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Abstract 

This thesis explores the use of advanced fluorescence imaging and spectroscopic 

methods for investigating various properties of biological membranes. The cell 

membrane is a complex environment comprised of a variety of important 

molecules all necessary for maintaining cellular function. The dynamics of 

processes involved in membranes are typically over very short time and spatial 

frames. Advanced fluorescence imaging and spectroscopic methods present an 

opportunity for probing the dynamic nature of this environment due to their high 

levels of both spatial and temporal resolution. The following thesis consists of 

three biological problems centred on the cellular membrane, investigated 

through high resolution techniques. The first area of investigation focusses on 

the insulin regulated metabolism of glucose in fat and muscle tissue. Traditional 

experiments are performed using either isolated rat adipocytes or differentiated 

fibroblasts which both required lengthy and expensive culturing procedures. A 

new modified HeLa cell line was investigated to determine its efficacy as a 

homologue to the well characterised adipocyte model as a method for 

investigating factors affecting glucose metabolism. A direct comparison of the 

dynamic recruitment of the molecule Glucose Transporter 4 (GLUT4) to the 

plasma membrane was undertaken using a custom built Total Internal Reflection 

Fluorescence Microscopy (TIRFM) system. Utilising TIRFM the time dependant 

translocation of GLUT4 to the plasma membrane under insulin stimulation was 

investigated in the two cell lines. This was achieved through analysis of the 

increase in normalised fluorescence signal found within the 110 nm illuminated 

region of the TIRFM system. It was found that in the HeLa cell line 

responsiveness to insulin stimulation was present but with a significant 

difference in GLUT4 levels to the imaged adipocytes. It was also seen that this 

observed response occurred over a significantly longer time frame than in 

adipocyte cells with a half rise time in fluorescence intensity taking, on average, 

5 minutes longer.  In addition, the dynamic mobility of GLUT4 Storage Vesicles 

(GSVs) within the vicinity of the membrane was assessed through image analysis 

techniques. The abundance of mobile and stationary vesicles was assessed. In 

the adipocyte cells a sharp increase in mobile GSVs was observed over the initial 

5 minutes after insulin stimulation. The amount of immobilised GSVs was seen to 

increase at a constant rate over the time course of experimentation. In the HeLa 
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cell line, a similar rate of mobile GSV activity was observed, however, a decline 

in stationary GSVs was found. The increased accumulation of mobile vesicles at 

the plasma membrane is in accordance with previously proposed models of GSV 

recruitment. However, the reduction in stationary vesicles at the membrane 

surface in the HeLa cell line suggested differences in the machinery associated 

with vesicle fusion. 

The second area of study focussed on the analysis of the environmentally 

sensitive class of fluorophores known as molecular rotors, in particular the meso-

substituted BODIPY rotor. Molecular rotors are said to report on the viscosity of 

the environment in which they reside but questions still remained over their 

efficacy of assessing viscosity in complex environments such as lipid bilayers. A 

combined Fluorescence Correlation Spectroscopy (FCS) and fluorescence lifetime 

system was optimised to simultaneously probe the lateral mobility and viscosity 

sensitive fluorescent lifetime of the dye in artificial bilayer systems. The 

diffusion coefficients measured directly through FCS were compared with those 

inferred from the lifetime values by conversion through the Saffman-Delbruck 

model. Those measured by FCS were found to be similar to previously simulated 

values suggesting a well working experimental system. The values found through 

lifetime analysis were of the same order to those measured by FCS but differed 

by as much as a factor of 2 in some cases. The reasons for this most likely lie 

through the inherent assumptions made using the Saffman-Delbruck model. In 

addition, the probes were assessed in bilayers of differing degrees of 

phospholipid saturation. It was observed that the viscosity of the environment 

increased with decreasing saturation in the hydrocarbon tail regions of the 

lipids. This was noted through the diffusion coefficients measured with both 

methods. 

The final chapter focussed on the creation of a system to increase the resolution 

of Fluorescence Lifetime Imaging Microscopy (FLIM) by implementing a TIRFM 

illumination scheme. The focus of this work was to increase resolution for 

imaging of membrane viscosity through the use of molecular rotors. Molecular 

rotors in cellular systems are susceptible to endocytosis over certain time 

frames, limiting their use in physiologically relevant studies in vitro. A gated 

FLIM system was constructed through the combination of pulsed laser diodes and 
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a gated Intensified Charge Coupled Device (ICCD) camera. To investigate the 

abilities of the system to selectively image a surface localised signal relating to 

membrane viscosity, Supported Lipid Bilayers (SLBs) were used. It was found, 

through both lifetime and FCS, that the substrate on which the bilayer was 

deposited reduced the mobility of the probe and the measured fluorescence 

lifetime. The effect was a change in diffusion coefficient by a factor or 2-3 

which was taken into account when assessing the viscosity measured through 

FLIM of SLBs. The TIRF-FLIM principle was then demonstrated through imaging of 

SLBs containing the molecular rotor BODIPY against a highly fluorescent 

background of the fluorophore FITC. FITC provided a background with a 

distinctly longer lifetime to that of the rotor in the bilayer. The system was able 

to resolve the surface localised lifetime signal over a range of concentrations of 

background signal from nano-molar to micro-molar. The critical point, where the 

bilayer lifetime became indistinguishable from the background, came at a 

fluorophore ratio of 2:1 BODIPY to FITC.  
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1. Chapter 1: Introduction 

1.1.  Model of the cellular membrane 

In just over a century the concept of the cell membrane has, and continues, to 

evolve. The initial assertion that the cell membrane was of a lipid nature came 

in the 19th century when Heinrich Quincke postulated that the cell membrane 

was a 100 nm fluid layer of fat [1]. A more complex understanding began to take 

shape as a result of work undertaken in the field of anaesthetics by Hans Meyer 

and Ernest Overton between 1895 and 1899 [2]. By looking into the osmotic 

properties of cells [3–5] Overton noted that molecules permeable to the cell had 

a particular partition coefficient between water and oil leading to the 

assumption that the membrane was comprised of a combination of lipids and 

cholesterol [6], known as their ‘lipoid theory of narcosis’. The initial work to 

determine that the membrane is of a bilayer structure came in 1925 as a result 

of the work by Evert Gorter and Francois Grendel [7]. Through extraction of 

lipids from red blood cells and the use of ‘Langmuir’s trough’ they were able to 

determine the area covered by a monolayer of lipids extracted from a known 

number of erythrocytes and measure its size. Their findings suggested it to be 

twice what was expected leading them to the conclusion that the membrane 

comprised a bilayer of polar molecules.  In 1935 the model was extended to 

include proteins by Hugh Davson and James Danielli [8]. The model suggested by 

Davson and Danielli inferred that the lipid bilayer was located between two 

sheets of globular proteins in a sandwich structure. With the advent of the 

electron microscope J. David Robertson, in the 1950’s, was able to empirically 

determine that the membrane was indeed a bilayer with a thickness of 75 A [9]. 

Observations by Robertson supported the theories proposed by Gorter and 

Grendel and by Davson and Danielli and he coined the term of the ‘unit-

membrane’ to describe the protein incorporating bilayer model.  

 

It wasn’t until 1972 when the next major step in the development of the 

membrane model occurred when Seymour J. Singer and Garth L. Nicholson 

published their paper on the ‘Fluid Mosaic Model’ of the plasma membrane [10]. 

The key components of the model were that the membrane was a complex lipid 

bilayer with proteins residing at its surface or as integral components embedded 
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through bilayer. The Fluid Mosaic model developed as technologies [11] 

improved in Nuclear Magnetic Resonance (NMR) and electron spin resonance, 

leading to data suggesting the bilayer was a quasi-2D fluid constantly in motion. 

It was through Singer and Nicholson’s stated distinction between integral and 

peripheral proteins which offered the largest paradigm shift for the model of the 

membrane to date. This is represented in Figure 1. 

 

 

Figure 1: Schematic of the fluid mosaic model for the cellular plasma membrane. 

Cholesterol enriched rafts of different lipids exist alongside an array of integral and surface 

membrane associated proteins [12]. 

 

Beyond this the picture becomes even more complex as into the 1990’s the 

concept of membrane domains was beginning to take shape [13]. It is now 

suggested that rafts of lipids, cholesterol and proteins exist within the plane of 

the bilayer offering specific functionality instrumental in maintaining overall 

cellular homeostasis [14–18]. However, there is yet much to be discovered with 
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regards to the biophysical and functional nature of the cell membrane with 

regards to its role in health and disease. As a result there is a significant 

requirement for high resolution microscopy and spectroscopic methods to probe 

this complex environment. 

 

1.2. Biomedical Imaging  

The information provided through methods of biomedical imaging has 

determined our ability to diagnose, investigate and treat illnesses throughout 

history. The diverse range of imaging methods available provides large data sets 

on any known ailment with varying degrees of resolution. While techniques such 

as MRI, CT, Ultrasound, X-ray, and Endoscopy are all fundamentally critical in 

terms of modern medicine, their focus is on large scale whole tissue or organ 

based information [19]. With the understanding of disease, both in terms of 

diagnostics and treatment, entering the realm of individual cells and individual 

molecule [20–22], a higher degree of both spatial and temporal resolution is 

required. In the context of investigating the role of the plasma membrane, 

numerous single molecule and optical microscopy and spectroscopy methods are 

widely employed [23]. Figure 2 outlines various imaging techniques and their 

relative resolution and penetration abilities with regards to biological samples. 

 

Figure 2: Plot of resolution against depth of penetration for a variety of biomedical imaging 

techniques. MP – Multi-Photon fluorescence microscopy. OCT – Optical coherence 

tomography. PAT – Photo-acoustic tomography. US – Ultrasound. CT/MRI – Computed 

Tomogrpahy/Magnetic Resonance Imaging. 
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In addition to resolution, depth of penetration is an important consideration 

when utilising a particular biomedical imaging technique. Figure 2 outlines the 

relative strengths of various imaging techniques in terms of both penetration 

depth and resolution. It can be seen from Figure 2 that optical microscopy 

methods, outlined by the blue arrows, fall perfectly within the necessary 

resolution range for cellular imaging. As technologies progress in terms of super-

resolution techniques these methods are become ever more powerful in their 

ability to resolve smaller and smaller structures. For in-vitro and ex-vivo cellular 

studies deep sample penetration is not a pressing requirement making these 

techniques the ideal solution for investigating the dynamic processes at the 

plasma membrane.  

 

 

 

1.2.1.  Optical microscopy 

Optical imaging techniques provide contrast based on a particular property of 

the illuminating light such as: scattering, absorption, reflection, and 

fluorescence. Depending on the application, light based microscopy offers the 

ability to image and measure aspects of biological samples based on changes to 

their chemical, biological or physical properties. One of the most important 

methods in light microscopy is fluorescence imaging, where either intrinsically 

fluorescent molecules or exogenous fluorophores are illuminated to provide 

contrast [24]. Fluorescent based techniques offer the possibility to observe and 

measure processes ongoing in various cellular compartments through the 

controlled labelling and imaging of specific molecules [25], [26].  With high 

specificity and selectivity, fluorescence based methods are ideal for examining 

disease from the single cell to single molecule level due to high levels of spatial 

and temporal resolution offered through modern instrumentation. 
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1.2.2.  Fluorescence 

Ever since Sir John Frederick William Herschel first observed a celestial blue hue 

emanating from his tonic water as it sat in the sunlight back in 1845 [24], the 

phenomena known as fluorescence has become a fundamental element of 

biomedical imaging [25]. Upon the absorption of a photon of light numerous 

photophysical processes occur within certain molecules, commonly known as 

fluorophores. Some of these processes are demonstrated in the Jablonski 

diagram in Figure 3.  

 

Figure 3: Jablonski diagram depicting energy conversion in fluorescent molecule. IC – 

internal conversion, Abs – absorption, Fluo – fluorescence, Phos – Phosphorecence, ISC – 

Intersystem crossing. S – Singlet excited energy states, T – Triplet excited energy states. 

 

When a photon is absorbed, orbital electrons in fluorescent molecules are 

promoted to higher energy states. In the diagram the thick black lines depict the 

electronic states and the thinner lines show the vibrational states. Quickly 

following excitation the majority of the electrons quickly relax from higher 

electronic and vibrational states to the lowest excited singlet energy state, S1, 

through internal conversion usually over the time frame of 10-12 seconds. The 

excited electrons occupy this lowest energy state for a period of time before 

becoming unstable and relaxing to the ground state, S0. This is achieved either 

through non-radiative relaxation, e.g. through heat, or by radiative pathways to 

the ground state that are accompanied by the emission of a photon of light. 
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Electrons decaying directly from S1 to S0 emit energy in the form of 

fluorescence, however transitions to triplet excited states can sometimes occur 

through intersystem crossing. When occupying an excited singlet state an 

electron’s spin is paired with the ground state electrons but when occupying an 

excited triplet state it is no longer paired to the ground state electrons and, as 

such, is allowed to occupy the excited state for a longer period of time. Upon 

decaying from the exited triplet state the emitted photon is of the form of 

phosphorescence and usually occurs over a time frame of 10-8 – 10-3 seconds in 

comparison to the 10-9 second time frame that occurs for fluorescence, known as 

the fluorescence lifetime. Excitation to an excited triplet state is far less 

probable than to an excited singlet state as it involves a forbidden electron spin 

transition. 

 

All resultant radiative emission is of a lower energy than the incident excitation, 

due to the energy lost through the involved conversion processes, and is of a 

longer wavelength as a result. This shift in wavelength is known as the Stokes 

shift and is demonstrated in Figure 4.  

 

Figure 4: Stokes shifted spectra. Shift in absorption/emission spectra due to energy loss 

through competing radiative and non-radiative decay paths 

 

This shift in emitted wavelength is the basis for any technique deriving 

information as a result of fluorescence. The ability to selectively detect light 

based on its wavelength enables systems to separate the emitted fluorescence 

photons from the incident excitation photons.  
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Three of the fundamental fluorescence properties of a fluorophore are the 

quantum yield, 𝜑, the fluorescence lifetime, 𝜏𝐿 and the extinction coefficient. 

The quantum yield simply put, is the ratio of emitted photons to absorbed 

photons. This value is always less than one, due to the competing radiative and 

non-radiative decay pathways accounting for the expenditure of absorbed 

energy. The quantum yield, 𝜑, is dependent on the radiative, 𝑘𝑟, and non-

radiative, 𝑘𝑛𝑟, rate constants, shown in Equation (1.1). 

 𝜑 =
𝑘𝑟

𝑘𝑟 + 𝑘𝑛𝑟
 

 

(1.1) 

 

 

The fluorescence lifetime is theoretically described as the average time a 

fluorescent molecule remains in an excited state before relaxation and 

subsequent fluorescence emission. This is typically of the order of a few 

nanoseconds and is inversely proportional to the sum of the radiative and non-

radiative rate constants. 

 

 𝜏𝐿 =
1

𝑘𝑟 + 𝑘𝑛𝑟
 

 

(1.2) 

 

 

 

The radiative decay rate is an intrinsic property of the fluorescent molecule; 

however, the non-radiative decay rate can be influenced by the environment in 

which the molecule resides. Various processes are known to alter this pathway 

such as: Internal quenching, dynamic quenching, and energy transfer [27]. 

Internal quenching can arise as a result of internal molecular rotation driven by 

changes in temperature, viscosity and polarity. Collisional quenching occurs 

when the fluorescent molecule has a physical interaction with a quenching ion, 

e.g oxygen, resulting in increased rates of non-radiative decay. Energy transfer 

is more commonly referred to as Forster resonance energy transfer (FRET) where 

energy from a donor molecule is non-radiatively coupled to an acceptor 

molecule resulting in reduced lifetime and quantum yield values.  
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The third key parameter relating to a molecule’s fluorescence is the extinction 

coefficient, or cross-section of absorption. This value relates to the probability 

that the fluorophore will absorb a photon of light and is denoted commonly as, 

𝜀, with units of M-1cm-1. The extinction coefficient is defined for a particular 

molecule at the wavelength corresponding to the maximum absorption. Typical 

values can range between, 20,000 to 200,000, with higher values relating to a 

more efficient absorber of radiative energy.   

 

 

1.2.3. Fluorescence Microscopy 

Utilising fluorescence as a contrast agent enables a microscopy technique with 

the ability to distinguish between separately labelled molecules. The technique 

exists in various forms and configurations with numerous advantages and 

potential drawbacks depending on the desired application. Investigations at the 

single cell level require a high degree of both spatial and temporal resolution to 

determine molecular dynamics.  

 

The most commonly employed form of the fluorescence microscope is the epi-

fluorescence configuration where a sample is illuminated and detected through 

the same objective lens. Excitation light is directed to the sample via an 

objective lens which also acts as an image forming light collector focussing the 

resultant fluorescence to either a camera or detector. The basic configuration 

can be seen in Figure 5. 
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Figure 5: Epi-fluorescence microscope. 1 – Detector which is typically a CCD, EMCCD or 

ICCD. 2 – Emission filter passing fluorescence light only. 3 – Dichroic mirror separating 

excitation light from fluorescent signal. 4 – Excitation filter. 5 – light source typically a 

mercury arc light source. 6 – objective lens, 7 – sample. 

 

 

While epi-fluorescence microscopy has numerous benefits, such as ease and cost 

of set up along with rapid image acquisition, fluorescence originating out with 

the focal plane is also collected by the detectors resulting in blurred images. 

This becomes problematic when viewing samples thicker than around 2 µm 

which are highly fluorescent throughout, such as fluorescently labelled cells. 

Confocal microscopy is a technique developed originally in the 1950’s offering 

the ability to image optical sections of biological specimens. This is achieved 

through spatial light filtering with the use of a small pinhole placed in the 

detection path, just before the detector. 
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Figure 6: Principle of confocal detection optics. Fluorescence light is collected by the 

objective lens and directed to the detector via a small pinhole. The pinhole rejects light that 

does not originate from the focal plane creating a thin optical section. The dotted and 

dashed lines represent fluorescence originating from out of focus regions due to excitation 

from a Gaussian profiled laser beam,  

 

The result is a well-defined Gaussian Point Spread Function (PSF) extending 

along the optical axis depending on the width of the detection pinhole. The 

width of the PSF is defined by the Numerical Aperture (NA) of the objective lens, 

with a higher value corresponding to a smaller PSF. The dimensions of the ideal 

PSF for a confocal configuration can be approximated by the following 

relationships.  
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 𝑅𝑥𝑦 =
0.4𝜆

𝑁𝐴
 

 

(1.3) 

 

 𝑅𝑧 =
1.4𝜆𝑛

𝑁𝐴2
 

 

(1.4) 

 

 

𝑅𝑥𝑦 and 𝑅𝑧 denote the lateral x-y radius and the axial z radius, respectively. 

Both are defined in terms of the wavelength of incident light, 𝜆, the numerical 

aperture of the objective lens, NA, and in the case of 𝑅𝑧, the refractive index of 

the immersion medium, 𝑛. 

 

The most common form of the confocal microscope is the laser scanning 

confocal whereby a coherent light source is rastered across the focal plane of 

the image either by means of galvanometer driven mirrors or a piezo driven 

stage. Secondary fluorescence originating above and below the image plane is 

rejected by the pinhole resulting in the detection of an optically thin, typically 1 

– 2 µm, section of fluorescence. The thickness of the section depends both on 

the NA of the objective lens and the size of the pinhole. Whilst the observational 

volume is significantly smaller than compared to widefield techniques, in the 

context of membrane investigations it is still 2 – 3 orders of magnitude larger in 

size.  

 

1.2.4.  Total Internal Reflection Fluorescence Microscopy 

(TIRFM) 

While confocal microscopy has become one of the most important developments 

in imaging technology for the field of cell biology, in the context of the cell 

membrane it still falls short in terms of axial resolution. TIRFM offers an 

alternative illumination scheme exploiting the phenomena of total internal 

reflection (TIR). Utilising TIR the ability to selectively image thin optical 

sections, 10’s to 100’s of nanometres, at an interface is realised [28]. TIR is 

realised as a plane wave front propagates between media of differing refractive 

indices at an angle exceeding the critical angle. Light enters the sample in the 
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form of an exponentially decaying evanescent wave which propagates 

perpendicularly to the sample/substrate interface. The evanescent wave 

selectively excites fluorophores in close proximity to the sample/substrate 

interface. Figure 7 demonstrates the relative illumination regions created 

through epi-fluorescence, (a), confocal microscopy, (b), and TIRFM, (c). 

 

 

Figure 7: (a) – Epi-fluorescence configuration where all fluorophores throughout the sample 

are illuminated in the field of view. (b) confocal configuration where 1 – 2 µm sized focal 

volume is rastered through the sample along the focal plane. Only fluorophores within this 

plane are detected by the system. (c) – TIRFM configuration where small 100 nm evanescent 

wave excites molecules in close proximity to the substrate.  

 

TIRFM has become a key experimental approach for elucidating processes 

occurring at the membrane region of adherent cells [29]. In recent years it has 

also become an essential technique for the investigation of membrane regulated 

processes such as endocytosis [30–33], exocytosis [34–36], cell adhesion [37–40], 

cytoskeletal dynamics [41–43] as well as investigations into the fundamental 

biophysical nature of lipid membranes.  

 

An important area of research enabled by TIRFM is the analysis of the trafficking 

of intracellular vesicles. The technique was previously utilised to investigate the 

mechanisms involved with stress-induced ATP efflux in lung epithelial cells [36]. 

TIRFM enabled the ability to directly image single ATP-loaded vesicles and assess 

their recruitment and fusion to the plasma membrane during stimulated ATP 

release. In the field of diabetes research TIRFM has been widely used to 

investigate the role that vesicle trafficking plays in insulin stimulated glucose 
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metabolism [44]. Vesicles rich in glucose transporter 4 (GLUT4) molecules were 

individually imaged and analysed in terms of their dynamics near the plasma 

membrane.  

 

1.2.5.  Fluorescence Lifetime Imaging Microscopy  

Standard fluorescence imaging techniques create contrast in images purely 

through the detection of the emitted fluorescent light offering the ability to 

observe and measure the location of the fluorescently tagged molecules under 

investigation. When observing complex biological samples, such as cells and 

tissue, data is obtained through analysis of the distribution of fluorescence 

intensity within the image. However, in most cases numerous assumptions are 

made based on the imaged systems providing qualitative results. For example, in 

cell biology intensity based measurements are at risk of misinterpretation due to 

factors such as photobleaching and the inability to precisely control the degree 

of labelling within a heterogeneous system.  

 

Fluorescence Lifetime Imaging Microscopy (FLIM) is an imaging modality where 

pixel-wide contrast is determined by measuring the fluorescent lifetime of a 

fluorescent molecule at each point within the field of view. A component of a 

fluorophore’s lifetime is an intrinsic property, different for most fluorescent 

molecules, and is typically of the order of a few nanoseconds.  What makes the 

fluorescence lifetime such a useful property to measure is the fact that it is 

independent of fluorophore concentration and photobleaching. This makes FLIM 

an attractive method for imaging intricate systems where control over 

fluorophore distribution is difficult.  Depending on the fluorophore under 

observation certain environmental parameters can be monitored due to the 

sensitivity of fluorescence lifetime values to various physical, chemical and 

biological elements. Oxygen concentrations [45], pH [46], and molecular binding 

events [47] have all been quantified through FLIM due to the quenching of 

particular fluorophores. FLIM is also emerging as a potential clinical tool in terms 

of cancer diagnosis and enhancing the search for new cancer drugs and therapies 

[48–51].    
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The fluid-mosaic understanding of membranes suggests they are comprised of 

smaller micro-environments, known as ‘rafts’, varied in terms of molecular 

composition and biophysical parameters. FLIM is increasingly being used as a tool 

to explore this diverse environment [52]. A combination of FLIM and FRET has 

been previously utilised to investigate lipid-lipid and lipid-protein interactions by 

monitoring the lifetime of the donor molecule which, under resonance energy 

transfer, is diminished [53–56]. In addition, environment sensitive dyes are 

available which display variations in fluorescence lifetime based on successful 

incorporation into different lipid domains [57].  

 

A particular class of fluorophores known as ‘molecular rotors’ are emerging as 

promising tools for elucidating the physical nature of biological membranes [58]. 

Molecular rotors exhibit viscosity sensitive photophysical properties with 

alterations to both their fluorescent lifetime and quantum yield [59]. A more 

extensive review and summary of molecular rotors will be discussed in chapter 

4.  

 

1.2.6.  Fluorescence Correlation Spectroscopy  

The plasma membrane is a dynamic fluid environment and, as such, information 

relating to the mobility of single molecules is of great interest. Fluorescence 

Correlation Spectroscopy (FCS) is a sensitive technique with the ability to probe 

mobility constants for a very low number of fluorescent molecules. Using a small 

illuminated volume, traditionally via a confocal microscope, fluctuations in 

detected fluorescence intensity are time correlated to provide information on 

the dynamic processes driving them. The technique was developed in 1972 by 

Madge et al. to determine chemical reaction kinetics [60] and in 1974 diffusion 

coefficients [61]. Through the development of the confocal microscope [62], 

increasingly sensitive detection sources and cost effective illumination sources 

the technique became a powerful tool for investigating single molecule dynamics 

[63].  

 

The technique is highly suited to membrane studies due to its relative sensitivity 

and the characteristic time scales over which it operates [64]. FCS has been 
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frequently used to determine diffusion coefficients of lipids, cholesterol, 

membrane proteins and various other membrane associated molecules [65].  

 

1.3. Thesis Aims 

The core objectives of this thesis were to construct and optimise versatile 

platforms consisting of TIRF, FLIM and FCS to explore various biological questions 

central to the plasma membrane. The first key research area investigated was in 

TIRFM imaging of insulin regulated glucose metabolism in adipose tissue and a 

simplified HeLa cell model. The second area of research focussed on the analysis 

of molecular rotors as reporters for membrane viscosity. To this end the 

following steps were undertaken to probe these issues.  

 

1. Construction and characterisation of a TIRFM system capable of resolving 

single vesicle dynamics in single cells. 

 
2. Development of image analysis procedure to analyse efficacy of HeLa cell 

line as a homologue for adipocyte cells to investigate insulin regulated 

glucose metabolism 

 
 

3. Optimisation of a combined FCS-FLIM system to determine ability of 

BODIPY based molecular rotors to report on membrane viscosity 

 
4. Development and characterisation of combined TIRF-FLIM system for the 

imaging of membrane viscosity in conjunction with molecular rotors.  
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1.4. Thesis Outline 

Chapter 2 outlines the fundamental theory for the three advanced fluorescence 

techniques used in: Fluorescence Correlation Spectroscopy, Fluorescence 

Lifetime Imaging Microscopy and Total Internal Reflection Fluorescence 

Microscopy.  

 

Chapter 3 details work relating to the construction and characterisation of an 

objective based TIRFM system and its application to live cell time-lapse imaging 

of insulin stimulated glucose metabolism in adipocyte cells and a modified HeLa 

cell line. 

 

Chapter 4 describes the optimisation of a combined FCS-FLIM system to perform 

combined measurements on the molecular rotor BODIPY in artificial lipid 

bilayers.  

 

Chapter 5 outlines the development of a combined TIRF-FLIM system to provide 

increased resolution for measurements of membrane viscosity using molecular 

rotors.  

 

Chapter 6 summarises the presented work and discusses future directions for 

both the systems implemented and the biological questions raised in the 

preceding chapters.  
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2. Chapter 2: Theory of Techniques 

2.1. Total Internal Reflection Fluorescence 
Microscopy (TIRFM) 

2.1.1.  Total Internal Reflection (TIR) 

The fundamental theory of Total internal Reflection Fluorescence Microscopy 

(TIRFM) originates from the manipulation of an evanescent wave front created as 

light propagates between two media of differing refractive indices. When a 

plane wave of incident light travels from an optically denser medium to an 

interface with a less dense medium it becomes both refracted and reflected. 

The angle at which the light is refracted is governed by the wavelength of the 

incident light, the respective refractive indices of the two media and the angle 

of incident illumination. This is characterised by Snell’s law. 

 

Figure 8: TIR representative schematic. X and Y axis’ represent intensity, I, and position, Z, 

along the optical axis. Refractive indices n1 and n2 correspond to high, e.g glass, and low, 

e.g water/cells, values of refractive index. Green arrows represent plane wave incident on 

the interface at an angle, θ1, lower than the critical angle, θc, which is refracted at an angle, 

θ2. Blue arrows depict incident plane wavefront under TIR conditions, i.e incident angle, θ, 

higher than the critical angle, θc. I0 is the intensity of the resultant evanescent wave at 𝒛 = 𝟎 

and the corresponding penetration depth, d, where the field has decayed to a point of 𝑰𝟎 𝒆⁄ .   

 

 𝑛1 × 𝑠𝑖𝑛𝜃1 = 𝑛2 × 𝑠𝑖𝑛𝜃2 
 

(2.1) 
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In the case of TIRFM 𝑛1 represents the higher refractive index of the substrate 

and 𝑛2 the lower index of the sample. 𝜃1 is the angle between the incident light 

and the normal to the reflecting interface, and 𝜃2 the angle of the refracted 

beam to the normal. TIR occurs when the angle of incidence, 𝜃1, is greater than 

the critical angle, 𝜃𝑐, at which point 𝜃2 ≥ 90𝑜. A critical angle exists only when 

𝑛1 > 𝑛2 and is defined by the relationship: 

 

 𝜃𝑐 = 𝑠𝑖𝑛−1 (
𝑛2
𝑛1
) 

 

(2.2) 

 

 

At angles above 𝜃𝑐 all incident light is reflected except for a small amount of 

light which propagates perpendicularly to the interface creating a confined 

electromagnetic field. This is an evanescent field which decays exponentially 

from the interface. The intensity of the field decays such that: 

 

 𝐼(𝑧) = 𝐼0𝑒
(
−𝑧
𝑑
)
 

 

(2.3) 

 

 

In this instance, 𝐼0 is the intensity of the field at the interface and 𝐼𝑧 is the 

intensity at some distance, z, from the surface in the axial direction. 𝑑 

represents the point at which the intensity has decayed to 37% of its maximum 

value and is termed the penetration depth. This depth is dependent on the two 

refractive indices, the wavelength of the illuminating light and the angle at 

which it approaches the interfacial region.   

 

 

 𝑑 =
𝜆

4𝜋
× (

1

√𝑛1
2𝑠𝑖𝑛2𝜃1 − 𝑛2

2
) 

 

(2.4) 

 

 

Typical values of d, are of the order of a few 10’s to 100’s of nm and this 
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exponentially decaying evanescent wave has the ability to selectively excited 

fluorescent molecules located within this surface localised region. The simplest 

way to decrease the depth of penetration is to adjust the angle of illumination 

further from the critical angle. Typical TIRFM experimental setups will consist of 

a solid/liquid interface consisting of glass, refractive index = 1.52, and 

water/cells, refractive index = 1.33.  

 

 

Figure 9: Plot of penetration depth vs. angle of incidence for a variety of common incident 

wavelengths. Simulated as outlined in equation (2.4) where n1 = 1.52, glass, and n2 = 1.33, 

water.  

 

The solutions to Maxwell’s equations for a plane wave front above the critical 

angle at the sample/substrate interface yields the following amplitudes for the 

electric field components of the evanescent wave at the point 𝑧 = 0 [66]. 

 𝐸𝑥 = (
2𝑐𝑜𝑠𝜃√𝑠𝑖𝑛2𝜃 − 𝑛2

√𝑛4𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 − 𝑛2
)𝐴∥𝑒

−𝑖(𝛿∥+𝜋 2⁄ ) 

 

(2.5) 

 

 𝐸𝑦 = (
2𝑐𝑜𝑠𝜃

√1 − 𝑛2
) 𝐴⊥𝑒

−𝑖𝛿⊥ 

 

(2.6) 
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 𝐸𝑧 = (
2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

√𝑛4𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 − 𝑛2
)𝐴∥𝑒

−𝑖𝛿∥ 

 

(2.7) 

 

 

The corresponding amplitude components for the magnetic field are as follows. 

 

 𝐻𝑥 = (
2𝑐𝑜𝑠𝜃√𝑠𝑖𝑛2𝜃 − 𝑛2

√(1 − 𝑛2)
)𝐴⊥𝑒

−𝑖(𝛿⊥−𝜋) 

 

(2.8) 

 

 𝐻𝑦 = (
2𝑛2𝑐𝑜𝑠𝜃

√𝑛4𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 − 𝑛2
)𝐴∥𝑒

−𝑖(𝛿∥+𝜋 2⁄ ) 

 

(2.9) 

 

 𝐻𝑧 = (
2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

√1 − 𝑛2
)𝐴⊥𝑒

−𝑖𝛿⊥ 

 

(2.10) 

 

 

For the above expressions 𝑛 = 𝑛2 𝑛1⁄ and is referred to as the relative refractive 

index. The amplitude components for the incident electric field vector for s-

polarised (perpendicular) and p-polarised (parallel) incident light are given by 

𝐴⊥and 𝐴∥ respectively. The phases of the perpendicular and parallel field vectors 

are given by 𝛿⊥ and 𝛿∥. 

 

 𝛿⊥ = 𝑎𝑟𝑐𝑡𝑎𝑛 (
√𝑠𝑖𝑛2𝜃 − 𝑛2

𝑐𝑜𝑠𝜃
) 

 

(2.11) 

 

 𝛿∥ = 𝑎𝑟𝑐𝑡𝑎𝑛 (
2𝑛2𝑐𝑜𝑠𝜃

𝑛2𝑐𝑜𝑠𝜃
) 

 

(2.12) 

 

 

The intensity, 𝐼0, located at the interface, 𝑧 = 0, is dependent on both the angle 

of incidence and the polarisation of the illuminating light. Two polarisation 

states are possible known as s-polarisation (perpendicular) and p-polarisation 

(parallel), with the corresponding intensities at   𝑧 = 0 denoted as 𝐼0
⊥and 𝐼0

∥ 

respectively. 
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 𝐼0
⊥ = 𝐼⊥

4𝑐𝑜𝑠2𝜃

1 − 𝑛2
 

 

(2.13) 

 

 𝐼0
∥ = 𝐼∥

4𝑐𝑜𝑠2𝜃(2𝑠𝑖𝑛2𝜃 − 𝑛2)

𝑛4𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 − 𝑛2
 

 

(2.14) 

 

 

The intensities for both polarisation states are shown in Figure 10 for a range of 

incident angles from the critical angle to 90o. 

 

 

Figure 10: Plot of the ratio of I0, the intensity of the evanescent field at z = 0, against I, the 

incident intensity, for both p-polarised and s-polarised light. Simulated over angles from the 

critical angle for a glass/water interface to 90o.  

 

Figure 10 demonstrates the interesting properties of the evanescent field 

intensity at 𝑧 = 0 where it can be seen to be stronger than the incident intensity 

for some angles above the critical angle. The reason for this increase is due to a 

surface polarisation induced by the incoming plane wave [67]. 

 

The energy flux at the interface is determined through the real component of 

the Poynting Vector, 𝑺, given in equation (2.15) Where c , is the speed of light 

[66].  
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 𝑺 =
𝑐

4𝜋
𝑬 × 𝑯 

 

(2.15) 

 

 

By substituting in the electric and magnetic field components outlined in (2.5)-

(2.10) the z-component of the Poynting vector is found to be finite and when 

time averaged vanishes. As a result there is no energy flowing across the 

interface into the second medium [67]. However, when considering the energy 

transport along the interface, i.e. the x-component, a non-zero result is found 

meaning that the evanescent wave transports energy along the surface. For s-

polarised light the electric field propagates perpendicularly respective to the 

interface in the x direction. Whereas for p-polarised incident light the electric 

field ‘cartwheels’ at the surface with a period of𝜆0 (𝑛1𝑠𝑖𝑛𝜃)⁄ . This is due to the 

fact that for p-polarised light there is a non-vanishing z-component resulting in 

the electric field, 𝑬, becoming elliptically polarised along the plane of 

incidence. 

 

Exploiting the generated evanescent wave leads to a system whereby a small 

number of fluorescent molecules are excited at a surface. This forms the basis of 

the technique known as TIRFM. 

 

2.1.2. Total Internal Reflection Fluorescence Microscopy 
(TIRFM) configurations 

 

To enable TIRFM practically there are four key requirements: an ability to 

manipulate the angle of the incident excitation light, typically a laser, the 

refractive indices of the sample substrate interface, and the wavelength of the 

excitation light. The value of n2 is an intrinsic value related to the sample to be 

observed, in the case of membrane studies is typically 1.33 – 1.37 as has been 

shown previously to be the values for cells [68]. This, fortunately, is similar to 

the refractive index of water, or most physiological buffers, so refractive 

mismatches in the sample are often avoided. The value of n1 depends on the 

substrate chosen which, for most cellular experimentation, is the 1.52 value of 

common microscope coverslips. The most important variable to determine is the 
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angle of incidence which can be adjusted in two configurations for microscope 

systems: objective based TIRFM and prism based TIRFM.  

 

2.1.2.1. Prism Based TIRFM 

Figure 11 demonstrates one possible variant of a prism based TIRFM system. 

 

 

Figure 11: Prism based TIRFM system with an inverted microscope setup. 1 – Excitation 

light coupled to sample/substrate interface via trapezoidal prism. 2 – Prism. 3 – Sample of 

adherent cells on coverslip in buffered media wedged between a second coverslip. 4 – 

Objective lens. 5 – Resultant fluorescence originating from evanescent excitation. 

 

Presented above is an example of a prism system implemented on an inverted 

microscope configuration. Excitation light is optically coupled to a coverslip via 

a prism of similar refractive index and immersion fluid. With an inverted 

microscope setup the sample is held upside down from a second coverslip via 

some spacers. The resultant fluorescence emission is collected by an objective 

lens below the sample.   

 

Prism based TIRFM systems are relatively modular and can be combined with 

both inverted and upright microscopes. This approach offers many benefits in 
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terms of the use of lower magnification and numerical aperture objectives, 

however, the implementation of the prism itself can impose restrictions on the 

compatibility of some samples. To an extent the decoupling of the excitation 

and emission light can reduce the amount of background light in the system due 

to the fact that the intrinsic auto-fluorescence of certain optical elements, 

objective, prism, coverslips etc. is excluded from the detection path. There are 

also no restrictions imposed on the available incidence angles that can be 

achieved meaning that any theoretical penetration depth is possible. Utilising an 

inverted sample configurations places limitations on the use of high 

magnification, high NA lenses as the working distances can be very short, for NA 

= 1.45 the working distance is only 170 µm. With some prism configurations the 

lack of compatibility with high NA lenses restricts the achievable spatial 

resolution. As a result this type of microscopy may not suit some studies of 

membranes where high levels of lateral resolution are required, for example in 

the case of imaging diffraction limited vesicles related to endocytosis.   

 

2.1.2.2. Objective based TIRFM 

The alternative to a prism based system for achieving the angles necessary for 

TIRFM is to use an objective lens of high NA, greater than 1.4. The NA of a lens is 

defined by the relationship outlined in equation (2.16). In this case n is the 

refractive index of the medium between the lens and the sample and θ is one 

half of the angular aperture of the lens, i.e corresponding to the maximum of 

light propagation.  

 

 𝑁𝐴 = 𝑛 × 𝑠𝑖𝑛𝜃 

 

(2.16) 

 

 

For the example of air between the objective and sample the refractive index 

would be 1, therefore a maximum NA of 1 would be possible due to the 

theoretical largest angle of 90o. To achieve a higher NA, corresponding to angles 

suitable for TIR, specialised immersion fluids are necessary to provide a high 

refractive index between the objective and the sample. Figure 12 demonstrates 

the objective TIRFM principle.  
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Figure 12: Objective based TIRFM system. 1 – sample of adherent cells and buffered media 

on appropriate coverslip, thickness 0.17 mm. 2 – Refractive index matching immersion fluid. 

3 – High NA objective, >1.4. 4 – Excitation light adjusted to angle, θ > θc, by positioning 

beam to the far aperture of the high NA lens. 5 – Resultant fluorescence from evanescent 

field collected by same objective.  

 

For most configurations of objective based TIRFM the illuminating excitation 

light is coupled to the high NA objective via a specialised TIRFM condenser with 

the ability to position the beam to the far aperture of the objective. This gives a 

fixed range of available angles, depending on the lens, over which the light can 

be focussed to the sample/substrate interface. The resultant fluorescence light 

is collected by the same objective and passed to the detection unit, e.g CCD, via 

a filter set that excludes any reflected excitation light and generated auto-

fluorescence in the optical path. The range of angles that can be provided 

through and objective based setup is determined by the relationship 𝜃𝑚𝑎𝑥 =

𝑎𝑟𝑐𝑠𝑖𝑛𝑁𝐴 𝑛2⁄  and for a typical setup, 1.45 NA objective coupled to a glass 

coverslip, this value is roughly 75o.  

 



49 
 

2.2. Fluorescence Lifetime Imaging Microscopy 
(FLIM) 

2.2.1.  Time-Domain FLIM 

Fluorescence lifetime imaging microscopy (FLIM) is a method which unlocks 

information about the molecular environment that is not apparent in steady-

state spectra. This is achieved through the measuring of a property of a 

fluorescent molecule known as the fluorescence lifetime. This value differs 

between fluorophores and is independent of the excitation intensity, 

concentration and unchanged through photobleaching. Depending on the 

molecule under investigation the fluorescence lifetime can respond to changes 

to temperature, pH, viscosity, polarity, proximity to other molecules and 

surfaces. Theoretically the fluorescence lifetime is defined as the average time 

a fluorescent molecule occupies an excited state and this is characterised 

practically by the decay of fluorescence intensity upon excitation. This decay 

takes the form of a simple exponential and is defined below.   

 

 𝐼(𝑡) = 𝐼0𝑒
(
−𝑡
𝜏
)
 

 

(2.17) 

 

 

 

In equation (2.17) 𝐼0 represents the intensity of the fluorescent signal at time 

𝑡 = 0 initially after excitation and 𝜏 represents the fluorescent lifetime.  

 

Commonly employed are two methods by which FLIM can be enabled with 

frequency-domain FLIM and time-domain FLIM. Outlined in this section will be 

the fundamental theory of the possibly implementations of time-domain FLIM as 

these will be the techniques used later in this thesis. In time domain-FLIM the 

rate of decay is measured through the use of high repetition rate laser sources 

often in the MHz ranges. There are two technological solutions to measuring the 

nanosecond fluorescence decays with up to picosecond resolution: Time 

Correlated Single Photon Counting (TCSPC) and the time-gated principle.  
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2.2.1.1. TCSPC 

TCSPC based FLIM systems are incredibly sensitive with the ability to provide 

reliable fluorescence decay data from even just a few hundred photons [69]. 

Excitation is provided using high repetition rate laser sources via commercially 

available, inexpensive laser diode sources now offering repetition rates up to 

100 MHz with incredibly short pulse widths, ~ 100 ps. The resultant fluorescence 

is detected by a highly sensitive single photon avalanche diode (SPAD) or 

photomultiplier tube (PMT) each with the ability to detect individual photon 

events. The TCSPC principle is based on the detection of individual photons, 

their point in time relative to the periodic light source and finally the rebuilding 

of the fluorescence decay waveform [70]. Figure 13 demonstrates the detection 

of photon events relative to the pulsed excitation source. 

 

 

 

 

Figure 13: Demonstration of detection of individual photon events. 1 – stream of excitation 

pulses at rate of 40 MHz. 2 – Expected decay waveform representing fluorescence decay. 3 

– Stream of recorded individual photon events representative of a realistic system with an 

average count rate of 107 photons per second.  

 

Figure 13 (1) shows the stream of excitation pulsed from a highly repeating laser 

diode, in this case 40 MHz. It can be seen in Figure 13 that the recorded photon 

stream, (3), differs greatly from the expected signal of individual decays from 

each pulse of illuminating light, (2). The displayed photon detection events are 

representative of a count rate of, roughly, 107 photons per second, which is at 
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the limit of most photon counting systems. This means that the resultant 

fluorescence decay signal should be thought of as a probability distribution of 

detecting a photon event at a particular time point after an individual pulse of 

laser light. 

 

This concept is demonstrated in Figure 14. Trace (1) demonstrates the desired 

output waveform detected within the sample period defined by the repetition 

rate of the laser. Trace (2) shows a representative distribution of detected 

photon events within each sample period continuing for the duration of the 

acquisition. Trace (3) reveals the actual distribution of photon events detected 

in each time channel within the laser period for all periods over the 

experimental acquisition.  

 

 

Figure 14: TCSPC principle. 1 – Original decay profile representative of the distribution of 

photon probability. 2 – Individual periods defined by the pulse of a repeating laser source. 3 

– build-up of all detected photon events for a number of time bins after numerous 

repetitions of the laser pulsed detection period.  
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The TCSPC principle exploits the fact that the probability of detecting more than 

one photon per light pulse is negligible due to the low levels of light recorded in 

such a short time frame, e.g for 40 MHz a time frame of 25 ns. Even at the 

lowest levels of light there is no real limit in detection due to the single photon 

sensitivity of the system, however, there is a conceivable upper limit of 

detection. To ensure that the probability of detecting more than one photon per 

signal period is minimised a detected count rate of 0.1 photons per signal must 

not be exceeded. With modern high MHz repetition light sources this is 

equivalent to several 107 photons per second. Exceeding this upper limit of 

detection results in photon pile-up effects at the detector; however, for modern 

light sources with limits upward of 106 photons per second this is, in most cases, 

sufficient light signal to overload the most sensitive of detectors. 

 

The general architecture of a high repetition rate TCSPC system can be seen in 

Figure 15.  

 

 

Figure 15: General architecture of reverse start-stop TCSPC system. ZC level – Zero Cross 

Level CFD – Constant Fraction Discriminator, TAC – Time to Amplitude Convertor, AMP – 

Amplifier, ADC – Analogue to Digital Convertor. Chequered squares indicate controllable 

elements.   

 

Upon detection of individual photon events a detector, usually a PMT or SPAD, 

sends a pulse to a fast discriminator. These pulses tend to have considerable 

differences in amplitude due to the random nature of the detectors 

amplification. A Constant Fraction Discriminator (CFD) is used to trigger at a 

defined fraction of the overall pulse height to remove any timing errors 
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implemented due to the differences in pulse heights. The lower CFD is used to 

determine the reference of the excitation light pulse relevant to the particular 

detected photon. For modern systems capable of operating at laser repetition 

rates of 50 – 100 MHz a reverse start-stop principle is employed. In older systems 

the start signal for the detection period was defined by the laser pulse and the 

stop signal was provided by the detection of a photon event at the detector. 

This was deemed inefficient with highly repeating systems that observe 

numerous pulse periods where no photons are detected resulting in several start 

pulses with no corresponding stop pulses. The result was that the Time to 

Amplitude Convertor (TAC) required resetting every 10 to 20 ns. Using the 

detection of a photon as the start signal and the following excitation pulse as 

the stop signal increases the overall efficiency of the TAC which now only 

operates at the rate of photon detection. The TAC then converts the time 

between the reference laser pulse and the detected photon to a signal with 

proportional amplitude. The output voltage is delivered via a biased amplifier to 

an Analogue to Digital Converter (ADC). The corresponding digital output 

provides the detection time of the individual photons with respect to the 

corresponding excitation laser pulse. The ADC works with high precision 

resolving the TAC output signal to thousands of individual time channels of equal 

width. The ADC addresses a memory location for each detected photon 

corresponding to the time it was recorded in a word. The contents of the stored 

data are incremented over the course of the experimental acquisition providing 

the final photon distribution corresponding to the measured fluorescence decay 

profile. The ADC, TAC and CFD contain parameters which can be optimised to 

ensure that the overall detection period is synchronised to the repetition rate of 

the illuminating laser. 

 

 

2.2.1.2. Time-Gated Principle 

Where scanning laser microscopy may not be a viable option an alternative time-

domain based FLIM method exists in time-gated FLIM, compatible with wide-field 

and TIRF illumination. The key difference between time-gated and TCSPC 

systems is in the detection hardware where, instead of a PMT or SPAD, an 

intensified gated CCD is used. Unlike TCSPC confocal based scanning methods, 
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the time-gated approach builds a lifetime image where each pixels value is 

determined simultaneously. This is achieved through synchronisation of the 

pulsed laser source with the read-out of the gated image intensifier. The 

principle is demonstrated in Figure 16. 

 

 

Figure 16: Simplified Time-Gated FLIM principle. Gated images are recorded at defined time 

intervals after a pulse of excitation. The decay of signal intensity is recorded for each pixel 

and assigned a lifetime value and corresponding colour. 

 

Figure 16 demonstrates the principle of a time-gated FLIM system where upon 

excitation from a pulsed illumination source the decaying signal is recorded in a 

series of images. The gated ICCD camera is synchronised to the repetition rate of 

the laser and at defined nanosecond periods after a laser pulse, an image is 

recorded for a defined gate-width. The length of signal accumulation for each 
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image is defined by the exposure time of the camera with a longer exposure 

resulting in greater recorded signal. The width of each gate defines the 

resolution of the recorded decay analogous to the ADC resolution of a TCSPC 

system. Typical gate widths can be as low as 10’s of picoseconds [71] providing 

high temporal resolution. In Figure 16 the example images show two regions of 

differing decay rates denoted by the upper left and lower right grey-scale image 

representations. Each section, after a measurement, is then assigned a colour 

corresponding to a particular lifetime value.  

 

The benefits of such a system lie in the simultaneous recording of all positions in 

an image resulting in faster image acquisition. Some systems have been reported 

to record lifetime images up to a framerate of 100 Hz [72]. Other advantages lie 

in its versatility in use with various illumination configurations as there is no 

need for sample scanning [73].  The time-gated principle has previously been 

employed for use with wide-field endoscopy, structured illumination whole-field 

and TIRF microscopy [74–77] to expand the information retrievable via these 

microscopy methods.   

 

2.2.2.  Data Analysis 

2.2.2.1. Exponential Curve Fitting 

For all time-domain based FLIM methods, once the data has been recorded the 

information is interpreted through fitting of exponential decay functions. For a 

homogenous sample where all fluorescent molecules within are observed under 

the same physical conditions a single exponential of decay is observed. For more 

complex samples, such as biological specimens, the fluorescent molecules may 

experience multiple decay pathways within the same spatially resolved location 

manifesting itself as a sum of multiple exponential decays. The fitted decay 

functions for a single, double and triple exponential system are shown below. 

 

 𝑓(𝑡) = 𝑒−𝑡 𝜏⁄  

 

(2.18) 

 

 𝑓(𝑡) = 𝑎1𝑒
−𝑡 𝜏1⁄ + 𝑎2𝑒

−𝑡 𝜏2⁄   



56 
 

(2.19) 

 

 𝑓(𝑡) = 𝑎1𝑒
−𝑡 𝜏1⁄ + 𝑎2𝑒

−𝑡 𝜏2⁄ + 𝑎3𝑒
−𝑡 𝜏3⁄  

 

(2.20) 

 

 

For the above expressions the 𝜏 values correspond to the measured lifetimes for 

each component of decay. The values of 𝑎 represent the fractional contribution 

of each component to the overall fluorescence decay signal. The majority of 

modern FLIM image analysis software packages have the ability to fit up to 3 or 4 

exponential decay components. Attempting to fit more than 4 components 

would need significant signal and analysing data of such complexity is difficult to 

interpret with any great deal of accuracy.  

 

 

Figure 17: Example mono-exponential fluorescence decay plotted with a logarithmic 

intensity scale 

 

Figure 17 demonstrates that a mono-exponential decay can clearly be 

determined when plotted against a logarithmic intensity scale. A more complex 

decay is demonstrated in figure where there are two components of 

fluorescence decay.  
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Figure 18: Example Bi-exponential fluorescence decay plotted with a logarithmic intensity 

scale. 

 

The appropriate number of exponential components is traditionally determined 

through analysis of the reduced chi2, 𝜒2, value, relating to the goodness of fit 

between the raw data and the model. Typical values between 1 and 2 suggest an 

overall good agreement between the model and the data. 

 

2.2.2.2. The Instrument Response Function (IRF) 

The measured decay function is more complex than simple decay functions in 

any real FLIM system. Due to the fact that the pulse width of the laser is not 

negligible and the detectors have a temporal response of a non-zero width these 

elements must be considered when analysing decay functions.  To compensate 

for these properties in practical terms they are grouped to one Instrument 

Response Function (IRF). The IRF takes into account anything that will alter the 

shape of the measured fluorescence decay function from the detector and laser 

profiles to any optical reflections in the system. The recorded decay function is 

actually a convolution of the IRF with the decay function, 𝑓(𝑡), measured from 

the fluorescent molecules. This can be expressed mathematically as shown in 

equation (2.21).  
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 𝑓𝑚(𝑡) = ∫ 𝑓(𝜏)𝐼𝑅𝐹(𝑡 − 𝜏)𝑑𝜏
𝜏

𝜏=0

 

 

(2.21) 

 

 

In the above expression 𝑓𝑚(𝑡) is the measured fluorescence decay function and 

𝑓(𝜏) is the true fluorescence decay. Unfortunately, due to various factors such 

as systematic noise in photon detection  𝑓𝑚(𝑡) is unknown. It is for this reason 

that fitted function is a convolution of both the IRF and a model exponential 

decay function outline in equations (2.18) - (2.20). The perfect IRF would be an 

infinitely short pulse having no effect on the overall shape of the fluorescence 

decay, however, this is often not the case. With modern pulsed laser diodes and 

fast single photon detection the IRF can be minimised to a width of only a few 

tens of picoseconds. This function is found experimentally through detecting a 

pulse directly from the illuminating source with the detector to be used. Modern 

software packages for FLIM analysis offer the possibility of using a recorded IRF 

that can be de-convoluted from the recorded fluorescence decay offering 

precision in lifetime recording.  

 

2.3. Fluorescence Correlation Spectroscopy (FCS) 

The theory of FCS is based on Poisson statistics [78] whereby the probability of a 

particular event occurring within a defined region of space, or time, can be 

determined if these events occur with a known average and independently of 

each other. For FCS the defined region in space is the effective confocal volume 

in which the number of occupying of molecules fluctuates around an average. 

Changes in the number of molecules in this space give rise to seemingly random 

fluctuations in fluorescence intensity. The physical processes that govern these 

fluctuations define the basis for the derivation of the autocorrelation function 

(ACF) from which physical constants can be extracted. 

 

2.3.1.  Confocal Volume 

The standard for an experimental FCS system is based around a confocal 

microscope as illustrated in Figure 19. 
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Figure 19: Confocal FCS system setup. 1 – Excitation laser source coupled to objective via 

series of optics. 2 – Defined confocal volume where 𝝎𝟎 is the lateral radius and 𝒛𝟎 is the 

axial radius. 3 – Objective with NA > 0.9, typically a 40x 1.2 NA water immersion objective. 4 

– Dichroic mirror. 5 – Confocal pinhole to restrict out of focus light and define the axial 

radius of the confocal volume. 6 – Detector, typically a photo multiplier tube (PMT) or 

avalanche single photon diode (APD). 

 

One of the key aspects of FCS is the definition of the observed confocal volume 

which is achieved through the utilisation of a confocal optical configuration. The 

Gaussian beam profile of an excitation light source is focussed to the sample via 

a high NA lens, greater than 0.9, to create a tightly focussed spot radius. The 

resultant fluorescence is collected via the same objective and focussed to the 

detectors through a confocal pinhole rejecting out of focus light creating a thinly 

illuminated region. The dimensions of the observed area are typically 1 µm in 

width and 2 µm in height with a volume of roughly 1 fL. The result is an 

observational volume which takes the form of an ellipsoid and is demonstrated 

in Figure 19 (2). The implementation of a Gaussian beam results in the following 

detection profile for the observed region. 
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𝑝(𝑟) = 𝐼0𝑒

−2(
𝑥2+𝑦2

𝜔0
2 )

𝑒
−2(

𝑧2

𝑧0
2)

 

 

(2.22) 

 

 

This defines the region where the excitation intensity decays to 𝑒−2 of its peak 

intensity, 𝐼0, over all points 𝑟. The effective volume does not possess explicitly 

defined boundaries due to a number of factors [78] so the expression for 

𝑉𝑒𝑓𝑓differs slightly to that for the volume of a geometric ellipsoid. 

 

 𝑉𝑒𝑓𝑓 = 𝜋
3
2⁄ 𝜔0

2𝑧0 

 

(2.23) 

 

 

 

2.3.2.  The Auto-Correlation Function (ACF) 

 

The fluorescence signal in the focal region is recorded with single photon 

sensitivity and fluctuations in intensity around an average are noted. Auto 

correlation as a function of time of this signal produces the intensity based auto-

correlation function (ACF). A combination of the ACF with knowledge of the 

detection profile gives rise to the information provided on the physical 

parameters driving the fluctuations in fluorescence intensity. The ACF is defined 

in equation (2.24). 

 

 𝐺(𝜏) =
〈𝐼(𝑡)𝐼(𝑡 + 𝜏)〉

〈𝐼〉2
 

 

(2.24) 

 

 

 𝐺(𝜏) =
〈𝛿𝐼(𝑡)𝛿𝐼(𝑡 + 𝜏)〉

〈𝐼〉2
+ 1 

 

(2.25) 
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These two expressions both hold valid for the definition of the auto-correlation 

function. The first expresses it purely in terms of the measured intensity at 

times (𝑡) and(𝑡 + 𝜏), normalised by the average intensity. The second expresses 

the function in terms of the fluctuations around the average intensity such that: 

𝛿𝐼(𝑡) = 𝐼(𝑡) − 〈𝐼〉. This gives rise to the first physical parameter which can be 

noted from the auto-correlation function.  

 

Due to fluctuations arising from random processes, such as diffusion, in a system 

at equilibrium the average of the square of the fluctuations in intensity, known 

as the sample variance, equals the average that value i.e. 〈(𝛿𝐼)2〉 = 〈𝐼〉. This 

holds true for any parameters which fluctuate around a mean resulting in 

intensity fluctuations as there are as many fluctuations above the average as 

there are below. Take N to be the number of particles in the focal element at a 

given time, this means that: 〈(𝛿𝑁)2〉 = 〈𝑁〉. The same can be said for 

concentration since the intensity is directly proportional to both the 

concentration and number of fluorescing particles in the observed space.   

Looking back at the auto-correlation function for the initial correlation time, 

such that 𝜏 = 0, this then gives: 

 

 𝐺(0) =
〈𝛿𝐼(𝑡)𝛿𝐼(𝑡 + 0)〉

〈𝐼〉2
=
〈𝛿𝐼(𝑡)2〉

〈𝐼〉2
 

 

(2.26) 

 

 

Due to the proportional relationship between intensity, concentration and 

particle numbers it can be deduced that: 

 
〈𝛿𝐼(𝑡)2〉

〈𝐼〉2
=
〈(𝛿𝐶)2〉

〈𝐶〉2
=
〈(𝛿𝑁)2〉

〈𝑁〉2
=

1

〈𝑁〉
 

 

(2.27) 

 

 

This shows that at time interval 𝜏 = 0 the amplitude of the correlation function 

is inversely proportional to the average number of fluorescing particles. For a 

large number of fluorescing particles, i.e. a high concentration, the amplitude of 

the trace would be incredibly low and difficult to deduce from any sort of noise, 

hence why FCS experiments yield best results from monitoring low 

concentrations of fluctuating fluorophores. 
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There are numerous physical processes that can be determined using FCS such as 

diffusion in 3D and 2D, anomalous diffusion, active transport, reaction rates, 

molecular binding, and molecular rotation. Originally the technique was used to 

observe chemical reaction rates [60] but is now more commonly used to 

investigate rates of diffusion. Figure 20 demonstrates some example systems 

whereby fluctuations in fluorescence intensity are driven by different means. 

 

 

Figure 20: Mechanisms of fluorescence fluctuations within the boundaries of the confocal 

volume. (1) – Diffusion, (2) – Flow, (3) – Chemical reactions 

 

Figure 20 (1) shows a commonly investigated system where the thermal motion 

in a fluid mobilises the fluorescent molecules through the focal region. FCS can 

also be used to investigate systems under flow conditions as shown in (2). Finally 

fluctuations that are independent of the focal volume can also be observed such 

as particular chemical reactions where the fluorescence of the molecule is 

activated and deactivated within the focal volume.  

 

Below the auto-correlation function relating to a system influenced by thermal 

diffusion will be derived. To determine physical data from correlation 

measurements, in terms of kinetics, a suitable model needs to be fit to the auto-

correlation function relating. The fitted model relates the dimensions of the 

optical system and the processes driving intensity fluctuations. This To begin 

with an arbitrary parameter called the brightness, 𝐵, is defined: 𝐵 = 𝑞𝜎𝑄. 

Coupled within the brightness are the parameters of the quantum efficiency of 



63 
 

the detector, 𝑞, the cross-section of absorption of the fluorescent molecules, 𝜎, 

and the quantum yield of the fluorophore, 𝑄. This is a way of grouping all 

immeasurable values that will later be cancelled by normalisation. Expressing 

the intensity in terms of the system parameters, i.e. the optical system and the 

parameters of the fluorophore: 

 

 𝐼(𝑡) = 𝐵∫𝑆(𝑟)𝐼(𝑟)𝐶(𝑟, 𝑡)𝑑𝑉 

 

(2.28) 

 

 

𝑆(𝑟) refers to optical transfer function (OTF) for the optical system determining 

the spatial collection efficiency over all points, r, within the observable space. 

𝐼(𝑟) and 𝐶(𝑟, 𝑡) are the intensity and the concentration of fluorescent molecules, 

respectively, at any given point in the detection region and at any point in time, 

𝑡. This is integrated over the entire observational volume, 𝑉, for all points, 𝑟. 

The OTF and intensity values can be grouped together to provide the detection 

profile which was defined earlier in equation (2.22),  𝑝(𝑟) = 𝑆(𝑟)𝐼(𝑟). The ACF 

can now be re-written as: 

 

 

 𝐺(𝜏) =
𝐵2 ∫∫ 𝑝(𝑟)𝑝(𝑟′)〈𝛿𝐶(𝑟, 𝑡)𝛿𝐶(𝑟′, (𝑡 + 𝜏))〉𝑑𝑉𝑑𝑉′

(𝐵〈𝐶〉 ∫ 𝑝(𝑟)𝑑𝑉)
2  

 

(2.29) 

 

 

The denominator for the above expression denotes the average intensity 

squared, as in equation (2.24), as the product of the average concentration of 

fluorescent molecules and molecular brightness over all points in the focal 

volume. The numerator gives the product of fluctuations in the intensity at 

time, 𝑡, and time, 𝑡 +  𝜏, at all points in the system. For the fluctuations taken 

at a point in time, 𝑡 +  𝜏, the position will most likely have also changed which is 

denoted by 𝑟’ and then integrated against 𝑑𝑉’. The brightness term is 

independent of position so is grouped outside of the integral and is cancelled 

since the function is normalised by the average intensity squared. It is at this 

point where the model of the auto-correlation function may be defined relative 

to the kinetic processes under observation.  
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The concentration of fluorescent molecules within the observational volume can 

be considered in terms of their local concentration, 𝐶(𝑟, 𝑡), their ensemble 

average, 𝐶̅ = 〈𝐶(𝑟, 𝑡)〉, and the concentration fluctuation, 𝛿𝐶(𝑟, 𝑡) = 𝐶(𝑟, 𝑡) − 𝐶̅. 

Fluctuations of concentration relax according to Fick’s second law denoted in 

(2.30). 

 

 
𝜕𝛿𝐶(𝑟, 𝑡)

𝜕𝑡
= 𝐷∇2𝛿𝐶(𝑟, 𝑡) 

 

(2.30) 

 

 

In the above expression 𝐷 represents the diffusion coefficient. Solving the 

partial differential with the Fourier transform provides the following expression: 

 

 𝛿𝐶(𝑞⃗, 𝑡) = 𝛿𝐶(𝑞⃗, 0)𝑒(−𝐷𝑞
2𝑡) 

 

(2.31) 

 

 

This now provides the ability to calculate the autocorrelation of the 

concentration fluctuations. For a system where particles are diffusing freely in 

3-dimensions the term 〈𝛿𝐶(𝑟, 𝑡)𝛿𝐶(𝑟′, (𝑡 + 𝜏))〉, the number density auto-

correlation term, can be derived as: 

 

 〈𝛿𝐶(𝑟, 𝑡)𝛿𝐶(𝑟′, (𝑡 + 𝜏))〉 = 〈𝐶〉
1

(4𝜋𝐷𝜏)
−3
2

𝑒
−(𝑟−𝑟′)2

4𝐷𝜏  

 

(2.32) 

 

 

This expression can then be substituted back into (2.29) to provide the following 

expression: 

 𝐺(𝜏) =
1

〈𝐶〉(4𝜋𝐷𝜏)
−3
2

∫∫ 𝑝(𝑟)𝑝(𝑟′)𝑒
−(𝑟−𝑟′)

2

4𝐷𝜏 𝑑𝑉𝑑𝑉′

(∫ 𝑝(𝑟)𝑑𝑉)
2  

 

(2.33) 

 

 



65 
 

Integrating this function over the respective volumes and remembering the 

convention for the effective volume, shown in (2.22), provides an expression for 

the auto-correlation function in terms of 3D diffusion. 

 
𝐺(𝜏) =

1

𝑉𝑒𝑓𝑓〈𝐶〉

1

(1 +
𝜏
𝜏𝐷
)

1

√1 + (
𝜔0
𝑧0
)
2 𝜏
𝜏𝐷

 
 

(2.34) 

 

 

For the above expression 𝑉𝑒𝑓𝑓 is the effective confocal volume in which 

fluctuations are measured as denoted in (2.23). The auto-correlation function 

gives rise to the characteristic diffusion time 𝜏𝐷 which can be related to the 

diffusion coefficient of the fluorescent species as follows: 

 

 𝜏𝐷 =
𝜔0
2

4𝐷
 

 

 

(2.35) 

 

 

 

The first part of auto-correlation function can be used to determine the 

dimensions of the focal volume. This occurs by calculating the amplitude of the 

correlation function at time 𝜏 = 0 so that the other elements of the expression 

are reduced to 1. Through using a fluorophore of known concentration and with 

a defined diffusion coefficient  (2.35) and (2.36) can be used to calculate both 

𝜔0 and 𝑧0 [79].  

 

 𝐺(0) =
1

〈𝐶〉𝑉𝑒𝑓𝑓
=

1

〈𝑁〉
 

 

(2.36) 

 

 

Examples of the measured auto-correlation function can be seen in Figure 21.  
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Figure 21: Simulated Auto-correlation functions for systems of increasing diffusion 

coefficients and increasing particle concentration 

 

As can be seen in upper simulated auto-correlation functions, as the diffusion 

coefficient decreases 𝐺(𝜏) is shifted to higher values. As the number of 

molecules in the observational volume increase, the amplitude of 𝐺(𝜏) is 

decreased, suggesting that lower concentrations are desirable for FCS 

measurements.  

 

 

Figure 22: Measured auto-correlation functions for diffusing 100 nm microspheres with 

increasing concentrations. Concentrations are volumes of 100 nm microsphere stock 

solutions per ml of water. 
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Taking the values of 𝑁 taken from the amplitude of the auto-correaltion 

function and plotting them against the concentration of microspheres per ml of 

water is shown in Figure 23. 

 

 

Figure 23: Average number of particles in focal volume against concentration of 100 nm 

microspheres per ml of water 

 

As can be seen in Figure 23 the average number of particles follows a linear 

relationship with the concentration of particles in water until low concentration, 

roughly 1 – 2 µl/ml. The reason for this is as the average signal of fluorescence 

reduces close to the intrinsic background count rate of the system, it becomes 

difficult to obtain valuable information about particle concentration. A 

correction exists for incredibly dilute samples in the pico-molar range [79]. 

 

As mentioned earlier, FCS measurements can be utilised to determine dynamics 

other than those driven by 3D-diffusion. Translational 2D diffusion coefficients 

can be extracted by fitting a model very similar to (2.34). 

 

 𝐺(𝜏) =
1

𝑉𝑒𝑓𝑓〈𝐶〉

1

(1 +
𝜏
𝜏𝐷
)
 

 

(2.37) 
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It is also possible to analyse more complex systems where there are more than a 

singular diffusing species. This may be due to fluorescent particles of differing 

sizes or where a fluorescent probe is used to observe molecular binding to larger 

molecules. When bound to a target molecule the probe will exhibit a reduced 

coefficient of diffusion. If there exists two possibilities where there is a fraction 

of both bound and unbound fluorescent probe in the observational volume the 

following model can be used. 

 

 𝐺(𝜏) =
1

〈𝑁〉

(

 
 
 

{
 
 

 
 

1 − 𝑦

(1 +
𝜏

𝜏𝑓𝑎𝑠𝑡
)

1

√1 + (
𝜔0
𝑧0
)
2

(
𝜏

𝜏𝑓𝑎𝑠𝑡
)
}
 
 

 
 

+

{
 

 
𝑦

(1 +
𝜏

𝜏𝑠𝑙𝑜𝑤
)

1

√1 + (
𝜔0
𝑧0
)
2

(
𝜏

𝜏𝑠𝑙𝑜𝑤
)
}
 

 

)

 
 
 

 

 

(2.38) 

 

 

The fractional contribution to the auto-correlation function for a secondary 

slower component of diffusion is given by the variable 𝑦 and the two respective 

diffusion times are denoted by 𝜏𝑓𝑎𝑠𝑡 and 𝜏𝑠𝑙𝑜𝑤. For the case of molecular binding 

the fast component would be attributed to unbound fluorescent probe diffusing 

freely in the system, whereas, the slow component represents bound probe 

molecules. Theoretically any number of diffusing species can be extracted from 

𝐺(𝜏) [80], however, in systems of more than two components the exponential 

decays become indistinguishable. The smallest possible difference in diffusion 

coefficient that can be determined between two species is roughly 1.6 [81].  

 

Models for auto-correlation functions determining kinetics such as flow, 

chemical reaction rates have been previously derived [63]. Flow speeds can be 

determined using the following model: 

 

 𝐺(𝜏) =
1

〈𝑁〉
𝑒−(

𝜏
𝜏𝑉⁄ )

2

 

 

(2.39) 

 

 

In this instance 𝜏𝑉represents the characteristic flow time and is related to the 

dimensions of the focal volume via: 

 

 𝜏𝑉 =
𝜔0
𝑉
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(2.40) 

 

Where, 𝑉, represents the relative flow speed. Note that since the this is a 

volumetric measurement no information is provided in terms of directionality 

and as a result 𝐺(𝜏) does not provide a measure of velocity. However, previous 

works describe a dual focus system where both speed and direction are 

measured with two confocal volumes positioned at a known distance apart and 

performing cross-correlation of the two recorded auto-correlation functions [82].  

 

In complex systems where both convective flow and diffusion occur a summation 

of the two models can be employed to distinguish diffusion coefficients and flow 

speeds simultaneously. 

 

 

Figure 24: Auto-correlation functions measured for 100 nm fluorescent microspheres 
flowing in a 250 µm glass capillary channel. Confocal volume positioned to centre of 
channel and flow speed gradually increased. 

 

Figure 24 shows measured data of 100 nm fluorescent microspheres flowing 

within a 250 µm glass capillary. By positioning the confocal volume to the mid-

point of the channel and adjusting the flow rate, by means of a syringe pump, 
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the auto-correlation functions were recorded. As the flow rate decreases to < 

100 µl/hour the auto-correlation function ceases to increase any further. It is at 

this point where diffusion becomes the dominant physical force.  
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3. Chapter 3: TIRF investigation of Glucose 

Metabolism in HeLa cell line 
 

3.1. Introduction  

3.1.1.  Diabetes 

The negative impact of diabetes mellitus on the health and wellbeing of the 

world’s population is increasing as the number of diagnosed cases, in particular 

type 2 diabetes mellitus (T2DM), continues to rise sharply. In 1985 it was 

estimated by the World Health Organisation (WHO) that, worldwide, 30 million 

people suffered from the condition with the number rising to 135 million by 1995 

[83]. According to the International Diabetes Foundation by 2014 this figure was 

said to top 387 million people [84] with 90% of present cases taking the form of 

TD2M. The financial cost of the disease was estimated to be roughly [85] $245 

billion in the U.S alone in the year 2012 with a global cost closer to $600 billion 

dollars contributing to up to 5 million deaths per year.  

 

Type 1 diabetes is characterised by a failure in the body’s ability to produce 

sufficient insulin. Whilst the pathogenesis of Type 1 diabetes is still a topic for 

debate and exploration [86] it is categorised as an autoimmune condition where 

there is widespread destruction to the insulin producing pancreatic β-cells 

resulting in a need for exogenous insulin [86]. Type 2 diabetes, however, occurs 

as a result of the inefficient utilisation of naturally produced insulin [84], [87]. 

This is either through resistance to the action of the insulin or due to a disorder 

in insulin secretion. In all instances of the disease the result is an imbalance in 

circulating blood glucose levels. Elevated blood glucose levels, hyperglycaemia, 

and reduced blood glucose levels, hypoglycaemia [88] can result in a variety of 

conditions such as cardiovascular disease, ketoacidosis, coma and even death.  

T2DM is the most prevalent form of the condition throughout the world and can 

arise due to numerous factors such as inactivity, poor diet or age but the 

molecular pathways through which it propagates are a present matter for 

investigation.  
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3.1.2.  Adipose Tissue and GLUT4 

In adipose and muscle cells the rate at which glucose is transported, and hence 

metabolised, is governed by a series of molecules known as the glucose 

transporters (GLUT) with the predominant form being GLUT4 [89], [90]. The 

levels of GLUT4 located at the plasma membrane govern the rate of cellular 

glucose transport, and thus, metabolism [91] contributing to the overall whole-

body glucose homeostasis. GLUT4 is synthesised in the endoplasmic reticulum 

before being transported to the Golgi network where it experiences various post-

translational modifications [92]. Following this GLUT4 is inserted to storage 

vesicles (GSVs) which are located intracellularly under basal conditions. Upon 

insulin stimulation GSVs are recruited to the plasma membrane where they are 

tethered, docked and fused. Once fused with the plasma membrane the GLUT4 

content of the GSVs is dispersed through the membrane ready to transport 

glucose to the cell. GLUT4 molecules present at the plasma membrane are 

endocytosed and recycled. If insulin is still present the GLUT4 is recycled back to 

the plasma membrane, otherwise, it is sent back to GSVs to be re-used once 

insulin is again presented.  

 

A model, presented in [93], suggested that GLUT4 exists in four states in adipose 

and muscle tissue: as monomers or clusters in the plasma membrane, as 

endosomes and in GSVs displayed in Figure 25. 
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Figure 25: GLUT4 exists in four states: As monomers and clusters at the plasma membrane, 

as internal endosomes and GLUT4 Storage Vesicles (GSVs). Insulin stimulation increases 

recruitment of internal GSVs to the plasma membrane whilst regulating the dispersal of the 

GLUT4 enriched GSV content to the membrane. Image modified from [93]. 

  

The majority of GLUT4 (~95%) is localised to intracellular GSVs in the absence of 

insulin, which traffic to and from the plasma membrane at a slow rate. Under 

non-insulin stimulated conditions the majority of vesicles fuse to the membrane 

without releasing their contents, i.e. fusion with retention. Upon insulin 

stimulation the recruitment of GSVs to the plasma membrane increases and the 

vesicles now disperse their contents into the membrane, i.e. fusion with release. 

Importantly, insulin is suggested to govern the spatial distribution of GLUT4 now 

present in the membrane ready for glucose metabolism [93]. With knowledge of 

the trafficking of GLUT4 in adipose tissue, the mechanisms by which this 

processes occurs can be examined and the external stresses that affect it [94–

96]. Post-translational modifications of GLUT4 have also been shown to affect its 

subcellular localisation and translocation [92]. Deficiencies to the insulin 

stimulated translocation through post-translational modifications, as well as 

deficient machinery, are fundamental to insulin resistance and T2DM [97].  

 



74 
 

3.1.3.  Adipocytes 

All present investigations of the dynamics and signalling processes involved in 

insulin regulated GLUT4 dynamics are carried out in differentiated 3T3-L1 

fibroblasts or  isolated rat adipocytes [91], [93], [98–100]. Adipocytes (fat cells) 

are characterised by the presence of one or many large lipid droplets. These 

cells have a particularly difficult and lengthy isolation and culturing procedure 

[101–103] making them a complicated system for experimentation due to their 

slow growing nature, low yield and large size. The use of isolated rat adipose 

tissue has the advantage of providing an ex-vivo small animal homologue for 

investigating numerous human diseases and exposure to particular toxins but 

suffer from significant experimental restrictions. One critical draw-back being 

the need for controlled laboratory regulations and instrumentation when working 

with small animals for tissue extraction. Isolated rat adipocytes are often 

derived from a type of mesenchymal stromal stem cell (MSC) known as the adult 

adipose-derived stem cells (ASCs). Numerous factors contribute to variations in 

derived ASCs such as donor age, type and location of adipose tissue, method of 

harvesting, proliferation rate, differentiation capacity etc. [103]. Once isolated 

the ASCs require various differentiation stages: Adipogenic, Osteogenic and 

Chondrogenic. Each stage takes significant time and care to ensure a successful 

resultant yield. In most cases the entire process can take upwards of 3 weeks 

before functional isolated adipocytes are available for experimentation.  

 

Another commonly employed cell line for investigations in adipocytes is the 

preadipose mouse fibroblast 3T3-L1 cell line originally isolated from non-clonal 

Swiss 3T3 cells [104], [105]. The 3T3-L1 line is commercially available so 

isolation from an animal model is unnecessary. Once acquired, the cells are 

differentiated from their fibroblastic phenotype to adipocytes through the use of 

pro-differentiative agents following growth arrest [102]. Commonly used agents 

such as: insulin [105], dexamethasone [106] and 3-isobutyl-1-methylxanthine 

(IBMX) [107] have all previously shown varying levels of success. Differentiation 

with such agents typically occurs after 4 - 6 days, characterised by the 

accumulation of lipid droplets of varying sizes as well as markers of fat cell 

differentiation [108]. The sensitivity of the differentiation process can be seen 

in the work of Mehra et al. in 2007 [108] where it was shown that the 
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differentiation rate was dependent on the type of culture dish used. They found 

that the type of dish material, processing of the plastic surface and also the 

style of dish used greatly affected differentiation. Zebisch et al. developed an 

improved method for differentiation [102] through the addition of rosiglitazone 

to the first differentiation medium providing virtually complete differentiation 

of the fibroblasts to adipocytes. While they demonstrated a successful protocol, 

the overall length of the procedure was greater than 12 days.            

 

3.1.4.  HeLa Cells 

The majority of current investigations of GLUT4 activity and recruitment to the 

plasma membrane suffer from a low throughput due to the lengthy isolation and 

culturing of adipocytes. In addition, adipocytes are particularly difficult to 

genetically manipulate, e.g. by transfection or siRNA approaches. As a result a 

need is seen for a more robust experimental cellular model expressing similar 

GLUT4 activity for more statistically sound data sets. Such a system would 

provide the perfect platform for high throughput investigations into factors 

involved in disrupting insulin regulated glucose metabolism. The HeLa cell line is 

an immortal cervical cancer cell line, originally acquired in 1951 [109], and is 

the most widely investigated cell model [110]. The cell line has gained particular 

success due to its rapidly growing nature and a significant lack of contact 

inhibition [111]. It is even claimed that due to the robustness and ubiquity of 

HeLa cells in laboratories world-wide they account for nearly 25% of all cross-

contamination events [112]. The strengths of the HeLa cell line make it an ideal 

model to work with experimentally. While HeLa cells do not contain any 

endogenous GLUT4, they do possess insulin sensitivity [92]. In 2011 Haga et al. 

investigated the role that N-Glycosylation plays in the trafficking of intracellular 

GLUT4 in a modified HeLa cell line expressing both wild-type GLUT4 and a GLUT 

glycosylation mutant [113]. GLUT4 located at the cell surface was shown to 

increase within the modified HeLa cell line under normal conditions, but was 

reduced upon glycosylation. They followed this work up in 2012 with a 

transmembrane FRET based investigation into visualising protein glycoforms 

[114]. This was demonstrated using the HeLa cell model with GFP tagged GLUT4.   

 



76 
 

The modified HeLa cell lines show promise in acting as a homologue to the GFP 

tagged GLUT4 adipocytes in investigating insulin stimulated glucose metabolism 

in adipose tissue. However, at this point in time there has been no direct 

comparison in the rate of GLUT4 recruitment to the cell membrane surface 

between adipocytes and HeLa cells to the best of this author’s knowledge. 

 

This chapter presents a comparison of the insulin stimulated GLUT4 recruitment 

to the plasma membrane in both differentiated 3T3-L1 fibroblasts and a 

modified HeLa cell line. This was achieved through the use of live cell TIRF 

microscopy illuminating GFP tagged GLUT4 molecules within the evanescent 

region of the plasma membrane. Comparisons were drawn from the time 

dependent increase in the average signal originating from the GFP-GLUT4 

located at the plasma membrane as well as the dynamic rates of recruitment of 

GSVs. 

 

3.2. Materials and Methods 

3.2.1. TIRFM system construction 

3.2.1.1. Illumination and detection 

Illumination was provided using a series of interchangeable pulsed laser diodes 

(HORIBA) with available wavelengths of 420 nm, 481 nm and 654 nm. For GFP 

tagged GLUT4 excitation the 481 nm laser line was used. Attached to the front 

of each laser is a condenser lens which focuses the collimated laser light to the 

0.1 NA aperture of a multi-mode fibre optic cable. The fibre is coupled to the 

back of the specialised TIRF condenser via a standard FC fibre coupler. For 

imaging the LaVision Picostar intensified CCD (ICCD) camera was employed 

offering single photon sensitivity.  

 

3.2.1.2. TIRF Alignment 

The fundamental theory of TIRFM was outlined in chapter 2 where it was 

explained that there are two possible practical configurations that can enable 

TIR: in prism and objective based systems. An objective based system was 

constructed due to the favourability of the system for live single cell imaging 
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experiments. Achieving total internal reflection with an objective based 

orientation requires two components: an objective of high numerical aperture 

(>1.4) and the ability to position the laser at the far aperture of the lens by 

mechanical means. This was achieved using a Zeiss 1.45 NA oil immersion lens 

and the TILL photonics TIRF condenser unit. The condenser was coupled to the 

back of a Zeiss Axiovert 200m microscope containing a micrometre screw gauge 

for precise lateral manipulation of the beam position.  

 

Figure 26: TIRF condenser. Micrometre at bottom controls the position of the beam relative 

to the optical axis of the microscope. The laser is coupled to the back of the condenser via a 

0.1 NA multi-mode fibre. The TIRF focus adjusts the image to the back focal plane of the 

objective lens. 

 

The light was focused to a mask in the condenser containing two slits for TIRF 

and a central pinhole for alignment, demonstrated in Figure 27. The two slits 

correspond to the optical path relative to the far aperture of the objective lens. 

Positioning the laser spot through these slits offers a small range of illumination 

angles enabling TIR illumination.  
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Figure 27: Mask for TIRF alignment containing central pinhole and two slits. The two slits 

correlate to the position in the optical path at the far aperture of the objective lens. The size 

of the slits allows for some adjustment of the angle of illumination for angles below, at and 

above the critical angle. 

 

To align the condenser firstly the laser spot is aligned to the central pinhole of 

the mask then the mask and laser spot are aligned relative to the optical axis of 

the microscope. This is achieved using an alignment tool inserted into an empty 

objective slot.  

 

3.2.1.3. Alignment Testing 

To test the alignment a droplet of solution containing 100 nm fluorescent 

microspheres was deposited to a coverslip. The droplet is allowed to rest for a 

few moments to allow a number of the microspheres to adhere to the surface 

with a large concentration remaining in the bulk solution above. This offers a 

contrast between the assumed TIRF illumination region at the surface, and the 

bulk solution. 

 

Initial alignment revealed astigmatism in the optical path due to misalignment of 

the TIRF condenser unit relative to the dichroic mirror of the microscope. This 

was noted when focussing the laser through the centre of the objective, along 

what was assumed to be the optical axis, to a surface a few feet above the 

microscope. When moving the objective through the optical axis the spot was 

noted to drift away from the centre of alignment. Astigmatism is severely 

detrimental to an objective based TIRF system causing uneven alignment of the 
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laser at the sample substrate interface resulting in areas of varying evanescent 

field depth and also angles under that needed for TIRF. The issue was rectified 

through means of mechanical adjustment of the condenser position by attaching 

coiled spring washers to the screws connecting the condenser to the microscope. 

This gave the ability to manually counteract the misalignment originating from 

the condenser.  

 

Once the astigmatism was corrected the alignment was confirmed by imaging 

the 100 nm fluorescent microsphere adhered to the surface of a coverslip. Figure 

28 demonstrates the system where the laser is positioned just under the critical 

angle so that TIRF is not achieved. In this configuration a large background is 

seen from the bulk solution of freely diffusing fluorescent microspheres and from 

the resultant profile no information can be drawn from the features imaged at 

the surface. 

 

 

Figure 28: Fluorescence intensity image of 100 nm beads adhered to a coverslip while also 

freely diffusing in the bulk solution above. The Illumination angle was positioned just below 

the critical angle to provide ‘off-angle’ illumination. Configuration provides no depth 

resolution resulting in no ability to distinguish between beads at the surface and those in 

the solution as seen in plotted profile. Scale bar 10 µm.  

 

Figure 29 shows the system in a TIRF configuration. A signal resulting solely from 

microspheres immobilised at the substrate surface can be seen with the features 

present along the intensity profile.  
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Figure 29: TIRF intensity image of 100 nm beads adhered to a coverslip. Illumination angle 

set higher than the critical angle resulting in a signal from the beads at the surface only. The 

plotted profile shows the ability to resolve the surface features from the background signal. 

Scale bar 10 µm. 

 

3.2.1.4. Penetration depth calibration  

With the system now seemingly able to achieve TIRF illumination the 

characterisation of the evanescent field was required to quantify the 

penetration depths achievable by the system. A procedure presented in [1] was 

employed where fluorescently labelled large, 10 µm silica particles were utilised 

to determine the evanescent field profile. The area of the bottom surface of the 

particle imaged corresponds to the penetration depth using the following 

geometrical relationship.  

 

𝑅2 = 𝑟2 + (𝑅 − 𝑧)2 

Figure 30: Relationship between the radius of spot imaged by TIRF and the penetration 

depth.  
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The critical angle necessary for TIRF was found by adjusting the micrometre 

screw gauge of the condenser using the 100 nm fluorescent microsphere 

calibration solution. The corresponding position on the micrometre was noted 

and used as the start point for the depth calibration measurement, found to be 

at 5 µm. In increments of 1 µm turns of the screw gauge an image was taken of 

the bottom surface of a fluorescently tagged silica microsphere. The images are 

shown below.  

 

 

Figure 31: TIRF images of 10 µm fluorescently tagged silica microsphere on a coverslip. 

Values correspond to position of micrometre gauge on the condenser unit. The radius of the 

imaged spot decreases as the penetration depth is reduced by positioning the laser further 

from the optical axis and closer to the far aperture of the objective lens. This increases the 

angle of illumination further from the critical angle. 

 

The size of the imaged region was determined using the pre-defined measuring 

routines of the image analysis software ImageJ. A centre point of peak intensity 

was located then an average was taken of the intensity profiles along varying 

points from the centre. The corresponding measured penetration depths were as 

follows.  

 

Position of 
screw gauge 

6 µm 7 µm 8 µm 9 µm 10 µm 

Measured 
penetration 

depth 
358 nm 275 nm 204 nm 140 nm 118 nm 

Corresponding 
Angle of 

Incidence 
61.39o 61.63o 62.09o 63.31o 64.25o 

Table 1: Measured penetration depth at different positions of the lateral beam position 

indicated by position on micrometre gauge Angle of incidence calculated using measured 

penetration depth. 
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3.2.2. Cell Preparation 

3.2.2.1. HeLa Cells 

Cells were kindly provided by the lab of Dr Gwyn Gould of the cell biology 

department at the University of Glasgow. Cells arrived adhered to the surface of 

a sealed culture flask and were transferred in this state immediately to an 

incubation chamber to provide appropriate climate control, 5 % CO2 and a 

temperature of 37oC. The cell line provided was a HeLa cancer cell type 

transfected with HA-epitope-tagged-GLUT4 fused to Green fluorescent protein 

(HA-GLUT4-GFP).  

 

All cell handling took place in a class II fume hood cupboard sterilised with 70% 

ethanol before each use. HeLa cell cultures were maintained in DMEM (Gibco) 

supplemented with 10% (v/v) FCS (Foetal Calf Serum) (Gibco), 1% glutamine 

(Gibco) and 1% penicillin/streptomycin antibiotic (pen/strep) (Gibco). 

Dulbecco’s phosphate buffer saline (PBS), trypsin and all media were warmed in 

a water bath to 37oC before use to ensure no heat-shock damage to the cells. 

Existing media in the flask was removed and cells were rinsed twice with 5 ml of 

PBS. Following this 5 ml of trypsin solution was added to the flask and incubated 

at 37oC to encourage cell detachment from the surface of the flask.  5 ml of 

fresh media was added to the flask and the solution was used to rinse any 

remaining cells from the surface. The 10 ml trypsin/media solution was passed 

to a sterile plastic container and placed in the centrifuge. Cells were recovered 

by centrifugation at 1400 rpm for 4 minutes. The cells were then re-suspended 

in 10 ml of fresh media. 1 ml of cells was finally added to 15 ml of fresh media 

to provide an adequate coverage over the surface of the flask. This process was 

repeated every 2 -3 days when the cells were 80 – 90% confluent.   

 

At the point of re-suspension, post centrifugation, the cells were counted using a 

haemocytometer. Cells were plate on a special TIRFM compatible observation 

chamber (Ibidi) which contained a 170 µm coverslip base. HeLa cells were plated 

to a density of 4 x1023 cells per chamber to distinguish single cells from the 
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population for observation.  Cells were left to attach to the surface of the 

coverslip overnight. Before all experimentation, HeLa cells expressing HA-

GLUT4-GFP were serum starved in serum free media for two hours to bring them 

to a resting state and maximise the response to insulin as outlined elsewhere 

[93], [98], [115]. 

 

For insulin stimulation 100 nM insulin was added to the chamber whilst on the 

microscope stage to allow time-lapse imaging of individual cells.  

 

3.2.2.2. Adipocytes 

3T3-L1 pre-adipocytes expressing HA-GLUT4-GFP were differentiated over the 

course of 7 days by culture with a supplemented DMEM containing 10% FBS, 170 

nM Insulin, 1 mM rosiglitazone, 0.25 mM dexamethasone and 2mM methyl-

isobutylxanthine. Cells were maintained in standard DMEM once differentiated. 

For imaging of adipocytes 3T3-mouse fibroblasts were differentiated to provide a 

70% confluent layer. Similar to the HeLa cells the adipocytes were serum starved 

for 2 hours prior to experimentation.  

 

 

3.2.3. Live Cell Imaging 

3.2.3.1. Temperature Control and Sample Stability 

A temperature of 37oC was maintained for all experiments utilising a heated 

microscope stage insert (PeCon). The stage was compatible with the sample 

chambers and maintained positional stability with four screw pins. This 

mitigated the effects of the sample drifting relative to the field of view. The 

sample was allowed to adjust to the temperature of the stage for 15 minutes 

before imaging commenced to minimise the effects of focal drift due to 

temperature changes. A temperature of 55oC from the stage control unit was 

deemed to be sufficient to bring the media to a value of 37oC as measured using 

a K-type thermocouple and compared to images obtained using an Infrared (IR) 

camera. 
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Figure 32: IR image of µSlide chamber containing HeLa cells in serum free media. 

Temperature at crosshair corresponds to 37.5oC with overall stage insert set point set to 

55oC as noted by highest temperature on scale. 

 

3.2.3.2. Media Buffering 

In the absence of CO2 control it was noted that over the time frame of one hour 

the cells began to detach from the substrate. This was mitigated by buffering 

the media with 25 mM HEPES for the time course of the time-lapse imaging. 

Under these conditions the majority of HeLa cells remained attached to the 

substrate for the duration of experimentation. To maintain continuity the HEPES 

buffered media was also used for adipocyte imaging even though no detachment 

was noted.  

 

3.2.3.3. Imaging Parameters 

All images in this chapter were taken using a pulsed 481 nm laser line set to a 

repetition rate of 10 MHz, to minimise the effects of photobleaching. For all 

imaging the exposure time was set to 400 ms. For time lapse image series a 

frame rate of 2 Hz was used to visualise vesicle dynamics.  

 

3.3. Image Analysis 

To determine data relating to the recruitment of GLUT4 to the membrane under 

insulin stimulation, various image analysis techniques were employed. Using a 
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range of algorithms available through the open source software platform of 

ImageJ various aspects of the molecular environment were analysed.  

 

3.3.1.  Membrane Intensity  

To analyse the level of GLUT4-GFP intensity within the TIRFM region, an area 

relating to the perimeter of the cell at the point of insulin stimulation was 

drawn. The contrast for all images in an image sequence was optimised for the 

initial image corresponding to the time t = 0 at the point of insulin stimulation. 

This resulted in the normalisation of the contrast for all subsequent images in an 

sequence providing a clear indication of increased membrane intensity. The 

average intensity for all pixels within the defined boundary for a cell was then 

plotted for all discrete points, image, following t = 0. All values of intensity 

were normalised by the value at the point of insulin stimulation, t = 0, to 

provide a value for the increase in membrane intensity from GLUT4-GFP at the 

membrane. This process was repeated for image sequences of cells under non-

insulin stimulated conditions as a comparison. 

 

 

3.3.2.  Vesicle Definition and Identification 

To determine the kinetics of GSVs in HeLa cells compared to the previously 

characterised adipocytes, image analysis techniques were required to define, 

identify and analyse dynamic and static GSVs. Subroutines readily available 

through ImageJ were combined to form a custom designed macro to provide 

automated image analysis. Algorithms such as the rolling-ball background 

subtraction, despeckle, Gaussian blur, FindFoci and image projection methods 

were utilised. The exact parameters used for the different techniques are 

outlined later in this chapter. 
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3.4. Results 

3.4.1.  TIRFM imaging of Adipocyte membrane GLUT4-GFP  

signal 

Initial experiments were performed to determine the effect of insulin 

stimulation on the recruitment and dispersal of GFP tagged GLUT4 molecules 

around the membrane region of adipocytes. It has previously been demonstrated 

that upon the addition of insulin to adipocytes a marked rise in GLUT4-GFP 

fluorescence at the membrane can be seen [100]. Presented here, differentiated 

3T3-L1 adipocytes expressing HA-GLUT4-GFP were imaged at discrete time 

intervals every five minutes with an exposure time of 500 ms in the presence of 

media both with and without insulin. Figure 33 demonstrates an image sequence 

captured of an adipocyte stimulated with 100 nM insulin for 25 minutes. 

 

 

Figure 33: TIRFM image sequence of 100 nM insulin stimulated 3T3-L1 adipocytes 

expressing Ha-GLUT4-GFP. Excitation wavelength 481 nm, images acquired at 5 minute 

intervals with an exposure time of 500 ms. Scale bar – 20 µm. 

 

It can clearly be seen visually that the intensity of the signal originating from the 

illuminated TIRF zone, corresponding to the cell membrane region, increases 

upon stimulation. This suggests a dynamic shift of the internal HA-GLUT4-GFP 

molecules from intracellular compartments to the plasma membrane. The dark 
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regions within the footprint of the cell likely correspond to internal lipid 

droplets resting in the bottom region of the cell. Insulin stimulation was 

achieved through replacing 50% of the media with media containing 200 nM 

insulin to provide an overall concentration of 100 nM. The media was added 

gently to ensure no movement of the cell for comparative single cell imaging.  

 

To determine whether the observed fluorescence increase was due to the added 

insulin, and not the act of exchanging the media, control images of adipocytes 

under non-stimulated conditions were obtained. This can be seen in Figure 34 

which demonstrates a typical adipocyte imaged with no insulin stimulation, but 

with half of the media exchanged. 

 

 

Figure 34: TIRFM image sequence of transfected 3T3-L1 adipocyte expressing HA-GLUT4-

GFP without insulin stimulation. Excitation wavelength 481 nm, images acquired at 5 minute 

intervals with an exposure time of 500 ms. Scale bar – 10 µm. 

 

 

It can be seen that there is no significant rise in fluorescent signal in the 

illuminated region. This demonstrates that the increase in fluorescence intensity 

observed in Figure 33 is as a direct result of the insulin stimulation as opposed to 

the act of exchanging media.  
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To qualitatively assess the rise in fluorescence signal a perimeter was drawn for 

each cell using the outlining tool in ImageJ. This was drawn for the first image at 

a point before insulin stimulation, t = -2 minutes, and held at the same position 

for each following image as demonstrated in Figure 35.  

 

 

Figure 35: Definition of cell boundary to measure average intensity signal. Yellow outline 

corresponds to boundary defined before insulin stimulation. Images of adipocyte stimulated 

with 100 nM insulin at time 0 and 30 minutes. Scale bar – 20 µm.  

 

The initial boundary is defined so that the measured intensity value at each time 

point corresponds to the area of the cell footprint. This takes into account slight 

increases in the size of the illuminated membrane region due to the spreading of 

the cell over time. This is apparent in Figure 35 where at 30 minutes some bright 

fluorescence can be seen outside the defined perimeter. Due to minimal 

perturbation of the cell through adding insulin cell movement over the time 

course of the experiment is negligible.  

 

TIRFM image sequences were gathered for a number of cells, N = 15, that 

exhibited a minimum 10% increase in average intensity within the measured 

region. These values were then normalised against the intensity value measured 

before insulin stimulation. Each cell was insulin starved for 2 hours before 

stimulation to maximise the response. A plot of the normalised fluorescence 

intensity signal increase for insulin-stimulated adipocytes can be seen in Figure 

36.  
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Figure 36: Normalised intensity vs. time for 3T3-L1 adipocytes under both insulin stimulated 

and non-stimulated conditions. Plots normalised to the average value of the intensity prior 

to addition of media with either 100 nM insulin for stimulated conditions, or no insulin for 

non-stimulated conditions. Error bars represent SEM from the mean measured intensity for 

each time point. N = 15 for the stimulated cells and N = 5 for the non-stimulated cells.  

 

The measured average intensity values from the TIRFM images display a dramatic 

rise in the signal originating from membrane localised GLUT4 molecules. 

Typically a 2 – 2.5 fold increase in normalised fluorescence intensity was 

observed. These values are consistent with previously reported values of 1.5 – 3 

fold increases in GFP-GLUT4 fluorescence signal at the plasma membrane [91], 

[100]. The control experiments demonstrate that the exchanging of media did 

not contribute to the measured fluorescence increase and is likely as a result of 

insulin stimulation. A distribution of the final intensity increases for the imaged 

adipocytes can be seen in Figure 37. 
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Figure 37: Histogram of TIRFM measured intensity fold increase for adipocytes stimulated 

with 100 nM insulin for 25 minutes. Bin width for each bar is 0.1.  

 

Figure 37 demonstrates the distribution of final intensity fold increases for all 

the imaged cells. It was noted that every cell analysed produced at least a 1.9 

fold increase in intensity under stimulated conditions.  

 

3.4.2.  TIRFM imaging of HeLa cell membrane GLUT4-GFP 
signal  

An example of the observed intensity increase in the HeLa cell line can be seen 

in Figure 38 where images taken from t=0 and t=60 are compared.  

 

 

Figure 38: TIRFM images of 100 nM insulin stimulated GLUT-GFP transfected HeLa cells. 

Excitation wavelength 481 nm, images with an exposure time of 500 ms collected one hour 

apart. Scale bar – 10 µm. 

 



91 
 

TIRFM images of HeLa cells display a slight increase in membrane associated 

fluorescence intensity; however, compared to the previous images of 

adipocytes, under similar conditions, the total increase was visibly lower. Due to 

the unknown dynamics of the HeLa cell line, cells were imaged over a time 

course of one hour as opposed to the 30 minutes for adipocytes. Data was taken 

from cells that demonstrated a minimum 10% rise in measured fluorescence 

intensity as shown in Figure 39. 

 

 

Figure 39: Normalised average fluorescence intensity vs. time for HeLa cells expressing 

GFP-GLUT4 under both insulin stimulated and non-stimulated conditions imaged with 

TIRFM. Plots normalised to the average value of the intensity prior to addition of media with 

either 100 nM, for stimulated conditions, or no insulin for non-stimulated conditions. Error 

bars represent SEM from the mean measured intensity. N = 12 for stimulated cells and N = 5 

for non-stimulated cells.    

 

Figure 39 demonstrates the normalised intensity changes for the HeLa cells 

under both stimulated and non-stimulated conditions. It can be seen that the 

increase is significant compared with the control, however, the typical increase 

was between 1.3 – 1.5 fold increase in fluorescence intensity. This is 

significantly lower than the minimum measured 2 fold rise for the adipocytes.  
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Figure 40: Histogram of TIRFM measured intensity fold increase for HeLa cells stimulated 

with 100 nM insulin for 25 minutes. Bin width for each bar is 0.1. 

 

Upon inspection of the histogram for the final intensity fold increase for the 

imaged cells, it can be seen that a small percentage exhibited no significant rise 

in intensity. Figure 41 provides a direct comparison between the two cell lines in 

terms of rates of membrane localised fluorescence intensity increase. 

 

3.4.3.  Comparing Adipocyte and HeLa membrane intensity 
increases 

Figure 41 outlines the relative rates of increasing fluorescence intensity between 

the HeLa and adipocyte cell lines under stimulated conditions compared with 

the non-stimulated HeLa cells. 
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Figure 41: Comparison of average TIRFM fluorescence intensity increase between the 
adipocyte and HeLa cell lines under insulin stimulated conditions. Adipocytes imaged over 
time course of 25 minutes before intensity signal plateaus and HeLa cells imaged for one 
hour. Error bars represent standard deviation of mean measured fluorescence intensity 

 

Figure 41  demonstrates that the final plateau region of intensity increase is 

significantly reduced in the HeLa cell line. In addition, the time course over 

which it achieves maximum signal is increased. This is highlighted through 

investigation of the half rise time, 𝜏1
2⁄
, of the measured intensities.  

 

Cell Type Max fold increase 
Half rise Time, 

𝝉𝟏 𝟐⁄ , (Minutes) 
N 

Adipocytes – 
GLUT4-GFP 

2.15 ± 0.2 12.25 ± 2.18 15 

HeLa –  
GLUT4-GFP 

1.34 ± 0.1 17.13 ± 6.32 12 

Table 2: Comparing the intensity increase and half rise times for the insulin stimulated 

Adipocyte and HeLa cell lines expressing GLUT4-GFP. Error indicates the standard 

deviation for each value taken from N cells. Two-tailed t-test applied to half rise time values 

provided a p value of 0.0078 indicating statistical significance, i.e. < 0.05. 
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The observed half-rise time for adipocytes occurred within 12 minutes to 

eventually reach a plateau of a 2.15 fold intensity increase after 25 minutes. For 

the HeLa cell line the rise in fluorescence intensity was not only lower in 

magnitude but took, on average, 17.13 minutes to reach the half-rise point 

before plateauing after 35 minutes. The difference between the half rise times 

for the two cell lines was found to be statistically significant through application 

of a two-tailed t-test yielding a p value < 0.05.  

 

It has previously been shown numerous times that in adipocytes expressing 

GLUT4-GFP a significant rise in fluorescence intensity can be detected within 

the plasma membrane region [91], [98], [115]. In general the observed increase 

is between 1.5 – 3 fold in normalised fluorescence intensity but the half rise 

time, 𝝉𝟏 𝟐⁄ , over which this is achieved can vary between 6-10 minutes  [91], 

[100]. The values obtained in this study fall close to these previously reported 

values, suggesting the devised experimental system provides consistent 

information on the dynamic recruitment of GLUT4-GFP to the plasma membrane 

in adipocytes. The slightly increased 𝝉𝟏 𝟐⁄  value of 12.25 minutes may be due to 

the method by which the insulin is added to the cells. Instead of replacing the 

entirety of the media in the observation chamber only half of the media was 

exchanged resulting in a potential lag in insulin stimulation due to diffusion. 

However, in comparing the two cell lines the method was held consistent 

allowing a direct comparison.  

 

Haga et al. [113] have previously demonstrated, using western blotting, that 

ectopically expressed GLUT4 in HeLa cells migrates to the plasma membrane 

under insulin stimulation. They found a near 2-fold increase in surface expressed 

wild type GLUT4 at the plasma membrane under insulin stimulation. The levels 

found here through TIRFM imaging reveal an average 1.3-fold increase in 

fluorescence signal at the membrane resulting from translocation of the GLUT4-

GFP. While this rise appears to be due to the 100 nM insulin stimulation, it is 

significantly lower than that found elsewhere. A potential source for this 

discrepancy may be the levels of over-expression of the GLUT4-GFP in the 

different laboratories. The capacity of HeLa cells to sequester GLUT4 in GSVs is 

limited; hence at lower levels of expression, a great fraction of the total may be 

expected to exhibit insulin-dependent movement to the cell surface. 
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Unfortunately, it was not possible to compare levels between those employed by 

Haga et al. and those here due to the inherent differences between assays. 

Confocal imaging of HeLa cells expressing GLUT4 show a relatively large 

background fluorescence signal of GLUT4 located outside of GSVs. For the TIRFM 

images this may contribute to a higher background value of GLUT4 located near 

the plasma membrane before stimulation. Normalising all subsequent images 

against the pre-stimulation images could explain the lower observed rise in 

normalised fluorescence intensity. However, this method does provide a quick 

and simple approach for qualitatively investigating translocation of GLUT4 to the 

plasma membrane in a robust HeLa cell model. A significant rise in intensity was 

observed in just 30 minutes with extremely simple data handling.      

  

3.4.4.  GSV identification 

To determine the kinetics of GSVs in HeLa cells compared to previously 

characterised adipocytes, image analysis techniques were required to define, 

identify and analyse dynamic and static GSVs. To begin with the signal from GSVs 

versus the diffuse fluorescent background was enhanced through the 

implementation of a rolling ball algorithm. The rolling ball method was inspired 

by the work of Sternberg [116] and is used to enhance the signal of small bright 

spots from an uneven diffuse background signal. GSVs are, for the most part, 

represented by diffraction limited punctate due to their sub-diffraction size, 

typically 50 - 70 nm [92]. The algorithm subtracts an average value for each 

pixel defined by the number of pixels within a set radius around the original 

pixel. The radius value must be at least as large as the largest object which is 

not deemed to be part of the background. In the case of membrane localised 

GSVs in adipocytes this is demonstrated in Figure 42. 
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Figure 42: (a) Raw 8-bit grey scale TIRFM image of adipocyte expressing GLUT4-GFP with 

corresponding plot (c) representing intensity profile plotted along yellow line. (b) same 

image as (a) with rolling ball background algorithm implemented with a ball radius of 5 

pixels. Corresponding plot (d) represents intensity along yellow line.  

 

In Figure 42 (a) an adipocyte was imaged in the TIRF mode and signal can be 

seen originating from both bright small punctate spots and a broader background 

region. The reason for this most likely is due to GLUT4 molecules residing within 

or close to the plasma membrane that are not contained within GSVs. The 

corresponding intensity plot along an arbitrary line, (c), demonstrates that these 

features can be determined but are, in places, dominated by the background 

signal. implementing the rolling ball background subtraction with a ball radius 

value of 5 pixels the background signal is eliminated as seen in Figure 42 (b) and 

in the plot (d).  

 

Post-background subtraction, noise was then removed through the use of the 

‘despeckle’ and ‘outlier removal’ subroutines of imageJ. Despeckle removes any 

single pixel noise from the image based on the median of a 3 x 3 region around 
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the original pixel. Removal of outliers subtracts all particles of a particular 

radius which is deemed to be lower the minimum expected for GSVs. Individual 

vesicle events were defined as outlined in previous studies of GSV recruitment in 

adipocytes [93] following three important criteria (1) that the fluorescent point 

had a local maxima value, (2) 75% of the peak intensity was contained within a 5 

pixel radius and (3) the point was larger than a minimum 2 pixel radius. This was 

achieved through the use of the FindFoci algorithm developed on the ImageJ 

platform at the University of Sussex [117]. Figure 43 demonstrates the ability of 

the algorithm to pinpoint the locations of the isolated GSVs based on their local 

maxima values. 

 

 

Figure 43: Magnified region of TIRFM images adipocyte from Figure 42 (a). Rolling ball 

algorithm applied with noise and outliers removed. Crosshairs correspond to local maxima 

points. (b) the resultant mask of detected GSVs excluding all points which do not conform 

to the three definitions for GSVs. 

 

The use of this particular algorithm possesses numerous benefits over manual 

focal spot counting methods [117]. GSVs that overlap in terms of intensity can be 

separated, to a certain degree, even if they share a common background value. 

Areas potentially corresponding to localised pools of GLUT4-GFP, which may 

appear to be diffraction limited spots, are eliminated as they do not contain a 

local maxima value. 

3.4.5.  Comparing mobile GSVs to stationary GSVs in 
Adipocytes 

With knowledge of the rate of increase in membrane localised GLUT4-GFP signal 

it was determined that the probable time window over which GSV recruitment, 
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fusion and dispersal takes place is within the initial 15 minutes of insulin 

stimulation. To investigate the dynamics of GSVs within the membrane region 

time-lapse live cell TIRFM was utilised. Images were acquired at a rate of 2 

frames per second for 2 minutes prior to insulin stimulation and for 15 minutes 

after the addition of insulin.  

 

To determine the ratio of mobile to stationary GSVs located at the membrane 

region with respect to time, time-projection image stack methods were used. 

Stacks of time-lapse images were separated into 1 minute segments to 

determine the time dependent nature of vesicle dynamics. To begin with, the 

average projection of the image stack was subtracted pixel by pixel from each 

image in the stack. The result was a secondary image stack consisting purely of 

moving vesicles, with stationary GSVs and other static GLUT4 signal removed 

from the images. This secondary image stack was then subtracted frame by 

frame from the original image stack. The resultant image stack provided a 

sequence of images relating to only stationary vesicles located within the 

membrane region. 

 

An image was taken from the beginning of each image stack for every recorded 

one minute segment providing comparative images of mobile and stationary 

GSVs at the plasma membrane surface. GSVs were then identified as outlined 

earlier and the time dependent vesicle dynamics were obtained for both cell 

lines.  These values were measured for three individual cells within ten different 

100 µm2 regions of interest (ROI).  

 

Figure 44 demonstrates the time dependent dynamics of GSVs in adipocytes as 

measured through TIRFM. At the point of insulin stimulation, t = 0, a notable 

increase in mobile GSVs within the illuminated membrane region was observed. 

The period of increased activity lasted, on average, 5 minutes before returning 

to a rate similar to that prior to insulin stimulation. The number of stationary 

GSVs over the time course of insulin stimulation was found to increase gradually 

at a consistent rate over the analysed 15 minutes. Prior to insulin stimulation it 

can be seen that larger quantities of membrane localised GLUT4 signal is 

confined to GSV spot regions. Through insulin stimulation the signal becomes 

more homogenous over the area of the membrane. This is consistent with the 
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theory that insulin not only recruits GLUT4 to the membrane, but also controls 

its dispersal and spatial distribution [93].  

 

 

Figure 44: Counts of mobile and stationary vesicles for adipocytes stimulated by 100 nM 

insulin. N – 3 cells where 10 individual ROI of 100 µm2 were analysed. Error bars correspond 

to standard deviation for 30 measured ROIs. Images recorded at a frame rate of 2Hz for 15 

minutes where time point 0 corresponds to point of insulin addition.  

 

 

In 2010 Stenkula et al. [93] devised a kinetic model detailing the rate of GSV 

fusion with the plasma membrane in Adipocytes using TIRFM. They found a very 

distinct region of activity between 1-5 minutes post insulin stimulation where 

there was a 60-fold increase in the rate of vesicle fusion to the plasma 

membrane. The observed increase in dynamic GSVs, over a similar time frame, 

in this study would suggest vesicle activity in line with the previously presented 

kinetic model. The gradual increase in stationary GSVs would be expected as the 

vesicles continue to tether and fuse to the membrane upon stimulation.  
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3.4.6.  Mobile vs. stationary GSV analysis in HeLa Cells 

 

Figure 45: Counts of mobile and stationary vesicles for HeLa cells stimulated by 100 nM 

insulin. N – 3 cells where 10 individual ROI of 100 µm2 were analysed. Error bars correspond 

to standard deviation for 30 measured ROIs. Images recorded at a frame rate of 2Hz for 15 

minutes where time point 0 corresponds to point of insulin addition. 

 

Under insulin stimulated conditions the quantity of mobile GSVs in HeLa cells 

underwent a similar increase to the imaged adipocytes as seen in Figure 45. The 

duration of this increased activity was observed to last 8 minutes after insulin 

stimulation. After the increase in activity the number of mobile GSVs returned to 

a density of roughly 2 per 100 µm2. The increase in vesicle activity is over a very 

similar time frame to that observed in the adipocyte cell line. The slightly 

lengthy duration, and slightly lower final density, could be responsible for the 

extended 𝝉𝟏 𝟐⁄  noted in Table 2.   The density of GSVs immobilised at the 

membrane surface underwent a constant reduction from an, initially, high 

volume of 15 per 100 µm2. This was in stark contrast to the measured increase in 

static GSV density observed in the adipocyte cells. The reduction in GSVs 

tethered at the plasma membrane, in HeLa cells, could be the reason for the 

lower fold increase in measured fluorescence intensity presented in Figure 41.    
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3.5. Conclusions 

An experimental system was devised to analyse the translocation of GFP tagged 

GLUT4 molecules using TIRFM. Investigating the measured increase in membrane 

associated fluorescence intensity revealed that upon stimulation with 100 nM 

insulin, the measured fluorescence intensity increase in adipocytes was 

consistent with previously reported values. In addition, using a series of image 

analysis techniques, identification and analysis of GSVs was performed. It was 

found that in adipocytes a significant rise in mobile GSVs was observed 

immediately upon insulin stimulation. This was in accordance with the previously 

proposed kinetic model of GSV recruitment presented in [93]. This provided the 

basis of data to which a novel HeLa cell model expressing GLUT4-GFP could be 

compared. It was found that, while a degree of insulin responsiveness was 

present, the final increase in membrane GLUT4-GFP signal was significantly 

lower than that for the adipocytes. In addition, the time taken for the measured 

membrane GLUT4-GFP intensity to increase to the final value was significantly 

longer in the HeLa cells compared with the adipocytes. Upon inspection of the 

GSV dynamics for the HeLa cell model it was observed that the mobile fraction 

of GSVs appeared to follow a similar trend to the adipocytes. However, the 

fraction of stationary GSVs at the membrane surface underwent a reduction over 

the course of the image accumulation as opposed to the observed increase in the 

adipocytes. The results presented here suggest that under insulin stimulated 

conditions there is a similar recruitment of GLUT4 molecules to the membrane 

surface but over a longer time period. This indicates that the HeLa model does 

respond to the insulin stimulation in terms of GLUT4 membrane localisation. 

Also, the recruitment of GSVs to the membrane under stimulated conditions 

increases, however, the fraction stationary at the membrane over the 

experimental time frame decreases. This may imply differences between the 

two cell models in terms of the post-fusion dispersal of GLUT4 to the membrane 

and the related machinery involved in the endocytotic process. The implications 

of these results is a robust cellular model with similar insulin sensitivity but 

differences in the fusion processes involving GSVs. Further investigation is 

required to determine the exact kinetics of vesicle fusion to the plasma 
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membrane. However, these results present a promising homologous system that 

may be used for higher throughput experimentation when investigating factors 

affecting the insulin mediated metabolism of glucose.  
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4. Chapter 4: FCS-FLIM study of viscosity 

measurements with molecular rotors 

4.1. Introduction 

4.1.1.  Membrane Fluidity 

The cellular plasma membrane is a complex fluid-like environment principally 

constructed from various phospholipids, proteins and cholesterol [12]. It is 

increasingly understood that the physical properties of the plasma membrane 

are involved in a series of important cellular functions such as endocytosis, 

exocytosis and cell signalling. One of the key physical parameters of the 

membrane is its fluidity which represents the reciprocal of the viscosity of this 

2D-fluid bilayer [118], [119]. The fluidity of a membrane determines the ease at 

which key molecules are able to travel within the plane of the phospholipid 

bilayer. Alterations to this intrinsic property have been linked to a number of 

diseases [120] such as: Alzheimer’s disease [121], [122], stroke [123], 

cardiovascular disease [124], cancer [125–128], atherosclerosis [129] and many 

more. As well as indicating the pathogenesis of a variety of diseases, 

determining the fluidity of the plasma membrane can show the efficacy of 

particular treatments and therapeutics [130–132].  

 

4.1.2.  Measurement Methods 

Various methods for determining the membrane fluidity exist, which determine 

this intrinsic property by either probing the rotational or lateral mobility of a 

tracer molecule. Commonly employed is the method of deuterium Nuclear 

Magnetic Resonance (NMR) spectroscopy were deuterated lipids are incorporated 

into a membrane [133], [134].  Specifically, with 2H-NMR the residual 

quadrupolar couplings are related to the segmented order parameters of the 

flexible phospholipid molecules in a liquid-crystalline membrane system [135]. 

The measured order parameters coupled with the nuclear spin relaxation rates 

provides information on the molecular mobility of the deuterated lipids. While 

NMR is beneficial in that it can provide both structural and dynamic information 
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simultaneously, non-invasively and with atomic precision it lacks any degree of 

spatial resolution which is of great value in the heterogeneous and dynamic 

membrane environment. Similar to NMR, Electron Spin Resonance (ESR) 

spectroscopy, has been historically applied to the investigations of biological 

membranes [136]. ESR utilises stable nitroxyl radicals as probe molecules (spin 

probes) to investigate the dynamic nature of the bilayer by determining the 

rotational correlation time of the probes [136]. ESR offers a high resolution 

method for determining quantifiable micro-viscosity values in biological 

membranes which is of great use in the studies of vesicles for drug delivery [137] 

and various other applications [138]. For the case of investigating the 

heterogeneous nature of biological membranes ESR suffers, as NMR does, in the 

fact that it is a spectroscopic method offering no insight into lateral differences 

in membrane viscosity values. These techniques also suffer due to the high level 

of expertise, expensive and complex equipment necessary, along with a reduced 

applicability to studying living cells and tissues.  

 

Fluorescence based methods offer a diverse set of tools through the 

incorporation of a dynamic array of suitable probes spanning a variety of 

wavelengths [57]. Fluorescence Recovery After Photobleaching (FRAP) has 

frequently been used to determine the lateral diffusion coefficients of 

fluorescent lipids or tracer probes in biological membranes [121]. For FRAP a 

membrane is fluorescently labelled where a small region, of known dimensions, 

is photobleached using a source of powerful excitation light. The bleached area 

is then imaged, using significantly reduced excitation light, over a period of time 

as the fluorescence signal recovers due to lateral diffusion of the lipid 

molecules. From the rate of the increasing signal, the diffusion coefficient of the 

fluorescent lipid or probe in the membrane can be determined and related to 

the lateral mobility within the bilayer region. FRAP is an ideal technique for the 

analysis of larger membrane associated proteins and molecules as it can provide 

information on immobile fractions of molecules and there is no lower limit on 

the diffusion coefficients that can be probed [139–141]. Whilst FRAP is 

instrumentally and theoretically simpler to NMR and ESR, it remains unable to 

resolve localised differences in viscosity and, at times, requires lengthy 

acquisition. Another powerful fluorescence based method for determining 

diffusion coefficients can be found in Fluorescence Correlation Spectroscopy 
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(FCS). Like FRAP, FCS determines the lateral mobility of fluorescent molecules 

within the bilayer however, only a diffraction limited spot defined by a confocal 

microscope is analysed. As discussed earlier in this thesis, FCS time correlates 

fluctuations in fluorescence intensity within the defined confocal volume to 

provide information on molecular dynamics. Positioning the observed area to the 

plane of the bilayer enables direct measurement of the diffusion coefficient of a 

low concentration of fluorescent tracer molecules [142]. FCS operates with a 

spatial resolution of roughly 500 nm, although methods are available that go 

beyond this limit [143], and over a temporal resolution ranging from 10’s of ns to 

10’s of seconds. The result is a technique highly suited to determining the 

viscosity of fluorescent membranes as has been demonstrated numerous times 

[64], [144–147].  

 

4.1.3.  Molecular Rotors 

Molecular rotors have emerged in recent years as promising tools in constructing 

images based on local microviscosity values [148]. Molecular rotors are a class of 

fluorescent molecules with viscosity dependent photophysical parameters, 

specifically their quantum yield and fluorescence lifetime [27]. This sensitivity 

to viscosity arises due to internal molecular rotation resulting in quenching of 

fluorescence. Rotation of sections of the molecules related to fluorescence 

emission is one of the key pathways of non-radiative decay for certain 

fluorescent molecules. Upon excitation, double bonds associated with 

fluorescence decrease in bond order resulting in an equivalent single bond with 

rotational ability. In an unrestricted system, such as an isotropic solution, the 

rate of rotation can be denoted via the Stokes-Einstein Debye relationship.  

 

 𝑘𝑟𝑜𝑡 =
1

𝜃𝑟
=

𝑘𝐵𝑇

4𝜋𝑟3𝜂
 

 

(4.1) 

 

 

Where 𝑘𝑟𝑜𝑡is the rate of rotation, 𝜃𝑟is the rotational correlation time, 𝑇 is the 

temperature, 𝑟 is the radius of the molecule in metres, and 𝜂 is the solvent 

viscosity in 𝑁 𝑠 𝑚2⁄ . Outlined in chapter 1 the fluorescence lifetime is related to 
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the rates of radiative and non-radiative rate constants. For the particular class 

of rotors with Twisted Intramolecular Charge Transfer (TICT) excited states the 

dominant source of non-radiative decay arises from the rotational ability of the 

molecules. Assuming 𝑘𝑛𝑟 = 𝑘𝑟𝑜𝑡 equation can be re-written by incorporating 

equation (1.1) resulting in the following. 

 

  

 
𝜏 =

1

𝑘𝑟 +
𝑘𝐵𝑇
4𝜋𝑟3𝜂

 

 

(4.2) 

 

 

In the above relationship 𝜏 is the fluorescence lifetime and 𝑘𝑟 relates to the 

radiative decay rate constant. The non-radiative decay rate constant, 𝑘𝑛𝑟, has 

been replaced with equation (4.1) relating the lifetime to values of 

temperature, hydrodynamic radius and viscosity. A more practical relationship 

between viscosity and fluorescence lifetime is realised through the Förster-

Hoffman model given below [27], [149].  

 

 𝜏 = 𝐶𝑚 × 𝜂
𝛾 

 

(4.3) 

 

 

Where 𝐶𝑚 is the concentration-temperature dependent parameter and 𝛾 is the 

dye dependent molecular parameter which is calculated from the slope of a log 

vs log plot of viscosity vs. lifetime. These values are determined empirically by 

measuring the lifetime of the rotor in solutions of varying viscosities such as 

methanol-glycerol mixtures of increasing glycerol content. There are a variety of 

molecules which express such viscosity dependent lifetime changes such as 

retinol  palmitate [150], Hoechst 33258 [151], DCVJ[152] and di-4-ANEPPDHQ 

[153]. A similar molecule which has attracted a great deal of interest is the 

meso-substituted boron-dipyrrin (BODIPY) dye which exhibits strong 

dependencies on viscosity with sharp changes in its fluorescence quantum yield 

and lifetime [59]. Utilising the viscosity dependent fluorescence lifetime of 

these molecules with the capabilities of Fluorescent Lifetime Imaging Microscopy 
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(FLIM) offers the ability to map membrane microviscosity values with high 

degrees of spatial resolution as previously demonstrated [58], [59], [148].   

 

Questions still remain, however, as to its effectiveness as a probe of quantifiable 

viscosity when incorporated into more complex environments such as sub-

cellular locations and, in the context of this thesis, biological membranes. 

 

4.1.4.  Giant Unilamellar Vesicles and Supported Lipid 

Bilayers 

Due to the complexities of naturally occurring plasma membranes, simplified 

lipid systems are traditionally used to investigate the physical nature of 

membranes. Bilayers in the form of liposomes and surface supported lipid 

bilayers provide controlled systems for investigation. Using methods such as 

electroformation, gentle hydration, lipid extrusion and microfluidics, unilamellar 

and multi-lamellar vesicles of various sizes can be manufactured. Numerous 

types of phospholipids and cholesterols are commercially available, which can 

provide environments of various physical states depending on the ratios of the 

components use. Phospholipids are amphipathic molecules and, as such, self-

assemble into a variety of structures under certain conditions depending on the 

solvents and buffers used.  A typical lipid molecule can be seen in Figure 46. 
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Figure 46: Typical phospholipid molecule made of two core sections the polar (hydrophilic) 

head region (a) and the hydrophobic non-polar tail region (b). The head region consists of a 

phosphate group (c) and glycerol backbone (d). (e) depicts a simplified phospholipid 

molecule which represents a saturate lipid molecule. (f) Depicts a resultant lipid bilayer 

consisting of self-assembled phospholipid molecules with a hydrophobic core. 

 

Phospholipids consist of two key sections, the polar head group and the non-

polar tail region. The head group contains choline, phosphate and the glycerol 

backbone of the molecule and is hydrophilic in nature. The tail region consists of 

hydrocarbon chains, varying in length depending on the lipid, and forms the 

hydrophobic core of the lipid bilayer. Depending on the degree of saturation in 

the hydrocarbon tail region, phospholipids can form bilayers of varying 

viscosities. DOPC contains a double bond in each of the tails resulting in an 

unsaturated lipid which forms a fluid phase bilayer with a very low viscosity. 

Saturated lipids, such as DPPC, contain completely single bond oriented tail 

regions and take on the form of a rigid (Gel phase) bilayer at room temperature. 

Phospholipids have an intrinsic phase transition temperature, 𝑇𝑚, where the 

phase of the formed bilayer transitions from a rigid gel phase to the dynamic 

fluid phase. For DPPC this temperature is 41oC and for DOPC it is -17oC, 

providing two very useful systems for investigations at room temperature. 
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In more complex systems containing more 2 or more phospholipids or one 

phospholipid plus various concentrations of cholesterol, phase coexistence may 

occur in the form of liquid ordered (Lo) and liquid disordered (Ld) phases. This 

has excited interest into the study of lipid domains which are suggested to 

influence a diverse range of cellular processes. In artificial systems these are of 

the order on microns as opposed to the hypothesised nano-domains found within 

the plasma membranes of living cells. Fluorescent probes that show distinct 

variations in their photophysical responses as a result of incorporation into 

different lipid domains are of great importance [57].   

 

Giant Unilamellar Vesicles offer an analogous system on the order of the size of 

an individual cell, i.e 10’s to 100’s of microns. 

 

4.1.5.  Combined FCS-FLIM study of molecular rotors 

Due to the questions that remain over the efficacy of molecular rotors, and in 

particular the meso-substituted BODIPY rotor, in providing quantifiable viscosity 

values, a combined FCS-FLIM system has been utilised. By combining the ability 

of FCS to probe lateral lipid diffusion and FLIM to image micro-viscosities, a 

study has been devised to compare viscosities measured by both methods. Such 

a study has never been performed for these particular molecules and offers a 

comparison of measurements of bulk bilayer viscosity measured by FCS to the 

apparent micro-viscosities of FLIM.  

 

4.2. Materials and Methods 

4.2.1.  Phospholipids 

All lipids used for experimentation were from stock samples purchased from 

either Avanti Polar Lipids or Sigma Aldrich. 1,2-Dioleoyl-sn-glycero-3-

phosphocholine (DOPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol were all 

purchased either dissolved in chloroform at a concentration of 25 mg/ml or as 

lyophilised powders and subsequently dissolved in chloroform at 50 mg/ml. All 
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chloroform solutions were stored in cleaned glassware with a special Teflon 

covered screw top as to avoid contaminants.  

 

4.2.2.  BODIPY based molecular rotors 

The molecular rotors used were a kind gift from Dr Marina Kuimova, Dr Nicholas 

J. Brooks and Mr Michael Dent, all of Imperial College London. The molecules 

were synthesised as outlined in previous work by Dr Kuimova and Dr Brooks’ 

group [58], [154]. Three variants of the meso-substituted BODIPY molecule were 

investigated containing three different tail molecules. 

 

 

Figure 47: Meso-substituted BODIPY rotor with three different tail molecules. (1) – BODIPY 

C10 (2) – BODIPY ++ and (3) – BODIPY Cholesterol 

 

 

 

4.2.3.  LUV production 

Large Unilamellar Vesicles (LUVs) were made through the extrusion method 

outlined in [155]. Firstly, a solution of DOPC and BODIPY C10 in chloroform at a 

concentration of 10 mg/ml was dried under N2 in a glass vial to provide a lipid 

cake on the vial surface. Following this 1 ml of 100 mM sucrose buffer was added 

and vortexed for 2 minutes. The resultant solution containing vesicles and 

micelles was freeze-thawed using liquid nitrogen and a heated water bath, set 

to 37oC, 10 times. This provided a solution containing single lipid bilayer vesicles 

over a range of sizes. To ensure a mono-dispersed range of vesicles, roughly 100 
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nm in size, the solution was extruded through a polycarbonate porous membrane 

5 times and then decanted to an Eppendorf tube.  

 

4.2.4.  GUV Electroformation 

Electroformation was utilised for the creation of GUVs using a modified 

procedure to that originally outlined by Angelova et al. [156]. Using a spin 

coating system [157] for uniform lipid coating of indium tin oxide (ITO) 

electrodes the procedure used is as follows. Clean Indium Tin Oxide (ITO) slides 

for electro formation were prepared by attaching one wire using conductive 

silver paint to provide electrical contact. These were then rinsed with methanol 

and dried using compressed nitrogen to remove any dust. For every lipid mix 

used the solution was made up to a total concentration of 3.75 mg/ml which was 

optimal for uniform lipid coating. The lipids were initially diluted at a 

concentration of 25 mg/ml in a solution of chloroform. The mixture was made up 

to a 1 ml solution using 95% chloroform to 5% Acetonitrile. At this stage, 

solutions were stored in the freezer for a few days before spinning. The ITO 

slides were prepared for lipid coating with a short rinsing of methanol and dried 

using N2. A 250 µl volume of the lipid mixture was then pipetted to the ITO slides 

to provide ample coverage for spinning. This was preferably achieved without 

introducing any bubbles to the surface. The slides were then spun for 30 seconds 

at a speed of 400 rpm. These were then dried down under vacuum in a 

desiccator for at least 2 hours to remove any residual solvent present within the 

lipid layers.  

 

To control values of pH and osmotic concentration and to provide a density 

gradient between the inner and outer GUV regions two buffers were used. An 

internal buffer consisting of 100 mM sucrose was used and an external buffer of 

90 mM Glucose and 10 mM HEPES was added to provide a sugar density gradient. 

The differences in density ensured that the vesicles settled to the coverslip 

surface for investigation by optical microscopy. The ITO slides, now coated with 

lipid sheets, were used as the base to form a sealed chamber for 

electroformation. A rubber gasket was sealed to the coated ITO slide using 

vacuum grease and then 300 µl of sucrose buffer solution was added to the 

chamber. Following this a final piece of ITO, uncoated, was sealed to the top of 
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the chamber. For both single and multi-phase GUV electroformation the two ITO 

electrodes are connected to the output terminal of a signal generator running at 

10 Hz and 100 mVpp (peak to peak). The voltage is then ramped to 1.5 Vpp over 

varying time frames depending on the required size of the GUVs needed for 

investigation. For the sake of all experiments GUVs of sizes 10 – 100 µm was 

deemed to be sufficient and required the following ramping procedure. Table 3 

outlines the electroformation parameters used for different lipid compositions. 

Signal 

 

DOPC 

 

POPC 

 

DPPC 

 

DOPC:DPPC:Cholesterol 

f  V T f  V T f  V T f  V T 

Sine 10 0.1 10 10 0.1 10 10 0.1 10 10 0.1 10 

Sine 10 0.5 20 10 0.5 20 10 0.5 20 10 0.5 20 

Sine 10 1 30 10 1 30 10 1 30 10 1 30 

Sine 10 1.6 60 10 1.6 60 10 1.6 60 10 1.6 60 

Square 3 2 60 3 2 60 3 2 15 3 2 60 

 

Table 3: Electroformation parameters f – Frequency (Hz), V – voltage (Vpp) T – time 

(Minutes) Sine wave signal used for growth phase and square wave signal used for detach 

pulse to remove vesicles from ITO surface 

 

Due to the use of transparent ITO the vesicles could be observed as 

electroformation took place which enabled analysis of the size and yield of 

vesicles. If the yield is deemed sufficient then the chamber can be set for 

detachment through application of a square wave signal at a lower frequency. 

To detach the vesicles from the surface the system is set to 2 Vpp at a frequency 

of 3 Hz for 1 hour. For pure DPPC vesicles and ternary phase vesicles a cooling 

procedure was implemented at a rate of 1 oC/minute at the end of 

electroformation.   

 

Once detached the GUVs are then decanted into the glucose buffer at a ratio of 

300 µl of sucrose to 1 ml of glucose. This gave adequate distribution of GUVs 

over the surface of a coverslip to investigate single GUVs without interaction 

with other vesicles.  
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For investigation of GUVs using FCS the vesicle solution was gently transferred to 

a coverslip which had been treated with a 10 % solution of poly-l-lysine in PBS 

for 1 hour at 37oC. This was to ensure that the GUVs remain as spherical 

structures for the duration of experimentation. This coverslip was then sealed to 

a dished microscope slide to ensure no evaporation of the buffer and to remove 

any movement resulting from convection.  

 

In the case of supported lipid bilayer structures investigated using FLIM; GUVs 

were allowed to burst on the surface of a coverslip over the course of 3-4 hours.   

 

4.2.5. Surface treatments 

For combined FCS-FLIM analysis of the BODIPY rotors in GUVs it was imperative 

that the vesicles remain stationary at the coverslip surface for the duration of 

the measurements. This was achieved through a surface treatment of 0.01% 

Poly-l-lysine in water, previously demonstrated to hold liposomes at the 

coverslip surface [158]. Coverslips were sonicated in methanol then acetone for 

10 minutes followed by drying under N2. PLL treatment was applied for 30 

minutes at 37oC followed by 5 minutes rinsing in water. Vesicle adhesion was 

investigated through timelapse confocal imaging of DOPC vesicles containing 

0.05 mol % of BODIPY C10.  

 

4.2.6.  FCS-FLIM System 

To perform simultaneous FCS and lifetime measurements a Becker and Hickl 

DCS-120 confocal scanning system was used. Combined measurements were 

performed using the 473 nm picosecond diode laser line in beam parked mode 

with the laser set to pulsed mode at frequencies of 20 MHz and 50MHz. Using the 

laser in this configuration allowed for simultaneous FCS and lifetime 

measurements. Single photon detection was provided through the use of the 

hybrid photo-multiplier tube (PMT) HPM-100-40 detection unit. An excitation 

filter, 480 nm, and emission filter, 535 nm, were placed in front of the confocal 

pinhole to enable detection of the resultant BODIPY fluorescence. The pinhole 

was set to 0.25 mm equivalent to 0.5 Airy units to provide the smallest possible 
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confocal volume suitable for FCS. A Zeiss 1.2 Na 40x C-Apochromat objective 

lens was used to determine a tightly confined focal region.  

 

4.2.7.  Afterpulsing effects 

For FCS measurements of small molecules in a lipid bilayer a high degree of 

signal to noise ratio is required due to the low fluorescent count rate per 

molecule. There are various sources of noise in an optical FCS system with one 

of the main contributors being afterpulsing originating in the single photon 

detectors. Afterpulsing occurs when a real detected photon is followed, almost 

immediately, by a false recorded photon event [159]. In terms of the ACF this 

manifests itself as a sharp peak for short correlation times, < 1 µs. A common 

solution to this issue is to split the signal between two different single photon 

detectors and cross-correlate the individually measured auto-correlation 

functions [160]. Since the afterpulses found in one detector will not match those 

in the second detector no distortion to the measured auto-correlation function is 

seen. Recently, a solution for a single detector system free of afterpulsing has 

been realised through the use of hybrid PMTs. This is demonstrated in Figure 48 

where G(τ) was recorded for a dilute solution of 100 nm fluorescent 

microspheres diffusing in a water solution using two detectors: the H7442P-50 

PMT and a hybrid HPM-100-40 PMT. 

 



115 
 

 

Figure 48: Auto-correlation functions relating to 100 nm fluorescent microspheres diffusing 

in a solution of water recorded by two detectors: H7442P-50 PMT and a hybrid HPM-100-40 

PMT. (a) G(τ) measure with the H7442P-50 detector with large correlation at short times due 

to afterpulsing. (b) region of signal corresponding to diffusing microspheres. (c) G(τ) 

recorded using the hybrid PMT detector shows correlation down to sub microsecond times 

free of afterpulsing.  

 

Figure 48 (a) and (b) demonstrate that with the H7422P-50 detector afterpulsing 

dominates the signal for short correlation times. Figure 48 (c) shows clear 

correlation to sub microsecond correlation times for the hybrid PMT detector 

demonstrating a single detector system free of afterpulsing effects.  

 

4.2.8.  Optical Alignment 

Due to the single molecule sensitivity of FCS a perfectly aligned optical system 

was necessary; of particular importance is the alignment of the detected 

fluorescence relative to the pinhole. Misalignments in the optical path create 

distortions to the detected confocal region creating errors in the measured auto-

correlation function. An improperly aligned system can even lead to no 

measured auto-correlation function and this is demonstrated in Figure 49.  
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Figure 49: Auto-correlation functions measured for a 10 nM solution of FITC diffusing freely 

in water. The top graph corresponds to a measurement taken with the detected region 

moved relative to the confocal pinhole. The lower graph demonstrates that for a properly 

aligned system G(τ) can be measured for a dilute solution of a small diffusing fluorescent 

species. 

 

Figure 49 demonstrates the importance of correct positioning of the detected 

confocal volume with respect to the PMT. Optimal alignment was achieved 

through positioning of the tube lens relative to the optical axis. The lateral 

position was first optimised as determined by the maximum throughput from a 

highly fluorescent sample. The axial position was optimised through use of bright 

field light and a transparent sample containing visible features, a fixed plant 

tissue sample, coupled with a low magnification objective. When an image of 

the sample was seen to be in focus at the pinhole this was taken as the start 

point for alignment. The position was then adjusted to a point where correlation 

of a 10 nM fluorescein in water was observed. There are numerous factors which 

may affect the shape of the observed focal region which can be damaging to 

extracting quantifiable values from the measured auto-correlation function 
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[161]. The thickness of the coverslip, through which a sample is viewed, plays a 

crucial role in proper definition of the confocal volume when using water 

immersion objectives. Using the C-Apochromat 1.2 NA 40x objective this effect 

can be counteracted through correct positioning of the coverslip correction 

collar. The effects of positioning of the coverslip correction collar were 

investigated using solutions of 200 nm fluorescent microspheres diffusing freely 

in water, varying the position of the collar. The coverslip used was measured to 

have a thickness of 140 µm using a micrometre screw gauge. 

 

 

Figure 50: (a) – ACF measured for 200 nm fluorescent microspheres diffusing in water 

solution with objective correction ring positioned to 200 µm correction position. (b) – 

Correction ring positioned to 140 µm correction position corresponding to thickness of 

coverslip used. 

 

Figure 50 demonstrates the effect of improper positioning of the objective lens 

coverslip thickness correction collar. A model for 3D diffusion was fit to the raw 

data measured for 200 nm microspheres diffusing in water. As can be seen from 

the fit and the resultant residuals in Figure 51 when the collar was positioned to 

the 200 µm correction position, a poor fit was observed. Optimising the position 

to correspond to the thickness measured via a micrometre screw gauge resulted 

in a better fit of the model to the data.  
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Figure 51: Residuals for single component fitting functions for ACFs relating to different 

positions on objective collar corrective ring. Position 140 µm corresponds to measured 

thickness of coverslip providing closer approximation to fitted function. 

 

Both the position of the auto-correlation function and the amplitude, 

corresponding to the average number of particles, change dramatically with 

coverslip thickness. A 4-fold change to the number of particles and a, nearly, 2 

fold difference in the diffusion times were observed, shown in Figure 52. As a 

result before each measurement the thickness of the used coverslip was 

measured and corrected for.  
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Figure 52: Average number of particles, N, and measured correlation time both exctracted 

from fitting procedure plotted against position of objective correction collar. Values 

correspond to ACF measured from 200 nm fluorescent microspheres diffusing in solution of 

water.  

 

4.2.9.  FCS Data Analysis 

All recorded FCS decay curves were fit with suitable models outlined earlier in 

chapter 2. For diffusion of molecules constricted to a quasi 2D bilayer a model 

for 2D diffusion was fit to the raw data using the custom fitting functionality of 

Origin 8.  

 

4.2.10. Focal volume positioning 

The mid-point of the focal volume was positioned to the apical region of the 

vesicle determined by the maximum measured photon count. A common source 

of uncertainty in such measurements can be due to incorrect positioning of the 

focal volume with respect to the bilayer since this is achieved manually. The 

effects of miss positioning the focal volume were investigated by measuring the 

diffusion coefficient of the BODIPY C10 rotor in DOPC bilayers at varying z-

positions. This is illustrated in Figure 53 and Figure 54. 
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Figure 53: (a) schematic of focal volume where bilayer is positioned at varying heights with 

respect to central beam radius. At different heights the dimensions of the measured focal 

volume vary resulting in an increase in the number of detected particles. (b) Demonstration 

of miss positioning of focal volume with respect to apical region of GUV.  

 

 

Figure 54: Measured diffusion time, τD, against position of focal volume with respect to 

centre of DOPC lipid bilayer with 0.05 mol% BODIPY C10 diffusing laterally. Diffusion times 

determined by fitting the auto-correlation function to a model for 2D diffusion 

 

It can be seen from Figure 54 that the position of the bilayer with respect to the 

focal volume can greatly affect the measured diffusion time. A tenfold variation 
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in diffusion time can be seen moving less than 1 micron from the central 

position. The parabolic relationship stems from a widening of the apparent beam 

radius as the focal volume moves with respect to the bilayer.  

 

The diffusion times from multiple data sets for a 0.05 mol% concentration of 

BODIPY C10 in a pure DOPC bilayer were collated to determine the variability in 

the measured value. On average a value of 2.1 ms was found with a standard 

deviation of 25% where N = 80 individual FCS correlation curves. The variability 

of 25% was deemed sufficient to consider the method of manually positioning the 

focal volume adequate for all following measurements.  

 

4.2.11.  Focal Volume Calibration – FCS 

In order to determine quantifiable physical parameters using FCS the dimensions 

of the confocal volume are required. Various methods exist to determine the 

lateral and axial radii [79]. For 2D diffusion only knowledge of the lateral radius 

is required and was determined using fluorescent molecules of known diffusion 

coefficients. A 1 nM concentration of FITC in water was measured to provide a 

value of 𝜔0 = 262 𝑛𝑚 ± 10 𝑛𝑚 and was confirmed by measuring 100 nm 

fluorescent microspheres in water. Both measurements were performed at a 

constant temperature of 20oC. This process was repeated before each data set 

was obtained in case of changes to the optical system.  

 

4.2.12. Fluorescence lifetime data analysis 

All fluorescence lifetime data for this chapter was analysed using the dedicated 

software package SPCImage from Becker and Hickl. All fluorescence decay traces 

were fit with either mono or bi-exponential decays with the goodness of fit 

determined by the reduced Chi squared, 𝜒2, test. For all images, 𝜒2 values 

between 0.8 – 1.4 for all pixels was used as an appropriate value for the fitted 

function and for all single point measurements values between 1 – 2 were used 

as a measure of goodness. For lifetime imaging all images were gathered until a 

maximum signal in the peak channel of 100 counts was recorded, and for single 

point measurements a peak signal of 100 – 1000 counts deemed sufficient.  

 



122 
 

4.2.13. IRF Recording - FLIM 

The instrument response function (IRF) for a FLIM system accounts for any 

contributions to the decay function from the optical system. To obtain 

appropriate data from the measured fluorescence decay an IRF should be de-

convoluted from each curve to account for any aberrations introduced by the 

optical system.  Artificial IRFs can be used, however, these would not account 

for any unique aberrations originating from reflections or misshaping of laser 

pulses in the experimental system. Artificial IRFs also cannot be used to analyse 

data which may have a shorter lifetime than the provided IRF. Real IRF data was 

acquired through parking the laser beam through the centre of the optical axis 

and removing the selective filters before the detector. To protect the detector 

from damage neutral density (ND) filters were placed before the pinhole to 

reduce the optical density. All parameters relating to the ADC, TAC, CFD of the 

lifetime system and the optical components used, were held consistent for the 

IRF measurements and lifetime measurements. The electronic power slider for 

the laser was also maintained as this can affect the shape of the laser pulse. A 

fluorescent sample was replaced with a non-fluorescent scattering, e.g. Glass, 

silica, Ludox etc. and the resultant signal was recorded for one second with a 

maximum signal in the peak channel of 50,000 counts.  

 

 

Figure 55: IRF recorded for 473 nm laser at a repetition rate of 20 MHz with a HPM-100-40 

detector with an ADC resolution of 1024. 1st peak corresponds to initial laser pulse 

recorded from a glass scatterer sample and 2nd related to optical reflection.  
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Figure 55 demonstrates an example IRF recorded using the 473 nm laser line at a 

repetition rate of 20 MHz using glass as a scattering agent. Notably it can be 

seen that 10 ns following the original laser pulse exists a secondary pulse 2 

orders of magnitude lower in intensity. The most likely source of this pulse is 

due to reflections within the optical path of the system. This could be mitigated 

by determining the optical surfaces responsible for this reflection and slightly 

tilting one of them. However, it was decided that this was not necessary due to 

the ability of the SPCImage analysis software to deconvolute the systems IRF 

from the measured decay. Also, any minor adjustment to the properly aligned 

optical system was seen to impact negatively upon the ability to perform 

sensitive FCS measurements. 

 

To determine the impact of the secondary pulse on measured fluorescence 

decay curves, fluorescent calibration solutions of known lifetime were used 

[162]. FITC is known to have a fluorescent lifetime of 4.1 ns in a water solution 

with a pH of 7.4 and at room temperature. Rhodamine was also used as it 

possesses a lifetime value of 1.74 ns at room temperature. Both fluorophores 

hold fluorescence decays which are mono-exponential  

 

The resultant lifetimes found for FITC in water were 4.05 ± 0.01 ns with a mono-

exponential fit providing a 𝜒2 value of 1.1 ± 0.1. At the slightly longer lifetime 

value for FITC it could be visibly seen that the secondary pulse had minimal 

effect due to the high fluorescence signal at the corresponding time point. When 

analysing the decay profile for the Rhodamine B solution at room temperature it 

could clearly be seen that using the artificially generated IRF provided a poor fit 

to the data as indicated by the high 𝜒2 value of 6.89 with a corresponding 

lifetime value of 1.98 ns. The measured lifetime is greater than that expected 

for Rhodamine B and the exaggeration arises due to the artefact produced by 

the secondary pulse. When fitting using the measured IRF the results were 

significantly improved with a simple mono-exponential decay fit providing a 

lifetime value of 1.72 ± 0.02 ns with a 𝜒2 of 1.3 ±0.1. This can be seen in Figure 

56.   
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Figure 56: Fluorescence decay curves for Rhodamine B solutions in water at a temperature 

of 20oC analysed with both an artificially generated IRF and a measured IRF.  

 

4.3. Results and Discussion 

4.3.1.  Molecular Rotor Calibration 

Obtaining quantifiable information on micro-viscosity from molecular rotors is 

possible through calibration of the rotor in solutions of methanol and glycerol at 

varying concentrations of glycerol. The rotor BODIPY C10 was first dissolved in 

methanol at a concentration of 2.5 µM before adding glycerol. Concentrations 

from 50 % to 95 % w/w glycerol where measured at temperatures from 10oC to 

60oC to determine the calibration curve. Temperature was controlled via a 

peltier heater coupled to a thermocouple controlled by a PID board to maintain 

constant temperature. 
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Figure 57: Normalised fluorescence decay curves for BODIPY C10 in methanol-glycerol 

mixtures with increasing glycerol concentrations.  

 

As the concentration of glycerol increases the fluorescence lifetime of the rotor 

increases in accordance with the theory presented earlier. Importantly, decay 

curves for each solution were best fit with a mono-exponential function 

indicating only one population of the rotor in solution, as would be expected for 

an isotropic environment. Varying the temperature for each solution determined 

the calibration curve in Figure 58.  
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Figure 58: Calibration curve for BODIPY C10 rotor in methanolglycerol solutions over 

temperature range of 283 K – 333 K. Inset – Log-Log plot of lifetime over linear range of 

viscosities from 10 cP to 1000 cP with a gradient of 0.48.  

 

The calibration plot shown in Figure 58 shows in linear relationship between the 

logarithm of lifetime vs the logarithm of viscosity over two decades of viscosity 

values. This is consistent with previously reported calibrations of similar rotors 

over the same viscosity range [58], [154]. Using this calibration plot the viscosity 

dependent constants, 𝐶𝑚 and 𝛾, relating to the Förster-Hoffman relationship 

were obtained by fitting a linear function to the plot of Ln lifetime vs Ln 

viscosity. The measured values of 𝐶𝑚 = 5 and 𝛾 = 0.5, which are consistent with 

previously reported values [163]. The calibration plots for all three rotors 

overlap well within the viscosity ranges measured [164]. 

 

 ln(𝜏) = 𝐶𝑚 + 𝛾ln (𝜂) 

 

(4.4) 
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4.3.2.  Diffusion measurements of BODIPY rotors in DOPC 

GUVs using FCS 

The lateral diffusion coefficient for all three rotors was measured by FCS in a 

single component GUV system consisting of pure DOPC providing a fluid phase 

bilayer. Figure 59 shows an example data set taken of the BODIPY C10 rotor 

diffusing in a pure DOPC bilayer.  

 

 

Figure 59: Measured autocorrelation functions for 0.05 mol% BODIPY C10 rotor diffusing in 

a pure DOPC bilayer at increasing temperatures. Raw data representative of individual 

GUVs of similar size, 10 – 20 µm. Data was accumulated for 10 x 10 s and averaged together 

for each temperature. Temperature was maintained using a thermoelectric peltier heater 

coupled to a thermocouple controlled by a PID control unit.  

 

 

It can clearly be seen that as the temperature is increased the diffusion time 

reduces indicated an increase in the lateral diffusion coefficient for the rotor in 

the bilayer. The measured diffusion coefficients for all three rotors in a pure 

DOPC bilayer can be seen in Table 4.  
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Temperature (K) 
BODIPY C10  

(µm2/s) 

BODIPY ++   

(µm2/s) 

BODIPY Cholesterol  

(µm2/s) 

293 10.522 ± 0.283 8.749 ± 0.471 7.253 ± 0.626 

313 18.056 ± 2.311 12.317 ± 2.474 14.181 ± 1.334 

333 22.654 ± 3.588 19.905 ± 4.093 21.178 ± 2.693 

Table 4: Diffusion coefficients measured by FCS for three BODIPY rotors in pure DOPC 

GUVs. Number of measurements for each value N = 50.   Error is equivalent to the SD 

between vesicles.  

 

DOPC (Tm = 253 K) remains in the fluid phase over the experimental 

temperature regime. The diffusion coefficients for all three rotors increased by 

at least a factor of 2 between 293 and 333 K. For each value 10 individual 

measurements were performed on 5 different vesicles adhered to the coverslip 

surface. The sizes of the vesicles varied slightly but were all found to be 

between 10 to 50 microns which was deemed large enough to negate any 

curvature effects on lipid diffusion. The standard deviation for the measured 

diffusion coefficients increased from roughly 5 % on average to 18 % between the 

temperatures of 293 K and 333 K. This was most likely due to an increase in 

vesicle undulations at higher temperatures from the increase in the thermal 

energy. Undulations may move the bilayer relative to the focal volume causing 

variations in the measured diffusion time. 

 

The diffusion coefficients measured by FCS were then compared to values 

obtained elsewhere by means of molecular dynamics simulations [164].  
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Figure 60: Comparison of D measured by FCS and Molecular Dynamic Simulations (MDS) 

for all three BODIPY rotors in bilayers of pure DOPC. Error bars represent the standard 

deviation between 5 individual GUVs each measured ten times.  

 

Figure 60 displays the direct comparison for D measured by FCS and MDS 

displaying a good agreement between the measured data and simulated data for 

all three rotors. The measured values are typically within 1 µm2s-1 of the 

simulated values with a particularly good agreement at lower temperatures, T = 

293 K. This provides a strong argument that the values for D measured by single 

point FCS on a free standing bilayer are reliable.  

 

4.3.3.  The Saffman-Delbrück model 

To provide a comparison between values of viscosity from the measured 

fluorescence lifetime of the molecular rotors to the diffusion coefficients from 

FCS the Saffman-Delbrück model was used. The model was originally outlined in 

[165] where the Brownian motion of molecules embedded in a viscous membrane 

environment was linked to the surrounding fluid medium. Originally developed 
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to describe protein mobility in membranes, the model relates the viscosity of 

the membrane to its height, and the viscosity of the surrounding bulk fluid.  A 

simplified depiction of a molecule, which could be a protein or lipid, diffusing 

laterally within a membrane can be seen in Figure 61. 

 

 

Figure 61: Schematic of a simplified lipid bilayer, viscosity 𝜼𝒎 and a height 𝒉, with a laterally 

diffusing molecule of radius, 𝒂, surrounded by a bulk fluid with viscosity, 𝜼𝒇.  

 

 𝐷𝑠𝑑 =
𝑘𝐵𝑇

4𝜋𝜂𝑚ℎ
[𝑙𝑛 (

2𝐿𝑠𝑑
𝑎⁄ ) − 𝛾] 

 

(4.5) 

 

 𝐿𝑠𝑑 =
ℎ𝜂𝑚
2𝜂𝑓

 

 

(4.6) 

 

 

Equation (4.5) presents the Saffman-Delbrück model in terms of the membranes 

viscosity, 𝜂𝑚, the membrane’s height, ℎ, the viscosity of the surrounding fluid, 

𝜂𝑓, and the radius of the diffusing molecule, 𝑎. 𝛾 is the Euler-Mascheroni 
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constant.   𝐿𝑠𝑑 is the characteristic Saffman-Delbrück length with typical values 

ranging between 0.1 – 1 µm. the model holds true under the conditions where 

𝑎 ≪ 𝐿𝑠𝑑 which is appropriate for molecules such as proteins and lipids, however, 

for large lipid domains an extension of the Saffman-Delbrück model is required 

[166].  

 

4.3.4.  Determining membrane height 

For accurate conversion of membrane viscosity to diffusion coefficient, 

knowledge of the height of the membrane was required. This was determined 

using Atomic Force Microscopy (AFM) spectroscopy which has been shown to be 

able to measure the height of lipid bilayers on a surface [167]. Fluorescent GUVs 

were burst onto a coverslip to provide identifiable single bilayers on the glass 

surface. These were located through widefield fluorescence microscopy before 

being measured by AFM.  The general principle of measuring the thickness of a 

bilayer through atomic force spectroscopy is outlined in Figure 62. 

 

 

Figure 62: (a) – Example force curve as measured through AFM spectroscopy. (1) – point of 

contact with top of lipid membrane that is deposited on to a glass surface. (2) point of 

contact with substrate. (3) the difference in nm between the top and bottom regions of the 

membrane. (b) – distribution of values for the height of a DOPC membrane containing 

BODIPY C10. N = 21. Error represents SD.  

 

AFM spectroscopy measures the nN forces experienced by a cantilever tip as it 

comes into contact with a sample, in this case a DOPC lipid bilayer on a glass 
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substrate. DOPC GUVs were allowed to burst on to a glass surface to form 

individual bilayers. At the point of contact with the bilayer a sharp rise in force 

was experienced as the tip was pushed through the membrane. After a short 

distance a second significant rise in force resulting from contact with the 

substrate below, was observed. The resultant distance is equivalent to the 

height of the lipid bilayer. For the fluid phase single component DOPC bilayer an 

average height of 5.6 ± 0.9 nm was measured. This is in accordance with 

previously reported values [168], [169]. The narrow distribution of measured 

values suggests that the created bilayers are unilamellar where multi-lamellar 

membranes would present themselves as integer value multiples of the 

unilamellar system. To confirm this, confocal microscopy was used to investigate 

the lamellarity of the electroformed vesicles. Positioning the focus to the 

equatorial region of GUVs resting on a glass surface, a thin optical section was 

imaged. Plotting a line through the centre of the images vesicle provided the 

peak intensities at both the north and south sides. This method has previously 

been shown to definitively group together bands of intensity values against the 

degree of lamellarity of the bilayer [170]. Plotting the intensity measured at the 

mid region of the vesicle against diameter revealed striking groups 

corresponding to 1-4 bilayers.   

 

 

Figure 63: (a) confocal image of DOPC GUV at the equatorial region. Scale bar 50 µm. (b) 

plot along middle region of GUV displaying peak intensity values at the north and south 

points of the vesicle. (c) distribution of peak intensity values against diameter of vesicles 

measured.  

 

Figure 63  (a) illustrates an example of a pure DOPC bilayer imaged by confocal 

microscopy. The intensity along a line plotted through the centre of the vesicle 

provides the corresponding plot in (b). The intensity values for 160 vesicles of 
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varying sizes were plotted against their diameters in (c). It can be seen from the 

plot in (c) that one distinct grouping of values is present, indicating that all the 

measured vesicles are unilamellar in nature. This confirms the previously 

obtained values through AFM spectroscopy.  

 

4.3.5.  Fluorescence lifetime measurements of BODIPY in 
DOPC bilayers – GUVs and LUVs 

The fluorescent lifetime of the molecular rotor BODIPY C10 was measured in a 

lipid bilayer consisting of pure DOPC over a range of temperatures. It was first 

investigated through FLIM set to an imaging modality to investigate the rotor’s 

lifetime response to increasing temperature.  

 

 

Figure 64: FLIM images of 3 different DOPC GUVs of varying size containing BODIPY C10 at 

a lipid dye ratio of 1000:1 imaged over a range of temperatures. Lifetime represented is the 

first component 𝝉𝟏 for a bi-exponential decay function. Lifetime values found: 293 K – 

1753.07 ± 20.05 ps, 313 K – 1059.36 ± 13.52, 333 K – 652.61 ± 11.35. Chi squared values of 1 – 

1.3 for all images. Scale bar 20 µm. 

 

It was found that when imaged over a range of temperatures the lifetime images 

for BODIPY C10 in DOPC were best fit to a bi-exponential decay. This is in 

contradiction to the widely reported mono-exponential decays in fluid phase 

bilayers for BODIPY based molecular rotors [58], [148], [164]. Figure 64 

represents the first component of exponential decay, 𝜏1, which contributed to 

80% of the fluorescence decay signal for each set of images. The values found for 

the first component were similar to those previously reported for a BODIPY rotor 

incorporated into a bilayer of DOPC, indicating this to be the viscosity sensitive 
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component of decay. This value was later corroborated when investigating the 

lifetime of the rotor in LUVs of pure DOPC. It was found that the decay profile 

was best fit with a mono-exponential decay when the rotor was incorporated 

into LUVs composed of pure DOPC. 

 

DOPC-

BODIPY C10 

Vesicle Type 

Temperature 

(K) 
𝝉𝟏 (ps) 𝒂𝟏 (%) 𝝉𝟐 (ps) 𝒂𝟐 (%) 

GUV 293 1753.07 79.95 2769.53 20.05 

LUV 293 1725.84 N/A N/A N/A 

GUV 313 1059.36 82.15 2856.31 17.85 

LUV 313 1005.49 N/A N/A N/A 

GUV 333 652.61 80.91 2827.51 19.09 

LUV 333 589.18 N/A N/A N/A 

Table 5: measured lifetime values of BODIPY C10 in DOPC bilayers in LUV and GUV 

formats. 𝝉𝟏 and 𝝉𝟐 represent the two exponential lifetime components found from a bi-

exponential fit with the relative contributions of each denoted as 𝒂𝟏 and 𝒂𝟐 respectively. As 

the LUV data was fit to a mono-exponential only one lifetime value was present. 

 

Table 5 demonstrates the measured lifetimes for the BODIPY C10 rotor in 

bilayers of pure DOPC in both LUV and GUV configurations. It can be seen that of 

the two components measured for the GUVs only 𝜏1 is altered as a result of 

increasing temperature. In addition the relative contributions of both 

components, 𝑎1 and 𝑎2, remains unperturbed indicating two populations of 

fluorophore that remain constant over the range of viscosities measured. The 

decrease in 𝜏1 over the measured temperature range is almost identical for both 

GUVs and LUVs suggesting that this value represents the viscosity sensitive 

component in the measured GUVs.  BODIPY based molecular rotors of this type 

have been shown to have a dynamic viscosity sensitivity without any major 

temperature dependence suggesting that the measured lifetime change observed 

is due to the decrease in viscosity [171]. The source of the second decay 

component may originate from rotor aggregates which may form during the 
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electroformation process which have previously been shown to provide multiple-

component exponential decays. The same behaviour was observed when 

analysing the decay profiles provided by the single point FCS-Lifetime combined 

measurements.  

 

 

Figure 65: Normalised decay data for BODIPY C10 in a DOPC bilayer in both GUVs and 

LUVs taken at 293 K. The data for the DOPC LUVs fits well to a mono-exponential decay, 

however, the data for the DOPC GUVs fits better to a bi-exponential decay function.  

 

Figure 65 demonstrates the differences between the measured decay profiles for 

the BODIPY rotor in DOPC GUVs and LUVs. It can clearly be seen that for the 

GUVs the data is suitably fit to a bi-exponential decay function but when in LUV 

form the data represents a mono-exponential decay. For this reason the values 

taken for the comparative viscosity measurements were from the first, and 

dominant, decay component, 𝜏1, for the combined FCS-Lifetime measurements.  

 

4.3.6.  Comparison of diffusion coefficients obtained by FCS-
Lifetime combined measurements 

Combined FCS-Lifetime measurements were performed on GUVs composed of 

purely DOPC with 0.05 mol % of each of the three BODIPY rotors. The diffusion 
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coefficients from the FCS measurements were compared to those obtained 

through conversion of the lifetime inferred viscosity via the Saffman-Delbrück 

model. Each value of D was taken as the average of 10 single measurements 

from 4 different GUVs. 

 

Figure 66: Comparison of diffusion coefficients measured by FCS (black data) and lifetime 

(red data) for the three BODIPY rotors: (a) – C10 (b) - ++ (c) – Cholesterol for temperatures of 

293, 313 and 333 K 

 

The diffusion coefficients measured by FCS were outlined earlier demonstrating 

a good agreement with molecular dynamics simulations. The diffusion 

coefficients calculated from the lifetime values using the Saffman-Delbrück 

model were of a similar order of magnitude compare with the FCS measured 

values. It can be seen from Figure 66 that the lifetime calculated diffusion 

coefficients were roughly 2 times lower for the lowest measured temperature, 

293 K. As temperature increased a significant rise in D calculated from the 

lifetime values was observed with a closer agreement observed for 313 and 333 

K. The standard deviation found for the lifetime values was significantly lower 
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than that of the FCS measurements. Since the measured lifetime is independent 

of fluorophore concentration, the position of the focal volume relative to the 

bilayer is inconsequential for lifetime based measurements resulting in more 

consistent results.  

 

Fundamentally the two complementary methods are measuring a response to 

two different properties of the bilayer: the lateral mobility of lipids through FCS 

and the properties of the solvent with lifetime analysis. The diffusion coefficient 

measured by FCS is a direct measure of a physical value and can be directly 

related to the viscosity of the membrane via the Saffman-Delbrück model. The 

lifetime response of the rotor is slightly more complex and various properties of 

the solvent environment, i.e. the bilayer, must be considered. Firstly the 

temperature of the environment in which a fluorophore resides may have an 

effect on the photophysical properties such as the quantum yield and lifetime 

[27]. For a molecular rotor the environmental sensitivity is determined through a 

balance of emissive, bright, and non-emissive, dark, states. Typically the access 

to the dark non-emissive states for molecular rotors is suggested to be 

determined by molecular rotation. However, for some molecules the 

temperature of the environment itself may disrupt this balance [171]. For the 

BODIPY based molecular rotors this was found not to be the case and this can be 

seen through the calibration curve outline in Figure 58. The solvent viscosity was 

altered by increasing concentrations of glycerol and then measuring the lifetime 

over a range of temperatures. The overlap between different glycerol 

concentrations and different temperatures would suggest that the temperature 

has little or no effect on the relative balance of bright and dark excited states. 

Another component of the environment which may have a significant effect on 

the fluorescent lifetime is the polarity of the solvent. In a lipid bilayer this 

would change between residence of the probe nearer the hydrophilic head or 

hydrophobic tail regions. Dent et al. [164] investigated the localisation of the 

three molecular rotor probes through molecular dynamics simulations. It was 

outlined that for the three variants of BODIPY in a DOPC bilayer the orientation 

of the BODIPY head group was similar, locating itself towards the interface of 

the head and tail regions of the phospholipids. In the same study it was noted 

that at high viscosities the lifetime of the rotors were unaffected by solvent 

polarity, demonstrated through measuring the lifetime in castor oil. Castor oil 
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has similar viscosities to the methanol-glycerol calibration mixtures over a range 

of temperatures but differs in polarity. It should be noted, however, that at low 

viscosities a polarity dependency was observed but over a range of viscosities 

out with those found in most measured bilayers. With these considerations it is 

reasonable to assume that the measured fluorescent lifetime of the BODIPY rotor 

in artificial bilayers changes as the viscosity of the environment changes.  

 

While the diffusion coefficients determined by both methods are similar in terms 

of magnitude, there are some discrepancies. The discrepancies between the 

diffusion coefficients measured by FCS and those calculated from the 

fluorescence lifetime values may arise due to a number of assumptions made 

through the Saffman-Delbrück model. The model assumes a cylindrical shaped 

membrane inclusion with a particular radius, 𝑎 [165]. The radius used for the 

three molecular rotors were the hydrodynamic radii for each of the molecules 

which may not accurately represent the true shape and size of the rotors in the 

bilayer. Added to this the variability in reported heights for DOPC bilayers as 

well as the inherent inaccuracies for each method of measurement, the values 

reported here represent a reasonable agreement.   

 

4.3.7.  Effect of bilayer composition on membrane viscosity 
measured by FCS-lifetime  

The composition of lipid membranes can affect the viscosity of the fluid bilayer 

[172]. GUVs are incredibly useful tools in investigating the physical nature of the 

plasma membrane by deconstructing it to its principle components, such as 

phospholipids and cholesterol. Phospholipids of differing degrees of saturation 

provide environments with varying degrees of viscosity. To investigate the 

efficacy of the combined FCS-lifetime technique in verifying viscosity values, 

three different phospholipids were investigated: DOPC, POPC and DPPC. Both 

DOPC and POPC at room temperature are in the fluid phase, however, POPC only 

contains one un-saturated double bond in one of its hydrocarbon tails. DPPC is a 

fully saturated phospholipid, containing no double bonds in its hydrocarbon tails. 

As a result, DPPC exists in the gel phase at room temperature, thus providing a 

significantly more viscous environment. The diffusion coefficients for the rotor 
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BODIPY C10 was measured at 20oC in GUVs containing purely DOPC, POPC or 

DPPC. 

 

GUV lipid type 
FCS Diffusion Coefficient 

(µm2s-1) 

Lifetime Diffusion 

Coefficient (µm2s-1) 

DOPC 10.52±0.28 4.02±0.25 

POPC 8.12±0.84 3.34±0.51 

DPPC 1.09±0.15 0.84±0.09 

Table 6: Comparison of diffusion coefficients measured by FCS and calculated from 
fluorescence lifetime for GUVs composed of pure DOPC, POPC or DPPC. Each value 
represents the average of 10 measurements made on 4 different GUVs. Acquisition time for 
each individual measurement was set to 10 s to minimise photobleaching. Errors represent 
the standard deviation between the 4 measured GUVs. 

 

Table 6 provides the FCS measured and lifetime calculated diffusion coefficients 

for BODIPY C10 in three different lipid types: DOPC, POPC and DPPC. It can be 

seen from the FCS measurements that the lateral diffusion of the probe is 

highest in the pure DOPC bilayer, reduced by 23% in the POPC bilayer and by 90% 

in DPPC. This would be expected as the degree of saturation is increased in 

POPC and further in DPPC resulting in a higher packing order in the lipid bilayer. 

The corresponding diffusion coefficients calculated from the measured lifetime 

values are lower compared to those measured by FCS but follow a similar 

downward trend from DOPC through to DPPC. It should be noted that for a 

BODIPY rotor in DPPC it has been shown that two orientations [164] of the 

molecule exist resulting in a bi-exponential decay. Of the two suggested 

orientations, one exists similar to that in a fluid phase bilayer with the head 

section of the molecule located at the interfacial region of the bilayer. This 

orientation is suggested to correspond to the second fluorescence decay 

component. For that reason the values presented here correspond to the 

viscosity values inferred by that second component.  

 

4.4. Conclusions 

Presented in this chapter is the optimisation and utilisation of a system capable 

of simultaneous FCS and fluorescence lifetime measurements to determine the 
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efficacy of molecular rotors as reporters of membrane viscosity. Diffusion 

coefficients of three different molecular rotors based on the molecule BODIPY   

were measured by both methods. A significant agreement between those 

measured by FCS and molecular dynamics simulations, presented elsewhere, was 

found indicating a good degree of experimental accuracy for single point FCS 

measurements. When compared with diffusion coefficients calculated from 

fluorescence lifetime measured viscosities, using the Saffman-Delbrück model, 

similar trends were found. However, it was discovered that the values varied by 

a factor of 2 compared to those measured by FCS, in some cases. This was 

potentially due to assumptions made using the Saffman-Delbrück method.  It was 

also demonstrated that the molecular rotors were useful indicators of membrane 

order by measuring diffusion coefficients in three different lipid systems 

consisting of pure DOPC, POPC and DPPC. In a more saturated system, i.e. a lipid 

environment with no double bonds in the hydrocarbon tail regions, a measurable 

decrease in diffusion coefficient was measured. This was found both through 

direct measurement of lateral probe diffusion using FCS and through the 

calculated lifetime based diffusion coefficients. To the best of this author’s 

knowledge this is the first simultaneous comparison of the lateral mobility of 

these molecular rotors to the viscosity values measured by their fluorescence 

lifetime. It stands to reason that in simplified bilayer systems, BODIPY based 

molecular rotors provide a reasonable means for quantifying the viscosity of the 

environment.  
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5. Chapter 5: A TIRF-FLIM System for imaging 

membrane viscosity 
 

5.1. Introduction 

5.1.1.  Molecular rotors in live cells 

The previous chapter demonstrated that molecular rotors may be used to report 

on viscosity values in synthesised lipid bilayers using a combined FCS-Lifetime 

system. Previous studies have reported on the use of BODIPY based molecular 

rotors in live cell systems reporting on viscosities in different cellular 

compartments. BODIPY C12 was previously used to image viscosity in SK-OV-3 

cells determining the viscosity of two distinct regions [59], [173]. The first 

region of shorter lifetime was hypothesised to be internalised lipid droplets, 

represented by bright punctate, due to the hydrophobic nature of the probe. 

The second observed longer lifetime value was in an unknown cytoplasmic 

associated region. While the dyes used in this study were successful in 

illuminating the heterogeneous nature of intracellular viscosity, no information 

on the plasma membrane was offered. The reason for this could be found in the 

rapid internalisation of the dye from the plasma membrane to intracellular 

vesicles through some endocytotic pathway. 

 

A modified version of the probe was presented in [154] containing a double 

positive charge located at the end of the hydrocarbon tail. The molecule, 

BODIPY ++, was based on the same motif as the previous variants, C10, C12 etc., 

but due to the positively charged tail region endocytosis was minimised. The 

result was a molecule that could, for a certain period of time, selectively stain 

the plasma membrane of cells. This was demonstrated in SK-OV-3 cells where a 

reasonable value for the average membrane viscosity of 270 cP was determined. 

The method of staining used with the charged rotor molecule was one previously 

used which required lowering the temperature of the cells to 4oC. The dye was 

also added in magnesium and calcium free media to minimise endocytosis. This 

particular study found that, while there was a degree long term labelling of the 
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plasma membrane (> 50 minutes), after 30 minutes the dye was seen to 

internalise to other areas of the cell. Due to the charged tail region the rotor 

was partially water soluble and as a result the uptake to other cellular regions 

was not limited to hydrophobic lipid droplets. Over time a more diffuse 

background of fluorescence was observed. 

 

Molecular rotors based on other fluorophores [148] have been explored for their 

use in measuring live cell viscosities. Haidekker et al. [174] used a modified 

DCVJ molecule, known as FCVJ, to investigate the effects of shear stress on 

membrane viscosity. The FCVJ molecule was relatively successful in staining the 

plasma membrane and displayed a dramatic intensity change upon exposure of 

the cells to high levels of shear stress. It should be noted, however, that in the 

reported study the determination of membrane staining was taken from stacked 

confocal images, and some doubt remains in how efficient the label is as a 

specific membrane target. It was observed that, as well as apparent membrane 

staining, significant labelling of the cytosol was also present. In addition, DCVJ 

based molecular rotors display significant changes in quantum yields, but their 

fluorescent lifetime responses aren’t well characterised. As a result using these 

probes to quantify viscosity in a heterogeneous environment, such as the plasma 

membrane, would be difficult. 

 

Peng et al. [175] presented a molecular rotor based on the short chain 

indocyanine dye structure cy3, called RY3. The RY3 dye was capable of dual 

mode fluorescence imaging through lifetime and ratiometric imaging. The 

molecule contained a meso-substitured CHO group resulting in low quantum 

yields, and fluorescent lifetime, in low-viscous media. The small molecule is 

water soluble, and as such not a suitable molecule for determining the viscosity 

of hydrophobic membrane regions. RY3 was successful in determining viscosities 

of cytoplasmic structures in living cells due to its high membrane permeability. 

The lifetime values measured for this particular dye lie within the 100’s of ps to 

1 ns time scales which are at the limit of some modern lifetime imaging systems. 

Cy3 molecules are, however, widely commercially available and extremely 

versatile in terms of conjugation to target molecules meaning they certainly 

should not be overlooked in terms of biological viscosity applications.  
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Ratiometric molecular rotors have also demonstrated promise in determining 

cellular viscosities [176–178]. Kuimova et al. [176] presented a porphyrin based 

dimer commonly used in Photodynamic Therapy (PDT) for cancer. The modified 

molecule remained functional as a PDT photosensitiser but was also an efficient 

fluorescent ratiometric molecular rotor. The dual-functional probe was used to 

investigate how the micro-viscosity of the cellular environment was altered 

during photoinduced cell death. The probe was successful in determining that 

viscosity did indeed increase through the process of cell death; however, what 

was reported was the overall viscosity of the internal cellular environment. The 

molecule itself has not been utilised in the study of the micro-environment of 

the plasma membrane. Some ratiometric rotors have been used to study 

artificial membranes and liposomes [177] but have yet to be applied to cellular 

membrane applications 

 

It can be seen that the availability of specific membrane labels for complex 

heterogeneous samples is limited. Other than the modified rotor BODIPY ++, no 

molecules have demonstrated successful affinity for the plasma membrane. In 

the case of the charged BODIPY rotor limitations still exist in the time frame 

over which the probe remains located to the membrane. As the signal becomes 

more wide spread within the cell the contributions from the plasma membrane 

would reduce, limiting its long term viability as a membrane probe. It may be 

possible to improve upon the signal to noise ratio (SNR) of membrane signal 

against the diffuse cellular background through alternative imaging modalities. 

 

5.1.2.  Resolution enhancement for fluorescence microscopy 

With molecular rotors presenting promising tools for determining membrane 

viscosity, limitations still exist in terms of specific labelling strategies. It stands 

to reason that optical techniques provide a supplementary method in the 

development of fluorescence techniques for exploring the physical nature of the 

thin 2D-fluid region of the plasma membrane. By restricting the illuminated 

region to the order of the size of a single bilayer, improvements can be made to 

the Signal-to-noise ratio (SNR) of detected fluorescence. Combining improved 

axial resolution with the functional imaging capabilities of FLIM may 

dramatically improve the use of BODIPY based molecular rotors in live cell 
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membrane studies. Common FLIM approaches involve either epi-fluorescence or 

confocal imaging systems. With epi-fluorescence discrimination between signals 

originating in different planes is unavailable. Confocal imaging is limited by the 

diffraction barrier in terms of both lateral and axial resolution resulting in 

dimensions significantly larger than that of the plasma membrane in the z-

direction.  

 

The fundamental limits imposed upon optical microscopy due to the diffraction 

limit have motivated researchers to find novel ways to exploit fluorescent 

phenomena to circumvent this barrier. Super-resolution optical techniques have 

developed over the last decade offering various levels of resolution, both 

laterally and axially, through the use of light manipulation or novel fluorescent 

probes. Discussed below are various modern optical imaging techniques which 

seek to view beyond this fundamental limitation. 

 

5.1.2.1. Photo activated localisation microscopy 

Photo activated localisation microscopy (PALM), developed by Betzig et al. 

[179], operates through the use of photo-activated fluorophores where a small 

subset of fluorescent molecules are activated using a low wavelength, high 

energy, light. The near UV activation energy ‘turns on’ only a small number of 

fluorescent molecules in a sample which can then be excited to higher energy 

states using a lower energy light source. This process is repeated until all the 

molecules have been imaged and the locations for each molecule are 

reconstructed to provide super-resolution images. The lateral resolution is only 

limited by the reliability in locating the central point of each imaged molecule 

offering a xy resolution down to 30 nm [180], much lower than conventional 

optics. The technique also has the ability to restrict the z-resolution to 100-200 

nm when coupled with other techniques, such as TIRFM. These values are ideal 

for imaging cell membranes but the technique is severely limited in terms of 

fluorophore availability [181] and length of image acquisition. In the context of 

improving the resolution of FLIM measurements for membrane based studies 

PALM would not be a suitable choice in the context of molecular rotors.  
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5.1.2.2. Stimulated emission depletion microscopy 

Stimulated Emission Depletion (STED) [182] microscopy emerged at a similar 

time to PALM as a super-resolution fluorescence based imaging modality. STED 

offers improved resolution in both the xy plane through manipulation of the 

Point Spread Function (PSF). This is achieved by overlapping two illuminating 

laser beams with the first exciting a diffraction limited region of fluorescence. A 

second laser, of longer wavelength, is overlaid to the original laser with a 

‘donut’ shape returning fluorescent molecules within this region back to the 

ground state. The result is a lateral resolution of around 60 nm creating a PSF 

below the diffraction limit which is scanned across the focal plane of the image 

similar, as in a confocal microscope. While the xy-resolution is greatly improved, 

in the axial direction the dimension of the PSF are comparable to a confocal 

microscope, offering limited improvements to the SNR in imaging of a 

fluorescently tagged membrane.  

 

5.1.2.3. 4 Pi Microscopy 

A novel illumination scheme providing enhanced axial resolution was presented 

in 1994 [183] with 4Pi microscopy. 4Pi microscopy utilises two opposing identical 

objective lenses focussed to the same plane in the sample. Illumination light is 

split between the two lenses, with identical path lengths, coherently 

illuminating molecules in the overlapping focal region. The result is a PSF with a 

resolution of roughly 100-150 nm along the z-axis [184]. The technique is an 

alternative laser scanning technique compatible with the diverse set of available 

fluorophores. The principle limitation to such a technique is the increased 

complexity in system construction due to the necessity of two opposing 

objective lenses.  

 

5.1.2.4. Structured Illumination Microscopy 

Structured illumination Microscopy (SIM), in particular 3D-SIM, is a versatile 

super-resolution technique, improving both lateral and axial resolution. In SIM a 

sample is illuminated with a series of, high spatial frequency, sinusoidal patterns 

by passing light through an optical grating. The sinusoidal pattern interferes with 
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fine structures, below the diffraction limit, in the sample creating coarse moiré 

fringes. This process is repeated at various orientations of the overlaid 

illumination pattern and the subsequent images are reconstructed providing 

information beyond the diffraction limit. The resolution achievable through SIM 

does not extend to that of higher resolution imaging modes, such as STED or 

PALM, providing around 100-350 nm of xy-resolution, however, enhanced axial 

resolution is readily achievable down to as low as 100 nm. This is accomplished 

by introducing an additional light modulation in the z-axis through three beam 

interference. While the technique excels in terms of resolution and is also 

compatible with practically all modern fluorescent dyes, the technique requires 

significant image accumulation and post processing, resulting in lengthy 

acquisition times.  

 

Perhaps more suited to the application of cellular membrane imaging are near-

field based optical imaging techniques where illumination is localised to the 

interface between substrate and sample. 

 

5.1.2.5. Scanning Near Field Optical Microscopy 

Scanning Near Field Optical Microscopy (SNOM) was developed in the 1986 by 

Pohl et al. [185] as an imaging technique breaking the resolution barrier through 

exploitation of the properties of evanescent waves. Unlike most conventional 

optical approaches SNOM does not utilise objective lenses, instead a very small 

physical aperture at the tip of a conically tapered fibre provides a restricted 

PSF. The achievable resolution can be as low as 20 nm in the xy-plane and 

around 100 nm along the z-axis. SNOM falls under the class of scanning probe 

microscopy techniques providing super-resolution information on the surface 

characteristics of numerous materials, or biological tissues. However, the 

application of all scanning probe techniques provides unique challenges to live 

cell investigations and as such is not suited to investigating the nature of living 

cell membranes.   
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5.1.2.6. Total Internal Reflection Fluorescence 

Microscopy 

The most common near-field imaging technique remains TIRFM with its simple 

experimental implementation making it a highly attractive technique for probing 

the membrane environment. The fundamental theory of the technique outlining 

that TIRFM can be implemented in either a prism of objective based 

configuration was outlined in chapter 2. With objective based TIRFM, high NA 

lenses are used to focus the light to the sample above the critical angle 

necessary for TIR. Detecting the resultant fluorescence through such lenses 

provides a lateral resolution that is still limited by diffraction; however, the 

exponentially decaying nature of the illuminating evanescent field provides a 

diffraction breaking 100 nm axial resolution. The improved z-resolution, coupled 

with the simple nature of the optical system, results in an attractive optical 

method for improving the resolution of FLIM for membrane applications. The 

relative resolution capabilities of all the discussed methods are presented in 

Figure 67 with respect to imaging of a lipid bilayer. 

 

 

 

Figure 67: Comparison of PSFs for various optical microscopy methods for diffraction and 

sub-diffraction limited imaging. All representative PSFs are to scale with the red line 

representing a lipid bilayer on the surface of a microscope slide. All values are in nm 

representing the lateral and axial radii for each PSF. 
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Figure 67 demonstrates, to scale, the relative resolutions for the discussed 

optical microscopy methods. It is clear that, with respect to the size of a single 

lipid bilayer, many of the techniques are significantly larger. For fluorescence 

microscopy of living cells the result would be signal originating from both the 

membrane and a large amount of intracellularly located molecules.  Methods 

such as 4Pi, PALM, SNOM and TIRF begin to approach an order of magnitude in 

axial resolution comparable to the dimensions of the imaged membrane resulting 

in an increase in the SNR of membrane localised fluorophores. The added benefit 

of the near field techniques, SNOM and TIRF, for membrane studies is the 

intrinsic location of the excitation region defined by the illuminating light.  

 

The following chapter outlines the construction of a combined TIRF-FLIM system 

for the application of imaging membrane viscosity using molecular rotors. This 

was demonstrated through the use of artificial individual bilayers created 

through the process of vesicle adsorption and bursting on a glass substrate. The 

Supported Lipid Bilayers (SLBs) incorporated the molecular rotor based on the 

fluorophore BODIPY. 

 

5.2. Materials and Methods 

5.2.1.  Fluorophores 

Stock solutions of 1 mM of the fluorophores FITC (Sigma), Rhodamine B (Sigma) 

and Erythrosin B (Sigma) were dissolved in Millipore water for lifetime 

calibration measurements. Stock solutions were stored for no more than one 

week and for each calibration measurement performed a new dilute solution of 

1 – 5 µM was prepared from stock.  

 

BODIPY C10 was used in all membrane studies at ratios of 0.05 mol%, for 

spectroscopic measurements, and 0.5 mol% for imaging.  
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5.2.2.  SLB formation 

Lipids used for supported lipid bilayer (SLB) formation, DOPC and DPPC, were all 

purchased from Avanti Polar Lipids and stored at a stock concentration of 25 

mg/ml in chloroform.  

 

GUVs were formed by the electroformation method outlined in chapter 4 and 

were used to form SLBs. SLBs were formed through the bursting of electroformed 

GUVs on glass substrates. For each experiment all glass substrates were treated 

identically through sonication in acetone, IPA and methanol at 10 minutes in 

each solvent. The vesicles were deposited to the substrate surface at a low 

concentration, as not to cause bilayer overlap, resulting in defined spots of 

single, unilamellar, fluorescent bilayers.  

 

5.2.3.  TIRF-FLIM system 

5.2.3.1. TIRF Illumination 

TIR alignment was provided as outlined in Chapter 3 using the TILL photonics 

TIRF condenser coupled to a Zeiss Alpha-plan Fluor 100x 1.45 NA objective lens. 

The penetration depth used for all imaging was 110 nm by adjusting the 

micrometre screw gauge to the appropriate position.  

 

5.2.3.2. Pulsed laser diodes 

To enable simultaneous TIRF-FLIM imaging pulsed laser diodes were used, 

purchased from Horiba. The wavelengths available for imaging were: 420 nm, 

481 nm and 650 nm; for imaging of BODIPY fluorescent bilayers the 481 nm laser 

line was utilised. The laser diodes were controlled by the DeltaDiode C1-

controller, able to set the repetition rate of the laser between 10 kHz and 100 

MHz. For the 481 nm laser line the peak power output for each pulse was 100 

mW with an average power of 3 mW. The laser was coupled to a multi-mode 

fibre with, NA = 0.22, terminated at both ends via a FC connector via a small 

collimating lens. The power output from the end of the fibre to the TIRF 

condenser was optimised to 1.7 mW, at a repetition rate of 100 MHz, by careful 

adjustment of the collimating lens relative to the output of the laser. The 
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average pulse duration for the 481 nm laser was roughly 100 ps, suitable for high 

repetition FLIM applications. The C1-control unit provided a triggering signal 

output of 2 V via a BNC connection terminated by a 50 Ω load for synchronisation 

to a high rate imaging system.  

 

5.2.3.3. Image intensified CCD 

A gated image intensified CCD (LaVision Picostar HR 12) was used to enable 

combined TIRF-FLIM through gated lifetime imaging. The S25 cathode type was 

selected providing good quantum efficiency, >40%, for the wavelengths between 

450 and 650 nm. The ICCD was capable of exposure times as low as 300 ps for 

fast imaging applications. For all acquired image sets exposure times between 

100 – 1000 ms were used depending on the required signal. The image intensifier 

was triggered from the 2 V output signal from the pulsed laser diodes. This was 

achieved via the High Rate Imaging (HRI) triggered delay unit capable of 

triggering the ICCD from 20 MHz up to 100 MHz. For applications where longer 

lifetimes are to be analysed, i.e > 20 ns, the camera could be triggered via the 

P400 (Highland Technology) benchtop delay and pulse generator unit. The P400 

was able to trigger the gated ICCD from Hz – 10 MHz. Both the camera and delay 

units were controlled remotely, via RS-232 connection, by the DaVIS acquisition 

software (LaVision). Values of gate width, gain, exposure time, timing and pixel 

binning were control via the software. For the imaging of SLBs gate widths of 

either 500 or 1000 were used to minimise the effects of photobleaching between 

sequential images. For measurements of calibration and the instrument response 

function (IRF) gate widths of 200, 500 and 1000 were used where appropriate. 

An simplified schematic of the optical and electronic system can be seen in 

Figure 68.  
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Figure 68: Schematic of TIRF-FLIM system. Illumination from a pulsed laser diode source is 

coupled to a 100 x 1.45 NA objective lens via a specialised TIRF condenser. Fluorescence is 

directed through an emission filter to an ICCD. The ICCD and pulsed laser diode are 

synchronised via the HRI unit. All circular connections are via BNC and the rectangular 

connections represent RS-232.  

 

 

5.2.3.4. Data handling 

All data was processed through the FLIMfit software package, an OMERO client, 

which is part of the Open Microscopy Environment (OME). FLIMfit, developed at 

Imperial College London [186], globally fits large datasets recorded from 

fluorescence lifetime systems from either TCSPC or gated FLIM methods. The 

analysis software offers the ability to fit mono and multi-exponential decay 

functions to the raw recorded lifetime data sets. The functions are fitted using a 

nonlinear least square fitting algorithm with a goodness of fit determined by 

minimising the reduced chi-squared value. The software also has the ability to 

account for the IRF profile recorded from a fluorophore with a known single 
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component of exponential fluorescence decay. For all measured decays the 

goodness fitting was deemed sufficient as indicated by a 𝜒2 value falling 

between 1 and 2 over all pixels. Mono and bi-exponential decays were fit where 

appropriate. 

 

5.3. Results 

5.3.1.  Determining TIRF-FLIM system IRF using Erythrosin B 

In order to determine reliable, and quantifiable, lifetime data it was imperative 

that the IRF was known for the TIRF-FLIM system. This was achieved through the 

imaging of a sample containing 10 µM Erythrosin B dye in a water solution. 

Erythrosin B is a fluorophore of known lifetime which is both short, 89 ps, and 

mono-exponential [162]. Such a short lifetime offers a means of directly 

measuring the IRF through analysis of the fluorophore’s decay profile. Profiling 

the IRF in this way offers the benefit of truly representing the IRF of the system 

as all electronic and optical components are maintained in further lifetime 

measurements. This method has previously been employed with other systems 

including the use of the FLIMfit software [186]. Figure 69 demonstrates the IRF 

measured at two different gate widths of 200 and 1000 ps over a decay window 

of 21000 ps. Each gated image was exposed for 500 ms to accumulate a 

significant signal for the time period. No pixel binning was used in the 

accumulation of the IRF images.  
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Figure 69: IRFs measured from 10 µM sample of Erythrosin B in water. IRFs measured with 

gate widths of 200 and 1000 ps over a decay window of 21000 ps.  

 

It can be seen from Figure 69 that the shape of the IRF is dependent on the gate 

width of the imaging system. The gate width defines the temporal resolution of 

the FLIM images, analogous to the ADC resolution of a TCSPC system. With some 

imaging applications it was not possible to operate at a high temporal resolution, 

< 500 – 1000 ps, due to photobleaching found in subsequent gated images. A 

trade off was necessary between exposure time, ICCD gain, pixel binning and 

gate width to obtain images with suitable temporal and spatial resolution with a 

suitable SNR, i.e a peak intensity of >500 counts in the maximum image. Using 

the measured IRF provided an improved fit, as indicated by the reduced 𝜒2 

value, compared with that of software generated IRFs for the same data. This 

can be seen from Figure 70 which demonstrates an example decay profile 

measured from 5 µM FITC in water excited at 481 nm. The decay is fitted with a 

mono-exponential decay model using an artificially generated IRF in the form of 

a delta function, provided by the FLIMfit software.  
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Figure 70: Decay profile for FITC in water excited at 488 nm. Data fit with, expected, mono-

exponential model using artificially generated IRF function shift to 1600 ps. 

 

It can be seen visually in Figure 70 that the function is poorly fit to the raw data 

over the selected decay window. The position of the delta function is optimised 

through iterative positioning along the data points and observing the effect on 

the reduced 𝜒2 value. The optimal position was found and the resultant 𝜒2 value 

was 4.94. This was further improved by fitting a bi-exponential model resulting 

in a value of 1.98; however, the raw data for FITC in water should be mono-

exponential. The apparent multi-component decay arises due to the artificial IRF 

not taking into account the pulse width and response time of the laser diode and 

ICCD. The section of the data prior to the delta function is visibly miss-fitted to 

the data since the real response of the system takes some time to rise to the 

maximal intensity value. In addition, it was found through  measuring the real 

IRF of the system in Figure 69 that decay times of around 21000 ps a secondary 

peak was observed. This was most likely due to reflections in the optical system 

and results in a skewed model fitted to the data. To rectify these issues it was 

imperative to measure the real IRF to be fit to the data for each measurement 

prior to experimentation. An example of a suitably fit model using a measured 

IRF can be seen in Figure 71. 
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Figure 71: Decay profile for FITC in water excited at 488 nm. Data fit with mono-exponential 

function using IRF measured through imaging of Erythrosin B solution.  

 

Using the same set-up and sample for Figure 71 as in Figure 70 the decay profile 

for FITC in water was fit using the Erythrosin B measured IRF. The resultant 𝜒2 

value was found to be 1.22, well within a suitable range of 1-2 for FLIM 

measurements. The plot of the normalised residuals shows no significant 

deviation from the fitted mono-exponential model suggesting that using the IRF 

measured with the Erythrosin B value represents a true reflection of the systems 

response. 

 

 

5.3.2.  Comparison of TIRF-FLIM and confocal FLIM systems 
using standard fluorophores  

To compare the systems performance to that of the previously presented TCPSC 

lifetime imaging system outlined in chapter 4, sample of standard fluorophores 

with known lifetimes were measured. Initially, images of a stock 5 µM FITC in 

water solution were taken on both a confocal and TIRF-FLIM system. For the 

confocal measurements the pinhole was set to the smallest setting, 0.5 airy 
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units, and excitation was provided through the 473 nm laser line at a repetition 

rate of 20 MHz. Figure 72 provides distributions based on the pixel-wide lifetime 

values measured by the two optical configurations of lifetime imaging. 

 

 

Figure 72: Normalised pixel histograms of lifetime values for FITC in water measured by 

confocal and TIRF lifetime imaging. Values normalised by maximum pixel count for 

comparison. 

 

The subsequent lifetime values found were 4024.23 ± 239.38 ps for the TIRF 

illuminated lifetime image and 4074.65 ± 121.38 ps for the confocal imaged 

sample. Both measured values are similar to the previously reported lifetime of 

4100 ps commonly found for FITC in a water solution of neutral pH. There was a 

wider distribution of lifetime values when measured in the TIRF configuration. 

This was due to the higher pixel count measured in the image window with a 

resolution of 1024 x 1024 compared with the 256 x 256 image of the confocal 

system. However, the similarity in the values with previously reported lifetimes 

suggest that the constructed gated lifetime system provides reliable and 

quantifiable values whilst utilising a TIRF illumination scheme. 
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5.3.3.  Effect of surface on lifetime of SLBs 

All previous studies of BODIPY based molecular rotors have been undertaken in 

freestanding bilayers through the use of either LUVS or GUVs. To demonstrate 

the abilities of the TIRF-FLIM system in resolving, surface localised lifetime 

values, Supported Lipid Bilayers were used. SLBs are formed through the 

deposition of a lipid bilayer on a solid support, e.g glass, mica etc. and the 

nature of the support is known to have an effect of the physical properties of 

the bilayer [187]. These effects were investigated through use of the combined 

FCS-lifetime system presented in the chapter 4. Initially the diffusion of BODIPY 

C10 was investigated at the apical and bottom, corresponding to the bilayer at 

the substrate surface, regions of GUVs made from pure DOPC. Figure 73 shows 

the normalised auto-correlation curves for the rotor BODIPY C10 diffusing 

laterally in a pure DOPC bilayer. It can be seen that there is a significant 

difference in diffusion time, corresponding to and decrease in diffusion 

coefficient D, between the top and the bottom of a GUV. This is evident in the 

shift to the right in the auto-correlation function.  

 

 

Figure 73: Normalised FCS auto-correlation curves for 0.05 mol% BODIPY C10 diffusing in a 

pure DOPC bilayer. FCS measurements taken at top and bottom regions of single GUV for 

10 seconds. N – 10 for both cases.  
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The measured diffusion times for the top and bottom of the GUV were 2.68 ± 

0.16 ms and 9.21 ± 0.79 ms respectively. The increase in diffusion time indicates 

that the effect of the substrate on the physical nature of the bilayer is 

significant and must be taken into account. As a result it was necessary to 

determine if this effect was replicated in the measured lifetime values. The 

corresponding lifetime values were taken from the same GUV as the FCS 

measurements, all taken at a temperature of 293 K. At the apical, free standing 

bilayer, region of the GUV the lifetime value found was 1765.44 ± 65.44 ps, 

which was similar to that presented in the previous chapter. At the bottom 

region of the vesicle the viscosity dependant component of lifetime was found to 

increase to 2016.88 ± 103.49 ps indicating an increased restriction on the rotor’s 

rotational ability. This effect was seen in Figure 74 where the lower and middle 

regions of a vesicle were imaged using the confocal FLIM system.  

 

 

Figure 74: (a) Confocal FLIM image of BODIPY C10 in pure DOPC GUV at the bottom of the 

vesicle (interface between vesicle and substrate). (b) Confocal FLIM image of same vesicle 

taken from the mid-point of the GUV. Scale bar – 10 µm. 

 

Figure 74 (a) presents a lifetime image of the region of the vesicle in contact 

with the glass substrate and (b) shows the lifetime values from the middle region 

of the same vesicle, corresponding to a free standing bilayer. It can clearly be 

seen from (a) that the lifetime of the BODIPY rotor in the bilayer is greater at 

the region in contact with the glass substrate. This indicates that the micro-
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viscosity measured by the rotor is influenced by the properties of the supporting 

substrate. These values are consistent with those measured by FCS where an 

increase in lateral diffusion was observed at the bottom surface of the vesicle. 

Identical values were found when measuring the lifetime of the rotor in SLBs 

deposited to the glass surface by means of bursting GUVs. Figure 75 

demonstrates a typical patch of a unilamellar bilayer deposited to a supporting 

surface through the bursting of a single GUV. The likely source of the increase in 

lateral diffusion is frictional coupling from the substrate to the bilayer. The 

increase in measured lifetime would suggest that the measured micro-viscosity is 

linked to the overall viscosity of the bilayer. 

 

 

Figure 75: (a) 256 x 256 intensity image of pure DOPC SLB formed from bursting of GUV on 

glass support containing 0.5 mol% BODIPY C10. (b) corresponding lifetime image for same 

SLB 

 

Figure 75 (a) and (b) provide both the intensity and lifetime images for a purely 

DOPC SLB containing 0.5 mol% BODIPY C10, imaged at a temperature of 293 K. 

The pixel-wide distribution of lifetime values gave an average of 2101 ± 105 ps. 

These values are similar to those found for the bottom region of the GUV imaged 

in Figure 74 (a) suggesting similarities in the physical nature between both forms 

of bilayer.  
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Using FCS and lifetime analysis simultaneously has demonstrated that the nature 

of the substrate surface affects both the lateral mobility of the lipids and the 

lifetime reported micro-viscosities of the rotors. As a result the lifetime values 

determined for SLBs were higher than the previously reported values for GUVs 

and LUVs. GUVs and LUVs represent freestanding bilayer systems where the 

mobility is less impeded by the surrounding environment. The effect of 

substrates on the bilayer’s physical characteristics have been a source of debate 

[188] with great attention placed on the importance of the bilayer preparation 

and substrate cleaning methods [189].  While the exact degree to which the 

substrate affects bilayer mobility is still under investigation, the consensus 

appears to be that the overriding result is a significant reduction in fluidity 

[190], [191]. The results presented here through both lifetime and correlation 

analysis supports this claim. Furthermore, due to the fact the reported mobility 

restriction is in terms of lateral phospholipid diffusion the fact that a similar 

lifetime shift was observed adds strength to the claims that these molecular 

rotors report on bilayer viscosity.  

 

 

5.3.4.  SLBs imaged against a background of FITC 

 

To demonstrate the TIRF-FLIM principle for determining membrane viscosity, 

SLBs of pure DOPC containing the molecular rotor BODIPY C10 were deposited to 

a glass substrate. Lifetime images were constructed of the SLB against a 

background of FITC in both a TIRF and non-TIRF illumination configuration. Non-

TIRF illumination corresponded to adjusting the angle of illumination to below 

the critical angle so that the majority of the sample was illuminated. The result 

was an off-angle illumination with a non-uniform intensity profile due to the 

angled illumination. Using a fluorophore such as FITC provides a lifetime based 

contrast in imaging due to its longer lifetime, typically 4100 ps. Figure 76 

demonstrates the principle through the intensity based images for both TIRF and 

non-TIRF configurations.  
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Figure 76: (a) Non-TIRF image of DOPC SLB against a background of 100 nM FITC. 

Dominant signal is that of the FITC with no resolvable image of the SLB. (b) TIRF image of 

same area showing SLB formed on the surface. Scale bars – 10 µm 

 

In Figure 76 (a) a DOPC SLB containing BODIPY C10 was imaged in a non-TIRF 

configuration and it can clearly be seen that no information of the bilayer itself 

was resolved through the intensity images. The large observable signal was 

attributed to the bulk FITC solution above the bilayer. When switched to a TIRF 

illumination configuration, as shown in Figure 76 (b), the SLB itself was clearly 

imaged against the FITC background. The relative intensities of the two images 

show a 7-fold increase between the SLB imaged at the surface and the solution 

above. This suggests that even at relatively low concentrations of background 

fluorescence, 100 nM, information at the surface was obscured. Whilst it is clear 

from these images that TIRF illumination possesses the power to resolve 

information of the surface, intensity based imaging does not possess the power 

to determine information on the viscosity of the membrane. This was achieved 

through analysis of the corresponding lifetime images shown in Figure 77. 

 

 

 



162 
 

 

Figure 77: (a) Non-TIRF lifetime image of DOPC SLB against a background of 100 nM FITC. 

Dominant lifetime signal originating from bulk FITC solution above bilayer. (b) TIRF Lifetime 

image of same region where the lifetime of the SLB is resolvable against the bulk 

background solution. Scale bars – 10 µm. 

 

Figure 77 (a) shows the corresponding lifetime image to Figure 76 (a) with an 

average pixel wide lifetime value of 4153 ± 102 ps. This value corresponds to 

FITC in the water solution above the bilayer on the surface in accordance with 

previously measured values. There was no significant deviation from this value 

over the field of view suggesting that fluorescence originating from the bilayer 

at the surface was unobservable when imaged in a non-TIRF configuration. 

Figure 77 (b) provides the corresponding lifetime image to Figure 76 (b) with an 

average pixel-wide lifetime value of 1931.81 ± 304 ps. These values were 

determined from the viscosity sensitive component of decay, 𝜏1, from a bi-

exponential fit to all pixels with 𝜒2 values between 1-2. This value compares 

well with values previously determined for BODIPY in a pure DOPC SLB as 

determined by both confocal and TIRF-FLIM where no background of FITC was 

present. These results demonstrate that the TIRF-FLIM system has the ability to 

distinguish lifetime values from surface localised bilayers against a homogenous 

fluorescent background signal of a highly fluorescing solution.  

 

To analyse whether the system can distinguish changes to the viscosity of the 

bilayer environment against a large fluorescent background, images were 

acquired for the rotor incorporated in SLBs of pure DPPC, an unsaturated gel 

phase bilayer at room temperature. This is demonstrated in Figure 78 where 

both images of DOPC and DPPC bilayers were imaged and compared. 
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Figure 78: (a) TIRF-FLIM image of pure DPPC SLB containing BODIPY C10. (b) TIRF-FLIM 

image of pure DOPC SLB containing BODIPY C10. Both images taken at 293 K against a 

background of 100 nM FITC. (c) corresponding normalised pixel histograms for (a) and (b) 

and their corresponding non-TIRF images where the dominant lifetime is that of the FITC 

background (Not pictured). Scale bars – 10 µm. 

 

Through analysis of the normalised pixel distributions of lifetime values it was 

observed that when incorporated in to the more rigid environment of DPPC the 

observed lifetime increased to 2514.02 ± 245.59. This can be seen in Figure 78 

(c) where the values for images taken in a non-TIRF orientation are also plotted. 

Demonstrated is the system’s ability to image based on the viscosity of the 

microenvironment localised exclusively at the substrate surface.  

 

5.3.5.  Lifetime imaging of SLBs against increasing 

background fluorescence 

The images acquired in Figure 76 - Figure 78 were against a background of 100 

nM FITC which significantly dominated the image when in a non-TIRF imaging 
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mode, however, with respect to most cellular staining procedures the 

concentration was low. To determine the effect of increasing concentration on 

the measured lifetime values for SLBs on a glass surface the same system was 

employed with increasing concentrations of FITC as a source of background, 100 

nM – 5 µM. This is demonstrated in Figure 79 where six example data sets are 

presented for increasing concentrations in background fluorescence. For the 

measurements all images were best fit with a bi-exponential model for 

fluorescence decay with 𝜒2 values falling between 1 and 2. Pixels were fit if a 

minimum value of greater than 1000 was measured for the peak value of 

intensity in the decay curve. This was set by adjusting the integrated minimum 

value in the FLIMFit software to 5000 to disregard any pixels which did not meet 

this minimum requirement. All images were taken with 2 x 2 pixel binning, gate 

width of 500 ps and an exposure time of 500 ms to minimise any artefacts 

presented through photobleaching between sequential images. As a result the 

acquisition time for each decay curve was 21 seconds.  For the sake of 

comparison the average lifetime value, 𝜏𝑎𝑣𝑔, was used which is determined by 

the respective ratios of both 𝜏1 and 𝜏2 to enable fitting and analysis of both the 

bilayer and the FITC background.  

 



165 
 

 

Figure 79: Lifetime images of DOPC SLB against background of FITC of increasing 

concentrations. Histogram red lines – distribution of pixel values for corresponding images, 

black lines – reference histogram for no FITC background, red lines – reference histogram 

for FITC background values only.  

 

For all of the lifetime histograms shown in Figure 79 the red lines present the 

data corresponding to the related lifetime images. The black lines display an 

example histogram for when no background is present and the blue lines are 

equivalent to an image where only the fluorescent background was imaged. The 

two extra lines act as reference values to compare the pixel-wide lifetimes 

measured in each image. For the case of no fluorescent background the average 

lifetime value across all pixels was found to be 2770.32 ± 383.51 ps. The 

measured lifetime values for the imaged bilayers against concentrations ranging 
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from the nanomolar regime to at least 1 µM are within the range of the initial 

reference histogram. At 1 µM the histogram becomes bi-modal due to the 

background signal being significant enough to require fitting of the model to, i.e 

above an integrated intensity of 5000. The secondary peak of the histogram from 

1 µM to 5 µM corresponds in value to that of the FITC background reference of 

4174.65 ± 198.46 ps. This value remains constant for the higher concentrations 

as the lifetime of the background remains unchanged. However, the lifetime for 

the region corresponding to the SLB experienced an increase in lifetime from 1 

µM onwards. Plotting the values of the initial peaks against concentration can 

illuminate the effect that increasing background concentration has on the 

measured SLB lifetime shown in Figure 80.  

 

 

Figure 80: 𝝉𝒂𝒗𝒈 values for imaged DOPC SLBs taken from the average of 3 imaged patches 

for each background FITC concentration. Red line indicates average value for SLB where no 

background FITC was present.  

 

Figure 80 elucidates the relationship between the measured lifetime within the 

region of the bilayer and the effect of increasing background fluorescence. Up to 

concentrations of 1 µM there is no discernible effect was noted in the lifetime 

values, however, above this value the measured lifetime begins to increase. This 

is due to the fluorescence of the FITC solution, with a lifetime of 4 ns, 

contributing to the measured 𝜏𝑎𝑣𝑔 of the bilayer. Even though the bilayer is still 
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visible, as evident in Figure 79, the measured lifetime value was no longer 

independent of the fluorescent background 

 

Standard cell labelling protocols typically utilise micro-molar concentrations of 

dye to provide sufficient labelling of the cell [192], [193]. This is true for 

methods of selective staining of membranes, as with the BODIPY ++ molecular 

rotor presented previously [154]. For this study the fluorophore FITC was used as 

a background contrast agent due to its solubility in water and its increased 

lifetime with relation to that for BODIPY C10 in lipid bilayers. FITC is a highly 

fluorescent fluorophore with a large extinction coefficient, 75,000, and a 

quantum yield approaching unity. BODIPY rotors in fluid membranes, such as 

DOPC, experience a reduction in fluorescent lifetime and also quantum yield.  

The concentration for the BODIPY probe in the imaged bilayers was equivalent to 

2 µM. Limitations are realised in this demonstration due to the relative 

brightness differences of the two dyes within the illuminated region. However, 

the presented system demonstrates exclusive lifetime imaging of a surface 

localised lipid bilayer against an increasing background solution of a highly 

fluorescent dye over a large range of concentrations. 

 

For the case of a BODIPY ++ labelled cell the contributions of sub-cellular 

localised molecules would likely be from internalised lipid subject to thermally 

driven motion. As a result these particular molecules would contribute 

transiently to theobtained lifetime image. Other sources of fluorescent 

background arising from more aqueous cellular environments would likely exhibit 

shortened lifetimes and quantum yields compared with molecules located in the 

more viscous plasma membrane. As such the system would likely distinguish 

lifetimes of molecules residing in the membrane itself. Demonstrating this 

through the use of artificial bilayers offered the extreme case of a homogenous, 

highly fluorescent, longer lifetime background signal. These results suggest that 

the TIRF-FLIM system offers a means of improving the SNR for imaging the 

heterogenous nature of the plasma membrane at the substrate surface. As a 

result there is potential for increasing the reliability of information extracted 

from molecular rotors incorporated to cellular membranes against the ongoing 

internalisation of the probe. 

 



168 
 

5.4. Conclusions 

A TIRF-FLIM system was constructed with the ability of resolving both 

fluorescence intensity and fluorescence lifetime images within a reduced 110 nm 

region above a substrate surface. The system was constructed to improve upon 

the resolution of conventional confocal based lifetime imaging systems to 

provide information on membrane dynamics, in particular membrane viscosity. 

The molecular rotor BODIPY was investigated in SLBs formed through the 

bursting of GUVs to a solid glass support. Substrate effects were found through 

the use of a combined FCS-lifetime spectroscopic approach. Measuring the 

lateral diffusion of the fluorophores in the bilayer revealed a hindrance upon 

mobility due to the glass support. This was qualified through the investigation of 

the difference in lifetime values measured at both the apical and bottom region 

of a GUV and within an SLB itself. Following this the TIRF-FLIM principle was 

demonstrated through the inclusion of a highly fluorescent background signal of 

FITC in water. The FITC background provided a significant difference in lifetime 

compared with the BODIPY rotor. This was seen when imaging was switched 

between TIRF and non-TIRF illumination where a clear pixel-wide lifetime shift 

was observed. In addition to this the limits of detection for the model system 

were determined through increasing the concentration of the fluorescent 

background. It was found that the lifetime of the imaged bilayer remained 

constant over a wide range of concentrations; up to 1 µM. Beyond this the 

lifetime value became distorted by the background fluorescence until a point 

where it became indistinguishable. The presented system shows promise for the 

difficult task of determining fluidity in the plasma membrane with molecular 

rotors. The difficulties faced with ensuring the retention of significant probe 

concentration at the membrane may be circumnavigated through the use of this 

alternative illumination scheme. It stands to reason that the system would be a 

useful tool for further investigating the use of the charged BODIPY ++ probe in 

live cell lifetime imaging studies. In addition the new BODIPY-cholesterol probe 

discussed in [164] may be of similar interest and the presented TIRF-FLIM system 

could be of great importance in determining its efficacy as a plasma membrane 

probe. 
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6. Chapter 6: Conclusions and future perspectives 

6.1. TIRF investigation of insulin regulated glucose 
metabolism in HeLa and adipocyte cell lines 

The insulin responsive recruitment of GLUT4 molecules was analysed in two 

different cell lines: adipocytes and a modified HeLa cell line. The primary 

objective was to compare the rates of recruitment of GLUT4 molecules to the 

plasma membrane in the HeLa cell line to that of the well characterised 

adipocyte cell line [92], [95], [100], [113], [114]. This was achieved through the 

construction of a TIRFM system capable of illuminating a selective region of 110 

nm at the substrate-cell interface. The system was constructed based on a 

through objective illumination scheme where excitation light, provided through 

a 481 nm laser diode, and the resultant fluorescence emission was collected 

through the same 1.45 NA objective. The illuminated region was localised to 

include the plasma membrane and a small amount of intracellular signals. The 

technique was first used to analyse the recruitment of GLUT4 to the plasma 

membrane by measuring the time dependent fluorescence intensity within the 

footprint of a cell. By analysing discrete time points of intensity within the 

initial perimeter of the cell, a rise was observed upon stimulation with 100 nM 

insulin. In the adipocyte cell line the rise was found to be 2.15 ± 0.2 fold in 

intensity normalised against the average value prior to insulin stimulation. The 

HeLa cell line was analysed under the same condition and a subsequent 1.34 ± 

0.1 fold rise in normalised intensity was observed. The comparative rise in the 

new HeLa cell line, while significantly lower, was significant enough to indicate 

a dynamic recruitment of GLUT4 to the plasma membrane under insulin 

stimulated conditions. In addition a significant difference was found in the rise 

times of measured intensity between the HeLa and adipocyte cell lines. 

 

Following these preliminary results the dynamic recruitment of GLUT4 storage 

vesicles (GSVs) to the plasma membrane was analysed. This was achieved 

through time lapse imaging of both cell lines for 25 minutes upon insulin 

stimulation. Image analysis techniques, implemented through ImageJ, were 

employed to determine the relative abundance of mobile and stationary GSVs at 

the plasma membrane. These values were analysed within defined time windows 

of 1 minute after the initial stimulation. For the adipocyte cell line a rise in the 
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amount of mobile vesicles was observed within the first 5 minutes after 

stimulation. In addition to this a constant rise in stationary vesicles was noted 

within the illuminated membrane region. In comparison, under the same 

conditions in the HeLa cell line a similar level of increased activity, in terms of 

mobile GSVs, was observed over a time frame of 8 minutes post-insulin 

stimulation. However, the abundance of stationary vesicles at the membrane 

was seen to reduce over the time course of experimentation. These results 

suggest that, while insulin sensitivity and dynamic recruitment of GLUT4 to the 

plasma membrane are present in the modified HeLa cell line, the relative rates 

and quantities are lower than those found in adipocytes. These results suggest 

that the HeLa cell is responsive to insulin in a similar manner to the adipocyte 

model which indicates similar machinery involved in dynamic recruitment of 

GLUT4 to the membrane. However, the information provided through analysis of 

the GSV activity at the membrane suggests differing involvement at the point of 

GLUT4 dispersal from vesicles to the membrane.  

Further experimentation is required to fully understand the apparent differences 

in the tethering and fusion processes involved in the recruitment of GSVs to the 

membrane of the HeLa cell line. 

 

6.1.1.  Future work for TIRFM imaging of novel HeLa cell line 

The work presented in chapter 3 suggests that the robust HeLa cell model may 

be of use in determining factors influencing modifications to insulin mediated 

glucose metabolism. However, limitations are noted in the throughput of 

experimentation, dictated by the TIRFM setup itself. A through objective 

configured TIRF microscope is limited to high NA aperture objectives, and 

subsequently, high magnification lenses resulting in a small field of view, 

typically 100-200 µm wide.  In the context of analysing the insulin stimulated 

increase in GLUT4-GFP signal at the membrane data sets are limited to 1 – 2 

cells per image sequence. With each sequence observed for up to 30 minutes 

this greatly increases the time necessary for statistically significant data. 

Modifications to the optical system could be made to enable the use of lower 

magnification objective lenses through the use of either a prism or waveguide to 

couple excitation light to the sample via TIR. Simplified systems have be 

demonstrated previously using a glass prism as a light coupler to a light guide to 



 
 

172 
 

enable TIRF illumination [194]. Alternatively a simple LED based system has been 

shown to convert any inverted microscope to a TIRFM [195]. The LED based 

waveguide system couples light to a high refractive index substrate, SF11 glass, 

with light propagating below the critical angle absorbed by a black rubber seal. 

The system was shown to provide TIRF illumination compatible with all objective 

types without the requirement of any glass prisms. Such a system would provide 

a high throughput method for analysing the insulin dependent increase in GLUT4-

GFP signal in both adipocytes and HeLa cells.  

 

While increasing the field of view would be beneficial in investigating the 

average intensity within the footprint of the cell, lower NA objective lenses 

would be unable to resolve the diffraction limited GSV structures. Using the 

constructed objective based TIRFM system further analysis of the tethering and 

fusion of these GSVs in the HeLa cell line would be of great interest. Image 

analysis techniques have been presented previously [93], [196], [197] which 

report the ability to distinguish vesicle fusion at the plasma membrane when 

used with TIRFM generated image sequences. Applying similar image analysis 

methods through MATLAB implemented algorithms it would be possible to assess 

the rates of tethering and fusion of GSVs within the HeLa cell line. This would 

possibly illuminate the reasons for the observed differences in GSV activity seen 

in the HeLa cell line compared to the adipocyte cell line. The ability to 

distinguish between vesicles retaining and releasing their GLUT4 content upon 

fusion would enable experiments to investigate the machinery present in both 

cell lines related to endocytosis. 

 

In addition to the purely intensity based TIRF system, the presented TIRF-FLIM 

system may be of interest in the analysis of insulin regulated glucose 

metabolism. A great deal of research in the area has focussed on the association 

of important endocytosis associated molecules with the spatial distribution of 

membrane dispersed GLUT4 [91], [92], [99]. Using the functional imaging 

capabilities of the TIRF-FLIM system it would be possible to assess colocalisation 

of important molecules through Forster Resonance Energy Transfer (FRET) 

analysis. FRET occurs when two spectrally overlapping fluorescent molecules are 

within a few nanometres of each other [27]. Energy from a donor fluorophore is 

coupled to an acceptor fluorophore non-radiatively resulting in a reduction in 
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the donor’s fluorescent lifetime. By analysing the lifetime of the donor molecule 

with the TIRF-FLIM system the overall FRET efficiency within the region of the 

plasma membrane could be determined. This approach could be helpful in 

probing the seemingly different levels of vesicle activity at the membrane 

surface between the HeLa and adipocyte cell lines. It may also provide a novel 

approach for investigating the machinery involved in GLUT4 membrane dispersal 

and certain physiological parameters affecting this process. 

 

6.2. FCS-Lifetime analysis of molecular rotors 

A combined Fluorescence Correlation Spectroscopy (FCS) and Fluorescence 

Lifetime Imaging Microscopy (FLIM) system was optimised for combined FCS-

Lifetime measurements of the molecular rotor BODIPY in artificial bilayers. 

Combining sensitive hybrid detection pulsed laser diodes simultaneous 

correlation and lifetime measurements were achieved with single photon 

sensitivity. The system was utilised to compare the lateral mobility of a small 

number of fluorescent molecules within a simplified bilayer system to the 

lifetime measured micro-viscosity values. Through implementation of the 

Saffman-Delbruck model for membrane viscosity, equivalent diffusion 

coefficients were determined for the lifetime inferred micro-viscosity values. 

This was to determine whether the solvent based calibration of these particular 

molecular rotors was truly representative of viscosity in more complex 

environments. The diffusion coefficients found through FCS measurements were 

in good agreement with previously reported molecular dynamic simulation 

values. The diffusion coefficients measured through spectroscopic lifetime 

analysis were comparable in magnitude to those from FCS but deviate slightly 

from both the FCS measurements and simulations. This was found to be 

consistent for three different variants of the BODIPY based molecular rotor 

suggesting that all three rotors respond similarly to viscosity. Inherent 

assumptions made through conversion of the measured viscosity to diffusion 

coefficient through the Saffman-Delbruck model may be a source for these 

deviations. The rotors were further analysed as indicators of membrane order 

through incorporation into bilayers made from phospholipids of varying degrees 

of saturation in the hydrocarbon tail region. Systems of pure DOPC, POPC, and 

DPPC represented systems of saturated, partially saturated and unsaturated 
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hydrocarbons respectively. An increase in diffusion coefficients measured by FCS 

was observed when incorporated to more rigid environments as indicated by 

decreasing degrees of saturation. An observed decrease in measured lifetime of 

the molecular rotor suggested that the probes were good indicators of 

membrane viscosity.  

 

6.2.1.  Future work with molecular rotors in artificial bilayers 

To strengthen the argument that the rotors do in fact report on the viscosity of 

the bilayer environment an experiment could be constructed investigating the 

rotors in bilayers of varying hydrocarbon tail lengths. The length of the 

hydrocarbon tails comprising the hydrophobic core of a bilayer influences the 

fluidity of the environment with increasing tail length corresponding to an 

increase in diffusion [198–200]. By incorporating the rotors into bilayers of 

increasing tail lengths it would be reasonable to suggest that the lateral mobility 

would decrease measurable with FCS. If the probe is oriented as suggested in 

[164], with the head group of the probe positioned at the interface between the 

tail and head regions of the lipids, then any increase in lifetime would indicate a 

direct response to increasing viscosity. 

 

The combined FCS-lifetime approach suggests that the measured lifetime values 

respond to changes in local viscosity within simplified lipid bilayers. One area of 

future research interest may focus on dynamic separation of phases in more 

complex bilayer systems. Cholesterol enriched lipid rafts are of increasing 

importance in the context of the model plasma membrane and GUVs represent 

interesting homologues for investigating the physical nature of membranes. Most 

current studies utilise multiple probes to spectrally separate coexisting domains 

of particular lipids in model membranes [52]. The BODIPY based molecular rotors 

present the possibility to not only image coexisting phases through separated 

lifetime values, but can simultaneously offer information on the differing 

physical environments. This can be seen from the preliminary lifetime image in 

Figure 81 of a ternary phase vesicle consisting of DOPC-DPPC-Cholesterol at a 

ratio of 35-35-30 respectively.  
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Figure 81: Confocal FLIM image of DOPC-DPPC-Cholesterol GUV with a lipid ratio of 

35:35:30. Regions of varying lifetime correspond to liquid ordered and liquid disordered 

phases of ternary phase GUV. 

 

It was shown in chapter 5 that when incorporated to supported lipid bilayer 

structures the reported lifetime increased from that of a free standing bilayer. 

SLBs represent systems similar to free standing bilayers but suffer through 

interactions with the substrate surface. There is interest in creating polymer 

based functional surfaces to act as tethered supports for bilayers creating 

systems with similar physical properties to free standing bilayers [201]. Lifetime 

constructed viscosity images could be useful in determining the efficacy of such 

supports with the ability to investigate any lateral heterogeneities within the 

supported bilayer. All current qualification methods for polymer supported 

bilayers rely on spectroscopic information with no information on any potential 

spatial differences. In addition the pixel distribution of lifetime values could be 

useful for investigating properties of the substrate surface, e.g. roughness and 

hydrophobicity. 

 

6.3. TIRF-FLIM system for imaging membrane 
viscosity 

A combined Total Internal Reflection Fluorescence Lifetime Imaging Microscopy 

(TIRF-FLIM) system was constructed for selective lifetime imaging of membrane 

dynamics, in particular viscosity using molecular rotors. The previously described 

through objective TIRFM system was modified to include a set of pulsed laser 



 
 

176 
 

diodes and image intensified CCD (ICCD) camera. The resulting system was 

capable of gated lifetime imaging within a TIRF illumination configuration. The 

system was combined with the lifetime image analysis software package FLIMfit, 

developed at Imperial College London, capable of multi-component exponential 

decay fitting to a recorded Instrument Response Function (IRF). To demonstrate 

the abilities of the system, Supported Lipid Bilayers (SLBs) were deposited to 

glass supports through the adhesion and bursting of Giant Unilamellar Vesicles 

(GUVs). It was found that the physical properties of the supporting substrate 

reduced the mobility within the bilayer as indicated by an increased diffusion 

coefficient measured by FCS. Analysing the lifetime for a low concentration of 

the BODIPY based molecular rotor revealed an increase in lifetime compared 

with that measured in a free standing bilayer. It is understood that frictional 

coupling between the substrate and bilayer can reduced the lateral diffusion of 

phospholipids, and as a results fluorophores, by a factor of 2-3 [191]. The 

increased lifetime suggests that this mechanism also alters the measured micro-

viscosity, further suggesting that the recorded values are indicative of the 

viscosity of the bilayer itself. The TIRF-FLIM principle was demonstrated by 

imaging the SLBs against an increasing background concentration of FITC. The 

surface localised lifetime values of bilayer were distinguishable over a large 

range of concentrations, up to a ratio of 2:1 FITC molecules to BODIPY 

molecules. The basic demonstration suggests that the increased axial resolution 

should be able to distinguish membrane localised signals in a cellular 

environment where selective plasma membrane staining may be difficult or 

temporary.   

 

6.3.1.  Future work for TIRF-FLIM imaging of membrane 
viscosity 

A TIRF-FLIM system was constructed and demonstrated to be able to selectively 

determine the viscosity of a surface localised signal through the use of supported 

lipid bilayers and cellular membranes. The future view for this system is to 

explore its abilities in more physiologically relevant scenarios by investigating 

fluidity changes in cellular membrane systems. Using the charged molecular 

rotor BODIPY ++ it would be of interest to determine precisely the time frame 

over which the system could effectively determine the membrane specific signal 

against an increasing background. In addition it would be of interest in 
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determining the cholesterol based BODIPY rotor’s potential as a plasma 

membrane stain. Other fluorophores based on a cholesterol motif have been 

utilised to investigate changes to the environment of the cell plasma membrane. 

NBD-Cholesterol was previously imaged with FLIM to determine the effect of 

cholesterol depletion on the  lifetime dependencies of the fluorescent probe 

[202]. Using the TIRF-FLIM system the BODIPY molecular rotors will provide an 

effective technique for assessing changes to the plasma membrane under certain 

stresses, such as lipid peroxidation [203] and shear stress [204]. Such a method 

will be useful for research into a wide range of illnesses associated with 

alterations to plasma membrane fluidity [119], [122], [124], [127], [129].  
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