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Abstract

Both Leishmania major and Trypanosoma brucei undergo a complicated 

developmental cycle involving insect vectors and a mammalian host, subjecting these 

parasites to dramatic changes in their environment.

It has been demonstrated that with some strains of T. brucei procyclic forms in 

culture, the amino acid proline is the favoured substrate for energy production. This 

correlates well with the normal environment of these forms in the tsetse fly, where flee 

proline is an abundant source of energy.

Proline utilisation requires two enzymes to convert proline to glutamate. In the first 

step, the oxidation of proline to pyrro line-5-carboxylate by proline dehydrogenase 

(PRODH) is coupled to the reduction of a cofactor, flavin adenine dinucleotide (FAD). In 

the second step, pyrroline-5-carboxylate is hydrolysed to give glutamic semialdehyde, 

which is oxidised by pyrroline-5-carboxylate dehydrogenase (P5CDH) to glutamate using 

the cofactor nicotinamide adenine dinucleotide (NAD^.

Proline dehydrogenase genes have been identified in T brucei and L. major. Both 

genes show significant homology to other eukaryotic proline dehydrogenase genes. Well 

conserved motifs, considered essential for the activity of the enzyme, are found in the 

predicted T. brucei and L. major protein sequences. As in other eukaryotes, the genes for 

the two enzymes (PRODH and P5CDH) involved in proline degradation are found in two 

different genomic locations, and encode two distinct polypeptides. In prokaryotes a single 

gene encodes both activities. A mitochondrial targeting motif present on the 

trypanosomatid enzymes, suggests that the mitochondrion is the subceUular localisation of 

this enzyme.

This study went on to analyse the role of proline dehydrogenase in the energy 

metabolism of T. brucei procyclic forms. Growth studies using defined media revealed that

i i



procyclic forms in vitro can use either proline or glucose as an energy source. Interestingly, 

proline dehydrogenase activity is repressed in cells exposed to abundant glucose and, 

under these conditions, proline transport is also lower than in trypanosomes grown in low 

glucose concentrations.

RNA interference was used to ablate proline dehydrogenase activity. These RNA 

interference experiments confirmed that the gene does encode the trypanosomal PRODH. 

Cells lacking this enzyme grew well in the presence of glucose but were unable to use 

proline as an energy source. Moreover, proline transport in this line also differed from that 

in wild type parasites. Proline could not be replaced by any other amino acid as an energy 

source in trypanosomes deprived of glucose. Even glutamate, which is an intermediate in 

the proline catabolic pathway, did not support growth.
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Chapter 1: Introduction

Chapter 1 

Introduction

1.1- Current situation of Trypanosomiasis and Leishmaniasis

1.1.1- Human African Trypanosomiasis

Human African Trypanosomiasis, or sleeping sickness, is a disease that is resurgent 

in sub-Saharan Africa. The name sleeping sickness is associated with the neurological 

consequences connected with the second stage of the disease when the parasites have 

invaded the central nervous system.

In 1895 Dr David Bruce correlated the presence of trypanosomes and the disease 

called Nagana in cattle. He also discovered the role of tsetse flies as vectors of 

Trypanosoma brucei in animals in Zululand (Smith et al., 1998). Two sub-species of 

trypanosome are responsible for Human African Trypanosomiasis (HAT), T. b. gambiense 

and T. b. rhodesiense. A chronic form of the disease is caused by T b. gambiense in west 

and central Africa and can take from months to years to result in death. A more acute form 

of the disease, predominantly found in East Africa, is caused by T. b. rhodesiense and can 

be lethal in only a few weeks (Welburn et al, 2001).

At the beginning of the 20*’’ century, a large incidence of HAT was reported. One 

million human cases with more than 250,000 deaths were reported in Uganda alone (Seed, 

2001). By the middle of the twentieth century, the incidence had been reduced as a 

consequence of control measures including chemotherapy, the use of insect vector control 

strategies, and the removal of animal reservoirs (WHO, 1998). The latter part of the 

twentieth century witnessed a decline in application of various control measures and HAT 

had begun to re-emerge. Over 300,000 patients were believed to be infected in 1998 

(WHO, 1998) with a possible further 60 million people at risk (Hide, 1999). 36 countries in
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sub-Saharan Africa are now affected and less than 7 % of the Afriean population is under 

surveillance for the infection (Figure 1.1).

AMcan Trypanosomiasis

Figure 1.1: Distribution of Human Afncan Trypanosomiasis
From http://www,who.int/emc/diseases/try

T. b. brucei, T. congolense and T. vivax cause similar diseases in eattle and other 

domestic animals. This has enormous economic consequences since animal 

trypanosomiasis is responsible for an estimated three million livestock deaths per year 

(Kuzoe, 1993; Hide, 1999).

http://www,who.int/emc/diseases/try
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1.1.2- Leishmaniasis

The Leishmaniases are a complex of diseases caused by species of the genus 

Leishmania. The genus Leishmania, belonging to tlie family Trypanosomatidae, are 

flagellates that occur as intracellular amastigotes in vertebrate hosts and as flagellated 

promastigotes in invertebrates and in in vitro culture at 25 *’C. Leishmaniasis is endemic in 

areas of the tropics, subtropics and southern Europe. There are about 21 Leishmania 

species, which cause visceral leishmaniasis or Kala-azar (e.g. L. donovani, L. infantum in 

the old world and L. chagasi in the new world), cutaneous leishmaniasis (e.g. L. major and 

L. tropica in the old world and L. mexicana in the new world) and mucocutaneous 

leishmaniasis (e.g. L. hraziliensis). The mode of transmission of these parasites occurs 

through a sandfly vector. Approximately 15 million people are infected with leishmaniasis 

worldwide with 350 million people at risk in over 88 endemic countries (WHO, 1998; 

Herwaldt, 1999) (Figure 1.2).
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1.2- Taxonomy

The genus Trypanosoma and the genus Leishmania both belong to the order 

Kinetoplastida. All Kinetoplastida possess an organelle termed the kinetoplast. It can be 

distinguished by light microscopy as a small, usually round or oval body, which stains 

similarly to a nucleus, and is situated near the base of the fiagellum. Electron microscopy 

revealed that the kinetoplast is an unusually large mass of circular mitochondrial DNA, 

contained within the single mitochondrion (Shlomai, 2002). DNA is found in the 

mitochondria of many other organisms, but the Kinetoplastida have a quantity exceeding 

that of other cells.

Ôrîl«ï' Sub»rd»r
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tchiyobddo

GryptebHdae
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Crypt obla 
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Figure 1.3: Taxonomy of Kinetoplastida (from; http://www.dbbm.frocruz.br/www-

mem/963/4213hm.html)
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There are two suborders within the Kinetoplastida, the Bodonina and the 

Trypanosomatina (Figure 13). Many organisms of the order Bodonina can be 

distinguished from Trypanosomatina by having more than one fiagellum (Vickerman, 

1994). Among the trypanosomatids there are eight different genera, which form the family 

Trypanosomatidae and contain parasites pathogenic for humans and other mammals. The 

agents of sleeping sickness {T brucei subspecies) and the agent of Chagas ’ disease {T 

cuzi) are members of the same genus. Trypanosoma.

The genus Trypanosoma is subdivided into two groups

- Salivaria (where parasites develop into mammal-infectious forms in the salivary glands 

of the insect vector and are transmitted m saliva) including T b. gambiense and T. b. 

rhodesiense responsible for the sleeping sickness in humans and T b. brucei, T. vivax, 

T. congolense, and T  evansi which are responsible for different diseases in animals.

- Stercoraria (where parasites develop into mammal-infectious forms in the hindgut of 

their insect vector and are transmitted in faeces). T cruzi is the principal parasite of this 

group and causes Chagas ’disease.

There are more than 24 known species of trypanosome and evolutionary studies based 

on molecular biology support the idea of a common ancestor for all trypanosomes 

(monophyly) (Stevens and Gibson, 1999; Momen, 2001).

T. brucei includes subspecies that infect humans {T. b. rhodesiense and T b. 

gambiense) and those that infect animals only, T b. brucei. These three species cannot be 

morphologically distinguished (Vickerman, 1969), but are different at the molecular level; 

they can be distinguished by isoenzyme analysis (Gibson, 2002) and using selective DNA 

probes.

The divergence of the salivarian clade can be related to the isolation of Africa from the 

other continents 100 millions year ago. The T. brucei clade consists only of "African
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mammalian tsetse transmitted species" and is unrelated to amphibian and reptile 

trypanosomes.

Trypanosomatids also include the genus Leishmania, which are responsible for human 

diseases such as visceral, cutaneous, mucocutaneous, and diffuse cutaneous leishmaniasis. 

The separation of the African continent from the American continent can also explain the 

divergence of old and new word Leishmania as well as T. brucei from T. cruzi (Stevens 

and Gibson, 1999).

1.3- Life cycles

1.3.1- T. brucei

Classical descriptions of the T. brucei life cycle refer to distinct morphological 

stages identified by shape, the position of the kinetoplast in relation to the nucleus, and the 

extent of the flagellar apparatus. The most striking changes occur in the mitochondrial 

system and in the surface membrane of the parasite (Vickerman, 1969) (Figure 1.4).
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In the insect, the trypanosomes undergo a complex developmental cycle. Parasites 

ingested in blood from an infected mammal develop first in the insect midgut. They
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elongate into procyclic forms (PCF) and multiply by binary fission. Procyclic development 

is reportedly associated with a switch from the utilisation of glucose to the utilisation of 

pro line as the principal energy source (Vickerman, 1985). In flies, parasites invade the 

salivary glands. Once in the salivary glands, they transform into epimastigotes and 

continue to divide by binary fission. In the midgut, the parasites cover their surface with a 

coat of procyclin (also named PARP for Procyclic Acidic Repetitive Proteins (Roditi et ah, 

1998), which represent the products of a family of polymorphic genes (Mowatt and 

Clayton, 1988). The variable surface glycoprotein, VSG, is lost. In procyclic forms, the 

mitochondrion is more extensively developed than in the mammalian stages (Vickerman, 

1985).

Two to three weeks after the infective feed, the epimastigotes become free in the 

lumen of the salivary gland and undergo transformation into metacyclic trypomastigotes. 

These infective forms are injected with the fly saliva into the next mammal on which it 

feeds (Neva and Brown, 1994). The biting tsetse fly deposits metacyclic trypanosomes in 

the dermal connective tissue of the mammalian host, which leads to the development of the 

chancre. The metacyclic trypomastigotes change into the more elongated bloodstream 

forms (BSF) (long slender forms) and divide by binary fission with a doubling time of 

about 6 hours in the bloodstream (Vickerman, 1985). These forms undergo antigenic 

variation (Turner, 1999). This phenomenon involves the variation of the surface coat VSG, 

in order to avoid the immune system of the host, resulting as a fluctuation of the 

parasitemia in the bloodstream (Barry and McCulloch, 2001). The parasites do not enter 

host cells but are at first restricted to the subcutaneous tissue fluid around the site of the fly 

bite. During the next few days the parasites spread throughout the host b lymphatic and 

blood systems. Later, the trypanosomes penetrate the central nervous system (CNS). Here, 

too, they remain extracellular.
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T. brucei in the bloodstream are pleomorphic. The trypanosomes which divide in 

the mammalian host are long slender individuals, with a long fiagellum that extends 

beyond the anterior end of the cell. After a few days, shorter, more stumpy forms develop, 

with the fiagellum extending only a little beyond the anterior end of the cell. These stumpy 

forms, which do not divide in the mammalian host, are those destined to continue the life 

cycle after l>eing ingested by a tsetse fly, in which they elongate into the PCF, the long 

slender forms being destroyed in the midgut of the fly (Matthews, 1999). Stumpy forms 

appear to be biochemically pre-adapted to life in the fly.

1.3.2- Leishmania

The life cycle of Leishmania species alternates between a vertebrate and an insect 

host (Figure 1.5). The natural reservoir hosts, besides humans, include the domestic dog 

and a variety of wild mammals. The parasites exist in two principal forms: amastigotes in 

their mammalian hosts, and promastigotes in their insect vectors. The vectors are small 

Dipteran insects commonly known as sandflies of the genus Phlebotomus (Old World) and 

Lutzomyia (New World Leishmaniasis). Only the females feed on blood.

10
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Figure 1.5: Life cycle of Leishmania
From http://www.wehi.edu.au/media/images/leishmania_cycle

Amastigotes are avoid forms, with virtually no fiagellum. These are ingested by 

macrophages as part of the phagocytic activity. Instead of being destroyed, the protozoa 

apparently resist the lysosomal enzymes released into the phagolysosome; they then 

multiply by binary fission within the macrophages (Bates and Tetley, 1993). When an 

infected macrophage dies, the liberated protozoa are ingested by other macrophages.

11
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Infected macrophages in the blood or skin are ingested by phlebotomine sandflies. In the 

midgut of the vector, the protozoa emerge from the macrophages and transform into 

promastigotes (Bates and Tetley, 1993). Promastigotes are elongated, flagellated forms 

with the kinetoplast and flagellar basal body near the anterior end. No sexual cycle is 

known, both forms reproducing by binary fission, though evidence suggestive of genetic 

exchange has been reported (Neva and Brown, 1994). Approximately ten days after first 

ingesting the protozoa, when the insect again attempts to feed, many metacyclic 

promastigotes are injected into the host k skin. Here they are phagocytosed by 

macrophages and, after reverting to the amastigote form; they commence dividing (Sacks, 

1989).

1.4- Disease

1.4.1 - African Trypanosomiasis

Human sleeping sickness is an extremely debilitating disease and is characterized 

by two distinct phases: early and late. Following the Tsetse fly bite, trypanosomes 

proliferate in the host bloodstream and undergo antigenic variation to evade the immune 

system.

In the early stage of the disease, after development of the chancre, infection of the 

blood and lymph systems results in a more or less acute febrile illness. Symptoms of this 

early phase (nausea, fever and lethargy) are non-specific. More serious effects result from 

the penetration of the parasites into the CNS. In the late phase, trypanosomes cross the 

blood-brain barrier and can be found in neural tissue and cerebrospinal fluid (Enanga et a l,

2002). Subsequent neural damage and host reactions cause the classical symptoms of 

sleeping sickness: disruptions of biological rhythms, inappropriate and irregular sleep

12
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patterns, and loss of concentration and coordination. The late stage is reached within weeks 

with T. b. rhodesiense or years with T. b. gambiense, after the initial infection (Smith et aL, 

1998). Once in the brain, the outcome of the inflammatory process (meningoencephalitis) 

is brain damage leading to somnolence, coma, and unless treated, death in almost all cases.

1.4.2- Leishmaniasis

As implied by the term Visceral leishmaniasis”, macrophages infected with L. 

donovani, L. infantum and L. chagasi congregate in the viscera, notably the spleen and 

liver. These organs become hugely enlarged, and their fiinctions are progressively 

impeded. Unless it is treated, the disease is invariably fatal (Herwaldt, 1999). L. tropica, X. 

major and L. mexicana cause only one or a few lesions at the site of the infected bite on the 

skin of their mammalian hosts. In humans the disease is limited to the cutaneous tissues 

and occasionally to the mucous membranes (Weigle and Saravia, 1996). L. brasiliensis is 

capable of causing mucocutaneous lesions in humans (Muller and Baker, 1990).

1.5- Treatment

1.5.1- African trypanosomiasis

In the early stage of African sleeping sickness, before invasion of the central 

nervous system, the disease is usually curable, the most commonly used drugs are Suramin 

or Pentamidine. In the late stage, treatment is less successful and is based on the rather 

toxic organic arsenical compound Melarsoprol or Difluoromethylornithine (DMFO) 

(Barrett a/a/., 1999).

13
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Suramin

This drug was introduced in 1922. It is a sulfonated naphthylamine, which is 

negatively charged, at physiological pH. Its mode of action is poorly understood, being an 

inhibitor for various enzymes (Pepin and Milord, 1994). It is generally considered to be the 

drug of choice for the early stages of T. b. rhodesiense. Due to its structure, suramin cannot 

pass through a lipid bilayer membrane, so it cannot pass the blood brain barrier. It is 

believed that suramin enters the parasites by binding to serum proteins that enter the 

trypanosome by endocytosis (Coppens and Courtois, 2000). Renal toxicity is the most 

common side effect of this drug.

Pentamidine

Pentamidine is an aromatic diamidine used to treat the early stages of T. b. 

gambiense infection for the past 50 years (Kuzoe, 1993). The drug concentrates inside the 

parasites through active transporters, the P2 transporter and at least two other transporter 

systems (de Koning, 2001). The mode of action is not fully understood but pentamidine 

has been shown to inhibit the synthesis of polyamines (Bitonti et ah, 1986) or to bind DNA 

(Edwards et ah, 1992). Hypotension, hypoglycaemia and nausea are the main side effects 

of this drug.

Melarsoprol

Melarsoprol was first synthesised by Friedheim in 1949. Melarsoprol is lipophilic 

and can cross the blood-brain barrier and cure the late stage disease of T. b. gambiense and 

T. b. rhodesiense (Keiser and Burri, 2000). It can also enter the trypanosomes via the 

active P2 transporter (Carter et at, 1999). The mode of action of this drug is not known yet

14
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(Stich et al, 2003). Its inhibition of glycolytic enzymes has been suggested as a possible 

mode of action (Denise et al, 1999). As an organic arsenical, this drug is highly toxic for 

humans. Adverse effects such as cutaneous reaction, diarrhoea and fever are common 

(Kuzoe, 1993). The most severe reactions are encephalopathic syndromes occurring in 5 to 

10 % of cases (WHO, 1998), which are lethal in 1 to 5 %. Resistance to melarsoprol 

appears to be an increasing problem (Keiser et al, 2000; Enanga et al, 2002).

Eflornithine or DFMO

This drug was introduced in 1990. It inhibits ornithine decarboxylase leading to the 

inhibition of polyamine synthesis, which is essential for the proliferation of the cells 

(McCann et al, 1986). This drug is used against early and late stage T. b. gambiense. 

DFMO is not effective against Rhodesian sleeping sickness (Wang, 1995). Trypanosomes 

treated with DFMO appeared to be non-dividing, short stumpy forms, incapable of 

changing their VSG coat (probably due to the decrease of putrescine and spermidine). 

They are then obliterated by the host immune system. This drug has few side effects but is 

difficult to produce and is very expensive.

1.5.2- Leishmaniasis

First line chemotherapy against leishmaniasis is mainly dependent upon 

pentavalent antimonials, including sodium stibogluconate or meglumine antimonate; a 

prolonged course may be necessary. Prolonged treatment can be associated with side 

effects such as body aches and fatigue (Herwaldt, 1999). The mode of action is not clear 

but the accumulation and retention of antimony by macrophages are important factors. 

Pentamidine can be used if antimonials are not effective (Amato et al, 1998). In L. 

donovani, pentamidine is a competitive inhibitor of arginine transport. Resistance to

15
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pentamidine has been described and can be due to the laek of accumulation of the drug in 

the mitochondrion because of a decrease in mitochondrial membrane potential (Basselin et 

al., 2002). Amphotericin B is another drug that has been used in Europe where resistance 

to other drugs occurs (OlHaro and Bryceson, 1993).

Antimonial drugs are toxic and drug resistance in many areas renders parasites 

unresponsive to these drugs (Ouellette and Papadopoulo, 1993). Pentamidine is expensive, 

toxic and causes hypotension and hypoglycaemia. Amphotericin B has lower toxicity but is 

even more expensive. Recently a new compound, miltefosine, has been registered for use 

against leishmaniasis, it inhibits various enzymes of cell signalling pathways (Seifert et aL, 

2003).

The ehmination of natural reservoirs of this disease such as livestock, dogs and 

rodents has been used as a control strategy. Vaccines against Leishmania have not been 

successM due to the complexity of the immune response caused by the parasite 

(Handman, 1997; Bray et al, 2003; Daneshvar et ah, 2003).

1.6- Morphology

1.6.1- Plasma membrane

African trypanosomes are flagellated protozoa. They measure approximately 1 5 x 4  

pm. The plasma membrane encloses the cell and is essential to separate the cytosol from 

the extracellular medium. There is a flagellar pocket in all trypanosomatids, which appears 

as a depression of the membrane at the anterior region of the cell where the fiagellum 

emerges. The pocket is the site where endocytic and exocytic exchanges occur with the 

external environment (Overath et aL, 1986). The plasma membrane is composed of 

phospholipids, cholesterol and glycolipids forming a bilayer. The membrane also contains

16
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different proteins. In bloodstream and metacyclic forms, the parasite surface is composed 

largely of a single protein termed the variant surface glycoprotein (VSG), which protects 

the parasites from the hostfe immune defence (Vickerman, 1969). VSG synthesis is 

repressed when the parasite enters the fly (Vickerman et al, 1988).

Other proteins present in the plasma membrane include transporters, which allow 

specific incorporation of nutrients, ions and other metabolic components into the cells. A 

number of different mechanisms allow a molecule to cross the plasma membrane. Non 

polar molecules cross the membrane by simple diffusion, whereas various polar molecules, 

such as ions or amino acids, use specific transport proteins or channels present in the 

membrane.

Passive transport is accomplished by the thermodynamic necessity of molecules to 

accumulate down a concentration gradient through channels and some carriers. 

Equilibrium is reached when the free concentration of the diffusing substance is the same 

on both sides of the membrane. Facilitated diffusion transport systems are saturable 

according to classical kinetic precepts.

Active transport enables a cell to transport substances against a concentration gradient. 

This phenomenon is coupled to a metabolic energy source. Most transporter protein can be 

characterised by two kinetics values, the Vmax and the Km. These parameters can be derived 

from experiments, in which rates of enzyme reaction are determined at different substrate 

concentrations, provided that the transporter obeys Michaelis-Menten rules. The values for 

Vmax and Km can be determined from a hyperbolic plot of initial velocity versus substrate 

concentration. Km is the constant describing the concentration of substrate at which half 

maximal velocity (Vmax) is observed. Vmax is the maximal rate of uptake by the transporter.

17
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1.6.2- Glycosomes

Glycosomes are membrane-bound cytoplasmic structures. They are termed 

glycosomes because most of the glycolytic enzymes involved in the conversion of glucose 

to 3-phosphoglycerate are present in this organelle (Opperdoes et aL, 1984; Michels et aL, 

2000). Glycolytic enzymes isolated from the glycosome of trypanosomes frequently have 

an isoelectric point that is higher than the same enzymes in mammals (Souto-Padron and 

De Souza, 1979). T. brucei BSF, where the mitochondrion is poorly developed, have a 

large number of glycosomes (~ 250 glycosomes) (Opperdoes et aL, 1984), Conversely the 

PCF have well-developed mitochondrion but contain only -5 0  glycosomes (Soares and De 

Souza, 1988). Glycosomes occupy approximately 9 % and 2.4 % of the cell volume in BSF 

and PCF, respectively (Bohringer and Hecker, 1975). In Leishmania amastigotes they 

comprised 1 % of the total cell volume (Coombs et aL, 1986).

Several pathways (other than glycolysis) can be found in glycosomes. These 

include enzymes involved in p-oxidation of fatty acids and pyrimidine biosynthesis 

(Michels et al, 2000). Glycosomes do not have a genome; the proteins found in this 

organelle are nuclear-encoded and post-transcriptionally imported. Glycosomes are related 

to other microbodies such as peroxisomes and glyoxisomes in other eukaryotes.

1.6.3- Mitochondrion

Trypanosomes possess a single mitochondrion with its own genome. The DNA is 

condensed into a series of intercatenated circular molecules and forms the kinetoplast, 

representing 10 to 20 % of the total DNA of the cell. The form of the mitochondrion can 

change drastically between the different stages of the life cycle of the trypanosomes. The 

BSF of T. brucei possess a poorly developed mitochondrion composed of a single canal
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lacking inner membrane foldings (Vickerman, 1985). In these forms, a functional Krebs 

cycle is absent as well as a classical respiratory chain (Vickerman, 1969). In PCF, the 

mitochondrial system is transformed into a network of canals consisting of inner 

membrane foldings. In this stage the Krebs cycle is functional (Tielens and van 

Hellemond, 1998) or partially functional (van Weelden et al, 2003) and they possess a 

fimctional respiratory chain (Clayton and Michels, 1996). The mitochondrion occupies 3.3 

% and 19.5 % of the cellular volume in bloodstream and procyclic stages, respectively 

(Bohringer and Hecker, 1975).

In spite of the fact that the mitochondrion has its own genome, most of the proteins 

present in this organelle are encoded by nuclear genes and synthesised in the cytoplasm. 

The majority of these are transported into the mitochondrial matrix but some of them are 

targeted to the intermembrane space or linked with the inner or outer membrane of this 

organelle. The current view is that there is a long targeting sequence on mitochondrial 

proteins that carries them to the correct location in the mitochondrion after their synthesis 

(Omura, 1998). Most proteins travelling firom the cytosol to the mitochondrion share a 

common motif that is recognising by a mitochondrial outer membrane receptor. A group of 

20-40 positively charged amino acids interspersed with some hydrophilic ones such as 

serine or threonine at the N-terminus of the protein constitutes the mitochondrial targeting 

sequence (MTS) (Nielsen et al., 1996; Nielsen et al, 1997; Omura, 1998).

In the cytosol, mitochondrial proteins are bound by chaperone proteins, typically 

hsp70 or mitochondrial-import stimulating factor (MSF), which prevents their folding and 

facilitates passage through the mitochondrial pore in an unfolded state. This process is 

ATP-dependent (Voos et a l, 1999). The MTS binds to the receptor protein complex on the 

outer mitochondrial membrane permitting the protein to interact with the pore. This 

phenomenon involves a complex of proteins called Tom (Transport across the Outer
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Membrane). At the level of the inner mitochondrial membrane, a similar complex of Tim 

(Transport across the Inner Membrane) proteins forms a pore through proteins traverse. 

This process is dependent on the mitochondrial proton motive force (Koehlor, 2000; Voos 

et aL, 1999). Once in the right location chaperone proteins such as Hsp60 enable the 

folding of the mitochondrial protein and mitochondrial peptidases remove the MTS.

Hauser et al, 1996, found that trypanosomatids possess typical mitochondrial 

targeting sequences on some proteins. Trypanosome mitochondria are clearly related to 

mitochondria from other eukaryotes in structure and function. The mechanism of 

mitochondrial protein import is also conserved, for instance, nuclear-encoded matrix 

proteins from trypanosomes contain cleaved N-terminal leader peptides. A classical 

sequence, composed of approximately 20 amino acids, similar to those found in other 

eukaryotes and a shorter one, composed of 9 amino acids, which alone is enough to direct 

protein to mitochondria have been described (Hausler et aL, 1997).

1.6.4- Acidocalcisomes

Acidocalcisomes are membrane-bounded structures, which possess an electron 

dense content. These cytoplasmic vacuoles contain high Ca^  ̂concentrations. The uptake 

of calcium occurs in exchange with H .̂ This is done by Ca^^-H  ̂ translocating ATPase 

activity. A vacuolar H^-ATPase is found in the membrane of acidocalcisomes conferring 

an acidic pH (Vercesi et aL, 1994). Roles for acidocalcisomes are not certain, but they 

have been proposed to contribute to cell signalling (as a Ca^  ̂store) and possibly a store of 

amino acids (Docampo and Moreno, 2001).
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1.7- Molecular biology

1.7.1- Kinetoplast, kinetoplastid DNA and RNA editing

Athough most mitochondrial proteins are encoded by the nuclear genome, the 

mitochondrion contains its own specific DNA called kinetoplastid DNA. T. brucei contains 

two types of DNA, approximately 50 maxicircles (20-40 kb), and 5,000 to 10,000 

minicircles (1-3 kb), which are heterogeneous in sequence (Priest and Hajduk, 1994). 

These two classes of DNA form a huge intercatenated network (Simpson, 1987). 

Minicircles do not code for proteins, however they encode for guide RNAs (gRNAs) which 

have a role in the maturation of the mitochondrial mRNAs by a process called RNA 

editing (Blum et aL, 1990) (Figure 1.6).

In 1986, Benne et al. discovered that U residues were inserted into the mRNA after 

transcription and that this overcame frameshifts in the genomic sequence and created open 

reading frames from a non-sense sequence at the RNA level. U deletions also were found 

to occur at a lower frequency. Small RNA molecules, transcribed both from the maxicircle 

and the thousand of minicircles, contained the editing information. These gRNAs have a 

non-encoded 3 ’ oligo U tail. The central portion of the gRNA contains sequence that is 

complementary to edited mRNA sequence.

gRNA first hybridises downstream of the editing site. Then a specific cleavage 

occurs at the mismatched base. Then U-residues are added to the 3 ’ terminus of the 5 ’ 

cleavage fragment. The added U résidus could then extend the duplex and an RNA ligation 

occurs to join the cleavage fragments (Stuart et al, 1997). RNA editing has been seen to be 

regulated during the parasite life cycle as a mechanism of regulation of mitochondrial gene 

expression (Read et al, 1994).
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1.7.2- Nucleus, transcription and gene expression

The size of the haploid genome of T. brucei is approximately 35 Mb (El-Sayed et al, 

2000), it is polymorphic because 25 % variation in genome content can be observed 

between strains. The nuclear genome of T. brucei consists of three chromosomes classes:

- Mega-base chromosomes (1 Mb to 6 Mb); there are 11 pairs of these chromosomes, 

which contain all protein-coding genes except some of the VSG genes.

Intermediate chromosomes (200 to 900 Kb); there are between 1 to 5 intermediate 

chromosomes, they contain VSG expression sites.

- Mini chromosomes (50 to 150 Kb); 90 % of these chromosomes comprise a 177 bp 

tandem repeat with the remaining sequence consisting of other repeats and a silent 

telomeric VSG gene (El-Sayed et al, 2000).

There are estimated to be 1000 VSG genes in the genome of T. brucei and only one is 

expressed at a time. The presence of non-transcribed VSG genes on minichromosomes 

might suggest that these chromosomes act as a reservoir of telomeric VSG genes, which 

may be transferred to expression sites by transposition.

In trypanosomatids, protein-coding genes do not, for the most part, contain introns. So 

far there is only a single known example of an intron, in the polyA polymerase gene of T. 

brucei and T. cruzi (Mair et a l, 2000). Genes are tightly packed on the chiomosomes and 

are transcribed as polycistronic units of pre-mature RNA (Vanhamme and Pays, 1995; 

Clayton, 1999). This type of transcription could explain the lack of promoters in 

trypanosomatids, as only ribosomal RNA genes, procyclin and VSG gene expression sites 

have been shown to have specific promoters (Vanhamme and Pays, 1995).

The control of gene expression is mainly post transcriptional, using trans-splicing and 

polyadenylation, which require the addition of a 5' cap and a 3' poly A tail, respectively. At 

the 5' end of all trypanosomatid mRNAs, a sphced leader sequence (SL RNA), is added by
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trans-splicing (Graham, 1995). The SL sequence is composed of a non-translated 39-41 

nucleotide sequence, which is well conserved between trypanosomatid species (Agami and 

Shapira, 1992; Campbell et aL, 2000; Gibson et ah, 2000). The SL is derived from the 5 ’ 

end of a small nuclear RNA molecule, it is about 120 nucleotides long. The mRNA of this 

gene is composed of the SL and what appears to be an intron. It appears that all mRNA 

molecules start with an intron, which is displaced by the SL. At the 3' end no specific 

signal for the addition of the poly A tail has yet been described although polypyrimidine 

tracts have been identified (Clayton, 2002) (Figure 1.7).
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Figure 1.7: Transcription in trypanosomatids (from Graham, 1995)

The control of mRNA translation involves both the 5' UTR and 3' UTR regions. The 5’ 

UTR contains elements for RNA-binding proteins (Day and Tuite, 1998) and the 3' UTR 

regulates the stability of the transcript (Boucher et al, 2002).

All three classical RNA polymerases have been found in trypanosomes:

RNA pol II is involved for the transcription of most of the protein-coding genes;

- RNA pol I seems to be involved in rRNA, VSG and procyclin gene transcription;

RNA pol III is used for small RNAs.
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1.7.3" Antigenic variation

A major consequence of polycistronic gene organisation is that regulation of 

expression is not possible at the level of transcription, since, having the same promoter, 

each gene is transcribed at the same rate. Despite this, VSG genes are expressed at 

different levels. The main function of the VSG is to protect against the host b immune 

system. One VSG gene out of an estimated 1000 genes is expressed at any given time. 

These genes are expressed in specific expression sites (ES) in telomeric loci. In 

bloodstream form T. brucei, the VSG genes are co-expressed with ES AGs (expression site- 

associated genes) in which the organisation is variable from an ES to another. VSGs and 

ES AGs are transcribed from a distant common 5' promoter (Borst et ah, 1998). Only one 

expression site is active at a time. Most chromosome ends possess expression sites but 

monoaUelic expression appears to involve a unique RNA pol I body in these cells (Navarro 

and GuU, 2000). In addition to controlling expression of expression sites by apparently 

inserting them sequentially into the pol I expression body, a number of different 

homologous recombination events are known to bring new genes into an expression site 

(Figure 1.8).

The duplication of the silent gene into a ES and the deletion of the VSG resident at 

that site occur via duplicative transposition (if silent gene is within a chromosome) and 

telomere conversion (if silent gene is at the telomere). Reciprocal recombination involves 

the exchange of VSG sequences between two chromosomes. In situ activation involves 

silencing of the active expression site and activation of a new one.
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1.8- Energy metabolism in TL brucei

Trypanosoma brucei produces energy via glucose metabolism (through glycolysis) 

or the oxidation of amino acids (such as proline). All stages of T. brucei contain a 

mitochondrion, although the method of ATP production varies through the different life 

cycle stages (Tielens and van Hellmond, 1998).

In mammals, glucose is the main substrate for energy production and is 

metabolised via glycolysis. In bloodstream form (BSF) trypanosomes, the mitochondrion is 

poorly developed and lacks a functional Krebs cycle and respiratory chain (Clayton and 

Michels, 1996). Procyclic forms (PCF) trypanosomes present in the insect vector are 

thought to use predominantly amino acids as an energy source. The main energy source in 

tsetse flies is proline (Bursell, 1981) and this amino acid appears also to be used by the 

parasites for their energy production. In culture however, parasites preferentially consume 

glucose and threonine over proline and glutamine as judged by the rate at which these 

substrates are taken up from the medium (Cross et al., 1975). In this life cycle stage the 

mitochondrion is more developed and could contain a functional respiratory chain, until 

the complex IV, the oxidative phosphorylation being non essential (Coustou et al, 2003), 

as well as most enzymes of the Krebs cycle (van Weelden et al, 2003).

1.8.1- Bloodstream forms

It has been reported that glycolytic activity is 10 times higher in BSF trypanosomes 

than in the typical cells of the mammalian host (Cazzulo, 1992). Glucose enters the 

parasite via a high capacity facilitative diffusion transporter (Bakker et al, 1999) and then 

proceeds to the glycosome by an unknown mechanism (Clayton and Michels, 1996). The 

first seven enzymes of the glycolytic pathway (leading to two molecules of 3- 

phosphoglycerate per molecule of glucose) are found inside the glycosome (Figure 1.9).
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The last three enzymes are in the cytosol, leading to the net production of ATP (by 

pyruvate kinase) (Opperdoes, 1987; Clayton and Michels, 1996) and pyruvate (Tielens and 

van Hellemond, 1998), The energy balance in the glycosome is zero because for two ATP 

molecules produced (by phosphoglycerate kinase and glycerol kinase, depending on 

oxygen status) two ATP molecules are consumed (by hexokinase and 

phosphofructokinase) for each glucose metabolised.
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Figure 1.9: Energy metabolism In bloodstream forms of T. brucei, from Barrett MP, personal 

communication.
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The high activity of glycolysis in BSF trypanosomes can be explained by the low ATP 

production (2 ATP molecules produced per mole of glucose consumed). The parasite 

therefore relies on a high consumption of glucose to produce enough energy. Glucose is 

present at high concentrations in mammalian blood, with its uptake rate apparently 

constituting the rate-limiting step of glycolysis depending on absolute concentration 

(Eisenthal and Comish-Bowden, 1998; Bakker et al, 1999). The glycosomal membrane 

constitutes a barrier to most of the glycolytic intermediates and co Actors, thus promoting 

high glycolytic flux (Opperdoes, 1987; Opperdoes and Michels, 1993). This 

compartmentalisation is essential to maintain the redox balance of NADH. NADH 

produced by glyceraldehyde-3-phosphate dehydrogenase is re-oxidised indirectly by 

mitochondrial glycerol-3-phosphate oxidase via a redox shuttle involving glycosomal 

glycerol-3-phosphate dehydrogenase and a transporter, which exchanges glycosomal 

glycerol-3-phosphate for dihydroxyacetone phosphate. In this system, involving 

ubiquinone, cytochrome Q and the alternative oxidase, oxygen acts as a final electron 

acceptor (Pollakis et al, 1995). This constitutes a key role for the mitochondrion in energy 

metabolism of the BSF (Eisenthal and Cornish-Bowden, 1998). The BSF is also able to use 

glycerol to produce energy linking this metabolite to glycolysis through the glycerol kinase 

reaction, but it cannot produce energy by using either amino acids or fatty acids.

BSF T. brucei are able to survive and stay mobile in the absence of oxygen, but the 

ATP concentration is diminished under these conditions (Opperdoes, 1995). In this case 

the parasites cannot use the alternative oxidase system for NADH regeneration. As a result, 

glycerol-3-phosphate is converted to glycerol. Glucose metabolism continues at the same 

rate as in an oxygen-rich environment, but because the end products are equimolar glycerol 

and pyruvate, ATP production is halved. The alternative oxidase is sensitive to 

salicyhydroxamic acid (SHAM) and other hydroxamic acid analogues (Clarkson et a l.
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1989), which mimics the removal of oxygen, but insensitive to cyanide (respiratory chain 

complex IV inhibitor) or antimycin A (complex III inhibitor).

1.8.2- ProcycHc forms

The presence of the enzymes of the Krebs cycle was desmontrated in the PCF many 

years ago (Opperdoes, 1987). However it has also been suggested that PCF appear to lack 

a fully functional Krebs cycle. Recent work, involving the knock down or knock out of 

succinate dehydrogenase, a-ketoglutarate dehydrogenase and aconitase has also shown 

that the Krebs cycle is not essential for the parasite (Bochud-Allemann and Schneider,

2002). The aconitase knock out showed an accumulation of citrate (van Weelden et ai,

2003) but no effect on cell growth or energy production. Futhermore the activity of the 

Krebs cycle enzymes and the end products of metabolism vary from strain to strain.
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Legend of the figure 1.10;
Abbreviations: AA, amino acid; AOB, amino oxobutyrate; 1,3BPGA, 1,3-bisphosphoglycerate; C, 

cytochrome c; CoASH, coen2yme A; DHAP, dihydroxyacetone phosphate; FBP, fructose 1,6-bisphosphate; 

G-3-P, glyceraldehyde 3-phosphate; GLU, glutamate; 2Ket, 2-ketoglutarate; OA, 2-oxoacid; Oxa, 
oxaloacetate; PEP, phosphoewo/pyruvate; 3-PGA, 3-phœphoglycerate; Pi, inorganic phosphate; PPi, 

inorganic pyrophosphate; ySAG, glutamate y-semialdehyde; SucCoA, succinate CoA; UQ, ubiquinoie pool. 

Enzymes are: 1, hexokinase: 2, glucose-6-phosphate isomerase; 3, fructose-6-phosphate 1-kinase; 4, aldolase;

5, triose-phosphate isomerase; 6, glyceraldehyde-3-phosphate dehydrogenase; 7, phosphoglycerate kinase; 8,

phosphoglycerate mutase; 9, enoiase; 10, phosphoeno/pyruvate carboxykinase; 11, maiate dehydrogenase;

12, fumarase; 13, NADH-dependent fumarate reductase; 14, glycerol-3-phosphate dehydrogenase; 15,

pyruvate kinase; 16, pyruvate phosphate dikinase; 17, malic enzyme; 18, alanine aminotransferase; 19,

pyruvate dehydrogenase complex; 20, acetate:succinylCoA transferase; 21, succinylCoA synthetase; 22,

citrate synthase; 23, aconitase; 24, isocitrate dehydrogenase; 25,2-ketoglutarate dehydrogenase complex; 26,

succinate dehydrogenase; 27, proline dehydrogenase; 28, pyrroline-5 carboxylate dehydrogenase; 29,

glutamate aminotransferase; 30, glutamate dehydrogenase; 31, L-threonine dehydrogenase; 32, acetyl

CoA:glycine C-acetyltransferase; 33, rotenone-insensitive NADH dehydrogenase; 34, gIycerol-3-phosphate

oxidase; 35, alternative oxidase; 36, Fo/Fj-ATP synthase; I, II, III and IV, complexes of the respiratory chain.

ATP production in PCF appears to be possible through various pathways including 

oxidative phosphorylation, substrate level phosphorylation and glycosomal metabolism 

(Figure 10).

Recently, NMR analysis was used to study metabolic end products of proline 

metabolism (Coustou et al., 2003). The glutamate formed during the oxidation of proline 

can be used as a substrate for respiration in many cell types. It is transformed into a- 

ketoglutarate which enters the active part of the Krebs cycle where succinate is formed as a 

mitochondrial end product suggesting arrest of the cycle after succinyl CoA synthetase (the 

enzyme producing ATP) in T. brucei (van Weelden et al, 2003). In contrast, the end 

products of glucose metabolism are mitochondrial acetate, cytosolic alanine and
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glycosomal succinate. Glucose therefore appears not to be metabolised through the Krebs 

eycle to an appreciable extent.

The activities of different enzymes of the proline degradation pathway have been 

defined in procyclic T. congolense. The glutamate derived fi-om proline metabolism (the 

main amino acid present in the tsetse fly) was reported to enter the Krebs cycle or undergo 

transamination to form alanine (Obungu et al, 1999).

In the insect, the glucose concentration is highly variable as glucose is rapidly 

absorbed from the blood meal within 15 min (Vickerman, 1985). As a result, it has been 

proposed that the parasite uses proline (whose level remains stable) as the preferred energy 

source (Bursell, 1973). In culture, procyclic T. brucei, in addition to using glucose as an 

energy source, can use proline. Indeed it was demonstrated that the addition of 2- 

deoxyglucose (2-DOG) (a substrate analogue), had no effect on trypanosome growth 

(Evans and Brown, 1972). When parasites were grown in high glucose concentration, more 

acetate than succinate was formed as an end product. When grown in high proline 

concentration, equal amounts of these compounds were reportedly formed (ter Kuile,

1997).

PCF T, brucei has been proposed to be dependent on the use of oxygen for energy 

production via the respiratory chain (van Weelden et al., 2003). Recently there has been 

increased debate as to the mechanism of ATP production in procyclics. Succinate 

dehydrogenase has been proposed to be the only entry point of electrons into the 

respiratory chain, however ablation of its activity showed succinate dehydrogenase to be 

non-essential for the cells (Bochud-Allemann and Schneider, 2002). It has also a role in 

ATP production at the Acetate:Succinate CoA transferase/succinyl CoA synthetase 

(ASCT) reaction. Given that succinate dehydrogenase plays a role in ATP production 

through the ASCT cycle, the essential nature of the enzyme need not necessarily mean that

34



Chapter 1: Introduction

the respiratory chain is essential in ATP production. Experiments where neither KCN (an 

inhibitor of the respiratory chain) nor SHAM (a inhibitor of the trypanosome alternative 

oxidase) alone killed procyclic trypanosomes, while the two combined did, led to van 

Weelden et al., 2003, proposing that either the respiratory chain was essential, or that KCN 

and SHAM together inhibit another essential pathway. However an excess of oligomycin 

(an inhibitor of mitochondrial ATP synthase) does not affect the intracellular steady state 

of ATP, suggesting that oxidative phosphorylation is not essential for procyclic 

trypanosomes (Coustou et al, 2003), Loss of FjEo ATPase, and indeed loss of respiratory 

chain, might be essential, but for reasons other than ATP production. For example, a 

proton gradient is critical to energising the mitochondrial membrane, which is essential for 

other features such as the accumulation of proteins and other essential macromolecules into 

the mitochondrial matrix.

ATP production through the electron transport chain may be non-essential, because 

other ways of ATP production inside the mitochondrion exist, e.g. substrate level 

phosphorylation. The ASCT cycle operates with acetate formed as an end product (van 

Hellmond et al, 1998). The succinyl CoA that is produced during acetate formation by the 

ASCT cycle is metabolised by succinyl CoA synthetase in the mitochondrion and produces 

ATP from ADP. In the cytosol, substrate level phosphorylation is essential through the 

activity of pyruvate kinase, which is also essential for the parasite (Coustou et al, 2003).

In PCF, pyruvate is the end product of glycolysis. It is not secreted but enters the 

mitochondrion, where it undergoes decarboxylation by pyruvate dehydrogenase into 

Acetyl-CoA. This is then converted into acetate by Acetate-Succinate CoA transferase, and 

involves a succinate/succinyl CoA cycle, with ATP also produced (van Hellmond et al,

1998).
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At the level of the glycosome, metabolism varies between BSF and PCF, with the 

former having higher levels of most glycolytic enzymes. In PCF, pyruvate kinase in the 

cytosol shows low activity whereas maiate dehydrogenase and phosphoenolpyruvate 

carboxykinase (PEPCK) show high activity (Clayton and Michels, 1996; Barnard and 

Pedersen, 1994). Phosphoenolpyruvate re-enters the glycosome where it is ultimately 

metabolised to succinate. ATP is produced at this level by PEPCK and NADH is 

reoxidised by maiate dehydrogenase. A key enzyme in this pathway, fumarate reductase 

has recently been found in procyclic forms. This enzyme also utilises NADH as cofactor, 

which it oxidises to NAD^ thus restoring the sub-cellular redox balance (Besteiro et al, 

2002).

Experiments aimed at producing trypanosomes defective in glycosome biogenesis, 

showed that bloodstream stages cannot be selected under any conditions. PCF are also 

killed, but only when glueose is present. In this state parasites are not able to use glucose 

as an energy source, even when both glucose and pro line are present in the media. 

Interestingly, when only proline is present the parasites are able to proliferate (Furuya et 

al., 2002). This suggests that glucose could repress proline metabolism (or else exert its 

effect through an imbalance in cofactors, e.g. ATP and NAD  ̂ in the cytosol). With ATP 

production by glycolysis being zero, ATP must be produced in the mitochondrion. In this 

case, mitochondrial level phosphorylation is essential for T. brucei PCF. In the 

mitochondria, the ATP is produced by ASCT cycle or the succinyl CoA synthase in the 

Krebs cycle. Ablation of succinyl CoA synthase is lethal to the parasite, as it catalyses two 

essential reactions, including substrate level phosphorylation in the Krebs cycle and ASCT 

cycle (Bochud-Allemann and Schneider, 2002).
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1.9- Proline dehydrogenase

Proline appears to be a key substrate for PCF energy metabolism. Proline utilisation 

requires two enzymes, proline dehydrogenase (PRODH) (EC 1.5.99.8) and pyrroline-5- 

carboxylate dehydrogenase (P5CDH) (EC 1.5.1.12), to convert proline into glutamate. 

Proline is an important source of carbon and nitrogen for the growth of many bacteria 

(Wood, 1981; Keuntje et al, 1995). Plants can also use accumulated osmolytes including 

prolme to counter osmotic stress. Proline accumulation is achieved by activation of the 

proline biosynthesis or inactivation of the proline degradation (Kiyosue et al, 1996).

The first step catalysed by pro line dehydrogenase yields Pynoline-5-Carboxylate 

(P5C) and requires the reduction of a tightly associated cofactor, FAD (flavin adenine 

dinucleotide) (Brown and Wood, 1992; Becker and Thomas, 2001). Two electrons 

transferred from proline to FAD (via pro line dehydrogenase) are then transferred to oxygen 

via the electron transport chain (Abrahamson et al, 1983; Vinod et a/., 2002) (Figure 

1.11).
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Figure 1.11: Proline degradation pathway (from Nadaraia et al, 2001)
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The PutA protein (comprising PRODH and P5CDH) in E. coU is associated with 

the inner cytoplasmic membrane (Brown and Wood, 1992) of these cells, because of the 

need for proximity of the enzyme with the electron transport chain (Menzel and Roth, 1981 

a and b). In the second step P5CDH converts P5C to glutamate in an NAD^-dependent 

reaction (Brown and Wood, 1993). In eukaryotes, PRODH and P5C dehydrogenase are 

encoded by two separate genes and are two different proteins (Peng et al, 1996). PRODH 

is most usually associated with mitochondria in these cells, possibly because here too it 

transfers electrons to the electron transport chain. In bacteria both steps of proline 

degradation are catalysed by a single polypeptide encoded by the putA gene (Nadaraia et 

al, 2001).

1.9.1- Proline dehydrogenase in other organisms

1.9.1.1- Gene organisation in prokaryotes

In enteric bacteria, the putA gene encodes a single polypeptide allowing both steps 

of proline degradation. In E. coli a 3,942 bp ORF encodes a protein of 1,313 amino acids 

(Xia et al, 1995) with high homology with the same gene in Salmonella typhimurium and 

Pseudomonas putida (Vilchez et a/., 2000). It has been shown that this gene sits within an 

operon, which includes the putA gene and the putP gene, which encodes a proline-Na^ 

symporter (Ratzkin and Roth, 1978). These two genes are divergently transcribed from an 

intergenic control region known as the put repressor (Ling et al, 1994).

The expression of putA is induced by proline and is not affected by other amino 

acids. In addition, putA expression is autoregulated by PutA itself in Rhodobacte?' 

capsulatus (Keuntje et al, 1995). The regulatory gene, putR, is located immediately 

upstream of putA and is required for the expression of proline dehydrogenase. The putR
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gene is constituvely transcribed at a low level. In the absence of proline, putR activates the 

expression of putA to a low level (Keuntje et al., 1995). This negative autoregulation by 

PutA is also found in other enteric bacteria and regulates expression of putP and putA in 

response to the availability of proline. The put operon of S. typhimurium is 

transcriptionally repressed by the PutA protein in the absence of proline. When proline and 

an electron acceptor are both present, PutA is prevented from binding to the put control 

region (Surber and Maloy, 1999). PutA is able to regulate its own expression. In the 

absence of prolme, PutA remains in the cytoplasm where it can bind the put operator, 

which inhibits put gene expression. When proline is available PutA binds its substrate and 

is active (Muro-Pastor and Maloy, 1995). The genetic organisation and the mechanism of 

regulation of the gene cluster are different between species. In E, colU S. typhimurium and 

P. putida, the putA gene and the putP gene are transcribed divergently, and they are 

arranged in opposite directions. In Agrobacterium tumefaciens putA is a monocistronic unit 

and putP is not adjacent to it. In Vibrio vulnificus the gene organisation is different again ; 

the two genes putA and putP are transcribed in the same direction. In this species the 

operon is not repressed by the PutA protein (Lee J et al, 2003).

1.9.1.2- Gene organisation in eukaryotes

The conversion of proline to glutamate takes place inside the mitochondria o f S. 

cerevisiae by sequential action of two enzymes, PRODH and P5CDH, which are encoded 

by two different nuclear genes. The put I gene encodes PRODH and put2 encodes P5CDH 

(Brandriss, 1983). These two genes are co-regulated by proline induction and by a control 

element encoded by the put3 gene (Wang and Brandriss, 1987; Brandriss, 1983). The putl 

element is present as a single copy in the yeast genome. Expression of the gene is inducible
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by proline and oxygen and is regulated at the level of RNA by proline concentration 

(Wang and Brandriss, 1986). It has been shown in S. cerevisiae that proline accumulation 

that occurs as a result of mutations in the proline dehydrogenase gene improves resistance 

to freezing and desiccation stresses (Takagi et al, 2000).

In Arabidopsis, proline dehydrogenase is encoded by the At-PDH gene. Expression 

of this gene is down regulated during osmotic stress, allowing proline to accumulate. This 

amino acid can stabilise sub-cellular structures and scavenges free radicals (Mani et al, 

2002). Exogenous proline, in the absence of stress, is a good inducer of Dff expression 

in A thaliana (Kiyosue et al, 1996). The accumulation of proline in dehydrated plants is 

due to the activation of proline synthesis and the down-regulation of proline degradation. 

The At-PDH promoter is negatively regulated during dehydration and up-regulated during 

rehydration. An increase o f At-PDH txmscvipt can be seen in rehydrated plants, as well as 

in plants under hypo-osmotic stress (Nakashima et a l, 1998).

In Drosophila melanogaster, the sluggish A gene has been cloned and has 

homology to proline dehydrogenase of S. cerevisiae (Hayward et al, 1993). In mutant 

flies, ablation of this gene induces sluggish behaviour (reduction in locomotion, 

phototactism problems).

A human homologue of the D. melanogaster sluggish A gene has been identified 

and is located in chromosome 22qll.2 (Harrison and Owen, 2003). This region is 

implicated in Type I hyperprolinaemia (CATCH 22 syndrome). Some studies have 

reported some neurological manifestation (schizophrenia) associated with type 1 

hyperprolinaemia in humans (Jacquet et a l, 2003). A link between the human disorder and 

the sluggish behaviour in Drosophila has to be noted (i.e. both are neurological in origin) 

(Campbell et al, 1997). Increased concentration of proline in hyperprolinemia may inhibit
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synaptic decreases in the level of glutamate or y aminobutyric acid (GABA) and plays a 

role in schizophrenia (Gogos et ah, 1999).

1.9.1.3- The enzyme

Most studies involving the PRODH protein have been carried out with products of 

prokaryote genes, using polypeptides that contain both PRODH and P5CDH activity.

PutA has been most extensively characterised in E. coli and S. typhimurium where 

it is a membrane-bound protein which catalyses the two step conversion of proline to 

glutamate. PAD^ is used during the first step as a cofactor by transferring electrons from 

proline to an acceptor in the electron transport chain. The second step, which is the 

conversion of glutamic semialdehyde to glutamate, is performed by P5CDH and is coupled 

to NAD^ as a cofactor. In the presence of proline, PutA is associated to the membrane and 

is active (Surber and Makoy, 1999). FAD^ is reduced by proline and the FAD-redox state 

is implicated as a signal for this PutA-membrane association. PutA is also able to bind 

DNA and to act as a repressor of transcription of the put operon; this binding is also 

dependent on the FAD^ redox state (Becker and Thomas, 2001; Zhu and Becker, 2003). 

The PRODH part of the PutA protein has been characterised and occupies residues 1 to 

669 of the polypeptide (Vinod et al, 2002). In vitro activity of PRODH when expressed 

alone is 4 times higher than in the entire PutA protein. Recently, this PRODH domain has 

been crystallised (Nadaraia et al, 2001; Lee Y. et al, 2003) and bas both PRODH and 

DNA-binding activities. The protein is a homo dimer and each subunit contains three 

domains with residues essential for substrate and cofactor binding (the key residues of this 

enzyme will be outlined in chapter 3). The DNA-binding domain is located at the N- 

terminus of the protein.
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By purification of the protein from membrane preparations, putA of the E. coli 

protein was characterised as a 260 kDa dimer (Scarpulla and Soffer, 1978). The 

monomeric and dimeric forms have also been recorded for S. typhimurium (Brown and 

Wood, 1992). The Salmonella protein is very similar to that of E. coli. A protein 

constituted of two equal subunits of 217 kDa was purified from membrane of Clostridium 

sporogenes (Monticello and Costilow, 1981).

In S. typhimurium, the putA protein shuttles between the cytoplasm and the 

membrane. Similar to the E. coli protein, in the absence of proline it acts as a repressor of 

transcription, while in the presence of proline it is active and is unable to bind DNA 

(Muro-Pastor et ah, 1997). Purification of the putA protein from the S. typhimurium 

membrane showed that putA-membrane interaction is due to protein-lipid interactions 

initiated by reduction of FAD^; FADH2 alters the conformation of putA, which increases 

its exposed hydrophobicity (Surber and Maloy, 1999).

When proline concentration reaches the Km for proline binding, FAD^ is reduced by 

oxidation of proline and the protein binds to the membrane. The Km for proline was around 

105 mM in E. coli (Graham et al, 1984). A Km of 102 mM for proline was observed with 

the recombinant PRODH part of the putA protein (Vinod et al, 2002).

In rat liver, the location of PRODH is the inner mitochondrial membrane, (Brunner 

and Neupert, 1969), whereas the P5CDH can be found in the mitochondrial matrix (Small 

and Jones, 1990). By tagging the enzyme with the green florescent protein. Maxwell and 

Davis, 2000, also located proline dehydrogenase to mitochondria in humans. A putative 

mitochondrial targeting sequence has been found in the amino acid sequence of the A. 

thaliana PRODH (Peng et al, 1996), indicating that in plants too the enzyme is 

mitochondrial.
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1.9.2- Proline metabolism in trypanosomatids

There is evidence that non-carbohydrate compounds such as amino acids are the 

principal growth substrates for certain protozoa like Leishmania and Trypanosoma during 

their development m insect vector (section 1.8.2). Removal of carbohydrates from the 

medium for Leishmania tarentolae may be compensated by proline (Law and Hukkada, 

1979). Exponentially growing culture forms of T brucei can use proline as an energy 

source, if an analogue of glucose (2-DOG) is included in the medium (Evans and Brown, 

1972).

Proline is often the main amino acid of various insects ’ haemolymph with valine 

and alanine also frequently abundant (Balogun, 1974). Proline is present in tsetse fly 

hemolymph in concentrations as high as 150 mM under resting conditions and appears to 

be a major energy source during flight (Bursell, 1978, 1981). Many flies, including tsetse, 

utilize oxidation of L-proline as an energy source for flight (Bursell ei ai, 1973). Energy 

for flight metabolism is derived from the partial oxidation of proline to alanine, which is 

then transported to the fat body where it is used in the regeneration of proline (Njagi et at., 

1992). The fat body represents triacylglycerol stored after digestion of the bloodmeal. It 

constitutes the main food reserve of tsetse. Insect stages of Trypanosoma have adapted to 

the proline-rich environment in their vectors by using this amino acid as a main metabolic 

source of energy (Zilberstein, 1993). Proline dehydrogenase, previously commonly called 

proline oxidase, is the first enzyme of the proline degradation pathway.
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1.9.2.1- Prolme degradation pathway

It has been demonstrated that tsetse flies depend principally on the oxidation of 

proline to produce energy for flying (Tritsh et at., 1993; Obungu et at., 1999). Proline is 

rapidly oxidised by PCF T. rhodesiense. The presence of PRODH can explain this 

utilisation (Ford and Bowman, 1973). The most active oxidase present in PCF of T. 

rhodesiense was shown to be L-proline oxidase (proline dehydrogenase) and the parasites 

can grow without glucose in the medium if L-prohne is present. In this study, glucose was 

proposed to be used only when stationary phase was reached (Evans and Brown, 1972).

When promastigotes of L. donovani are incubated with radiolabelled proline, the 

label appears in glutamate, alanine, arginine and a number of Krebs cycle intermediates 

such as alpha-ketoglutarate, succinate, fumarate, maiate and oxaloacetate as well as CO2. 

Relatively little was incorporated into proteins (Law and Hukkada, 1979). In T. 

congolense, proline is primarily catabolised to glutamate via P5C. The P5C undergoes 

spontaneous hydration to form glutamate semialdehyde (Obungu et al., 1999). When BSF 

transform to PCF, PRODH becomes active, and parasites are able to use proline (Hamm et 

al., 1990; Overatheta/., 1986).

In T. cruzi, a proline racemase gene has been identified, which seems to be 

mitogenic for host B-cells (Reina-San-Martin et al., 2000). Preliminary results using 

defined culture media indicate that epimastigote and metacyclic T. cruzi trypomastigotes 

can metabolize L or D-proline. Proline racemase is important for energy metabolism of the 

parasite. Such a protein has not been found in T. brucei and an orthologous gene is not 

present in the T. brucei genome database.
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1.9.2.2- Proline transport

Proline is able to enter the trypanosomatid parasites via specific transporters. Law 

and Hukkada in 1979 were the first to suggest the presence of an active accumulation of 

proline in L. major. Due to the wide range of specificity of this transporter, it was 

postulated that proline accumulates inside these cells via a neutral amino acid transporter. 

In L. donovani, L-proline accumulates against its concentration gradient, so is dependent 

upon energy (Glaser and Hukkada, 1992). Prolme transport is also subject to regulation by 

feedback inhibition and transinhibition by components of the intracellular pools in L. 

tropica promastigotes (Law and Hukkada, 1979). L. donovani amastigotes accumulate L- 

proline at a rate and extent that are much lower than those in promastigotes. Furthermore, 

in amastigotes the transport activity is optimal at pH 5.5, whereas in promastigotes it is 

optimal at pFI 7. These observations suggest that promastigotes and amastigotes of L. 

donovani may possess two distinct transporters for L-proline, the expression of which may 

be regulated by pH of the culture medium (Zilberstein, 1993; Mazareb et al, 1999). ITie 

Km for L-proline in L. major promastigotes was measured at 60 pM, whereas a value of 

0.65 mM was proposed for L. donovani (Zilberstein and Gepstein, 1993).

In T. brucei, glucose could be replaced by proline in the medium without any 

adverse effect on the growth of PCF (Evans and Brown, 1972). The characteristics of 

proline transport in the PCF of T. brucei were studied by using radioactive proline 

(L Hostis et a l, 1993). Proline uptake was shown to be performed against its concentration 

gradient and to require an active transport system. This transporter was proposed to be 

ATP-dependent but independent of N a\ K^ or H^ co-transport; apparently it is not driven 

by a proton motive force. The Km value for proline uptake in T. brucei is somewhat lower 

than that found in Leishmania promastigotes (L Hostis et al, 1993). This transporter was 

of a relatively high affinity since the Km measured was at 19 pM.

45



Chapter 1: Introduction

1.10 Aims of this study

The overall aim of this project was to learn more about the role of proline metabolism in 

trypanosomatids and the part played by proline dehydrogenase in this process. The work 

was divided into different two main parts:

- Identification and characterisation of genes encoding proline dehydrogenase.

- Studying the physiological role of proline dehydrogenase in T. brucei by knocking down 

expression using RNA interference.
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Chapter 2 
Materials and Methods

2.1- Parasites
2.1.1 - Culture of Leishmania species

Leishmania major (MHOM/IL/80 Friedlin) and L. mexicana (MNYC/BZ/62/M379) 

promastigotes were cultured in HOMEM medium (Berens ei aL, 1976) (Gibco, Life 

Technologies) with 10% (v/v) heat inactivated foetal calf serum (FCS), at 25 °C 

(Daneshvar ei al., 2003). Cultures were initiated at 2 x 10̂  cells/ml, with stationary phase 

(1-2 X 10  ̂ cells/ml) being reached after 8 days, upon which cells were sub-passaged 

(Bates, 1994).

L. major metacyclics were purified from a stationary phase population of cells 

using the agglutination method described by Sacks et a l, 1985.

L. major and L. mexicana amastigotes were purified from infected BALB/c mice by 

D. Laughland (University of Glasgow) (Hart et al, 1981). L  mexicana amastigotes were 

grown axenically in Schneider's Drosophila Medium, pH 5.5, containing 20 % (v/v) heat 

inactivated FCS at 33 °C.

2.1.2- Culture of Trypanosoma species

Trypanosoma brucei strain 427 procyclics were cultivated in SDM 79 medium 

(Brun and Schonenberger, 1979) and defined SDM medium (Appendix 1) supplemented 

with 10 % (v/v) heat inactivated FCS, at 25 °C. A typical culture was started at 1-5 x 10̂  

cells/ml. After 2 or 4 days, the culture reached mid-log phase (3-6 x 10̂  cells/ml) and after 

approximately 7 days the stationary phase (1-2 x 10̂  cells/ml) was reached.
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BSF T. brucei (strain 427) were cultured at 37 °C and 5 % (v/v) CO2 in HMI-9 

medium containing 20 % (v/v) heat inactivated FCS (Hirumi et ah, 1977; Hirumi, 1994).

Procyclic cultures of T. brucei strain 29-13 (LaCount et ah, 2000) were used in all 

RNA interference experiments. These cells were grown in SDM 79 medium containing 15 

pg/ml G418 and 25 pg/ml Hygromycin B (see section 2.4).

The densities of all cultures were determined using an improved Neubauer 

haematocytometer (Weber Scientific).

2.1.3- Alamar blue assay

This assay was used to estimate the number of T, brucei cells alive in medium (Raz 

et a l, 1997). SDM79 or defined SDM media without glucose and proline and 

supplemented by different amino acids or other potential carbon sources were used. 

Parasites were grown at 25 ”C in 96 wells plates (200 pi per well) fi'om the starting density 

of 1-5 X 10̂  cells/ml. After a few days of growth, 20 pi of Alamar® blue dye (Trek 

Diagnostic System) was added to each well. After 24 hours incubation at 25 ®C, to allow 

the reduction of Alamar® blue, the fluorescence was read (530 nm excitation, 590 nm 

emission) with a fluorimeter (Perkin Elmer, LS 55, Luminescence Spectrometer) and was 

correlated to the concentration of parasites alive in the medium by determining the density 

of living parasites.
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2.2- Molecular biology techniques

2.2.1- Isolation of genomic DNA 

2.2.1.1" L. major and T. brucei

1x10* parasites were pelleted by centrifugation at 2,000 g for 10 min at 4 °C and 

resuspended in 150 pi of TELT buffer (Appendix 1) (Medina-Acosta and Cross, 1993). 

The pellet was incubated at room temperature for 5 min. 150 pi of Pheno 1-Chloroform 

(1:1) was added and mixed gently by inversion. The samples were centrifuged at 13,000 g 

for 5 minutes and the aqueous layer retained. The DNA was precipitated by addition of 0.1 

volume of 3 M sodium acetate and 2 volumes of absolute ethanol. After 5 min on ice, the 

DNA pellet was collected by centrifugation at 13,000 g for 5 min at 20 °C. The pellet was 

washed with 70 % ethanol, air dried and resuspended in TE (Appendix 1) buffer. Samples 

were then incubated with 1 mg/ml of RNAse (Sigma) for 1 hour at 37 °C and stored at 4 

^C.

2.2.1.2“ Isolation of Escherichia coli gDNA

100 ml of E. coli strain JM109 culture were centrifiiged at 2,500 g for 5 min. 40 ml 

of TE were added to the pellet and after resuspension the mixture was centrifuged at 2,500 

g for 5 min at 4 ^C. The pellet was then resuspended in 3.2 ml Tris/sucrose buffer 

(Appendix 1) containing 100 pi lysozyme (10 mg/ml) and stored on ice 10 min (to lyse the 

cells). Proteinase K (0.5 mg/ml) was added and incubated for 3 hours at 51 ^C in order to 

digest the proteins present in the sample. The DNA was extracted using phenoPchloroform 

and then precipitated using 0.1 volume of 3 M sodium acetate and 2 volumes of 100 % 

ethanol. After centrifiigation at 13,000 g for 5 min, the pellet was dried and resuspended in 

50 pi of sterile water and stored at 4 °C until use.
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2.2.2-Total RNA isolation

2 X 10* cells (r. brucei or L. major) were re-suspended in 1 ml of TRIzol® reagent 

(Gibco, Life Technologies), comprising monophasic solutions of phenol and guanidine 

isothiocyanate, to maintain the integrity of RNA. The samples were incubated for 5 min at 

room temperature, then 0.2 ml of chloroform was added and the tubes shaken slowly and 

incubated at room temperature for 2 min to separate the organic and aqueous phases. After 

centrifugation (15 min, 12,000 g, 4 °C), the aqueous phase was transferred to a fresh 

Eppendorf tube and 0.5 ml of isopropyl alcohol was added. The mixture was incubated at 

room temperature for 10 min to precipitate the RNA. After centrifugation at 12,000 g for 

10 min at 4 °C, the pellet was washed with 75 % (v/v) ethanol, air dried for 10 min and re

suspended in RNAse-free H2O. Samples were stored at -70 °C, All equipment and 

reagents were made RNAse free by treatment with diethylpyrocarbonate (DEPC) at 0.01 % 

v/v.

2.2.3- Polymerase chain reaction (PCR)

PCR was used to amplify segments of DNA situated between two known regions. 

All oligonucleotides were synthesised by MWG-Biotech, The two primers used in each 

amplification had sequences complementary to those flanking the region for amplification. 

One primer was designed in the 5-3' direction of the plus strand and the other one in the 5'- 

3' direction of the complementary strand of DNA.

The enzyme used for the PCR reaction was the Pfu DNA polymerase (Promega), 

which has proof-reading capability. The final concentrations of the PCR reaction were: IX 

PCR buffer (Promega), 0.5 mM PCR nucleotides mix, 1 unit o f Pfu, 100 pmol of each 

primer, 5 % (v/v) DMSG and 50-100 ng gDNA. Temperature and incubation time were 

optimised for each reaction. The PCR was performed m three stages: 94 °C, 2 min; 94 °C,
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30 s; Tm, 30 s; 72 °C, 5 min; 30 cycles; 72 “C, 7 min, using the Gene Amp PCR system 

2400 (Perkin Elmer). The Tm is the annealing temperature, which was chosen to be a few 

degrees below the Tm of each pair of primers. Prhners used during this study are detailed 

in Table 2.1.
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Name of the genes amplified (Table 2.1):

LmPRODH: L  major proline dehydrogenase full length gene.

LmPRODHtruncated: L  major proline dehydrogenase truncated gene (i.e. without the 

putative mitochondrial targeting sequence).

LmPRODH72: L. major proline dehydrogenase without the N-terminal 72 amino acids 

(i.e. without the putative transmembrane domain).

TbPRODH: T. brucei proline dehydrogenase full lenth gene.

TbPRODBtruncated: T. brucei proline dehydrogenase truncated gene (i.e. without the 

putative mitochondrial targeting sequence).

TbPRODH72: T brucei proline dehydrogenase without the N-terminal 72 amino acids (i.e. 

without the putative transmembrane domain).

2.2.4- RT-PCR

2.2.4.1- cDNA preparation

cDNA synthesis systems generally contain the reagents required for the synthesis 

of double stranded cDNA from RNA. The classical method of cDNA synthesis uses 

oligo(dT) primers. This approach was used in this project.

The enzyme SUPERScript II, RNase H' Reverse transcriptase (Gibco, Life 

Technologies) was used to synthesize first-strand cDNA. 1 pi of oligo dT (500 pg/ml), 5 

pg of total RNA, 1 pi of 10 mM dNTP mix and sterile distilled water to 12 pi were added 

to a nuclease-free tube. The mixture was heated to 65 °C for 5 min to remove any 

secondary structures and chilled on ice for 2 min. 4 pi 5X First-strand Buffer (GibcoBRL), 

2 pi 0.1 M DTT and 1 pi RNaseOUT (GibcoBRL) Recombinant Ribonuclease Inhibitor 

(40 U/pl) were added and incubated at 42 °C for 2 min. 1 pi (200 U) of SUPERScript II

53



Chapter 2: Material and methods

was added and the sample was incubated at 42°C for 50 min. The reaction was inactivated 

by heating at 70 °C for 15 min. The cDNA was used as a template for PCR amplification.

2 .Z 4 .2 -  PCR

To obtain the 5’ end of the putative proline dehydrogenase gene, one specific 

internal primer for this DNA sequence and two primers from the splice leader (SL) 

sequence were designed (Figure 2.1). The SL is a 39 nucleotides sequence that is added to 

the 5’ end of all mRNA molecules in trypanosomatids (Agami and Shapira, 1992). It is 

well conserved between all trypanosomatids and the same SL primers were used for T. 

brucei and L  major amplifications.

SL2

Putative first meüiionine

SL Putative proline 
dehydrogenase gene

RTTbl /RTLml

Figure 2.1; Primer positioning for the RT-PCR

A typical PCR reaction was performed using the cDNA. SLl and RTTbl/RTLml were 

used to make the first PCR product (94 °C, 2 min; 94 °C, 30 s; Tm, 30 s; 72 °C, 5 min; 30 

cycles; 72 ®C, 7 min). Nested PCR was performed using the same conditions with SL2 and 

RTTbl/RTLml. In this second reaction, the template used was the first PCR product. The
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aim of this nested PCR was to amplify the specific sequence at the beginning of the gene 

(5’ region) to facilitate identification of the initiation codon.

2.2.5- Cloning Strategy

DNA fragments can be inserted into vectors following different strategies. Efficient 

cloning is achieved when DNA insert and plasmid are digested by restriction enzymes 

creating "sticky ends". Another approach involves the cloning of PCR products treated by 

the Taq DNA polymerase. This enzyme can add a single A-residue at the 3* end of the 

insert, which can be cloned into specific vectors such as pGEM-T vector, which contains a 

single T-residue overhang. Both approaches were used during this thesis.

2.2.5.1- Isolation of PCR products

PCR products were separated on a 1% (w/v) agarose gel containing ethidium 

bromide, in IX TAE buffer (Appendix 1) and calibrated using a DNA ladder (1 kb, 

Promega). DNA in the gel was visualised by ultraviolet light from a transilluminator (UVP 

Laboratory Products). Products were extracted from the gel using a QIAquick PCR 

purification kit (Qiagen), following the manufacturer's instructions.

2 .2 .5  2 - Restriction digestion of DNA

Restriction enzymes recognise specific sites of different lengths and composition. 

Standard restriction enzyme digests were typically performed in a volume of 20 pi 

containing 2 pi of 10 X buffer, 50-100 ng of DNA (plasmid or PCR product) and 5 units of 

the enzyme. The buffer systems used were variable, but were invariably provided by the 

manufacturer with the enzymes. The mixture was incubated for 1-4 hours at 37 °C to 

complete the digestion.
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2.2.S.3- Ligation

In the first instance, PCR fragments were cloned into the pGEM-T vector 

(Promega). To optimise cloning efficiency, an A-tailing reaction using Taq DNA 

polymerase was performed on the PCR products. The reaction contained: 5 pi of purified 

PCR fragment; 1 pi lOX buffer; dATP (0.2 mM); 5 U Taq DNA polymerase; 3 pi distilled 

H2O; incubation was at 70 °C for 30 min. Ligation of the PCR products into the pGEM-T 

vector was performed using the following conditions: 5 pi 2X buffer; 1 pi vector at 50 

ng/pl; 3 pi PCR product (150 ng); 1 pi T4 DNA ligase at 3 U/pl; the reaction was 

incubated for 16 hours at 16 °C. A  positive control (control insert DNA) and a background 

control (digested vector without insert DNA) were used to assess re-ligation of the vector. 

The PCR products were then cloned into the pET21a^ vector (Novagen) for recombinant 

protein expression. pET21a^ vector and the insert were initially digested by restriction 

enzymes and then ligated together using the same protocol as for the pGEM-T vector.

2 .2  5 .4 -  Competent cells

The E. coli competent cell lines JM109 or DH5a were purchased ready to use from 

Promega. BL21(DE3) cells were made competent (able to be transformed) using the 

calcium chloride protocol described by Sambrook et n/, 1989. A single colony from a LB 

agar plate was picked and grown overnight at 37 °C in 5 ml of LB medium (Appendix 1). 

This pre-culture was then used to inoculate 100 ml of LB medium. Culture density was 

monitored spectrophotometrically every 30 min, until the ODgoo was equal to 0.4-0.6. Cells 

were then centrifuged at 2,500 g for 10 min at 4 °C and the resulting pellet resuspended in 

10 ml of 0.1 M CaCL, at 4 °C. Cells were then centrifuged at 2,500 g for 10 min at 4 ®C 

and resuspended in 2 ml ice cold 0.1 M CaCb. Competent cells were conserved on ice and 

used immediately.
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2.2.5.5- Transformation of competent ceils

BL21(DE3) were transformed with the ligation products by a standard heat shock 

method (Sambrook et al, 1989). 10 ng of DNA was mixed with 200 pi of the competent 

cells and incubated on ice for 10 min. A heat shock (42 °C, 50 s) was performed and the 

cells were then placed on ice for 2 min. 900 pi of LB medium was then added and the 

mixture shaken for 1 hour at 37 °C. 100-200 pi of the transformation was then plated onto 

LB plates containing the relevant antibiotic selection.

Successful cloning of the insert into pGEM-T was indicated by the presence of 

white colonies using X-Gal colour selection. Cells were plated onto LB agar plates 

containing ampicillin (100 pg/ml), isopropylthio-p-D-galactoside (IPTG) (40 pg/ml) and 

5-bromo-4-chlorO“3-indolyl-p-D“galactoside (X-gal) (40 pg/ml). White colonies, with the 

vector and the insert, were picked and cultured at 37 °C overnight in LB medium 

containing ampicillin (100 pg/ml). The isolation of the plasmid was performed using the 

QIAprep Miniprep kit (Qiagen). To check for the presence of the correct insert, the 

plasmid was digested with different restriction enzymes and fragments separated by 

agarose gel electrophoresis. The vectors with cloned PCR fragments were sent to MWG- 

Biotech for sequencing. Electroferograms were analysed using Vector NTI (Informax).

The same protocol was used to select the cells containing the proline 

dehydrogenase gene inside the pET 21a^ vector. The selection was done in the presence of 

ampicillin only since p-galactosidase is not encoded within this vector.

2.2.6- Southern blot analysis

Southern blotting enables localisation of particular sequences within genomic 

DNA. 5 pg gDNA was digested completely by restriction enzymes and the resulting 

fragments separated according to their size by electrophoresis through a 1 % (w/v) agarose
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gel in IX TAE buffer. The DNA was then denatured in situ and transferred from the gel to 

a nylon membrane by capillary transfer according the method of Southern (1975) (as 

described in Sambrook et al, 1989). After having been photographed, the gel was 

incubated in 0.125 M HCl for 30 min under gentle agitation in order to allow the 

depurination of the DNA. The gel was then incubated for another 30 min in 1.5 M NaCl 

and 0.5 M NaOH to denature the DNA and then in 1 M Tris pH 7.5, 1.5 M NaCl to 

neutralise the gel. The transfer of DNA onto a nylon filter (Hybond N, Amersham) was 

done using 20X SSC (Appendix 1). Capillary transfer was used to transfer DNA fragments 

from the gel in a flow of liquid and deposited on the surface of the solid nylon support 

transport using standard procedures (Sambrook et al., 1989). An ultraviolet cross-hnking 

procedure was used to fix DNA to the membrane (Spectrolinker XL-1000 UV linker, 

Spectronics Corporation), for optimal cross-linking.

2.2.7- Northern blot analysis

RNA samples (~4 pg) were separated according theft sizes, by 1 % 

agarose/formaldehyde gel electrophoresis for at least 4 hours at 60 V. The gel contained 1 

% (w/v) agarose, 12 % (v/v) formaldehyde and 2 X Northern gel buffer (Appendix 1). 

RNA samples were prepared by adding the RNA to 12.5 % (v/v) formaldehyde, 50 % (v/v) 

formamide and H2O to 20 pi. Samples were heated for 15 min at 55 °C to denature the 

RNA. The gel was then soaked in 20 X SSC for 30 min, before being placed in contact 

with the nitrocellulose membrane for RNA transfer to the solid support in an ascending 

flow of buffer (20 X SSC) similar to that used in Southern blotting. Once transferred, the 

membrane was UV cross-linked and stained with methylene blue in order to ensure equal 

amounts of total RNA in each lane.
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2.2.8- Probe labelling

^^P-labelled probes were made by randomly priming a PCR product that had been 

extracted from a gel using the Prime It® II kit (Stratagene). 10 pi of random 

oligonucleotide primers were added to 25 ng of DNA in a total reaction volume of 34 pi. 

The mixture was boiled for 5 min in order to denature the probe. 10 pi 5X dATP primer 

buffer, 50 pCi a^^dATP and 1 pi of Exo Klenow enzyme (Stratagene) (5 U/pl) were added 

and incubated in 37 °C for 10 min. The probe was boiled 5 min before addition to the 

membrane.

Prehybridisation was carried out for 2 hours at 42 °C in 50 % (v/v) formamide, 5 X 

SSC, 10 X Dendhart’s solution, 0.1 % SDS, 20 mM NaH2P04, pH 6.5 and 0.2 mg/ml 

salmon sperm DNA. Hybridisation of the probe was effected in the same buffer overnight 

at42°C.

Blots were washed three times for 30 min at 55 °C in 0.1 X SSC and 0.1 % SDS 

and exposed to autoradiography (Compact X4, X-ograph, Imaging systems).

2.3- Biochemical techniques

2.3.1- Determination of protein concentrations

The Bio “Rad protein assay was used to determine protein concentrations. This 

system is based on the Bradford method (Bradford, 1976), which involves the addition of 

an acidic dye to the protein solution. It forms a complex, which absorbs at 595 nm as a 

function of protein concentration. A Bovine Serum Albumin calibration curve (0.05-0.5 

mg/ml) was performed to quantify the samples.
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2 .3 .2 -  S D S -P A G E

Denaturing polyacrylamide gels ensure dissociation of the proteins into their 

individual polypeptide subunits. Commonly a detergent, sodium dodecyl sulfate (SDS), is 

used in combination with a reducing agent and heat to dissociate the proteins before 

loading them onto the gel. The denatured polypeptides bind SDS and become negatively 

charged, the complexes migrate through the gel according their molecular mass. The 

method used was described by Laemmli (1970). The resolving gel contained 10 % (v/v) 

polyacrylamide (Acrylamide-Bis, BioRad), 25 % (v/v) resolving buffer, 0.1 % SDS, 7.5 % 

(v/v) ammonium persulfate (Sigma) and 0.1 % TEMED (Sigma). The stacking gel 

contained 4 % (v/v) polyacrylamide (Acrylamide-Bis, BioRad), 25 % (v/v) stacking buffer, 

0.1 % SDS, 5 % (v/v) ammonium persulfate (Sigma) and 0.1 % TEMED (Sigma). Samples 

were mixed with 1 X loading buffer and boiled for 5 min prior to loading. The gel was run 

at 120 V for 1-2 hours in electrophoresis buffer (Appendix 1). The gel was then stained for 

1 hour with 0.25 % Coomassie Brillant Blue R250 and destained with 10 % (v/v) acetic 

acid, 12.5 % (v/v) methanol.

2.3.3- Protein expression

Target genes cloned into the pET series of plasmids are under the control of the 

strong T7 bacteriophage promoter. Expression of the recombinant protein is induced by 

addition of isopropylthio-p-D-galactoside (IPTG) to the bacterial culture. The pET21a^ 

vector allows the addition of a Histidine tag (6 histidine residues) to the C-terminus of the 

protein to facilitate detection and purification.

60



Chapter 2: Material and methods

2.3.3.1- Cloning of proline dehydrogenase into pET21a*

After gel purification using a QIAquick PCR gel purification kit (Qiagen), the PCR 

products were cloned into the pGEM-T vector as described in section 2.2.5.3, and then into 

pET21a\ once the quality of the insert had been checked by restriction enzymes digestion 

and by sequencing.

2.3.3.2- Protein expression

The positive pET21a^ vectors containing the PRODH gonos were used to transform 

competent E. coli cells (strain BL21(DE3)) by heat shock. Positive cells were selected by 

plating into LB plates containing ampicillin (100 pg/ml). Single colonies were picked and 

seeded into liquid medium. From an overnight culture of 5 ml of LB medium containing 

ampicillin, sample was diluted 100 fold into fresh LB medium (50 ml to 500 ml) 

containing 100 pg/ml of ampicillin and incubated at 37 until ODeoo equalled 

approximately 0.6. Different concentrations of IPTG (0.1 mM-1 mM) were added to 

induce protein expression and the cells were shaken for another 4 hours at 37 °C, or 

overnight (O/N) at 16 °C or 20 °C. Cells were harvested by centrifugation (4 °C, 4500 g, 

10 min) and the pellet was resuspended into appropriate buffer, depending on the 

experimental conditions, sonicated (20 times with 20 s pulse (frequency amplitude from 16 

to 22 microns) separated by 30 s intervals between pulses) (Soniprepl50, MSE) and 

centrifiiged at 10,000 g for 30 min at 4 °C. The two subsequent fractions, pellet and 

supernatant, were analysed using a 10 % (v/v) SDS-PAGE gel. Soluble recombinant 

protein was then purified using a Ni-agarose column (Qiagen). The presence of 

recombinant protein was checked by Western Blot analysis using an anti His-tag antibody 

(see section 2.3.7).
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2.3.3.3- Solubilisation of inclusion bodies

After expression of the recombinant protein, the pellet of E. coli was resuspended 

in 2.5 ml of 50 mM Tris-HCl, pH 7.5, 5 mM EDTA, 5 % (w/v) sucrose and stored for 1 

hour at -20 °C, then defrosted in tap water for 10 min and refrozen for 1 hour at -20 °C. 

The pellet was sonicated (6 to 20 times, 10 s to 30 s pulse (frequency amplitude from 16 to 

22 microns) separated by 30 s intervals between pulses) (Soniprepl50, MSE) and 

centrifuged 10,000 g for 10 min at 4 ®C. The resulting pellet was resuspended in 2.5 ml of 

50 mM Tris-HCl, pH 7.5, 5 mM EDTA containing 0.1 % Triton XI00 and centrifuged at 

10,000 g for 10 min at 4 °C. The pellet was resuspended in 2.5 ml 50 mM Tris-HCl, pH 

7.5, 5 mM EDTA containing 2 M urea and centrifuged 10,000 g for 10 min at 4 °C. The 

final pellet was resuspended in 5 ml of the same buffer containing 8 M urea and slowly 

shaken at 37 °C for 1 hour and then diluted with 5 ml 50 mM Tris-HCl, pH 7.5, 5 mM 

EDTA, ± 10 mM DTT and 8 M mea (Sanderson et a l, 2000). The recombinant protein 

released from the inclusion bodies was dialysed against different buffers before testing for 

activity.

2.3.4- Purification of the recombinant protein 

2 .3 .4 . f -  Ni-Agarose column

The recombinant PRODH produced has a 6-histidine tag engineered at the C- 

teminus, allowing affinity purification on a nickel agarose column (Qiagen). Samples 

(containing soluble recombinant proteins) were added to the pre-equilibrated Ni^  ̂column 

and allowed to move through the matrix under gravity. Once the sample had entered the 

column, the Nf^-beads were washed with 10 ml of 10 mM Tris-HCl pH 7.8, 5 mM 

imidazole, 0.5 M NaCl, 10 % (v/v) glycerol, and then 5 ml of wash buffer (same buffer 

containing 30 mM imidazole). Recombinant protein was selectively eluted using 0.5 ml or
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1.5 ml aliquots of the buffer containing 500 mM imidazole. The eluted fractions were 

dialysed against different buffers and checked for enzymatic activity. The samples eluted 

were also analysed by SDS-PAGE gel and / or Western blots.

2 .3 .4  2 -  Use of BioCAD

The protein containing the 6-histidine tag was also purified using a BioCAD 700 E 

workstation (PE Biosystems). The column used was POROS MC 4.6 mm that had a 

column size of 1.7 ml. The POROS beads were charged with nickel ions. Alan Scott 

(University of Glasgow) purified the proteins using the BioCAD system. The column was 

first equilibrated with Tris or phosphate buffer containing 0.5 mM imidazole. Samples 

were loaded onto the column with a flow rate of 5-10 ml/min. The column was washed 

with 20 ml of Tris or phosphate buffer (pH 7.8) containing 0.5 mM imidazole, a second 

wash of 15 ml of Tris or phosphate buffer containing 30-50 mM imidazole was used. The 

protein was eluted either by a gradient of 50-500 mM imidazole with the eluent being 

collected in 15 fractions of 1 ml or simply with a solution of 500 mM imidazole. The 

absorbance at A280 was followed to monitor the protein elution.

2.3.5- Antibody production

Purified recombinant PRODH protein was used to raise antiserum in rabbits, this 

was done by Diagnostic Scotland using standard techniques. A rabbit was immunised with 

400 pi of a 1 mg/ml solution of the recombinant protein. Over the next three months, the 

rabbit received a further three 200 pi injections of the same solution at monthly intervals. 

Blood samples were taken each month before sacrificing the rabbit one month after the 

final injection. Samples were analysed by dot blot or by Western blot analysis to examine 

the antibody purity and affinity for PRODH.
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2.3.6- Antibody purification

Antibodies produced were purified using AminoLink® (Pierce) kit following the 

manufacturer’s instructions. The first step of this purification was to immobilize the 

recombinant PRODH on a solid support. 2 ml of the protein (1-20 mg/ml) was incubated 

with 1 ml of AminoLink® coupling gel overnight at 4 "C after adding 200 pi of sodium 

cyanoborohydride (NaCNBHg) (190 mg/ml), which acts as a reductant and permits the 

formation of covalent bounds. After washing the column with PBS containing 0.05 % 

NaNs, the sample of antiserum was applied and incubated with the column under gentle 

agitation at 4 ”C overnight. After washing the column with PBS containing 0.05 % NaNa, 

antibodies were eluted by 0.5 ml fractions of glycine buffer (100 mM, pH 2.5). Purified 

antibodies were aliquoted and stored at — 20 °C until use.

2.3.7- Western blotting

Samples were resuspended in IX loading buffer (Appendix 1) and proteins 

separated by electrophoresis in an 10 % SDS-PAGE gel. Separated products were then 

electrotransfered onto a nitrocellulose membrane using a Bio-Rad electrophoretic transfer 

cell (100 V, 1 hour). The membrane was blocked for 3 hours at room temperature with IX 

TBS (Appendix 1) containing 5 % (w/v) powdered milk and 0.2 % (v/v) Tween-20. The 

primary antibody, anti-histidine-tag (diluted 1:2000) or specific PRODH antibody (diluted 

1:500 - 1:5000) was made up in IX TBS, 1% (w/v) powdered milk and 0.1 % (v/v) Tween- 

20, before being added to the membrane and shaken overnight at 4 °C. The SuperSignal 

Chemiluminescent Substrate (Pierce) protocol with 1:2000 diluted anti-mouse IgG 

conjugated to peroxidase or with 1:500 - 1:5000 anti-rabbit horseradish peroxidase (HRP)
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IgG (Sigma) allowed the detection of the proteins according to manufacturer’s 

specifications.

2.3.8- Dot blotting

Antibodies have specific affinity for the antigen against which they were raised. 

Dot blotting permits antibody quantification without size fractionation (electrophoresis). 

Serial dilutions of 0.3-0.1-0.03 pg of the recombinant T. brucei PRODH (as determined by 

Bradford assay) were dotted onto a nitrocellulose membrane (4 pi each dot). As the same 

time a negative control was dotted onto the membrane. The membrane was allowed to dry 

and then blocked for 3 hours at room temperature by incubation with a solution containing 

1 X TBS, 0.2 % Tween 20, 5 % (w/v) powdered milk. Several dilutions of the primary 

antibody were made (from 1:500 to 1:5000) in IX TBS, 0.1 % Tween 20, 1 % powdered 

milk and incubated overnight at 4 °C. The following morning, membranes were washed 4 

times for 30 min in IX TBS, 1 % powdered milk. The secondary antibody, 1:2000 anti

rabbit HRP IgG (Sigma), allowed the detection of the proteins according to manufacturer’s 

specifications.

2.3.9- Proline dehydrogenase assay

The cofactor flavin adenine dinucleotide (FAD) is required for the enzymatic 

dehydrogenation of L-proline to pyrroline-5-carboxylate (P5C). Two electrons are 

transferred from proline to the cofactor. In the assay used, the electrons from the reduced 

FAD are then transferred to an electron acceptor, which changes colour upon reduction 

(Becker and Thomas, 2001). PRODH activity was measured following the reduction of the 

electron-accepting dye, iodonitrophenyl tétrazolium (INT), by monitoring the absorbance 

at 520 nM. The extinction coefficient for INT is Em= 11.5 x 10̂  M'\cm"^ (Menzel and
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Roth, 1981 a). Activity can also be determined using dichlorophenolindophenol (DCPIP) 

as a terminal electron acceptor (E m=  21 x  10̂  M"\cm'^) (Johnson and Strecker, 1962). The 

reduction of the dye is associated with a decrease in absorbance at 600 nm (Brown and 

Wood, 1993). One unit of enzyme activity was defined as the quantity of enzyme that 

transfers electrons from 1 pmol of proline to DCPIP in one min at 25 °C.

A log phase culture (5x10^ cells/ml) of T. brucei procyclic cells was harvested by 

centrifugation (2000 g, 5 min at 4 °C). The resultant pellet (~ 2 x 10* cells) was washed 

twice with a phosphate buffered saline (PBS) (Appendix 1) (pH 7.9) before being 

resuspended in 500 pi of TSE buffer (Appendix 1). The mixture was sonicated 3 times on 

ice (for 10 s on, 30 s off) and the crude lysate tested for PRODH activity (Obungu et ah, 

1999; Besteiro et al, 2002).

The reaction mixture had a total volume of one ml and contained: 0.2 M proline; 16 

% (v/v) ethylene glycol; 0.4 % (v/v) Tween 20; 0.16 M Tris-HCl, pH 8.5; 0.04 mg of 

gelatin and 0.5 mM INT. The reaction was initiated by addition of 1-50 pi of cell lysate 

and carried out at room temperature. Activity was monitored in cuvettes with a 1 cm light 

path at 520 nM using a Hewlett packard 8453 spectrophotometer, for 30s to 10 min.

For the second assay method, the stock solution contained: 11 mM MOPS; 11 mM 

MgCb; 11 % (v/v) glycerol; 0.28 mM phenazine methosulfate and 56 pM of 

dichlorophenolindophenol (DCPIP), pH 7.5. The solution was stored in a dark bottle to 

exclude light. 1-50 pi of 2 M proline or 0.2 M proline was added to 900-950 pi of the stock 

assay mix and the reaction was started by adding the enzyme (1 to 50 pi). Activity was 

monitored in cuvettes with a 1 cm light path at 600 nM. The protein concentration in the 

crude lysates of the parasites was determined by Bradford's method. In both assays, a 

negative control (no substrate) was performed to define background reduction of the dye in
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the absence of proline. These assays were also used to test the activity of the recombinant 

protein.

2.4- RNA interference (RNAi) in T. brucei

RNA interference refers to the introduction of homologous double stranded RNA 

(dsRNA) to specifically target a gene product (mRNA), resulting in "null" phenotypes 

(LaCount et al, 2000).

The RNAi construct used in this study places the gene or sequence of interest 

between opposing T7 promoters in the p2T7Ti vector (Figure 2.2) (LaCount et al., 2000). 

This vector contains an rRNA spacer for integration into the rRNA locus of the parasite’s 

genome, as well as a phleomycin-resistance gene for selection and a tetracycline-inducible 

operator. The p2T7Ti vector must be used with specially derived T. brucei lines, which 

express T7 RNA polymerase coli phage T7 and the tet repressor from bacteriophage A,. To 

this end, the transgenic 29-13 procyclic cell lines (which were originally derived from the 

EATRO 427 line) were used. The T7 RNA polymerase and the tetracycline repressor 

constructs are maintained within the parasite by the addition of 15 pg/ml of G418 and 25 

pg/ml of Hygromycin B to the medium respectively. Without tetracycline, the tet repressor 

is expressed and it binds to the tet operator to inhibit the transcription. When tetracycline is 

present, it binds to the repressor and prevents its action on the operator and so transcription 

occurs.
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rRNA spacer
iii

f
T7 promotor

Tet operator

PRODH

T7 terminator

Pkicopiycla R

Figure 2.2: Inducible two-T7 promoter vector (p2T7Ti). PRODH represents the PCR gene fragment of 

proline dehydrogenase; Phleomycin R is the phleomycin-resistance gene.

2.4.1- Parasites

T. brucei 29-13 (Writz et al, 1999) PCF were grown in SDM 79 medium 

supplemented with 10 % (v/v) heat inactivated foetal calf serum, 15 pg/ml of G418 and 25 

pg/ml of Hygromycin B at 25 °C. 24 hours after transfection (see section 2.4.3), 10 pg/ml 

of phleomycin was added to the medium for selection of transfected clones with the 

PRODH construct. Induction o f the RNA expression was achieved by addition of 1 to 10 

pg/ml of tetracycline.

2.4.2- Plasmid construction

2.4.2.1- PCR of a fragment of the T. brucei proiine dehydrogenase gene

A  606 bp fragment of the PRODH gene was amplified by PCR from T. brucei 

gDNA using specific primers each containing an Xba I linker (see Figure 2.3 and Table 

2 . 1).
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RNAi forward

5’ ProUne dehydrogenase gene __ 3’

RNAi reverse 
M------------- ►

606 bp

Figure 23: Cartoon showing primer binding sites used to amplify a fragment of proline dehydrogenase 

for insertion into the RNAi construct

The final composition of the PCR reaction was: IX PCR buffer (Promega), 0.5 mM PCR 

nucleotides mix, 1 unit of pfu DNA polymerase, 100 pmol o f each primer, 5 % (v/v) 

DMSO and 50 ng T. brucei gDNA. The PCR cycling protocol was performed in three 

stages: (94 °C, 2 min); (94 °C, 15 s; 63 °C, 30 s; 72 °C, 2 min; 30 cycles); (72 °C, 7 min).

2.4 2.2- Cloning into p2T7Ti

The PCR products were run on a 1 % agarose gel and the 606 bp fragment 

identified. The product was extracted from the gel using QIAquick PCR purification kit 

(Qiagen). This PCR product and the plasmid p2T7Ti were digested for 2 hours at 37 °C 

with the Xba I restriction enzyme before being purified using the Qiagen kit. The digested 

insert and the vector were ligated overnight at 16 °C in th^ following reaction mix: 1 pi 

lOX ligase buffer; 1 pi p2T7Ti vector (20 ng/pl); 7 pi PCR product (130 ng); 1 pi T4 DNA 

ligase at 1 U/pl. E. coli competent cells (strain DH5 a) were transformed with 1 pi of the
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ligation mixture using a standard heat shock method (42 °C for 50 s). Cells expressing the 

construct were selected for growth on LB plates containing ampicillin (50 pg/ml). Clones 

were picked and cultured at 37 °C overnight in LB medium containing ampicillin (50 

pg/ml). The isolation of the plasmid was performed using the QIAprep Miniprep kit 

(Qiagen). To check for the presence of the correct insert, plasmids were digested with Ahn 

I and fragments separated by agarose gel electrophoresis.

2.4.3- Transfection of the parasites

In order to linearise the plasmid containing the msert, 100 pg of DNA (p2T7Ti 

containing the proline dehydrogenase gene fragment, p2T7PRODH) was digested for 2 

hours at 37 °C by Not I. DNA was then ethanol-precipitated and air dried in a sterile hood 

to sterilise the sample. It was then resuspended in 20 pi sterile water. Product size and 

concentration were confirmed on a 1 % agarose gel.

For transfection, ~ 1 x 10* 29-13 T. brucei cells were washed twice in 4 ml of 

Zimmerman’s post fusion media (ZPFM) (Appendix 1) before being resuspended in 2 ml 

ofZPFM. 0.5 ml of this suspension was mixed with ~8 pg of the sterile linearized plasmid. 

Transfection was performed by electroporation in a 0.4 cm cuvette, using a single pulse at 

a voltage of 1.5 kV and 25 pF capacitance with an infinite resistance using a BioRad Gene 

Puiser. After transfection, the parasites were transferred into pre-warmed SDM79 medium 

supplemented with 10% (v/v) heat inactivated foetal calf serum, 15 pg/ml of G418 and 25 

pg/ml of Hygromycin B at 25 °C. 24 hours later 10 pg/ml of phleomycin was added to the 

medium to select stable expressing cell lines. To induce the expression of dsRNA, 

tetracycline was added to the medium at a concentration of 1 pg/ml.
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2.4.4- Selection of clones

In order to assist growth of parasites during cloning, conditioned medium was 

prepared as follows. Procyclics were grown at 27 in SDM 79 medium, supplemented 

with 10 % (v/v) FCS to a density of approximately 1 x 10̂  cells/ml. The culture was 

pelleted and the supernatant filter sterilised and stored at 4 ®C. The cloning was performed 

in 96 well plates by limiting dilution of the culture obtained after electroporation. This 

involved diluting the culture to 1 cell/ml and adding 0.2 ml per well (i.e. one cell per five 

wells on average). Cells were cultured in SDM79 medium containing 10 % (v/v) FCS, 25 

% (v/v) conditioned medium complemented with selective antibiotics. Once clones were 

obtained, growth curves and uptake assays were performed on cells that were grown in 

SDM79 containing 10 % (v/v) FCS in the presence or absence of tetracycline (1 pg/ml).

2.4.5- Analysis of growth rates

A single clone {Aprodh, clone F2) was selected for ftirther analysis. Cultures were 

initiated using 5 x 10̂  parasites/ml in the presence or absence of tetracycline (1 pg/ml). 10 

ml of complete SDM79 medium was used or 10 ml of a defined medium made without 

proline and glucose and then supplemented with proline and/or glucose at different 

concentrations as stated in the text. Parasite density was measured every 24 hours with an 

improved Neubauer haematocytometer (Weber Scientific). Growth was also analysed by 

using the Alamar® blue assay (see section 2.1.3).
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2.4.6- Amino acids uptake assays

2.4.6.1- Preparation of parasites for uptake assays

Clone Aprodh F2 generated using the RNAi constructs was used in the uptake 

analyses. It was grown in SDM79 medium in the presence of the antibiotics G418, 

Hygromycin B and phleomycin at the same concentrations as stated above. Experiments 

were carried out on parasites grown in the absence or presence of tetracycline (1 pg/ml). 

Parasites were harvested during the mid-log phase of growth by centrifuging at 3,000 g for 

10 min at 4 °C, before being washed twice in CBSS buffer at 4 °C. The pellet was 

resuspended in CBSS at the density of 10* parasites/ml (which gives 10̂  parasites per 

assay).

2.4.6.2- Stock soiutions

The radiolabelled amino acids proline, L-[2,3,4,5-^H] (112 Ci/mmol) and 

glutamate, L-[3,4-^H] (51 Ci/mmol) (NEN Life Science Products) were diluted in order to 

have 10 pi of radio labelled compound per 1 ml of solution (10 pCi/ml). This corresponds 

to 190 nM of ^H glutamate and 89 nM of proline. Other test compounds, including 

inhibitors or cold amino acids, were added from stock solutions for testing at the 

concentration detailed in the relevant Results sections.

2.4.6.3- The oii stop transport assay

All of the solutions and cells were brought to room temperature, or the temperature

specified m the text, prior to initiating the uptake experiments. 100 pi of the test solution, 

containing the radio labelled compounds at concentrations marked in the results sections, 

were added to a 0.5 ml Eppendorf tube and cushioned above 90 pi of oil mixture (di-n- 

butylphthalate and mineral oil at a ratio of 7:1) before being centrifuged (12 000 g, 1 min
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at room temperature) to produce two distinct layers. For the uptake assay, 100 pi of cells 

(at 10* cells/ml) were added to each Eppendorf and incubated for times ranging between 3 

s and 3 hours depending on the experiment. The transport assays were terminated by 

centrifiigation (12 000 g, 1 min at room temperature) to pellet the cells beneath the oil 

layer, and thus separating them from the remainder of the radioactive solution. Samples in 

the tubes were flash frozen in liquid nitrogen before removing the pellets using a tube 

cutter and transferring them to scintillation vials containing 200 pi of 2 % (w/v) SDS to 

lyse the cells. Three ml of scintillation fluid (Ecoscint A, National Diagnostics) was added 

before overnight incubation. Radioactivity levels were determined by a LKB wallac 1219 

Rackbeta liquid scintillation counter.

Background levels, which correspond to the non-transported radiolabelled 

compounds associated with the cells (in the interstitial space), were measured by 

performing uptake assays on ice.

2.4.6.4- Analysis of the results

The data were analysed using the PRISM software. Kinetic constants were determined by 

non-linear regression analysis using the Michaelis-Menten equation.

2.5- Bioinformatic Analyses

Vector NTI (v 6.0) was used to analyse DNA and protein sequences (searching for 

open reading frames and restriction sites, construction of cloning and expression plasmids). 

Sequence alignments were studied with Align X (Clustal X) and ContigExpress was used 

to align overlapping sequences to form contiguous sequences.
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The protein alignment was re-aligned using ClustalXl.81 (Thompson et al,, 1994). 

Clustal X is an alignment program for nucleotide or amino acid sequences. It uses a 

progressive alignment algorithm to align sequences. It aligns more similar sequences 

before the distant sequences. The Phylogenetic trees for this study were generated using 

MEGA (Molecular Evolution Genetic Analysis) software version 2.1 (Kumar et al, 2001).

The following web resources were used to analyse nucleic acid and amino acid 

sequences 

Databases:

TIGR databases: littp;//www. tiRr.org 

The Sanger Institute: http://vvww.sanger.ac.idc 

Parasite genome: http://mvw.ebi.ac.uk 

NCBI: http://www.ncbi.nlm.nih.Rov 

GeneDB: http .//w w . genedb.org

Analysis of the amino acid sequences in order to predict a signal peptide were done

by:

SignalP: http://www.cbs.dtu.dlc/services/SignalP 

Predotar: http://www.inra.fr/Intemet/produits/predotar 

Mitoprot II: http://bioinIbrmer.ebi.ac.uk 

Target P v 1.0: http://%^'w.cbs.dtu.dk/Service/targetP

Some of the most popular tools for protein localisation use neural network analysis, which 

is a self-teaching network of computational units that learns by a process of trial and error. 

SignalP (Nielsen et al., 1996) uses two neural networks, one to score the likelihood of a
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subsequence to be a part of a signal peptide and another one to score the likelihood of a 

subsequence to be a cleavage site. These two scores are combined. Predotar (INRA) and 

TargetP (Emanuelsson et al., 2000) also use neural network predicting the presence or 

absence of a signal sequence. TargetP can also distinguish between secretory, 

mitochondrial and chloroplast signals, MitoProt (Claros and Vincens, 1996) compares a 

sequences’ discriminant fimction of cut-offs to predict mitochondrial localisation.

Prediction of transmembrane domains withiu amino acid sequences was done by: 

TMpred: h t t p : / / w v v v v . c h . e i i i b u e t . o r a

The TMpred program makes predictions of membrane-spanning regions and their 

orientation. This program is based on the TMbase (Hofinann and Stoffel, 1992), which is a 

data base combining several matrices for scoring. TMbase is mainly based on Swissprot. 

All data are scored in different tables able to be used with a database management system.

Conserved Blocks inside the PRODH amino acid sequences were found using 

M E M E :  h t t p : / / w w w . i n e m e . s d s c . e d u

MEME is a software toolkit for building and using motif-based hidden Markov models of 

biological sequences. It produces a multiple alignment of the original set of sequences and 

to search a sequence database for homologues.
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Chapter 3 

Identification of genes encoding proline dehydrogenase in 

Leishmania major and Trypanosoma brucei and bioinformatic 

analysis of the predicted proteins

3.1" Introduction

Both Leishmania major and Trypanosoma brucei undergo a complicated 

developmental cycle involving an insect vector and a mammalian host. It has been 

demonstrated that with some strains of T. brucei in culture, the amino acid proline is the 

favoured metabolic substrate (Gutteridge and Coombs, 1977; Evans and Brown, 1972). 

Proline is also considered to be a major substrate for energy and carbon synthesis in 

promastigotes of Leishmania species (Zilberstein and Gepstein, 1993). These in vitro 

findings with T brucei correlate well with the normal environment of procyclic T. brucei 

in the tsetse fly midgut, where the concentration of proline is high (Balogun, 1974). Proline 

is the major energy source of insect flight muscles (Cazzulo, 1992; Obungu et ah, 1999).

Pro line utilisation requires two enzymes to convert proline into glutamate; proline 

dehydrogenase (PRODH) and pyrroline-5-carboxylate dehydrogenase (P5CDH) (Figure 

3.1). In the first step, the oxidation of proline to pyrroline-5-carboxylate (P5C) is coupled 

with the reduction of a cofactor, flavin adenine dinucleotide (FAD). Two electrons from 

reduced FAD are then transferred to the electron transport chain. In the second step, P5C is 

hydrolysed to give glutamic semialdehyde, which is oxidised to glutamate using the 

CO factor nicotinamide adenine dinucleotide (NAD”̂  (Becker and Thomas, 2001; Lee Y et 

ah, 2003). This proline metabolism permits oxidation of proline to glutamate, which is
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further oxidised to CO2 through the Krebs cycle, while protons are donated to the electron 

transport chain (Obungu et a l, 1999).

In all eukaryotic cells that have been studied to date (e.g. Saccharomyces 

cerevisiae. Drosophila melanogaster, Homo sapiens) the conversion of proline to 

glutamate takes place within the mitochondrion (Brunner and Neupert, 1969; Small and 

Jones, 1990; Maxwell and Davis, 2000; Deuschle et a l, 2001). In bacteria, such as 

Escherichia coli, proline metabolism enzymes are associated with the inner plasma 

membrane (Muro-Pastor et a l, 1997), which is functionally equivalent to the inner 

mitochondrial membrane of eukaryotes.

Several studies have been performed on the proline metabolism of trypanosomatids 

(Evans and Brown, 1972; ter Kuile and Opperdoes, 1992a and 1992b; Clayton and 

Michels, 1996; Obungu et a l, 1999). Nevertheless, the gene encoding the first enzyme of 

this pathway (PRODH) had not been cloned or studied in these organisms. This chapter 

presents the identification of the genes coding for L. major and T. brucei PRODH, as well 

as a bioinformatic analysis of the predicted proteins encoded by these genes.
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Figure 3.1: Proline degradation pathway (from Lee et al.̂  2003)
PRODH: proline dehydrogenase; P5CDH: pyrroline-5-carboxylate dehydrogenase

3.2- Results

3.2.1- Identification of the genes

The National centre for Biotechnology Information (NCBI) and L. major databases 

were screened using the name of the enzyme “proline oxidase”, now renamed proline 

dehydrogenase (PRODH). A peptide sequence corresponding to a putative PRODH in L. 

major (accession number CAB 97967) was found. It is present on chromosome 26. The 

complete sequence of this chromosome is present in the database under the accession code 

AL 160493 and CAB 97967 is a part of this sequence. The BLAST (Basic Local 

Alignment Search Tool) servers from TIGR and the parasite genome database were then 

searched with the Leishmania gene to find a “PRODH” homologue in T, brucei. The
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accession numbers of the T. brucei sequences with homology to the L. major proline 

oxidase gene, were: AQ 944712; AQ 638820; AQ 653997; AL 495302; AL 453746. These 

DNA sequences were used to generate a contiguous sequence (Contig) (using the Contig 

Express software of Vector NTI) and a consensus sequence was produced (Figure 3.2). 

The contiguous nucleic acid sequence was then used to probe other databases using the 

BLAST algorithm, in order to verify the identity of the PRODH gene sequence.

This preliminary study was performed in 2000. Since then, the databases have been 

updated and all of the accession numbers cited above have been suppressed. The GeneDb 

accession number, 105.m00209, is now annotated as a putative proline oxidase present on 

chromosome 7 of T. brucei.

AL453746: 1393 » 1915

AL495302: 1118 & 1654 (compiementary)

___________________

A0 9 4 4 712: 634 « 1257 (complementary )

_______________________

AQ653997: 314 « 647 (complementary) 

__________

AQ638820: 1 » 732

fOO ,1000 ,1500

Figure 3.2: Contig assembled with the accession number references from the T. brucei genome project
This contig produced overlapping sequences. The proline dehydrogenase ORF was then deduced from this 

sequence. Arrows represent the putative ORF (with a frame shift in the raw sequence data).
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The two putative PRODH gene sequences from L  major and T. brucei were analysed 

using the Vector NTI soJftware in order to find a putative open reading fi'ame (ORF). The 

nucleotide data in the L. major and T, brucei database were incomplete at the time when 

the contigs were first generated and there were numerous undefined bases and likely 

firame-shifts. This made it difficult to obtain an accurate open reading frame sequence 

(Figure 3.3). Therefore it was essential to re-sequence this portion of the genome in order 

to find the authentic first methionine and stop codon.

Putative ORFs present in the assembled contig of L. major (2690 bp)

Putative ORFs present in the assembled contig of T. brucei (1914 bp)

Figure 33: Apparent ORFs from 0NA sequences in the databases in 2<KK).
The solid bars represent the L. major and T. brucei contigs œntaining the putative PRODH genes. The 

arrows show predicted open reading frames judged by 5’ metliionine and 3’ termination codons.
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Genomic DNA from both species was amplified using pfu DNA polymerase and 

oligonucleotides (Lml and Lml rev for L. major and Tbl and Tbl rev for T. brucei) 

shown in section 2.2.3. The primers were designed to amplify sequences upstream and 

downstream of the putative ORFs. PCR products obtained are shown in Figure 3.4. The 

amplification for L. major gave a PCR product of approximately 2.2 kb, and for T. brucei a 

product of approximately 2.1 kb was obtained. These were the sizes expected based on 

genomic sequence in the databases.

Ladder 1 2

2 kb   PRODH

1 kb

Figure 3.4: Ethidium bromide stained gel showing PCR amplification of T. brucei (TbPRODH) and L.
major {LmPRODH) putative proline dehydrogenases
1: 1 kb DNA ladder

2: T. brucei amplificaticMi product

3: L  mcgor amplification product
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In order to check that the correct PCR product had been amplified, it was cloned into the 

pGEM-T vector and each sample was then digested using two different restriction 

enzymes, Xba I and Nde I for L. major and BamHl and Apa I for T. brucei (Figure 3.5).

1 2 3 4 5

3000 bp 

1500 bp

Figure 33: Digestion of LmPRODH and TbPRODH ckmed into pGEM-T vector
1 ; 1 kb ladder

2: PCR product corresponding to the L. major putative proline dehydrogenase gene within pGEM-T vector, 

digested with Xba I and Nde I

3: Non-digested pGEM-T containing L  major proline dehydrogenase

4: PCR product corresponding to the T. brucei putative proline dehydrogenase gene within pGEM-T vector, 

digested with BamH I and Apa I

5: Non-digested pGEM-T containing T. brucei proline dehydrogenase

In order to check the construct, the pGEM-T vector containing the putative PRODH from 

L  major was digested by Xba I (which cuts at position 1777 in the insert) and Nde I, which 

cuts in the vector, while the pGEM-T vector containing the T. brucei gene was digested by
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BamHl (which cuts at position 1340 in the insert) and Apa I, which cuts in the vector. The 

digested products obtained (Figure 3.5) were of the predicted sizes (Figure 3.6). A 

fragment of 1676 bp was obtained from the L. major f d i g e s t i o n  and a fragment of 

1668 bp was obtained from the T. brucei PRODH digestion. The vectors containing the 

inserts were then sequenced.

Analysis of these sequences allowed the true ORFs to be defined, based on homology 

between L. major, T brucei and other PRODH proteins (Figure 3.6). The ORF 

amplification is shown in Figure 3.7.

jVfW(ioi) xbaiiinr)

L. major ORF (1683 bp) map

A pal (168)

T. brucei ORF (1668 bp) map

Figure 3.6: Restriction map of T. brucei and L. major putative proline dehydrogenase gene sequences 

cloned in the pGEM-T vector. The blue and green arrows represent the putative open reading frame found 
after amplification of the gDNA and sequencing.
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Ladder 1

1.5 kb _

Figure 3.7: Ethidium bromide stained gel showing PCR amplification of T. brucei and L. major proline 

dehydrogenase genes from gDNA
1 : T brucei proline dehydrogenase gene 

2: Lmajor (^oline dehydrogenase gene

Figures 3.8 and 3.9 show the nucleotide sequences translated into corresponding proteins 

using Vector NTI. These ORFs encode a protein of 556 amino acid residues with a 

calculated molecular mass o f 63.8 kDa for T. brucei and a protein of 561 amino acid 

residues with a molecular mass of 63.8 kDa for L. major.
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M F R L L C R R 8 A A ■ V B M Q D A 8 L

1 XTO TTT COC CTC CTO TOC COA COC TCC OCC OCO AAT OTA AAA ATO CAA OAC OCC AOT CTC
TAC AAA oco OAO OAC ACO OCT oco AGO COO CGC TTA CAT TTT TAC OTT CTO coo TCA OAO

R I M T K V D F 8 D P 8 I F R Q K 8 L W

61 coc ACC ATO ACA AAA OTO OAT TTC TCO OAC CCA TCC ATA TTT COT CAO AAA TCT CTO TOO
QCG TOO TAC TOT TTT CAC CTA AAO AOC CTO OOT AOO TAT AAA OCA OTC TTT AOA OAC ACC

W L L R A L F V L R I C K F B F 1 8 H H

1 2 1 TOO TTO TTO COC OCA CTC TTT OTO CTC COC ATT TOC AAO TTT OAA TTC ATT TCC AAC AAT
ACC AAC AAC OCO COT OAO AAA CAC OAO oco TAA ACO TTC AAA CTT AAO TAA AGO TTO TTA

s V A L M K R A B A 1 F G P F L T T M I

1 8 1 TCT OTO OCT CTT ATO AAO COT OCT OAO OCA ATT TTT OOA CCC TTT TTO ACC TAT AAC ACA
AGA CAC COA OAA TAC TTC OCA COA CTC COT TAA AAA CCT ooo AAA AAC TOO ATA TTO TOT

L V K 0 T V T 0 H F C A O B 8 D R B V K

2 4 1 CTC OTO AAO OOO ACA OTO TAC ooc CAC TTT TOT OCT OOC OAA TCC OAT COT OAA OTT AAO
GAO CAC TTC CCC TOT CAC ATO CCO OTO AAA ACA COA CCO CTT AOO CTA OCA CTT CAA TTC

N T V K 8 L R H L O I O 8 V L D T A A B

3 0 1 AAC ACC OTC AAA TCO CTT OAA AAT TTO OOT ATT OOA TCT OTT CTT OAC TAT OCC OCT OAA
TTO TOO CAO TTT AOC OAA CTT TTA AAC CCA TAA CCT AOA CAA OAA CTO ATA COO COA CTT

A 8 A K O F A P 8 P O I A B A P H L 8 M

3 6 1 OCT QAA OCT OAO OOT TTC OCA CCC TCC CCA OOT ATT OCA OAA OCO CCO AAC TTO TCT ATO
COA CTT COA CTC CCA AAO COT ooo AGO OOT CCA TAA COT CTT coc ooc TTO AAC AOA TAC

A S L V M M T 8 V T T L P H K 0 A F D B

4 2 1 OCA AOT CTT OTC AAC AAC ACA TCC OTT ACC TAT CTO CCT CAC AAO CAA OCC TTT OAC OAA
COT TCA QAA CAO TTO TTO TOT AGO CAA TOO ATA OAC OOA OTO TTC OTT coo AAA CTO CTT

M M K L T V M C V L H A A L H K p B 0 0

4 8 1 AAC ATO AAA CTA TAC OTA ATO TOT OTT TTA CAT OCC OCA CTA CAT AAA CCO OAO OOC OOC
TTO TAC TTT OAT ATO CAT TAC ACA CAA AAT OTA coo COT OAT OTA TTT ooc CTC CCO CCO

V 0 L A A V K V T O M c D P Q L L A R V

5 4 1 OTT OOA TTO OCT OCT OTT AAO OTO ACA OOC ATO TOT OAT CCA CAO CTT CTC OCC COC OTC
CAA CCT AAC COA COA CAA TTC CAC TOT CCO TAC ACA CTA OOT OTC OAA OAO COG oco CAO

a A 1 L H S V B R D W I B T F T B B Q P

6 0 1 TCO OCA ATC CTO CAC TCC OTT CAC COT OAC TOO ATA OAA TAC TTT ACO OAO OAO CAA CCA
AOC COT TAO OAC OTO AOO CAA OTO OCA CTO ACC TAT CTT ATO AAA TOC CTC CTC OTT GOT

P P V S B C M V V M 0 T K T B B K R Y I

66 1 CCA CCA OTO QAO OAO TOT AAT OTT OTO ATO OOA ACA AAA ACO GAO CAC AAO AOA TAT ATT
OOT OOT CAC CTC CTC ACA TTA CAA CAC TAC CCT TOT TTT TOC CTC OTO TTC TCT ATA TAA

T R D 0 V R K 0 L T K L A S 8 Q K Y T B

7 2 1 ACO COT OAC CAA OTO COO AAO OOA CTC ACA AAA TTO OCC TCT TCO CAA AAA TAC ACA OAA
TOC OCA CTO OTT CAC OCC TTC CCT OAO TOT TTT AAC coo AOA AOC OTT TTT ATO TOT CTT

D K I N A V L Q V L D P M M B 0 K T N Y

78 1 OAT QAO ATC AAT OCC OTC TTA CAA OTT CTC OAT CCA AAT AAT OAA OOA AAA ACA AAC TAC
CTA CTC TAO TTA coo CAO AAT OTT CAA OAO CTA OOT TTA TTA CTT CCT TTT TOT TTO ATO

r K F K T V V 8 B A V L A L D P T P V Q

8 4 1 TAC AAO TTT AAA ACO OTT OTO TCT OAO OCC OTA CTT OCA CTO OAT CCC ACA CCA OTO CAO
ATO TTC AAA TTT TOC CAA CAC AOA CTC coo CAT OAA COT OAC CTA 0 0 0 TOT OOT CAC OTC

K I I I 0 K L P K L T T B B R B L W R B

9 0 1 AAO ATA ATT ATC OAC AAA CTT CCA AAA CTT ACT ACA OAO OAO COC OAA CTA TOO COC CAT
TTC TAT TAA TAO CTO TTT OAA OOT TTT OAA TOA TOT CTC CTC OCO CTT OAT ACC oco OTA

L H W R L S V I V R T A K D L R V R V L

9 6 1 TTO CAC TOO AOO TTO TCA OTC ATT OTT COO ACT OCO AAO OAC TTO COO OTO COA OTT TTO
AAC OTO ACC TCC AAC AOT CAO TAA CAA OCC TOA COC TTC CTO AAC OCC CAC OCT CAA AAC

F D A K Q I F T 0 L A I 0 M I V L Q F 0

1 0 2 1 TTT OAC OCC OAO CAA ACO TTT TAT CAA CTT OCC ATT OAT AAT ATT OTO TTO CAO TTT CAO
AAA CTO coo CTC OTT TOC AAA ATA OTT OAA COO TAA CTA TTA TAA CAC AAC OTC AAA OTC

R Q F M K K B A I V T tt T T Q C r L I Y

1 0 8 1 COC CAO TTC AAT AAA AAO OAO OCT ATA OTT TAT AAC ACA TAT CAA TOC TAT TTO ACT TAC
oco OTC AAO TTA TTT TTC CTC COA TAT CAA ATA TTO TOT ATA OTT ACO ATA AAC TOA ATO

T K D R V F M 0 L T R A B L B O If V W O

1 1 4 1 ACC OAA OAC COT OTT TTC AAT OAC TTA ACC COA OCA OAO CTC OAO OOO TOO OTT TOO OOA
TOO CTT CTO OCA CAA AAO TTA CTO AAT TOO OCT COT CTC OAO CTC CCC ACC CAA ACC CCT

0 K I V R O A T M R Q B R B T A B K Y B

1 2 0 1 ooo AAA ATT OTT COA OOT OCT TAC ATO AOO CAO OAO AGO OAO ACA OCA OAA AAA TAC CAT
CCC TTT TAA CAA OCT CCA COA ATO TAC TCC OTC CTC TCC CTC TOT COT CTT TTT ATO OTA

T K S P I w P T T B B T H A C T K A V A

1 2 6 1 TAC AAA AOC CCC ATT TOO CCA ACO TAC OAO OAA ACT AAC OCO TOC TAC AAA OCT OTO OCT
ATO TTT TCO 0 0 0 TAA ACC GOT TOC ATO CTC CTT TOA TTO COC ACO ATO TTT COA CAC COA
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E R I L R B I A R L P E T R F E A L F 0
1321 GAO COA ATA CTA AOA GAO ATA OCC COO TTA CCT OAA ACA COT TTT OAO OCC CTO TTC OOA

CTC OCT TAT OAT TCT CTC TAT coo OCC AAT OOA CTT TOT OCA AAA CTC coo OAC AAO CCT
I B N Q K S L B E I T E A V L Q L P P V

1381 ACT CAC AAT CAA AAA TCA CTT QAA OAA ATA ACT OAO OCT OTT CTT CAA CTT CCT CCT OTT
TOA OTO TTA OTT TTT AOT OAA CTT CTT TAT TOA CTC COA CAA OAA OTT OAA OOA GOA CAA
K o T V A F A Q L T O M S D N L T I P L

1441 AAA OOT TAT OTO OCA TTT OCC CAA TTO TAT OOC ATO TCO OAC AAC TTO ACA ATT CCO CTT
TTT CCA ATA CAC COT AAA coo OTT AAC ATA CCO TAC AOC CTO TTO AAC TOT TAA ooc OAA
K R A 0 F P V F K T V P T O P V K B T V

1501 AAO AOA OCC OOT TTT CCA OTT TTT AAA TAT OTT CCO TAC OOA CCT OTC AAA OAO ACT OTT
TTC TCT coo CCA AAA OOT CAA AAA TTT ATA CAA ooc ATO CCT OOA CAO TTT CTC TOA CAA
B T L 0 R R A M E N A 3 I L S N O O S R

1561 CAC TAC CTO OOA AGO COT OCT ATO OAO AAC OCO TCA ATT TTA TCO AAT 000 GOT AOC COO
OTO ATO OAC CCT TCC OCA COA TAC CTC TTO coc AOT TAA AAT AOC TTA CCC CCA TCO OCC
E V R L M R K E L R R R V F w M

1621 QAA OTO COO TTO ATO AGO AAA OAO CTT AGO COT COC OTC TTT TOO ATO
CTT CAC OCC AAC TAC TCC TTT CTC OAA TCC OCA oco CAO AAA ACC TAC

Figure 3.8: T. brucei proline dehydrogenase nucle<ftide gene sequence. The sequence was obtained by 
sequencing the putative gene citaied into pGEM-T vector. This scheme shows the DNA sequence and the 

corresponding encoded protein sequence.
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M R R L L P L R P A A V A F A 0 S A R B

1 ATO COT COT CTC CTC CCC CTQ COA CCO OCA OCT OTO OCC TTT OCC OOC TCT OCT COT CAC
TAC OCA OCA QAO QAO ooo QAC OCT ooc COT COA CAC coo AAA coo CCO AOA COA OCA OTO

S S L T M Q D K Q P K L p N F N D D T T

61 TCC TCC TTO ACA ATO CAO QAC AAO CAO CCO AAO CTO CCO AAC TTC AAC QAC OAC ACA ACC
AGO AOO AAC TOT TAC OTC CTO TTC OTC OOC TTC QAC ooc TTO AAO TTO CTO CTO TOT TOO

Y R Q R S A W Y L I K A L V V L R L C S

1 2 1 TAC COC CAO CGC TCO OCA TOO TAC TTO ATA AAO OCO TTO OTO OTO CTC CGC CTO TOC AOT
ATO oco OTC OCO AOC COT ACC ATO AAC TAT TTC coc AAC CAC CAC QAO OCO QAC ACO TCA

V H Y L A M N S V P L M K R V B K I L 0

1 8 1 OTO AAC TAT TTO OCA ATO AAC TCO OTO CCO CTO ATO AAO AGA OTO QAA AAO ATC CTT OOC
CAC TTO ATA AAC COT TAC TTO AOC CAC ooc QAC TAC TTC TCT CAC CTT TTC TAO QAA CCO

S K L T Y S I L V K K S F Y N Y F C A O

2 4 1 AOC AAO CTT ACC TAC AOC ATC CTC OTC AAO AAO TCC TTC TAC AAC TAC TTC TOC OCQ OOC
TCO TTC QAA TOO ATO TCO TAG QAO CAO TTC TTC AGO AAO ATO TTO ATQ AAO ACO COC CCO

B N D Q E L R D T V R K L S R N N I 0 A

30 1 QAA AAC QAC CAO QAO CTO CGC QAC ACO OTO COA AAO CTT TCA CGC AAC AAC ATC OOC OCT
CTT TTO CTO OTC CTC QAC OCO CTO TOC CAC OCT TTC OAA AGT OCO TTO TTO TAO CCO COA

V L D Y A A E A D T E 0 F A P E P O V A

3 61 OTA CTC QAC TAC OCO OCO QAO OCC QAC ACO QAO OOC TTC OCA CCO OAO CCO OGT OTO OCO
CAT OAO CTQ ATO coc coc CTC coo CTQ TOC CTC CCO AAO COT ooc CTC ooc CCA CAC COC

S G P D I s M s S L V M K P N V Q Y P M

4 2 1 TCC OOC CCC GAT ATT TCO ATO TCT AOT CTC OTT ATO AAO CCC AAT OTT CAO TAC CCA ATO
AGO CCO ooo CTA TAA AOC TAC AOA TCA QAO CAA TAC TTC 0 0 0 TTA CAA OTC ATO OOT TAC

D E 0 F F N B N M K L Y M M S I M B A S

4 8 1 OAC QAO ooo TTC TTT AAC QAO AAC ATO AAO CTC TAC ATO ATO AOC ATC ATO CAC OCC TCO
CTO CTC CCC AAO AAA TTO CTC TTO TAC TTC QAO ATO TAC TAC TCO TAO TAC OTO coo AOC

L Y s P R N V A O V T A V K V T O M c D

5 4 1 CTO TAC AOC CCO COA AAC OTC OCC OOT OTA ACC OCT OTT AAQ OTA ACO OOC ATO TOC QAC
OAC ATO TCO ooc OCT TTO CAO coo CCA CAT TOO COA CAA TTC CAT TOC CCO TAC ACQ CTO

P Q L L A R V s A L L M S V H Q s W C K

6 0 1 CCT CAO CTO CTT OCA COC OTA TCO OCO CTO CTC ATO TCC OTC CAC CAO AOC TOO TOC AAO
OOA OTC QAC QAA COT oco CAT AOC CGC QAC QAO TAC AOO CAO OTO OTC TCO ACC ACO TTC

H F T N E E S L K L E E C R V V M 0 V N

6 6 1 CAC TTC ACO AAC QAO QAO TCO CTO AAO CTO QAA QAO TOC COC OTC OTC ATO OOC OTO AAC
OTO AAO TOC TTO CTC CTC AOC QAC TTC QAC CTT CTC ACO OCO CAO CAO TAC CCO CAC TTO

R K H Q L F I T Y D Q L R A 0 F E K Y N

7 2 1 COC AAO CAC CAO CTO TTC ATC ACC TAC QAT CAO CTA COC OCC OGT TTC QAO AAO TAC AAC
OCO TTC OTO OTC QAC AAO TAO TOO ATO CTA OTC QAT OCO coo CCA AAO CTC TTC ATO TTO

P S N K L S D A 0 F K E I T B A L D P R

7 8 1 CCC TCT AAC AAO CTO TCO OAT QCC CAO TTC AAO QAO ATT ACO QAO OCC CTQ OAC CCC COC
ooo AOA TTO TTC QAC AOC CTA COG OTC AAO TTC CTC TAA TOC CTC coo OAC CTO OOO oco

K T O R V N Y F B Y K B M L T N A L I A

8 4 1 AAO ACO OOC AAO OTO AAC TAC TTT QAO TAC AAO QAO ATO CTO ACO AAC OCC CTC ATC QCC
TTC TOC CCO TTC CAC TTO ATO AAA CTC ATO TTC CTC TAC QAC TOC TTO COQ QAO TAG COO

V B p T P V Q Q A L I E O L P Q M S A K

9 0 1 OTO OAO CCO ACO CCO OTO CAO CAO OCO CTO ATT QAO OOA CTQ CCO CAO ATO AGT OCA AAO
CAC CTC ooc TOC OOC CAC OTC OTC coc QAC TAA CTC CCT QAC ooc OTC TAC TCA COT TTC

E K V L w K H V N N R L L L I A S M A K

9 6 1 QAO AAO OTO CTO TOO AAA AAC OTC AAC AAC COA CTC TTO TTO ATC OCC TCC ATO OCA AAO
CTC TTC CAC QAC ACC TTT TTO CAO TTO TTO OCT QAO AAC AAC TAO coo AOO TAC COT TTC

E L N V R M L V D A E Q T F Y Q L A I D

1 0 2 1 QAO CTC AAT OTO COC ATO CTT OTC QAC OCO QAO CAO ACC TTT TAT CAO CTO OCC ATC QAC
CTC QAO TTA CAC oco TAC QAA CAO CTO coc CTC OTC TOO AAA ATA OTC QAC coo TAO CTO

A I V A T L Q K T Y N T E L P V V Y N T

1 0 8 1 OCO ATC OTO OCO ACC CTA CAO AAO ACC TAC AAC ACO QAO CTO CCO OTO OTO TAC AAC ACT
coc TAO CAC COC TOO OAT OTC TTC TOO ATO TTO TOC CTC QAC ooc CAC CAC ATO TTO TOA

Y 0 C Y L T Y A B D R I D N D L V R A R

1 1 4 1 TAC CAO TOC TAC CTO ACA TAC OCA QAO QAC CGC ATT QAC AAC OAC CTC OTT CGC OCT COC
ATO OTC ACO ATO QAC TOT ATO COT CTC CTO OCO TAA CTO TTO CTO QAO CAA OCO COA OCO

H M N F H W 0 O K I V R 0 A Y I V Q B R

1 2 0 1 CAC ATO AAC TTC CAC TOO OOC OOC AAO ATC OTO CGC OOC QCC TAT ATA OTO CAA QAO COC
OTO TAC TTO AAO OTO ACC CCO CCO TTC TAO CAC OCO CCO COQ ATA TAT CAC OTT CTC OCO

A T A A 0 Y O Y T S P I W S T Y B B T N

1 2 6 1 OCO ACO OCO OCT CAO TAC OOC TAC ACC AOC CCC ATC TOO TCT ACC TAC QAO QAO ACO AAC
coc TOC COC COA OTC ATO CCO ATO TOO TCO OOO TAO ACC AGA TOO ATO CTC CTC TOC TTO
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K C T N A A A K R I F 0 T F B A Q p A K

1 3 2 1 AAO TOC TAT AAT OCC OCC OCQ AAO COC ATC TTC QAC ACC TTC QAO OCQ CAO CCA oco AAA
TTC ACO ATA TTA coo COG COC TTC oco TAO AAO CTQ TOO AAO CTC CQC OTC GOT coc TTT

K B E V F F O T B N K K S L E I I T A S

1 3 8 1 AAO CAC QAO OTC TTC TTT OOC ACT CAC AAC AAO AAQ TCT CTA QAO ATT ATC ACO OCC AOC
TTC OTO CTC CAO AAO AAA CCO TOA OTO TTO TTC TTC AGA QAT CTC TAA TAO TOC coo TCO

V L B R P S I Q S R V S F O Q L F O M R

1 4 4 1 OTC TTO QAA COA CCO AOC ATC CAO TCT COC OTO TCC TTT OQO CAO CTO TTT OOO ATO COC
CAO AAC CTT OCT ooc TCO TAG OTC AGA oco CAC AOO AAA CCC OTC QAC AAA CCC TAC oco

D N L I V P L A R A O F Q V T K T V P T

1 5 0 1 QAC AAC CTQ ACO OTO CCC CTT OCC COA OCC OOC TTT CAO OTC TAC AAQ TAC OTO CCO TAC
CTQ TTO QAC TOC CAC ooo QAA coo OCT coo CCO AAA OTC CAO ATO TTC ATO CAC ooc ATO

0 P V K B T I B T L 0 R R A V B N S 8 I

1 5 6 1 OOC CCC OTO AAO QAO ACO ATC CAC TAC CTC ooc COC COC QCC OTO QAQ AAT TCO TCO ATC
CCO OOO CAC TTC CTC TOC TAG OTO ATO QAO CCO OCO OCO CQO CAC CTC TTA AOC AOC TAO

L r T 0 D N B T V M M I K B L K R R C 0

1 6 2 1 TTO ACA ACC OOT QAC AAC QAO ACO OTO ATO ATO ATC AAO QAQ CTO AAO COC COC TOC OOT
AAC TOT TOO CCA CTQ TTO CTC TOC CAC TAC TAC TAG TTC CTC QAC TTC oco oco ACO CCA

TTT
AAA

Figure 3.9: L. major proline dehydrogenase nucleotide gene sequence. The sequence was obtained by 

sequencing the putative gene cloned into pGEM-T vector. This scheme shows the DNA sequence and the 
corresponding encoded protein sequence.

3.2.2- Gene organisation and Southern blotting

In order to determine the gene organisation and to find the number of gene copies. 

Southern blotting was performed using PRODH gene probes from L. major and T. brucei. 

The result for L  major is shown in Figure 3.10.
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Restriction map of L .major proline dehydrogenase 
in pGEM-T vector
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Figure 3.10: Southern blot analysis of L, major gDNA

A- Schematic rqjresentation of the restriction map of the L  major proline dehydrogenase gene sequence 

ORF generated using Vector NTI. The black colour for restriction enzymes means they cut more than once. 

The inserted L  major DNA is dq)icted by the arrow.

B- Southern blot analysis of L  major gDNA digested with Bsa 1 (lane I), Sal I (lane 2) and Pst I (lane 3). 

C- Southern blot analysis of L  major gDNA digested with Ban I (Lane 4% Hind III (lane S \ Sac I (lane 6), 

Sal I (lane 7), Pvu I and Sal I (lane 8) and Xba I and Sal I (lane 9). The two blots were probed with the L  
major proline dehydrogenase ORF.
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The complete gDNA was digested by various restriction enzymes that did not cut or cut 

once or several times inside the gene (see restriction map). The results indicate that the 

gene was present as a single copy inside the genome. For example, the Pst I enzyme should 

not cut inside the gene, and only one band was present in the Southern blot. Sac I cuts once 

inside the gene, two bands were found in the blot. Lane 8 (Figure 3.10 C) shows the result 

of the digestion by Xba I and Sal I, three bands were expected; one should have been 

situated around 377 bp, but it is too small to be seen in the gel.

The same study was performed with T. brucei gDNA and it was determined that the 

gene was also present as a single copy in this organism (Figure 3.11). For example, with 

the digestion with Pvu I nndXho I, three bands are expected, one should be situated around 

900 bp (Figure 3.11, lane 6), the second is found at 3.1 kb and the third at 2.5 kb.
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A pGEM-T
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pGEM-T

Psll (2375

Restriction map of T. brucei proline dehydrogenase 
in pGEM-T vector

1 2  3 4

3 kb 

2 kb 
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Figure 3.11: Southern blot analysis of T. brucei gDNA
A- schematic representation of the restriction map of the T. brucei proline ddiydrogenase ORF. The black 

colour for restriction enzymes means they cut more Üian once. The T. brucei insert is depicted by the arrow. 

B- Southern blot analysis of T. brucei gDNA digested with Nco I (lane 1), Hind III (lane 2) Pst I (lane 3), 
Xho I (Lane 4), BamH I (lane 5) and Pvu I and Xho I (lane 6), and probed with T. brucei proline 
dehydrogmase ORF.
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3.2.3- Similarity to other proline dehydrogenase amino acid sequences

The genbank Database http://www. ncbi. nih. gov was screened in order to find 

PRODH sequences from different organisms. Table 3.1 summarises the name of the 

organisms and the accession number of the protein used for the alignments.

Name of organism Genbank accession number
Aiph a-proteobacte ria
Agrobacterium tumefaciens NP 356492
Bradyrhizobium japonicum AAL 35755
Caulobacter crescentus NP 419621
Mesorhizobium loti NP 102812
Sinorhizobium meliloti CAC 41903
Other bacteria
Bacillus halodurans NP 243606
Bacillus subtilis AAM 27442
Brucella melitensis NP 541542
Campylobacter jejuni C 81 297
Escherichia coli NP 415534
Helicobacter pylori B 71980
Mycobacterium tuberculosis AAK45482
Burkholderia cepacia AF 029344
Neisseria meningitidis NP 284781
Pyrobaculum aerophilum NP 559919
Pseudomonas aeruginosa NP 249473
Pseudomonas putida AAF 73193
Rhodobacter capsulatus CAA 55142
Neisseria meningitidis NP 284781
Pyrobaculum aerophilum NP 559919
Pseudomonas aeruginosa NP 249473
Pseudomonas putida AAF 73193
Rhodobacter capsulatus CAA 55142
Salmonella typhimurium AAL 20055
Vibrio vulnificus AAL 68393
Yersinia pestis NP 669761
Eukaryotes
Aspergillus nidulans CAC 18796
Arabidopsis thaliana P 92983
Drosophila melanogaster NP 523433
Homo sapiens NP 057419
Mus musculus NP 035302
Saccaromyces cerevisiae P 09368

Table 3.1: GenBank accession numbers for proline dehydr<^enase sequences used in this study
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PRODH sequences from T. brucei and L. major were aligned, using Align X (Vector NTI) 

and showed 66 % similarity and 52 % identity (Figure 3.12).
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Figure 3.12: Amino acid sequence alignment of T. brucei and L. major proline dehydrogenase. The
sequences were aligned using Align X (Vector NTI), Clustal X algoriüim. The identical amino acids are 

indicated in red and grey shading, black amino acids and grey shading indicates conserved amino acids.

These two sequences were aligned with PRODH from various organisms (eukaryotes and 

prokaryotes) in order to find well conserved motifs. Sequences were aligned using Align X 

and the results are shown in Figure 3.13 and Appendix 2. The identity between all
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sequences is 1.3 %. The value is very low but the alignment was done using prokaryotic 

and eukaryotic sequences and the absence of P5CDH in the protein of eukaryotic 

organisms diminishes the value of identity. However regions with high homology are 

found along the sequences.

In eukaryotes, PRODH and P5CDH are encoded by two independent genes, while 

in prokaryotes the two enzymes catalysing proline degradation are present on a single 

polypeptide encoded by a single gene. The N-terminal part of the prokaryotic protein 

possesses the PRODH activity, whereas the C-terminal part has the P5CDH activity 

(Straub et ah, 1996; Vilchez et a l, 2000). In E. coli, for example, the PRODH part is 

situated between residues 1-669 out of a total of 1330 amino acids (Vinod et al, 2002).

In L. major and T. brucei. The PRODH and P5CDH enzymes appear to be encoded 

by two different genes. This was demonstrated by analysing extended contigs from the 

PRODH genes to determine whether there is any homology to P5CDH, and also by 

identifying the P5CDH genes to see if any contigs extending into PRODH homology 

sequence could be identified. They could not. A gene coding for a potential P5CDH was 

found in the chromosome 10 of T. brucei (Gene bank accession number, 10.0.000574). The 

BLAST server at the Parasite Genome web site was screened for P5CDH in L. major. A 

putative protein (id AAF31034), which is similar to P5CDH, was identified. PRODH and 

P5CDH genes are on different chromosomes (7 and 26 for PRODH in T. brucei and L. 

major, respectively, and chromosome 10 and 3 for P5CDH in T. brucei and L. major, 

respectively). Two regions with particularly high identity, at the amino acid level, were 

conserved in all proline dehydrogenase sequences examined (Figure 3.13).
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A: Box 1
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GPVMEVLp̂ Ŝ ALJÉjf- S S LMKGT HRERQLLwÏIILLrRLRTG fJIiFHRPA
GPvKETÏHXXfGWUX̂ jfSRlLÏTG-HNETVMMlKÉLKRRCGF----------
GPVMEVLpî s(@lULL̂ -aSlMKGA0RER0LEW0ÉLRRRERTG8%iFHHPA
GTHEÿLLAĵ V̂ gTTf^GANTSFVNRIADHsWsIÜELiĈDRWPRSIAWVP
GP PLETKD#B#W#GDAVRSDNGWPL IKAI AK'SI PRP VGL---------
GtHEILIAHSR̂ ifc FVNRI ADATLpyjELVADpVEJWEKLAQ
GPVKETRHl&iG#A*0A8l LSNG' ̂ SREVRLMRKiLRRRVFWM---------
GfTHEILLAJttVRaRLIJÉlGAN'rSFVNRIADATLplJDELVADpvSiSlVEAMAA 
GTHETLLAYliVRRLLENGANTSFVNRIAD L LD LVRD AV

Figure 3.13: Multiple amino acid sequence alignment of portions of well conserved regions (Box 1 and 

Box 2) of proline dehydr*%enase. The pink residues are found in all proline dehydrogenases known and are 
believed to be essential for the activity of the enzyme. The conserved sequences are VxGAY and 

YLxRRxxEN, where x is any amino acid. The number above die sequences represait the place where the two 

conserved boxes are in the proline dehydrogenase sequences, I being the first methionine.

These regions are V+GAY (where + is K or R) and YLxxRRxxEN, where x is any amino 

acid. These regions, which are also found in T. brucei and L. major sequences, are believed 

to be essential for the activity of the PRODH enzyme (Straub et a l, 1996). They could be a 

part of the active site involved in binding the substrate or the cofactor FAD (Lee Y et a l, 

2003).
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3.2.4- FAD and proline binding sites

The E. coli PRODH (PutA 669) is the first PRODH to have been crystallised (Lee 

Y et al., 2003). The residues involved in binding FAD, and also the catalytic centre, have 

been identified in this protein. Figure 3.14 shows an alignment between the L  major, T. 

brucei and E. coli PRODHs. The similarity is 32 % and the identity 4.2 % between these 

three sequences. Between L. major and E. coli sequence, the identity is 6 %, and between 

T. brucei and E. coli the identity is 5 %.
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Figure 3.14: Amino acid alignment of E, coli (proline dehydrogenase part), L. major and T. brucei 
proline dehydrc^enases. The residues of the FAD binding motif is in green bold for K coli and the 

conserved residues are in pink bold in T. brucei and L major. The FAD motif in E. coli is hi^lighted in 

blue boxes. The key residues are Glu 289, Lys 329, Val 402, Arg 431, Val 433, Ala 485, Leu 513, Arg 555- 

556 and Glu 559. The proline binding site is ccmstituted by Asp 370, Leu 513, Tyr 540 in K coli. The blue 

line above the amino acid sequoices represents a conservation between the 3 species at the level of 2-D 

structure (alpha helix).

Through personal communications with Professor D. Becker (University of 

Missouri) and by comparison with the crystal structure of PutA 669, potentially essential 

residues of proline dehydrogenases from T. brucei and L. major enzymes have been 

identified (see alignment Figure 3.14).

A conpetitive inhibitor, L-lactate, has been co-crystallised with the E. coli protein and 

gives information about the active site of the enzyme (Lee Y et al., 2003). Lactate binds 

near the isoalloxazine ring o f FAD to three basic residues, Lys 329, Arg 555 and Arg 556 

(amino acids number are given according to the E. coli sequence). All of these residues are
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conserved in both L. major and T. brucei. Glu 559, Glu 289, Asp 370 and Arg 431 stabilize 

these three residues while Arg 431 donates a hydrogen bond to FAD (Table 3.2).

For the E. coli protein, three residues (Asp 370, Tyr 540 and Leu 513) appear to 

interact with the substrate (Lee Y et al, 2003). Leu 513 can be substituted in L. major and 

T. brucei proline dehydrogenases by an amino acid belonging to the same group, valine. 

The other two residues are identical. According the alignment illustrated in Figure 3.14 and 

Appendix 2, these fundamental amino acids are well conserved within all of the proline 

dehydrogenase sequences.

In the middle part of the three sequences, we can see a conservation in the position 

of alpha helix. The conservation of a number of key residues involved in binding to 

substrate, also the FAD binding site and the 2-D structure indicate that the trypanosomatid 

enzyme is almost certainly FAD-dependent and probably uses the same catalytic 

mechanism as the E. coli enzyme.

E. coli residues T, brucei residues L. major residues

Lys 329 (binds lactate) Lys Glia

Arg555 (binds lactate) Arg Arg

Arg 556 (binds lactate) Arg Arg

Glu 559 (stabilises) Glu Glu

Glu 289 (stabilises) Ala Glu

Asp 370 (substrate binding) Asp Asp

Arg 431 (FAD binding) Lys Lys

Tyr 540 (substrate binding) Tyr Tyr

Leu 513 (substrate binding) Val Val

Table 3.2: Key residues in E. coli and corresponding residues in T. brucei and L. major
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3.2.5- Identification of a putative mitochondrial targeting sequence

It is known that in eukaryotes, PRODH is a mitochondrial protein (Small and 

Jones, 1990). Nuclear-encoded mitochondrial proteins generally possess an N-terminal 

mitochondrial targeting peptide, which is composed by a group of 20-40 amino acids, 

many of which are positively charged. This signal peptide binds to specific receptors 

located on the mitochondrial membrane and the protein is able to cross the membrane via a 

specific pore. The presence of putative signal peptides at the N-termini of the T. brucei 

and L. major enzymes was investigated using two independent programs (Table 3.3).

Target? vl.Ol predicts the subcellular location of eukaryotic protein sequences. 

The subcellular location assignment is based on the predicted sequence of known N- 

terminal targeting sequences: chloroplast transit peptide (cTP), mitochondrial targetting 

peptide (mTF) or secretory pathway signal peptide (SP) (Emanuelson et a l, 2000).

MitoProt focuses on the N-terminal protein region that can support a mitochondrial 

targetting sequence and a cleavage site. The information that guides the protein to 

mitochondria is contained in its sequence. This program uses 47 parameters chosen by 

analysing a large set of mitochondrial proteins extracted from the SwissProt database. By 

analysing the amino acid sequence, 75-97% of the mitochondrial proteins studied have 

been predicted to be imported into mitochondria (Claros and Vincens, 1996).
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Target? vl .01 M itoprot II

-► <-

Name of organism Probabilit>’ of 
export to 
mitochondria

predicted
localisation

Clea\age
site

Probability of 
export to 
mitochondria

Length of the 
sequence (AA)

L major 0.851 M 21 0.6 561
T. brucei 0.864 M NP 0.8 556
E. coli 0.21 NP NP 0.06 1320
D. melanogaster 0.961 M 42 0.98 669
H. sapiens 0.782 M 49 0.93 600
M. musculus 0.117 NP NP 0.11 497
A. thaliana 0.913 M 18 0.9 499

B

T . b r u c e i (1 ) MFmiCRRSftftNVKMQDASLRT
L .m a jo r (1 ) m rrüLp l RpxB̂ v a f a g s a r h s

Table 3 3  A: Predicted subcellular locations of different proline dehydrogenases using Target? and 

Mitoprot n  programmes. B: Putative MTS in L. mtyor and T. brucei

The length of the sequence is tfie predicted length of the proline dehydrogenase proteins, in amino acids, 
entered into the programme.
M; Mitochrnidriai 
NP; Non-predictable

These two programs both predicted that L. major and T. brucei PRODH are 

mhochondrially located. The MTS being the 21 first amino acids in L  major, and being 

not predicted in T. brucei. As controls, E. coli, which does not have mitochondria, gave us 

a non-predictable result for the location o f the protein. The D. melanogaster (Hayward et 

ai., 1993), A. thaliana (Kiyosue et a i,  1996) and H. sapiens (Maxwell and Davis, 2000) 

enzymes, known to be present inside mitochondria, gave a positive control. The location of 

the M. musculus protein was non-predictable, which shows the limitation of the program as 

this protein is known to be mitochondrial. It is possible, as well, that the M. musculus
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sequence taken from the database was not complete or that an unidentified splicing event 

adds a mitochondrial targeting sequence.

3.2.6- identification of trans-membrane (TM) domains

According to the literature, PRODH is a membrane-bound protein in prokaryotes 

(Ling et a l, 1994) and it is associated with the inner mitochondrial membrane in 

eukaryotes (Wang and Brandriss, 1987). The TMpred program was used to establish 

whether potential TM domains are present within the T. brucei and L. major proteins. The 

TMpred program makes a prediction of membrane-spanning regions and their orientation. 

The prediction is made using a combination of several matrices for scormg (Hofinann and 

Stoffel, 1992). The program calculates the hydrophobicity of each region of the amino acid 

sequence and the hydrophobicity of the protein is analysed and TM segments determined.

Name of organism Number of
Transmembrane
helices

Preferred model Location

L  major 1 N-term outside 45-69
T. brucei none
T. brucei K60>S 1 N-term outside 35-65
7! brucei E62>H none
D. melanogaster 3 N-term inside 162-182 (i-o) 

280-301(o-i) 
584-605 (i-o)

E. coli 3 N-term outside 204-220 (o-i) 
780-801 (i-o) 
808-830 (o-i)

H. sapiens none
S. typhimurium 3 N-term inside 202-220 (i-o) 

780-804 (o-i) 
806-830 (i-o)

Table 3.4: Number of trans-membrane domains predicted using TMpred programme. The T. brucei 
sequence has been manually modified to find a potential hydrophobie domain. In the first case, Kgo was 

substituted by S and in the second case was substituted by a neutral amino acid, 

i : inside, o : outside
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A summary of the results is shown Table 3.4. The L. major sequence (Figure 3.15) has a 

predicted transmembrane domain situated between residues 45-69 where the 

hydrophobicity is the highest. The T. brucei sequence proved to be more difficult with 

respect to determining the trans-membrane domains. The TMpred programme did not 

predict any TM domains for the T. brucei sequence. However the T. brucei sequence did 

show significant homology to the L. major sequence within the predicted TM region of 

that latter protein, but also contained some charged amino acids that are given low scoring 

in matrices to predict TM domains. Therefore the effect of removing these charged 

residues in silico was determined. When a positive amino acid (K60) was substituted for 

neutral one (serine), a TM domain was predicted between residues 35-65. Sequences 

known to be linked to the internal membrane of the mitochondria (D. melanogaster) or 

with the plasma membrane in S. typhimurium (Menzel and Roth, 1981a and b) or in E. coli 

(Scarpulla and Soffer, 1978), were used as controls for predicting the TM domains.
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1000
i -> o
o -> i

“ 1000
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500100 200 300 400 6000

Amino acids

Figure 3.15: Hydrophobicity prediction by the TMpred programme for the L. major proline 
dehydrogenase. The algorithm is based on the statistical analysis of TMbase, a database of naturally 

occuring transmembrane proteins. The prediction is made using a combination of several weight-matrices for 
scoring (Hofinann and StojBFel, 1993).

The abscissa indicates amino acid numbers and die cwdinate the hydrophobicity index.

A putative trans-membrane domain is situated between amino acids 45 to 69.
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Figure 3.16: Hydrophobicity prediction by TMpred programme for T. brucei proline dehydrogenase 
mutated, K60>S.
A putative trans-membrane domain is identified as situated between residues 35 to 65
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3.2.7- Phylogenetic analysis of prollne dehydrogenase sequences

PRODH is an enzyme belonging to the mitochondrial proteome in eukaryotes and it 

is believed to be associated with the electron transport chain in prokaryotes (Muro-Pastor 

et al.  ̂ 1997). The endosymbiont hypothesis suggests that eukaryotic cells evolved from 

anaerobic organisms merging with a-proteobacteria when oxygen built up in the 

atmosphere leading to a stable endosymbiotic relationship with the a-proteobacteria using 

oxygen in energy generation (Cavalier-Smith, 1987; Kalberg et al., 2000). Despite the fact 

that mitochondria have their own genomes, most of the proteins present in the 

mitochondrial organelle are synthesised using nuclear genes. A rudimentary phylogenetic 

analysis was performed using the PRODH amino acid sequences from T. brucei and L. 

major in order to determine their evolutionary relationships. This was to determine 

whether eukaryotic PRODH has an a-proteobacterial origin.

The sequences used in this study are detailed in Table 3.1. For prokaryote amino 

acid sequences, only the PRODH portion of the PR0DH/P5CDH sequence (according to 

homology or annotation in the databases) was used in the analysis. Two different studies 

were performed to determine the evolutionary position of PRODH; the first study used 

entire sequences (Tree 1 to Tree 3) and the second study used the best-conserved Blocks 

predicted using the MEME software (Tree 4 to Tree 7). It is important to have good 

sequence alignment in order to produce good trees. Conserved Blocks represent the most 

highly conserved regions of the proteins, misaligned regions and phylogenetically 

uninformative regions of proteins are avoided and so trees from blocks should be more 

robust. Blocks chosen are shown in Appendix 2, they were selected using MEME program 

(Bailey and Elkan, 1994). MEME is a tool for discovering motifs, i.e. a sequence pattern 

that occurs repeatedly in a group of related protein sequences. Four methods of
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phylogenetic analysis were used and can be divided into distance based and character 

based methods.

Distance-based methods use the amount of dissimilarity (the distance) between two 

aligned sequences to derive trees; three methods were applied.

-Unweighted paired group method with arithmetic mean (UPGMA), is a phenetic 

algorithm. It joins tree branches based on the criterion of greatest similarity among pairs 

and averages of joined pairs.

-Neighbour-joining (NJ), is commonly applied with distance tree building regardless of the 

optimisation criterion.

“Minimum evolution (ME), seeks to find the shortest tree that is consistent with the path 

lengths. It fixes the location of internal tree nodes based on the distance to an external node 

and then optimises the internal branch length according to the minimum measured error 

between these points.

Character-based methods allow the assessment of the reliability of each base 

position in an alignment on the basis of all other positions. Maximum parsimony (MP) is 

an optimisation criterion that adheres to the principle that the best explanation of the data is 

the simplest. The MP tree is the shortest, the one with the fewest changes.

The trees show boostrap values, indicating the confidence value of the tree fi-om 

1000 random samples (indicated in %). All the trees are unrooted. All methods used gave 

us similar results, i.e. L. major and T. brucei PRODH are more closely related to 

eukaryotes than prokaryotes. Eukaryotic enzymes always cluster together, and away from 

the prokaryotic enzymes. The enzyme fi-om a-proteobacteria cluster with other prokaryotes 

and away from eukaryotes. This indicates that the eukaryotic PRODH originated from the 

protoeukaryote rather than the protomitochondrial endosymbiont.
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■ D.melanogaster

- H.saplens
' M.musculus

Tree 1: Pherogram tree for proteins of proline dehydrogenase amino acids sequences from different 

organisms. The tree was generated using MEGA, UPGMA method. The number above the branches 

represents bootstrap values (1000 pseudoreplicates). a-proteobacteria are highlighted with an asterisk.
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organisms. The tree was generated using MEGA, Neighbour-joining method. Number above the branches 

represents bootstrap values (1000 pseudoreplicates). a-proteobacteria are highlighted with an asterisk.
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3.3- Discussion

Genes encoding PRODH have been identified in both the T. brucei and L. major 

genomes. These genes encode proteins of 556 amino acids in T. brucei and 561 amino 

acids in L. major, in both case the molecular weight of the protein is predicted to be 63.8 

kDa. The length of these sequences is comparable to other eukaryotic sequences, including 

Homo sapiens (600 amino acids) (Deuschle et aL, 2001) and Arabidopsis thaliana (499 

amino acids) (Nakashima et al,, 1998). In both trypanosomatids, the PRODH gene is 

present as a single copy (as indicated by Southern blot analysis), which could facilitate the 

use of gene knock-out techniques to investigate the importance of this gene. Most 

trypanosomatid genes are present as a single copy (Clayton, 1999), which facilitates the 

knock-out technique, van Weelden et ah, 2003 used this technique to see the effect of 

deletion of aconitase in T. brucei. However, gene knock-out was not performed with 

PRODH as RNA interference (LaCount et al,, 2000) has become a preferred technique.

In prokaryotes e.g. Escherichia coli. Salmonella typhimurium or Yersinia pestis, 

PRODH and P5CDH are part of a single protein, called PutA, which is encoded by the 

putA gene (Becker and Thomas, 2001; Parkhill et a l, 2001; Vinod et a l, 2002), In these 

cells proline utilisation requires another gene putP, which encodes a proline permease, a 

Na^ proline symporter. The put operon includes the two genes, putA and putP, which are 

separated by an intergenic control region (Ling et al, 1994). In the absence of proline, 

PutA acts as a transcriptional repressor (in addition to its catalytic fimctions). It can 

regulate expression of put genes by binding to an operator (Muro-Pastor et al, 1997). 

There is no evidence of similar genetic linkage between proline permease and proline 

dehydrogenase in eukaryotes. However this is not surprising since eukaryotes do not 

generally arrange their genes in opérons.
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In some eukaryotes including Saccharomyces cerevisiae. Drosophila melanogaster. 

Mus musculus and Homo sapiens, the conversion of proline to glutamate takes place within 

the mitochondria (Small and Jones, 1990, Gogos et al, 1999; Deuschle et a l, 2001). The 

first two steps of proline oxidation are carried out by two different polypeptides. The 

presence of PRODH in the inner membrane of the rat hver mitochondria shows that proline 

degradation is linked to this compartment, whereas the next step, the degradation of P5C, 

may take place within the mitochondrial matrix (Brunner and Neupert, 1969; Small and 

Jones, 1990). This compartmentalisation of proline degradation could also be present in L. 

major and T. brucei. Several types of analysis indicated that the P5CDH is separate from 

the T. brucei and L. major proline dehydrogenase protein. PRODH and P5CDH genes are 

on different chromosomes (7 and 26 for PRODH in T. brucei and L. major, respectively, 

and on chromosome 10 and 3, respectively, for P5CDH). The enzymes are therefore 

present on two different polypeptides as is the case for other eukaryotes.

The L. major and T. brucei PRODH have homology to other prohne 

dehydogenases. Although the level of identity is relatively low, well-conserved motifs are 

found throughout the sequences. These regions are V+GAY (where + is K or R) and 

YLxxRRxxEN, where x is any amino acid. These regions, which are also found in T. 

brucei and L. major sequences, are believed to be essential for the activity of the PRODH 

enzyme (Straub et a l, 1996). They could be a part of the active site involved in binding the 

substrate or the cofactor FAD (Lee Y et a l, 2003). However some key E. coli residues, 

such as Leucine 513 appear to be substituted in L. major and T. brucei sequences by 

valine.Valine, like leucine is an aliphatic amino acid and is likely to have similar reactivity 

towards cofactor.

It is known that eukaryotic PRODHs are associated with the inner mitochondrial 

membrane (Wang and Brandriss, 1987); the oxidation of proline donates electrons to the
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respiratory electron transport chain (Peng et ah, 1996). Wang (1987) describes PRODH as: 

“nuclearly encoded, cytoplasmically synthesized and mitochondrially imported”. The L  

major and T. brucei PRODHs are both predicted to possess a mitochondrial signal peptide, 

with a cleavage site occurring after amino acid 21 for L. major. The proteins are likely to 

be synthesised in the cytosol and then transported from the cytosol to the mitochondrion. 

Usually a group of 20 to 40 amino acids, many of which carry a positive charge, 

interspersed with some hydrophilic residues such as serine or threonine at the N-terminus, 

constitute the mitochondrial targeting sequence (MTS) (Omura, 1998; Nielsen et ah, 

1997). With the L. major and T. brucei PRODH the predicted MTS comply with this rule, 

they are rich in positive amino acids and both contain serine or threonine residues (Table 

3.3). The MTS is recognised by a receptor protein complex on the outer and inner 

mitochondrial membranes (the Tim-Tom complex) (Koehlor, 2000) and this system carries 

the protein inside. Immunolocalisation experiments using specific PRODH antibodies and 

fluorescence microscopy, in order to show the exact localisation of the protein in the 

parasites will be of interest in futures studies. However the likelihood for a mitochondrial 

localisation of PRODH is high, given the presence of a mitochondrial targeting sequence 

and the situation in other eukaryotes.

Phylogenetic analysis performed with PRODH sequences shows that the L. major 

and T. brucei PRODHs appear to be evolutionarily closer to other eukaryotic versions of 

the enzyme than to prokaryotic enzymes. Eukaryotic mitochondria are believed to be 

derived from an endosymbiotic relationship between the host cell and a a-proteobacterium, 

close to the extant genus Rickettsia (Andersson et ah, 2003). However, approximately 50 

% of the nuclear-encoded mitochondrial proteins have bacterial homologues (Karlberg et 

a l, 2000). All of the eukaryotic PRODHs, for which a subcellular localisation is known, 

are mitochondrial and all cluster to each other. It was considered of interest to compare the
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trypanosomatids and other eukaryotic PRODHs and witli those of Rickettsia spp {R. cororii 

and R. prowazekii whose genomes can be probed by FAST A server at the European 

Bioinformatic Institute (EBI) (www.ebi.ac.uk)). However, neither of these species appear 

to have PRODH (based on homology to prokaryotic and eukaryotic PRODH). Other a- 

proteobacteria, which do have PRODH, appear to cluster separately from the eukaryotic 

grouping, but interspersed within a group of other prokaryotic PRODHs. These data are 

consistent with PRODH in eukaryotes being derived from the non a-proteobacterial 

ancestor of the merger that yielded mitochondriale cells. Given that trypanosomes are 

evolutionary believed to be ancient, this indicates that it was a very early eukaryote that 

found advantage in metabolising proline in the mitochondrion (presumably by convergent 

evolution to ensure proximity to the electron transport chain). Given that Rickettsia do not 

have PRODH, it is possible that the proto mitochondrial endosymbiont also lacked this 

enzyme, which is why the protoeukaryote needed to donate this to the mitochondriate 

chimera.
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Chapter 4

Regulation of expression of 71 brucei and L. major proline

dehydrogenase

4.1- Introduction

Gene organisation and gene expression are peculiar in trypanosomatids when 

compared with higher eukaryotes. A single intron has been found within a mRNA in T. 

brucei (Mair et a l, 2000). The regulation of gene expression is generally not controlled at 

the level of transcription since trypanosomatid genes are arranged in polycistronic units; 

control is mainly post-transcriptional Genes are present as polycistronic units in the 

genome and individual mRNAs are post- or co-transcriptionally modified by trans-splicing 

and polyadenylation (Graham, 1995). All kinetoplastid mRNAs have, at their 5’ end, a 

common sequence called the spliced leader (SL) of 39-41 nucleotides, containing a cap 

structure (including 7-methyl guanosine as the terminal nucleoside), which is added post- 

transcriptionally via the trans-splicing pathway (Campbell et a l, 2000). The SL sequence 

is well conserved between different trypanosomatids (Agami and Shapira, 1992). Primers 

designed based on the L  mexicana SL sequence are useful in RT-PCR experiments with 

RNA to identify the 5’ extremity of stable transcript. The length of the sequence between 

this spliced leader and the first methionine of different genes is variable and can be 

important for the regulation of gene expression (Vanhamme and Pays, 1995). In addition to 

this 5’ trans-splicing process, a 3’ polyadenylation occurs for all mRNA transcripts.

The regulation of the trans-splicing and polyadenylation process may have a key role in the 

regulation of gene expression, by stabilising the mRNA or by inducing its degradation 

(Stiles et a l, 1999).
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It was of interest to determine the levels of mRNA corresponding to the PRODH 

gene in T. brucei and to map the untranslated regions of the transcript. Moreover, as 

previously mentioned (Evans and Brown, 1972), PCF T. brucei is able to grow in a 

medium containing proline or glucose as an energy source (see also Chapter 6). It was 

therefore of interest to investigate whether there is regulation of PRODH activity in 

response to different energy sources. In prokaryotes, such as E, coli, glucose, if available 

as an energy source, is used in preference to other sugars. If this organism has, for 

example, both glucose and lactose in the medium, it metabolises the glucose first and 

represses the use of lactose. This phenomenon is called catabolite repression (Bruckner and 

Titgmeyer, 2002). ter Kuile (1997) suggested that a form of catabolite repression could be 

operative in allowing procyclic T. brucei to show a preference in the use of glucose or 

proline depending on the medium used. In this study, numerous attempts, based on work 

by Obungu et a l, 1999, with T. congolenese, to measure PRODH activity in crude lysates 

of T. brucei, grown in standard SDM79 medium, failed to yield as high activity. Therefore, 

it was decided to investigate whether proline dehydrogenase activity was somehow 

regulated by growth conditions.
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4.2- R esu lts

4.2.1- Identification of the spliced leader acceptor sites for proline 

dehydrogenase genes of T. brucei and L. major

The 5’ regions o f the two PRODH genes were identified using reverse transcriptase 

PCR (RT-PCR). Internal primers, specific to the PRODH genes and two primers from the 

spliced leader sequence (primers common to both the T. brucei and L. major sequences) 

were used for amplification of the 5’ UTR of these two genes (see section 2.2.3 and Table 

2.1 for methods and oligonucleotide sequences).

The result of the first amplification is shown in Figure 4.1

bp

I
1500 bp 
1000 bp

500 bp

Figure 4.1: Ethidium bromide gel representing the first PCR of the RT-PCR of RNA from T. 
brucei and L. major amplified with primo's frcrni the SL and PRODH 

1 : Fragment of T. brucei proline ddtydrogenase was amplified with prim es SLl and RTTbl 

2; Fragment of L. major proline dehydrogenase was amplified with primers SLl and RTLm 1 

For primer sequences see section 2.2.3 and Table 2.1
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A ~ 600 bp fragment was obtained from T. brucei cDNA and a ~ 1000 bp fragment for L. 

major cDNA. These products were gel extracted and re-amplified using the SL2 primer 

and RTTbl and RTLml for T. brucei and L. major, respectively (Figure 4.2).

bp

1000 bp 

500 bp

Figure 4.2: Ethidium bromide gel representing the second PCR of the RT-PCR after gel purification
1; 7! brucei proline dehydrogenase amplified with primers SL2 and RTTbl 
2: L mq/or proline ddiydrogenase amplified with primers SL2 and RTLm 1 
For primer sequences see section 2.2.3

After purification from the gel, these two products were cloned in pGEM-T vector and 

sequenced. The 5’ UTR regions (Figure 4.3 and Figure 4.4) were identified by translating 

the two sequences using Vector NTI and aligning these sequences with their respective 

gDNA.
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1
5 1

101
1 5 1
201
2 5 1
3 0 1
3 5 1
4 0 1
4 5 1
5 0 1
5 5 1
6 0 1
6 5 1
7 0 1
7 5 1
8 0 1
8 5 1
9 0 1
9 5 1
1001
1 0 5 1
1101
1 1 5 1

AAGCTATGCA
GCGGCCGCGA
TTGACGCACA
TCCCTCCCCT
TTGCTGTTGG
CCTTATCATC
TGTCTCCCAC
CTCTCTTTCA
AAAACGCACG
GTTTTCTCTT
GCTCTCCTCC
CCTGCTCGCC
TCTCCTCCCC
ACTCCTCCTT
GACGACACAA
GGTGGTGCTC
CGCTGATGAA
ATCCTCGTCA
CCAGGAGCTG
CTGTACTCGA
CCGGGTGTGG
GCCCAATGTT
AGCTAATCGA
GGGCCC

TCCAACGCGT
ATTCACTAGT
CACTCTCTCG
CTAGCAAGCA
TGCCGTGTCG
AATTTACAGG
CAACACCACC
TGCCATATTC
CAGAGAGGAA
TTCTATTGTG
TCTTCCATCC
GTCAGGCCCG
CTGCGACCGG
GACAATGCAR
CCTACCGCCA
CGCCTGTGCA
GAGAGTGGAA
AGAAGTCCTT
CGCGACACGG
CTACGCGGCG
CGTCCGGCCC
CAGTACCCAA
ATTCCCGCGG

TGGGAGCTCT
GATTAGTATC
CTCTCTCCTG
AGCGCTTTAT
TCTGTGTCTG
CGTGTGTGTG
GCCACCACCA
ACCACTCTAA
GTCGCTTAGT
TGTAGTTTTG
TCCCTGCTCC
CTAGTCGCCC
CAGCTGTGGC
GACAAGCAGC
GCGCTCGGCA
GTGTGAACTA
AAGATCCTTG
CTACAACTAC
TGCGAAAGCT
GAGGCCGACA
CGATATTTCG
TGGACGAGGG
CCGCCATGGC

CCCATATGGT
AGTTTCTGTA
ATCTACTCCC
ATTAGTAAAT
TATCTGTGTC
TGTGTGCGCG
CCACCACCGT
TTCTTCCAAC
TTTAGCTAGC
TTGGCACTCT
CTCGGCAGCG
GTCCCCCAAA
CTTTGCCGGC
CGAAGCTGCC
TGGTACTTGA
TTTGGCAATG
GCAGCAAGCT
TTCTGCGCGG
TTCACGCAAC
CGGAGGGCTT
ATGTCTAGTC
GTTCTTTAAC
GGCCGGGAGC

CGACCTGCAG
CTTTATTGaA
CTCCCCCCTT
TTTTTCTTGG
TGTGTCTTTA
TGACTCGATC
GACCCCCTCG
AAAAAAAACG
TACCTGCCTT
CACCGTCTCA
TCTCGTCATA
agatgcgtcg
TCTGCTCGTC
GAACTTCAAC
TAAAGGCGTT
AACTCGGTGC
TACCTACAGC
GCGAAAACGA
AACATCGGCG
CGCACCGGAG
TCGTTATGAA
GAGAACATGA
ATGCGACGTC

Figure 43: Nucleotide sequence of the 5* UTR of L. major proline dehydrogenase. Letters highlighted in 

blue represent the spliced leader sequence, and in pink the codon of the first methionine residue.

1 AAGCTATGCA TCCAACGCGT TGGGAGCTCT CCCATATGGT CGACCTGCAG
5 1 GCGGCCGCGA ATTCACTAGT GATAACTAAC GCTATTATTA gaacagtttc

1 0 1 t g t a c t a t a t TGAGTAATTT a a g c t a t c a t GTTTCGCCTC CTGTGCCGAC
1 5 1 GCTCCGCCGC GAATGTAAAA ATGCAAGACG CCAGTCTCCG CACCATGACA
2 0 1 AAAGTGGATT TCTCGGACCC ATCCATATTT CGTCAGAAAT CTCTGTGGTG
2 5 1 GTTGTTGCGC GCACTCTTTG TGCTCCGCAT TTGCAAGTTT GAATTCATTT
3 0 1 CCAACAATTC TGTGGCTCTT ATGAAGCGTG CTGAGGCAAT TTTTGGACCC
3 5 1 TTTTTGACCT ATAACACACT CGTGAAGGGG ACAGTGTACG GCCACTTTTG
4 0 1 TGCTGGCGAA TCCGATCGTG AAGTTAAGAA CACCGTCAAA TCGCTTGAAA
4 5 1 ATTTGGGTAT TGGATCTGTT CTTGACTATG CCGCTGAAGC TGAAGCTGAG
5 0 1 GGTTTCGCAC CCTCCCCAGG TATTGCAGAA GCGCCGAACT TGTCTATGGC
5 5 1 AAGTCTTGTC AACAACACAT CCGTTACCTA TCTGCCTCAC AAGCAAGCCT
6 0 1 TTGACGAAAA CATGAAACTA TACGTAATGT GTGTTTTACA TGCCGCACTA
6 5 1 CATAAACCGG AGGGCGGCGT TGGATTGGCT GCTGTTAAGG TGACAGGCAT
7 0 1 GTAATCGAAT TCCCGCGGCC GCCATGGCGG CCGGGAGCAT GCGACGTCGG
7 5 1 GCCC

Figure 4.4: Nucleotide sequeuce of the 5’U I’K of T. brucei proline dehydrogenase. Letters highlighted in 

blue represent the spliced leader sequence, and in pink the codon of the first methionine residue.
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For both organisms, the first ATG codon for PRODH and the SL sites were determined. 

The untranslated region between the SL acceptor site and the start codon was 502 bp for L. 

major and 15 bp for T. brucei.

4.2.2- Proline dehydrogenase gene expression during the T. brucei and L. 

major life cycles

The level o f expression o f the PRODH gene in different life cycle stages o f T. 

brucei and L. major was studied by Northern blot analysis. A nitrocellulose membrane 

containing total RNA from PCF and BSF T. brucei was probed with the entire proline 

dehydrogenase ORF.

BSF PCF

Proline dehydrogenase

P tubulin

Figure 4.5: Northern blot analysis of RNA of T. brucei life cycles stages. The Northern blot was probed 

with the proline dehydrogenase gene and a P tubulin gene was used as a control. BSF is bloodstream form 

and PCF is procyclic form. Approximately 4 pg of RNA was loaded for each sample.
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The results (Figure 4.5) revealed the PRODH gene was transcribed in both procyclic and 

bloodstream stages. The transcript was around 2 Kb in size. The RNA levels in procyclic 

stages, however, were higher than in bloodstream stages. The blot was also probed with the 

p-tubulin gene in order to control for the quantity of RNA.

The levels of steady state RNA from PRODH in the different life stages of L. major 

and L. mexicana were also studied and the results are shown in Figure 4.6. A transcript of 

around 3 Kb was identified.

B

1 2 3 4 5

i  58#

Kb

2.37

1.35

1 2 3 4 5 Kb

4.40

m

Figure 4.6: Northern blot analysis of RNA from different stages of L. major and L  mexicana.

A: Methylene blue stain of the membrane as a control of the quantity of RNA, the ribosŒnal RNA bands are 
clearly visible

B: Northern blot showing proline dehydrogenase transcript in L  major metacyclic promastigotes (lane 1), L  

mexicana metacyclic promastigotes (lane 2), L. major promastigotes (lane 3), L. mexicana p^omastigotes 
(lane 4), L  mexicana amastigotes (lane 5).

A and B are the same membrane. Approximately 4 pg of RNA was loaded fw eadi sample.

The Northern blot containing RNA from L. major and L. mexicana metacyclic 

promastigotes from stationary phase, L. major and L. mexicana promastigotes and L  

mexicana amastigotes was probed using L. major PRODH ORF. A methylene blue stain of 

the membrane is shown (Figure 4.6A) as a control of the quantity of RNA.The stronger
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signal for PRODH was observed for L  major promastigotes but the gene was also 

expressed in L. major and L. mexicana metacyclic s. No transcript was observed in L. 

mexicana promastigote or amastigote samples. Conceivably it may be that lane 2 of the 

blot is a contamination from lane 3 and that L. major PRODH ORF recognises only L, 

major PRODH. The data suggest that L, major PRODH is expressed in metacyclics and 

promastigotes. The situation for the amastigotes of L. major was not investigated. These 

experiments were not repeated and a decision was taken to focus on the situation in T. 

brucei rather than Leishmania.

4.2.3- Differential expression of proline dehydrogenase in T. brucei grown in 

defined media

A modified SDM79 medium (Appendix 1) without proline and glucose was 

prepared in order to test the viability of trypanosomes in the absence or presence of their 

main predicted energy sources (see Chapter 6). This medium was supplemented by proline 

or glucose and it was found that T. brucei procyclic cells were able to grow in the presence 

of either glucose or proline as the energy source. It was therefore of interest to see the level 

of the PRODH transcript when parasites were grown in the absence or presence of glucose 

in the medium.
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T. brucei procyclics were grown in two different media, one complete containing 

glucose and proline, and another lacking glucose and containing only pro line as an energy 

source. Total RNA from these parasites was extracted and a Northern blot was probed with 

T. brucei PRODH ORF. The result (Figure 4.7) shows that PRODH of T. brucei was 

expressed to approximately the same level when parasites were grown in the two different 

conditions. The marginal decrease in signal in cells grown in medium lacking of glucose, 

can be due to the loading difference seen in Figure 4.7B.

B
Kb 1

Figure 4.7: Northern blot analysis of RNA from T. brucei growing in specific medium.

A: Northern blot showing proline ddiydrogenase transcript in T. brucei cells growing in modified SDM79 

with proline and glucose at 10 mM (lane 1) and the same medium lacking glucose (lane 2), the blot was 
probed with the T. brucei proline dehydrogenase ORF.

B: Methylene blue stain of the same membrane as a control of the quantity of RNA, showing ribosomal 
RNA.
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4.2.4- Western blot analysis of T. brucei proline dehydrogenase

To investigate the expression of PRODH protein in the T. brucei procyclic parasites 

grown in the two different media. Western blots were performed. Lysates from both T. 

brucei cultures were run in an SDS PAGE gel, antibodies used during this experiment were 

raised in a rabbit by immunisation with purified recombinant PRODH protein (see section

2.3.5).

kDa

60 kDa 

50 kDa

Figure 4.8: Detection of proline dehydrogenase using rabbit anti-proline dehydrogenase antibodies 

(1:3000 dilution). Lane 1, Lysate of T. brucei grown in medium containing proline but lacking glucose; lane 
2, lysate of T. brucei grown in medium containing glucose and proline

One band was present in the blot at approximately 60 kDa (Figure 4.8). This could 

be the PRODH from T. brucei. The signal was not strong, but it was present in cells from 

both growth culture conditions. The proteins seemed to be present even when the parasites 

were grown in the presence of glucose. The significance of the apparent differences in
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protein levels is not clear as the experiment was not successfully repeated during the time 

available.

4.2.5- Proline dehydrogenase activity in T. brucei

The activity of PRODH in crude lysates of T. brucei was determined using 

dichlorophenolindophenol (DCPIP) as a terminal electron acceptor (section 2.3.9). The 

reduction of the dye is associated with a decrease in absorbance at 600 nm. The activity for 

PRODH was calculated by subtracting the background in the absence of proline as a 

substrate from the rate of dye reduction in the presence of various proline concentrations. 

The protein concentration in crude lysates of 2x10* parasites was determined by Bradford’s 

method to determine the specific activity. T. brucei procyclic parasites were grown in two 

different media, with or without glucose, to see the effect of this on the activity of this 

enzyme.
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Figure 4.9: Proiine dehydrogenase activity as a function of proline concentration. The red line 

represents the activity of T brucei procyclic cells grown in a medium lacking glucose with the presence of 
proline (10 mM) only as an energy source. The blue line represents the activity of the T. brucei procyclic 

cells grown in the presence of glucose and proline at 10 mM each. Different concentrations of proline, as 
indicated, were added for die proline dehydrogenase activity assay.
Graph B shows only the 0-0.03 M proline range from graph A.

Eitot bars represent ± SEM, n = 6
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The specific activity of T. brucei PRODH was found to be maximal using a pro line 

concentration of 10 mM in the assay (Figure 4.9). The activity was higher when the 

parasites were grown in the absence of glucose. In these conditions the activity was 0.054 

db 0.004 [amoLmin'^mg protein \  compared with 0.027 ± 0.004 nmol.min'\mg protein'^ 

when the medium was complete. A t-test, found these results to be significantly different, 

p<0,05.

In both media, the specific activity increased with pro line concentration to reach a 

maximum at 10 mM pro line and then at higher concentrations apparent substrate inhibition 

was observed, with a consequent decrease in specific activity. This could explain why 

preliminary experiments, seeking activity in cells grown with glucose, failed to yield 

activity as proline was used at 0.2 M in these experiments.

Interestingly, Obungu et al, 1999 found in T. congolense a specific activity for proline 

dehydrogenase of 55.2 nmol.min"\mg protein"* using different conditions. In their assay, 

0,2 M of proline was present (Obungu et al, 1999). The measurable activity of the T. 

brucei enzyme seemed to be sensitive to a variation in medium composition. Adding 

glucose to the medium resulted in parasites with lower PRODH activity.

4.2.6- Proline uptake in T. brucei procyclic forms grown in defined medium

Since PRODH activity was higher in procyclics grown in a medium lacking 

glucose, it was of interest to see if these growth differences could affect the kinetics of 

proline transport too. The kinetics of proline transport were studied using various pro line 

concentrations for an uptake period of 30 s using an oil stop transport assay as described in 

section 2.4.6.
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Figure 4.10: Uptake of proiine into T. brucei procyclics grown in defined medium. The blue line 
represents the transport of proiine into T. brucei grown in SDM 79 medium containing glucose and proiine at 
10 mM. The red line represents the transport of proiine into T. brucei grown in medium lacking glucose. 

Uptake was allowed to proceed for 30s.

Error bars represent ± SEM, n = 6

Procyclics grown in both conditions (medium containing or lacking of glucose) showed a 

hyberbolic uptake curve (Figure 4.10) and kinetic characteristics for the proiine transporter 

were determined. When parasites were grown in the presence of glucose, the Vmax was 0.7 

± 0.06 nmol.min'VlO^ parasites ’ and the Km was 21 ± 2.9 pM. L’Hostis et al. (1993), had 

previously reported a Km of 19 pM and a Vmax of 1.7 nmol.min ’.lO^ parasites'’, similar to 

the results reported here. Cells grown in the absence of glucose had a Vmax of 1.8 ± 0.13 

nmol.min'VlO^ parasites'’ and the Km was 18 ± 0.0042 pM. Thus the Vmax for proiine of 

cells grown in the absence of glucose was much higher (significantly different by t-test, 

p<0.05) and this correlates well with the higher PRODH specific activity when cells were 

grown in this same medium. Without glucose in the medium, more proiine entered the cells 

and it was more rapidly degraded (as indicated by the higher specific activity for PRODH).
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The presence of glucose in the medium therefore appears to diminish proiine metabolism 

and uptake into the cells.

4.2.7- Use of the glucose analogue 2-deoxyglucose (2-DOG) to study the 

growth of parasites

Proiine metabolism appears to respond to the availability of glucose in procyclic T. 

brucei. Other pathways in procyclic T. brucei., exemplified by the expression of genes 

involved in production of the procyclin coat of these cells, also appear to be regulated in 

response to levels of glucose. In the absence of glucose, procyclics cells switch to 

expression of the non-glycosylated GPEET variant of the procyclin coat (Morris et al., 

2002). Inclusion of glycerol in the medium retards loss of expression of GPEET (Vassella 

et al., 2000). Recently it has been shown that mitochondrial metabolic intermediates (such 

as pyruvate whose levels were controlled by knocking down the pyruvate dehydrogenase) 

influence expression of GPEET (Vassella et al, 2003). It was of interest to determine 

whether proiine metabolism responded directly to glucose, or to metabolic activity 

associated with glucose.

The effect of the non-metabolisable 2-DOG (which can be phosphorylated but not further 

used) was tested. To study the effect of the glucose analogue on T. brucei growth, the 

parasites generated by RNA interference were used (see chapter 6). Chapter 6 details the 

phenotype of the cells grown in the presence or absence of tetracycline, which is the 

inducer for the RNAi construct Aprodh. When tetracycline was present, and PRODH 

expression was switched off, the cells were unable to grow in the absence of glucose, 

indicating that proiine can no longer support growth in these cells. The cells were grown in 

the SDM79~derived medium without glucose and proiine and supplemented by proiine.
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glucose or 2-DOG at 10 mM. The Alamar blue assay was used to estimate the number of 

viable cells under the different conditions used.

ÛO

300-1

200

100-

- Tet

Figure 4.11: Growth of T. brucei Aprodh procyclic forms induced and nou-indnced by tetracycline in a 

medium lacking of proiine and glucose with the following additives. Lane 1; glucose 10 mM, proiine 10 
mM; lane 2; glucose 0 mM, proiine 0 mM; lane 3; glucose 0 mM, proiine 10 mM; lane 4; glucose 0 mM, 
proiine 10 mM, 2-DOG 10 mM; lane 5; glucose 10 mM, proiine 10 mM, 2-DOG 10 mM; lane 6; glucose 0 

mM, pn-oline 0 mM, 2-DOG 10 mM.
The growth was deduced by the Alamar blue fluorescence estimation (section 2.1.3).

Error bars represent ± SEM, n = 3

The cells were able to grow in the presence of glucose and proiine and in proiine only 

when the PRODH was still active, in the absence of tetracycline (Figure 4.11, lane 3). T. 

brucei cannot grow on 2-DOG as an energy source, as shown in Figure 4.11, lane 6. When 

proiine and 2-DOG were present together in the medium, the cells were not able to grow 

and use proiine as energy source (Figure 4.11, lane 4). 2-DOG is not toxic, since cells can 

grow in the presence of 2-DOG and glucose (Figure 4.11, lane 5). These results indicate
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that proiine metabolism responds to 2-DOG and presumably to also glucose itself rather 

than to the cell’s metabolic response to glucose. T. brucei parasites may recognise 2-DOG 

as an analogue of glucose but biochemically they cannot metabolise it.

4.3- Discussion

All trypanosome mRNAs are produced from polycistronic transcripts by the 

addition of a 39 nucleotides spliced leader (SL) sequence at their 5’ end and a 3’ poly(A) 

tail. The level of expression of PRODH genes and their regulation are detailed in this 

chapter.

The SL acceptor sites for T. brucei and L. major genes were identified as well as 

the 5’ UTR. The un-translated region between the SL and the first methionine was 502 bp 

for L. major and just 15 bp for T. brucei. Recognition of the first ATG can be impaired 

when it is located close to the cap structure or next to a stop codon. Sometimes, the second 

ATG foimd in frame initiates the translation (Day and Tuite, 1998). It is the case for the L. 

major PRODH, according homology with other sequences, the second ATG was chosen as 

first methionine.

3’ RACE has not been used in this study to identify polyA tail addition sites, 

however it is well known that 3’ UTRs in trypanosomatids are variable in size. Frequently 

they are longer in Leishmania transcripts than those of other eukaryotes (Stiles et al, 

1999). They vary from several nucleotides to 2 Kb (Charest et al, 1996).

The variation in length of the 3’UTR and 5’UTR regions could explain the size of 

the PRODH transcripts. In T. brucei the transcript was ~ 2 Kb and in L. major ~ 3 Kb. The 

5’ UTR was approximately 500 bp longer for the L. major than the T. brucei PRODH 

transcript. The 3’ UTR is also probably longer in the Leishmania species transcript. Since
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the open reading frames for T. brucei and L. major were 1668 bp and 1683 bp, 

respectively, it would appear that the T. brucei 3’ UTR was around 300 bp while that of L. 

major was around 800 bp.

Gene transcription and processing was studied in the life cycle stages of these two 

organisms by performing Northern blot analysis to determine the quantity of RNA. Some 

examples of developmental regulation of T. brucei genes are known. This is the case for 

cytochrome c reductase, where the transcript is more abundant in BSF than in PCF (Priest 

and Hajduk, 1994b). PRODH transcripts were present in both T. brucei procyclic and 

bloodstream stages. The transcript seemed to be present in higher quantity in PCF, these 

forms being able to use proiine as an energy source more effectively than the BFS do 

(Tielens and van Hellmond, 1998). It is believed that when both energy sources are 

present, the parasites use glucose first (van Weelden et ah, 2003). Given that, T. brucei 

BSF caimot use proiine as an energy source, the stable transcription and processing of the 

gene in BSF might indicate an alternative role to energy production, such as glutamate 

production. In T. cruzi a proiine raceraase activity (Reina-San-Martin et ah, 2000) has been 

shown to play a critical role as a B-cell mitogen. A homologue of the T. cruzi proiine 

racemase gene could not be found in the T. brucei genome.

The PRODH transcript is present in L  major promastigotes and metacyclic 

promastigotes. The probe used was L. major PRODH OKF and did not appear to detect the 

transcript in L. mexicana. Nothing could be concluded for the amastigote stages in the 

studies reported here.

The impact of PRODH on cell growth was also investigated. Through experiments 

done with the RNAi construct (Chapter 6), it was noticed that T. brucei PCF were able to 

grow in a medium lacking glucose and containing proiine as an only energy source. It was 

therefore of interest to study T. brucei wild type cells when grown in different conditions.
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When grown in complete medium containing glucose and proiine, the parasites 

preferentially use glucose (Coustou et a l, 2003; van Weelden et aï., 2003). When glucose 

was absent from the medium, the level of transcription of PRODH RNA was similar 

indicating that any regulation of the PRODH levels did not occur at the level of 

transcription or RNA stability. In Arabidopsis thaliana (Nakashima et al, 1998) the 

PRODH transcript is accumulated when the plants have been incubated under hypoosmotic 

conditions and when proiine is present. The tQgxûsdionm Arabidopsis occurs at the level of 

RNA. The T. brucei PRODH transcription has been studied in a medium whose glucose 

concentration was variable. It would have been of interest to study PRODH regulation with 

a medium whose the glucose concentration was stable and the proiine concentration 

variable.

Testing the activity of the PRODH enzyme in crude lysates of T. brucei revealed it 

to be around twice as high in cells derived from a medium lacking glucose. The presence 

of glucose in the medium therefore leads to a decreased ability to use proiine by the first 

enzyme of the proiine catabolism pathway. In enzyme assays under the conditions tested, 

the highest activity observed was for a proiine concentration of 10 mM, after which point 

substrate inhibition was apparent. Detailed kinetic analysis of the protein was not possible 

because the recombinant enzyme purified after expression in E. coli was not active (section

5.2.5).

Catabolite repression is a common phenomenon in prokaryotes (Bruckner and 

Titgemeyer, 2002) and yeast (Gancedo, 1998) where it is used to regulate gene expression. 

Catabolite repression often occurs at the transcriptional level, where metabolites bind a 

repressor and regulate transcription of genes. In E. coli when proiine is present, it binds to 

a repressor and thus stimulates expression of the Put operon. However, when there is no 

proiine, there is no expression of the operon. A similar phenomenon could occur in T.
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brucei, however experiments aiming to quantitate RNA levels in cells grown, with or 

without proiine in the medium, were not done to test this possibility. In trypanosomatids, 

transcriptional regulation is rare (Day and Tuite, 1998). In the case of the T. brucei proiine 

dehydrogenase, Northern blot analysis did not show any difference at the level of RNA 

between the PCF grown in medium containing proiine with, or without, glucose. Western 

blot experiments, performed with T. brucei PCF revealed the presence of the protein in 

both cases (parasites grown in the presence or absence of glucose). The level of 

transcription and translation was therefore not changed by the presence of glucose in the 

medium; the protein was still present regardless of conditions. Therefore, the presence of 

glucose in the medium must influence the activity of PRODH post-translationally.

An analogue of glucose, 2-deoxyglucose (2-DOG), seemed to uihibit proiine 

utilisation in a fashion similar to D-glucose. Evans and Brown, 1972, concluded that 2- 

DOG had no effect on the parasite’s growth, because the parasites were able to use proiine 

instead. It is possible that 2-DOG, at the levels they used, was not sufficient to kill the cells 

(however the authors did not reveal the concentration at which they used 2-DOG in their 

publications (Evans and Brown, 1972)). In my RNA interference experiments, the non

induced parasites were able to grow in the presence of proiine only (section 6.2.5). When 

2-DOG was added to the medium, without glucose but containing proiine, no growth was 

observed. This shows that T. brucei cannot use 2-DOG as an energy source and moreover 

that its presence inhibited the proiine utilisation. This indicates that repression of proiine 

use is a response to 2-DOG and not to metabolic consequences of glucose metabolism 

(such as, for example, ATP levels since 2-DOG cannot be used in energy production). It is 

not certain how the presence of glucose (or 2-DOG) down regulates PRODH activity. It 

would be of interest to determine whether this substrate had some kind of allosteric
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regulatory effect on the enzyme. Alternatively, high glucose abundance could stimulate 

alternative, indirect mechanisms that lead to a decrease in the level of PRODH activity.

The uptake of proiine transport was also studied in T. brucei grown in medium plus 

or minus glucose. Without glucose the uptake of proiine was around twice as high as when 

the parasites were exposed to high glucose concentrations. A simple explanation is not 

obvious; it is possible that at 30 s the measured uptake is a combination of transport plus 

metabolism, hence when only proiine is present, more of it is metabolised. That proiine 

uptake is not linear at 30 s is evident in the fact that the apparent Vmax at 3 s was 

substantially higher. However, even at the lower time point a substantial difference 

between induced and non-induced cells was apparent. It is also possible that PRODH and 

the transporter have a similar regulatory response to glucose with both being down- 

regulated. Further insight into this phenomenon is discussed in chapter 6.

It seems possible that trypanosomes have a system to down regulate proiine 

utilisation in the presence of glucose in the tsetse fly, as flies may transiently become 

glucose-rich following blood meals, in which case conserving fly proiine stocks could be 

in the parasite’s interest.
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Chapter 5 

Cloning and heterologous expression of T .  b r u c e i  and L .  

mayor proiine dehydrogenase

5.1- Introduction

The proiine dehydrogenase {PRODH) genes of L. major and T. brucei were 

identified as detailed in Chapter 3. A next logical step for the study of this protein was the 

cloning of the gene and expression of the recombinant protein in a bacterial expression 

system. The difficulty of obtaining sufficient quantities of pure enzyme from parasites has 

limited research in the past, but recent advances in molecular biology technologies mean 

that is now almost routine to express cloned parasite genes in heterologous systems such as 

Escherichia coli.

PRODH is a membrane-bound protein in the mitochondria of eukaryotes (Maxwell 

and Davis, 2000) and is plasma membrane-bound in prokaryotes (Menzel and Roth, 1981a) 

(equivalent of the mitochondrial membrane of eukaryotes). Several attempts were made to 

over-express the trypanosomal protein in a soluble form in E. coli. However, this was not 

successfiil and so an attempt to mutate the gene of interest was made in order to improve 

the solubility of the encoded protein. As described in the Chapter 3, a putative 

mitochondrial targeting sequence and a putative trans-membrane domain were identified in 

the trypanosomatid predicted proteins. These segments did not contain conserved motifs 

believed to be essential for the activity of the enzymes, or the motif for the binding of 

FAD. It was decided, therefore, to over-express the proteins without these two segments.
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The E. coli PutA669, which is the PRODH segment of the E. coli polypeptide (Vinod et 

al., 2002), was also cloned and expressed as a positive control for the procedure.

5.2- Results

5.2.1- Cloning of T. brucei and L. mayor proiine dehydrogenase genes

PRODH genes from L. major and T. brucei were PCR amplified and cloned into 

pET21a^ vector in order to express a recombinant protein containing a hexa-His-tag at the 

C-terminus of each protein. For each organism, different constructs were made in an 

attempt to optimise the level of expression of the enzyme.

Oligonucleotides were designed to amplify the entire proiine dehydrogenase gene 

{LmPRODH and TbPRODH) from L. major and T. brucei and a version lacking the 

putative mitochondrial targeting sequence (LmPRODHtruncated and 

TbPRODHtruncated). Figure 5.1 shows the result of the PCR amplification from genomic 

DNA of these four constructs.

ladder 1 2  3 4

2000 bp 
1500 bp

Figure 5.1: Ethidium bromide gel showing PCR amplification of proiine dehydrogenase (entire and 
truncated genes). 1: L m P R O D H bp); 2: L m P R O D H tru n ca ted bp); 3: TbPRODH (1668 bp); 4: 
TbPRODHtruncated ( 1599 bp).
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Each primer contained restriction sites for cloning into the expression vector (see section 

2.2.3). For both organisms, a version lacking the putative trans-membrane domain (named 

LmPRODH72 and TbPRODH72) was also amplified (Figure 5.2).

MW

1500 bp 
1000 bp.

Figure 5.2: Ethidium bromide gel showing PCR amplification of proiine dehydrogenase without 
nucleotides encoding the first 72 amino acids. L mcgor proiine ddiydrogenase lacking the first 72 amino 
acids {LmPRODH72) iy^blhp) (lane 1) and T. brucei proiine dehydrogenase ladcing the first 72 amino acids 
(TbPRODH72) (1473 bp) (lane 2).

After gel purification, the PCR products were cloned into the pGEM-T vector and 

sequenced. Thus PCR products and the expression vector pET21a^ were both digested by 

restriction enzymes and ligated together. A schematic representation of the plasmids 

containing the various PRODH constructs can be seen in Figures 5.3-5.S.
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T7 tsrmlnator (69 • 26) 
Hls-Tag (157-140)

'  .\Vwl(159)

pET-LmProDH
7050 bp

ProDH 64.8 kDa

Ndfl(1846)

rba(248 - 254)
lac operator (310 - 295)

T7 Promoter (328-311)

Figure 53: Plasmid construct for expression in E. coU of the L. major proiine dehydrt%enase entire 
gene The gene was cloned into the pET21a* vector, which generates a His-Tag at the C-terminus.

AmpklHIn

T7 terminator (69 - 26)

I Hb.Tag (157 -140)

X7»r(159)

pET-LmProDHtruncated
6978 bp

ProDH 62.3 kDa

Nifel(1774) 

rt»  (248 - 254) 

lac operator (310 - 295) 

T7 Promoter (328 - 311)

Figure 5.4: Plasmid construct for expression in K coli of the L  major proiine dehydrogenase truncated
gene The gene was cloned into the pET2lâ  ̂vector, which generates a His-Tag at the C-terminus.
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Amplclllln

T7 tenninator (69 • 26) 

HIs Tag (157-140)
Xhol (159)

pET-LmProDH72
6837 bp

ProDH 56.8 kDa

Nrffl (1633)

* a  (248 - 254)

lac operator (310 - 295)

T7 Promoter (328-311)

Figure S3: Plasmid construct for expression in E  coli of the E  major proiine dehydrogenase gene 

without the 72 first amino acids. The gene was cloned into the pET2 lâ  vector, which generates a His-Tag 

at the C-terminus.

Ampicillin/
T7 tenninator (69 - 26)

Hl8.Tag (157 -140)

N o t\ (167)

H i>idin(174)

ProDH 65.3 kDa

pET-TbProDH
7050 bp

]VdfI(1846) 

rt»  (248-254) 

lac operator (310 - 295) 

T7 Promoter (328 - 311)

Figure 5.6: Plasmid construct for expresskm in E  coli of the T. brucei proiine dehydrogenase gene. The

gene was cloned into the pET2la^ vector, which generates a His-Tag at the C-terminus.
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Ampicillin

T7 terminator (69 • 26)

Hls-Tag (187 -140)
N on  (167)

H indlll (174)

ProDH 62.8 kDa

pET-TbProDHtruncated
6984 bp

Ndel (1780) 

rtM(248 - 254) 

lac operator (310 - 296) 

17 Promoter (328 -311)

Figure 5.7: Plasmid construct for expression in £. coli of the T. brucei proiine dehydrogenase truncated 

gene. The gene was cloned into the pET21a’̂ vector, which generates a His-Tag at the C-terminus.

Amplclllln

T7 terminator (69 - 26)

HIs Tag (157-140)

N otl (167)

H m dnj (174)

pET-TbProDH72
6858 bp

57.8 kDa

N drl(1654) 

rt»  (248 - 254) 

lac operator (310 - 295) 

T7 Promoter (328 - 311)

Figure 5.8: Plasmid construct for expression in E coli of the 71 brucei proiine dehydrogenase gene
without the 72 first amino acids. The gene was cloned into the pET2la^  ̂vectw which, generates a His-Tag
at the C-terminus.
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5.2.2- Expression of L. mayor and T. brucei proiine dehydrogenases

E. coli BL21(DE3) containing the expression plasmids for L. major and T. brucei 

PRODHs was grown in 50-500 ml LB medium containing ampicillin (100 pg/ml). The six 

different contracts were induced under various conditions in attempts to improve the 

amount of expressed recombinant protein. 0.1 to 1 mM IPTG was added to the culture and 

the contracts were induced at 16 20 °C and 37 °C for 4 hours to 16 hours.

Expression at 37 °C with 1 mM IPTG resulted in the expression of an abundant 

quantity of protein at about 60 kDa corresponding with the expected size of the 

recombinant full length L. major and T. brucei PRODH (predicted sizes of 64.8 kDa and 

65.3 kDa, respectively) and the truncated (predicted sizes of 62.3 kDa and 62.8 kDa, 

respectively) proteins. After harvesting the E. coli cells and sonicating them (20 times 20s 

pulse with 30s between pulses) in 10 ml of 50 mM Tris, pH 7.5, ± 0.5 M NaCl, the soluble 

and insoluble fractions were separated by centrifugation at 10,000 g for 30 niin at 4 ®C. 

The recombinant PRODH proteins were found in the insoluble fraction of the cells, as 

shown using SDS-PAGE (Figures 5.9 and 5.10). Furthermore, purification of the soluble 

phase by a Ni-Agarose chromatography did not yield any protein of the approximate size 

in the elution fractions (results not shown).
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Mr 1 2 5 6 7

70 kDa 
50 kDa PRODH

Figure 5.9: Analysis of expression of L. major proiine dehydrogenase in BL21(DE3) using SDS-PAGE.

Lanes 1 -4, full length gaie L. major, lanes 5-8, truncated gene L. major. Lane Mr, protein standards; lane 1, 

E. coli cell lysate prior to IPTG induction; lane 2, E. coli lysate after 4 h induction by 1 mM IPTG at 37 °C; 

lanes 3 and 4, pellet and supernatant (10 pi of total fraction, 10 ml) of the E. coli lysate centrifugated at 

10,000 g for 30 min; lane 5, E. coli cell lysate prior to IPTG induction ; lane 6, E. coli lysate after 4 h 

induction by I mM IPTG at 37 °C; lanes 7 and 8 pellet and supernatant (10 pi of tcrtal fraction, 10 ml) of the 

E. coli lysate centrifugated at 10,000 g for 30 min. Over-expressed protein is marked with a white star.
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Mr 1 2 3 4 5 6 7 8

70 kDa— ► 
50 kDa— ^ PRODH

Figure 5.10: Analysis of expression of T. brucei proiine dehydrogenase in BL21(DE3) using SDS- 
PAGE. Lanes I -4 full length T. brucei gene; lanes 5-8 truncated T. brucei gene. Lane Mr, protein standards; 

lane 1, K coli cell lysate prior to IPTG induction; lane 2, E. coli lysate after 4 h induction by 1 mM IPTG at 

37 °C; lanes 3 and 4 pellet and supernatant (10 pi of tatal fraction, 10 ml) of the E. coli lyasate centrifugated 

at 10,000 g for 30 min; lane 5, E. coli cell lysate prior to IPTG induction goie; lane 6, E. coli lysate after 4 h 

induction by 1 mM IPTG at 37 C; lanes 7 and 8 pellet and supernatant (10 pi of total fraction, 10 ml) of the 

E. coli lysate centrifugated at 10,000 fw g 30 min. Over-expressed protein is marked wifti a white star.

Different conditions were used during the sonication step in attempts to improve the 

solubility of the proteins. Pellets of E. coli, containing the recombinant protein from the 

constructs containing the full length and tnmcated L. major and T. brucei genes, were 

resuspended in various sonication buffers. The iso-osmotic buffers used were 10 mM Tris- 

HCl, pH 7.8, 0.5M NaCl, ± 10 % glycerol; and 50 mM NaH2P0 4 . pH 7.8, 0.5 M NaCl. The 

detergents Triton-XlOO (0.1 to 1 % v/v) or Tween 20 (0.1 to 1 % v/v) were also added. 

Various sonication procedures (6 to 20 times, 10 s to 30 s pulses, with 30 s interval 

between pulses) were also tested. Freeze/thaw methods of the cells disruption were also 

tried in place of sonication in efforts to increase the solubility of the recombinant proteins.
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However, under all o f the conditions tested, the recombinant L. major and T. brucei 

PRODH full length and truncated proteins remained exclusively in the inclusion bodies.

A method of solubilisation of L. major full length PRODH from inclusion bodies 

was attempted, as detailed in section 2.3.3.3. After induction by 1 mM IPTG at 37 °C for 4 

hours, 100 ml of cell culture was pelleted and the pellet treated with 8 M urea (Sanderson 

et al., 2000) or 2 M thiourea, 8 M urea and 2 % (v/v) CHAPS (van Deursen et a l, 2003). 

The progress of the solubilisation is shown in Figure 5.11. The recombinant protein was 

solubilised, but enzyme activity could not be identified in the purified protein (see section

5.2.5).

Mr 1

70 kDa 
50 kDa'

Recombinant PRODH

Figure 5.11 : Analysis of solubilisation by urea of E major entire proiine dehydn^enase using SDS- 
PAGE. Expressicm was induced at 37 °C by 1 mM IPTG fw 4 h using BL21(DE3) cells. The pellet of E. 
coli was resuspended in 2.5 ml of 50 mM Tris HCI, pH 7.5,5 mM EDTA, 5 % (w/v) sucrose and stored 1 h 

at -20 °C, then defrosted in tap water for 10 min and re-frozen for I h at -  20 °C. The suspoision pellet was 

then sonicated 6 x 20 s on, 30 s off (lane 1, 5 pi of total fraction) and then centrifuged at 10,000 g for 10 min 

at 4 ®C. The resultant supernatant is shown in lane 2 (10 pi of total fraction, 2.5 ml). The pellet was 

resuspended in 2.5 ml of the same buffer containing 0.1 % Triton X 100 and then centrifuged at 10,000 g for 

10 min at 4 °C. The resultant supernatant is shown in lane 3 (10 pi of total fraction, 2.5 ml). The pellet was 
resuspended in 2.5 ml of the buffer containing 2 M urea and caitrifuged at 10,000 g for 10 min at 4 °C, and 

die resultant supernatant is shown in lane 4 (10 pi of total fraction, 2.5 ml). The final pellet was resuspended 

in 5 ml 8 M urea and slowly shaken at 37 °C for 1 h and then diluted with 5 ml of 50 mM Tris-HCI, pH 7.5 

containing 8 M urea and 5 mM EDTA (lane 5, 10 pi of total fraction, 10 ml). Recombinant protein is marked 

with a white star.
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Another method used in attempts to increase the solubility of the recombinant 

protein involved reducing the temperature of induction. The L. major and T. brucei 

PRODH were induced with 1 mM IPTG at 16 °C for 16 hours. The analysis of over

expression is shown in Figure 5.12 and the presence o f the recombinant PRODH was 

observed.

Mr 1

70 k D a ---- ► -  —    W ^  Recombinant
50kDa   4 t.  PRODH

Figure 5.12: Analysis of over-expression of L. major and T. brucei proline dehydrogenase in 

BL2I(DE3) at 16 °C using SDS-PAGE. Lanes 1-2 full length L mcgor gene; lanes 3-4, truncated L major 
gene; lanes 5-6, full length T. brucei gene; lanes 7-8 truncated T brucei gene. Lane Mr, protein standards; 
lane 1, E. co/f cells lysate prior to IPTG induction; lane 2, E. coli lysate after ovemi^t induction by 1 mM 

IPTG at 16 °C; lane 3, E. coli cells lysate priw to IPTG induction; lane 4, K coli lysate after overnight 
induction by 1 mM IPTG at 16 °C; lane 5, K coli cells lysate prior to IPTG induction ; lane 6, E coli lysate 
after ovemi^t induction by 1 mM IPTG at 16 °C; lane 7, E. coli cells lysate prior to IPTG induction; lane 8, 

E. coli lysate after overnight induction by 1 mM IPTG at 16 °C. Recombinant protein is marked with a white 
star.

At 16 °C, the expression of PRODH was considerably reduced compared with at 37 °C. It 

seemed that the concentration o f IPTG did not have an effect so it was fixed at 1 mM. 300 

ml of BL21(DE3) containing pET-TbPRODH was induced at 16 °C by 1 mM IPTG. The 

E. coli cells were harvested by centrifugation and the pellet was first sonicated in 5 ml
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phosphate buffer (50 mM NaH2P0 4 , 500 mM NaCl, pH 7.8) and then centrifuged at 10,000 

g for 30 min at 4 °C. The second pellet was sonicated under the same conditions in 10 ml 

phosphate buffer. The soluble and insoluble phases were separated by centrifugation at 

10,000 g for 30 min at 4 °C. The results are shown in Figure 5.13.

Mr

70 kDa

50 kDa

Recombinant PRODH

Figure 5.13: Analysis of solubilisation of expressed T. brucei entire proline dehydrogenase at 16 in

BL21(DE3) using SDS-PAGE.

The T. brucei entire gene was induced with 1 mM IPTG overnight at 16 °C. The cells were centrifuged and 

the pellet resuspended in 5 ml sonication buffer (50 mM NaHzPÔ , 500 mM NaCl, pH 7.8) before sonication 

(20 times 20 s on, 30 s off) and centrifugation at 10,000g for 30 min at 4 °C. The resultant supernatant is 

shown in lane 1 (10 pi of the total fraction, 5 ml). The pellet was resuspended in 10 ml of sonication buffer 

and re-sonicated (using the same conditions) and re-centrifuged. The resultant supernatant is shown in lane 2 

(10 pi of the total fraction, 10 ml).

Approximately 20 % of the over-expressed protein was present in the soluble phase, and 

was purified on a Ni-Agarose column (detailed in section 5.2.3).

E. coli containing the construct encoding the T. brucei proline dehydrogenase 

without the trans-membrane domain (TbPRODH72) was induced with 1 mM IPTG at 16 

°C for 16 hours. The cells were harvested and the pellet resuspended in 10 mM Tris-HCl 

pH 7.8, imidazole 5 mM, NaCl 0.5 M, glycerol 10 % (v/v) and sonicated. The soluble and
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insoluble phases were separated by centrifugation and analysed by SDS-PAGE (Figure 

5.14).

Mr 1

70 kDa 

50 kDa Recombinant protein

Figure 5.14: Analysis of expression in BL21(DE3) and solubilisation of T. brucei proline dehydrogenase 

lacking the 72 first amino acids using SDS-PAGE. E. coli cells containing the construct was induced for 
16 hours at 16°C with 1 mM IPTG. The pellet of E. coli cells was resuspended in 10 ml of 10 mM Tris-HCl 
pH 7.8, imidazole 5 mM, NaCl 0.5 M, glycerol 10 % (v/v) and sonicated (20 times 20 s on, 30 s off) before 

centrifugation at 10,000g for 30 min at 4 °C. The resultant pellet is shown in lane 1 (10 pi of the total 

fraction 10 ml and the supernatant in lane 2 (10 pi of the total fraction 10 ml).

Around 30 % of the recombinant protein was present in the soluble fraction and was 

purified using a Ni-Agarose chromatography (section 2.3.4).
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5.2.3- Purification of the recombinant proline dehydrogenases

Two systems were used to purify the proteins expressed using the six different 

constructs of T. brucei and L. major PRODH. These systems are based on the presence of a 

hexa-His-tag at the C-terminus of the recombinant protein. The presence of this tag was 

firstly checked on Western blot analysis using anti-His-tag antibody (Figure 5.15). A single 

band of 60 kDa corresponding to the expected size of the recombinant protein was 

detected, confirming the presence of the His-tag to allow the purification.

Mr

170 kDa ^ ___ Recombinant

50 kDa

Figure 5.15: Detection of recombinant proline dehydrogenase in crude lysates of E, coli using antLHis 
tag antibody. L. major entire protein (lane 1 ) and T. brucei entire protein (lane 2) detected using anti-His-tag 
antibody (dilution 1: 2000)

Two methods were chosen to purify the recombinant protein, using a Ni-Agarose 

column (Qiagen) and the Ni affinity chromatography, BioCAD system (see section 

2.3.4.2). 300 ml of E. coli BL21(DE3) containing pET21a^ vector containing the T. brucei
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entire PRODH gene were induced by 1 mM IPTG at 16 °C for 16 hours. After sonication 

and centrifugation, 10 ml of the supernatant (Figure 5.13, lane 2) was loaded onto the 

BioCAD nickel column. After washing the column with 50 mM NaH2P0 4 , 500 mM NaCl 

pH 7.8, the elution of the protein was achieved by 500 mM imidazole in phosphate buffer. 

The results are shown in Figure 5.16.

Mr 1

70 kDa ----- ► V— ^  Recombinant
50 kDa ----- ► ...

Figure 5.16; The purification profile of T. brucei entire gene expressed at 16 *C in BL21(DE3) analysed 

using SDS-PAGE. The soluble protein in the supernatant fraction was purified on a nickel chelator column 

(BioCAD). Mr, protein standards; lane 1, pellet of the preparation; lane 2, flow through (10 pi of total 

fraction, 20 ml); lane 3, wash with binding buffer containing 50 mM imidazole (10 pi of total fraction, 80 

ml). Elution of the recombinant protein was performed with 1 ml fractions of phosphate buffer containing 

500 mM imidazole (lanes 4,5 and 6).

Only a small amount of the recombinant protein was obtained and this was quite heavily 

contaminated by other proteins. The eluted filetions were pooled (~ 0.2 mg/ml) and 

dialysed overnight into different buffers (see section 5.2.5) before testing for enzyme 

activity.

The T. brucei PRODH without the putative trans-membrane domain was purified using a 

Ni-Agarose column (Qiagen). 100 ml o f culture was induced by 1 mM IPTG at 16 °C for
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16 hours and sonicated in 10 ml of 10 mM Tris-HCl pH 7.8, imidazole 5 mM, NaCl 0.5 M, 

glycerol 10 % (v/v). After centrifugation, the soluble fraction (Figure 5.14, lane 2) was 

loaded onto the Ni-Agarose colunm, washed and eluted by 500 mM imidazole (3 fictions 

of 1.5 ml) (Figure 5.17).

Mr 1

70 kDa 

50 kDa

r-
TbPRODH72

Figure 5.17: The purification profile of the soluble fraction of TbPRODH72 using Ni-Agarose 

chromatography and analysed using SDS-PAGE. Mr, protein standards; lane 1, supernatant of E. coli 

lysate (10 pi of total fraction, 10 ml); lane 2, flow through (10 pi of total fraction, 10 ml) ; lane 3, wash (10 

pi of total fraction, 10 ml); lane 4, wash with 10 mM Tris buffer, pH 7.8, containing 30 mM imidazole (10 

pi of total fraction, 5 ml); lanes 5-7, elution fractions 1-3 with Tris buffer containing 500 mM imidazole (10 

pi of total fraction, 1.5 ml).

All the eluted fractions contained the recombinant protein. They were pooled (~ 0.5 

mg/ml) and dialysed overnight at 4 °C against various buffer, before testing for enzyme 

activity (Section 5.2.5).
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5.2.4- Cloning, expression and purification of E. coli PutA669

As a control, it was decided to produce recombinant E. coli PutA669 (Nadaraia et 

a/., 2001) containing the PRODH activity of the PutA protein (PRODH and P5CDH). 

PutA669 was PCR amplified and cloned into pET21a^ vector in order to express a 

recombinant protein containing a His-tag at the C-terminus. Oligonucleotides containing 

specific restriction sites were designed to amplify from gDNA of E. coli the PutA669 gene. 

Figure 5.18 shows the result of the digestion by Nde I and Xho I o f PutA669 cloned into 

pET21 a  ̂(section 2.2.3).

6000 bp -

Ladder

]
% *

2000 bp -
1 1 4 3

1000 bp -
w  >

Figure 5.18: Ethidium bromide gel of digested PCR products cloned into pET21u containing E. coli 
PutA669. The plasmid was digested by Nde I and Xho I (lane 1 ), the band at 2000 bp correspcmds to the E. 
coli PutA669.

The resulting construct was introduced into the E. coli expression strain BL21(DE3). The 

PutA669 with the C-terminal His-tag was induced using a culture of 100 ml LB medium 

containing ampicillin by 1 mM IPTG at 16 °C for 16 hours. The pellet of E. coli cells was 

resuspended in 10 ml of sonication buffer (10 mM Tris-HCl pH 7.8, imidazole 5 mM, 

NaCl 0.5 M, glycerol 10 % (v/v)) and sonicated (20 times, 20 s on, 30 s off). Soluble and
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insoluble fractions were separated by centrifugation and analysed by SDS-PAGE (Figure

5.19).

Mr 1

70 kDa ----- ►   PutA669

50 kDa

Figure 5.19: Expression of K  coli PutA669 in BL21(DE3) and solubilisation profile analysed using 

SDS-PAGE. The cells were induced at 16 °C ovemi^t with I mM IPTG and then harvested by 
centrifugation. The pellet was resuspended in 10 ml sonication buffer (ID mM Tris-HCl pH 7.8, imidazole 5 
mM, NaCl 0.5 M, glyco’ol 10 % (v/v)), sonicated (20 times, 20 s on, 30 s off) and centrifuged at 10,000 g fw 

30 min at 4 °C. The resultant pellet is ^own in lane 1 and supernatant in lane 2 (10 pi of total extract, 10 

ml).

Approximately 50 % of the recombinant protein was in the soluble fraction. The 

supernatant fraction (Figure 5.19, lane 2) was loaded onto a nickel affinity column 

(BioCAD) and the elution of the protein was achieved using 500 mM imidazole (Figure

5.20). The purification profile for the BioCAD column is shown in Figure 5.21. The E. coli 

PutA669 was mainly in fraction 5 (Figure 5.20) and was dialysed overnight into 70 mM 

Tris-HCl, pH 7.8, 10 % (v/v) glycerol, 2 mM EDTA.
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Mr

70 kDa 

50 kDa

PutA669

Figure 5.20: Purification of E. coli Put669 with BioCAD 700E column analysed using SDS-PAGE. Mr, 

protein standards; lane I, flow throu^ (10 pi of total fraction, 10 ml); lane 2, wash with 70 mM Tris buffer, 

pH 7.8 (10 pi of total fraction, 30 ml); lane 3, wash with 70 mM Tris buffer, pH 7.8 containing 50 mM 

imidazole (10 pi of total fracti(Hi, 10 ml); lane 4, fraction number 5 after elution with 500 mM imidazole, I 

ml flection (5 pi of total fracticm, I ml). Concaitration of fraction 5: 0.65 mg protein/ml.

OD

TPS'S'il! < r s  » 1

Time

Figure 5.21: Purificatiou profile of the E  coli PutA669 protein through the BioCAD 700E column. The
red line represents the concentration of the proteins by monitoring absorbance at 280 nm. The blue line is the 

concentration of imidazole. The recombinant K coli PutA669 is present mainly in fraction number 5.
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5.2.5- Analysis of the activity of proline dehydrogenase recombinant 

proteins

Efforts to detect activity with the purified trypanosomatid PRODHs was based on 

the methods developed by Nadaraia et al., 2001 and Vinod et a l, 2002, for the activation 

of the recombinant PutA669. According to these authors, after overexpression of the 

recombinant protein, sonication of the cell pellet and purification through a Ni-Agarose 

column, the protein lost the FAD co factor. For this reason, the purified E. coli PutA669 

(positive control) was incubated for 2 hours with 1 mM FAD and dialysed overnight 

against 70 mM Tris-HCl pH 7.8, glycerol 10 % (v/v), 2 mM EDTA. This protein was then 

checked for activity using DCPIP as a terminal electron acceptor as described in section 

2.3.9.

The recombinant E. coli PutA669 had a specific activity of 0.6-2.4 pmol.min'\mg 

protein'^ Vinod et a l, 2002, reported PRODH specific activity between 10-12 units.mg 

protein'\ Therefore the specific activity of the enzyme purified here was lower than that 

previously published, but this control was nevertheless sufficient to allow determination of 

activity in different conditions. The reduced activity could relate to the fact that the 

construct was different in the two cases.

The same method was used for the attempted activation of the soluble PRODH 

fi'om each trypanosomatid and for refolding from the mclusion bodies. No activity was 

detected.

Variations of this protocol were attempted by using different buffers for dialysis 

and different buffers during the activity testing. A summary of the conditions tested on 

various protein preparations is shown in Table 5.1.
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Buffer Concentration pH variation Cofactor Components

Tris

HEPES

PIPES

MOPS

TES

Phosphate

10-200 mM

5-9

> 4-10

y
5-9

0.5 to 1 mM 

±FAD 

±NAD 

±FMN

±  Parasite 
extracts

± EDTA (2-10 mM) 

± Glycerol (10%) 

± MgCh

Table 5.1: Summary of the activation conditions tested

No activity was detected for any of the recombinant trypanosomatid PRODHs in any of the 

conditions tested.

5.3- Discussion

This chapter describes efforts to express trypanosomatid PRODHs in E. coli for 

protein purification and analysis. Initial experiments failed to yield soluble protein for full 

length genes.

Eukaryotic PRODHs are bound to the mitochondrial membrane (section 3.2.5). The 

trypanosomatid PRODHs described here have a putative mitochondrial targeting sequence 

and also a putative trans-membrane domain located at the N-terminus of the protein. This 

might indicate that in these cells too, the protein is localised to the mitochondrial inner 

membrane. In attempts to increase the expression level and the solubility of the 

trypanosomatid PRODHs, different constructs were used based on the in silico study of the 

protein. Through homology analysis with other known PRODHs (section 3.2,3), two 

regions of high homology could be found in the amino acid sequence of all the PRODH
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analysed. These regions correspond to the active site, which binds the substrate proline, 

and to the cofactor FAD binding site (Nadaraia et al, 2001). These two essential regions 

were located well away from the N-terminus of the trypanosomatid enzymes. Therefore, it 

was hoped that by removing the N-terminal mitochondrial targeting sequence and/or the 

trans-membrane domain, the activity of the recombinant enzyme would not be affected, but 

that solubility might be improved. Unfortunately, removal of the mitochondrial targeting 

sequence had no effect on the solubihty of the recombinant protein. It was still present in 

inclusion bodies. The T. brucei PRODH, without the trans-membrane domain, was found 

in the soluble fraction of E. coli expressor cell lysates. But this enzyme never gave any 

activity in the conditions tested. By removing the N-terminal part, the normal folding of 

the protein might have been affected. This segment might also contain other important 

residues for the activity of the T. brucei enzyme. However the T. brucei PRODH expressed 

in its entirety also failed to show activity after it had been refolded (section 5.2.5).

In Chapter 4, section 4.2.5, the phenomenon of substrate inhibition for the PRODH, 

when pro line was present at a concentration superior at 10 mM was reported. The 

recombinant protein was tested with lower substrate concentration, but no activity was 

found. It cannot be ruled out that the presence of the hexa-his tag at the protein C-terminus 

could affect activity. For example if this region of the protein was involved in dimer 

formation this could affect activity. In E. coli, the domain I (residues 87-139) is crucial to 

the dimer interface. Based on the alignment between the trypanosomal and E. coli 

enzymes, this region is preserved in the mutated enzymes; hence it is unlikely that the 

mutated enzymes will be hindered in their ability to form dimers. Efforts to express the 

protein without a his-tag or with an N-terminal tag would be an interesting topic for further 

study, but such efforts were not made here. However, the E. coli recombinant PRODH was 

over-expressed with a C-terminal His tag, without abolishing the activity of the enzyme.
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The activity for E. coli PRODH is lower than the one reported (Vinod et al, 2002). This 

might be due to a less pure enzyme, or the fact than only 50 % of the recombinant protein 

was soluble, which might indicate that some part of the soluble protein was not refolded 

correctly. Since enzymatic activity is associated with membrane bound protein in situ, 

subtle changes in structure related to degree of solubility could affect activity. In Chapter 4 

was shown that the presence of glucose in growth medium might impact the activity of the 

enzyme. If glucose in E. coli could affect the activity of T. brucei PRODH expressed in 

this environment, this could contribute to the lack of activity. However, since cells were 

grown in glucose free medium, this seems unlikely. Another possibility for the failure of 

obtaining active recombinant enzyme could relate to the use of the E. coli expression 

system. This system is the easiest available to obtain recombinant protein. However, it 

does not permit addition of secondary modifications, which could be essential for the 

activity of the trypanosomatid PRODH. If secondary modification is important, system 

such as yeast or insect cells or trypanosomatids themselves for over-expression could be 

tried in order to increase the probability of producing an active protein. Pichia pastoris, for 

example, can generate glycoproteins than resemble those of higher eukaryotes (high- 

mannose glycosylation pattern), other posttranslational modifications, such as the 

formation of disulfide bonds, acylation or phosphorylation could be essential for 

trypanosomatid PRODHs, but excluded in the E. coli expression system. The presence of 

trypano some-specific cofactors has been tested by adding, soluble trypanosome extract to 

the recombinant protein, but without any success. It is also noteworthy that Western blot 

analysis revealed bands in T. brucei of two sites (section 6.2.3.1). It is conceivable that 

proteolytic processing of the protein (not possible in E. coli) could play a role in activating 

the enzyme.
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Chapter 6 

The physiological role of proline dehydrogenase in T . 

b r u c e i  determined through RNA interference

6.1“ Introduction

T. brucei long slender bloodstream forms (BSF) are entirely dependent on 

glycolysis for the generation of ATP, with glucose as the preferred energy source (Tielens 

and Van Hellemond, 1998). The first seven steps of glycolysis occur in the glycosome, 

which is a unique organelle present in the order Kinetoplastida (Clayton and Michels, 

1996). The last three steps of glycolysis occur in the cytosol leading to the production of 

pyruvate and ATP. In contrast to other trypanosomatids the BSF of F. brucei has a poorly 

developed mitochondrion, without a Krebs cycle or respiratory system coupled to ATP 

synthesis (Michels et al, 2000). This apparently inefficient metabolism does not have any 

adverse effect since the parasites are constantly exposed to a high glucose concentration in 

the host’s blood.

The transformation from BSF to procyclic forms (PCF) leads to striking changes in 

glucose metabolism (Durieux et a l, 1991). The level of most glycolytic enzymes is 

reduced in PCF compared to long slender BSF (Opperdoes et a l, 1984). In the PCF, 

pyruvate is metabolised further inside a more developed mitochondrion, where an electron 

transport chain is apparently coupled to oxidative phosphorylation (Tielens and Van 

Hellmond, 1998) although ATP production at this level appears to be non-essential 

(Coustou Qtal, 2003).
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Insect (including tsetse fly) haemolymph is rich in proline and/or glutamate 

(Balogun, 1974; Bursell, 1981), which is used as a major energy source during the initial 

phase of flight. In the tsetse fly, proline is first oxidised to glutamate, which serves as an 

important source of substrates for the Krebs cycle (Bursell, 1967). Insects appear to have a 

high capacity for proline synthesis. It is associated with the fat body with alanine and 

triglycerides representing the major substrates for proline synthesis in the tsetse fly 

(Bursell er fl/., 1973; Bursell, 1978).

The insect forms of T. brucei have been proposed to be adapted to the environment 

in the vector by oxidising proline to glutamate and using it as a substrate for ATP 

production (Gutteridge and Coombs, 1977; Coustou et ah, 2003). It was proposed in an 

early study that during the exponential phase of growth F. brucei prefer proline over 

glucose as an energy source (Evans and Brown, 1972). Other work showed proline to be 

rapidly oxidized by cultured midgut forms of F. rhodesiense (Ford and Bowman, 1973).

Over the past few years, the understanding of PCF F. brucei energy metabolism has 

changed. The accepted dogma was that ATP was produced by oxidative phosphorylation 

linked to a respiratory chain oxidising products of the Krebs cycle. It was also believed that 

the Krebs cycle was fully functional. However, mitochondrial substrate level 

phosphorylation has now been shown to be essential for this stage of the parasite’s life 

cycle (Allemann and Schneider, 2000; Bochud-Allemann and Schneider, 2002). Succinyl- 

CoA syntethase (SCoAS), present in both the Krebs cycle and in the Acetate: Succinate 

CoA transferase / SCoAS cycle (ASCT cycle), has been shown, using RNA interference, to 

be essential to the parasite (Bochud-Alleman and Schneider, 2002). A cytosolic pyruvate 

kinase has also been shown to be essential (Coustou et at, 2003), although levels of this 

enzyme were previously reported to be negligible (Fairlamb, 1989). The importance of the 

Krebs cycle in procyclic stage F. brucei has also become controversial. Deletion of the
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aconitase gene in these organisms did not change growth rate of the parasite, or the 

intracellular ratio of ATP/ADP (van Weelden et a l, 2003). Succinate dehydrogenase and 

a-ketoglutarate dehydrogenase genes have also been shown to be non-essential (Bochud- 

Alleman and Schneider, 2002). These data indicate that the Krebs cycle is not critical in 

the energy metabolism of these cells. Notwithstanding this, PRODH converts proline to 

glutamate, which was believed to enter the Krebs cycle for production of succinate and 

ATP (Evans and Brown, 1972; Obungu et a l, 1999) although it might also feed other 

pathways of energy metabolism.

In order to improve our understanding of PCF T. brucei energy metabolism in 

general and specifically the roles of PRODH in this process, the technique of RNA 

interference has been applied to fonctionally silence the enzyme.

RNA interference (RNAi) refers to the impact of the introduction of homologous 

double stranded RNA (dsRNA) to a cell to specifically target a gene product (mRNA), 

resulting in "null" phenotypes (LaCount et al., 2000; Ullu et al, 2002). The RNAi pathway 

is ATP-dependent at several steps (Zamore et al, 2001), Cleavage of the dsRNA into small 

interfering RNAs (SiRNAs) involves the enzyme Dicer (RNAse III fomily). Then, SÎRNAs 

complex with other proteins and, after ATP-dependent unwinding, the active RNA-induced 

silencing complex is able to degrade both sense and anti-sense target RNA molecules 

(Hutvagner and Zamore, 2002). Most studies suggest that RNAi takes place in the 

cytoplasm (Hannon, 2002).

RNAi was first described in Caenorhabditis elegans, but has since been observed 

in a wide range of organisms including T. brucei (Ngo et a l, 1998). A silencing 

mechanism has also recently been reported in L. major and L. collosoma in experiments 

aimed at silencing the small nuclear RNAs (Liang et a l, 2003), although other efforts to 

exploit the system in Leishmania have been unsuccessful (Beverley, 2003).
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RNAi interferes with expression at the RNA level, to generate a “knock down” 

phenotype, without altering the DNA sequence, which is required for conventional gene 

knock out, in which the gene locus has to be deleted. Although complete abrogation of 

expression is rarely observed with RNAi, RNAi can efficiently "knock down" protein 

expression levels. One advantage of RNAi is that it can be used to simultaneously "knock 

down" expression of multiple gene copies without these needing to be physically linked in 

the genome (Wang et ah, 2000).

In T. brucei, the generation of knock down phenotypes via RNAi is achieved by 

introduction of a plasmid containing two tetracycline inducible T7 promoters, arranged as 

an inverted repeat (LaCount et al, 2000). The gene of interest is placed between these two 

promoters and formation of dsRNA guides degradation of the target mRNA (Tschudi et 

al, 2003). The T. brucei 29-13 cell line used for RNA interference experiments (section 

2.4.1) has been engineered to express the Tet repressor and the T7 RNA polymerase.

This chapter describes the “knock down” of PRODH in T. brucei and discusses the 

implications of proline utilisation for energy metabolism in trypanosomes.
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6.2- R esu lts

6.2.1- Plasmid construction and clone selection

The N-terminal part of the pro line dehydrogenase gene, corresponding to 606 bp of 

the gene (see section 2.4.2), was amplified by PCR and cloned into the p2T7Ti vector to 

generate the plasmid p2T7PRODH. In order to check the construct, p2T7PRODH was 

digested by Xba I to liberate the insert corresponding to the PRODH fragment (Figure 6.1 ).

Ladder 1 2

6000 bp L— P2T7Ti

2000 bp

1000 bp

4— PRODH fragment

Figure 6.1: Ethidium bromide stained agarose gel showing the 606 bp proUne dehydrogenase fragment 

in p2T7TL It was digested by Xba I (lane 2) and non-digested (lane 1).

Size of p2T7Ti: 6089 1^

p2T7PRODH was linearised by Not I (Figure 6.2) and transfected into T. brucei, 29-13, 

cultured in the presence of G418 and Hygromycin B, permitting the selection of the cells 

that had integrated the T7 RNA polymerase and the tetracycline repressor. Transfected 

parasites were grown in the presence of Phleomycin at a concentration of 10 pg/ml, which 

selects for transformants carrying the p2T7PRODH plasmid.
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ladder

2.5 kb

p2T7PRODH

Figure 6.2: p2T7PRODH construction. 1% agarose gel showing the vector p2T7PRODH linearized by Not 
I.

Multiple clones were selected by limiting dilution (see section 2.4.4.). The clone F2 was 

chosen for further study.

6.2.2- RNA expression

The Aprodh parasites were grown in SDM79 medium in the presence of antibiotics 

to maintain the construct. Tetracycline, at a concentration of 1 pg/ml, was added to induce 

the formation of double stranded RNA and therefore the destruction of the pro line 

dehydrogenase transcript.

Total RNA was isolated from induced {Aprodh +) and non-induced {Aprodh -) 

cells and subjected to Northern blot analysis. The blot was probed with the PRODH ORF, 

and subsequently stripped and re-probed with a p tubulin gene as a control for the quantity 

and quality of RNA.
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Time in hours

Kb

2.37

1.35

4- 4+ 24- 24+ 48- 48+ 72- 72+ 144- 144 +

PRODH

dsRNA

B

Tubulin

Figure 6.3: Northern blot analysis of T. brucei cells transfected with p2T7PRODH construct induced 

(+) and non-induced (-) by 1 pg/ml of tetracycline. A; The blot was probed with the proline dehydrogoiase 

ORF. B; The blot was stripped, then re-probed with a P tubulin gene. The Northern blot shows a time course 

experiment with the numbers above each lane referring to die time in hours post-induction of dsRNA with 
tetracycline.
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Figure 6.3 shows a time course experiment. The cells were induced with tetracycline and 

RNA was collected from 4 hours after induction to 6 days. A single hybridizing band of ~2 

Kb was detected in RNA from non-induced cells at all time points, except for 24 hours. 

Note that no signal was observable within the non-induced cells at 24 hours, because of the 

loss of the RNA in this sample as witnessed by the tubulin control Within 4 hours of 

induction of dsRNA expression, the 2 Kb PRODH transcript was not detectable. A smaller 

hybridizing transcript of ~600 bp was detected only in Aprodh + cells. Tliis band is likely 

to represent the 600 bp dsRNA that is transcribed from p2T7PRODH under conditions of 

induction.

6.2.3- Protein expression and proline dehydrogenase activity 

6.2.3.1-Western blot analysis

To investigate the expression of PRODH protein in the RNAi cells. Western blots 

were performed with lysates from both induced and non-induced Aprodh transfected T. 

brucei. The serum used during this experiment was raised in a rabbit by immunisation with 

purified recombinant proline dehydrogenase and subsequently purified (see section 2.3.5).
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B
1 2

1 2 3

50 kDa

25 kDa

50 kDa

25 kDa

Figure 6.4: A: Detection of proline dehydrogenase using rabbit anti-proUne dehydrogenase antibodies 

(1:3000 dilution). Lane I, recombinant proline dehydrogenase without 72 first amino acids (10 pi of 0.3 

mg/ml); lane 2, Aprodh -  T brucei procyclic cells lysate (2x10  ̂cells), lane 3, Aprodh + T. brucei cells 

lysate (2x 10̂  cells) after 4 days of inductirai.

B: Detection of tubulin using rabbit anti-tubulin antibodies (1:10,000). lane 1, Aprodh -  T brucei 

procyclic cells lysate (2x10  ̂cells), lane 2, âiprodh + T. brucei cells lysate (2x10  ̂cells) after 4 days of 

induction.

Two bands (45 kDa and 65 kDa) were detected in the non-induced RNAi cells. These 

bands were absent in RNAi cells that had been induced for 4 days with tetracycline (Figure 

6.4). As a control, the PRODH without the 72 first amino acids recombinant protein (57.8 

kDa) was run in the same gel. A control for the quantity of protein was performed using 

anti-tubulin antibodies. In both cell lines, a band at around 55 kDa, representing tubulin, 

was found. In the first gel (Figure 6.4A), the band found around 65 kDa could be the 

PRODH (the entire protein has a predicted size of 63 kDa). The smaller band could be a 

degradation product of the protein or the protein cleaved to release the putative trans

membrane domain or another domain. The protein devoid of the trans-membrane domain
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should have a size of 56 kDa, although additional sequence beyond this trans-membrane 

domain could also be lost during this cleavage. The possibility that the band results from 

non-specific binding of the antibody cannot be excluded, but a BLAST search of the 

parasite genome and TIGR databases with the T. brucei PRODH as a query did not show 

significant homology to any other protein, which could have been recognised by the 

antibody. Moreover, loss of the band upon induction of the RNAi suggests that it is related 

to PRODH.

e.2.3.2- ProUne dehydrogenase activity in the RNAi celt Une

PRODH activity was measured using crude lysates of T, brucei Aprodh + and 

Aprodh — as described in section 2.3.9. For a substrate range concentration from 1 mM to 

60 mM (Figure 6.5), the activity of the enzyme in non-induced parasites was comparable 

with that in the wild type parasites (Chapter 4). Very low activity was detectable when the 

construct was induced. The specific activity of PRODH in T. brucei was found to be 

maximal for a proline concentration of 10 mM. It was 0.028 ± 0.004 pmol.min'^.mg 

protein'*. Beyond this range, an apparent substrate inhibition was observed.

A control for this experiment was done by measuring the activity of cysteine 

synthase in the crude lysate of Aprodh + and Aprodh -  cells lines (Kredich and Tomkins, 

1966). This assay was performed by Dr R. Williams (Univeristy of Glasgow), and the 

specific activity found in both cells line was similar (results non shown).
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+ Tet 
-Tet

Proline concentration (IM)

Figure 6^: ProUne dehydrogenase activity in lysate of T. brucei Aprodh procyctic forms induced and 

non induced by tetracycline. Error bars represent ± SEM, n=3

The Aprodh parasites were grown in a complete SDM79 medium containing 

pro line and glucose. PRODH specific activity, using 10 mM pro line as substrate in the 

assay, was found to be approximately twice as high when the cells were grown with 

glucose absent from the medium, reaching a maximum of 0.054 ± 0.004 pmol min '.mg 

protein*' compared with 0.027 ± 0.004 pmol.min '.mg protein*' when the medium was 

complete (significantly different, by t-test, P<0.05).

Although the PRODH activity of T. brucei crude lysate was much higher in cells 

grown in the absence of glucose, it was not possible to grow the Aprodh + cells under these 

conditions (as cells are unable to grow when glucose is not present and when pro line 

cannot be used due to the lack of PRODH).
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6.2.4- Growth studies of RNAi ceil lines

Aprodh - and Aprodh + parasites were also studied for a phenotype beyond those 

measurable biochemically. The T. brucei procyclic cells were grown in SDM79 medium. 

A typical logarithmic growth curve was observed (see Figure 6.6), reaching a stationary 

phase after 7-8 days at approximately 2x10^ cells/ml. There was no apparent difference in 

growth in the presence or absence o f PRODH activity. Thus the presence or absence of 

pro line degradation through PRODH does not affect the growth of T. brucei procyclic 

parasites when grown in rich medium.

^  10000-,

1000-

100-

10-

2.5 10.00.0 5.0 7.5

+ Tet 
-T e t

Days

Figure 6.6: Growth of 71 brucei Aprodh in SDM79 medium in the absence or presence of tetracycline (1 

fxg/mi). Error bars represent ± SEM, n=3

A modified SDM79 medium without proline or glucose was prepared to test the viability 

of trypanosomes in the absence of the main energy sources thought to be used by the 

parasite. This medium was supplemented with proline and/or glucose at 0.6 g/L (5.2 mM)
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and 1 g/L (5.5 mM), respectively. In the presence or absence of tetracycline, growth of 

Aprodh T. brucei cells was monitored under various conditions (Figure 6.7).

+/+ pro/gtu 
+/- pro/giu 
-/+ pro/glu 
-/- pro/glu

10000-,

E
'*o

X
100 -S

I
S.

6 83 5 70 1 2 4

days

Figure 6.7A: Growth of non induced T. brucei Aprodh in SDM79 medium lacking proline and glucose.

Non-induced cells w c t c  cultured in the absence of proline and/w glucose; these substrates wwe at 5 mM 

when present Error bars reiM’esent ± SEM, n=3

10000-,

X
100 -I

I
s.

0 1 2 3 7 84 5 6

+/+ pro/glu 
+/- pro/glu 

■-/+ pro/glu 
■ -/- pro/glu

days

Figure 6.7B: Growth of tetracycline-induced T. brucei Aprodh in SDM79 medium lacking proline and 

glncose. Induced cells were cultured in the absence of proline and/or glucose; these substrates were at 5 mM 

when presCTt. Error bars represent ± SEM, n=3
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In the absence of tetracycline, cells were able to grow when either proline or 

glucose, or both, were present in the medium. When proline and glucose were absent, 

growth was observed for the first two days and then the cells died. However, in the 

presence of proline only in the medium, the stationary phase was reached more quickly and 

the maximum parasite density reached was lower than when glucose was present. This may 

have been due to depletion of the energy source in the medium.

When tetracycline was present, and PRODH was switched off, the cells were able 

to grow at the same rate in a medium with or without proline. However, the cells were 

unable to grow in the absence of glucose over a period of 7 days, indicating that proline 

can no longer support growth in these cells, probably because of the loss of PRODH. 

Tetracycline had no lethal effect on the growth, since, when only glucose is present in this 

medium the number of parasites is still more abundant than when only pro line is present.

6.2.5- Supplementation of growth by addition of other amino acids

In the experiments detailed in section 6.4, T. brucei PCF were able to grow in 

SDM79 only when proline or glucose was present at high concentration. Glutamate is a 

degradation product of pro line catabolism that can be used as a substrate for the Krebs 

cycle. It was therefore of interest to determine whether glutamate could rescue the cells 

that could not longer utilise proline. Moreover, it was investigated whether other amino 

acids could substitute for prohne.

Growth of r. brucei Aprodh in the presence or absence of tetracycline and with 

different supplements for the medium was estimated using the Alamar blue assay (Figure 

6.8) (see section 2.1.3).
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QO
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i l  M r i  .1 M i i  i l  ■! i i  .« l i . .  i l  l l  i t  r t  I I  »i JU.J l
Ala Aig Asn Asp Cys Glu Qn Gly His Isd Leu Lys Met Phe Pro Ser TauThreTryp Tyr Val G+P

Amino Acids

Figure 6.8: Alamar Mae estimation of growth of 7. brucei Aprodh procyclic forms induced or non

induced by tetracycline in a medium lacking proline and glucose but supplemented by different amino 
acids at 10 mM. The three Irtter code for die amino acids was used. G+P is the medium supplemented by 

glucose and proline, -/- is the medium without glucose or proline. Error bars represent ± SEM, n=4

Parasites, induced or non-induced by tetracycline, were grown in SDM79 without 

glucose or proline, supplemented with various single amino acids at 10 mM. Proline and 

glucose were added to the medium as a positive control. The negative control (-/-) lacked 

any added amino acids.

None of the amino acids was able to rescue the cells from the loss of proline 

utilisation and the lack of glucose in the medium. Only Aprodh - parasites, non-induced 

with tetracycline, were able to grow in the presence of just pro line in the medium. In the 

conditions tested, proline or glucose is thus essential for parasite growth. Glutamate and 

other amino acids were not able to supplement for the loss of proline utilisation.

Experiments using different concentrations of glucose, proline and glutamate were 

also performed (Figure 6.9).
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Figure 6.9: Alamar Mae estimation of growth of T. brucei Aprodh procyclic forms induced and non 

induced by tetracycline in a medium lacking proline and glucose and supplemented by different 

concentrations of proline, glucose and glutamate. Lane 1; glucose 10 mM; proline 10 mM, glutamate 0 
mM; lane 2; glucose 0 mM, proline 10 mM, glutamate 0 mM; lane 3; glucose 0 mM, proline 0 mM, 
glutamate 10 mM; lane 4; glucose 0 mM, proline 10 mM, glutamate 10 mM; lane 5; glucose 0 mM, proline 
0.1 mM, glutamate 10 mM; lane 6; glucose 0 mM, proline 0.01 mM, glutamate 10 mM; lane 7; glucose 0 

mM, proline 0.1 mM, glutamate 0 mM; lane 8; glucose 0 mM, proline 0.01 mM, glutamate 0 mM; lane 9; 

glucose 10 mM, proline 0 mM, glutamate 0 mM; lane 10; glucose 10 mM, (yoline 0 mM, glutamate 10 mM, 

lane 11; glucose 0 mM, proline 0 mM.

Error bars represent ± SEM, n=4

Glutamate at 10 mM was not toxic for the T. brucei parasites, as evidenced by addition of 

10 mM glutamate to medium already containing glucose or pro line. However glutamate 

alone could not support growth of PRODH-deficient cells (lanes 3 and 4). In the conditions 

tested, proline at 10 mM seems to be essential for the cells when glucose is absent, a lower 

concentration of pro line (0.1 or 0.01 mM) does not support growth. However, in these 

conditions a slight increase in the number of parasites alive was observed, showing that the
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parasites might need some proline, perhaps for roles other than energy production such as 

protein synthesis or osmoregulation.

According to various schemes (Coustou et al., 2003) a-ketoglutarate, succinate or 

pyruvate might be able to be used in the production of ATP by T. brucei. However, none of 

these metabolites were able to support the growth of parasites in medium without glucose 

or proline. Pyruvate seemed to inhibit the grovyth of parasites when present at 10 mM 

(Figure 6.10, lane 5). Some intermediate growth can be observed when the medium is 

complemented with threonine, succinate or a-ketoglutarate, but only pro line and glucose 

seem to be able to support robust growth.
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Figure 6.10: Alamar Mae estimation growth of T. brucei Aprodh procyclic forms induced and non- 

induced by tetracycline in a medium lacking of proline and glucose and supplemented by different 

components at 10 mM. Lane 1; glucose 10 mM, proline 10 mM; lane 2; glucose 0 mM, pnoline 0 mM, lane 

3; glucose 0 mM, proline 10 mM; lane 4; glucose 0 mM, proline 0 mM, pyruvate 10 mM; lane 5; glucose 10 

mM, proline 10 mM, pyruvate 10 mM; lane 6; glucose 0 mM, proline 0 mM, alanine 10 mM, aspartate 10 

mM; lane 7; glucose 0 mM, proline 0 mM, succinate 10 mM; lane 8; glucose 0 mM, proline 0 mM, pyruvate 
10 mM, succinate 10 mM; lane % glucose 0 mM, proline 0 mM, threonine 10 mM, succinate 10 mM; lane 

10; glucose 0 mM, proline 0 mM, a-ketoglutarate 10 mM. Error bars represent ± SEM, n=4
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6.2.6- Glutamate uptake

Supplementation with various amino acids was not able to rescue growth of T. 

brucei in glucose- and proline-free media. Glutamate, which is a degradation product of 

pro line, was not able to support growth in cells that had lost the ability to use proline. One 

possible reason for glutamate’s inability to support growth could relate to a failure of 

trypanosomes to accumulate this metabolite across their plasma membrane. Therefore 

glutamate uptake experiments were carried out in order to determine whether or not a 

glutamate transporter was operative in T. brucei PCF.

In a first experiment, uptake of 10 pM glutamate was monitored as a function of 

time (see section 2.4.6.3) (Figure 6.11).
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Figure 6.11: Time course of glutamate uptake into T. brucei Aprodh procyclic forms induced and non- 

induced by tetracycline. Transport was measured in the presence of 10 pM of glutamate for a range of time 

between 30 seconds and 3 hours. Errw bars represent ± SEM, n=6
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There was an accumulation of glutamate with time. An increase in glutamate incorporation 

was observed during the first 10 minutes followed by a plateau, a maximum of 50 pmol per 

10̂  cells was measured inside the cells. No significant difference (t-test, P>0.05) was 

observed between the two lines, Aprodh + and Aprodh -. For both lines, the concentration 

of glutamate within the cells after 10 min was determined at 63 pM compared with 10 pM 

outside. This was calculated assuming a volume of 5.6 pi for Ix 10  ̂cells (Knodler et al, 

1992) and using the maximal amount of glutamate in the cells.

It has been previously noticed that the incorporation of glutamate into procyclic T. 

brucei proceeds much more slowly than uptake of other amino acids (Dr I. Accoceberry, 

University Bordeaux II, personal communications). For example, at 1 pM the rate of 

incorporation of glutamate was only 10 % of the rate of incorporation of alanine, glutamine 

or serine and 3.9 % of the incorporation of leucine.

Thus kinetics of glutamate transport were then studied using two different 

approaches. In the first, uptake was measured over 30 s using several concentration ranges 

of glutamate at doubling dilutions of labelled substrate. For both cells, induced or not 

induced by tetracycline, concentration ranges between 100 pM and 20 mM did not reveal 

any saturable transporter (Figures 6.12 B and C).
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Figure 6.12: Kinetics of glutamate transport in T. brucei Aprodh procyclic forms induced and non- 

induced by tetracycline. Glutamate transport was measured in the presence of various glutamate 

concentrations over 30 s. A; range 0.15 pM to 50 pM glutamate. B: range 3.8 pM to 0.25 mM glutamate. C: 

range 0.3 mM to 20 mM glutamate. Error bars represent ± SEM, n=6
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Surprisingly, for a lower range up to 50 pM, the induced T. brucei àprodh did show a 

hyperbolic curve tending to saturation compared with non-induced parasites in which no 

saturation curve was observed although a simple explanation for this is not evident (Figure 

6.12 A).

A second type of experiment was performed to try and show the presence of a 

specific glutamate transporter (Figure 6.13).
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Figure 6.13: Inhibition of ^  gintamate transport by non-radiolabelled glutamate. The uptake was 
measured over 30 s in the presence of increasing concentration of non-radiolabel led glutamate.

(A) shows the radiation (cpm: count per minute) taken into the cells. (B) shows the transformation of these 

cpm into moles. 10 pCi of glutamate equal to 190 nM was used. Error bars represent ± SEM, n=4
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In this case, transport experiments were conducted over a period of 30 s using a constant 

concentration (10 pCi corresponding to 190 nM) of radio labelled substrate and increasing 

the concentration of non-radiolabelled substrate. A decrease of the incorporated 

radiolabelled was observed with increasing concentrations of non-radiolabelled amino 

acid. This result indicates that a high affinity glutamate transporter is present with a Km of 

around 1.5 pM. Further experiments are required to characterise this transporter. The 

capacity of this transporter appears to be low and the non-saturable uptake events, 

described above, prevented accurate assessment of the Vmax of this transporter.

6.2.7- Proline transport

Loss of PRODH through RNAi led to a loss in the ability of trypanosomes to use 

proline. This could indicate that PRODH is essential in the pathway to energy production 

from prohne. However, it is also possible that loss of PRODH had other effects on the cells 

that could lead to loss of viability. The first step in the metabohsm of proline involves its 

uptake across the plasma membrane. Proline transport has previously been studied in 

procyclic T. brucei (L’Hostis et al., 1993). Proline transport was here compared in cells 

expressing and suppressed in expression of PRODH.

In first experiments, proline transport in T. brucei Aprodh was studied as a function 

of time (Figure 6.14).
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Figure 6.14: Time course of proline uptake in T. brucei Aprodh procyclic fomm induced and non- 

induced by tetracycline. The transport using an external concentration of 100 pM proline was measured at a 

range of time points between 30 seconds and 3 hours. Error bars represent ± SEM, n=6

Uptake of 100 pM proline containing proline was allowed to proceed for up to 3 hours. 

An accumulation of proline was observed for 30 min. This was followed by an apparent 

release of this amino acid. The non-induced cells accumulated proline 45 fold when 

compared to the external concentration again assuming an extracellular volume of 5.6 pi 

for Ix 10 * cells (Knodler et al., 1992), whereas the induced cells accumulated the amino 

acid around 30 fold. A t-test showed that this difference was not significant at P>0.05. The 

absence of PRODH activity does not appear to abolish uptake. A similar pattern was seen 

over both short term and long-term uptake experiments. The accumulation of proline 

within the cells (presumed not to be metabolised due to the lack of PRODH) did not 

interfere with uptake. Previous studies have suggested proline uptake involves an active 

transport (L’Hostis et a l, 1993) in PCF T. brucei. The results presented here reinforce this
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hypothesis. Using micro molar concentration of substrate, the maximum intracellular 

concentration of glutamate was much lower than for proline (see section 6.6) where up to

2-3 nmol per 10  ̂cells could be maximally achieved (with 100 pM external proline).

Uptake of proline was investigated as a function of time between 3 s and 30 s 

(Figure 6.15).
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Figure 6.15: Time course of proline uptake in T. brucei Aprodh procyclic forms induced and non- 

induced by tetracycline. The transport using an external concentration of 100 pM proline was measured at a 

range of time points between 3 seconds and 30 seconds. Error bars represent ± SEM, n=6

The uptake of proline did deviate somewhat from linearity during this period, but 30 s was 

considered to be the fastest time point at which reproducible data could be reliably 

gathered, and it was close to the time point (20 s) chosen by THostis et al., 1993. Thus a 

time point of 30 seconds was chosen for some subsequent experiments. The kinetics of 

proline transport was also studied using various concentrations of non-radiolabelled proline 

(3x10'^ mM to 20 mM) (see section 2.4.6.3) (Figure 6.16).
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Figure 6.16: Kinetics of proline transport of T. brucei Aprodh procyclic forms induced and non- 

induced by tetracycline {Aprodh + and Aprodh -). Proline transport was measured in the presaice of 

various proline concentrations over 30 s. A: Concentration range 3.9 to 250 pM B: Concentration range 300 

pM to 20 mM. Error bars represent ± SEM, n=6

186



Chapter 6: The physiological role of proline dehydrogenase in T. brucei determined through RNAi

Under high, non-physio logical proline concentrations (Figure 6.16 B), non-saturable 

uptake of proline was observed within the cells. Using lower concentrations (Figure 6.16 

A), a typical hyperbolic curve was observed for the cells under both conditions with regard 

to PRODH expression. The /Aprodh - cells have a apparent Vmax of 0.75 ± 0.06 nmol.min 

\lO^ parasites"  ̂ and apparent Km of 11 ± 0.003 |xM for proline at 20 °C. L’Hostis et al, 

(1993) found for proline transport in T. brucei a Km of 19 pM and a Vmax of 1.7 nmol.min" 

\lO^ parasites’* at 27 °C, Therefore the proline kinetics measured here for non-induced 

RNAi cells are similar to those previously reported to wild type 71 brucei. In the presence 

of tetracycline, the Km observed was 12 ± 0.0035 pM and Vmax is 0.41 ± 0.0035 nmol.min" 

*.10̂  parasites’*. Thus measured in the presence or absence of tetracycline the Km is 

comparable although the Vmax is significantly different (t-test, P<0.05). The apparent Vmax 

is lower when proline metabolism is switched off.

Over 30 s it appeared that the K,„ for the proline uptake process was unchanged in 

cells with PRODH and cells lacking this enzyme. The Vmax, however, was reduced by 

around two fold in the cells without PRODH. 30 s was selected as a time point because of 

convenience, it could not be ruled out that the measured uptake in non-induced cells was a 

result of a combined effects of uptake and metabolism. The reduction in apparent Vmax 

could then be explained by loss of the principal metabolic step (proline dehydrogenase). 

Oxidation of proline by PRODH may not be the only route to its metabolism in wliich case 

it is possible that measured uptake is the sum of transport and metabolism. Therefore it was 

decided to measure uptake over the shortest possible time period. The shortest point at 

which one can physically measure uptake using the oil stop method is around 3 s. 

Therefore proline uptake at 3 s was also measured for a concentration range of 3 pM to 

200 pM (Figure 6.17).
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Figure 6.17: Kinetks of proline transport of T. brucei Aprodh procydk forms induced and non- 

induced by tetracycline. Proline transport was measured in the presence of various proline concentrations 

over 3 s. Error bars represent ± SEM, n=6

Using either 30 s or a 3 s time point to follow uptake, the pattern of the kinetics of proline 

uptake was similar. The Vmax was significantly higher in the non-induced cells (t-test, 

P<0.05) while the Km was similar in both conditions. At 3 s the apparent Vmax was 1.5 ± 

0.08 nmol.min"'. 10  ̂ parasites ' and the apparent Km was 13.2 ± 3.0 pM. For the cells 

grown without tetracycline the apparent Vmax was 2.7 ±0.13 nmoLmin"'. 10̂  parasites'* and 

the apparent Km was 9.3 ±1.5 pM. The higher apparent Vmax at 3 s when compared with 

30 seconds confirmed that the initial rate had already passed by 30 seconds. Figure 6.15, 

indicates that is the case.

The uptake of proline was also studied with T. brucei wild type cells grown in a 

medium lacking or containing glucose (see section 4.2.6). Similar uptake characteristics 

were observed for proline in these cells. When parasites were grown in the presence of 

glucose the apparent Vmax was 0.70 ± 0.066 nmol.min '. 10  ̂parasites'* and the apparent Km
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was 21 ± 2 .9  pM. When grown in the absence of glucose, however, the values were 

apparent V̂ ax 1.81 ± 0.13 nmol.mm *.10^parasites'* and apparent Km 18 ± 0.0042 pM. The 

apparent Vmax value was thus doubled in conditions when proline metabolism appears to be 

essential

6.3- Discussion

To study the physiological role of PRODH in T, brucei PCF, the RNA interference 

technique was used. Expression of a double stranded RNA molecules in cells leads to the 

degradation of the corresponding endogenous mRNA, by creating small (24 to 26 

nucleotide) RNAs, called small interfering RNAs (Si RNAs), which interact with the 

target. This process is ATP-dependent (Hutvagner and Zamore, 2002; Tschudi et al, 

2003).

The elimination of the PRODH transcript in T. brucei transfected with the p2T7 

vector carrying a fragment of the PRODH gene was evaluated by Northern blot analysis. 

RNA from tetracycline-induced cells and non-induced cells was compared from 4 hours up 

to 6 days after induction. The targeted transcript was lost from 4 hours until the parasites 

reached the stationary phase (6 days).

Loss of an RNA transcript is important, but the presence or the absence of the 

protein and its activity is critical to phenotype. The efficacy of the inducible p2T7PRODH 

was assessed by Western blot analysis. PRODH was detected using a specific antibody 

raised in a rabbit. After 4 days of induction with tetracycline, the protein could not be 

detected in trypanosomes. Two bands (45 kDa and 65 kDa) were detected in the non- 

induced RNAi cells (Figure 6.4). The band found around 65 kDa could be the PRODH (the
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entire protein has a predicted size of 63 kDa). The smaller band could be a degradation 

product of the protein or the protein cleaved to release the putative trans-membrane 

domain or another domain. The protein devoid of the trans-membrane domain should have 

a size of 56 kDa, although additional sequence beyond this trans-membrane domain could 

also be lost during this cleavage. It is conceivable that only the lower molecular mass 

protein is active. This could explain why E. coli expressed protein was inactive. Further 

work to learn more about this apparent processing would be of interest.

PRODH activity within the Aprodh cells was also evaluated. Without tetracycline, 

PRODH activity was detected at a similar level to the activity observed in wild type T. 

brucei (see Chapter 4). The specific activity was maximal using 10 mM proline in the 

assay mixture. It was 0.028 ± 0.004 pmol.min'*.mg protein *. Higher concentrations gave 

lower specific activity presumably due to substrate inhibition. In the presence of 

tetracycline (with 4 days induction), PRODH activity was absent. It can be concluded, 

therefore, that the RNA interference approach successfully knocked down expression of 

PRODH in 7. brucei.

When parasites were grown in complete SDM medium containing both glucose and 

proline, enzyme activity was substantially lower than observed in a medium lacking 

glucose. The specific activity was found to be twdce as high when glucose was absent from 

the medium, reaching a maximum of 0.054 ± 0.004 pmol.min'*.mg protein *. This 

compares with 0.027 ± 0,004 pmol.min *.mg protein * when the medium was complete (see 

chapter 4). The Aprodh parasites were unable to grow in the absence of glucose when 

PRODH was switched off by the addition of tetracycline. This result indicates that PRODH 

is not an essential enzyme for the parasites grown in complete medium. However, it is 

essential in the absence of glucose when proline is the sole energy souce.
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Recently attention has focused on an understanding of metabolism in T. brucei 

PCF. A question as to the principal energy source of procyclics arises. In its natural 

environment, the parasite is reported to encounter high proline concentrations m the gut of 

the tsetse fly (Bursell, 1981; ter Kuile, 1997). However it is not clear that proline is the 

main energy source, Cross et ah (1975) reported that in rich culture medium, glucose is the 

main energy source and proline is used as a second substrate.

In order to analyse the growth of the parasites when PRODH was repressed, which 

should prevent T. brucei PCF from using proline as an energy source, a defined SDM79 

medium without glucose and proline was used and complemented by proline and/or 

glucose at various concentrations. These experiments showed that wdthout PRODH the 

parasites grow well in the presence of glucose but their ability to grow without glucose is 

abolished. PRODH proficient cells could grow using either glucose or proline.

van Weelden et al (2003) showed that T. brucei PCF, grown in complete SDM79 

medium, prefer glucose to proline as a substrate. The rate of degradation of glucose was 

three times higher than the rate of degradation of proline. In spite of a preference for 

glucose, proline could still be the main source of energy in the natural environment, as it is 

present at high concentrations in the tsetse fly and glucose availability may be limited. The 

down-regulation of PRODH reported in Chapter 4 and down-regulation of proline 

transport in the presence of glucose could explain the preference for glucose when present, 

ter Kuile, 1997, has previously reported that glucose metabolism is suppressed when 

proline is abundant.

van Weelden et al (2003) also showed that the complete Krebs cycle is not used by 

7. brucei PCF. Some of the enzymes classically associated with the Krebs cycle are also 

involved in the conversion of proline to succinate. According to this scheme, energy is 

yielded from the Acetate-Succinate CoA transferase. According to recent data by Coustou
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et al (2003), D-glucose and L-threonine are consumed in large quantities in PCF T. brucei 

grown in complete SDM79 medium; L-proline and L-glutamine were moderately 

consumed. The relevance of various amino acids and various metabolic intermediates, e.g. 

succinate, fumarate or pyruvate, that could potentially yield energy according to published 

schemes of metabolism on the growth of 7  brucei PCF was assessed by growing Aprodh 

parasites in a medium without glucose and proline supplemented with individual amino 

acids or metabolites. Of all substrates used, only proline and glucose seem to be able to 

sustain normal growth. None of the other amino acids or metabolites tested were able to be 

used as an energy source for the parasites. It is known than L-threonine could be used in 

lipid and other biosyntheses (Roberts et al, 2003), which might explain why this amino 

acid is consumed in Wge quantities (Cross et al., 1975; Coutou et al., 2003) but apparently 

unable to yield energy.

Thus either glucose or proline is essential for the survival of T. brucei PCF. 

Bochud-Alleman and Schneider (2002) showed that succinyl CoA synthetase, found in the 

mitochondrion, is essential to the parasite. This could relate to the fact that this enzyme is 

crucial to ATP generation in pathways of both glucose and proline metabolism.

Glutamate is one of the degradation products of the proline metabolism pathway. 

The possibility that parasites, unable to use proline, may survive on glutamate was tested. 

Glutamate is not toxic for the cells, but it is unable to rescue the parasites from the loss of 

proline utilisation or the absence of glucose in the medium. A possible explanation for this 

could be due to lack of glutamate uptake by these cells.

In order to check if glutamate uptake occurs across the plasma membrane, uptake 

experiments were carried out using tritiated glutamate. Uptake of glutamate as a function 

of time showed that in both Aprodh lines induced or non-induced by tetracycline, 

glutamate enters the cells. A plateau was reached after 10 min and there was accumulation
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of glutamate inside the cells (6-fold increase of concentration, see Figure 6.11). 

Interestingly in PRODH suppressed cells, Michaelis-Menten type plotting revealed a 

saturable process at low concentration, indicating an apparent Km in the order of 15 pM. 

An explanation for this difference is not immediately obvious. This might suggest that 

expression of siRNAs associated with PRODH could also have down-regulated other 

proteins involved in glutamate metabolism. A BLAST search using the PRODH sequence 

used for the RNAi construct was carried out, however no matches were found in the T. 

brucei database. Glutamate uptake, using relatively low concentrations of glutamate, was 

not robust when compared to uptake of a number of other amino acids. Excess of cold 

glutamate inhibited uptake of radio labelled glutamate at low concentrations (190 nM) 

indicating a transport-mediated process. The inhibition profile suggested this was of high 

affinity (around 1.5 pM). However, using increasing concentrations of labelled glutamate, 

a plateau was not achieved indicating a substantial accumulation of glutamate via non

saturable pathways.

Rohloff et a l, 2003, showed that in T. cruzi there is an efflux of amino acids, 

during hypo-osmotic stress, which seems to occur through a low specificity anion channel. 

This channel allows the passage of several neutral and anionic amino acids including 

glutamate. One hypothesis to explain the observed glutamate uptake would be the presence 

of two or more glutamate uptake routes. One of these may allow the passage of this amino 

acid into the cells with high specificity. A second carrier, e.g. an anion channel as 

described in T. cruzi by Rohloff et a l, could allow passage of glutamate and ions with low 

specificity. This second carrier could then swamp the characteristics of the more specific 

transporter at higher concentration. Ion channel inhibitors such as DIDS (4,4'- 

diisothiocyanotodihydrostilbene-2,2'-disuIfonic acid) at 10 pM, NPPB (5-nitro-2-(3- 

phenylpropylamino)benzoic acid) at 10 pM, furosemide at 1 mM, and glybenclamide at
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0.5 mM were tested, but no difference in the uptake of glutamate could be observed 

(results non shown). This does not prove the lack of such a channel, but these compounds 

did not inhibit uptake and do not support the presence of such a chaimel.

Glutamate appeared to enter cells, via non-saturable routes, at a similar rate on a 

molar basis as proline when used at higher concentrations. However, even at 10 mM 

glutamate was unable to rescue the cells from the loss of proline utilisation, thus another 

explanation for this failure is required. Since glutamate metabolism occurs inside the 

mitochondrion, it is possible that glutamate caimot cross the mitochondrial membrane and 

enter the catabolic pathway leading to energy production. More experiments are needed to 

address this.

The transport of proline was also studied in Aprodh cells in order to see if the loss 

of PRODH influenced the characteristics of proline uptake. Proline uptake was studied as a 

function of time (Figure 6.14). There was accumulation of proline over 30 min for both 

lines. After 30 min, accumulated proline for the non-induced cells was approximately 45 

times higher than the external concentration. The intracellular concentration was also 30 

times higher for the induced cells. L’Hostis et ah, 1993, observed a concentration of 100 

fold after 1 min of transport using 0.1 mM as an external proline concentration. Law and 

Hukkada, 1979, observed an accumulation of 60 fold in L, tropica promastigotes after 10 

min proline uptake at 30 °C. Proline uptake therefore appears to occur against a 

concentration gradient in trypanosomes and leishmania. However, after 30 min, 

intracellular concentrations of radio label diminished substantially for both lines. This was 

probably not due to the metabolism of proline, because proline is thought not to be 

metabolised in the tetracycline induced Aprodh parasites (unless other pathways of 

metabolism not involving PRODH were present).
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The kinetics of the transporter were studied using various concentrations of proline 

and a typical Michaelis-Menten type curve was obtained. Cells expressing PRODH or 

repressed in this enzyme shared the same Km (~ 11 pM) but the Vmax was different. It was 

significantly higher in the non-induced cells, 0.75 ± 0.06 nmol.min"*. 10̂  parasites'* (- Tet) 

versus 0.41 ± 0.0035 nmol.min'*. 10̂  parasites'* (+ Tet). It was not clear if this reduction 

related to the catabolite repression mechanism with regard to PRODH described earlier.

A difference of the volume between the parasites when RNAi was induced or non- 

induced by tetracycline could explain this difference in Vmax. However, the volume of the 

ceils was estimated to be the same, as no difference was noticed when viewed by light 

microscopy.

In summary, experiments reported in this chapter indicate that PCF T. brucei can 

use either glucose or proline as a carbon and energy source. They cannot, however, use 

other amino acids. Moreover it appears that when glucose is abundantly available, the 

parasites diminish their ability to utilise proline. This is apparently achieved by a post- 

translational down-regulation of proline dehydrogenase activity, and also down-regulation 

of proline transporter activity. This is mteresting given that ter Kuile (1997) has previously 

shown that abundant proline (60 mM) stimulates a down-regulation of glucose metabolism. 

Thus proline and glucose usage appears to be mutually regulated in these cells. Expression 

of other genes, e.g. PARP (Roditi et ah, 1998), also appears to be sensitive to glucose 

concentration, although mitochondrial intermediates of metabolism also appear to impinge 

on these events (Vassella et ah, 2003). It will be of great interest to learn more about the 

meclianisms of metabolic regulation of protein expression in these cells.
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Chapter 7 

General Discussion

The overall aim of this study was to investigate proline metabolism and its role in 

the energy metabolism of PCF T. brucei. The project was comprised of two 

complementary approaches: a) cloning and expression of the proline dehydrogenase genes 

of T. brucei and L. major; b) knock down of the gene in T. brucei to determine the 

enzyme’s role in energy metabolism.

Proline utilisation requires two enzymes to convert proline into glutamate, proline 

dehydrogenase (PRODH) and pyrroline-5-carboxyiate dehydrogenase (P5CDH). In the 

first step, the oxidation of proline to pyrroline-5-carboxylate (P5C) is coupled with the 

reduction of a cofactor, flavin adenine dinucleotide (FAD). Two electrons from reduced 

FAD (FADH2) are then transferred to the electron transport chain. In the second step, P5C 

is hydrolysed to give glutamic semialdehyde, which is oxidised to glutamate using the 

cofactor nicotinamide adenine dinucleotide (NAD^ (Becker and Thomas, 2001; Lee Y et 

al., 2003). Proline metabolism thus involves oxidation of proline to glutamate, which is 

frequently fiuther metabolised to CO2 through the Krebs cycle, with protons donated to the 

electron transport chain (Obungu et al, 1999). Recent work has shown that the PCF of T. 

brucei might lack a functional Krebs cycle. Knock down or knock out of succinate 

dehydrogenase, a-ketoglutarate dehydrogenase and aconitase showed that a complete 

Krebs cycle is not essential for tlie parasite (Bochud-Alleman and Schneider, 2002). The 

aconitase knock down had no effect on the growth of cells or energy production (van 

Weelden et al., 2003). ATP production in PCF appears to be possible through various
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pathways, including oxidative phosphorylation, substrate level phosphorylation and 

products of glycosomal metabolism.

During this study it was shown that proline metabolism is essential for the 

production of energy when the parasites were grown without glucose in the medium. The 

parasites were able to grow with only glucose or proline as an energy source in the 

medium, and they were able to switch metabolism of one of these substrates to the other. 

This may mimic what happens in the tsetse fly, where the concentration of glucose is 

variable according to the contents of the blood meal but the proline concentration is 

constant. Proline is metabolised to glutamate which is flirther metabolised to yield ATP, 

possibly through a pathway leading to the reaction catalysed by succinyl CoA synthetase 

(Coustou et aly 2003).

In prokaryotes it is known that the putA gene encodes a single protein, called PutA, 

that contains both PRODH and P5CDH activities (Becker et al, 2001; Parkhill et al, 2001; 

Vinod et al, 2002). Proline utilisation requires another gene, putP, which encodes a proline 

permease permitting proline to enter the cell. These two genes, putA and putP, form an 

operon (Ling et al, 1994). Without proline, PutA acts as a transcriptional repressor, when 

proline is present the protein links to the membrane and is active (Muro-Pastor et al, 

1997).

In eukaryotes, the conversion of proline to glutamate takes place within the 

mitochondria (Small and Jones, 1990; Gogos et al, 1999; Deuschle et a l, 2001). The first 

two steps of proline oxidation are carried out by two different polypeptides, PRODH is 

present in the inner membrane of the rat liver mitochondrion, whereas the next step, 

catalysed by P5CDH may take place within the mitochondrial matrix (Brunner and 

Neupert, 1969; Small and Jones, 1999).
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The L. major and T. brucei PRODHs have homology to other PROHHs. By 

studying multiple alignments of many proline dehydrogenases, well-conserved motifs can 

be shown to be present within all sequences. The best-conserved domains are essential for 

the activity of the enzyme; representing the cofactor (FAD) and the substrate (proline) 

binding sites (Lee Y et a i, 2003). As in all other organisms, the T. brucei and L  major 

PRODH probably use FAD as a cofactor. Although activity of recombinant enzymes was 

not measured, extracts from T. brucei had PRODH activity. Moreover, key residues shown 

to bind FAD in the E. coli enzyme were conserved in the T. brucei enzyme (section 3.2.4). 

The L  major and T. brucei PRODHs were both predicted (using a computer program) to 

possess a mitochondrial signal peptide. The proteins are encoded by nuclear genes and 

synthesized in the cytosol, and then transported from the cytosol to the mitochondrion.

The mitochondrion in eukaryotes is generally believed to have originated from an 

endosymbiotic event (Andersson et al, 2003). Thus it was of interest to study the 

phylogeny of proline dehydrogenase. The aim of this study was to see if this enzyme of 

trypanosomatids has an evolutionary link with the a-proteobacteria, the group of 

organisms from which the protomitochondrion is believed to have emerged (Gray et al, 

2001). The L  major and T. brucei PRODHs appear to be evolutionarily closer to eukaryote 

than to prokaryote enzymes. Moreover, in trypanosomatids, PRODH and P5CDH genes 

are situated in two different locations, thus these two enzymes are present on separated 

polypeptides. Thus supports the idea that T, brucei and L. major PRODH are closer to 

those of other eukaryotes, aU of whom have separate PRODH and P5CDH, while all 

prokaryotes, including a-proteobacteria have fused enzymes. This phylogenetic analysis 

indicates that PRODH belongs to the 40 % of the mitochondrial proteome that was 

appenrently contributed by the proto-eukaryotic member of the endosymbiotic union that 

gave rise to mitochondrion-containing eukaryotes (Kalberg et al, 2000).
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Having cloned genes for T. brucei and L. major PRODH orthologues, several 

experiments were made to overexpress the full trypanosomaatid proteins in a soluble form. 

As described in chapter 5, the pET21a^ vector was used to overexpress these proteins. 

Soluble proteins were never obtained with this system. Two other systems (results not 

shown) were used in attempts to improve expression or solubilisation of these two proteins. 

Tlie first of these was the Gateway system (GibcoBRL), where the gene of interest was 

cloned into an expression vector using phage-X mediated recombination employs a phage 

T7 promoter to produce a recombinant protein containing a histidine tag at the N-terminus. 

The second system used was the Strep-tag (IBA). This system uses a tag at the C-terminus 

and involves the binding of biotm to streptavidin. Neither of these systems yielded an 

increase in the level o f expression or improved the solubility of the protein. Since several 

vectors all failed to yield soluble, functional versions of the full length protein, we decided 

upon another approach, consisting of mutating the gene of interest to try to improve 

solubility. As described in Chapter 3, a putative mitochondrial targeting sequence and a 

putative trans-membrane domain were identified in the trypanosomatid predicted proteins. 

These fragments did not contain conserved motifs believed to be essential for the activity 

of the enzymes, or the motif for the binding of FAD (Lee Y et n/., 2003). It was 

hypothesised that loss of the hydrophobic putative trans-membrane domain would improve 

production of soluble protein, making it easier to study at the biochemical level. The T. 

brucei PRODH was expressed with or without these two segments (i.e. the putative 

mitochondrial targeting sequence and putative trans-membrane domain). The PRODH 

without the trans-membrane domain was found to be soluble in E, coli expressor cell 

lysates. However the increase in solubility was not accompanied by an activity in any of 

the conditions tested (Chapter 5). The reason for this is not clear. The N-tenninal part of 

the protein might, after all, contain residues essential for activity or for the correct folding

199



Chapter 7: general discussion

of the protein. Another possibility relates to the use of the E. coli expression system, which 

is the easiest system with which to obtain recombinant protein. It is possible that 

eukaryotic-specific secondary modification could alter the protein’s activity in 

trypanosomatids in a fashion not possible in E. coli. Other systems such as yeast or insect 

cells for over-expression could be tried in order to increase the chances of obtaining an 

active protein. Western blot analysis of crude lysate from T. brucei (shown in Chapter 4), 

revealed one band of around 60 kDa when the parasites were grown with or without 

glucose. Another blot (shown in Chapter 6) revealed that parasites, not induced by 

tetracycline to induce expression of double-stranded RNA had two bands of around 60 and 

45 kDa. The first band could correspond to the entire protein and the second to a truncated 

protein corresponding to a degradation product or specific cleavage product. It is possible 

that this cleaved protein is essential for the activity of the enzyme and cannot be obtained 

with the E. coli recombinant system.

The T. brucei PRODH expressed in its entirety also failed to show activity after 

resolubilisation from inclusion bodies. It cannot be ruled out that the presence of the hexa- 

his tag at the protein C-terminus could affect activity. For example, if this region of the 

protein was involved in dimer formation this could affect activity. Efforts to express the 

protem without a his-tag or an N-terminal tag would be an interesting topic for further 

study, but such efforts were not made here. Thus efforts to achieve fiinctional expression of 

T. brucei or L. major PRODH failed. However, the fact that the T. brucei gene decribed 

here encodes a bona fide PRODH was demonstrated by knocking down its expression by 

RNA interference. Since no other genes with substantial homology to that reported here 

could be found in the T, brucei genome, it is unlikely that an alternative PRODH gene was 

knocked down by RNAi using the constmcts described in Chapter 6.
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As discussed in Chapter 6, PCF T. brucei were able to grow in a medium 

containing either proline or glucose as an energy source (Evans and Brown, 1972). 

Moreover ter Kuile, 1997, showed that glucose is used preferentially when at high 

concentration and proline preferentially, when this amino acid is at high concentration. 

Some kind of catabolite repression thus may operate in PCF T. brucei. It was therefore of 

interest to investigate whether there is regulation of PRODH activity in response to 

different energy sources and at which level the regulation occurs.

Catabolite repression is a well-known phenomenon in prokaryotes (Bruckner and 

Titgemeyer, 2002) and yeast (Gancedo, 1998). The measurement of PRODH activity in 

crude lysates of T brucei  ̂grown in standaid SDM79 medium, was based on assay used by 

Obungu et al.  ̂ 1999, who studied this activity in T. congolense. PRODH activity could not 

be identified in T. brucei using the same conditions described by Obungu et al, where the 

parasites were resuspended in PBS containing 10 mM proline and 0.1 % Triton X-100. The 

reason for the failure of the detection of PRODH activity was not clear. Therefore, it was 

decided to investigate whether PRODH activity was somehow regulated by growth 

conditions. When grown in complete medium containing glucose and proline, it has 

previously been shown that the parasites preferentially use glucose (Coustou et a l, 2003; 

van Weelden et al, 2003). During my project, it was demonstrated that T. brucei PCF were 

able to grow in a medium lacking glucose but containing proline as the only energy source. 

By testing the activity of the PRODH enzyme in crude lysates of T. brucei grown in these 

two conditions, it was noticed that PRODH activity was around twice as high in cells 

grown in a medium lacking glucose. When parasites were grown in complete SDM79 

medium containing both glucose and proline, the activity of PRODH was around 0.027 

pmoI.min'\mg protein'* and when the medium was lacking of glucose the specific activity 

was reaching a maximum of 0.054 ± 0.004 pmol.min'*.mg protein *. When glucose was
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absent from the medium the level of transcription of PRODH gene was unchanged and no 

change in RNA stability was apparent as judged by Northern blot analysis. While 

transcriptional regulation of genes is unusual in trypanosomes (Vanhamme and Pays, 

1995), post transcriptional control at various levels such as RNA stability (Graham, 1995) 

has been described.

Western blot experiments performed with T. brucei procyclics revealed the 

presence of the protein in parasites grown in the presence or absence of glucose in the 

medium. The presence of glucose in the medium therefore led to decreased ability to use 

proline by the first enzyme of the proline catabolism pathway. The level of expression 

however, was not notably changed by the presence of proline. The mechanism by which 

activity is repressed is therefore yet to be identified. Secondary modifications, protein 

processing, or allosteric regulation are possibilities.

The transport of proline was also studied in hprodh cells in order to see if the loss 

of PRODH influenced the characteristics of pro line uptake. The kinetics of the transporter 

was studied using various concentrations of pro line and a typical Michaeiis-Menten type 

curve was obtained. The transport in cells expressing PRODH or repressed in this enzyme 

shared the same Km for proline (-11  pM) but the Vmax was different. It was significantly 

liigher in the non-induced cells, 0.75 ± 0.06 nmolmiii *.10̂  parasites'* (- Tet) versus 0.41 ± 

0.0035 nmol.mm*.10^ parasites'* (+ Tet). It was not clear if this reduction related to the 

catabolite repression mechanism or another phenomenon occurring at the level of the 

transporter (such as a change of the copy number of the transporter) was involved. An 

earlier study on proline transport also revealed a similar* Km (19 pM) and a Vmax of 1.7 

nmoLmm *.10̂  parasites'* at 27 °C (L’Hostis et ah, 1993). Since a similar difference was 

identified in experiments measuring uptake over 30 s and 3 s, it seems probable that the
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difference is due to changes at the transporter itself rather than at the level of uptake 

(involving transport and metabolism by PRODH).

Evans and Brown, 1972, using Pittman’s medium (Pittam, 1970) showed that 

proline was used preferentially to glucose (although it has been not possible to establish 

concentrations of substrates in this medium), ter Kuile, 1997, showed using chemostat 

studies and different media that a medium containing a high concentration of proline (60 

mM) led to repression of glucose metaboUsm, he also showed that while proline is used 

(when present at 0.5 mM) in medium with glucose at 5 mM, in the same medium with 

glucose at 40 mM, proline use was repressed. The present study showed that PRODH 

activity and proline transporter is higher in cells where glucose is absent, than where 

glucose is present at 10 mM.

This observation is consistent with that of other authors, i.e. proline catabolism is 

repressed as glucose is more abundant. Morover, the data of both Evans and Brown, 1972 

and ter Kuile, 1997 suggest that glucose catabolism is repressed with high proline. The 

precise calibration of the levels of glucose that repress proline metabolism, and vice versa 

is an interesting question and wortly of further study.

In order to improve our understanding of PCF T. brucei energy metabolism in 

general and specifically the roles of prolme dehydrogenase in this process, the technique of 

RNA interference was applied to knock down expression of the enzyme. The name given 

for the parasites derived of RNAi experiments is Aprodh. The Aprodh parasites were 

unable to grow in the absence of glucose when PRODH was switched off by the addition 

of tetracycline. Moreover, the PRODH transcript was shown by Northern blot to be 

selectively knocked down, the protein was absent as judged by Western blotting and 

activity could not be detected in the knock down cells as assessed using the PRODH assay. 

These results indicate that the RNAi construct is efficient at selectively knocking down
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PRODH and that this enzyme is not essential for the parasites grown in complete medium. 

However, it is essential in the absence of glucose when proline is the sole energy source.

To further study the growth behaviour of the parasites when PRODH was 

repressed, a defined SDM79 medium without glucose and prolme was used and 

complemented by proline and/or glucose at various concentrations. These experiments 

showed that without PRODH the parasites grow well in the presence of glucose but their 

ability to grow without glucose is abolished. Cells having PRODH could grow using either 

glucose or proline. Various amino acids and substrates were used to try to complement the 

loss of proline utilisation; only proline and glucose seemed to be able to sustain normal 

growth. None of the other amino acids, or metabolites, tested were able to be used as an 

energy source for the parasites. Pyruvate was tested because it is one of the end products of 

glucose metabolism and it enters the mitochondrion. In many cells types, pyruvate 

dehydrogenase then commits pyruvate to energy production via the Krebs cycle. However, 

the fact that the Kr ebs cycle is apparently not involved in energy production in these cells 

could explain its failiue to restore growth to cells deprived of glucose and proline. 

Glutamate, which is one of the degradation products of the proline catabolism pathway, 

was tested as an amino acid with the potential to complement growth. Glutamate is unable 

to rescue the parasites from the loss of proline utilisation or the absence of glucose in the 

medium. Since one explanation of glutamate’s failure to support growth would be an 

inability to bring this metabolite into the cell, uptake of glutamate as a function of time was 

studied. In both Aprodh lines induced or non-induced by tetracycline, glutamate entered 

the cells. Glutamate transport was not robust, but at 10 mM similar levels of glutamate as 

prolme enter cells (Chapter 6). Glutamate therefore appeared to enter cells at 10 mM, but 

was unable to rescue the cells from the loss of proline utilisation. A simple explanation for 

this failure is not evident. Glutamate metabolism occurs inside the mitochondrion. It is
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possible that glutamate cannot cross the mitochondrial membrane and enter the catabolic 

pathway leading to energy production. However more experiments are needed to address 

this. Other amino acids, particularly threonine have been shown to be taken up in 

substantial quantities by the parasites (Cross et at., 1975; Coustou et al., 2003). In this 

work, threonine was not able to rescue the cells from the loss of proline utilisation in a 

medium without glucose. It is possible that threonine is not an energy substrate but a 

substrate for lipid and for other biosynthesis (Roberts et aL, 2003). PRODH seems to be 

essential to trypanosomes in a medium without glucose. The activity of PRODH and also 

the proline transporter are higher in cells grown where glucose is absent. This observation 

is consistent with that of ter Kuile 1997, who showed proline catabolism to be repressed, as 

glucose is more abundant. In this thesis, I have shown that proline dehydrogenase allows 

the degradation of proline to yield an energy source for PCF trypanosomes. This 

observation is consistent with that of van Weelden et aL, 2003, where NMR analysis 

revealed that the secreted end product of proline is predominantly succinate, and according 

Coustou et aL, 2003, proline is degraded into succinate by the succinylCoA synthetase, 

giving ATP to the cells.

In summary, trypanosomatid PRODH is a typical eukaryotic enzyme active in 

mitochondria. Its activity in trypanosomes appears to be regulated in response to glucose 

levels and those glucose and proline metabolisms are mutually regulated for energy 

production. In a medium without glucose, only proline, and not other amino acids, allowed 

growth of the parasites. Proline is metabolised to glutamate, which can be further 

metabolised to succinate via a-ketoglutarate and succinyl co-enzyme with ATP 

production, via succinyl coA synthetase. It would seem that this pathway is essential to 

ATP production in absence of glucose.
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Appendix 1 

Composition of media and solutions

Defined Medium

SDM 79 without glucose and proline taccording to Dr F. Bringaud. University Bordeaux. 
France, personal communication)

NaH2P04 157 mg
NaCl 6.8 g
MgS04 100 mg
KCl 400 mg
CaCh 200 mg
L-Arginine 100 mg
L-Methionine 70 mg
L-Phenylalanine 80 mg
L-Tlireonine 350 mg
L-Tyrosine 100 mg
Taurine 160 mg
L-Alanine 200 mg
L-Asparagine 13.2 mg
L“Aspartate 13.3 mg
L-Glutamate 14.7 mg
L-Glutamine 200 mg
Glycine 7.5 mg
L-Serine 60 mg
HEPES 8 g
MOPS 5 g
NaHCOs 2.2 g
Pyruvate 220 mg
Mercaptoethanol 0.1 M 2 ml
Hypoxanthine 14 mg
Thymidine 4 mg
Vitamins 100 X 10 ml
(Sigma, M6895)
Essential amino acids 50 X 20 ml
(Gibco BRL, 1130-036)
Phenol Red 4 ml
Hemin (2.5 mg/ml) 2 ml

Make up to 1 L. Filter sterilise. Store at 4 °C
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Solutions for molecular biology

TELT buffer

Tris-HClpH8 50 mM
EDTApH9 62.5 mM
LiCl 2.5 M
Triton X-100 4% v/v

TE buffer

Tris-HClpH8 10 mM
EDTApHS 1 mM

Tris/sucrose buffer

Tri-HCl pH 8 50 mM
Sucrose 0.7 M

IX TAB buffer

Tris acetate pH 8.5 0.04 M
EDTA 0.001 M

LB medium tLuria Bertani medium)

Bacto-tryptone 10 g
Bacto yeast extract 5 g
NaCl 10 g
Make up to 1 L. Sterilise by autoclaving.

Tris-Sucrose buffer

Tris-HClpH8 25 mM
EDTA 1 mM
Sucrose 0.25 M

20 X SSC

Tri-sodium citrate 88.23 g
NaCl 175.32 g
Make up to 1 L. Check that the pH is 7-8, and store at room temperature.
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20 X Northern Gel Buffer

Na2HP04 0.36 M
NaH2P04 0.04 M

100 X Denhardt’s solution

Bovine sérum albumin 2 g
FicoU 400.2 g
Polyvinylpyrolidone 2 g
Make up to a final volume of 100 ml and store at -20 °C

PBS

Sodium phosphate 20 mM
NaCl 150 mM

Solutions for biochemical studies

Resolving buffer

Tris HCl pH 8.8 1.5 M

Stacking buffer

Tris HCl pH 6.8 0.5 M

1 X loading buffer

Tris HCl pH 6.8 50 mM
SDS 2 % (v/v)
Glycerol 10 % (v/v)
(3-mercaptoethanol 1 % (v/v)
bromophenol blue 0.1%
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Electrophoresis buffer

Tris 25 mM
Glycine 250 mM
SDS 0.1 %

10 X TBS

Tris-HCl 0.2 M
NaCl 137 mM

TSE buffer

Sucrose 250 mM,
Tris HCl pH 7.7 25 mM
EDTA 1 mM

Solutions for RNA interference studies

ZPFM Media

NaCl 132 mM
KCl 8mM
NazHzPOs^  ̂ 8 mM
KH2PO3 1.5 mM
MgCCzHsOz) 1.5 mM
C4H6Ca04 90 pM
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CBSS Buffer

Hepes 25 mM
NaCl 120 mM
CaClz 0.55 mM
MgS04 0.4 mM
NazHP04 5.6 mM
D-glucose 11.1 mM

Adjust to pH 7.4 and store at -20 ‘̂ C.
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Appendix 2

Multiple amino acid sequence alignment of various proline 
dehydrogenase

A .t u m e f a c i e n s  (1
E . c o l i  (1

L .m a jo r  (1
M .m u scu lu s (1

P .p u t I d a  (1
S . c e r e v i s i a e  (1

S . ty p h im u riu m  (1
T .b r u c e i  (1
Y . p e s t i s  (1

H .s a p ie n s 2  (1
C o n se n su s  (1

A .t u m e f a c i e n s  (1
E . c o l i  (29

L .m a jo r  (30
M .m u scu lu s (1

P .p u t I d a  (29
S . c e r e v i s i a e  (1

S . ty p h im u riu m  (29
T .b r u c e i  (28
Y . p e s t i s  (29

H .s a p ie n s 2  (51
C o n se n su s  (51

A .t u m e f a c ie n s  (20
E . c o l i  (78

L .m a jo r  (80
M .m u scu lu s  (1

P .p u t I d a  (76
S . c e r e v i s i a e  (2

S . ty p h im u r iu m  (78
T .b r u c e i  (73
Y . p e s t i s  (79

H .s a p ie n s 2  (101
C o n se n su s  (101

A .t u m e f a c ie n s  (70
E . c o l i  (128

L .m a jo r  (130
M .m u scu lu s (47

P .p u t I d a  (126
S . c e r e v i s i a e  (52

S . ty p h im u riu m  (128
T .b r u c e i  (123
Y . p e s t i s  (129

H .s a p ie n s 2  (150
C o n se n su s  (151

50

----------------------------------------------- m g t t t m g v k l d d a t r b r ik s a a t r I d rt
---------------------------------------------MRRLLPLR PAAVAFAGSARHSSLTMQ DKQ

--------------------------------------------MATÏTÏiGVKLDDPTRERLKAAAQSIE«T

----------------------------------------------- MGTÎTlèGVKLDDATRBRIKMAASRÏDRT
---------------------------------------------MFRLLCRRSAANVKMQDASLRTMTKVD—
----------------------------------------------- MASTTMGVKLDEATRDRIKi&AAQRiE«T
MALRRALPALRPCIPRFVQLSTAPASREQPAAGPAAVPGGGijATAVRPPV

T M E SA I DR

51 100
------------------------------------------------------------------ MADGASNRGVTIQQVGNSI
PHWLIKQAlFSYLEÿLENSDTLPELPALLSGAANE-SDEAPTPAEEPHQP
p k l p n f n d d t t y r q r s a w y l ik a l w l r l c s v n y l a m n s v p l m k r v e k il  

PHWLIKQAi f n YLEICLEGGATLTELNGHASNPADD— Rg e v q a d h sh q c
------------------------------------------------------------------------------ M
PHWLIKQAIFSYl DKLENSDTLPELp a LFVGAANE-SEEp v APQDEPHQP
 FSDPSIFRQKSLWWLLRAL FVLRICKFE F I SNNSVAIÜKRAEAIF
PHWLIKQAlFNYLEKLESNSELPELATTSSLSLQDTEDAlPQtTENTHQP 
PAVDFGSAQEAYRSRRTWELARSLLvLRLCAWPALIARHEQLIiYVSRKLL 
P QA Y K L A L

101 150
FQNFApp|TREQSLLRKAyTAAS:RRAEEECMAPL|EAATVTADQAKAiRDT 
FL DFAEQILPQS VS Hi^TAAj|RRpET8A»SMLLEeARI,PQPijtAEQAHKL 
GSKLTYSÏLvKKSFYNYFcA|(|ENDQEjgRDTVRKLSRNN|GA|^LDYAAEAD
 MFERLMKMTFYGHFVAj%EDQES#RpLlRHNKAFGVGFlLDY#VEED
FLEFAESILPQSVLRSAj'TAAj^RRpEQBvVPMLLEgARlisApLADATNKL 
lASKSSLÏéVTKSRIpSLCFPLIÉRSY^ÿSKTPTHSNTAANLMVETpAANAN 
FLEFAEO|LpQSVSR|^TAA*RRpETnAVSMLJiEQARl,SPPVAEQAHKL 
GPFLTYNTLvKGTVY9HFcAGESDRE^KMTVKSLEHLGIGâ9LDYAAEAE 
FLDFAEH|(LpQSVTRJ|A3tTAA||RRpETBAlPMLLE(aARl,pADLAQATHKL 
G-QRLFNKLMKMTFYGHFVA(gEDQES|Qp£LRHYRAFGVSAÏLDYi3VEED 
F FA IL  QSV RAAITAAYRR EIE V LLEQA L AVLA AA

151 200
ARKtlEALR--------AKTKGTGVe GLVQE^SLSSHEGVA^CLAEALLRIPD
AYQItAOKLRNQKNASGRAGMVQGLLQEgSLSSQEGlitAgfclCLAEALLRIPD
TEGFAPEPG VA@GpDISMSSLVMKpN%QYPMDEGFFNEN----------------
LSPEEAERKEMESCfSEAERDGSGT^KREKQYQVHPAFGDRRÉHSVISART
AASlAgKLRNOKSVGG$^lVQGLLQE#SLSSQE-RRG#CLAEALLRIPD
GNSVMAPPN-----------------SINFLQTLPKKELFQLGF30ÈÊ6ATLN-----------------
AYQtAEKLRNQKSASGRAGMVQGLLQEtS LS SQEG»A5i|CLAEALLR IPD
Ae GFAPSPG lAERPNLSMASLVMNTSVtYLPHKQAFDEN----------------
AYSÏAiSKLRNQKSAHGRAGMVQGLLQEf S LS SQEGVAUMCLAEALLR IPD
lspe e a e h k e m e sc îsa a e r d g sg t iik r d k q yQ7\h rafgdrrN6WÈsa r t
A LAE LR SASGRA V GLLQEFSLSSQE VALMCLAEALLRIPD
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A .t u m e f a c ie n s  (116  
E . c o l i  (178  

L .m a jo r  (169  
M .m u scu lu s  (97

P .p u t I d a  (175
S . c e r e v i s i a e  (86

S . ty p h im u riu m  (178  
T .b r u c e i  (162  
Y . p e s t i s  (179  

H .s a p ie n s 2  (200  
C o n se n su s  (201

A .t u m e f a c i e n s  (166  
E . c o l i  (228  

L .m a jo r  (210
M .m u scu lu s (147  

P .p u t id a  (225  
S . c e r e v i s i a e  (121  

S . ty p h im u r iu m  (228  
T .b r u c e i  (203  
Y . p e s t i s  (229  

H .s a p ie n s 2  (250  
C o n se n su s  (251

A .t u m e f a c ie n s  (216  
E . c o l i  (278  

L .m a jo r  (260  
M .m u scu lu s (192  

P .p u t id a  (275  
S . c e r e v i s i a e  (165  

S . ty p h im u riu m  (278  
T .b r u c e i  (253  
Y . p e s t i s  (279  

H .s a p ie n s 2  (295  
C o n se n su s  (301

A. t u m e f a c ie n s  (266  
E . c o l i  (328  

L .m a jo r  (307  
M .m u scu lu s (235  

P .p u t id a  (325  
S . c e r e v i s i a e  (215  

S . ty p h im u riu m  (328  
T .b r u c e i  (300  
Y . p e s t i s  (329  

H ,s a p ie n s 2  (338  
C o n se n su s  (351

A .t u m e f a c ie n s  (316  
E . c o l i  (378  

L .m a jo r  (357  
M .m u scu lu s (285  

P .p u t id a  (375  
S . c e r e v i s i a e  (265  

S . ty p h im u riu m  (378  
T .b r u c e i  (350  
Y . p e s t i s  (379  

H .s a p ie n s 2  (388  
C o n se n su s  (4 01

201  250
TATRDALIRDKIARGDWKSHXGGGRS^FVNAATWGLyiTGKLTSTvNfiSG 
KATRDALI RDKI SNGnWQSHXGRS PSjÈFVNAATWGLIiFTG|£LvSTHNËîAS
--------------- MKLYMMSJMHASÊYS-PRNVAGVTAVKVTGMCDPQLLARVSa
YFYANEAKCDNYMENl LQCIKASGGRS DGGf SAIKLTa LC^PQFLLQFS d 
KGTRDALIRDKIgTGNWQPHI&GNSPS&FVNAATWGL&LTGKLvSTHNETG
------------------- SFFLNTIlKLFPYlPlPVtKFFVSSLYCGGE----------Nf KE
KATRDALI RDKI SNGnWqSHÎGRSPSRFVNAATWGLÈFTGRLv SThNEB̂ N
--------------- MKLYVMCVLHAAIiHK-PEGGVGl AAVKVTGMCDPQLLARVSa
KPTRDALIRDKI8NGNWHÊH&GRS P SgFVNAATWGL&FTGRLvSTHNgRK 
YFYANEAKCDSHMETFLRCi e RSGRVSDDGFIAIKLTALGRPQFLLQFSe 

TRDALIRDKIS G W SHLG PSLFVNAATWGLL TGRL ST NES

251  300
LSAALTKft I ARAGE PV I RRGVDMAMRgMGEQFVTGET I GEAXKRSKPLEe 
LSRS LNRt I GKS GE Pt; I Rj&GVDMAMR&MGEQFVTGET IREAgiANARgLEE 
LLMSVHQSWCKHFTNEESLKIJEECRVVMGVRRKHQLFITYDQLRAGFEKY
VLTRWRRFFH04AAEQG QAg RAAVDTKIiEVAVLQD^AKMGIASr
LJSS LT R ÎIGKS GE PM I RjgGVDMAMR^GEQ FVTGET IREA|ANASRFEa
VIECGKRJèQKBGISnWDMLS LT|ENS-EGTKSLS8TPÿDQlV|ÇETI
LSRS LN R | IGKS GE I RRGVDMAMRj^GEQ FVTGETI AQAtANARfîLEE
I l h sv h r d w ie y ft e e q pppv b e c n v^ g tktehkRy it r d q v r k g lt k l  
LglGS LNRjf IQKGGE Pi, I RIEGVDMAMRSMGEQFVTGET ISEAîiANARitLE D
VLAKwRCFFhCMAVEQG QAGLAAMDTKLEVAV1ÈQESVAKLGIASR
LS SL RIIGK GEPLIRKGVDMAMRLMGEQFVTGETIAEALARA K E

301 350
QGFQYSYDMLGEAAt TAkDAErYykDYeMAI HRIGKASAGRGIYgGPGIS 
KGFr YSYDMLGEAALTAADAQAYMVSYQÛAIHRIGKASNGRGIYe GPGIs
NPSNKLSDAQFKEITEALDpRKTGKVNYFEYKEhLTNA LIAVEPTPV
AEIEGWFTPETLGVSGTVDl LDSN SLlDgRTRLS RHLWPNffQ
KGFRYS YDMLGEAALT EHDAQKYLASYEQAIIGKASr GRGIYEGPGIS 
SSVHNILLPNIlOQLESKPlNDIAPGYlALKPSALVDNPHEVfiYNFSNPA 
kgFRYS YDMLGEAALTAADAQAYMv SYQQAIHRIGKASNGRGIYe GPGIS
ASSQKYTiBDElNAVLQVLDpNNEGKTNYYKFKTItvSEA V&ALDPTPV
KGFr YSYDMLGEAALTEa DAQa YLl SYQÔAI HRIGKASn GRGIYe GPGIS
AEIEDWFTAETLGVSGTmDl LDSS Sl IDSRTKLS KHLVVPNa Q

GF YSYDMLGEAALTA DAQ Y SY QAIHAIGKAS GRGIY GPGIS

351 400
IKLSALHRRYRRAQa ERVMa ELl PRVKSLmLWKt YDIGLNIURREADRl 
IKLSALH#RYSRAQYDRVMEEL3^PRLKSLTLRARQYDIG^NIB#E8DRL 
QQALIEGL PQMSAKEKVtiWKN^NN RLLLÏASÏIAKEl NVRHL^I^QT FYQ 
TGQLEPLLSRFTEEe EQQMkPHLQRMDVLAKKAKEAGVRLmI)EJ^<;^YFQ 
IKLSALH#RYSRAOYERVMEELyPRLLSLTL6AKQYDIGLNlj0#ERDRL 
YKAQRDQLIENc SIKi t KEIf ELNQs Ll KKYPERKAPFMVSTIÏ^KYDl Q 
IKLS ALHRR YSRAQ YiSRVME ELJf PRLkSLt LLARq  YD IGLNI IplERDRL  
QKÏIlDKLPKLTTEEREgWRHLgWRLSVtVRTAKDLRVR%LF(^OTFYO 
IKLS ALH|PR YSRAQ yE RVMdEL» P RLl SLt LqARQ YD I GfN I CË^ERDRL 
TGQLEPLLSRFTEEe ElQMt P«LQRMDVLaKKATEMGŸRLmVÎ3REQTyFQ 
IKLSALHPRYSRAQ ERVM ELYPRL SL LLAK YDIGLNIDAEEADRQ

401 450
E&SLDLLEELALDKDLAG----- WNG$GFV%QA%GRRCPFVtDYlXDLA&Rg
EISLDLLERLc FBp ELAG------WNGIGFyiÔAjfQKRCPLVlDYLÏDLATRS
LAIDAIVATLQKTYNTE------- LPVVYNT|fgCÏLTYAEDRlDNiÔiVRli(|HM
PAISRLTLEMQRRFSVD------- KPFlFNTF@C$LKDAYDNVTL##BW#RE
ERSLDLLERLc FEPSLAG----- WNGIGF#I@A$QKRCPYLINYFFDL%RT
ENGVYELQ|^LFQKFNPTSSKLlSCVGT#^%LRDSGDHlL@gtKLAOEN
E|SLDLLEKLC FgPELAG----- WNGI GF^I RAJfQKRCPLV I D^L^DLAS Rg
LAIDNrKLOFQROFMKK------- EAIVYNTiS@gCÿLTYTEDRVFNEÈtTRAELE
EÏSLDLLERLCFEPQLAG----- WNGIGFVl@A3fQKRCPSTlDAV$D0RQRg
PAIS RLtLEMQRKfUVE------- KPLI FNT#@C$LKDAYDNVTLD9EEABRF
EISLDLLERL FE NLAG WNGIGFVYQAYLKRCPD IDYDIDLARRS
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E . c o l i  (425  

L .m a jo r  (403  
M .m u scu lu s (331  

P .p u t id a  (422  
S . c e r e v i s i a e  (315  

S . ty p h im u riu m  (425  
T .b r u c e i  (396  
Y . p e s t i s  (426  

H .s a p ie n s 2  (434  
C o n se n su s  (4 51

A .t u m e f a c ie n s  (413  
E . c o l i  (475  

L .m a jo r  (452
M .m u scu lu s (380  

P .p u t id a  (472  
S . c e r e v i s i a e  (363  

S . ty p h im u riu m  (475  
T .b r u c e i  (4 45 
Y . p e s t i s  (476  

H .s a p ie n s 2  (4 83 
C o n se n su s  (501

A .t u m e f a c ie n s  (4 63 
E . c o l i  (525  

L .m a jo r  (502
M .m u scu lu s (4 30  

P .p u t id a  (522  
S . c e r e v i s i a e  (413  

S . ty p h im u riu m  (525  
T .b r u c e i  (4 95 
Y . p e s t i s  (526  

H .s a p ie n s 2  (533  
C o n se n su s  (551

A .t u m e f a c ie n s  (508  
E . c o l i  (573  

L .m a jo r  (549
M .m u scu lu s (477  

P .p u t id a  (570  
S . c e r e v i s i a e  (4 63 

S . ty p h im u r iu m  (573  
T .b r u c e i  (543  
Y . p e s t i s  (574  

H .s a p ie n s 2  (580  
C o n se n su s  (601

A .t u m e f a c i e n s  (554
E . c o l i  (623  

L .m a jo r  (562
M .m u scu lu s (4 98 

P .p u t id a  (620  
S . c e r e v i s i a e  (477  

S . ty p h im u riu m  (623
T .b r u c e i  (557  
Y . p e s t i s  (624  

H .s a p ie n s 2  (601  
C o n se n su s  (651

451 500
GRRlM^mLVKGASWDRglKRAQ^GLEDfPVFTRKVBTDVSYtACARKLL 
RRRLMïRLVgGRtWDSS I KPAQ#GLEG»PV^TRKVYTDVS YtACAgKLL 
NgHW GGK$VRG*XI VQBRAT AAQYGYT-S PÎBST YEE TNrC YN AAaS H  F 
GgCS GARLVRRitjEMAQiRVRAAEI GYE-D PÎN PT YEATNAM YhrCl NyIVL 
pHRLiBRLBBG#WDSËIKRAQ#GLEG$PYgTRKVYTDVSYVACA#KLL 
GYKLGLRLVRGliSriHSlKNRNQ^IFGD— KTGTDEnYdRÏITQVVNDLÎ^I 
RRRLMjtLVKGRgrWDSg I KRAQ*GLEGgPVgT RKVYTDVS 'YRACAgKLL 
GWVWGGKtVRGRSfMRQSRETAEKYHYK-S PÏRPTYEETNAC Yr AvAERÏ L 
RRRLMIRLVRgISXWDSII KRAQlQGLEGfPV^RKVYTDVS YÎjACAftKLL 
GffCFGAÉLVRGlfâfLAQBRARAAEI GYE-DPtN PTYEATNAM YHRCl DyVL 
GWRLGIKLVKGAYWDSEIKRAQIEGLE YPVYTRKVYTDVSYLACAKKLL

501 550
DARDLVÎ’PQFATHNAQaWRTlYHl^GPDFKI.GDYEFQCLHGMGEBLBSEV 
AVPNLiyPQFATHNAHTIAAlYQÎiAGQN^YPGQYEFQCLHGMGEfLîfEQV 
DTFEAQPAKKHEVFFGTHNKKSLEIITASVtERpSIQSr v S FGQl FgMrd
eelkhstkaevm vaBhnedtvhftlcrm keJ glhpadgqvcfg^ llgmcd 
AVPEA^PQFATHNAHTDSAlYHitAGQN f̂YPGQYEFQCLHGMGEiifLSfEQV 
NGEDSYtGH LWa ShNYQSQHLVTNLLKSTQDIISYAKSn I VLGQl LgMAD 
AVPNLÏtPQFATHNAHTl3lAlYHRAGQNlifYPGÛYEFQCLHGMGEÏ*I4rEQV 
REIARÏiPETRFEALFGTHNQKSLEEITEAVtQLPPVKGYVRFftQLYGMSD 
AVPNLÎy PQFATHNAHTtSAl YhÎAGQNŸYPGQ YE FQCLHGMGE|L3fEQV 
EELKHNAKAKVMVASHNE DTVRFALRRMEEIiGLHPADHRVY FGQLLGMCD 

lYPQFATHNAHTLA lY  LAG Y LGQYEFQCLHGMGQPLYM V

551 600
VGKK----------KLDRPCRFYAfVi%HETLLAy&V#LLBBGANSSFVNRIAD
TGKÿADG—  KLNRPCRlYA#V#HETLLA#V#LLj#GANTS FVNRI AD 
NLTVpLA--RAGF0VYKy#Y%PVKETlH$KG#A#B#S8iLlTG-DNET  
QlSFpLG— üAGFPVYKŸ3KYiBPVMEVLP#S#Al#|-8S IMKGAQRER 
VGKXlADG— KLNRPCRvYA$V#HETLLA#Vg#LLi^GANTS FVNR I AD 
l!r/TYDLlTN!iGAKNIlK$#W@PPLETKDWW#LO#GDAVRSDNGWPL 
TGKVadG—KLNRPCRiyA#V#HETLLA#̂ y#LL|#GANTSFVNRIAD 
NLTIPLK— RA6FPVFKy#YePVK ET*H% G #W #W lDSNG GSREV  
VGKVAEG— KLNRPCRiyAjN#HE$LLA#V#LI^GANT5FVNRIAD  
QlSFpLG— 0A6YPVYKy^YGPVMEVLp^S%RAL#-8SLMKGTHRER 
NGKV LG KLGRPCRKYVPVGTHETLLAYLVRRLLENGANTSFVNRIAD

601 650
PAVPVCSLtEDpVAVVKAYAVP------- GaqHdRIAAPAOEFGp e RKNSRGV
TSLPÜDELVADpVTAVEKLAQQEGQTGLPHpKIPLPRlJLyGHGRDNSRGl
VMMIKBLKRRCGF-------------------------------------------------------------------------------
QLLWQELRRRLRTGæDiFHHPA--------------------------------------------------------------
HSÏSapQEL^tADRWPAS lAWVPRKGSlGLPHpRl PL PRDL %GTE RAKLAGI
i k a i a k s I pRrvgl-----------------------------------------------------------------------
ATLp l DELVADpVEAVEKLAQQEGQAGi  PHPKI PLPROLîfGEGRlNSAGL 
RLMRKELRRRVFWM-----------------------------------------------------------------------
a t l p Q se lv a d pv sRv e a m a a a e g q l g l ph pr ip l pr b l f g k dRa n s Sgv
QLLWXJSLLRRLRTGNEFHRPA--------------------------------------------------------------

L LD LVRD AV g h r i  p  DLYG R AGL

651 700
K iSNETTLSALdKTLKAGAATEWkAA— AP— QAGGQTRPV1,NPÏ^HSDI 
DXANEhrLASLSSAXiLNSALQKWQAl PMLEQPVAAGEMSPVXNPAEPKDI

burn  EHRLGLLS CAMVAT AHKQVJE AAPLLACAARE SAAA p VLN PRDHRN V 

làAN Eh rLa S LS SALLSNAmqkWqAKPVLEQ PVADGEMT PV^N PftEPKDl 

DLRNEhrLAS LS SAIjLASASQVWRAe PVI DAEQDNGDAL PV%N PREPADV 

DLANE L L L A W A PVINPAE I
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A .t u m e f a c ie n s  (600  
E . c o l i  (673  

L .m a jo r  (562
M .m u scu lu s (4 98 

P .p u t id a  (670  
S . c e r e v i s i a e  (477  

S . ty p h im u riu m  (673  
T .b r u c e i  (557  
Y . p e s t i s  (674  

H .s a p ie n s 2  (601  
C o n se n su s  (701

A .t u m e f a c ie n s  (648  
E . c o l i  (723  
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H .s a p ie n s 2  (601  
C o n se n su s  (751

A .t u m e f a c ie n s  (697  
E . c o l i  (773  

L .m a jo r  (562
M .m u scu lu s  (4 98 

P .p u t id a  (770  
S . c e r e v i s i a e  (477  

S . ty p h im u riu m  (773  
T .b r u c e i  (557  
Y . p e s t i s  (774  

H .s a p ie n s 2  (601  
C o n se n su s  (801

A .t u m e f a c ie n s  (747  
E . c o l i  (823  

L .m a jo r  (562
M .m u scu lu s  (4 98 

P .p u t id a  (820  
S . c e r e v i s i a e  (477  

S . ty p h im u riu m  (823  
T .b r u c e i  (557  
Y . p e s t i s  (824  

H .s a p ie n s 2  (601  
C o n se n su s  (851

A .t u m e f a c i e n s  (7 9 6  
E . c o l i  (873  

L .m a jo r  (562  
M .m u scu lu s (498  

P .p u t id a  (870  
S . c e r e v i s i a e  (477  

S . ty p h im u riu m  (873  
T .b r u c e i  (557  
Y . p e s t i s  (874  

H .s a p ie n s 2  (601  
C o n se n su s  (901

701  750
VGHVTEp TeADVEAAMQRAAASS— Wpa^PVEDRAAcLERAADAMQAEÜP 
VGYVREATpREVEQAtESAVNNAPlWFRTPPAgRAAlLHRAAVLMESt^Q

v g h v q ea t v a k fd n a îh c a ln pa piw q a t ppaÊp a a i l e Rt a dlm eaeïh

VGWGREATESEVEQAliQNAVNQAPVWFATPPQËRAAlLQRAAVLMEDQgQ

VGYVREa TEGEVSRA£DAAARAGAI WfAT PPAÉRAAI L l RAAELMENQUQ

VG E T  A L A  W A P  ERAA L R A M M

751  800
TLLGiaaiREAGKSMPNAI AE' f̂REAIiDFLR YYAAEARRN FKSÔEKS-LGPV 
QLX&iâ^REAGKÏFSNAIAEtiREAiDFLHYYAGQVRDDFANBTHRPLGPV

PLMGIMPEAGKfFPNAIAEjbREAgDFLRYYAVQALNDFSNDAHRPLGPV

QLÎGÎjBSRFAGKÏFSNAIAEïfREAVDFLHYYAGQVRDDFDNBTHRPLGPV

TLMGXBVREAGKTFSNAIAEVREAgDFLHYYAGIVRDNFANDSHRPLGPV

LIGLLVREAGKT NAIAEVREAVDFL YYA F D LGPV

801 850
VC IS  PWNF PLAI FI GQ|tAAALvAGNpVLAKPAEe T pL I AAO#RRLHBAG 
VC IS  PWNF PLAI FT GQIAAALAAGNs VLAKP AEQT pL I AAQifttAfLLBAG

VC IS  PWNFPLAI FTGQgAAALAAGNpVLAKPAEQT pL I AAQASfRRLLBAG

VCIS PWNFPLAI FTGOgAAALAAGNsVLAKPAEQTsLIAAOQgAiLLBAG

VC IS  PWNFPLAI Ft GQVAAALAAGNs VLAKPAEqT pL IAAQB#R%LLBAG

VCISPWNFPLAIF GQVAAAL AGN VLAKPAE T LIAAQGV IL  EAG

851 900
VPQDAVQLLPGDG-KTGAALVGSPLTAj^FTGSTEVAR^QGQ&AGRVL 
VPPGWQLLPGRGETVGAQLTGDDRVRÔVMFTGSTEVATiaïQRNlASRÊD

IPEGVtQLLPGRGETVGAGLVGDERVK@VMFTGSTEVAR&&ORN#AGRI,D

VPPGWQLLPGRGETVGAQLTADARVRgVMFTGSTEVATïâiQRNÎtATRiD

ÏPQGVÎiQLLPGRGDSVGALLVNDARVRAVMFTGSTEVATBiQRSÏAGRiD

VP VQLLPG G GA L GVMFTGSTEVA LLQ lA  RL

901 950
AMGQ Pv PL I AETGGqNAMIVDS SALAEQWADVgRSAFDSAGQRCSALRg 
AQGRPlPLIAETGQ4NAMIVDSSALTEQVWDV:Ê|SAFDSAGQRCSALRt

NQGRPlPLI7VETGGQNAMIVDSSALTEQWlDVf(|SAFDSAGQRCSALRg 

AQGRPlPLIAETGGMNAMIVDSSALTEOWvDVgRSAFDSAGQRCSALR# 

PQGr PT PL I AETGGl NAMI VDS SALTEQWt DVVRSAFDSAGQRCSALRI 

QG P PLIAETGG NAMIVDSSAL EQW DVLASAFDSAGQRCSALRV
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A .t u m e f a c i e n s  (941  
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L .m a jo r  (562
M .m u scu lu s  (4 98 

P .p u t id a  (1 017  
S . c e r e v i s i a e  (477  

S . ty p h im u riu m  (1 0 2 3  
T .b r u c e i  (557  
Y . p e s t i s  (1024  

H .s a p ie n s 2  (601  
C o n se n su s  (1051

A .t u m e f a c ie n s  (991  
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L .m a jo r  (562  
M .m u scu lu s (4 98 

P .p u t id a  (1 0 6 6  
S . c e r e v i s i a e  (477  

S . ty p h im u riu m  (1 048  
T .b r u c e i  (557  
Y . p e s t i s  (1074  

H .s a p ie n s 2  (601  
C o n se n su s  (1101

A .t u m e f a c i e n s  (1 0 3 3  
E . c o l i  (1 1 2 3  

L .m a jo r  (562  
M .m u scu lu s (4 98 

P .p u t id a  (1 1 1 6  
S . c e r e v i s i a e  (4 77 

S . ty p h im u riu m  (1 048  
T .b r u c e i  (557  
Y . p e s t i s  (1124  

H .s a p ie n s 2  (601  
C o n se n su s  (1 151

951 1000
LCLQEOvA©RTtTML|{GAtHELR*GRT DQLS VDÿGPV I TREAKG 11 ERH I 
LCÜQDÊI AÛHTtKMLRGAliAECRlIGNPGRLTTDÏGPVI dSEAKAN I EfcHI

LCLQBBSAORVÎEMLKGAIIAES RgGCPDRLAVDgGPVI DREAKAGIERHI

LCLQDiPI AgHTLKMLRGAMAECRMGNPGRLTTDgGPVI DBEAKAN I ERHI

LCIQDDVARHTgQMLRGAMAEC RMGNPER LSTDÏÊGPVI DÜE AKTGIERHI

LCLQDD AD L MLRGAM E RMG L DIGPVI AEAK lERHI

1001  1050
DGMRSLGHRIEOIA LAGETGKGTFVPPTIIEMKSLADLKREVEGP
QTMRSKGRPVFQAVRENSEDAREWQSGTFRAPTtIELDDFAEL(^EVFGP

QGMREKGRPVYQVA 1ADAAEIKRGTFVMPTtIERDS FDRLkREIFGP

QTMRAKGRPVFOAARENSDDAQEWOTGTFVMPT&IELENFABLEKERFGP

qamrakgrkvyq/\a r t n sl d e k e w q r g t f ik p t l ie i;d sfd b l q r e v fg p

MR G V Q E GTFV PTLIEL EL KEVFGP

1051 1100
VLHVgRjpKRDHLDRLIDElNA$GYGLTFGLHTRLDDTIQHVLSRVAAGNL 
VLHVljIfRilNRNQLpELIEQ I NaBGYGl t LGVHTRI DET lAQVTGSAHVGNL

VLHVVRÏNRRNLdQLIEQ INN8GYGLTLGVHTRIDETIAKWETATP-AT

vlhvVrBn rnqlae LIEQ I Na RG YG-------------------------------------------------

VLHVVRIiqRQHLn e LVDQINaSGYGLTLGIHTRIDETIARVTEKAKVGNL 

VLHWRY R L LIE IN SGYG

1101 1150
YVNRNIIGAWGVQPFGGRGLSGTGPKAGGPLYLGRMTEKAP---------------
YVNRNMVGAWGVQPFGGEGLSGTGPKAGGPLYLYRLLANRPESALAVTL

CRHRNIVGAWGVQPFGGEGLSGTGPKAGGPLYLYRLLSTRPADAIGRHF

YVNRNMVGAVVGVQPFGGEGLSGTGPKAGGPLYLYRLLSSRPDDALANTL

1151 1200
--------------- KIDRIASQQDQAAVDLARWLDENGQTVAAEAARQAAALSGLG
ARQDAKYPVDAQLKAALTQPLNALREWAANRPE— LQALCTQYGELAQAG

QQQDGEGTPDRTLHEQLVKPLHGLKAWAENNQLADLAALCSQFASQSQSG

AHQDGEQQQNVAGREALLTAHRAFTQWATEQQHDSLATLCQRYASLAQGG
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A .t u m e f a c ie n s  
E . c o l i  

L .m a jo r  
M .m u scu lu s  

P .p u t id a  
S . c e r e v i s i a e  

S . ty p h im u riu m  
T .b r u c e i  
Y . p e s t i s  

H .s a p ie n s 2  
C o n se n su s

A .t u m e f a c i e n s  
E . c o l i  

L .m a jo r  
M .m u scu lu s  

P .p u t id a  
S . c e r e v i s i a e  

S . ty p h im u riu m  
T .b r u c e i  
Y . p e s t i s  

H .s a p ie n s 2  
C o n se n su s

A .t u m e f a c ie n s  
E . c o l i  

L .m a jo r  
M .m u scu lu s  

P .p u t id a  
S . c e r e v i s i a e  

S . ty p h im u riu m  
T .b r u c e i  
Y . p e s t i s  

H. s a p ie n s 2  
C o n se n su s

1075
1171
(562
(498
1166
(477
1048
(557
1174
(601
1201

1125
1221
(562
(498
1216
(477
1048
(557
1224
(601
1251

1174
1271
(562
(498
1266
(477
1048
(557
1274
(601
1301

1224
1316
(562
(498
1311
(477
1048
(557
1319
(601
1351

1201 1250
FETELAGPVGERNVYALHPRGKILLVPATEQGLYRQLAAALSTGNSVVID 
TQRLLPGPTGERNTWTLLPRERVLCIADDEQDALTQLAAVLAVGSQVLWP

IARLLPGPTGERNS YTIL PREHVLCLADNET DLLAQFAAVLAVGS SAVWV

TVRLLPGPTGERNTYALLPRERVLCLADTESDTLTQLAAVLATGSQVLWP

1251 1300
NASGLEKAIYGLPASVTSRIVWADDWEKS-APFAGALVEGDAERVVAINR 
DDALHRQLVKALPSAVSERIQLAKAENITAQPFDAVIFHGDSDQLRALCE

DGEPGKALRARLPRELQAKVKLVADWNKDEVAFDAVIHHGDSDQLRGVCQ

e n d v q k a l l pq l pt e v q sr it l t h d w q t a n it fd a v iy h g d a d q l r t l c e

1301 1350
KIAALPGPLVLFQAATTDALSGESQPYTLDWLVEEVSVSVNTTAAGGNAS 
AVAARDGTIVSVQGFARGESN----------ILLERLYIERSLSVNTAAAGGNAS

QVAKRAGAIVGVHGLSSGDHQ----------lALERLVIERAVSVNTAAAGGNAS

QVAQIDGPIVSVQGFARGETN----------ILLERLLIEHSLSVNTAAAGGNAS

1351
LMSIG
LMTIG

LMTIG

LMTIG

Multiple amino acid sequence alignment of various proline dehydrogenase.

The eukaryotic proteins contain only proline dehydrogenase while prokaryotic proteins (including those of a- 

proteobacteria) contain proline ddiydrogenase and pyrroline-5-carboxylate dehydrogenase domains.

% of positivity : 54 % (in blue)

% of identity : 1.3 % (in red)

235



Appendix 3 

The conserved blocks

>V vulnificus
L P Y L V R R L L E N G A N S S F V H R - R L V K G A Y W D S E V K W S - G L G V F V C I S P W N F P L A I F  
L G Q - S D Y E F Q R L H G M G D S L Y N H V M E Q - R Q P V R I Y A P V G - Q F V R G R T I E E A Q K N G R P  
M R D K G  
>Smeliloti
L A Y L V R R L L E N G A N S S F V H R - R L V K G A Y W D A E I K R A - P L G P I V C I S P W N F P L A I F
T G Q - G K Y E F Q C L H G M G E P L Y E E V V G R - D R P C R I Y A P V G - Q F V T G E T I R E A L K R S K E
L E E K G
>Bmelitensis
L A Y L V R R L L E N G A N S S F V N R - R L V K G A Y W D A E I K R A - A L G P V V C I S P W N F P L A I F  
T G Q- G K F E F Q C L H G M G E P L Y D E V V G P - G R P A R I Y A P V  G- Q F V T G E T I D E A L K R A K E  
L E E R G  
>Atumefaciens
L A Y L V R R L L E N G A N S S F V N R - R L V K G A Y W D A E I K R A - S L G P V V C I S P W N F P L A I F
i g q -g d y e f q c l h g m g e p l y s e v v g k -d r p c r f y a p v g -o f v t g e t i g e a i k r s k p l
E E Q G
>Ypestis
L A Y L V R R L L E N G A N T S F V N R - R L V K G A Y W D S E I K R A - P L G P V V C I S P W N F P L A I F
T G Q - G Q Y E F Q C L H G M G E P L Y E Q V V G K - N R P C R I Y A P V G - Q F V T G E T I S E A L A N A R
K L E D K G
>Styphimurium
L A Y L V R R L L E N G A N T S F V N R - R L V K G A Y W D S E I K R A - P L G P V V C I S P W N F P L A I F
T G Q - G Q Y E F Q C L H G M G E P L Y E Q V T G K - N R P C R I Y A P V G - Q F V T G E T I A Q A L A N A R
K L E E K G
>Pputida
L A Y L V R R L L E N G A N T S F V N R - R L L K G A Y W D S E I K R A - P L G P V V C I S P W N F P L A I F  
T G Q - G Q Y E F Q C L H G M G E P L Y E Q V V G K - N R P C R V Y A P V G - Q F V T G E T I A E A L A N A S  
R F E A K G  
>Eooli
L A Y L V R R L L E N G A N T S F V N R - R L V K G A Y W D S E I K R A - P L G P V V C I S P W N F P L A I F
T G Q - G Q Y E F Q C L H G M G E P L Y E Q V T G K - N R P C R I Y A P V G - Q F V T G E T I A E A L A N A R
K L E E K G
>Bcepacia
L A Y L V R R L L E N G A N T S F V N R - R L V K G A Y W D S E I K R A - P L G P V V C I S P W N F P L A I F  
V G Q - G Q Y E F Q C L H G M G E P L Y E Q V V G S - G R P C R I Y A P V G - Q F V T G E T I K E A L D H A R  
G L E A Q G  
>Rcapsulatus
L A Y L V R R L L E N G A N S S F V N Q - R L V K G A Y W D A E M K R A - P R G A V V A I S P W N F P L A

I F T G Q - R P F E F Q R L H G M G A R L H D I V L R E - G G R C R I Y A P V G - Q F V L G E T I E K A L E R A
E K R E A E G
>Nmeningidis
L A Y L V R R L L E N G A N S S F V N Q - R L V K G A Y W D S E I K W A - A V G A I V A I S P W N F P L A I F
t g e -k d f e h q c l h g m g e t l y d q v v g p -g r r v r v y a p v g - q f v t g q t i e e a l q n g k
E R E K M G
>Mloti
L A Y L V R R L L E N G A N S S F V H Q - R L V K G A Y W D T E I K R A - A R G A I V C I S P W N F P L A I F
T G Q - D S F E F Q R L H G M G E A L H E T V R Q A - G T R C R I Y A P V G - Q F V L G R T I A E A V K R G R
P M T Q K G
>Paeruginosa
L P Y L V R R L L E N G A N S S F V H K - R L V K G A Y W D S E I K Q C - G R G I F A C V S P W N F P L A I F
L G Q - R D F E F Q R L H G M G D A L Y D T V I E K - R R N V R I Y A P V G - Q F V L G R T I S E A L K N G R P
C R E Q G
>Ccrescenlus
L P Y L V R R L L E N G A N T S F V H A - R L V K G A Y W D S E I K R A - G R G V F V C I S P W N F P L A I F  
T G Q - V K I E H Q R L H G M G E A L Y K A A D D L - G I T L R A Y A P V G M G E Q F V L G R T I E A A I K R  
A A A E G
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>B japonicum
L A Y L V R R L L E N G A N S S F V A Q - R L V K G A Y W D T E I K R  A- G R G A F V A I S P W N F P L A I F  
L G Q- G S F E F Q R L  II G M G E A L Y E Q L A K  D- D l A Y R T Y A P V G - H F V L G E T I E Q A L E R G K P  
R S G Q K  
>H pylori
l A Y L V R R L D E N T S S D N F M K A - R F V K G A N M E S E E T I A - P K G V G V V I A P W N F P V G I S  
V G T - E H F S F E M L E G M S L Q A S Q E L K E  M- A G N R V I Y K P S S - T F S S K Q D T D S N Y N K M L D  
F V L E G  
>H sapiens
L P Y L S R R A L E N S S L M K G T H R - K L V R G A Y L A Q E R A R A - A R K I G I M V A S H N E D T V R  
F A  I Q- H Q V Y F G Q L L G M C D Q I S F P L G Q  A- G Y P V Y K Y V P Y  G- H F V A G E D Q E S I Q P L L R  
H Y R A F G  
>M m usculus
L P Y L S R R A L E N S S I M K G A Q R - K L V R R A Y M A Q E R V R A - S T K A E V M V A S H N E D T V  
H F T L C - G Q V C F G Q L L G M C D Q I S F P L G Q A - G F P V Y K Y V P Y G - H F V A G E D Q E S I R P L I R  
H N  K A F G  
>Cjejuni
l A Y L V R R L D E N T S E D N F M R Y - R F V K G A N M E S E E T I A - P K G I G V T I A P W N F P I G I S V  
G T - D S F T F E M L E G M S L Q C S Y E L S K  M- A G N V V I Y K P S S - D F I L A Q N R V W A K E I K T K Y  
E N  L K  
>B subtilis
F S Y F M R R I A E R P A N A A F V L K - R L V K G A Y K E S A A V A F - L S G N Y T A V A T H D D D I I K  
F T K Q - S Q F E F Q M L Y G I R P E R Q K E L A K E - G Y R M R V Y V P Y  G- R F V A G D T I E S A V K T V K  
R L N R S G  
>M tubercuIosis
Y G Y F L R R L A E R P A N L A F F L R  - R L C K G A Y D E P A S V A Y - R V G A W V T V D A E D H T T T  
D S T L S - G D F E Y Q M L Y G V R D D E Q R R L T G  A- G N H V R V Y V P F G - R F V P G D T L D D V V D I  
V T A L R D S G  
>Bhalodurans
F G Y F M R R L A E R P Q N V A F A L R - R L V K G A Y K E S P E V A Y - E L G I F V R I D M E D Y G H C Q  
Q T L D - S Q F E F Q M L Y G F R T N L Q E E L V K E - G Y N V R I Y V P F  G- Q V V A G V T I S E A I E K V K  
E L N E K G  
>D m elanogaster
I . P Y L S R R A Q E N K G V L K K 1 K K - K L V R G A Y M D Q E R D R A - A R K I G I M V A S H N E D T V R  
F A I Q - K V I C F G Q L L G M C D Y I T F P L G Q  A- G Y S A Y K Y I P Y G - H F V A G E D Q I K I I P T L E R  
L R S F G  
>Lmajor
I H Y L G R R A V E N S S I L T T G D N  - K I V R G A Y I V Q E R A T A - T Y S I L V K K S F Y N Y F C A G E  
N D Q - S R V S F G Q L F G M R D N L T V P L A R A - G F Q V Y K Y V P Y  G- Q T F Y Q L A I D A I V A T L Q  
K T Y N T E  
>Tbrucei
V H Y L G R R A M E N A S I L S N G G S - K I V R G A Y M R Q E R E T A - D P S I F R Q K S L W W L L R A L  
F V L R - G Y V A F A Q L Y G M S D N L T I P L K R  A- G F P V F K Y V P Y  G- H F C A G E S D R E V K N T V K  
S L E N L G  
>A thaliana
I P Y L L R R A Y E N R G M M A T G A H  - K L V R G A Y M S S E A S L A - G S G F G V V L A T H N A D S G  
R L A S R - G K I E F A Q L Y G M S D A L S F G L K R  A- G F N V S K Y M P F  G- H F C A G E D A D A A A E R  
V R S V Y E A T  
> S cerevisiae
K D Y L L R R L Q E N G D A V R S D N G - K L V R G A Y I H S E K N R N - S S K L I S C V G T W Q L Y L R D  
S G D  H- S N I V L G Q L L G M A D N V T Y D L I T N - A K N I I K Y V P W G - L Y C G G E N F K E V I E C G K  
R L Q K R G  
>A nidulans
M G F L L R R A V E N T E A V G R T K Q - K L V R G A Y L K T E P R H L - E Q A V Q P G I E E W A T M Y Q  
K Y C N S - G D F V A L K F T G M G I Q A L E Y L Q N Q - L V K H T I Y K Q F  N- A G E N K L E V Q R S I N A l  
K E L G Y R G  
>Paerophilum
F T S W I N R V L A K T S I D F Y R E V - I L P K G V Y M R P E P G E G - A R N V I L A T G A W T E R L M D A  
L G F - A A Y H I R R L S P H S K V L V V D Q N P  G- G L A D R E Y G P M F - P A V E G R V P Q N A W A G H Y  
D E N V V D

The conserved blocks generated by the MEME program.
These blocks were used in the phylogenetic analysis (Trees 3 to 7)
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