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Abstract
Substrate protein-22 (SP-22) is a 22kDa bovine protein that functions as a 

thioredoxin-dependent peroxidase in the mitochondrial matrix. The exact 

physiological targets of SP-22 remain to be elucidated; however its antioxidant 

activity has been well documented in the protection of several free radical- 

sensitive enzymes. SP-22 has been assigned to a novel peroxidase family called 

the peroxiredoxins (Prxs). Prxs use electrons provided by free thiol groups to 

reduce hydrogen peroxide, a potent oxidising agent that can contribute to 

oxidative stress either directly or via the hydroxyl radical generated by the Fenton 

reaction. Prxs can be divided into two sub-groups (1-Cys and 2-Cys) depending 

on the number of conserved cysteine residues they possess. SP-22 is a 2-Cys Prx 

with three cysteines, not an uncommon feature, at positions 47, 66  and 168. 

Following sequence analysis C47 is proposed to be the catalytic residue, 

containing a sulphenic acid group, functioning as a 2 -electron redox centre.

The cloning and overexpression of recombinant SP-22 and three cysteine mutants 

(C47S, C6 6 S and C168S) in bacterial cells as N-terminal His-tag proteins is 

reported. The overexpression conditions for optimal protein solubility and the 

subsequent purification by metal chelate chromatography were also determined. 

A comparison of reducing and non-reducing SDS-PAGE of wild type and mutant 

SP-22s established that SP-22 contains a dimeric unit linked by two 

intermolecular disulphide bonds, in its oxidised state. These involve C47 of one 

monomer and 0168 of the opposing subunit. This result is consistent with 

findings for other 2-Cys Prx members.

It is known that 2-Cys Prxs can further adopt a larger decameric toroid 

conformation, comprising five dimeric units. It was elucidated using size 

exclusion chromatography and Analytical Ultracentrifugation (AU) that SP-22 

forms an additional oligomeric form with an appaient molecular weight of 

between 500-600,000 Mj., equivalent to 20-24 monomers. Following negative 

staining of purified SP-22 and Transmission Electron Microscopy (TEM) it was 

established that the oligomer was toroidal in conformation with an average



diameter of 15nm. It also can form stacks in a lateral anangement of two or three 

rings accounting for the observed increased molecular weight. Unusual structural 

features of radial spikes and material within the central cavity were also observed. 

The number of subunits per ring is proposed to be ten in accord with findings for 

other members of the 2-Cys group; however due to the tight aiTangement of the 

subunits in the SP-22 toroid it was not possible to confirm this accurately.

Size exclusion chromatography of the mutants also established that the disulphide 

bonds were not structural, and did not direct oligomer assembly. The molecular 

weights were comparable with wild type SP-22, however the C47S mutant had a 

tendency to aggregate. TEM highlighted the lateral stacking of C47S, which was 

largely present in long tubulai’ structures of up to 15 rings. The stacking of both 

wild type and C47S is particularly ordered, however the factors mediating 

stacking and the physiological relevance remains to be fully elucidated.

Using the technique of Circular Dichroism (CD) the SP-22 oligomer was found to 

be extremely stable, remaining partially folded even at the highest urea 

concentration. The cysteine mutants although slightly destabilised, remained 

intact and resistant to complete unfolding, confirming that the cysteines are not 

required for oligomer integrity.

Recombinant SP-22 was active, determined in vitro by assessing its protective 

effect towards enolase in the presence of a metal-catalysed free-radical generating 

system. C47 was confirmed to be the catalytic residue as C47S exhibited no 

protection towards enolase. C168S interestingly did protect enolase suggesting 

that in vitro this mutant can function in the same manner as a 1-Cys Prx, 

bypassing the necessity for disulphide bond formation with thioredoxin, that 

presumably occurs in vivo during catalysis. By compaiing hydrogen peroxide 

removal by catalase and SP-22, the differing mechanisms of hydrogen peroxide 

removal were observed.



Previous work in this laboratory involving the purification of the mitochondrial 2- 

oxoacid dehydrogenase member, pyruvate dehydrogenase (PDC) from bovine 

heart, and its subsequent separation into its three enzyme components by size 

exclusion chromatography, established that the dihydrolipoamide dehydrogenase 

component (E3) co-eluted with another contaminating protein. Following N- 

teiminal sequencing this protein was identified to be SP-22. Preliminary results 

using the techniques of Isothermal Titration Calorimetry (ITC) and Surface 

Plasmon Resonance (SPR) have confirmed a physical association between SP-22 

and E3, binding with an affinity in the micromolar range. The functional 

significance of this interaction is discussed with respect to the possible protection 

of PDC and the oxoglutarate dehydrogenase complex (OGDC) against oxidative 

modification of the catalytically-active thiol groups possessed by the individual 

components.
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Chapter i

Introduction

1.0. Oxidative Stress

Oxidative stress is a term used to describe severe oxidative damage to cells, 

arising from an imbalance in the metabolism of redox-active species. This 

imbalance occurs when the generation of reactive oxidising species exceeds their 

removal, giving rise to impaired cell function, and ultimately cell death. The 

principal targets of oxidative damage are the key biomolecules of the cell, namely 

proteins, lipids and nucleic acids. Accumulation of these damaged biomolecules 

is contributory to, or characteristic of, the ageing process and several major 

pathologies, particularly neurodegenerative diseases which are discussed further 

in later sections.

The principal types of oxidising species are reactive oxygen species (ROS) and 

reactive nitrogen species (RNS). Recent studies have implicated an additional 

group of oxidising agents as contributors of oxidative stress -  reactive sulphur 

species (RSS).

All aerobic organisms generate the most prevalent oxidising species ROS, as a 

consequence of normal cellular metabolism. Despite the destructive properties of 

ROS, physiological concentrations aie required for normal cellular function; 

indeed some such as hydrogen peroxide serve as second messenger molecules in 

cell signalling pathways (Finkel, 2000; Kamata and Hirata, 1999). It is well 

established that the mitochondrion is the major cellular generator of ROS, 

principally via the process of oxidative phosphorylation. It is estimated that 1-2% 

of electrons passing down the electron transport chain leak out to molecular 

oxygen, forming ROS. Recent studies have elucidated the flavin mononucleotide 

group of complex I (NADH-ubiquinone oxidoreductase) and complex m  

(ubiquinol-cytochrome c oxidoreductase), as the primary sites of ROS generation 

(Finkel and Holbrook, 2000; Liu et al, 2002) (Fig. 1.1). It is necessary to establish 

the site of electron leakage in order to design drugs to delay the onset of ageing 

and ROS-related diseases.
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SOD

^  QH2 Ü2

ATP + Pj ATP

Figure 1.1. Generation of Superoxide via Electron Leakage from 

Complex III of the Electron Transport Chain
This diagram shows the principal sources of the superoxide anion (*0 2 ~) via 

leakage from complex III of the electron transport chain. Electrons generated by 

complex I (NADH dehydrogenase) and complex II (ubiquinone-cytochrome c 

reductase) are transferred to ubiquinone (Q), which is subsequently reduced by 

cytochrome b and c (Cyt.c). Ubiquinone is reduced by two one-electron 

reductions during which the semiquinone (*Q~) is generated after the first 

reduction. This anion can interact directly with molecular oxygen to form 

superoxide. Superoxide can then spontaneously dismutate to form hydrogen 

peroxide (H2O2), accelerated by the enzyme superoxide dismutase (SOD). 

Hydrogen peroxide is subsequently scavenged by the various antioxidant systems 

present within the mitochondria. Adapted from Finkel and Holbrook (2000).
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1.1. Reactive Oxygen Species (ROS)

There are three major ROS generated via the escape of electrons from the 

mitochondrial respiratory chain: the superoxide radical (O2'"), hydrogen peroxide 

(H2O2) and the hydroxyl radical (*0H) (EqT-5, Fig. 1.2). The superoxide radical 

can alternatively be generated by flavoenzymes such as xanthine oxidase and 

lipoxygenase, or via exogenous sources such as ultraviolet light and ionising 

radiation. Superoxide is the least destructive ROS as it is unable to permeate lipid 

bilayers, restricting it to the inner mitochondrial compartment. Superoxide 

however can overcome this restriction via a reaction involving two molecules of 

superoxide spontaneously interacting to generate hydrogen peroxide and 

molecular oxygen (Eq.3, Fig. 1.2). This reaction can be accelerated by the actions 

of the enzyme superoxide dismutase (SOD). Unlike superoxide, hydrogen 

peroxide easily traverses lipid membranes, accounting for its highly destructive 

properties. Hydrogen peroxide is a powerful oxidant, but not a free radical. Its 

most toxic effects are ascribed to its key role as a reaction intermediate in the 

formation of the most potent ROS, the hydroxyl radical. The reduction of 

hydrogen peroxide to hydroxyl radicals is catalysed by the transition metal ions 

(Fe^^ or Cu^) and is called the Fenton Reaction (Eq.4, Fig. 1.2). The superoxide 

radical is involved in re-oxidising the metal ions for subsequent cycles (Eq.5, 

Fig. 1.2). The sum of the Fenton reaction and this re-oxidising reaction is called 

the Haber-Weiss reaction.

1.2. Reactive Nitrogen Species (RNS)

RNS are mainly generated via the intracellular messenger nitric oxide (NO). NO 

is generated endogenously from the oxidation of L-arginine to L-citrulline by a 

family of NADPH-dependent enzymes called the NO synthases. The 

mitochondrion and cytosol are the primary sites of NO production with the most 

recently identified NO synthase being located in the mitochondiion (Ghafourifar 

and Richter, 1997). The functions of NO include roles in coagulation, relaxation 

of smooth muscle, neurotransmission and regulation of apoptosis (Gewaltig and 

Kojda, 2002).



Chapter 1

Equation 1: Summary of ROS Formation
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Equation 2: Superoxide Formation

O 2 +  G ----  -> O 2
• —

Equation 3: Hydrogen Peroxide Formation

2H+

o r + O j - — > H 2 O 2 + O 2

1

Equation 4: Hydroxyl Radical Formation

(The Fenton Reaction)

H 2O 2 +  Cu'^/Fe^"'-------/ O H  +  “O H  +  C u^^/Fe
3+

Equation 5: Recycling of Transition Metal Ions

Cu '̂̂ /Fê ^+ 02*"----- > Cu^/Fe"+ O2
+ n - _ 2 +

Figure 1.2. An Overview of Reactive Oxygen Species Formation
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NO is involved in both the prevention and induction of apoptosis via a complex 

signalling network (Curtin et al, 2002). There are three chemical forms of NO 

(NO", NO* and NO" )̂ accounting for its vast range of biochemical functions and 

reactivities. NO itself, like superoxide is not particularly destructive, despite its 

unpaired electron. It does however readily react with other free radicals, 

particularly lipid peroxyl and alkyl radicals. In effect NO can be regarded as a 

free radical scavenger, as such reactions give rise to a less reactive product. 

Glutathione, the thiol buffer of the cell, quenches excess NO giving rise to an S- 

nitroso-glutathione adduct which is subsequently degraded into glutathione and 

NO by the antioxidant enzyme thioredoxin reductase or the entire thioredoxin 

system (Niki to vie and Holmgren, 1996). The thioredoxin system will be 

discussed further in section 1.7.0. The major destructive effect of NO arises from 

its interaction with superoxide, forming the extremely cytotoxic peroxynitrite 

(ONOO”) that has the ability to diffuse intra-and inter-cellularly. Peroxynitrite 

destruction occurs mainly through its modification of free thiol groups (Equation 

2, Fig. 1.3) and the nitration of the aromatic side-chains of tyrosine and 

tryptophan. Peroxynitrite formation occurs rapidly in areas of simultaneous NO 

and superoxide production and can oxidise thiols 10  ̂ times faster than hydrogen 

peroxide (Radi et al, 1991a). Peroxynitrous acid can also be generated by 

protonation of peroxynitrite, but then decomposes rapidly due to its poor stability, 

to a hydroxyl-like species and nitrogen dioxide (Equation 1, Fig. 1.3). 

Consequently peroxynitrite formation can be regarded as an important mechanism 

of oxygen radical-mediated toxicity.

1,3, Reactive Sulphur Species (RSS)

In general, molecules containing sulphur are considered to possess anti oxidant 

activity due to their ability to quench free radical sites generated via hydrogen 

atom abstraction by reactive species. Glutathione (GSH) is the principal low 

molecular weight thiol antioxidant, responsible for maintaining the redox- buffer 

status of the cell by scavenging ROS (Dickinson and Forman, 2002). The enzyme 

glutathione peroxidase (GPx) catalyses the reduction of hydrogen peroxide via the 

oxidation of GSH to glutathione disulphide (GSSG). GSSG is subsequently
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02*" + 'NO ONOO" <=> ONOOH -A ‘'OH’ + NO: 

Equation 1: Peroxynitrite production

2RSH + ONOO~^ NX + RSSR

Equation 2: Peroxynitrite interaction with thiols

Figure 1.3. Formation of Peroxynitrite and its Interaction With 

Thiols
Equation 1 shows the generation of peroxynitrite (ONOO“) via the interaction of 

the superoxide anion (O2*") with nitric oxide (*NO) and the subsequent 

degradation of its protonated form, peroxynitrous acid (ONOOH), into a 

hydroxyl-like species (‘*OH’), and nitrogen dioxide (NO2). Equation 2 shows the 

reaction between peroxynitrite and a thiol-containing compound (RSH) to form 

the cognate disulphide (RSSR), and an unidentified nitrogen-containing species 

(NX).
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reduced back to GSH by NADPH-dependent glutathione reductase (GS).

Additional higher oxidation states of sulphur are sulphenic (-SOH), sulphinic 

(-SO2H) and sulphonic (-SO3H) acids. These latter two states are irreversible and 

relatively inactive; until recently it has been assumed that they do not readily 

participate in further redox reactions. The assumption that RSS do not contribute 

to oxidative damage under oxidising conditions has been re-addressed. Recent 

studies have highlighted the role of RSS in oxidative damage (Giles and Jacob,

2002a). The quenching of free radical sites by thiols and the oxidation of thiols 

by peroxynitrite can generate a thiyl radical (RS*) by-product. Thiyl radicals 

cause further destruction by hydrogen atom abstraction, exerting deleterious \

effects on intracellular biomolecules.

With the increasing resolution of enzyme structures by X-ray crystallography, 

higher oxidation states of sulphur have been identified in several biological 

systems. It has become apparent that several redox-active proteins contain a 

cysteine-sulphenic acid group essential for catalysis, including the peroxiredoxin 

family of peroxidases discussed further in section 1.8.0. The oxidation of 

sulphydryl groups to sulphenic acid is a key regulatory mechanism in some 

enzyme activities (Claiborne et al, 1999).

In addition to sulphenic acid and the thiyl radical, additional types of RSS exist 

including, disulphides (Ri-S-S-Ri), disulphide-S-monoxides (Ri-SO-S- Ri) and 

disulphide-S-dioxides (R].S0 2 S- Ri). Disulphide-S-monoxides and dioxides can 

be generated in vitro by mixing equal amounts of hydrogen peroxide and 

glutathione at pH 6.0, and have been shown to damage alcohol dehydrogenase and 

glyceraldehyde-3-phosphate dehydrogenase via oxidative modification of their 

thiol groups (Giles et al, 2002). Various anti oxidant compounds including 

ascorbate and melatonin were assessed for their protective effects towards damage 

caused by disulphide-S-oxides; however only elevated levels of glutathione were 

preventative. This implies that even in conditions of high antioxidant 

concentration, RSS production can still occur. Following the oxidation of thiols 

by disulphide-S-monoxides and dioxides, mixed disulphides are formed.
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generating sulphenic or sulphinic acid in the process. Mixed disulphides can 

further oxidise thiols, generating the fully reduced protein and the di sulphide of 

the reducing species e.g. GSSH from GSH. (For an overview of RSS generation 

see Figure 1.4).

1.4. Lipid Damage

Lipid peroxidation is the main consequence of lipid oxidation by ROS due to the 

high susceptibility of the double bonds within polyunsaturated fatty acids to 

oxidative damage. Arachidonic acid and docosahexaenoic acids, which are 

abundant in the brain, are particularly susceptible to lipid peroxidation. 

Consequences of lipid peroxidation include an increase in aldehyde formation, 

mainly 4-hydroxyalkenals which exhibit potent cytotoxic effects. In neuronal 

cells, 4-hydroxyalkenals have been demonstrated to inhibit DNA, RNA and 

protein synthesis, in addition to glycolysis, supporting a probable role of oxidative 

stress in neurodegenerative disorders. Lipid hydroperoxide formation is also 

characteristic in the pathogenesis of several other diseases, particularly 

cardiovascular disease where it is involved in atherosclerotic plaque fonnation 

(Gorog et al, 2002).

Lipid hydroperoxides can become degraded to free radicals in the presence of 

bivalent metal ions, such as the peroxyl radical, which enhances the production of 

numerous reactive compounds. Interestingly lipid hydroperoxides have been 

demonstrated to induce directly the expression of the cryoprotective proteins 

including the heat-shock proteins crucial in the stress response (Calabrese et al, 

2002).

1.4.1. DNA Oxidative Damage

DNA bases and the deoxyribose backbone are targets of oxidative damage. ROS 

exert their destructive effects on nucleic acids by inducing mutations via
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processes such as DNA-protein cross-links, purine oxidation and DNA strand 

breaks. It is proposed that the principal ROS threat to DNA is the hydroxyl radical 

(Aust and Eveleigh, 1999; Henle and Linn, 1997), and the protonated form of 

peroxynitrite (peroxynitrous acid). As the hydroxyl radical is extremely reactive, 

it is unlikely that it diffuses into the nucleus. It is more probable that hydrogen 

peroxide diffuses into the nucleus where it is degraded into the hydroxyl radical. 

Peroxynitrous acid on the other hand can diffuse freely across membranes and 

into the nucleus. The DNA lesion involving the formation of 8-oxo- 

deoxyguanosine (8 -oxo-dG) has been the most intensively studied as it is 

methodologically easy to detect. 8 -oxo-dG is extremely mutagenic and has been 

reported to introduce spontaneous mutations in several genes. Other mutagenic 

lesions resulting from DNA oxidation include 5-hydroxyuracil and 5-hydroxy- 

deoxycytidine (Mamett, 2000). DNA can also be damaged by products of lipid 

peroxidation, for example malondialdehyde, which foims a DNA adduct with a 

mutagenic potential comparable to that of 8 -oxo-dG (Mamett, 1999).

If DNA modifications are left un-repaired, incorrect base pairing occurs and 

somatic mutations accumulate, a feature of several human pathologies including 

many types of cancer. Mitochondrial DNA is particularly susceptible to oxidative 

damage due to its close proximity to ROS production and the fact that it is 

unprotected by histones unlike chromosomal DNA. The level of oxidatively 

damaged bases in mtDNA is 10-20-fold higher in comparison to nuclear DNA. 

Studies have underlined a connection between damage to mtDNA and apoptosis 

(Esteve et al, 1999). Mitochondrial genome lesions, together with damaged 

mitochondrial enzymes are proposed to be the major players in ageing which has 

become a rapidly expanding, and profitable area of research in recent years (Wei 

and Lee, 2002).

1.4.2. Protein Oxidative Damage

The oxidative modification of proteins is less well characterised than DNA and 

lipid damage. Destruction is attributed mainly to the hydroxyl radical, generated 

by the Fenton reaction, giving rise to various modifications including the 

oxidation of amino acid side-chains, formation of protein-protein cross-links and

10
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polypeptide backbone oxidation resulting in chain fragmentation (Berlett and 

Stadtman, 1997; Stadtman and Berlett, 1991). In general, the oxidative

modification of a protein results in an overall conformational change in structure, 

misfolding and thus impaired function. A prime example is the distortion of metal 

binding sites and the modification of amino acid residues that are essential for 

enzyme regulation, for example, serine residues that are the sites of

phosphorylation. All amino acid side-chains are susceptible to oxidation;

however favoured targets are the sulphur-containing amino acid residues, cysteine 

and methionine, and the aromatic amino acids tryptophan and tyrosine. Cysteine 

and methionine residues are especially vulnerable targets for all ROS, even at 

reduced levels. Cysteine-sulphydryl groups become oxidised to disulphides, and 

methionine residues are oxidised to methionine sulphoxide residues (MeSOX). 

These modifications are the only examples of reversible oxidative reactions. The 

enzymes responsible for the reduction of cysteine and methionine residues, back 

to their original states are disulphide reductases and MeSOX reductases,

respectively.

Other common oxidative modifications include the conversion of histidine to 

asparagine, and proline residues to glutamic semialdehyde residues. All amino 

acids, especially lysine, can generate carbonyl derivatives as a consequence of 

oxidative damage. Carbonyl derivatives provide a means by which the oxidative 

damage to a protein can be assessed. Studies were earned out in Saccharomyces 

cerevisiae and Escherichia coli to elucidate which proteins were susceptible to 

oxidative damage when exposed to hydrogen peroxide and the superoxide anion, 

by measuring the carbonyl content of each enzyme. The major targets were found 

to be mitochondrial proteins, including the dihydrolipoyl acetyltransferase (E2) 

component of the pyruvate dehydrogenase- and 2 -oxoglutarate dehydrogenase 

complexes, aconitase, and the molecular chaperone HSP-60 (Cabiscol et al, 2000; 

Tamarit et al, 1998). This is not surprising given the extremely high ROS 

concentrations in mitochondria, and further supports the role of impaired 

mitochondrial function in ageing and oxidative-stress related disorders (Cadenas 

and Davies, 2000).

11
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1.5. The Role of Oxidative Stress in Disease

Cells and tissues compromised by oxidative stress are characteristic features of 

several human diseases, particularly autoimmune diseases including diabetes 

mellitus and inflammatory diseases such as rheumatoid arthritis. Furthermore, 

several neurodegenerative pathologies including Alzheimer’s disease (AD), 

Parkinson’s disease (PD), Freidrich’s ataxia, and Creutzfeld-Jakob Syndrome, are 

associated with high levels of oxidatively modified proteins (Floyd, 1999; Gilgun- 

Sherki et al, 2001). In AD, the major protein targets of oxidation have been found 

to be glutamine synthetase, creatine kinase and a-enolase (Castegna et al, 2002). 

Accumulation of these damaged proteins is likely to account for the late onset of 

the mentioned neurodegenerative disorders. The brain is particularly vulnerable 

to oxidative damage due to its abundant oxygen supply. Furthermore the 

insignificant levels of the hydrogen peroxide scavengers, catalase and glutathione, 

together with the high lipid content of the brain also enhances susceptibility to 

oxidative destruction.

Redox-active transition metals mainly copper, manganese and iron, are proposed 

to be the main contributors to the onset of oxidative stress in the tissues of patients 

with neurodegenerative disorders (Sayre et al, 2000). These metals are crucial for 

maintaining normal biochemical function within cells, functioning as co-factors 

for several enzymes, predominantly those involved in respiration. As a 

consequence, any reduction in the level of metal ions can give rise to 

compromised organ function, and damage to the central nervous system. In 

contrast, an elevation in the level of metals has a cytotoxic effect, mainly due to a 

cognate elevation in free radical concentrations, primarily via the Fenton reaction. 

In PD iron and lipid peroxide levels are elevated and glutathione levels are 

decreased, supporting the oxidative stress hypothesis. In AD aluminium, 

mercury, and iron are all contributory although iron is the most destructive 

existing in two valence states, the stable ferrous (Fê "̂ ) form, and the reactive 

fenic (Fê ***) form. Metal ions can also directly interfere with the folding of 

protein and peptides by altering their conformations and ultimately their activities. 

This also is a common parameter in neurodegenerative diseases.

12
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1.6. Antioxidant Systems: Non-Enzymatic and Enzymatic

To combat oxidative stress, a network of interacting antioxidant defence systems 

has evolved encompassing both enzymatic and non-enzymatic systems. Non- 

enzymatic systems of ROS removal involve a number of macromolecules with 

free radical-scavenging activity such as vitamins A, C, E and lipoic acid (Fang et 

al y 2002). Other compounds can indirectly scavenge ROS following conversion 

to a more reactive metabolite with antioxidant activity such as uric acid and 

bilirubin. These compounds are the breakdown products of urea and haemoglobin 

respectively.

The principal detoxifying enzymes aie superoxide dismutase (SOD), catalase, 

glutathione peroxidase and the thioredoxin system (Nordberg and Arner, 2001). 

SODs were one of the first ROS-scavenging enzymes to be discovered and serve 

as a first line of defence against free radicals in eukaryotes. SOD enzymes 

accelerate the formation of hydrogen peroxide and molecular oxygen from two 

spontaneously interacting molecules of superoxide (Eq.3, Fig. 1.2). There are 

three metal-containing SOD isoforms; one cytosolic copper/zinc (Cu/Zn) isoform, 

one Cu/Zn-requiring extracellular isoform (EC-SOD) and one mitochondrial 

manganese (Mn) isoform (Zelko et al, 2002). In addition to their distinct 

compartmental localisations, the SOD isoenzymes differ in their sizes and 

structures. The EC-SOD is the least well characterised, as it is the most recently 

discovered.

In order to assess the contributions of SOD enzymes in ageing and various 

pathologies related to oxidative stress, several transgenic mice models have been 

produced containing deletions in their SOD genes (Noor et al, 2002). Mice 

lacking the mitochondrial Mn-SOD are either not viable or die soon after birth 

due to severe neurodegenerative damage. These findings are not unexpected 

reflecting the importance of Mn-SOD in superoxide removal from its main site of 

production, the mitochondrion. Transgenic mice lacking cytosolic SOD display a 

normal phenotype implying that this isoform is less critical for viability than the 

mitochondrial isoform. In order to study Mn-SOD mutations in more detail it was

13
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necessary to generate mice with longer viability; therefore liver-specific Mn-SOD 

knockouts were generated which have normal life spans and display no obvious 

morphological abnormality, suggesting this enzyme is not so critical in the liver 

(Ikegami et al, 2002), Recognition of the mitochondrial enzyme as the more 

important isoform is supported by the finding that oxidative stress and thioredoxin 

can both induce expression of the mitochondrial SOD form, but not the cytosolic 

enzyme. This was established in a study using cultured human endothelial cells in 

which increased mitochondrial SOD mRNA levels were detected in addition to a 

cognate increase in activity when incubated with low levels of thioredoxin (Das et 

al, 1997). Despite this, mutations in the cytosolic SOD have been identified as 

responsible for the neurodegenerative disease amyotrophic lateral sclerosis (ALS). 

This disorder is a consequence of increased peroxidase activity in point mutants of 

SOD, resulting in eventual death. For a review of the superoxide anion and the 

SOD enzymes, see Fridovich, (1997).

Catalases are also efficient ROS-metabolising enzymes, with such a high turnover 

number that they cannot be saturated by their substrate hydrogen peroxide at any 

physiological concentration. Their primary intracellular location is the

peroxisome where the levels of hydrogen peroxide generation are extremely high; 

however they are also detected at low levels in the cytosol. Catalases are typically 

tetrameric, haem-containing enzymes, which promote the dismutation of 

hydrogen peroxide to water and molecular oxygen (Eq.la, Fig. 1.5). Removal of 

hydrogen peroxide results in lower levels of hydroxyl radicals produced by the 

Fenton reaction. Catalases offer further protection by detoxifying alternative 

compounds such as phenols and alcohols. This detoxification reaction is coupled 

to the reduction of hydrogen peroxide to water and the substrate’s respective 

metabolite (Eq.lb, Fig. 1.5). The only mitochondrial catalase activity identified to 

date is in rat heart. It was detected by biochemical means and by immunoblotting 

with an anti-catalase antibody (Radi et al, 1991b). Despite the presence of 

catalase in mitochondria, studies using rat heart suggest its role in hydi’ogen 

peroxide removal is redundant with GPx being the predominant peroxidase. This 

was observed even in extreme oxidising conditions (Antunes et al, 2002).

14
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The glutathione peroxidase (GPx) antioxidant system is regarded as the most 

important hydrogen peroxide scavenger in mammals as it exhibits a higher 

affinity for its substrate than catalase and it is present in the cytosol, endoplasmic 

reticulum, nuclei and mitochondria. The GPx system is not well understood, 

although its role in protection against oxidative stress is well reported. There are 

four GPx isoforms all requiring a selenocysteine group for function but distinct in 

their tissue distributions (Arthur, 2000). The reaction catalysed by these enzymes 

is the reduction of hydrogen peroxide to water coupled to the oxidation of GSH to 

GSSG (Eq.2, Fig. 1.5). Lipid peroxides are alternatively metabolised by GPx to 

their corresponding alcohols and water. The selenoate group of GPx is proposed 

as the target of oxidation being converted to a selenenic acid during catalysis. 

Selenoate group regeneration is coupled to GSH oxidation. GSSH is subsequently 

converted back to GSH by the NADPH-dependent flavoenzyme glutathione 

reductase. As mentioned previously, GSH is the major sulphydryl buffer of the 

cell. It does however participate in various detoxification reactions involving 

other cellular enzymes such as glutathione-S-transferases, glutaredoxins and 

thioredoxins.

1.7. The Thioredoxin System

The protein thioredoxin (Trx) and the enzyme thioredoxin reductase (TrxR) 

constitute the thioredoxin system, serving as a supporting line of defence against 

free radical damage (Amer and Holmgren, 2000). This system is ubiquitously 

found in prokaryotes and eukaryotes.

Trxs are a rapidly expanding family of low molecular weight proteins (-12 kDa) 

with divergent functions (Powis and Montfort, 2001). The interest in Trx was 

initiated following its identification as a hydrogen donor for the enzyme 

ribonucleotide reductase, responsible for a key regulatory step in the synthesis of 

deoxynucleotides and DNA. Trxs are now recognised as the major cellular 

protein di sulphide reductases. Additional functions have been assigned to Trx, 

including the regulation of key enzymes involved in protection against oxidative 

stress with Trx expression itself being induced by this oxidative state. Control of

15
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transcription factors such as NF-kB, regulation of cell proliferation and protein 

folding are additional functions of Trx. Mitochondrial Trx has been reported to 

activate the 2 -oxoacid dehydrogenase multi-enzyme complexes (see section 

1 .10.6  for further discussion).

The thiol-disulphide oxidoreductase activity of thioredoxin is mediated by a 

conserved active site motif: Cys-Gly-Pro-Cys, which is reversibly oxidised during 

catalysis. Trx is returned to its reduced state in a NADPH-dependent reaction, 

catalysed by the cognate flavoenzyme TrxR (Eq.3, Fig. 1.5). There are numerous 

TrxR isoenzymes present in the cytoplasmic compaitment and mitochondria. 

They are all homodimeric flavoenzymes, containing a redox active disulphide and 

one molecule of FAD per monomer. TrxRs can be divided into two classes, the 

low Mr type chaiacterised by the E. coli enzyme, and the high Mr type present in 

higher eukaryotes. The latter class of enzymes has similarities with glutathione 

reductase, lipoamide dehydrogenase from the mitochondrial 2 -oxoacid 

dehydrogenase complexes, and other members of the pyridine nucleotide- 

disulphide oxidoreductase family both in stmcture and catalytic mechanism. All 

mammalian TrxR enzymes possess a C-terminal region containing a cysteine- 

seleocysteine sequence critical for activity. TrxR has an important role in the 

function of selenium in cellular systems, metabolising several selenium 

compounds.

Trx is not the exclusive substrate of TrxR. Several other protein disulphides and 

oxidised low molecular weight compounds can be utilised instead. The initial 

stages of catalysis are common to the other pyridine nucleotide-disulphide 

oxidoreductases, involving the transfer of electrons from NADPH via the FAD 

group, to the active site disulphide. The subsequent stages involve the transfer of 

electrons to a selenylsulphide formed by the Cys-selenocysteine pair at the C- 

terminus of the adjacent subunit in the homodimer. The reduced selenolthiol 

group can then reduce Trx, which can subsequently reduce protein disulphides 

non-enzymatically.
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2 H2O2 ------  ̂ O 2 4- 2 H 2O

Equation la: Catalase reaction

H2O2 + R 'H s > R ' + 2H2O

Equation lb: Catalase detoxification of phenols and alcohols

ROOH + 2G S H  > ROH + GSSG + H2O

NADP+
GR

NADPH + H

Equation 2: Reaction catalysed by Glutathione Peroxidase

Glutathione (GSH), glutathione di sulphide (GSSG), glutathione reductase (GR), 

hydroperoxide (ROOH) and alcohol (ROH).

Substrate„x NADPH + H^ Trx-Sz

Productrcd

y
NADP+ T T T r x - ( S H 2)

Protein-(SH2)/Productrai

Trx-(SH2) Protein-S2/Substrate,

Equation 3: The reaction scheme of the Thioredoxin system

Thioredoxin (Trx), thioredoxin reductase (TrxR), disulphide (S-S), sulphydryl 

groups (-SH). Oxidised and reduced states are highlighted in blue and red font 

respectively.

Figure 1.5. Reactions Catalysed by the Key Antioxidant Systems
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TrxR can independently exhibit antioxidant activity via the direct reduction of 

peroxides; however this typically only occurs at elevated levels of peroxides. 

Regulation by negative feedback also occurs as TrxR activity is inhibited by 

hydrogen peroxide. Inhibition of the Trx system in general will result in pro­

oxidant effects. Recent interest in the Trx system is with respect to removal of 

hydrogen peroxide by the thioredoxin system, in conjunction with a novel family 

of antioxidant enzymes called the peroxiredoxin (Prx) family (Chae et al, 1994a)

1.8, The Peroxiredoxins

The bacterial enzyme alkyl hydroperoxide reductase (AhpC), later called the thiol- 

specific antioxidant (TSA) protein, gave the Prx family their original name-the 

AhpC/TSA family. AhpC and a second component called AhpF, a member of the 

FAD-dependent protein-disulphide reductase family, participate in a system that 

catalyses the NADH-dependent reduction of organic hydroperoxides (or hydrogen 

peroxide) to the coiresponding alcohol and water (Fig. 1.6a) (Poole et al, 1996; 

Poole et al, 2000). Recently AhpC has also been shown to catalyse the 

detoxification of peroxynitrite to nitrite at an extremely rapid rate, implying that 

the peroxidase function of the Prxs may extend to reactive nitrogen species too 

(Bryk et al, 2000). In the case of mammalian Prxs, the reducing equivalents are 

provided by the thioredoxin system (Fig. 1.6b). Prxs are distinct from other 

peroxidase families by lacking a cofactor (Rhee et al, 1999). The diverse 

functions of the Prxs include roles in complex cell-signalling cascades, 

transcriptional regulation, apoptosis, immunity and infection; however the recent 

major focus of research concerns their antioxidant properties (Kang et al, 1998b).

This emerging family of enzymes has been shown to reduce peroxides both in 

vitro and in vivo using thiol groups as a source of electrons. The Prxs can be 

divided into two groups (1-Cys and 2-Cys), depending on the number of 

conserved cysteine residues they possess within their primary sequence. There

18
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are to date approximately thirteen mammalian Prx members that are further 

classified into at least five distinct groups numbered Prx I to VI, according to their 

amino acid sequence, tissue distribution and cellular localisation. The Prx I-V 

groups are all 2-Cys enzymes whereas Prx VI represents the 1-Cys subgroup.

1.8.1. The 1-Cys Peroxiredoxins

1-Cys members are homodimers containing a single cysteine residue located at 

the N-terminus which is the catalytic residue (Kang et al, 1998a). In vitro small 

thiol reducing agents such as dithiothreitol (DTT) and ascorbic acid (vitamin C) 

are suitable donors. For the majority of cases it been detennined that Trx or GSH 

cannot replace these reducing agents. To date there is only one example of a 1- 

Cys Prx that uses the thioredoxin system. It was isolated from Saccharomyces 

cerevisiae and was demonstrated to have an integral role in protection against 

oxidative stress (Pedrajas et al, 2000). The in vivo physiological electron donor 

for the remaining 1-Cys sub-group remains to be identified; however recent 

research has identified cyclophilin A (CyP-A) as an electron donor for the 1-Cys 

Prxs and possibly the 2-Cys Prx isoforms (Lee et al, 2001). Cyclophilins are a 

prokaryotic and eukaryotic protein family that have the ability to bind the 

immunosuppressive drug, cyclosporin A (CsA). They also have peptidyl-prolyl 

cis-trans isomerase catalytic activity, and participate in protein folding and 

protein interactions. CyP18 is a cyclophilin located in human T-cells that has 

been reported to bind to the 2-Cys Prx Aopl stimulating its activity (Jaschke and 

Tropschug, 1998).

1.8.2. The 2-Cys peroxiredoxins

The 2-Cys enzymes, as their name suggests, contain two redox-active cysteine 

residues positioned at the N- and C-terminal regions of the protein. It is not 

uncommon for a third cysteine residue to be present although this feature varies 

between members. Comparable with the 1-Cys subgroup, the N-terminal cysteine 

is the site of catalysis. 2-Cys Prxs are also homodimeric but can form 

intermolecular disulphide bonds between the N-terminal residue of one monomer 

and the C-teiminal cysteine of the opposing subunit. The 2-Cys Prxs differ from
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the 1-Cys Prxs not only in the number of conserved cysteines but also in their 

source of reducing equivalents. The 2-Cys Prxs are generally referred to as Trx- 

dependent peroxidases as in vivo these enzymes were initially proposed to 

exclusively utilise Trx as their electron donor (Chae et al, 1999). As mentioned 

earlier a new report suggests that they may also be reduced by cyclophilins.

1.8.3. The Catalytic Mechanism of the Peroxiredoxins

Mutation analysis has established that the active site of the both Prx subgroups is 

the conserved N-terminal cysteine (Chae et al, 1994b). X-ray crystallography of 

the human 1-Cys Prx open reading frame protein 6  (hORF6 ), elucidated that the 

active site sulphydryl group is oxidised to a sulphenic acid, an early stage 

intermediate of catalysis (Choi et al, 1998; Peshenko and Shichi, 2001). 

Sulphenic acid groups serve as reversible two-electron oxidation states that can 

either be reduced to the initial thiol or oxidised further to sulphinic acid. In 1-Cys 

Prxs, the active site cysteine is located at the bottom of a nanow active-site pocket 

making it inaccessible to the bulk solvent. This implies the occurrence of a 

confoimational change in the active-site region during catalysis. The sulphenic 

acid group is stabilised via interactions with two positively charged amino acids- a 

histidine and an arginine. An interaction between the sulphenic acid and a 

magnesium ion has also been suggested. It is proposed that these stabilising 

associations function to lower the pKa of the active-site cysteine, therefore 

enhancing its reactivity. In vivo the sulphenic acid residue of the 1-Cys Prxs is 

reduced back to its thiol group by cyclophilin A, but not Trx or GSH as mentioned 

previously.

Studies on the 2-Cys Prx haem-binding protein 23kDa (HBP23), the rat 

homologue of the human proliferation-associated gene product (PAG), have 

provided an insight into the catalytic mechanism of the 2-Cys Prxs. PAG was 

previously called natural-killer enhancing factor A due to its initial role in 

enhancing the action of natural killer cells which provide a first line of defence 

against tumours by targeting and destroying several types of tumour cells. The 

tissue expression of both HBP23 and PAG, and in fact numerous Prx members, is
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induced by oxidative stress (Mitsumoto et al, 2001). Additional functions of 

HBP23 include the control of cell differentiation and proliferation. In fact PAG 

can directly interact with the cell signalling protein tyrosine kinase c-Abl. This 

protein exerts a cytostatic effect on cell growth; therefore it is proposed that PAG 

may counteract this effect (Wen and Van Etten, 1997).

Structural studies on HBP23 illustrate clearly that the 2-Cys Prx active-site 

residue forms an inteimolecular disulphide bond with the C-terminal cysteine of 

the opposing subunit. Several hydrophobic residues encase this di sulphide 

interaction. As with hORF6 , the active-site cysteine is completely buried in the 

active site channel, therefore rendering it inaccessible to the solvent interface. It 

is postulated that the active site residue is only buried in its oxidised state (Cys- 

SOH) and is completely accessible to hydrogen peroxide in its reduced form (Cys- 

SH).

The initial stage of catalysis involves the oxidation of the N-terminal cysteines on 

both subunits to a Cys-SOH by hydrogen peroxide or alkyl hydroperoxides 

(Fig. 1.7- step 1). This moiety spontaneously reacts with the C-terminal cysteine 

of the opposing subunit to form an inteimoleculai' disulphide bond, coupled with 

the elimination of water (Fig. 1.7-step 2) (Seo et al, 2000). In order for the 2-Cys 

Prx to be regenerated back to its active state, the di sulphide bonds are reduced by 

Trx or DTT in the artificial system (Fig. 1.7-step 3). The reduction of the resulting 

intramolecular di sulphide bond formed within Trx is carried out by the cognate 

flavoenzyme TrxR.

There are two alternative fates of the Prx enzyme following the initial oxidation 

step; the sulphenic acid groups may be further oxidised to sulphinic (-SO2H) or 

sulphonic (-SO3H) acid groups. As these higher oxidation states are irreversible, 

the enzyme becomes trapped in its inactive conformation.
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Figure 1.7. Proposed Catalytic Mechanism of The 2-Cys 

Peroxiredoxins
Sulphydryl group (-SH), sulphenic acid (-SOH), disulphide bond (S-S), 

dithiothreitol (DTT), thioredoxin (Trx), hydrogen peroxide (H2O2) and C- and N- 

terminal cysteines.
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1.8.4. Peroxiredoxin Oligomers

To date, the oligomeric conformations of several Prxs of both the 1-Cys and 2- 

Cys sub-groups have been successfully determined by various techniques, 

including electron microscopy and X-ray crystallography. Typically both 1-Cys 

and 2-Cys Prxs exist as homodimers (ai), linked mainly via hydrophobic 

interactions. A second, toroidal decameric form comprising five dimeric units 

(a 2)s is an increasingly recurring theme, particularly for the 2-Cys members. One 

of the first structures to be solved was that of HBP23, which has been identified to 

form a dimer, comprising two tightly associated monomers, flattened and 

ellipsoidal in shape (Hirotsu et al, 1999). The principal interactions involved in 

dimerization are hydrogen bonds, hydrophobic interactions, salt bridges and Van 

der Waals forces. A feature, ubiquitously observed throughout the 2-Cys Prx 

members is disulphide bond formation between the conserved cysteine residues of 

the C- and N-terminal regions of opposing subunits, in a head-to-tail interaction. 

This oxidised form of the protein is a likely peroxidation reaction intermediate.

The human erythrocyte 2-Cys Prx called thioredoxin-peroxidase-B (TPx-B), 

previously named natural-killer enhancing factor B, has been shown to adopt a 

ring-like decameric form comprising five disulphide-linked dimeric units (Fig. 1.8) 

(Schroder et al, 1999; Schroder et al, 2000). TPx-B is the third most abundant 

protein in erythrocytes functioning to increase natural killer cytotoxicity against 

tumour cells, hence its original name. Sequence analysis assigned TPx-B to the 

Prx family and its antioxidant role was confiiTned (Shau and Kim, 1994; Shau et 

al, 1997). In atherosclerosis, monocyte recruitment and adhesion to the arterial 

wall triggered by the presence of oxidised low density lipoproteins (LDL) and 

lipopolysaccharides (LPS) is a characteristic feature. An in vitro binding assay 

demonstrated that TPx-B blocks monocyte attachment to endothelial cells 

reinforcing its role in increasing cellular resistance to oxidative stress (Kim et al,

1997).

24



Chapter 1

Structure

Figure 1.8. Decameric Toroidal Structure of TPxB
This diagram shows the decameric structure of the human erythrocyte 2-Cys 

peroxiredoxin, Thioredoxin Peroxidase-B (TPx-B). The pentagonal symmetry of 

the central cavity is clearly observed. The arrow indicates one dimeric unit. 

(Adapted from Schroder et al, 2000).
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The decameric structure of TPx-B was determined by molecular replacement using 

the co-ordinates of the dimeric 1-Cys Prx, hORF6  as a search model. The interactions 

between the dimers are weaker than monomer-monomer interactions. It has become 

apparent that decameric toroids are a common feature of Prxs, supported by recent 

reports demonstrating that hORF6  may also adopt this confomaation.

The structure of one mitochondrial 2-Cys Prx, PRDX5 has been elucidated (Declercq 

et al, 2001). It is not exclusively mitochondrial, however, and is also found in 

peroxisomes and cytosol implying a broader range of functions. The peroxisomal 

location implies a critical role as an antioxidant given the elevated levels of ROS 

generated in this compailment. As previously mentioned, Prxs have a role in 

modulating hydrogen peroxide-mediated cellular responses. It has become apparent 

that PRDX5 expression is upregulated in degenerative human tendon and cartilage 

tissue, characteristic in ageing and osteoaxlhritis (Wang et al, 2001; Wang et al, 

2002). Inflammatory cytokines including tumour necrosis factor a  are involved in 

inducing increased expression of PRDX5 in these tissues by increasing intracellular 

ROS generation. The exact mechanism of PRDX5 upregulation is not understood, 

however hydrogen peroxide concentration is certainly contributory given that the 

presence of catalase in cultured chondrocytes prevented elevated mRNA levels of 

PRDX5.

PRDX5 represents a novel type of mammalian Prx possessing a distinctive structure 

in comparison with other members. Despite the high amino acid conservation 

including the three conserved cysteine residues, it does not form a dimer or a decamer 

and for reasons that are unclear remains exclusively as monomers. A further 

distinguishing feature is the presence of an intramolecular di sulphide in comparison to 

the intermolecular di sulphides present in the 2-Cys Prxs.

By comparing the oxidised and reduced states of a select few 2-Cys Prxs, it is 

proposed that these enzymes inter-convert between these two oligomeric forms 

regularly during catalysis (Wood et al, 2002). The factors that determine the 

transition remain to be elucidated; however in vitro decamer stability may be affected 

by changes in pH, with dissociation into dimers favoured above pH 7.0. FurtheiTnore,
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high ionic strength and oxidative conditions have been shown to promote decamer 

stability. It has been suggested that the decameric structure is prevalent following 

oxidation of the N-terminal cysteine, to sulphenic acid, implying that this form may 

be adopted in response to oxidative stress. Electron microscopy has raised the 

possibility of toroid stacking, via the interaction of adjacent dec amers (Harris et al, 

2001). This feature is not uncommon and has been observed with the molecular 

chaperone GroEL.

1.9. SP-22

SP-22 is a small (22kDa) bovine mitochondrial protein, so-called due to its initial 

identification as a substrate of a mitochondrial ATP-dependent protease (Watabe et al, 

1993; Watabe et al, 1994). It is exclusively located in the mitochondrial matrix 

constituting approximately 5% of total matrix protein. Previous work investigating 

SP-22 is limited; therefore its exact physiological function and biochemical 

mechanism remains to be elucidated. However in the available literature its role as a 

free-radical scavenger has been well documented, functioning with thioredoxin- 

dependent peroxidase activity accounting for its recent assignation to the Prx family 

(Watabe et al, 1995; Watabe et al, 1997). NADPH as in all 2-Cys Prx reactions is the 

ultimate source of reducing equivalents for the SP-22/Trx system.

SP-22 has been demonstrated to protect several free-radical sensitive enzymes from 

oxidative damage in vitro including glutamine synthetase and enolase. The 

antioxidant activity of SP-22 has been further supported in studies illustrating that the 

expression of SP-22 is enhanced in bovine aortic endothelial cells and mouse placenta 

when subjected to various oxidative stresses (Araki et al, 1999; Ejima et al, 2000). 

This implies a possible protective role for SP-22 in the cardiovascular system and 

placental mitochondria, respectively.

1.9.1. The Primary Structure of SP-22

The complete amino acid sequence of SP-22 has been determined in both its precursor 

and mature forms (Hiroi et al, 1996). Figure 1.9. shows the coding sequence of SP-22 

and its homology with the 2-Cys Prx members, HBP23 and TPx-B. It can be seen 

that the degree of homology is >90%. SP-22 contains a 62 amino acid long
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mitochondrial targeting presequence that is subsequently cleaved upon entry in the 

mitochondrion, allowing the protein to fold correctly. In accordance with other 2-Cys 

Prxs, SP-22 contains a catalytic N-terminal cysteine (C47), a C-terminal cysteine 

(C l6 8 ) and a third conserved cysteine (C6 6 ). By sequence analysis of mature SP-22 

C47 was proposed to be the site of catalysis as it contained a sulphinic acid group. In 

its native state it was postulated that the C47 side-group is a sulphenic acid group, 

enabling it to function as a two-electron redox centre-a common feature of both 2-Cys 

Prxs and redox proteins in general.

1.9.2. The Function of SP-22

Although SP-22’s role as an antioxidant protein has been well documented, the exact 

physiological function of SP-22 remains to be elucidated. Within the cellular 

compartment peroxides are mainly scavenged by the catalase and GPx systems. As 

mentioned previously the enzymatic systems responsible for removal of oxidising 

species within the mitochondrial compartment include the SOD system, the GPx 

system, the Trx system and in one report catalase (rat heart). It is possible that SP-22 

in conjunction with the Trx system could offer an additional line of defence against 

oxidative stress. As mitochondria are the site of aerobic respiration, any oxidative 

damage to participating enzymes would severely compromise cellular function and 

the organism’s viability as a whole. Therefore a requirement for several scavenging 

systems acting in concert may be essential in this case.

1.9.3. Why Investigate SP-22?

The interest in SP-22 arose following the purification of the dihydrolipoamide 

dehydrogenase (E3) component from the bovine heart pyruvate dehydrogenase 

complex (PDC). The purification of PDC or OGDC was carried out under associative 

conditions and the enzyme components were separated by gel exclusion 

chromatography using a FPLC system. An additional protein initially believed to be a 

contaminant in PDC/OGDC preparations was identified to co-elute with the E3 

component. Subsequent N-terminal amino acid sequencing elucidated the first 24 

residues of the protein, and established that the unidentified protein had high amino 

acid identity with bovine SP-22.
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Figure 1.9. Protein Sequence Alignment of SP-22, HBP23 and 

TPx-B
The start of the mature sequence of SP-22 is indicated by the arrow. The 

conserved cysteine residues are shown in blue. Residue identity between 

sequences is indicated by dots. Alignment is between SP-22, the rat 23kDa haem- 

binding protein (HBP23) and human thioredoxin peroxidase-B (TPx-B) 2-Cys 

peroxiredoxins.
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This co-purification suggests a possible interaction between SP-22 and E3, which 

may help determine the exact physiological function of SP-22 within the 

mitochondrion.

Such an interaction is not an unlikely suggestion as E3 has high sequence 

homology with the C-terminal portion of AhpF, and SP-22 has high homology 

with AhpC. Furthermore in Mycobacterium tuberculosis (Mtb) which exhibits an 

extremely powerful antioxidant defence system, the AhpC component of 

the alkyl hydroperoxide reductase system has recently been demonstrated to 

interact with E3 and the dihydrolipoamide succinyltransferase (E2) component 

found in the 2-oxoglutarate dehydrogenase complex (OGDC) (Bryk et al, 2002). 

AhpC is shown to interact with E3 and E2 via an adaptor protein called AhpD, 

together constituting a NADH-dependent peroxidase system facilitating the 

removal of peroxides and peroxynitrite.

1.10. The Mitochondrial 2-Oxoacid Dehydrogenase Complexes

The 2-oxoacid dehydrogenase complexes are a family of mitochondrial matrix 

enzymes that participate in carbohydrate and amino acid metabolism. PDC, 

OGDC and the branched-chain 2-oxoacid dehydrogenase complex (BCOADC) 

are all members of this family, and are individually responsible for the irreversible 

oxidative decarboxylation of their cognate 2-oxoacid substrates (McCartney et al,

1998). The general reaction catalysed by the 2-oxoacid dehydi’ogenase complexes 

is illustrated in Fig. 1.10). The products of oxidative decarboxylation are an acyl 

CoA derivative, NADH and CO2. The reactions follow a precise, consecutive, 

multi-step mechanism, each catalysed by one of three distinct enzyme 

components designated as E l, E2 and E3 that together constitute the overall 

multi-enzyme complex (Patel and Roche, 1990). An additional enzyme 

component called the E3-binding protein (E3BP), previously named protein X is 

also a component of eukaryotic PDC (McCartney et al, 1997). The importance of 

the 2 -oxoacid dehydrogenase complexes has been underlined with the 

identification of specific mutations giving rise to various metabolic disorders such
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as congenital lactic acidosis and maple syrup urine disease (Patel and Harris, 

1995).

1.10.1. The Individual Enzyme Components of PDC

PDC plays a pivotal role in the oxidation of pyruvate to acetyl coenzyme A 

(acetyl CoA) and is one of the largest multi-enzyme complexes identified to date 

with an immense Mr value of 9-10 x 10 .̂ The individual enzymes of PDC are 

pyruvate decarboxylase (El), dihydrolipoyl acetyl transferase (E2) and 

dihydrolipoyl dehydrogenase (E3). PDC of mammalian origin is composed of a 

60-meric E2 core with icosahedral symmetry. There are 30(%2P2 E l tetramers and 

6-12 E3 homodimers, tightly but non-covalently bound along the edges and faces 

of the E2 core, respectively. In addition 12 copies of E3BP are found, tightly 

associated with the E2 core. The copy numbers of the enzyme components and 

symmetry of the E2 core varies between PDC species. Mammalian, yeast and 

gram-positive bacterial PDC all have 60-meric E2 cores with icosahedral 

symmetry. In contrast E2 cores from gram-negative organisms e.g. E. coli PDC 

and all sources of OGDC and BCOADC are organised as 24-meric octahedrons. 

The conditions for the complete subunit dissociation and subsequent 

reconstitution of PDC and OGDC activity have been established in vitro 

(Sanderson et al, 1996).

1.10.2. Pyruvate Decarboxylase (El)

The E l component of PDC is complex-specific existing as a homodimer in 

OGDC and a heterotetramer in PDC and BCOADC. The PDC E l component 

catalyses the rate-limiting step of the overall reaction. E l catalyses two partial 

reactions - the initial thiamine diphosphate (ThDP) -dependent decarboxylation of 

pyruvate and subsequent reductive acétylation step resulting in the covalent 

binding of an acetyl group to the prosthetic group of the E2 lipoyl domain 

(Hawkins et al, 1990). Studies in Bacillus stearothermophilus have elucidated 

that the E la  subunit houses the ThDP binding motif; however recognition of the 

lipoyl domain of the E2 subunit occurs across the interface spanning E la  and 

E lp  (Howard et al, 2000; Perham, 1991).
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1.10.3. Dihydrolipoyl Acetyltransferase (E2)

E2 is a 59.6kDa, complex-specific subunit that provides the scaffold for the 

overall multi-subunit structure of the 2-oxoacid dehydrogenase complexes. The 

E2 component is responsible for the transfer of the acetyl group from the lipoic 

acid moiety to CoA, producing acetyl CoA and a reduced lipoate group. During 

core assembly, the E2 subunits tend to form trimeric intermediates. The E2 

component has a prominent multi-domain structure with each domain having a 

distinct role in complex function or assembly. In Bacillus stearothermophilus the 

C-terminal inner domain contains the active site and also mediates core 

oligomerisation. A 35 amino acid long region called the peripheral subunit- 

binding domain, responsible for E l and E3 binding follows this domain. The 

final region of E2 can be composed of one to three, 80 amino acid long lipoyl 

domains, depending on the source of PDC. Mammalian E2 PDC contains two 

lipoyl domains, each with a prosthetic lipoic acid group attached via a key lysine 

residue (Patel and Roche, 1990). It has been established that E2 must be correctly 

folded with this key lysine residue exposed at the tip of a P-tum, for the lipoic 

acid moiety to be attached successfully by the lipoyl ligase enzyme (Liu et al, 

1995). Extending between each lipoyl domain are linker regions 20 to 30 amino 

acids long, rich in alanine, proline and charged amino acids. The PDC reaction is 

easily executed due to the flexible nature of these inter-domain or hinge regions 

within the E2 structure, enabling easy access to all three active sites in a process 

termed substrate channelling or active site coupling (Wallis et al, 1996).

1.10.4. Dihydrolipoamide Dehydrogenase (E3)

E3 is the only enzyme component that is common to all the 2-oxoacid 

dehydrogenase complexes. E3 is a member of the pyridine nucleotide-disulphide 

oxidoreductase family of flavoproteins, together with TrxR, glutathione reductase 

and alkyl hydroperoxide reductase F (Cai'others et al, 1989). There are four 

principal functional domains of E3; the FAD binding domain which contains the 

disulphide active site; the NAD'*' binding domain; the central domain and the 

interface domain. E3 exists as a homodimer, with one FAD molecule non- 

covalently bound per subunit, and functions to re-oxidise the reduced lipoic acid
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Figure 1.10. Catalytic Mechanism of the 2-Oxoacid 

Dehydrogenase Complexes and the Overall Reaction Summary
The oxidative decarboxylation of 2-oxoacid substrates by the individual enzyme 

components of the 2-oxoacid dehydrogenase complexes. R= CH3 for PDC, R= 

CH2CH2COOH for OGDC, and R= CH(CH3)2, CH2CH(CH3)2 or CH(C2H5)CH3 

for BCOADC. CoA= Coenzyme A, Lip = lipoic acid, ThDP = Thiamine 

diphosphate.
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moiety of E2, progressing via an intermediate step in which two electrons from 

the dihydrolipoamide moiety are shared between the FAD and the reactive 

disulphide centre before being donated to NAD^. In vitro it has been shown that 

E3 can also work in reverse, transferring reducing equivalents from exogenous 

NADH to E2, thereby reducing the lipoamide group.

1.10.5. £3-Binding Protein (E3BP)

E3BP may also participate in electron transfer; however its principal role is to 

facilitate E3 binding to the E2 core, hence its name. E3BP has a prominent multi­

domain structure similar to that of E2. It contains only a single lipoyl domain 

although it does not exhibit acetyltransferase activity like E2.

1.10.6. 2-Oxoacid Dehdrogenase Complexes as Targets of Oxidative Stress

As mentioned previously (Section 1.4.2), studies were carried out to identify the 

principal enzyme targets of oxidative stress. The most susceptible enzymes were 

shown to be the 2-oxoacid dehydrogenase complexes, particularly OGDC. 

Indeed, OGDC inactivation by ROS is proposed to be responsible for the decrease 

in brain metabolism identified in several neuropathologies (Gibson et al, 2000). It 

is proposed that the lipoic acid group of E2 may be the target of such oxidation. 

To confirm this, a polyclonal antibody that recognises the lipoic acid group of E2 

was raised. A corresponding decrease in recognition of the lipoic acid group with 

an increase in carbonyl content of E2 was observed, suggesting that it is the main 

target of oxidation (Cabiscol et al, 2000).

A more indirect SP-22 function with respect to E3 and E2 could be to serve to 

scavenge the RSS generated as a result of thiol damage or scavenge the free 

radicals that target the thiol groups. SP-22 could function to protect such damage 

with respect to the 2 -oxoacid dehydrogenase complexes and other proteins 

containing vulnerable chemical groupings. E l contains reactive cysteines and E2 

and E3 contain reactive sulphydryl groups, which are potential targets for 

oxidative damage and can be detected using N-ethyl (2,3,-^^^C) maleimide (NEM), 

shown in Fig. 1.11 (Hodgson et al, 1986). The reactive cysteines of E l were
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detected in the absence or presence of substrate pyruvate or NADH; however the 

sulphydryl groups of E2 and E3BP were only available for modification when 

these components were present. This is due to the requirement that E2 and E3BP 

are in their reduced form for the sulphydryl groups of the lipoic acid cofactors to 

be accessible to the NEM. Although E3 employs reactive disulphide for catalysis 

its sulphydryl groups were not labelled by the NEM, implying that they are buried 

within the structure, preventing their modification.

Trx is reported to activate the 2-oxoacid dehydrogenase complexes by fonning 

specific protein-protein interactions, suggesting a clear involvement in their 

regulation (Bunik et al, 1999). The thiol-disulphide oxidoreductase activity of 

Trx is vital for activation of the complexes as demonstrated by site-directed 

mutagenesis. It has been suggested in one report that both PDC and OGDC have 

the same Trx isoform preference, indicating E3 component involvement common 

to both complexes. Furthennore reports have suggested that Trx is competitive 

with E3 oxidation of the dihydrolipoamide intermediate, and can also oxidise E2.
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Figure 1.11. Identification of the Reactive Sulphydryl Groups of 
the Components of PDC as Potential Targets of Oxidative 

Damage
PDC purified from bovine heart was pre-treated for varying lengths of time with 

N-ethyl (2,3-''^C) maleimide, in the absence (Lane 1) or presence (Lane 2) of 

NADH. Lane 3 shows the radiolabelled, denatured complex as a marker for all 

the individual enzymes. (Adapted from Hodgson et a i, 1986).

36



Chapter 1

1,11. Project Aims

There are three principal areas of investigation considered in this thesis; the 

structure and function of SP-22, and the elucidation of any possible interaction 

between SP-22 and E3 of PDC. To address these questions, it was necessary to 

generate high yields of pure SP-22. This was achieved, constructing SP-22 as a 

histidine-tagged recombinant fusion protein (Chapter 3).

Analysis by non-reducing SDS-PAGE demonstrated that the building unit of SP- 

22 is a dimer, containing two inteimolecular di sulphide bonds. Site-directed 

mutagenesis and Ellman’s assay were carried out to establish the cysteines 

responsible for dimerization (Chapter 3). An additional oligomeric form, 

corresponding either to a decameric or dodecameric toroid, was established by gel 

exclusion chromatography and transmission electron microscopy (Chapter 5). 

Analytical ultracentrifugation (AU) was adopted to obtain a more accurate 

molecular weight than gel exclusion chromatography. Circular dichroism (CD) 

and fluorimetry were used to ascertain the stability of SP-22, in addition to the 

influence of the di sulphide interactions on oligomer integrity (Chapter 4).

In the available literature the activity of SP-22 (purified from bovine sources) 

was assessed by monitoring its protective activity towards several free-radical- 

sensitive enzymes. This thesis reports the reproduction of these protection assays 

for recombinant SP-22 using enolase, native bovine E3, PDC and OGDC as the 

susceptible targets (Chapter 6 ).

To make clear whether a physical SP-22/E3 interaction occurs, Isothermal 

Titration Calorimetry (TTC) and Surface Plasmon Resonance (SPR) were used 

(Chapter 7). Furthermore, the functional significance of such an interaction is 

discussed in more detail.
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2.1.0. Molecular biology materials

2.1.1. Bacterial Strains

Escherichia coli DH5tz (Stratagene, Amsterdam, The Netherlands) and 

Escherichia coli DE3 pLysS (Novagen, Nottingham, UK) bacterial strains were 

used for propagation of plasmid vectors and the expression of recombinant 

proteins employing the pET vector system, respectively.

2.1.2. Chemicals

Duchefa (Haarlem, the Netherlands) supplied the chemicals for the bacterial 

media. Roche Diagnostics Ltd., East Sussex, UK, supplied the agarose. 

Ampicillin was purchased from Sigma Chemical Co, Poole, Dorset, UK. 

Diaminoethanetetra-acetic acid (EDTA) and isopropyl-P-D-thiogalactopyranoside 

(IPTG) were bought from Melford Laboratories Ltd, Suffolk, UK. Sodium 

dodecyl sulphate (SDS) was purchased from BDH Laboratory Supplies, Poole, 

Dorset, UK. The PCR nucleotide mix was purchased from Promega, 

Southampton, UK. All standard chemicals and buffers were of analytical grade or 

above.

2.1.3. Enzymes

Restriction endonucleases and calf intestinal alkaline phosphatase (CIAP) were 

purchased from Roche. T4 DNA ligase, Pfu DNA polymerase, and Dpn 1 were 

purchased from Promega.

2.1.4. Plasmid Vectors

PET-14b was purchased from Novagen. Recombinant human E3/pET-14b was 

previously cloned and kindly provided by Dr. Audrey Brown (see Fig. 2.1 for the 

pET-14b vector map).
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Bpt/11021 ttrombih ~~ T7 terminator___________
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L y  f iG I u A  I o G  I i i L e u A  t o A  I ak  I o T h r ^ A l o G  u G  1 n E n d _ _ _ _ _

T7 temiinatOT primer #69337-3

Figure 2 .1 . Circular Map and Cloning/Expression Region of the 

pET-14b Vector
There is an N-terminal His-tag® sequence followeti by a thrombin site, and three 

cloning sites (BamHI, Xhol and Ndel). The cloning/expression region transcribed 

by T7 RNA polymerase is shown in the box, numbered using the pBR322 

convention; therefore the T7 expression region on the circular map is reversed.
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2.1.5. Synthetic Oligonucleotides

Primers for gene amplification by PCR were designed in the laboratory and 

synthesized on the 50nmole scale by GIBCO BRL, Paisley or GenoSys 

Biotechnologies (Europe) Ltd., Cambridgeshire. Mutagenic primers were also 

designed in the laboratory and synthesized by Sigma (50nmole scale) including a 

PAGE purification step.

2.1.6. Plasmid DNA Purification Kits

Wizard® Plus Mini Preps and Maxi Preps DNA purification systems were 

purchased from Promega. The QIAquick Gel Extraction kit for DNA purification 

was purchased from QIAGEN Ltd. The QuikChange™ Site-Directed Mutagenesis 

Kit containing Pfu Turbo DNA polymerase was obtained from Stratagene.

2.1.7. DNA Molecular Weight Markers

The Ikb DNA Step Ladder, supplied with Blue/Orange Loading Dye (6 X) was 

purchased from Promega. Low DNA Mass™ Ladder was obtained from 

Invitrogen™ Ltd, Paisley.

2.1.8. Photographic Equipment

Photographs were taken using a Polaroid DS34 direct screen-imaging camera and 

recorded on MITSUBISHI K65HM-ce glossy thennal paper supplied by 

Amersham Pharmacia Biotech.

2.1.9. Nucleotide Accession Numbers

The nucleotide and protein sequence for SP-22 was obtained from the Entrez 

Nucleotide database (http://www.ncbi.nlm.nih.gov/entrez), accession number 

D82025.
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2.2.0. Molecular Biology Methods

2.2.1. Growth of Bacterial Cells

Luria Broth (LB) (1% (w/v) bacto-tryptone, 1% (w/v) NaCl, 0.5% (w/v) yeast 

extract; pH 7.2) or LB/agar plates (LB containing 1% (w/v) Agar) were the growth 

media of choice for all bacterial strains. When appropriate, media was 

supplemented with ampicillin at 50pg/ml.

SOC media, prepared immediately before use, was used in all transformation 

reactions. SOC media was filter-sterilized following the addition of 0.02% (w/v) 

glucose to sterile SOB media (2% (w/v) bacto-tryptone, 0.5% (w/v) yeast extract,

0.05% (w/v) NaCl, lOmM MgCh, lOmM MgS0 4 ; pH 7.0).

2.2.2. Bacterial Cell Storage

Cells could be stored for 1-2 weeks as colonies on agar plates at 4°C. Cells 

present in LB media could be stored for longer periods of several months at -80°C, 

when mixed with an equal volume of 2 0 % (v/v) glycerol.

2.2.3. Initiating Bacterial Growth

Small volumes of frozen or liquid cultures, removed with a sterile loop were used 

to inoculate growth media or agar plates. Growth was achieved by overnight 

incubation (16h maximum) at 37°C.

2.2.4. Competent Cell Preparation

Bacterial strains were made competent for cloning and subsequent expression of 

target genes. Bacteria were grown overnight at 37°C on sterile LB/agar plates. A 

single colony was used to inoculate 5ml of LB media, and grown overnight at 

37°C with shaking. The overnight culture was used to inoculate 100ml sterile LB, 

incubating at 37°C with shaking until an absorbance of 0.5 at 550nm was reached. 

The cells were transfened to a sterile polypropylene tube and cooled on ice for 15 

min before harvesting by centrifugation at 3,500rpm for 15 min at 4°C in a
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Beckman Allegra^^ 6 R centrifuge. The supernatant was decanted and the pellet 

resuspended in 20ml ice-cold, filter-sterilized buffer 1 (30mM potassium acetate, 

lOOmM RbCE, lOmM CaCE, 50mM MnCE and 15% (v/v) glycerol; pH 5.8). 

The tube was incubated for 5 min on ice prior to centrifugation as before. The 

supernatant was decanted and the pellet resuspended in 2 ml ice-cold filter- 

sterilized buffer 2 (lOmM MOPS, 75mM CaClz, lOOmM RbClz and 15% (v/v) 

glycerol; pH 6.5), then cooled on ice for 15 min. Aliquots of 20pl were stored at 

-80°C for several months.

2,2.5. Transformation of Bacterial Cells

Competent cells (50pl) were thawed on ice immediately prior to use. Typically 

10-50ng of plasmid DNA was added to the bacteria, then mixed by gentle 

agitation and incubated on ice for 15 min. The sample was heat pulsed for 90 s at 

42°C and placed on ice for 2 min. SOC medium (450pl) (see section 2.2.1) was 

added to the transformation mix and grown at 37°C for 45 min. Following 

incubation the cells were harvested by centrifugation for 1 min at 14,000ipm in a 

bench top microfuge. The supernatant was decanted and the pellet resuspended in 

200pl SOC medium. The cells were spread evenly on an LB/agar plate containing 

the appropriate antibiotic for the plasmid vector and incubated overnight at 37°C.

2.3.0. DNA Techniques

2.3.1. DNA Gel Electrophoresis

DNA fragments were separated by agarose gel electrophoresis, prepared by 

dissolving the required amount of agarose, typically 0.7-2.5% (w/v) in (IX) TAE 

buffer, pH 7.6. TAE buffer was prepared as a (lOX) stock in 1 litre (11.4ml glacial 

acetic acid, 20ml 0.5M EDTA and 48.8g Tris-HCl, pH 8.0). The gel was placed 

in an electrophoresis tank and submersed in TAE buffer (IX). In general, 3pi 

loading buffer (50% (v/v) glycerol, 0.01% (w/v) SDS, 0.01% (w/v) bromophenol 

blue) was added to 5pi of DNA prior to electrophoresis which was carried out at 

100 volts (V) and 250 mAmps (mA). DNA fragments were visualized on
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ethidium bromide (EtBr) staining in distilled water (0.5-lpg/ml in dH2 0 ) for 30 

min with shaking at room temperature. The gel was rinsed in dH%0 to remove 

background stain, and then visualized under 320nm UV light. Photographs were 

taken with a Polaroid DS34 direct screen-imaging camera, and recorded onto 

K65HM-CE glossy thermal film. Where necessary, linear DNA fragments were 

excised from the gel using a scalpel, and subsequently purified using a Qiagen 

DNA gel extraction kit.

2.3.2. Polymerase Chain Reaction (PCR) Amplification of Precursor and 

Mature Forms of SP-22

Precursor SP-22 previously cloned into the pCRScript plasmid vector was used as 

the template for the PCR reaction, catalyzed by Pfu DNA polymerase. The PCR 

reaction contained 5pi reaction buffer (lOX), Ipl dNTP mix (0.25mM each of 

dATP, dCTP, dGTP, and dTTP), Ipl forward and reverse specific primers (Fig.

2.2.), and Ipl Pfu DNA polymerase (3U/pl) prepared in a total volume of 50pl 

with sterile dHzO. Amplification was carried out in a PTC-100™ programmable 

thermocycler (MJ Research Inc.). The reaction cycle comprising six steps is 

shown below:

1. 2. 3. 4. 6.

60 s at 95°C->60 s at 95°C ^60  s at 4 0 °C ^2  min at 72°C-> Hold at 4°C ̂ /
5. 24 cycles

Successful amplification was determined by agarose gel electrophoresis.
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2.3.3. Mutagenesis of SP-22

Using a QuikChange™ Site-Directed Mutagenesis Kit (Stratagene) the cysteine 

residues of SP-22 were mutated to seiine residues. The oligonucleotide primers 

(Fig.2.3), each complementary to opposite strands of the recombinant SP- 

22/pET14b plasmid were extended during temperature cycling in a PTC-100™ 

programmable thermocycler, using Pfu Turbo™ DNA polymerase. PfuTurbo DNA 

polymerase is a mix of cloned Pfu DNA polymerase and a novel thermostable 

factor which enhances PCR product yields, without compromising DNA 

replication fidelity. Pfu DNA polymerases generally have lower error rates (1.3 X 

10^) than other enzymes such as Taq DNA polymerase. The reaction mix 

contained 20ng SP-22/pET-14b template, 125ng each primer, Ipl dNTP mix 

(0.25mM each of dATP, dTTP, dCTP, and dGTP), 5pl reaction buffer (lOX), and 

l,5pl Pfu TurbdDHh polymerase (3U/pl), prepared to a total volume of 50pl with 

sterile dH20. The cycling parameters for the mutagenesis reaction were as 

follows:

1. 2. 3. 4. 6.

30 s at 95°C—̂ 30 s at 95°C-> 1 min at 45°C™> 12 min at 6 8 °C—> Hold at 4°C

5. 12 cycles

The annealing temperature (step 3) was 45°C for C47S and C6 6 S, and 55°C for 

C168S. Following temperature cycling, the reaction mix was cooled on ice for 2 

min. To determine whether amplification was successful, lOpl PCR product was 

analyzed by agarose gel electrophoresis. The parental (non-mutated) DNA 

template was removed by digestion, using the enzyme Dpn I which is specific for 

methylated and hemimethylated DNA. As DNA isolated from E. coli is generally 

methylated, it is a suitable substrate for Dpn I. Digestion of the PCR product was 

carried out with Ipl Dpn 1 (lOU/pl) by incubating for Ih at 37°C. The mutant 

constructs produced contain nicks in their circular DNA which are repaired
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following transformation into E. coli DH5a cells; Ipl of the reaction mix was 

added to 50pl competent cells (see section 2.2.5). Colonies containing the mutant 

constructs were selected according to their ampicillin resistant properties. 

Mutated plasmid DNA was purified from a 5ml LB/Amp overnight culture using a 

Wizard® Plus Mini Preps kit.

2.3.4. Restriction Endonuclease Digestion of SP-22 and Plasmid Vectors

Following PCR amplification of SP-22, the BamHI restriction endonuclease was 

used to generate sticky ends for subsequent ligation with pET-14b. Both insert 

and vector DNA (approx. 5pg) were digested in a reaction containing 3pl of the 

appropriate SuRE/Cut Buffer (lOX), and 3pi BamHI (lOU/pl) made up to a total 

volume of 30pl with sterile dHaO. Digestion was carried out at 37°C for 3h. The 

restriction enzyme Ncol was also used to determine coiTect SP-22 insert 

orientation. Reaction conditions for Ncol digestion were the same as for BamHI.

To prevent re-joining of the vector DNA during ligation, the 5' protruding termini 

were dephosphorylated immediately following restriction digestion. This was 

cairied out by incubating the linear vector with calf intestinal phosphatase (CIAP) 

for 30 min at 37°C, followed by heat inactivation at 65°C for 15 min. The treated 

vector was then cleaned up using the QIAquick® Gel Extraction Kit, purifying 

directly from the reaction mix. After each purification step, 5pi of the insert DNA 

was analyzed on a 1.5% (w/v) agarose gel.

2.3.5. Ligation of SP-22 PCR Product into pET-14b

Following BamHI treatment, the DNA encoding SP-22, and pET-14b were joined 

via the actions of T4 DNA ligase. Three ratios of plasmid to vector were prepared 

(1:1, 1:3 and 1:7), in a reaction mix containing 2pl reaction buffer (lOX), 1.5pl T4 

DNA ligase (3U/pl) diluted to 20pl with sterile dHzO).
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2.3.6. Plasmid Propagation and Puriücation

Vector and recombinant plasmid DNA amplified in E. coli D H 5a cells was 

purified from 5ml overnight cultures using a Wizard® Plus Mini Preps DNA 

purification kit. Purified DNA (5p,l) was analyzed by agarose gel electrophoresis. 

For DNA sequencing, large-scale (250-500ml) bacterial cultures were grown to 

obtain increased quantities of plasmid DNA. Large-scale DNA purifications were 

earned out using a Wizard® Plus Maxi Prep purification kit.

2.3.7. Preparation of DNA for Sequencing

Following purification of plasmid DNA as stated above, the band of interest was 

gel purified to ensure high purity for subsequent sequencing. The concentration of 

DNA obtained was determined following agarose gel electrophoresis against 4|xl 

Low DNA Mass™ Ladder. The Molecular Biology Sequencing Unit (MBSU), 

University of Glasgow performed the sequencing reactions requiring 600-800ng 

double-stranded DNA, and 3.2p,M of T7 promoter and terminator primers per 

reaction.

2.3.8. Expression of Recombinant Protein in Bacteria

Expression of target proteins was achieved following transformation into E. colL 

BL21(DE3) pLysS cells. Overnight cultures (5ml) were used to inoculate 50ml of 

LB media containing ampicillin (50pg/ml). Cultures were incubated at 37°C with 

shaking until an Aôoo of 0,5 was reached. Induction of heterologous protein 

expression was initiated by addition of ImM IPTG. Induction temperatures varied 

according to the protein of interest. Bacterial growth was monitored, samples 

(1ml) were removed at the point of induction and at regular intervals thereafter, 

and their absorbance recorded at 600nm. Cells were harvested by centrifugation 

in a bench top microfuge for 2 min; the pellet was resuspended in Laemmli 

sample buffer (10% (w/v) sucrose, 2% (w/v) SDS, 62.5mM Tris-HCl, pH 6 .8  and 

a small amount of Pyronin Y dye), adding lOpl per 0.1-absorbance unit. 

Successful overexpression was determined following reducing SDS- 

polyacrylamide gel electrophoresis (PAGE) analysis (section 2.5.6).
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2.3.9. Bacterial Cell Lysis

Bacterial cells from small (50ml) cultures were harvested by centrifugation and 

resuspended in 5ml appropriate buffer. Lysis was achieved by four freeze-thaw 

cycles, followed by four 10 s sonication bursts. To optimize the yield of soluble 

protein, the cell extract was then incubated with 0.1% (v/v) NP-40 for 30 min at 

room temperature with shaking. For large (500ml) cultures, bacterial cells were 

harvested and the pellet resuspended in 15ml of appropriate Buffer. The bacterial 

extract was passed four times through a French Pressure Cell Press (AMINCO) at 

a pressure of 950Psi, to lyse the cells. Insoluble and soluble fractions were 

separated from the cell extract by centrifugation at 10,000ipm for 15 min in a JA- 

17 rotor in Beckman J2-MC Centrifuge.

2.4.0. Protein Materials

2.4.1. Chemicals

The following chemicals were purchased from Sigma Chemical Co, Poole, Dorset, 

UK: acetyl coenzyme A (lithium salt), coenzyme A (lithium salt), benzamidine, 

DL-6 ,8 -thioctic acid amide (DL-lipoamide, oxidized form), 5,5'- 

dithionitrobenzoic acid (DTNB), ferric chloride (FeClg), guanidinium chloride 

(GdmCl), hydrogen peroxide (H2O2), N-(2-hydroxyethyl)piperazine-N'-(4- 

butanesulphonic acid) (HEPES), imidazole, leupeptin, |3-nicotinamide adenine 

dinucleotide (oxidized form p-NAD^) and the reduced form (p-NADH), 2- 

oxoglutaric acid (sodium salt), phenylmethylsulphonyl fluoride (PMSF), D(+) 2- 

phosphoglyceric acid (2-PGA), polyethylene glycol 6000 (PEG), potassium 

phosphate (KH2PO4), pyruvic acid (sodium salt), sodium fluoride (NaF), thiamine 

diphosphate (ThDP), trichloroacetic acid (TCA) and urea. DTT was bought from 

Mel ford Laboratories Ltd., Suffolk, UK. All chemicals were at least of analytical 

grade.
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2.4.2. Proteins and Enzymes

Bovine catalase (50mg), rabbit muscle enolase (50U), bovine E3 (500U), human 

recombinant thioredoxin (500pg) and E. coli. thioredoxin reductase (250|ig) were 

purchased from Sigma. Thrombin protease (50U) was bought from Amersham 

Pharmacia Biotech Ltd. Immunoglobulin G (IgG) and Protein Assay Dye Reagent 

concentrate were obtained from BIO-RAD.

2.4.3. Biological Tissues

Bovine hearts for isolation of PDC and OGDC were obtained from Paisley 

Abbatoir, Sandyford Road, Paisley, UK. Hearts were maintained and transported 

on ice following removal before storage at -80°C in aliquots of 300g. Tissue was 

thawed overnight at 4°C prior to use.

2.4.4. Molecular Weight Markers and Equipment

1) The Low Molecular Weight Marker Kit was purchased from Amersham 

Pharmacia Biotech UK Ltd, for molecular weight determination of proteins run on 

denaturing SDS-PAGE. The calibration mix was supplied as a lyophilized sample 

containing six highly purified proteins with a Mr range of 14,400-94,000. The 

calibration mix (250jxg) was resuspended in 250pl Laemmli sample buffer 

(section 2.3.8) to give a IX concentration, and lOpl was routinely loaded on a gel. 

The molecular weight of the protein of interest was determined by comparing its 

electrophoretic mobility with that of the molecular weight standards’.

2) The MW-GF-1000 molecular weight marker kit was obtained from Sigma and 

contained a protein mixture, exhibiting a molecular weight range from 29,000- 

669,000 Mr. Cytochrome-c (M, 12,400) was additionally purchased from Sigma. 

The protein standards were prepaied in 50mM KPi buffer, pH 7.0 containing 

150mM NaCl to concentrations advised in the maker’s instructions.

3) A pre-packed HiPrep (16mm x 600mm), Sephacryl S-300 High Resolution 

column was purchased from PhaiTnacia with a bed volume of 120ml and
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fractionation range of 1 X 10"̂ - 2 X 10*̂  Mr. The column was run using a BioCAD® 

700E Perfusion Chromatography® Workstation.

4) The BioCAD® SPRINT™ and BioCAD 700 Series Perfusion Chromatography® 

Workstations and SelfPack POROS 20 Metal Chelate Affinity Packing were 

purchased from PerSeptive Biosystems, Framingham, MA, U.S.A. Chelating 

Sepharose® Fast Flow gel matrix was purchased from Amersham Pharmacia 

Biotech.

2.4.5. Spectrophotometric Equipment

All spectrophotometric measurements for enzyme assays, protein concentration 

determination, and Ellman’s assay, were recorded using a UV-2101 PC scanning 

spectrophotometer (SHIMADZU). UV Quartz cuvettes (1ml, Jencons) with a 

10mm light pathlength were routinely used.

2.5.0. Protein Methods

2.5.1. Preparation of the Metal Affinity Column

Metal affinity chromatography used to purify His-tagged proteins was carried out 

using a BioCAD® SPRINT™ Workstation. A column (10mm x 100mm) with a 

bed volume of 8.5ml was packed with SelfPack POROS 20 Metal Chelate 

Affinity Packing according to the manufacturer’s instructions. Zinc ions (Zn̂ "*") 

were loaded onto the matrix by passage of 20 column vol of O.IM ZnCL at a low 

pH of 4.5-5.0 to minimize precipitation of metal hydroxide complexes. The 

column was then washed with 5 column vol of dHaO to remove excess zinc ions 

followed by 5 column vol of 0.5M NaCl to remove non-specifically bound metal 

ions. To improve selectivity and recovery of the His-tag protein, the column was 

saturated with elution buffer (0.5M imidazole, l.OM NaCl, 20mM KPi or HEPES 

buffer, pH 6.0). The metal chelate column was primed with 5 column vol of 

starting buffer (0.5mM imidazole, l.OM NaCl, 20mM KPi or HEPES buffer, pH 

8.0) prior to protein loading. The starting buffer for wild type and mutant SP-22
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was changed from KPi to HEPES due to problems with iiTeversible binding to the 

metal column. The starting buffer for purification of human E3 was KPi.

2.5.2. His-Tag Purification of Wild Type, Mutant SP-22 and E3.

Bacterial cultures (500ml) were routinely employed in purification of high yields 

(20-30mg) of protein per single purification. Following bacterial lysis (section 

2,3.9) the pellet was resuspended in 15ml starting buffer (section 2.5.1). The 

clarified supernatant resolved from the cell extract was maintained on ice until 

required.

Three 5ml injections steps were incorporated into the BioCAD elution protocol to 

load the 15ml sample onto the metal chelate affinity column. An increasing 

imidazole gradient, from 0.5mM - 0.5M over 5 column vol was earned out, 

eluting the His-tagged protein in 2ml fractions. Column regeneration was 

achieved by stripping with l.OM NaCl containing 50mM EDTA, or alternatively 

using l.OM NaOH for more tightly bound proteins followed by a water wash. The 

column was stored in dHgO or 2 0 % (v/v) ethanol for longer time periods. 

Fractions were stored at 4°C.

2.5.3, Preparation of BioCAD Protein Fractions for SDS-PAGE

Following elution of the His-tag recombinant protein, aliquots (lOOpl) of peak 

fractions were removed for TCA/acetone precipitation. Fractions containing 10% 

(w/v) TCA were placed on ice for 30 min, prior to centrifugation at 10,000rpm in 

a GS-15R Beckman centrifuge for 10 min at 4°C. The supernatant was discarded 

and the precipitate was resuspended in 500pl ice-cold acetone (100%) and 

incubated on ice for a further 30 min. The samples were centrifuged as before and 

the pellet resuspended in 40pl Laemmli sample buffer (section 2.3.8) 

supplemented with DTT (150mM) for subsequent SDS-PAGE analysis.
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2.5.4. Protein Dialysis and Concentration

Peak fractions following metal chelate chromatography were pooled and dialyzed 

routinely into 101 of dialysate (5 x 21 changes) at room temperature or 4°C, 

Dialysis tubing had a molecular weight cut-off of 10,000 Mr. The dialysate was 

typically 150mM NaCl, 50mM KPi, pH 7.2 for the majority of experiments. 

Exceptions were for circular dichroism (150mM sodium fluoride (NaF), 50mM 

KPi, pH 7.2, and BIAcore analysis (HBS buffer which contains lOmM HEPES pH

7.4, 15mM NaCl, 3.4mM EDTA and 0005% (v/v) surfactant P20).

2.5.5. Protein Concentration Determination

Protein concentration was determined according to the Bradford Assay (Bradford, 

1976). Absorbance readings at a wavelength of 595nm for known concentrations 

of IgG were used to generate a standard curve. The concentration of the unknown 

protein was determined by extrapolating from the standard curve. For more 

accurate concentration detemiination, the absorbance of the protein at 280nm was 

measured. To determine the A^go, it was necessary to derive an extinction 

coefficient for the protein under investigation. The protein was analyzed in the far 

UV spectrum over 200-340nm, using buffer only as the reference. The extinction 

coefficient was calculated using the following equation:

No. of Trvptophan Residues x 5690 + No. of Tvrosine Residues x 1280 

Monomeric molecular weight of Protein

The A280 divided by the extinction coefficient enabled protein concentration 

determination. The extinction coefficient used for Img/ml of SP-22 and the 

cysteine mutants was 0.73, and 0.42 for E3.

2.5.6. SDS-PAGE

Electrophoresis of protein samples was earned out in SDS, according to the 

method of (Laemmli, 1970). Each gel comprised a 3% stacldng gel and a 10-15% 

resolving gel depending on the molecular weight of the protein of interest.
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Polymerization of the gel was achieved on addition of 0.03% (v/v) TEMED, and 

0.05% (w/v) ammonium persulphate (APS) to a 30:0.8 ratio of

acrylamide:bisacrylamide. Typically a lOpl sample was loaded per well. 

Electrophoresis was carried out at a constant voltage (400V) and 50mA/gel in IX 

SDS running buffer prepared from a lOX stock (144g glycine, lOg SDS and 29.8g 

Tris-HCl, pH 8.8  prepared to 11 with distilled water). Protein bands were stained 

with Coomassie Brilliant Blue G250 in 50% (v/v) methanol and 10% (v/v) glacial 

acetic acid shaking for 30 min at room temperature. The gel was immersed in an 

appropriate volume of destain (10% (v/v) methanol and 1 0% (v/v) glacial acetic 

acid) to remove excess stain and enable clear band visualization.

For superior resolution when necessary, samples were run on pre-cast 4-12% 

NUPAGE®Novex Bis-Tris gels (Invitrogen) held within a XCell SureLock^'' Mini- 

Cell. The preparation of protein samples for electrophoresis was the same as for 

SDS-PAGE. Electrophoresis was carried out in IX NUPAGE® MES SDS 

Running buffer at constant voltage (200V) and llOmA/gel. The staining 

procedure was as for polyacrylamide gels.

2.5.7. Immunoblotting

Protein transfer from a protein blot to a Hybond™ ECL™ nitrocellulose membrane 

(Amersham Pharmacia Biotech Ltd.) was carried out overnight at room 

temperature in a Trans-Blot™ Cell (BIORAD) at 400V/40mA. Transfer buffer was 

prepared as a lOX stock (30.3g Tris-HCl, pH 8.3, 144g glycine and 2g SDS, 

prepared to 2.51) and was used at a IX dilution. Immunoblotting apparatus was 

assembled with the nitrocellulose membrane facing the anode, and the gel facing 

the cathode. Successful transfer was established following staining with Ponceau 

Red stain. Non-specific binding sites were blocked with Blocking Solution 

(20mM Tris-HCl, pH 7.2, 15mM NaCl, 5% (w/v) non-fat milk and 0.2% (v/v) 

Tween 20) overnight at 4°C with shaking. The membrane was subsequently 

incubated overnight at 4°C with a polyHis Antibody (Qiagen), diluted 1 in 2000 

with 20mM Tris-HCl, pH 7.2, containing 1% (w/v) non-fat milk and 0.1% (v/v)
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Tween 20. Four 30 min washes in large volumes of 20mM Tris-HCl, pH 7.2, 

containing 15mM NaCl and 1% (w/v) non-fat milk were carried out to remove the 

primary antibody solution. Protein blots were developed according to the maker’s 

instructions onto Hyperfilm™ ECL™ using an ECL™ detection Kit, supplied by 

Amersham Pharmacia Biotech Ltd.

2.5.8. Silver Staining

Silver staining of proteins run by SDS-PAGE was carried out according to the 

method of Wray et al. (1981). All staining steps were earned out at room 

temperature with constant agitation. Protein gels were immersed in 50% (v/v) 

methanol for 2h followed by staining for 15 min with Solution C, prepared 

immediately prior to use by adding Solution A (0.8g silver nitrate dissolved in 4ml 

dHzO) drop-wise to Solution B (21ml 0.36% (w/v) NaOH and 2.1ml ammonia) 

and diluted to 100ml with dHzO. The gel was washed for 5 min with dH2 0  and 

bands were developed with addition of Solution D (2.5ml 1% (w/v) citric acid and 

0.25ml 0.38% (v/v) formaldehyde made up to total volume of 500ml with dH2 0 ). 

The gel was closely observed until optimal band visualization after which the gel 

was kept in 50% (v/v) methanol. Pictures were taken immediately as bands 

continue to develop.

2.5.9. Cleavage of His-tag from SP-22

The serine protease thrombin, supplied as a lyophilized powder, was used to 

cleave recombinant fusion proteins containing a His-tag. Cleavage was achieved 

by overnight incubation at room temperature with the protein (lU  cleaves > 90% 

of 100p,g protein). Proteins with intact His-tags were removed by metal affinity 

chromatography using a PD-10 column prepared with 2ml of Chelating 

Sepharose® Fast Flow (Amersham PhaiTnacia Biotech Ltd.) employing 

immobilized zinc ions according to the manufacturer’s instructions. Successfully 

cleaved protein was collected in 1ml fractions by washing through with buffer 

containing 150mM NaCl, 50mM KPi, pH 7.0.
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2.5.10. Ellman Assay for Thiols

Protein samples of known concentration were prepared in 150mM NaCl, 50mM 

KPi, pH 7.0 in the presence and absence of 6M GdmCl. The amount of 

nitrothiobenzoate (NTB) released upon reaction of a thiol with DTNB was 

measured by monitoring the absorbance at 412nm. The absorbance was set to 

zero with a 1ml protein sample. To the protein sample, 25|xl lOmM DTNB 

prepared in O.IM KPi, pH 7.0 was added and inverted to mix. The absorbance 

was recorded over 40 min at room temperature. The absorbance difference 

between the plateau of the protein sample and the buffer only control was 

measured. The molar absorbance of the TNB anion (£412 = 13,700/M cm in 6M 

GdmCl, 14,150/M cm in its absence) produced was used to calculate the molar 

concentration of the thiols present: 

pM SP-22 X £412= Expected per thiol.

2.5.11. Gel Filtration

Gel exclusion chromatography was performed at room temperature using a pre­

packed HiPrep 16/60 Sephacryl S-300 High Resolution column connected to a 

BlOcad® 700E Perfusion Chromatography® Workstation. The flow rate was 

Iml/min and the volume of protein loaded was 1ml (recommended < 2 % of bed 

volume). Fractions (1.5 ml) were collected between 0.3-0.9 column vol. All 

buffers were filtered through a 0.2pm vacuum filter (Millipore). The column was 

equilibrated with 2  column vol of the appropriate buffer, washed with 2  column 

vol of dH2 0  between runs and stored in 2 0 % (v/v) ethanol for longer periods.

2.5.12. Purification of PDC and OGDC from Bovine Heart

The purification of PDC and OGDC was based on the method of Stanley and 

Perham (1980) with modifications described by De Marcucci et al. (1986). All 

steps, unless otherwise stated, were earned out at 4°C and using either a JA-17 or 

JA-14 rotor in a Beckman J2-MC centrifuge. Bovine heait (300g), previously 

sectioned with the fat and connective tissue excised, was removed from storage at 

-80°C and thawed overnight at 4°C prior to use. Final thawing was carried out at
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room temperature. The tissue was placed in a Waring blender and covered with 

700ml ice-cold extraction buffer (50mM MOPS, pH 7.0, 3% (v/v) Triton X-100 

(TX-lOO), 0.1% (v/v) silicon anti-foam, ImM DTT, 1.5pM leupeptin, ImM 

PMSF plus ImM benzamidine and homogenized on low for 3 min. The 

homogenate was centrifuged at I0,000rpm for 20 min at 4°C. The pH of the 

cell/nuclear free supernatant was adjusted to 6.45 with 10% (v/v) acetic acid prior 

to the first PEG precipitation step which involved 0.12 vol of 35% (w/v) PEG 

6000 being added drop-wise to the supernatant. To ensure complete precipitation 

the solution was stirred on ice for 30 min. The pelleted material was recovered 

following centrifugation at 14,000rpm for 15 min. Pellets were resuspended in a 

total volume of 100ml 1% (v/v) TX-lOO buffer (50mM MOPS, pH 6 .8 , 1.5|iiM 

leupeptin, ImM PMSF and ImM benzamidine) using a Teflon homogeniser. The 

supernatant was clarified following centrifugation at 17,000rpm for 40 min and fat 

droplets were removed by filtration through eight layers of muslin. 0.013 vol of 

l.OM MgCE and 0.05 vol. of l.OM NaPi, pH 6.3 were added to the supernatant, 

maintaining the pH above 6 .8  with 0.5M NaOH. The pH was then lowered to 

6.45 with 10% (v/v) acetic acid, and for the second PEG precipitation step, 0.12 

vol of 35% (w/v) PEG 6000 was added drop-wise, stirring for a further 30 min. 

Pellets were recovered by centrifugation at 16,000rpm for 10 min and resuspended 

by homogenization in 80ml 1% (v/v) TX-lOO buffer as before. The suspension 

was stored overnight at 4°C in the presence of protease inhibitors.

Next day, the suspension was homogenized briefly and then centrifuged at 

17,000ipm for Ih. The pH of the supernatant was lowered to 6.45 with 10% (v/v) 

acetic acid and an aliquot was removed to assess PDC/OGDC activity. The third 

PEG precipitation step involved the addition of 0.05 vol of 35% (w/v) PEG 6000 

to the supernatant stining for a further 30 min. Another aliquot was removed and 

spun at 13,000g in a bench-top microfuge before re-assaying the supernatant for 

PDC/OGDC activity. If the OGDC activity was > 5% of the previous activity, 

another 0.01 vol of 35% (w/v) PEG 6000 was added, stirring for 30 min. The 

supernatant was spun at 17,000rpm for 10 min and the pellets were resuspended in
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50mM KPi, pH 7.0. OGDC was diluted to < lOmg/ml and purified complex for 

immediate use was stored at 4°C; otherwise it was aliquoted and stored at -80°C 

in 50% (v/v) glycerol. The clarified supernatant was transfeiTed into Ti70 tubes 

and centrifuged at 40,000rpm for 2h in a Beckman L7 model Ultracentrifuge. The 

pellets were resuspended in a minimal volume of 50mM KPi, pH 7.0. PDC was 

diluted to lOmg/ml and stored at 4°C or in 50% (v/v) glycerol at -80°C, for longer 

periods. EDTA was omitted from the TX-lOO buffers due to its chelating effect 

on the iron in the free radical generating system used in future experiments.

2.5.13. E3 Assay

Bovine and recombinant human E3 activity was measured spectrophotometrically 

following the oxidation of DHL which is coupled to the formation of NADH and 

detected by an increase in absorbance at 340nm. All assays were canied out at 

30°C. Bovine E3 was dialyzed into O.IM KPi, pH 7.0 (4 x 11 changes at 4°C) to 

remove buffer components included in the enzyme mix which had a protective 

effect on the enzyme. Purified E3 (5-50pg) in O.IM KPi, pH 7.0 was added to 

670)^1 solution A (50mM KPi, pH 7.6, 3.0mM NAD" ,̂ 2.0mM MgCL, 0.2mM 

ThDP) and the absorbance set to zero. The reaction was initiated by addition of 

14pl fresh DHL (2.0mM in 70% (v/v) ethanol). The substrate DHL for the E3 

assay was prepared in the laboratory from DL-lipoamide according to the method 

of Kochi and Kikuchi (1976).

2.5.14. Enolase Assay

Enolase activity was assessed by observing the increase in absorbance at 240nm 

corresponding to the conversion of the substrate 2-PGA to phosphoenol pyruvate 

(PEP). 2-PGA (ImM) was prepared in 30mM Tris-HCl, pH 7.0 containing ImM 

MgS0 4 . Substrate solution (1ml) was used to set the absorbance to zero. The 

reaction was initiated with addition of enolase (l-2pg) and the reaction monitored 

over 45 s.
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2.5.15. 2-Oxoadd Dehydrogenase Assays

The 2-oxoacid dehydrogenase complexes, PDC and OGDC were assayed by 

recording the absorbance increase at 340nm corresponding to the generation of 

NADH 45s (Brown & Perham, 1976). Complexes were purified from bovine 

heart and prepared in O.IM KPi buffer, pH 7.0 as described in section 2.5.12. 

Purified enzyme (l~5pg) was added to 670pl solution A (50mM KPi, pH 7.6, 

3.0mM NAD^, 2.0mM MgCh, 0.2mM ThDP) and 14pl solution B (0.13M 

cysteine-HCl, 0.13mM LiiCoASH), pre-warmed to 30°C and the absorbance set to 

zero. The reaction was initiated by addition of 14pl solution C (lOOmM pyruvic 

acid for PDC or lOOmM 2-oxoglutarate for OGDC).

2.5.16. Hydrogen Peroxide Inactivation of PDC, OGDC and E3

As inhibition of the 2-oxoacid dehydrogenase complexes and E3 by the artificial 

free radical generating system was minimal, the effect of adding hydrogen 

peroxide directly was assessed. The particular enzyme was incubated with 1, 5, 

and lOmM hydrogen peroxide at 30°C and, at increasing time intervals, the 

remaining enzymatic activity was assessed according to the particular enzyme.

2.5.17. SP-22 Protection Assay

The activity of SP-22 was routinely determined by monitoring its ability to protect 

enolase from inactivation, in the presence of a thiol/Fe^^/Oz free radical- 

generating system (FRS). Enolase was dialyzed into 50mM KPi, pH 7.0 

containing 150mM NaCl (4 x 11 changes at 4°C) to remove components supplied 

in the enzyme mix that had potential stabilizing effects on enolase. Assays were 

performed in 12Gp.l incubation mix containing 33jLig enolase, 30pM FeClg, 30mM 

DTT, 50mM imidazole-HCl, pH 7.2 and 3-66p,g SP-22. Controls for each 

component of the FRS were also carried out in the absence of SP-22. The FRS 

and SP-22 were pre-incubated together for 5 min at 30 °C prior to addition of the 

enolase. At various time intervals, 20jxl assay mixture was removed and added to 

20jxl 2mM EDTA. A sample (30pl) was then removed and assayed in a total 

volume of 1ml containing 30mM Tris-HCl, pH 7.0, 3mM MgS0 4  and ImM of 2-
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PGA. The absorbance was monitored at 240nm over 45s indicating the successful 

conversion of 2-PGA to PEP.

2.5.18. Assessment of Hydrogen Peroxide Removal

Hydrogen peroxide removal by catalase and SP-22 was measured by monitoring 

the reduction in absorbance at 240nm over 85s. Hydrogen peroxide (50mM) was 

prepared in 50mM KPi buffer, pH 7.0 and 1ml was pre-heated to 30°C in a quartz 

cuvette prior to addition of bovine catalase (30pg) or SP-22 (300pg). 

Experiments were also carried out in the presence of 20mM DTT as the 

peroxidase activity of SP-22 requires a source of thiol groups to be reduced for 

subsequent catalytic cycles.

2.5.19. Circular Dichroism (CD) of SP-22 and the Cysteine Mutants

CD measurements were taken in the near and far UV regions of the spectrum, 

using a JASCO J-600 spectropolarimeter. For unfolding experiments, SP-22 

(0.5mg/ml) was chemically denatured over a range of urea concentrations (0-9M) 

prepared in 50mM KPi, pH 7.0 containing 150mM NaF and equilibrating 

overnight at room temperature. Urea was prepared fresh and experiments were 

carried out immediately before urea breakdown could occur. To assess the role of 

the disulphide bonds in structural integrity, unfolding experiments were also 

carried out in the presence of 20mM DTT. Circular dichroism experiments were 

earned out by Dr. S. Kelly in the laboratory of Prof. N.C. Price, Department of 

Chemistry, University of Glasgow, UK.

2.5.20. Fluorimetry

Fluorimetry experiments were carried out using a Perkin Elmer LS 50B 

Fluorimeter. Following chemical dénaturation of SP-22 (0.5mg/ml) for CD 

unfolding experiments (section 2.5.19), the sample was excited at 295nm and the 

absorbance was measured over 300-400nm in a 500p,l quartz cuvette. Results 

were expressed as an average of the three scans taken over this range. Fluorimetry
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was earned out by myself and Dr. S. Kelly in the laboratory of Prof. N.C. Price, 

Department of Chemistry, University of Glasgow, UK.

2.5.21. Analytical Ultracentrifugation (AUC)

For sedimentation equilibrium analyses, protein samples were dialyzed into 

50mM KPi, pH 7.2 containing 150mM NaCl. To assess the occuiTence of 

aggregation protein samples were diluted from the stock sample to a range of A280 

ranging from 0.1-0.5 in 0.05 increments. The procedure was earned out at 4"̂ C at 

three rotor speeds of 5, 7 and lOK in a Beckman Optima XL-A analytical 

ultracentrifuge (Beckman Instuments Inc., Palo Alto, California). Recordings at 

3K were taken to allow back calculation of the sample concentration and 

centrifugation at 47K was also earned out to generate a baseline free from 

macromolecular species. All experiments were earned by Gordon Campbell in 

the laboratory of Dr. O. Byron, Division of Infection and Immunity, University of 

Glasgow, UK,

2.5.22. Transmission Electron Microscopy (TEM)

Purified protein samples (1ml) were eluted on a Sephacryl-300 16/60 HR gel 

filtration column as described previously. Peak fractions were selected for 

negative staining maintaining them on ice until use. The single droplet method 

described by Harris J.R., (1991) was adopted. Typically 3pi 50-100pg/ml of 

protein was immobilized to a continuous carbon support film. Grids were washed 

with dH2 0 , stained with a single drop of 1% (w/v) uranyl acetate and air-dried. 

All electron micrographs were generated using a JEOL 1200 Transmission 

Electron Microscope recording at 30,000X magnification onto SO 163 film 

(Kodak). Projection averages were calculated from top-views of SP-22 rings 

using the SPIDER image-processing package (Frank et al, 1996). All EM work and 

image processing was carried out by Dr. David Bhella of the Department of 

Virology, University of Glasgow, UK.
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2.5.23. Isothermal Titration Calorimetry (ITC)

Mrs Margaret Nutley performed all TTC experiments in the laboratory of Prof. 

Alan Cooper, Dept. Chemistry, University of Glasgow using a VP-ITC 

microcalorimeter (MicroCal Inc., Northampton, MA, USA. SP-22 and human 

recombinant E3 were dialyzed into O.IM KPi buffer pH 7.0 containing 0.15M 

NaCl in the same container to ensure the buffer characteristics of both protein 

samples were identical. The dialysate was placed in the ITC reference cell for the 

experiments. SP-22 (lOpM) was placed in the ITC sample cell and E3 (200pM) 

was placed in the syringe of the microcalorimeter. Typically twenty-six, lOpl 

injections of E3 into SP-22 were made per experiment and were carried out at 

controlled temperature (25°C). The heat of binding was measured continuously 

by the microcalorimeter and the data analyzed using Origin software (OriginLab 

Corporation).

2.5.24. Surface Plasmon Resonance (SPR)

SPR studies were earned out using a BIAcore 2000 machine (Pharmacia 

Biosensor AB, Uppsala, Sweden). A CM-5 sensor chip was activated using O.IM 

NHS (N-hydroxysuccinimide) and O.IM EDC (N-ethyl-N’-[3-(dimethylamino) 

propyl] carboiimide hydrochloride), followed by immobilization of bovine E3 

(50|ig/ml) prepared in O.IM sodium acetate pH 4.5 using the Wizard program 

provided with the BIAcore software. It was aimed to couple approx. 1500 

response units (RU) of E3 to the chip via this amine coupling method. Free 

binding sites were blocked using IM  ethanolamine and the chip was equilibrated 

with HBS buffer. When not in use the sensor chip was stored at 4°C in a sterile 

plastic tube containing HBS buffer.

Peak fractions of SP-22 following His-tag purification were dialyzed at room 

temperature into lOmM HEPES buffer pH 7.4 containing 15mM NaCl and 3.4mM 

EDTA over five 21 changes. The dialyzed sample was concentrated to approx. 

lOmg/ml. SP-22 was diluted to the appropriate concentration with HBS buffer 

(lOmM HEPES pH 7.4, 15mM NaCl, 3.4mM EDTA and 0005% (v/v) surfactant
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P20). 60j.ll injections of the various SP-22 concentrations were passed over the 

chip surface at a flow rate of 20jil/min representing the association phase. The 

flow of HBS over the chip surface was continued for a further minute constituting 

the dissociation phase. Between injections lOjxl IM NaCl was passed over the 

chip surface to regenerate it for future mns.
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3.1.0. Introduction
SP-22 was initially isolated from bovine adrenal cortex and to date has not been 

produced as a recombinant protein. For structural studies it is not practical or 

cost-effective, to isolate SP-22 from natural sources as yields are generally low 

and impurities are frequent. To facilitate the elucidation of the structure and 

function of a specific protein it is necessary to obtain it in large quantities in a 

highly purified state. To achieve this, the primary aim was to clone and 

overexpress the precursor and mature forms of bovine SP-22 as N-terminal His- 

tagged fusion proteins using the pET (plasmid for expression by T7 RNA 

polymerase) system vectors. This system enables high-level expression of cloned 

genes in E. coli and is presently the preferred choice of prokaryotic system for 

heterologous expression. The bacteriophage T7 RNA polymerase and its cognate 

promoter tightly control the pET system. Expression of T7 RNA polymerase is 

induced in E. coli BL21 (DE3)pLysS cells on addition of IPTG.

The structures of several 2-Cys Prx members have been elucidated by X-ray 

crystallography and transmission electron microscopy. There are common 

structural characteristics occurring within this group, one of which is the presence 

of a basic dimeric unit with 2-fold symmetry. A common feature of the dimeric 

unit is the presence of intermolecular disulphide bonds. Generally, these 

interactions involve the N-terminal cysteine of one monomer and the C-terminal 

cysteine of the opposing subunit. The rat 2-Cys Prx, HBP23 and the human 

erythrocyte enzyme TPx-B are typical examples, forming dimers of two tightly 

associated monomers with a flattened ellipsoidal conformation.

Consequently, following the overexpression and purification of SP-22, one of 

only two mitochondrial 2-Cys Prxs identified to date, the second objective was to 

establish if SP-22 also forms a dimeric unit containing intermolecular* disulphide 

bonds. The human mitochondrial 2-Cys Prx, PRDX5 does not form a dimer, and 

exists exclusively in monomeric form. If SP-22 forms a dimeric unit, it will be 

determined which of the conserved cysteine residues are involved in the 

interactions. To address this possibility the aim was to mutate each of the
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cysteine residues to serine residues, and analyse the purified products by non­

reducing SDS-PAGE. Generating SP-22 mutants will also be advantageous, in 

order to assess the roles of each of the cysteines for peroxidase activity as 

discussed further in Chapter 6.

Results
3.1.1. PGR Amplification of Bovine SP-22

The bovine SP-22 gene was previously amplified from a bovine brain cDNA 

library (Clonetech), and ligated using the pCR-Script vector Cloning Kit 

(Stratagene). This recombinant plasmid served as a template for further 

amplification of both precursor and mature forms of SP-22 by PCR as described 

in Materials and Methods section 2.3.2, using specific primers to the 5' and 3' 

ends of the gene (Fig. 2.2). It was necessary to incoiporate an extra base 

immediately before the start codon of precursor and mature SP-22 to ensure that 

on ligation into pET-14b, the cDNA would be in the correct reading frame. 

BamHI restriction sites were incorporated flanking the gene-coding region 

enabling subsequent ligation into the pET-14b expression vector (Fig. 2.1). All 

primers teiminated with either a guanine or cytosine nucleotide to reduce the 

occuiTence of base mismatches. To minimise errors in base incorporation, the Pfu 

DNA polymerase was used in the PCR reaction. Pfu is a magnesium-dependent, 

thermostable enzyme with 3'—>5'exonuclease proofreading activity.

PCR products were gel-purified and analysed on a 1.5% (w/v) agarose gel, 

alongside a Ikb DNA Step Ladder (Materials and Methods section 2.3.1). Bands 

of ~750bp and 500bp were observed, corresponding to the precursor and mature 

forms of bovine SP-22, respectively (Fig. 3.1).

3.1.2. Cloning of SP-22, and Selection of Positive Clones

The purified SP-22 insert and pET-I4b vector were BamHI-treated to generate 

complementary sticky ends. To prevent recircularization of the linearized vector 

during ligation, the phosphate groups from both 5'-termini were removed by 

treatment with CIAP as described in Materials and Methods section 2.3.4. SP-22
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inserts were ligated into pET-14b at a range of vector to insert ratios (Materials 

and Methods section 2.3.5). A control ligation, containing vector only was also 

prepared to determine the efficiency of the dephosphorylation step. Following 

amplification in E. coli DH5a cells, colonies were observed at all three vector to 

insert ratios. As expected, the vector only control plate was clear. Two precursor 

(PI and P2), and three mature SP-22 (M l-M3) clones were selected. The plasmid 

DNA purified from 5ml overnight cultures as described in section 2.3.6 of 

Materials and Methods, was analysed on a 1.5% (w/v) agaiose gel (Fig. 3.2). 

Clones P2 and M2 display a lower mobility on agarose gels than wild type 

plasmid, indicating the presence of an insert. Plasmids are largely supercoiled, 

with a small amount of relaxed circular DNA. Plasmid DNA obtained from the 

positive clones P2 and M2 were digested with BamHI to confiiTn the presence of 

an insert of the coiTect size (Fig. 3.3) as described in Materials and Methods 

section 2.3.4. Digestion of pET-14b and the negative clones was carried out for 

comparison. As expected P2 and M2 both contained inserts of the correct size, 

~750bp and -500bp, respectively. All other clones were linear, wild type vector 

(4700bp).

3.1,3. Determination of Insert Orientation

As the cloning procedure was not directional, there are two possible insert 

orientations; only the correct one will enable protein expression. To establish 

insert orientation P2 and M2 were digested with the restriction endonuclease Ncol 

(Materials and Methods section 2.3.4). Ncol cuts pET-14b at position 580 and 

position 225 in the insert. P2 and M2 were both correctly orientated, generating 

fragments of approx. 5000 and 200 (mature) or 350 (precursor) base pairs (results 

not shown).
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Figure 3.1. Amplification of Precursor and Mature SP-22
Following PCR amplification of SP-22 from the SP-22/pCR-Script template, 5|4l 

was analysed on a 1.5% (w/v) agarose gel. Bands were stained with ethidium 

bromide, and sizes were determined by comparison with a Ikb DNA Step Ladder 

(M), shown to the left of the gel, with units in base pairs (bp). Lanes contain PCR 

products for precursor SP-22 (pSP-22), and mature SP-22 (mSP-22). Arrows 

indicate the PCR products.
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M wt PI P2 Ml M2 M3

10000

Figure 3.2. Isolation and Identification of Recombinant SP-22 

Plasmids
pET14-b and SP-22 insert ligation reactions were amplified in DH5a E. coli cells. 

Plasmid DNA was purified from overnight inoculations (5ml) and analysed on a 

1.5% (w/v) agarose gel. Bands were stained with ethidium bromide. Sizes, 

expressed in base-pairs (bp) were determined using a Ikb DNA Step Ladder (M), 

shown to the left of the gel. Uncut pET-14b is represented by Wt; PI and P2 are 

precursor SP-22 clones, and M l-M3 are mature SP-22 clones.
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Figure 3.3. BamHI Restriction Analysis of the SP-22/pET-14b 

Recombinant Clones (P2 and M2)
Clones PI, P2, M l-M3 and wild type pET-14b were digested with BamHI to 

confirm the presence of an insert and analysed on a 1.5% (w/v) agarose gel. 

Bands were stained with ethidium bromide. The Ikb DNA Step Ladder (M) is 

shown to the left of the gel, sizes in base-pairs (bp). Linear vector (LV), precursor 

SP-22 (pSP-22) and mature SP-22 (mSP-22).
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3.1.4. Protein Expression of SP-22

The heterologous expression of SP-22 was carried out in Epicurian Coli 

BL21(DE3)pLysS cells (see Materials and Methods section 2.3.8). Following 

reducing SDS-PAGE (Materials and Methods section 2.5.6), bands at 27-28kDa, 

and 24-25 kDa were observed, coiTesponding to the predicted M,- values of the 

precursor and mature forms of the protein respectively, complete with His-tag and 

adjacent vector regions (Fig. 3.4). Levels of expression were maximal after a 3h 

induction period. The solubility of SP-22 was assessed at three induction 

temperatures: 22°C, 30“C, and 37°C. Bacterial cell lysis is described in Materials 

and Methods section 2.3.9. Precursor SP-22 was insoluble at all three 

temperatures, indicating that the mitochondrial presequence interferes with correct 

folding of the protein. Typically proteins correctly fold following cleavage of the 

targeting sequence after amval of the nascent polypeptide at the mitochondrion. 

No further work was earned out on the precursor form.

In contrast, the solubility of mature SP-22 was found to be dependent upon 

induction temperature. There was a coiTesponding decrease in protein solubility 

with an increase in induction temperature (Fig. 3.5). The amount of soluble 

mature SP-22 as a percentage of total SP-22 in the cell extract was approx. 100%, 

75% and 25%, at 22°C, 30°C and 37°C respectively, as judged by visual 

inspection. It is proposed that by lowering the induction temperature, the rate of 

translation is reduced, allowing more time for the protein to fold conectly. 

Furthermore, by slowing translation and thus the levels of protein produced in a 

given time, the possibility of protein aggregation and entry into inclusion bodies is 

minimised. Optimal expression of mature soluble SP-22 was routinely achieved at 

22°C inducing for 5h to ensure maximal levels of protein were attained.

3.1.5. His-tag Purification of SP-22

SP-22 was routinely purified from large-scale (500ml) bacterial cultures by metal 

chelate affinity chromatography using a BioCAD® SPRINT^'Workstation
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(Mr X10^) M 0 1 2 3
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20.1

Figure 3.4. Overexpression of Precursor and Mature SP-22
Precursor and mature SP-22 were overexpressed at 37°C in BL21(DE3)pLysS 

cells, by induction with ImM IPTG. Samples (1ml) were removed at the point of 

induction and hourly intervals thereafter for 3h. Bacterial pellets were 

resuspended in Laemmli sample buffer (lOpl/0.1 absorbance unit), and denatured 

for 5 min at 100°C in the presence on DTT (150mM). Samples were analysed on 

a 10% SDS/polyacrylamide gel, and stained with Coomassie Brilliant Blue. 

Precursor SP-22 (pSP-22), and mature SP-22 (mSP-22) expression is shown in the 

lanes indicated. Molecular weight markers (M) are shown to the left of the gel.
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Figure 3.5. Assessment of Mature SP-22 Solubility at Different 
Induction Temperatures
Mature SP-22 was overexpressed in BL21(DE3)pLysS cells by addition of ImM 

IPTG at induction temperatures of 22°C, 30°C, and 37°C. The bacterial culture 

(50ml) was centrifuged and the pellet resuspended in 5ml 50mM KPi buffer, 

pH 7.0 containing 150mM NaCl. Cells were lysed with repeated freeze-thaw 

cycles followed by sonication (four x 10 s bursts) and incubation with 0.1% (v/v) 

NP-40 at room temperature for 30 min. The cell extract (E) was separated into its 

soluble (S/N), and insoluble (P) fractions by centrifugation. Samples were diluted 

with an equal volume of Laemmli sample buffer, supplemented with DTT 

(150mM) and denatured for 5 min at 100°C, prior to loading on a 10% 

SDS/polyacrylamide gel. Bands were stained with Coomassie Brilliant Blue. 

Molecular weight markers (M) are shown on the left of the gel.
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(Materials and Methods section 2.5.2). Aliquots of the peak fractions were 

TCA/acetone precipitated (Materials and Methods section 2.5.3) and analysed by 

SDS-PAGE to assess sample purity (Fig. 3.7). This system was extremely 

efficient in producing high yields of pure SP-22 (20-30mg/500ml culture). 

Insignificant levels of contaminating E. coli proteins were detected; therefore no 

other purification steps were deemed necessary. A typical protein elution profile 

is illustrated in Fig. 3.6.

73



Chapter 3

gII<u
"g

1
o
c

'n

03

pL
in
a.
3

§

Io
CN
(N
d

%
I1o
0Ûc
"c
2
§CJ

*©

1
PU
§
1
s
Q
<
U

s
<
\6
rng
go

03

1
I
03

E
m

■§

<u

H

0Û
c

1 
CJ
c

i
0

1 
3
15

I
I È
(L)

H

I % 
I I

g
0

1

qjx:

I
J=
C/3

CN
CN
CLcn

(U

H

a

I
E

I
3

1
OJ)

74



Chapter 3
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Figure 3.7. BioCAD Fractions of Purified SP-22
Aliquots of the peak fractions from a single His-tag purification run were 

TCA/acetone precipitated before final resuspension in Laemmli sample buffer. 

Samples were denatured for 5 min at 100°C in the presence of DTT (150mM). 

Samples were analysed on a 10% SDS/polyacrylamide gel and stained with 

Coomassie Brilliant Blue. Molecular weight markers (M) are shown to the left of 

the gel.
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3.1.6. Non-Reducing SDS-PAGE Analysis of SP-22

To establish whether any inter- or intramolecular disulphide bonds were present 

involving any of the three conserved cysteine residues, SP-22 was subjected to 

non-reducing SDS-PAGE. Dénaturation of purified SP-22 (5p,g) in Laemmli 

sample buffer at room temperature (RT), 37°C, 70°C and 100°C for 5 min was 

assessed in the absence and presence of the reducing agent DTT (Fig. 3.8.). At 

each dénaturation temperature, in the non-reduced sample lanes, a strong band 

was observed at approx. 47kDa, equivalent to a SP-22 dimer (Dl). At the highest 

temperature (100°C), there was slight degradation of the dimer into its monomeric 

form likely to be non-specific reduction, as it is not observed at the lower 

temperatures. In contrast, in the presence of DTT, only the monomeric form (M l) 

of SP-22 was observed at all temperatures.

To establish whether any inteiTnediate states of SP-22 exist between the 

monomeric and dimeric foiTns, SP-22 was denatured at increasing DTT 

concentrations (O-lOmM). In the absence of DTT there is a major dimeric band 

(Dl), evident until around ImM DTT, at which point dissociation into its cognate 

monomers (M l) gradually increases with increasing DTT concentration (Fig. 

3.9.). The protein bands appear diffuse and with lighter loading, major and minor 

bands coiresponding to the monomeric state of the enzyme were observed 

between ImM-lOmM DTT. These two forms probably result from non-specific 

intramolecular disulphide bond formation during dénaturation, altering the 

migration of the protein through the gel. The two monomeric forms are more 

easily observed with silver staining shown in chapter 5, Fig. 5.7. An additional 

band coiTesponding to tetrameric SP-22 (Tl) was also detected between 0-lmM  

DTT, a likely consequence of dimer aggregation. Due to the oxidative properties 

of the NOVEX gradient gel, non-specific disulphide bonds can potentially fomi.
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RT 37°C 75°C 100°C
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Figure 3.8. Non-reducing and Reducing SDS-PAGE Analysis of 

SP-22 with Increasing Dénaturation Temperature
Samples of SP-22 (5pg) were run in reducing (150mM DTT) and non-reducing 

(-DTT) conditions on a 10-12% NOVEX gradient gel, following dénaturation for 

5 min as indicated. After staining with Coomassie Brilliant Blue, two forms of 

SP-22 were observed; the dimeric species (Dl); and the monomeric species (Ml). 

Molecular weight markers (M) are shown in the centre of the gel.
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Figure 3.9. Progressive Reduction of SP-22 with Increasing DTT 

Concentration
Purified SP-22 (5|ig) was analysed on a 10-12% NOVEX gradient gel, following 

dénaturation for 5 min at 75°C, and progressive reduction with increasing DTT 

concentration (O-lOmM). Bands were visualised with Coomassie Brilliant Blue 

staining. Dl and Ml indicate the dimeric and the monomeric forms of SP-22, 

respectively. T l indicates the putative tetrameric form. Molecular weight 

markers (M) are shown on the left of the gel. Lanes 1-10 indicate the 

concentration of DTT present (mM). Lane 1 (no DTT), 2 (0.5mM), 3 (0.75mM), 

4 (ImM), 5 (2mM), 6 (3mM), 7 (3.5mM), 8 (4mM), 9 (6mM), 10 (8mM) and 11 

(lOmM).
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3.2.0. Introduction
In the previous section it was established that there are disulphide bonds present 

within the basic dimeric unit of SP-22. In order to identify the key cysteine 

residues involved, and to deteiinine their roles in maintaining the structure and 

function of SP-22, three mutants were generated (C47S, C66S, and C168S). 

Single point mutations were incoiporated into the wild type plasmid converting 

each cysteine to a serine residue. Mutagenesis requires an oligonucleotide primer 

complementary to the region of the gene containing the target residue to be 

mutated. The two strands of the plasmid template are separated by thermal 

dénaturation, enabling the mutagenic primers to anneal to their complementary 

regions. A DNA polymerase enzyme then elongates the primer before the duplex 

DNA is religated by DNA ligase. Amplification of the mutant constructs in 

bacterial cells yields two products: one mutated strand, and one parental (non­

mutated) strand. To remove the parental strand prior to amplification, the DNA is 

digested with an endonuclease {Dpn I), which specifically recognises methylated 

and hemi-methylated DNA, leaving behind the unmethylated, mutated strand.

Mutagenesis will enable the elucidation of the roles of the cysteine residues in 

structural assembly and peroxidase function of SP-22. It has been proposed that 

C47 is the catalytic residue due to the presence of a sulphenic acid moiety, 

functioning as a 2-electron redox centre; however mutational studies have yet to 

be carried out. The C47S mutant should also serve as an effective negative 

control for functional studies. This is discussed in more detail in chapter 6.

Results
3.2.1. Generation of the Cysteine Mutants

The SP-22/pET-14b recombinant plasmid was used as a template for the 

mutagenesis PGR reaction. Specific oligonucleotide primers complementary to 

opposite strands of the vector regions to be mutated were designed (Fig. 2.3). 

These primers were extended upon amplification using the Pfu Turbo DNA 

polymerase system according to the protocol described in Materials and Methods 

section 2.3.3. The mutant constructs were amplified in DH5a E, coli cells and
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selected according to their ampicillin resistance (Materials and Methods section

2.2.5. Several colonies were selected, and the mutant plasmid DNA was isolated 

from 5ml overnight cultures as described in Materials and Methods section 2.3.3, 

and analysed on a 1% (w/v) agarose gel (results not shown). Successful 

mutagenesis of the cysteine residues was confirmed by sequencing the DNA 

obtained from a large culture (see Materials and Methods section 2.3.7).

3.2.2. Expression and Purification of the Mutant Constructs

Each of the mutant constructs were transformed into competent BL21(DE3)pLysS 

cells for heterologous expression. For optimum solubility of wild type SP-22, 

expression was canied out at 22°C; therefore this temperature was also selected 

for the mutants. High levels of expression were achieved after a 5h induction 

period (Fig. 3.10). Cells from a 50ml bacterial culture were lysed (Materials and 

Methods section 2.3.9). Analysis by SDS-PAGE on a 10% polyacrylamide gel 

demonstrated that the degree of solubility varied between the mutants (Fig. 3.11). 

As a percentage of the total SP-22 in the cell extract, the extent of solubility for 

C47S, C66S and C168S was estimated to be approx. 75%, 50% and 65% 

respectively as judged by visual inspection. As soluble protein levels in all cases 

were sufficient for future experiments, no additional attempts were made to 

improve solubility.

The mutants were purified as for wild type SP-22 using a BioCAD® SPRINT™ 

Perfusion® Chromatography Workstation (Materials and Methods section 2.5.2). 

Peak fractions were TCA/acetone precipitated (Materials and Methods section 

2.5.3) and analysed on a 10% gel by SDS-PAGE as described in Materials and 

Methods section 2.5.6 (results not shown). The C47S mutant demonstrated a 

weaker binding affinity than C66S and C168S. The peak fractions were pooled 

and dialysed into the required buffer (Materials and Methods section 2.5.4). This
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C47S
(MrXlO"’) M 0 1 5

C66S C168S
0 1 5  (Induction Time, h)

Figure 3.10. Overexpression of the Cysteine Mutants
Proteins were expressed over 5h at 22°C in E. coli BL21(DE3)pLysS cells. 

Samples were denatured in the presence of DTT (150mM) at 100°C for 5min 

prior to analysis on a 10% SDS/polyacrylamide gel. Protein bands were stained 

with Coomassie Brilliant Blue. Molecular weight markers (M) are shown to the 

left of the gel. The arrow on the right of the gel denotes overexpressed 

recombinant protein.
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Figure 3.11. Solubility Assessment of Mutant SP-22s
Following protein overexpression of the mutant SP-22s (C47S, C66S and C168S) 

at 22°C for 5h, the bacterial culture (50ml) was centrifuged and the pellet 

resuspended in 5ml 50mM KPi buffer pH 7.0 containing 150mM NaCl. Cells 

were lysed with repeated freeze-thaw cycles, followed by sonication (four x 10s 

bursts) and incubation with 0.1% (v/v) NP-40 at room temperature for 30 min 

with shaking. The cell extract (E) was separated into its soluble (S/N) and 

insoluble (P) fractions by centrifugation. Samples were prepared in Laemmli 

sample buffer and denatured for 5 min at 100°C in the presence of DTT (150mM), 

prior to loading on a 10% SDS/polyacrylamide gel. Bands were stained with 

Coomassie Brilliant Blue. Molecular weight markers (M) are shown to the left of 

the gel. The arrow indicates mutant SP-22 protein.
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one-step procedure yielded 5-lOmg/ml of extremely pure protein per 500ml 

culture. No further purification steps were deemed necessary.

3.2.3. Determination of the Specific Cysteines Involved in Disulphide Bond 

Formation

In the first section it was established that SP-22 is formed from a basic dimeric 

unit containing one or more di sulphide bonds. To pinpoint the cysteine residues 

that participate in these interactions, each of the mutants was analysed by non­

reducing SDS-PAGE (Materials and Methods section 2.5.6). For comparison, 

reduced samples containing DTT were also prepared. In non-reducing conditions, 

di sulphide bonds of wild type SP-22 remain intact and SP-22 is dimeric. Fig. 3.12 

confirms that both C47 and C I68  are involved in the foiTnation of these 

disulphide bonds as in the absence of DTT these mutants still remain in their 

monomeric form (Ml). However C6 6 S is dimeric; therefore this cysteine does 

not participate in subunit association. Therefore, it can be concluded that the 

di sulphide bonds form between the N-terminal cysteine of one monomer and the 

C-teiTninal cysteine of the opposing subunit.

3.2.4. Accessibility Determination of the Cysteines using Ellman’s assay 

Ellman’s assay was used to confirm which cysteines were accessible to thiol 

modification by the reactant 5,5"-dithionitrobenzoic acid (DTNB) under native 

and non-native conditions. The number of thiols accessible to DTNB was 

assessed by measuring the A412 of the nitrothiobenzoate (NTB) product released 

during the reaction. The chemical reaction also gives rise to a mixed-disulphide 

product coupled to the release of the NTB anion. The A412 of native purified wild 

type and mutant SP-22 was measured over 40 min following addition of DTNB as 

described in Materials and Methods section 2.5.10. No cysteine residues were 

accessible in the fully folded wild type SP-22; however following dénaturation in 

6 M GdmCl, one cysteine became accessible (results not shown). This cysteine is 

C6 6 , as the N- and C-terminal cysteines are involved in disulphide bond 

formation confirmed in the previous section. This implies that in the native 

protein C66  is buried in the overall structure. To confirm that the accessible
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SP-22
Mr X 10

C66S C168S 
+  - +

C47S
+ M

Dl

Ml

Figure 3.12. Reducing and Non-reducing SDS-PAGE of the SP-22 

Mutants
Purified samples (5p,g) of wild type SP-22, C47S, C66S and C168S prepared in 

Laemmli sample buffer were denatured at 75°C for 5 min. Samples were 

analysed on a 10% SDS/polyacrylamide gel in the presence (+), or absence (-) of 

150mM DTT. Protein bands were stained with Coomassie Brilliant Blue. 

Molecular weight markers (M) are shown in the centre of the gel. Arrows 

indicate the dimeric (Dl) and monomeric (M l) forms of SP-22 respectively.
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cysteine residue is C6 6 , Ellman’s assay was repeated for the three cysteine 

mutants (results not shown). As expected no cysteines were accessible in the 

C6 6 S mutant, in both native and denaturing conditions. For C47S and C168S 

however, an increase in the A412 was observed coiresponding to thiol modification 

by DTNB. These findings reiterate that the N- and C-terminal cysteines 

participate in di sulphide bond formation and also show that in the native wild type 

protein, C6 6 S is buried within the structure and is not susceptible to modification 

by DTNB.

3.2.5. Summary and Discussion
In this chapter the first successful overexpression of SP-22 as a recombinant 

protein is reported. Precursor and mature forms of bovine SP-22 were cloned into 

the expression vector pET-I4b and overexpressed as N-terminal His-tag fusion 

proteins in E, coll Both forms exhibited high levels of expression; however their 

solubility properties differed. The precursor form was totally insoluble, while 

mature SP-22 solubility increased with a reduction of induction temperature. 

Proteins containing leader peptides are generally insoluble as they maintain the 

nascent polypeptide in its unfolded state to enable its successful translocation to 

the target organelle. The presequence is subsequently cleaved by a specific 

protease, thus allowing the protein to fold into its native, active state. As our 

interest resides in the active foim of the enzyme, no further attempts to solubilize 

precursor SP-22 were made.

High levels of extremely pure mature SP-22 were obtained following a one-step 

method of metal chelate affinity chromatography, facilitating future structural 

analysis. Following non-reducing SDS-PAGE of the puiified enzyme it was 

established that SP-22 forms a dimeric unit, containing two inteiTnolecular 

disulphide bonds. This conforms to results generated from other studies on 

mammalian 2-Cys peroxiredoxins. Using mutagenesis to replace each of the three 

conserved cysteine residues with serine residues, and analysing each of the 

mutants by non-reducing SDS-PAGE, it was established that the disulphide 

interactions occur between the N-terminal (C47) cysteine of one monomer and the
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C-terminal (C168) cysteine of the opposing subunit. These findings were 

supported using Ellman’s assay which confirmed that only one cysteine residue 

(C66) was accessible to DTNB in the native protein, suggesting the other two 

(C47 and C168) are participating in disulphide bond formation. These results 

were also typical for other 2-Cys peroxiredoxin members.

Although not discussed, the human form of SP-22 was also amplified and cloned 

into pET-14b as for bovine SP-22. Human SP-22 exhibits >90% primary 

sequence identity with the bovine form. Using the bovine SP-22 nucleotide 

sequence, a search of a human expressed sequence tag (EST) database 

(www.ncbi.nlm.nih.gov/BLAST/) was conducted. Clones displaying high 

homology with bovine SP-22 were selected, and specific oligonucleotide primers 

were designed to the N- and C-terminal region of the protein. Due to low 

expression levels, only detectable with an anti-His-tag monoclonal antibody, and 

time considerations, structural and functional studies were canied out with the 

bovine isoform. Investigating alternative E, coli strains and heterologous 

expression systems to increase production of the human isoform will be 

advantageous to enable future structural and functional studies. As human E3 has 

been cloned as a His-tag fusion protein, and one of the major aims of this work is 

to determine whether E3 and SP-22 interact, it would be ideal to utilise the human 

isoform in interaction studies.
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4.1.0. Introduction
Analytical ultracentrifugation (AUC) was employed to determine the exact 

molecular weight of SP-22, to establish if it forms a larger oligomeric structure 

comparable with other 2-Cys Prx members. There are two main experimental 

approaches: sedimentation equilibrium (SE) analysis and sedimentation velocity 

(SV) analysis (Laue and Stafford, 1999). SE provides information on the mass 

and stoichiometry of macromolecules in solution and can also determine 

association/dissociation constants for protein-protein interactions. SV gives 

information on the shape and stoichiometry of a macromolecule. There are three 

principal forces exerted on a molecule that are used in the calculation of the 

sedimentation coefficients obtained from AU: the centrifugal force, buoyancy of a 

molecule and the frictional force. The buoyant and frictional forces are in 

opposition to the centrifugal force. An analytical centrifuge is equipped with an 

optical system that allows the measurement of one or more optical signals as a 

function of radial position of the molecule held within a specially designed cell 

located within the centrifuge rotor. Relatively slow centrifugal speeds are 

selected so that the diffusion flow and the sedimentation flow of a macromolecule 

are at equilibrium at any radial position in the cell.

AUC is a rapid and non-destructive technique requiring low sample 

concentrations; therefore is a useful tool for the assessment of oligomeric 

structure prior to the application of high-resolution techniques such as X-ray 

crystallography and nuclear magnetic resonance (NMR).

Results
4.1.1. Size Determination of SP-22

Purified SP-22 prepared in 50mM KPi pH 7.2 containing 150mM NaCl was 

diluted to give 9 samples covering an A280 range of approx. 0.1-0.5 to allow the 

possible determination of aggregate formation. The equilibrium run was canied 

out at 4°C at three rotor speeds of 5,7 and lOK to allow detection of species 

within the 80-1000 kDa range (Materials and Methods section 2.5.21). 

Recordings at 3K were taken to allow back calculation of the sample
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concentration and centrifugation at 47K was also earned out to generate a baseline 

free from macromolecular species. Results from the lOK run were discarded as 

this speed was too fast, resulting in complete sedimentation of the SP-22. Figure 

4.1 shows the apparent whole cell weight average mass (Mw,app), against the A280 

of SP-22 at rotor speeds of 5 and 7K. The distribution data obtained from the 

equilibrium runs fitted well to a single ideal species model. Moreover, at the time 

of the equilibrium experiments it was assumed that the SP-22 oligomer existed as 

a single species. The Mw,app varied slightly with the concentration of SP-22 

contained within the cell, and even more so between the two different rotor 

speeds. A mass of 615-635kDa was determined for SP-22, coiTesponding to 25- 

26 monomers. A slight decrease in apparent whole cell weight average mass with 

increasing protein concentration was observed at both rotor speeds.

4.1.2. Summary and Discussion
The sedimentation equilibrium results confirm that SP-22 does have an alternative 

high Mr oligomeric foim consistent with other mammalian Prxs, with an average 

molecular weight of 615-635kDa. This equates to approx. 25-26 SP-22 

monomers, much larger than the other mammalian Prxs. Our initial hypothesis 

was that SP-22 might exist as a double toroid containing 10 or 12 subunits per 

ring. It becomes evident following electron microscopy (Chapter 5 section 2) that 

SP-22 is toroidal like the other mammalian Prxs. FurtheiTnore it can also form 

stacks of two and three rings. Therefore, it is possible that there is a dynamic 

equilibrium occurring between the various oligomeric forms of SP-22. This 

would account for larger-than-expected estimated mass of SP-22 determined by 

this technique. There is slight deviation from non-ideality, indicated by a slight 

decrease in apparent whole cell weight average mass with increasing protein 

concentration. This may be due to the presence of a central cavity within the SP- 

22 oligomer, as in solution they would not be able to pack so tightly together 

resulting in a larger excluded volume than for a perfect compact sphere.
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Figure 4.1. Estimation of the Molecular Weight of SP-22 by 

Sedimentation Equilibrium Ultracentrifugation
Purified SP-22 prepared in 50mM KPi pH 7.2 containing 150mM NaCl was 

diluted to give 9 samples covering an A280 range of approx. 0.1-0.5. The 

equilibrium run was carried out at in a Beckman Optima XL-A analytical 

ultracentrifuge at 4°C. Centrifugation at 47K was also carried out to generate a 

baseline free from macromolecular species. The results at rotor speeds of 5 and 

7K are plotted as apparent whole cell weight average mass (Mw,app), against the 

A280 of SP-22.
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Studies were also earned out in the presence of 20mM DTT to assess the effects 

of the di sulphide bonds on oligomer integrity. Although the DTT interfered with 

the optics of the ultracentrifuge and were inaccurate, it was clear that the integrity 

of the complex was not dependent on disulphide bond formation, with the 

molecular weight of the oligomer remaining in the >500kDa range. As an 

alternative means of investigating the contribution of the di sulphide bonds 

equilibrium studies were also carried out for the C47S mutant. This protein 

appeared to foiTn large aggregates of approx. ISOOkDa, which following 

assessment by electron microscopy in Chapter 5, were recognised to be genuine.
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4.2.0. Introduction
There are several techniques available to probe the structural conformations of 

proteins including NMR, X-ray crystallography and circular dichroism (CD) 

(Price, 2000) . CD is a form of light absorption spectroscopy used to analyse the 

general characteristics of protein and nucleic acid conformations (Kelly and Price, 

2000). This technique involves the measurement of the differential absoiption of 

left- and right-circulaiiy polarised light instead of the more frequently measured 

isotropic light. If one of the components is absorbed to a greater extent, an ellipse 

is generated on recombination (dichroism). Ellipticity (0) is typically used as the 

unit of CD, and is defined as the tangent of the ratio of the minor to major 

elliptical axis (0 = tan'^). CD measurements are recorded using an instrument 

called a spectropolarimeter. The macromolecule of interest must be an inherently 

asymmetric chromophore or a symmetrical chromophore in an asymmetric 

environment.

CD spectra can provide low resolution, yet reliable, secondary structural 

information on a protein. In the far UV region (240-I80nm) the principal 

absorbing species is the peptide bond, therefore CD studies in this region can be 

used to estimate the proportion of a-helix, (3-sheet and p-turn (Sreerama et al, 

1999). The most common secondary structural motif in proteins is the a-helix, 

displaying a CD spectrum with distinctive minima at 208 and 222nm. This 

structural motif is easily identified as it produces the largest CD signal magnitude, 

p-sheet content is not so easily determined due to its decreased signal and the 

various arrangements of the p-sheets, parallel or anti-parallel, and varying lengths 

and widths. These are all factors that may hinder the accurate detennination of p- 

sheet content of a protein. Furthermore the absoiption of a third structural feature 

called the random coil also absorbs in a similar region to that of the P-sheet. 

‘Random coils’ represent the regions of a protein that do not encompass the major 

secondary structural motifs. An additional secondary structural feature called the 

coiled-coil, comprising a-helices wrapped around each other, is ubiquitously 

identified in a large number of proteins. Coiled-coils are well defined and mainly
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consist of seven-residue repeats called heptads, the number of which varies 

between proteins.

There are several computer programs available to estimate the secondary 

structural content of a protein, from the properties of their CD spectra. The 

majority of these programs offer an accurate determination of a-helical content, 

provided data is submitted down to at least 190nm. Databases containing the 

spectra of approximately 40 reference polypeptides (globular) with resolved 

structures, are used as models to estimate the various secondary structural 

contributions within the unknown protein.

Tertiary structural information can also be obtained by recording CD spectral 

changes in the near UV region (320-260nm), where the contribution of the 

aromatic amino acids (phenylalanine, tyrosine and tryptophan), prominently 

reflect more global and three-dimensional characteristics of the protein. 

Tryptophan is responsible for the most intense transitions in the near UV region, 

compared with the other aromatic amino acids, exhibiting a maximal extinction 

coefficient at 290nm (Kelly and Price, 2000). Disulphide bond transitions can 

also contribute to the overall absorbance in this region between wavelengths of 

250-270nm. Any protein conformational changes and significant unfolding or 

folding events can be traced by monitoring the change in ellipticity with 

progressive chemical dénaturation. In general, urea and guanidinium chloride 

(GdmCl) are the chemical dénaturants of choice, prepared in a suitable buffer.

Following in vivo translation, the nascent polypeptide is transported to its target 

intracellular compartment where it folds into the native, active form. Attainment 

of a mature tertiary structure is a complex process that may involve several folding 

steps, and additional enzymes (molecular chaperones) or other protein co-factors 

are often required to mediate the folding process. Understanding folding 

pathways can aid the optimisation of expression of soluble recombinant proteins
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in the laboratory and can provide an improved insight into a number of 

pathologies that arise from protein misfolding.

In this section, CD was used to determine the secondary structure of SP-22. 

Furthermore the stability and mechanism of SP-22 oligomer unfolding was 

investigated, monitoring changes in CD spectra in the far UV region during 

gradual dénaturation in urea. The contribution of the disulphide bonds to complex 

stability was also assessed, by comparing the dénaturation profiles of wild type 

and mutant SP-22 in the presence and absence of the reducing agent DTT.

Results
4.2.1. The CD Spectrum of Wild Type SP-22

Purified SP-22 (0.2mg/ml) was prepared for CD analysis as described in Materials 

and Methods section 2.5.19. Figure 4.2 shows the CD spectrum obtained for wild 

type SP-22 in its native state. The CD spectrum was produced following the 

subtraction of the baseline (buffer only) spectrum from the sample spectrum. 

Using the SELCON procedure (Sreerama and Woody, 1993) the secondary 

structure estimates were calculated and are tabulated below:

Secondary Structure Proportion Present in 
Overall Structure ( % )

a-Helix 46.3
Anti-parallel 0-Sheet 9.1

Parallel 0-Sheet 6.6
0-Turn 13.8
Other 24.2

Table 1. Secondary Structure Estimates of Wild Type SP-22

It can be seen that the largest secondary structure contribution is attributed to the 

a-helical content, constituting nearly 50% of the overall secondary structure. 

Figure 4.3 shows the alignment of SP-22 with the 2-Cys Prxs HBP23, and TPx-B, 

complete with highlighted regions that encode the various secondary structural
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Figure 4.2. Secondary Structure Determination of SP-22
Measurements were recorded in a quartz cell with a pathlength of 0.02cm, 

containing purified SP-22 (0.2mg/ml) in 50mM ICPi buffer, pH 7.2 containing 

150mM NaF.

94



Chapter 4

motifs. The sequence identity between the three proteins, and secondary structural 

similarity between HBP23 and TPx-B is extremely high. From the CD results, as 

for HBP23 and TPx-B, the a-helix is the predominant secondary structural 

component of SP-22. However, SP-22 is predicted to have a slightly greater a- 

helical content than the other two Prxs, particularly TPx-B, which contains less a- 

helix than HBP23. The ‘other’ secondary structural estimation encompasses any 

other structure not easily identifiable by CD because their contribution is usually 

masked by the a-helix and p-sheet contributions.

4.2,2, Assessment of SP-22 Stability

Urea was selected to assess SP-22 oligomer stability by chemical dénaturation, 

and to establish the pattern of the unfolding profile. Purified SP-22 samples 

(0.5mg/ml) were prepared in increasing urea concentrations as described in 

Materials and Methods section 2.5.19. Dénaturation was earned out at room 

temperature, incubating overnight to allow equilibrium to be reached. Despite this 

lengthy incubation period and choice of dénaturant, complete unfolding was not 

achieved, indicating that SP-22 was extremely stable. Pilot studies had 

established previously that the routinely used, 15-min incubation period was 

insufficient to promote unfolding.

Figure 4.4 shows the unfolding profile of SP-22 with increasing urea 

concentration. The effect of urea on the protein conformation may account for the 

small increase in the profile between 0-3M urea. Between 4 and 6M urea there is 

a major unfolding event that is subsequently followed by gradual unfolding until 

9.5M urea at which stage the oligomer still retains approx. 25% of native 

ellipticity. Overall results therefore indicate that the SP-22 oligomer is extremely 

stable and unfolding does not follow a simple two-state mechanism (native state—> 

unfolded state) characterised by a monophasic dénaturation curve.
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Figure 4,3. Alignment of SP-22 with HBP23 and TPx-B
SP-22 protein sequence alignment with rat haem-binding protein (HBP23) and 

human thioredoxin peroxidase-B (TPx-B). The secondary structural features for 

HBP23 and TPx-B have been resolved and are shown above the amino acid 

stretches where they occur, a-helices (a), P-sheets((3), coiled-coil (r|), and TT ((3- 

tums). Amino acid identity is highlighted in red.
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To elucidate the effect of the disulphide bonds on oligomer stability and to prevent 

the formation of non-specific disulphide bond formation during unfolding, the 

experiment was also performed in the presence of 20mM DTT (Fig. 4.4). As 

expected, the reduced protein unfolds more readily in a co-operative manner with 

the most significant structural changes occuiring between 4 and 6M urea, 

implying that the disulphide bonds are important in this stage of unfolding for 

stability. However as for non-reduced SP-22, unfolding is not complete and the 

protein displays approx. 25% native ellipticity at 9.5M urea.

Overall the integrity of the oligomer was maintained suggesting that the 

disulphide bonds are not required for assembly; however they do contribute to 

overall stability. To support this result, these experiments were repeated for the 

cysteine mutants.

4.2.3. Secondary Structural Determination of C47S

Secondary structural determination of C47S was carried out as for SP-22. 

Incorporating mutations into a protein may give rise to slight conformational 

changes in the complex; however, the far UV CD spectrum of C47S was super­

imposable with the wild type SP-22 CD spectrum (results not shown). We can 

therefore conclude that cysteine 47 is not critical for maintaining any of the major 

secondary structural features within the protein.

4.2.4. Assessment of C47S Stability

The unfolding profile for C47S indicated that there is slightly reduced stability in 

comparison with wild type SP-22 at the lower concentrations of urea (2-4M), at 

which point gradual loss of secondary structural elements occurs until 9.5M urea 

(Fig. 4.5).
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Figure 4.4. Unfolding Profile of SP-22 During Dénaturation with 

Increasing Urea Concentration
Purified SP-22 (0.5mg/ml) was incubated overnight at room temperature at 

increasing urea concentration in the presence or absence of 20mM DTT. The 

fraction of folded protein was calculated as a percentage of the native state, using 

ellipticity readings recorded at 222nm in a cell with a pathlength of 0.05cm.
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Figure 4.5. Unfolding Profile of C47S During Dénaturation with 

Increasing Urea Concentration
Purified C47S (0.5mg/ml) was incubated overnight at room temperature at 

increasing urea concentration in the presence, or absence of 20mM DTT. The 

fraction of unfolded protein was calculated as a percentage of the native state, 

using ellipticity readings recorded at 222nm in a cell with a pathlength of 0.05cm,
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Unfolding events commence slightly earlier than for wild type at approx 3.75M 

urea, after which gradual dénaturation continues until -20% of native ellipticity 

remains at 9.5M Urea. Therefore, the disulphide interactions do in fact influence 

overall oligomer stability.

The dénaturation of C47S was also carried out in the presence of 20mM DTT to 

ensure that non-specific, stabilising disulphide bonds that could potentially form 

during unfolding, were not present (Fig. 4.5). In general the effects of DTT on 

C47S stability were less evident than for wild type SP-22. This is not unexpected 

given that mutating C47 prevents di sulphide bond foimation with C168.

4.2.5. Assessment of C66S Stability

Although C66 does not participate in dimérisation of SP-22 its role in overall 

stability remains to be investigated. Results suggest that C66 may contribute to 

oligomer stability; an increased resistance to unfolding is observed with only 

localised events occuning above 6M urea after which unfolding ensues (Fig. 4.6.). 

Complete dénaturation was not achieved with approx. 30% of the native protein 

ellipticity remaining at 9.5M urea.

As for wild type SP-22 and C47S, the experiment was repeated in the presence of 

20mM DTT. The destabilising effect of the DTT was more pronounced for this 

mutant than C47S and minored that of the wild type. This is not unexpected as 

disulphide bonds within the dimeric unit are intact in this mutant. The major 

unfolding step occurs at the same point (4-6M urea) as for wild type SP-22, 

implying that disulphide bond contribution to overall SP-22 stability is most 

important in this region. Approx. 25% of the native protein ellipticity is still 

present in 9.5M urea.
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Figure 4.6. Unfolding Profile of C66S During Dénaturation with 

Increasing Urea Concentration
Purified C66S (0.5mg/ml) was incubated overnight at room temperature at 

increasing urea concentration, in the absence, or presence of 20mM DTT. The 

fraction of unfolded protein was calculated as a percentage of the native state, 

using ellipticity readings recorded at 222nm in a cell with a pathlength of 0.05cm.
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Figure 4.7. Unfolding Profile of C168S with Increasing Urea 

Concentration
Purified C168S (0.5mg/ml) was incubated overnight at room temperature at 

increasing urea concentration, in the absence, or presence of 20mM DTT. The 

fraction of unfolded protein was calculated as a percentage of the native state, 

using ellipticity readings recorded at 222nm in a cell with a pathlength of 0.05cm.
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4.2.6. Assessment of C168S Stability

The unfolding profiles for C168S in the absence and presence of 20mM DTT were 

generated as for the others (Fig. 4.7). The unfolding profile was most similar with 

that of C47S, not unexpected given the involvement of C47 and C168 in 

di sulphide bond formation. The non-reduced protein unfolds in a manner similar 

to that of C47S with gradual unfolding occuning until 9.5M urea at which point 

protein remaining retains approx. 25% of the native protein ellipticity.

DTT-treatment does not have a significant destabilising effect above 4M urea 

which was observed for wild type and C66S proteins. There is a slight reduction 

in stability at higher urea concentrations (6-9.5M). As for C47S, these minor 

effects of DTT treatment on C168S stability may be attributed to random 

disulphide bond formation occurring during the unfolding process.

4.2.7. Summary and Discussion
Analysis of the far UV CD spectra indicates that the predominant secondary 

structure is the a-helix, constituting nearly 50% of the overall structure. This 

value is slightly higher than the resolved rat 2-Cys HBP23 and human TPx-B, 

with which SP-22 has >90% sequence identity. The CD spectrum generated for 

C47S was super-imposable on that for wild type SP-22, implying mutation of this 

residue did not influence secondary structure to any significant extent.

It was established that the SP-22 oligomer is very stable, exhibiting marked 

resistance to chemical dénaturation and does not fully unfold even following 

overnight incubation in maximal concentrations of urea. This is not surprising 

given the size of the assembly and the presence of disulphide bonds. There are 

two disulphide bonds per dimeric unit, and with an estimated Mr of 500,000-

600,000, this correlates to approx. 40 disulphides per oligomer, which together 

would act to stabilise the structure. Indeed the reduction of the di sulphides by 

addition of DTT was demonstrated to reduce global stability, although complete 

loss of structure was still not observed.
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The CD dénaturation profiles of wild type and mutant SP-22s in the presence 

absence of DTT showed some differences. Wild type SP-22 and C66S profiles 

were comparable with a pronounced unfolding step occurring in the range of 4- 

6M. Furthermore, the unfolding profiles for C47S and C168S were most similar, 

lacking any obvious unfolding stages. These comparisons indicate that the 

di sulphide bonds contribute to oligomer stability within the region of structure 

that unfolds between 4-6M urea. Therefore it can be concluded that the cysteine 

mutants adopt the same stable structure as wild type SP-22, and the disulphide 

bonds contribute to overall oligomer stability, but not oligomer formation.
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4.3.0. Introduction
:

To complement the CD analyses, fluorescence spectroscopy was also carried out.

This technique is one of the most extensively used spectroscopic methods, and

can be used to provide valuable information on protein conformation, and protein- #

protein interactions (Kelly and Price, 2000). When a molecule absorbs |

electromagnetic radiation, its electrons are promoted from a ‘ground’ state to an

‘excited’ state. To return to the ground state, the molecule must lose energy,

usually as heat, or in the case of fluorogenic molecules, as radiation. The

macromolecule of interest must be intrinsically fluorescent or have an extrinsic

fluorescent probe attached to it. Proteins containing aromatic amino acids

(tyrosine, tryptophan and phenylalanine) are intrinsically fluorescent and therefore

extremely useful for studying protein conformational changes. Tryptophan (Trp) J

is an indole amino acid of particular importance as it exhibits greater fluorescence

than tyrosine or phenylalanine, and many proteins have limited numbers of Trp

residues present, therefore the behaviour of this residue can be easily examined.

Proteins lacking a Trp can have one incoiporated by mutagenesis, an extremely 

useful tool to study protein structure. Trp residues are typically buried within the 

hydrophobic core of a protein or at the interface between two interacting proteins.

With protein unfolding, the Trp residue becomes exposed, giving rise to either an 

increase or decrease in Tip fluorescence, and the emission wavelength is ‘red- 

shifted’ to around 255nm, depending on the degree of exposure. Therefore Tip 

fluorescence is a useful tool in the elucidation of protein unfolding pathways, and 

an effective probe in binding studies.

Excitation spectra are typically recorded for investigating mixtures of substances.

It involves selecting a single wavelength in the fluorescence spectrum, and 

keeping it constant throughout whilst recording the excitation spectra. The 

wavelength used to selectively excite Tip residues is 295nm to prevent 

contributions from tyrosine residues,

Fluorimetry was used to probe the unfolding pathway of the SP-22 oligomer by 

monitoring the changes in tryptophan fluorescence during dénaturation in urea.
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For easier inteipretation, ideally a protein should contain only one or two Tip 

residues; however it is still possible to obtain information from a protein 

containing more depending on their positions in the native protein. If Tip residues 

are in too close proximity to one another they may interact and the resulting 

emission spectrum will be affected. SP-22 contains two Trp residues positioned 

near the middle of the sequence (position 82) and near the C-terminus (position 

172). Although they are well separated in the sequence, it is not known how close 

they are in the tertiary structure.

Results
4.3.1. Fluorescence Spectrum of Native and Denatured SP-22

Purified SP-22 (0.5mg/ml) was prepared for fluorimetry as described in Materials 

and Methods section 2.5.18. The fluorescence spectrum was obtained for native 

SP-22, and protein denatured in increasing concentrations of urea until 9.5M. The 

results for the native and protein denatured in 9.5M urea are shown in Fig. 4.8. A 

shift to longer wavelengths in the spectrum is observed at 355nm for denatured 

SP-22 owing to the exposure of buried tryptophan to the bulk aqueous solvent. 

Only minor changes in fluorescence were observed, interestingly there was no 

increase in fluorescence with dénaturation; this may be due to the fact that 

quenching of the signal is occuning, discussed in more detail in section 4.3.2. 

This was observed for the mutants too.

4.3.2. Summary and Discussion
In this section, fluorimetry results were attempted to complement the CD results, 

and perhaps help elucidate any discrete unfolding events that may occur during 

unfolding of the SP-22 oligomer. For example, detection of the dissociation of 

the oligomer into its basic dimeric units would be possible by monitoring changes 

in tryptophan fluorescence if Trp was located at the interface between adjacent 

subunits. A dénaturation profile could potentially be generated as for CD, using 

the fluorescence readings at suitable wavelength to estimate the fraction of protein 

remaining folded, as a percentage of the native. This profile would theoretically 

be similar, if not identical to the CD dénaturation profile. However despite a shift
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to a longer wavelength (355nm), there was not a significant increase in tryptophan 

fluorescence between the native and unfolded states of the protein. In contrast, 

the emission signal of the unfolded protein was lower than that of the native, and 

changes were extremely small. As the total change in emission following 

dénaturation in 9.5M urea was minor and lower than that of the native structure, it 

was not possible to generate an unfolding profile. This reduced fluorescence 

signal is a likely consequence of fluorescence quenching.

Quenching is a term to describe reduction of the absoiption intensity of a fluor 

such as Trp, occuning as a result of non-radiative loss of energy due to vibrational 

transitions, and internal/external quenching. There are two Trp residues per SP-22 

monomer, which have the potential to interact with one another and transfer 

energy, resulting in a reduced fluorescence signal. Furthermore, contributions 

from amino acid si de-chains and di sulphide bonds have potential quenching 

effects on a Trp signal. Internal quenching arises due to structural reanangement 

within a molecule e.g. dénaturation etc. Interactions between structures and 

chemical groupings, normally prevented in the native macromolecule, may occur 

in the unfolded state. The di sulphide bonds within SP-22 are examples of types of 

bonds that can promote internal quenching. There are two disulphides per dimeric 

unit, therefore during dénaturation there is increased potential for quenching. 

External quenching arises due to buffer contamination or addition of external 

molecules to the sample, for example the addition of DTT to SP-22. External 

molecules can collide briefly with the excited molecule, or they can form longer- 

lived associations, causing it to lose energy. As a result, it is more beneficial to 

use these fluorimetry results in conjunction with the other data obtained in future 

chapters, to gain insight into the nature of the SP-22 oligomer.
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Figure 4.8. A Comparison of the Fluorescence Spectra of SP-22 in 

the Presence and Absence of Urea
Purified SP-22 (0.5mg/ml) was incubated in OM and 9.5M urea overnight at room 

temperature. Samples were excited at 295nm and the fluorescence spectra 

recorded over 300-400nm in a Perkin Elmer LS 50B FIuorimeter.
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5.1.0. Introduction
In the previous chapter it was established that SP-22 exists as a basic dimeric unit, 

containing two disulphide bonds formed between the N-terminal cysteine of one 

subunit, and the C-terminal cysteine of the opposing monomer. This feature is 

consistent with findings for other mammalian Prx members. Structural 

information available for several Prxs indicates the formation of a larger 

oligomeric assembly, comprising five dimers joined end-to-end in a toroidal 

arrangement. The central cavity of the decameric structure exhibits pentagonal 

symmetry. Dimers are proposed to associate with adjacent dimers via several 

types of interaction including hydrophobic interactions and hydrogen bonds.

Gel exclusion chromatography was utilised for a crude estimation of the overall 

molecular weight of SP-22 and the cysteine mutants, to establish if they too exist 

as larger oligomers. This technique is especially useful for monitoring alterations 

in the native structure of a protein over a wide variety of conditions including pH, 

temperature and ionic strength. The principle of this technique is to separate 

molecules present in solution according to their size by passage down a column 

containing a specialised gel matrix. The gel comprises a continuous liquid phase 

held within the pores of a continuous solid phase. Pore sizes can be varied 

depending on the size of the macromolecules in the solution to be resolved. Small 

molecules penetrate into the gel and consequently migrate down the gel at a 

reduced speed in comparison to larger molecules, which are excluded from the 

pores and elute more rapidly with the sunounding solution. Thus globular 

proteins are separated and eluted from the column in order of decreasing 

molecular weight.

The size of a protein of interest is detei*mined by comparing the ratio of the 

elution volume (Ve) to the void volume (Vo) for the unknown protein, with the 

Ye/Vo of several protein standards of known molecular weight. The void volume 

is based on the elution volume of a large macromolecule usually with a M, of > 2 

X 10 .̂ A calibration curve is generated using the logarithms of the known 

molecular weights of the protein standards, against their respective Ve/Vo values.
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From this calibration curve the size of the unknown protein may be extrapolated, 

using its Ve/Vo value.

Results
5,1.1. Construction of the Calibration Curve for Molecular Weight 

Determination

A calibration curve was generated using a Molecular Weight Standard kit 

(Methods and Materials section 2.4.4), run on a HiPrep 16/60 Sephacryl S-300 

High Resolution column, as described in Methods and Materials section 2.5.11. 

The Vo, determined by elution of the dye Blue Dextran (Mr of approx. 2 x 10^) 

was 38.0 ml. Using this figure and the Ve value of the other protein standards, the 

Ve/Vo for each was calculated. Table 2 illustrates the molecular weights and the 

Ve/Vo values for each protein standard used to construct the calibration curve 

shown in Fig. 5.1.

Protein Approx.

MW

Ve

(ml)

VeWo

Alcohol dehydrogenase 150,000 62.8 1.65

P-amylase 200,000 60 1.58

ApofeiTitin 443,000 51.9 1.37

Bovine serum albumin 66,000 69.1 1.82

Carbonic anhydrase 29,000 80.4 2.1

Cytochrome c 12,400 88.3 Z32

Thyroglobulin 669,000 45.1 1.19

Table 2. Ve/Vo Values of the Protein Standards Against Their Molecular 

Weights (MW)
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Figure 5.1. Calibration Curve for Size Determination of Wild 

Type and Mutant SP-22s
Calibration curve generated using a MW-GF-70 Kit (Sigma) run on a HiPrep 

16/60 Sephacryl S-300 High Resolution column with a bed volume of 120ml and 

a flow rate of Iml/min. The column was equilibrated with two column volumes 

of 50mM KPi (pH 7.0) containing 150mM NaCl.
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5,1.2. Size Determination of Wild Type and Mutant SP-22

Wild type and mutant SP-22 (5mg/ml) prepared in 50mM KPi pH 7.0, containing 

150mM NaCl was run on the column, previously equilibrated in 2 column vol of 

the same buffer. Fractions (1.5ml) were collected, and aliquots were 

TCA/acetone precipitated and analysed by SDS-PAGE to confirm the peaks 

represented the proteins of interest (Methods and Materials sections 2.5.3 and 

2.5.6). Monodisperse, symmetrical peaks were generated from which the Ve was 

detemiined. Figure 5,2 illustrates the elution profile for wild type SP-22. The 

calculated YJYo  values and the molecular weight estimations, extrapolated from 

the standard curve are shown in Table 3.

Protein Vc (ml) Vc/Vo Approx, MW

SP-22 50.0 1.31 500,000

C47S Void volume - >2,000,000

C66S 51.0 1.34 450,000

C168S Void volume and 49.6 1.3 500,000

Table 3. Summary of Gel Filtration Results for Wild Type SP-22, C47S, 

C66S and C168S

Results imply that SP-22 foiTns a larger oligomer with a M,- of approx. 500,000. 

This corresponds to about 20 monomers. In some cases an additional peak at the 

void volume was observed, especially if samples were not fresh suggesting that 

aggregation may be occurring with time. The N-terminal cysteine mutant eluted 

entirely at the void volume indicating aggregate formation, confirmed later in this 

chapter in section 2. However, for C168S only a minor peak was observed at the 

void volume, coiTesponding to aggregated oligomers. The major peak produced 

coiTesponded to a M,. of 500,000 as for wild type SP-22. The C66S mutant eluted 

with a Mr of 450,000, coiTesponding to approx. 18 monomers. Due to the low 

resolution of the column in this Mr range, it is difficult to ascertain the exact 

subunit composition of SP-22, and the C66S and C168S mutants, although all
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appear to have a molecular weight in the range of 450,000-500,000 corresponding to 

18-20 monomeric units. The subunit composition of SP-22 and C66S may in fact be 

identical.

5.1.3. Assessment of the Structural Role of the Disulphide Interactions

Together with gel filtration results for the cysteine mutants, experiments were 

repeated in the presence of DTT (20mM) to determine if the presence of disulphide 

bonds was necessary for oligomer assembly. SP-22 was run as before, but this time it 

eluted at 52.6ml, corresponding to a Mr of approx. 400,000. This was significantly 

lower than the value obtained in the absence of DTT. However, its existence as a 

high Mr oligomer suggests that the di sulphides are not required for structural integrity. 

A more significant structural role would be reflected in a large collapse of the 

assembly as indicated by a dramatic decline in Mr value. This was also observed for 

C47S which in the presence of DTT (20mM) did not disassemble, and eluted as 

before at the void volume.

5.1.4. Assessment of His-tag Involvement in Oligomer Assembly

Following purification of SP-22 by metal chelate chromatography, it is possible that 

some contaminating zinc ions are attached to the His-tags. It is also possible that 

these zinc ions may mediate the aggregation of SP-22 subunits via their His-tags 

(Linder et al, 1992). To remove this possibility, a gel filtration run was earned out in 

the presence of the chelating agent EDTA (lOmM). SP-22 eluted this time at 51.4ml, 

coiTesponding to a Mr of 450,000. This result is consistent with previous sizes, and 

implies that oligomer assembly is not attributed to lateral aggregation via the His-tags. 

This result was further confinned by a separate gel filtration run, analysing SP-22 

with its His-tag removed. The His-tag was cleaved using the serine protease 

thrombin, which specifically recognises the thrombin cleavage site present in the SP- 

22 fusion protein, as described in Materials and Methods section 2.5.9. Thrombin- 

cleaved SP-22 produced a major peak at 52.1ml, corresponding to a Mr of 420,000. 

This slight decrease in size reflects the loss of the His-tags from each SP-22 

monomer.
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5.1.5. Summary and Discussion
SP-22, like several other Prx members was demonstrated to foiTn a basic dimeric unit 

containing two intermolecular disulphide bonds. Furthennore it has now been 

established that SP-22 forms a larger assembly with an apparent M, value of approx.

450,000. The estimated size of the SP-22 oligomer varied between sample 

preparations in the M,- range of 400-500,000; therefore the technique of gel filtration 

offered only a crude estimation of molecular weight. Gel filtration is an effective 

technique for accurate determination of the sizes of globular', regularly shaped 

proteins, but is of limited value for iiTegularly organised oligomers or polypeptides 

with large axial ratios. The resolution limits of the column are reduced when 

investigating proteins with sizes comparable to SP-22s. It becomes apparent in the 

following section that SP-22 adopts a toroidal conformation with a large central cavity 

like other mammalian Prxs. Therefore the effective diameter of the SP-22 oligomer is 

larger than the predicted value, resulting in the SP-22 oligomer being more rapidly 

eluted from the gel filtration column than expected. Furthermore it is possible that the 

formation of SP-22 is in a dynamic equilibrium between oligomeric states, therefore 

does not exist as a single species, a possibility that is discussed further in the 

following section. Based on the gel filtration results however, SP-22 would be 

predicted to contain 18-20 subunits. As every 2-Cys Prx member adopting a larger 

oligomeric form, has been identified to exist as a decamer, it may be postulated that 

SP-22 may form a double decamer or even triple decamers.

The disulphide bonds contained within the basic dimeric unit are not structural in 

character as determined by experiments carried out for mutant SP-22 constructs and 

for wild type SP-22 in the presence of DTT. These results are in agreement with 

findings for other Prx members. The human erythrocyte Prx, TPx-B, forms a decamer 

in which the disulphide-linked dimers join end-to-end via several types of interactions 

including hydrophobic interactions, hydrogen bonds and Van der Waals forces.

One interesting observation was the tendency for C47S but not C168S to aggregate. 

This may imply a possible confonnational change induced by the alteration of C47 to 

a serine residue. This confoi'mational change may result in the exposure of 

hydrophobic residues that can interact with other hydrophobic faces of adjacent
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oligomers. In other Prxs, C47 is in fact located at the bottom of a hydrophobic 

pocket. The involvement of disulphide interactions in aggregation was removed by 

repeating the gel filtration experiments for C47S in the presence of DTT. Aggregate 

formation was still exclusive to this mutant even when reduced. As wild type and 

mutant SP-22s were generated as His-tag fusion proteins, it was thought possible that 

aggregation may be directed by these His-tags being tethered together via interactions 

with contaminating zinc ions from the purification procedure. This possibility was 

eliminated by repeating the experiments in the presence of the chelating agents EDTA 

and also DTT which can bind zinc ions, and by proteolytic removal of the His-tags.
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5.2,0, Introduction
The 3D structure reconstruction of macromolecules has been facilitated by three 

widely used techniques: X-ray crystallography, NMR and Transmission Electron 

Microscopy (TEM), X-ray crystallography and NMR are particularly useful for 

structural resolution of small oligomers, or individual proteins to atomic detail. 

TEM in contrast, is beneficial for probing large oligomeric assemblies, for 

example virus particles, filaments and tubular structures. TEM avoids the 

necessity for complex molecular replacement programs required in X-ray 

crystallography, uses lower protein concentrations and is less time consuming.

There are two major procedures undertaken in TEM: negative staining and cryo- 

negative staining (also termed ice-embedding) (Adrian et al, 1998). Both methods 

provide information on the overall size and shape of the specimen.

Due to reduced equipment costs, speed and methodological simplicity, negative 

staining is typically attempted first. It was introduced by Brenner and Horne 

(1959) and has permitted the characterisation of numerous macromolecular 

assemblies at low resolution. The resolution capability is generally in the range 10 

to 20Â, and involves immobilising the specimen onto a carbon support grid prior 

to staining with a heavy metal salt, usually a uranyl salt such as acetate or formate. 

The specimen becomes embedded in the stain and a footprint of its overall shape 

is generated. The stain has high electron scattering potential and forms 

microcrystals that can permeate surface modulations of the oligomer of interest, 

thereby producing a reliable ‘cast’ of the protein. A resolution limit of >10Â, the 

inability to observe internal structural features and damage to the specimen by 

dehydration are three major limitations of negative staining. In addition, this 

procedure only provides accurate results for rigid assemblies- large flexible 

domains and ‘soft’ structures cannot be observed.

To overcome some of the limitations of negative staining, ice-embedding or cryo- 

negative staining was developed. Cryo-negative staining offers higher resolution
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limits with down to 3Â being reported in some cases (Avila-Sakar and Chiu, 

1996). It uses the physiological properties of water, thus preventing the problem 

of specimen dehydration as in negative staining. Following application of the 

sample to the carbon grid, it is frozen rapidly by immersion in liquid ethane or 

propane. Water as a result, becomes trapped in an amorphous (vitrified) state, 

maintaining the specimen in a near-native environment. Cryoprotectants such as 

glycerol or DMSO ai’e typically included when requiring high-resolution detail. 

The EM image in cryofixation is generated by the protein specimen itself, rather 

than the heavy metal salt cast suiTOunding the structure and can be used on non- 

rigid structures. Secondary and tertiary structural features, together with internal 

structural information can be obtained. Furthennore, due to the rapid freezing 

process, protein-protein interactions can be probed, as can confonnational 

changes, therefore providing information on the functional mechanisms of the 

macromolecule. The limitations of this method are mainly attributed to the 

inherent limitations of electron microscopy rather than the sample preparation as 

for negative staining.

The simpler method of negative staining TEM was caiTied out to elucidate the 

structure of SP-22 and the cysteine mutants. Structure determination of the 

mutants was used to confirm the roles of the disulphide bonds in oligomer 

integrity. Decameric toroidal structures have previously been observed using this 

technique and X-ray crystallography, for TPx-B and HBP23. The number of 

subunits comprising the toroid was also determined by 3D reconstruction by 

angular reconstitution using crystallographic imaging software. The aim was to 

detemiine if SP-22 too confonds to the decameric toroidal structure adopted by 

the non-mitochondrial 2-Cys peroxiredoxins.

Results
5.2.1. Negative Staining of Wild Type SP-22

Purified SP-22 (5mg/ml) was eluted from a Sephacryl-300 16/60 HR gel filtration 

column (Methods and Materials section 2.5.11), and depending on the sample.
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produced one or two peaks, coiTesponding to aggregates eluting at the void 

volume or a Mf of approx. 450,000, respectively. The purified SP-22 (50- 

lOOpg/ml) from each peak fraction, prepared in 50mM KPi buffer pH 7.0, 

containing 150mM NaCl, was immobilized on a continuous carbon support and 

stained with 0.1% (w/v) uranyl acetate (Materials and Methods section 2.5.22). 

Peak fraction 5 (void volume) showed that SP-22 is toroidal with the presence of 

long stacks comprising multiple rings aggregated in a lateral fashion, a 

predominant feature (Fig. 5.3). Analysis of SP-22 from fraction 13 (peak 2) 

showed single rings and stacks with two or three rings (Fig. 5.4). Stacking would 

account for the variation in Mr values obtained for gel filtration and sedimentation 

equilibrium ultracentrifugation experiments (Chapter 4). Furthermore, gel 

filtration is only useful for globular, regularly shaped proteins; therefore the mass 

of the SP-22 oligomer with a central cavity would not be easily determined. 

Interestingly side-views were prevalent in comparison with top views implying 

some interaction of the protein with the grid.

Image processing was earned out to investigate the ring structure of SP-22 from 

fraction 13 at higher resolution. It was not possible to determine the exact number 

of subunits per ring as they were very tightly packed, making it is more difficult 

for the stain to penetrate the structure. Estimations suggest that the toroid is 

decameric or dodecameric, the former being more likely given the structures of 

other mammalian 2-Cys Prxs, Out of 188 selected rings, each image was 

rotationally averaged to generate a radial density profile, and these profiles were 

in-tum averaged to generate a plot from which it was established that radius of the 

SP-22 toroid is ~ 7.5 nm, therefore the diameter including the central cavity is 

approx. 15nm (Fig. 5.5). Another feature of the rings, ubiquitously observed, was 

the presence of spikes radiating out from the outer surface (Fig. 5.6). They are 

proposed to be too ordered to be artefacts of the stain. Additionally, electron 

dense material was observed within the central cavity of the majority of rings. 

The material appears to be regularly organised, displaying distinct structural 

features.
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B

D

Figure 5.5. Electron Micrographs of SP-22 Toroids
Purified SP-22, (100-50pg/ml) eluted from a Sephacryl-300 16/60 HR gel 

filtration column was immobilised onto a continuous carbon grid and stained with 

0.1% (w/v) uranyl acetate. Micrographs were taken using a JEOL 1200 

Transmission Electron Microscope recording at 30,000X magnification onto 

S0163 film.
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A. Double Stack

B. Triple Stack

C. Toroid exhibiting 
radial spikes

Figure 5.6. Side-views and Top View of SP-22 Illustrating Radial 

Spikes and Toroid Stacking
Electron micrographs of purified SP-22 (50-100pg/ml), immobilised onto 

continuous support carbon grids and stained with 0.1% (w/v) uranyl acetate, were 

visualised using a JEOL 1200 Transmission Electron Microscope recording at 

30,000X magnification onto S0163 film. Radial spikes are indicated by the 

arrows.
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Silver staining established that this material is probably part of the SP-22 

oligomer, as no contaminating E. coli proteins were detected in a sample of 

purified SP-22 run on a silver-stained 12% polyacrylamide gel (Materials and 

Methods section 2.5.8). Silver staining is approximately ten-fold more sensitive 

than Coomassie Brilliant Blue staining and established that no additional bands 

apart from the monomeric foim of SP-22 were detected (Fig. 5.7). The two 

monomeric foims observed are likely to represent the intra-molecular disulphide 

bond intermediates that can adventitiously form during SDS-PAGE. To determine 

whether they were definitely SP-22 monomers, immunoblotting with a 

monoclonal antibody that specifically detects His-tag proteins was used (Materials 

and Methods section 2.5.7). Indeed, the bands highlighted by silver staining were 

detected by the polyHis-antibody, implying the material within the central cavity 

is part of the overall SP-22 structure and not contaminating E. coli proteins.

5.2.2. Negative Staining of Reduced Wild Type SP-22

To confirm the disulphide bonds are non-structural, the negative staining 

procedure was repeated for SP-22, this time in the presence of 20mM DTT. 

Reduced SP-22 is still toroidal confirming that the disulphides are not required for 

structural integrity. More top views and more single rings were observed 

however, and stacking was less frequent than for oxidised SP-22 (results not 

shown).

5.2.3. Negative Staining of C47S

C47S produced a gel filtration peak at the void volume, coiTesponding to a Mr of 

approx. 2 x 10 .̂ To elucidate the structure of this mutant, negative staining was 

repeated as for the wild type. This mutant was observed to form long stacks, with 

single toroids being extremely rare (Fig. 5.8). These structures were comparable 

to protein filaments, and it is proposed that they stack in a manner too ordered to 

be attributed to non-specific aggregation. To determine whether disulphide
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Figure 5.7. Comparison of Silver Stained Purified SP-22, and SP-22 

Detection by Immunoblotting
(A) Purified SP-22 (5pg) was denatured for 5 min at iOO°C in the presence of DTT 

(150mM), prior to analysis on a 12% SDS/polyacrylamide gel. Bands were detected by 

silver staining according to Materials and Methods section 2.5.8. (B) After SDS/PAGE 

analysis as in (A), bands were detected on immunoblotting with a polyHis-monoclonal 

antibody according to Materials and Methods section 2.5.7. Molecular weight markers 

are shown to the left of the gel. The two monomeric forms of SP-22 are indicated, 

corresponding to SP-22 monomers containing adventitious intramolecular disulphide 

bonds (M2) formed during dénaturation, and the fully reduced monomeric form (Ml).
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interactions may mediate stacking, gel filtration was carried out in the presence of 

DTT (20mM), The elution peak generated was identical to that of non-reduced 

C47S, confirming that the disulphides are not involved in stacking, and large 

molecular weight aggregates were still forming.

5.2.4. Summary and Discussion
These results report the first structure elucidation of an oligomeric mitochondrial 

2-Cys Prx member. The structure of the human mitochondrial Prx, PRDX5 has 

been resolved; however it is distinct from other 2-Cys Prxs in it does not form a 

dimeric unit; instead it exists completely as monomers (Declercq et al, 2001). 

Furthermore these results are the first to demonstrate that the recombinant protein 

assembles correctly. Negative staining of SP-22 confirms that it is toroidal with 

an external diameter of approx, 15nm, and a large central cavity. Preliminary 

results suggest SP-22 is a decamer or dodecamer. As all mammalian Prxs to date 

with the exception of PRDX5 are decameric, it is likely SP-22 also conforms to 

this model. Given the presence of a central cavity, together with the immense size 

of the SP-22 oligomer and its tendency to aggregate laterally, it is not suiprising 

that difficulties were encountered in the determination of the exact number of 

subunits via gel filtration experiments (Chapter 5 section 1).

Material was observed within the central cavity in the majority of rings, confirmed 

to be SP-22 as no contaminating E. coli proteins were detected using the highly 

sensitive silver staining technique. Stacking was a common feature in the electron 

micrographs, particularly with respect to the C47S mutant, which foiTned stacks as 

long as fifteen rings. The factor mediating this process and whether it is important 

for SP-22 function remains to be elucidated. There may be a physiological 

relevance as TPx-B was also found to form double stacks (Hams et al, 2001). 

Interestingly, this 2-Cys protein has been demonstrated to convert between the 

dimeric and decameric foim of TPx-B, the latter being the favoured form when 

the protein is in a highly oxidising environment. The process of toroidal stacking
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is not limited to the Prx family and has also been observed for the bacterial 

molecular chaperone system comprising GroEL and GroES (Harris et al, 1994).

It is possible that time-dependent aggregation of rings is occuning, especially for 

wild type SP-22 where this feature was only occasionally observed, particularly in 

‘older’ protein preparations. As SP-22 micrographs in the presence of DTT 

produced mainly single toroids, it is likely that some of the stacking, at least in 

wild type SP-22 involves Zn^^. It has been reported that SP-22 purified from 

tissue sources displays lateral stacking too, therefore it is likely that the Zn '̂ '̂only 

increases the occuiTence of stacking and does not direct it entirely (Wood et al, 

2003).

The 2-Cys Prx tryparedoxin peroxidase (TryP) from the parasitic trypanosomatid 

Crithidia fasciculate, has been demonstrated to alternate between its decameric 

and dimeric states according to its redox state. Reduced TryP is decameric and 

able to perform its peroxidase function, however on oxidation, the enzyme is 

converted to an inactive, dimeric state (Alphey et al, 2000). Future work may 

look to investigate the physiological significance of the oligomeric form of SP-22 

and the phenomenon of stacking. Unlike TryP, SP-22 exists as a large oligomer in 

both the reduced and oxidised states; therefore the significance of this with respect 

to its peroxidase function remains to be explored.
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6.1.0. Introduction
To date, the activity of SP-22 has been measured with respect to its protective 

effect towards a number of free-radical sensitive enzymes, particularly glutamine 

synthetase, and enolase (Kim et al, 1988). All assays utilised SP-22 purified from 

native sources. Although the inactivation of these enzymes via oxidation is well 

reported, the actual mechanism remains to be elucidated. The mitochondrial 

enzymes involved in aerobic respiration are particularly vulnerable to oxidation, 

and are characteristically detected in a number of pathologies of which oxidative 

stress is contributory.

Glutamine synthetase is a dimeric enzyme, crucial in nitrogen metabolism and 

thus highly regulated by mechanisms including covalent modification and 

negative feedback inhibition. There are two steps involved in the inactivation of 

E. coli glutamine synthetase (Amici et al, 1989; Levine, 1983). The first stage 

involves the oxidation of one specific histidine residue (out of sixteen) that 

renders the enzyme inactive. The second stage involves the oxidation of a second 

histidine residue that renders the enzyme susceptible to proteolytic degradation. 

A model free radical-generating system (FRS) has been designed to study the 

oxidative modification of the histidine residue in glutamine synthetase (Kim et al, 

1985). This system is proposed to mimic the various enzymatic systems that 

nonnally generate reactive oxygen species, for example the NAD(P)H oxidase or 

cytochrome P450 systems. The requirements for this artificial free-radical 

generating system are oxygen, a source of electrons e.g. ascorbate or DTT and 

trace metal, typically Fe^^. Oxidation of the metal ion by molecular oxygen gives 

rise to the superoxide anion and the oxidised metal ion (Reaction 1). Superoxide 

anions (*0 2 ~) as previously discussed in chapter 1, spontaneously undergo a 

dismutation reaction with other superoxide anions to form hydrogen peroxide 

(H2O2) (Reaction 2). Hydrogen peroxide is subsequently degraded into hydroxyl 

radicals (OH’) via the Fenton reaction catalysed by the reduced metal ion 

(Reaction 3). Ascorbate/DTT is required to recycle the oxidised metal ion (Fê "̂ ) 

back to its reduced state (Fê "*").
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Reaction 1: Fê + + 0 2 - >  Fê + + 'O2"

Reaction 2 :2'Oz" + 2H* —> H2O2 + O2 

Reaction 3: Fe *̂ + H202-^ Fê + + OH' + OB'

The oxidative modification of the second histidine residue introduces a carbonyl 

group into the enzyme that is specifically recognised by a protease that catalyses 

its subsequent degradation (Amici et al, 1989; Levine, 1983). The destructive 

effect of the FRS is prevented by catalase or peroxidase, suggesting that the 

principal contributor to oxidative damage is hydrogen peroxide. The requirement 

for metal ions is reinforced by the observation that chelating agents also display a 

protective effect against damage to glutamine synthetase. This suggests that 

hydrogen peroxide is not directly damaging, but required as a substrate for the 

Fenton reaction and subsequent hydroxyl radical production.

Enolase is also a dimeric enzyme, responsible for the conversion of 2- 

phosphoglyceric acid (2-PGA) to phosphoenolpyruvate (PEP). It is more 

susceptible to damage by ROS than glutamine synthetase. The mechanism and 

targets of inactivation of enolase is less well understood; however, it is proposed 

that at least one histidine residue per subunit is modified as a consequence of 

oxidative damage.

Enolase inactivation was used to assess the protective effect of SP-22 when 

subjected to a FRS. Enolase was selected rather than glutamine synthetase as its 

activity is more easily and accurately determined on a routine basis. To identify 

which of the conserved cysteine residues of SP-22 were required for activity, the 

protective effects of the cysteine mutants were also assessed. The N-terminal 

conserved cysteine of the 2-Cys Prxs is thought to be the catalytic residue. This 

together with the identification of a sulphenic acid group at C47 suggests that C47 

of SP-22 is likely to be essential for peroxidase activity. Ascorbate was replaced 

with DTT due to the requirement of thiol groups for 2-Cys Prx activity. Not only 

does DTT recycle the metal ions, it is also necessary for reducing the 

oxidised/inactive fomi of the enzyme back to its reduced/active state.
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Furthermore the ability of SP-22 to directly scavenge hydrogen peroxide was 

assessed in compaiison with catalase, a well-established peroxidase.

Results
6.1,1. Protective Role of SP-22 Towards Enolase Inactivation

The activity of enolase was measured by recording the A240, indicating the 

successful conversion of 2-PGA to the product PEP (Materials and Methods 

section 2.5.14). To assess the protective effect of SP-22, rabbit muscle enolase 

(33pg) was incubated at 30°C with the FRS (lOpM FeCE, 30mM DTT) and 3- 

66pg SP-22 (Materials and Methods section 2.5.17). At regular time intervals, the 

remaining enolase activity was assessed. Enolase activity was less than 20% of 

the controls after 10 min, with inactivation to approx. 6% of the original activity 

being achieved after 30 min (Fig. 6.1). Incubating the FRS with 2mM EDTA 

prior to addition of the enolase prevented its inactivation implying that Fê "̂  was 

essential for generating the reactive oxygen species involved in inactivation. 

Inactivation did not occur with DTT or FeCE alone (results not shown).

At a ratio of 2:1 of SP-22: enolase, protection was approx. 100% after 20 min. 

The extent of protection was similar for lower SP-22: enolase ratios (Fig. 6.2). 

Even when four times the amount of enolase was present in comparison with SP- 

22, enolase activity was greater than 70% after 20 min.

Overall the extent of enolase protection is similar for all SP-22 concentrations, 

until the lowest proportion of SP-22: enolase (1:8) where the remaining enolase 

activity was only 30.9% after 20 min. To ensure protection was specifically due 

to SP-22 and not the presence of additional protein, controls were prepared using 

bovine serum albumin (BSA) and catalase. BSA present at maximal levels 

(66pg/assay) displayed no protective effect towards enolase as expected (results 

not shown). Catalase (66pg) did protect enolase, confirming that the ROS 

responsible for damaging enolase is hydrogen peroxide, possibly via its 

breakdown product, the hydroxyl radical generated via the Fenton reaction (Fig.
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6.3). This could be investigated further by assessing the effect of adding 

hydrogen peroxide directly to enolase in the presence and absence of Fê "̂ .

6.1.2. Role of the Conserved Cysteines for SP-22 Peroxidase Activity

To assess the role of the conserved cysteine residues for catalytic activity, the 

enolase inactivation and protection assays were repeated for the cysteine mutants 

(Fig. 6.3). C47S was established to be the catalytic residue, displaying no 

significant protection towards enolase, even in the presence of 2:1 C47S to 

enolase ratio. Less than 10% enolase activity remained following a 20 min 

incubation period with the FRS. There was no significant difference between the 

wild type, C66S and C168S mutants in their protection towards enolase, implying 

they are not required for SP-22 activity. High levels of enolase activity remained 

(80% and 75%) in the presence of maximal concentrations of C66S and C168S 

respectively. It is suiprising that the C168S mutant efficiently protects enolase 

given its involvement in the di sulphide bond chemistry of catalysis. This is 

unlikely to occur in vivo as thioredoxin reduces the enzyme via an intermediate 

stage in which it forms a disulphide bond with SP-22. Removal of C l68 would 

prevent such an interaction. In the artificial system, however, DTT may directly 

reduce the 047 sulphenic acid group back to its cognate thiol without di sulphide 

bond foraiation. In effect, this C168S mutant is acting as a 1-Cys peroxiredoxin 

under these conditions.

132



Chapter 6

120

100

_>

0 5 10 15 20 25 30

-♦— FRS only 

SP-22

Time (min)

Figure 6.1. Enolase Inactivation by the FRS, and Protection by 

SP-22
A FRS (lO^iM FeCls, 30mM DTT, 50mM imidazole pH 7.0) was pre-incubated at 

30°C in the absence or presence of 66|Lig purified SP-22 prior to addition of 

enolase (33|Lig). Experiments carried out in the absence of SP-22 contained 

50mM imidazole pH 7.0, containing 150mM NaCl. At regular time intervals an 

aliquot was removed and added to ImM EDTA to terminate the reaction. The 

sample was then assayed for remaining enolase activity by monitoring the A240 

increase corresponding to the conversion of 2-PGA to PEP. Results are expressed 

as the activity remaining, as a percentage of enolase activity at zero time. Values 

were calculated as an average of duplicate assays, differing by a maximum of 

±7%^
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Figure 6.2. Effect of SP-22 Concentration on Enolase Protection
A FRS (10|xM FeCb, 30mM DTT, 50mM imidazole pH 7.0) was pre-incubated 

for 5 min at 30°C in the presence or absence of decreasing concentrations of 

purified SP-22, prior to addition of enolase (33|uig). At regular time intervals 

thereafter, an aliquot was removed and added to ImM EDTA to terminate the 

reaction. The sample was then assayed for remaining enolase activity by 

monitoring the A240 increase corresponding to the conversion of 2-PGA to PEP. 

Results are expressed as the activity remaining as a percentage of enolase activity 

at zero time. Values were calculated as an average of duplicate assays differing 

by a maximum of ± 7%.
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Figure 6.3. Protective Effects of the Cysteine Mutants Towards 

Enolase in Comparison to Wild Type SP-22
A FRS (10|liM FeCl], 30mM DTT, 50mM imidazole pH 7.0) was pre-incubated at 

30°C with either 66p.g of purified SP-22, C47S, C66S, or C168S prior to addition 

of enolase (33pg). Control incubations containing 2mM EDTA and catalase 

(66p-g) were also prepared. At regular time intervals an aliquot was removed and 

added to ImM EDTA to terminate the reaction. The sample was then assayed for 

remaining enolase activity by monitoring the A240 increase corresponding to the 

conversion of 2-PGA to PEP. Results are expressed as the activity remaining, as a 

percentage of enolase activity at zero time. Values were calculated as an average 

of duplicate assays, differing by a maximum of ± 7%.
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6.1.3. Peroxidase Activity of SP-22

To establish whether SP-22 has peroxidase activity comparable to that of catalase, 

the extent of hydrogen peroxide removal was assessed by monitoring the 

reduction in the A240 (Materials and Methods section 2.5.18). Bovine catalase or 

SP-22 were added to 50mM hydrogen peroxide in 50mM KPi pH 7.0, pre-heated 

to 30°C. Catalase (30|ig) as predicted was extremely efficient removing 100% of 

50mM hydrogen peroxide over 85s (Fig. 6.4). In contrast in the presence of ten­

fold higher amounts of SP-22 (300jig), hydrogen peroxide removal was not 

evident. As SP-22 requires a source of thiol groups to be reduced following 

oxidation by hydrogen peroxide, the SP-22 experiment was carried out in the 

presence of 20mM DTT (Fig. 6.4).

6.1.4. Summary and Discussion
The protection of the free radical-sensitive enolase by recombinant SP-22 is 

reported, when subjected to a free-radical generating system. The extent of 

protection is concentration-dependent; however the requirement for the reducing 

agent DTT is undoubtedly a limiting factor in the regeneration of SP-22 for 

subsequent catalytic cycles, and must be taken into consideration. The highest 

concentration used (2: 1 (w/w) ratio of SP-22: enolase) exhibited complete 

protection, although substantial protection was also observed down to SP-22: 

enolase ratios of 1: 4. The in vivo SP-22/thioredoxin system using NADPH, 

thioredoxin reductase and thioredoxin as a physiological electron donor is likely 

to be even more efficient.

The conserved cysteine residue at position 47 was established to be the catalytic 

residue, as C47S exerted no protective effect towards enolase. The C66S and 

C168S mutants displayed significant protection, compaiable with that of wild type 

SP-22, implying that they are not critical for catalytic function. The unexpected 

protection exhibited by C168S is a likely result of direct reduction of C47 by DTT 

rather than via thioredoxin as in vivo, which would typically require the 

disulphide bond formation between C47 and C l68 as a key intennediate step in 

the catalytic cycle.
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Figure 6.4. Comparison of Hydrogen Peroxide Removal by 

Catalase and SP-22
Assay mixtures contained 1ml 50mM hydrogen peroxide prepared in O.IM KPi 

pH 7.0, preincubated at 30°C in a quartz cuvette. The incubation mix additionally 

contained 20mM DTT for SP-22 experiments. Hydrogen peroxide removal by 

catalase (30pg) and SP-22 (300pg) was assessed by tracing the reduction in A250 

over 85s. Also shown is a no enzyme control.
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Catalase was also demonstrated to protect enolase from damage exerted by the 

FRS, suggesting that the ROS that modifies the enzyme is either hydrogen 

peroxide or its degradation product the hydroxyl radical, generated via the Fenton 

reaction. To assess whether SP-22 possesses catalase-like peroxidase activity, the 

rate of hydrogen peroxide removal was assessed with increasing concentrations of 

SP-22. There was no obvious removal of hydrogen peroxide by SP-22 in 

comparison with catalase, implying that they have divergent mechanisms. These 

results are consistent with previous findings for other 2-Cys members, suggesting 

that their roles are to remove only micromolar levels of hydrogen peroxide and 

thus can regulate cell-signalling pathways that are controlled by fluctuating 

amounts of hydrogen peroxide. It remains to be established if the low levels of 

activity attributed to SP-22, reflect the limitations of the assay procedure in which 

conversion of the enzyme back to its reduced state is dependent on non-enzymatic 

reduction by DTT. The catalase system in conjunction with the glutathione 

peroxidase system, in contrast, removes hydrogen peroxide extremely rapidly 

even when present at elevated levels.
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6,2,0. Introduction
SP-22 is one of two mitochondrial 2-Cys Prxs identified to date, and comprises 

5% of total matrix protein of mitochondria isolated from bovine adrenal cortex, 

emphasising its importance in the removal of hydrogen peroxide from this 

compartment. Therefore its role may be pertinent in the protection of the many 

key enzymes responsible for the large number of metabolic processes occurring in 

the mitochondrion.

As previously discussed (Chapter 1 section 1.5), several diseases, particulaiiy 

autoimmune diseases and neurodegenerative disorders contain chaiacteristically 

high levels of oxidatively modified proteins. Excessive production of hydrogen 

peroxide has been observed in the ageing brain. Mitochondrial enzymes appear to 

be especially vulnerable to oxidative damage, not suiprising given their close 

proximity to ROS generated by oxidative phosphorylation. Modification of 

mitochondrial enzymes can severely compromise the metabolism of an organism 

and ultimately lead to its death. The principal enzymes targeted by oxidation, 

demonstrated in yeast and bacteria, include the TCA cycle enzymes aconitase and 

the mitochondrial 2-oxoacid dehydrogenase complexes, particularly the pyruvate 

dehydrogenase complex (PDC), and the 2-oxoglutarate dehydrogenase complex 

(OGDC) (Cabiscol et al, 2000; Tamarit et al, 1998). Inactivation studies on the 

branched-chain 2-oxoacid dehydi’ogenase complex (BCOADC) are limited, 

however available literature suggests it is the least sensitive of the multienzyme 

complexes.

Studies earned out on isolated nerve terminals determined that aconitase is the 

most susceptible TCA cycle enzyme to damage by hydrogen peroxide, and is 

completely inactivated at concentrations <50j^M. OGDC is also inactivated, but 

only partially at slightly higher concentrations of <100pM (Tretter and Adam- 

Vizi, 2000). These findings imply that under conditions of oxidative stress 

aconitase is initially inactivated, followed by OGDC partial inactivation, therefore 

slowing down the TCA cycle and consequently NADH formation and cellular 

respiration. Therefore inactivation of these two enzymes may be the principal
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factor responsible for mitochondiial impairment when exposed to acute levels of 

hydrogen peroxide. This has impoi 

prevention of several neuropathologies.

hydrogen peroxide. This has important implications in the treatment and

The effect of the aldehyde, 4-hydroxy-2-nonenal (HNE) generated by lipid 

peroxidation on the activity of the 2-oxoacid dehydrogenase complexes, and their 

individual subunits in cultured human cells has also been investigated (Moreau et 

al, submitted for publication). HNE is an extremely powerful oxidant due to its 

hydrophilic and hydrophobic properties, enabling its movement between different 

cellular compartments and its wide range of substrates. It has been demonstrated 

to inactivate PDC and OGDC by inflicting damage on the lipoyl moieties of their 

dihydrolipoamide acyltransferase (E2) and E3-binding protein (E3BP) 

components. The E2-E3BP complex was severely affected by HNE treatment in 

comparison with the other complex constituents. The dihydrolipoamide 

dehydrogenase (E3) component and other thiol-containing molecules were 

demonstrated to protect the E2/E3BP complex from damage by HNE. Thiol 

groups are predominantly modified by HNE, therefore would be targeted instead 

of the E2-E3BP complex (Korotchkina et al, 2001).

As for enolase, experiments were caiTied out to establish whether SP-22 might 

protect the 2-oxoacid dehydrogenase complexes from oxidative damage. The 

protection of E3 individually was also assessed as it is easy to assay and it 

contains reactive sulphydryl groups that may be the potential targets of oxidation. 

As inactivation was not achieved with the FRS previously used suggesting that the 

complexes were not susceptible to free radical-mediated inhibition, hydrogen 

peroxide was added directly to the purified complexes.

Results
6.2.1. PDC and OGDC Inactivation by Hydrogen Peroxide

Inactivation of PDC and OGDC was attempted with the FRS used above, however 

inactivation was not achieved, even after 40 min with increasing FeCE 

concentrations (results not shown). This is not surprising given the findings in
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previous studies that the levels of hydrogen peroxide required to inhibit the 2- 

oxoacid dehydrogenase complexes are in the millimolar range. The FRS would 

not be able to generate such high levels of hydrogen peroxide. Consequently 

hydrogen peroxide-induced inactivation was assessed by adding it directly to the 

purified complexes, at concentrations of 1, 5 and lOmM (Materials and Methods 

section 2.5.16). Increased inactivation of PDC and OGDC was observed with 

increasing hydrogen peroxide concentration, however even after incubation with 

lOmM hydrogen peroxide at 30°C for 40 min, activity was not completely 

abolished (Fig. 6.5 and 6,7). At ImM hydrogen peroxide, approx. 20% and 40% 

activity of PDC and OGDC respectively, still remained. If inactivation of the 

complexes occuned via oxidative modification of the redox-active sulphydryl 

groups of E3 and for E2, they would need to be in their reduced form; therefore 

experiments were repeated in the presence of O.lmM NADH to determine if 

susceptibility to inactivation was increased. Suiprisingly there was no significant 

alteration in susceptibility of PDC or OGDC to inactivation by hydrogen 

peroxide. The inactivation of PDC in the presence of O.lmM NADH is illustrated 

(Fig. 6.6).

6.2.3. Inactivation of Bovine E3 by Hydrogen Peroxide

As bovine E3 contains reactive sulphydryl groups it is a potential target of 

oxidation by ROS including hydrogen peroxide. Experiments monitoring the 

extent of hydrogen peroxide inactivation of E3 were carried out as for PDC and 

OGDC (Fig. 6.8). E3 displayed a higher degree of resistance to inactivation even 

at the highest concentration of hydrogen peroxide than the 2-oxoacid 

dehydrogenase complexes. >25% activity was remaining after 40 min incubation 

in lOmM hydrogen peroxide. The complexes are more susceptible because their 

activity is dependent on coordinated activity of each of their enzyme components.

Pre-incubating E3 in O.lmM NADH as for the 2-oxoacid dehydrogenase 

complexes did not increase the rate of inhibition, suggesting that hydrogen 

peroxide does not directly modify active-site sulphydryl groups as the principal 

mechanism of inactivation (results not shown).
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Figure 6.5. Inactivation of PDC with Increasing Concentrations 

of Hydrogen Peroxide
Purified bovine heart PDC (50|ag) prepared in 50mM KPi buffer pH 7.0 was 

incubated at 30°C with increasing concentrations of hydrogen peroxide. At 

increasing time intervals l-5pg of reaction mix was assayed in 670pl of 50mM 

KPi buffer pH 7.6, containing 3mM NAD^, 2mM MgCb, 0.2mM ThDP, 14p1 

Solution B (0.13M cysteine-HCl and 6.8mM acetyl CoA) and 14|xl lOOmM 

pyruvate, recording the A340 increase over 45s. Results were calculated as an 

average of duplicate readings differing by ±7%.
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Figure 6.6. Inactivation of PDC (Pre-incubated with NADH) with 

Increasing Concentrations of Hydrogen Peroxide
Purified bovine heart PDC (50|LAg) prepared in 50mM KPi buffer pH 7.0 was pre- 

incubated at 30°C with O.lmM NADH, prior to addition of increasing 

concentrations of hydrogen peroxide. At increasing time intervals l-5pg of 

reaction mix was assayed in 670)41 of 50mM KPi buffer pH 7.6, containing 3mM 

NAD^, 2mM MgCb, 0.2mM ThDP, 14pj Solution B (0.13M cysteine-HCl and 

6 .8mM acetyl CoA), and 14pl lOOmM pyruvate, recording the A340 increase over 

45s. Results were calculated as an average of duplicate readings differing by 

±7%.
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Figure 6.7. Inactivation of OGDC with Increasing Hydrogen 

Peroxide Concentrations
Purified bovine heart OGDC (50p,g) prepared in 50mM KPi buffer pH 7.0 was 

incubated at 30°C with increasing concentrations of hydrogen peroxide. At 

increasing time intervals l-5pg of reaction mix was assayed in 670pl of 50mM 

KPi buffer, pH 7.6, containing 3mM NAD^, 2mM MgCb, 0.2mM ThDP, 14pl 

Solution B (0.13M cysteine-HCl and 6 .8mM acetyl CoA) and 14pl lOOmM 

ketoglutarate, recording the A340 increase over 45s. Results were calculated as an 

average of duplicate readings differing by ±7%.
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Figure 6.8. Inactivation of Bovine E3 with Increasing 

Concentrations of Hydrogen Peroxide
Bovine E3 prepared in O.IM KPi buffer pH 7.0 was incubated with increasing 

concentrations of hydrogen peroxide (1 ,5 , and lOmM) at 30°C. At various time 

intervals remaining activity was assessed monitoring the A340 increase over 45s on 

addition of E3 (5-50pg) to 670p.l of 50mM KPi buffer pH 7.6, containing 3mM 

NAD" ,̂ 2mM MgCh, and 0.2mM ThDP. The reaction was initiated upon addition 

of 14pl 2.0mM dihydrolipoamide. Results were calculated as an average of 

duplicate readings differing by ±7%.
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6.2.4. Summary and Discussion
As mentioned earlier, it has been reported that although the multienzyme 

complexes are the principal targets of oxidation, higher levels of hydrogen 

peroxide than normal are required for their inactivation in comparison with other 

enzymes involved in the processes involved in aerobic respiration. Indeed it is 

proposed that in several neurodegenerative diseases, inactivation of OGDC by 

oxidative modification is responsible for the decrease in brain metabolism in these 

patients (Gibson et al, 2000). The requirement for higher hydrogen peroxide 

concentrations to inactivate E3, PDC and OGDC accounts for the observation that 

these enzymes were resistant to damage by the metal-catalysed FRS, which 

successfully inactivated enolase in the previous section. Consequently three 

concentrations of hydrogen peroxide (1 ,5  and lOmM) were used to inactivate 

PDC, OGDC and their common E3 component. There was a corresponding 

decrease in activity with an increase in hydrogen peroxide concentration, although 

not to a particularly great extent. It was sui^piising that for all three susceptible 

subjects, lOmM hydrogen peroxide did not completely abolish their activities iij
after incubation for 40 min. Consequently the protection of these enzymes by SP- |

22 as in the enolase experiments could not be assessed.

To render the possible susceptible chemical groupings of the enzyme components 

accessible to oxidation in an attempt to increase their vulnerability, the 

experiments were repeated in the presence of O.lmM NADH. Incubation in the 

presence of NADH reduces the disulphides of E3 to their cognate sulphydryl 

groups, and reduces the disulphide bond on the diothiolane ring of the lipoate 

cofactor of E2. Both these groupings have the potential to be oxidised by free 

radicals and ROS. Surprisingly however, inactivation on addition of hydi’Ogen 

peroxide was not significantly different to the experiments earned out in the 

absence of NADH suggesting that the redox-active cysteines of E3 ai’e not 

accessible, and may be protected within the overall structure. Indeed the thiol 

groups of PDC E3 are not accessible to modification by NEM unless the complex 

is completely denatured, shown previously in chapter 1 (Fig. 1.11).
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With respect to the resistance of E2 to oxidative modification, it has been 

demonstrated that it is possible to remove >50% of the lipoate groups of E2 

without resulting in loss of enzymatic activity (Guest et al, 1985). It is possible 

therefore that the lipoate groups are being oxidised, but not to such an extent 

where inactivation is achieved.

A further possibility that would account for the resistance to inactivation would be 

that hydrogen peroxide only reversibly modifies the groupings of PDC and 

OGDC. As the assay mix contains millimolar levels of cysteine-SH it is possible 

that upon addition to the mix the modified groups are repaired. Consequently the 

extent of inactivation observed in these studies may only represent the irreversible 

oxidative modification of the complexes. Indeed, it has been reported in intact rat 

mitochondria that micromolar levels of hydrogen peroxide reversibly inhibits 

OGDC (Nulton-Persson and Szweda, 2001). Moreover, this report implies that 

hydrogen peroxide may have a role in regulation of the complexes by modulating 

the redox status of the mitochondria rather than by direct inactivation of OGDC.
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7.1.0. Introduction
Previous studies, unrelated to SP-22 investigations, involving the dissociation of 

the pyruvate dehydrogenase complex (PDC) into its cognate enzyme components, 

highlighted the possibility of an interaction between the dihydrolipoamide 

dehydrogenase component (E3) and SP-22. PDC was purified under associative 

conditions from bovine heart (Materials and Methods section 2.5.12). Following 

high-speed centrifugation of the purified complex, the resuspended multienzyme 

complex was analysed by SDS-PAGE. An additional protein with a M, 22,000 

was found to co-purify with PDC, despite the ultracentrifugation step that favours 

the isolation of high molecular mass species. PDC was subsequently separated 

into its constituent enzymes by gel exclusion chromatography in the presence of 

2M salt. The additional protein was found to specifically co-elute with E3 during 

purification by size exclusion chromatography and, following N-teiminal 

sequencing, was confirmed as SP-22 (R.G. McCaitney (1998) Thesis, University 

of Glasgow).

E3, like thioredoxin reductase, is a member of the pyridine dinucleotide 

disulphide reductases and therefore immediately can be indirectly linked to SP-22, 

which is reported to exhibit thioredoxin-dependent peroxidase activity. 

Furthermore given the function of SP-22 in the removal of hydrogen peroxide, 

and the susceptibility of PDC to oxidative damage (Chapter 6 section 2), it may be 

postulated that SP-22 serves to protect this complex. Perhaps more specifically, 

SP-22 may protect the reactive sulphydryl groups of the E3, E2 and E3BP 

components of PDC accounting for their possible association. Interestingly, 

AhpC a bacterial alkyl hydroperoxide from Salmonella typhimurium with 

homology to SP-22 interacts with a second component AhpF, which is a member 

of the pyridine dinucleotide disulphide reductase family related to E3.

To provide evidence for a specific interaction between E3 and SP-22, studies were 

carried out employing isothennal titration calorimetry (ITC) and surface plasmon 

resonance (SPR).
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A typical reaction between two components, A and B is as follows: 

ka

A + B <=> AB
kd

The rate of association (ka) used to indicate the rate of complex formation, and the 

rate of dissociation (kd) used to indicate the rate of complex decay, can be used to 

calculate the association equilibrium constant (K a) of two interacting components, 

and the dissociation equilibrium constant (K d). The K a gives a measure of the 

strength of binding e.g. the higher the Ka, the higher the binding affinity. The Kd 

is the reciprocal of Ka and is generally the parameter used to define an interaction. 

The smaller the Kd, the greater the binding affinity.

ITC enables the measurement of the thermodynamics of a protein-protein 

interaction (Pierce et al, 1999). This information can also provide information on 

the also the strength of binding, the stoichiometry of binding, and the enthalpy of 

binding (AHb) between two interacting species.

The ITC instrument comprises two cells: one reference cell and one sample cell 

which will contain the macromolecule of interest. Both cells are identical and 

consist of an efficient thermal conducting material encased in an adiabatic jacket. 

Slight temperature changes occuning between the two cells and the cells and 

jacket are detected, activating the jacket to alter the temperatures so that they are 

identical. The reference cell contains the appropriate buffer minus the 

macromolecule. A constant power (<lmW) is exerted on the reference cell which 

consequently instructs a feedback circuit to activate the sample cell heater, and 

subsequently represents the baseline for experiment. The other ligand of interest 

is contained in a syringe and titrated into the macromolecular sample within the 

sample cell. The time-dependent input of power required to keep the reference 

and sample cells at identical temperatures is recorded. The power input is 

dependent on whether the protein-protein interaction is endothermie or 

exothermic. Exothermic reactions give rise to an increase in temperature in the
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sample cell resulting in a drop in power input, and vice versa for endothermie 

reactions. The heat exchange is proportional to the fraction of bound ligand, A 

disadvantage of this method is that high concentrations of titrant are required. 

Another technique, requiring lower protein concentrations that can provide 

detailed infoi-mation on the binding kinetics of an interaction is surface plasmon 

resonance.

SPR is a relatively new technology that characterises macromolecular 

interactions, providing information on the affinity and rate of binding within the 

nanomolar to micromolar range (McDonnell, 2001). SPR is an optical technique 

that uses the evanescent wave phenomenon to assess the refractive index change 

that occurs when an analyte and its ligand interact. The ligand is immobilized on 

the surface of a sensor chip and the analyte is present in solution. When an 

analyte binds to a ligand there is a change in the refractive index due to the 

increase in mass on the chip surface. Binding is measured in response units (RU) 

with IRU being equivalent to 0.1° change in the angle of reflected light from the 

chip surface, also equivalent to Ing of bound protein per mm^. Typically the 

macromolecule with the lower molecular weight should be immobilised to the 

chip surface, however for publication it is usually necessary to caiTy out 

experiments in both orientations. The principal advantage of SPR is that the 

analyses can be carried out rapidly and accurately in intricate detail, over a range 

of macromolecular concentrations and environmental conditions.

The company Biacore (Uppsala, Sweden) was the first to offer an instrument to 

investigate interactions by SPR and it has continued to dominate the SPR market 

despite several other companies offering cheaper alternatives (Mullett et al, 2000). 

The Biacore sensor chip is a lOOnm gold-coated slide held within a plastic 

support, coated with a carboxy-methylated dextran that allows immobilisation of 

the desired ligand via a number of chemical groupings such as amines, 

sulphydryls, hydrazines and maleimides. The hydrophilic properties of this 

matrix also minimises the occunence of non-specific binding, which can affect 

the accuracy of the analysis.
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Results
7.1,1. Stoichiometry of SP-22/E3 Binding by Isothermal Titration 

Calorimetry

For ITC high concentrations of injectant are required, therefore to detect an 

interaction between SP-22 and E3, human recombinant E3 was used instead of 

bovine E3, owing to our ability to produce the human enzyme in large amounts. 

Both E3 and SP-22 were extensively dialysed for ITC to minimise buffer 

mismatches that may create a signal during the injection process (Materials and 

Methods section 2.5.23). The dialysate was placed into the reference cell and SP- 

22 (lOpM) was placed in the sample cell. Prior to injection of the ligand (E3) into 

the sample (SP-22), E3 was injected into buffer only to determine its heat of 

dilution. The data illustrated have been coiTected taking into account the heat of 

dilution of E3. The injection of E3 into SP-22 resulted in an endothermie heat 

pulse (not shown) and generated a profile that was consistent with a single-site 

binding model (Fig. 7.1). Although the stoichiometry of binding was not 

accurately detennined, the data fitted well to a 1:1 interaction. The association 

constant was calculated using ORIGIN software (OriginLab Corporation) and was 

in the micromolar range (18.3p.M) representing a relatively high affinity 

interaction. Given that E3 is of human origin and SP-22 is bovine, it is possible 

that tighter binding may occur with enzymes of the same source. Even so, an 

interaction between SP-22 and E3 is clearly indicated.
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Figure 7.1. Titration of Human Recombinant E3 into Bovine 

SP-22
Purified human E3 (200pM) was titrated in lOpil injections into purified SP-22 

(lOpM). Both proteins had previously been extensively dialysed together in the 

same container into O.IM KPi buffer pH 7.0, containing 0.15M NaCl, The 

experiment was earned out at controlled temperature (25°C) and data were 

generated using a single-site binding model. The heat of binding is shown against 

the molai* ratio of injectant (E3): cell sample (SP-22).
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7.1.2. Binding Studies Between SP-22 and Bovine E3

To further elucidate the interaction between E3 and SP-22, SPR was adopted. 

This technique requires small protein concentrations in the micromolar range; 

therefore it was possible to use bovine E3 in these experiments instead of human 

recombinant E3.

A CM-5 sensor chip was activated and bovine E3 (50jiig/ml) prepared in O.IM 

sodium acetate buffer pH 4.5, was immobilised onto the chip surface via amine 

coupling (Materials and Methods section 2.5.24). The amount of protein bound to 

the chip is measured in response units (RU). Bovine E3 (1143.8 RU) was 

successfully immobilized onto the chip. Five concentrations of SP-22 (10, 50, 

250, 500, and lOOOnM) were prepared in HBS buffer pH 7.4 for the binding 

studies (Materials and Methods section 2.5.24). Experiments were carried out at 

25°C with a flow rate of 20/xl/min, and 60/xl injections of each concentration were 

passed over the chip surface, followed by 10/tl injections of IM NaCl to 

regenerate the chip surface for the next run. The binding curves for each run were 

evaluated using the BIAevaluation 3.0 software, and the curves were fitted 

according to the Langmuir 1:1 model of binding. The success of a fit was 

reflected by Chi^ values less than 1. The best curves generated were for the 

highest SP-22 concentrations (1000 and 500nM), displaying rapid on rates (ka), 
and slower off rates (kd), with Chi^ values less than 0.5 (Fig. 7.2.). The results for 

two concentrations of SP-22 are tabulated below (Table 4).

[SP-22]
(nM)

k. (M 's") kd(s") KaCUAh)
(M-‘)

Kd (kd/k.) 
(M)

1000 3.64 X 10“ 4.39 X 10“ 8.34 X 10*’ 1.2 X 10'

500 8.33 X 10“ 7.25 X 10 “ 1.15 X 10* 8.71 X 10'

Table 4. Kinetic Analysis of the Interaction Between SP-22 and Bovine E3, at 

differing SP-22 Concentrations
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Figure 7. 2. SPR Binding Profile of SP-22 with Bovine E3
A sample (60/il) of purified SP-22 (IjU-M), prepared in equilibrium buffer (HBS, 

pH 7.4), was passed over bovine E3 bound to a CM-5 sensor chip via amine 

coupling. The experiment was carried out at 25°C at a flow rate of 20jLtl/min in a 

BIAcore 2000 machine (Uppsala, Sweden). Chip regeneration was achieved on 

injection of IM NaCl over the chip surface. The small triangles indicate the pre- 

and post-injection stages of SP-22 onto the chip, the end of the run and the 

subsequent injection point of IM NaCl. Binding can be detected by monitoring 

the number of response units (RU) generated over time in seconds (s).
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It can be seen from these preliminary studies that SP-22 and bovine E3 do interact 

relatively tightly, with a binding affinity in the micromolar range. At the highest 

concentration of SP-22 (lOOOnM), the Kd is 0.12^M, and 0.87jLiM for 500nM. 

Concentrations at less than 500nM did not generate binding curves to permit the 

kinetic analysis. Further kinetic analysis and future experiments are required to 

consolidate these findings.

7.1.3. Summary and Discussion
The initial observation implying that a physical interaction may occur between 

SP-22 and E3 of PDC isolated from bovine heart was made following the co­

elution of these proteins using gel exclusion chromatography. Given the present 

knowledge that SP-22 is a large oligomer with an approximate molecular weight 

ranging from between 500-600,000Mj. and with the tendency to form toroidal 

stacks of two and three rings, it is possible that this co-elution was a result of SP- 

22 oligomers co-sedimenting along with the PDC on ultracentrifugation due to 

size, rather than an actual physical association.

The highly sensitive technique of surface plasmon resonance was utilised to 

clarify whether an interaction occurs between SP-22 and bovine E3. A clear 

interaction was observed with a dissociation constant (Kd) of between 0.1-0.9juM, 

regarded as a relatively tight association. It would be of interest to repeat the 

binding studies with other components of PDC, and also by coupling SP-22 to the 

sensor chip with E3 as the analyte to ensure that the results are consistent. 

Furthermore the influence of mass transport on the interaction between SP-22 and 

E3 requires assessment, repeating the experiment at a range of flow rates. Owing 

to time constraints this was not achieved for this thesis.

To ascertain the stoichiometry of binding between SP-22 and E3, isothermal 

titration calorimetry was employed. Owing to the high concentrations of E3 

required for this technique, human recombinant E3 was used instead of the 

commercially available bovine E3. The stoichiometry of binding was not 

accurately established, but fitted well to a 1:1 model of binding, and together with
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the SPR studies, indicates a clear interaction between SP-22 and E3. The binding 

affinity established by ITC was lower yet similar to that that determined by SPR, 

although human recombinant E3 was used in this ITC study. Further experiments 

were hampered by the tendency of SP-22 to precipitate at concentrations higher 

than lOmg/ml, which is necessary when repeating the experiment in reverse i.e. 

with SP-22 in the syringe.
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Chapter 7

7.2.0. Introduction
In the previous section, evidence has been provided for the presence of a clear 

physical interaction between SP-22 and the E3 component of PDC. This implies 

that a functional relationship may also exist between these two enzymes. This
■1

possibility is further supported by the sequence homology that exists between the 

two components of the alkyl hydroperoxide reductase system from Salmonella 

typhimurium, AhpC and AhpF, and SP-22 and E3, respectively. In the alkyl 

hydroperoxide reductase system AhpC breaks down organic hydroperoxides to 

their conesponding alcohols and water using reducing equivalents supplied by the 

NADH-dependent AhpF (Fig 1.6a, Chapter 1). Furthermore the AhpC component 

of Mycobacterium tuberculosis has been demonstrated to interact with the E3 and 

E2 components of OGDC via an additional adaptor protein called AhpD, to 

scavenge both peroxides and peroxynitrite (Bryk et al, 2000; Bryk et al, 2002).

To elucidate the functional significance of the interaction between SP-22 and E3, 

the possibility of PDC, OGDC, E2 and/or E3 providing the reducing equivalents 

for the peroxidase activity of SP-22 was assessed using reducing and non­

reducing SDS-PAGE analysis.

7.2.1. Determination of the Specificity of SP-22 Reduction

The Prx family were originally named thiol-specific antioxidant proteins owing to 

their requirement for reducing equivalents provided by thiol-containing molecules 

(Netto et al, 1996). To ascertain whether the reduction of SP-22 is thiol-specific,

SDS-PAGE analysis of SP-22 was earned out in the absence (Lane 1) and 

presence of lOmM DTT (Lane 2), lOmM DHL (Lane 4), or lOmM ascorbic acid 

(Lane 3) (Fig. 7.3). DTT and DHL are both thiol-containing compounds shown 

to successfully reduce oxidised (dimeric) SP-22 to its monomeric form. Ascorbic 

acid, also called vitamin C is a commonly used reducing agent; however it lacks a 

thiol group. Indeed the reduction of SP-22 was demonstrated to be thiol-specific, 

indicated by the maintenance of SP-22 in its disulphide-bonded (dimeric) form
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Figure 7.3. Determination of the Thiol-Specific Reduction of 

SP-22
Purified SP-22 (Spg) was pre-incubated for 5 min at room temperature in the 

absence of reducing agent (Lane 1), or in the presence of either lOmM DTT 

(Lane 2), lOmM ascorbic acid (Lane 3) or lOmM dihydrolipoamide (Lane 4). 

The incubation mix was analysed on a 12% polyacrylamide gel following 

dénaturation in Laemmli sample buffer at 70°C for 5 min. Protein bands were 

stained using Coomassie Brilliant Blue. The monomeric (M) and dimeric (D) 

forms of SP-22 are indicated by the arrows.
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when in the presence of ascorbate. Furthermore, in subsequent experiments, the 

ability of NADH and thioredoxin to reduce SP-22 was also assessed. As expected 

thioredoxin reduced SP-22 successfully whereas NADH did not (Lanes 3 and 6, 

Fig. 7.4).

7.2,2. Assessment of the Reduction of SP-22 by E3

Using the fact that SP-22 contains disulphide-bonded subunits that migrate as 

dimers or monomers in the oxidised or reduced states of the enzyme, on a 

polyacrylamide gel, SDS-PAGE analysis was utilised to determine whether other 

compounds and enzymes could promote reduction of SP-22.

As the activity of SP-22 revolves around its reduction following oxidation by its 

substrate and E3 contains reactive sulphydryl groups, the potential for SP-22 

reduction by E3 in place of thioredoxin was assessed. E3 (5pg) and SP-22 (5pg) 

in the presence and absence of ImM NADH were incubated together for 5 min at 

37°C, then denatured in Laemmli sample buffer for 15 min at 37°C and analysed 

on a 10-12% gradient NOVEX gel (Fig. 7.4). All proteins involved in these 

experiments were prepared in 50mM KPi buffer pH 7.0 containing lOmM NaCl, 

Low salt was employed to prevent disruption of potential electrostatic protein- 

protein interactions.

Successful reduction of SP-22 was indicated by its conversion from its dimeric to 

monomeric form. Dimeric (Lane 1) and monomeric (Lane 2) marker incubations 

of SP-22 were prepared. It was apparent that E3 did not reduce SP-22 (Lane 4), 

even when pre-incubated with LOmM NADH which would render E3 entirely in 

its reduced state (Lane 5). A control incubation containing NADH alone also did 

not reduce SP-22 (Lane 3). As expected, reduced thioredoxin the recognised 

physiological substrate for SP-22 converted it completely to its monomeric 

(reduced) state (Lane 6).

Interestingly when SP-22 was incubated with thioredoxin, E3 and NADH it was 

present in its oxidised state (Lane 8). This was a surprising observation given
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that thioredoxin reduces SP-22 in the presence of E3, in the absence of NADH 

(Lane 7). Furthermore incubating SP-22 with E3, thioredoxin and ImM NAD'*’ 

rendered SP-22 entirely in its monomeric form (Lane 9). On consulting the 

literature, it was noted that E3 possesses NADH-dependent oxidase (diaphorase) 

activity (Gazaryan et al, 2002). Such activity results in the generation primarily 

of hydrogen peroxide, but also to a lesser extent the superoxide anion from the 

oxidation of NADH. Following the reduction of SP-22 by thioredoxin, any 

hydrogen peroxide generated from E3-linked diaphorase activity would re-oxidise 

SP-22 back to its dimeric state. This phenomenon was also observed when SP-22 

was incubated in the presence of thioredoxin, with 25pg of PDC and OGDC 

(Lanes 5-8, Fig. 7.5). As SP-22 incubated in the presence of NAD'*' is monomeric 

this implies electrons cannot be transferred from reduced SP-22 to NAD’*' either 

directly or via thioredoxin and E3.

It is known that in vitro E3 can transfer the electrons supplied by exogenous 

NADH to E2, therefore reducing its covalently linked lipoamide groups. 

Furthermore it was demonstrated that exogenous DHL can reduce SP-22 (Fig. 

7.3). Thus, it is possible that E2 may facilitate electron transfer from its bound 

DHL group to SP-22 (Diagram 1, Fig. 7.6). This would be difficult to investigate 

however, in the light of knowledge that E3 has diaphorase activity. Any 

successful reduction of SP-22 by E2 via the transfer of electrons from NADH to 

E3 would be masked by the re-oxidation of SP-22 by hydrogen peroxide, 

generated by the diaphorase activity of E3 (Diagram 2, Fig 7.6).
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Figure 7.4. Analysis of SP-22 and E3 Interaction by SDS-PAGE
Purified SP-22 (5|ug) was pre-incubated with combinations of bovine E3 (5p,g) 

and thioredoxin (5pg) for 5 min at 37°C in the absence or presence of l.OmM 

NADH or NAD^, then made up to a total volume of 20pi with Laemmli sample 

buffer and denatured for a further 15min at 37°C. The entire incubation mix was 

analysed on a 10-12% gradient NOVEX gel, staining with Coomassie Brilliant 

Blue. Oxidised (-DTT) and reduced {+ 150mM DTT) SP-22 controls were also 

prepared. Lane 1 (SP-22), 2 (SP-22 + 150mM DTT), 3 (SP-22 + NADH), 4 (SP- 

22 + E3), 5 (SP-22 + E3 + ImM NADH), 6 (SP-22 + Trx), 7 (SP-22 + E3 + Trx), 

8 (SP-22 + E3 + Trx + ImM NADH), 9 (SP-22 + E3 + Trx -H ImM NAD+). 

Arrows indicate thioredoxin (Trx), E3 and the dimeric (D) and monomeric (M) 

forms of SP-22.
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Figure 7.5. Comparison of E3, PDC and OGDC Reduction of SP- 

22 in the Presence of NAD  ̂and NADH
Purified SP-22 (5pg) was pre-incubated for 5nun at 37°C with combinations of 

bovine E3 (5pg), thioredoxin (5pg) and PDC (25pg) or OGDC (25|uig), in the 

presence of l.OmM NAD^ or NADH, then made up to a total volume of 20pl with 

Laemmli sample buffer, and denatured for a further 15 min at 37°C. The entire 

incubation mix was analysed on a 10-12% gradient NOVEX gel, staining with 

Coomassie Brilliant Blue. Lane 1 (SP-22 -t- Trx + NADH), 2 (SP-22 + Trx + 

NAD+), 3 (SP-22 -h Trx -h E3 + NADH), 4 (SP-22 + Trx +  E3 +  NAD+), 5 (SP-22 

-H Trx + OGDC + NADH), 6 (SP-22 + Trx -H OGDC + NAD+), 7 (SP-22 -h Trx + 

PDC -f NADH), and 8 (SP-22 + Trx + PDC + NAD+). Arrows indicate 

thioredoxin (Trx), E3, the dimeric (D) and monomeric (M) forms of SP-22, and 

the other PDC/OGDC components.
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1. Proposed Electron Routes of Electron Transport
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Figure 7.6. The Diaphorase Effect of E3 on SP-22
Diagram 1 illustrates the proposed reduction of SP-22 into its monomeric form by 

dihydrolipoamide thiols or directly by E3 (blue arrows). Diagram 2 shows the re­

oxidation of SP-22 back to its disulphide-bonded form by hydrogen peroxide, 

generated as a consequence of the diaphorase activity of E3. The small black 

aiTows depict the proposed flow of electrons. Although not shown it is also 

possible that thioredoxin and/or an additional adaptor protein like the AhpD 

component in Mycobacterium tuberculosis may be required to complete the 

electron transport pathway.
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7.2.3. Summary and Discussion
SP-22 has been assigned to a family of 2-Cys thioredoxin-dependent 

hydroperoxide reductases but this does not exclude the possibility that there may 

be alternative physiological substrates. Recently a direct link has been established 

between the E2 (OGDC) and E3 components of Mycobacterium tuberculosis, 

participating in a system involved in the NADH-dependent removal of peroxide 

and peroxynitrite substrates by the AhpC Prx (Bryk et al, 2002). In this system 

electrons are transfeiTed from NADH to E3, to E2, to an adaptor protein called 

AhpD, then finally to AhpC.

The reduction mechanism of SP-22 was shown to rely on thiol groups as a source 

of reducing equivalents. This was reflected by the ability of the thiol compounds 

DTT, DHL and thioredoxin to convert SP-22 to its monomeric state, together with 

the inability of non-thiol reductants such as ascorbate and NADH to reduce SP- 

22. These results are consistent with those for other 2-Cys Prx family members. 

The demonstration that SP-22 could be reduced by DHL was of particular interest, 

raising the possibility that E2 of PDC and/or OGDC may be able to reduce SP-22 

comparable with the Mycobacterium tuberculosis system.

Initially, as a direct physical interaction was observed between E3 and SP-22, it 

was postulated that E3 (+NADH) might supply reducing equivalents directly to 

SP-22, therefore substituting the requirement for thioredoxin. However reduction 

of SP-22 by E3 in the presence of NADH was not observed. This experiment was 

repeated in the presence of thioredoxin, E3 and NADH. Interestingly SP-22 was 

observed to be in its dimeric form, indicating that SP-22 is being re-oxidised in 

some way on addition of NADH. It is reported that E3 can catalyse the generation 

of hydrogen peroxide and to a lesser extent, the superoxide anion, via NADH 

oxidation by dissolved oxygen in solution (Gazaryan et al, 2002).

At present, it is unclear if E3 can mediate electron transfer directly to SP-22 or via 

thioredoxin owing to its intrinsic diaphorase activity. However, SP-22 remains in 

its reduced form when incubated with thioredoxin, E3 and NAD"^ suggesting that
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electron transfer cannot occur from SP-22 to NAD^, although it is still possible 

that thioredoxin can transfer electrons to E3.

Also investigated was the possibility that E3 may be able to transfer reducing 

equivalents to SP-22 via E2. Initially this proposal seemed promising given that 

exogenous dihydrolipoamide successfully reduced SP-22. However incubation of 

SP-22 with E2 in the presence and absence of NADH and E3, did not reduce SP- 

22. As both E3 and NADH are present in the incubation it is likely that 

diaphorase activity is occurring once more. Therefore any successful transfer of 

electrons from E2 to SP-22 would be masked by the re-oxidation of SP-22 by 

hydrogen peroxide. One possible future experiment would be to pre-incubate E3, 

E2 and NADH with catalase prior to the addition of SP-22. The catalase would 

scavenge any available hydrogen peroxide allowing us to observe whether 

electrons can be transfen'ed to SP-22, thereby reducing it.

An additional factor that may be important for successful SP-22 reduction is the 

presence of an adaptor protein like AhpD of the Mycobacterium tuberculosis 

system, which mediates the NADH-dependent transfer of reducing equivalents 

from E3 and E2, to AhpC. A final possibility is the association of SP-22 with E3 

may be simply to maintain it in close proximity to protect the 2-oxoacid 

dehydrogenase complexes from oxidative damage, including the hydrogen 

peroxide generated by the intrinsic diaphorase activity of E3. Thus it remains to 

be proven whether there is a direct functional linkage between these major 

metabolic assemblies and the mitochondrial antioxidant system as represented by 

SP-22.
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General Discussion
SP-22 was initially identified as a substrate protein for a mitochondrial ATP- 

dependent protease in bovine adrenal cortex; however following sequence 

analysis it was assigned to a novel peroxidase family, the peroxiredoxins (Prxs) 

(Rhee et al, 1999). The divergent functions of the Prxs, including roles in cell 

proliferation and apoptosis, revolve around their ability to scavenge reactive 

oxygen species (ROS) and the intracellular messenger hydrogen peroxide. 

Hydrogen peroxide is also extremely destructive to key intracellular biomolecules, 

both directly and also indirectly, via the hydroxyl radical generated by the Fenton 

reaction.

Elevated levels of ROS aie produced in mitochondria as by-products of oxidative 

phosphorylation. Electron leakage is proposed to occur mainly from complexes I 

and III of the electron transport chain, generating the superoxide anion which can 

further spontaneously dismutate to form hydrogen peroxide (Finkel and Holbrook, 

2000; Liu et al, 2002). Several mitochondrial enzymatic systems have evolved to 

protect mitochondrial DNA, proteins and lipids from damage by ROS, in addition 

to reactive sulphur species and reactive nitrogen species which are equally 

destructive (Nordberg and Amer, 2001). Oxidative modification of several 

mitochondrial enzymes including the 2-oxoacid dehydrogenase complexes has 

been implicated in the pathogenesis of several neurodegenerative disorders and 

ageing, underlining the necessity for an effective baiTage of antioxidant systems in 

this compartment (Gibson et al, 2000).

There are two subgroups (1-Cys and 2-Cys) of the Prxs depending on the number 

of conserved cysteine residues present within their primary sequences. Both 

subgroups contain a basic dimeric unit and the site of catalysis is the N-terminal 

cysteine. The active site cysteine-sulphydryl of the 1-Cys subgroup is oxidised by 

hydrogen peroxide to a sulphenic acid coupled to the release of water and 

molecular oxygen (Kang et al, 1998a). The oxidised fonn of the enzyme is 

inactive and must be regenerated by a thiol-specific reductant for subsequent 

catalytic cycles. In vitro small thiol compounds including DTT and
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mercaptoethanol are capable of reducing 1-Cys members; however, in vivo the 

physiological electron donor has been reported, in the work of one paper, to be 

cyclophilin A (Lee et al, 2001).

All the mammalian Prxs are of the 2-Cys category which are also termed 

thioredoxin-dependent peroxide reductases, on account of their reliance on 

thioredoxin as a source of reducing equivalents for peroxidase activity. A recent 

report however, also suggests that cyclophilins may be able to reduce the 2-Cys 

members back to their reduced states (Lee et al, 2001). 2-Cys Prxs can further be 

distinguished from 1-Cys members by the presence of two intermolecular 

disulphide bonds formed between the N-terminal conserved cysteine of one 

subunit and the C-terminal cysteine of the opposing monomer. SP-22 is a 

member of this subgroup, containing three conserved cysteines (C47, C66 and 

C168); this third cysteine is not atypical of this subgroup.

In general, the 2-Cys Prxs studied to date, excluding the mitochondrial member 

PRDX5, all exist as homodimeric enzymes that further adopt a larger oligomeric 

form. This larger assembly is toroidal in conformation, formed by the interaction 

of five dimers joined end-to-end (Hirotsu et al, 1999; Schroder et al, 2000).

Research into the precise physiological role of SP-22 is limited, with studies 

focusing on its ability to protect several free-radical sensitive enzymes (Watabe et 

al, 1997; Watabe et al, 1999). In addition to SP-22 only one other mitochondrial 

Prx (PRDX5) has been identified. PRDX5 is a 2-Cys member; however, it 

represents a novel subgroup of Prxs as it does not contain intemiolecular 

disulphides and is, in fact, exclusively monomeric (Declercq et al, 2001). The 

structure of SP-22 has not been investigated to date; therefore the primary aim of 

this thesis was to elucidate the structure and function of SP-22 in more detail.

Cloning, Overexpression and Purification of SP-22

To ascertain whether the structure of SP-22 was similar to that of the other 2-Cys 

Prxs or instead the mitochondrial PRDX5, it was necessary to obtain sufficient
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quantities of protein for biophysical analysis. Published studies on SP-22 have 

been canied out with the native enzyme isolated from tissue sources such as 

adrenal cortex, which is often time-consuming and cumbersome. The first 

successful overexpression of recombinant SP-22 as a His-tagged protein in 

bacterial cells is reported here using the pET vector system. The conditions for 

optimal protein solubility were deteiTnined by manipulating the induction 

temperature of the overexpression. It was observed that solubility increased with 

a corresponding reduction in temperature, with 22°C being sufficient to generate 

the required levels of soluble protein. The incorporation of the six-histidine 

residue-tag onto the N-terminus of SP-22 enabled its subsequent purification by 

metal chelate chromatography. Approximately 20-30mg of pure SP-22 was 

produced per 500ml culture using a BioCAD® SPRINT ^^Workstation.

Biophysical and TEM Studies of Wild Type and Mutant SP-22s

It was determined by SDS-PAGE analysis of purified SP-22 in reducing and non­

reducing conditions that SP-22 forms a dimeric unit containing two intermolecular 

disulphide bonds. As the purified enzyme appears completely trapped in its 

oxidised state, it runs as a dimer when analysed by non-reducing SDS-PAGE. 

Three cysteine mutants were generated by site-directed mutagenesis, 

overexpressed and purified as for wild type SP-22. Following SDS-PAGE 

analysis of the mutants in reducing and non-reducing conditions, it was 

established that C47 formed an intermolecular disulphide bond with C168 of the 

opposing subunit. C66 was shown not to participate in disulphide bond 

formation, with this mutant remaining in its dimeric form in the absence of 

reducing agent as for wild type SP-22. Therefore it was concluded that SP-22 

adopts the same basic dimeric subunit organisation identified in other 2-Cys Prxs.

As mentioned previously the 2-Cys Prxs can foim a larger oligomeric assembly, 

aiTanged as a decameric toroid comprising five dimers. It was established using 

gel exclusion chromatography and sedimentation equilibrium ultracentrifugation 

(SEU) that SP-22 too forms a lai'ge oligomer. The apparent molecular weight of 

the SP-22 oligomer was established by SEU to range between 615-635kDa
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coiTCSponding possibly to a double toroid containing 10 or 12 subunits per ring. 

SEU is an extremely accurate means of molecular weight determination, yet the 

results generated were unexpected and did not coiTespond to a single decameric 

toroid. However, it became apparent following transmission electron microscopy 

(TEM) that SP-22 does not exist as a single species, and can form stacks of two 

and three rings. Therefore it is likely that the size obtained by SEU represents the 

average molecular weight of all the oligomeric species present in solution, which 

may be at dynamic equilibrium. Experiments repeated in the presence of DTT 

and for C47S established that the integrity of the SP-22 oligomer is not 

maintained by disulphide bonds. In addition, aggregate foimation was observed 

for C47S, later confirmed by TEM.

Circular Dichroism (CD) in the far UV spectra was used to establish the 

secondary structural composition of wild type SP-22, The a-helix contribution 

was the greatest constituting nearly 50% of the overall structure. The alignment 

of SP-22 with the 2-Cys Prx members TPx-B and HBP23 indicated extremely 

high (>90%) sequence and structural homology. Secondary structure 

deteimination for C47S was also canied out, and it was established that mutation 

of C47 does not have an observable effect on the secondai-y structure composition; 

the CD profiles of wild type SP-22 and C47S were comparable. As CD offers 

only an estimation of secondary structural composition it will be necessary to use 

a high-resolution technique such as X-ray crystallography to determine this more 

accurately.

The stability of the SP-22 oligomer was also assessed by monitoring CD spectral 

changes in the near UV region on gradual dénaturation in increasing urea 

concentration. Overall the oligomer was extremely stable, even following 

overnight incubations at maximal dénaturant concentration. At the highest 

concentration of urea (9.5M) the oligomer remained paitially folded, retaining 

approx. 25% of native ellipticity. The contribution of the disulphide bonds to 

global stability was further assessed by studying the unfolding profiles of the 

mutants. Experiments for wild type and mutant SP-22s were also earned out in
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the presence of 20mM DTT to prevent the formation of non-specific di sulphide 

interactions that may form during the unfolding process. Slight destabilisation in 

the range of 4-6M urea was observed for wild type SP-22 in the presence of DTT ; 

however complete dénaturation was not achieved, confiiTning that the cysteines 

have a minor role in stabilising those elements of structure that unfold between 4- 

6M urea and are not necessai'y for overall subunit integrity. CD analysis of the 

cysteine mutants in the presence and absence of reducing agent further supported 

this finding.

It is possible to trace the discrete events in a folding pathway using fluorescence 

spectroscopy by monitoring the changes in tryptophan fluorescence with gradual 

dénaturation. Typically tryptophan residues are located internally or are present at 

protein-protein interfaces; therefore dissociation of adjacent subunits and 

subsequent unfolding theoretically would result in a concomitant increase or 

decrease in tryptophan fluorescence. An unfolding profile can be plotted by 

calculating the fluorescence changes (as a percentage of the total change between 

native and denatured forms of the protein) against the concentration of dénaturant. 

This can then be compared with the unfolding profile generated in CD 

experiments. Unfortunately however, the fluorescence changes between native 

and denaturated SP-22 were minor, and an unexpected decrease in absorbance 

was observed for the latter foiTn. This was attributed to internal fluorescence 

quenching which commonly occurs when a protein is denatured, generating 

unfavourable positioning of amino acids side chains. Furthermore disulphides 

and external quenching agents such as DTT can also cause a molecule to lose 

energy, thus resulting in a related decrease in fluorescence. The observed small 

changes in fluorescence subsequently prevented the construction of an unfolding 

titration profile.

The toroidal structure of SP-22, chai'acteristic of the 2-Cys Prxs, was clearly 

observed by negative staining TEM. From 188 individual SP-22 toroids the 

average external diameter was established to be approx 15nm. Stacks comprising 

two and three SP-22 toroids arranged in a lateral an'angement were also observed.

170



Discussion

This phenomenon has also been reported for the human erythrocyte protein TPx- 

B; however stacking was more prevalent for recombinant SP-22 (Hairis et al, 

2001).

To investigate the possibility that the His-tags mediated stacking via tethering by 

contaminating zinc ions from the purification procedure, gel exclusion 

chromatography was carried out in the presence of the chelating agent EDTA, 

DTT or with thrombin-cleaved SP-22 (Linder et al, 1992). The molecular weight 

remained higher (>450,000) than that predicted for a decamer (approx 250,000Da) 

implying that the His-tags do not mediate stacking. Stacking has also been 

observed in SP-22 purified from adrenal cortex, supporting the proposal that His- 

tags are not responsible for stacking (Wood et al, 2003). It should also be noted 

that the accurate molecular weight determination of SP-22 by gel exclusion 

chromatography is also complicated by the presence of a central cavity that gives 

rise to a larger-than-predicted effective diameter.

As a caveat to the above conclusion however, TEM studies on SP-22 conducted in 

the presence of DTT produced mainly single rings. It has already been 

established by SEU, gel filtration and CD that the cysteine residues are not 

structural. It is known that DTT can bind zinc ions with high affinity; therefore, it 

is possible that although the His-tags are not responsible for stacking, they can 

increase its prevalence. The factors governing stacking and the physiological 

relevance of this phenomenon requires further investigation.

A ubiquitous feature of the rings requiring further probing is the presence of radial 

spikes projecting outwards from the central cavity of the rings, believed to be too 

regulaiiy positioned to be artefacts of the staining procedure. Furtheimore, 

electron-dense material was also frequently observed within the central cavity. 

Following silver staining and immunoblotting of purified SP-22 with a His-tag 

monoclonal antibody, it was determined that the cavity material was likely to be 

part of SP-22 structure and not adventitiously bound E. coli proteins. The 

possibility that this electron-dense material could be attributed to partially folded
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SP-22 subunits was considered unlikely as additional oligomeric forms of SP-22 

were not observed in gel exclusion chromatography and sedimentation 

equilibrium experiments. This feature requires further investigation, as does the 

elucidation of the exact number of subunits per ring. The SP-22 monomers of the 

toroid are packed extremely tightly together, preventing complete penetration of 

the stain round the edges of each monomer. It is probable that SP-22 will be 

decameric, consistent with other 2-Cys members. To confirm this, cryo-negative 

staining which offers greater resolution is presently being carried out.

SP-22 Functional Studies

The second aim of this thesis was to elucidate the precise function of SP-22, 

which has remained elusive to date except in its protection of several free-radical 

sensitive enzymes (Watabe et al, 1997; Watabe et al, 1999). The structure of SP- 

22 and indeed the 2-Cys Prxs in general appears rather complex for a simple 

anti oxidant function.

Initially it was necessary to deteiTnine whether heterologously-expressed SP-22 

was in fact active. This was achieved by measuring the protective effect of SP-22 

on enolase inactivation in the presence of a free-radical generating system. SP-22 

was demonstrated to be active in this assay and exhibited significant protection 

towards enolase at a range of concentrations. To confirm the contributions of the 

cysteine residues in the peroxidation mechanism, the protective effect of the 

cysteine mutants towards enolase was also studied. The N-terminal C47S mutant 

displayed no protection towards enolase confirming its role as the catalytic 

residue. The extent of protection by the C66 mutant was comparable with that of 

wild type SP-22, indicating its lack of involvement in the catalytic mechanism. 

Unexpectedly the C-terminal mutant (C168S) exhibited significant protection 

towards enolase inactivation. In effect this mutant appeared to function in a 

manner not dissimilar to the 1-Cys Prxs, bypassing the requirement for the 

inteiTuediate step in which disulphide bond formation occurs during the catalytic 

cycle. Consequently DTT must be able to directly reduce C47 from its sulphenic
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acid back to its sulphydryl fonn. This illustrates the non-equivalence of the N- 

and C-terminal cysteines towards the peroxidase activity of SP-22.

Catalase was also demonstrated to protect enolase from inactivation, thus 

implying that hydrogen peroxide is involved in the inactivation of enolase 

consistent with the role of SP-22 as a peroxidase. The removal of hydrogen 

peroxide by catalase prevents direct damage and also indirect damage via the 

generation of the hydroxyl radical by the Fenton reaction, which is considered to 

be the most potent ROS. A comparison of the removal of hydrogen peroxide by 

catalase and SP-22 in the presence and absence of DTT by tracing the fall in A240 

over time demonstrated that SP-22 does not exhibit detectable peroxidase activity 

in this assay. This is consistent with previous suggestions that the Prxs can only 

remove micromolar amounts of hydrogen peroxide involved in cell signalling 

networks, and not millimolar levels like catalase and glutathione peroxidase. It is 

likely, however, that the reduction of SP-22 from its oxidised (inactive) state to its 

reduced (active) state in this situation is also limited by the use of DTT as a non- 

physiological substrate.

SP-22 Protection of the 2-Oxoacid Dehydrogenase Complexes

Given the previous finding in our laboratory that SP-22 co-elutes with the E3 

component of bovine heart PDC following gel exclusion chromatography, the 

function of SP-22 with respect to protection of the 2-oxoacid dehydrogenase 

complexes against oxidative damage was investigated. All the components of the 

2-oxoacid dehydrogenase complexes contain chemical groupings that are 

susceptible to oxidative modification. E l contains several reactive cysteines, E2 

and E3BP contain lipoate groups and E3 contains reactive sulphydryl groups 

involved in catalysis.

The free-radical generating system used in the above inactivation studies on 

enolase did not appear to inactivate the 2-oxoacid complexes and bovine E3 to 

any significant extent; therefore inactivation by the direct addition of hydrogen 

peroxide was assessed, in the presence and absence of 0.1 mM NADH, to render
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the subunit thiols in their reduced forms. PDC, OGDC and E3 activity was not 

abolished, with 10-30% activity still remaining following incubation for 40 min at 

the highest hydrogen peroxide concentration (lOmM). The addition of O.lmM 

NADH had no significant effect on the sensitivity of the enzymes to inhibition. 

This implies that hydrogen peroxide is not especially damaging to the complexes.

Inactivation studies have been earned out on OGDC using intact rat mitochondria 

exposed to micromolar levels of hydrogen peroxide (Nulton-Persson and Szweda, 

2001). In this report OGDC was found not to be particularly sensitive to 

inactivation by 50pM hydrogen peroxide, following incubation for 7.5 min, with 

only an observed 39% reduction in activity. Furthermore the activity of OGDC 

was recovered to control levels following the removal of hydrogen peroxide by 

catalase, suggesting that the inactivation of this enzyme is a reversible process. 

This was only observed in intact mitochondria however, and not in disrupted 

mitochondria. Consequently these authors propose that hydrogen peroxide may 

have a role in the regulation of OGDC via modulating the redox status of the 

mitochondria, as hydrogen peroxide reversibly inhibits the rate of respiration and 

ATP synthesis. This would certainly account for SP-22’s association with the 

complexes.

Additional inactivation studies have been canied out to investigate the 

susceptibility of mitochondrial enzymes to hydrogen peroxide, particularly in 

brain nerve terminals; however to date no studies have been carried out on the 

purified enzymes. Despite this the unequivocal finding is that higher-than- 

expected levels of hydrogen peroxide are required for inactivation of the 2- 

oxoacid dehydrogenase complexes. It was demonstrated that 500p,M hydrogen 

peroxide did not completely abolish OGDC activity in guinea pig nerve terminals, 

with 20% of control activity remaining after a 10 min incubation period (Tretter 

and Adam-Vizi, 2000).

The resistance to inactivation in the case of the purified enzymes may be because 

the susceptible groups of the PDC and OGDC components are inaccessible to
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hydrogen peroxide and are protected and buried within the overall structure. This 

is supported by the observation that the thiol compound NEM cannot modify the 

reactive thiols of E3 unless it is completely denatured (Fig. 1.11). Furthermore it 

has been shown that E2 can remain active even when 50% or more of its lipoyl 

groups have been removed (Guest et al, 1985). It has also been proposed by 

Nulton-Persson and Szweda (2001) that OGDC is not particularly sensitive to 

damage by hydrogen peroxide. Moreover it was demonstrated that OGDC 

inactivation in intact mitochondria was reversible, as mentioned previously.

In the work described here, it is possible that the damaged groups of PDC and 

OGDC are being repaired on addition to the assay mixture, due to the presence of 

cysteine-SH at millimolai’ levels. Subsequently our results may reflect only 

irreversible damage to the complexes and would explain why high levels of 

hydrogen peroxide (5-lOmM) were required for inactivation. In the study of 

Tretter and Adam-Vizi (2000) cysteine-SH or equivalent thiol compound is not 

included in the assay mixture, thus their results may represent reversible damage 

inflicted on OGDC, accounting for the low levels of hydrogen peroxide (500pM) 

required for inactivation.

The Relationship Between SP-22 and E3

A physical interaction between SP-22 and the E3 component has been confirmed 

using Isotheimal Titration Calorimetry (ITC) and Surface Plasmon Resonance 

(SPR). ITC indicated an interaction between human recombinant E3 and SP-22 

with a binding affinity of approx. IS^M, fitting well to a 1:1 model of binding. 

Preliminary SPR studies further elucidated a tighter binding affinity in the 

micromolar range (0.1-0.9ju,M) between bovine E3 and SP-22. This physical 

interaction implies a functional significance; therefore using the conversion of SP- 

22 from its dimeric (oxidised) to monomeric (reduced) form observed by SDS- 

PAGE, the possibility that PDC, OGDC, E2 and E3 may be able to reduce SP-22 

in the place of thioredoxin was assessed.
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In Mycobacterium tuberculosis the Prx AhpC is involved in peroxide and 

peroxynitrite removal; however its partner AhpF is absent, suggesting alternative 

enzyme components are involved. It was established that AhpC is reduced by an 

adaptor protein called AhpD, in a NADH-dependent system involving E3 and 

succinyltransferase (E2) (Bryk et al, 2002). The electron flow is the reverse of 

that in OGDC during catalysis, and proceeds from NADH to E3, to E2, to AhpD 

and finally to AhpC which is reduced for subsequent catalytic cycles. It was 

demonstrated that exogenous lipoate can substitute for the E2 component to a 

limited extent, although in vivo there is probably no free lipoate available.

Initially it was established that small thiol compounds including DTT, 

dihydrolipoamide (DHL) and thioredoxin could all reduce SP-22, whereas the 

non-thiol-containing reductants ascorbate and NADH, could not. The finding that 

exogenous DHL could reduce SP-22 (comparable to AhpC in Mycobacterium 

tuberculosis) highlighted the possibility that the lipoamide prosthetic groups of E2 

may also be able to reduce SP-22. SDS-PAGE analysis, however, demonstrated 

that SP-22 remained in its oxidised state in the presence of E2. This is not 

surprising given E2’s requirement for reducing equivalents supplied by E3. It is 

also possible that the lipoate group of E2 is not accessible to the active site of SP- 

22, or that E2 is not capable of transferring electrons to SP-22.

It was then investigated whether E3 had the potential to reduce SP-22 given its 

established physical interaction. However, even in the presence of NADH, which 

renders the reactive sulphydryls of E3 in their reduced states, SP-22 remains 

oxidised. It was subsequently proposed that the flow of electrons between E3 and 

SP-22 could occur via thioredoxin. Given the homology between E3 and 

thioredoxin reductase this appears a feasible mechanism. Interestingly in the 

presence of SP-22, E3, thioredoxin and NADH, SP-22 is found in its oxidised 

state. This was highly unexpected given that reduced thioredoxin, the in vivo 

physiological electron donor, is present. Furthemiore in the presence of E3, 

thioredoxin and NAD" ,̂ SP-22 is successfully reduced. This implies that when 

NADH is present SP-22 oxidation is promoted by an unknown mechanism.
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It has been reported that E3 has intrinsic diaphorase activity, generating hydrogen 

peroxide and lower levels of the superoxide anion by oxidation of NADH 

(Gazaryan et al, 2002). This could indeed account for the results obtained. This 

diaphorase activity was also observed when SP-22 was incubated with PDC and 

OGDC in the presence of thioredoxin and NADH. It can also be postulated that 

the close association of SP-22 with the mitochondrial complexes is essential to 

quench the hydrogen peroxide generated by the diaphorase activity of the E3 

component, thereby protecting them and other mitochondrial enzymes from 

oxidative modification. In addition, as previously mentioned a role for hydrogen 

peroxide in the regulation of the 2-oxoacid complexes has been postulated 

(Nulton-Persson and Szweda, 2001). Initially, however, further experimentation 

is required to confirm that the diaphorase activity of E3 is responsible for the 

unexpected oxidation of SP-22 under these conditions, as NADH-mediated 

reduction of SP-22 via the putative E3/E2-thioredoxin pathway would be masked 

in this assay by the generation of hydrogen peroxide.

Future experiments pre-incubating with catalase prior to addition of SP-22 and 

thus removing hydrogen peroxide generated by E3-mediated diaphorase activity, 

may aid the detenuination of whether SP-22 can be reduced by specific 

components of the 2-oxoacid dehydrogenase complexes.

Although a specific functional relationship between SP-22 and the 2-oxoacid 

dehydrogenase complex remains to be elucidated, the confirmed physical 

interaction between E3 and SP-22 together with the ability of DHL to reduce SP- 

22 highlights a possible direct connection. Alternatively, the connection between 

SP-22 and the 2-oxoacid dehydrogenase complexes may occur via thioredoxin, 

which has been previously reported to activate both OGDC and PDC and can 

oxidise E2 in place of E3 (Bunik et al, 1997; Bunik et al, 1999). Further work is 

required to probe this relationship in more detail, together with further interaction 

studies to assess whether SP-22 has a physical and functional interaction with any 

of the other constituent enzymes of PDC/OGDC.
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Discussion

There are many interesting structural and functional features of SP-22 that have 

been established as a result of this work, requiring future work and understanding. 

It has become appaient that SP-22, following its initial identification is not simply 

a substrate for an ATP-dependent protease, and has divergent functions dependent 

on its role as a peroxidase that may include the protection of the 2-oxoacid 

dehydrogenase complexes from oxidative damage.
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