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ABSTRACT

Neospora caninum is an obligate intracellular protozoan parasite that infects a wide 

range of hosts. It is economically important in the cattle industries, since the 

pathologies include abortion and stillbirth of calves. It is primarily transmitted 

transplacentaliy, from dam to calf, and once it enters a herd it is difficult to treat. 

There is a need to develop a transmission-blocking vaccine that also prevents the 

acute pathologies associated with neosporosis. There are several vaccine strategies 

that may be useful including live delivery using attenuated organisms. The use of 

attenuated Toxoplasma gondii has been previously shown to be an efficacious 

delivery vector for heterologously expressed proteins. In this thesis, T. gondii 

tachyzoites are transfected with two genes from N. caninum and their expression 

studied. The specific immune response to N. caninum is measured when mice are 

inoculated with the transgenic T. gondii. The mouse model was carefully chosen to 

have minimum clinical symptoms after inoculation with the untransfected T. gondii.

Several immunodominant antigens of N. caninum have been identified using immune 

serum from infected animals. However, proteins that stimulate a cellular immune 

response ~ thought to be important in the generation of protection against N. caninum 

-  have not been studied in detail. Proteins were separated using one- and two- 

dimensional SDS-PAGE and electroeluted from the gel for use in T-cell proliferation 

assays. Proliferation in vitro o f T-cells from N. cawmww-infected cattle is discussed. 

Protein fractions that stimulated a proliferative response were further analysed by 

mass spectrometry. One fraction was identified as superoxide dismutase from N. 

caninum. The potential of using this protein as a component of a vaccine against the 

acute pathology and vertical transmission of N. caninum is discussed.
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1. INTRODUCTION  

1.1 Discovery oïN eospora canin um

Neospora caninum is an obligate intracellular pathogen first isolated from the central 

nervous system of a dog in 1988, although a previously diagnosed neurological 

disease in dogs was later identified as neosporosis (Bjerkas et al, 1984; Dubey et al, 

1988). It was thought for many years previously that the parasite, a coccidian, was 

Toxoplasma gondii, but the disease was not like that caused by T. gondii, T, gondii 

infects all warm-blooded animals and causes a wide spectrum of disease (Roberts 

and Janovy, 1996). N. caninum appears to be limited to canids as definitive hosts 

(DH) where the parasite undergoes sexual replication and a variety o f intermediate 

hosts (IH) where the parasite replicates asexually (Dubey et al, 1990). Retrospective 

serological and morphological studies have indicated that misdiagnosis of cases o f 

neosporosis in dogs span back several decades (Dubey et al, 1990).

1.2 Classification of A'; caninum

Despite being morphologically similar, and irrespective of the fact that for many 

years they were mistaken as the same organism, T. gondii and N. caninum have been 

shown to be genetically and antigenically different (antigenic differences will be 

discussed in Section 1.8.1). In phylogenetic studies using ribosomal RNA sequences, 

N, caninum was placed in the Sarcocystidae family of the Apicomplexa alongside T, 

gondii (Holmdahl et al, 1994). Holmdahl and colleagues suggested that N. caninum 

was sufficiently close genetically not to warrant being a separate genus from T. 

gondii (Holmdahl et al, 1994). However, in further phylogenetic studies using full- 

length ribosomal RNA sequences, Mugridge and colleagues proposed that N. 

caninum was more closely related to Hammondia heydorni than to T. gondii
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(Mugridge et al, 1999). Mehlhorn and Heydom (2000) proposed that N. caninum 

should be considered to be a strain of K  heydorni, rather than a separate species, 

since they were morphologically inseparable (Mehlhorn and Heydom, 2000).

The majority of the work done in trying to classify N, caninum was carried out using 

ribosomal RNA sequence comparison (Holmdahl et al, 1994; Mugridge et al, 1999). 

A study by Schock et al (2001) used genomic approaches to determine the extent of 

variation between N, caninum and other Apicomplexa. In this work, six strains of N. 

caninum were compared with three strains of T. gondii and a strain of Sarcocystis sp. 

using Random Amplification of Polymorphic DNA (RAPD) PCR. This technique 

uses random primers to amplify regions of DNA from the genome o f the organisms. 

When the results were analysed, it was noted that the N. caninum strains clustered 

together and were distinct from the T. gondii and the Sarcocystis at 222 locations 

(Schock et #^2001). There were an additional 54 markers that could be used to 

identify the individual N, caninum strains, indicating some intra-species variation 

within W. caninum (Schock et al, 2001).

In an attempt to reach a consensus, a consortium of N. caninum researchers proposed 

a redescription of N. caninum in relation to the other cyst-forming coccidian (Dubey 

et al, 2002) based on morphological, antigenic and genetic differences. In this paper, 

the authors identified differences between different cyst-forming coccidia, such as 

oocysts morphology and variations in the 16S ribosomal DNA, and sought to 

characterize each one according to its differences.
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1.3 Classification of T. gondii

There is a significant body of literature examining the intra-species variability in T. 

gondii using genetic and genomic techniques (Lyons and Johnson, 1998; Appleford 

and Smith, 2000; Faezelli et al, 2000; Lehmann et al, 2000; Terry et al, 2001). These 

studies used differences in the sequence and expression of a T. gondii heat shock 

protein (Lyons and Johnson, 1998), intergenic spacer polymorphisms (Faezelli et al, 

2000) and variations in genes encoding for antigens and housekeeping genes 

(Lehmann et al, 2000) to examine the differences in T. gondii strains. Terry and co­

workers (2001) used a PCR-based method to identify differences in the mobile 

genetic elements within the T. gondii genome. Using specific primers, amplification 

of a virulence-associated fragment (only found in avirulent strains) occurred (Terry 

et al, 2001). All these studies suggested variability at a genetic level between 

different strains of T. gondii.

In an early study, Sibley and Boothroyd examined the genotypes of twenty-eight 

virulent and non-virulent strains o f T. gondii (Sibley and Boothroyd, 1992). In this 

study, the authors noted that all the virulent strains tested appeared to be 

genotypically identical, suggesting a single clonal lineage, whereas the avirulent 

strains were polymorphic (Sibley and Boothroyd, 1992). A further study suggested 

that the T. gondii species comprised three distinct clonal lines (Howe and Sibley, 

1995). These three clonal lineages -  Types I, II and III -  differed in their virulence. 

Type I T. gondii was considered to be highly virulent in mice and is characterised by 

the RH strain (Howe and Sibley, 1995). Types II and III T. gondii were considered to 

be avirulent in mice (Howe and Sibley, 1995), The Prugniaud (PRU) strain was 

considered to be a Type II strain.
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1.4 Life Cycle oïN . caninum

1.4.1 Definitive and Intermediate Hosts

The life cycle of N. caninum is very similar to that of T. gondii. Like T. gondii, N. 

caninum can infect many different animals (Table 1.1). Unlike T. gondii, however, 

N. caninum is not thought to be a human pathogen. No natural human infection has, 

as yet, been reported. A study by Tranas and colleagues (1999) showed that 

seroconversion in humans exposed to N. caninum was possible, although the anti- 

Neospora titre was low with no obvious pathology. There is currently no evidence to 

suggest that human infection with N. caninum causes abortion as it does in cattle 

(Petersen et al, 1999). However, other primates have been successfully infected with 

N. caninum in the laboratory (Barr et al, 1994). In this study, rhesus macaque 

foetuses were inoculated in utero with N. caninum, or pregnant macaques were 

inoculated intramuscularly with N. caninum (Barr et al, 1994). All foetuses were 

identified as being positive by immunohistochemistry and specific antibody titres for 

N. caninum when they were tested ten weeks after inoculation (Ban* et al, 1994). 

This would suggest that primates are susceptible to infection by N. caninum.

Animal Host status
IH: Intermediate Host 
DH: Definitive Host

Reference(s)

Cattle IH (Anderson et al, 1994)
Sheep IH (Dubey and Lindsay, 1990)
Goats IH (Barr et al, 1992; Dubey et al, 1992)
Deer IH (Dubey gf a/, 1996)
Red Foxes IH (Buxton et al, 1997; Almeria et al, 2002)
Coyotes IH/DH (Lindsay et al, 1996; Gondim et al, 2004)
Water Buffalo IH (Dubey et al, 1998; Huong et al, 1998)
Camels IH (Hilali etal, 1998)
Dogs IH/DH (McAllister et al, 1998)
Table 1.1 Known intermediate and definitive host organisms o f# , caninum
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Table LI shows a number of mammalian hosts can act as intermediate hosts and also 

some that are confirmed/suspected definitive hosts. It was not, however, until 1998, 

that McAllister and co-workers discovered that dogs shed the sexual form of the 

parasite, the oocyst, indicating its role as definitive host (McAllister et al, 1998). 

Wild canids, notably coyotes (Canis latrans) have also been identified as definitive 

hosts (Gondim et al, 2004), although others including foxes {Vulpes vulpes) have yet 

to be shown as definitive hosts. Initial experiments showed that when experimentally 

infected by ingestion o f infected mouse placenta, dogs shed small numbers of 

oocysts (Lindsay et al, 1999). However, further experiments showed that when dogs 

were fed infected bovine placenta, they produced significantly more oocysts than 

when they were fed murine placenta (Gondim et al, 2002). This suggests that the 

cyclical transmission of parasites between dogs and intermediate hosts is feasible 

(Gondim et al 2004).

1,4.2 Life Cycle

The life cycle of N. caninum is shown in Figure 1.1. Oocysts spomlate within 24 

hours of excretion (Lindsay et al, 1999) and are taken up by susceptible hosts 

following consumption of contaminated food/water (McAllister et al, 1998). A very 

important mode of transmission is vertically from mother to foetus, which will be 

discussed in more detail in Section 1.6.2. Once inside an intermediate host, the 

oocysts excyst and release tachyzoites. Some of the tachyzoites continue to multiply, 

while others differentiate to bradyzoites and tissue cysts. Switching from tachyzoites 

to bradyzoites is caused by a number of stimuli (Weiss et al, 1999). For example, in 

T. gondii an increase in pH to 8.1 causes bradyzoite switching in T. gondii, as does 

an increase in temperature to 43°C (Soete et al, 1994). The presence o f nitric oxide.
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an important immune effector molecule (reviewed in Bogdan et al, 2000) which is 

produced by interferon y (IFN-y) stimulation of macrophages and natural killer (NK) 

cells increases antigen switching from tachyzoite-specific to bradyzoite specific 

antigens, which indicates stage differentiation from tachyzoite to bradyzoites. It is 

the ingestion of bradyzoites that causes the infection of the definitive canine host.
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1.5 Neosporosis 

L5.1 Disease

Neosporosis is a worldwide disease, and as such the cost o f the disease to agriculture 

is spread throughout the globe. The most important pathology attributed to 

neosporosis is abortion in cattle. Abortions due to neosporosis are caused in several 

ways. A point-source post-natal infection of cattle, often caused by the cohabitation 

of cattle and an infected definitive host, is a common cause of abortion (Dijkstra et 

aU 2001; Dijkstra et al 2002). Alternatively, the recrudescence of a latent infection 

can also produce an increased risk of abortion (Wouda et al, 1999). In this study, 

abortions within a herd occurred in seasonal “storms” caused by a recrudescence of a 

previous N. caninum infection in chronically infected cattle, although there was some 

evidence to suggest a concurrent point-source infection in some of the herds studied 

in this study (Wouda et al, 1999).

Abortions related to N. caninum cause approximately 25% of all bovine abortions 

and stillbirths in California that have known causes (Anderson et al, 1991). In other 

studies, aborted cattle foetuses from California were tested for the presence of N. 

caninum (Anderson et al, 1995). In this study, up to 42.5% of bovine abortions in 

California were attributed to N. caninum infection (Anderson et al, 1995). In a later 

study of a different herd in the United States, 40% of cattle within the herd aborted 

due to a recent previous infection with N. caninum (Jenkins et al 2000).

In the UK, neosporosis has been identified as a significant cause of pathology in 

cattle where up to 12.5% of all bovine abortions in England and Wales may be 

attributed to neosporosis (Davison et al, 1999). Similar results were obtained in
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Scotland, where 15.9% of aborted foetuses contained antibodies to N. caninum 

(Buxton et al, 1997).

1.5,2 Economic Impact

It is evident that abortions due to neosporosis have the potential to be significant 

factors in the competitiveness o f the dairy industry. Some studies suggest that 

infected cattle are three times more likely to abort than uninfected cattle (reviewed in 

Trees et al, 1998) In California, for example, the economic loss associated with N. 

caninum infection is estimated at US$35 million annually (Anderson et al 1991). 

This may be in part attributed to a decrease in milk production. In herds with 

abortion problems, cattle seropositive for N. caninum produce less milk (Hobson et 

al, 2002). The loss of foetuses and rebreeding costs, the cost o f veterinary 

intervention and decreased milk yield are also important economic factors 

(Thurmond & Hietala, 1996; Thurmond & Hietala 1997a; Thurmond & Hietala 

1997b).

It is therefore important to understand the biology of the parasite, and particularly 

how it is transmitted in herd animals. This knowledge could then be used to help 

farmers identify risk factors and reduce their economic losses due to N. caninum.

1.6 Transmission ofN.  caninum

1.6.1 Horizontal Transmission

Horizontal transmission of N. caninum is not a major route of natural infection 

(Davison et al, 1999; Bjorkman et al, 2003). In the study by Bjorkman and
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colleagues, horizontal transmission was estimated to be 22% mean annual rate over 

three years (Bjorkman et al, 2003).

There is evidence to suggest that the presence of a N. caninum-mÎQcXQà. dog on a 

farm increases the likelihood of horizontal transmission of N. caninum (Dijkstra et 

al, 2002). The rate of infection of cattle with N. caninum increases when the dog is 

fed placenta or consumes uterine discharge from a previously infected cow and is 

allowed to defecate near the housed cattle (Dijkstra et al, 2002). In addition to this, 

postnatal infection of calves by ingestion of oocysts may have a small role in 

horizontal transmission (Hietala and Thurmond, 1999). In this study, despite a high 

seroprevalence of N. caninum in the herd, horizontal transmission was estimated at 

less than 1 % because o f the high level of vertical transmission between the dam and 

foetus (Hietala and Thurmond, 1999).

A recent study of bull’s semen has indicated the possibility o f venereal transmission 

o f iV. caninum (Ortega-Mora et al, 2003). In this study, fresh and frozen semen was 

analysed by nested PCR, IF AT and immunoblot for the presence of N. caninum 

tachyzoites. Parasites were found in the cellular component o f the semen, suggesting 

N. caninum infection o f the sperm cells (Ortega-Mora et al, 2003). Whether this 

route is viable or important in the transmission of neosporosis has yet to be verified.

1.6.2 Vertical Transmission

One mode o f infection, not directly dependent on oocysts, is vertical transmission. 

This is the infection of a foetus via the placenta. Vertical transmission has been seen 

in natural infections in cattle and sheep (Anderson et al, 1997; Bergeron et al, 2000;
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Innés et al, 2001; Landmann et al, 2002; Kobayashi et al, 2001), as well as 

experimentally in dogs and mice (Cole et al, 1995a; Cole et al 1995b; Liddell et al, 

1999; Omata et al, 2004). Vertical transmission is important in the maintenance of 

infection within a herd, since the parasite can be transmitted over several generations 

and in successive pregnancies (Davidson et al, 1999). Mathematical models of 

transmission have also shown that vertical transmission has a high probability of 

occurrence -  92.5% of seropositive dams gave birth to seropositive calves (Davidson 

et al, 1999). This would suggest that vertical transmission is an important mechanism 

by which the parasite maintains long-term infection of a herd.

Much o f the work studying vertical transmission has been carried out using cattle. 

Since cattle are difficult and expensive to handle in an experimental situation, as well 

as having long gestation times, mice are also used to study vertical transmission of N. 

caninum. It could be argued, however, that mice are not ideal models for studies of 

this kind, due to differences in gestation times between cattle and mice.

1.6.2.1 Vertical Transmission in Mice

As mice are relatively easy to manipulate in laboratoiy conditions, they were among 

the first animals to be used as a model for vertical transmission in N. caninum studies 

(Cole et al, 1995b). In this study, vertical transmission of N. caninum in BALB/c 

mice was 85%. In a further study o f murine congenital neosporosis, an outbred strain 

of mouse, the Quackenbush mouse was used (Quinn et al, 2002). The Quackenbush 

mouse displayed low pathology during infection and generated a paitially protective 

response, sufficient to prevent vertical transmission (Quinn et al 2002). PCR could
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not detect parasite DNA within foetal tissue derived from the infected pregnant 

Quackenbush mice (Quinn et al, 2002).

1.6.2.2 Vertical Transmission in Cattle

If a cow is infected with N. caninum, the parasite can be passed through the placenta 

to the foetus. As a result of vertical transmission of the parasite, foetuses can be dead 

in utero, resorbed, mummified, autolysed, stillborn or bom persistently infected 

(Dubey, 1999). Persistent infection can be indicated by the calf having identifiable 

symptoms. For example, the calf may be bom underweight and unable to rise. It may 

also have decreased patellar reflexes, ataxia and exopthalia (Dubey, 1999).

The rate of vertical transmission has been estimated using an IgG avidity ELISA at 

85.5% (Bjorkman et al 2003). This result confirmed similar rates of vertical 

transmission that were estimated using another ELISA test that used Ncp38 as the 

antigen in a analogous assay (Schares et al, 2002).

While there are several proposed mechanisms for vertical transmission (discussed in 

Section 1.6.2), it is likely that the matemal immune response plays an important role 

in the progress of the infection by N. caninum.

1.7 Bovine Immunity to N, caninum  Infections

Immune response to N. caninum infection in cattle is dependent on the pregnancy 

status of the dam. Therefore it is useful to separate discussion on the bovine immune 

response to neosporosis into the response in pregnant and non-pregnant cattle.
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1.7.1 Immunity in Non-Pregnant Cattle

Immunity to N. caninum in non-pregnant cattle is associated with both cellular and 

humoral immune responses (Dubey et al, 1996; Lunden et al, 1998; De Marez et al, 

1999; Staska et al, 2003).

Studies have indicated that protective cellular immunity to neosporosis does not 

develop in cattle following infection (Innes et al, 2002). However, later studies 

suggest that there is limited protection to further infection, since cattle 

experimentally infected with N. caninum and later challenged with tachyzoites 

demonstrated reduced pathology (Williams et al, 2003). However, this immunity 

does not protect against vertical transmission of the parasite from the dam to the calf, 

since parasite material was identified within foetal tissue by histological and 

molecular techniques (Williams et al, 2003).

1.7.1.1 Cell-Mediated Response

In the study by Lunden and co-workers (1998), the in vitro proliferative response of 

T-cells to N. caninum crude lysate was measured in calves inoculated with N. 

caninum tachyzoites. A high level of cellular proliferation and an increased IFNy 

production in infected animals compared with the uninfected controls suggested a 

cell-mediated immune response was important in controlling N. caninum infection 

(Lunden et al, 1998).

Since cellular responses are known to be important in the immune response to T. 

gondii (Innes et al, 1995), it was extrapolated that they may also play a role in the 

immune response to N. caninum since the organisms were so similar in their mode of

-14 -



_________________________     Chapter 1

infection (Marks et al, 1998). N  caninum lysate was separated on a one-dimensional 

SDS-PAGE gel and blotted onto nitrocellulose before being used to stimulate CD4^ 

T-cells from N. canmw/w-infected animals. A high level of proliferation was observed 

due to a number of protein fractions, and this was correlated with high levels of IFNy 

production (Marks et al, 1998). T-cell proliferation and increased levels of IFNy have 

previously been shown to be important in the development of a pro-inflammatory 

response against other intracellular pathogens including T. gondii, and it is possible 

that this is also the case in N. caninum infections (Denkers, 1999).

1.7.1.2 Humoral Response

The humoral response to N. caninum infection was further studied by De Marez et al 

(1999). In this study, calves were fed oocysts from dogs and the proliferative and 

humoral response examined by studying N. cüf«/«Mw-specific proliferation of T-cells 

and the levels of circulating antibodies specific to N. caninum. Although proliferation 

by N-caninum-s^Qcïûc T-cells in vitro was observed quickly (within 1 week post­

inoculation), subsequently, N. caninum-spQcific IgGl and IgG2 were observed in the 

blood of infected calves. The role of a humoral response to N. caninum is not full 

understood, but it is thought to be a mechanism by which the host animal prevents 

the tachyzoite, i.e. extracellular, stage of the parasite from invading the host cell 

(Hemphill, 1999).

1.7.2 Immunity in Pregnant Cattle

Pregnancy in mammals causes an immunomodulatory effect, dovm-regulating the 

Thl response to protect the foetus from a deleterious matemal immune response 

(Raghupathy, 1997). In particular, there appears to be an up-regulation of IL-10
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production, which in turn depresses the level of IFNy (Wegmann et al, 1993) 

However, it is the Thl response that has been shown to be important in protecting 

both the mother and foetus from infections by intracellular pathogens such as N. 

caninum (reviewed in Quinn et al, 2002).

In cattle infected mid-gestation with N. caninum, it has been demonstrated that both a 

cell-mediated and humoral response is generated and can be detected in both mother 

and calf (Andrianarivo et al, 2001; Bartley et al, 2004). However, in a further study 

by Almeira et al (2003), it was proposed that increased levels of IFNy together with 

the Th2 cytokine IL-4 that was observed in dams following infection at mid­

gestation may increase the prevalence of transplacental transmission of N. caninum 

(Almeira et al, 2003). Increased IL-4 levels were also observed in a mouse model of 

neosporosis in pregnant mice (Quinn et al, 2004). Since IL-4 and the Th2 response 

are not generally protective against intracellular pathogen infections but are 

important with the maintenance o f pregnancy, it may be that the increased Th2 

responses in N. caninum infections in pregnancy facilitate the transmission o f the 

parasite from mother to calf (Quinn et al, 2004).

1.7,3 M echanisms o f  Vertical Transmission

Understanding the mechanisms of vertical transmission would aid the development 

of treatment to prevent such transmission. Several studies suggest that the matemal 

immune response may have a significant role to play in enabling the vertical 

transmission of N, caninum (Bjorkman et al, 1996; Guy et al, 2001; Innes et al 

2001). Bjorkman and colleagues (1996) demonstrated that N. caninum could be 

transmitted from mother to calf without the presence of a definitive host.
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Furthermore, the work by Guy and colleagues (2001) noted that an increase in the 

levels of N. caninum-spQcific antibodies in the second half of pregnancy coincided 

with increased foetal infection in persistently infected cattle. Innes and colleagues 

(2001) noted a general down-regulation of cell mediated immunity at mid-gestation 

in both infected and uninfected cattle. It was suggested that this reduction in cell- 

mediated immunity, and in particular the reduction in levels of IFNy, might allow the 

recrudescence of N. caninum from tissue cysts. A reduction in the levels of IFNy, a 

cytokine thought to be important in controlling multiplication of N. caninum, could 

allow the parasite to become more active and cause some of the pathology associated 

with Æ caninum infections (Innes et al, 2001).

1.8 Comparison Between T. gondii and N. caninum

1,8,1 Antigenic Differences and Cross-Protective Immunity

Despite being very similar, N. caninum and T. gondii are antigenically diverse. It is 

true, however, that some proteins found in N. caninum have homologues in T. gondii 

(Hemphill et al, 1999). Nevertheless, this does not result in any cross-protective 

immunity in sheep that were immunised with T. gondii and challenged with N. 

caninum (Innes et al, 2001a). There is some evidence to suggest a level of protection 

against lethal T. gondii infection can be provided by vaccinating with live N. 

caninum (Lindsay et al, 1998). However, this protection is relatively limited and 

does not significantly reduce the parasite burden in an animal infected with highly 

virulent T. gondii (Lindsay et al 1998).
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Several classes of antigens have been studied in T. gondii and N. caninum. However, 

for the purposes of this review, the focus will be on two: the surface proteins and the 

dense granule proteins.

1.8.2 T. gondii Surface Proteins

A number of proteins, the TgSAG (surface antigen) proteins, are found on the 

membranes of T. gondii tachyzoites. There are several of these proteins, which are 

anchored to the cell membrane by GPI (glycosylphosphatidylinositol) anchors (Hehl 

et al, 1997) as revealed by surface-labelling studies of laboratory reference strains 

(Couvreur et al, 1988; Tomavo et al, 1989; Tomavo et al, 1996). The dominant 

surface protein is TgSAG 1, which is approximately 30kDa (Burg et al, 1988). It 

plays a role in attachment, mediating contact between the parasite and the host 

(Smith et al, 1995). TgSAGl exists in a dimorphic state, one allele found in Type I 

virulent strains and the other found in Type II avirulent strains (Boothroyd et al, 

1998). Indeed, there seems to be a higher level of TgSAGl mRNA in virulent than in 

avirulent strains (Windeck and Gross, 1996). However, despite this dimorphism, 

TgSAGl is remarkably well conserved. TgSAG3 (43kDa) (Cesbron-Delauw et al, 

1994) is relatively homologous to TgSAGl, having a similar N-terminal signal 

peptide and glycosylphosphatidylinositol anchor attachment site (Nagel and 

Boothroyd 1989; Tomavo et al, 1992; Tomavo et al, 1993). TgSAGl and TgSAG3 

also have 24% overall amino acid identity and 12 conserved cysteine residues 

(Manger et al, 1998). TgSAG3 is thought to be a factor in the attachment o f the 

parasite to the host (Tomavo et al, 1996).
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TgSAG2 (22kDa) (Prince et al, 1990), however, shares no homology with TgSAGl 

and TgSAG3. TgSAG2 has limited polymorphism, however, having 2 alleles that 

differ at 5 nucleotide positions and which generate 4 amino acid changes. These 

changes may account for the differences in antigenicity of TgSAG2 (Parmley et al, 

1994). The role of TgSAG2 is thought to be in apical re-orientation and detachment 

once the tachyzoites have established contact with the host cell surface (Parmley et 

al, 1994). TgSAG3 may play a role in host cell attachment and invasion. When the 

gene for TgSAG3 is knocked out of tachyzoites of T. gondii, they are up to 50% less 

efficient in host cell invasion, reducing their virulence in mice (as demonstrated by 

decreased mortality) by 1000-fold (Tomavo et al, 1996).

There is another important family of surface proteins that may play a role in the 

immune response to T. gondii and of which there are homologues in N. caninum. 

This family is named the “SAG 1-Related Sequences” or SRS’s, of which 161 have 

been identified by homology searches of Genbank and other databases (Jung et al, 

2004). The most abundant molecule o f this family is TgSRSl. It is found on the 

surface of the tachyzoite and is a TgSAGl homologue (Hehl et al, 1997). However, 

TgSRSl is much less abundant than TgSAGl (Boothroyd et al, 1998).

TgSRS2 shows high sequence homology to TgSRSl. The former is highly expressed 

in the avirulent type II and type III parasites, yet there is little expression o f TgSRS2 

in the virulent type I RH strain (Manger et al, 1998). Three other SRS genes have 

been fully characterised in T. gondii (Boothroyd et al, 1997). The members of the 

SRS family show a conserved molecular architecture, which includes conserved 

cysteine residues and hydrophobic regions (Manger et al, 1998). The strongly

-19



_____________________________________________________________________________________ Chapter 1

hydrophobic C terminus suggests that, like TgSAGl (Nagel and Boothroyd, 1989), 

the TgSRSs are GPI anchored (Manger et al, 1998),

1.8.3 N. caninum Surface Proteins

There is a homologue to TgSAGl in N. caninum, which has been named NcSAGl, 

NcP29 (native PAGE) and NcP36 (in reducing SDS-PAGE) (Howe et al, 1998). It is, 

like TgSAGl the dominant surface antigen and is 53% conserved with TgSAGl 

(Howe, Crawford et al, 1998; Howe et al, 1998). There is, at present, no identified N. 

caninum homologue of TgSAG3, and there is only partial EST data on a putative 

NcSAG2 (Genbank Accession Numbers CF797894 and BF824534). TgSRS2 also 

has a homologue in N. caninum, NcSRS2 (Manger et al, 1998). NcSRS2 is also 

identified as NcP43 (Hemphill et al, 1996). NcSRS2 is a possible ligand during host­

cell invasion in tachyzoites as well as cyst rupture and reactivation (Fuchs et al, 

1998). NcSRS2 shows 44% conservation with TgSRS2 (Howe, Crawford et al,

1998), as well as homology to TgSAGl (Kasper et al, 1992) and TgSAG3 (Cesbron- 

Delauw et al, 1994). Recombinant NcSRS2 has been localized to the extracellular 

surface of tachyzoites as well as in the posterior and anterior dense granules 

(Hemphill et al, 1997). Despite the similarity of NcSRS2 to proteins in T. gondii, 

anti-NcSRS2 antibodies failed to react with T, gondii (Hemphill and Gottstein,

1996). In immunisation studies, dogs were vaccinated with recombinant canine 

herpesvirus vector expressing NcSRS2 (Nishikawa et al, 2000). The study 

demonstrated that the dogs seroconverted to recognise the parasite protein. Mice 

immunized with recombinant vaccinia virus expressing NcSRS2 demonstrated 

splenic cell proliferation and a humoral and cellular immune response to NcSRS2 

(Nishikawa et al, 2000). A further study, using recombinant vaccinia virus, also
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expressing NcSRS2, prevented vertical transmission of N. caninum in BALB/c mice 

(Nishikawa, 2001). These studies suggest that NcSRS2 may play an important role 

in protection against N. caninum infection.

1.8,4 Dense Granule Proteins

Dense granules are spherical, electron dense organelles found in apicomplexa 

(reviewed in Blackman and Bannister, 2001). Unlike other apicomplexa-specific 

organelles such as the micronemes and rhoptries, the dense granules are not solely 

positioned in the apical complex, but rather located throughout the cell cytoplasm 

(Carruthers, 1999). The majority of studies of dense granules have been done in T. 

gondii rather than N. caninum.

1.8.4.1 T. gondii

Dense granule (GRA) proteins in T. gondii are, among other things, important for the 

establishment and proper function of the parasitophorous vacuole (PV) (Cesbron- 

Delauw et al, 1994). Some, for example TgGRAl, are secreted into the vacuolar 

space as soluble moieties (Mercier et al, 2001) while others, for example TgGRA2, 

TgGRA4, TgGRA6 and TgGRA9 are located in intravacuolar membranous tubules 

of the intravacuolar membranous network (IMN) (Mercier et al, 2001 ; Adjogble et al 

2004). GRA proteins are also an important component of excretory/secretory 

antigens, which are thought to play a role in the generation of the immune response 

in the host animal (Cesbron-Delauw et al 1994) since they are shown to be protective 

in in vivo challenge experiments using T. gondii (Darcy et al, 1988; Duquesne et al, 

1990). Indeed, most o f the identified GRA proteins in T. gondii (TgGRAl, 2, 3, 4, 5,
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7 and 8) are expressed at a lower level in an attenuated line of type I strain of T. 

gondii compared to the wild-type strain (Nischik et al, 2001).

Nine dense granule proteins have been identified in T. gondii, the most recent 

TgGRA9 by Adjogble et al (2004). All dense granule (GRA) proteins o f T. gondii, 

with the exception of TgGRAl, are associated with either the parasitophorous 

vacuole (PV) or the IMN or both (Carruthers, 1999).

Some TgGRA proteins are very abundant. For example, one study showed that 2% of 

Expressed Sequence Tags (EST) from T. gondii encoded for TgGRAl (Carruthers,

1999) and TgGRA7 represents approximately 0.5% of total T. gondii protein and is 

expressed in strains of all three types of T. gondii (Jacobs et al, 1998). In addition, 

many of the TgGRA proteins have some level of antigenicity.

TgGRA2 is a molecule that is targeted to the IMN (Mercier et al, 1993) and is an 

important virulence factor. When it is knocked out of wild-type tachyzoites, the 

virulence in mice is reduced (Mercier et al 1998). TgGRA2 is a secreted antigen that 

contains at least three B-cell epitopes recognised by IgG from infected humans 

(Murray et al, 1993; Coughlan et al 1995).

TgGRA2 is not, however, the only molecule secreted from the dense granules that is 

recognised by the immune system. TgGRA4 is targeted to the IMN and is 

structurally similar to TgGRA2 (Odenthal-Schnittler et al, 1993; Mevelee et al,

1994). TgGRA4 elicits both a mucosal and systemic immune response following oral 

infection in mice (Mevelee et al, 1998). The epitopes of TgGRA4 are recognised by
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both IgG and milk, intestinal and mucosal IgA (Mevelee et al, 1992). Additionally, 

when the DNA sequence of TgGRA4 is used to immunise mice, it elicits a Thl 

response (Montgomery et al, 1997). This protocol involves the co-injection of 

TgGRA4 DNA and a plasmid encoding for GM-CSF, which seemed to enhance the 

immune response to the target antigen (Xiang et al, 1995). In mice, TgGRA4 

vaccination caused a 62% reduction in mortality after lethal challenge, and induced 

specific anti-TgGRA4 IgG as well as increased lL-12 and IFNy. This suggests that 

TgGRA4 induces a Thl response (Desolme et al, 2001).

An anomaly in the TgGRA proteins is TgGRA7, which has very little homology 

with other proteins in Genbank, including with other dense granule proteins from T. 

gondii, TgGRA7 is 29kDa in size and its sequence contains N-terminal signal 

sequences and repeat motifs that suggests its function as a secreted molecule (Jacobs 

et al, 1998). The molecule possesses a putative transmembrane sequence in its 

primary amino acid sequence, similar to that found in TgGRA4, TgGRA5 and 

TgGRA6 (Schwab et al, 1994). TgGRA7 is secreted into the dense granule where it 

translocates to the PV membrane when the tachyzoite invades the host cell 

(Bonhomme et al, 1998). It has been postulated that a key role for TgGRA? is, in 

concert with TgGRA4, 5 and 6, to form a “molecular sieve” on the membrane of the 

PV, allowing the free passage of small molecules between the cytosol of the host cell 

and the interior of the PV (Carruthers, 1999). TgGRA? does however show some 

homology with a N, caninum dense granule protein, NCDGl (Lally and Jenkins

1997).
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1.8.4.2 N. caninum

There have been few dense granule proteins identified in N, caninum. The GRA 

proteins that have been studied in most detail in N. caninum are homologous to 

TgGRA6 and TgGRA?. NcDGl (Lally et al, 1997) is 33kDa and is shown to have 

42% similarity at the amino acid level to TgGRA? (Fischer et al, 1998; Jacobs et al,

1998). Therefore, it has been recognised as NcGRA? and will be referred to as such 

for the rest of this discussion. NcGRA? is localised in tachyzoite dense granules on 

the tubovesicular network and the PV membrane of N. caninum tachyzoites 

(Hemphill et al, 1998). NcDG2 (Liddell et al, 1998) is smaller than NcGRA? at 

19kDa and has 34% similarity to TgGRA6, and this similarity meant that the 

molecule was renamed NcGRA6. NcGRA6 is associated with the PV membrane of 

N. caninum tachyzoites (Lecordier et al, 1995). NcGRA6 has a higher homology to 

TgGRA6 than TgGRA6 has to TgGRA5, which is further evidence for the close 

relationship between V. caninum and T. gondii (Lecordier et al, 1995).

The close phylogenetic relationship between N. caninum and T. gondii has allowed 

researchers to study the molecular biological characteristics of both organisms 

closely (Howe and Sibley, 1997). The ease by which T. gondii can be genetically 

manipulated has meant that it has become a useful tool in understanding the 

molecular biology of the Apicomplexa (Kim and Weiss, 2004).

1.9 Transfection o f Toxoplasma gondii

Transfection technology has allowed the study o f the expression of genes in T. gondii 

and their relation to the phenotype of the parasite. It has also allowed the possibility 

of heterologous expression in T. gondii of genes from other organisms. Because the
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molecular biology of T, gondii is well characterised, it enables the study of genes 

from other less easily manipulated pathogens, for example N. caninum (Howe and 

Sibley, 1997). There are now several different strategies that can be used to transfect 

T. gondii, each of which requires different selection conditions. Transient 

transfection involves the electroporation of the parasite with a plasmid that encodes 

for a reporter gene. However, this plasmid is gradually lost from the parasite 

population by its lack of integration into the genetic material of the parasite (Soldati 

and Boothroyd, 1993). Stable transformation only occurs when the plasmid is 

inserted into the genome of the cell and is stably replicated (Kim and Boothroyd,

1995).

1.9.1 Transient Transfection

For many years, the ability to transfect an intracellular protozoan parasite was not 

thought possible. There were too many cell membranes to cross -  that of the host cell 

and the parasite cell- and nuclear membrane. This was resolved using a two-step 

approach. Firstly, parasites were separated from the host cell and resuspended in an 

ionic solution that resembled the ionic composition of the cytoplasm of the host cell 

(as used by van den Hoff et al, 1992 when rat cells were transfected). Then, 

electroporation (the process by which an electrical discharge forms a reversible pore 

in the cell membrane, allowing macromolecules including DNA to pass through) was 

achievable (van den H off et al, 1992). These parasites were then used to infect cells 

in culture (Soldati and Boothroyd, 1993). Plasmids that contained the 

chloramphenicol acetyltransferase (CAT) gene with upstream and downstream 

sequences o f the T  gondii gene encoding the major surface antigen TgSAGl could
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be transiently expressed for about 7 days following transfection by electroporation o f 

the parasites (Soldati and Boothroyd, 1993),

1,9,2 Stable Transfection

1.9.2.1 CAT as Selectable Marker

CAT has been used successfully as a selectable marker in bacterial transformations 

(Bums et al, 2000) as an efficient and easily detected alternative to neomycin and 

hygromycin drug resistance markers. Chloramphenicol inhibits prokaryotic protein 

translation, which would suggest its mode of action in apicomplexans to be in 

inhibiting the prokaryotic-like elements in the plastid organelle (Fichera and Roos,

1997) or mitochondrion (Divo et al, 1985; Feagin et al, 1991). Chloramphenicol has 

a strong antiparasitic effect but with a delayed reaction. Also, neomycin and 

hygromycin resistance markers cannot be used since these drugs are toxic to the cell 

monolayer at concentrations that are inhibitory to T. gondii growth (Sibley et al, 

1994). In the presence o f chloramphenicol, however, T. gondii undergoes 2-3 cycles 

of replication before stopping growing (Kim et al, 1993). lOpM chloramphenicol in 

a parasite culture killed 90% of parasites with no noticeable effect on the host cell 

layer (Kim et al, 1993).

1.9.2.2 Dîhydrofolate-Thymidylate Synthase (DHFR-TS) Selection

DHFR-TS is present in T. gondii as part of the folate metabolic pathway (Kovacs et 

al, 1990). The gene products are important targets for chemotherapy since blocking 

the folate metabolic pathway with the use o f anti-folate dmgs pyrimethamine and 

sulphonamide is an effective treatment for toxoplasmosis (Derouin, 2001). Mutations 

in the DHFR-TS gene have generated parasites resistant to this anti-folate treatment
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(Donald and Roos, 1993). Double point mutations at amino acid Asn83, Ser36 or 

Phe245 induce in vitro resistance to pyrimethamine in T. gondii cultures containing 

1 ]liM  pyrimethamine (Donald and Roos, 1993; Roos, 1993). The generation of 

resistance to the anti-folate treatments by T. gondii makes the use of the mutant 

DHFR-TS gene as a selection marker a viable option (Donald and Roos, 1993). The 

mutant gene may also be used as a marker for T. gondii transfections (Donald and 

Roos, 1994).

When T. gondii is electroporated w îth a plasmid containing a mutant DHFR-TS 

gene, the paiasites exhibit transient resistance to pyrimethamine. It is therefore 

possible to select for stably transformed clones with pyrimethamine. By quickly 

killing any parasite that does not contain the mutant DHFR-TS with high levels of 

pyrimethamine, it is possible to isolate stably transfected clones at a relatively high 

frequency (Donald and Roos, 1994). The mutant DHFR-TS integrate throughout the 

genome, yet there is no sign o f homologous recombination with either the DHFR-TS 

locus or the TgSAGl (the promoter used to drive the expression of the mutant 

DHFR-TS) locus. This is due to the lack of long stretches of contiguous DNA for 

homologous targeting (Donald and Roos, 1994).

Despite the ease by which DHFR-TS can be used as a selection marker, it also has a 

major disadvantage. As introducing the mutant DHFR-TS into the genome of the 

parasite causes resistance to pyrimethamine, the generation of pyrimethamine- 

resistant T. gondii is undesirable from a clinical point of view. Pyrimethamine is one 

of few drugs available for use in acute toxoplasmosis and there is a risk, albeit small, 

that pyrimethamine-resistant T. gondii may be released into the environment and
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cause infection that cannot be easily treated. In addition, pyrimethamine-resistant 

parasites represent a hazard for laboratory workers. However, since there are other 

transfection selection markers available, the need to use this particular approach 

should be limited.

1.9.2.3 Complementation o f  Tryptophan Auxotrophy as A Selectable Marker 

T. gondii is naturally auxotrophic for tryptophan (Sibley et al, 1994). In other words, 

the parasite is unable to survive without an exogenous supply of tryptophan. 

Auxotrophy can be used to select for parasites transfected with the Escherichia coli 

trpB gene (Sibley et al, 1994). This gene encodes the p-subunit of tryptophan 

synthase which catalyses the conversion of serine and indole to tryptophan (Hartman 

and Mulligan, 1988). T. gondii transfected with this construct, under the control of 

TgSAGl promoter sequences, can survive in tryptophan-depleted environments 

(Sibley et al 1994). Naturally occurring tryptophan was depleted by interferon y 

(IFNy) treatment and this normally inhibits wild-type parasites (Pfefferkom, 1984). 

TrpB’*' T. gondii (transfected with a plasmid encoding trpB) produce enough 

tryptophan to resist IFNy treatment (Sibley et al, 1994).

When the tryptophan complementation was carried out, a majority of the 

transformants had more than 10 copies of the trpB gene (Sibley et al, 1994). The 

IFNy treatment selected against those parasites that could not produce sufficient 

levels of tryptophan, so perhaps having low numbers of trpB genes did not give high 

enough levels of tryptophan for survival. The level of tryptophan present is also 

dependent on the level o f expression the transfected genes. The trpB gene was under 

the control of the TgSAGl promoter that has previously been shown to be a
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relatively weak promoter (Soldati and Boothroyd, 1993). Had a stronger promoter, 

for example the TgTUB promoter, been used, selection against parasites with low 

levels of transfected trpB may not have been as strong (Sibley et al, 1994)

The advantage of using tryptophan complementation as a selection marker is that 

there are none of the toxicity problems associated with drug resistance markers. 

Wild-type parasites, ones with no predefined genetic background, can be used unlike 

in hypoxanthine-guanine phosphoribosyltransferase selection (Sibley et al, 1994). 

J.9.2.4 Hypoxanthine-Guanine Phosphoribosyltransferase (HXGPRT) Selection 

The use o f selection markers that have little or no deleterious effect on the ability of 

the parasite to survive are of course desirable. In this sense, metabolic markers may 

be the most desirable to use, particularly if they do not appear in the host cell. 

HXGPRT is one such selection marker,

HXGPRT is a key enzyme in the parasite purine salvage pathway (Chaudhary et al, 

2004). Since T. gondii is auxotrophic for purines, the parasite needs to obtain all its 

purines from exogenous sources (Chaudhary et al, 2004). HXGPRT is a 

multifunctional enzyme, catalyzing both the production of inosine monophosphate 

(IMP) and guanosine monophosphate (GMP) from hypoxanthine and guanine, and 

the conversion of xanthine to xanthine monophosphate (XMP) (Nakaar et al, 2000). 

However, the parasite is not solely reliant on HXGPRT for these products. The 

parasite can utilise the adenosine monophosphate (AMP) deaminase/IMP 

dehydrogenase pathway which catalyses the conversion of AMP to GMP via IMP 

and XMP. Therefore, if  the HXGPRT pathway is disrupted, T. gondii shows no 

apparent phenotype change, since the adenosine pathway provides the adenine
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nucleotides (Donald et al, 1996). AHXGPRT knockouts of T. gondii (i.e. not 

containing a functional copy of the HXGPRT gene) can therefore be created with no 

lethality or change in phenotype. The RH strain of T. gondii had a 1.4kb deletion at 

the HXGPRT locus to produce the knockout strain (Donald et al, 1996). These 

knockouts can be used as the basis for the selection of transfected parasites as 

described below.

HXGPRT selection can either be positive, that is selecting for the presence of 

HXGPRT, or negative. Negative selection selects for parasites that do not contain the 

functional gene by supplementing the growth medium with 6-thioxanthine, a 

xanthine analogue (Donald and Roos, 1998). Positive selection, which for the 

purposes of a transfection marker is more valid (co-transfecting a functional 

HXGPRT gene and the gene of interest and then selecting for the presence of the 

HXGPRT gene product), requires the use of mycophenolic acid and xanthine. 

Mycophenolic acid inhibits the action of IMP dehydrogenase thereby blocking the 

adenosine pathway for adenine nucleotide production (Donald and Roos, 1998). 

This, along with the addition of an excess of xanthine in the growth medium, ensures 

that the only way in which the parasite can obtain GMP is via the HXGPRT 

pathway. Only parasites with a functional HXGPRT, and transfected with the gene of 

interest, can survive.

It should be noted that HXGPRT selection gives lower frequency of transformation 

than by using the pyrimethamine-resistant DHFR-TS alleles (Donald and Roos, 

1993). However, there are no clinical disadvantages to this system unlike the use of 

mutant DHFR-TS. The frequency of stable transformation can be enhanced 10-100
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fold by using flanking sequences derived from DHFR-TS, since this allows for stable 

homologous recombination of the HXGPRT gene into the DHFR-TS locus (Donald 

et al, 1996).

Selection using HXGPRT using normal transfection vectors is a relatively simple and 

effective procedure, yet there is one major disadvantage. A AHXGPRT mutant, it 

could be argued, may be less adapted to its environment and so may not be as 

evolutionarily competitive compared with wild-type parasites. One way around this 

is to use anti sense HXGPRT RNA. This would block the expression of endogenous 

HXGPRT (Nakaar et al, 2000) in wild-type parasites. Stably transfected T. gondii 

expressing anti-sense hxgprt reduces dramatically the levels of endogenous 

HXGPRT. Parasites attenuated in this way can be recovered by selecting with 6- 

thioxanthine, a subversive substrate of HXGPRT (Pfefferkom and Borotz, 1994).

1.9.2.5 Stable Episomal Shuttle Vector

The development of a transfection vector that is designed to self-replicate is a 

somewhat different manner of studying heterologous gene expression in T. gondii. 

This episomal shuttle vector would require sequences that allow independent 

replication and stabilizing of T. gondii episomes. In other eukaryotic cells, 

autonomous replicating sequences have been isolated (Stinchcomb, 1980; Clyne and 

Kelly, 1997) but these have not been found in T. gondii. In a system designed by 

Black and Boothroyd (1998), a 500 base pair fragment that allowed for stable 

transformation without drug selection pressure was used in complementation 

experiments (Black and Boothroyd, 1998).
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The advantage of using an episomal shuttle vector as opposed to vectors that 

recombine in the genome of the organism is that the probability of inducing a 

mutation is reduced (Black and Boothroyd, 1998). It also allows for relatively easy 

recovery of the construct, which is important if there is association between 

phenotype and genotype. However, for long-term stably transformed cells, 

recombination of the construct is probably more favourable.

1.10 Vaccine Development Strategies

Vaccines are used to protect humans and animals, and indeed plants, against diseases 

caused by viruses, bacteria and parasites. There are several methods used to develop 

vaccines. For the majority of the 200 years since vaccination began (by Edward 

Jenner in 1796), vaccines have consisted of killed or live, attenuated pathogens. 

Examples of killed vaccines include the vaccine against Pertussis and the inactivated 

polio vaccine, while live attenuated pathogens have been used as vaccines against 

measles, mumps and rubella (Plotkin, 1993).

n.

1.10.1 K illed  vaccines

Killed vaccines, as the name suggests, consist of dead organisms and thus cannot 

revert to wild-type or replicate. The organisms are inactivated either by heat 

treatment or by chemical inactivation by, for example, formalin or phenol (Murdin et 

al, 1996). Inactivated viral vaccines, for example the killed poliomyelitis vaccine 

(LaForce, 1990) have shown stronger protective responses than killed bacterial 

vaccines (Werzberger et al, 1992). This may be due to the immune response 

generated by dead bacterial vaccines being different to that generated due to a live 

bacterial infection. For example, in a study by Babu et al (2003) the cellular response
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to killed and live Salmonella enteritidis vaccines was examined in vitro. When 

splenocytes from chickens vaccinated with either the killed or live vaccine were 

exposed to S. enteritidis antigen in vitro, the cells from the chicken vaccinated with 

the live vaccine showed highest proliferation (Babu et a/,2003). This may suggest 

that live vaccines induce a better cell-mediated response to homologous challenge 

than killed vaccines (Babu et al, 2003).

1,10.2 Live Vaccines

Live vaccines are generally cell culture attenuated bacteria or viruses, when the 

pathogen is passaged through in v/Vro-cultivated cells many times to attenuate the 

pathogenicity of the organism. This was the method used to develop the attenuated 

live vaccine used extensively against polio (Sabin and Boulger, 1973) and the 

vaccine against measles, mumps and rubella (Stokes et al, 1971). Attenuated 

Mycobacterium bovis - Bacille Calmette-Guérin (BCG) -  was culture attenuated, 

being passaged 231 times in in vitro culture (Weill-Halle, 1957) and has, until 

recently, been highly successful in controlling tuberculosis (reviewed in Kumar et al, 

2003). However there are other attenuated vaccines that are not culture attenuated. A 

temperature-sensitive respiratory syncytial virus vaccine, which used a strain of virus 

that is adapted to growing in higher-than-physiological temperatures (thus being 

attenuated at physiological temperatures) and is therefore attenuated compared to its 

wild-type original, has been developed (McKay et al, 1988). Similarly non-culture- 

attenuated is the typhoid vaccine strain, Ty21a, of Salmonella typhi, which was 

chemically attenuated (Germanier and Fuer, 1975).
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Despite the success o f these attenuated pathogens as vaccines, the advances made in 

molecular biology over the past 20 years have enabled vaccine researchers to 

attenuate pathogens genetically for use as vaccines. By manipulating the genetic 

structure of the pathogen, it is possible to delete partial or full sequences of genes 

that encode for virulence factors. For example, a strain of herpes simplex virus, 

v^hich lacks essential glycoprotein H, generates the same humoral and cellular 

immune responses o f the wild type virus, yet cannot self-replicate so has no 

pathogenic potential (Farrell et al, 1994). Similarly, an attenuated strain of Vibrio 

cholerae in which the gene for the cholera toxin has been deleted has been used to 

vaccinate against cholera (Tacket et al, 1992).

None of these attenuation methods was used in the most successful vaccine 

developed to date -  the smallpox vaccine. In this vaccine, the vaccinia virus that 

caused the cattle version of the disease was used (Baxby, 1965). The virus was 

sufficiently similar to confer protection against the human form of the disease, while 

not being pathogenic (Henderson, 1977). There are problems, however with using 

animal pathogens to combat human diseases, especially if the vaccine strain is 

obtained from in vivo cultures. There may be a risk of mutation of the non- 

pathogenic animal strain into a human pathogen for which there is no natural 

immunity. It has been suggested that the human immunodeficiency virus is a strain 

of the simian version of the virus that crossed the species divide when monkeys were 

being used to trial oral poliovirus (de Cock, 2001). The non-pathogenic simian strain 

mutated and proliferated in a host with no natural immunity. However, this has yet to 

be verified (de Cock, 2001).
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Perhaps a safer method of developing vaccines is not to use the whole pathogenic 

organism: rather to use the antigens that stimulate the immune response in the event 

of a challenge to the host animal. One way of achieving this is to use purified 

bacterial, viral or parasite proteins, polysaccharides or other pathogen-derived 

molecules identified either through immunological screening using cellular 

proliferation or antibody assays (Marks et al, 1998; Hemphill et al, 1999), or through 

homology to similar known antigens. These molecules can either be obtained by 

purification of cultures or by being expressed as recombinant molecules (Liljeqvist 

and Stahl, 1999). Non-recombinant sub-unit vaccines are not generally used 

commercially due to the high manufacturing costs, as well as the difficulties of 

culturing vast quantities of pathogenic organisms (Liljeqvist and Stahl, 1999). This is 

the main reason that recombinant sub-unit vaccines have become increasingly 

popular.

1.10,3 Recombinant Sub~Unit Vaccines

The first commercially available recombinant sub-unit vaccine was against the 

hepatitis B surface antigen (HBSA), which was first released in 1986 (Liljeqvist and 

Stahl, 1999). This vaccine consisted o f the gene encoding for HBSA that was 

inserted into Saccharomyces cerevisiae, which is normally non-pathogenic in 

humans (Valenzuela et al, 1982). The advantages of using recombinant sub-unit 

vaccines are many. In general, they are cheaper and easier to manufacture, they do 

not require mass cultivation of potentially lethal pathogens and it negates the risk of 

a reversion to wild-type or an incomplete attenuation o f the pathogen (Liljeqvist and 

Stahl, 1999). Also, the delivery can be tailored to ensure the immune response is
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optimal, for example by using the appropriate delivery of the antigen, whether it is a 

live delivery system, one using particulate delivery, or a killed delivery.

The optimisation of recombinant protein expression is essential if the vaccine is to be 

as effective as possible and many tools have been developed to achieve this 

(Makrides, 1996). The manufacturing of recombinant protein for vaccines has also 

been optimised, to include the use of fiision proteins to increase the immunogenicity 

of the target peptide (Sj blander et al, 1997) and the engineering of the target protein 

to increase solubility (Murby et al, 1995). The final optimisation step produces 

strongly immunogenic peptides which, when delivered with an adjuvant or other 

carrier molecule, shows strong protection against the pathogenic organism (Hsu et al, 

1996; Simard et al, 1997)

Recombinant protein vaccines can be produced in many different cell types 

(Liljeqvist and Stahl, 1999). As mentioned earlier, the recombinant hepatitis B 

vaccine is produced in S. cerevisiae (Valenzuela et al, 1982). There are other 

eukaryotic expression systems available including mammalian cell lines to transgenic 

plants and animals (Geisse et al, 1996). These eukaryotic expression systems are not 

as commercially viable as using yeast or prokaryotic expression vectors.

By far the easiest and most commercially viable method o f producing recombinant 

protein is in bacteria. This is because of a good understanding of bacterial genetics 

and the associated tools for genomic manipulation, as well as the ease of culturing 

large quantities of organisms (Makrides, 1996). For these reasons, E. coli is by far 

the most utilised bacterial production vector (Makrides, 1996). Nevertheless, other
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bacteria have been used to produce recombinant protein for vaccines. These include 

Salmonella typhimurium, which expressed the G glycoprotein from human syncitial 

virus (Martin-Gallardo et ah, 1993) and Bacillus brevis that was used as an 

alternative production vector to the transgenic potato and expressed cholera toxin B 

(Ichikawa et ah, 1993).

Despite the efficacy of recombinant protein sub-unit vaccines in combating many 

infectious diseases such as cholera (Ichikawa et al, 1993) and other Vibrio sp. 

(Toranzo et al, 1997), S. typhimurium (Martin-Gillardo et al, 1993), lyme disease 

(Fawcett et al, 2004) and Tritrichomonas foetus and Campylobacter foetus (Cobo et 

al, 2004), there was still a problem of optimising the immune response against, 

primarily, intraeellular organisms. As stated previously, the best method of 

presenting immunogenic proteins to the immune response was in a way similar to the 

presentation during infection, and that is by using a live delivery vector.

1.10,4 Live Delivery Systems

Live delivery systems are similar to live attenuated vaccines in that they utilise whole 

live organisms as a fundamental part of the vaccine. The main difference between 

these two methods of vaccine presentation is that the live delivery system involves 

the presentation o f a heterologously expressed protein, and in that sense they are 

similar to the production vectors of recombinant sub-unit vaccines. Unlike the 

production vectors, however, the organisms used as heterologous expression systems 

are an integral part of the vaccine. There are two main categories of live antigen 

delivery systems used in commercial vaccines at present -  bacterial and viral.
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1.10.4.1 Bacterial

The use of live bacterial vectors has the advantage that, along with generating an 

immune response against the heterologously expressed proteins, they can infect cells 

of the immune system (macrophages and other dendritic cells) and are thus able to 

prime naïve T cells, as in natural infection (Drabner and Guzman, 2001). This is 

essential, since the generation of the wrong type of immunity could be damaging to 

the vaccinated animal, perhaps even worse than the disease vaccinated against. For 

example, when a Thl response is required, an intracellular delivery vehicle such as 

Toxoplasma gondii can be used (Ramirez et al, 2001). However, if a Th2 response 

were needed, using such a delivery system would be counter-productive, since 

generation of the wrong T-cell response would, in itself, be detrimental. This is due 

to the differences in which antigens are processed and presented in the animal.

There are several species and strains of bacteria that are currently used either in 

commercially available vaccines (for example BCG) or as models for delivery of 

heterologously expressed antigens such as Salmonella sp. These include 

Mycobacterium species, Salmonella spp. and Streptococcus spp.

BCG has been used previously as an attenuated live vaccine against M. tuberculosis 

(Weill-Halle, 1957). It generates a strong Thl response, indicated by an increase in 

levels o f IFNy, and the stimulation of cytotoxic CD8+ T lymphocytes (Drabner and 

Guzman, 2001). BCG has also been used as a recombinant live delivery vector 

against viral, bacterial, protozoal and metazoal pathogens (Hanson et al, 1995). 

Antigens from HIV (Cirillo et ah, 1995), Borrelia burgdorferi (Miller et al, 1999), 

Leishmania spp. (Flynn et al, 1994) and Schistosoma mansoni (Kremer et al, 1996)
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have all been expressed in BCG with varying degrees of immunity against the 

pathogen shown.

Streptococcus gordonii was one of the first Gram-positive bacteria to be used as a 

live delivery vector. It was transformed with an engineered M6 surface protein from 

Streptococcus pyogenes (Fischetti et al, 1989) which itself expressed the E7 

oncoprotein from human papillomavirus (Pozzi et al, 1992). The transformation, 

utilising homologous recombination into the bacterial chromosome, resulted in a 

stably transfected line of S. gordonii, which expressed the oncoprotein (Pozzi et al, 

1992). This heterologous expression allowed the non-pathogenic species S, gordonii 

to present gene products from the pathogenic papillomavirus to the immune system 

of a mouse and for a specific immune response to occur (Pozzi et al, 1992).

Despite the use of Gram-positive S. gordonii as a live delivery vector, it is Gram- 

negative bacteria that are used commonly as delivery vehicles for heterologous 

antigens (Spreng et al, 2000). A common example is that of the intracellular 

bacterium Salmonella typhimurium, S. typhimurium can be engineered to contain a 

eukaryotic expression vector, and has the ability to transport the vector into the 

cytosol of the host cell (Gentschev et al, 2001). This particular system is perhaps of 

most relevance when vaccinating against parasitic protozoa, for example T. gondii or 

N, caninum, since S. typhimurium is also an intracellular pathogen. The delivery and 

presentation of heterologous parasite antigens will be discussed in more detail later.
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L I 0.4,2 Viral

Viral vectors can also stimulate humoral and cellular immunity, and are easier to 

genetically manipulate to present multiple antigens for presentation to the immune 

system than more complex organisms such as bacteria or protozoa (Flexner et al, 

1988). The main advantage viral vectors have over extracellular bacterial delivery 

systems is the intracellular expression of the virally-delivered antigen, which is 

processed via the MHC class I pathway (Liljeqvist et al, 1999). Extracellular bacteria 

phagocytosed by the host cell are processed via the MHC class II pathway (Liljequist 

eta l, 1999).

The earliest, and most widely used, system for delivering heterologous antigens used 

the vaccinia virus as a vector (Mackett et al, 1982). The vaccinia virus has been used 

as a vector for delivery of vaccine antigens in commercially available vaccines as 

well as a vector for delivery o f candidate antigens in pathogen research. A 

recombinant vaccinia virus expressing rabies antigens was used in large-scale 

eradication programmes with good effect (Brochier et al, 1991).

1.10,5 Nucleic A cid  Vaccines

A  more recent addition to the vaccine armoury against pathogens is the development 

of the nucleic acid vaccine. In one of the first studies of efficacy, a protective 

immune response against influenza A virus was detected in animals previously 

immunised with the DNA encoding for a gene from the pathogenic virus 

(Montgomery et al, 1993). The use of DNA to vaccinate against pathogens has been 

widely used (reviewed in Clarke and Johnson, 2001) while the use of RNA, an 

intrinsically less stable molecule than its deoxyribose counterpart is still relatively
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novel (Liljeqvist et al, 1999). This may be due to the fact that, because RNA is so 

transient and unstable the ability to generate a long-term immune response is limited 

(Liljeqvist et al, 1999). However, Ying and colleagues have demonstrated the 

effectiveness of using self-replicating RNA molecules as a vaccine to protect against 

tumour challenge in mice (Vine et ai, 1999). DNA vaccines are also thought to 

induce a Thl response, which is important in intracellular pathogen infections such 

as Leishmania major (Piedrafita et al, 1999)

1.11 Vaccines Against T. gondii and N. caninum

There are currently limited numbers o f vaccines against protozoan parasites, all of 

which are for veterinary use only, and are primarily against apicomplexan parasites 

(reviewed in Jenkins, 2001). Several strategies have been used to vaccinate animals 

against T, gondii and N. caninum, with varying degrees o f success.

1.1 L I  T. gondii

Several different strategies have been employed to produce a successful vaccine 

against T. gondii (reviewed in Bhopale, 2003). Early studies suggested that a live 

attenuated vaccine was more efficacious than a killed vaccine, since a live vaccine 

was more likely to be processed by the MHC I pathway and presented to the immune 

system in an efficacious manner, and recommended the study of the attenuated ts-4 

strain of T. gondii as a potential vaccine strain (Waldeland and Frenkel, 1983).

1.11.1.1 Attenuated Vaccines

The only commercially available T. gondii vaccine (Toxovax®) is based on an 

incomplete strain of T. gondii (S48) that does not produce oocysts (Buxton and
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limes, 1995). This vaccine has been shown to provide protection against abortion in 

sheep (Buxton et al, 1993) after oral challenge with oocysts of T. gondii. The vaccine 

enabled the development of a specific protective humoral and cellular response to T. 

gondii challenge (Buxton et al, 1994; Wastling et al, 1995). The protection to sheep 

that is provided by vaccination by this method appears to be relatively specific. 

Sheep that were vaccinated with Toxovax® were challenged with N. caninum 

tachyzoites but, despite demonstrating a cellular immunological cross-reactivity and 

an increase in IFNy production, there was no protective immunity to N. caninum 

(Innes et al, 2001). Other methods of immunisation were therefore required for N. 

caninum infections.

However, Toxovax® is limited to veterinary use, because it is based on a live 

pathogen and therefore would not be eligible for licensing for medical use. Other 

vaccine strategies need to be considered. Among these strategies is the use of 

recombinant sub-unit vaccines and DNA vaccines.

1.11.1.2 Recombinant Sub-Unit Vaccines against T. gondii

Several antigens have been suggested as potential vaccine candidates against T. 

gondii (reviewed in Jenkins, 2001). Among these are the major surface antigen 

(SAGl), which when administered with recombinant IL-12 gave significant 

protection against T. gondii challenge, reducing the parasite load in the brain, 

compared to the non-vaccinated control mice, by 40% (Letscher-Bru et al, 1998). 

Recombinant SAGl, when used as a vaccine with alum as the adjuvant generates a 

significant protective response against tachyzoite challenge (Petersen et al, (1998).
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SAGl has also been used as the antigen in DNA vaccination studies (Nielsen et al, 

1999) (see Section 1.11.1.3).

1.11.1.3 DNA Vaccines

DNA vaccination with SAGl has had varying degrees of success (Nielsen et al, 

1999; Angus et al, 2000). In the work by Nielsen and colleagues, mice were 

immunized with plasmids containing the gene sequence for SAGl before being 

challenged by the Type I virulent RH strain o f T. gondii. The mice vaccinated with 

the SAGl plasmid were almost completely protected against challenge (80-100% 

protection), compared to the 80% mortality seen in the control mice that were 

immunized with empty plasmid (Neilsen et al, 1999). In contrast to this, the study by 

Angus and co-workers (2000) showed that there was no protection against challenge 

by RH strain T. gondii in mice vaccinated with a plasmid containing SAGl (Angus et 

a, 2000). Variations in mouse strain (Neilsen et al used BALB/c mice; Angus et al, 

used C57B1/6 mice) and virulence of different cultures o f RH may be the cause of 

these divergent results.

Other antigen genes used in DNA vaccination against toxoplasmosis have been tried, 

including dense granule proteins GRAl and GRA2 and rhoptry protein-2 (ROP2) 

(Vercammen et al, 2000). Variation in the mouse strains used appears to play a role 

in the development of a protective immune response when vaccinated with plasmids 

encoding G RAl, GRA2 or ROP2. Both BALB/c and C57B1/6 mice did not show 

signs of protective immunity, whereas C3H mice immunized with these plasmids had 

protection against challenge with oocysts of two strains o f T. gondii (Vercammen et 

al, 2000).
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1.11.2 N, caninum

Vaccination against neosporosis is primarily aimed at preventing abortion and also 

vertical transmission in cattle. The stimulation of immunity by different adjuvants 

has been studied to try and prevent vertical transmission in cattle (Andrianarivo et al, 

1999), though the experiments by Andrianarivo and colleagues (1999) failed to 

generate protection against challenge by N. caninum. Sheep were vaccinated with 

whole N. caninum tachyzoite lysate and challenged with live parasites and stimulated 

a partially protective humoral response (O’Handley et al, 2003).

The procedure described by O’Handley et al (2003) was also used to vaccinate mice 

(Liddell et al, 1999; Nishikawa et al, 2001; Liddell et al, 2003). Liddell and 

colleagues (1999) immunised BALB/c mice with crude N. caninum lysate along with 

a commercial adjuvant and then challenged with live parasites. There appeared to be 

complete protection against vertical transmission (Liddell et al, 1999).

Nishikawa and co-workers (2001) used recombinant vaccinia virus expressing 

NcSRS2 as a delivery vector for immunising BALB/c mice to protect against 

challenge by live parasites. This produced a protective cellular and humoral response 

and was effective in preventing vertical transmission (Nishikawa et al, 2001). Liddell 

and colleagues vaccinated BALB/c mice with a DNA vaccine encoding for NcGRA7 

and NcHSP33 (Liddell et al, 2003). This generated partial protection against vertical 

transmission. Both NcSRS2 and NcGRA7 are discussed in more detail in Sections

2.1.2.5.1 and 2.1.2.5.2.
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It should be noted that there is a commercially available vaccine for N. caninum 

(Neoguard® (Intervet)), a vaccine made of whole killed N. caninum tachyzoites in 

conjunction with a proprietory adjuvant. There are data to suggest that the vaccine 

does generate some immunity against challenge with N. caninum that prevents 

abortion in cattle (Choromanski et al, 2001). A further large scale field trial using 

876 cattle in Costa Rica suggested that the use of the vaccine reduced the abortion 

rate two-fold (Romero et al, 2004).

1.12 Aims and Objectives

The work in the following chapters seeks to generate a stable transfection of T. 

gondii with N. caninum genes. These were then used to investigate immunodominant 

antigens of N. caninum, and in particular study the immune response in small animal 

models to these antigens, when the antigens are delivered using a live delivery 

vector, transgenic T. gondii. In addition to this, novel antigens that stimulate a 

proliferative response in vitro by T-cells from N. cûffîmww-infected cattle are 

identified by mass spectrometry. Thus, the aims and objectives of the work presented 

in this thesis are:

• Produce and characterise transgenic T. gondii that express proteins of N. 

caninum.

• Assess the efficacy of transgenic T. gondii as a delivery vehicle for N. 

caninum proteins for stimulation of a specific immune response to N. 

caninum in a small animal model.

•  Use a combination of proteomic technologies and immunological assays to 

identify potentially immunodominant proteins of N. caninum that may have 

potential as vaccine candidates.
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CHAPTER 2:

TRANSGENIC EXPRESSION OV NEOSPORA CANINUM

DENSE GRANULE PROTEIN-7 {NcGRAT) AND SAG-1 

RELATED SURFACE PROTEIN-2 (NcSRSl)

GENES IN TOXOPLASMA GONDII

0 Clone two N. caninum gene sequences {NcGRA? and NcSRS2) into a 

transfection vector that will enable the expression of the N. caninum 

protein in tachyzoites o f T. gondii.

0 Transfect T. gondii with the transfection construct and generate stable 

transfectants.

0 Analyse and characterise these transfectants for stability and presence of 

the transgene by molecular and immunological techniques.
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2.1 INTRODUCTION

2.1.1 Transfection of T. gondii

T. gondii has been used previously to study the expression of genes from other 

Apicomplexa, such as Plasmodium sp. (Cristina et a/. 1999) and other parasitic 

protozoa such as Leishmania sp. (Ramirez et al, 2001). In the case of Plasmodium, 

the use of T. gondii for transgenic studies was initiated due to the difficulty of 

transfecting Plasmodium sp. and the relative ease by which T. gondii can be 

transfected, though advances in Plasmodium transfection have been made recently 

(Wang et al. 2002). There are several methods available to transfect T. gondii 

tachyzoites with genes from other organisms, including the complementation of 

tryptophan auxotrophy (Sibley et al 1994); the utilisation of a drug-resistance 

phenotype at the dihydrofolate reductase-thymidylate synthase (DHFR-TS) locus 

(Donald & Roos, 1993; Donald & Roos, 1994); the use of chloramphenicol acetyl 

transferase (CAT) as a selectable marker of transfection (Soldati & Boothroyd 1993; 

Kim, et al 1993); and selection based on the presence or absence of an active 

hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) gene 

(Donald, et al. 1996; Donald & Roos 1998; Nakaar et al. 2000).

It was this latter strategy, based on the presence of an active HXGPRT gene that was 

used in the following studies. A diagrammatic representation of this transfection 

strategy is show in Figure 2.1.
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2.1.1.1 Complementation o f  HXGPRT knockout T. gondii tachyzoites

Selection using complementation of HXGPRT -deficient tachyzoites with a gene 

encoding for an active HXGPRT enzyme can be either positive (that is, selecting for 

the presence of the active HXGPRT) (Pfefferkom & Borotz 1994) or negative 

(selecting for the absence of the gene) (Ullman & Carter 1995).

Since T. gondii is auxotrophic for purines, the parasite requires the uptake of these 

compounds for survival and so the parasite has evolved a degenerate system to 

ensure that it will obtain sufficient purines, irrespective of the growth environment 

(Chaudhari et al, 2004). The parasite has two mechanisms by which it can obtain 

guanosine monophosphate (GMP), a necessary component of nucleotide 

biosynthesis. These are shown in Figure 2.2.

IMPAMP GMPXMP

Guanine

Xanthine

Hypoxanthine

Figure 2.2 Schematic diagram of the two metabolic pathways used by Toxoplasma 
gondii to ensure a supply o f guanosine monophosphate (GMP). Adenosine 
monophosphate (AMP) is metabolised to inosine monophosphate (IMP) by AMP 
deaminase (1), which in turn undergoes metabolism to xanthine monophosphate 
(XMP) by IMP dehydrogenase (2). XMP is finally metabolised to GMP by XMP- 
glutamine aminotransferase (3). GMP is also produced by the combination of 
hypoxanthine and guanine in the presence o f HXGPRT (4). Xanthine is the initial 
precursor o f hypoxanthine. Mycophenolic acid inhibits IMP dehydrogenase (at 
hatched arrow) Adaptedfrom Chaudhari et al, 2004

In T  gondii tachyzoites, both the AMP->IMP->XMP->GMP and (hypoxanthine + 

guanine)-»GMP pathways are operational. In HXGPRT knockout parasites
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(AHXGPRT), however, only the former is active. This is the basis for the selection. 

When AHXGPRT tachyzoites are transfected with the HXGPRT and then allowed to 

grow in medium supplemented with mycophenolic acid (MPA) and xanthine only the 

parasites that contain the active HXGPRT gene will survive (Pfefferkom and 

Borowitz, 1994; Donald and Carter, 1996). MPA is an inhibitor o f IMP 

dehydrogenase, which in turn stops the metabolism of IMP to XMP and hence the 

production of GMP by this route. Xanthine is a precursor of hypoxanthine so by 

adding xanthine in the cultures increases the levels of hypoxanthine available to the 

parasite. If the active HXGPRT gene is co-transfected with another gene this gene 

may also be expressed by the selected parasites.

2,1.1.2 Restriction Enzyme-M ediated Transfection

Transfection of T. gondii and other organisms is aided by Restriction Enzyme- 

Mediated Integration (REMI), originally used in transfection o f Saccharomyces 

cerevisiae (Manivasakam & Schiestl, 1998). REMI-based transfection, as the name 

suggests, has a particular restriction enzyme added to the transfection mix. In T. 

gondii, BamHI (the enzyme used by Manivasakam and Schiestl (1998)) was shown 

to increase integration of the transfection vector by 2-5 fold, while addition of Notl 

increased integration of the vector by a further 29-46 times over the control in which 

no enzyme was added (Black et al, 1995).

The mechanism by which REMI works is not fully understood. Most reports suggest 

that the integration o f the linearised vector is a simple ligation reaction, when the 

vector inserts into the appropriate sites caused by the restriction enzyme (Kuspa &
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Loomis 1992; Riggle & Kumamoto, 1998). Other studies report that the integration 

is a non-homologous end-joining event (Manivasakam & Schiestl 1998).

2.1.2 Transfection of T, gondiiyfitlï heterologous genes

2.1.2.1 Green Fluorescent Protein (GFP)

Green fluorescent protein (GFP) is a commonly used protein in gene expression 

studies. It originated from Aequoria victoria (Tanahashi et al 1990) and has been 

used in studies of gene expression in T. gondii previously (Striepen et a l  1998). The 

use of GFP has been optimised in T. gondii to allow for fluorescent visualisation 

without the need for multiple-copy insertions, and also to enable GFP to be used as a 

marker for transient transfection (Kim et al, 2001).

2.1.2.2 Escherichia coli P-Galactosidase

P-galactosidase from E. coli is commonly used as a marker molecule for 

transformations (MacGregor et al, 1989). Seeber and Boothroyd (1996) adapted the 

bacterial gene lacZ (which expresses p-galactosidase) to be driven by several T. 

gondii promoters of different strengths to enable the use of the p-galactosidase as a 

marker for transient and stable transformations of T. gondii (Seeber & Boothroyd 

1996).

2.1.2.3 Transgenic Expression o f  Leishmania sp. Genes in T. gondii

T. gondii has been used to express genes from Leishmania sp., for example the 

kinetoplastid membrane protein-11 (KMP-11) (Ramirez et a l  2001). In this study, a 

temperature sensitive T. gondii mutant was transfected using the CAT selection 

system (Soldati & Boothroyd, 1993; Kim et al 1993). The transfected organisms
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were then used in immunisation studies in mice, to see if an immune response could 

be generated against cutaneous leishmaniasis in BALB/c mice. T-cell proliferation 

responses to both the T. gondii vector and the heterologous antigen (KMP-11) were 

observed. When immunised mice were challenged with L. major, the mice that had 

been immunised with the transfected T. gondii expressing KMP-11 showed 

significant immunity against the challenge. The foot lesions in two of this group of 

mice healed. This study indicated that KMP-11 expressed by T. gondii mediated 

partial protection against L  major and that mutant T. gondii, transfected with 

heterologous genes, showed potential as a vaccine delivery system (Ramirez et al 

2001).

2.1.2.4 Transgenic Expression o f  Plasmodium sp. Genes in T. gondii

Until recently, Plasmodium sp. were notoriously difficult to study by transgenic 

approaches. This was though to be primarily due to the high A/T levels in the 

genome (Musto et al, 1995). Nevertheless, tools to transfect malaria parasites have 

now been developed (Waterkeyn et al 1999). However, compared to Plasmodium, 

transfection of T. gondii is still easier to perfonn, better characterised and more 

importantly, transfected tachyzoites are easier to maintain in culture.

In one study, T. gondii was engineered to express the circumsporozoite protein (CSP) 

from the primate malaria P. knowlesi (Cristina et al 1999). This was done to 

determine the efficiency of T gondii as a delivery system for vaccination with 

specific genes from another pathogen, a similar approach to that described in Section

2.1.2.1 for Leishmania KMP-11. T. gondii was transfected with CSP using the CAT 

system. The development of a specific humoral response against the CSP protein 

used in the transfection was observed but without a noticeable antibody response
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against T. gondii (below the World Health Organisation standard positive level of 15 

International Enzyme Units (lU) per ml). This suggested that the CSP transgene was 

the major immunodominant protein expressed by T. gondii tachyzoites, when tested 

in mice.

2A.2.5 Transgenic Expression o fN . caninum Genes in T. gondii

N. caninum genes have not previously been transfected into T  gondii, though the 

reverse has been achieved (Beckers et al, 1997). There should, however, be no 

theoretical barriers to the transfection of T. gondii with N. caninum genes. Since T. 

gondii has been transfected with non-apicomplexan genes successfully, transfection 

with genes from N. caninum which is phylogenetically very close to T. gondii (Ellis 

et al 1994) should be relatively straightforward. The main issue is the choice of 

genes for transfection.

Several antigens of W. caninum have been studied in detail (for a review of them, see 

Hemphill et al 1999). For the studies described below, two immunologically 

important antigens were selected for transfection.

2.L2.5.1 Dense granule protein 7 (NcGRA?)

Dense granule protein 7 (NcGRAJ), also known as N. caninum Dense Granule 1 

(NcDGl) -  submitted to Genbank under Accession Number U82229 -  was first 

identified by Tally and colleagues at the United States Department of Agriculture 

(Tally et al, 1997). They identified it from a cDNA clone that, when expressed as a 

recombinant protein, could be used as a capture molecule for an ETISA to identify N. 

caninum specific antibodies in infected cattle. It is homologous to T. gondii GRA7, a
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29kDa protein shown to be localised to the dense granules by immunofluorescence 

(Bonhomme e/a /  1998).

Dense granule proteins in both T. gondii and N, caninum are highly immunogenic, 

since they are involved in the initial invasion of the host cell by the parasite (Mevelec 

and Chardres, 1992; Fischer and Stachelhaus, 1998). WcGiM 7 has been studied as a 

potential vaccine candidate in mouse models. When BALB/c mice were inoculated 

with plasmid DMA expressing NcGRA7, there was limited protection (54%) against 

vertical transmission following challenge with N. caninum (Liddell et al, 2003). This 

was assessed by comparing the amount of parasite DNA in the mothers and pups by 

PCR (Liddell, et al, 2003)

2.1.2.5.2 Surface Antigen 1 related Antigen 2 (NcSRS2;

N. caninum surface protein p43, also known as NcSRS2 by its homology to T. gondii 

SRS2, was first identified by Hemphill and colleagues (Hemphill et al, 1997) 

(Genbank Accession Number U93870). It has been localised to the surface of 

tachyzoites as well as to dense granules and rhoptries (Hemphill et al. 1996; Howe et 

al, 1998). NcSRS2 is a GPI-anchored protein that contains hydrophobic motifs 

within its structure that indicates putative transmembrane domains (Howe et al 1998; 

S chares et al 2000),

NcSRS2 has been identified as having a role in cell adhesion and invasion 

(Nishikawa et al, 2000). As such it has been identified as a potential vaccine 

candidate (Nishikawa et al, 2001).
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2.1.3 Aims and Objectives

The aims of this chapter are to:

• Clone two N. caninum genes (NcGRA7 and NcSRS2) into a transfection 

vector that will enable the transcription o f the N. caninum protein in 

tachyzoites of T. gondii.

• Transfect T. gondii with the transfection construct and generate stable 

transfectants.

• Analyse and characterise these transfectants for stability and presence of the 

transgene by molecular and immunological techniques.
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2.2 MATERIALS AND METHODS

2.2.1 Parasite Maintainance

T. gondii and N, caninum were maintained by in vitro culture in mammalian cell 

lines. Both parasite species were routinely passaged through African Green Monkey 

Kidney Fibroblasts (Vero cells), a gift from Dr. E.A. Innes, Moredun Research 

Institute, Edinburgh, UK. When creating a cloned line of T. gondii by limited 

dilution, Human Foetal Foreskin Fibroblasts (HFFF) (European Collection of Cell 

Cultures, Porton Down, UK) were used, since they grew slower than Vero cells, and 

hence were more suitable for cloning by limited dilution. HFFF cells also had the 

advantage that they stopped growing due to contact inhibition such that once they 

grew to a confluent layer on the base of the flask proliferation ceased. Vero cells, on 

the other hand continued to grow even after reaching confluency, eventually 

detaching from the flask. Cell lines were passaged as described in sections 2.2.1.2 

and 2.2.1.3.

2.2.1.1 Preparation o f  M edia

2.2.1.1.1 Growth media

Host cells were grown in Iscove’s Modified Dulbecco’s Medium (IMDM) 

(Invitrogen, Paisley, UK) supplemented, in the case of Veros, with 5% (v/v) heat 

inactivated Foetal Bovine Serum (FBS) (Labtech, Glasgow, UK). IMDM used for 

the passage of HFFF cells was supplemented with 10% (v/v) FBS. Both media were 

also supplemented with 100 U/ml penicillin and 100 pl/ml streptomycin sulphate 

(Invitrogen, Paisley, UK). Medium used for the passage of host cell lines was also 

used for the growth of parasites. Prior to use in cell culture, the supplemented IMDM
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was filtered through a Sartolab V500 sterile 0.2 \xm filter attached to a diaphragm 

pump. The medium was stored at 4 °C for a maximum of one month.

2.2.1.1.2 Cryopreservation Medium

Parasite strains were stored in liquid nitrogen until required. They were suspended in 

IMDM containing 10% v/v FBS and 12% DMSO. No antibiotics were added to this 

medium. The cryopreservation medium was filtered through a sterile 0.2 pm 

membrane and stored at 4°C for a maximum of one month.

2.2.1.2 Passage o f  Vero Cells

Vero cells were maintained in 25 cm^ or 75 cm  ̂ vent-capped tissue culture flasks 

(Greiner, UK). When the cells had grown to a confluent monolayer, the growth 

medium was removed and replaced with a 4:1 solution of versine/trypsin (in Hanks’ 

Balanced Salt Solution without calcium or magnesium but containing EDTA). The 

monolayer was incubated in this solution for 10 min at 37 °C. The flask was tapped 

gently to aid the detachment o f the cells from the base. The cells in versine/trypsin 

were transferred to a sterile 50 ml tube. A 20 pi aliquot was removed into an 

Improved Neubauer hamocytometer (Weber Scientific, UK) for later counting. The 

rest of the cells were centrifuged at 1500 x g for 10 min at room temperature. The 

versine/trypsin solution was removed and the cells resuspended at 1x10^ cells/ml. 

Cell suspension (100 pi) was added to 5 ml or 15 ml of growth medium in a 25 cm^ 

or 75 cm^ flask, respectively. The cells were grown overnight at 37 °C in a 5% CO2 

humid incubator before being infected with parasites.
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Vero cells were passaged twice a week, with confluent flasks from the previous week 

used as the source of the cells.

2.2.1.3 Passage o f  H F F F  Cells

Passage and growth conditions of HFFF cells were similar to those o f Vero cells. 

HFFF cells grew to a monolayer at a slower rate than Vero cells, so were less 

suitable for long-term parasite maintenance. The cells were detached from the 

bottom of the culture flask in the same way as described for Vero cells. The cells 

from one 25 cm  ̂ flask containing a cell monolayer were resuspended in 10 ml of 

IMDM supplemented with penicillin, streptomycin and 10% FBS. One ml of this 

resuspension was added to 4 ml (25 cm^ flask) while 3 ml was added to 12 ml (75 

cm^ flask) of growth medium. The cells were then incubated at 37°C in a humidified 

5% CO2 incubator.

2.2.2 Parasite Strains

2.2.2.1 Toxoplasma gondii

The Type II T. gondii Prugniaud strain (PRU) (Martrou et al, 1965) was used as the 

parental strain for transfections with N. caninum genes and was a kind gift from Dr. 

J. Mattsson, National Veterinary Laboratory, Uppsala, Sweden. The strain used was 

a knockout strain (PRUAHX), deficient in a functional hypoxanthine-xanthine 

guanine phosphoribosyltransferase (HXGPRT) gene, the coding region having been 

truncated by homologous recombination (Mattsson, pers. commun.). The PRU strain 

was chosen as Type II strains of T. gondii generally cause less pathology in mice that 

Type I strains (Robben et al, 2004). This may be due to the early production of IL-12 

by macrophages that infection with Type II T. gondii appears to stimulate (Robben et
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al, 2004). Secondly, an HXGPRT-knockout strain was readily available from the lab 

of Dr Mattsson.

2.2,2.2 Neospora caninum

One strain of N. caninum was used throughout. Experiments were performed using 

the NCI strain (Dubey et al 1988), a kind gift from Dr. E. A. Innes, Moredun 

Research Institute, Edinburgh, UK.

2.2.3 Parasite Culture

To ensure maximum infectivity, parasites that were still intracellular were used to 

infect a flask of host cells, either a confluent monolayer in the case of HFFF cells or, 

in the case of Vero cells, a flask containing 1x10^ cells/ml seeded 24h earlier. The 

host cells were mechanically disrupted by scraping them off the flask surface, using 

sterile cell scrapers (Greiner, UK). The medium and cell debris, including the 

parasites, were centrifuged three times at 1500 x g  for 10 minutes, with the 

supernatant being removed and replaced with 10 ml of fresh medium after every 

centrifugation. After the final centrifugation, the parasites were resuspended in 5 ml 

of growth medium, and an aliquot was removed for counting using an Improved 

Neubauer haemocytometer. The host cells were infected at a host:parasite ratio of 1:4 

or 1:5 and incubated at 37°C, 5% CO2 . The parasites were sub-passaged into new 

cells every 72-84 h.

2.2.4 Cryopreservation o f Parasites

For long-term storage, parasites were preserved under liquid nitrogen in 

cryopreservation medium. A minimum of 1x10^ parasites was removed by 

mechanical rupture o f the host cell by scraping. They were centrifuged at 400 x g  for
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5min which pelleted much of the larger host cell debris, whilst leaving most of the 

freed tachyzoites still in the supernatant. This supernatant was removed to a clean 

tube before being centrifuged at 1500 x g  for lOmin. The pellet of parasites was 

washed twice in PBS before being resuspended in 1ml cryopreservation medium. 

This was then placed in an insulated box to ensure a slow freeze and stored at -70°C 

for 16 h, before being transferred to liquid nitrogen.

Once in liquid nitrogen, the parasites could be stored indefinitely. When required for 

tissue culture, they were removed from liquid nitrogen and rapidly warmed to 37°C 

in a water bath before being inoculated into a tissue culture flask with approximately 

4xl0Vml Vero cells. Any parasites that did not invade after 16 h were removed with 

a change to fresh growth medium. This had the added benefit of removing traces of 

DMSO from the cryopreservation medium.

2.2.5 Filtration Harvesting o f Tachyzoites

For all procedures requiring parasite material, whether for parasite nucleic acid or 

protein, one of the major considerations was the removal of host cell debris. 

Differential centrifugation was used as described (Section 2.2.4) to remove large 

particles o f debris. This procedure was not adequate if  the parasites were being 

harvested for DNA or protein preparation. In these instances, the parasites were 

filtered free of host cell debris as described below.

Parasites were passed through a 45 mm diameter filter membrane (Whatman) with a 

3 pm pore size. This allowed tachyzoites to pass through while stopping cellular 

debris. Filtered parasites were centrifuged at 2000 x g  for 10 min, before being
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washed three times in sterile PBS. An aliquot of parasites was removed and diluted 

1:10 in PBS before being counted in a haemocytometer. The parasites were 

resuspended at an appropriate concentration, normally 1-2x10® parasites per ml, 

before being transferred to a sterile 1.5 ml tube. Parasite suspensions were then given 

a final centrifugation at 13,000 x g, the supernatant was removed and the parasite 

pellet either stored at -70°C or resuspended in cell lysis buffer as described below.

2.2.6 Extraction o f Genomic DNA from Tachyzoites

DNA was extracted from 1x10® tachyzoites using G e n o m ic P r e p T w  Cells and Tissue 

DNA Isolation Kit (Amersham Biosciences, Amersham, UK) following the 

manufacturer’s instructions. Briefly, the pellet of tachyzoites was washed by 

centrifugation (13,000 x g  for 10 min) in PBS before being resuspended in 600 pi 

cell lysis buffer (an anionic detergent), in which the tachyzoites were stable at room 

temperature for up to 18 months (according to the manufacturer). When DNA was 

required, 3 pi of RNAse A was added, and the lysed cells were incubated at 37°C for 

15 to 60 min. Protein Precipitation Solution (300 pi) was added, mixed by vortexing 

and centrifuged at 13,000 x g  for 3 min. The supernatant containing the extracted 

DNA was poured into a fresh tube that contained 600 pi isopropanol. This was 

mixed by inverting the tube followed by centrifugation at 13000 x g  for 3 min to 

pellet any DNA that was precipitated by the isopropanol. Ethanol (70% v/v) (600 pi) 

was added to the pellet, and again centrifuged at 13,000 x g  before being air-dried for 

15 min. Another 600 pi of 70% v/v ethanol was added, the tube contents centrifuged 

at 13,000 X g. The pellet was fully air-dried to remove any remnants of ethanol 

before 100 pi of DNA Hydration Solution was added. The pellet was rehydrated 

overnight at room temperature before being stored long term at -20°C. The quantity
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of DNA extracted was assessed by removing a 5 pi aliquot and running it against a 

known quantity on a 1% agarose gel at 120 V for 1 h. This was stained with ethidium 

bromide and visualised under ultraviolet light on a transilluminator.

2.2,7 Production o f Complementary DNA (cDNA)

2.2.7,1 Extraction o f  Whole Cell RNA

Total cell RNA was isolated using Tri Reagent® (Sigma-Aldrich,UK) (containing 

acid guanidinium thiocyanate) according to manufacturer’s protocol. Briefly, 1x10® 

tachyzoites were resuspended in 1 ml Tri Reagent® and 200 pi o f chloroform was 

added and the sample shaken vigorously and allowed to stand at room temperature 

for up to 15 min. The mix was then centrifuged at 12,000 x g  for 15 min at 4°C 

resulting in three distinct layers -  the organic phase, an interface layer and an upper 

aqueous layer. The aqueous layer contained the RNA and this layer was carefully 

aspirated into a fresh tube and 500 pi isopropanol was added, before being allowed 

to stand at room temperature for 10 min. The sample was then centrifuged at 12,000 

x g  for 10 min at 4°C, to pellet the RNA. The pellet was then washed in 1 ml 75% 

(v/v) ethanol in distilled water. The sample was vortexed and then centrifuged at 

7500 X g for 5 min at 4°C and the resulting pellet was air-dried in a laminar flow 

hood for 5-lOmin before being resuspended in 100 pi DEPC-treated water.

To ensure that no contaminating DNA was present, the resuspended pellet was 

treated with 50 U/ml DNAse I (Stratagene). DNAse I is an endonuclease that cleaves 

DNA and removes it from the RNA preparation. The mix was incubated at 37°C for 

30 minutes. The RNA was then stored at -70°C until required.
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2.2.7.2 Reverse Transcription Polymerase Chain Reaction (RT-PCR)

A  mix of 1-2 pg RNA (isolated as described in Section 2.2.7.1 above), 2 pi DEPC- 

treated ddHzO and 3 pi oligo-dT (Stratagene) were incubated at 70°C for 10 min, 

before being allowed to cool to room temperature. This heating inactivated the 

DNAse I as well as encouraging annealing of the primers to the RNA. Once the 

mixture had cooled, 4 pi Reverse Transcriptase Buffer, 2 pi 100 mM DTT, 2 pi 

dNTPs (Stratagene) were added, along with 0.5 pi RNAse inhibitors (Promega) and 

1 pi Reverse Transcriptase (Stratagene). This was incubated at 30°C for 10 min and 

then heated to 42°C for 45 min. The mixture was then heated to 95°C for 5 min to 

denature the enzyme before being cooled and stored at -20°C. The resulting cDNA 

was quantified by running a small (5 pi) aliquot on a 1% agarose gel against a known 

concentration of DNA and visualised as described above

2.2.8 Primer Design and Polymerase Chain Reaction (PCR)

2.2.8.1 Design o f  Specific Primers

Specific primers (Invitrogen, UK) were designed around the 5' and 3' ends o f the 

parasite cDNA sequences to be amplified. These primer sequences (NcGRA7^ 

NeGRA7^, NcSRS2^ and NcSRS2^) are shown in Table 2.1 and contain no 

degeneracy. These primers were used to amplify sequences for subcloning, and also 

for the identification of the presence of transgenes in T. gondii
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PRIM ER NAME SEQUENCE (5'-3'>
NcGRA?*' ATGGCCCGACAAGCAACCTTC
NcGRA?** TTCGGTGTCTACTTCTGCTC
NcSRS2*' AACATGGCGACGCATGCTTGTGTG
NcSRS2‘* TGATCAGTACGCAAAGATTGCCGT
NcGRA? Nsil* TTGatgcatCGACAAGCAACCTTCATC
NcGRA? Pad** CCGttaattaaCTATTCGGTGTCTAGTTC
TOPOSeq*' GATCCACTAGTAACGGCC
TOPOSeq** GTGTGATGGATATCTGCA
PlasmidSeql* TCGAGGTCGACGGTATCGATA
PlasmidSeql** TCACCGTTGTGCTCACT
SAGl-UTR_BglII*‘ CGATagatctGTGATCACCGTTGTGCTCAC
SAGl-UTR N o # CGATgcggccgcTCGGGGGGGCAAGAATTGTG
NcGRA?_.BglII*' CGATagatctAAAATGGCCCGACAAGCAACCTTC
NcGRA7-mvc Belll^ CGATaeatctCTAGAGGTCCTCCTCCGAGATGAGCTTC

TGCTCGCCGCCTTCGGTGTCTACTTCTGCTC
PlasmidSeq2^ CGCGCAAAAGACATCCAACAA
Plasmids eq2*̂ GCACGAAGTGTGTTTTCCTTT
NcSRS2 BgllC CGATagatctAAAATGGCGACGCATGCTTGTGTG
NcSRS2 Bglll^ CGATagatctTCAGTACGCAAAGATTGCCGTTGCA
myc BamHC CGATseatccGAGCAGAAGCTCATCTCGGAGGAGGAC

CTC
myc BamHI^ CGATeeatccGAGGTCCTCCTCCGAGATGAGCTTCTGC

CTC
(a)

PRIM ER SET ANNEALING 
TEMPERATURE (°C)

NcGRA?''/NcGRA?^ 50-65
NcGRA? NsiC/N cG RA? P a c f 55-60
NcSRS2VNcSRS2^ 55-60
NcGRATBglllV NcGRAVmyc-Bglll'^ 55
NcSRS2-BglIlV N cSRS2-Bglir 55
m Y c V m Y c '" *

(b)

Table 2.1 Primer sequences (capitals) including relevant restriction sites 
(lower case) (a) and annealing temperatures (b) of primer sets. Range of 
temperatures indicates that the annealing of the primers was obtained at 
several temperatures in the range.
* This primer set was not used in PCR. The primers were mixed, heated to 
95°C and then cooled to room temperature to anneal into primer dimer.
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2.2.8.2 Design o f  Primers Containing Restriction Enzyme Sites

Primers that were required to contain restriction enzyme recognition sites were 

designed with some degeneracy engineered into both the 5' and 3' ends to allow for 

incorporation of these sites. This was important when the PCR-amplified sequence 

was to be inserted into a cloning vector digested with the same enzymes. The two 

ends of the plasmid and the PCR amplicon containing the restriction enzyme 

recognition sites could then ligate together to form a construct that contained the 

PCR product. Along with the restriction enzyme recognition sequence, an additional 

3-5nt were designed into both forward and reverse primers. These additional 

nucleotides were required to ensure that the restriction enzyme annealed to the DNA 

efficiently, since enzyme annealing (and digestion capability) may be hampered if 

the recognition site was engineered at the end of the DNA molecule.

2.2.8.3 Polymerase Chain Reaction (PCR)

PCR is a technique whereby large quantities of specific sequences of DNA can be 

amplified from a very small number of original copies. A thermostable DNA 

polymerase {Taq) obtained from the extremophile Thermus aquaticus is commonly 

used to amplify copies of DNA from an original single-stranded template in the 

presence of oligonucleotide primers designed to aimeal to the 5’ ends o f the template. 

The primers anneal to the template to create a double strand of DNA. This step is 

done at an optimal annealing temperature worked out for each primer set. The Taq 

polymerase catalyses the attachment of free nucleotide triphosphates, complementary 

to the template strand, to the 3’ end o f each primer. The complex of template DNA 

annealed to the complementary new strand was then denatured (95°C) and both are
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then free to be used as templates. In this way, an exponential number of copies can 

be obtained rapidly.

2.2.9 Subcloning of PCR Products

2.2.9.1 Cloning Reaction

Before being inserted into transfeetion vectors, PCR-derived sequences were 

subcloned by TOPO TA® cloning (Invitrogen, UK). This allowed for the quick 

generation of large amounts of DNA for ligation into transfection vectors, as well as 

enabling restriction digest analysis and sequencing of the insert.

TOPO TA® uses the pCR®2.1 -TOPO® vector. This was linearised with 

topoisomerase I bound to the overhanging “sticky ends” o f the plasmid. The 

linearised plasmid was mixed with approximately 50 ng DNA (in 1-4 pi ddH^O). 

This mix was incubated for 5 min at room temperature and 1 pi of 6 x TOPO® 

Cloning Stop Solution was added immediately to the reaction mix, which was then 

placed on ice.

2.2.9.2 Chemical Transformation o f  Escherichia coli

Chemically competent One Shot® TOP IGF E. coli (Invitrogen) were transformed 

according to the manufacturer’s instructions. Briefly, 2 pi of the cloning reaction 

described above was added to the vial of E. coli and the mix was incubated for 30 

min on ice. The cells were heat-shocked for 30 s at 42°C and then transfeixed back to 

ice where 250 pi of SOC medium was added. The cells were shaken for 30 min at 

37°C before aliquots of between 10-50 pi were transferred to LB agar selection 

plates containing 50pg/ml ampicillin and 40 mg/ml X-Gal in DMF. These were
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incubated overnight at 37°C. Between 10 and 20 positive (white) colonies were 

picked for overnight culturing in selection broth prior to preparation of plasmid for 

restriction digest and sequence analysis. Sequencing of the insert was performed 

using the TOPOSeq^ and TOPOSeq^ primers (Table 2.1)

2.2.9.3 Plasmid Preparation from  Overnight Cultures

Positive white colonies from the transformation were picked into 2-5ml LB Broth 

containing 50pg/ml ampicillin. These were then incubated on a shaker overnight at 

37°C. The plasmids were extracted from the bacterial DNA using the QIAprep® 

Miniprep Kit (Qiagen) according to the manufacturer’s protocol. Briefly, 1ml of 

overnight culture was pelleted at 13,000 x g  for 5min. The pellet was resuspended in 

250pl of supplied resuspension buffer PI (containing 50mM Tris pH 8.0, lOmM 

EDTA and lOOqg/ml RNAse A). An equal volume of Cell Lysis Buffer P2 

(containing 200mM NaOH and 1% SDS) was added to this mix that was then 

inverted 4-6 times to evenly mix the buffers. 350|li1 Protein Precipitation Solution N3 

(a proprietory buffer from Qiagen) was added, and the tube was inverted 4-6 times to 

prevent localised precipitation. The mix was centrifuged at 13000 x g  for lOmin to 

pellet to precipitated proteins. The supernatant containing the plasmid was applied to 

a QIAprep column. This contained a silica-gel membrane that selectively adsorbs 

plasmid DNA in high salt buffer. The plasmids, when passed through the membrane 

by centrifugation at 13,000 x g  for Imin, adsorb to the membrane, with the rest o f the 

supernatant components passing through and being discarded. The column was 

washed by centrifugation (13,000 x g  for Imin) with 500pl Wash Buffer (PBS) to 

remove traces of nuclease activity. The final wash of the column was with ethanol- 

based buffer PE , before the column was transferred to a clean tube and the plasmid
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DNA was eluted using elution buffer EB (10 mM Tris.Cl, pH 8.5) by centiifugation 

(13,000 X g for Imin).

An aliquot of the plasmids (2-10pi) diluted 1:10 and 1:100 in ddHzO was run on 1% 

agarose at lOOV, and visualised with ethidium bromide under UV. When run against 

known standards, this allowed the quantification of plasmid concentration.

2.2.10 Restriction Enzyme Digest Analysis

To confirm the presence of an insert in the pCR®2.1“T0P0® vector, plasmid DNA 

was digested using Eco RI, which has recognition sites at the 5'- and 3' ends of the 

multiple cloning site of pCR®2.1-T0P0®, The digestion of the plasmid with this 

enzyme excised any insert present. The plasmids that showed an excised fragment of 

the appropriate size were subsequently sequenced for further confirmation of the 

insert identity.

2.2.11 Sequencing of Plasmid DNA Inserts

Big Dye® Terminator Sequencing Kit (Applied Biosystems) was used to sequence 

the insert of plasmids. A mix of 8pi Dye Terminator Buffer, 2pl template plasmid, 

Ipl of each of the forward and reverse primers and 8pi ddH^O was made, and 

underwent the following thermocycling reaction: lOsec at 94°C then 5 s at 50°C then 

2min at 60°C, for 25 cycles. Following the sequencing reaction, any unincorporated 

dyes were removed using a Dye-Ex Spin Kit (Qiagen). Briefly, this involved 

resuspending the resin in the spin column by vortexing for 10s, snapping the end off 

the column and placing in a 1.5ml tube. The column was then centrifuged at 75Gx g 

for 3min. The column was transferred to a clean 1.5ml tube, and the sequencing
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reaction was applied to the resin bed. The column was again centrifuged at 750x g 

for 3min. The column was discarded and the cleaned-up reaction was sequenced 

using an ABI Prism Sequencer (Applied Biosystems) (Sequencing of reactions was 

kindly carried out by the Parasitology staff, Intervet International, Boxmeer, The 

Netherlands).

2.2.12 Engineering oipP SO /llG F P  Transfection Vector

The plasmid pP30/llG FP  was used as a backbone for the initial transfection 

experiments (Seeber & Boothroyd, 1996) and was a gift from Dr. J. Mattsson, 

National Veterinary Institute, Uppsala, Sweden. This plasmid contained a T. gondii 

SAG-1 promoter and a gene encoding for green fluorescent protein (GFP). A map of 

this plasmid is at Figure 2.3.

2.2,12.1 Preparation o f  Plasm id fo r  Ligation

The GFP gene was inserted between Nsi I  and Pac 1 restriction sites on the 

pP30/11 GFP. This gene was cut out of the backbone by a sequential restriction 

enzyme digest using these two enzymes, according to the manufactuier’s instructions 

(Promega). Briefly, 50pg of plasmid was mixed with 10% Nsi /  buffer and 10 U Nsi I  

and incubated at 37°C for 4 hours. This mix was run on a 1% agarose gel (lOOV, Ih), 

and the linearised plasmid was excised and extracted from the gel using a Gel 

Extraction Kit (Qiagen). The purified linearised plasmid was resuspended in a total 

of 30pl including 5% Parc /  buffer, 5% bovine serum albumin (BSA) and 10 U Pac I. 

This was further incubated for 4 hours, before being run on another 1% agarose gel. 

A fragment o f -700 bp, equating to the GFP gene, was excised, leaving the
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remainder of the backbone linearised and ready for ligation with a new gene 

sequence, in this case NcGRA 7.
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Figure 2.3 pPSO/llGFP  plasmid backbone, showing location of GFP 
insertion between unique Nsi I  and Pac I  sites, and also the location of 
the T. gondii SAG-1 promoter (SAG-1^)
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2.2.12.2 Preparation o f  NcGRA?

To be compatible with ligation into the linearised plasmid described previously, the 

gene NcGRA? required the addition of an Nsi I  site at the 5’ end and a Pac I  site at 

the 3’ end of the sequence. This was achieved by engineering these sites into 

oligonucleotides specific for NcGRA? as described in Section 2.2.8.2. Table 2.1 

shows the sequences of both NcGRA7_NsiI^ and NcGRA7_PacI^. NcGRA? was 

then amplified by PCR.

The amplified NcGRA? was then inserted into a TOPO TA vector as described in 

Section 2.2.9 and sequenced as described in Section 2.2.11. M13 primers were used 

to sequence across the ligation sites to ensure that the Nsi I  and Pac I  sites were 

intact.

2.2.12.3 Ligation Reaction

The NcGRA? sequence containing the Nsi I  and Pac I  sites was inserted into the 

linearised vector backbone using T4 DNA Ligase. Several vector:insert ratios were 

used to ensure optimal ligation events occurred. A 1:1, 1:2 and 1:5 vector:insert ratio 

was used in mixes that also contained T4 DNA Ligase and buffer (Promega). The 

mixes were incubated at 4°C overnight. The ligation reactions (3 pi) were used to 

transform One Shot®TOP10F Chemically Competent E.coli as described in section 

2.2.9.2.

Plasmids from transformed bacteria, grown overnight in LB broth, were extracted 

using QIAprep Miniprep Kit as described previously. The presence of the insert in 

the plasmid was confirmed by restriction digest analysis. The direction of the insert 

within the plasmid was confirmed by sequence analysis.
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2.2.12.4 PCR Confirmation o f  Presence o f  NcGRA?

Specific primers for NcGRA 7 were used to check if  the ligation described above had 

successfully integrated NcGRA 7 into the plasmid. PCR was performed as described 

in Section 2.2.8.3 using the primers NcGRAV^ and NcGRA7^ and the annealing 

temperatures shown in Table 2.1.

2.2.12.5 Sequence Confirmation

To ensure that the NcGRA? had been inserted into the plasmid in the correct frame 

relative to the promoter, sequencing was performed as described in Section 2.2.12. 

Primers were designed based on the backbone of the plasmid (PlasmidSeql^ and 

PlasmidSeql*^). These can be seen in Table 2.1. The sequencing reaction covered the 

promoter, junctions and 5’ and 3’ ends of the NcGRA? sequence.

2.2,13 pintervet

The pintervet vector (Figure 2.4) was based on a pBluescript backbone with a T. 

gondii tubulin promoter inserted and was a kind gift from Ms N. van Poppel, Intervet 

International, Boxmeer, The Netherlands.

2.2.13.1 The c-myc Epitope Tag

A major difference in this transfection strategy was the introduction of a tagging 

sequence c~myc. The c~myc epitope was derived from the products of oncogenes in 

human cancerous tissue (Constant et al. 2000) and is commonly used as an antibody- 

recognised epitope in recombinant proteins where no monoclonal antibody is 

available for the original protein. The amino acid sequence and possible codons are 

shown in Table 2.2.
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2.2 J  3.1 A  c-myc Optimised fo r  Expression in T. gondii

Like all eukaryotic organisms, T. gondii DNA exhibits codon bias coding. Table 2.2 

shows the amino acid sequence of the c-myc tag, along with all possible codons that 

code for that amino acid. Beside each codon is the percentage usage of that particular 

codon by T. gondii, obtained from the European Bioinformatics Institute (EBI) 

website (www.ebi.ac.uk/parasites/cutg.html). The c-myc tag designed for optimal use 

in T. gondii, taking into account the codon bias, is shown.

2.2.13.1.2 Insertion o f  c-myc Tag Using Oligonucleotide Primers

The optimised gene sequence for the c-myc tag was designed into the reverse primer 

to ensure that when the amplified gene was expressed, the c-myc tag was also 

expressed (see Figure 2.5). It was also necessary to ensure when engineering the c- 

myc epitope into the gene sequence not to insert the tag into sequences important for 

the function of the protein. For example, any membrane targeting sequences or 

cleavage sites were avoided as potential sites o f integration of the c-myc tag.

2.2.13.1.3 Insertion o f  c-myc Tag into a Gene Sequence by Ligation

The presence of targeting sequences at the 3' end o f the amplified sequence of 

NcSRS2 meant that the use o f engineered primers was not possible. In this case, a c- 

myc dimer was created with a restriction enzyme recognition site engineered into the 

5' and 3' ends. This restriction enzyme would also have a recognition site once 

within the coding sequence of the gene o f interest. The gene was cut with Bam H I 

and the c-myc primer dimer was ligated into this site using T4 DNA Ligase 

(Promega). This allowed for the insertion o f a c-myc tag within the coding region o f 

the gene (Figure 2.6).
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2,2,13.2 Engineering Transfection Vector with NcGRA7

2.2.13.2.1 Preparation o f Vector Backbone

Figure 2.7 shows the strategy employed to create the transfection vectors that 

encoded for NcGRA 7 and NcSRS2. The pintervet plasmid was cut at the Bgl II  and 

/  restriction sites indicated, using lOU of each enzyme in buffers according to the 

manufacturer’s instructions (Promega). This removed the Tr gene and 3 ’ 

untranslated region (UTR) of DHFR. The 3’-UTR of T. gondii SAG-1 was amplified 

using primers with Bgl II and Not I  sites engineered into the forward and reverse 

primers respectively. These primers are shown in Table 2.1 (SAGI -UTR Bglll^ and 

SAGl -UTR Notl^). This was ligated as previously described in Section 2.2.12.3 into 

the cut linearised pintervet backbone to form plntervet2.

2.2.13.2.2 Preparation o/NcGRA7

The NcGRA? coding sequence was amplified using primers containing a Bgl II  site at 

both the 5’ and 3’ ends, as well as the coding sequence for a c-myc tag at the 3 ’ end 

(see Section 2.2.13.1.2 above). The primers used are shown in Table 2.1 

(NcGRA7_Bgllf and NcGRA7-mvc Bglll^). This sequence was ligated into the 

plntervet2 as described in Section 2.2.12.3. The plasmid was then used to transform 

E. coli and purified as described in Sections 2.2.9.2 and 2,2,9.3.

2.2.13.2.3 PCR Confirmation o f  Presence o/NcGRA7

Specific primers for NcGRA 7 were used to check if the ligations described above had 

successfully integrated NcGRA 7 into the plasmid. PCR was performed as described 

in Section 2.2.8.3 using the primers NcGRA7^ and NcGRA7^ and the annealing 

temperatures shown in Table 2.1.
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2.2.13.2.4 Sequence Confirmation

To ensure that the NcGRA? had been inserted into the plasmid in the correct 

orientation relative to the promoter, sequencing was performed as described in 

Section 2.2.11. Primers were designed based on the backbone o f the plasmid 

(PIasmidSeq2^ and PlasmidSeq2^). These can be seen in Table 2.1. The sequencing 

reaction covered the promoter, junctions and 5’ and 3’ ends of the Â cGÆ/4 7 sequence 

including the c-myc tag.

2.2.13.3 Engineering Transfection Vector with NcSRS2

A similar strategy was used to engineer pintervet to express NcSRS2. The plntervet2 

backbone was prepared as described in Section 2.2.13.2.1.

2.2.13.3.1 Preparation o/NcSRS2

NcSRS2 was amplified using primers designed with Bgl II  sites engineered at both 

the 5’ and 3’ ends, to allow ligation with plntervet2. This was done using primers 

NcSRS2_BglII^ and NcSRS2_BglII^ (Table 2.1). The amplicon was then cut using 

Bam HI, which cut once in the sequence.

2.2.13.3.2 Insertion o f  c-myc tag

Insertion of a c-myc tag was performed as described in Section 2.2,13.1.3. The c-myc 

primer dimer was prepared by mixing 1 pi of each of the myc Bam H f and 

mvc BamHI^ primers (lOOmM solutions). The primer sequences are shown in Table 

2.1. The primer dimer was ligated into the Bam H I site within the NcSRS2 as 

described in Section 2.2.12.3.
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2.2.13.3.3 Ligation <9/NcSRS2 into pliitervet2

Ligation of the NcSRS2 containing the c-myc tag into the plntervet2 backbone was 

carried out as described in Section 2.2.12.3.

2.2.13.3.4 PCR Confirmation o f  Presence o/NcSRS2

Specific primers for NcSRS2 were used to check if the ligations described above had 

successfully integrated NcSRS2 into the plasmid. PCR was performed as described in 

Section 2.2.8.3 using the primers NcSRS2^ and NcSRS2^ and the annealing 

temperatures shown in Table 2.1.

2.2.13.3.5 Sequence Confirmation

To ensure that the NcSRS2 had been inserted into the plasmid in the correct frame 

and orientation relative to the promoter, sequencing of the NcSRS2 within the 

plasmid construct was performed as described in Section 2.2.11. Primers were 

designed based on the backbone of the plasmid (PlasmidSeq2^ and PlasmidSeq2*^). 

These can be seen in Table 2.1.

Sequencing was also carried out using the specific NcSRS2 primers NcSRS2^ and 

NcSRS2^ to indicate whether the c-myc tag had been inserted within the NcSRS2 

sequence in the correct alignment.

2.2.14 Selection Vector

Transfected parasites contained both the vector containing the gene of interest as 

well as the positive selection vector pMINI. pM INI contained a functional copy of the 

T. gondii HXGPRT gene which was knocked out of the parasites used in
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transfection (J. Mattsson, pers. commun.). The gene was under the control of the T. 

gondii dihydrofolate reductase (DHFR) promoter (see Figure 2.8)
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2.2.15 Positive Control Vector

To check the efficiency of co-transfection, transfection was performed using a 

plasmid encoding for E. coli lacZ, under the control of T. gondii tubulin promoter 

(pTUBlacZ) (Figure 2.9). In the presence of pTUBlacZ, X-Gal is metabolised into a 

blue precipitate (see below).

2.2.16 Transfection Strategy

2.2.16.1 Co-Transfection with pMINI

A co-transfection strategy was performed whereby transfection vectors were 

engineered to contain heterologous N. caninum genes {NcGRA? and NcSRS2). T. 

gondii was transfected with two plasmids -  the transfection vector and the selection 

vector ipMINI). The selection vector pM INI contained a functional T. gondii 

hypoxanthine-xanthine guanine phosphoribosyltransferase (HXGPRT) gene. This 

was used to select parasites that had been successfully transfected, since those that 

did not possess this plasmid were not able to survive the selection process (section 

2.2.16.4).

2.2.16.2 Preparation o f  Plasmids Prior to Transfection

Prior to transfection o f T. gondii, the 2 plasmids -  transfection vector (or control 

vector) and selection plasmid (pMINI) were digested by Bam HI or Not I  to linearise 

the vector. The plasmids were incubated at 37°C for 2-3h and an aliquot run on an 

agarose gel to check that digestion had occurred completely.
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The linearised plasmids were then precipitated using ice-cold ethanol. This has the 

advantage of reducing the volumes of each preparation needed to acquire the 

appropriate ratio of plasmids. A ratio of 5:1 transfection vector : pM INI was used to 

ensure co-transfection occurred. The plasmids were mixed in the following ratio:

Ix  plasmid mix : O.Jx 2M  sodium acetate : 2.5x 90% ethanol (ice-cold)

The mix was centrifuged at 13000x g  for 10 min at 4°C. The supernatant was 

removed and 500pi ice-cold 80% ethanol was added. This was centrifuged again at 

13000x g  for 2 min. The supernatant was removed and the pellet of plasmids allowed 

to air dry in a laminar flow hood. The pellet was resuspended in 50pl of cytomix 

(120mM KCl, O.lSmM CaCh, lOmM K2HPO4/KH2PO4 , 25mM Hepes pH7.6, 2mM 

EDTA pH 7.6, 5mM MgCh, adjusted to pH 7.6 with IM KOH) supplemented with 

ImM ATP and 3mM glutathione prior to transfection.

2,2.16.3 Transfection

PRUAHX T. gondii tachyzoites (1 x 10*), newly lysed out of host cells in culture, 

were harvested by centrifugation at 5000x g  for 8 min. The pellet was resuspended in 

4ml cytomix (see above) and centrifuged at 4000x g  for 5 min at 4°C. The pellet of 

parasites was resuspended in 3ml cytomix supplemented with ImM ATP and 3mM 

reduced glutathione.

For each transformation, 700pi o f resuspended parasites was used. Bam i77(100U) 

were added to the suspension of parasites. The parasite suspension was added to the 

ethanol-precipitated transfection vector or the control transfection vector containing
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E. coli lacZ and selection vector pMINL This mix was electroporated with 2.0kV, 

500, 25pF using a Gene Puiser II (Biorad). The electroporated parasites were used 

to infect confluent HFF cells. The infected cells were incubated at 37°C for 9h prior 

to selection.

2.2.16.4 Selection Medium

Positive selection of parasites that contained the selection vector was carried out in 

the presence of 25pg/ml mycophenolic acid (MPA) and 25mg/ml xanthine (Xan) 

(both Sigma-Aldrich, Poole, UK). The presence of these chemicals killed any 

parasite that did not contain the HXGPRT gene, found on the selection vector. 

Parasites that remained viable were cloned using limited dilution.

2.2.16.5 Cloning by Lim ited Dilution

Briefly, extracellular tachyzoites were serially diluted in a 96-well plate, on which a 

confluent HFF monolayer was growing. The plates were left untouched for 5 days to 

ensure that each parasite created only one plaque of growth. Wells were visually 

scored for the presence or absence of growth plaques. The contents of wells that 

contained only one plaque of growth were transferred to a well of a 24-well plate 

containing confluent HFF cells, and from there to a 50cm^ tissue culture flask. 

Culturing of the cells and parasites was then carried out as previously described.

The cloned transfected parasites were passaged as normal using MPA- and Xan- 

supplemented IMDM with 10% PCS for up to ten rounds of passage. This was to 

ensure stable transformation of the parasites through several generations.
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2.2.17 X-Gal Staining

Parasites that were transfected successfully with pMîNUpTUBLacZ remained alive in 

the stringent selection of MPA/Xan-supplemented growth medium. Tachyzoites 

containing expressed lacZ metabolise X-Gal, generating a blue precipitate. Those 

parasites that only took up the pM INl survived in selection while not changing 

colour.

The monolayer o f HFFs containing intracellular tachyzoites was washed once with 

PBS, before being fixed for 10 min at room temperature in fixative solution (2% 

formaldehyde, 0.2% EM-grade glutaraldehyde, 2mM MgCh, 0.02% Triton X-100, 

0.04% deoxycholate (DOC) in PBS). The monolayer was then washed with staining 

solution (lOOmM Na2PÜ4 , 1.3mM MgCh, 3mM K4 (FeCN)6 , 3mM K3(FeCN)6 , 

0.02% Triton X-100, 0.04% DOC) without X-Gal, which was added at a 1:75 

dilution of a 20mg/ml stock solution. The cells were then visualised under an 

inverted microscope using 400x magnification (Axiovert),

2.2.18 PCR Confirmation of Transfection

Specific PCR was carried out as described previously to confirm the presence of the 

heterologous sequence using primers NcGRA7^, NcGRA7^, NcSRS2^ and NcSRS2^ 

(Table 2.1). The amplification o f NcGRA? using NcGRA?^ and NcGRA?^ was 

performed using 30 rounds of PCR, with an annealing temperature of 50°C, while 

the specific amplification of NcSRS2 used an annealing temperature o f 55-60°C.
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2.2.19 Southern Blot Hybridisation

2.2.19.1 Southern Blotting

Southern Blot was used to transfer DNA from an agarose gel to a nylon membrane 

(Sambrook et al, 1989). Before blotting, the agarose gel was submerged in 

Dénaturation Solution (0.5N NaOH, 1.5M NaCl) for 45 min. The gel was transferred 

to Neutralisation Solution (IM  Tris-HCl pH 7.4, 1.5M NaCl) for 30 min at room 

temperature. The gel was then placed in the blotting system as described. Briefly, the 

gel was placed on top of a 3M filter paper wick (Whatman) that was soaked in 20x 

SSC transfer buffer (3M sodium chloride, 300mM sodium citrate). A nylon 

membrane (Hybond) was placed covering the gel with a sheet of 3M filter paper on 

top. A pile of paper was added to the stack, this was to help the buffer pass through 

the gel, membrane and filter paper by capillary action. A glass plate with a weight on 

top completed the Southern Blot apparatus. This was left overnight to ensure 

complete transfer o f the DNA from the gel to the nylon membrane. The agarose gel 

was examined under UV to confirm the transfer. The DNA was cross-linked onto the 

nylon membrane using a Spectrolinker XL-1000 UV Cross-linker (Spectronics 

Corp., Nebraska, USA).

2.2.19.2 Labelling o f  DNA Probe

To identify specific DNA sequences blotted onto nylon, probes were made that were 

homologous to the sequence. These were derived from the transfection plasmids, or 

were amplified from cDNA by PCR using primers NcGRA7^, NcGRA7^, NcSRS2^ 

and NcSRS2^ (Table 2.1) situated at the 5’ and 3’ ends of the respective sequences. 

They were labelled with [a-^^P]-dATP using Prime-It II Random Primer Labelling 

Kit (Stratagene) which uses Klenow Enzyme with no exonuclease activity to 

synthesise probes which contain the radionucleotide, A mixture of 25ng of DNA
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template, lOpl random oligonucleotide primer and ddHiO was heated in a boiling 

water bath for 5min. After a pulse centrifuge, lOpl of primer buffer (containing 

dCTP, dGTP and dTTP), 5pi of [a-^^P]-dATP and Ipl Exo(-) Klenow enzyme were 

added, the reagents mixed and then incubated at 37°C for 2-10 min. Finally, Stop 

Reagent (2pi) was added.

To remove any unincorporated radionucleotides, and therefore reduce potential 

background, the radiolabelling reaction was passed through a Micro spin G-25 

Column (Amersham Biosciences). The resin in the column was resuspended by 

vortexing, before the base was removed and the whole unit was placed in a clean 

1.5ml tube. The column was pre-spun with no sample at 735 x g  for Imin. The 

column was removed to a new 1.5ml tube, and the sample was added slowly to the 

middle o f the resin bed. The column was centrifuged at 735 x g  for 2min. The 

purified probe was collected in the bottom tube.

2.2,19.3 Hybridisation o f  Radiolabelled Probe to Membrane

Prior to the addition of radiolabelled probe, the membrane was incubated for a 

minimum of 2h at 55°C in Prehybridisation Solution (4x SSC, 0.05% SDS, 5x 

Denharf s Reagent (from a 50x stock) and 40pg/ml salmon sperm DNA (denatured 

by heating at 100°C for 10 min). Denharf s Reagent (5Ox) was made by dissolving 

5g Ficoll 400, 5g polyvinylpyrrolidone and 5g BSA in 500ml ddH20.

The radio-labelled probe was added to the Prehybridisation Solution and incubated 

with the membrane overnight at 55°C. After this, the membranes were removed from 

the probe and incubated with Wash Buffer A (4x SSC, 0.1% SDS) at 50°C for 30

-91 -



____________________________________________________________ Chapter 2

min, with one buffer change, then for 30 min at room temperature with Wash Buffer 

B (O.lx SSC, 0.1% SDS), again with one change of buffer. These washes removed 

any probe that had not been hybridised to the DNA on the membrane. The 

membranes were exposed to X-Ray film.

Membranes were stripped o f any hybridised radio labelled probe by soaking them in 

a boiling solution of 0.5% SDS in ddHzO until the solution cold. This was repeated a 

further 3 times. To ensure that the radio labelled probe had been removed, the 

stripped membrane was exposed to X-Ray film. Any hybridisation observed by a 

discolouring of the X-Ray film after exposure meant that the membrane was not fully 

stripped and was washed a further 2-3 times in boiling SDS solution, and exposure 

was repeated until the film remained clear on exposure.

2.2.20 Western Blotting

For the Western Blotting of parasites, tachyzoites were harvested and washed as 

described in section 2.2.5. Pellets of parasites (1x10*) were resuspended in 60pl of 

2x SDS Sample Buffer (lOOmM Tris.Cl (pH to 6 .8 ), 200mM DTT, 4% SDS, 0.2% 

bromophenol blue, 20% glycerol). The samples, along with Broad Range Molecular 

Weight Marker (Promega), were boiled for lOmin and then run on a 15% 

discontinuous polyacrylamide gel as described (Sambrook et. a l, 1989). This 

comprised 30% acrylamide/bis-acrylamide, 1.5M Tris-HCl (pH 8 .8 ), 1% SDS, 1% 

ammonium persulfate and 0.05% TEMED. The samples were run on Protean II SDS- 

PAGE equipment (Biorad) at 120V for l%h. Prior to blotting, the gels were 

equilibrated in Ix transfer buffer (10% stock transfer buffer (30.36g Tris/144g 

glycine in 11 ddH2 O)/2 0 % methanol/70% ddH2 0 ) for 20min at room temperature on 

a rocking table. Blotting was carried out in a Protean II Western Blot system (Biorad)
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according to manufacturer’s instructions. The blotting cassette was set up according 

to manufacturer’s instructions. The cassette was soaked in transfer buffer, before 

being placed in the electrophoresis tank along with a block of ice. The apparatus was 

placed on a stirring table and electrophoresed at 120V for Ih.

To check the transfer of the proteins, the membranes were stained with Ponceau S 

(0.5% solution of Ponceau S powder in 1% acetic acid), a non-permanent stain of 

proteins. The membranes were incubated overnight at 4°C on a rocking table in 

Blocking Solution. The Blocking Solution used was 5% dry milk dissolved in TBS-T 

(25mM Tris.Cl, pH 7.4 in 8 g/l NaCl, 0.2g/l KCl, 0.1% Tween-20). The membranes 

were washed in 2 x 5min washes o f TBS-T

2.2.20.1 Polyclonal Antisera

Polyclonal antiserum was obtained against VcGiM7. This was a kind gift from Dr S. 

Liddell, USDA, USA. The polyclonal antiserum was diluted 1:250 and used as a 

primary antibody to probe the proteins blotted onto nitrocellulose. The membrane 

was incubated in the primary antibody for 3 h at room temperature. The membrane 

was washed 3 times in TBS-T for 5 minutes. A secondary antibody (swine anti-rabbit 

IgG) labelled with horseradish peroxidase and diluted 1:1000 was incubated with the 

membrane for a further 2  h at room temperature.

Antibody binding was detected using an ECL"^^ Detection Kit (Amersham Life 

Sciences). An equal volume of Detection Reagent 1 (0.5-1% boric acid, 0.1-0.5% 

NaOH, <0.1% sodium perborate trihydrate, <0.1% kathon CG) and Detection 

Reagent 2 (0.5-1% boric acid, 0.1-0.5% NaOH, <0.1% 5-amino-2,3-dihydro-1,4- 

phthalazinedione free acid, <0.1% dimethyl sulphoxide, <0.1% (E)-3(4-hydroxy
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phenyl)-2-propenoic acid, <0.1% kathon CG) were mixed in the dark. The membrane 

was covered with this mix and incubated at room temperature in the dark for a 

maximum of 2 min before the mix was removed and excess blotted off. The 

membrane was wrapped in Saran wrap and exposed to X-Ray film for 30 seconds, 1 

min, 5 min and 10 min.

2,2.20,2 Antibodies Against c-myc Tag

The membranes were probed with a primary monoclonal antibody raised in mice 

against the c-myc epitope, which was engineered into the coding sequence of 

NcGRA 7 and NcSRS2 in the pintervet plasmids. The anti-c-wyc monoclonal antibody 

clone 9E10 (Sigma-Aldrich) was diluted 1 in 1000 in TBS-T. The membranes were 

incubated in the primary antibody solution for 2-3h at room temperature before being 

washed 3 times in TBS-T for 5 min each wash. They were then incubated in a 1:2000 

dilution of HRP-labelled anti-mouse IgGl (Diagnostic Scotland, Carluke, UK) for 2 

at room temperature before being washed a further three times in TBS-T as above.

Antibody binding was detected using ECU as described in Section 2.2.20.1.

2.2.21 Immuno-Fluorescent Antibody Test (IFAT)

2.2.21.1 Preparation o f  Slides

Tachyzoites (1x10^) were pelleted by centrifugation at 1500x for 10 min. The 

pellets were washed twice in PBS before being resuspended in 50pl of PBS. The 

parasites suspension (lOpl) were loaded onto a microscope slide and allowed to air- 

dry in a laminar flow hood, before being fixed for 15 min in acetone. The slides were 

then stored at -20°C until required.
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2.2.21,2 Incubation o f  Slides

Tachyzoite slides were immersed in 2% formaldehyde in PBS overnight at 4°C, 

before being washed by immersion in PBS to remove the formaldehyde and to 

rehydrate samples. The slides were placed in blocking buffer (0.01% Tween-20, 

0.05% sodium azide, 1 % BSA in PBS) for 20 min at room temperature. The blocking 

buffer was removed after this time and replaced with a 1 : 1 0 0 0  dilution of anti-c-myc 

monoclonal antibody in Immunobuffer (O.IM Tris.Cl pH7.4, 2.3M NaCl, 0.01% 

Tween-20, 1% BSA, 0.05% sodium azide). The slides were incubated in the primary 

antibody dilution for 30-60 min at 37°C in a moisture chamber to ensure the slides 

did not dry out. The primary antibody was removed by pipetting and the slide was 

washed twice by dipping in PBS. A 1:400 dilution of FITC-labelled anti-mouse IgGl 

was made in Immunobuffer and the slides were incubated in a dark moisture 

chamber at 37°C for 30 min. The slides were then washed as above. A drop of 

Vectashield (Vector Laboratories Inc., California, USA) was placed on the slide as a 

fluorescence enhancer and the slides were visualised using a fluorescent microscope 

with a FITC filter.
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2.3 RESULTS

2.3.1 Transfection 1: Expressing 7

23 .1 .1  Preparation o f  Plasm id Backbone

The plasmid pP30/l IGFP contained a GFP gene sequence under the control of the T. 

gondii P30 (SAG-1) promoter. The GFP gene was inserted between an Nsi I  site and 

a Pac I  site as shown in Figure 2.3. It was necessary to remove this GFP sequence, 

approximately 700bp in length, from the plasmid backbone so that the N. caninum 

NcGRA? gene eould be inserted. The plasmid was cut using Nsi I  and Pac I  

restriction enzymes as described in Section 2.2.12.1.

Figure 2.10 shows the results of the digest described above. A fragment o f ~700bp 

was excised from the plasmid backbone. This was the expected size of the GFP gene 

and suggests that the restriction digest excised the correct fragment from the plasmid 

backbone. The linearised plasmid backbone without the GFP gene and with Nsi I  and 

Pac I  sites at the 5’ and 3’ ends respectively was gel purified (Qiagen) and used in 

subsequent ligation experiments to create a plasmid expressing NcGRA?.

2.3,1,2 Preparation £»/NcGRA?

NcGRA? was amplified from cDNA of N. caninum using primers NcGRA7_NsiI^ 

and NcGRA7_PacI^ (as shown in Table 2.1). These primers had an Nsi I  site 

engineered into the forward primer and a Pac I  site engineered into the reverse 

primer. When the sequence was amplified (as shown in Figure 2.11), the NcGRA? 

sequence thus contained these sites at the 5’ and 3’ ends. To ensure that the PCR 

reaction had left these restriction enzyme sites intact, the amplicon was sub-cloned 

into a TOPO TA cloning vector as described in Section 2.2.9, prior to being 

sequenced as described in Section 2.2.11.
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~700bp

Figure 2.10 Sequential restriction digest of p P 30/1 IGFP using 
Nsi I  and Pac I  to remove GFP (~700 bp). Lane M is a molecular 
weight marker, lane 1 shows linearised pP30/11 GFP (cut only 
with Nsi I), lane 2 show pP 30/lIG F P  cut with N si I  and Pac I. A  
fragment approximately 700 bp has been excised from the 
plasmid (as indicated by the arrow) and the reduced size o f  the 
plasmid backbone.

1000

500
~650bp

Figure 2.11 PCR amplification o f NcGRA? from cDNA o f N. 
caninum using NcGRA7_NsF and NcGRA7_PacI^ primers. 
Lane M is a molecular weight marker, lane 1 contained the N. 
caninum cDNA as template, lane 2 replaced the DNA template 
with distilled water, as negative control. A band o f  -650 bp has 
been amplified, which is theexpected size for NcGRA?.
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Figure 2.12 shows the results of a restriction digest of the TOPO TA cloning vector 

that contained the NcGRA? insert. The plasmid was cut using Eco R1 to cleave a 

fragment of ~700bp, which was the expected size of the NcGRA? with the restriction 

sites and fragments of the cloning vector between the insert and the Eco RI sites. 

Figure 2.13 shows an alignment of the sequencing results using the sequencing 

primers TOPOSeq^ and TOPOSeq^ compared to the sequence obtained from 

Genbank for NcGRA 7. The EcoRI sites initially used to cleave the ~700bp fragment, 

the intact Nsi I  and Pac I  sites should be noted. The sequencing confirmed that the 

gene sequence was that of NcGRA?. The polymorphisms observed upstream of the 

NcGRA? may be the result of poor sequencing reaction, rather than actual 

polymorphisms.

2 .3 .13  Production o f  Transfection Vector

The NcGRA? sequence containing Nsi I  and Pac I  sites was cut out of the TOPO TA 

cloning vector and ligated into the linearised plasmid backbone as described in 

Section 2.2.12.3. The plasmids were then used to transform E. coli as described in 

Section 2.2.9,2 and purified. PCR was carried out using primers NcGRA7^ and 

NcGRA7^ (Table 2.1) to confirm the presence of the NcGRA? gene. Figure 2.14 

shows a 1% agarose gel o f the PCR product, stained with ethidium bromide and 

visualised under UV. A fragment of ~650bp can be seen, which is the expected size 

of the NcGRA ? gene as described in Genbank.

The transfection vector was sequenced to ensure that the inserted NcGRA 7 gene was 

in the correct frame relative to the P30 promoter. Primers PlasmidSeql^ and 

PlasmidSeql^ (Table 2.1) were used. Figure 2.15 shows an alignment between the 

sequenced plasmid and the expected boundary between promoter and gene sequence.
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Figure 2.15 shows that NcGRA? was in the correct orientation and frame with the 

promoter.

This transfection vector (pP30/NcGRA7) was subsequently used for transfection 

PRUAHX T. gondii tachyzoites, as described below.
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~4kb 4000
3000

2000

~700bp

Figure 2.12 Eco RI digestion o f TOPO TA cloning vector 
containg NcGRA?. Eco RI sites were located up- and 
downstream of the insertion site, and when used to digest 
the plasmid released the insert plus fragments o f the TOPO 
vector. NcGRA? is -650bp which, when added to the vector 
fragments, should produce an excised fragment o f  
approximately 700bp, as seen in lane 1. The plasmid 
backbone of -4kb is also observed. M l and M2 are 
molecular weight markers.
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~650bp

Figure 2.14 PCR amplification o f NcGRA7 frompP30/NcGRA7 
using primers NcGRA7^ and NcGRA7^. Lane M is a molecular 
weight marker, lane 1 contains the plasmid pP30/NcGRA7 as 
template DNA, lane 2 contains N. caninum cDNA as template, 
and lane 3 contains no template. A PRC product o f  ~650bp is 
amplified from bothpP30/NcGRA7 andN. caninum cDNA.
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2.3.2 Transfection of T. gon/f» Tachyzoites

2.3.2.1 Transfection E xperim entl

Transfection of T. gondii tachyzoites was carried out as described in Section 2.2.16. 

This was a co-transfection w ithpP30/NcGR47 and thepM IN Iplasmid containing the 

active HXGPRT gene. The transfected T. gondii were passaged a minimum of 10 

times in selection medium for positive selection for the presence of a functional 

HXGPRT gene. Parasites were then cloned by limited dilution.

23.2.1.1 PCR

Initial PCR experiments were carried out on genomic DNA from populations of the 

transfected T. gondii as described in Section 2.2.18. NcGRAV^ and NcGRA7^ 

primers were used to detect specifically for the presence o f NcGRA7, Figure 2.16 

shows a 1% agarose gel of the results of this initial PCR. A fragment of ~650bp can 

be seen, and can be assumed to be NcGRA7, since a fragment of the same size was 

not amplified from gDNA of untransfected tachyzoites o f T. gondii, but can be seen 

amplified from the gDNA of N. caninum tachyzoites.

However, following cloning by limited dilution, subsequent PCR analysis indicated 

that the clones no longer contained the NcGRA7 gene. Transfection Experiment 1 

was thus successful in producing transiently transfected parasites, but unsuccessful in 

producing stable transfectants. A second transfection experiment was therefore 

attempted using a different approach described below.
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M 1

Figure 2.16 PCR amplification using NcGRA?^ and NcGRA?*^ 
primers. Lanes 1-5 contain five different preparations of DNA 
from populations of transfected T. gondii. Lane 6  contains gDNA 
from untransfected T. gondii and lane 7 contains gDNA from N. 
caninum. Lane 8  contains no DNA as template. A fragment of 
~650bp can be seen in lanes 1 and 2, and correlates with that 
fragment observed in lane 7. No fragment has been amplified 
from untransfected T. gondii gDNA.
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23.2 .2  Transfection Experiment 2: pin tervet Expressing NcGRA 7 and NcSRS2

23.2.2.1 Preparation o f Plasmid Backbone

The pintevet plasmid was the basis for a new transfection vector containing a T. 

gondii TUB-1 promoter. The Tr gene and 3’-UTR of DHFR were excised at the 

flanking Bgl //an d  Aof / restriction enzyme cutting sites (see Figure 2.4). Figure 2.17 

shows a 1 % agarose gel separation of the linearised pintervet backbone and an 

excised fragment of approximately 2kb which equated to the Tr gene sequence and 

the DHFR 3’-UTR.

The 3’-UTR of T, gondii SAG-1 was amplified using primers containing Bgl II  and 

Not I  sites (SAGl-UTR B g llf  and SAGl-UTR_Notf as shown in Table 2.1). The 

expected size of this is 327bp, and this can be seen in Figure 2.18. This is a pieture of 

the PCR product using these primers, run on a 1% agarose gel and visualised under 

UV. This fragment was ligated into the pintervet backbone. This backbone 

(plntervet2) was used in subsequent ligation reactions as described below.

2.3.2.2.2 Preparation and Characterisation n/NcGRA7-myc Transfection Vector

2.3.2.2.2.1 Preparation of 7 tagged with c-mve

NcGRA? containing the c-myc epitope was obtained using the primers 

NcGRA7_Bgllf and NcGRA7-mvc Bglll^ (Table 2.1). When amplified, the 

NcGRA? sequence would have the c-myc tag at the 3’ end. Figure 2.19 shows the 

PCR product using these primers and N, caninum cDNA as template DNA. A 

fragment of ~65 Obp has been amplified, and this correlated with the expected size of 

NcGRA?.
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Figure 2.17 Digestion o f  pintervet using Bgl II and Not I  to 
release a ~2kb fragment containing a gene and DHFR 3’- 
untranslated region. Lane 1 contains no digest, lane 2 the cut 
pintervet plasmid and lane 3 the uncut pintervet plasmid.

300bp

Figure 2.18 PCR amplification o f T. gondii SAG-1 3’- 
untranslated region (UTR), using primers SAG l- 
UTR Bglll^ and SAG 1 -UTR Notl^. Lane 1 is blank, lanes 
2-4 contain different T. gondii gDNA preparations. The 
SAG-1 3’-UTR is 327bp, and a product corresponding to 
this size can be seen in lanes 3 and 4.



~650bp

Figure 2.19 PCR amplification o f  NcGRA?-myc from N. 
caninum cDNA using NcGRA7__BglII^ and NcGRA7- 
mvc Bglll^ primers. Lane M is a molecular size marker and 
lane 1 contains the N. caninum cDNA A negative control 
containing no template DNA was also run, with no 
amplification product present (data not shown). NcGRA? is 
approximately 650bp, this correlates with the amplification 
product in lane 1.

~650bp

Figure 2.20 PCR amplification o f  plntervet2  plasmid expressing 
NcGRA?-myc. Primers NcGRA7^ and NcGRA7^ were used. 
Lane 1 contained plntervet2  without NcGRA?-myc. A  PCR 
product o f the expected (~650bp) size was seen in lane 2 
indicating the presence o f NcGRA ? in the plasmid.
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This sequence was ligated into the plntervet2 as described in Section 2.2.12.3. This 

ligated plasmid was used to transform E. coli as described in Section 22,9.2  and 

purified. PCR was carried out to check the presence of the NcGRA 7 sequence in the 

plasmid. Primers NcGRA7^ and NcGRA7^ were used, and the resulting PCR product 

can be seen in Figure 2.20.

The alignment of the NcGRA?-myc in relation to the TUB-1 promoter and 3’UTR 

was carried out by sequencing across the junctions between the plasmid backbone 

and the NcGRA? sequence. Primers PlasmidSeq2^ and PlasmidSeq2^ were used. 

Figure 2.21 shows the alignment between the promoter, the NcGRA?-myc sequence 

and the 3’UTR. The NcGRA?-myc sequence was inserted in the correct alignment 

and in the correct frame relative to the promoter and 3’-UTR. The c-myc tag is also 

present.

This plasmid was subsequently used in transfection experiments as described below.

2.3.2.2.2.2 Preparation of NcSRS2 tagged with c-mvc

To allow ligation into the pintervet2 backbone, NcSRS2 was amplified from N  

caninum cDNA using primers containing the Bgl II  site engineered into both the 

forward and reverse primers (NcSRS2_BglII^ and NcSRS2_BglII^ as shown in Table 

2.1). Unlike in NcGRA? the c-myc tag was inserted by ligation into a Bam H I site 

within the coding sequence of NcSRS2, as described in Section 2.2.13.1.3. The c-myc 

epitope primer-dimer containing Bam HI sites at the 5’ and 3’ ends was ligated into 

the Bam HI site within NcSRS2. This ligation was then amplified by PCR to obtain 

sufficient copies for further integration with the pintervet2 backbone. Figure 2.22
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shows a picture of this PCR amplification. The PCR product of approximately 1.2kb 

was obtained and this was the expected size for NcSRS2.

no
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~1.2kb

500bp

Figure 2.22 PCR amplification o f NcSRS2 containing a ligated 
c-myc tag. This was amplified using primers NcSRS2^ and 
NcSRS2^. Lane 1 contains ligation reaction as template, a 
negative control containing no template was also performed 
but no product was observed (data not shown).

M 1

-1.2kb

Figure 2.23 PCR amplification o f NcSRS2 firom plntervet2  
containing NcSRS2 (lane 2) and N. caninum cDNA (lane 3). 
Lane 1 contains no template. Primers NcSRS2^ and NcSRS2^ 
were added to each reaction.
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This fragment was ligated into the plntervet2 backbone as described in Section 

2.2.12.3. PCR was performed using NcSRS2^ and NcSRS2^ specific primers to 

determine the presence of the NcSRS2 sequence. Figure 2.23 shows a PCR product of 

~1.2kb that corresponds to that obtained from N. caninum cDNA.

The alignment o f the inserted NcSRS2-myc sequence was determined by sequencing 

across the junctions between the promoter, NcSRS2-myc and the 3’UTR. Primers 

PlasmidSeq2^ and PlasmidSeq2^ were used. Figure 2.24 shows the alignment of the 

various plasmid components. The NcSRS2-myc sequence is in the correct frame 

relative to the promoter and the 3’-UTR. Additionally, the c~myc sequence has been 

inserted into the NcSRS2 gene in the correct alignment.

This plasmid was then used for subsequent transfection experiments as described 

below.

2.3.2.3 Transfection Experiments

Transfections were performed as described in Section 2.2.16. T. gondii transfected 

with pMINI and plntervet2 containing either NcGRA? or NcSRS2 were passaged a 

minimum of 1 0  times in selection medium for positive selection for the presence of a 

functional HXGPRT gene. Parasites were then cloned by limited dilution.
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Chapter 2

2.3.3 X-Gal Staining of Parasites: Transfection Control

T. gondii tachyzoites were transfected with pMlNI and pTUBlacZ using the same 

conditions as the parasites transfected with vectors containing N. caninum genes. 

They were selected with MPA and Xan for 10 passages to ensure a stable 

transfection had occurred and then fixed and stained for the presence of pTUBlacZ 

with X-Gal. Parasites were fixed whilst still intracellular, since this allowed for the 

staining of the parasitophorous vacuole contents. This meant that any blue precipitate 

remained within and around the transfected parasites.

The monolayer of parasite-infected host cells was fixed onto the flask surface as 

described in Section 2.2.17. Blue precipitate spots were observed without the use of a 

microscope. Under 400x magnification, however, individual intracellular tachyzoites 

were identified (Figures 2.25 and 2.26) within the parasitopherous vacuoles. 

Characteristic rosette formations of tachyzoites (Figure 2.25) as well as tachyzoites 

in a vacuole in the final stages prior to lysis of the host cell (Figure 2.26) were 

observed. Both the vacuoles containing the small and large numbers of tachyzoites 

were stained blue with the X-Gal precipitate, which was indicative of the presence of 

lacZ under the control of a T. gondii promoter, in this case the tubulin promoter. The 

presence of the blue precipitate, in addition to the survival of the parasites in 

selection, indicated that co-transfection did occur.

Untransfected T. gondii tachyzoites were also fixed and stained in the manner 

described above. No blue precipitate was observed (data not shown).
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Figure 2.25 Recently invaded T. gondii tachyzoites in the characteristic rosette pattern 
(arrow). Note the blue halo surrounding the rosetted tachyzoites, indicating the presence o f a 
functional lacZ transgene.

Figure 2.26 Heavily infected HFFF cell, close to the point o f  lysis. The 
bright blue o f the vacuole indicates the presence o f  a functional lacZ 
transgene.



_____________________________________________________________________________________ Chapter 2

2.3.4 Characterisation of T. gondii Transfected with plntervet2  Constructs

2.3.4.1 PCR

23.4.1.1 NcGRA?

The presence of NcGRA? was observed by PCR using the specific primers NcGRAV^ 

and NcGRA7^. PCR was carried out on cloned lines of transfected T. gondii 

tachyzoite and the amplication by PCR o f a ~650bp fragment in 3 of the 5 cloned 

lines can be seen in Figure 2.27. Amplification was seen from clones GC4, GB2 and 

GE2, as well as from N. caninum cDNA, but not in GC5 or GG3, nor from the T. 

gondii parental PRUAHX strain. The clones identified as being positive for the 

transgene were used in subsequent characterisation experiments.

23.4.1.2 NcSRS2

The presence of NcSRS2 was observed by PCR using primers NcSRS2*' and 

NcSRS2^. PCR was carried out on gDNA from four cloned lines o f transfected T. 

gondii tachyzoites (identified as SC8 , SCIO, SD9 and SG8 ). Amplification occurred 

in 3 of the 4 clones (Figure 2.28) as well as from N. caninum gDNA. Only SCIO did 

not have a fragment of approximately 1 2 0 0 bp amplified from it, indicating the lack 

of NcSRS2. This suggested that clones SC8 , SD9 and SG8  contained the transgene, 

while SCIO did not. No amplification was seen from T. gondii DNA.
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~650bp 7W
600.

Figure 2.27 PCR amplification o f  NcGRA 7 using 
specific primers NcGRA7^ and NcGRA7^.
Lanes M contain lOObp or Ikb marker. A 

fragment o f  approximately 650bp was amplified 
in lanes containing DNA from clones GC4, GB2, 

GE2 and NC-1. Negative control contained 
primers but no template DNA. No amplification 

was seen in the other lanes.

~1.2kb

Figure 2.28 PCR amplification o f NcSRS2 using 
specific primers NcSRS2^ and NcSRS2^. Lane M 
contains Ikb marker. A  fi-agment o f  
approximately 1.2kb was amplified in lanes 
containing DNA from clones SD9, SC8, SG8 and 
NC-1. No amplification was seen in the other 
lanes. (Negative control contained primers but no 
template DNA)
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2.3.4.1.3 Cloned Lines in Selection Without Heterologous Genes 

The presence of cloned lines that did not contain either NcGRA 7 or NcSRS2 yet still 

grew under mycophenolic acid/xanthine selection for a number o f passages indicated 

one of two scenarios. First, the parasite was transfected with pM INI only, or second, 

parasites were stably transfected by pM lN l but only transiently transfected with 

pTUBGRA 7-myc/pTUBSRS2~myc. The growth of the parasites in selection medium 

indicated that they must still have contained a functional HXGPRT that could only 

have come from stable transfection with pMlNl. However, it appeared in these lines 

that either the transgenes from N. caninum had been lost by the clones or the 

transfected parasites developed resistance to MPA and so could survive without the 

functioning HXGPRT gene.

2,3.4.2 Hybridisation o f  Specific Probes to Southern B lot o f  Tachyzoite DNA

To test for the presence of NcSRS2 and NcGRA? in T. gondii Southern Blotting was 

performed. The sequence o f NcGRA? contains two Acc /  sites that should generate a 

restriction fragment of 450bp. NcSRS2 contains two Nsp I  sites that should generate a 

fragment of Ikb. Genomic DNA from cloned lines transfected with NcGRA? or 

NcSRS2, along with DNA from the untransfected knockout T. gondii PRUAHX and 

wild-type N. caninum NC-1 was digested with either Acc I  or Nsp I. The digested 

DNA was separated by electrophoresis on 1% agarose gels before being blotted as 

described in Section 2.2.19. It was then probed with radiolabelled NcGRA? or 

NcSRS2 gene sequence, obtained from cDNA by PCR to look for the presence of 

these genes in the transgenic parasites.
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2.3.4.2.1 Hybridisation with RadiolabelledV\cGRAl as Probe

Hybridisation to a 450bp fragment was observed in lanes containing DNA from 

clones GB2, GE2 and GC4 and from NC-1 (Figure 2.29). No hybridisation was seen 

in lanes containing DNA from PRUAHX or clones GG3 or GC5. There was also an 

extra band of hybridisation observed in lanes containing clones GE2 and GC4, which 

was approximately 600bp in size.

2.3.4.2.2 Hybridisation with NcSRS2 as Probe

Hybridisation to a fragment of approximately Ikb was observed in the lanes 

containing DNA from NC-1 and transfected clones SD9, SC8  and SG8  (Figure 2.30). 

Although there was a level of hybridisation in the other lanes, notably SCIO, this was 

attributed to non-specific hybridisation, since the band that was hybridised in SCIO 

was not present in the other lanes. Additional annealing to different sized fragments 

was also observed in the Southern Blot though this was thought to be mis-annealing 

or the generation of extra Nsp I  sites due to the integration of the transfection vectors.
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Figure 2.29 Southern Blot hybridisation of Acc /-digested 
genomic DNA o f pTUBNcGRA 7-myc/pMINI transfected 

T. gondii. Probe was a 450bp PCR-amplifiedNcGRA? 
from cDNA of N. caninum. Hybridisation to a 450bp 

fragment occurred in lanes containing DNA from NC-1, 
GB2, GE2 and GC4. No hybridisation was seen in the 
other lanes (PruAHX, GG3 or GC5). There was also 

hybridisation to a fragment of ~600bp in lanes with DNA  
from GE2 and GC4.
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Figure 2.30 Southern Blot hybridisation of Nsp /-digested 
genomic DNA ofpTUBNcSRS2-myc/pMINI transfected T. 

gondii. Probe was a Ikb PCR-amplified iVc5RS2 from 
cDNA of JV. caninum. Hybridisation to a Ikb fragment 

occurred in lanes containing DNA from NC-1 and clones 
SD9, SC8 and SG8. No hybridisation was observed in the 

lanes containing digested DNA from parental T. gondii 
PruAHX nor from clone SCIO.
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2.3.4.3 Western Blotting

Parasites transfected with plntervet2 containing NcGRA7-myc or NcSRS2-myc were 

lysed and the SDS-soluble fraction run on a 15% acrylamide gel. The lysates were 

then blotted onto nitrocellulose optimised for ECL detection, and a strip was stained 

with Ponceau S to determine the efficiency o f transfer. The rest o f the membrane was 

probed first with an anti-c-wyc monoclonal antibody then with a secondary anti­

murine IgGl antibody that was linked to an HRP molecule. ECL was used to detect 

any antibody binding. However, specific aæNi-c-myc binding was not observed in any 

blots (data not shown). There were bands of proteins highlighted but these were 

present not only in those cloned lines that were positive for the transgene by PCR 

and Southern Hybridisation, but also in lines that were negative by these methods 

and also in untransfected T, gondii. Repeated attempts to minimise non-specific 

antibody binding were unfortunately unsuccessful. Thus it was decided to use 

immunofluorescent labelling to determine expression of the transgenes in 

tachyzoites.

2.3.4.4 Immunofluorescent Labelling o f  c-myc epitope in transfected parasites

In the absence o f monoclonal antibodies raised against either NcGRA 7 or NcSRS2, 

localisation of these molecules within the tachyzoites was carried out by tagging 

them with an epitope that can be identified easily using commercially available 

monoclonal antibodies, in this case against c-myc.

In both transfected lines, specific sites of localisation could be seen. Figure 2.31 

shows cloned line GB2. Similar results were seen in the other two cloned lines (GE2 

and GC4) that were PCR- and Southern Blot positive. No localisation was observed 

either in the negative control, (non-transfected T. gondii) or in the cloned lines that
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were negative by PCR and Southern Blot (GG3 and GC5). Similarly, Figure 2.32 

shows localisation in cloned line SC8 that was also seen in SD9 and SG8, but not in 

SCIO or in non-transfected T. gondii. As can be seen in Figures 2.31 and 2.32, 

localisation appeared to be to discrete structures throughout the cell. This would be 

expected in the parasites transfected with plntervet2 expressing NcGRA 7-myc, since 

dense granules are distributed throughout the cytosol. This was not, however, 

expected in parasites transfected with plntervet2 expressing NcSRS2-myc since the 

NcSRS2 was expected to be transported to the surface of the parasite.
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Figure 2.31 Immunolocalisation of c-myc tagged 
NcGRA 1 transfected into T. gondii. Monoclonal 
antibodies against c-myc were used to probe 
fixed T. gondii tachyzoites, with anti-mouse 
IgG, conjugated to FITC used as secondary 
antibodies. Picture A is T. gondii transfected 
with pTUBNcGRA 7-myc (cloned line GB2), B 
showing the same picture under phase-contrast. 
Pictures C and D are of non-transfected T. 
gondii probed with the same antibodies

Figure 2.32. Immunofluorescent localisation of c- 
myc tagged NcSRS2. Anti c-myc antibodies raised 
in mice were used to probe fixed and permeabilised 
T. gondii. FlTC-conjugated anti-mouse IgG was 
used as secondary antibody. Picture A shows the 
localisation of c-myc in T. gondii transfected with 
pTUBNcSRS2-myc (clone SC8). Picture B shows 
clone SC8 under phase contrast. Pictures C and D 
show the non-transfected T. gondii, both under 
fluorescence and phase contrast.
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2.4 DISCUSSION

In this chapter two N. caninum genes, NcGRA? and NcSRS2, were successfully 

expressed as transgenes in T. gondii tachyzoites by stable integration using a co­

transfection technique. PCR and Southern Blotting did not conclusively confirm the 

integrity of the transformation, merely the presence of the trangenes. Since suitable 

antibodies against NcGRA 7 and NcSRS2 were not available at the time, both genes 

were tagged with a c-myc epitope that was co-expressed. Although expression of the 

recombinant protein in T. gondii could not be confirmed due to non-specific antibody 

binding in Western Blot experiments, analysis by IF AT demonstrated that both 

transgenes were expressed in T. gondii tachyzoites. However, the successful 

generation of the recombinant parasites was not without some difficulties, which are 

discussed below.

2,4.1 Generation o f Stably Transfected T. gondii

The generation o f stably transfected T. gondii using a co-transfection method has 

previously been thought to be a relatively straightforward technique in which 

simultaneous transfection o f both the transgene and the selectable marker constructs 

occurred reliably. Stable co-transfections of 7! gondii have been canied out 

previously (Black and Seeber, 1995) with no mention of an apparently stable 

transfection resulting in a transient transfection of the transgene, as was the case in 

early transfections carried out in the experiments described in this chapter. The most 

obvious explanation for this was that whilst the selectable marker became stably 

integrated, the construct containing the N. caninum transgene was only transiently 

transfected and was lost to subsequent generations. The transient nature of the initial 

transfections was also unexpected since the parasites were kept in the selection 

medium containing xanthine and mycophenolic acid for many more cycles of
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passage than was normally required. The concept of a stably transfected parasite 

retaining one of the transfected constructs but not the one containing the gene of 

interest has not been reported in T. gondii. However, since this occurred twice in this 

study, this event may be more common than previously reported. It is likely that a 

transfection technique that utilises only one construct -  one that contains both the 

gene of interest and the selection cassette -  raises fewer technical difficulties than a 

technique that relies on the integration o f two constructs. Unfortunately, attempts to 

perform transfection based on this type of construct were unsuccessful in this study.

When a different backbone (i.e. the pP30/llG FP  o rpintervet plasmids) was used in 

the transfection vectors containing NcGRA 7 and NcSRS2, the transfection appeared 

to be stable and indeed the genes of interest were retained by the T. gondii 

tachyzoites until the end of the experiments, as assessed by PCR and Southern Blot. 

More than one band of hybridisation was observed in both hybridisations. In 

NcGRA? integration, it may have been the case that there was more than one 

plntervet2 expressing NcGRA7-myc integrated into the parasite, though this would 

still be cut to leave a 450bp fragment.

2.4.2 Characterisation of Parasite Clones

In Southern blots of DNA from parasites transfected with NcSRS2, the multiple 

fragments highlighted in the lanes containing SD9, SC8 and SG8 may indicate the 

presence of multiple integrations by more than one plasmid. The lack of bands in the 

parental T. gondii PRUAHX (control) would suggest that each o f the fragments 

highlighted in the transgenic parasites did indeed contain NcSRS2. The different sizes 

of bands highlighted contain the heterologous fragment along with some parental 

parasite DNA as was between the restriction site at the beginning of the heterologous
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fragment and the next Nsp I  site in the genome. Nevertheless, the overriding 

conclusion was that in both transfected lines, the heterologous sequences were 

present.

In addition to confirming the expression of the transgenes, immunofluorescence was 

performed on transfected tachyzoites to see if heterologously expressed proteins 

were localised to the same area in T. gondii as they were in N. caninum. The tagging 

of the proteins with c~myc was designed in such a way that the c~myc tag sequence 

would not affect targeting signals present in the gene sequence. This in turn should 

have enabled the cell to transport the protein to the correct location. It was expected 

that NcSRS2 would be trafficked to the cell membrane (Howe et al, 1998), while 

NcGRA? would be localised in dense granules (Hemphill et al, 1998), However, both 

labelled proteins appeared to be localised in vacuolar structures, generally near the 

periphery of the tachyzoites, though some were observed towards the middle of the 

cell. This may indicate that both proteins had been localised to dense granules and 

the targeting sequence of the NcGRA? was unaffected. This does not, however, 

explain the localisation of NcSRS2-myc. It was expected that the heterologous 

NcSRS2-myc would localise to the surface of the cell, particularly since the targeting 

sequence identified in the gene was not disturbed by the importing of the c-myc 

sequence. No localisation was seen at the surface of the parasite, all localisation in 

parasites transfected with NcSRS2 being in vacuolar structures, similar to that seen in 

parasites transfected with NcGRA?. It is likely therefore that neither NcGRA? nor 

NcSRS2 were localised correctly and both ended up in vesicles, either for expulsion 

by the cell or for degradation.
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In conclusion, stably transfected T. gondii tachyzoites expressing transgenic N. 

caninum antigens were successfully produced. In the following chapter, the nature of 

the immune response elicited by these transgenic parasites was studied.
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CHAPTERS:

IMMUNISATION OF RODENT MODELS 

WITH TRANSGENIC TOXOPLASMA GONDII 

EXFRESSmO NEOSPORA CANINUM GENES

0 Select an appropriate mouse strain for immunisation with transgenic T.

gondii expressing genes from N. caninum.

0 Conduct preliminary analysis of the immune response in mice inoculated 

with transgenic parasites.
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3.1 INTRODUCTION

3.1.1 Background

Transgenic T. gondii has been previously shown to be effective at generating a 

specific immune response to the heterologous proteins that were expressed (Charest et 

al, 2000; Ramirez et al, 2001). These studies utilised attenuated T. gondii transfected 

with genes from Leishmania major and Plasmodium yoelii as a live delivery system to 

examine ways to deliver antigens and to generate an appropriate cell-mediated 

immune response. However, there is nothing in the literature about using transgenic T. 

gondii to stimulate a specific immune response against N, caninum parasites. The 

work in this chapter describes some preliminary studies examining the effect of 

inoculating mice with transgenic T. gondii parasites. The eventual aim of these studies 

would be to characterise the immune responses raised against the transgene and 

determine the protective effect (if any) of these responses.

3.1.2 Immune Responses to T. gondii During Acute Infection

During an acute T. gondii infection, a Type I T-cell -response is characteristically 

induced; that is one where there is a high level of IFNy, TNFa and IL-12 as well as a 

prevalence of CD4^ T-cells (Mordue et al, 2001). Elevated levels o f these three 

cytokines have been shown to exacerbate the pathology associated with acute 

toxoplasmosis, the symptoms being extensive liver and lymphoid tissue damage 

(Mordue et al, 2001). It is primarily CD4"  ̂T-cells that are important in protection in 

the acute disease, since CD4^ T-cells are the major source of IFNy (Gazzinelli et al, 

1996).
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CD 8  ̂T-cells are also important in the development of protective immunity against T. 

gondii (Parker et al, 1991). Mice that were depleted of CD8^ T-cells were unable to 

prevent the development of cysts o f T. gondii, and protect against the disease (Parker 

et al 1991).

3.1.3 Acute iV . caninum  Infection

3.13 .1  M odels o f  Acute Neosporosis

Mice have primarily been used to model acute neosporosis (Lindsay et al, 1990), 

although it is comparatively more difficult to infect mice with N. caninum than with 

T. gondii. Other species have also been examined, including gerbils (Dubey et al, 

2000). In this study by Dubey et al (2000), tachyzoites o f N. caninum were found in 

intestinal lesions and also in the brains of infected gerbils. The acute pathology 

observed in gerbils is similar to the pathology in mice, though more severe involving 

acute pneumonia, ulcerative lesions in the brain and pancreatitis (Lindsay et al, 1990). 

It should be noted that the response to N. caninum in mice is dependent on several 

factors, including dose of parasite and genetic background of both the mouse 

(discussed in Section 3.1.3.2) and the parasite (Dubey and Lindsay, 1996).

3.1.3.2 Immune Response to N. caninum D uring Acute Infection

The situation in acute neosporosis is similar to that in acute toxoplasmosis, where a 

Thl response is essential for survival, and in particular IFNy and IL-12 has been 

shown to be critical for survival of mice infected with N. caninum (Khan et a/, 1997; 

Baszler et al, 1999; Nishikawa et al, 2001; Ritter et al, 2002). Khan and colleagues 

demonstrated that if IFNy and IL-12 were depleted, mice became more susceptible to 

developing clinical signs of infection (Khan et al, 1997). In IFNy knockout mice, the
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disease quickly becomes lethal, primarily due to the lack of activation of macrophages 

by IFNy (Nishikawa et al, 2000).

T-cells are also important in the protection against acute neosporosis (Tanaka et al, 

2000). In mice depleted of CD4^ T-cells, there was a reduced level of N. caninum 

specific antibodies and IFNy, and the mice succumbed quicker to infection than the 

control mice with normal levels of CD4^ T-cells (Tanaka et al, 2000),

A specific humoral response has also been demonstrated to be protective against 

infection with N. caninum. In B-cell deficient pMT mice that could not produce 

antibodies, infection with N. caninum was fatal, whereas C57/BL6 mice with 

functioning B-cells showed no clinical symptoms when infected with the parasite 

(Eperon et al, 1999). This study suggests that a humoral response had a role in 

protection.

3.1.4 Immunological Cross-Reactivity Between N. caninum and T. gondii

3,1,4.1 Serological Cross Recognition

Until the discovery of the parasite in 1988 (Dubey et al, 1988), N. caninum infections 

were often mis-diagnosed as being T. gondii infections, despite the fact that the serum 

from the infected dogs did not recognise T. gondii antigens (Dubey et al, 1988). The 

mis-diagnosis was primarily due to the morphological similarities between the two 

species. These similarities were confirmed by phylogenetics (Mugridge et al, 1999). 

There is, however, evidence of the serological cross-recognition of some N. caninum 

and T. gondii antigens, as demonstrated by Western blotting of one- and two- 

dimensional SDS-PAGE (Bjerkas et al, 1994; Sundermann et al, 1997; Harkins et al.
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1998; Hemphill et al, 2000). When N. caninum lysate is probed with serum from a T. 

gondii-mÎQoXcà. animal, or vice versa, there were several commonly recognised bands 

that indicated immunological cross-recognition (Harkins et al, 1998). The use of two- 

dimensional SDS-PAGE technology has enabled the identification of individual N. 

caninum proteins recognised by N. caninum specific and T. gondii specific sera, as 

well as several proteins that are only recognised by homologous sera, including two 

spots in the 1 l-18kD pi 5-6 range (Heckeroth et al, 2000) (cited in Hemphill (2000)).

3.L4.2 T-Cell Cross-Recognition

Cellular cross-recognition between N. caninum and T. gondii is less well characterised 

than the humoral immune responses discussed above. A study has shown that T-cells 

taken from N. caninum infected cattle would also proliferate when stimulated with a 

crude lysate antigen of T.gondii (Lunden et al, 1998). However, this study also 

suggests that, while there was a proliferative effect, there was a reduced production of 

IFNy in the heterologous stimulation. This may suggest that, while there are common 

T-cell epitopes in N. caninum and T. gondii, the functionality is different (Lunden et 

al, 1998). This is supported by further work where sheep infected with T. gondii were 

not protected against abortion when challenged at mid-gestation with N. caninum, 

despite demonstrating a cell proliferation response to both T. gondii and N. caninum 

antigen in vitro and an antibody response that was cross-reactive between T. gondii 

and A. caninum (Innes et al, 2001a)

3.1.4.3 Cross-Protective Immunity

In initial challenge experiments, mice infected with N, caninum were not protected 

against subsequent infection with T. gondii tachyzoites (Lindsay et al, 1990).
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However, in later studies by Kasper and Khan (1998), evidence of cross-protective 

immunity between T. gondii and N. caninum was observed in a murine model (Kasper 

and Khan, 1998). In this study, N. caninum infected mice did not succumb to a 

secondary infection of T. gondii. It was shown that CD8^ T-cells from the N. caninum 

infected mouse proliferated in the presence of antigen from T. gondii as well as N. 

caninum and also produced significant levels of IFNy, suggesting that the cross­

reactivity between antigens of T. gondii and N. caninum have different modes of 

action in CD4^ and CD8^ T-cells. However, when mice infected with N. caninum 

tachyzoites are challenged with an oral dose of T. gondii oocysts from a Type II (i.e. 

less virulent) strain (TS-4), there is some protection against parasite-induced mortality 

(Lindsay et aî, 1998). In the same study by Lindsay and colleagues (1998), when N. 

caninum infected mice are challenged with tachyzoites of a Type I strain of T. gondii 

(RH), the results mirror those of previous work by Lindsay and co-workers (1990), in 

that there is no protection (Lindsay et al, 1998). This may suggest that the challenge 

dose and genetic background of the parasite is critical in determining the immune 

response generated. Furthermore, in studies carried out in large animals, it was shown 

that sheep immunised with T. gondii were not protected against challenge by N. 

caninum (Innes et al, 2001a). In this study, there was no cross-protection to challenge 

by N. caninum and foetal loss was evident (Innes et al, 2001a).

3,1.5 Immunisation Studies Using Transgenic T. gondii

Transgenic pathogens have been used in immunisation studies, though these have 

been primarily viral (McMahon-Pratt et al, 1993) or bacterial (Saklani-Jusforgues et 

al, 2003). Recombinant vaccinia virus has been used to immunise against L. major 

using the parasite molecule gp46/M2 (McMahon-Pratt et al, 1993). A protective
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immune response, both cellular and humoral, was demonstrated (McMahon-Pratt et 

al, 1993). Listeria monocytogenes have been engineered to express Leishmania major 

LACK protein to stimulate a CD4^ T-cell response (Saklani-Jusforgues et al. 2003).

Recombinant T. gondii has been used previously in a study to examine the immune 

response to a protein from Plasmodium yoelii, circumsporozoite protein (CSP) 

(Charest et al, 2000). Attenuated, temperature sensitive T. gondii (strain ts-4) were 

engineered to express CSP. In this study the focus was the priming of CD8^ T-cells to 

develop protective immunity against P. yoelii. A specific protective response 

involving CD8+ T-cells after challenge with P. yoelii was observed. When the CD8^ 

T-cells were depleted, the protection against challenge was compromised (Charest et 

al, 2000).

The same attenuated strain of T. gondii (ts-4) that was used by Charest et al (2000) 

was engineered to express the Leishmania major kinetoplastid membrane protein-11 

(KMP-11) (Ramirez et al, 2001). KM P-II was expressed as either cytoplasmic or 

membrane-bound proteins in T. gondii. These recombinant T.gondii were inoculated 

into BALB/c mice, which were then challenged with L. major. There was a specific 

proliferative response by T-cells in vitro to the transfected gene product (KMP-11), as 

well as significant protection when the animals were challenged with live L.major 

(Ramirez et al, 2002).

These studies suggest that the use o f attenuated T. gondii as a delivery vehicle for 

parasite vaccines is potentially useful. Not only is T. gondii a eukaryotic organism, 

with the appropriate cellular mechanisms for expressing eukaryotic proteins, but also
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it is shown to generate a Thl response, protective against intracellular pathogens 

(Wakelin, 1996)

3.1.6 Aims and Objectives

The aims and objectives o f the work in this chapter are to:

•  Select an appropriate mouse strain for immunisation with transgenic T. gondii 

expressing genes from N. caninum.

• Conduct preliminary analysis of the immune response in mice inoculated with 

transgenic parasites.
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3.2 MATERIALS AND METHODS

Note: All animal work was carried out according to the regulations as stated in the 

Animals (Scientific Procedures) Act, 1986. This Act ensures that animals used in 

scientific experiments do not endure unnecessary pain or suffering. Animals that show 

signs o f  discomfort, fo r  example ruffling o f  coats, loss o f  weight, lethargy and a 

hunched or tottering gait, as scored against set criteria (Table 3.1), are euthanised 

when these symptoms exceed a statutory level as judged by a professional handler, Mr 

Steve Wright (Moredun Research Institute, the project licence holder). This is judged, 

under the Act, to be when an animal scores 4 fo r  two days running, or scores 5 on one 

day, according to the scoring systems shown in Table 3.1.

A. Presum ed Febrile Response. Determined by Appearance o f  Coat
Symptom Score

sleek glossy coat 0
ruffled coat 1

stary stiff coat 2

B. Dehydration. Determined by Weight Loss
Symptom Score

weight maintained at pre-infection level 0
10% weight loss 1
20% weight loss 2

C. General Demeanour
Symptom Score

bright /  active 0
hunched 1

tottering gait 1
reluctance to move 1

Table 3.1 Symptoms and scores fo r  assessing symptoms o f  experimental animals, as 
defined by the Animals (Scientific Procedures) Act, 1986. Animals were scored using 
these criteria. Animals scoring 4 on 2 consecutive days or > 5 on 1 day were 
euthanised.
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3.2.1 Selection of Rodent M odel Strain

The response to the transgenic T. gondii was analysed in a small animal model. Initial 

experiments were conducted to determine a suitable strain of mouse and selection of 

an appropriate dose of parasite for the study. Titration of the dose of parasites was 

done to determine a dose that would prime the immune system without causing severe 

disease. This experiment was also an opportunity to determine which strain of mouse 

would be most appropriate to use, since it has been shown previously that different 

genetic types of mice have varying susceptibility to T. gondii infection (Luo et al, 

1997; Schluter e /ût/, 1999).

3.2.1.1 M ouse Strains

Initially, two inbred strains (BALB/c and C57/Black 6) were used in parasite titration 

experiments. These mice were given various doses of T. gondii PRUAHX parasite 

inoculum, ranging from 1x10^ down to 1x10^, the experimental design is detailed in 

Table 3.2.

In addition, infections were also conducted using outbred mice of the Porton strain 

(Moredun Research Institute). Work done recently in Quackenbush outbred mice 

suggested that outbred mice were more resistant to N. caninum infections (Quinn et 

al, 2002). Type II T. gondii, o f which the Prugniaud strain was one example, were 

also thought to be avirulent in mice (Dubey et al 2002). It was interesting to see if this 

would also be the case with recombinant T. gondii infection of an outbred strain of 

mouse, and also whether the fact that the strain of T. gondii used in the experiments 

were genetic knockouts not possessing a functional HXGPRT gene.
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3,2.1.2 Parasites and Experimental Design

Tachyzoites of T. gondii were grown and prepared as described in Chapter 2. Mice 

were inoculated intraperitoneally with various doses of T. gondii PRUAHX 

tachyzoites ranging from 1x10^ dovm to 1x10^ (see Table 3.2). Trials 1 and 2 were 

designed to try the widest range of doses, with drug treatment being administered 

when the clinical symptoms in the mice were noticeable. (Drug treatment in these 

trials was in the form of “intradine” therapy administered in the drinking water (0.5ml 

Intradine/500ml water). Intradine is a 33% solution of sulphadimidine sodium, and is 

administered at a final concentration of 0.3mg/ml drinking water.) In Trials 3(a), 3(b) 

and 4, the drug treatment was given to all mice whether they showed clinical 

symptoms or not at 3 days post infection. This Intradine was given as “wet mash” 

(dried feed soaked in the medicated water as described above. This is more palatable 

to the mice and therefore a more effective way of administering treatment.

PRUAHX
Dose

Trial 1:
BALB/c
(n=6)

Trial 2:
BALB/c
(n=7)

Trial 3(a):
C57BL/6
(n=S)

Trial 3(b):
Porton
(n=5)

Trial 4:
BALB/c
(n=6)

1x10^ / -

5x10'* / - - - -

1x10'* / - - - y
5x10^ y - y y -

1x10^ y - y y y
5 X  10^ y - y y -

2.5 X  10^ - y - - -

1x10^ y - - - y

Table 3.2 Dose of tachyzoites given to mouse strains BALB/c, C57/Black 6 and 
Porton. The experiment was repeated on two occasions in BALB/c mice. The tick ( / )  
indicates that the dose was used in the titrations. Other doses were not used (-).

3.2.2 Immunisation of Rodent Model with Transgenic T. gondii

From the initial titration experiments, the outbred Porton mice were selected for the 

study because they were least likely to succumb to infection. The inbred mouse strains
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were found to be highly susceptible to infection with the PRUAHX T. gondii. Groups 

of Porton mice were used to characterise the humoral immune response following 

inoculation of transgenic T. gondii expressing N. caninum GRA7 or SRS2. The 

experimental design is detailed in Table 3.3. The mice were inoculated intra­

peritoneally with 1x10^ tachyzoites (prepared as described in Chapter 2). Control 

mice were inoculated with the same volume o f PBS (100pi) as that used to resuspend 

the parasites in the experimental groups. Two mice were removed from each group 

and sacrificed at days 0, 14, 28 and 48 respectively post infection. The remainder of 

the mice were factored in to ensure that there were sufficient mice throughout the 

course o f the experiment in case of natural death or euthanisation of animals. 0.1- 

1.0ml of blood was taken from a direct heart puncture immediately after death as a 

source of serum, which was prepared from blood as described in Chapter 3.2.5. 

Experimental Design
Group Parasite Strain Inoculum Dose Number of N ice Sampled
n=12 (per animal) day 0 day 14 day 28 day 48

A PRUAHX xNcGRA7 100 tachyzoites 2 2 2 2
B PRUAHX xNcSRS2 100 tachyzoites 2 2 2 2
C PRUAHX (untransfected) 100 tachyzoites 2 2 2 2
D NCI 100 tachyzoites 2 2 2 2
E Control - PBS only 0 2 2 2 2

Table 3.3 Groups o f 12 Porton mice were infected with 1x10"' T. gondii PRUAH
tachyzoites, either transfected with NcGRA7, NcSRS2 or untransfected; or IxlO^ N. 
caninum NC-1 strain tachyzoites. Control mice were inoculated with PBS only.

3.2.3 Immunofluorescent Localisation of Transgene Products

To assay the presence of A/ cawmwrn-specific antibodies in serum from infected mice, 

the immunofluorescent localisation of transgene products was performed. Slides were 

prepared and probed with antibodies as described in detail in Chapter 2.2.19. 

However, instead of using anti-cwyc antibodies as the primary antibody, the separated 

blood serum from the infected mice was used. The blood was separated with the
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serum being extracted from the other blood components by centrifugation at 13,000 x 

g  for 10 minutes in a microcentrifuge. The serum was aspirated into a clean 1.5ml 

tube and stored at -20°C. This serum was used diluted 1:500 in Tris buffered saline 

(TBS) / Tween-20 solution (1000:1 TBS:Tween-20). This serum was used as primary 

antibody to probe N. caninum tachyzoites to detect specific binding to N. caninum 

molecules. The secondary antibody was the same as previously described in Section 

2.2.19, being a 1:1000 anti-mouse IgG (labelled with FITC) in TBS-T.

3.2.4 In Vitro Growth Rate of Parasites

To assess whether any differences in pathogenicity were due to variation in growth 

rates, a uracil uptake assay was carried out to quantify the in vitro multiplication rate 

o f the different parasite strains (an adaptation to the protocol described in Pfefferkom 

and Pfefferkom (1981)). Twenty-four well culture plates were seeded with 2 x lO'* 

Vero cells/well in a total of 1ml of IMDM (supplemented with 10% foetal calf serum 

(Labtech, UK)). The plates were incubated at 37°C, 5% CO2 overnight. T. gondii 

tachyzoites, either PRUAHX or PRUAHX expressing NcGRA7 or NcSRS2, or N. 

caninum NC-1, were added to 4 wells each at a concentration of 6 x 1 O'* in 60pl of 

IMDM. The cells plus parasites were then incubated for 0, 2, 12, 24 and 48h at 37°C.

After the allotted time, 5pCi of (5,6-[^HJ) uracil (Perkin-Blmer) was added to each 

well. The plate was incubated a ftirther 4h at 37°C, before being chilled at -20°C for 

3min. 1ml of ice-cold TCA (0.6M) was added to each well to precipitate any non­

integrated [^H] uracil, and the plate was incubated on ice for Ih to fix the monolayer 

onto the base of the well. The TCA was then removed from the wells and the plate 

was immersed in a bowl of water overnight.
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The plates were air-dried for 5-lOmin before O.IM NaOH was added. This was 

incubated at 30°C to dissolve any TCA precipitate. 0.25ml from each well was 

removed and placed in a scintillation vial containing 3ml of acidified scintillation 

fluid (2.5pl of acetic acid per 2.5ml of scintillate). These were then read in a 

scintillation counter (Perkin Elmer).
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3.3 RESULTS

3.3,1 Inoculation of Different Mouse Strains with PRUAHX T. gondii

Four experiments were carried out to evaluate the effect o f inoculation of different 

parasite doses into different strains of mouse, with a view to selecting the optimal 

mouse strain for inoculation with transgenic parasites. Three strains of mice were 

tested with different inoculation doses and with different drug regimes. All 

experimental animals were examined daily for clinical signs according to the criteria 

laid out in the Animals (Scientific Procedures) Act (1986) (see Section 3.2) and any 

animals scoring 4 for two days, or over 5 for one day were removed from the 

experiment and euthanised.

3.3,L1 Trial 1: BALB/c

Adult female BALB/c mice were inoculated with different doses o f PRUAHX T. 

gondii ranging from 1x10^ to 1x10^ tachyzoites per mouse (Table 3.2). By day 1 p.i,, 

the mice were all showing some degree of coat ruffling, an indication that they were 

not healthy. However, this settled down in the mice in the lower dosage groups (5x10^ 

tachyzoites and less) by day 2 p.i. The drinking water was supplemented with 

intradine (day 5 p.i.) to help the mice cope with the infection better, however by day 6 

p.i., all the mice infected with higher doses (1x10^, 5x1 O'* and 1x1 O'* tachyzoites) had 

either died or been euthanised. By day 10 p.i., all remaining mice in the other dose 

groups had been euthanised according the Home Office Guidelines or had died.

3.3,L2 Trial 2: BALB/c

One further group of BALB/c mice were inoculated with 2.5x10^ tachyzoites (Table 

3.2). As in Trial 1, all the mice showed a degree of coat ruffling by day 1 p.i., though
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this had settled down by 48h p.i. Intradine therapy commenced on day 4 p.i., a day 

earlier than in Trial 1, to try and regulate the infection at an earlier stage than in Trial 

1, However, by day 7 p.i. all mice were suffering from the infection such that they 

were all dead or euthanised by day 10 p.i.

Other mouse strains were then tried to compare and contrast their responses to the 

lower doses o f PRUAHX T. gondii. In addition the drug regime was re-evaluated to 

start treatment earlier and to administer in feed as opposed to in water.

3 3 .L 3  Trial 3(a): C56BL/6

Another-inbred strain, C57BL/6, was used. These mice were infected with 5x10 \  

1x10^ or 5x10^ tachyzoites of PRUAHX T. gondii (Table 3.2). Again, mice showed 

ruffled coats on day 1 p.i. followed by a smoothing of the coats on day 2 p.i. The 

intradine was given in wet mash from day 3 p.i.. By day 7 p.i., the mice infected with 

5x10^ tachyzoites showed severe clinical symptoms, and all were dead or euthanised 

by day 11 p.i. The mice in the other groups fared slightly better. By the end of the 

experiment (day 21 p.i.) 3 of the 5 mice inoculated with 1x10^ tachyzoites, and 2 

inoculated with 5x10^ tachyzoites had succumbed to the infection.

3.3.1.4 Trial 3(b): Porton

Porton mice were treated in the same manner as the C57BL/6 mice described in 

Section 3.3.1.3, including the drug treatment in wet mash from day 3 p.i. Again, by 

day 1 p.i. the mice had ruffled coats, though this had cleared by day 2 p.i. In contrast 

to the result with the C57BL/6 mice, by the end o f the experiment on day 21 p.i., only
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two o f the mice (from the group inoculated with 5x10^ tachyzoites) had succumbed to 

infection and had been euthanised.

The conclusion of Trial 3 was that Porton mice were less likely than C57/B16 to 

succumb to a low dose of T. gondii Prugniaud knockout strain PRUAHX.

BALB/c mice were further examined to test the effect of administration of the drug 

starting on day 3 p.i. in wet mash as was used in Trials 3(a) and 3(b).

3.3.L5 Trial 4: BALB/c

Three groups of BALB/c mice received doses of tachyzoites as shown in Table 3.2. 

Similar to the other experiments, the mice showed ruffling of their coats that cleared 

by day 2 p.i. The mice in the group inoculated with 1x1 O'* tachyzoites began dying on 

day 4 p.i., and by the end of the experiment on day 28 p.i., only two mice inoculated 

with 1x10^ tachyzoites had survived.

This final trial confirms the result that the outbred Porton strain of mouse was hardier 

than the two inbred mouse strains tested and the Porton strain was selected for further 

experimentation. The genetic background of the host animal was an important factor 

determining survival with an infection of PRUAHX T. gondii.

3.3.2 Immunisation regimen of Porton Mice

Mice were inoculated with T. gondii, transfected with NcSRS2 or NcGRA7, 

untransfected T. gondii, wild-type N. caninum NC-1 or PBS (control). PBS was used 

as a control since the parasite inocula (1x10^ tachzyoites in 100pi) were suspended in
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Sterile PBS prior to inoculation. Serum samples from each group were taken at day 

14, 28 and 48 days p.i (Table 3.3).

Table 3.4 summarises the clinical response of the mice following inoculation. It 

highlights when mice were found dead, were euthanised because they were too sick to 

continue in the experiment, and also when samples were removed for analysis. In the 

group infected with PRUAHX x NcGRA? (Group A), one mouse died on day 9 pi and 

one was culled on day 18 pi, while in Group B (inoculated with PRUAHX x 

NcSRS2) one mouse was culled on day 12 pi and another on day 45 pi due to severe 

clinical symptoms. In the group inoculated with NCI (group D), only one mouse was 

euthanised on day 39 pi. However, in Group C (inoculated with untransfected 

PRUAHX T. gondii) 50% of the mice were removed from the experimental group due 

to severe clinical symptoms by day 28 p.i.. Four mice died naturally, and two were 

euthanised. Only in the negative control (group E) were there no cullings / deaths due 

to severe clinical responses to the inoculum.

It was also noticeable that all the groups had mice surviving to day 48 p.i., the end of 

the experiment, except Group C, where all the mice had died or been euthanised by 28 

days p.i.. This suggested that the transfected strains of T. gondii showed less 

pathogenicity in Porton mice than their untransfected counterparts.
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GROUP
A FRUHX-x NcGRA?

Day p.i. Event
INo. of Mice 
Remaining

0 Inoculation of Mce 12
0 2 samples taken 10
9 1 died 9
14 2 samples taken ?
18 1 culled 6
28 2 samples taken 4

48 2 samples taken 2
48 End of Experiment 2*

GROUP
C PRUHX-

Dayp.i, Event
INo. of Mice 
Remaining

0 Inoculation of Mce 12
0 2 samples taken 10
8 3 died, 1 culled 6
11 1 culled 5
14 2 samples taken 3
18 1 died 2
28 2 sang l̂es taken 0
28 End of Experiment 0 mice remaining

GROUP
E CONTROL: PBS

Day p.i. Event
No. of Mice 
Remaining

0 Inoculation of Mce 12
0 2 samples taken 10
14 2 samples taken 8

28 2 samples taken 6
48 2 samples taken 4
48 End of Experiment 4*

GROUP
B PRUHX-xNcSRS2

Day p.i. Event
No. of Mice 
Remaining

0 Inoculation of Mce 12
0 2 samples taken 10
12 1 culled 9
14 2 samples taken ?
28 2 samples taken 5
45 1 culled 4
48 2 samples taken 2
48 End of Experiment 2*

GROUP
D NCI

Day p.i. Event
No. of Mice 
Remaining

0 Inoculation of Mce 12
0 2 samples taken 10
14 2 samples taken 8
28 2 samples taken 6
39 1 culled 5
48 2 samples taken 3
48 End of Experiment 3*

Table 3.4 Porton mice inoculated with PRUAHX T. gondii transfected with NcGRA? 
and NcSRS2, untransfected PRUAHX T. gondii, NCI N. caninum and PBS as 
negative control, (p.i. -  post inoculation). “Culled” mice were euthanised because 
they had significant clinical symptoms as defined by law to warrant their removal 
from the experiment. * Extra mice in each group were to account for natural death / 
euthanisation o f animals, to ensure that in each sample group n==2. These mice were 
euthanised at the end of the experiment.
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3.3.3 Immunofluorescent Localisation of Transgene Products

Slides of N. caninum were made and probed with sera from infected mice (primary 

antibody). Since the mice were infected with T, gondii tachyzoites expressing N. 

caninum GRA7 and SRS2, it was anticipated that there would be some specific 

antibodies against these two N. caninum molecules. A secondary antibody that was 

conjugated with FITC and raised against mouse IgG was added. This secondary 

antibody bound to any mouse IgG that had attached to the tachyzoites during the 

primary reaction. The sera used were from mice of each group, at days 0 and 48 p.i. 

Figure 3.1 shows that there was little or no specific binding of antibody in any of the 

groups of mice at day 0 p.i.

After 48 days of infection, there was little evidence of specific binding of serum 

proteins to N. caninum tachyzoites, as is shown in Figure 3.2. There was evidence of 

nuclear staining of N. caninum when probed with sera from mice in Groups A and B 

(inoculated with T. gondii expressing NcGRA? and NcSRS2, respectively). Stronger 

fluorescence was observed in tachyzoites probed with sera from Groups C and D (sera 

from mice inoculated with PRUAHX and NCI, respectively).

However, some antibody binding was also observed in Group E (PBS control). This 

may suggest that the fluorescence seen in Groups A-D was not as specific as first 

thought. In Groups A and B, the fluorescence was focussed around the nucleus, 

suggesting that there was some level of specific binding, whereas the fluorescence in 

Groups C and D was focused into granular structures throughout the cytoplasm. More 

studies would be required to make any relevant conclusions.
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FITC filter Phase

Figure 3.1 IFAT slides of A. caninum tachyzoites. Parasites were fixed onto slides 
and probed with sera from infected mice (A: PRUAHX x NcGRA? B: PRUAHX x 
NcSRS2 C: PRUAHX D: NCI E: PBS) at day 0 p.i. Secondary antibody was 
rabbit anti-mouse IgG labelled with FITC. Visualised under FITC filter and phase 
contrast.



FITC Phase

Figure 3.2 IFAT slides of N. caninum tachyzoites. Parasites were fixed onto slides 
and probed with sera from infected mice (A: PRUAHX x NcGRA? B: PRUAHX x 
NcSRS2 C: PRUAHX D: NCI E: PBS) at day 48 p.i (day 28 for Group C). 
Secondary antibody was rabbit anti-mouse IgG labelled with FITC. Visualised 
under FITC filter and phase contrast.
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3.3.4 Rate of Parasite Multiplication in vitro

In vitro growth rates of tachyzoites o f T. gondii (PRUAHX) and N. caninum (NCI), as 

well as transformed T. gondii (PRUAHX x NcGRAT; PRUAHX x NcSRS2), were 

assayed to determine whether any differences in the observed pathogenicity in the 

infected mice might be correlated with differential in vitro growth rates. Growth was 

assayed in vitro by measuring the differential incorporation of (^H) uracil into parasite 

RNA.

Figure 3.3 shows the multiplication rate of T. gondii PRUAHX x NcGRAT, PRUAHX 

X  NcSRS2, PRUAHX and N. caninum NCI. Parasite multiplication was assayed at 

five timepoints - Oh, 2h, 12h, 24h and 48h. There is no noticeable difference between 

any of the T. gondii strains oiN. caninum. The fact that there is no difference between 

transfected and non-transfected T. gondii in vitro does not necessarily correlate 

directly to the in vivo results. However, if indeed this were the case, it would suggest 

that any pathology caused in the mouse was not due to a quicker parasite proliferation 

in one group than another, but to some other difference between the parasite strains.

3.3.5 Additional Data

Further experiments were conducted following the original submission of this thesis 

to provide additional data for this chapter. Acknowledgement is made to staff at the 

Moredun Research Institute, Edinburgh (Paul Bartley and Steve Wright), the National 

Veterinary Research Institute, Uppsala (Jens Mattson) and the University of Liverpool 

(Sophia Latham) for their contribution.
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Experiments were performed using the T, gondii PRU transfected with N. caninum 

GRA7 (PRUAHX x NcGRA7) DNA was extracted from the tachyzoites and the 

presence of the transgene confirmed by PGR (S. Latham, pers. commun.). Following 

this, a series of experiments were carried out to determine the cell-mediated and 

humoral immune responses in mice following inoculation of the transgenic parasites.. 

The immunisation studies were performed as described in Section 3.2.2 with the 

splenic T-cell proliferation assays being carried out as described in Section 4.2.5. The 

Western Blot analysis was carried out using the technique described in Section 2.2.20 

and the IF AT studies were performed using the technique described previously 

(Buxton and Finlay son, 1996) with the modification of using a goat anti-mouse 

antiserum conjugated to fluorescein isothiocyanate (FITC) (Sigma, Poole, UK) as a 

secondary antibody.

3.3.5,1 Rodent Immunisation Studies

Five Porton strain mice were inoculated with 1 x 10  ̂ tachyzoites of T. gondii 

containing the N. caninum GRA7 transgene. One mouse was culled and the spleen 

removed, along with a sample of blood taken from a direct heart puncture 

immediately after death as a source of serum, at day 28p.i.; the other four mice 

(including the control mouse that was inoculated with lOOpl of PBS) were culled and 

samples were collected at day 34 p.i. The spleen cells were co-cultured with a variety 

of antigens (see Table 3.5) and the proliferation measured as described in Section 

4.2.5.
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Antigen Antigen FinalConcentration
ID (pg/ml)
Medium Medium -  IMDM + 10% PCS + 

Penicillin/Streptomycin
N/A

Con A Concanavalin A 5
TG S48 T. gondii (sonicated) 5
NC(R) NCI (ribolysed) 5
NC(S) NCI (sonicated) 5
GRA7(10) PRUAHX X  Nc GRA7 (sonicated) 10
GRA7(5) PRUAHX X  NcGRA7 (sonicated) 5
GRA7(2.5) PRUAHX X  NcGRA7 (sonicated) 2.5
GRA7(1) PRUAHX X  NcGRA7 (sonicated) 1
GRA7(0.5) PRUAHX X  NcGRA7 (sonicated) 0.5

PRU strain transfected with N. caninum GRA7 gene. The GRA7 antigens were 
prepared from the transfected tachyzoites PRUAHX x NcGRA7.

The mean counts per minute (indicating proliferation) of the splenic cells, as well as 

the standard deviation and Stimulation Index (SI) for each mouse is shown in Table 

3.6. Cell viability was confirmed for all spleen cells by the levels of mitogenic 

responses seen to ConA, Antigen specific proliferative responses were observed 

following co-culturing with water soluble fractions of sonicated PRU HX x GRA7at 

lO pg.m l. A dose response to the decreasing levels of PRU HX x GRA 7 antigen was 

observed in all the animals. Two animals (Animals 0 and 1) gave an SI value of 

greater than 3 following culturing with sonicated S48 T. gondii tachyzoite antigen. 

One animal (Animal 0) gave an SI value of greater than 3 following culture with the 

NCI N. caninum lysate antigens.
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Animal 0
Antigen cpm (mean) St. Dev. SI
Media 17.67 8.50 1.00
Con A 4926.67 189.04 278.87
TG 55.33 19.09 3.13
NC(R) 70.33 12.90 3.98
NC(S) 64.67 20.65 3.66
GRA7(10) 403.33 76.07 22.83
GRA7(5) 283.33 28.22 16.04
GRA7(2.5) 200.00 62.39 11.32
GRA7(1) 93.67 8.08 5.30
GRA7(0,5) 100.67 13.58 5.70

Animal 2
Antigen cpm (mean) St. Dev. SI
Media 15.33 6.03 1.00
ConA 8614.00 1059.17 561.78
TG nd nd nd
NC(R) 27.33 18.58 1.78
NC(S) 28.33 10.60 1.85
GRA7(10) 162.67 30.44 10.61
GRA7(5) 98.33 22.03 6.41
GRA7(2.5) 59.67 25.77 3.89
GRA7(1) 47.00 18.08 3.07
GRA7(0.5) 20.67 6.66 1.35

Animal 1
Antigen cpm (mean) St. Dev. SI
Media 32.00 5.57 1.00
Con A 6320,00 413.17 197.50
TG 118.67 41.06 3.71
NC1( R) 54.33 10.02 1.70
NCl(S) 76.33 24.91 2.39
GRA7(10) 408.67 35.84 12.77
GRA7(5) 272.67 82.52 8.52
GRA7(2.5) 233.67 48.44 7.30
GRA7(1) 154.67 85.89 4.83
GRA7(0.5) 111.00 37.24 3.47

Animal 3
Antigen cpm (mean) St. Dev. SI
Media 42.33 14.74 1.00
Con A 6396.33 316.89 151.09
TG 86.00 2.65 2.03
NC1( R) 55.00 9.64 1.30
NCl(S) 68.00 35.55 1.61
GRA7(10) 296.33 58.77 7.00
GRA7(5) 363.33 81.37 8.58
GRA7(2.5) 246.67 82.56 5.83
GRA7(1) 144.67 45.96 3.42
GRA7(0.5) 265.33 42.19 6.27

Animal 4
Antigen cpm (mean) St. Dev. SI
Media 20.00 6.93 1.00
Con A 5709.33 599.15 285.47
TG 42.33 10.69 2.12
NC(R) 25.00 5.29 1.25
NC(S) 29.33 3.79 1.47
GRA7(10) 159.33 11.85 7.97
GRA7(5) 103.33 21.03 5.17
GRA7(2.5) 65.33 10.07 3.27
GRA7(1) 37.33 17.56 1.87
GRA7(0.5) 27.00 15.10 1.35

Table 3.6 Proliferation of murine splenic cells in the presence of heterologous 
antigens. The mean counts per minute (cpm) are derived from triplicate assays. 
Standard Deviation is shown (St. Dev.), along with the Stimulation Index (SI). SI > 3 
are shown in bold, (nd = not done) The GRA7 antigens were prepared from the 
transfected tachyzoites PRUAHX x NcGRA7.
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3.3.5.2 Western Blot

Nitrocellulose membranes containing 5pg of N. caninum GRA7 fused with Maltose 

Binding Protein were probed with serum from: 1. Mouse infected with Vero cells {N. 

caninum specific antibody titre <1:16); 2. Mouse infected with N. caninum {N. 

caninum specific antibody titre 1: 4096); 3. Mouse infected with PRUAHX x 

NcGRA7 T. gondii {N. caninum specific antibody titre <1:16). A secondary anti­

mouse IgG antibody labelled with horseradish peroxidase was used subsequently to 

detect any specific binding.

Figure 3.4 shows the results of the Western Blot. A large number of strong bands 

were observed in Lane 1 (N. caninum infected mouse serum). Very faint bands (at 

approximately 47.5 and 60 kDa) were observed in Lanes 2 and 3 (serum from Vero 

cell infected mice and serum from mice infected with the transfected T. gondii^ 

respectively).

3.3.5.3 IF A T

An indirect immunofluorescence test was set up to quantify titres of both N. caninum 

and T. gondii specific antibodies in serum from the mice immunised with PRUAHX x 

NcGRA7. Tachyzoites of RH strain T. gondii and NCI strain N. caninum were used 

as antigens in the test.

Sera from the infected mice were serially diluted in PBS horn 1:16 to 1:1024 for use 

in the test and the secondary reagents e.g. goat anti-mouse IgG and goat anti-mouse 

IgM) labelled with FITC were used diluted in glycerol at 1:100 (IgG) and 1:50 (IgM)
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Figure 3.4 Western Blot of nitrocellulose membranes containing recombinant N. 
caninum GRA7. Lane 1 was probed with serum from a N. caninum infected 
mouse. Lane 2 was probed with serum from mice infected with Vero cells. Lane 
3 was probed with serum from a mouse infected with T. gondii transfected with 
N. caninum GRA7. M is the molecular weight marker.
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Table 3.7 shows the results of the IFAT experiments. None of the mice produced IgG 

or IgM specific for N, caninum. However, anti-T. gondii IgG titres of 1/1024 were 

observed in all animals.

Mouse anti-NCI
IKG

anti-71 
gondii IgG

anti-NCI
IgM

anti-71 
gondii IgM

0 <1/16 1/1024 <1/16 <1/16
1 <1/16 1/1024 <1/16 1/64
2 <1/16 1/1024 <1/16 <1/16
3 <1/16 1/1024 <1/16 <1/16
4 <1/16 1/1024 <1/16 <1/16

Table 3.7 IFAT detection of anti-77, caninum and anti-T. gondii IgG and IgM. The 
figures indicate the lowest dilution of serum antibodies from experimental animals 
that generated specific fluorescence using tachyzoites of T. gondii or N. caninum as 
antigen..

3.3.5.4 General Conclusions

This additional work was done in an effort to help determine whether the transfected 

T. gondii containing N. caninum GRA7 produced specific immune responses to N. 

caninum in experimentally infected mice. Only five mice were used, so the 

conclusions are only preliminary. There did appear to be some specific proliferative 

response in cells taken from the spleens of infected mice. Proliferation in cells co­

cultured with a crude lysate antigen prepared from PRUAHX x NcGRA7 antigen was 

slightly higher than the proliferation caused when the cells were cultured with other 

antigens. A dose response was noticeable in the infected mice. However, only one out 

o f the five mice showed positive proliferative responses to a crude lysate of N, 

caninum antigen.

The Western Blot and IFAT experiments showed that the mice immunised with 

PRUAHX X NcGRA7 did not produce a measurable antibody response against N. 

caninum or more specifically the GRA7 antigen. Whereas, control serum from mice
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infected with N, caninum recognised several bands in the GRA7 western blot. This 

may suggest that, although the T. gondii is stably transfected with N, caninum GRA7 

the expressed transgene is either not available or is not being adequately presented to 

the immune system of the mouse. The addition of a the c-myc tag to the sequence of 

the NcGRA7 gene may have altered the structure of the gene product sufficiently such 

that the protein was not trafficked within the cell correctly. Some proteins are under 

post-translational control in T.gondii and therefore may not be efficiently expressed. 

In the case of a GRA-protein that control could also mean that the protein is not 

correctly targeted.

Alternatively, the results presented here may suggest that the transgenes are not being 

expressed by T. gondii, despite being stably transfected into the parasite. Further 

studies would be required before a firm conclusion can be reached.

- 156



______________________________________________________________________________  Chapter 3

3.4 DISCUSSION

The aim of the experiments described in this chapter was to establish a suitable mouse 

model to allow us to study the effects of inoculating transgenic parasites into mice. 

The longer-term aim of this work would be to determine if the immune response 

generated following infection with the transgenic parasites would be protective 

against challenge with Neospora caninum parasites.

3.4.1 M ouse Strains

In the studies described in this chapter, three different strains of mice were inoculated 

with untransfected T. gondii. There has been work published which suggests that the 

genetic background o f the mouse host may directly affect the outcome of infection 

with T. gondii (Lee and Kasper, 2004). Two inbred strains, BALB/c and C56B1/6 -  

and one outbred strain, Porton, were used to determine a suitable animal model to 

allow us to conduct an in vivo assessment of the transgenic parasites. Unfortunately 

the PRUAHX T.gondii strain of parasites proved to be highly virulent in mice and it 

took longer than anticipated to establish an inoculation and treatment regime that 

would allow the mice to become infected but not succumb to disease. The wild-type 

PRU strain of T. gondii has previously been characterised as a Type II strain shown to 

be relatively benign in OFl mice (Zenner et al, 1999). However, when the HXGPRT 

gene is knocked out, the virulence o f the strain increases, the reason for which is 

unknown (Dubremetz, pers. commun.). This increased virulence is reduced when the 

knockout gene is re-introduced.

In previous studies, outbred Swiss-Webster mice have been shown to be more 

resistant to infection with N. caninum than inbred BALB/c mice (Cole et al, 1995).
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However, Swiss-Webster mice have also been shovm to be highly susceptible to T. 

gondii infection, as mice inoculated with one tachyzoite o f the RH strain (a Type I 

strain) rapidly succumbed to infection (Dubey, 1999). The experiments in this chapter 

would indicate that outbred Porton mice are less susceptible than either BALB/c or 

C56BL/6 mice to infection with PRUAHX strain T. gondii since there were Porton 

mice that survived >21d pi, compared to no BALB/c or C57BL/6 mice that survived 

at this time point following inoculation. The PRUAHX strain o f T. gondii used was a 

knockout of a Type II strain (Howe and Sibley, 1995). Type I strains o f T. gondii 

generate higher pathology and are generally more virulent that Type II strains in 

inbred mice (Howe and Sibley, 1995). Therefore, the Porton strain of mouse was used 

to conduct some preliminary studies to examine the humoral immune response to the 

transgenic parasites.

3.4.2 Humoral Immunity

When B-cell deficient mice are challenged with tachyzoites o f N. caninum, there is an 

increased susceptibility to infection (Eperon et al, 1999). A similar increase in 

susceptibility is observed when B-cell deficient mice are challenged with T. gondii 

(Kang et al, 2000). This suggests that the humoral response is important in protecting 

against these two organisms.

There was some evidence using localisation studies that mice inoculated with the 

transgenic parasites produced antibodies that recognised antigens of N. caninum. 

Different staining patterns were observed using antibodies obtained from the mice 

infected with transgenic parasites compared with the wild type parasites. This 

suggests that the antibodies raised in the mice infected with transgenic parasites may
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have been directed against particular antigens on the Neospora parasites. Clearly, 

further work needs to be done to examine the specificity of this immune response in 

more detail some of which has been discussed in the additional studies section 3.3.5.

3.4.3 Future W ork

The preliminary immunology studies using IFAT to identify a specific antibody 

response to N. caninum in the mice inoculated with the transgenic T. gondii has 

shown that there is potentially a specific response, though time constraints meant that 

further studies were not possible to confirm if this was indeed the case. These studies 

would include Western Blot and T-cell proliferation assays to further assess the 

specificity of the humoral immune response and to examine the cellular immune 

responses, thought to be important in protective immunity to N. caninum (Kaspar and 

Khan, 1997).

The Western Blotting experiments could be carried out two ways. Firstly, whole 

parasite lysates of untransfected PRUAHX T. gondii, transfected T. gondii expressing 

NcGRA7 and NcSRS2, and NC 1 N. caninum would be separated on SDS-PAGE gels 

and blotted onto nitrocellulose, before being probed with sera from the inoculated 

mice, and differences in response to the different parasites assayed. In addition, 

recombinant NcGRA7 or NcSRS2 could be run on an SDS-PAGE gel, blotted onto 

nitrocellulose and probed with sera from infected mice to detect specific antibodies 

raised against the transgene products. This second method may be more useful, due to 

the known level of cross-reactivity between N. caninum and T. gondii (Hemphill, 

2000). However some cross-reactivity may still be observed using the recombinant 

proteins, particularly when using NcSRS2, which has been shown to be relatively
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homologous between T. gondii and N, caninum (Howe et al, 1998). A study by 

Nishikawa et al (2002) suggests, however, despite the homology, TgSRS2 and 

NcSRS2 are sufficiently different that antibodies raised against one will not recognise 

the other (Nishikawa et al, 2002).

One of the difficulties in trying to dissect the specific immune responses to N. 

caninum with a concurrent infection of T. gondii is the level of similarity between the 

two parasites. It would be easier to detect specific immune responses to the transgene 

if  the N. caninum genes were transfected into a parasite or a bacteria species that was 

unrelated. However the down side o f doing that would be that the cross-reactivity of 

T. gondii may be helpful to additionally stimulate the immune response.

The specific proliferative and cytokine response of spleen and lymph node cells to 

NcGRA7 and NcSRS2 would also be interesting to study. This would require 

culturing immune cells in vitro and stimulating them with a number of different 

antigens including whole N. caninum NCI antigen lysate, whole T. gondii PRUAHX 

antigen lysate, lysates prepared from recombinant PRUAHX expressing NcGRA7 and 

NcSRS2, and the recombinant antigens NcGRA7 and NcSRS2. Hopefully by using 

these recombinant antigens it would be possible to dissect the cellular response 

against the transgenes as well as the parasite carrier. In the study by Ramirez et al 

(2002), a specific cell proliferative response to recombinant L  major KMP-11 was 

identified, and mice were protected following challenge with L. major. (Ramirez et 

a/.,2001). This suggests that T. gondii may be useful as a live delivery vehicle for 

heterologous proteins, and it would be interesting to see if this was also the case for N. 

caninum infections. To do this we would challenge the mice with live N. caninum
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tachyzoites following immunisation with the transgenic parasites to determine 

whether the mice had generated protective immunity.

In addition to using techniques to help determine the specificity of the immune 

response, it is also important to check expression of the protein and how this may be 

processed and presented to the immune system.
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CHAPTER 4:

STIMULATION OF BOVINE T-LYMPHOCYTES BY N, caninum 

PROTEINS SEPARATED USING DIFFERENT SDS-PAGE

METHODS

0 Prepare and separate whole N. caninum protein lysate by one- and two- 

dimensional polyacrylamide gel electrophoresis 

0 Prepare by electroelution several protein fractions for lymphoproliferation 

assays and assess feasibility of using this antigen to stimulate bovine T- 

cells

0 Produce CD4^ T-cell lines from N, caninum infected cattle 

0 Quantify proliferation of bovine CD4^ T-cells to different fractions 

0 Identify T-cell immunodominant fractions for downstream analysis by 

mass spectrometry
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4.1 INTRODUCTION

4.1.1 Separation of Proteins by One-Dimensional Polyacrylamide Gel 

Electrophoresis (PAGE)

4.1.1.1 Sodium Dodecylsulphate PAGE (SDS-PAGE)

One-dimensional Sodium Dodecylsulphate Polyacrylamide Gel Electrophoresis 

(SDS-PAGE) is a standard technique within all molecular biology and biochemistry 

laboratories. It is based on a technique developed in the 1970s to analyse the protein 

conformational changes in the production o f viral particles (Laemmli, 1970).

The basis of this method is that polymerised polyacrylamide forms a matrix through 

which proteins, and other charged molecules, can pass in an electric current. The 

distance they can penetrate tlnough this matrix is dependent on the size of the 

molecule i.e. large, branched molecules pass slowly through the matrix whilst 

smaller molecules can pass more quickly. The addition of the detergent SDS aids the 

passage of these molecules through the matrix and crucially removes the influence of 

charge, inherent in many proteins, on their migration in the electric field.

There are many uses for SDS-PAGE separated proteins, including the identification 

of specific proteins using immune sera in Western Blotting (Wastling et al, 1994). 

This technique enables the transfer of proteins separated by SDS-PAGE onto a 

nitrocellulose membrane, prior to being probed by specific antibodies. Specific 

binding between proteins and antibodies, and subsequent visualisation using labelled, 

secondary antibodies against the initial specific antibody, can help the identification 

of individual proteins.
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4.1.1.2 Two Dimensional PAGE (2DE)

Separation of proteins in two dimensions by isoelectric point as well as molecular 

weight is now a widely used technique in proteomics. It was first developed in 1975 

(O’Farrell et al, 1975) but it was not until the development of immobilised pH strips 

that it became a more practical, reproducible technique (Gorg et al, 1988). The 

immobilised pH strips are strips of polyacrylamide polymerised onto plastic in which 

the pH of this acrylamide varies across the strip. When a current is passed through 

this strip in the presence of proteins, the proteins will focus according to their 

isoelectric point. This strip is then placed on top of a SDS-polyacrylamide gel. 

Similar to one-dimensional SDS-PAGE, the proteins are then separated according to 

their molecular weight (Laemmli, 1970).

Proteins separated by 2-DE can be used for mapping the proteome, or partial 

proteome, of an organism. This technique has been used to map the partial soluble 

proteome of the apicomplexan parasite T, gondii (Cohen et al, 2002) as well as 

identifying proteins that are recognised by antibodies against T. gondii (Dlugonska et 

al, 2001). Alternatively, the separation in two dimensions can be used to isolate 

individual proteins for analysis where individual protein spots are picked, digested 

by trypsin and identified by mass spectrometiy (Cohen et al, 2002).

4.1.2 Elution of Proteins from  SDS-PAGE gels

4,1.2.1 The Necessity fo r  Protein Elution

Elution of proteins from the polyacrylamide matrix is often not required for further 

analysis of the proteins, for example mass spectrometric analysis can be performed 

following in-gel digestion (see Chapter 5). However, if the proteins of interest are 

required for testing biological activity or reactivity in living systems, for example in
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in vitro tissue culture, then the presence of polyacrylamide and other gel 

contaminants may be detrimental to the system. Both acrylamide and SDS have been 

shown to be toxic to cells in vitro (Grant and Acosta, 1994; DeJongh et al, 1999). In 

such cases, separation of the protein from the gel matrix is essential.

4.L2.2 Benefits o f  Protein Elution

Proteins eluted from SDS-PAGE gels have the advantage over proteins blotted onto 

membranes in that they are eluted into solution, usually a very weak Tris buffer 

(Guile et al, 1990). This has the advantage over membrane-bound proteins in that 

eluted protein samples do not contain membrane components influence further 

experimental designs.

Proteins can also be eluted from native polyacrylamide gels (Schagger et al, 1994). 

This has the advantage of maintaining the secondary structure o f the protein, unlike 

in SDS-PAGE gels where proteins are denatured.

4.2.2.3 Use o f  Electroeluted Proteins in Immunological Studies

The majority of the work studying the cellular immune response using electroeluted 

proteins has been carried out using Mycobacterium sp. (Guile et al, 1993; Guile et al 

1995). No studies on the T-cell response to N. caninum infection have been carried 

out using this technique. This chapter aims to identify individual proteins from N. 

caninum that stimulate T-cells from N. caninum-mÎQcXQtX cattle to proliferate in vitro. 

It is therefore appropriate to look in more detail at the immunology of N, caninum 

before discussing previous work identifying proteins that produce a cellular response 

against 77. caninum.

- 165-



-----------------------------------       Chapter 4

4.1.3 Immunity ioN . caninum  Infections

4.1.3,1 Humoral Immune Responses

The role o f antibodies in N. caninum infections is relatively uncharacterised. B-cell 

deficient mice (uMT) that do not have the ability to make antibodies when infected 

with N. caninum tachyzoites, showed an increased mortality and pathology as 

compared to the corresponding wild type mice. This suggests a protective role for 

antibodies (Eperon et al (1999)). This role may be in the prevention of the invasion 

o f host cells by tachyzoites. Monoclonal antibodies identifying parasite antigens of 

various molecular weights (36, 42 and 70kDa) significantly inhibited the invasion of 

the parasite into host cells in vitro (Nishikawa et al, 2000). However, once the 

parasite is inside the cell, antibody is no longer effective and cell-mediated immune 

mechanisms are required to control the infection.

The humoral immune response to N, caninum infection is very useful in the 

diagnosis of infection. Specific antibodies to N. caninum antigens have been shown 

to be produced in response to natural and experimental infection (Conrad et al, 

1993). The antigens against which these specific antibodies have been produced 

have been used extensively in ELISA diagnostics, and the antibodies themselves 

have been used in antigen capture assays (Dubey et al, 1997); these are discussed 

further in section 4.1.3.3. In addition, immune sera has been used to identify 

immunodominant N. caninum antigens (reviewed in Hemphill et al, 1999) and 

discussed in section 4.1.3.3.
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4,1.3.2 Cell-Mediated Im m une Responses

4.1.3.2.1 Mice

As N. caninum is an obligate intracellular parasite, there has been much interest in 

trying to understand the cellular response against N. caninum. The role of CD4^ and 

CD8^ cells in the protective immune response against N. caninum has been studied in 

mice (Tanaka et al, 2000). In the study by Tanaka and colleagues (2000), mice vyere 

treated with monoclonal antibodies against CD4^ and/or CD8^ T-cells to deplete 

these populations. The mice were then challenged with N  caninum tachyzoites. Mice 

with intact CD8^ T-cells (i.e. the CD4'*' T-cells were destroyed) survived post-A. 

caninum challenge, whereas all the mice treated with anti-CD8 monoclonal antibody 

(i.e. only had CD4^ T-cells ) died following challenge (Tanaka et al, 2000). CD4^ T- 

cells also have a role in the production of IFNy, known to be important in protection 

against acute neosporosis (Khan et al, 1997) and providing help for the production of 

specific antibodies (Tanaka et al, 2000). In in vivo studies, mice depleted of IFNy 

(and IL-12) have shown increased susceptibility to N. caninum infection (Khan et al, 

1997), (Baszler et al, 1999).

4.1.3.2.2 Bovine responses

CD4^ T-cells have also been recognised as important in cattle infected by N. 

caninum, both for their production of IFNy to control the parasite (Lunden et al, 

1998; Marks et al, 1998) and for their direct cytotoxic effects (Staska et al, 2003). It 

appears that the dual role of CD4’*' T-cells in being directly cytotoxic and producing 

IFNy is important in protecting against N. caninum infections. IFNy has been shown 

to have a role in significantly inhibiting intracellular multiplication in vitro (Innes et 

al, 1995).
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4,1.3,2 Identification ofN , caninum Antigens using Antibodies

The identification of N. caninum antigens is of interest for the development of more 

diagnostic reagents, vaccine candidates, and to improve our understanding of parasite 

biology. An antigen, identified as being a potential vaccine candidate, is the N. 

caninum SAG-1 related surface protein 2 (NcSRS2) as discussed in Chapter 2. The 

NcSRS2 molecule, when delivered as part of a recombinant vaccinia virus vector, 

has shown potential as a vaccine candidate after demonstrating protection against 

vertical transmission in mice (Nishikawa et al, 2001).

Many other N. caninum proteins have been recognised by serum antibodies taken 

from infected animals (Lally et al, 1997; Atkinson et al 2001). In the paper by Lally 

and colleagues (1997), the authors identified a dense granule protein, initially termed 

NcDGl, though later referred to as NcGRA7 due to its homology to GRA7 in 

T.gondii. The gene product was recognised by screening a cDNA library of N. 

caninum using sera from several infected cattle. Atkinson et al (2001) used a similar 

screening technique, using mouse sera, to identify two gene products. In other 

studies, further antigens of N. caninum are recognised by immune sera (reviewed in 

Hemphill, 1999). Polyclonal antisera, raised against N. caninum tachyzoites in 

rabbits, have been used to identify approximately twenty antigens of varying sizes 

(Barta and Dubey, 1992). Murine monoclonal antibodies raised against N. caninum 

tachyzoites (Cole et al, 1993) identified eight major and several minor antigens, 

ranging in size from 97.4kDa (the largest) to 31 kDa (smallest) and were localised in 

the apical complex, dense granules and parasitophorous vacuole (Cole et al, 1994). 

The production of monoclonal antibodies against cell lysates identified several 

antigens (molecular weights of 25kDa, 65kDa and 116kDa), which were
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subsequently used to set up diagnostic assays for bovine neosporosis (Bjerkas et al, 

1994; Cole et al, 1994; Baszler et al, 1996).

4.1.3,3 Identification o f  Pathogen Antigens Using T-Cell Assays 

The identification of appropriate antigens from pathogenic organisms is important 

when developing effective vaccines. Antigens recognised by T-cells are particularly 

important in the case of intracellular pathogens, as T-cells are known to have an 

important role in protective immunity.

4.1.3.3.1 Mycobacterium sp.

Proteins that stimulate an immune response to pathogens, particularly a cellular 

response (since humoral responses can be detected using Western Blotting) have 

been identified by stimulating T-cells with eluted proteins (Guile et al, 1993; Pinto et 

al, 2000). Much immunological work with eluted proteins has centred on the 

identification of the cellular responses to proteins of Mycobacterium bovis or M. 

tuberculosis (Guile et al, 1990; Guile et al, 1993; Andersen and Heron, 1993; Guile 

et al, 1995), with a view to using any identified proteins as components of subunit 

vaccines. One study looked at the difference in bovine immune responses between 

viable BCG and y-irradiated BCG (Guile et al, 1995). Different responses were seen 

at a cellular proliferation level between different groups. The T-cells from cattle 

immunised with either the viable or irradiated form of BCG responded similarly to 

M. bovis fractionated lysate. However, T-cells from cattle immunised with viable 

BCG recognised fractions of the M. bovis lysate that cells from cattle immunised 

with irradiated BCG did not (Guile et al, 1995). This indicated that the use of 

electroeluted proteins is a useful and appropriate method for stimulating T-cells to 

identify immunologically active proteins.
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4.1.3.3.2 Toxoplasma gondii

T-cell assays have also been used to identify antigens from T. gondii (Saavedra et al, 

1991). In this study, a library o f T. gondii cDNA expressed in a lambda vector was 

screened with sera from an immune human donor to identify antigens recognised by 

the humoral immune response. These antigens were further screened using a T-cell 

clone and an antigen of 54kDa was identified.

This experiment was limited by the initial screening of the expression library by 

immune sera. To assay a larger number of T. gondii proteins without the use of 

immune sera, and also to harness the separation of proteomic techniques, a lysate of 

T. gondii tachyzoites was separated by 2-DE SDS-PAGE. The resulting separation 

was electroeluted from the gel into T-cell proliferation assays (Reichmann et al, 

1997). In this study, a T. gondii parasite lysate was electrophoretically separated in 

two dimensions, with individual proteins being used in proliferation assays using 

cells from a T, go«<7z7-specific T-cell clone, chosen for its induction of 

toxoplasmocidal activity in co-cultured macrophages (Reichmann et al, 1997). A 

fraction of approximately 40kDa stimulated proliferation of the cells (Reichmann et 

al, 1997).

4.1.3.3.3 Neospora caninum

Little work has been done using T-cell proliferation assays to identify 

immunodominant antigens of N. caninum; indeed, only one study to date has been 

published with this aim (Marks et al, 1998). In this study, whole N. caninum lysate 

(NCI strain) was separated on a one-dimensional SDS-PAGE gel and transferred 

onto nitrocellulose membrane. The membrane was cut into sections containing 

several protein bands of similar molecular weight before being added to polyclonal
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bovine T-cells and autologous antigen presenting cells in vitro. The majority of the 

cells shelved little proliferation; however, the cultures containing proteins in the 

<30kDa range proliferated significantly and produced IFNy (Marks et al, 1998).

The work described in this chapter aims to extend the sensitivity of the experiment 

described in the paper by Marks and colleagues (1998) by testing protein fractions 

separated by 2-DE for their ability to stimulate immune T-cells from N. caninum 

infected cattle.

4.1.4 Aims and Objectives

The aims and objectives of this chapter are to:

• Prepare and separate whole N. caninum protein lysate by one- and two- 

dimensional polyacrylamide gel electrophoresis

• Prepare by electroelution several protein fractions for lymphoproliferation 

assays and assess feasibility of using this antigen to stimulate bovine T-cells

• Produce CD4^ T-cell lines from N. caninum infected cattle

• Quantify proliferation of bovine CD4^ T-cells to different fractions

• Identify T-cell immunodominant fractions for downstream analysis by mass 

spectrometry
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4.2 MATERIALS AND METHODS

4.2.1 Preparation of Protein Samples

4.2.1.1 Harvesting and Storage o f  Parasites

Parasites were harvested from culture as described previously (Chapter 2.2.5). They 

were pelleted by centrifugation and washed three times in PBS. The parasites were 

resuspended at a concentration of 1-2x10® before being pelleted by centrifugation at 

13000x g  and stored at -70°C prior to use.

4.2.1.2 Preparation o f  Cell Lysate fo r  One-Dimensional SDS-PAGE

Pellets of tachyzoites (1-2 xlO®) were resuspended in 50-100pl of ddHiO. The 

suspension underwent three cycles of freezing-thawing in liquid nitrogen, before 

being sonicated in a sonicating water bath for 5 mins. The samples were diluted 1:1 

in SDS-PAGE loading buffer (lOOmM Tris.Cl (pH 6.8), 200mM DTT, 4% SDS, 

0.2% bromophenol blue, 20% glycerol) prior to electrophoresis.

4.2.1.3 Preparation o f  Cell Lysate fo r  Two-Dimensional SDS-PAGE

The preparation of tachyzoite protein for Two-Dimensional SDS-PAGE (2DE) was 

similar to that for ID-SDS-PAGE in that the parasite pellet (1-2 xlO®) was freeze- 

thawed in liquid nitrogen and sonicated. However, for 2DE, the tachyzoites were 

initially resuspended in lOOpl Lysis Buffer/lxlO® tachyzoites. Lysis Buffer 

(Amersham Biotech Ltd.) contained 8M urea, 4% CHAPS and 40mM Tris. The 

parasite suspension was then freeze-thawed five times before 200pi Rehydration 

Buffer (8M urea, 2% CHAPS, bromophenol blue (sufficient to give a brilliant blue 

colour to the solution), 4-5mg DTT and 5pl/ml IPG Buffer (Amersham Biotech Ltd.,
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Amersham, UK) were added. This mix was then sonicated for 5 min and then 

incubated at room temperature for Ih prior to 2DE analysis (Cohen et al, 2002).

4.2.1.4 Preparation o f N C I Whole Cell Antigen

N. caninum whole cell antigen was prepared using cycles of sonication, freeze- 

thawing and centrifugation. For the experiments described below, the tachyzoites 

(stored until required at -80°C in pellets of 1-2 x 10  ̂tachyzoites) were resuspended in 

200 pi ddHiO. This suspension underwent three cycles of freezing-thawing in liquid 

nitrogen. This was followed by 7 x 15s cycles of sonication on ice and the 

suspension was centrifuged at 10,000 x g  for 30min. The water-soluble fraction was 

aspirated from the pelleted cellular fragments and stored at -20®C. Protein 

concentration was determined by a colorometric assay comparing the binding of 

Coomassie-based reagents by the NCI antigen to that by a range of known 

concentrations o f bovine serum albumin (BSA) (Coomassie® Plus Protein Assay 

Reagent (Pierce, Rockford, USA)) according to the manufacturer’s instructions. 

Triplicate dilutions of a 2.0mg/ml stock solution of BSA were prepared in ddHzO. 

1ml of each standard and the test sample were transferred to individual tubes (ddHiO 

was used as the control). To each tube, 300pl of the Coomassie® Plus Reagent was 

added, and the tube was inverted to mix the samples and reagent. The absorbance of 

each of the dilutions of BSA was measured at 595nm and an absorbance curve 

produced. The absorbance of the unknown water soluble fraction (wsf) antigen was 

also measured and plotted against the curve. The antigen was resuspended in culture 

medium at a concentration of lOpg/ml for subsequent assays, and stored at -20°C 

until required.
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4.2.2 SDS-PAGE Electrophoresis

4.2.2.1 One-Dimensional SDS-PAGE

4.2.2.1.1 Sample Preparation

Protein lysates produced as described in Section 4.2.1.2 were incubated at 100°C for 

10 mins prior to being loaded into the wells in the stacking gel. 10pi of Broad Range 

Molecular Weight marker (Promega) was also heated at 100°C for 10 minutes and 

loaded onto the gel.

4.2.2.1.2 SDS-PA GE Separation

Protein lysates were separated on a 12-15% polyacrylamide-Tris buffered gel 

(Laemmli, 1970). This consisted of a discontinuous polyacrylamide gel, with a 12- 

15% resolving gel, buffered by 1.5M Tris.Cl (pH 8.8) and a 5% stacking gel buffered 

by IM Tris.Cl (pH 6.8). Both gels contained 10% SDS and 10% ammonium 

persulphate. Samples were separated in Tris-Glycine SDS-PAGE Running Buffer 

(containing lOmM Tris Base, 50mM glycine, 0.1% SDS (all Sigma-Aldrich) using 

100-120V for 1-1/4h before being visualised by either Coomassie Blue or Sypro 

Orange staining (section 4.2.2.3).

4.2.2.2 Two-Dimensional Gel Electrophoresis

4.2.2.2.1 Isoelectric Focussing (lEF) o f  Proteins

lEF was carried out using immobilised pH gradient (IPGPhor) strips (Amersham 

Biotech Ltd.). The proteins were separated according to their isoelectric point. The 

strips had a pH gradient, either a linear or logarithmic gradient. The strips could have 

a relatively wide range (pH 3-10 or 4-7), or narrow range (pH 4.0-4.5). The strips
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could either be 7cm or 24cm long, depending on the amount o f protein to be 

separated and the size of the PAGE gel used for second dimension separation.

For minigel separation, 7cm strips were used and in this case, 125pl of sample 

prepared as described in section 4.2,1.2 was loaded into the IPGPhor ceramic strip 

holder. For large gel separation, 24cm strips were used and 250pl of sample was 

loaded into the strip holder. The strips were placed onto the sample in the holder and 

covered by Strip Cover Fluid (Amersham Biosciences). The strips were subjected to 

the conditions described in Table 4.1.

Step Voltage (V) Time (h) Volt hours (Vh)

1 30 12 360

2 500 1 500

3 1000 1 1000

4 10000 4 40000

Table 4.1 Isoelectric Focussing Conditions for IPGPhor Immobilised pH Gradient 

strips

Strip rehydration was carried out by passing 30V through the strip, since this enabled 

better entry of proteins than rehydration without voltage. Isoelectric focussing then 

occurred in the higher voltage steps.

4.2.2.2.2 Second Dimension SDS-PAGE Separation

Rehydrated strips with isoelectrically focussed proteins were equilibrated prior to 

SDS-PAGE separation. Equilibration Buffer (500mM Tris.Cl, 6M urea, 30% v/v

- 175 -



_____________  Chapter 4

glycerol, 2% w/v SDS, bromophenol blue) was supplemented with lOmg/ml DTT 

(Amersham Biosciences) (Equilibration Buffer I) or 25mg/ml a-iodoacetamide 

(Sigma Aldrich) (Equilibration Buffer II). Strips were incubated at room temperature 

on a rocking platform, firstly in Equilibration Buffer I for 15min, then Equilibration 

Buffer II for 15min.

Strips were placed on top of 12-15% polyacrylamide resolving gels and covered by 

agarose sealing solution (0.5% w/v agarose in Tris-Glycine SDS-PAGE Running 

Buffer containing bromophenol blue). The gels were immersed in SDS-PAGE 

Running Buffer and run at 100-120V for 1.5h (minigel) or 20-25h (large gel), or until 

the dye front ran to the end of the gel. The gel was removed from the apparatus and 

the proteins were visualised as described below.

4.2.2,3 Visualisation o f  Proteins

4.2.2.3.1 Coomassie Blue Staining

Coomassie staining of proteins was commonly used to detect protein separated on 

either SDS-PAGE or 2DE gels. Gels were submerged in stain (10% v/v acetic acid, 

40% v/v methanol, 0.1% w/v Coomassie Blue R250 (Biorad)) for at least 2h, but 

generally overnight. The gels were destained using 10% v/v acetic acid / 40% v/v 

methanol. The gels were destained for as long as necessary to visualise either the 

bands or spots without significant background staining.

4.2.2.3.2 Sypro®Orange Fluorescent Staining

Sypro® Orange Protein Stain (Biorad) binds to the SDS attached to electrophoresed 

proteins. For 2DE-separated proteins, the PAGE gels were immersed in 0.05% w/v 

SDS solution to sensitise the proteins to the stain by increasing the binding of SDS.

- 176 -



____________  Chapter 4

A 1:5000 dilution in 7% v/v acetic acid of Sypro® Orange stain was made and the 

gels were soaked in the stain for 30min. After 30min, the gels were removed and 

washed in 7% v/v acetic acid to remove excess stain. The gels were visualised by 

Typhoon Laser Scanner under 532nm.

4.2,3 Electroelution of Proteins

4.2.3.1 Sample Preparation

Proteins separated by either SDS-PAGE or 2DE were manually excised from the gel 

using clean scalpel blades. Protein bands or spots were removed from the gel with as 

little excess polyacrylamide as possible. Bands from SDS-PAGE gels were further 

cut into smaller pieces to improve elution. This process was only required for elution 

using the Model 422 Eluter (Biorad). Elutions using the Bloteluter (Biometra) were 

carried out using non-stained, non-fixed 2DE gels.

4.2.5.2 Electroelution Using B iorad M odel 422 Eluter

Elution from the 422 Eluter (Biorad) was carried out according to the manufacturer’s 

instructions (see Figure 4.1). The membrane caps used were for a molecular weight 

cut-off of 3500Da. Thus, any proteins above this size were retained by the membrane 

for later manipulation, whilst other proteins passed through into the elution buffer 

(lOmM Tris). It should be noted that the elution buffer initially contained 50mM 

glycine and 0.1% SDS, as described in the manufacturer’s instructions. Subsequent 

elution buffers used did not contain glycine or SDS, since these were thought to have 

potentially adverse effects on the cells used in later analyses. In addition, the Tris 

concentration was also reduced to 5mM, sufficient for a current to pass through, but 

reduced the concentration of salts in the final eluted sample.
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1cm
(approx.)

Glass tube

IP'Z

Polyacrylamide Gel Slice

Silicon adaptor 
Fret

Membrane cap

Figure 4.1 Schematic o f Model 422 Eluter (Biorad). Polyacrylamide 
gel slices were placed in the glass tube that was filled with lOmM 
Tris elution buffer. 10mA per tube / adaptor combination was used to 
elute proteins from the gel slice through the fret into the membrane 
cap. The proteins were collected for later analysis. (Adapted from 
Model 422 Electro-Eluter Instruction Manual)

1cm
(approx)

Cathode

Blotting paper

2D get
Master plate 
Dialysis membrane 
Polyacrylamide block 
Blotting paper 
Anode

Figure 4.2 Schematic of Bloteluter (Biometra). An unfixed, 
unstained 2DE gel was laid onto a master plate with 528 holes 
sealed with dialysis membrane and polyacrylamide gel. 0.8mA/cm^ 
gel was used to elute into 5mM Tris elution buffer. (Adapted from 
Biometra Bloteluter Manual Rev. 02)



______________________________________________________________________________________ Chapter 4

Prior to electroelution, the membrane caps were soaked in elution buffer at 60°C for 

Ih. The membrane cap was attached to a silicon adaptor that was then filled with 

elution buffer to remove any bubbles o f air that may impinge on elution efficiency. 

The cap-adaptor assembly was attached to the glass sample tube that had a silicon 

fret to prevent the gel pieces entering the cap-adaptor assembly. Six o f these 

assemblies could be used per elution. The apparatus was fitted into a Mini Protean II 

tank (Biorad) and the bottom reservoir was filled with elution buffer, as were the 

glass tube assemblies.

Protein samples, either SDS-PAGE separated bands or 2DE separated spots, excised 

and prepared as described previously were carefully placed into the glass tubes, and 

then the upper buffer chamber was completely filled with elution buffer. The system 

was run at 1 OmA/tube for 1 -3h. After this, the buffer chambers were drained and the 

buffer in the glass tubes was removed using a plastic Pasteur pipette. The cap- 

adaptor assembly was carefully removed and the liquid in the cap was decanted to a 

clean 1.5ml tube. A further 200pl of elution buffer was used to wash the membrane. 

The samples were concentrated as described in section 4.2.3.4. The caps were 

washed in 0.05% v/v sodium azide before being stored at 4°C in elution buffer 

supplemented with 0.05% v/v sodium azide.

4.23.3 Electroelution Using Biometra Bloteluter®

Unlike the Model 422 Eluter, the Bloteluter (Biometra) was not compatible for use 

with proteins that had been fixed or stained and it was used to elute 2DE-separated 

proteins Jfrom unstained gels.
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The Bloteluter was set up and nin according to the manufacturer’s instructions (see 

Figure 4.2). Briefly, one piece of blotting paper was soaked in lOOmM Tris.Cl (pH

8.0) and was placed on the anode, before a 2 cm block of 15% polyacrylamide gel to 

cover the whole electrode area was laid on top. A dialysis membrane, boiled in 5 mM 

Tris to remove contaminants, was soaked in ddH^O and then lOOmM Tris.Cl (pH

8.0) and was placed on top of the gel block. The master plate containing 528 holes 

was laid onto these layers and connected to the base plate by screws. The master 

plate was then filled with elution buffer (5mM Tris.Cl, pH 8.0).

Each precast 24cm gel (Amersham Biosciences) was cut into quarters, since the gels 

were too large for the eluter. The gel quarters were then placed onto the master plate, 

and 4 pieces of blotting paper, soaked in 5mM Tris.Cl (pH 8.0) placed on top. The 

cathode plate was placed on top of this assembly, and attached using the safety 

screws. The elution was carried out by passing 0.8mA/cm^ of gel surface through the 

apparatus for 30 min. After elution, the apparatus was disassembled and the elution 

buffer was removed from the 528 wells using a 12-channel multipipette into 96-well 

plates. These samples were then concentrated as described below.

4 .2 3 ,4  Concentration and Visualisation o f  Eluted Proteins

Samples were concentrated using a vacuum centriftige (Speedivac) at maximum 

concentration for l-2h, or until all the liquid had been removed. The samples were 

resuspended in 50-100pl PBS. A 20pi aliquot of each sample was then analysed for 

the presence o f protein by running the samples on a 15% PAGE. Gels were stained 

by either silver staining or Sypro® Orange staining, depending on whether they were 

intended for subsequent mass spectrometry analysis.

- 180-



--------------------------  —--------- — _____________________________  Chapter 4

4.2.4 Preparation of Bovine Cells for Proliferation Assay

4.2.4.1 Bovine Peripheral Blood Mononuclear Cells

Blood was collected from the jugular vein of cattle into preservative free heparinised 

evacuated blood collection tubes, Vacutainer (Becton Dickinson Ltd., Oxford, 

UK). Each sample was diluted 1:2 with sterile PBS and centrifuged at 450g for 20 

mins at 12°C with the brake off in a GS-6R Beckman®™ centrifuge. The buffy coat 

was removed and diluted 1:2 in Hanks balanced salt solution (HBSS) supplemented 

with 2% foetal calf serum (PCS), lOOU/ml heparin (Sigma, Poole, UK) (wash 

medium). The cell suspension was layered over lymphoprep (Robbins, Scientific 

Solihull, UK) and centrifuged at 550g for 30 mins with the brake off. Peripheral 

blood mononuclear cells (PBMC) were collected from the interface into wash 

medium and washed three times by repeated resuspension and centrifugation at 300g 

for lOmins. The cells were counted using an improved Neubauer haemocytometer 

and viability was determined by exclusion of nigrosin dye. The cells were 

resuspended at the required concentration in Iscove’s Modified Dulbecco’s Medium 

supplemented with 10% PCS, 100 U/ml penicillin and 100 pg/ml streptomycin 

(Gibco, Paisley, UK) (culture medium). The PBMC were used to generate T-cell 

lines and also as a source o f antigen presenting cells in the proliferation assays.

4.2.4,2 Preparation o f  Antigen Presenting Cells (APC)

Peripheral blood mononuclear cells (prepared as described in section 4.2.4,1) were 

irradiated with 3000 rads using a [^^Cs] source prior to using them as a source of 

autologous APC in the T-cell proliferation assays.

- 181



______________________________________________________________________________________ Chapter 4

4.2.4.3 Generation o f  bovine CD4^ T-cell lines

Peripheral blood mononuclear cells were prepared as described in section 4.2.4.1 

using blood taken from two donor cattle 410 and 416, These cattle were 

Fresian/Holstein breed aged 16-24 months and had been inoculated 12 months 

previously with 5 x 10® live tachyzoites of the NCI strain (Dubey et al 1988) 

subcutaneously over the left pre-femoral lymph node (Innes et al, 2001). Equal 

volumes of PBMC at 2 x 10  ̂cell/well and NCI antigen at 5pg/ml final concentration 

were cultured in 96 well round bottom tissue culture plates (Gibco, Paisley, UK) at 

37°C in a humidified 5% CO2 incubator. After 7d the cells were harvested and 

diluted approx 1:3 in culture medium supplemented with 10 Units /ml of human 

recombinant IL-2 (hrIL-2) (Cetus Labs, UK). Cells were cultured for a further 7-lOd 

prior to harvesting and testing in the proliferation assays.

4.2.4.4 Phenotypic analysis o f  the bovine T-cell lines

An indirect immunofluorescence test was used to test the phenotypic composition of 

the bovine T-cell lines (Innes et al, 1995). In brief, 50pl aliquots of cells at a 

concentration of 2 x 10  ̂cells/ml were re suspended in 50pl of fluorescence activated 

cell sorter (FACS) medium (HBSS supplemented with 2% FBS and 0.1% sodium 

azide) and mixed with 50pl of the appropriate monoclonal antibody (Mab) at a pre­

determined optimal dilution. Cell and Mabs were incubated at 4°C for 30min and 

washed three times by repeated re-suspension and centrifugation at 300g for 5min. 

Cells were then resuspended in 50pl of fluorescein isothiocyanate (FITC) conjugated 

rabbit anti-mouse immunoglobulin (Dako, Glostrup, Demnark) and incubated in the 

dark for a further 30min at 4°C. Cells were then washed 3 times with FACS medium
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and finally fixed prior to analysis in FACS medium containing 1% 

paraformaldehyde.

The percentage of cells stained with FITC for each Mab was determined using flow 

cytometry (FACScan, Becton Dickinson, Oxford, UK). Ten thousand cells were 

analysed per sample. A sample stained with FITC conjugate only was used as a 

control along with an unstained sample of cells.

A panel of monoclonal antibodies recognising distinct bovine leucocyte populations 

were used to phenotype the bovine T-cell lines. CC42 recognising (CD2), CC8 

recognising (CD4) and C C I5 recognising (y/ô T-cells) were a kind gift from the 

Institute for Animal Health, Compton, UK. ILA-51 recognising (CD8) and ILA-111 

recognising (IL-2 receptor) were a kind gift from the International Laboratory for 

research on Animal Diseases, Nairobi, Kenya.

4,2.5 Proliferation assays

Proliferation assays with the bovine T-cell lines were performed in the presence of 

autologous APC at a ratio o f 10 APC: 1 T-cell. The cells were set up at 2 x 10  ̂ T- 

cells/well in culture medium in 96-well round-bottomed culture plates. Test fractions 

prepared as described in Section 4.2.3 were added to the cultures in triplicate for 

each T-cell line along with control antigens, comprising whole NCI lysate antigen 

(Ipg/ml final concentration), the T-cell mitogen concanavalin A (Con A) (Sigma, 

Poole, UK) at 5 pg/ml final concentration, Vero cell antigen (1 pg/ml final) and 

culture medium alone to quantify background proliferation of the cells. One hundred 

microlitres of each fraction was added to three wells containing cells from Animal
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410 and also three wells with cells from Animal 416. The cultures were incubated for 

5 days at 37°C in a humidified 5 % CO2 incubator. Cells were pulsed for the final 18h 

with 18.5kbq [^H]-thymidine (Amersham, Bucks, UK) per well before harvesting 

onto fibreglass filters (Canberra Packard, Meriden, CT, USA). Cell associated 

radioactivity was quantified in a gas proportional counter. Results were expressed as 

mean counts per minute of triplicate cultures. The differential incorporation of [^H]- 

thymidine between control and test cultures was used as a measure of proliferation 

expressed as a stimulation index (SI) where SI = cpm of test culture/cpm of negative 

control culture.
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4.3 RESULTS

4.3.1 Elution, Concentration and Visualisation of Proteins Separated by SDS- 

PAGE

4.3.1 A  One- and Two-Dimensional SDS-PAGE

Proteins from the N. caninum whole cell lysate were separated by one- and two- 

dimensional SDS-PAGE as described in Section 4.2.2. Typical examples of these can 

be seen in Figure 4.3 and Figure 4.4. Figure 4.3 shows a typical separation of whole 

tachyzoite lysate when run on a 15% polyacrylamide gel in one dimension and 

stained with Coomassie blue as described in Section 4.2.2.3.I. Figure 4.4 shows the 

2D separation of the whole N. caninum tachyzoite lysate, using a 24 cm, pH 4-7 

immobilised pH gradient strip and 15% polyacrylamide gel, and stained using Sypro 

Orange (as described in Section 4.2.2.3.2). 2D SDS-PAGE gels were either stained 

using Sypro Orange or left unstained for use in the Bloteluter apparatus.

4.3.1.2 Efficacy o f  M odel 422 Eluter and Biometra Bloteluter

The two electroeluters were used to elute proteins from the polyacrylamide matrix as 

described in Section 4.2.3.

4.3.1.2.1 Model 422 Eluter

This eluter was designed for use with ID SDS-PAGE gels. However, since the aim 

of this work was to elute from 2D gels, individual protein spots were excised from a 

2D SDS-PAGE gel, as indicated by the yellow circles in Figure 4.5. These gel spots 

were eluted as described in Section 4.2.3.2. Elution was carried out for 1-3 h, and the 

samples were recovered from the membrane cap of the eluter apparatus. The samples 

were concentrated and an aliquot from each was run on a 15% SDS-PAGE gel, 

before being visualised using Coomassie Blue staining. Figure 4.6 is a photograph of

- 1 8 5 -



__________________    Chapter 4

the resulting gel. It demonstrates that the Model 422 Eluter can be used effectively to 

recover the small concentrations of protein from individual protein spots.
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kDa

Figure 4.3 One-dimensional SDS-PAGE gel o f N. caninum 
whole cell lysate, run on 15% polyacrylamide gel, and visualised 
using Coomassie Blue staining.



Isoelec tric  focussing  range
pH  7

Figure 4.4 Two-dimensional separation of whole cell lysate of N. caninum. 
2x10^ tachyzoites were lysed and focussed on an immobilised 24cm gradient 
strip, range pH 4 -  pH 7. The isoelectrically focussed proteins were then size 
separated on a 15% polyacrylamide gel and visualised by Sypro® Orange Stain 
(Biorad).

Isoelec tric  focussing  range
pH  7

Figure 4.5 Typical 2D gel as described in Figure 4.4. The 5 spots marked in 
yellow (A-E) were excised and eluted to assess the efficacy of using the Model 
422 Eluter with 2D-separated proteins.



Fraction

B C.l C.2 D E
MW
(kDa)

Figure 4.6 Coomassie stained aliquots of eluted proteins from a cell 
lysate ofV . caninum run on 15% SDS-PAGE gel.
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43.1.2.2 Biometra Bloteluter

This eluter was designed to elute directly from unstained 2D SDS-PAGE gels. 

Unstained gels were placed in the eluter apparatus. Elution was carried out as 

described in Section 4.2.3.3. Following the elution, samples were removed from the 

master plate, concentrated and run on a 15% polyacrylamide SDS-PAGE gel. 

Visualisation was with Coomassie Blue, as described in Section 4.2.2.3.I.

No eluted protein was observed when the Bloteluter was used. Several attempts were 

made to obtain protein from the Bloteluter, but none were successful. Therefore, the 

Model 422 Eluter was used to elute proteins from both one- and two-dimensionally 

separated N. caninum whole cell lysate.

4 3 .1 3  Preparation o f  Protein Fractions fo r  Use in T-cell Proliferation Assays 

Protein samples were eluted from one- and two-dimensional SDS-PAGE gels of N. 

caninum whole cell fraction. In total, 104 protein fractions were eluted. These 

derived from several gels, and are identified in Figures 4.7 to 4.13. These 104 protein 

fractions were used in T-cell proliferation assays.

4.3.2 Bovine CD4+ T-cell Lines from N, caninum  Infected Cattle

4.3.2.1 Proliferative Responses

T-cell lines generated from two animals, 410 and 416, were assayed for proliferative 

response to a variety of antigens, as described in Section 4.2.5. Figure 4.14 shows a 

typical proliferative response to NCI whole cell lysate (NCI) and Concanavalin A 

(ConA), as well as medium and Vero cell lysate antigen controls. The cells 

proliferated in the presence o f NCI lysate and ConA. Table 4.2 shows the 

Stimulation Index values for this experiment. The proliferation due to NCI had SI
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values o f 31.14 and 85.61 (animals 410 and 416) while the proliferation caused by 

ConA had SI values of 26.04 and 52.50 (Animals 410 and 416 respectively). Very 

little proliferation was observed in the cultures containing culture medium or Vero 

cell lysate. Proliferation due to the Vero cell lysate was approximately similar to that 

in medium alone.

Animal 410
Antigen cpm (mean) St. Dev. SI
Medium 328.33 39.55 1.00

ConA 8548.33 1084.64 26.04
N CI 10224.67 1958.18 31.14
Vero 511.67 174.02 1.56

Animal 416
Antigen cpm (mean) St. Dev. SI
Medium 100.10 44.99 1.00

ConA 5255.00 618.93 52.50
N CI 8569.67 788.47 85.61
Vero 130.00 40.73 1.30

Table 4.2 Proliferation (counts per minute -  cpm) and Stimulation Index data 
for bovine T-cell proliferations. Counts per minute are means of triplicate 
wells.
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Figure 4.8 One-dimensional SDS-PAGE gel of N. caninum 
whole cell lysate, run on 15% polyacrylamide gel, and visualised 
using Coomassie Blue staining. The numbered rectangles 9-16 
are the bands excised from the gel and the proteins eluted.
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Figure 4.10 One-dimensional SDS-PAGE gel of N. caninum whole 
cell lysate, run on 15% polyacrylamide gel, and visualised using 
Coomassie Blue staining. The numbered rectangles 35-40 are the 
bands excised from the gel and the proteins eluted.
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Figure 4.12 Two-dimensional separation of whole cell lysate of #. caninum. 
2x10* tachyzoites were lysed and focussed on an immobilised 24cm gradient 
strip, range pH 4 -  pH 7. The isoelectrically focussed proteins were then size 
separated on a 15% polyacrylamide gel and visualised by Coomassie Blue Stain. 
Numbered circles 59-86 indicate proteins excised and eluted.
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4.3.2,2 Phenotypic analysis

To determine the phenotype of the cells present following in vitro enrichment 

(section 4.2.4.3), indirect fluorescence was used where cells were mixed with 

monoclonal antibodies against the different bovine leucocyte marker molecules 

(CD2, CD4, CD8, yô and IL-2 receptor) before being mixed with FITC-labelled anti­

mouse immunoglobulin. When analysed in the FACSCAN (Beckton-Dickenson), the 

different sub-populations of T-cells within the bovine cell lines were quantified.

Table 4.3 shows the proportions of different T-cell subsets, for the cell lines 

generated from animals 410 and 416 (also see Figures 4.15 and 4.16 for a graphical 

illustration, the positively stained cells are shown in the top-right quadrant of the 

graphs, and the negative stained cells in the bottom right quadrant). In both of the 

bovine cell lines, the majority of the cells stained positively for the CD2 and CD4 

markers, with over 95% of the cells from both animals containing these markers. In 

addition, approximately two-thirds of the cells expressed the IL-2 receptor. CD8^ T- 

cells and yô T-cells were very minor components of the cell lines. These results 

suggest that the cultured polyclonal cell lines were predominantly of the CD4^ 

phenotype.
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Figure 4.15 Phenotypic analysis of T- 
cells cultured from Animal 410. Axis 
labels: FSC-H (forward scatter); FLl 
(fluorescence intensity). Top right hand 
box of each graph shows positively 
stained cells for for leucocytes markers: 
001 - Negative control (0.12%); 002 -  
FITC control (0.62%); 003 -  CD2 
(99.63%); 004 -  CD4 (95.08); 005 -  CDS 
(6.19); 006 - yô TcR (2.13); 007 -  IL-2R 
(66.72)



tcell line C416.001

nt

FSC-H

tcell line C416.003

200 400 600 800 1000
FSC-H

tcell line C416.005

LL

FSC-H

tcell line C416.007

3 ^

200 400 600 800 1000
FSC-H

tcell line C416.002

0 200 400 600 800 1000
FSC-H

V tcell line C416.004

^  I I I || rl-i I| I I-ITT «-111; ........ I
0 200 400 600 800 1000

FSC-H

tcell line 0416.006

200 400 600 800 1000
FSC-H

Figure 4.16 Phenotypic analysis of T- 
cells cultured from Animal 416. Axis 
labels: FSC-H (forward scatter); FLl 
(fluorescence intensity). Top right hand 
box of each graph shows positively 
stained cells for leucocytes markers: 001 
- Negative control (0.18%); 002 -  FITC 
control (054%); 003 -  CD2 (99.29%); 
004 -  CD4 (98.10); 005 -  CD8 (2.72); 
006 - yô TcR (3.03); 007 -  IL-2R (64.89)
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Leucocyte
M arker

Primary/Secondary
Mab

% Positive Cells

Cell Line 410 -ve control Medium / Medium 0.12
FITC control Medium / FITC 0.62

CD2 CC42/FITC 99.63
CD4 CC8/FITC 95.08
CD8 ILA-51/FITC 6.19

yô-T cells CCI 5 /FITC 2.13
IL-2 Receptor ILA-111 / FITC 66.72

Cell Line 416 -ve control Medium / Medium 0.18
FITC control M edium/FITC 0.54

CD2 CC42/FITC 99.29
CD4 CC8/FITC 98.10
CD8 ILA-51/FITC 2.72

yÔ-T cells C C I5 /FITC 3.03
IL-2 Receptor ILA-111/FITC 64.89

Table 4.3 Relative abundancies of different T-cell sub-populations within antigen- 
reactive cell lines generated from two cattle infected with Æ canimm.

4.3.3 Proliferation Assays to Identify Immunodominant N, caninum  Proteins

Several experiments were performed to test the feasibility of stimulating bovine T- 

cells with electroeluted proteins. In each experiment, different antigen preparation 

protocols were examined to try and optimise the procedure.

4.3.3.1 Experiment 1: Elution into Tris /  Glycine / SDS Buffer 

Initial experiments using proteins eluted from one- and two-dimensional gels were 

performed, using T-cell lines derived from both Animal 410 and Animal 416. The 

elution protocol is described in Section 4.2.3.2. The proteins were eluted into a buffer 

containing lOmM Tris, 50mM glycine and 0.1% SDS. For this experiment, proteins 

were eluted from both 2D and ID SDS-PAGE gels (samples 1-8 were eluted from 

2D gels, samples 9-16 from ID gels, as seen in Figures 4.7 and 4.8, respectively).
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The results obtained for the T-cell line from animal 416, using the eluted fractions 

are shown in Figure 4.17. There was some evidence of proliferation of cells observed 

in the wells containing ConA, both NCI lysates and fractions 2, 5, 12, 13, 14 and 15. 

It should be noted that two independently prepared NCI lysates (NCl-Edin. and 

N C I-Glas.) were used. They were prepared in the same way to the same 

concentration but using tachyzoites harvested at different times. The mean 

proliferations expressed as cell counts per minute (with standard deviations) and 

Stimulation Indexes (SI) for this experiment are shown in Table 4.4. The SI for all 

the samples was approximately 1, and in the cells co-cultured with ConA, the SI 

value was only 1.86 due to the high level of proliferation due to medium alone. It 

was encouraging that the eluted protein fractions did not show signs of being toxic to 

the majority of the T-cell cultures.

4 .33 .2  Experiment 2: Elution into Tris /  Glycine / SDS Buffer

This experiment was not a direct repeat o f Experiment 1, since different proteins 

were eluted. The proteins were eluted from both 2D and ID gels, and can be seen in 

Figure 4.9 (samples 17-34) and Figure 4.10 (samples 35-40). The same separation 

and elution techniques as in Experiment 1 were used, and the T-cell lines were 

derived again from the same animals as in Experiment 1. The results for this 

experiment are shown in Figure 4.18, with the mean counts per minute, standard 

deviation and SI for all samples tested with T-cell lines from both animals, shown in 

Table 4.5. In this experiment there was proliferation in the cells co-cultured with 

both whole cell lysate (NCI) and ConA.
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Chapter 4

Antigen Mean cpm St. Dev. SI
Media 15040.7 2174.69 1.00
Con A 28012.3 1778.81 1.86

N C I Edin. 23311.0 2419.93 1.55
N C I Glas. 18347.3 862.51 1.22

1 14269.7 819.02 0.95
2 21705.0 651.08 1.44
3 13865.3 1000.48 0.92
4 15288.0 1676.10 1.02
5 21826,0 2463.16 1.45
6 12523.7 685.42 0.83
7 15819.7 794.00 1.05
8 15680.3 475.33 1.04
9 14540.3 704.53 0.97
10 13964.3 1096.88 0.93
11 14118.7 2340.11 0.94
12 20934.3 7644.47 1.39
13 25912.3 3238.37 1.72
14 20849.0 9330.78 1.39
15 25265.0 5095.73 1.68
16 14647.7 2086.67 0.97

Table 4.4 Experiment 1. Mean lymphoproliferation (with standard deviation) of 

bovine T-cells (Animal 416) co-cultured with antigens eluted from one- and two- 

dimensional SDS-PAGE gels Samples 1-8 were eluted from 2D gels; samples 9-16 

were eluted from ID gels. Stimulation Index indicated the stimulation of different 

fractions and controls in relation to the medium control.
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Chapter 4

A nim al 4]10 A nim al 4116
Antigen Mean cpm St. Dev. SI Antigen Mean cpm St. Dev. SI
Media 38.00 3.61 1.00 Media 8.00 4.36 1.00
NCI 11849.33 890.14 311.82 NCI 2868.33 1051.95 358.54
Con A 13049.33 1968.23 343.40 Con A 415.67 97.08 51.96

17 5.37 1.53 0.14 17 2.77 1.57 0.35
18 8.10 6.84 0.21 18 12.77 14.07 1.60
19 8.23 4.80 0.22 19 3.37 1.53 0.42
20 5.23 2.66 0.14 20 8.23 4.50 1.03
21 7.37 1.15 0.19 21 12.47 7.61 1.56
22 24.53 32.48 0.65 22 29.70 41.58 3.71
23 7.77 3.88 0.20 23 5.53 1.37 0.69
24 5.90 3.27 0.16 24 4.57 2.20 0.57
25 5.77 3.07 0.15 25 3.00 1.30 0.38
26 86.80 63.38 2.28 26 6.13 3.96 0.77
27 9.77 7.43 0.26 27 3.80 0.17 0.48
28 6.57 3.56 0.17 28 2.67 2.03 0.33
29 3.67 1.42 0.10 29 6.10 3.12 0.76
30 3.90 1.71 0.10 30 6.53 2.04 0.82
31 5.00 1.18 0.13 31 4.77 1.97 0.60
32 3.77 2.54 0.10 32 5.90 2.48 0.74
33 4.67 1.42 0.12 33 5.57 2.21 0.70
34 3.57 0.98 0.09 34 2.90 1.01 0.36
35 5.43 2.01 0.14 35 4.23 1.57 0.53
36 8.67 2.57 0.23 36 5.10 3.57 0.64
37 6.33 1.74 0.17 37 3.10 1.71 0.39
38 12.33 5.65 0.32 38 7.57 8.49 0.95
39 9.57 6.99 0.25 39 6.70 7.81 0.84
40 5.43 3.11 0.14 40 5.00 4.78 0.63

Table 4.5 Experiment 2. Mean lymphoproliferation (with standard deviation) o 

bovine T-cells (Animals 410 and 416) co-cultured with antigens eluted from one- 

and two-dimensional SDS-PAGE gels. Fractions 17-34 were eluted from 2D gels; 

fractions 35-40 from ID gels. Stimulation Index indicated the stimulation of different 

fractions and controls in relation to the medium control. SI values > 3 are highlighted 

in bold.
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There appeared to be some level of inhibition of the proliferative response, since the 

SI values in Table 4.5 indicate that only one fraction (26) in the cultures from 

Animal 410 and two fractions (18 and 22) in the cultures from Animal 416 are 

greater than 1. Only one (fraction 22) has an SI greater than 3 (3.71), 3 being the 

normal cut-off for positive stimulation indexes. The majority o f SI values were less 

than 1, indicating that there maybe something in the sample that may have had some 

inhibitory effect on the cells.

One explanation regarding the inhibitory effect of the eluted fractions may be that 

residual SDS, acrylamide or other chemicals from the SDS-PAGE or elution 

experiments remained in the eluted sample. Since the samples were concentrated 

from the elution, these residual elements may also be concentrated.

To address the issue of possible contaminants causing problems with the T-cell 

proliferation assays, SDS was removed from the elution buffer, which (according to 

the manufacturer’s instructions) was necessary for high yield elutions. Nevertheless, 

this decision was aimed at trying to reduce the potential toxicity to the cells of the 

eluted proteins.

43 ,3 ,3  Experiment 3: Elution into Tris /Glycine Buffer

The elution buffer used to elute the proteins (selected from the low molecular weight 

portion of a 2-DE SDS-PAGE gel) from the SDS-PAGE gels in this experiment 

contained lOmM Tris and 50mM glycine, the SDS was removed as it was thought 

that the SDS may account for the problems of toxicity in the cell cultures. Protein 

samples 41-58 were eluted only from a 2D gel, and can be seen in Figure 4.11

2 0 9 -
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The results from Experiment 3 are shown in Figures 4.19 and 4.20 and Table 4.6. 

There was proliferation of the cells co-cultured with NCI and ConA, and limited 

proliferation in those cultures containing Vero cell lysate or medium alone (Figure 

4.19). Four fractions (Fractions 42, 45, 49 and 57) all stimulated the proliferation in 

cells from Animal 416. Fraction 45 (SI = 6.57) made the cells proliferate most. No 

eluted fractions stimulated cells from Animal 410 above that seen with medium 

control, as the low SI values indicate (Figure 4.20).

There were still signs of some inhibition of the cultures containing the eluted 

fractions, despite there being no SDS in the elution buffer. Therefore, another 

component of the buffer was removed, this time glycine, to assess if excess glycine 

in the concentrated samples was toxic to the cells.

4,3.3.4 Experiment 4: Elution into lOmM  Tris Buffer

Proteins were eluted into buffer only containing lOmM Tris to assess for toxicity / 

inhibitory factors in the eluted fractions. Protein samples 59-86 were again eluted 

from 2D gels as shown in Figure 4.12. This experiment had contamination problems, 

such that the cell lines from Animal 416 were not available for analysis. The results 

for Animal 410 are shown in Figure 4.21 and Table 4.7.

The cells co-cultured with NCI and ConA proliferated strongly. However the 

responses to all the eluted fractions had SI values of less than 1.

- 2 1 0
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Chapter 4

A n im al 410
Antigen Mean cpm St. Dev. SI
Medium 328.33 39.55 1.00
Con A 8548.33 1084.64 26.04
NCI 10224.67 1958.18 31.14
Vero 511.67 174.02 1.56

41 26.33 9.90 0.08
42 239.00 112.60 0.73
43 29.37 15.82 0.09
44 38.33 5.51 0.12
45 219.33 9.29 0.67
46 149.00 58.03 0.45
47 32.13 10.50 0.10
48 8.10 0.72 0.02
49 69.67 74.76 0.21
50 32.10 14.34 0.10
51 177.77 91.38 0.54
52 7.33 3.18 0.02
53 3.57 0.23 0.01
54 4.60 2.97 0.01
55 309.00 49.12 0.94
56 102.23 33.34 0.31
57 57.47 19.86 0.18
58 102.67 36.96 0.31

A nim al 4116
Antigen Mean cpm St. Dev. SI
Medium 100.10 44.99 1.00
Con A 5255.00 618.93 52.50
NCI 8569.67 788.47 85.61
Vero 130.00 40.73 1.30

41 15.13 15.22 0.15
42 520.00 198.40 5.19
43 6.53 1.66 0.07
44 14.57 10.03 0.15
45 657.67 102.14 6.57
46 13.43 7.36 0.13
47 13.87 2.71 0.14
48 6.43 3.39 0.06
49 327.00 135.24 3.27
50 9.70 3.61 0.10
51 71.33 53.14 0.71
52 9.43 1.40 0.09
53 7.57 1.63 0.08
54 5.47 3.36 0.05
55 109.00 41.34 1.09
56 29.53 3.33 0.30
57 563.67 10.50 5.63
58 22.00 13.01 0.22

Table 4.6 Experiment 3. Mean of triplicate lymphoproliferation assays (with standard 
deviation) of bovine T-cells (Animals 410 and 416) co-cultured with antigens eluted 
from two-dimensional SDS-PAGE gels. Stimulation Index indicated the stimulation 
o f different fractions and controls in relation to the medium control. SI > 3 are 
highlighted in bold.
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Chapter 4

Antigen Mean cpm St. Dev. S.I.
Medium 198.67 219.49 1.00

Con A 12004.67 2139.53 60.43
N CI 9129.67 1075.95 45.95

59 14.33 0.58 0.07
60 10.67 8.14 0.05
61 7.33 2.52 0.04
62 4.67 0.58 0.02
63 15.67 3.06 0.08
64 10.33 0.58 0.05
65 12.33 3.06 0.06
66 15.33 7.09 0.08
67 6.67 1.53 0.03
68 5.33 2.52 0.03
69 12.33 3.51 0.06
70 6.67 1.53 0.03
71 6.00 3.00 0.03
72 13.00 3.46 0.07
73 19.33 4.73 0.10
74 7.33 2.08 0.04
75 13.67 1.53 0.07
76 14.00 2.65 0.07
77 19.67 6.43 0.10
78 9.67 2.08 0.05
79 7.33 1.53 0.04
80 9.67 3.21 0.05
81 17.33 5.77 0.09
82 13.67 5.69 0.07
83 8.67 0.58 0.04
84 5.00 1.00 0.03
85 7.33 0.58 0.04
86 20.00 13.86 0.10

Table 4.7 Experiment 4, Mean lymphoproliferation (with standard deviation) of 

bovine T-cells (Animal 410) co-cultured with antigens eluted from two-dimensional 

SDS-PAGE gels. Stimulation Index indicated the stimulation o f different fractions 

and controls in relation to the medium control. SI > 3 highlighted in bold.
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 _____________  Chapter 4

A further buffer was used to try and remove as many of the potential toxic 

components as possible from the eluted proteins. One possibility was that the Tris, 

when concentrated by vacuum centrifugation, might cause inhibition of the cultures. 

A weaker Tris buffer was subsequently used.

4 .3 3 ,5  Experiment 5: Elution into SmM Tris Buffer

On this occasion, a buffer containing only 5mM Tris was used to elute the proteins. 

5mM Tris was the weakest buffer that could be used and allow a current (data not 

shown). Protein samples 87-104 were prepared as described previously from 2-DE 

SDS-PAGE experiments (and seen in Figure 4.13).

Figure 4.22 and Table 4.8 show the results from Experiment 5. There was some 

proliferation of cells from both Animals 410 and 416 to NCI lysate and ConA 

controls, and little proliferation in the cultures containing cells and medium. One 

fraction (Number 87) showed signs that it caused cells from Animal 410 to 

proliferate (SI value of 2.05), although it should be recognised that the actual counts 

per minute recorded were extremely low.. In cell cultures from Animal 416, there 

were two fractions (Fractions 87 and 88) that caused some proliferation above that 

seen in the medium controls (SI values 1.33 and 5.76 in fractions 87 and 88 

respectively) . The SI of the cells co-cultured with Fraction 88 was 5.76, higher than 

the SI~3 cut-off.

- 2 1 6 -
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Chapter 4

A n im al 4110 A n im al 416
Antigen Mean cpm St. Dev. SI Antigen Mean cpm St. Dev. SI
Medium 27.33 9.29 1.00 Medium 18.33 4,93 1.00
Con A 2235.00 1156.95 81.77 Con A 8991.67 3281.15 490.45
NCI 688.00 577.19 25.17 NCI 7656.00 3778.47 417.60
87 56.00 37.99 2.05 87 24.33 18.77 1.33
88 24.67 7.37 0.90 88 105.67 157.05 5.76
89 21.00 10.44 0.77 89 15.33 5.51 0.84
90 11.67 1.15 0.43 90 10.00 3.46 0.55
91 18.00 2.00 0.66 91 9.67 1.53 0.53
92 11.33 3.21 0.41 92 9.00 1.73 0.49
93 8.33 1.53 0.30 93 15.67 2.52 0.85
94 16.00 10.15 0.59 94 9.00 2.00 0.49
95 8.67 2.89 0.32 95 7.00 3.61 0.38
96 5.67 3.79 0.21 96 9.67 1.53 0.53
97 10.00 1.00 0.37 97 13.33 6.66 0.73
98 8.67 6.03 0.32 98 7.33 3.06 0.40
99 21.00 13.00 0.77 99 14.67 6.81 0.80
100 6.33 1.53 0.23 100 8.33 2.52 0.45
101 9.33 4.93 0.34 101 8.67 3.06 0.47
102 1 13.00 1.73 0.48 102 10.67 5.69 0.58
103 9.67 1.53 0.35 103 10.67 4.04 0.58
104 9.00 1.00 0.33 104 15.67 0.58 0.85

Table 4.8 Experiment 5. Mean lymphoproliferation (with standard deviation) o 
bovine T-cells (Animal 410 and Animal 416) co-cultured with antigens eluted from 
two-dimensional SDS-PAGE gels. Stimulation Index indicates the stimulation of 
different fractions and controls in relation to the medium control. SI > 3 highlighted 
in bold.
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43.3.6 General Conclusions

In the five experiments described above, no protein fractions stimulated positive (i.e. 

SI >3) proliferation in Animal 410 and five fractions (22, 42, 45, 49, 88) stimulated 

proliferation in Animal 416. The fact that the majority of fractions did not stimulate 

proliferation was expected, since not every protein of N. caninum was expected to 

cause lymphoproliferation. However, the very low SI values in a number of these 

experiments would suggest that there maybe something in the fractions that inhibited 

cell growth and proliferation. To tiy and identify the inhibitory factor, components of 

the elution buffer were removed or reduced. The only excess chemicals in the buffer 

were the 5mM Tris, and small concentrations of chemicals from the SDS-PAGE 

experiments. More work to identify and remove these potential inhibitors will be 

required to ascertain which proteins o f N. caninum were lymphoproliferative. In 

addition, determining the protein concentration in each of the fractions would help to 

determine if protein concentration is a limiting factor in these experiments.

- 2 1 9 -
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4.4 DISCUSSION
4.4.1 Two-Dimensional SDS-PAGE

Two-dimensional electrophoresis (2DE) enables the identification of individual 

proteins on a polyacrylamide gel, along with the relative ease of obtaining suitable 

quantities of protein for subsequent mass spectrometric identification. The separation 

o f proteins in two dimensions has the added advantage over traditional one­

dimensional SDS-PAGE gels of isolating individual proteins o f similar sizes that 

would normally migrate together in a one-dimensional SDS-PAGE gel. This means 

that individual proteins can be excised and their primary amino acid sequence, 

hypothetical structure and antigenicity can be analysed.

4.4.L1 Problems with 2DE SDS-PAGE

However, there are inherent difficulties associated with 2DE protein separation. The 

inability to separate membrane (hydrophobic) and very basic proteins on 

polyacrylamide gels means these two major classes o f proteins cannot be

investigated as easily as cytoplasmic (hydrophilic) proteins. This becomes a major
i :

problem when many of the most immunogenic proteins identified by the humoral 

immune response are to be found on the surface of cells (Sacks & Sher, 2002; 

Wastling et al, 1994; Carruthers, 1999; Hemphill et al, 1999). However, proteins 

recognised by the cellular immune response are not necessarily found on the surfaces 

o f pathogens like T, gondii (for a review, see (Lüder and Seeber, 2001)) and 

therefore, 2DE separation of N. caninum cell lysate is a potentially useful technique 

to identify those soluble cytosolic proteins. Another limitation of 2DE is the amount 

o f protein that can be separated on a 2DE gel. If too little protein is loaded, few 

proteins can be observed, even with the most sensitive fluorescent stains. 

Conversely, if  too much protein is in the sample, the gel becomes overloaded and the

- 2 2 0
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proteins do not focus to their isolelectric point. The resulting gel becomes smeared 

with proteins.

Even with good protein loading, good separation and good visualisation the amount 

of individual proteins is still very small, in the nanogram range per protein spot 

(Corthals et al, 2000). For many downstream processes except proteolytic digestion 

for mass spectrometry analysis and Western blotting for antibody probing, the 

amount of protein is too small. If an extra step o f handling (excising of spots from 

gels and electroelution) and concentration is considered, there is a risk of decreasing 

the quantity of protein in the sample, such that there is insufficient protein in the 

sample that cellular proliferation assays are difficult (i.e. low concentrations of 

protein, diluted into culture assays may also dilute the protein concentration to levels 

that are undetectable).

4.4.1,2 Alternatives to 2DE-SDS-PAGE

There are alternative methods in the initial stages of development that would mean 

that 2DE separation would not be required. Direct multi-dimensional liquid 

chromatography/mass spectrometry (MudPIT -  Multi Dimensional Protein 

Identification Technology (Link et al, 2001)) can now be used to bypass completely 

the polyacrylamide electrophoresis that causes the main difficulties in current 

proteomic studies and also hampers high throughput protein identification. However, 

for preparative purposes as described here, polyacrylamide gels are still the most 

effective method of separating individual proteins for analysis, despite the relatively 

small quantities of protein separated.

221 -
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4.4,1.3 Elutions

The presence of small quantities of protein is most probably the case when proteins 

were eluted from the gels as described in section 4.2.3. Approximately lOOpg of 

protein was loaded onto the gel, and so each spot would likely contain approximately 

50-100pg o f protein. The extra handling step and the lack o f substantial amounts of 

proteins meant that there was not sufficient protein in the original sample to allow 

any further loss of any of the proteins during the elution process.

In all the comparisons, using ID and 2D electrophoresis gels, the Model 422 Eluter 

was far more effective at eluting significant amounts of proteins compared to the 

whole 2D elutions carried out on the Bloteluter. The lack of protein in fractions 

eluted from unfixed 2D gels using the Bloteluter contrasted noticeably with the many 

fractions containing proteins that were eluted from fixed gels using the Model 422 

Eluter. This was despite the fact that the gels were fixed using the Eluter and unfixed 

using the Bloteluter. The real problem with the Bloteluter was the fact that, though 

the proteins were unfixed and so more likely to leave the gel matrix when placed in 

an electric current, the gels were also unstained and so the whole process was carried 

out without knowing if there were proteins present or not. This meant that the 

pooling of several gels to increase the overall quantities of each protein was 

impossible. It also meant that the presence of protein in the eluted sample was 

unknown right until the end of the experiment. The 422 Eluter, despite being 

designed for elution of proteins out of a standard SDS-PAGE gel, gave relatively 

high yields o f protein from 2D-separated proteins, compared to the Bloteluter that 

was specifically designed for 2D gels. The handling of the samples was also much 

easier using the 422 Eluter, meaning that loss of protein samples through handling 

was greatly reduced.

- 2 2 2 -
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The initial aims of this chapter were to separate whole cell lysate of N. caninum on 

both one- and two-dimensional PAGE and prepare protein samples for T-cell 

proliferation assays. The separation of whole cell lysate was a relatively 

straightforward procedure; it was the optimisation of the elution technologies that 

was challenging. Of the two elution apparatuses used, the 422 Electroeluter, not 

designed for use with 2D gels was the most successful, eluting significant quantities 

of proteins from both ID and 2D gels. This was evident when aliquots of the eluted 

fractions were run on SDS-PAGE gels and stained with Coomassie Blue stain. 

Unlike other stains, Coomassie Blue is relatively insensitive and cannot be used to 

detect small quantities o f protein. However, proteins were visualised using 

Coomassie Blue in fractions eluted using the Model 422 Eluter, but not the 

Bloteluter. The Bloeluter, while designed specifically for 2D gels, did not provide 

levels of protein that were suitable for assays. However, in other studies, the use of 

direct blotting o f 2-DE separated proteins using the Bloteluter from Biometra (or the 

equivalent prototype) appeared very successful (Guile et al, 1990; Guile et al, 1993; 

Andersen and Heron, 1993; Guile et al, 1995).

The method described initially by Guile et al (1990) was the basis for the protocol 

described in this chapter. Briefly, lOOpg of protein was separated by 2-DE and the 

proteins electroeluted from unfixed gels. T-cells — either directly from patients or 

previously cultured for 6d and restimulated with Ipg/ml M. tuberculosis lysate — 

were added directly to the eluted fractions. Portions of the cells were irradiated prior 

to being added to the eluted fraction as antigen presenting cells (APC). Proliferation 

of the T-cells was measured as described in Section 4.2.5. The protocols for the

- 2 2 3 -
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experiments described in this chapter only differed from that described by Guile in 

that Guile added the T-cells directly to the fractions. In the experiments described 

here, the fractions were diluted and added to the T-cells. This was to allow for each 

fraction to be tested in triplicate, using cells derived from two different animals.

The body of literature from Guile’s laboratory working on identifying T-cell 

responsive antigens in Mycobacterium bovis would indicate that this method of direct 

elution o f proteins into elution buffer before stimulating T-cell cultures from infected 

animals is feasible (Guile et al, 1993; Guile et al, 1995). In previous work from this 

lab, proteins eluted from 2-DE gels were directly eluted into T-cells assays, the cells 

being derived from M. tuberculosis-mÏQoXQà patients. This allowed the rapid 

identification of any potential candidates for sub-unit vaccines (Guile et al, 1990). 

However, this was not possible for the work described in this chapter since the 

electrophoresis and elutions were performed at labs in Glasgow and The 

Netherlands, while the T-cell assays were done in Edinburgh.

In this chapter, it was assessed that the Bloteluter (manufactured by Whatman to the 

design described in Guile et al, 1990) was not as effective in eluting proteins from 

gels as the Model 422 Eluter. This was despite the fact that the Bloteluter was 

designed specifically for 2D gels, while the Model 422 Eluter was designed for ID 

gels. The fact that the Bloteluter used unstained gels obviously had practical 

difficulties, in that the whole process is carried out without knowing if there are 

proteins present on the gel and it is not until the last step -  the SDS-PAGE of 

concentrated elutions -  that the protein levels can be visually assessed. The small 

sample volume meant that quantification was not possible, since the entire sample
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was used in the proliferation assays. In none of the unstained gels was significant 

protein eluted using the Bloteluter.

One method around using unstained gels has been described for one-dimensional 

SDS-PAGE (Baskar et al, 2000). Immediately after electrophoresis was completed, 

longitudinal strips were cut from either side of the lane and stained with Coomassie 

Blue. The rest of the sample was kept unstained. The stained strips could then be 

used to align with the rest of the sample and individual bands could be excised 

without staining. This method was inappropriate for use with 2-DE separated 

proteins; furthermore, even using unstained gels, the elution was only 50-60% 

efficient (Baskar et al, 2000).

4,4,1.4 Protein Quantification

Although not assayed, it is reasonable to assume that the amount o f protein within 

the sample solutions eluted from lysate separated by 2-DE was lower than that 

present in the whole NCI lysate (Ipg/m l final concentration). The gels used for 

electro eluting the proteins were loaded with 1x10* tachyzoites, approximately lOOpg 

o f protein. Although the amount of protein loaded onto the gels in this chapter was 

the same as that loaded onto the gels in the studies of Guile et al (1993), when the 

gels obtained in this chapter were visually compared with those published by Guile et 

al it appeared that there were higher levels o f protein separated on the gels in Guile’s 

experiment than in the gels in the experiments described in this chapter, as 

determined by greater numbers of, and more pronounced, spots. Several antigens 

from Mycobacterium bovis crude lysate separated by 2-DE SDS-PAGE were 

identified in this study (Guile et al, 1993). It should be noted that Guile and co­
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workers did not quantify the protein levels in each sample, because in their studies, 

proteins were directly eluted into T-cell cultures (Guile et al, 1990; Guile et al, 

1993).

Similarly, in the studies described in this chapter, the quantity o f protein in any of the 

eluted fractions was also not assayed. All of each sample was used in the 

proliferation assays, so the experiments could not be repeated using the same 

fractions, and quantification assays could not be done, because gel-to-gel variation, 

even between spots that had migrated to the same points of the gel, meant that an 

accurate quantification from one gel was not applicable in other gels. Furthermore, 

the reproducibility of the gels was not sufficiently high to allow gel-to-gel 

comparisons of quantities of individual protein spots.

4,4.1.5 Use o f  Eluted Proteins

The ultimate aim of the elution experiments was to obtain protein fractions that could 

be used in subsequent T-cell proliferation assays. One hundred and four samples 

were eluted from various gels. Of these 104 samples, only five produced some 

proliferative response in cells from one or other o f the cattle (proliferation being 

assessed as being shown when the SI value was greater than 3), and none of these 

produced proliferative response in both Animal 410 and 416. The proliferation 

caused by these fractions was less than that produced by the positive control (NC-1 

lysate) or the T-cell mitogen (ConA). Possible reasons for this are discussed below.

4.4.2 Lymphoproliferation Assays

4.4.2.1 Potential Toxicity o f  Buffers

Other than the quantity o f protein in the fractions (described in Section 4.4.1.4), a 

further explanation for the lack of stimulation of the cultures may have been some
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toxicity of the elution buffers. Inhibition of the growth of the cells in vitro when co­

cultured with the eluted fractions appeared to have occurred. This can be observed by 

comparing the stimulation indices (SI) of the various eluted fractions and T-cells 

compared to the medium control. The SI of the medium control is 1; this is the 

baseline growth of the cultures with no additional antigens added to the medium. In 

the majority of cultures, the SI value was <1, suggesting that there were inhibitory 

components present in the electroeluted antigen fractions. This may have been due to 

excess salt in the elution sample, which, as described in Chapter 4, was eluted from 

the polyacrylamide matrix into a weak Tris buffer. This was then concentrated to 

remove the solvent; however this meant that the solute (containing the protein) had a 

very high salt concentration, which may have been detrimental to the growth of the 

cells. The presence of Tris salts in the elution fractions did not appear to be 

detrimental in other studies using directly eluted proteins in T-cell assays (Guile et 

al, 1990).

In addition, there may have been traces o f SDS within the sample, which is 

recognised as being inhibitory to the growth of cells in tissue culture (Grant and 

Acosta, 1994). Guile et al (1993) noted no significant effect on the survival o f bovine 

T-cells in the presence of less than 0.001% SDS, though there was some effect when 

this concentration increased to 0.025%. However, even when a non-SDS elution 

buffer was used in Experiments 2-5, there was some inhibition of growth. It is likely 

that there were maybe other contaminants, other than SDS, that were responsible for 

the observed inhibition o f growth. It is likely that the concentration of the samples 

increased the likelihood of the cultures being inhibited, whether SDS was present or 

not.
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Because of the likely low concentration of protein within the sample, along with the 

small volume of the sample, dialysis to remove toxic components was not a viable 

option. Neither the studies by Guile and co-workers (Guile et al, 1990; Guile et al, 

1993; Guile et al, 1995), or Andersen and Heron (1993) concentrated the eluted 

samples, prior to T-cell proliferation assay.

4.4.2,2 Concentration o f  Samples

One difference in the methodology between our experiments and those described of 

Guile and colleagues (1990, 1993) is that in our study, the proteins were not eluted 

directly into the T-cell cultures. Concentration of samples was felt to be required 

because the amount of protein separated into each spot was low (as can be seen in 

Figures 4.7, 4.9, 4.11, 4.12 and 4.13). With the low recovery rate expected from the 

eluters, it was felt that concentrating the samples would be useful.

4.4.3 Future Studies

4.4.3,1 Elution Methods

Electroelution o f one-dimensional SDS-PAGE gels for use in lymphoproliferation 

assays has been done previously (Andersen and Heron, 1993). Whole cell lysates of 

M tuberculosis were separated on a 1-DE SDS-PAGE before individual protein 

bands were eluted from the gel for use in T-eell assays. In this study, an 

immunodominant, secreted protein was identified by causing both proliferation of 

murine T-cells in vitro and also stimulation of IFNy (Andersen and Heron, 1993).

In previous studies to identify immunodominant T-cell antigens of N. caninum, one- 

dimensionally separated whole cell lysate was blotted onto nitrocellulose, which was 

then added to the cell cultures (Marks et al, 1998). One-dimensional SDS-PAGE
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does not have the separation power of 2-DE SDS-PAGE, so several proteins were 

present in each fraction tested. Nevertheless, several fractions (<30kDa) were 

identified as containing proteins that caused lymphoproliferation and production of 

IFNy in hovine T-cells (Marks et al, 1998). This may be a good starting point to test 

the electroelution technique.

4 ,43 .2  Alternatives to Elution

Blotting of 2-DE SDS-PAGE gels onto nitrocellulose before use in T-cell assays is 

another method that may be considered for future work. T-cells have been shown to 

proliferate to antigens immobilised on nitrocellulose (Young and Lamb, 1986) 

without the nitrocellulose affecting the assay. This is technically difficult when 

dealing with large numbers of proteins and/or small pieces of nitrocellulose.

Coomassie blue and Sypro Orange staining procedures used to identify proteins risks 

contamination of the membrane with potentially cytotoxic substances. However, 

there are reports in the literature of the use of colloidal gold stain, to stain 

nitrocellulose membranes for use in T-cell assays (Horn et al, 1999). However, 

quantification of protein on nitrocellulose is still problematic, but is possible if a 

comparative molecular weight marker with known concentrations of each weight is 

also blotted onto the nitrocellulose.

4,4.3.3 Modification o f  Assay Methodology

Modifications of the methodology to optimise the assay are outlined below. Firstly, 

and most importantly, quantification of protein in the samples would allow an 

adequate comparison of T-cell proliferation stimulated by the eluted fractions and the 

NCI positive control. This will allow us to determine whether the amount of
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Neospora-s^Qcific protein in the sample was a limiting factor in this system. A 

titration o f  the eluted protein could be carried out, along with titrations of NC-1 

lysate to set an upper and lower range of protein concentration that the T-cells would 

respond to. This would be dependent on (a) the amount o f protein that could be 

adequately separated on a 2-DE gel and (b) a more efficient protein recovery from 

elution.

4.4.3.4 Inhibition o f  Cell Growth

The issue of inhibitors o f growth o f cells in culture is important. Native PAGE, 

without SDS could be used, however the separation of proteins would not be optimal. 

Elution could be carried out using a lower concentration of elution buffer, though 

this would have the effect of reducing the elutiomtime ration. SDS-PAGE gels and 

the Tris elution buffer used in this study were also used by Guile and colleagues 

(1990), and no toxicity effects were observed in these experiments. It is therefore 

likely that the concentration of the samples did have an effect in concentrating toxic 

components.

4.4.4 Conclusion

Five fractions were identified in our study that caused the T-cells to proliferate with 

an SI of greater than 3. However, further work is required as discussed to assess 

whether this method of eluting proteins is useful to identify novel immunodominant 

antigens of N. caninum that may be useful as potential vaccine candidates. For 

example, each fraction would need to be used several times to check reproducibility 

of the T-cell stimulation, and several T-cell lines from different cattle would need to 

be produced and used to test the lymphoproliferative capacity o f these fractions in a 

larger cattle group.

- 2 3 0 -



Chapter 5

CHAPTER 5:

IDENTIFICATION 0 ¥  NEOSPORA CANINUM P R O T E im  

BY MASS SPECTROMETRY

0 Identify proteins that were identified as immunologically interesting by T- 

lymphocyte proliferation assays (Chapter 4) by mass spectrometry 

0 To compare and contrast mass spectrometry techniques in identifying 

proteins from an organism with little genomic sequence available
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5.1 INTRODUCTION

5.1.1 Use of Mass Spectrometry to Identify Parasite Proteins

Mass spectrometric technologies have been used extensively in disease research, 

noteably in cancer and heart disease research (reviewed in Jungblut et al, 1999). In 

addition, there is a growing body of work using mass spectrometry techniques to 

identify parasite proteins, for diagnostics and to study the basic biology. Proteomic 

tools, for example two-dimensional electrophoresis and mass spectrometry, are 

useful to identify interesting proteins of parasites. Complete proteome maps of, for 

example, disease and non-disease states or different life-cycle stages, can identify 

changes due to different gene expressions that may elucidate further information 

about the biology of the parasites.

5.1.1.1 Matrix-Assisted Laser Desorption Ionisation Time-of-Flight (MALDI-ToF)

Matrix-Assisted Laser Desoprtion Ionisation Time-of-Flight mass spectrometry 

(MALDI-ToF) was first described by Hillenkamp et al {X99V). MALDI-ToF is used 

to analyse organic molecules such as peptides. Samples are mixed with an absorptive 

matrix, prior to being ionised using lasers. The matrix transforms the laser light 

energy into excitation energy, which causes the sample to spontaneously ionise and 

leave the matrix into the sampling chamber of the mass spectrometer (Hillenkamp et 

al, 2001). Within the chamber, the ionised samples are separated by the Time-of- 

Flight analyser according to their mass-to-charge ratio. This ratio is calculated by 

measuring the time the ions take to pass through a charge-free field. The sizes of the 

ions can then be judged against known, calibrated standards (Hillenkamp et al, 

2001). This peptide mass fingerprint can then be used to search EST databases.
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5 J J J J  The Use o f  MALDI-ToF to Identify T. gondii Proteins 

MALDI-ToF has been used to identify differences in primary amino acid sequence in 

tachyzoites of T. gondii (Zinecker et al, 2001) as well as being used to provide an 

overview of the proteome of the same parasite (Cohen et al, 2002). In the work by 

Zinecker and eo-workers (2001), MALDI-ToF was used to study the isoforms of the 

T. gondii molecule TgSAGl. TgSAGl is the major surface protein of T gondii (Burg 

et al, 1988) and is inserted into the parasite membrane with a glycosyl- 

phosphatidylinositol (GPI) anchor attachment (Zinecker et al 2001). Two different 

glycoforms o f the GPI anchor were analysed by ion exchange chromatography and 

gel filtration, as well as by MALDI-ToF. Differences in the primary amino acid 

sequence were observed between the GPI anchor prior to and following attachment 

to the glycan component of the TgSAGl molecule (Zinecker et al, 2001).

The mapping of the T. gondii proteome was demonstrated by Cohen and co-workers 

(2001) as viable, despite the lack of full genome sequence. There was at the time, 

however, a moderate coverage of the T  gondii genome in the EST databases, for 

example ToxoDB (http://toxoDB.org). In the study by Cohen et al, the use o f 

MALDI-ToF analysis of proteins separated by 2DE SDS-PAGE identified several 

putative matches to the ToxoDB, and identified post-translationally modified 

proteins.

However, the global approach to protein identification as performed by Cohen and 

colleagues (2001 ) has been recognised as being not only difficult but of limited value 

as the number of proteins in a eukaryotic cell far outweighs current separation 

techniques. Pre-fractionation of a cell lysate, to obtain particular subsets of proteins
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allows a more detailed analysis, an approach that has been carried out in the 

apicomplexan parasite Eimeria tenella (Bromley et al, 2003). In this study, the 

proteins from the micronemes of the parasite -  thought to be involved in host 

invasion - were purified from E. tenella sporozoites, and separated by 2D 

electrophoresis. Spots were analysed using MALDI-ToF and chemically assisted 

fragmentation (CAF) MALDI. Several spots were identified from the Eimeria sp. 

specific databases, indicating that the use of MALDI techniques, in combination with 

bioinformatic database searching is a powerful tool for protein identification in 

parasites with some genome / EST coverage (Bromley et al, 2003). However, for 

those organisms with limited coverage, a tandem mass spectrometric approach may 

be more useful.

5.1.1.2 Tandem Mass Spectrometry (MS/MS)

Tandem mass spectrometry (MS-MS) is used to generate primary amino acid 

sequence data about a peptide by fragmenting specific sample ions inside the mass 

spectrometer and identifying the resulting fragment ions. This information can then 

be pieeed together to generate sequence information regarding the intact molecule. 

The use of MS/MS in biochemical analysis has become routine (reviewed in 

Griffiths et al, 2001)

Peptides are firstly proteolytically digested before the daughter ions are sprayed into 

the quadrupole/time-of-flight analyser o f the mass spectrometer. This energy causes 

the side-chains of the peptides to fragment, and produce a detailed peptide map that 

can be used to identify the sample by using this map to search the protein databases.
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5.1.1.3 Advantage o f  M S/M S over M ALDI-ToF

The advantage of Tandem Mass Spectrometry (MS/MS) over MALDI-ToF when in 

conjunction with two-dimensional SDS-PAGE is that MS/MS generates peptide 

fragmentation data that can be used to search through protein sequence databases. 

MALDI-ToF MS, on the other hand, produces a peptide mass fingerprint for the 

sample that, though searchable in EST databases, reveals nothing about the primary 

amino acid sequence of the peptide directly. Therefore, for organisms with limited 

genome coverage MS/MS is a much more useful tool.

MS/MS has been used to identify potential vaccine candidates from the nematode 

parasite Haemonchus contortus (Yatsuda et al, 2003). In this study, 107 proteins 

were identified from the excretory-secretory proteins. Included in these proteins were 

ones that had not been identified previously in the excretory-secretory products. This 

study suggests that the use o f MS/MS may be useful to identify proteins that, for 

some reason such as low concentration, have not been identified previously using 

other biochemical or molecular techniques (Yatsuda et al 2003).

5.1.2 Use o f  Mass Spectrometry to Identify TV. caninum  Proteins

Mass spectrometry (MS) techniques have been used to identify proteins in disease 

pathology, particularly in combination with two-dimensional SDS-PAGE (2-DE) 

(Jungblut et al, 1999). In N. caninum, which has limited protein, and DNA sequence 

(approximately 18,000 ESTs), available on public databases, there have been 

attempts to identify antigenically interesting proteins using a combination of 

immunoblotting, 2-DE and MALDI-ToF MS (Lee et al 2003; Shin et al, 2004). In 

the study by Lee and colleagues (2003), twenty proteins were identified from 31
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spots examined. These included excretory proteins from the microneme (NcMICl) 

and dense granules (NcDGl, also named NcGRAT; NcGRAl and NcGRA2). In 

addition to these proteins identified with N. caninum proteins, a further eleven 

proteins were identified as being significantly homologous to T. gondii proteins as to 

warrant mention. These include heat shock proteins, alpha- and beta-tubulin and 

metabolic enzymes 9-fructose-1,6-bisphosphatase, lactate dehydrogenase and 

glyceraldehydes-3-phosphate dehydrogenase (Lee et al, 2003). Similar proteins were 

identified in the later study by Shin et al, which used a combination of 

immunoblotting using mti-Neospora IgG, IgE, IgA and IgM to identify 

immunodominant proteins prior to sequencing (Shin et al, 2004).

The results from Lee and co-workers (2003) would suggest that a “shotgun” 

approach, i.e. selecting proteins at random for sequencing, for identification of 

proteins from N. caninum — either directly or by homology with other closely related 

organisms would be interesting, since very little is currently known about the 

proteome of N. caninum (Lee et al, 2003). The more considered approach by Shin et 

al who used the premise of humoral immunodominance to pre-select those protein 

spots that were to be sequenced is an interesting one. Since N. caninum infections are 

primarily controlled by a cell-mediated immunity (Lunden et al, 1998), the concept 

of identifying, by MS methods, immunodominant proteins that cause a proliferative 

response in T-cells is one that has scientific merit, and will be explored further in this 

chapter.
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5.1.3 Aims and Objectives

The aim of the work presented in this chapter is to:

• Identify proteins that were identified as immunologically interesting by T- 

lymphocyte proliferation assays (Chapter 4) by mass spectrometric 

techniques.
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5.2 MATERIALS AND METHODS

5.2.1 Preparation of Protein Samples for Mass Spectrometry

5.2.1.1 M atrix-Assisted Laser Desorption/Ionisation Time-of-Flight M ass 

Spectrometry (MALDI-ToF MS)

MALDI-ToF MS was carried out on proteolytically cleaved peptides. Normally the 

tryptic digestions were performed on proteins within a polyacrylamide matrix. 

However, since some proteins of interest had been electroeluted (see Chapter 4) into 

solution, it was desirable to perform the trypsin digest in the solution.

5.2.1.1.1 In-Gel Trypsin Digestion o f Proteins Separated by 2-Dimensional 

Electrophoresis (2-DE)

Tryptic digestion of proteins within a polyacrylamide matrix was performed as 

described previously (Hillman, 1995). Spots of proteins separated by 2-DE were 

excised from the gel and cut into smaller pieces to increase the surface area. These 

pieces were washed in 500pl o f lOOmM ammonium bicarbonate for Ih, followed by 

another Ih wash in 500pl o f a lOOmM ammonium bicarbonate/50% (v/v) 

acetonitrile. A further lOmin wash in 50pl 100% acetonitrile. Any solvent remaining 

in the tube was removed by vacuum drying the gel pieces in a vacuum centrifuge 

(DNA Speed Vac, Savant Ltd). The gel pieces containing the protein were incubated 

for I5min at room temperature in 25mM ammonium bicarbonate (lOpl), which 

contained 0.2pg trypsin (sequence grade) (Promega). The gel pieces were then 

covered in 20pl o f this buffer and incubated overnight at 37°C.

Prior to MALDI-ToF MS, the peptide mixtures from the overnight tryptic digestions 

were concentrated and excess salts were removed from the digestion using ZipTips™
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(lOpl, C l8) (Millipore) according to the manufacturers instructions. The ZipTip™ 

resin bed was washed through twice with 50% (v/v) acetonitrile, and twice with 0.1% 

(v/v) trifluoroacetic acid. The protein sample was mixed with 3 pi 3% trifluoroacetic 

acid. The sample was then loaded onto the ZipTip™ and passed through the resin 

bed 10 times by aspirating the solution through the tip using an automatic pipette 

(Gilson). The resin was washed twice in 0.1% (v/v) trifluoroacetic acid. A mixture of 

60% (v/v) acetonitrile/0.3% trifluoroacetic acid (lOpl) was loaded onto the ZipTip™. 

The sample was flushed into a clean 1.5ml tube. This whole procedure was repeated 

to further concentrate the sample. The sample was then ready for MALDI-ToF MS.

Before the samples were analysed in the MALDI-ToF machine, Ipl of MALDI 

matrix (Promega) was aliquoted into a clean 1.5ml tube. The sample (Ipl) was added 

to this aliquot o f matrix and mixed. One microlitre of this mix was placed on the 

plate, allowed to dry for 20min, before it was placed in the machine for analysis by 

the MALDI-ToF MS.

5.2.1.1.2 Trypsin Digestion o f  Proteins Electroeluted into Tris Buffer

This protocol was similar to that described above in section 5.2.1.1.1. However, 

instead of two ZipTip™ steps, only one ZipTip™ step was performed and after each 

wash step, the solvents (as described above) were removed by vacuum centrifuge. 

The samples were mixed with MALDI-ToF matrix as described above.

5.2.1.2 Tandem M ass Spectrometry (MS/MS)

The samples for MS/MS were digested with trypsin as described in Section 5.2.1.1. 

The digestion mixtures were also washed using ZipTip™ columns. Prior to
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electrospray, proteins adsorbed onto the ZipTip^^ columns were washed with 1% 

acetic acid and then eluted from the column using 50% acetonitrile: 1% acetic acid 

(in water). This was loaded onto a borosilicate capillary prior to mass spectrometry.

5,2,2 Mass Spectrometry of Proteolytic Peptides

5.2.2.1 MALDI-ToF M S

MALDI-ToF MS was carried out using the Voyager DE-STR MALDI-ToF (Applied 

Biosystems), equipped with a nitrogen laser of 337nm (3ns pulse). After calibration 

o f the machine with trypsin autolytic peaks, obtained by firing approximately 200 

laser shots at the trypsin-only control, the same number of laser shots was fired at the 

sample in the matrix.

The spectrum generated by the MS, was generated using Voyager Data Explorer 

software (v. 5.01) (Applied Biosystems). This spectrum could be used to search the 

EST databases using MASCOT software.

5.2.2.2 Tandem M S/M S

Capillaries containing eluted proteins (described previously in Section 5.2.1.2) were 

placed into the nanospray source of the Q-STAR mass spectrometer (Applied 

Biosystems). Spray formation was performed in a low-pressure nitrogen atmosphere, 

and spectra were obtained after Is scans.

5.2.3 Identificatioii o f Peptides/Proteins

The spectra obtained from the different MS experiments were used to search several 

databases. MALDI-ToF MS data was used to search Genbank
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(www.ncbi.nlm.nih.gov/BLAST), while the MS/MS data was used to search 

Genbank and local version of ToxoDB (http://ToxoDB.org) T. gondii databases 

containing information from the T. gondii sequencing project, as well as EST and 

BAG information (searches were carried out in February 2003). This searching was 

carried out using MASCOT software.
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5.3 RESULTS

5.3.1 MALDI-ToF MS

Matrix Assisted Laser Desorption/Ionisation Time-of-Flight Mass Spectrometry 

(MALDI-ToF MS) was initially used to obtain sequence data from eluted protein 

samples. Proteins eluted from the polyacrylamide gel matrix (Chapter 4) were 

proteolytically digested using modified trypsin (Promega) and then mixed with 

MALDI-ToF matrix before being bombarded with a laser to ionise the peptide 

fragments which passed into the MS machine and analytical spectra obtained.

Figure 5.1 shows a typical trace obtained from the MALDI-ToF analysis of eluted 

protein sample from NCI lysate separated in two dimensions by SDS-PAGE. All the 

high intensity peaks were in the mass/charge ration of between 800 and 1240, and 

were identified as trypsin fragments. Since trypsin itself is a protein and will also be 

ionised by the lasers, it was expected that there would be trypsin peaks in the mass 

spectrometry trace, with a mass/charge ratio of 842.5 (Figure 5.1). However, since 

there were no other peaks present, this suggested that the proteins were not 

successfully transferred from the Tris elution buffer into the ZipTip™ and then into 

the matrix.

This experiment was repeated several times using different eluted proteins; however, 

the traces obtained were very similar to the one shown in Figure 5.1, that is, the high 

intensity peaks were identified as trypsin fragments. Any peptide fragments would 

have been expected to have a higher mass/charge ratio. The poor signal-to-noise 

ratio, suggested that there was insufficient protein in the sample as no peptides were 

identified except for trypsin fragments. This was probably related to the fact that the
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ZipTip^*^ protocol was not optimised for proteins in solution. Other MS techniques 

were therefore tried.
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5.3.2 MS/MS

This technique was used to identify proteins that were previously highlighted as 

potentially immunologically interesting by their stimulation of T-lymphocytes in 

vitro (Chapter 5). Two proteins from these experiments were worthy of further 

analysis, since they produced a relatively high proliferation in the T-cell cultures, 

above the medium control. As described in Chapter 4, an aliquot of each protein used 

in proliferation assays was run on a standard one-dimension SDS-PAGE gel. This 

allowed the in-gel digestion of the protein for MS/MS analysis. This also removed 

the risk that the protein would be lost in the handling steps as occurred in MALDI- 

ToF experiments (section 5.3.1).

Figure 5.2 shows the MASCOT output from one o f the proteins identified in Chapter 

4 (Fraction number 45 (Animal 416), Experiment 3). The spectra generated from the 

mass spectrometers were automatically searched using MASCOT; no manual input 

from the spectra was carried out. The hatched area that spans from 0 to just short of 

75 on the Probability based Mowse score, indicates an area where any hits to the 

database were not regarded as significant. This area also contained several hits 

against trypsin and human keratin, a common contaminant in MS experiments. There 

was, however, one significant hit at approximately 90 on the Probability Based 

Mowse Scale that was obtained. This was identified (Table 5.1) from the database as 

N. caninum superoxide dismutase.

The mass spectrometry data generated by the other protein identified in Chapter 4 

(Animal 416, Fraction 42, Experiment 3) did not have any significant hits associated 

with it (not shown).
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Probability Based Mowse Score

Figure 5.2 Data from Tandem Mass Spectrometry, output through the 
MASCOT programme. Peaks of peptide identifications within the green 
shaded area are insignificant hits. Those outside the shaded area are 
significant. In this case, one significant hit was obtained.

Accession Number Identifier Number Description

AF296416_1 AAL62028
G18157554

Neospora caninum 
Superoxide dismutase

LLDEINKEFTSVEK
Table 5.1 Identification of the one significant hit from protein fraction 
that had positive T-lymphocyte proliferative activity. Peptide sequence 
with significant alignment is highlighted.
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5.4 DISCUSSION

Modem mass spectrometric techniques provide protein sequence information that 

would have been very difficult to generate a decade ago.

5.4.1 Lack of Identification Using MALDI ToF MS

The lack of identification of proteins using MALDI-ToF was surprising, since this 

technique was optimised for identification of proteins from T. gondii (Cohen et al, 

2002). There are a couple of reasons to explain this lack of identification.

Firstly, the protocol normally used for MALDI-ToF was optimised for in gel 

digestion of proteins (described in Cohen et al, 2002). There is currently nothing in 

the literature to demonstrate that digestion of proteins separated by SDS-PAGE but 

eluted into an aqueous solution is possible. The reverse phase extraction used in 

ZipTip™ clean-up of protein samples is also not possible when there is a high salt 

concentration present. In eluted proteins, the salt concentration in the samples is 

higher than in normal experimental conditions, since the protein in elution buffer is 

concentrated so that it can be detected on a preparatory gel.

As described in Chapter 4, the preparatory gels from which the protein spots were 

eluted were loaded with lOOpg of N. caninum whole cell lysate. Each spot was 

estimated to contain approximately 50-100 pg o f protein. The likelihood of a 100% 

efficient elution was negligible, according to the eluter manufacturers, and a more 

likely elution rate was approximately 50%, reducing the amount of protein within 

each sample to 25-50 pg. Since the majority of the sample was used in proliferation 

assay, the amount of protein used in the spectrometry experiments was in the 5-10 pg
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range, so there was a possibility that the eluted protein samples were at such a low 

concentration that, during the digestion process, the majority of the sample was lost. 

Even the most successful elution, using the Biorad Bloteluter (see Chapter 4), only 

succeeded in extracting small quantities of protein from the gel. When another 

handling step was introduced, this already small concentration of protein was 

reduced substantially.

The limitations of MALDI-ToF were also exacerbated by the lack of sequence data 

available for N. caninum proteins. Identification of the peptide fingerprints generated 

by MALDI-ToF experiments requires prior data in the databases, since it is the 

fingerprint of individual peptides rather than direct sequences of peptides that are 

searched. Without previous fingerprints to compare with, it is difficult to get 

identification o f the peptides generated in an experiment. Unlike T. gondii where 

there have been significant advances in the sequencing of the genome 

rhttp://www.sanger.ac.uk/Proiects/T gondiiA. there is limited genome sequencing 

available for N, caninum (at the time of searching There was approximately 13,000 

ESTs and 81 gene sequences available for N. caninum). This lack of genome-, and 

related protein, sequence limited the use of MALDI-ToF MS. Nevertheless, MALDI- 

ToF MS has been used to identify several N. caninum tachyzoite proteins, either by 

direct identification or by homology with T. gondii proteins (Lee et al, 2003).

5.4.2 MS/MS

The use of MS/MS sequencing enabled the identification of a protein that caused 

lymphoproliferation in T cells obtained from N. caninum infected cattle (Chapter 4) 

as N. caninum superoxide dismutase (SOD) (Accession number - Genbank
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AAL62028, submitted by Cho et al). SOD has been identified as an important 

molecule in T. gondii infections (Hughes et al, 1989). SOD is one of several enzymes 

that pathogens use to counteract the oxidative stress that occurs when macrophages 

are activated during infection. T. gondii is particularly rich in SOD, while Eimeria 

bovis for example is less so. E. bovis appears to be more susceptible to oxidative 

killing than T. gondii (Hughes et al, 1989).

However, since only one peptide was identified as N. caninum superoxide dismutase, 

further work needs to be done to confirm this result. Since the molecular weight of 

the protein spot (Fraction 46 in Figure 4.11) can be estimated, this can be compared 

with the known value for N. caninum superoxide dismutase (22kDa).

The other sample that was used in mass spectrometry (Fraction number 42) was not 

identified as being significantly homologous to any other sequence in the database. 

This is probably due to the lack of genome sequence available for N. caninum though 

it does suggest that a homologue for this protein was not present in T. gondii or other 

related organisms. The lack of material prevented further information about this 

unknown protein being elucidated.

5,4.3 Further Studies

The efficiency of protein identification from MS data is dependent on having 

significant genome sequence with which to compare the spectra obtained. For 

organisms like N. caninum, which currently has limited sequence information, the 

amount of meaningful data that can be obtained fi-om MALDI-ToF and MS/MS is 

limited. Other, more powerful techniques could be used to obtain data both from
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individual protein spots identified as being immunodominant by T-cell proliferation 

assay, as well as from mixed samples from, for example, a parasite lysate. One such 

technique is Multidimensional Protein Identification Technique (MudPIT). MudPIT 

uses the same technology as MS/MS but in tandem with a liquid chromatographic 

separation of the proteolytic peptides. This additional step enables mixed protein 

preparations, for example from a one-dimensional SDS-PAGE, to be run and the 

different proteins identified.

MudPIT is a powerful tool to dissect the biology, immunology and biochemistry of 

parasites such as N. caninum. The combination of liquid chromatography with 

tandem MS that is MudPIT, with immunoblotting using immune serum from 

naturally infected cattle would be a useful starting point in determining the set of 

proteins that is recognised by the humoral immune response during infection. In 

addition to this initial screening, by combining liquid chromatography technology 

with T-cell proliferation assays (such that a whole parasite lysate can by digested 

before half going for T-cell proliferation studies, the other half going for mass 

spectrometric identification) should provide strong evidence as to the identification 

of proteins important for a cellular response. It should be noted at this stage that the 

samples would contain multiple proteins and that a further chromatographic 

separation would be required to get individual proteins for analysis. Nevertheless, 

this technique would also have the potential for a rapid high-throughput screening of 

a large set of proteins. Fractions that contained protein(s) that caused proliferation of 

T-cells, as well as being identified by the humoral immune response, could be 

isolated and fractionated further, until individual proteins could be identified. 

Alternatively, a “positive” fraction, that is one that causes lymphoproliferation, could
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be sequenced and recombinant proteins made from each of the identified proteins, 

which could then be used as antigen in subsequent immuno-assays. This may be a 

complex method of identifying immunodominant proteins, but the omission of SDS- 

PAGE separation would ensure that the limitations of that technology would not 

limit the proteins available for study to only the soluble ones.
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6.1 Background

The aims of the work presented here can be split into two main sections -  the use of 

transgenic T. gondii as a live vehicle for delivery of heterologously expressed N. 

caninum genes (NcGRA? and NcSRS2) (Chapters 2 and 3); and the use of 

proteomic/mass spectrometric technologies, in combination with cellular 

immunology assays to identify potential vaccine candidates for neosporosis 

(Chapters 4 and 5).

T. gondii was selected as an appropriate live delivery system for N. caninum genes 

for use in immunological studies. This was for a number of reasons. Firstly, and 

perhaps most importantly, T. gondii is genetically well characterised, and molecular 

genetic tools for the transfection of T. gondii tachyzoites are well established (Howe 

and Sibley, 1997). T. gondii is also relatively easy to culture in vitro. In addition, 

since T. gondii and N. caninum are very similar organisms (Marsh et al, 1995), the 

hypothesis was that a specific immune response to heterologously expressed N. 

caninum genes could be “piggy-backed” onto the strong protective Thl-mediated 

immune response generated against the tachyzoites of T. gondii (Mordue et al 2001). 

As proof of concept for this, two already characterised N. caninum genes (NcGRA? 

and NcSRS2 (Tally et al, 1997; Howe et al, 1998)) were transfected into tachyzoites 

of T. gondii, and the engineered T. gondii characterised by genetic, biochemical and 

immunological methods (Section 6.2).

The second theme of work in this thesis, i.e. the identification of (novel) 

immunodominant antigens o f N. caninum combined the power of two-dimensional 

SDS-PAGE and modem mass spectrometry techniques with the specificity of T-cell
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proliferation assays. This theme also contained an element of technology and 

technique development, since the elution of proteins from two-dimensional SDS- 

PAGE gels for use in T-cell proliferation assays is not a common technique (Guile et 

al, 1990) and required optimisation which took a longer time than first anticipated 

(See Section 6.3). It was the initial plan that antigens identified by causing 

proliferation in N. caninum specific T-cells, followed by identification by mass 

spectrometry, could be engineered to be expressed in T. gondii tachyzoites for 

immunological studies. Time constraints meant this was not achieved (see Section

6.4 for future work).

The aims and objectives of the work presented in this thesis as described in Chapter 1 

form the basis for the discussion outlined below. These aims and objectives were to:

• Produce and characterise transgenic T. gondii that express proteins of 

N.caninum,

• Assess the efficacy of transgenic T. gondii as a delivery vehicle for 

N.caninum proteins for stimulation of a specific immune response to 

N. caninum in a small animal model,

• Use a combination of proteomic technologies and immunological assays 

to identify potentially immunodominant proteins of N. caninum that may 

have potential as vaccine candidates.

6.2 Use of T, gondii as a Delivery Vehicle for N. caninum  Antigens

6,2.1 Engineering T. gondii to Express Proteins ofN . caninum

Chapters 2 and 3 explain the production and characterisation of engineered T. gondii 

expressing N. caninum GRA7 and SRS2 genes, and the use o f these transgenic
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parasites in preliminary immunological studies. Several difficulties arose in the 

production of the transgenic T. gondii, not least the fact that co-transfection of T. 

gondii with the transfection vector expressing the transgene and one containing a 

selection cassette (in this case, an active HXGPRT gene) was not as stable as the 

literature suggests (Donald and Roos, 1998). Several attempts at generating stably 

transfected T. gondii were made, and while it appeared that the transfection was 

successful by the fact that the parasites were growing in stringent selection 

conditions, it was later discovered that the selection cassette had been stably 

transfected and the transfection vector had been transiently expressed (See Section 

2.3.4.1). Co-transfection using HXGPRT as a selectable marker has been shown to 

be a successful method for transfecting T. gondii (Donald et al, 1996). Nothing in the 

literature suggested this preferential expression -  where the selection cassette but not 

the transfection vector was expressed ~ has occurred.

There were also some difficulties in detecting the transgene when it was stably 

transfected. PGR and Southern Blotting did indicate the presence of the transgene 

relatively easily (See Sections 2.3.4.2 and 2.3.4.3). However, the use of 

immunoblotting to detect the N. caninum protein in the cell lysate of the transfected 

T. gondii was not successful, since very high background non-specific binding was 

such that no specific binding could be identified. Immunofluorescence did suggest 

the presence of the heterologous protein in tachyzoites of transgenic T. gondii. 

Nevertheless, both immunoblotting and immunofluorescence would have been easier 

had monoclonal antibodies against the recombinant proteins NcGRA? and NcSRS2 

been available. The monoclonal antibodies would add specificity to detection, 

without resorting to the addition of a c-myc epitope that, despite careful engineering
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of the sequences to ensure minimal disruption of the structure o f the heterologous 

proteins (Section 2.2.13.1) may have caused some unforeseen changes in the protein 

structure that resulted in the protein not being transported to its expected 

environment within the transgenic T. gondii. For example, the heterologous NcSRS2 

was expected to be transported to the surface as NcSRS2 in N. caninum is located on 

the surface (Hemphill, 1999).

6,2.2 Mouse Inoculation Experiments

Nonetheless, heterologous protein was obseiwed using monoclonal antibodies against 

the c-myc epitope by immunofluorescence, and the transgenic T. gondii were then 

used to inoculate outbred mice to try and characterise the immune responses, with a 

view to challenging the mice with N. caninum to assay the protection given by the 

“vaccine” recombinant T. gondii. However, the study of the immune response in the 

mice was limited by time constraints, due in part to the unexpected high levels of 

virulence of the background strain of T. gondii used in the transfection studies 

(Prugniaud strain (PRU), with an HXGPRT knockout - PRUAHX). The PRU strain 

o f T. gondii was known to be a Type II T. gondii, which were less pathogenic than 

the Type I strain (characterised by the highly virulent RH strain) (Lindsay et al, 

1998). This did not seem to be the case, since even at low inoculation levels (1x10^ 

tachyzoites) the inoculated BALB/c mice were still succumbing to infection rapidly 

(Section 3.3.1). It was later known that the HXGPRT knockout PRU strain 

demonstrated higher levels of pathogenicity in mice, compared to the wild-type 

strain, and this may account for the difficulties experienced in the initial titration 

experiments (Dubremetz, pers. commun.).
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BALB/c mice had been used as a model for N. caninum infection (Lunden et al, 

2002), and were the initial choice for these inoculation experiments. Because of the 

highly virulent nature o f the PRUAHX tachyzoites, different mouse strains were 

required to be tried (Section 3.3.1), and eventually the outbred Porton strain of 

mouse was selected.

Unfortunately, there was not time to dissect the immune response fully. A 

preliminary immunofluorescence study suggested that there may some specific 

humoral response against the heterologous protein. This is covered in more detail in 

Section 6.4.

6,2.3 Conclusions

This section o f work attempted to combine the use transgenic T, gondii expressing 

heterologous proteins with the study of the immune response against the transgenic 

parasite. It has been shown in previous studies that this rationale is effective in 

generating specific immune responses to the heterologous protein (Cristina et al, 

1999; Ramirez et al, 2001). In the work by Cristina, T. gondii tachyzoites 

transformed to express the circumsporozoite protein from P. knowlesi were used to 

inoculate rhesus macaques. When the macaques were challenged with untransformed 

T. gondii tachyzoites, there was a specific humoral response against the 

immunodominant epitope from the circumsporozoite protein (Cristina et al, 1999). 

The cellular response was not studied in this work. In the experiments of Ramirez et 

al (2001) transgenic T. gondii expressing the Leishmania kinetoplastid membrane 

protein-11 (KMP-11) were used to immunise BALB/c mice that were subsequently 

challenged with L. major. A protective proliferative response was obsei*ved in those
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animals that were immunised with KMP-11 expressing T. gondii (Ramirez et al,

2001), indicating that T. gondii is a useful delivery mechanism for heterologous 

proteins from other intracellular organisms. More work would be required to 

confirm if the engineered T. gondii in the experiments described in this thesis would 

generate a specific immune response to N. caninum.

There is also a fundamental ethical question underpinning the work described here in 

this section (i.e. Chapters 2 and 3), not least the justification of the use of animals for 

these types of inoculation experiments, particularly with such a virulent strain of T. 

gondii, although the experiments were carried out as prescribed under the legal 

guidelines. The production of transgenic pathogens is an area that may have legal 

and ethical implications. T. gondii is a human pathogen; N. caninum is not, as far as 

is known, though it can infect non-human primates (Barr et al, 1994). This suggests 

that it may be possible for N. caninum to infect humans, though there is no evidence 

currently to support this. Recombination events occur frequently in viral pathogens, 

often with serious consequences (Enserink, 2003). Is it appropriate to engineer 

human pathogens, to express heterologous proteins, when so little is known about 

both organisms? There is currently debate about the safety o f genetically modified 

crops, and although there is no scientific evidence to support the hypothesis that 

genetically modified food is harmful, it is a valid argument to state that because so 

little is known about the long-term implications of genetic manipulation of 

organisms, further studies should be done before genetically modified crops are 

allowed. This argument is magnified when discussing potential pathogens. 

Genetically modified pathogens of animals or humans should be heavily regulated 

and modifications should only be permitted using organisms where significant
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knowledge about the genetic makeup of the organism is known. A fully sequenced 

and annotated genome should be the minimum requirements, but there is an 

argument that, since the genome is fixed and it is the proteome that really is the 

complex part of an organism, there should be significant proteomic understanding of 

the cell before genetic manipulation is permitted. As for pathogens, those that are 

genetically modified should be considered dangerous until proven otherwise and, as 

such, be considered Category III organisms, although the “background” parental 

strains are categorised lower, and indeed T, gondii of the S48 strain has been used 

successfully and safely as a vaccine for many years (Buxton and Innes, 1995). In the 

studies presented in this thesis, both T. gondii PRUAHX and N. caninum NCI are 

Category II organisms, as were the transgenic T, gondii expressing NcGRA? and 

NcSRS2. The transgenic T. gondii should have been treated as Category III 

pathogens.

6.3 The Use o f Post-Genomic Technologies and Immunoscreening to Identify 

Novel Immunodominant Antigens of AC caninum

The power o f proteomics, bioinformatics and mass spectrometry to identify proteins 

has been well documented (Malmstrom et al, 2002; Wilke et al 2003). However, 

these technologies have not been combined with the specificity of cell-based 

immunoscreening to detect specific proteins, although they have been used in concert 

to identify immunodominant antigens of T. gondii (Reichmann et al, 199?). One of 

the problems has been that, until recently, two-dimensional SDS-PAGE has been a 

difficult method to manipulate easily for use in immunological, and in particular cell- 

based, assays. Removal of the proteins from the polyacrylamide matrix is essential. 

This can either be by blotting and using the blotted membranes as antigen in T-cell
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proliferation assays (Young and Lamb, 1986), or by electroeluting the proteins from 

the gel for further use in T-cell assays (Guile et al, 1990; Guile et al, 1993).

A further problem, particularly for an organism like N. caninum that has little 

sequence data available, is that biological mass spectrometry (for example MALDI- 

ToF MS) and bioinformatics required there to be substantial sequence data for 

peptide fingerprints to be searched against, as is the case for T. gondii (Cohen et al,

2002). New mass spectrometry techniques, like Multi-Dimensional Protein 

Identification Technology (MudPIT), may prove useful for identification of 

immunologically interesting sequences from organisms like N, caninum. MudPIT 

combines the separation power of liquid chromatography with MS/MS peptide 

analysis. Whole cell lysates could be separated using liquid chromatography before 

being used in proliferation assays, with a duplicate being used in MS/MS 

experiments. However, MudPIT is not as sensitive as 2DE approaches, since each 

fraction will contain many proteins and so it would be more difficult and laborious to 

identify individual proteins.

6.3.1 Elution o f  Proteins fo r  Use in Proliferation Assays

Electroelution o f proteins from SDS-PAGE gels is not widely a used technique. This 

is because it is technically challenging, the quantity of protein obtained can be very 

low (50-60% of the initial total protein concentration of the sample in the gel, 

according to the manufacturers of the Bloteluter (Section 4.4.1.3)). This technique 

has, however, been used to identify proteins that cause proliferation in Mycobaterium 

èov/5-specifïc T-cells (Guile et al, 1990).
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In the work described in Chapter 4 of this thesis, proteins were electroeluted from 

two-dimensional SDS-PAGE gels and used in T-cell proliferation assays. Five 

fractions stimulated a response in the T-cells over that seen in the medium alone 

control (Section 4.3.3.6). However, there were some concerns that the eluted 

fractions were in some way inhibiting the T-cell cultures despite the fact that the 

elution buffers had as many components as possible removed. One possibility was 

that the concentration of the samples might have also concentrated any toxic 

components. If this experiment were to be repeated, then this issue of inhibition of 

the T-cell cultures would need to be addressed (See Section 6.3.3).

The major concern about the electroelution proteins for use in proliferation assays 

was that it was very difficult to determine the protein concentration in each sample. 

The volumes of elution were such that the entire sample was required to allow 

triplicate proliferation assays, and as such traditional 96-well plate based protein 

assays, comparing against known concentrations of bovine serum albumin, were not 

possible. Had there been more comparability between the 2D gels used, this lack of 

protein would not have been an issue and there may have been sufficient protein to 

allow both the concentration o f the protein within the sample and repeat proliferation 

experiments to be carried out.

6.3.2 Mass Spectrometry (MS)

Two MS methods were tried in the work described in Chapter 5 -  MALDI-ToF MS 

and Tandem MS. MALDI-ToF MS requires a large amount of sequence, or at least 

EST data to allow a search o f the database using the peptide mass fingerprints 

obtained from the mass spectrometer. As N. caninum does not have this large amount
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of sequence data (at the time of searching approximately 14,000 ESTs -  now 

25.000), MALDI-ToF MS was not successful. Tandem MS produced some data that 

may be used as the basis of further studies.

Two protein fractions that produced high levels of T-cell proliferation in the studies 

described in Chapter 4 (Section 5.3.2,6) were analysed by Tandem MS. One of these 

produced a hit to an N. caninum sequence, superoxide dismutase, though the other 

did not generate a significant hit.

6.3.3 Conclusions

The work described in Chapters 4 and 5 has combined to identify one potential 

protein that stimulates some proliferation of T-cells. However, the main conclusion 

from this section of work is that electroelution of proteins for use in T-cell 

proliferation assays is technically difficult. Better methods for achieving the same 

separation of proteins without the added handling steps of two-dimensional SDS- 

PAGE separation, electro elution and concentration should be developed. Liquid 

chromatography may be useful in this, since it is also the basis of separation in 

MudPIT. The combination of MudPIT and T-cell proliferation assays has the 

potential to generate some very interesting results.

6.4 Further W ork

The work presented in this thesis has largely been the development of techniques and 

the integration of proteomics, genetic and immunological procedures, and as such 

there are still several important areas that need to be investigated. Clearly, the use of 

PRUAHX T. gondii as a delivery vehicle was not fully assessed because of the
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unexpected virulence o f the parasite in mice, caused by the deletion of the HXGPRT 

gene (Dubremetz, pers. commun.). The use of a less pathogenic strain (ts-4 for 

example) has been shown to be effective in other studies (Ramirez et al, 2001). From 

an immunological perspective the preliminary immunofluorescence work should be 

built on, to study the humoral and cellular responses to the transgenic T. gondii in 

more detail, though this will depend on the availability of recombinant proteins and 

monoclonal antibodies. In particular, further work would be required to show a 

specific humoral response against the heterologously-expressed N. caninum proteins, 

against the background T. gondii proteins. It would also be interesting to look at the 

protective response generated in mice inoculated with the transgenic T, gondii after 

challenge with an infection o f N. caninum, and extending that to studying the 

protection against vertical transmission in mice and, if successful, cattle. These 

extension experiments would only be appropriate if  there was conclusive proof from 

the in vitro proliferation and serological studies that there was a specific response to 

the heterologously-expressed N. caninum proteins.

Further in vitro identification of immunodominant antigens using T-cell proliferation 

assays and individual proteins will be greatly improved if either (a) the electroelution 

step is fully optimised or (b) an alternative to electroelution from 2D SDS-PAGE 

gels, for example liquid chromatographic separation of cell lysate, is used. The latter 

would have the benefit of reducing handling steps and also being directly compatible 

with MudPIT technology. The sequencing of the N. caninum genome would facilitate 

the identification of proteins of interest.
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Proteins that generate a proliferative response in in vitro studies should then be used 

in extended work studying the humoral and cellular responses to the protein in a 

larger cohort of cattle. Only proteins that generate a specific humoral and cellular 

response in the majority o f the cattle should be considered for further vaccine 

candidate studies. In assessing the efficacy of particular immunodominant antigens 

for use in vaccination o f cattle, several factors need to be addressed. Firstly, does the 

vaccine prevent acute pathology, that is, does the vaccine prevent abortion in cattle. 

This is an important consideration, since this is the most economically important 

reason to vaccinate against neosporosis. However, in the long-term, a transmission 

blocking vaccine, which prevents the transmission of the parasite from the mother to 

the calf, is important in preventing the disease spreading and eventually it would be 

removed from the herd.

6.5 Final Conclusions

The work presented in this thesis has presented both scientific and technical 

challenges, some overcome, some still to be addressed. However, in relation to the 

aims and objectives laid out in Chapter 1, some progress has been achieved:

• T. gondii was engineered to heterologously express NcGRA? and NcSRS2 

from N. caninum and preliminary immunological studies suggested that there 

was some specific humoral response to the heterologous proteins, though this 

would need to be investigated further.

• Several antigens were identified as causing some proliferation in N. caninum- 

specific T-cell cultures above that seen in the negative controls. One of these 

was identified as superoxide dismutase from N, caninum, and may warrant 

further investigation.
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It was unfortunate that the unforseen technical limitations and optimisations were not 

overcome sooner, since the work described in this thesis aimed to combine 

molecular, biochemical and immunological approaches to answer fundamental 

questions about parasite biology and pathology. This holistic approach is an 

attractive one, particularly when dealing with a complex pathogen, multiple hosts 

and interesting immunological situations, such as pregnancy. With the further 

understanding of the basic biology o f both N. caninum and hosts, along with 

increasingly sensitive technology, answers to some of these questions may soon be 

answered.
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