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Abstract

Elevation of intracellular Câ "̂  and cAMP are key triggering events leading to 

hippocampal long-term potentiation (LTP, a form of synaptic plasticity) induction. In this 

study, the aim was to compare the ability of elevated Ca^  ̂influx (achieved via the Ca^  ̂

ionophore, A23187) or increased intracellular cAMP levels (achieved via adenylate 

cyclase activator, forskolin) to modulate the expression or activation of selected proteins 

involved in LTP, with emphasis on the CA3 region of the hippocampus. The proteins 

investigated include: aCaMKII, MAP2, p-activin, Pyk2 and MAPK. They have all been 

implicated in LTP in CAl and dentate gyrus (DG) regions of the hippocampus.

To test the hypothesis that Ca^  ̂influx or cAMP elevation might activate Pyk2 and 

MAPK, the levels of phosphorylated Pyk2 and MAPK were measured in acute rat 

hippocampal slice preparations after exposure to A23187 (5p,M) or forskolin (SOjiiM). 

Using an immunoprécipitation assay, the levels of phosphorylated Pyk2 were increased in 

the presence of A23187 with a peak effect around 10 minutes. When the CAl and CA3 

regions of the hippocampus were investigated separately, phosphorylation of Pyk2 was 

achieved in both regions after exposure to A23187, suggesting a key role for Câ "̂  in both 

regions. Staurosporine, a general PKC inhibitor, and chelerythr ine, a PKM^ inliibitor, 

were compared for their ability to attenuate the effect of A23187. Exposure of acute 

hippocampal slices to chelerythrine or staurosporine prior to A23187 application resulted 

in the reduced phosphorylation of Pyk2, suggesting that PKM^ and novel PKC may be



involved in Pyk2 activation by Câ "̂ . Application of forskolin to acute slices resulted in 

the reduced activation of Pyk2 below basal level, suggesting that cAMP inhibits Pyk2. 

MAPK was phosphorylated for more than 20 minutes in the presence of either A23187 or 

forskolin suggesting an important role for Ca^  ̂and cAMP in the activation of MAPK in 

acute hippocampal slices. However, when CAl and CA3 regions were investigated 

separately, A23187 and forskolin only activated MAPK in the CAl region, with no effect 

in the CA3 region, hence suggesting a different mode of activation of MAPK in the two 

regions.

The effect of elevation of intracellular Ca^  ̂and cAMP via A23187 and forskolin 

respectively, on the expression of aCaMKII, MAP2 and P-activin protein were studied in 

organotypic slice cultures of rat hippocampus by immunocytochemistry or western blot. 

The levels of MAP2 expression were increased 4 hours after forskolin treatment, but 

were unaffected by A23187 treatment. Conversely, the levels of aCaMKII expression 

were increased 4 hours after A23187 treatment, but were unaffected by forskolin. The 

regulation of the expression of these proteins was the same in the CA3 region as in the 

CAl and dentate gyrus of the hippocampus. While rapamycin reduced the basal levels of 

MAP2 expression, it did not affect the ability of either forskolin or A23187 to enliance 

MAP2 or aCaMKII levels. These results suggest that cAMP and Câ "̂  differentially 

modulate the expression of these two plasticity-related genes, and that translational 

enhancement via the mammalian target of rapamycin kinase is not involved in these 

effects. The expression of p-activin was enhanced in the presence of A23187 or forskolin 

in both the CAl and CA3 regions, again suggesting a similar pathway in both regions,

XI



and that both increased intracellular Ca^  ̂and cAMP levels can participate in the 

regulated expression of this protein.

These results suggest that Câ "̂  and cAMP mediate distinct components of neurochemical 

changes that underlie LTP maintenance. The proteins monitored in this study showed 

clear differences in their response to these two second messengers. However, in general 

the alterations in protein expression in the CA3 region corresponded with those in the 

CAl and DG regions, suggesting that the pathways regulating the expression of a given 

protein may not be cell-specific.
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Introduction

Chapter 1 

Introduction

1.1 Two major forms of memory

Learning and memory are not a unitary process— not a single faculty of the mind— but a 

family of distinct processes each with its own rules. Learning is the process of acquiring 

new information about the world and memory is considered to be the process by which 

knowledge is retained.

Recent studies have shown that memory can be divided into at least two major categories 

(Polster a/., 1991):

(i) Explicit or declarative memory— conscious recall of knowledge

(ii) Implicit or non declai’ative memory— non-conscious recall of motor skills 

These categories involve different neural circuits (Squire, 1992). Explicit memory 

uniquely depends on temporal lobe and diencephalic structures e.g. hippocampus, 

subiculum and entorhinal cortex, while the implicit form is dependent upon the same 

sensory, motor, or associational pathways used in the expression of the learning process 

(Bailey et a l, 1996). Explicit memory is studied in mammals, while the implicit form can 

effectively be studied in both non-mammalian vertebrates and higher invertebrates. Both 

explicit and implicit forms of learning are gi aded and the duration of memory is related to 

the number of training trails. There are at least two temporally distinct phases of memory 

storage:

1
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(i) Short term memory lasting seconds, minutes and hours

(ii) Long teim memory lasting days, weeks or years.

Each phase of memory storage employs a cascade of molecular events of molecular 

events that occur during their consolidation period.

Short-teim memory depends on second messenger-mediated covalent modification of 

proteins which have been previously synthesised and hence modulate the properties of 

nerve cells and their synaptic connections (Schwartz, et a l, 1971; Kandel and Schwartz, 

1982; Livingstone, 1985). Acquisition and retention of information for short-term 

memory, in certain invertebrates (e.g. Aplysia, Hermissenda and Drosophila), does not 

require the synthesis of new proteins (Schwartz, et a l, 1971). The process of acquisition 

involves the activation of receptor-linked enzymes by neurotransmitters. These enzymes 

are responsible for the synthesis of intracellular messages which in turn activate protein 

kinases that phosphorylate substrate proteins required for the plastic neuronal 

modification (Goelet et a l, 1986). The duration of the covalent modification of pre

existing proteins and maintenance of the activity of the enzyme responsible for second 

messenger synthesis are necessary for the retention process of plastic changes (Goelet et 

al, 1986). It was proposed that covalent modifications similar to the ones in short-temi 

memory become self-reinforcing for certain instances of long-term memory (Crick, 1984; 

Lynch and Baudry, 1984; Lisman, 1985). This was not the case, however. Studies have 

illustrated that in the process of acquisition of information whose memory lasts more than 

one-day, specific nerve cells need to express genes that are not required in short-term 

memory (Davis and Squire, 1984).
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Goelet et al. (1986) concluded that the same modulatory neurotransmitters that induce 

cytoplasmic messengers during learning in short-tenn memory are also responsible for 

the activation of at least tliree overlapping memory processes, either thiough the same or 

additional second messenger systems. Each memory process has its own time course of 

retention. These overlapping memories include;

(i) Intermediate memory which lasts many hours and is dependent on self- 

reinforcing covalent modification

(ii) Long-term memory lasting more than one-day is dependent on the induction of 

new proteins which results from second messengers involved in short-tenn 

memory

(iii) Memory lasting weeks and months which is dependent on early regulatory genes 

whose protein products trigger the maintained expression of late effector genes.

Behavioural studies of learning in vertebrates suggest that memory lasting days or weeks 

can be disrupted by the inhibition of protein synthesis (Nader et al,  2000; Schafe and 

LeDoux, 2000). However, at least in some models, vertebrates do not experience any 

deficit in long-term memory if exposure to the protein synthesis inhibitor is delayed by as 

little as one-horn* after training (Davis and Squire, 1984). Invertebrates have been used to 

address the question of whether the disruption of protein synthesis by the inhibitors in 

behavioural studies is due to motivation, motor performance or some other complex brain 

system. Invertebrates were also used to determine if this protein disruption reflected a 

fundamental property of long-term information storage in specific nei*ve cells of the 

circuit responsible for the modified behaviour. Studies on long-term sensitisation of the
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gill-withdrawal reflex in Aplysia showed that the basic synaptic connection between 

sensory and motors neurons is enlianced in both short and long-term sensitisation (Bailey 

et al,  1996). Long-term facilitation associated with the memory of long-term 

sensitisation is blocked by both translational and transcriptional inhibitors. This is in 

contrast to short-term facilitation. The blockage of protein synthesis in Aplysia during a 

two-hour training period blocked the retention of long-term facilitation assayed one-day 

later; this was similarly observed in equivalent models in vertebrates (Goelet et a l ,

1986). These studies hence indicate that genes and proteins are necessary for the cellular 

mechanism underlying long-term memory.

The cortex, amygdala and hippocampus have been implicated in learning. The cortex is 

widely assumed to store traces of experience underlying both explicit and implicit 

learning (Martin et al,  2000). In explicit learning, the hippocampus is thought to be 

involved in the earlier stages of encoding and storage resulting in the eventual 

consolidation of information in the cortex whereupon the participation of hippocampal 

fonnation is no longer required (Martin et al, 2000), The hippocampus is widely thought 

to be involved in infonnation processing functions related to spatial memory (O’Keefe 

and Conway, 1978) as well as declarative (Squire, 1992) and episodic memory (Vargha- 

Khadem et al, 1997). Studies on fear conditioning have implicated the amygdala in many 

foims of learning. In the classical fear conditioning, the condition stimulus (CS) such as a 

tone or light, is paired with aversive unconditioned stimulus such as foot shock. After a 

number of pairings, the CS alone evokes responses such as freezing, increase heart rate, 

and the potentiation of the startle reflex (Davis et al, 1993; LeDoux, 1995). Lesions of
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the lateral amygdala affected the expression of conditioned fear implicating the amygdala 

as the sole site of long-term storage (LeDoux et al, 1990; Martin et al, 2000). There has 

been some scepticism over these results since the lateral/basolateral amygdala does not 

seem to be involved in cognitive/explicit aspects of conditioned fear (Cahill et al, 1999).

1.2 Hippocampus

The hippocampus is a C-shaped structure (Figure 1.1) in the coronal section and is also 

known as the Ammon’s horn (cornu ammonis) (Amaral and Witter, 1989). The 

hippocampal formation is made up of different cortical regions: dentate gyi*us, the 

hippocampal proper and the subicular complex (made up of subiculum, presubiculum and 

parasubiculum) (Amaral and Witter, 1989). Transverse (coronal) section reveals that the 

hippocampus proper has three areas or sectors: CAl, CA2 and CA3 (CA) stands for 

cornu ammonis. Three layers are identified in the hippocampal cortex (Andersen et al, 

1971):

(i) The molecular layer, consisting of interacting axons and dendrites. This synaptic 

layer is continuous with the molecular layers of the dentate gyrus and neocortex.

(ii) The pyi amidal layer which is made up of large neurons, many of them pyi amidal 

in shape. These pyramidal cells are the principal cells of the hippocampus. The 

dendrites of these principal cells extend into the molecular layer. Schaffer 

collaterals are branches, which pass through the polymorphic and pyramidal cell 

layers to synapse in the molecular layer with the dendrites of other pyramidal 

neurons.
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(iii) The polymorphic layer contains axons, dendrites and intemeurons.

The dentate gyrus (DG) also has three layers. However, in the DG the pyramidal cells are 

replaced by a gi'anule cell layer of small neurons, which are the principal cells in the 

region.

The trisynaptic pathway, a basic circuitry of the hippocampal formation, is series of 

connections from superficial entorhinal cortex to the hippocampus. These connections are 

excitatory, largely unidirectional, and dense in some planes of section oriented 

perpendicular to the long axis of the hippocampus (Andersen et al,  1971, Witter et al, 

2000). The trisynaptic pathway is comprised of entorhinal layer II stellate neuronal 

projections (the perforant pathway) to the apical dendrites of the dentate granule cells. 

Efferent fibres from the dentate gyrus known as mossy fibres (ME) project into area CA3 

where they terminate on the proximal apical dendrites of pyramidal neurons (Figure 1.1). 

Axons on the CA3 pyramidal cells leave the hippocampus via the alveus and collaterals 

(Schaffer collaterals) and ascend to cross the cell layer and terminate predominantly on 

the proximal apical dendrites (stratum radiatum) of CAl (Amaral and Witter, 1989; 

Witter et al, 2000). A fourth synapse occurs in the subiculum as a result of CAl 

pyramids projection onto subicular cells (Amaral et al, 1991). Subiculum is one of the 

principal outputs of the hippocampal region with projections to hypothalamus, 

mammillary nucleus, nucleus accumbens, septum and the parahippocampal cortices 

(Naber and Witter, 1998). The output of the subiculum can take several paths, with 

respect to cortical connections (Witter et al, 2000). One output of the subiculum is into 

the deep layers of entorhinal cortex via the alveus. Ascending collaterals of deep layer
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neurons onto the superficial layer of neurons completes a long loop from the entorhinal 

cortex through the hippocampus. Another pathway is into the adjacent presubiculum. The 

coimection between the presubiculum, parasubiculum and entorhinal cortex complete the 

entorhinal-hippocampal circuit with a different set of intervening connections. A key 

anatomical feature of area CA3 is that its pyramidal cells receive the majority of their 

inputs from other CA3 pyramidal cells (Amaral and Witter, 1989; Amaral et al, 1990). 

The resulting recurrent network has been extensively explored as a plastic attractor model 

of the way that the hippocampus stores episodic memory (McNaughton and Morris, 1987; 

Levy, 1996; Rolls, 1996, 2000). Other anatomical studies indicated that other pathways 

parallel to the existing system (the trisynapic loop) and these by-pass the dentate gyrus 

relaying the information directly from the entorhinal cortex to CAl or CA3 (Amaral and 

Witter, 1989).

All the major pathways within the hippocampal formation (perforant pathway, mossy 

fibre and Schaffer collaterals) use the excitatory amino acid glutamate as 

neurotransmitters (Malenka and Nicoll, 1999). Other neurotransmitters have also been 

shown to play a role in the hippocampal signalling; these neurotransmitters include, 

dopamine (Huang and Kandel, 1995; Gurden et al, 1999), 5-HT (Kulla and Manahan- 

Vaughan, 2002) and acetylcholine (Anagnostaras et al, 2003; Colgin et al,  2003). p- 

adrenergic agonist has also been shown to play role in hippocampal signalling (Huang 

and Kandel, 1996; Lin et al, 2003). The excitatory glutamate neurotransmitters act on 

ionotropic as well as metabotropic glutamate receptors located both pre- and
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postsynaptically. The abundance of these receptors in the tlnee regions of the 

hippocampus will be discussed in detail in the next section.

1.3 Amino acid receptors

Ionotropic glutamate receptors are ligand-gated ion channels, that mediate rapid 

excitatory neurotransmission in the central nervous system (CNS) and they include N- 

methyl-D-aspartate (NMDA), y-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 

(AMP A) and kainate (KA) types of receptor, named according to their prototypical 

agonists. These receptors play a role in synaptic plasticity (Sommer and Seeburg, 1992; 

Bliss and Collingridge, 1993; Settler and Mulle, 1995).

Four closely related subunits of AMPA-selective ionotropic glutamate receptors have 

been identified using molecular cloning and are termed GluRl, GluR2, GluR3 and GluR4 

(Sommer et al, 1991; Gasic and Hollmann, 1992; Hollmann and Heineman, 1994; 

Wenthold et al, 1996) and this gives rise to two splice variants, flip and flop (Sommer et 

al, 1990). Each contain 850-950 amino acids and share some 70-80% similarity. In the 

CAl, AMPARs are composed mainly of GluRl-GluR2 and GluR2-GluR3 heteromers 

(Wenthold et al,  1996). AMPARs have been shown to contribute to excitatory synaptic 

transmission in a population of hippocampal and neocortical nonpyi’amidal, and spinal 

dorsal horn neuions (McBain and Dingledine, 1993; Itazawa et al, 1997) and are 

assumed to contribute to long-term modification of synapses and neurological disorders 

(Pellegrini-Giampietro et al,  1997, Tanaka et a l,  2000).
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KA receptors (KAR) consist of various combinations of GluR2/6/7 and KAl/2 subunits 

(Bettler et al, 1990, 1995; Egebjerg et al, 1991; Herb et al, 1992; Patemain et al,

2000). KAR are concentrated in a few specific areas of the CNS, generally 

complementary to the distribution of NMD A and AMP A receptors (Wisden and Seeburg, 

1993; Porter et al, 1997). Radioligand binding studies suggested that kainate binding 

sites are highly localised on the stratum lucidum in the CA3 region, where the MF 

terminates (Monaghan and Cotman, 1982). In the hippocampus, CA3 pyramidal cells 

were stained more densely than CAl pyramidal cells with high levels of GluR6/7 

subunits (Petralia et al, 1996). In situ hybridisation studies revealed that transcripts of 

most KAR subunits are expressed in the presynaptic dentate gyrus and postsynaptic CA3 

pyramidal cells (Wisden and Seeburg, 1993), it seems likely that the MF-CA3 synapse 

expresses KARs with subunit composition containing at least GluR6 or GluR7 at both 

pre- and postsynaptic sites. One unique feature of presynaptic KARs is that their 

activation modulates transmitter release bi-directionally; weak activation enhances 

glutamate release, while strong activation leads to inhibition (Kamiya, 2002). This 

mechanism of action might be due to their ionotropic action resulting in axonal 

depolarisation, which in turn regulates several voltage dependent channels involved in 

action potential-dependent Câ "̂  entry processes.

Four* subunits of NMD A ionotropic glutamate receptors have been identified are: NRl, 

NR2A-D, NR3A-B (Seeburg, 1993; Nakanishi and Masu, 1994, Riedel et al, 2003). The 

NR2 subunits are only 20% homologous to N R l. It is thought that every NMDA receptor
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contains both NRl and NR2 subunits (Seeburg, 1993; Nakanishi and Masu, 1994). 

Subunits are composed of a pentameric structure based on NRl combining with NR2A-D 

or NR3A-B subunits (Ciabana et al, 1995; Hollmann and Heineman, 1994; Matsuda et 

u/.,2002).

NMDA receptors differ from AMP A and KA receptors because the application of agonist 

when the cell is polarised does not activate the integral ion channel due to inhibition of 

the receptor by physiological extracellular concentrations of Mĝ "*". The Mĝ "̂  ion blocks 

the chaimel. When the membrane is depolarised, the Mĝ "̂  block is removed and the 

channel can open when agonist is present. The open channel allows influx of Na"̂  and 

Câ "̂  with a 10:1 ratio of permeabilities of Câ "̂ : Na"̂  (Riedel et al, 2003). The NMDA 

receptor is a novel combination of a ligand-activated and voltage-operated channel, 

requiring both glutamate and depolarisation for activity. All synapses in the CAl region 

of the hippocampus have been shown to contain NMDARs (Watanabe et al, 1998; Racca 

et al, 2000). All thi'ee subunits of NMDARs were also detected in the dentate gyrus as 

well as neurophil layers of CA3 (Watanabe et al, 1998). The NRl and NR2 subunits of 

NMDAR were found in low levels in the stratum lucidum, a mossy fibre-recipient layer 

of the CA3 subfield (Watanabe et al, 1998) and hence it was concluded that the selective 

scarcity of NMDARs in this region reflects different synaptic targeting mechanisms 

(Watanabe et al, 1998). Distribution of NMDA receptors at the Schaffer collateral 

synapse in the CAl area differs from that of the AMPA receptors with every Shaffer 

collateral synapse onto the CAl pyramidal spines containing NMDA receptors (Racca et 

al, 2000). AMPA receptors only make up 75-85% of these synapses (Takumi et al.
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1999; Racca et al, 2000, Nusser 2000). AMPA and NMDA are co-localised in only 75- 

85% of these synapses (Takumi et al, 1999; Racca et al, 2000).

Genetic studies have indicated the existence of seven different metabotropic receptors 

designated mGluRl-8 (Riedel et al, 2003). There are three categories of mGluR 

members based on their amino acid sequence homology, pharmacological profiles and 

second messenger coupling. Group I mGluRs (mGluRl and 5 and their splice variants) 

stimulate the hydrolysis of inositol-bis-phosphate to inositol-1,4,5-trisphosphate (IP3), 

this is achieved via activation of phospholipase C (PTC). PLC also activates 

diacylglycerol which co-activates protein kinase C while IP3 promotes Ca^  ̂release from 

internal stores (Riedel et al, 2003). Group II (mGluR4, 6-8, including splice variants) 

inhibit adenylate cyclase hence reducing intracellular levels of cAMP. Group III regulate 

glutamate release due to their autoreceptor function. Hippocampal mGluRs are 

particularly important in mediating memory consolidation. In fear conditioning studies, 

mGluR5 expression was enhanced in the CA3 after one day post-training, but this 

enhancement diminish at ten days and was replace by an overexpression of mGluR5 that 

was strong in the CAl and somewhat weaker in the dentate gyrus (Casabona et al, 1997; 

Riedel et al, 2000). These data indicates the temporal involvement of hippocampus in 

fear conditioning and a strong hint at an early involvement of CA3 followed by a later 

prolong activation of CAl (Riedel et al, 1993).
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1.4 Synaptic plasticity

1.4.1 General principles

Synaptic plasticity is an activity dependent change in the efficiency of synaptic 

transmission which requires:

(i) Pre and/or postsynaptic activity

(ii) Biochemical and/or morphological changes in dendritic spines (Halpain, 2000) 

These requirements (i and ii) result in changes in synaptic strength. Synaptic plasticity 

differs when comparing associative and non-associative plasticity (section 1.4.3). There is 

also a difference in plasticity with respect to protein synthesis dependent versus 

independent form (section 1.4.7). Synaptic plasticity is thought to underlie higher 

cognitive functions such as learning and memory. This idea was first refined by Hebb 

(1949). Hebb proposed that when two interconnected neurons fire at the same time, the 

synapse between them became stronger and remain so for a considerable time afterwards.

Many different forms of synaptic plasticity exist and they vary in a number of respects:

(i) Duration: from milliseconds to days, months or years

(ii) Location in the brain

(iii) Induction mechanism (NMDA receptor-dependent/independent)

(iv) Expression (maintenance) mechanisms (pre/postsynaptic)

1 2
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Long-tenu potentiation (LTP) is a form of synaptic plasticity that is thought to underlie 

some forms of learning and memory. It was first described by Bliss and Lomo (1973) 

when they demonstrated that application of a relatively brief burst of high frequency 

stimulation (HFS) resulted in long lasting enhancement of synaptic responses in the 

manunalian hippocampus.

The phenomenon of LTP has been shown in different parts of the brain. LTP was shown 

in kittens’ visual striate cortex synapses (Komatsu et al, 1981) as well as in synapses 

formed by the brachium of the interior colliculus in the medial genticultae nucleus of 

auditory system (Geinen and Weinberger, 1983). Racine et al (1983) also showed LTP in 

the synapses in the limbic system. LTP-like mechanisms were also involved in amygdala 

fear conditioning and learning-related cortical plasticity (Martin et a l,  2000). Hence, LTP 

is not restricted to the hippocampus. However, hippocampal pathways show significantly 

larger LTP effects than do the non-hippocampal pathways (Beimett, 2000).

LTP was initially associated with learning by Morris et al (1986) through chronic 

intraventicular infusion of the NMDA antagonist, aminophosphonovaleric acid (AP5) 

into rats. This caused a selective impairment of place learning, a process thought to be 

dependent on the hippocampus (O’Keefe and Conway, 1978). However, it was not 

possible to test whether the NMDA receptor antagonist might be blocking some part of 

the motor pathway that is uniquely utilised in learning process. Other studies attempted to 

associate LTP with learning involved stimulation of the pyriform pathway to the dentate 

gyms in vivo (McNaughton et al, 1986; Castro et al,  1989). These studies concluded that

13
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spatial memory involves at least temporary storage in the fascia dentate through the 

mechanism of LTP,

Expression of LTP results in the persistent increase (lasting hours, days or weeks) in the 

size of the synaptic component of the evoked response recorded from individual cells or 

from population of neurons. LTP is induced in a number of ways, most conveniently by 

delivering a tetanus (typically a train of 50-100 stimuli at 100 Hz or more) (Bliss and 

Collingridge, 1993). Modest stimuli which fall within certain critical ranges can also 

induce LTP examples include theta-burst stimulation (Bliss and Collingridge, 1993).

Long-term depression (LTD) is another form of synaptic plasticity, which results in a 

lasting decrease in synaptic effectiveness. It is made up of two types:

(i) Heterosynaptic LTD, which can occur at synapses that are inactive, normally 

during high-frequency stimulation of a converging synaptic input.

(ii) Homosynaptic LTD, which can occur at synapses that are activated, normally 

at low frequencies (Bear and Abraham, 1996).

Homosynaptic LTD requires NMDA receptor change in post-synaptic Ca^  ̂(Holland and 

Wagner, 1998; Connor et a l,  1999) in CAl region, while the heterosynaptic LTD has 

been observed in the DG (Christie and Abraham, 1992; Christie et al, 1995).

14
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1.4.2 Silent Synapses

The concept of ‘silent synapse’ in the CNS has been around for a few years. Studies by 

Dimitri Kullmann (Kullmann, 1994) inferred the existence of synapses without AMPA 

receptors via statistical analysis. This was followed by direct evidence, which showed 

that the failure rates for synaptic transmission was greater at hyperpolarised potentials 

(pure AMPA EPSCs, excitatory postsynaptic currents) than at depolarised potentials 

(mixed AMPA and NMDA EPSCs) (Liao et al, 1995). Liao and co-workers together 

with other groups went on to show that LTP was associated with the apparent activation 

of previously silent AMPA synapses via insertion of these receptors into the membrane 

(Liao et al, 2001; Lu et al, 2001). Studies have shown that early on in the development 

of the CAl (Durand et al, 1996) (e.g. postnatal day 1-2), synapses are mainly silent (i.e. 

lack AMPARs) at resting potentials, but possess functional NMDARs. It seems that LTP- 

inducing stimuli can ‘switch on’ these immature synapses so that synaptic transmission 

can occur at resting membrane potentials. Hence, the concept of silent synapses provides 

an important impetus for relating AMPA receptor trafficking mechanisms to the 

expression of LTP as well as spine maturation. In fact, studies have shown that 

maintenance of spine morphology requires AMPARs (McKinney et a l,  1999).

15
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1.4.3 Properties of hippocampal LTP

CAl LTP is characterised by three basic properties (Malenka and Nicoll, 1999);

(i) Cooperativity— this describes the existence of an intensity tlireshold for induction, 

hence LTP cannot be triggered by a ‘weak’ tetani which activates relatively few 

afferents (McNaughton et al, 1978)

(ii) Input specificity— LTP specific to those pathways which receive conditioning stimuli 

(Malenka, 1991)

(iii) Associativity— pairing a weak stimulus with strong input induces LTP in the weak 

input (Malenka, 1991)

The three properties can be explained on the assumption that potentiation of the synapse

is only achievable when it is active at the time when the region of dendrite on which it

terminates is sufficiently depolarised.

1.4.4 LTP induction at the Schaffer collateral/CAl pyramidal cell synapses

The most intensely studied form of LTP is the NMDA receptor dependent LTP in the 

CAl region of the hippocampus (Malenka and Nicoll, 1999, Martin et a/. ,2000). LTP 

induction requires the activation of postsynaptic excitatory amino acid receptors (NMDA 

and AMPA receptors which are co-localised) by glutamate neurotransmitters. Sufficient 

activation of AMPA receptors causes depolarisation of the postsynapse, which alleviates

16
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the voltage-dependent Mg block of NMDA receptors, allowing influx of Ca^ ,̂ which 

causes the biochemical cascade leading to LTP. Depolarisation of AMPA receptors is 

limited due to strong inhibitory influences provided by simultaneously released gama 

aminobutyric acid (GABA) acting on postsynaptic G A B A a and GABAg receptors. 

Therefore NMDA can only be activated under strong postsynaptic depolarisation (tetanus 

or pairing) or when inhibition has fatigued due to GABA acting on inhibitory GABAg 

autoreceptors.

The involvement of several amino acid receptor subtypes in the induction of LTP has 

been determined largely by the use of antagonists (Collingridge et al,  1983). Blockage of 

LTP induction by NMDA receptor antagonist APV (AP5; D-2-amino-5- 

phosphonopentanoate) indicates the requirement of NMDA receptors for LTP. DGG (y- 

D-glutamylglycine) is a mixed AMPA and NMDA receptors antagonist which also 

blocks LTP.

GABAb autoreceptors regulate induction of LTP. Application of GABAg antagonist 

(CGP35348) has been shown to block postsynaptic GABAg-mediated IPSC (at lOOpM 

concentration) and at ImM, it blocks presynaptic GABAg-mediated PPD (paired-pulse 

depression) and enhances primed-burst stimulation. ImM CGP35348 blocks induction of 

primed-burst LTP (Davies et al, 1991).

There also exists an NMDA receptor independent fonn of LTP that has been studied in 

the CAl region of the hippocampus. The NMDA receptor independent foim of LTP can

17
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be achieved via bath application of the channel blocker tetraethylanunonium (TEA) 

(Aniksztejn and Ben-Ari, 1991) or very high frequency stimulation (Grover and Teyler,

1990). Both forms of LTP are dependent on postsynaptic Câ '*' influx. Application of 

nifedipine resulted in the blockage of both NMDA receptor dependent (Grover and 

Teyler, 1990) and independent (Huang and Kandel, 1995; Powell et a l,  1994) forms of 

LTP in CAl. NMDA dependent form of LTP results in an increase in the quantal AMPA 

current, together with an increase in the quantal content of this current (Strieker et al

1996). The NMDA independent form of LTP results in no change in the quantal current, 

the increase in synaptic strength is due to an increase in the quantal content of the AMPA 

current (Sticker et al, 1999).

Involvement of mGluR in the induction of LTP has been controversial especially in the 

use of selective mGluR antagonist, a-methyl-4-carboxyphenlglycine (MCPG). MCPG 

was shown to block the induction of CAl and mossy fibre LTP (Bashir et al, 1993; 

Breakwell et al, 1996; Bortolotto and Collingridge, 1999). However, some groups were 

unable to reproduce these results in the CAl (Selig et al, 1995; Manzoni et al,  1994) or 

mossy fibre (Manzoni et al, 1994; Hsia et al, 1995). A ‘priming’ phenomenon was used 

to explain the discrepancy of the results (Bortolotto et al, 1994): mGluRs were not 

involved in the induction of LTP if the hippocampal slice had been ‘primed’. Slices could 

show mGluR-dependent LTP only when they are not ‘primed’ (i.e. naïve). Primed slices 

could be rendered naïve by repeated low-frequency stimulation. This scenario indicates 

that mGluRs act as molecular switches, which once thrown can result in mGluR- 

independent LTP. hi addition, studies have shown that mGluR priming of LTP results

18
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from biochemical cascades triggered by activation of phospholipase C coupled to group I 

mGluRs in CAl hippocampal slices (Cohen and Abraliam, 1996; Cohen et al, 1998).

1.4.5 Role of in the induction of LTP

Câ "̂  plays an important role in the induction of LTP. Filling of CAl neurons with 

calcium chelator EGTA blocked the induction of LTP (Lynch, 1983). Collingiidge and 

co-workers (Collingridge et al, 1983) also showed that the blockade of NMDA receptors 

with D-APV blocked the induction of LTP and therefore concluded that calcium influx 

required for the induction of LTP may enter via the NMDA receptor channel. There is 

considerable evidence that the release of Câ "̂  from internal stores is also required for the 

induction of LTP (Harvey and Collingridge, 1992; Matias et al, 2002). Indeed, synaptic 

activation of NMDA receptors causes the release of calcium from internal stores, ‘trigger’ 

Ca^  ̂entering via NMDA channel causes the subsequent release of calcium from internal 

stores (Alford et al,  1993). Since it is assumed that NMDA receptors are located on 

dendritic spines (a specialise structure in a mature brain), it is believed that spines may 

act to localise the Ca^’*' signal (Connor et a l,  1994; Halpain, 2000). Diffusion of calcium 

is restricted by the spines (Connor et al,  1994; Korkotiaii and Segal, 2000) but it is not 

known if this occurs in LTP. However, LTP has been shown to cause increases in spine 

size as well as spine numbers (Yuste and Bonhoeffer, 2001).
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1.4.6 Mossy fibre LTP (MF LTP)

Mossy fibre (MF) LTP is NMDA receptor independent. MF LTP may not be associative 

(Zalutsky and Nicoll, 1990) nor show cooperativity. MF LTP may involve mGlu 

receptors (metabotropic glutamate receptors, G-protein coupled receptors). This has been 

highly controversial with evidence for (Bashir et al,  1993; Conquet et a l,  1994) and 

against (Hsia et al, 1995). The opioid peptide dynorphin has been shown to play an 

important inhibitory role in the induction of MF LTP via kappa 1 receptors in the guinea 

pig hippocampus (Salin et al, 1995). Studies have shown a presynaptic mechanism for 

induction via Ca^”̂ influx through P- or N-type Ca^  ̂channels (Castillo et al, 1994). This 

causes an enhancement of transmitter release; resulting in a presynaptic potentiation of 

synaptic transmission via a cAMP-dependent PKA-mediated mechanism (Weisskopf et 

al, 1994).

1.4.7 Temporal phases of LTP

Research suggests that there are three distinct temporal phases of LTP (Roberson et al, 

1996b). These include LTPl (Early LTP, E-LTP) which lasts for <3h duration and LTP2 

(Intermediate LTP, I-LTP), which last 1-6 hours after the initial induction (Morris, 1996). 

LTP3 (late-LTP) is more stable and lasts for up to 8 hours (Frey et al, 1993) in CAl 

region of hippocampal slices and for days in the intact animal (Abraham et al,  1993).
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E-LTP can be produced by a single train of presynaptic action potentials and is protein 

synthesis independent (Bliss and Collingridge, 1993). It results from covalent 

modifications of pre-existing proteins mediated by the c AMP-dependent protein kinase 

(PKA) in MF/CA3 synapses (Weisskopf et ah, 1994). In the CAl, E-LTP depends on 

Ca^VCalmodulin-dependent protein kinase (CaMKII) (Malinow et al, 1989; Ito et al, 

1991; Huang and Kandel, 1994; Liu et al, 1999), protein kinase C (PKC) (Akers et al, 

1986; Klan et al, 1991) and tyrosine kinases (O’Dell et al, 1991). Blitzer et al (1995) 

suggested that the E-LTP in CAl region also involves the cAMP signalling pathway 

which results in PKA activation. Apart from receptor phosphorylation, PKA also acts to 

gate LTP by regulating the activity of phoshoprotein phosphatases.

LTP2 is induced by multiple trains and is suppressed by calcineurin in the CAl region 

and like E-LTP is gene transcription independent but unlike E-LTP is dependent on 

protein synthesis (Winder et al, 1998). Calcineurin is a calcium-sensitive 

serine/threonine phosphatase that is present at high concentrations in the hippocampus 

and is enriched at the synapses (Kuno et al, 1992). Activated calcineurin can act on 

protein substi'ates both directly or indirectly and hence regulate specific cellular functions 

by dephosphorylating target proteins or modulating an even larger variety of substrates 

via dephosphorylating inhibitor 1 (I-l). For example, the suppression of phosphatase 

activity by PKA during LTP2 via phosphorylation of I-l, may simply act to allow a more 

robust utilisation of mechanism recruited for E-LTP. Activated I-l causes 

dephosphorylation of protein phosphatases 1 (PPl), a suppression which requires a
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stronger stimulus than the one 100 Hz train necessary to produce E-LTP (Winder et al, 

1998).

L-LTP requires repeated trains, activation of PKA and synthesis of new proteins and 

RNA (Frey et al, 1988; Frey et al, 1993; Huang and Kandel, 1994). The late phases of 

LTP in MF and Schaffer collateral pathways are similar in outline (Huang et al, 1994). 

Both pathways use a cAMP-mediated mechanism and are dependent on new RNA and 

protein synthesis. Use of protein synthesis inhibitor, anisomycin, and mRNA synthesis 

inhibitor, actinomycin, has indicated that the proteins necessary for the maintenance of 

LTP over 6 hours is synthesised in the DG from pre-existing mRNA without the 

involvement of protein in the cell bodies of the afferent fibres (Otani and Abraham,

1989). The synthesis of these proteins was completed within 15 minutes of tétanisation 

(Otani et al, 1989). The group concluded that there might exist two phases of LTP, one 

short phase independent of new protein synthesis and a later phase which is dependent on 

synthesis of proteins. Other studies have shown that shown the involvement of PKA in L- 

LTP in CAl region (Frey et al, 1993).

1.5 Protein Kinases

Protein kinases are enzymes that covalently attach phosphate groups to the side chain of 

serine, threonine and tyiosine, other modification of cellular function include 

glycosylation (attachment of a sugar unit such as glycan) and ubiquitinoylation (covalent 

addition of ubiquitin residues to proteins). They are attractive candidates for role in LTP,
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due to the fact that phosphorylation represents an effective but reversible means for 

modulating protein function. Another reason is that many protein kinases are regulated 

by second messengers.

Kinases which have been shown to play a role in NMDA-dependent LTP include non

receptor tyrosine kinases, protein kinase C (PKC), mitogen activated protein kinases 

(MAPK), calcium-calmodulin dependent protein kinase II (CaMKII), and cAMP- 

dependent protein kinase (PKA) (Roberson et al, 1996a).

1.5.1 Non-receptor tyrosine kinases and LTP

Two families of neuronal protein tyrosine kinases (PTK) have been described (Cantley et 

u/., 1991): receptor and non-receptor PTKs. The receptor PTKs are single transmembrane 

protein with an intracellular region which often contains more than one copy of the 

catalytic domain. These are activated by signalling growth factors (Schlessinger and 

Ullrich, 1992), which bind to the receptor in the extracellular domain. Non-receptor PTKs 

are intracellular proteins with one catalytic domain, which is normally located neai* the C- 

terminus (Girault et al 1999).

The best characterised members of non-receptor PTKs are the Src-related PTKs. Src is 

the lead member of a family of PTKs with ten members, six of which are located in the 

brain (Src, Pyk2, FAK, Yes, Lyn, Fyn and Lck) (Ali and Salter, 2001). The primary 

sequence similarity between PTKs lies in;
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(i) The catalytic domain— also referred to as the Src homology 1 (SHI) domain. This 

domain can be divided into 11 sub-domains that are shared by all the PTKs (Avraham 

et al., 2000)

(ii) The Src homology 2 (SH2) domain— capable of high affinity binding to 

phosphotyrosiiie-containing peptide sequences that promote protein-protein 

interaction.

(iii) The SH3— binds proline-rich peptide sequence and also promotes protein-protein 

interaction.

Many neuronal proteins have been identified as the substrates of PTKs, an example of 

which are glutamate receptors (Moss et al, 1993). The use of PTK inhibitors such as 

lavendustin A and genistein have implicated these kinases in LTP induction. O’Dell et 

a/., (1991) showed that the application of these inhibitors blocked the induction of LTP. 

The use of transgenic mice was employed to study further the involvement of particular 

PTKs in LTP. Fyn-knockout mice showed impairment of both LTP (although strong 

stimulation resulted in LTP) and spatial learning (water maze) (Grant et al, 1992; Kojima 

et al, 1997). However, fyn knockouts also showed an abnormal hippocampal homology, 

thus complicating the interpretation of the analysis.

Focal adhesion kinase (FAK) and Pyk2, like fyn are also a family of non-receptor PTKs 

with molecular mass between 110-125KDa. This sub-family has a closely related overall 

structure, which will be discussed in Chapter 3. Two spliced isoforms of Pyk2 have been 

identified and these are characterised by the presence or absence of an exon that codes for
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42 amino acids between the two pro line rich sequences of the C-terminal region (Figure 

1.2). The unspliced form of Pyk2 is predominant in the brain.

1.5.2 Protein Kinase C

Ca^'^/phospholipid-dependent protein kinase or PKC has been implicated in the molecular 

mechanisms of brain development, synaptic plasticity, epilepsy, ischemia and neuronal 

cell death (Tanaka and Nishizuka, 1994). PKC is a multigene family of at least ten 

isoforms, nine of which are present in the brain (a, pi, pll, y, 5, e, q, Ç i/X). Nishizuka 

(1988) has divided the PKC isoform family into three groups:

(i) Conventional— a, pi, pil and y which are activated by both the lipid second 

messenger, diacylglycerol (DAG) and Ca^^

(ii) Novel— 5, e, and q which are activated by DAG, but not Ca^^

(iii) Atypical— and i/X which are activated by neither DAG nor Ca^  ̂but by an 

alternative set of lipid second messengers, including arachidonic acid (Nakanish and 

Exton, 1992).

PKC was the first kinase to be implicated in LTP (Akers et al, 1986) (Figure 1.4). Use of 

PKC inliibitors resulted in blockage of the induction of LTP; in most studies the 

inhibitors had no affect on short-term potentiation (STP). This was first suggested by 

using the inhibitory peptides PKC( 19-31) applied directly into the post-synaptic neuron 

(Malinow et al, 1989; Malenka et al, 1989). Use ofPKCy knockout mice has implicated 

PKCy in LTP (Abeliovich et al, 1993). The knockout mice displayed no LTP (or indeed
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STP) in response to tetanus, therefore the PKCy isoform was suggested to have a 

regulatory role in LTP expression. These studies are complicated by the fact that other 

PKC isoforms may have compensated for loss of PKCy. However, in behavioural studies, 

these mice were shown to have mild memory deficits in contextual learning tasks 

(Abeliovich a/., 1993).

Recent studies have discovered the role of other PKC isoforms in LTP. Studies of the 

PKC isoform, PKM^, in the CAl region of the hippocampus has implicated the enzyme 

in both the initial induction and the sustained maintenance phases of LTP (Klann et al., 

1993; Sacktor et al,  1993). Autonomous activation of PKC resulting from persistent 

activation is known to occur during E-LTP (Roberson et al, 1996a). The best 

chai'acterised mechanism for obtaining autonomous activation of PKC is via proteolytic 

activation (Inoue et a l,  1977). Proteolytic activation of PKC results in cleavage at 

specific sites between the regulatory domain and catalytic domain (Figure 1.4). This 

results in a 45-50kDa catalytic fragment, known as PKM (an atypical PKC).

1.5.3 Mitogen-activated protein kinases (MARK)

MARK is a prototype for a family of signalling cascades that share the motif of three 

serially linked kinases regulating each other by sequential phosphorylation. These kinases 

include MAP kinase kinase kinases (MAPKKK, Raf-1 and B-Raf) which activate the 

second kinase, a MAP kinase kinase (MAPKK, MEK), which then activates MARK.
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MAPKs are proline-directed serine\threonine kinases of which p44 MAPK (also known 

as extracellular-signal regulated kinase 1, ERKl) and p42 MAPK (ERK2) isofonns are 

the best characterised. These isofonns act as critical transducers of growth factors 

signalling to the nucleus in mammalian cells. MAPKs are abundantly expressed in the 

neurons of mature central nervous system and thus raising the question of the function of 

these prototype molecular regulators of cell division and differentiation in non-dividing, 

terminally differentiated neurons (Fiore et al, 1993).

During the regulation of cell proliferation ERKl/2 are activated via the ubiquitous Raf-1 

pathway (Figure 4.4). This pathway is activated by Ras, which is stimulated by growth 

factor tyrosine kinases, which act via the adaptor protein, Grb2 and Sos. The Grb2 and 

Sos pathways are also stimulated by PKC, which interacts with either Ras or Raf-1. 

Activated Raf-1 causes the activation of MEK and consequently ERKs. MAPKactivation 

can occur independent of PKC (Ebinu et al, 1998) via the second messenger DAG, 

which can stimulate a family of phorbal ester-binding Ras/Rap guanine nucleotide 

exchange factor (GEFs) resulting in elevated Ras and Rap activity. The Ras/Raf-1 

pathway is inhibited by PKA via inhibition of Raf-1 (Sweatt, 2001). However, PKA can 

also activate MAPK via the Rap 1/B-Raf pathway. MAPK can also be activated by cAMP 

independently of PKA via c AMP-responsive GEF (de Rooij et al,  1998). Hence the 

effect of increased cAMP levels on MAPK activity is hard to predict, and may depend on 

which of these signalling intermediates are present in the cell.
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Other effectors of MAPK activity include Ca^’’’, which enters the cytosol via voltage- 

gated calcium channels (VGCC) or NMD A receptors. This increase in intracellular Ca^  ̂

activates Ras via Sos and Grb2 which in turn activates MEK/MAPK pathway 

(Mazzucchelli and Brambilla, 2000). Intracellular increases in Câ "̂  as well as PKC 

activation have also been shown to cause the activation of Pyk2 that then causes the 

modulation of ion channel function (NMDAR) and activation of MAPK signalling 

pathway in PC 12 cells (Lev et al, 1995) (Figure 1.7 and Figure 4.4). A potential link 

between CaMKII and MAPK has been established involving a GTPase activating protein, 

SynGAP. This involves CaMKII activation of MAPK via inhibition of SynGAP’s 

GTPase-regulating activity (Chen et al, 1998) (Figure 1.7).

Behavioural studies have also shown the importance of MAPK activation for memory 

processes. Contextual fear conditioning results in the activation of MAPK in the 

hippocampus (Sweatt, 2001). Application of the NMDA receptor antagonist, MK801, 

before training of the animals resulted in attenuation of learning and MAPK activation 

(following assaying of the hippocampus 1 hour after training) and hence indicated a 

necessity for NMDA receptor activation for learning associated MAPK activation 

(Sweatt, 2001). Inhibition of MEK, and hence MAPK, also reduces the performance of 

rats in spatial learning task (Blum et al, 1999; Selcher et al, 1999) consistent with this 

kinase cascade playing a critical role in learning-related plasticity in the hippocampus. 

However, it has been suggested that MAPK activation is not important for the expression 

of MF LTP (Kanterewicz et al, 2000).
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Metabotropic glutamate receptor activation as well as activation of muscarinic 

acetylcholine activation and dopamine (DA) receptors resulted in the activation of 

hippocampal MAPK (Roberson et al, 1999). This MAPK activation, mediated by 

metabotropic and muscarinic receptors agonists was blocked by PKC inhibitors 

(Roberson et al, 1999). Hence, neuromodulatory receptor agonist studies coupled with 

studies indicating that both PKC and PKA pathways can elicit hippocampal MAPK 

activation suggest that either (or both) PKA and PKC might be utilised to couple synaptic 

stimulation to MAPK activation (Sweatt, 2001).

Evidence suggests that one MAPK isoform in particular, the 42kDa MAPK isoform (p42 

MAPK), might be a component of the biochemical machinery supporting LTP. 

Stimulation of NMDA receptors results in activation of p42 MAPK in hippocampus, 

metabotropic glutamate receptor stimulation also leads to increased p42 MAPK 

activation in cortical cultures (Bading and Greenberg, 1991; Fiore et al,  1993). However, 

p44 MAPK must also be activated, based on the other studies discussed in this section. 

Thus a great deal of evidence supports an important role for MEKs and MAPKs in 

hippocampal synaptic plasticity, at least in the CAl and DG regions.

1.5.4 Ca^" /̂Calmodulin dependent protein kinase II (CaMKII)

CaMKII, a calcium-activated protein kinase, is highly expressed in the brain and emiched 

at synaptic stmctures especially the post-synaptic density (PSD). CaMKII makes up ~2% 

of total protein in the hippocampus and has been shown to be necessary for LTP (Figure
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1.5) due to increases in intracellular calcium (Petitt et al, 1994). Calcium binds to a Câ """- 

binding protein known as calmodulin. Calmodulin is a small protein consisting of a single 

polypeptide chain of about 150 amino acids. Calmodulin binds four Ca^  ̂ions with high 

affinity resulting in a large conformational change to reveal sites that allow it to interact 

with target proteins which include CaMKII.

The CaMKII enzyme, a heteromultimer consists of two types of individual subunits, 10- 

12 of which together form one single CaMKII holoenzyme. These two types of subunits 

are known as a and p (derived from different genes) and can combine in various ratios to 

give active CaMKII molecules. Each single-subunit is made up of an active site and a 

calmodulin binding site (Roberson et al, 1996a).

A variety of techniques have been used to study the role of CaMKII in both LTP 

induction and maintenance, including pharmacological and knockout studies. The use of 

calmodulin inhibitors (calmidazolium, calmodulin binding peptides) (Malenka et al, 

1989) or CaMKII inliibitors such as CaMKIl273-302 (Malinow et al, 1989) resulted in the 

inhibition of the induction of LTP in the CAl region. Mice with targeted deletion of the 

a-isoform of CaMKII had reduced ability to exhibit LTP in the CAl region (Silva et al,

1992) and were unable to perform behavioural tasks (water maze) (Silva et al,  1992). 

Hippocampal slices transfected with vaccina virus, expressed high quantities of CaMKII 

that resulted in occlusion of LTP in the CAl region and the authors concluded that 

CaMKII is both necessary and sufficient to generate LTP (Pettit et al, 1994).
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CaMKII activation results in its autophosphorylation at Thr-286 located within the 

regulatory domain thus converting the enzyme from Ca^^-dependent to a Câ "̂ - 

independent (constitutively active) form (Fukunaga and Miyamoto, 2000). This is known 

to occur during E-LTP, suggesting that CaMKII plays a role in the expression of E-LTP 

in the CAl region (Roberson et al,  1996a). The ability of CaMKII both to phosphorylate 

and enhance the activity of postsynaptic AMPA-type glutamate receptors are two features 

which suggest that CaMKII activity is particularly important for inducing LTP 

(McGlade-McCulloh et a l,  1993; Pettit et al, 1994; Lledo et al, 1995; Barria et al,

1997). Phosphorylation of AMP A receptors via phosphorylation of the GluRl subunit by 

CaMKII during LTP results in an increase in the single-channel conductance of the 

receptor ion channel (Barria et al, 1997). hi addition, CaMKII may be important for 

translocating AMP A receptors to the synapses (Fukunaga and Miyamoto, 2000). Other 

substrates of CaMKII include MAP2 which undergoes phosphorylation during LTP 

induction (Fukmiaga et al, 1995). Functions of MAP2 in LTP induction will be discussed 

later (section 1.12). Induction of LTP in freely moving rats results in a transient increase 

in CaMKII expression in the DG region of the hippocampus (Thomas et al, 1994), 

suggesting a role in LTP maintenance in that region.

It is unclear if CaMKII plays a role in synaptic plasticity in the CA3 region of the 

hippocampus. However, CaMKII is important for NMDAR-dependent LTP in other brain 

regions such as the visual cortex (Gordon et al, 1996).
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1.5.5 Cyclic AMP-dependent protein kinase (PKA) and Adenylate cyclases

Elevation of cAMP is due to the activation of adenylate cyclases. So what are adenylate 

cyclases? They are enzymes, which convert ATP to cAMP and are activated by a variety 

of hormones, neurotransmitters and other regulatory molecules.

Nine mammalian adenylate cyclases isotypes (AC 1-AC9) have been identified 

(Kiiipinski et al, 1989; Bakalyar and Reed, 1990; Feinstein et al,  1991; Gao and 

Gilman, 1991; Katsushika et al, 1992) and each is distributed and regulated uniquely 

(Choi et al, 1993; Iyengar , 1993; Sunahara et al, 1996). The mRNAs of ACl (Xia et al,

1993), AC2 (Furuyama et al,  1993), AC3 (Glatt and Snyder, 1993), AC8 (Cali et al,

1994) and AC9 (Premont et al,, 1996) have all been detected in the mammalian 

hippocampus. AC2 and AC4 have been shown to be localised in the mouse hippocampal 

formation and colocalised with MAP2 (Baker et al, 1999). They have also been 

suggested to play a role in certain fonns of synaptic plasticity (Baker et al,  1999). 

Ca '̂"'-stimulated adenylate cyclases (ACl and AC8) have been shown to play a role in 

synaptic plasticity in the hippocampus (Choi et al, 1993; Weisskopf et al, 1994; Wu et 

al, 1995; Villacres et al, 1998), but other isofonns may also be necessary. Elevation of 

cAMP has been shown to be necessary for MF-LTP (Huang et al, 1994; Weisskopf et 

al, 1994) as well as long lasting LTP (L-LTP) in area CAl (Frey et al, 1993). ACl 

knockout mice failed to induce MF LTP (Villacres et al, 1998), thus indicating the 

importance of ACl in MF LTP.
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Earl Sutherland discovered cAMP, a second messenger, in his studies of glycogen 

metabolism (Sutherland, 1970). Formation of cAMP is a result of metabolism of ATP 

catalysed by adenylate cyclase (refer to Adenylate cyclase section). The main effector of 

cAMP is PKA although may other effectors exist. PKA is a holoenzyme which is a 

heterotetramer comprised of two catalytic units, which have phosphotransferase activity, 

and two regulatory subunits, that have both a cAMP binding activity and an 

autoinliibitory domain which blocks catalytic subunit activity (Figure 1.6). In the absence 

of cAMP, inactive PKA exists as a tetrameric holoenzyme. Upon binding the two 

molecules of cAMP to each regulatory subunit, a conformational change occui’s resulting 

in dissociation of the catalytic subunits and hence expression of enzymatic activity. 

(Figure 1.6) (Roberson et al, 1996a).

Levels of cAMP are elevated immediately after LTP inducing stimuli (Chetkovich et al,

1991) and this production of cAMP occurs downstream of the calcium trigger for LTP, as 

it depends on both extracellular' calcium and activation of NMDA receptors (Chetkovich 

et al, 1991), Calcium activates calmodulin resulting in Ca^Vcalmodulin complex which 

activates the Ca^Vcalmodulin-sensitive adenylate cyclase type 1 (ACl) found in the 

liippocampus (Chetkovich and Sweatt, 1993). Elevation of cAMP immediately after LTP 

induction, results in activation of PKA (Roberson and Sweatt, 1996).

Studies indicated that activity of PKA was not required to support LTP during the initial 

phases of LTP and that PKA inhibitors only interfere with a late phase of LTP (L-LTP), 

which develops after 3-4 hours (Frey et al, 1993; Matthies and Reymann, 1993).
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However, work by Blitzer et al. (1995) suggested that E-LTP in the CAl region involved 

a cAMP signalling pathway which resulted in PKA activation. Thus PKA also acts to 

gate LTP by regulating the activity of phosphoprotein phosphatases. Blitzer et al. (1995) 

suggested that the gating pathway involves the influx of Ca^  ̂via NMDA receptors, Câ "*" 

then binds to calmodulin and the Ca^Vcalmodulin complex activates Ca^Vcalmodulin 

dependent adenylate cyclase which in turn activates PKA. PKA inactivates protein 

phosphatases resulting in an increased response to protein kinase stimulation. Ablation of 

gene targeting of a catalytic subunit isoform or a regulatory subunit isoform of PKA 

produced a selective defect in ME LTP (Huang et al, 1995).

PKA has been linked to changes in gene expression. Transcription of genes is induced by 

PKA which activates a transcription factor which then interacts with the cAMP response 

element (CREs) found upstream of certain genes (Montminy and Bilezikjian, 1987). This 

CRE-binding protein (CREB) is phosphorylated by PKA and the phosphorylated-CREB 

stimulates transcription of downstream genes (Yamamoto et al, 1988). The hypothesis is 

that PKA phosphorylates CREB at the early stages of LTP resulting in a cascade of 

changes in gene expression which eventually produces the L-LTP. Increased 

phosphorylation of CREB occurs during LTP induction in CAl and DG regions (Schulz 

et al, 1999). Studies have shown that ME LTP may be dependent on the phosphorylation 

of CREB by PKA (Kanterwicz et al,  2000). Also, CREB knockout mice have abnormal 

LTP and deficiencies in long-term learning tasks (Bourtchuladze et al,  1994). Hence 

these studies point to a link between PKA and CREB to plasticity in the CA3 region.
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1.6 Microtubufe-associated protein 2

Microtubules (MTs), components of the cytoskeleton, are thought to be essential for 

neurite formation and maintenance (Sanchez et al, 2000). The cytoskeleton is a major 

detenninant of neuronal morphology. The main function of MTs are to provide inner 

scaffolding for the growth of neurites and also act as tracks for transport of organelles 

between neuronal cell bodies and neurite endings. MTs consist of a core cylinder built 

from heterodimers of a and p tubulin monomers (Mandelkow et al, 1995; Desai and 

Mitchison, 1997). Microtubule associated protein 2 (MAP2) binds to tubulin polymers 

and regulates their functions (Sanchez et al, 2000). MAP2 have been shown to play an 

important role in the neurite outgrowth and neuronal plasticity (Diaz-Nido et al, 1990; 

Sheetz et al, 1998; Woolf, 1998).

MAP2 isoforms expressed in neurons are a result of alternative splicing of a pre-mRNA 

transcribed from a single gene (Shafit-Zagardo and Kalcheva, 1998). There are two 

gi'oups of MAP2 isoforms in the mammalian brain:

(i) High molecular weight MAP2 (HMW MAP2), and this includes MAP2a and 

MAP2b with molecular weights of 280 and 270kDa respectively.

(ii) Low molecular weight MAP2 (LMW MAP2), consisting of MAP2c and MAP2d 

with molecular weights of 70 and 75kDa respectively.

LMW MAP2 contains the N- and C- terminal regions of HMW MAP2 linked together 

but lacks the central domain (CD) (Figure 1.8) (Kindler et al, 1990). The presence of the
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pro line-rich region (PRD) just before the tubulin-binding domain in all MAP2 iso forms 

could result in the regulation of the isofonns (Goode et al,  1997; Preuss et al,  1997). A 

unique sequence of 31 amino acids in the N-terminal of MAP2 constitutes the binding 

region of the regulatory subunit RII of the PKA (Obar et al, 1989). The difference 

between a and b isoforms of MAP2 is due to the presence in MAP2a of an additional 

sequence of 83 amino acids (Shafl-Zagardo et al., 1997).

The expression of MAP2 occurs primarily in the nervous system (Schoenfeld and Obar,

1994). HMW MAP2 is specifically expressed in neurons (Cacares et al,  1984; Tucker,

.1990) while LMW MAP2 is present also in glial cells (Rosser et al, 1997, Matsunaga et 

al, 1999). While MAP2b is present all through development of the nervous system, 

MAP2a expression occurs in the adult brain (Sanchez et al, 2000).

The levels of MAP2c protein and mRNA are detectable at early developmental stages, 

while MAP2d protein is detected in rat brain after postnatal day 5, even though its mRNA 

is present all through the various developmental stages (Sanchez et al, 2000). This 

differential expression of MAP2 isoforms may be an indication of the complexity of their 

regulation at both transcriptional and translational levels. HMW MAP2 has been shown 

to be located in neui'onal cell bodies and dendrites where it associates with MT. It has 

also been shown to co-localise with actin in the dendritic spines and postsynaptic 

densities (Cacares et al,  1983, 1984; Langnaese et al, 1996). LMW MAP2 in contrast is 

widely distributed in every neuronal compartment (Albala et al, 1995).
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Several experiments in neuronal cells have implicated MAP2 in neuronal outgrowth and 

polarity (Ferreira et al,  1989). Suppression of MAP2 expression in neuronal cultures 

resulted in no neurite outgrowth (Dinsmore and Solomon, 1991; Cacares et al, 1992). 

Similarly overexpression of MAP2 in cultured non-neuronal cells resulted in outgrowth 

of cytoplasmic elongations similar to neurites (Boucher et al, 1999).

1.7 Activin/l n h ibin

Activin and inliibin belong to the transforming growth factor-p (TGF-P) super-family of 

molecules and activin has been implicated in nerve cell survival and inhibition of 

differentiation in vitro (Hashimoto et al, 1990; Schubert et al, 1990). Both activin and 

inhibin are dimeric proteins which were first isolated from the ovary and were able to 

modulate follicle stimulating hormone (FSH) release from the pituitary in a long loop 

endocrine fashion (Halvorson and Dechemey, 1996; Ling et al, 1986b). Both dimeric 

proteins are sulphydryl-linked comprising two of three distinct inhibin proteins subunits 

(a, pA, pB). While inhibins are heterodimers composed of one a-subunit and one p- 

subimit, resulting in inhibin A (a~pA) or inhibin (a-pB) (Mason et al, 1986), activins are 

dimers made up of any combination of the p-subunits resulting in activin A (PA-pA), 

activin AB (PA-pB) and activin B (pB-pB) (Ling et al,  1986a; Vale et al, 1986). Activin 

produces its effect via binding to a heterotrimeric receptor complex with transmembrane 

serine/threonine kinase activity (Mathews, 1994). The role of activin P-A in LTP 

induction will be discussed in section 7.1.
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1.8 mRNA localisation in Neurons

Neurons are thought to employ three strategies for the activity-dependent regulation of 

protein synthesis and targeting. The first strategy focuses on the translation of proteins in 

the soma from newly transcribed mRNAs e.g. activation of transcription factors such as 

CREB in response to a particular form of synaptic stimulation (Alberini et al, 1994) 

results in increased transcription of specific target genes, followed by translation of the 

corresponding mRNAs. This process is thought to involve the creation of ‘tags’ at the 

activated synapses (Frey and Morris, 1997). These ‘tags’ act to capture the newly 

synthesised proteins, at the synapse that has been potentiated, as they are transported out 

along the dendrites. The second strategy also involves activity-dependent gene 

transcription but involves the transportation of newly transcribed mRNAs to activated 

synapses where they are thought to be translated. This mechanism was recently described 

for Arc (activity-regulated cytoskeleton-associated protein), an immediate early gene 

whose transcription is tightly regulated by synaptic activity (Steward et al, 1998;

Steward and Worely, 2002). The third and final strategy for achieving activity-dependent 

regulation of protein synthesis is via the regulation of mRNA localised at synapses. This 

will be the focus of some of this investigation.

The discovery of synapse-associated polyribosome complexes (SPRCs) sparked an 

interest in RNA localisation in neui'ons. SPRCs are clusters of polyribosomes and 

associated membranous cisterns that are selectively localised beneath postsynaptic sites 

in the dendrites of CNS neurons (Steward et al, 1996). It was suggested that a particular
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subset of mRNA would be localised in dendrites, enabling a localised synthesis of certain 

proteins at postsynaptic sites. In situ hybridisation analysis looked at the features of 

mRNA localisation in the dendrites and the following were ascertained;

(i) The mRNAs in dendrites encode proteins of different functional types and these 

include MAP2, Ai*c, and aCaMKII as well as other proteins of unknown function 

(Steward et al, 1996).

(ii) Different mRNAs ai*e localised in the dendrites of different neuron types e.g. the 

mRNA of MAP2 and aCaMKII are prominent in the dendrites of neurons in the 

cortex and hippocampus.

(iii) Different mRNAs are localised in different domains within the dendrites, with 

mRNA for aCaMKII distributed throughout the dendrites and MAP2 mRNA 

concentrated in proximal dendrites (Steward et al,  1996).

Recent work has established a direct link between local mRNA translation and synaptic 

plasticity. As already mentioned above (section 1.6) the NMDA receptor dependent form 

of LTP results in the elevation of MAP2 mRNA and the corresponding protein.

Ouyang et al (1999), showed that tetanic stimulation of the Schaffer collateral pathway 

in the CAl region of hippocampus results in the increased expression of aCaMKII 

protein in the dendrites via dendritic protein synthesis. Anisomycin was used to block the 

increase, which was detected by both quantitative immunoblot and semi-quantitative 

immunocytochemistry. L.A. Roberts et al (1996) also showed an increase in the levels of 

aCaMKII mRNA following induction of LTP in the CAl neurons in rat hippocampal 

slices maintained in vitro.
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The mechanism by which dendritic mRNAs become transitionally active may involve 

regulated polyadenylation by CPEB (cytoplasmic polyadenylation element binding 

protein) (Wu et al, 1998). Understanding of the role of CPEB in neurons is based on 

work in oocyte maturation. The CPE (cytoplasmic polyadenylation element) is bound by 

CPEB which contains two RNA recognition motifs (RRMs) and a zinc finger- all of 

which are important for CPE-dependent RNA binding. CPEB is activated by a single 

phosphorylation event (Wells et al,  2000) and this phosphorylation in the Xenopus is 

catalysed by serine/threonine kinase, Erg2. A possible mechanism of Erg2 is to recruit or 

stabilise the binding of CPSF (cleavage and polyadenylation specificity factor) which in 

turn recruits poly(A) polymerase to the end of the mRNA (Wells et al,  2000). Hence the 

process of polyadenylation initiates mRNA translation. CPEB is highly expressed in the 

cell bodies and dendritic layers of the hippocampus (Wu et al, 1998). The 3’ untranslated 

region (UTR) of aCaMKII mRNA contains two CPEs. Therefore, CPEB binds this 

3’UTR in a CPE-depedent manner and the 3’UTR can regulate protein translation in a 

CPE dependent manner in a heterologous system (Wu et al, 1998). However, MAP2 

mRNA contains no CPEs, and Erg2 has never been linked to hippocampal plasticity, so 

firm evidence that this pathway is operative in LTP is lacking.

1.9 The mTOR Kinase

Rapamycin is a lipophilic macrolide, isolated from a strain of Streptomyces 

hygrosocopicus which is indigenous to Easter Island (Raught et al,  2001). FKBP12
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(FK506-binding protein) is a small ubiquitous receptor protein to which rapamycin binds 

intracelluiarly in all eukaryotes (Harding et al, 1989). Rapamycin and FKBP12 bind to 

form a “gain of function” complex which then interacts with specificity to the 

evolutionarily conserved mammalian target of rapamycin (mTOR) protein resulting in 

potent inhibition of signalling of targets downstream (Raught et a l,  2001). A single 

mTOR protein has been cloned from several species. mTOR is also known as FRAP 

(FKBP12 and rapamycin associated protein) or RAPT (rapamycin targets) (Raught et al, 

2001). In this thesis, the kinase will be refened to as mTOR.

The TOR protein belongs to a protein family teimed phosphatidylinositiol kinase-related 

kinases (or PIKKs), a large group of signalling molecules (Raught et al,  2001). 

Rapamycin has been used recently to study a growth factor-regulated signalling pathway 

that results in entranced translation of a specific sub-set of mRNAs via mTOR activation. 

Rapamycin significantly inhibits translation of mRNAs derived from a few genes (Brown 

and Schreiber, 1996). The class of mRNAs whose translation is inhibited by rapamycin 

posses a 5’ terminal oligo-pyrimidine tract (5’ TOP), these mRNAs are present in 

mammalian cells (Jefferies et al, 1997). Rapamycin sensitive genes include those 

encoding ribosomal proteins (S3, S6, 814 and 824), translation elongation factors 

(eEFl A and eEF2), and a secreted peptide growth factor called insulin-like growth factor 

II (IGFII) (Brown et al,  1996). It is likely that more 5’ TOP mRNAs are yet to be 

identified.
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mTOR controls the mammalian translation machinery in response to amino acids and 

growth factors, via activation of p70®^  ̂protein kinase and via inhibition of the elF4E 

(eukaryotic translation initiation factor 4E, directs the translation machinery to the 5’ end 

of the mRNA) inhibitor, 4EBP1 (Figure 1.9). Activation of p70^^^ resulting in 

phosphorylation of the 40S ribosomal protein, S6, ultimately drives translation of 5’TOP 

mRNAs (Schmelzle and Hall, 2000). Regulation of p70^^^is complex and involves a 

hierarchical phosphorylation of several sites in p70^^^by different kinases (Schmelzle 

and Hall, 2000); rapamycin principally affects only one of these sites. Rapamycin inhibits 

the phosphorylation of S6 kinase at threonine 399 but not at threonine 239 (Khan et al, 

2001).

Using the techniques of western blot and immunostaining, the translational machinery 

mTOR, 4EBP, and elF4E, were shown to be localised in the soma and dendrites in the 

hippocampus (Tang et al,  2002). Tang et al (2002) suggested that the localisation of this 

translational signalling pathway in the postsynaptic sites may provide a mechanism for 

controlling local protein synthesis at potentiated synapses. The group went on to show 

that the disruption of this translational signalling pathway with rapamycin inhibited 

expression of LTP from 2-3 hours after tetanus. Tskas et al (2002) looked at the effect of 

blockage of phosphorylation of p70^^^ by rapamycin and indicated that induction of L- 

LTP is associated with dendritic activation of translation initiation pathways.
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1.10 A23187 and Forskolin

A23187 is a Ca^  ̂ionophore that has been shown to elevate intracellular Ca^  ̂levels at 

6pM concentrations in PC 12 cells (Lev et al., 1995) and lOpM concentration in 

hippocampal cells (Siciliano et al, 1996). Forskolin is a naturally occurring diterpene 

which has been shown to activate adenylate cyclase at 50pM concentration resulting in 

increased levels of cAMP which then activates PKA (Weisskopf et al, 1994, Huang et 

al, 1995). Hence, elevation of cAMP via application of forskolin is important in MF LTP 

and this is achieved by activation of Câ "̂  /calmodulin sensitive AC (Weisskopf et al,

1994). In the L-LTP, the CAl and CA3 regions of the hippocampus were shown to 

require cAMP-mediated mechanism (Huang et al, 1994).

1.11 Aims of the study

Câ "̂  and cAMP are the two major effectors of NMDA receptor activation with Câ "*" 

entering via activated receptor and cAMP elevation due to Ca^^-sensitive adenylate 

cyclase activation. LTP2 is dependent on mRNA translation but is independent of de 

novo protein synthesis (Morris, 1996) and its lasts between 1-6 hours. aCaMKII and 

MAP2 mRNAs are present in neuronal dendrites and cell soma and have been shown to 

be associated with various forms of neuronal plasticity. Most of the studies have looked 

at the increased levels of MAP2 mRNA and aCaMKII mRNA which were detected after 

LTP induction at least in the DG and CAl regions of the hippocampus, it is not known 

yet if similar increases are observed in the CA3. In the case of |3-activin, increases of the
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mRNA encoding (3-activin were also detected in the CAl and DG regions with little 

known about the CA3. The effect of the two messengers on the activation of Pyk2 

(chapter 3) and MAPK (chapter 4), and on the levels of protein expression of aCaMKII 

(chapter 5), MAP2 (chapter 6) and (3-activin (chapter 7) in the acute or organotypic 

hippocampal slices was investigated. The increase of MAP2, aCaMKII and (3-activin 

proteins were investigated by using A23187 (Ca^  ̂ionophore) and forskolin (adenylate 

cyclase activator). The effect of inhibition of mTOR on the expression of MAP2 and 

aCaMKII proteins in organotypic hippocampal slices was also investigated to determine 

whether the rapamycin-sensitive translational pathway was involved in their expression.

Using the teclmiques of acute hippocampal slice preparations, the effect of Ca^  ̂and 

cAMP on the phosphorylation of Pyk2 and MAPK was investigated. Like MAP2, 

aCaMKII and (3-activin, most of the studies on the two enzymes have been carried out in 

the CAl and DG with little known about the CA3. In case of Pyk2, inliibitors of novel 

PKC, staurosporine, and atypical PKC (PKM), chelerythrine were used prior to 

activation, in order to investigate the role of Pyk2 in LTP maintenance since PKM has 

been implicated in LTP maintenance (Ling et al,  2002).

Therefore the thesis is set out to answer the following questions:

i. Is PyK2 activation affected by intracellular elevation of Câ "̂  or cAMP in the 

hippocampus? If so, is that the case in CA3 region?

ii. Are these changes in Pyk2 affected on the application of PKC inhibitors?
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iii. Is MAPK activation affected by increases in the level of intracellular Câ "̂  or 

cAMP elevation in the CA3 region?

iv. Are the expressions of aCaMKII, MAP2 and (3-activin affected by Câ "̂  or cAMP 

intercellular elevation in the CA3 region?

V. Is rapamycin-sensitive pathway involved in the expression of aCaMKII and 

MAP2?

45



Introduction

Figure 1.1: Hippocampal formation of rat brain. The hippocampus is an elongated C- 

shape structure made up of dentate gyrus, hippocampal proper (CA3, CA2 and CAl, 

only CAl and CA3 regions shown) and subicular region. The CAl region is blown up 

to show the different laminae while the blown CA3 regions shows its pyramidal cells 

receiving the majority of their inputs from other CA3 pyramidal cells. In the dentate 

gyms the pyramidal layer is replaced with the granular layer. Adapted from Amaral 

and Witter, 1989.
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Figure 1.2: The stmcture of Pyk2. The length of the peptide chain is indicated 

without the alternatively splice exons, which are represented as boxes with the 

corresponding number of amino acids inserted below the sequence. The position of 

the autophosphorylated tyrosine residue is Tyr402. Adapted from Girault et a/., 1999.
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Figure 1.3: Model for the role of protein kinases Src and Pyk2 (CAKP) in LTP 

induction in the CAl region, a) At rest, the Src and CAKp are inactive in the post

synapse and the inhibits but does not completely block NMDAR currents, b) 

Tetanic stimulation results in the release of the Mg^  ̂block, causing an increase in the 

NMDAR currents resulting in the activation of CAKp (CAKp*) and Src (Src*) and 

increase sensitisation of NMDAR to raised in intracellular levels ofNa^. c) There is 

an increased in intracellular Ca^  ̂as a result of upregulation of NMDAR, this increase 

causes activation of CaMKII and the expression of LTP results from insertion of 

AMPARs into postsynaptic membrane. Adapted from Ali and Salter, 2001. 

Abbreviation: CAKp- cell adhesion kinase p
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Figure 1.4: Mechanism for activation of PKC during LTP. The diagram shows 

different 2"  ̂messengers and enymes involved in the activation of the different 

isoforms of PKC (Adapted from Roberson et al, 1996a).
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Figure 1.5: Mechanism of C aMKII activation in LTP. The mechanisms of transient 

and auotphosphorylated activation of CaMKII are highlighted. Adapted from 

Roberson £z/., 1996a.
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Figure 1.6: Schematic diagram of the effect of cAMP on PKA. Binding of cAMP to 

the regulatory subunit results in conformational change that causes the release of the 

active catalytic subunit. The activated PKA phosphorylates CREE resulting in 

synthesis of new proteins via activation of late response genes. Abbreviation: CREB- 

cAMP response element binding protein.
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Figure 1.7: Schematic diagram summarising the activation of the following protein 

kinases: Src, PyK2, PKC, CaMKII, PKA and MAPK. The diagram also indicates the 

substrates of the kinases. Activation of Pyk2 due to increases in intracellular Câ "̂  

results in the activation of Src, which in turn increases potentiation of NMD A 

receptors. Actiavtion of PKC (due to increases in Câ "̂  levels or activation of mGluR) 

also activates Pyk2. CaMKII activation results in phosporylation of the AMP A 

receptor, while activation of PKA (due to increase levels of cAMP) causes the 

activation of MAPK. MAPK then activates CREB resulting in gene expression.
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Figure 1.8: Structure of MAP2 iso forms showing the MAP2 domains. Two groups of 

MAP2 isofonns exist, the HMW MAP2 which includes MAP2A and MAP2B and 

LWM MAP2 which includes MAP2C and MAP2D. The LMW MAP2 lacks the 

central domain (CD) but contains N- and C-terminal regions of HMW MAP2 linked 

together. Adapted fi'om Sanchez et al,  2000. Abbreviations: Rll-regulatory subunit of 

PKA; TBD-tubulin binding domain; PRD-proline-rich domain; CD-central domain.



^ jm jU n .p tw iiKji ,

Introduction

1 147 1519

HMW MAP2

1828

I I I

LMW MAP2 a 1 1 1
Rll PRO TBD

467

53



Introduction

Figure 1.9: Model of the effectors of mTOR signalling pathway in mammalian cells. 

Arrows indicate activation while the bars represent inhibition. mTOR activates the 

translation machinery, i.e. p70^^^ and phosphorylates 4E-BP1 hence allowing 

translation. Adapted from Schmelzle and Hall, 2000. Abbrevaitions: PDKl-3’- 

phosphoinositide-dependent protein kinase 1 ; pRb-retinoblastoma protein; PI3K- 

phosphotidylinositol-3-kinase; x- unknown enzyme/protein.
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Chapter 2 

Methods

2.1 Organotypic Slice Culture

Many different techniques have been tested to maintain explants of nervous tissue in culture. 

Roller tube teclmique was one of the most successful procedures (Gahwiler, 1988). This 

procedure enabled the culturing of slices from different areas of the central nervous system. 

One characteristic of this procedure was the organotypic organisation of the explant and the 

monolayer aspect. The monolayer developed over a period of 2-3 weeks, enabling the 

visualisation of individual cells with phase contrast microscopy. A different and simple 

method was developed in which the explants were placed on a membrane at the interface 

between air and medium. This also allowed maintenance of explant of central nervous system 

and more specifically hippocampal slices in culture. The results obtained with this teclmique 

were similar to roller tube technique, but the major advantages of this method were the 

simplicity, the well preserved organotypic organisation of the tissue and suitability of this 

technique for the studies of physiological mechanisms occurring during the first day or 

weeks in culture (Stoppini et aL, 1991).

Organotypic slice cultures were prepared according to the method of Stoppini et al (1991). 

Neonatal, Wistar rats, between ages 6-10 days were injected with a lethal dose of anaesthetic 

[Euthatal, (Rlione Merieux), 0.2mg/kg]. After decapitation the brain was quickly removed 

and placed in ice cold HBSS (Hanks’ Balanced Salt Solution, GIB CO™) buffer which had 

been gassed (95% O2 and 5% CO2) for 10-15 minutes. The dissection took place in the 

solution and the hippocampus was placed on the tissue chopper after extraction. The tissue
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chopper was set to 250pm and the hippocampus cut transversely. The sliced hippocampus 

was placed in a fresh ice-cold gassed (95% O2 and 5% CO2) HBSS and the slices teased apart 

using sealed glass micropipettes (Clarke Instruments).

Between 12-16 hippocampal slices were normally obtained. The slices were then placed in 

another solution of fresh ice-cold gassed HBSS and transferred to the culture room.

In a laminar flow cabinet, the slices were transferred to 6-well plates (Iwaki). 1ml of a Wilde 

medium [BME (Basal Medium Eagle) Ix liquid with Earle’s salt without L-glutamine 

(88.5%), horse serum heat inactivated (17.7%), glucose (22.5g/L), glutamax™-! Supplement 

(0.46%), penicillin/streptomycin solution (5%)] was added to 4 wells each. Inserts of 0.2 pm 

pore (Falcon) were placed in the 4 wells and placed in the humidified, 37 C, 95 % O2 and 5% 

CO2 incubator for 30 minutes prior to dissection. All the contents of the Wilde medium were 

purchased from GIBCO™.

Two sterile pastettes (Alpha Laboratories Ltd) were used to transfer the slices onto the 

inserts. One to extract the 4 hippocampal slices from the oxygenated HBSS and one to 

remove the excess HBSS on the inserts. This procedure was repeated until all the slices had 

been placed in the wells (normally 4 slices/well). The 6-well plates with their contents were 

then placed in the incubator.

The Wilde medium was changed after 24 hours incubation. This involved the use of two 

sterile needles and syringes. One syringe was used to extract the old medium from the wells 

while the second syringe was used to add 1ml of the fresh medium. The slices were 

incubated for 7-8 days changing the medium again after 3-4 days. At the end of 7-8 days the 

slices were ready for drug treatment and immunocytochemistry or western blot.
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2.2 Acute Slice Preparations

An adult rat (weighing 150-200g) was culled by injecting a lethal dose of an anaesthetic 

(Euthatal, 1.5mg/kg). After decapitation the brain was removed. This involved opening of the 

skull with a pair of scissors and removal of the brain using a spatula. The brain was 

hemisected in ice-cold (at 4°C) high Mĝ "̂  (lOmM) artificial cerebrospinal fluid (aCSF) 

which was made up of 124mM NaCl, 3mM KCl, 26mM NaHCOa, 1.25mM NaIÏ2P0 4 , 

lOmM MgS0 4 (H2 0 ), 18.02mM D-glucose and 2mM CaCh. All the compounds used were /

purchased from BDH Laboratory Supplies apart from glucose which was purchased from 

Fisher Scientific.

The hippocampus was removed from the rest of the brain by using spatulas, and using a 

tissue chopper, 300pm transverse hippocampal slices were obtained. The slices were then 

placed in a petri dish of fi*esh ice cold high Mĝ '  ̂aCSF solution (same composition as above) 

in a petri dish and allowed to recover for 60 minutes in an gassed chamber (95% O2 and 5%

CO2) at room temperature. An hour after recovery the temperature was increased to 32°C and 

the slices were left for a further hour after which the slices were ready for drug treatment.

2.3 Drug Treatment

The drugs used in this set of experiments were: 5pM of A23187 (Sigma), 50pM forskolin 

(Sigma), 20nM rapamycin (Calbiochem), IpM chelerythrine (CN bioscience) and lOOnM 

staurosporine (CN bioscience). The stock solution of these drugs was dissolved in dimethyl 

sulfoxide (DMSO, BDH laboratories Supplies), apart from staurosporine which was 

dissolved in methanol.
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The drugs (A23187, forskolin and rapamycin) were diluted in HBSS, and HBSS with DMSO 

was used as the control for cultured slices since HBSS was the saline solution. After the 

incubation, the cultured slices were treated by placing 1.5 pi of the drug/control on top of 

each slice. The procedure was performed in a sterilised laminar flow cabinet. In the case of 

acute slices, the drugs were diluted in high Mĝ "̂  aCSF and high Mĝ '*' aCSF with DMSO was 

used as control. The slices were then placed in a gassed aCSF solution containing the drugs 

of interest. High Mĝ "̂  was used in this study in order to prevent neurotoxicity as result of 

NMDA activation.

2.4 Dissection of the CA1 and CA3 sub-regions of acute hippocampal slices

After drug treatment, the acute hippocampal slices were placed in an ice-cold, high Mĝ "̂ , 

gassed aCSF [containing ImM sodium ortho vanadate (Na3V0 4 , Sigma, inhibits protein 

phosphatases) and 50mM sodium fluoride (NaF, Sigma)]. The CAl and CA3 were dissected 

from the rest of the hippocampus using sealed glass micropipettes and carbon steel surgical 

blades (Swann-Moiton), using a dissection microscope (Figure 2.1). CAl and CA3 sub- 

regions of acute hippocampal slices were then ready for immunoprécipitation.
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2.5 Electrophysiological Recordings

Slices from mice (5-10 weeks old) were prepared and used in electrophysiology according to 

the method described in the Appendix. After induction and measurement of the late phase of 

LTP, the slices were quickly frozen in liquid nitrogen and the CAl region was removed from 

the rest of the hippocampus. The CAl region was then thawed and placed in an ice-cold 

(4°C) RIPA buffer, according the method describe in section 2.4. The CAl region was then 

ready for western blot teclmique (see section 2.9).

2.6 Determination of Protein Concentration

Protein concentrations fi'om cultured or acute slices were initially determined, before 

performing the technique of Western Blot, by using the BIO-RAD micro protein assay, based 

on the method of Bradford (1976), with BSA used as a standard. 4pl of the sample was 

diluted in 400pl of dHzO and 200pl of diluted BIO-RAD reagent (1:1 dHaO). The samples 

were then placed in 96 well plate (Iwaki) and using the Plate Reader Program (Thermo Life 

Sciences) set at 595nm, the concentrations were measured.

2.7 Immunocytochemistry

The cultured slices were fixed for 30 minutes using 3% buffered formaldehyde (Riedel-de 

Haen) and then processed for immunocytochemistry as described previously (Morris, 1997). 

The buffer used was phosphate buffered saline solution (PBS) made up of 130mM NaCl, 

8mM Na2HP0 4 , 2mM NaH2P0 4  and 500ml of distil H2O, pH 7.5. Fixation was followed by 

2x5 minutes washes in PBS.
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The slice cultures were then blocked in blocking serum [15%of normal goat serum 

(purchased from Law Hospital, Carluke, Scotland) and 1ml of PBS] for Ihour. Hippocampal 

slice cultures were left overnight at 4°C in primary antiserum [primary antibody diluted to 

required concentration, 3% normal goat serum, 0.5% Triton xlOO (Sigma) and 1ml PBS]. 

After 3x5 minute washes in PBS, the slice cultures were then incubated for Ihour in 

secondary antiserum [0.5% of biotinylated anti-mouse/anti- rabbit antiserum (Vector 

Laboratories Ltd), 1.5% of normal goat semm and 1ml PBS]. The slice cultures were then 

washed 3x5 minutes in PBS and incubated for 1 hour with ABC reagent [2% of solution A, 

2% solution B (Vector Laboratories Ltd) and 1ml of PBS]. Following another 3x5 minute 

washes in PBS the slice cultures were incubated in peroxidase substrate kit (Vector VIP™, 

catalogue number 4600, Vector Laboratories, consisting 3 drops of reagent 1, 3 drops of 

reagent 2, 3 drops of reagent 3 and 3 drops of H2O2) with 5mls PBS, for between 5-10 

minutes. Afteiwards the slice cultures were washed for 5 minutes in PBS followed by 

5minutes in distilled H2O, and then placed for 30 minutes in 70%, 90%, 100%, 100%, 100% 

ethanol respectively. Slices were allowed to dry briefly and then placed in histoclear 

(National Diagnostics) overnight. The following day slices were histomounted using a 

histomount (National Diagnostics) and coverslipped (using BDH microscope slides and 

coverglass).

In all experiments, vehicle controls were performed alongside drug treated slices, the control 

and treated slices were processed identically in the immunocytochemical procedure.
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2.8 Immunoprécipitation (IP)

The hippocampal slices (acute slices), CAl or CA3 sub-regions were placed in 100-200pl of 

ice-cold (4°C) radioimmunoprecipitation (RIPA) buffer [IM Tris pH 8 (Boehringer 

Mannheim), IM NaCl, 0.5% IGEPAL CA-630 (NP40, Sigma), 0.5% deoxycholate (DOC, 

Sigma), 10% sodium dodecyl sulfate (SDS, Fisher Scientific International Company), ImM 

EGTA (Sigma), ImM EDTA (Sigma), ImM Na3V0 4 , 1 protease inhibitor cocktail tablet 

(Roche Diagnostic) and 10 ml of distilled H2O].

The acute slices were homogenised, using pellet pestle (Sigma), in 100-200pl of RIPA 

buffer, and underwent 10,000g centrifligation at 4°C for 10 minutes. The supernatant was 

removed and was centrifuged again at 10,000g, 4°C for 10 minutes. The volume of the 

resultant supernatant was increased to 500pl, ensuring there was enough volume to incubate 

in the secondary antibody.

A primary antibody [anti-Pyk2, 1:100 dilution. Table 2.1] was added to the supernatant 

samples. The samples were placed in a rotator for 2 hours at 4°C. A 50pl proteinG-sepharose 

(Sigma) was added to the samples which were left for 1 hour at 4°C in the rotator.

After 1 hour, the samples were centrifliged at 400g for 30 seconds. lOOpl of the supernatant 

and the sepharose (the pellet in this case) were kept. The samples were kept at 4°C for the 

duration of the washes. The sepharose was washed tlrree times in IP washing buffer (lOOmM 

(N-[2-Hydroxyethyl]piperazine-N’-[2-ethane-sulfonic acid]), HEPES (Sigma), lOOmM NaCl 

and 0.5% NP40} and after each wash the solution was centrifuged (400g for 30 seconds) and 

the IP washing buffer removed. The sepharose was then washed for the last time in IP 

washing buffer without NP40 and centrifuged (400g for 30 seconds). Once the washing
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buffer had been removed, lOOpl of 2x NuPAGE ™LDS Sample Buffer (Invitrogen) was 

added to the sepharose. A reducing agent (Ix), NuPAGE ™ Sample reducing agent (lOx) 

purchased from Invitrogen, was also added to the sample (lOpl of reducing agent in lOOpl of 

sample solution) and mixed. The reducing agent (which contains p-mercaptoethanol) 

prevents aggregation due to disulfide formation between newly exposed cysteins of protein 

samples.

The samples were placed in a heating block set at 70°C for ten minutes, to denature the 

sample protein. After mixing the sample, it was centrifuge at 400g for 30 seconds. The 

resultant supernatant was then ready for electrophoresis as explained in the Western Blot 

protocol (see section 2.9).

2.9 SDS PAGE and Western Blotting

After drug treatments the slices (acute or organotypic cultures) were placed in a REPA buffer. 

The slices were homogenised as in the immunoprécipitation protocol (section 2.8). A Ix final 

concentration of sample buffer and reducing agent were added to the resultant supernatant. 

Placing them in a heating block at 70°C for 10 minutes denatured the samples.

The samples were run in a NuPAGE ™ 12% Bis-Tris precast gels [based upon Bis-Tris-HCl 

buffered (pH 6.4) polyacrylamide gel] with rainbow markers (Amersham Life Science) for 1 

hour at 150V in a NuPAGE ™ MES mnning buffer. The running buffer contained NuPAGE 

™ anti-oxidant (1:400 dilution). Into each well of the gel, 15pi of the sample was placed. 

After the hour, the samples were transferred to a PVDF membrane (Invitrogen). The process
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took place in a Ix transfer buffer (NuPAGE ™ lOx transfer buffer, Invitrogen), 10% 

methanol and NuPAGE ™ anti-oxidant (1:100) and the voltage was set to 30V.

After 2 hours, the PVDF membrane was removed and rinsed in distilled water. The 

membrane was “blocked” for 1 hour with continuous shaking in PBS containing 0.05% 

Tween (Sigma) (PBST) and 5% skimmed milk powder (Amersham Life Science).

The membrane was then washed briefly in distilled water before being left overnight on a 

shaker at 4°C in the 1:1000 dilution primary antibody [same antibodies as in 

immunocytochemistry, anti-Pyk2 phosphospecific, p-Actin, or anti-MAPK phosphospecific. 

Table 2.1]. The solution containing the antibody was made up of 3-5% skimmed milk 

powder in PB ST.

The blot was washed the following day for 15 minutes and then 2x 5 minutes in PBST. The 

membrane was then placed in a secondary antibody, anti-mouse or anti-rabbit (1:1000 

dilution, Diagnostic Scotland) for 1 hour on a shaker. The antibody was diluted in 3-5% 

skimmed milk powder and PBST. After the blot had been washed 3x PBST as above, an 

ECL detection kit from Amersham Life Science (97.6% solution A and 2.4% solution B) was 

used to visualise the protein bands. The ECL was placed on the blot and left for 5 minutes 

with shaking. The blot was again washed three times in PBST. It was then covered in cling 

film and placed in an x-ray film cassette. In a dark room a sheet of autoradiography film 

(Hyperfilm"^  ̂ECL, Amersham Life Science) was placed on the top of the blot for 1 -5 

minutes exposure. The film was then placed in a automatic developing machine (Amersham).
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2.9.1 Stripping of the PVDF membrane

Once the required bands were obtained the PVDF membrane was placed in a stripping 

solution [80mM Tris, 2% SDS and 68% p-mercapto-ethanol (Sigma)] for 30 minutes at 

60°C. The membrane was then washed in a copious amount of H2O for 5-10 minutes. The 

membrane was re-probed with a different primary antibody (P-actin, Sigma) and then 

processed for immunoblot (section 2.9).

2.10 Image Analysis

For immunocytochemistiy the staining was quantified by using “hnage” software 

(W.Rasband, NIH) as described (Simpson and Morris 2000). The measurements were made 

in the stained cell bodies and dendrites of individual neurons of cultured slices, a circle or 

square was used to highlight the area of interest and the mean density was measured. An area 

in the cultured hippocampus with no cell bodies or dendrites was highlighted in order to 

measure the mean density of the background. Ten areas with cell bodies/dendrites were 

randomly measured in each region of the hippocampus and the same applied for 

measurement of the background. Therefore, ten values of the mean density were used per 

region of the cultured hippocampal slice. The number of slices per animal was 16 and the 

number of animals used was more than three. In order to avoid bias, the microscope settings 

were not altered until all the samples had been measured.

In western blot and IP, the bands were quantified also by using the “Image” software. A 

rectangle highlighted the band of interest and the mean density as well as the area of 

rectangle were measured. A rectangle of the same size was then used to measure the 

background over an area with no staining adjacent to the band.
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2.11 Statistics

For immunocytochemistry, the mean density of the background was subtracted from the 

mean density of the cell bodies/dendrites in order to obtain a specific staining of the cell 

bodies/dendrites. The mean for the ten random values (mean densities of cell 

bodies/dendrites) was calculated. Once the mean values of more than three slices were 

calculated, a mean and standard error of the means of these values were calculated using the 

Minitab statistical package.

The intensity of staining in drug-treated slices was expressed as a percentage of the staining 

in parallel vehicle-treated slices. The significance was determined using analysis of variance 

(ANOVA) with post hoc Fisher’s test for multiple pairwise comparison and one-sample 

Wilcoxon signed rank test using Minitab statistical program. The Wilcoxon signed rank test 

of the median was the preferred choice for determining the significance because the data was 

non-parametric. In analysis of a non-parametric data, there is no assumption of a specific 

distribution for the population.

In Western blot and IP, the product of mean density and area of rectangle for the bands was 

deducted from the product of its corresponding background, in order to obtain the specific 

integrated band intensity. The mean densities of phosphorylated Pyk2 and phosphorylated 

MAPK were expressed as the ratios of the corresponding Pyk2 (total) and (3-actin 

respectively. The ratio of drug-treated acute slices was then expressed as a percentage of 

ratios in parallel vehicle treated acute slices. The significance was determined using one-
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sample Wilcoxon signed rank test of the median using the Minitab statistical program. The 

data was considered significant if the P<0.05.

The histogram of the values for both the cultured and acute slices was derived using the 

Prism software (GraphPad Prism Project). The mean and standard error of mean of values as 

well as the ‘n’ number of experiments were used.

6 6



Methods

Antibody Concentration/

Dilultions

Source Species Supplier Catalogue

Number

Monoclonal Anti- 

P-Actin

2.9pg/mL

(WB)

Hybridoma produced by fusion 

of mouse myeloma cells and 

splenocytes from immunized 

mouse

Mouse Sigma A5441

Anti-human

inliibin

beta/activin

1:1000,

(ICH)

Synthetic peptide corresponding 

to the 82-114 residues of Beta A 

subunit o f Human inhibin A and 

activin A

Mouse Serotec MCA950S

Anti calmodulin- 

dependent protein 

kinase II 

monoclonal

O.lpg/mL, 

(WB, ICH)

Partially purified rat CaMKII Mouse Chemicon

Intemation

al

MAB3119

Monoclonal anti- 

MAP2

3.9pg/mL, 

(WB, ICH)

Same as P-actin Mouse Sigma M4403

Pliospho-p44/42 

MAP kinase 

monoclonal 

antibody

1:1000,

(WB)

Mice immunized with synthetic 

phospho-Tlu'202 and phospho- 

Tyr204 peptide corresponding to 

residues Thr202/Tyr204 of 

human p44 MAP kinase

Mouse New

England

BioLabs

9106L

Pyk2/CAKP 25pg/mL,

(IP)

Generated from rat Pyk2 Mouse BD

Transducti

on

Laboraotii

es

610548

Polyclonal Anti- 

Pyk2 [pY'*®̂ ] 

phosphospecific

0.5pg/mL,

(IB)

Chemically synthesized 

phospho-peptide derived from 

tire region of human Pyk2 that 

contains tyrosine 402

Rabbit Biosource

Internation

al

44-618

v-Src monoclonal 

antibody

1:1000,

(IB)

Immunizing BALB/c mice with 

purified Src protein and fusing 

with P3X63 Ag8.653 myeloma 

cells

Mouse Oncogene

research

products

OP07,

OP07L,

OP07A

Table 2.1; List of antibodies used in this study. Abbreviations: WB- western blot, IP- 

immunoprécipitation, ICH- immunocytochemistry, IB- immunoblot.
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Figure 2.1: Schematic image of the hippocampus showing the DG and hippocampus 

proper (i.e. CAl and CA3 regions). The bold lines across the hippocampus indicate 

the points of dissection of the CAl and CA3.
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Activation of Pyk2

Chapter 3 

Activation of Pyk2

3.1 Introduction

Proline rich tyrosine kinase (Pyk2), which is also referred to as cell-adhesion kinase p 

(CAKp), related adhesion focal kinase (RAFTK), Ca^^-dependent tyrosine kinase 

(CADTK), or focal adhesion kinase 2 (FAK2) (Herzog et al, 1996), is a non-receptor 

tyrosine kinase that has been implicated in LTP (O’Dell et al, 1991). Pyk2 belongs to 

a focal adhesion kinase family, which includes focal adliesion kinase (FAK). FAK 

and Pyk2 exhibit approximately 48% amino acid identity (65% similarity, i.e. high 

degree of sequence similarity). Both kinases exhibit a similar domain structure: a 

unique N-terminus, a centrally located protein tyrosine kinase domain and two 

pro line-rich regions at the C-terminus (Avraham et al, 2000), (Figure 3.5). Both 

tyrosine kinases are highly expressed in the CNS, but are thought to be differentially 

regulated by neurotransmitters and depolarisation (Siciliano et al, 1996).

There are two isoforms of Pyk2, the alternatively spliced (lacking 42 amino acids in 

the C-terminal region) isofoim (Dikic and Schlessinger, 1998) and the unspliced 

isoform known as Pyk2-related non-kinase (PRNK). PRNK appears to be 

predominant in the brain especially in the hippocampus (Xiong et al, 1998) and in 

fact Pyk2 expression was shown to be abundant in DG, and hippocampal proper (i.e. 

CAl and CA3) (Menegon et al, 1999).

■1;
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Reports have indicated that the unspliced Pyk2 is phosphorylated/activated by various 

stimuli, including raising intracellular Câ "̂  (Siciliano et al, 1996) indirectly. 

Stimulation of PKC due to a rise in intracelluar Câ "*" levels is thought to cause direct 

activation of Pyk2 (Lev et al, 1995; MacDonald et al, 2001) via phosphorylation. 

Upon activation, Pyk2 autophosphorylates on tyrosine 402, resulting in a SH2 ligand, 

which then binds to SH2 domain of Src, thereby activating it (Dikic et al, 1996). 

Studies have shown an association between Pyk2 and Src (Huang et al, 2001). Lauri 

et al, 2000 indicated that high frequency stimulation (HFS) enhanced association 

between Src and Pyk2 in the CAl region of the hippocampus. Activation of Src by 

Pyk2 is thought to boost influx of Câ *̂  through NMDARs and sets in motion the 

downstream cascade (Huang et al, 2001; Salter 1998). Huang et al, 2001, also 

showed that Pyk2 acts downstream of Src in the signalling cascade by which tyrosine 

phosphorylation enhances NMDA receptor function. Src is thought to produce its 

effect on NMDA by causing the phosphorylation of the tyrosine residue in NR2A and 

NR2B subunits (Moon et al, 1994).

PKC has been shown to be an upstream regulator of Pyk2 (Huang et al, 1999; Lu et 

al, 1999; Huang et al, 2001). PKC inhibitors and activators have been shown to 

inhibit or activate Ca '̂*'-induced activation of Pyk2 (Siciliano et al, 1996). 

Chelerythrine and staurosporine, PKC inhibitors, have been used to study the effect of 

PKC on both induction and maintenance of LTP (Muller et al, 1992; Mathies et al, 

1991; Demiy et al, 1990; Grosshans and Browning 2001; Bortolotto and Collingridge 

2000). Staurosporine, a general kinase inhibitor, blocks conventional and novel PKCs, 

but not atypical PKCs such as PKM^. Chelerythrine, a highly selective PKC inhibitor, 

at low concentrations inhibits PKMÇ relative to conventional and novel PKCs (Ling et
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al, 2002). Ling et al (2002) proceeded to show that the maintenance of LTP in the 

hippocampus requires PKMÇ, by blocking expression of CAl LTP in low 

concentrations of chelerythrine. Atypical forms of PKC, such as PKM^ (Figure 3.6), 

are highly activated neither by DAG nor Ca^  ̂directly compared to conventional PKC 

(refer to section 1.5.2). Naik et al, 2000, showed using immunoblots that PKM^ was 

located in the DG, CA3 and CAl.

Hence, evidence suggests that PKMÇ is particularly important for the expression of 

LTP at least in the CAl region, but it remains unclear whether PKMÇ is also involved 

in Pyk2 phosphorylation and activation. Equally, it is not clear if Pyk2 is involved in 

the plasticity in other areas of the hippocampus other than the CAl region. Although 

Pyk2 activation by stimuli that increases intracellular Câ '̂  has been extensively 

investigated, very little work has been done on the possible regulation of Pyk2 by 

cAMP elevations.

The study aims to investigate the following:

(i) The time points at which the phosphorylation of Pyk2 reaches its maximal 

expression in the acute hippocampus using A23187, Câ "̂  ionophore

(ii) The effects of A23187 on the phosphorylation of Pyk2 in CAl and CA3 sub- 

regions of the hippocampus

(iii) The effect of chelerythrine and staurosporine on the phosphorylation of Pyk2

(iv) The effect of forskolin on the phosphorylation of Pyk2
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3.2 Drug treatments

The methods used were in general as described in chapter 2 (Methods) with the 

following modifications: Once the slices had recovered in the gassed chamber for 2 

hours (Acute Slice preparation, section 2.2), chelerythrine (IpM) and staurosporine 

(lOOnM) were applied 30 minutes, prior to the activation of the acute slices for 10 

minutes with A23187.

After stimulation the slices were placed in an ice-cold RIPA buffer in order to stop the 

intracellular signalling. The CAl and CA3 sub-regions of the hippocampus were then 

dissected out (Figure 2.1, section 2.4). The tissue was then processed for 

immunoprécipitation as described (section 2.8)

3.3 Results

3.3.1 A23187 increases the phosphorylation of Pyk2 in acute 

hippocampai siice preparations

A23187 (5pM) increased phosphorylated Pyk2 levels significantly (*P<0.05, n=5) 

between 5 and 10 minutes by 23±12% and 34±9% (mean increase ± SEM) 

respectively (Figure 3.1a, upper panel and 3.1b). The levels of phosphorylated Pyk2, 

recovered back to basal levels within 20minutes (Figure 3.1b). The PVDF membrane 

was stripped twice. After the first strip, the blot was reprobed with an antibody against 

total Pyk2 (0.25pg/ml) and the results showed that equal concentrations of Pyk2
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protein were loaded into each well of the precast gel (Figure 3.1a, middle panel). 

Following a second stripping of the membrane blot, it was then reprobed with Src 

antibody (Oncogene, O.lpg/ml), Figure 3.1a (lower panel) and this indicated an 

association between Src and Pyk2. This data was representative of n=3. The Src was 

associated with all the different levels of phosphorylated Pyk2 (Figure 3.1c).

3.3.2 A23287 increases the phosphoryiation of Pyk2 in both CA1 and 

CA3 sub-regions of acute hippocampai slice preparations

In Figure 3.2a, upper panel and Figure 3.2b, the levels of phosphorylated Pyk2 were 

significantly elevated in the two sub-regions of the hippocampus, CAl and CA3 after 

A23187 treatment (*P<0.05). The mean levels of phosphorylated Pyk2 increased by 

30±11% in CAl and 83±35% in CA3. On stripping the blot and reprobing with an 

antibody against total Pyk2, equal concentrations of Pyk2 protein were detected in 

each lane of the precast gel (Figure 3.2a, lower panel).

3.3.3 Cheierythrine and Staurosporine reduce the phosphorylation of 

Pyk2 in acute hippocampai siice preparations

Basal levels of phosphorylated Pyk2 was not convincingly altered by chelerythrine 

(IpM) or by staurosporine (lOOnM) treatment, 91±2% and 81±11% respectively 

compared to non-treated vehicle (Figure 3.3a, upper panel, b, upper panel and c). In 

contrast, both chelerythrine (76±8% reduction, *P<0.05 compared to vehicle) and 

staurosporine (53±7% reduction) dramatically attenuated the A23187 induced
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increase in phosphorylated Pyk2 (154±12%, ~P<0.05 compared to vehicle). The blots 

were stripped and reprobed with antibody for Pyk2, and the results showed that equal 

Pyk2 concentrations were loaded into each well of the precast gel.

3.3. Forskolin inhibits the phosphoryiation of Pyk2 in acute hippocampal 

slice preparations

Expression of phosphorylated Pyk2 was significantly reduced (*P<0.05, n=5) by 

20±9when acute hippocampal slices were treated with forskolin (50pM). The levels 

of the phosphorylated Pyk2 seem to recover back to basal levels within 20 minutes. 

The significant reduction occurred after a 5 minute treatment of the slices with 

forskolin (Figure 3.4a, upper panel and Figure 3.4b). The membrane blot was stripped 

and reprobed with total Pyk2 antibody; the result indicated equal application of Pyk2 

protein into each well of the precast gel (Figure 3.4a, lower panel).
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Figure 3.1: Effect of A23187 (5|iM) on the phosphorylation of Pyk2 in an acute 

hippocampal slice preparation and association between Pyk2 and Src. 

Inununoprecipitation assay using anti-Pyk2 (total) and blotting with anti-Pyk2 

(phoshospecific) antiserum indicated a significant (*P<0.05 versus 100%, n=5, one- 

sample Wilcoxon signed rank test of the median) increase in the phosphorylation of ir 

Pyk2 between 5 and 10 minutes (figure a, upper panel and figure b). The blot was 

stripped twice, once to indicate that the levels of protein in each well of precast gel 

were of equal concentration (middle panel) and second to indicate an association 

between Pyk2 and Src (lower panel), figure a and c. Results are expressed as a 

percentage of the specific signal at t=0.
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Figure 3.2: Effect of A23187 (5pM) on the phosphorylation of Pyk2 in both CAl and 

CA3 acute slice preparations. Immunoprécipitation assay using anti-Pyk2 (total) and 

blotting with anti-Pyk2 (phoshospecific) anitserum indicated a significant increase in 

the levels of phosphorylated ir Pyk2 in both CAl (*P<0.05 versus 100%, n=5, one- 

sample Wilcoxon signed rank test of the median) and CA3 (*P<0.05 versus 100%, 

n=5, one-sample Wilcoxon signed rank test of the median), figure a and b, upper 

panel. The PVDF membrane was stripped and re-probed with total Pyk2 (figure a, 

lower panel), which indicated an equal concentration of proteins loaded into each well 

of precast gel. Results are expressed as a percentage of the specific signal at t=0.
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Figure 3.3: Effect of chelerythrine (IpM) and staurosporine (lOOnM) on the 

phosphorylation of ir Pyk2 in both A23187 (5pM) and vehicle-treated acute 

hippocampal slice preparations. Chelerythrine reduced phosphorylation of ir Pyk2 at 

basal level and significantly in the presence of A23187 (*P<0.05, n=5, one-sample 

Wilcoxon signed rank test of the median) in hippocampal slices while staurosporine 

did not have any significant effect on the basal phosphorylation of Pyk2, however it 

attenuated the A23187 effect (figure a and b, upper panel, and figure c). A23187 

significantly elevated phosphorylation of ir Pyk2 (~P<0.05 compared to vehicle, 

chelerythrine, staurosporine, n=5). Stripping and reprobing the PVDF membrane 

showed equal concentrations of Pyk2 in each well of the precast gel (figure a and b, 

lower panel. Results are expressed as a percentage of the specific signal, t=0. 

Abbreviations: chel- chelerythrine, stau- staurosporine, A23- A23187
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Figure 3.4: Effect of forskolin (50fiM) on the phosphorylation of Pyk2 in acute 

hippocampal slice preparations. Immunoprécipitation assay using anti-Pyk2 (total) 

and blotting with Pyk2 (phosphospecflc) antiserum indicated that the levels of 

phosphorylated ir Pyk2 were significantly reduced after 5minutes (*P<0.05 versus 

100%, n=5, one-sample Wilcoxon signed rank test of the median), figure a, upper 

panel and figure b. Stripping the blot and reprobing with total Pyk2 indicated that 

equal concentrations of the protein in each well of the precast gel. Results are 

expressed as a percentage of the specific signal at t=0.
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3.4 Discussion

Phosphospecific Pyk2 (Shi et al, 2000 and Keely et al., 2000), Pyk2 (Lev et al, 

1995; Dikic et al, 1996 and Sasaki et al,  1995), and Src (Bolen et al, 1984 and 

Cartwright et al, 1985) antibodies had all been previously characterised. Pyk2 was 

generated from rat Pyk2 and phosphospecific Pyk2 was chemically synthesised in a 

phospho-peptide derived from the region of human Pyk2 that contains tyrosine 402 

(Table 2.1). The Src antibody was obtained from BALB/c mice that have been 

immunised with purified Src protein. For each antibody, single bands were obtained. 

Using the rainbow marker, the band obtained when using Pyk2 antibody was 

approximately 116kDa while that for Src was around 60kDa, hence this supports 

claims of specificity.

The effect of vehicle treatment over time has not been tested and therefore it remains 

theoretically possible that effects due to addition of drug/vehicle, might not be due to 

the drug. However, this is very unlikely, since only small volumes of the dmgs were 

added; in addition forskolin and A23187 affects act in opposite directions, so it is 

unlikely to be due to vehicle.

3.4.1 A23187

The phosphorylation of Pyk2 was elevated significantly between 5 and 10 minutes by 

23% and 34% respectively on the application of A23187 (Lev et al, 1995; Wang and 

Brecher, 2001), a Ca^"^ionophore, on acute hippocampal slices (Figure 3.1). This
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suggested that Ca^  ̂plays a role in the phosphorylation of tyrosine kinase, Pyk2. This 

is in agreement with previous studies which indicated elevation of phosphorylated 

Pyk2 levels for 15 minutes in PC 12 cells on application of 6pM A23187 (Lev et al., 

1995). In addition, studies had shown that Pyk2 could be activated by stimuli that 

increase intracellular Ca^  ̂levels especially depolarisation (Siciliano et al, 1996) in 

the hippocampus.

The levels of Pyk2 seem to recover back to basal levels within 20 minutes, which 

could be due to the tyrosine phosphatases (PTPs). In fact PTPs had been shown to be 

highly expressed in the CNS and their inhibition potentiated NMDA cuinents (Wang 

and Salter, 1994).

Phosphorylation of Pyk2 reportedly resulted in the activation of Src (Lev et al, 1995; 

Girault et al, 1999; Ali and Salter, 2001) and the data obtained here indicated an 

association between Pyk2 and Src (Figure 3.1b) since Src was immunoprecipitated by 

Pyk2 antibody. Src had been shown to enhance the potentiation of NMDA receptors 

(Salter, 1998) via phosphorylation of tyrosine residue in NR2A subunit of NMDA 

receptor (Salter, 1998; Lau and Huganir, 1995) so it has been suggested that this 

interaction is crucial of the expression of LTP. However, the results reported here 

showed no evidence of increased association of Src with Pyk2 afEer Pyk2 activation. 

This raises the possibility there is no Src activation by Pyk2 after Câ "̂  influx alone 

and that some other signalling pathway activates Src.

Previous studies have shown the expression of Pyk2 in DG and hippocampal proper 

(i.e. CA3 and CAl) (Menegon et al, 1999). But most of the electrophysiological

80



Activation of Pyk2

studies on tyrosine kinases were carried out in the CAl region, looking at the role of 

Pyk2 in LTP (Huang and Hsu, 1999; Lauri et al, 2000). The data in this study showed 

that there was a significant elevation of phosphorylated Pyk2 levels in both CAl and 

CA3 on the application of A23187 for 10 minutes (Figure 3.2). The levels of 

phosphorylated Pyk2 were elevated by 31% and 83% in CAl and CA3 regions 

respectively. This might imply that the intracellular signalling in the CA3 was similar 

to CAl.

As already mentioned (section 1.6 and 1.8), LTP induction in Schaffer collaterals 

fibres in the CAl region is NMDAR dependent while the MF LTP in CA3 region is 

NMDAR independent, but both forms of LTP require calcium influx. Therefore, it is 

possible to suggest that although different forms of LTP are activated the CAl and 

CA3 regions of hippocampus, they still might share a common intracellular pathway.

3.4.2 Chelerythrine and Staurosporine

Pyk2 is reportedly stimulated by activation of protein kinase C (PKC) (Lev et al, 

1995; Siciliano et al, 1996). PKC had been shown to play an important role in LTP 

(Roberson et al, 1996a). PKM( ,̂ a constitutively active form of an atypical PKC, has 

been shown to be necessary and sufficient for LTP maintenance in CAl region of the 

hippocampus (Ling et al, 2002) when using the PKC inhibitors, chelerythrine and 

staurosporine. Chelerytluine has been shown to block LTP maintenance at a dose of 

0.3pM (Bortolotto and Collingridge, 2000) while staurosporine blocks the induction 

(Muller et al, 1992). Staurosporine was less effective than chelerythrine in inhibiting
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the protein kinase activities of PKCÔ and PKM^ when compared to PKCa (McGlynn 

et al, 1992).

In this study, the role of these two PKC inhibitors on phosphorylation of Pyk2 in 

acute hippocampal slices was investigated. The concentrations used were those 

reported to confer specificity (Ling et al, 2002). Chelerythrine had minimal effect on 

basal levels of phosphorylated Pyk2 (9% reduction), however it attenuated effect of 

A23187 on phosphorylated Pyk2 (19% reduction) (Figure 3.3). Grosshans and 

Browning (2001) have previously used chelerythrine (lOpM) to block tyrosine 

phosphorylation (Src phosphorylation) and obseiwed a reduction of 12%. These 

results might suggest that endogenous phosphorylated Pyk2 was regulated by PKMÇ, 

since application of PKMif̂  selective inhibitor, chelerythrine, resulted in reduced 

phosphorylation of Pyk2. Since a similar dose of chelerythrine blocks LTP 

maintenance it can be suggested that phosphorylated Pyk2 might play a role in the 

maintenance of synaptic plasticity.

Since the reductions in the levels of activated Pyk2 were in the whole hippocampus, it 

seems logical to assume that signalling in the three regions of the hippocampus was 

similar although this has not been shown. Also it was already suggested in this study 

that the intracellular* signalling in CAl and CA3 regions were similar in case of Pyk2 

phosphorylation. Staurosporine did not have any effect on the basal phosphorylated 

levels of Pyk2. This indicates that the basal levels of phosphorylated Pyk2 are 

maintained independently of a general PKC inhibitor, staurosporine. However, as 

with chelerythrine, staurosporine completely blocked the ability of A23187 to elevate 

Pyk2 phosphorylation (Figure 3.3). This suggests that other form of neuronal PKC
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and PKMÇ are both required for Pyk2 activation after Câ "̂  influx. Previous studies 

have shown that the use of different general PKC inhibitors, R 031-8220 and 

GF109203X, resulted in the inhibition of Pyk2 phosphorylation in the hippocampus 

(Siciliano et al, 1996).

3.4.3 Forskolin

The levels of phosphorylated Pyk2 were significantly attenuated (Figure 3.4) when 

forskolin was applied to acute hippocampal slices. The reduction (21%) occurred 5 

minutes after the application of forskolin. Forskolin, a diterpene, directly activates 

adenlyate cyclase (Seaman and Daly, 1986) producing cAMP and the subsequent 

activation ofPKA. This might indicate that, elevation of cAMP and activation of 

PKA have a negative effect on Pyk2, which results in reduced phosphorylation of 

Pyk2 targeted proteins. Studies by Derkindem et al (1996) showed that the level of 

phosphorylation of FAK, a member of non-receptor tyrosine express in the neurons, 

were elevated via anadamide (an endogenous ligand for central caimabinoid) release 

due to depolarisation (Figure 3.7). This ligand inhibited adenylate cyclase thus 

reducing the levels of cAMP. Hence inhibition of adenylate cyclase might have a 

positive effect on Pyk2 (i.e. cause phosphorylation of Pyk2) similar to the effect on 

FAK (Figure 3.7).
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3.4.4 Summary

Therefore this data had shown the following:

(i) Intracellular increase in Ca^  ̂between 5 and 10 minutes played a role in the 

increased phosphorylation of Pyk2 in the acute hippocampus

(ii) The intracellular signalling pathway regulating Pyk2 in the CA3 sub-region of 

acute hippocampus is similar to the CAl

(iii) Concentration of chelerythrine and staurosporine that reportedly inhibit PKMÇ 

and novel PKC respectively both reduced A23187-induced phosphorylation of 

Pyk2 in acute hippocampal slices suggesting that parallel PKC pathways may be 

involved in Pyk2 activation

(iv) Elevation of cAMP levels reduced the phosphorylation of Pyk2 and this might 

be the first evidence for a cAMP-activated pathway suppressing Pyk2, analogous 

to that proposed for FAK
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Figure 3.5: Schematic presentation of homology comparison of the N-terminus, 

kinase domain and C-terminus between Pyk2 and FAK. (Adapted from Avraham et 

al, 2000)



Activation of Pyk2

N-terminus Kinase C-terminus

Pyk2 I —

42% 60% 39%

FAK

85



Activation of Pyk2

Figure 3.6: Schematic diagram of the major domains of conventional (a, pi, pll and 

Y), novel (Ô, 0, Tj and s), and atypical (Ç and i) PKC Adapted from Naik et al, 2000. 

The independent catalytic domain of PKC is the PKM.
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Figure 3.7: Schematic diagram indicating the intracellular signalling that regulate the 

non-receptor tyrosine kinases, Pyk2, Src and FAK'*' in rat hippocampal slices 

(Adapted from Girault et al, 1999). A raise in intracellular Câ '*' results in the 

activation of Pyk2 via activation of PKC. FAK is also activated by PKC as well as by 

camiabinoid CBi-receptor agonists such as anadamide. The available evidence 

suggests that the following might occur. Pyk2 interacts with Src and leads to the 

formation of multiprotein complexes which activates various signalling pathways 

including MAPK/ERK (mitogen-activated protein kinase/ extracelluar-signal 

regulated kinase) pathway. Src is also capable of phosphorylating receptors and 

cytoskeletal proteins. These pathways provide a possible mechanism for regulating 

synaptic plasticity. Abbreviation: inhibition.
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Chapter 4 

Activation of MAPK

4.1 introduction

There has been an increasing interest on the role of MAPKs in the regulation of neuronal 

functions. MAPKs have been shown to play a vital function in the signalling pathways 

associated with activity dependent regulation of neuronal function. A number of studies 

have identified novel pathways that include the incorporation of second-messenger 

systems such as cAMP/PKA and DAG in the regulation of MAPK signalling (Sweatt, 

2001).

MAPKs (p44 and p42) are expressed in abundance in post-mitotic neurons of the 

developed nervous system. Fiore et al (1993) have shown the expression of MAPK in 

the dendrites and somas of pyramidal cells of the hippocampus with little to no staining 

in the non-pyramidal cells. Hence activation of MAPK (especially p42) detected in 

assays would most likely occur in pyramidal neurons (English and Sweat, 1996).

In the CAl region, the cAMP pathway has been shown to utilise the MAPK cascade as 

an obligatory intermediate in regulating CREB (cAMP-response element binding 

protein), a constitutive transcription factor (Sweatt, 2001) (refer to PKA section), hnpey 

et al (1998) demonstrated CREB phosphorylation in area CAl in response to LTP- 

inducing stimulation, an effect that was blocked by MAPK inliibition. In CAl
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hippocampal region, activation of cAMP cascade led to a PKA activation of MAPK 

(Martin et al, 1997; Roberson et al, 1999).

MAPK activation has been shown to play a critical role in LTP induction. Studies have 

initially focused on NMD A receptor-dependent LTP in area CAl, using hippocampal 

slices in vitro (English and Sweatt, 1996, 1997; Atkins et al, 1998; Impey et al, 1998; 

Winder et al, 1999). MAPK activation was also shown to be necessary in NMDA 

receptor-independent LTP (Coogan et al, 1999), LTP in DG in vitro (Coogan et al, 

1999), and LTP in vivo (McGahon et al 1999; Davis et al, 2000). Use of MEK 

inliibitors, which blocked activation of ERKs, blocked L-LTP, indicating the importance 

of MAPK activation in L-LTP (English and Sweatt, 1996, 1997; hnpey et al, 1998). This 

effect was not restricted to L-LTP, as E-LTP was also reduced (Sweatt, 2001).

Upon activation after LTP-inducing stimulation, a fraction of MAPK translocates from 

the cytosol into the nucleus (Davis et al, 2000) where it is thought to alter gene 

expression by transcriptional control (Impey et al, 1998). CREB phosphorylation is an 

end product of activation of MAPK, which has been shown to play a role in gene 

expression (Roberson et al, 1999) in the CAl region.

The aim of this study was to investigate the effects of Câ '*’ influx and cAMP elevation on 

the activation of p42 MAPK in the CAl and CA3 sub-regions of acute hippocampal 

slices using western blot techniques (section 3.9).
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4.2 Results

Two bands (one for p42 MAPK and second for p44 MAPK) were usually detected when 

using the phosphospecific MAPK antiserum, but low MW (42KDa) was frequently 

detectable in this investigation.

4.2. A23187 increases phosphorylation of p42 MAPK

The levels of the phosphorylated p42 MAPK appeared elevated in the presence of 5p,M 

A23187 in acute hippocampal slice preparations. The levels appeared elevated after 10 

minute (164+36% of vehicle treated slices, n=4) stimulation of the hippocampal slices 

and were still appeared elevated after 20 minutes (150±48% of vehicle treated slices, 

11=4) stimulation (Figure 4.1a, upper panel). However, these effects did not reach 

statistical significance.

On reprobing of the PVDF membrane with p-actin, the concentration of proteins in each 

well of the precast gel were found to be of equal concentrations (Figure 4.1a, lower 

panel).

4.2.2 Forskolin increases phosphorylation of p42 MAPK

On application of forskolin (50pM), the levels of phosphorylation of p42 MAPK were 

significantly elevated (*P<0.05 versus 100% of vehicle-treated slices) in acute
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hippocampal slices (Figure 4.2a, upper panel). The levels were prominent after 5 

(165±9% of vehicle treated slices), 10 (172±30% of vehicle treated slices) and 20 

minutes (149±21% of vehicle treated slices) after stimulation of the whole hippocampal 

slice.

The blot was then stripped and reprobed with anti-P-actin antiserum (as an internal 

standard) (Figure 4,2a, lower panel).

4.2.3 A23187 and forskolin increase phosphorylation p42 MAPK in CA1 but 

not CA3 sub-regions of the hippocampus

A23187 (5pM) significantly increased the phosphorylation of p42 MAPK in the CAl 

region after 10 minutes (*P<0.05, 194+37% of vehicle treated slices) but had no effect on 

the phosphorylation of p42 MAPK in the CA3 (P>0.05,116+26% of vehicle treated 

slices) in acute hippocampal slice preparations (Figure 4.3a, upper panel and Figure 

4.3b).

Forskolin (50pM) also significantly increased the phosphorylation of p42 MAPK in the 

CAl region of the hippocampus (*P<0.05, 181±61% of vehicle treated slices) but had no 

effect on the phosphorylation of p42 MAPK in the CA3 sub-region (P>0.05, 78+10% of 

vehicle treated slices) (Figure 4.3a, upper panel and Figure 4.3b). The blot was then 

stripped and reprobed with anti-(3-actin, which was used as an internal standard (Figure 

4.3a, lower panel.
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Figure 4.1: Effect of A23817 (5pM) on the phosphorylation of p42 MAPK in acute 

hippocampal slices. Western blot analysis using anti-MAPK (phosphospecific) 

indicated an increase in the phosphorylation of p42 MAPK isoform, between 10 and 

20 minutes. However, the increase did not reach statistical significance (P>0.05) 

(figure a, upper panel and figure b). The histogram and error bars represent the mean 

and SEM respectively. Stripping and reprobing of the PVDF membrane with p-actin 

shows equal concentrations of protein in each well of precast gel (figure a, lower 

panel). n=4

Abbreviations: SEM- standard error of the mean.
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Figure 4.2: Effect of forskolin (50|iM) on the phosphorylation of p42 MAPK in acute 

hippocampal slices. Western blot assay using anti-MAPK (phosphospecific) 

antiserum indicated a significant increase in the phosphorylation of p42 MAPK 

isofoim between 5 and 20 minutes (*P<0.05 versus 100%, n=4, one-sample Wilcoxon 

signed rank test of the median) (figure a, upper panel and figure b). The histogram 

and error bars represent the mean and SEM respectively. The blot was then strip and 

reprobed with anti-p-action antiserum (figure a, lower panel).
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Figure 4.3: Effect of A23187 (5p,M) and forskolin (50pM) on the phosphorylation of 

p42 MAPK in the CAl and CA3 sub-regions of acute hippocampal slices. Western 

blot analysis using anti-MAPK (phosphospecific) antiserum indicated a significant 

increase in the phosphorylation of p42 MAPK isoform in the CAl region (*P<0.05 

versus 100%, n=4, one-sample Wilcoxon signed rank test of the median) after 10 

minute stimulation with either A23187 or forskolin (figure a, upper panel and figure 

b). However, A23187 or forskolin had no effect on the phosphorylation of p42 MAPK 

isoform in the CA3 region (P>0.05, n=4) (figure a, upper panel and figure b). The blot 

was stripped and reprobed with anti-p-actin anti-serum (figure a, lower panel). 

Abbreviations: mins- minutes.
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4.3 Discussions

Phospho-p44/42 MAPK antibody (Marshall et al, 1995; Kang et al, 2001) and p-actin 

antibody (North et al, 1993) had previously been characterised, and are highly specific 

for their respective antigen. Phospho-p44/42 MAPK antibody recognises the doubly 

phosphorylated threonine 202 and tyrosine 204 of p44 and p42 MAPK respectively; 

while the monoclonal p-actin antibody detects an epitope located on the N-terminal end 

of p-isoform of actin (Table 2.1).

4.3.1 A23187

The relative weak signal obtained for p44 MAPK precludes any study of its regulation by 

A23187 and forskolin. Clearly, p42 MAPK is the predominant phosphorylated species in 

the hippocampus, a result consistent with previous reports (English and Sweatt, 1996,

1997). The levels of phosphorylated p42 MAPK were elevated in the presence of 5pM 

A23187, a Câ "*" ionophore. The elevations occurred between 10 and 20 minutes (Figure 

4.1), but were not significant (P=0.1 for both time points). The study was carried out on 

acute hippocampal slices while most of the studies on the activation of p42 MAPK were 

performed on the CAl (English and Sweatt, 1996, 1997) and DG (Coogan et al, 1999) 

regions of the hippocampus. The MAPK cascade has been shown to be necessary for the 

NMDA receptor-dependent LTP in area CAl (English and Sweat, 1997; Atkins et al,

1998) and the DG (Coogan et al,  1999) of the hippocampus. Hence, the Ca^’*’ ionophore 

would be predicted to elevate the levels of p42 MAPK in the area CAl and DG. The
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effects of A23187 has not been previously investigated in the CA3 sub-region also. Stage 

two of the study was to investigate the effect of Ca^  ̂influx in both the CAl and CA3 

sub-regions of the hippocampus. A23187 elevated the phosphorylation of p42 MAPK in 

the CAl region while phosphorylation of p42 MAPK in the area CA3 was not affected. 

Hence, the lack of effect of A23187 on the phosphorylation of p42 MAPK in CA3 sub- 

region might explain the insignificant effect of the Câ "*" influx on the whole 

hippocampus.

In the CAl area, Câ '*' influx was thought to cause activation of p42 MAPK via activation 

of PKC (English and Sweat, 1996). Therefore, an increase in intracellular Ca^”*" was 

thought to activate MAPK via the Ca^^-PKC-Ras/Rafl -MEK-MAPK cascade (Figure 

4.4). In the CA3 sub-region of the hippocampus, the regulation of p42 MAPK might 

follow a different pathway. Kanterewicz et al (2000) had shown using MEK inhibitors 

that MF-LTP in area CA3 does not require MAPK signalling while LTP in CAl region 

requires MAPK signalling. These results support the concept of a differential role for 

MAPK in the response to Câ '*' influx in the CAl and CA3 regions.

4.3.2 Forskolin

In a second series of studies, the effect of adenylate cyclase activator, forskolin (50pM) 

on p42 MAPK activation was investigated. Forskolin caused an increased 

phosphorylation of p42 MAPK between 5 and 20 minutes (Figure 4.2). As with Câ "*" 

influx, cAMP elevations were studied mostly in the CAl sub-regions (Roberson et al,
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1999) of the hippocampus. In contrast, the effect of p42 MAPK activation in the CA3 

sub-region remains largely unknown. Forskolin significantly elevated the 

phosphorylation of p42 MAPK in the CAl region while the levels of p42 MAPK in area 

CA3 were unaffected (Figure 4.3). Forskolin induced activation of the PKA signalling 

cascade has been shown to be coupled to activation of p42/p44 MAPK in the CAl sub- 

region (Roberson et a l,  1999). Hence cAMP was thought to produce its effect on MAPK 

via the PKA/Rap 1 -B/Raf-MEK/MAPK cascade. In area CA3, forskolin at a concentration 

sufficient to induce MF LTP (Weisskopf et al, 1994) did not seem to have any effect on 

the phosphorylation of p42 MAPK, again suggesting an alternative pathway to the CAl 

sub-region. Kanterewicz et al (2000) showed that MAPK signalling cascade was not 

necessary for the forskolin-induced potentiation of mossy fibre synapses and hence 

suggested that activation of p42/p44 MAPK is not necessary for induction of MF LTP. 

Clearly there is substantial expression of MAPK in the CA3 region, yet it is not activated 

either by Ca^  ̂or cAMP stimulation. The stimuli that cause MAPK activation in the CA3 

region remain to be identified.

4.3.3 Summary

The present data complements previous studies carried out by Kanterewicz et al (2000) 

in the CA3 region of the hippocampus. In summary, PKA and PKC coupled activation of 

p42 MAPK was not essential in the CA3. Thus activation of any effectors (such as 

CREB) of p42 MAPK in the CA3 may occur through an alternative pathway.
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Figure 4.4: Upstream regulators and downstream effectors of MAPK cascade 

(Adapted from Sweat 2001). There are two pathways by which MAPK is activated; 

the PKC-Rafl-MEK-MAPK signalling and the PKA-B-Raf-MEK signalling. 

Downstream effects of MAPK activation include gene expression, via activation of 

CREB, ion channel activation, and protein synthesis. Abbreviations: AC, adenylate 

cyclase; CREB, cAMP respond element binding protein; GFR, growth factor receptor 

tyrosine kinase; PKC, protein kinase C, PKA; cAMP-dependent protein kinase; SOS, 

son of sevenless.
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Chapter 5 

Expression of aCaMKII

5.1 Introduction

Induction of LTP in the CAl and DG regions of the hippocampus is dependent on 

activation of NMDA class of glutamate receptors while in the CA3 region; it is primarily 

dependent on increased cAMP levels (Collingridge and Bliss, 1993). LTP as already 

mentioned (General Introduction) is divided into three temporal phases - early (dependent 

on covalent modification of pre-existing proteins), intermediate and late phase 

(dependent on both transcription and translation). LTP2 appears between 1-6 hours after 

initial stimulation, depending on the experimental model, is dependent on mRNA 

translation and de novo protein synthesis but independent of gene transcription (Abraham 

et al., 1993). Thus, it will be of interest to identify the proteins which are synthesised at 

this time in response to stimulation and the mechanisms which regulate their expression.

In the CNS few mRNA species have been detected in the dendrites as most are restricted 

to the cell body. mRNA species located in the dendrites are in close proximity to the 

afferent synapses and therefore are in a position to be affected rapidly by synaptic 

activity. These plasticity-like dendritic mRNAs include aCaMKII mRNA (Thomas et a l , 

1994; L.A Roberts, e ta l ,  1996).
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CaMKII is present in high levels in the forebrain and cerebellum where it makes up -2% 

of the total protein in the hippocampus. The kinase can be visualised in the cytosol of 

neuronal cell bodies (Erondu and Kennedy, 1985; Apperson et al, 1996).

Biochemical studies have shown that persistent activation of CaMKII occurs during LTP 

and mediates persistent phosphorylation of GluRl (Barria et al, 1997; Fukunaga et al, 

1993; 1995; Lee et al, 2000), implicating CaMKII in LTP maintenance. Maintenance of 

LTP has been shown by several groups to require de novo protein synthesis (Fazeli et al, 

1993; Frey e/a/., 1989; Krug <3/., 1984),

A number of studies have reported increased levels of aCaMKII after LTP induction. 

Most of the studies on the effect of synaptic stimulation on the levels of aCaMKII mRNA 

(L.A. Roberts et al, 1996, 1998) and hence the corresponding aCaMKII protein have 

been carried out in the CAl region (Ouyang et al, 1999) and the DG (Steward and 

Halpain, 1999). Therefore it is not clear whether increased aCaMKII expression is also a 

feature of LTP in the CA3 region, where Ca^  ̂influx is relatively less important for 

plasticity. Equally, the signalling pathways involved in the induction of aCaMKII mRNA 

following high frequency stimulation are unclear. Therefore in these studies, the effect of 

stimulation, using A23187 (a calcium ionophore) and forskolin (an adenlyate cyclase 

activator), on the levels of aCaMKII mRNA have been investigated, since Ca^  ̂and 

cAMP are major effectors of NMDA receptor activation.
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In addition the effect of rapamycin, a protein synthesis inhibitor, on the expression of 

aCaMKII in both stimulated and non-stimulated organotypic slices was investigated. The 

major target for rapamycin in cells is FRAP or mTOR (Brown and Schreiber, 1996). 

Activation of mTOR leads to phosphorylation of the ribosomal protein, S6, resulting in 

increased translation (Jefferies et al, 1997; Peterson and Schreiber, 1998). Therefore, the 

study aimed to investigate a possible role for mTOR in the regulation of aCaMKII 

expression.

5.2 Results

5.2.1 A23187 but not forskolin increases the expression of aCaMKII on 

hippocampal organotypic slice culture preparations

Neurons in all the sub-regions of the hippocampus were stained with aCaMKII antibody; 

this staining was prominent in the soma and dendrites (Figure 5.1). Application of 5pM 

A23187 resulted in a significant increase in the intensity of staining of aCaMKII in the 

cell bodies (*P<0.05 versus vehicle-100%, n-15. Figure 5.2d, e and f, 5.3a) of 

hippocampal formation i.e. DG, CA3 and CAl with no significant difference in the 

expression of aCaMKII between the sub-regions (One way ANOVA with post hoc Fisher 

test, P=0.71). A significant increase in staining intensity of aCaMKII also occurred in the 

dendrites (Apical dendrites) of DG, CA3 and CAl (*P<0.05 versus vehicle-100%, n=10, 

Figure 5.2d, e and f, 5.4b) upon application of 5pM A23187. Similar to cell bodies, there
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was no significant difference in the expression of aCaMKII between hippocampal sub- 

regions.

In contrast 50|rM forskolin (Huang et al, 1994) had no significant effect on the 

expression of aCaMKII in both the soma and dendrites of all the sub-regions of the 

organotypic hippocampal slice culture (Figure 5.3 and 5.4).

5.2.2 Rapamycin had no effect on the expression of aCAMKif in both 

vehicle-treated and A23187-treated organotypic slice preparation

Hippocampal slice cultures were pre-treated with rapamycin for 30 minutes before being 

stimulated with A23187 (5fxM) for 4 hours. In the cell bodies the expression of aCaMKII 

was not significantly affected by pre-treatment of hippocampal slices with 20nM 

rapamycin (Khan et al,  2001; Jefferies et al, 1997) (P>0.05, n=4, Figure 5.5), but 

A23187 significantly increased the intensity of staining of aCAMKII in both vehicle- 

treated and rapamycin pre-treated slices (+P<0.05 versus corresponding region after pre

treatment alone-ANOVA with post hoc, Fisher’s test) (Figure 5.5). These increases 

occuiTed in the DG, CA3 and CA l. Similar to the cell bodies, pre-treatment of 

hippocampal slices with rapamycin (20nM) had no significant effect on the expression of 

aCAMKII (+P<0.05 versus corresponding region after pre-treatment alone-ANOVA with 

post hoc, Fisher’s test) (Figure 5.6) in the dendrites. The intensity of staining of 

aCAMKII was significantly increased by A23187 in the dendrites (Figure 5.6) of the 

CA3 and CAl.
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5.2.3 Western blot analysis shows A23187 but not forskolin increased 

expression of aCaMKII

A23187 (5pM) appeared to increase the expression of aCaMKII in organotypic 

hippocampal slice preparations as assessed by western blotting (Figure 5.7a, upper panel 

and Figure 5.7b). The levels of expression appeared to be increased after 4 hour treatment 

(110±10 of vehicle treated slices, n=4). However, these effects did not reach statistical 

significance. Forskolin (5gM) did not have any effect on the expression of aCaMKII after 

4 hour treatment of organotypic slices as assessed by western blotting.

On reprobing of the PVDF membrane with an antibody to detect (3-actin, the levels of P- 

actin in each pair of control and treatment well of the precast gel were found to be of 

equal concentration (Figure 5.7a, lower panel).

5.2.4 Tetanus induced LIP  elevates the expression of aCaMKII in the CA1 

sub-region of acute hippocampal slice preparations

Acute hippocampal slices undeiwent three tetanic stimulations in stratum radiatum in the 

CAl region, followed by a signal stimulus every 30 seconds for 2.5 hours or 3.5 hours 

(Appendix, Figure 1 and 2). The CAl was then removed, and prepared for Western blot 

analysis. The analysis showed that the expression of aCaMKII appeared to be elevated in 

expression after 3.5 hours (153±15% of vehicle-100%, n-3) (Figure 5.8). Nevertheless, 

these effects did not reach statistical significance.
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Figure 5.1: Image of organotypic slice culture. The image shows the hippocampal 

fonnation, DG, CA3 and CAl. The slice has undergone no drug treatment and has 

been stained to reveal immunoreactivity for aCaMKII. Scale bar: 0.4mm
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Figure 5.2: Effect of A23187 (5pM) on the expression of aCaMKII in cultured 

hippocampal neurons. Organotypic hippocampal neurons were stained to reveal 

immunoreactivity for aCaMKII in DG (a, d), CA3 (b, e) and CAl (c, f). Organotypic 

slice cultures were treated 4 hours prior to fixation with either vehicle (a, b and c) or 

A23187 (d, e and f). Note that A23187 increased the staining intensity of aCaMKII in 

both the cell soma and dendrites of all the hippocampal regions. Arrow head indicates 

the dendrites (apical dendrites); and the arrows show the somata. Scale bar: 20jam for 

CAl and CA3, 12-15pm for DG
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Figure 5.3: Effect of forskolin (50pM) and A23187 (5pM) on the expression of 

aCaMKII in the soma (a) and apical dendrites (b) of cells of organotypic hippocampal 

slices cultures. Immunocytochemistry analysis using anti-aCAMKII antiserum 

indicated a significant increase (*P<0.05 versus vehicle in the same region-100%, 

one-sample Wilcoxon signed rank test for the median) in the staining intensity of 

aCaMKII in the presence of A23187 in all the three regions of the hippocampus, DG, 

CA3 and CA l. Forskolin had no significant effect on the three regions of the 

hippocampus (P>0.05)
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Figure 5.4: Effect of rapamycin (20nM) on the expression of aCaMKII in both 

vehicle-treated and A23187-treated (5pM) soma (a) and apical dendrites (b) of cells in 

organotypic hippocampal slice cultures. The staining intensity levels of aCaMKII in 

the presence of A23187 were significantly increased in all three regions of the 

hippocampus in both vehicle and rapamycin pre-treated slices (*P<0.05 versus 

coiTesponding region after vehicle treatment in the absence of rapamycin). The 

intensity of staining of aCaMKII in presence of rapamycin/A23187 was significantly 

increased in all thiee regions of the hippocampus (+P<0.05 versus corresponding 

region after rapamycin pre-treatment alone -  ANOVA with post hoc Fisher’s test, 

F=2.15)
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Figure 5.5: Western blot analysis of the effect of forskolin (50pM) and A23187 

(5pM) on the expression of aCaMKII in organotypic hippocampal slice culture. 

Western blot analysis using anti-aCaMKII anti serum indicated no significant change 

in the levels of aCaMKII in the presence of A23187 (109.58±9.66% of the vehicle- 

100%, n=4, P>0.05, one sample Wilcoxon signed rank test for median) or forskolin 

(86.30±11.80%, n=4, P>0.05 one sample Wilcoxon signed rank test for median), 

figure a, upper panel and figure b. The PVDF membrane was stripped and reprobed 

with antibody that detects p-actin (figure, a, lower panel). Abbreviations: C- Control, 

A- A23187, F- Forskolin
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Figure 5.6: Effect of LTP on the expression of aCaMKII in acute hippocampal slices. 

Western blot assay using anti-aCaMKII antiserum indicated an increased in the levels 

of aCaMKII after 2.5 hours (111±18, n=3, P>0.05 versus 100%, one-sample 

Wilcoxon signed rank test of the median) and 3.5 hours (153±15, n=3, P>0.05 versus 

100%, one sample Wilcoxon signed rank test of the median).
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5.3 Discussion

Characterisation of aCaMKII antibody had been previously reported (McKee et al, 1990; 

Erondu et al, 1985; Kennedy et a l,  1983; Hendry et al, 1986). The antibody was shown 

to identify the purified alpha subunit of CaMKII in rats and to identify a single band of 

identical molecular weight in gels of rat brain homogenate. In protocols used in these 

studies, omission of the primary antibody eliminated immunostaining completely, 

aCaMKII is the major protein found in postsynaptic densities and constitutes some 2% of 

total hippocampal protein (Erondu et al., 1985; Kelly et al, 1984).

A variety of different experimental approaches have revealed the importance of CaMKII 

for the expression of synaptic plasticity in the hippocampus (Barria et al,  1997;

Fukunaga and Miyamoto, 2000). Increased levels of aCaMKII in the hippocampal CAl 

nemons ai'e sufficient to result in a sustained increase in the efficiency of afferent 

synapses (Pettit et al, 1994)

5.3.1 A23187

Results of these studies showed that an increase in the influx of Ca^”̂, using 5juM A23187, 

led to a significant increase in the staining intensity of aCaMKII in somas of DG (15 

±7% increase), CA3 (23±6% increase) and CAl (18±5% increase), sub-regions of the 

hippocampus (Figure 5.2 and 5.3a). Câ "̂  influx also increased aCaMKII immunostaining 

in dendrites (apical dendrites) of DG (18±3 % increase), CA3 (13±2% increase) and CAl
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(10±4% increase) (Figure 5.2 and 5.3b). This suggests that an increase in intracellular 

concentration of Ca^  ̂plays an important role in the expression of aCaMKII in both soma 

and apical dendrites of hippocampal sub-regions. This is the first time increased 

immimostaining of aCaMKII had been shown to be elevated in both soma and dendrites 

of CAB sub-region. These results might suggest that the intracellular signalling in the 

CAB region is similar to the CAl and DG regions. As with the DG and CAl regions, 

aCaMKII mRNA is present in the dendrites of CAB pyramidal cells. This may suggest 

that aCaMKII plays a similar role in relation to plasticity in the CAB region. Previous 

data had shown that the aCaMKII mRNA levels are elevated following plasticity in the 

cell bodies and dendrites in the DG (Johnston and Morris, 1995) and CAl (Roberts et al, 

1996; Ouyang et al, 1997; Ouyang et al, 1999), but no similar changes in aCaMKII 

mRNA in the CA3 region has been reported. Since, increased synthesis of proteins 

requires mRNA, it can be assumed that mRNA levels will also be distributed in both the 

soma and dendrites of CA3 region of the hippocampus.

Maintenance of LTP is said to be dependent on de novo protein synthesis (Krug et al, 

1984; Barzilai et al, 1989; Bliss and Collingridge, 1993; Huang et al,  1994; Frey et al, 

1996), but LTP2, which lasts up to 4 hours after initial induction (Abraham et al, 1993), 

is not dependent on de novo mRNA synthesis (Otani et al,  1989; Bliss and Collingridge, 

1993). This is reported to be true for the CAB region as well as the intensively studied 

DG and CAl. Therefore the increased aCaMKII expression detected here is consistent 

with aCaMKII playing a role in LTP maintenance. And, in dendrites the increased 

immunostaining of aCaMKII might be due to localised mRNA which regulates the
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synthesis of the aCaMKII (Morris, 1997) while in the soma increase aCaMKII 

expression can be attributed to mRNA elevation in the somata. This process of aCaMKII 

synthesis from dendritic and somata mRNA seems to be applicable to the CA3 region as 

well as the other hippocampal areas. Thus the aCaMKII synthesised from pre-existing 

aCaMKII mRNA in the CA3, might be required for the maintenance of LTP during 

LTP2.

One possible mechanism by which Câ "̂  influx stimulates aCaMKII synthesis is via 

phosphorylation of CPEB protein, which is present in the hippocampal dendrites (Wu et 

al, 1998). Wu et al, (1998) provided evidence that binding of CPEB protein to CPE 

sites located in the 3’-end of the RNA message for aCaMKII can stimulate its translation 

rate. CPEB is responsible for cytoplasmic polyadenylation-induced translation. The same 

method of Câ "̂  stimulation of hippocampal dendrites might also be applicable to the 

somas, since CPEB is distributed in the hippocampal neurons (Wu et al., 1998).

5.3.2 Forskolin

Elevation of cAMP levels using forskolin (50pM, adenylate cyclase activator) did not 

seem to elevate the levels of aCaMKII in either the soma or dendrites of DG, CAl or 

CA3 (Figure 5.2 and 5.3a, b). Studies have shown that cAMP is required for Mossy fibre 

LTP in the CA3 region (Weisskopf et al,  1994; Huang et al, 1994), but this requirement 

for LTP is achieved via activation of Câ *̂  sensitive-type I adenylate cyclase 

(neurospecific) and results in activation of PKA (Villacres et al, 1998). These results
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suggest that while elevated cAMP is required to initiate LTP in the CA3 region, it is not 

sufficient to induce elevated aCaMKII expression.

Western blot analysis suggested that an increase in Ca^  ̂influx might slightly elevate 

aCaMKII in the organotypic hippocampal slices (Figure 5.5a, upper panel and Figure 

5.5b), however these results did not reach statistical significance. An elevation would be 

expected as a result of stimulation of all the three regions of the hippocampus since 

immunocytochemistry results indicate an elevation in DG, CA3 and CAl regions. The 

lack of a significant change (P=0.091) suggests western analysis may be less sensitive 

than immunocytochemistry for detecting changes, or may reflect the smaller number of 

replicates in this experiment.

5.3.3 LTP induction

Studies were also carried out on acute hippocampal slices to investigate the effect of LTP 

on the expression of aCaMKII. The CAl region of the hippocampal slices was assayed 

2.5 and 3.5 hours after LTP induction, and the results appear to show an increase in the 

expression of aCaMKII after 3.5 hours. However, the data did not reach statistical 

significance (Figure 5.6). The levels of aCaMKII appeared to be more elevated after 3.5 

hours (53 ±15% increase) compared to 2.5 hours (10±17% increase). Since the 

immunocytochemistry results suggested a similar intracellular signalling in all three 

regions of the hippocampus, it can be proposed that the elevations resulting from LTP
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induction might also be applicable to CA3 region. The lack of statistical significance 

probably reflects the small number of replicates in this experiment.

These results are consistent with the general hypothesis that CaMKII is a target for 

calcium influx through activated NMDA receptors (Kennedy et al,  1983; Kennedy,

1989; L.A. Roberts et al, 1996), and in the CA3 region, there is evidence that Ca^  ̂influx 

contributes to MF LTP (Weisskopf et al,  1994). It has been suggested that this may 

occur via Câ "̂  permeable KA receptors (Huettner, 2001). Induction of aCaMKII may be 

a consequence of Câ '*' influx via this route. Other studies have shown that mossy fibre 

activity evokes Câ "̂  release from internal stores via group I mGluRs activation (Kapur et 

al, 2001), hence in this study the role of group I mGluRs cannot be ruled out.

5.3.4 Rapamycin

The next stage of these studies was to investigate the effect of a protein synthesis 

inhibitor, rapamycin (20nM), on the immunostaining of aCaMKII in the soma and 

dendrites of all the tlrree sub-regions of the organotypic hippocampal slices. As 

mentioned above the major target of rapamycin is mTOR. Tang et al,  2002 indicated the 

presence of mTOR and other translational signalling components in soma and dendrites 

in cultured rat hippocampal neurons using immunostaining and western blot analysis. 

Inhibition of mTOR by rapamycin at a dose of 20nM blocked LTP in CAl region (Tang 

et al, 2002). Rapamycin had no effect on basal levels of aCaMKII in soma and dendrites 

of DG, CA3 and CAl regions of the hippocampus (Figure 5.4a, b). A23187 increased the
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levels of aCaMKII irrespective of pre-treatment of slices with rapamycin, this increased 

expression occurred in both soma and dendrites of all the regions of the hippocampus. 

The increased levels of immunostaining of aCaMKII in both the soma and dendrites of 

the CA3 region of the hippocampus are not blocked by rapamycin, again suggesting a 

similar intracellular signalling pathway between CA3, DG and CA l. This might suggest 

that the stimulation of expression of aCaMKII might follow a rapamycin insensitive 

pathway. There are other pathways leading to increased translational efficiency that do 

not involve mTOR- for example the pVÔ *̂  ̂pathway, and these may be involved. 

Alternatively, this could be due to pre-translational modification resulting from mRNA 

stabilisation (Morris, 1997).

5.3.5 Summary

In summary, the data in these studies have implicated Ca^  ̂influx in the increased 

immunostaining of aCaMKII in all the sub-regions of the organotypic slice culture and 

this for the first time indicates there might be similar intracellular signalling for the 

regulation of aCaMKII expression between CA3 and the other regions i.e. DG and CAl. 

Elevation of cAMP levels in the hippocampus did not have a role in increasing the levels 

of aCaMKII in both the soma and dendrites of the hippocampus. Despite the reported 

dependence of LTP2 in CAl on activation of mTOR, rapamycin did not affect the Câ "̂ - 

dependent stimulation of aCaMKII expression, suggesting that other pathways are 

involved.
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Chapter 6 

Expression of MAP2

6.1 Introduction

MAP2 belongs to a family of microtubule-associated proteins. MAP2 is expressed in the 

nervous system and consists of isforms resulting from the alternative splicing of a pre- 

niRNA transcribed from a single gene (Neve et al., 1986; Shafit-Zagardo and Kalcheva, 

1998). There are two isoforms of MAP2 in the mammalian brain as already mentioned 

(refer to section 1.12). HMW MAP2 and LMW MAP2.

MAP2 mRNA has been associated with various forms of neuronal plasticity (Ferreira et 

al., 1990; L.A. Roberts et al, 1996). MAP2 cross-links microtubule and facilitates 

changes in dendritic architecture (Caceres et al, 1988; 1992; Dinsmore et al, 1991) 

making it an attractive candidate for enabling the synaptic re-modelling associated with 

LTP.

The I-LTP, which lasts around 3-6 hours (Abraham et al, 1993), is dependent on mRNA 

translation and is independent of transcription. One of the mRNA species affected during 

this intermediate phase is the MAP2 mRNA. Levels of MAP2 mRNA have been shown 

to be elevated after LTP induction, at least in the DG (Thomas et al,  1994; Jolinston and 

Morris, 1994) and CAl (L.A. Roberts et al, 1998) regions of the hippocampus, but it is 

not known yet if similar increases are observed in the CA3 region. The induction of LTP
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in CAl and DG is dependent on activation of NMDA receptors while in the CA3 region 

the induction is dependent on increased cAMP levels (Bliss and Collingridge, 1993). 

There is evidence to suggest that the increases in MAP2 mRNA levels are the result of 

post-transcriptional regulation of existing mRNA in dendrites local to the region of 

stimulation (Morris, 1997). This local increase in mRNA is then translated into elevated 

levels of MAP2 protein. The mechanisms that trigger the induction of LTP, via 

glutamatergic activation of NMDA receptors, resulting in enhancement of MAP2 mRNA 

levels are unclear.

Two major effectors of NMDA receptor activation are Ca^  ̂influx via activated NMDA 

receptors and cAMP via adenylate cyclase activation. Thus in this study, the effects of 

increased Câ "̂  influx or raised cAMP levels on the expression of MAP2 was 

investigated. The effect of a protein synthesis inhibitor, rapamycin, on the levels of 

MAP2 in both stimulated and un-stimulated slices was investigated. Rapamycin produces 

its effect via inhibition of a kinase, mTOR. Therefore, the effect of mTOR on the 

regulation of MAP2 expression was investigated.
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6.2 Results

6.2.1 Forskolin but not A23187 increases the expression of MAP2 in 

organotypic slice preparation

MAP2 antibody stained the neurons of all the sub-regions of the hippocampus and this 

staining was prominent in the soma and dendrites (Figure 6.1). Following the treatment 

of organotypic slices with forskolin (50pM) or A23187 (5pM) for 4 hours ( a time point 

at which protein expression is widely believe to occur, Abraham et al, 1993), the slices 

were fixed and ready for immunocytochemical analysis. Application of 50|xM forskolin 

(Huang et al, 1994) on the organotypic cultures resulted in a significant increase in the 

intensity of staining of MAP2 in the cell bodies (Figures 6.2d, e, f  and 6.3a) of 

hippocampal fonnation i.e. DG, CA3 and CAl. This significant increase in the intensity 

of MAP2 was also produced in the dendrites (Figures 6.2d, e, f  and 6.3b) of hippocampal 

formation. A23187 had no significant effect on the expression of MAP2 in both the soma 

and dendrites of DG, CA3 and CAl regions (Figure 6.3a and b).

6.2.2 Rapamycin decreases the basal expression of MAP2 with no obvious 

inhibitory effects on forskolin

Neurons in the organotypic hippocampal slice cultures were stained with antibody for 

MAP2, with staining prominent in the soma and dendrites (Figures 6.5a, 6.6a and 6.7a).
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Having established the importance of forskolin in the increased expression of MAP2, the 

effect of rapamycin (20nM) pre-treatment on the expression of MAP2 in both the 

presence and absence of forskolin was investigated. Slices were pre-treated with 

rapamycin for 30 minutes prior to application of forskolin. Intensity of staining of MAP2 

at basal level was significantly reduced in the soma and apical dendrites after 

pretieatment of slices with rapamycin in the hippocampal formation i.e. DG (22% and 

14% decrease in soma and apical dendrites respectively), CA3 (20% and 5% decrease in 

soma and apical dendrites respectively) and CAl (20%and 12% decrease in soma and 

apical dendrites respectively) (*P<0.05 versus 100% vehicle-treatment of corresponding 

regions) (Figures 6.5b, 6.6b, 6.7b and 6.8a and b). However, forskolin was still able to 

increase MAP2 expression in presence of rapamycin (~P<0.05 versus corresponding 

region after rapamycin pretreatment alone-ANOVA with post hoc, Fisher’s test) but to 

lesser extend than in the absence of rapamycin (*P<0.05 versus 100% vehicle-treatment 

of corresponding regions) (Figure 6.8a and b). These increases of MAP2 expression in 

presence of forskolin after rapamycin pre-treatment occurred in soma and apical 

dendrites of hippocampal formation (Figure 6.5c, 6.6c, 6.7c, 6.8a and b). The increases of 

MAP2 expression in rapamycin/forskolin treated somata was 17% in DG, 9% in CA3 and 

14%in CAl while in the apical dendrites these increases were 17%, 24% and 23% in DG, 

CA3 and CAl regions respectively.
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6.2.3 Western blot analysis show that forskolin but not A23187 increases 

the expression of MAP2

After application of either 5gM A23187 or 50pM forskolin for 4 hours, organotypic slice 

cultures were homogenised in ice-cold RIPA and were thus ready for western blot 

analysis. The MAP2 antibody recognised three iso forms of MAP2 (MAP2a/b, Mr 

280kKDa and MAP2c, Mr 70kDa). Forskolin significantly increase the expression of 

MAP2 (Mr 280kDa; 217±59% of vehicle, n=5, *P<0.05, one sample Wilcoxon signed 

rank test for median) (Figure 6.5a, upper panel and 6.5b). Expression of MAP2, Mr 

70kDa, was also increased in the presence of forskolin (150±43% of vehicle)(Figure 6.5a, 

upper panel and 6.5b), but the increase did not reach statistical significance. A23187 had 

no significant effect on all the iso forms of MAP2.

The PVDF membrane was stripped and reprobed with an antibody that detects p-actin 

(Figure 6.5a, lower panel).

6.2.4 Tetanus induced LTP dramatically increases the expression of MAP2 

in the CA1 sub-region of the acute hippocampal slice preparations.

Three tetanic stimulations were applied in the stratum radiatum of CAl region of acute 

hippocampal slices, followed by single stimulus every 30 seconds for 3.5 hours 

(Appendix, Figure 2). The CAl region was then removed and prepared for western blot
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analysis. The analysis indicated that the expression of MAP2 (280kDa) was elevated 

substantially after 3.5 hours (1063±515% of vehicle, n-3)(Figure 6.11a, upper panel and 

Figure 6.11b). MAP2 with molecular weight of 70kDa was not detected.

The blot was then stripped and reprobed using anti-P-actin antiserum which is used as an 

internal standard (Figure 6.11a, lower panel).
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Figure 6.1: Image of organotypic slice culture. The image indicates the three sub- 

regions of the hippocampus, DG, CA3 and CAl. The slice has undergone no drug 

treatment and has been stained to reveal immunoreactivity for MAP2. Scale bar: 

0.4mm
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Figure 6.2: Effect of forskolin (50pM) on the expression of MAP2 in cultured 

hippocampal neurons. Organotypic hippocampal neurons were stained to reveal 

immunoreactivity for MAP2 in DG (a, d), CA3 (b, e) and CAl (c, f). Organotypic 

slice cultures were treated 4 hours prior to fixation with either vehicle (a, b and c) or 

forskolin (d, e and f). Note that forskolin increased the staining intensity of MAP2 in 

both the cell soma and dendrites of all the hippocampal sub-regions. The arrow heads 

and arrows show the somata and apical dendrites respectively. Scale bar 20pm for 

CAl and CA3, 12-15pm for DG.
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Figure 6.3: Effect of forskolin (50pM) and A23187 (5pM) on the expression of 

MAP2 in the soma and dendrites (apical dendrites) of organotypic hippocampal slice 

cultures. Immimocytochemical analysis using anti-MAP2 antiserum indicated a 

significant increase (*P<0.05 versus vehicle-treatment in the same region, one-sample 

Wilcoxon signed rank test for the median) in the staining intensity of MAP2 in the 

presence of forskolin in hippocampal formation i.e. DG, CA3 and CAl. A23187 had 

no significant effect on the three regions of the hippocampus (P>0.05
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Figure 6.4: Western blot analysis of the effect of forskolin (50pM) and A23187 

(5pM) on the expression of MAP2 in organotypic hippocampal slice culture. Western 

blot analysis using anti-MAP2 antiserum indicated MAP2 with two different 

molecular weights (Mr: 280kDa and 70kDa respectively). There was a significant 

increase in the levels of MAP2 (Mr 280) in the presence of forskolin (216.9±59.10% 

of the vehicle-100%, n=5, P<0.05, one sample Wilcoxon signed rank test for median) 

and an increase in the levels of MAP2 (Mr 70) in presence of forskolin 

(149.20±42.70% of vehicle, n=5, P>0.05, one sample Wilcoxon signed rank test for 

median), figure a, upper panel and figure b. The PVDF membrane was stripped and 

reprobed with (3-actin (fig. a, lower panel) which indicated the concentration of 

proteins loaded into each well. Abbreviations: C- Control, A- A23187, F- Forskolin
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Figure 6.5: Effect of rapamycin (20nM) on the expression of MAP2 in DG region of 

organotypic hippocampal neurons. DG neurons in organotypic cultures were stained 

to reveal immunoreactivity for MAP2. Organotypic slice cultures were pre-treated for 

30 minutes with either rapamycin (b, d) or vehicle (a, c) followed by stimulation with 

50pM forskolin (c and d) for 4 hours prior to fixation. Note that rapamycin decreased 

the staining intensity for MAP2 in both cell soma and the dendritic region at basal 

levels (b) compared to vehicle (a), but had no effect on increased expression of MAP2 

in the presence of forskolin (d). The increased staining intensity in soma and dendrites 

of both vehicle/forskolin (c) and rapamycin/forskolin (d) were similar. The arrow 

heads and arrows show the somata and apical dendrites respectively. Scale bar: 12pm.
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Figure 6.6: Effect of rapamycin (20nM) on the expression of MAP2 in CA3 region of 

organotypic hippocampal neurons. CA3 neurons in organotypic cultures were stained 

to reveal iimnunoreactivity for MAP2. Organotypic slice cultures were pre-treated for 

30 minutes with either rapamycin (b, d) or vehicle (a, c) followed by stimulation with 

50pM forskolin (c and d) for 4 hours prior to fixation. Note that rapamycin decreased 

the staining intensity for MAP2 in both cell soma and the dendritic region at basal 

levels (b) compared to vehicle (a), but had no effect on increased expression of MAP2 

in the presence of forskolin (d). The increased staining intensity in soma and dendrites 

of both vehicle/forskolin (c) and rapamycin/forskolin (d) were similar. The arrow 

heads and arrows show the somata and apical dendrites respectively. Scale bar: 20pm.
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Figure 6.7: Effect of rapamycin (20nM) on the expression of MAP2 in CAl region of 

organotypic hippocampal neurons. CAl neurons in organotypic cultures were stained 

to reveal immunoreactivity for MAP2. Organotypic slice cultures were pre-treated for 

30 minutes with either rapamycin (b, d) or vehicle (a, c) followed by stimulation with 

50pM forskolin (c and d) for 4 hours prior to fixation. Note that rapamycin decreased 

the staining intensity for MAP2 in both cell soma and the dendritic region at basal 

levels (b) compared to vehicle (a), but had no effect on increased expression of MAP2 

in the presence of forskolin (d). The increased staining intensity in soma and dendrites 

of both vehicle/forskolin (c) and rapamycin/forskolin (d) were similar. The arrow 

heads and arrows show the somata and apical dendrites respectively. Scale bar: 20pm.
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Figure 6.8: Effect of rapænycin (20nM) on the expression of MAP2 in both vehicle 

treated and forskolin (50pM) treated soma and dendrites (apical) in organotypic 

hippocampal slice cultures. The staining intensity levels of MAP2 in the presence of 

forskolin were significantly increased in all three regions of the hippocampus in 

vehicle pre-treated slices (*P<0.05 versus corresponding region after vehicle 

treatment in the absence of rapamycin). Intensity of staining of MAP2 was 

significantly reduced in the presence of rapamycin/vehicle treatment in all three 

regions (*P<0.05 versus corresponding region after vehicle treatment in the presence 

of rapamycin). The staining intensity of MAP2 in rapamycin/forskolin treated slices 

was significantly different from rapamycin/vehicle treated slices in all three regions 

(~P<0.05 versus conesponding region after rapamycin pre-treatment alone- ANOVA 

with post hoc Fisher’s test, F=11.01, P<0.05)
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Figure 6.9: Effect of LTP induced in the Schaffer collateral/C A 1 synapses on the 

expression of MAP2 in acute hippocampal slices. Western blot assay using anti- 

MAP2 antiserum indicated an increased in the levels of MAP2 after 3.5 hours 

(1063±515%, n=3, P<0.05 versus 100%, one sample Wilcoxon signed rank test of the 

median), figure b and a, upper panel. The PVDF membrane was stripped and re

probed with an antibody to detect p-actin (figure a, lower panel).
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6.3 Discussion

The antibody for MAP2 has been previously characterised (Woolf et al, 1999; Lim and 

Halpain, 2000). The antibody recognises both the HMW MAP2a, b and LMW MAP2c 

isoforms which have a molecular weights (Mr) of 280kDa and 70kDa respectively in gels 

of rat brain homogenate. In procedures used, the exclusion of primary MAP2 antibody 

resulted in the elimination of immunostaining of organotypic hippocampal slices, 

suggesting that the signal derives from the primary antibody. In view of the specificity of 

this antibody for MAP2, this strongly suggests that the immunohistochemcial staining 

represents authentic MAP2. MAP2 isoforms have been shown to be localised in neuronal 

cell bodies and dendrites (Burgoyne and Gumming, 1983; Woolf et ai,  1999; Lim and 

Halpain, 2000).

Prolonged stmctural changes thought to be associated with LTP might be due to 

alteration in gene expression (Chang and Greenough, 1984; Lisman and Harris, 1993) 

and one of the possible candidates includes the MAP2 gene, since altered MAP2 

expression has been linked to morphological changes in neurons (section 1.12).

6.3.1 Forskolin

These studies aimed to investigate the effect of Câ "̂  influx and elevation of cAMP levels 

on the staining intensity of MAP2. The data indicates that the levels of staining intensity 

of MAP2 were significantly elevated on the stimulation of organotypic slice cultures with
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50pM forskolin (Figure 6.2d, e, f). These increases were prominent in the cell bodies of 

DG (19±7% increase), CA3 (13±4% increase) and CAl (15±7% increase) (Figure 6.3a). 

A similar result was also produced in the apical dendrites of DG (33±8% increase), CA3 

(12±5% increase) and CAl (18±6% increase) (Figure 6.3b). Therefore, the data suggests 

that the activation of adenylate cyclase (AC) by forskolin elevates cAMP levels which in 

turn increases the expression of MAP2 in the both the cell bodies and dendrites of DG, 

CA3 and CAl regions of the organotypic slice culture. Since the elevation occurred in 

whole hippocampal formation, it can be assumed that the intracellular pathways that 

increase MAP2 expression in CA3 region are similar to those in the CAl and DG. Thus it 

can be suggested that MAP2 plays a similar role in relation to plasticity in the CA3. It has 

been shown that LTP induction increases MAP2 expression in the DG and CAl (Roberts 

et al, 1998). The concentration of forskolin used here is known to induce LTP in the 

mossy fibre/CA3 synapses in acutely prepared hippocampal slices (Weisskopf et al, 

1994). Assuming the same is true in slice cultures, this is the first evidence that elevated 

MAP2 expression may be associated with plasticity in this region of the hippocampus.

Previous studies have shown that high frequency stimulation will result in increased 

levels of MAP2 mRNA in the CAl (Robert et al, 1998) and DG (Jolmston and Morris, 

1995; Roberts et al, 1998). The elevated mRNA will presumably be translated into 

corresponding MAP2 protein. It is therefore likely that the increased MAP2 protein in 

both the soma and dendrites of CA3 region of the hippocampus results from elevated 

MAP2 mRNA.
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Studies have shown that maintenance of LTP requires de novo protein synthesis (Krug et 

al, 1984; Barzilai et al., 1989; Bliss and Collingridge, 1993; Huang et al, 1994; Frey et 

al, 1996). However, the I-LTP, which last up to 4 hours after initial induction (Abraham 

et al, 1993) is not dependent on de novo mRNA synthesis (Otani et a l,  1989; Bliss and 

Collingridge, 1993). This can be suggested to be true for CA3 region as well as DG and 

CAl. Hence the increase in MAP2 expression is consistent with MAP2 playing a role in 

LTP maintenance. It can also be suggested that the increase in the immunostaining of 

MAP2 in dendrites might be attributed to localised dendritic mRNA which regulates the 

synthesis of MAP2 (Morris, 1997), while the increase in immunostaining of MAP2 in the 

soma might due to mRNA in the soma.

AC2 and AC4, isoforms of adenylate cycalse, have been shown to be expressed in the 

hippocampus formation and are co-localised with MAP2 (Baker et al,  1999). AC2 and 

AC4 have been labelled in the dendrites and cell bodies of DG, CA3 and CAl (Baker et 

al, 1999). Hence these two isoforms are likely to be involved in this effect. As 

mentioned above, elevation of cAMP levels as a result of AC activation results in MAP2 

elevation. Hence cAMP and PKA might act on the MAP2 mRNA via an unknown 

mechanism resulting in the elevation of MAP2 in the three regions of the hippocampus. 

cAMP and PKA have been shown to be essential for polyadenylation and translational 

activation of c-mos mRNA (Mailer and Krebs, 1998) and they are though to produce 

their effect via phosphorylation of an unknown target protein. This mechanism of 

activation might also be applicable to MAP2 mRNA.
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6.3.2 A23187

A23187 (5pM) had no significant effect on the staining intensity of MAP2 in both the 

ceil bodies and apical dendrites of hippocampal cultures suggesting that Câ "̂  might not 

play a role in the expression of MAP2 (Figures 6.3a and b). While MAP2 mRNA levels 

have been shown to be elevated following NMDA receptor stimulation (Roberts et al,

1998), via high frequency afferent activity, these results suggest that one of the other 

signalling pathways recruited by NMDA receptor activation is responsible for MAP2 

stimulation. The results with forskolin imply that AC activation would be sufficient to 

induce MAP2 expression. It may be that there are Ca^'^-independent routes to AC 

activation following high frequency afferent activity. Clearly, Câ "̂  is not the critical 

signalling intermediate for increased MAP2.

Western blot analyses were used in these studies to investigate the effect of 5pM A23187 

and 50pM forskolin on the expression of MAP2. In mammalian brain there are two 

isoforms of MAP2; a HMW MAP2a/b, Mr 280kDa and LMW MAP2c, Mr 70kDa. 

Forskolin appeared to increase the levels of ir HMW MAP2 and LMW MAP2 (Figure 

6.4a, upper panel and 6.4b). There was a significant increase in ir HMW MAP2 

(216±59% increase) but the increase in ir LMW MAP2 were not of statistical 

significance. These data support the immunocytochemical analyses, suggesting that an 

increase in cAMP levels appears to be important in the expression of MAP2 in 

organotypic cultures. The results did not clearly demonstrate a specific effect on either 

HMW or LMW MAP2.
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6.3.3 LTP

Western blot techniques were also used to investigate the effect of LTP in the CAl region 

of the hippocampus. The data indicated a significant increase in the levels of HMW 

MAP2, after 3.5 hour following tetanus stimuli (Figure 6.9a, upper panel and 6.9b).

HMW MAP2 was the only isoform detected since MAP2b is present throughout the 

development of the nervous system (Sanchez et a l , 2000) and MAP2a is mostly 

expressed in the adult brain (Sanchez et al, 2000). LMW MAP2 is expressed at only the 

early developmental stages (Sanchez et al, 2000). The animals used in these set of LTP 

experiments were mice whereas neonatal rats are used to prepare the slice cultures.

Since it was earlier shown that there was a similarity in the intracellular pathways 

regulating MAP2 expression in the three regions of the hippocampus, it can be assumed 

in this case that this increase in MAP2 might also occur in the CA3 region following high 

frequency stimulation as well as the DG particularly since CA3 LTP is dependent on 

elevation of cAMP levels.

Despite the fact that whole slices were used while only the CAl area was stimulated, the 

induction of MAP2 by high frequency stimulation was greater in this experiment than the 

induction when the whole slice culture was bathed in forskolin. This might imply a 

greater sensitivity of the mechanisms regulating MAP2 expression in the mice, or 

alternatively, it may suggest that other signalling pathways, other than Câ '̂  or cAMP, 

also contribute to MAP2 induction. A study investigating the effect of LTP in the CAl

135



Expression of MAP2

region in slice cultures, or the effect of forskolin in acute adult slices, would address this 

question.

6.3.4 Rapamycin

Rapamycin, an immunosupresssant, was used to investigate the regulation of MAP2 

expression in the tliree regions of organotypic hippocampal slices. After pre-treatment of 

the organotypic slices for 30 minutes with 20nM rapamycin, 50pM of forskolin (or 

vehicle) was applied for 4 hours to stimulate the slices. Rapamycin reduced basal 

expression of MAP2 in DG, CAl and CA3 regions in both soma cells and apical 

dendrites, however forskolin after rapamycin pre-treatment significantly increased the 

expression of MAP2 in these regions (Figures 6.5c, 6.6c, 6.7c, 6.8a and b). These 

increases in the expression of MAP2 were less than the effect of forskolin alone in the 

absence of rapamycin (Figure 6.8a and b)

Again the results highlight the similarity in the signalling pathways between CAl, DG 

and the CA3 of hippocampal formation in the presence of rapamycin. At basal levels the 

translation of MAP2 mRNA seems to follow the rapamycin-sensitive pathway, but after 

pre-treatment with rapamycin, the forskolin induction of MAP2 expression seems to 

follow a rapaniycin-insensitive pathway. Rapamycin as mentioned in the previous 

chapter (Chapter 5) inliibits the mammalian target of rapamycin (mTOR). mTOR kinase 

stimulates the translation of specific mRNAs via phosphorylation of (p70^^^)

(Figure 6.10). At basal levels, cAMP activation of PKA might result in PKA activation of 

PKB (Atk)(Filippa et al, 1999). PKB might then cause the activation of mTOR (Figure
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6.10). Therefore, in both the cell bodies and dendrites of DG, CA3 and CAl sub-regions, 

pre-treatment with rapamycin will inhibit the PKA-PKB-mTOR-p70^^^ pathway. If this 

pathway is involved in sustaining the basal expression of MAP2, this might result in the 

decrease intensity of MAP2 in all the sub-regions of the hippocampus. However, mTOR 

does not seem to be involved in the forskolin-induced elevation of MAP2 expression.

This clearly indicates that distinct signalling pathways are involved in controlling basal 

and plasticity-regulated expression.

During cAMP elevation via forskolin stimulation of AC, activation of PKA might 

directly activate p70^^^ resulting in increased translation (Cass et al,  1999) and hence 

increase MAP2 levels in both the cell bodies and dendrites. p70®^  ̂has been suggested to 

be important in LTP maintenance (Tskos et al, 2002). Therefore, two pathways might be 

involved in regulating the translation of MAP2 mRNA (Figure 6.10): one involving the 

PKA-PKB-mTOR-p70^^'^ and PKA-p70^^^ with the former pathway being dominant in 

the regulation of basal MAP2 and the latter pathway dominant in regulation of MAP2 

under activated conditions. PKA has been shown to directly activate p70®^^(Cass et al,

1999).

These results suggest that mTOR is not involved in the forskolin-induced elevation in 

MAP2 expression, despite evidence that rapamycin can reduce the magnitude of LTP 

(Tang et al, 2002). This may suggest that MAP2 is not one of the key proteins sustaining 

I-LTP, or alternatively as suggested above, that other pathways apart from Câ "̂  and
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cAMP contribute to the elevation of MAP2 expression during LTP. These hypothetical 

additional pathways may involve mXOR.

6.3.5 Summary

Even though the mechanism of induction of LTP in CAl and DG differ from that of 

CA3, intracellular signalling pathways that lead to the elevation of MAP2 levels appear 

to be similar in all the three regions of the hippocampus. cAMP elevation plays a more 

prominent role in the increased levels of MAP2, while Câ "̂  influx appears to have no 

effect at least in the organotypic hippocampal cultures. Two pathways seem to determine 

the expression of MAP2 in organotypic cultures; the rapamycin-sensitive pathway seems 

to control the basal levels of MAP2 while under activated conditions the rapamycin- 

insensitive pathway seems to play an important role in increased MAP2 expression.
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Figure 6.10: Schematic diagram of the activation of mTOR (FRAP) and its effect on 

downstream translational factors. mTOR is activated by a number of effectors. The 

effect of PKB which is activated via PKA might explain the effect of rapamycin 

inliibition on the basal levels of MAP2. Direct activation of p70 by PKA might 

explain the lack of effect of rapamycin on the expression of MAP2 in forskolin- 

stimulated slices. Abbreviations: PI3K-Phosphoinositol-3-kinase; PDKl/2 - 3 ’- 

phosphoinositide-dependent protein kinase 1/2; PKB -Protein kinase B; PKA -  

cAMP-dependent protein kinase.
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Chapter 7 

Expression of p-actlvin

7.1 Introduction

Using substractive hybridisation techniques, the identities of genes that may play a role in 

activity dependent plasticity in vertebrate brain were determined (Yamagata et al, 1993, 

1994). One of the cDNAs identified in differential screen of stimulated rat hippocampus 

demonstrated close similarity to the terminal 3’ sequence of human p-A activin. Studies 

have also shown that activin (3-A mRNA are elevated in the DG during excitatory 

synaptic input such as high frequency stimulation (HFS) which induces LTP (Andreasson 

and Worley, 1995; Inokuchi et al., 1996) and this elevation is dependent on NMD A 

receptor activation. Therefore, activin plays a role in the maintenance of neural plasticity 

(via enhancement of neuronal survival) in the adult rat brain (Inokuchi et a l, 1996) and 

developmental neuroplasticity (Andreasson and Worley, 1995). The I-LTP lasting 4 

hours (Abraham et a l, 1991) is dependent on de novo protein synthesis and will be of 

interest to find out if activin |3-A expression is elevated at this phase.

In this study, the effect of Ca^  ̂influx and cAMP elevation was investigated in the CAl 

and CA3 sub-region of the organotypic hippocampal slice cultures. Elevation of Ca^  ̂and 

cAMP as already mentioned are major consequences of NMD A receptor activation with 

Ca^  ̂entering via the activated NMDA receptor and cAMP activated by adenylate cyclase 

(AC).
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7.2 Method

The methods used in general were as described (Chapter 2) with the following 

modification:

After incubation of organotypic slice cultures, for 4-5 days, the slices were then 

stimulated for 4 hours with vehicle or A23187 and vehicle or forskolin. The slices were 

then fixed followed by addition of 3% H2O2 (to remove the endogenous peroxidase 

activity) for ten minutes. After 10 minutes the slices were washed in PBS and the process 

of immunocytochemistry started (please refer to section 2.7).

7.3 Results

7.3.1 A23187 and forskolin increase the expression of activin p-A in 

organotypic slice preparations.

The activin/inhibin antibody, which recognises the (3-A subunit of both activin and 

inhibin, was used to stain all the sub-regions of the organotypic slice cultures where the 

staining was prominent in the CAl and CA3 regions (Figures 7.1, 7.2 and 7.3). 

Application of A23187 (5pM) for 4 hours resulted in significant elevation of the staining 

intensity of activin p-A (the intensity of staining was measured after 4 hours). This
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significant increase in staining was in the CAl (*P<0.05 versus the vehicle treated slices, 

142 ±4% of vehicle, n=4)(Figure 7.3c and 7.4) and CA3 (*P<0.05 versus the vehicle 

treated slices, 123.7±11.9% of vehicle, n=4) (Figure 7.3d, 7.4) of the organotypic slice 

cultures. The data in this section represents both the cell bodies and apical dendrites of 

each of the regions investigated i.e. CAl and CA3.

Forskolin (50pM) produced a significant increase in the staining intensity of activin p-A 

when applied for 4 houi's prior to fixation. This significant increase in activin p-A was 

intense in the CAl (*P<0.05 versus vehicle treated slices, 113±5% of vehicle, 

n=7)(Figure 7.2c, 7.4) and CA3 (*P<0.05 versus vehicle treated slices, 123±6% of 

vehicle)(Figure 7.2d, 7.4). As with the A23187 data, the data for this study represents 

both the cell bodies and dendrites of the regions investigated. The significance was 

determined using the Wilcoxon rank test of the median with the data considered 

significant when the P<0.05.

The increase in expression of activin p-A after treatment with A23187 was significantly 

greater than that detected in forskolin-treated slices. However, this was the case only in 

the CAl region of the hippocampus (~P<0.05 versus forskolin-treated slices, one way 

ANOVA with post hoc Fisher’s test. Figure 7.4), there was no significant difference 

between the increase in A23187-treated cultured slices and forskolin-treated cultured 

slices in the CA3 region of the organotypic hippocampal slice culture.

142



Expression of p-activin

Figure 7.1; Image of an organotypic slice culture. The hippocampal slice was 

cultured 4-5 days prior to staining with an antibody for the p-A subunit of activin and 

inliibin protein. The antibody stained specifically the three sub-regions of the 

hippocampus i.e. DG, CA3 and CAl. Scale bar:0.4mm
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Figure 7.2: Effect of 50pM forskolin on the staining intensity of P-activin in 

organotypic slice cultures. The cultured neurons in the CAl and CA3 sub-regions 

were stained with an antibody for p-activin following 4 hour stimulation in vehicle (a, 

b) and forskolin (c, d). Note the increase in staining in the CAl (c ) and CA3 (d) in 

the presence of forskolin compare to the vehicle (a, CAl and b, CA3). Scale bar: 

100pm. Abbreviations: SO- Stratum Oriens; SP- Stratum Pyramidal; SR- Stratum 

Radiatum.
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Figure 7.3: Effect of 5pM A23187 on the staining intensity of p-activin in 

organotypic slice cultures. The cultured neurons in the CAl and CA3 sub-regions 

were stained with an antibody for p-activin following 4 hour stimulation in vehicle (a, 

b) and A23187 (c, d). Note the increase in staining in the CAl (c) and CA3 (d) in the 

presence of A23187 compare to the vehicle (a, CAl and b, CA3). Scale bar: 100pm. 

Abbreviations: SO- Stratum Oriens; SP- Stratum Pyramidal; SR- Stratum Radiatum.
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Figure 7.4: Effect of forskolin (50pM) and A23187 (5pM) on the expression of ir p- 

activin in CAl and CA3 sub-regions of organotypic hippocampal slices cultures. 

Immunocytochemistry analysis using anti-activin/inhibin antiserum indicated a 

significant increase (*P<0.05 versus vehicle treatment in the same region, one-sample 

Wilcoxon signed rank test for the median) in the staining intensity of activin/inhibin 

in the presence of A23187 and forskolin in CAl and CA3 sub-region of the 

hippocampal neurons. A23187 increased significantly the intensity of staining of 

activin/inhibin in the CAl sub-region when compared to forskolin-treated slices 

(~P<0.05 versus forskolin-treated slices in the same region using one way ANOVA 

with post hoc Fisher’s test).
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7.4 Discussion

The activin/inhibin p-A antibody used in this study had been previously chai’acterised 

(Otani et a l, 1998) where it was used in the immunohistochemical localisation of activin 

A in human endometrial tissues during the menstrual cycle and early pregnancy. The 

antibody recognises the p-A subunit of both activin and inhibin proteins; however inhibin 

levels have been shown to be up-regulated under ischemic insult (Soriano et a l, 2000) 

hence inhibin is only expressed during pathological responses.

7.4.1 A23187

In these studies, application of the Ca^  ̂ionophore (5pM A23187) caused a significant 

increase in the staining intensity of activin p-A subunit in the CAl and CA3 sub-regions 

of organotypic slice cultures. These immunocytochemical studies suggest that increases 

in the levels of intracellular Câ "̂  via calcium entry tlrrough the Câ "̂  pores are important 

in the elevation of activin P-A subunit. Câ '*' influx via NMDA receptors has been shown 

to elevate the expression of activin p-A mRNA in the DG (Inokuchi et a l, 1996). 

Therefore in these studies, under physiological conditions Ca^  ̂entry via NMDA 

receptors, at least in CAl, might cause the elevation of activin p-A. LTP induction in the 

CA3 region is NMDA receptor independent, but pre-synaptic Câ "̂  influx has been shown 

to be important in ME LTP. Hence in these studies an increase in intracellular Ca^  ̂in the 

pre-synapse might cause the elevation of activin P-A levels post-synaptically, via an 

activation of a process, most likely involving Ca^Vcalmodulin-regulated adenylate
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cyclase (AC) resulting in the enhancement of evoked transmitter release (Nicoll and 

Malenka, 1995). This could then increase the levels of cAMP resulting in the activation 

of PKA-mediated mechanisms (Weisskopf et a l, 1994). Thus, the A23187-induced 

increase in the activation of p-A activin expression in the CA3 region could reflect 

activation of PKA-dependent processes. However, it is more likely to reflect a direct 

action of Câ "̂  influx independent of PKA (General Discussion, section 8.3).

7.4.2 Forskolin

In the presence of the AC activator (50pM forskolin), there was a significant increase in 

the levels of activin P-A subunit in both CAl and CA3 regions of the organotypic slice 

cultures. This again shows the importance of elevation of cAMP, via AC activation, on 

the increased staining intensity of activin P-A subunit. In the CAl region, activation of 

type 1 AC might result in the elevation of cAMP in the post-synapse, the cAMP then 

activates PKA. The cAMP and PKA might act on the activin p-A mRNA via an unknown 

mechanism resulting in the elevation of activin p-A levels. Also, the increased cAMP 

levels due to forskolin might activated the same pathway as the one which results from 

Ca^  ̂influx i.e. Ca^VAC/cAMP/PKLA mediated pathway.

The increase in the activin p-A subunit immunostaining in the CAl region was greater in 

the presence of elevated intracellular calcium levels than following elevation of cAMP 

levels. This might suggest that Ca^’*' elevation is more potent in activation of activin P-A 

subunit than cAMP. However, dose-response studies have not been conducted, hence it is
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not known if either A23187 or forskolin effects are maximal -  only single concentrations 

were tested for each drug. Alternatively, Ca^  ̂might be acting independent of activation 

of ACl and that this effect is more powerful. These data also indicated that the 

intracellular signalling in the CAl and CA3 were similar when the organotypic slice 

cultures were stimulated by either increased intracellular Ca^  ̂or increase cAMP levels.

Studies have recently shown that the levels of activin p-A mRNA are rapidly and 

transiently induced in neurons of adult rat brain by excitatory synaptic input (Andreasson 

and Worley, 1995). In fact, activin p-A mRNA was elevated in the granule cells of the 

DG (Andreasson and Worley, 1995; Inokuchi et a l, 1996). Since there was an increase in 

the staining intensity of activin P-A in the CAl and CA3 in this study, it will be logical to 

assume that these increases are a result of increases in mRNA levels in the CAl and CA3 

similar to those in the DG. This also indicates for the first time that the induction of 

activin p-A also occurs in the CAl and CA3.

The organotypic slice cultures were stimulated for 4 hours, which, is time point broadly 

con'esponding to LTP2 (Abraham et a l, 1991). LTP2 has been shown to be dependent on 

de novo protein synthesis (Otani et a l, 1989; Bliss and Collingridge, 1993). Hence, in 

this investigation the expression of activin p-A might play a role in the maintenance of 

LTP in the CAl and CA3 regions of the hippocampus. In fact, activin p-A has been 

suggested to play a role in maintenance of LTP in the DG (hiokuchi et a l, 1996) and this 

maintenance is dependent on NMDA receptor activation. Since LTP induction in the 

CAl region is NMDA receptor dependent, it can be assumed that activin p-A has a role
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in LTP maintenance via NMDA receptor activation while in the CA3 region, activin p-A 

role in LTP maintenance might be via NMDA receptor independent. It can also be 

suggested that the increased levels of P-activin protein is a result of the presence of pre

transcribed p-activin mRNAs since LTP2 is independent of transcription. However, this 

remains to be investigated and the presence of activin mRNA has never been reported.

7.4.3 Summary

In conclusion, activation of activin P-A in the CAl and CA3 sub-regions of organotypic 

slice culture are affected by elevation of Câ '*’ and cAMP. These elevations result in an 

increase in the expression of activin p~A in both regions of the hippocampus. Thus 

activin P-A expression can be elevated by an appropriate stimulus in all three regions of 

the hippocampus. This may suggest that increased activin P-A expression plays a 

fundamental role in the process of synaptic plasticity, in'espective of the nature of the 

stimulus that triggers the plasticity.
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Chapter 8 

General Discussion

8.1 Aims of the Study

The aim of the thesis was to investigate in vitro the mechanisms regulating the activation

or expression of the following synaptic related proteins in the rat hippocampal slices:

(i) Pyk2 is non-receptor tyrosine kinase which has been shown to cause the 

activation src which then results in induction of LTP (Huang et ah, 2001),

(ii) Src is also a non-receptor tyrosine kinase which induces LTP via potentiation of 

NMDARs (Huang et a l, 2001),

(iii) MAPK plays a critical role in LTP induction via activation of CREB resulting in 

increase protein synthesis (Kanterewicz et a l, 2000),

(iv) aCaMKII is necessary and sufficient for LTP induction, and can, by itself, 

enhance the efficacy of synaptic transmission (Lisman et a l, 2002),

(v) MAP2 is important in prolonged structural changes that are associated with LTP 

(Sanchez et a l, 2000),

(vi) p-activin activation is a result of LTP induction (Inokuchi et a l , 1996).

Hence, these proteins have all been implicated in the induction and/or maintenance of

LTP in the hippocampus. Two major effectors of NMDA receptor activation, Ca^  ̂and

cAMP, are likely to play a major role in the activation of these plasticity-related proteins.

Although the elevation of activation or expression of these proteins has been studied

extensively in the DG and CAl prior to this study, little is known about the regulation of
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the activation or expression of these proteins in the CA3 region of the hippocampus. The 

present study provides insight into the regulation of these proteins in CA3 region.

In this study both organotypic hippocampal slice cultures and acute hippocampal slices 

were employed. The advantages and disadvantages of each technique are listed in table 

8 . 1.

8.2 Effect ofA23187 and Forskolin on hippocampus

Forskolin at 50pM concentration has been shown to induce both early and late phases of 

LTP in the CA3 region, with synaptic efficiency remaining elevated for up to 6 hours 

(Huang et al., 1994). Forskolin also induces LTP in the CAl region at this concentration 

(Huang et al., 1994). However, reportedly only the late phase can be induced by forskolin 

in the CAl region (Huang et a l, 1994). Forskolin was shown to completely occlude 

electrical stimulation induction of LTP in the CA3 region, and the action of forskolin was 

greatly reduced after LTP induced by electrical stimulation (Weisskopf et a l, 1994). This 

suggested that after LTP the action of forskolin and MF LTP interact in acute 

hippocampal slices. It should be noted that 50pM forskolin does not have any toxic effect 

as shown by long-term viability of slices after this treatment (Weisskopf et a l, 1994; 

E-uang et a l, 1994).

A23187 at concentrations of l-7pM has been widely used to increase the intracellular 

concentration of Ca^  ̂in cultured cells and tissue slices (Lev et a l, 1995). There have 

been no studies to investigate the effect of A23187 on LTP induction in the hippocampus,
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however Cobb and coworkers (unpublished observations) showed depolarisation in the 

CAl region of the hippocampus on the addition of A23187. At low concentrations 

(<7pM), A23187 does not have any toxic effects (Lev et a l, 1995; Siciliano et a l, 1996). 

In this study the exposui e of organotypic slice cultures to A23187 (5pM) for 4 hours did 

not affect cell viability as assessed by dendritic MAP2 staining. Therefore the effects of 

A23187 reported in this thesis are likely to be related to physiological and not 

pathological responses.

In the CAl and DG, induction of LTP resulted in the increase influx of Ca^  ̂via activated 

NMDA receptors (Bliss and Collingridge, 1993) while induction of LTP in CA3 resulted 

from elevation of cAMP (Weisskopf et a l, 1994). For most of the proteins monitored in 

this study, the mechanisms downstream of these triggers were shown to be similar in 

CA3, DG and CAl regions.

B.3 PyK2 phosphorylation

In this study Pyk2 activation, as a result of the elevation of intracellular Câ "̂  was 

achieved in both the CAl and CA3 regions of the hippocampus. This activation of Pyk2 

was probably mediated by PKM^ since the activation was blocked by a PKM selective 

inhibitor, chelerythrine. Increases in intracellular Ca^  ̂have been shown to activate PKC 

which in turn activates Pyk2 in the hippocampus (Siciliano et a l, 1996). Therefore in this 

study Pyk2 activation in the CA3 region of hippocampus might be achieved via a Câ '*’ 

proteolytic activation of PKC resulting in a catalytic fragment, PKM^. Another might be
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that presynaptic Ca^”̂ might play a role, this however, will not involve PKA activation 

since cAMP was shown to reduce Pyk2 phosphorylation. Since the intracellular 

signalling leading to Pyk2 activation is similar in both CAl and CA3, it can be suggested 

that Pyk2 is involved in the signalling events leading to synaptic plasticity in all regions 

of the hippocampus.

There was no success with the investigation of phosphorylated Src, because there were 

problems with obtaining specific staining with the antibody. Thus the probability of an 

association between Pyk2 and total Src was investigated as an alternative approach. An 

association between Pyk2 and Src was established, since Src was immunoprecipitated 

along with Pyk2, the presence of Src suggested an association between the two. However, 

there was no increase in the association between Pyk2 and after stimulation, hence it 

raises the possibility that there is no Src activation by Pyk2 after Ca^  ̂influx alone, and 

that some other signalling pathway activates Src. Most of the studies investigated the 

Pyk2-Src up-regulation of NMDARs in LTP (Ali and Salter, 2001) and it is worth 

mentioning at this point that direct contribution of Pyk2 and Src in LTP has not been 

tested in this study. In fact, direct involvement of the plasticity-related proteins in this 

study in LTP has not been monitored.

8.3 MAPK Phosphorylation

MAPK activation differed in CAl and CA3 regions of the hippocampus. Elevation of 

intracellular Câ '*' or cAMP resulted in the activation of MAPK in CAl with no effect in
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CA3. This suggests that there is a differential intracellular signalling in the two regions 

when p42 MAPK activation is involved. Therefore, Câ '*’ influx and cAMP elevation in 

the CAl region might involve the Ca^^/calmodulin dependent ACl and might be essential 

for p42 MAPK activation while in the CA3 region, Câ *̂  and cAMP are not essential for 

p42 MAPK activation. So, although cAMP elevation and pre-synaptic Câ "̂  influx are 

essential for LTP in the CA3 region (Weisskopf et al., 1994), activation of p42 MAPK 

might not be necessary for LTP in the CA3 region. Kanterewicz et al. (2000) showed that 

MF LTP in area CA3 did not require MAPK signalling and suggested that 

cAMP/PKA/Rapl/B-Raf/MEK pathway was involved in the activation of MAPK in the 

CAl region. Therefore, this data compliments work done by Kanterewicz et al. (2000), 

demonstrating that forskolin, which has been shown by many groups to induce LTP at the 

MF-CA3 synapses, fails to activate MAPK.

8.4 Expression of aCaMKil, MAP2 and ^-activin

Despite a difference in signalling (MAPK data), there were no differences in the protein 

induction detected (aCaMKII, MAP2 and p-activin) between the CA3, DG and CAl 

regions. However, the data implicated differential expression of aCaMKII and MAP2 

with increased Câ "̂  influx playing an important role in the expression of aCaMKII and 

the importance of elevated cAMP levels in the expression of MAP2. The expression of P- 

activin was increased as a result of either an increase in intracellular Câ "*" or cAMP 

elevation.

155



General Discussion

8.4.1 aCaMKII

A possible mechanism of activation of aCaMKII in the CA3 region might involve the 

pre-synaptic influx of Ca^  ̂which results in increased glutamate release via 

Ca^Vcalmodulin dependent ACL However, this might not be the case since cAMP 

elevations had no effect on aCaMKII expression. Since forskolin can induce elevated 

protein synthesis-dependent LTP in the CA3 region (Huang et a l, 1994), this might 

suggest that aCaMKII expression is not a key component of LTP2. Alternatively, while it 

is clear that 50pM forskolin induces LTP in acutely prepared hippocampal slices, this has 

not been shown for slice cultures. It is conceivable that MF LTP is not induced in these 

studies, and so a role for aCaMKII in LTP2 cannot be ruled out. However, the results 

clearly demonstrate that Câ "̂  influx is more important than cAMP for the regulation of 

aCaMKII at this time point. While the possibility was not tested in this study, it is 

conceivable that Pyk2 is involved in the pathways leading to increased aCaMKII 

expression. A23187, but not forskolin, activated Pyk2 in both CAl and CA3 regions, and 

a similar pattern was noted for the induction of aCaMKII. It would be of interest to test 

the ability of chelerythrine to attenuate the increased expression of aCaMKII after 

exposure to A23187.

8.4.2 MAP2

The mechanism of activation of MAP2 might involve increased activation of PKA.

MAP2 has been shown to be co-localised with AC2 and AC4 in both dendrites and cell
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bodies of the hippocampus (Baker et al., 1999). Both Ca^Vcalmodulin independent AC2 

and AC4 have been linked to certain forms of hippocampal synaptic plasticity (Baker et 

al, 1999). AC2 is thought to integrate inputs from multiple signalling pathways, while 

AC4 can act as a coincidence detector of paired Gs and Gi inputs. Hence, it is possible 

that there exist two (or more) parallel pathways involving cAMP that encode different 

forms of synaptic plasticity. MAP2, in this case, might be affected by these two types of 

adenylate cyclases in all the three regions of the hippocampus.

8.4.3 p-activin

Expression of p-activin might involve two independent processes. In the CA3 region, 

increased pre-synaptic Ca^  ̂influx results in increased transmitter release via activation of 

ACl. Therefore, in CA3 region, A23187 should always produce same effects as 

forskolin. However, that is not the case in MAP2 and also as already mentioned above 

A23187 has not been shown to elevate cAMP levels i.e. increased intracellular Câ  ̂ as 

result of the ionophore has not been shown to activate ACl either presynaptically or 

postsynaptically.

8,4.4 mTOR Kinase and expressions of aCaMKII and MAP2

This study also investigated the affect of mTOR kinase inhibitor on the translation of 

aCaMKII and MAP2 mRNAs. Rapamycin had no effect on the expression of aCaMKII
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or MAP2 (in activated hippocampal slices) in both dendrites and cell bodies of all regions 

of the hippocampus. Hence, the data suggests that translation of aCaMKII and MAP2 (in 

activated hippocampal slices) follows a rapamycin-insensitive pathway i.e. mTOR kinase 

does not play a role in the translation of these two genes. However, basal levels of MAP2 

were reduced in both dendrites and cell bodies in the presence of rapamycin, suggesting a 

rapamycin-sensitive pathway. The effect of rapamycin was similar in all three regions of 

the hippocampus, thereby re-enforcing the idea that the CA3 inti'acellular signalling 

pathway for induction of both aCaMKII and MAP2 is similar to those in CAl and DO.

8.5 Conclusion

The results of this study indicate that the factors regulating the expression of aCaMKII, 

MAP2 and p-activin and the phosphorylation of Pyk2 in the CA3 region are similar to 

those in the intensely studied DO and CAl regions. However these increases in protein 

expression/phosphorylation are differentially activated by the second messengers, Câ "*" 

and cAMP (table 8.2). Thus the Ca^^and cAMP-dependent pathways activated during 

synaptic plasticity may serve distinct functions by regulating discrete proteins during the 

various temporal phases of the response to stimulation. However, MAPK 

phosphorylation in the CA3 region was not affected by the modulation of Câ "̂  and 

cAMP. Hence, it will be of interest to investigate further the stimuli necessary for MAPK 

activation in the CA3 region.
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General Discussion

This general similarity in intracellular signalling is surprising, considering the distinct 

mechanisms involved in triggering LTP in the CA3 region. However, these are some of 

the first investigations of proteins changes in the CA3 region after plasticity-related 

stimulation. It seems likely that a great deal of commonality will be found in the 

mechanisms of late phase LTP in these regions.
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General Discussion

Advantages Disadvantages

Organotypic slice 

cultures

Tissue-specific cell connection

Preservation o f local neuronal circuits

with appropriate innervation pattern

Easy application of drugs

Applicable to studies lasting a number of

days

Used in studies lasting days

• Slice viability, slices were 

necrotic after few days.

• Enormous variation in terms of 

cell number and tissue stnicture

• Large number of slices required 

for statistical significance

• Organotypic cultures do not 

reflect in vivo physiology

Acute hippocampal 

slices

• Neurons, their synapses and part o f the 

circuitry in which they are involved are 

well preserved and viable and in mature 

state, so that interpretation of results is 

directly applicable to the adult brain

• Thickness of the slice, allows efficient 

entry of most pharmacological reagents

• Amount of nervous tissue allows for 

quantitative biochemistry

Not useful for time periods in 

excess of 4 hours due to slice 

deterioration

Table 8.1 List of advantages and disadvantages of both organotypic slices and acute 

hippocampal slices

1 6 0



General Discussion

Câ  ̂ionophore (A23187) PKA activation (forskolin) LTP

hippo DG CA3 CAl hippo DG CA3 CAl CAl

Pyk2

activation

MAPK

activation

NE NE

aCaMKII

expression

NE NE NE NE

MAP2

expression

NE NE NE NE

p-activin

expression

Table 8.2 Summary of the effects of A23187 and forskolin on the 

activation/expression of plasticity-related proteins. The effects were investigated in 

both acute (Pyk2 and MAPK activation) and organotypic (aCaMKII, MAP2 and p- 

activin expression) hippocampal slices. Abbreviations: hippo- hippocampus; NE- no 

effect
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Appendix

Methods for long term potentiation experiments.

(Author: Kara McNair)

Male ICR mice (5-lOwks) were deeply anaesthetised with lOOmg/kg intra-peritoneal 

(i.p.) injection of urethane in sterile saline until paw withdr awal reflexes were completely 

abolished. Cardiac perfusion was carried out by insertion of a 19G needle into the left 

ventricle and perforating the right atrium with sharp dissecting scissors. Approximately 

60mls of oxygenated (95% 02, 5% C02), ice cold (2-4°C), modified artificial 

cerebrospinal fluid (mACSF) of the following composition (in mM) NaCl 87, KCl 2.5, 

NaHCOs 25, MgS0 4  0.7, NaH2 ? 0 4  1.25, D-Glucose 25, Sucrose 75 and CaCh 0.5, pH

7.4 -  7.5 was perfused through the heart. Low NaCl containing ACSF was used to reduce 

passive chloride entry which has previously been suggested to be actively responsible for 

neurotoxicity during slice preparation. For details regarding the use of the above mACSF 

see (Mellor & Nicol, 2001; Rasmussen & Aghajanian, 1989). All the above procedures 

were carried out in accordance with current Home Office legislation. The brain was then 

rapidly excised and placed in fresh, ice cold, oxygenated mACSF. Horizontal brain slices 

(400pM thick) were prepared using a VT-1000s vibrating microtome (Leica, Cambridge, 

UK). Throughout the slicing procedure the brain and slices were held in a chamber 

containing ice cold mACSF. They were then transferred to a petri dish also containing ice 

cold mACSF where the hippocampus was dissected free from surrounding brain tissue
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and a cut placed through the CA3 region to prevent the occurrence of epileptifomi 

activity. The hippocampal slices were initially stored at 35*̂ C for 30 minutes in 

approximately 135mls of mACSF, then transferred to room temperature. The mACSF 

solution was gradually replaced (15mls every 15 minutes) with standard ACSF (sACSF) 

of the following composition (in mM): NaCl 124, KCl 3, NaHCOs 26, NaH2P0 4  1.25, 

MgS0 4  1, D-Glucose 10 and CaCh 2 (pH 7.4 -  7.5). Following complete changeover of 

ACSF solutions, individual hippocampal slices were held in a submerged recording 

chamber for 1 hour prior to electrophysio logical recordings. The slices were constantly 

perfused (flow rate l-2ml/min) with oxygenated, sACSF by means of a gravity fed 

system. They were maintained at a temperature of 28°C using a TC-20 temperature 

controller (Npi Electronics, Tamm, Germany).

Hippocampal slices were simultaneously stimulated with two bipolar stimulating 

electrodes (Nickel80/ chromium20 wire, 50pM thick). Placed field excitatory post 

synaptic potentials (EPSPs) were recorded using a standard walled glass electrode filled 

with sACSF. The micro electrodes were pulled on a horizontal Flaming-Brown P-87 

micropipette puller (Sutter Instruments Co., USA). Recording electrodes were mounted 

in electrode holders inserted into a digitimer head stage. The recording chamber and 

micromanipulators were supported on a steel plate which was itself mounted on an anti

vibration table (Wentworth Laboratories, UK). The recording chamber was a submerged 

chamber designed in house (IBLS workshop, University of Glasgow) into which a 

temperature probe (Npi electronic, Tamm, Germany) and a silver/ silver chloride
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reference electrode was placed. A rigid plastic mesh was also placed within the recording 

chamber onto which the slice was placed. All stimulating and recording electrodes were 

mounted on micromanipulators (Narishige, Japan). To enable the positioning of 

electrodes in the slice, the slice was viewed using an OPMIl Zeiss overhead, dissecting 

microscope.

Synaptic potentials were initially amplified 100 fold using a Neurolog system (Digitimer, 

England, UK). Secondary 20-fold amplification was carried out using a Brownlee 

Amplifier (Model 440, Brownlee Precision, CA, USA). Signals above 5kHz were filtered 

using a low pass filter. Extraneous 50Hz noise was removed using a Hum Bug device 

(Digitimer, England, UK). Signals were digitised using a Pico42 A-D (analogue -  digital) 

converter and captured on a Viglen Pentium III P.C. using the Bristol LTP software 

fwww■ Itn-nrogram.com: Anderson & Collingridge, 2001).

Stimulation of the CAl pyramidal cell apical dendritic layer {stratum radiatum) was 

earned out using an isolated constant current stimulator (model D52A, Digitimer, UK) (

0 -  32mA). The stimulation strength was gradually increased to produce and input/ 

output curve (I/O curve) measuring EPSP slope output against current input. The current 

that produced 50% of the maximum EPSP slope was subsequently used in the remainder 

of the experiment.

The hippocampal slices were stimulated once every 30 seconds and a 30 minute stable 

baseline recording was obtained. Following this, three tetanic stimulations (lOOhz, 0.2ms
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pulse width, 10 minute intertrain interval) were delivered which induced a potentiation of 

the field EPSP slope. Stimulations then returned to one every 30 seconds for the duration 

of the recordings. Long term potentiation of responses was recorded for approximately

2.5 to 3.5 hours. Control slices were maintained in a holding chamber for the 

corresponding length of time. At the end of the recording, slices were removed and 

placed on an ice cold microscope slide, where the CAl region was dissected. This region 

was then snap frozen in liquid nitrogen and stored at -80°CS for further analysis. Data are 

expressed as a percentage of baseline EPSP slope response and presented as a mean ± 

S.E.M. Data was collected using LTP software (Anderson and Collingridge, 2001), and 

analysed using Microsoft Excel and MicroCal Origin packages. N values refer to the 

number of times a particular experiment was performed, each in a different slice taken 

ft'om a different animal.
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Figure 1 : Induction of LTP in the CAl region of the hippocampus following 3 tetanic 

stimulations of lOOHz (three arrows). Note the increase in the excitatiory post-syanptic 

potentiation (e.p.s.p.) after application of tetanus. The potentiation remained elevated for 2.5 

hours after LTP induction.
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Figure 2: Induction of LTP in the CAl region of the hippocampus following 3 tetanic 

stimulations of lOOHz (three arrows). Note the increase in e.p.s.p. after application of tetanus. 

The potentiation remained elevated for 3.5 hours after LTP induction.

222


