P. (1996). Leishmaniasis : Public health aspects and control. Clinics in Dermatology 14, 417-423.

Eschenlauer,S.C.P., Coombs,G.H., and Mottram,J.C. (2006). PFPI-like genes are expressed in *Leishmania major* but are pseudogenes in other *Leishmania* species. FEMS Microbiology Letters 260, 47-54.

Handman, E. and Bullen, D.V.R. (2002). Interaction of *Leishmania* with the host macrophage. Trends in Parasitology 18, 332-334.

Haracska,L., Johnson,R.E., Prakash,L., and Prakash,S. (2005). Trf4 and Trf5 Proteins of *Saccharomyces cerevisiae* Exhibit Poly(A) RNA Polymerase Activity but No DNA Polymerase Activity. Mol. Cell. Biol. 25, 10183-10189. A THE REAL PROPERTY OF

ころでき、ころ、ここを、ここのないないないないないないないとうろう

Herwaldt, B.L. (1999). Leishmaniasis. The Lancet 354, 1191-1199.

Hilley, J.D., Zawadzki, J.L., McConville, M.J., Coombs, G.H., and Mottram, J.C. (2000). *Leishmania mexicana* Mutants Lacking Glycosylphosphatidylinositol (GPI): Protein Transamidase Provide Insights into the Biosynthesis and Functions of GPI-anchored Proteins. Mol. Biol. Cell 11, 1183-1195.

Hsuan, J. and Cockcroft, S. (2001). The PITP family of phosphatidylinositol transfer proteins. Genome Biology 2.

Ilgoutz,S.C. and McConville,M.J. (2001). Function and assembly of the *Leishmania* surface coat. International Journal for Parasitology 31, 899-908.

Ivens, A.C., Peacock, C.S., Worthey, E.A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E., Rajandream, M.A., Adlem, F., Aert, R., Anupama, A., Apostolou, Z., Attipoc, P., Bason, N., Bauser, C., Beck, A., Beverley, S.M., Bianchettin, G., Borzym,K., Bothe,G., Bruschi,C.V., Collins,M., Cadag,E., Ciarloni,L., Clayton,C., Coulson, R.M.R., Cronin, A., Cruz, A.K., Davies, R.M., De Gaudenzi, J., Dobson, D.E., Duesterhoeft, A., Fazelina, G., Fosker, N., Frasch, A.C., Fraser, A., Fuchs, M., Gabel, C., Goble, A., Goffeau, A., Harris, D., Hertz-Fowler, C., Hilbert, H., Horn, D., Huang, Y., Klages, S., Knights, A., Kube, M., Larke, N., Litvin, L., Lord, A., Louie, T., Marra, M., Masuy, D., Matthews, K., Michaeli, S., Mottram, J.C., Muller-Auer, S., Munden, H., Nelson, S., Norbertczak, H., Oliver, K., O'Neil, S., Pentony, M., Pohl, T.M., Price, C., Purnelle, B., Ouail, M.A., Rabbinowitsch, E., Reinhardt, R., Rieger, M., Rinta, J., Robben, J., Robertson, L., Ruiz, J.C., Rutter, S., Saunders, D., Schafer, M., Schein, J., Schwartz, D.C., Seeger, K., Seyler, A., Sharp, S., Shin, H., Sivam, D., Squares, R., Squares, S., Tosato, V., Vogt, C., Volckaert, G., Wambutt, R., Warren, T., Wedler, H., Woodward, J., Zhou, S., Zimmermann, W., Smith, D.F., Blackwell, J.M., Stuart, K.D., Barrell, B., and Myler, P.J. (2005). The Genome of the Kinetoplastid Parasite, Leishmania major. Science 309, 436-442.

Kelleher, M., Moody, S.F., Mirabile, P., Osborn, A.H., Bacic, A., and Handman, E. (1995). Lipophosphoglycan blocks attachment of *Leishmania major* amastigotes to macrophages. Infect. Immun. 63, 43-50.

LaCava, J., Houseley, J., Saveanu, C., Petfalski, E., Thompson, E., Jacquier, A., and Tollervey, D. (2005). RNA Degradation by the Exosome Is Promoted by a Nuclear Polyadenylation Complex. Cell 121, 713-724.

Lipoldova, M. and Demant, P. (2006). Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet 7, 294-305.

Mauricio, I.L., Stothard, J.R., and Miles, M.A. (2000). The Strange Case of *Leishmania chagasi*. Parasitology Today *16*, 188-189.

아파 가 방송자 이는 아무는 것은 방송자 그래? 아파가 다니는 아파 가는 것 안에 큰 모두가 한다. and the second second and a new particular and the second restriction of the second Sec. 1 Sec.

McMahon-Pratt, D. and Alexander, J. (2004). Does the *Leishmania major* paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunological Reviews 201, 206-224.

Mishima,M., Maesaki,R., Kasa,M., Watanabe,T., Fukata,M., Kaibuchi,K., and Hakoshima,T. (2007). Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition. PNAS *104*, 10346-10351.

Mousley, C.J., Tyeryar, K.R., Vincent-Pope, P., and Bankaitis, V.A. (2007). The Sec14-superfamily and the regulatory interface between phospholipid metabolism and membrane trafficking. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids *1771*, 727-736.

Opperdoes, F.R. and Coombs, G.H. (2007). Metabolism of *Leishmania*: proven and predicted. Trends in Parasitology 23, 149-158.

Pasiecznik N.M, Felker P, Harris P.J.C., Harsh L.N., Cruz G., Tewari J.C., Cadoret K., and Maldonado L.J. The *Prosopis juliflora - Prosopis pallida* Complex: A Monograph. 1-179. 2001. Coventry, UK, HDRA. Ref Type: Serial (Book,Monograph)

Peacock, C.S., Seeger, K., Harris, D., Murphy, L., Ruiz, J.C., Quail, M.A., Peters, N., Adlem, E., Tivey, A., Aslett, M., Kerhornou, A., Ivens, A., Fraser, A., Rajandream, M.A., Carver, T., Norbertczak, H., Chillingworth, T., Hance, Z., Jagels, K., Moule, S., Ormond, D., Rutter, S., Squares, R., Whitehead, S., Rabbinowitsch, E., Arrowsmith, C., White, B., Thurston, S., Bringaud, F., Baldauf, S.L., Faulconbridge, A., Jeffares, D., Depledge, D.P., Oyola, S.O., Hilley, J.D., Brito, L.O., Tosi, L.R.O., Barrell, B., Cruz, A.K., Mottram, J.C., Smith, D.F., and Berriman, M. (2007). Comparative genomic analysis of three *Leishmania* species that cause diverse human disease. Nat Genet *39*, 839-847.

Phillips,S.E., Vincent,P., Rizzieri,K.E., Schaaf,G., Bankaitis,V.A., and Gaucher,E.A. (2006). The Diverse Biological Functions of Phosphatidylinositol Transfer Proteins in Eukaryotes. Critical Reviews in Biochemistry and Molecular Biology 41, 21-49.

Poot, J., Rogers, M.E., Bates, P.A., and Vermeulen, A. (2005). Detailed analysis of an experimental challenge model for *Leishmania infantum* (JPC strain) in dogs. Veterinary Parasitology *130*, 41-53.

Saito,K., Tautz,L., and Mustelin,T. (2007). The lipid-binding SEC14 domain. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1771, 719-726.

Schlein, Y. and Jacobson, R.L. (1995). Assessment of plant tissue feeding by sand flies (Diptera: Psychodidae) and mosquitoes (Diptera: Culicidae). Journal of Medical Entomology *32*, 882-887.

Schlein, Y. and Jacobson, R.L. (2002). Linkage between susceptibility of *Phlebotomus papatasi* to *Leishmania major* and hunger tolerance. Parasitology 125, 343-348.

UNIVERSITY

Siriwardana H.V.Yamuna .D., Noyes Harry A., Beeching Nicholas J., Chance Michael L., and Bates, P.A. (2007). *Leishmania donovani* and Cutaneous Leishmaniasis, Sri Lanka. Emerging Infectious Diseases 13, 476-478. 「ななべたいないのない」というなどのないで

A CONTRACT OF A CONTRACT OF

-è

Smith, D.F., Peacock, C.S., and Cruz, A.K. (2007). Comparative genomics: From genotype to disease phenotype in the leishmaniases. International Journal for Parasitology *37*, 1173-1186.

Spath,G.F., Garraway,L.A., Turco,S.J., and Beverley,S.M. (2003). The role(s) of lipophosphoglycan (LPG) in the establishment of *Leishmania major* infections in mammalian hosts. PNAS *100*, 9536-9541.

van Zandbergen, G., Klinger, M., Mueller, A., Dannenberg, S., Gebert, A., Solbach, W., and Laskay, T. (2004). Cutting Edge: Neutrophil Granulocyte Serves as a Vector for *Leishmania* Entry into Macrophages. J Immunol *173*, 6521-6525.

Zhang, W. W. and Matlashewski, G. (1997). Loss of virulence in *Leishmania* donovani deficient in an amastigote-specific protein, A2. PNAS 94, 8807-8811.

Zhang, W. W. and Matlashewski, G. (2001). Characterization of the A2-A2rel gene cluster in *Leishmania donovani*: involvement of A2 in visceralization during infection. Molecular Microbiology *39*, 935-948.

Zhang, W.W., Mendez, S., Ghosh, A., Myler, P., Ivens, A., Clos, J., Sacks, D.L., and Matlashewski, G. (2003). Comparison of the A2 Gene Locus in *Leishmania donovani* and *Leishmania major* and Its Control over Cutaneous Infection. J. Biol. Chem. 278, 35508-35515.