VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

New Fault-Tolerant Routing Algorithms for
k-Ary n-Cube Networks

Jehad Al-Sadi

Dissertation Submitted for the Degree of Doctor of Philosophy

to the Faculty of Computing Science, Mathematics and Statistics

University of Glasgow

© Jehad Al-Sadi, June 2002.

ProQuest Numler: 10320839

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 10390839

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346

Abstract

Abstract

The inlerconnection network is one of the most crucial components in a multicomputer as it
greatly influences the overall system performance. Netwarks belonging to the family of &-ary -
cubes (e.g., tori and hypercubes) have been widely adopted in practical machines due to their
desirable properties, including a low diameter, symmetry, regularity, and ability to exploit
communication locality found in many real-world parallel applications.

A routing algorithm specifies how a message selects a path fo cross from source to
destination, and has great impact on network performance. Routing in fault-free networks has
been extensively studied in the past. As the network size scales up the probability of processor
and link failure also increases. It is therefore essential to design Tuult-tolerant routing algorithms
that allow messages to reach their destinations even in the presence of fanlty components (links
and nodes). Although many fault-tolerant routing algorithms have been proposed for common
multicompuier neiworks, e.g. hypercubes and meshes, little research has been devoted to
developing [ault-tolerant routing for well-known versions of k-ary n-cubes, such as 2 and 3-
dimensional lori.

Previous work on fault-tolerant routing has focused on designing algorith.ms with strict
conditions imposed on the number of faulty components (nodes and links) or their locations in
the network. Most existing fault-tolerant routing algorithms have assumed that a node knows
either only the status of iis neighbours (such a model is called local-information-based) or the
status of all nodes (global-information-based). The main challenge is to devise a simple and
efficient way of representing limited global fault information that allows optimal or near-optimal
fault-tolerant routing.

This thesis proposes two new limited-global-information-based fault-tolerant routing

algorithms for &-ary n-cubes, namely the wunsafety vectors and probability vectors algorithms.

Abstract

While the first aigorithm uses a deterministic approach, which has been widely employed by
other existing algorithms, the second algorithm is the first that uses probability-based fault-
tolerant routing. These two algorithms have two unportant advantages over those already existing
in the relevant literature. Both algorithms ensure [auli-folerance under relaxed assumptions,
regarding the number of faulty components and their locations in the network. Furthermore, the
new algorithms are more general in that they can casily be adapted to different topologies,
including those that belong to the family of k-ary n-cubes (e.g. tori and hypercubes) and thosc
that do not (e.g., generalised hypercubes and meshes).

Since very little work has considered faulf-folerant routing in k-ary m-cubes, this study
compares the relative performance merits of the two proposed algorithins, the unsafety and
probability vectors, on these networks. The results reveal that for practical number of faulty
nodes, both algorithms achieve good performance levels. However, the probability vectors
algorithm has the advantage of being simpler to implement. Since previous research has focused
mostly on the hypercube, this study adapts fhe new algorithms to the hypercube in order to
conduct a comparative study against the recently proposed safety vectors algorithm. Results from
extensive simulation experiments demonstrate that our algorithms cxhibit superior performiance
in terms of reachability (chances of a message reaching its destination), deviation from optimality
(average difference between minimum distance and actual routing distance), and looping
(chances of a message continuously looping in the network without reaching destination) to the

safety vectors.

ii

Acknowledgement

I would like to express my grateful thanks to God for giving me the strength to complete this
thesis. Also, I would like to express my deep gratitude to Dr. M. Ould-Khaoua for his great help
throughout the course of this work. My great thanks are also due to Pr. K. Day. They both
provided me with continuous guidance, encouragement, and valuable feedback from the early

stages of this thesis.

I am particularly indebted to my mother, wife, and my kids, for their unconditional love and

moral support.

Finally, I am indebted to everyone who helped or enconraged me during my study for this

postgraduate degree.

it

Contents

1 Introduction

1.1
1.2
1.3
1.4

2 The Unsafety Vectors: New Greedy Fault-Tolerant Routing

Routing Algorithms
Fault-tolerant Rouling
Motivations

Qutline of the Thesis

for k~Ary n-Cubes

2.1
2.2
2.3
2.4
2.5

2.6

3 A New Probability-Based Fault-Tolerant Routing for &-Ary

Introduction

Preliminartes and Notation

The Proposced Fault-Tolerant Routing Algorithm
QOutline of the Algorithin

Performance Analysis

Conclusions

n-Cubes

3.1

Introduction

11
14

16
16
18
20
23
25
33

34
34

iv

Confenty

3.2 The Proposed Probability-Based Fault-Tolerant Routing Algorithm

3.3 Performance Analysis

3.3.1 A Lower Bound for the Probability of Minimum Distance Routing
3.3.2 Average Routing Distance in the & Ary 2-Cube (or 2-D Torus)
3.3.3 Average Routing Distance in the k-Ary 3-Cube (or 3-D Torus)

3.3.4 Average Routing Distance in the k-Ary n-Cube (the general case)

3.4 Experimental Performance Analysis
3.5 Performance Comparison
3.5.1 Performance Coinparison Merits

3.5.2 Comparison of the Average Routing Distance

3.5.3 Communication Complexity and Calculation Overheads

3.6 Conclusions

Adapting The Unsafety Vectors to Hypercubes
4.1 Introduction
4.2 Prelimmaries and Notation
43 The Safety Vectors Approach
4.3.1 Calculation of Safety Vectors
432 The Routing Algorithm Using Safety Veclors
4.4 The Unsafety Vectors Fault-Tolerant Routing Algorithm
441 Calculation of Unsafety Sets
4.4.2 The Unsafety Vectors Routing Algorithm
4.43 Handling Message Looping
4.4.4 Droperties of the Unsafety Vectors Algorithm

4.5 TPerformance Comparison

70

72

74

76
78
79
80
84
84
87
89
89
92

Contents

4.6 Conclusions

5 Adapting The Probability Vectors to Hypercubes
5.1 Introduction
52 The Adapted Probability Vectors Routing Algorithm
5.2.1 Caleulating the Faulty Sets
5.2.2 Calculating the Probability Veetors
5.2.3 Probability-Based Fault-T'olerant Routing
5.3 Analysis of the Probability-Based Fault-Tolerant Routing
5.4 Performance Considerations and Comparison with Safety Vectors

5.5 Conclusions

6 Conclusions and Future Directions

References

Publications During Research

96

97
97
98
99
99
104
108
112
116

117

123

133

vl

¥
3

1.1
1.2

2.1
2.2
23
24

2.5

2.6

3.
3.2
33
34

List of Figures

The node structure in an interconnection network.
Examples of k-ary n-cubes. (a) 9-ary 2-cube (2D-torus) (b) 3-ary 3-cube
(3D-torus) (¢) 2-ary 4-cube (hypercube).

The algorithm for calculating faulty and unsafety sets.
An example of a 3-ary 2-cube with three faulty nodes.

The proposed fault-tolerant UV_Routing algorithm.

(V7]

21
22
24

Average percentage of deviation, percentage of unreachability, and

percentage of looping in the UV_Routing algorithm.

Average percentage of deviation, percentage of unrcachability, and
percentage of looping in the UV_Routing algorithm where 7=3 and k
varying from 2 to 9.

Average percentage of deviation, percentage of unreachability, and

percentage of looping in the UV Routing algorithm when m=3.

The algorithm for calculating the probabilily vector in the k-ury n-cube,

An example ol a 3-ary 2-cube with four faulty nodes.

Probabilities of reaching the nodes within distance two from the node 01.

Outline of the proposed “PV_Routing” fault-tolerant routing algorithm.

30

31

38
40
41
42

Vit

List of Figures

3.5

3.6

3.7

3.3

39

3.10

3.11

312

3.13

3.15
3.16

4.1

4.2
43

Probability of minimum distance routing against the pumber of faulty
nodes in the 8-ary 3-cube.

Average percentage of deviation and percentage of unreachability in the
proposed PV_Routing algorithm.

Average percentage of deviation, percentage of unreachability, and
percentage of looping in the proposed PV_Routing algorithm for different
sizes of the k-ary n-cube.

Average percentage of deviation in the PV _Routing and UV_Routing
algorithms m the 9-ary 3-cube,

Percentage of unreachability in the PV_Routing and UV_Routing
algorithms in the 9-ary 3-cube.

Percentage of looping in the PV_Routing and UUV_Routing algorithms in
the 9-ary 3-cube.

Average percentage of deviation in the UV_Routing algorithm,

Avcerage percentage of deviation in the PV_Routing algorithm,
Percentage of unreachability in the UV_Routing algorithm,

Percentage ot unreachability in the PV _Routing algorithin.

Percentage of looping in the UV_Routing algorithn.

Percentage of looping in the PV_Routing algorithm.

The algorithm for calculating the elements of the safety vectors for a
given node in an n-dimensional hypercube.
Routing at a source node using safety vectors.

Routing at an intermediate node using safety vectors.

48

63

64

66

66

67
68
68
68
69
69
69

80
81
82

44 A 4-dimensional hypercube with four faulty nodes (represented in durk colour). 82

viii

List of Figures

4.5
4.6
4.7
4.8
4.9

4.10

4.11

5.1
5.2
5.3
54

5.5

5.8

A 4-dimensional hypercube with five faulty nodes (represented in dark colour). 85
Faulty and unsafety sets calculation in the hypercube. 36
A description of the unsafety vectors routing algorithm in the hypercube. 88
A 4-dimensional hypercube with seven faulty nodes (epresented in dark colour), 92
Percentage of unrcachability in the unsafety vectors and safety vectors
algorithms. 95
Average percentage of deviation in the unsafety vectors and safety vectors
algorithms. 95

Percentage of looping in the unsafety vectors and safety vectors algorithins. 96

The algorithm for calculating the probability vector in the hypercube, 101
A 4-dimensional hypercube with 7 fauity nodes. 102
Probability distribution of the nodes within distance two from the node 0001 104
Outline of the adapted probability vectors fault-tolerant routing algorithim

in the hypercube. 105
The average distances in the 7-Dimensional hypercube calculated

analytically (@) and experimentally (D). 112
Percentage of unreachability in the probability and safety vectors algorithms. 115
Average percentage of deviation from optimality in the probability and safety
vectors algorithms. 115

Percentage of looping in {he probabilily and safety vectors algorithms. 115

2.1

3.1

32

34

3.5

3.7

38

List of Tables

‘The msafety sets of nodes in a 3-ary 2-cube with 3 faulty nodes

‘The faulty sets and probability vectors in a 3-ary 2-cube with 4 faulty
nodes

Probability of minimum distance routing for a fixed number of faulty
nodes (30% of the nodes) in the 8-ary 3-cube.

The average routing distance between two nodes at Lee distance 7 for
different numbers of faulty nodcs in the 15-ary 2-cube using PV_Routing.
The average routing distance belween two nodes at Lee distance { for
different number of faulty nodes in the 15-ary 2-cube using PRA (Eq 3.19)
The average routing distance using PV_Routing and PRA (Eq 3.19) fora
fixed number of faulty nodes (20% of the nodes) in the k-ary 2-cube.

The average routing distance using PV_Routing and PRA (Eq 3.20) for 2
fixed number of faulty nodes (20% of the nodes) in the k-ary 3-cubes.
The PV_Routing and PRA (Eqg 3.25) average routing distance for a fixed
number of faulty nodes (10% of the nodes) in the £-ary 3-cubes.

Average routing distances using PV_Routing, UV_Routing, and PRA

in k-ary 3-cubes.

22

40

48

55

57

58

60

71

_List of Tables

4.1
42

5.1

The safety vectors in a 4-dumensional hypercube with 5 faulty nodes.
The first level unsafety sets of nodes in a 4-dimensional hypercube with
5 faulty nodes,

The first level unsafety sets and the safety vectors of a 4-dimensional

hypercube with 5 faulty nodes.

The probubility vectors in a 4-dimensional hypercube with 7 faulty nodes.

87

91

103

Xi

A®

A0 , A% the two neighbours of node A along the " dimension in a k-ary r-cube network
g ary

A (i.L)

List of Symbols

neighbour node of node 4 along dimension /

A% o A6

average routing distance in the k-ary n-cube

average routing distance assuming message 1s nol discarded when routing between

two nodes at [Tamming distance & i the hypercube

I.ee distance which is the shoriest path between nodes 4 and B
average routing distance from the source node 4 to destinations at

Lee distance {

avcrage routing distance from the source node 4 to destinations with Lee

distance component {/;, 5) in k-ary 2-cube

faulty set, which comprises those nodes which are either faulty or unreachable from

node A4

Hamming distance between two nodes 4 and B

positive or negative direction along dimension 7

Lee distance across the first dimension in a k-ary 2-cube network
Lee distance across the second dimension in a k-ary 2-cube network

number of nodes at Lee distance { from the source node A

probability vector of node 4

xii

Loy

List of Symbols

lydy.s

probability that s spare moves are madec on dimension ;

probability that a destination at Hamming distance k& from A4 is not minimally
rcachable from A4 in the hypercube

probability of making more than f spare moves (i.c., probability of discarding a
message) when routing between two nodes at Hamming distance & in the hypercube
probability of making exactly s spare moves when rovting between two nodes at

Hamumning distance % in the hypercube

probability that a dcstination node at Lee distance 7 from 4 camot be reached from
A using a minimal path due to faulty nodes and links

probability of making exactly s spare moves when routing between the source node
A and a destination with Lee distance components (4, ;)

the least expected routing distance if node A4 can route through a preferred neighbour
Probabilistic Routing Algorithm

n-dimensional hypercube which is an undirected graph with 2” vertices

k~ary n-cube, an undirected graph with &” vertices (nodes)

probability that a destination at Hamming distance X from 4 is minimally rcachable
via its neighbour A" in the hypercube

probability that a destination at Lee distance / from 4 is minimally reachable via its
neighbour 4™ in the &-ary n-cube

sct of all nodes at Hamming distance & from A which are faulty or unrcachable from
A in a hypercube network

set of all nodes at distance I from 4 which are faulty or unreachable from A in a k-

ary n-cube network

the least expected routing distance if node A can route through a spare neighbour

Xiii

List of Symbols

Uy

4,0
H;

Wi

routing capability of node u to A-Hamming distance destinations in a hypercube
network

number of fanlty or unreachable (4, D}-preferred transit nodes at Hamming distance
k from A 1n the hypercube

number of faulty or unrcachable (4, D)-preferred {ransit nodes at Lee distance /

from A

ratio of the number of nodes with Lee distance components (71, &) to the number of

nodes at lee distance / = /; + [, from the source node 4

Xiy

Chapter 1. {ntroduction

Chapter 1

Introduction

Large-scale parallel systems are generally considered o be the most feasible way of achieving
the enormous computational power required by many real-world applications in science,
engineering, and a number of other fields [25, 27, 61, 76|. In such systems, parallel tasks
mherent in an application are distributed over a set of processotrs to run simultaneously. The
processors are physically intercannected by an interconnection network, and co-ordinate their
activities to solve a common problem by exchanging information. Depending on the way the
communication is achieved between processors, two types of parallel systems can be
distinguished: multiprocessors, where processors share a common memory through which they
communicate [33, 40, 61, 74}, and multicomputers, where each processor has its own local
memory, comniunicating with the other processors by message passing [54, 58, 690].
Multicomputers have experienced rapid development during the past decade and have gained

more popularity over multiprocessors due to their superior scalability [9, 48, 73].

The interconnection network is one of the most crucial components in a multicomputer as it
greatly influences the overall system performance. It is desirable for a network to be able to

acconumodate a large number of processors while maintaining low communication overhead.

Chapter 1! Introduction

Furthermore, it should be able to deliver messages reliably to their destinations through using
alternative paths when some faults are detected. In order to allow processors to concentratc on
computational tasks and permit the overlapping of communication with computation, a router, is
used for handling mcssage communication among processors, and is uswvally associated with

each processor; the assembly of processor and router is called a node.

4 N
- .. Output Channel 1

i Crosshar

Switch

!

|

Input Channel — Output Chaunnel #
Injection channel . — - Ejection channel

——(Processor)_

Fig. 1.1: The node structure in an interconnection network.

Fig 1.1 shows a typical node structure in an interconnection network. Each node consists of a
processor and router. A node is connected to its neighbouring nodes through input and output
channels. The injection/ejection channel is used by the processor to inject/eject messages to/from

the network. A crossbar swilch directs messages from any input channel to any output channel.

Network topology describes the way system nodes are connected, and is often characterised by
its degree, diameter, and regularity. An interconnection topology can be modelled as an

undirceted graph where the vertices (nodes) represent the processors and the edges represent the

Chapter 1. Introduction

communication links between the processors. The node degree is the number of channels
connecting the node to its neighbours, and the degree of a topology is the maximum degree of
any node. The diameter of a topology is the maximum value of the shortest distance over all
pairs of nodes. Finally, a topology is suid to be regular if all its nodes have the same degree.
Ideally, a network topology should have a small number of edges, a small degree, a low
diameter, and regular siructure. Needless to say, a large variety of topologics have beeu

suggested in the hope of approaching these goals {1, 14, 24, 27, 66, 77].

Most practical multicomputers [8, 38, 63, 68, 80] employ direct networks where each node has a
point-to-point or dircct conneclion to some ol the other nodes (known as its neighbours)
allowing for direct comimunication between processors. An indirect network is another major
class of interconnection networks where nodes are connected to other nodes (or memory banks
in a shared-memory architecture) through multiple intermediate stages of switches. Because of
their ability to exploit communication locality found in many parallel applications and better
scalability, direct networks have been very popular in practical parallel machines. In particular,
k-ary n-cubes have been widely used in current multicomputers [8, 75], due to their casc of
implementation, regularity, and ability to exploit communication locality to rcduce message

delays.

The k-ary n-cube, where & is referred to as the radix and n as the dimension, has N=F" nodes,
arranged in # dimensions, with & nodes per dimension. Links in the &-ary n-cube can be either
uni- or bi-directional. In this thesis, we will focus on k-ary n-cubes with bi-directional links as
they have been more popular in multicomputers [£3, 38, 54, 56, 58, 68]. Each node can be
identified by an a-digit radix & address (ay, a3 ,..., ap). The i digit of the address vector, a,

represents the node position in the i dimension. Nodes with address (a1, a2 ,...,a,) and (b, b7

Chapter 1 Introduction

,-...b) are connected if and only if there exisis 7, {1<i<n}, such that a; =(b; +1) mod k and a; =

bifor 1< j<n;i« j Typical properties of 4-ary n-cubes include
o The number of nodes =%

0 if k=1
¢ The diamecter =
n

ki2] ifk=2

¢ ifk=1
» Thedegree=< n ifk=2

2n k=2

_ ak" ifk>2
e The number of links =

%nk" ifk=2

Fig 1.2 gives examples of the 2 and 3-dimensional torus and binary hypercube (or hypercube for
short), which are the most common instancces of k-ary n-cubes. While the hypercube has been
used 1 earlty multicomputers such as the Cosmic Cube [68], iPSC/2 [58], and NCube [54], the
torus has become more common in the last generation of multicomputers, such as in the case of

the iWarp [13], J-machine [56], CRAY 13D {38], and Cray T3E [8].

1.1. Routing Algorithms

A message usually travels across several intermediate nodes before reaching its destination. The
routing algorithm specifies how a message selects a path to cross from source o destination, and

has great impact on network performance. It may happen that due to some faully network

Chapter 1: Introduction

components (either nodes or links), messages are not able to reach their destinations, even if
fault-free paths exist connecting the source and destination nodes. It is therefore important to
develop fault-tolerant routing algorithms that allow the network to continue to function as

normally as possible, even in the presence of a large number of faults.

&-&‘ _&_ﬂ_ﬂﬂb A
0100000000 ;
000000000
000 000 oo |
48008008 S

3 @%&3 Wbt
©l0°0/0 0000 "
/9/0/0/00/0/ 06

(a)

(b)

(c)

Fig. 1.2: Examples of k-ary n-cubes. (a) 9-ary 2-cube (2D-torus) (b) 3-ary 3-
cube (3D-torus) (c) 2-ary 4-cube (hypercube).

Chapter 1. Introduction

Routing algorithms can be broadly classified as deferministic or adaptive {27]. The former offers
a predetermined path to each message fixed by its source and destination addresses [37, 41, 42,
72]. The latter gives flexibility to messages in choosing their patlis 1o avoid congested or faulty

regions [16, 26, 31, 35, 44, 47, 64].

In a non-faulty network, a simple idea to route messages is to use a deterministic approach. A
typical way of unplcmenting this is seen in the classic deterministic routing, widely known as the
dimension-ordered routing algorithm (also known as e-cube [22, 69]) used in the k-ary n-cube.
In this form of routing, messages are restricted to change dimensions in a pre-defined (increasing
or decreasing) order to ensure message reachability toward their destinations. Several practical
multicomputers, such as the J-machine [56], Cray T3D [38], and N-Cube [54], have employed

deterministic routing [37, 41].

Adaptive routing enables messages to explore all alternative paths to avoid congested regions or
fanlty components inside the network. Adaptive routing algorithms can be classified as
progressive or backtracking [16, 17, 18, 20|. Progressive routing always moves forward,
reserving a new node at each routing operation. Backtracking routing allows a message to
backtrack to previously reserved nodes in cases where faulty nodes block the message fo move
forward. Backtracking is not often used for fault-tolerant routing because it is complex and
costly to implement. The Cray T3E [8] and Reliable Router [23] are examples of recent practical

systems that use adaptive routing.

Communication among nodes can be viewed as a hierarchy of services, starting from the
physical layer that synchronises the transfer of bit streams to higher-level protocol layers that
perform functions, such as packetisation. There are three major layers in the operation of the

interconnection network, the physical layer, switching layer, and routing layer {27]. The physical

Chapter 1: Introduction

layer refers to link-level protocols for transferring messages across links interconnecting two
adjacent roulers. The switching layer utilises the physical layer protocols to implement
mechanisms for forwarding messages from one router {o the next. Finally, the routing layer
makes routing decisions to determine a candidate intermediate node to route to and thercby
establish the path through the network. The design of switching techniques (e.g., wormhole [26,
29], circuit [27, 51, 78], and store-and-forward switching [21, 28]) and their properties, (e.g.
deadlock avoidance, live lock detection), are determined by the services provided by the
switching layer [27, 28]. Whilc our resulis are general enough and can be discussed in the
context of, for example, wormhole and store-and forward switching this thesis deals primarily
with issues related to the routing layer. More specifically, this thesis will show how the
topological properties of a given interconnection, the &-ary »n-cube in our case, can be exploited

to provide efficient message routing that cxhibits goad fauli-tolerance.

1.2. Fault-Tolerant Routing

Multicomputer systems arc more susceptible to failure than conventional uniprocessor machines.
This is becausc as the system size scales up, the probability of a component failure (node or link)
also increases. There are two classes of faunlts. Either the entire node or any channel may fail.
The former is referved to as fauity node and the latter as a fanlty link. An wnreachable node ts a
node that cannot be reached from the current node due to faulty links. Messages usually travel
across scveral intermediate nodes before reaching their destinations. However, it may happen
that some messages are not able to reach their destinations, even if fault-free paths exist
connecting the source and destination nodes, due to failures of the routing decisions. In this
work, we are interested in routing algorithms that can route a message from source to

destination, if a path exists between such two nodes, in the presence of faulty components,

Chapter 1. Iniroduction

Fault-tolerant routing algorithms provide techniques to guarantec message delivery in the
presence of faulty components in the network. The objective of a fault-tolerant routing algorithm
15 to ensure that the routing is successful in the presence of faults. In addition, the algorithm
altempts to reduce latency by giving priority to a shorter alternative path over the longer ones

when the optinal path is faulty.

Routing in fanlty networks has been extensively studied in the past [15, 18, 81, 46, 83, 27]. As
the network size scales up the probability of processor and link failure also increases. It is
therefore essential to design fault-tolerant routing algorithms that allow messages to reach their

destinations even in the presence of faulty componcents (links and nodes).

A fauli-lolerant rouling algorithm is opiéimal if it finds an optimal feasible path for every
message, whenever a path exists. A path is feasible if it contains no faulty nodes. A path is
optimal if it 18 the shortest feasible path. In direct interconnection networks, the diameter is
usually a measure of the performance degradation caused by faults. Indeed, for a number of
networks including hypercubes and k-ary n-cubes, it has been proved [24, 45] that an upper
bound on the length of [aull-free paths between non-faulty nodes in faulty networks (fault
diameter) is closely related to the diameter of the network. A network is knode connected if
there exists at least k node-disjoint paths from any node S to any node D in the network [24].

Two paths are node-disjoint if they do not have any common intermediate node.

Although many fauli-tolerant routing algorithms have been proposed for common multicomputer
nctworks such as hypercubes [15, 16, 32, 43], very little research has been devoted to developing
fault-tolerant routing for other versions of k-ary n#-cubes, such as tori. Moreover, previous studies

on fault-tolerant routing have focused on designing algorithms with strict conditions imposed on

the number of faulty nodes or their localions in the network.

Chapter 1. Introduction

Most existing fault-tolerant routing algorithms have assumed that a node knows either only the
status of ils neighbours (such a model 1s called local information-based) [16, 17, 32] or the slatus
of all nodes (global-information-based) [15, 71]. Local-information-based routing yields sub-
optimal routes (if not routing failure) due to the insufficient information upon which the routing
decisions are made. Global-information-based routing can achieve optimal or near optimal
routing, but often at the expense of high communication overhead to maintain up-to-date
network-wide fault information. The main challenge is therefore to devise a simple and efficient
way of representing limited global fault information that allows optimal or near-optimal fault-
tolerant routing. There have recently been a number of attempts to design limited-global-

information-based algorithms {19, 20, 46, 81, 84].

Among the family of A-ary n-cube direct networks, the binary hypercube has received the most
attention in the past, for which a number of fault-tolerant routing algorithms have been proposed
[18, 46, 81, 83]. For instance, Gordon and Stout [32] have described a fault-tolerant routing
based on “Sidefracking”, where a message is de-routed to a randomly chosen fauli-free
neighbouring node when no fauli-free neighbour exists along any of the existing optimal paths
leading to the destination. With this approach a routing failure may accur (although with low
probability for large #), and cxcessive delay nay arise even in the presence of few faulty

components [20].

Chen and Shin [17] have proposed a routing strategy based on depth-first search in which
backtracking is required if all the required forward links cannot be used duc to faully
components. The fraversed path is recorded and attached to the message. A simplified version of
this approach that tolerates fewer faults was presented in [16], where routing is progressive

without backtracking, and where a message s routed to its destination on an oplinal path with

Chapter 1: Introduction

high probability. Lan [44] has presented a fauit-tolerant routing algorithm based on local
information, and which guarantees an optimal or near-optimal routing. However, the algorithm is
based on a restricted model of fault distribution as 1t can tolerate only (r-1) faulty nodes (and/or

links) in an n-dimensional cube.

Lee and Hayes [46] have used the concept of unsafe nodes to design a faull-tolerant routing
strategy for the hypercube. Message routing is achieved by avoiding unsafe nodes, which could
possibly lead to communication difficulties and excessive delays. Chiu and Wu [20] have used
the concept of unsafe nodes [460] and its extensions to show that a teasible path of length not
more than the Hamming distance plus four can be guaranteed, provided that the number of faulty
nodes does not exceed (52-1), where s is the dimension of the hypercube. ‘T'he concept of umsafe

nodes has also been discussed in [83].

Wu in {84] has introduced the concept of safety levels, based on limited-global-information, as
an enhancement of the unsafe node concept. The safety level is an approximate measure of the
number as well as the distribution of faulty nodes. Optimal routing is guarantced if the saflety
level of the source node is less than the Hamming distance between the source and destination.
Chiu and Chen [19] have proposed a concept called routing capability, which further enhances

the safety levels concept.

The safety vectors algorithm, proposed by Wu [81], uses a similar concept to the routing
capability with some extensions related to dynamic routing adaptivity and application to the
generalised hypercube [101. The safety vectors approach requires each processor to mainiain a
bit vector (safcly vector) compuled through a number of fault information exchanges between
adjacent processors. The algorithm guarantees optimal routing to all destinations that are at a

Hamming distance & from node 4, if and only if, the k™ bit of the safety vector at node 4 is set

10

Chapter 1 Introduction

(the safety vectors approach will be described in detail later in chapter 4). The safety vectors

approach has been extended in [82] for belter handling of faulty links.

The only modest contribution in designing fauli-tolerant routing algorithims for %-ary n-cubes
was described in [64]. Io this work, Ravinkumar and Panda [64] have proposed an adaptive
routing algorithm for A-ary n-cubes where a large table of information is stored at each node,
containing a sorted list of entries for every candidate destinafion in the &-ary s#-cabe. Each entry
corresponds to the address of a given destination and a list of optimal ncighbours that lead to that
destination. This algorithm is very costly in terms of computational complexity and storage due
to the size O(nk") of the routing table at each node. Also, the algorithm selects an intermediate

node randomly among the candidate nodes through a complex procedure during routing.

The following three measures have often been used to give indications of the performance of a

given fault-tolerant routing algorithm [6, 81, 83]:

= Unreachability: is the percentage of messages that cannot be routed towards their

destinations due to failures over the total number of generated messages.

» Deviation from optimality: is the average difference between the minimal routing

distance and the actual routing distance.

= Looping: 1s the percentage of messages continuously looping in the network without

reaching their destinations over the fotal number of generated messages.

1.3. Motivations

Many studies have proposed fault-tolerant routing algorithms in the past [16, 17, 20, 44],

11

Chapier 1: Introduction

However, most of these studies have irmposed sirict conditions on the number of fanlty nodes in
the network and their locations. Some studies have defined and used the concepis of safe and
unsafe nodes according to their location in a faulty network (see {44, 46, 83, 84] for more
detailed definifions). Such studies often mpose strict conditions on the number of safe, unsafe,

and faulty nodes in order to ensure message delivery.

Although many fault-tolerant routing algorithms have been proposed for common multicomputer
networks, such as the hypercube, very littlc research has been devoted to developing fuult-
folerant routing for other versions of k-ary n-cubes, e.g. 2 and 3-dimensional tori. Turthermore,
most existing fault-tolerant routing algorithms are either global-information-based, and as a
result suffer from costly communication overhead, ot local-information-based, and as a result are
unable to malce optimal routing decisions. Thercfore the challenge is to design an efficient fault-
tolerant routing algorithin based on limited-global-information. The main abjective of this thesis
Is to contribute towards filling this gap by iniroducing and investigating new and efficient fault-

tolerant routing algorithms for &-ary n-cubes.

Motivated by the above observations, this thesis introduces two new limited-global-information-
based fault-tolerant routing algorithms for 4-ary n-cubes, namely the unsafety vectors and
probability vectors. In the unsafety vectors algorithm, each node A starls by determining the set
ol faulty or unrcachable neighbours. Then, node 4 performs (alk/2]-1) exchanges with its
neighbours fo determine its faulty set contfaining all [aulty or unrcachable nodes at different
distanccs from node 4. For node 4, the l-level unsafety set S, 1 < < m, where m is an
adjusiable parameter between 1 and n{%/2}, represents the set of all nodes at distance / from A
which are faulty or unreachable from 4. Equipped with these unsafety sets, each node calculates

numeric unsafcty vectors and uses them to achieve efficient fault-folerant routing.

12

Chapter 1: Introduction

The new fault-tolerant routing algorithm routes messages to their destinations over an optimal
path in the networlk. If all optimal paths arc faulty, then the new algorithim secks the shortest
available path to route messages toward their destinations. The algorithim routes messages fo
their reachable destinations without any strict conditions on the number of faults or their
locations, and it can deal with both faulty nodes and faulty links during routing. Furthermore, the
algorithm exhibits good performance characteristics in terms of the achicved routing distance

and reachability.

Most fault-tolerant routing algorithms reported in the relevant literature, including the proposed
unsafety vectors [6, 7], use a deterministic approach (non probability based) to reflect
information about faults tn the network. Motivated by this observation, we develop unother new
routing algorithm, referred to as “probability vectors”, that achieves fault-toicrance in k-ary n-
cubes using a new probabilistic approach. To compute the probability vectors, a node first
determines its faulty set, which represents the set of all its neighbouring nodes that are faulty or
unreachable due to faulty links. Each node then calculates a probability vector, where the &
element represents an estimated of the probability that a destination node at distance & cannot be
reached through an optimal path due to a faulty node or link. The probability vectors arc used by
all the nodes to achieve an efficient fault-tolerant routing in the network. This new algorithm has
the advantage of being the first fault-tolerant routing algorithin that uses the probability
approach. Moreover, it is simpler fo implement than those algorithms that use the deterministic
approach. Each node maintains probability mformation about nodes at distance % for every k. The
routing algorithm is source-destination independent, and always chooses the neighbour with the

best probability of reachability towards the desired destination.

In the second part of this study, we compare the relative performance merits of the two propased

13

Chapter 1: Introduction

algorithms, the unsafety and probabifity vectors in terms of communication overhead,
computation complexity, average routing distance, deviation from optimality, and unreachability.
We also show how to adapt the new algorithms, unsafely and probability vectors, to the
hypercube in order to conduct a comparative study against the safety vectors algorithm, that has
been recently proposed for the hypercube. This study highlights an important advantage of our
proposed algorithms and their ability to be easily adapled o other topologics. Moreover, results
from the comparative study reveal that the new alporithms exhibit superior performance

characteristics over the safety vectors.

1.4. Outline of the Thesis

Chapter 2 presents the unsafety vectors approach as a new deterministic fault-tolerant routing
algorithm [or the &-ary n-cube. The calcnlations of the unsafety vectors and the routing algorithm
along with its properties are presented. A simulation study that evaluates the unreachability,

deviation from optimality, and looping of the new algorithm is also described.

Chapter 3 presents the sccond new approach, namely the probability vectors algorithm, for the -
ary n-cube. The calculations of the probability vectors, the routing algorithm along with its
properties, and related simulation results are presented. Furthermore, this chapter compares the
relative performance merits of the two proposed algorithins, the unsafety and probability vectors,

in the k-ary n-cube.

Since there exist hardly any fault-folerant routing algorithms for the &-ary n-cube against which
to compare the two rouling algorithms proposed in this wosk, Chapter 4 adapts the unsafcty
vectors algorithm to the hypetrcube, and conducts a comparative analysis against the recently

proposed safety vectors routing algorithum for the hypercube,

14

Chapter 1: Introduction

As in Chapter 4, Chapter 5 adapts the probability vectors algorithm for the hypercube, and

conducts a comparalive study against the safety vectors algorithm.

Finally, chapter 6 summarises the results presented in this thesis, and discusses some possible

directions for future research.

15

Chapter 2: The Unsafety Vectors

Chapter 2

The Unsafety Vectors: A New Fault-Tolerant
Routing Algorithm for k-Ary n-Cubes

2.1 Introduction

Most practical multicomputers [8, 38, 58, 80] have employed k-ary n-cubes for low-latency and
high-bandwidth inter-processor communication. The 4-ary n-cube has an n-dimensional grid
structure with & nodes in each dimension such that every node is connected to its neighbouring
nodes in each dimenstion by dircct channels. The two most popular instances of k-ary n~-cubes arc
the hypercube (where /=2) and torus (where s=2 or 3). The former was used in early
multicomputers such as the iPSC/2 [58] and iPSC/860 [80] while the latier has been adopted in
more recent systems, like the CRAY T3D [38] and CRAY I3E [8].

Routing in fault-free cubes has been extensively studied in the past [15, 27, 46, 81, 83]. As the
network size scales up the probability of processor and link failure also increases. It is therefore
essential to design fauli-tolerant routing algorithms that allow messages to reach their
destinations even in the presence of fuulty components (links and nodes). There have been a

number of recent studies reported [18, 46, 81, 83] that have described fault-tolerant routing

16

Chapter 2: The Unsufely Vectors

algorithms bascd on limited-global-information. Most of these algorithins, however, have been
developed for the hypercube [18, 46, 81, 83]. As a result, few studies have considered the other
versions of the k-ary »-cubes, such as tori. In fact, most of the existing research on k-ary n-cubes
has dealt with the practical and implementation issues associated with fault-tolerant routing [27,
31, 35]. Except for the research of [64], there has been hardly any study that investigates the
topological properties of k-ary m-cubes for the provision of cfficient fauli-tolerant routing

algorithms.

In [64], the authors have described a fault-tolerant routing algorithm for k-ary n-cubes, which
requires a large information table in each node. The table contains an entry for every other node
in the network, containing a list of optimal neighbours leading to a particular destination node,
along with the associated probabilities. The algomthm suffers from high computational

complexity and storage cost since nodes maintain global information about the network.

This chapter introduces a new Hmited-global-information-based routing algorithm for the high-
radix k-ary n-cube, like the torus. The proposed new algorithn vses a greedy approach by giving
higher attention to the immediate next routing step in avoiding faulty neighbourhoods. As we
shall see later in this chapter, the algorithm uses the concept of “umsafety vectors” to
considerably reduce the storage requirement for maintaining fault mformation, compared to the
algorithm proposed in [64]. In the proposed algorithin, each node 4 staris by deternining the sct
of faulty or umreachable neighbours. Then, node A4 performs (#|4/2]|-1) exchanges with its
neighbours to determine its faulty set containing all fanlty or unreachable nodes at different
distances from node A. For a node 4, the /-level unsafety set 5%, 1 <! < m, where m is an

adjustable parameter between 1 and n{ %72 |, represents the set of all nodes at Lee distance / from

A which are faulty or unreachable from A4 (a definition of a Lee distance is provided in the

17

Chapter 2. The Unsafety Vectors

sequent).

Equipped with these unsafety sets, we show how cach node calculates numeric unsafety vectors,
and uses them to achieve cfficient greedy fault-tolerant routing. The larger the value of m is, the
better the routing decisions should be, bul at the cxpense of morc computation aond

communication overhead.

The amount of the limited-global-information-based using the unsafety vectors (f addresses,
where fis the number of faulty nodes which is a small fraction of £} is substantially smaller than
the amount of information usually needed by global-information-based algorithms which is in the
order of £". The simplicity and reduced size of the routing information results in faster routing
decisions and decreases the amount of exchanged information. Global-information-based
algorithims have the advantage of achieving optimal routing. However, our proposed limited-
global-information-based algorithin achieves near optimal routing with a big reduction both in

the amount of exchanged routing information and in the complexity of the routing algoritlim.

This chapter also includes a performance evaluation of the proposed algorithm through extensive
simulation experiments. The results reveal that the algorithm performs near optimal routing for
practical values of the numbers of faulty nodes. The obtained measures of routing distances and
pereentages of reachability are very cfficient cven when the parameter s is at its lowest value of
1 corresponding to minimum communication overhead, Before presenting the new fault-tolerant

routing algorithm, this chapter reviews first some background information (preliminaries and

notation) that will be useful for the subsequent sections.

18

Chapter 2: The Unsafety Vectors

2.2 Preliminaries and Notation

The k-ary n-cube, QF | is an undirccted graph with k" vertices (nodes). Each node 4 is labelled
in the form 4=a,.1,dn.2, ..., @0, where cach a; digit satisfies: 0 < g; < k. Two nodes A=ay.1.¢,.2,....60

and B=h,.1,b,2,...,0p are joined by a link if, and only if, there exists 7, 0 = 7 < », such that

a; =b; +1 (mod k) and a; =b; for i= j. For the sake of clarity, we will omit writing mod & in
similar expressions in the remainder of our discussion. Q) has degree 21 and diameter n|k/2].

The shortest path between nodes 4 and B is equal to their Lee distance [14] given by

n-1
dy (4, B)= g}:wi , where w; = 322}?(|a3 — bk —|a; - by

The Hamming distance between two nodes 4 and B, denoted H(4, B), is the number of digits at
which their labels differ. A path between 4 and B is an optimal path if its length is equal to

di{A,B).

A routing algorithm R for a network ¢ can be viewed as a function that returns the address of the
next node to visit in order to achieve routing between a given source and a given destination. A
fauli-tolerant routing algorithmn is a routing algorithm that is able to function in a network with

faulty components (nodes and links).

Consider two nodes 4 and D where A is the source and D is the destination of a message
exchange. Let A% and 4% represent the two ncighbours of node A along the i® dimension and
let AYY denote 4% or 4. The symbol i+ denotes the positive or negative direction along
dimension i. If a; # 4, a neighbour A of 4 is called a preferred neighbour for routing from

node 4 to D if di(A, D) =di(4, D) - 1. We say in this case that i+ is a preferred direction. If

a; = di, a neighboar AY® such that dy(4Y, D) > difA, D) is called a spare neighbour.

19

Chapter 2: The Unsafety Vectors

Ncighbours other than preferred or spare are called disturb neighbours. Tor routing from A4 to D,
a disturb neighbour A%Y of 4 corresponds to the case @; = d; and therefore the /" digit is
disturbed. Routing through a disturb neighbour increases the total routing distauce by at least two
over the minimum distance. Routing through a sparc ncighbour increases the total routing
distance by at least one over the minimwm distance. A minimal path can be obtaincd by
performing a preferred direction move at every routing step. With respect to routing from node 4

to D, node T is called a prefexved transit node 16 di (T, D)< di(4, D).

We make the following assumptions for the proposed algorithm and performance study. Similar

assumptions have been made in earlier related works, e.g. [27, 64, 81].

i) A faulty k-ary n-cube contains faulty nodes and/or links. The fault patiern remains fixed
for the duration of calculations of unsafety sets. In other words, the faulty sets calculation
has to be restarted if additional faults occur before completing the calculation.

if} Bach node can determine the status of its own links and the status of jts neighbouring

nodes.

ity Node failures aye fault-stop fatlures.

2.3 The Proposed Fault-Tolerant Routing Algorithm

Our proposed fauli-tolerant routing algorithm uses the concept of unsafety sets. The [-level
unsafety set of a node 4 contains faulty or unreachable nodes at distance / from 4. The unsafety
sets of a node 4 are obtained from the faulty set £y, which comprises those nodes which are
either faulty or unreachable from A. F, is first initialised to the set of faulty immediate

neighbours of 4. F, is then updated by performing (#|%/2 {-1) exchanges of this set between

non-faulty immediate neighbours. After each such exchange, new faulty nodes are detected and

20

Chapter 2: The Unsafety Vectors

added to F,. Added to those detected faulty nodes 1s the set of unreachable neighbours of 4 due

to faulty links. After determining F,, node A calculates m unsafety sets, where m is an

adjustable parameter between 1 and n|_k/2J, denoted S, S4,..., S*as defined below:

Definition 2.1: The l-level unsafety set 8, 1<7 <m, for node 4 is given by

Sf - {BeF,|dy(4,B) -1}

| Algorithm Find Unsafety Sets (A: node}

/* catled by node A to determine its faulty and unsafety sets */

F = set of faully immediate neighbours;

forl=1tonlki2 -1do{
Jori=1tondo{

{fA(ME' FA fhﬁ{
send Fg to A
receive F ., from A4,
Fy=F, UF i}
i A" g Fythen {
send F, to A7
receive I ., Sfrom A4
Fy=FqWF)
Iy,
forl=1iondo{
iflink (4, A°Y) faulty then ¥, == £, U{A"};
iftink (A, AY7) faulty then F; = F; {4}

}
fori:=1Itomdo S/ ={B T, d,(4,8)=1]

End.

Fig. 2.1: The algorithm for calciating faulty and unsafety sets.

Chapter 2: The Unsafety Vectors

Definition 2.2: 1f for some node 4, IS,AI =2n-1, then node 4 is called a dead-end node.

The I-level unsafety set S;' represents node A’s view of the set of nodes at Lee distance / from 4

which are faulty or unreachable. As it will be subsequently seen in this study, when the routing
distance exceeds a certain threshold, network partitioning is assumed. In this case the desired

destination D is considered in a different network partition. The detecting node propagates to all

the reachable nodes the fact that D is unreachable. All these nodes add node D to the set F. Fig.

2.1 gives an outline of the “Find Unsafety Sets” algorithm that node 4 uses to determine its

00 o 0
ﬁ \J\ \

10 11 12

faulty and unsafety sets.

21 } 22
N,

O @)

Fig. 2.2: An example of a 3-ary 2-cube with three faulty nodes.

Example 2.1: Consider a 3-ary 2-cube with three faulty nodes, as shown in Fig. 2.2 (faulty nodes
are represented in dark colour). Table 2.1 shows the corresponding unsafety sets associated with

each node 4.

Table 2.1: The unsafety sets of nodes in a 3-ary 2-cube with 3 faulty nodes

dee 00 01 02 10 1 12 20 21 22
s# | Faulty | {00} | (00,12} | Faulty | {10,12} | Faulty | {00,10} 0 (12}
s# | Faulty | {10,12) | {10} |Faulty | {00} |Faulty | {12} | {00,10,12} | {00,10}

22

Chapter 2: The Unsafely Vectors

2.4, Outline of the Algorithm

Definition 2.3: For a given source-destination pair of nodes (4, D), the (4, D}-unsafety vector

UAP = @0 L ufP . udPy is given by:

u‘.’"D =1{T e 8/, such that T'is a (4, I)-preferred transit node}|.

In other words, the element «;>”is the number of faulty or unreachable (4, D)-preferred transit
nodes at distance / from A4. uj"‘D can be viewed as a measure ol routing unsafcty at distance / from
A, hence the name unsafety vectors for U™ . We also define an ordering relation ‘<’ for numeric
vectors as follows. For any two numeric vectors U = (1), Uz,..., Up) and V= (1, v, ..vn), U<V
iff 3 4, 1 <i<m, such that i; < v;, and u; = v; for all j < i. This ordering relation will correspond to

a greedy approach in making routing decisions.

Fig. 2.3 provides a description of the proposed UV_Routing algorithm. When a node 4 has to
forward a message M towards its destination D it uses UV_Routing in order to achieve fauit-
tolerance routing in the network. The algorithm checks first if the destination is a reachable
immediate neighbour in which case the message is delivered to destination. If not, UV_Routing
trics to forward the message to a non-faulty interniediate preferred neighbour that is associated
with the Ieast unsafety vector. If all preferred neighbours are faulty then the algorithm tries to
route through a ‘disturb’ neighbour with the least unsafety vector as a second choice or through a
non-faulty spare neighbour with the least unsafety vector as a third choice. Notice that routing
through a disturb neighbour increases the routing distance by at least 2 but routing through a
spare neighbour (long cycle) may incresse the routing distance by 4-2 in the worsl case. The
worst case may occur when the source node and the destination are at distance 1 on this spare

dimension and the fault situation imposes moving on the long part of the cycle of this dimension

Chapter 2: The Unsafety Vectors

Algorithm UV_Routing (M: message; A, S, D: node}

/* called by node A to route the message M initioted at source node S
towards its destination node D */

if A =S then M Route_distance =0

if M Route _distance < di{(4, D) + (/=2) x ‘f' 'rl then

if A = D then exit; /* destination reached ¥/
M Route_distance: =M. Route_distance + |
Let AYS) be the reachable preferred neighbour with least
(A9, D)-unsafety vector U4 and 4 is not dead-end
or { A4S =)
if A exists then send M to A
alse { Let AY*) be the reachable Disturb neighbour with least
(A | D)-unsafety vector U and 4 is not dead-end
i AVY®) exists then send M to 4™
glse { Let A" be the reachable spare neighbour with least
(AY®) | D)-unsafety vector UNS™ and 49 is not
dead-endd;
if A% exists then send M to AP

else failure /* destination unreachable */

/
}
}
else Handle loopiag

Fig, 2.3: The proposed fault-tolerant UV_Routing algorithm.

24

Chapter 2: The Unsajety Vectors

(of length %-1). Therefore 4-2 extra moves are imposed. [f an immediate non-faulty neighbour is

not available then the destination is unreachable. Routing failurc occurs in such cases.

Example 2.2: Consider a 3-ary 2-cube with three faulty nodes, depicted in Fig. 2.2. To route a
message from the source node 22 to the destination node 01, first nede 22 has two preferred
neighbours 02 and 21, but since node 21 has the least number of faulty preferred neighbours, the
UV_Routing algorithm will route to it as an intennediate node, and then finally to its destination

node Of.

Notice from the description of the UV _Routing algorithm, given in Fig. 2.3, that looping is
detected if the routing distance exceeds the specified limit (Lee distance plus /' (k-2) where f'is
the number of faulty nodes). Since each faulty node may cause a derouting and an increase in the
routing distance by a value ranging between 1 and %-2, the maximum increasc in the routing
distancc should not cxceed f(£-2). The proposed algorithm can be improved to minimise the
effect of looping. Since looping occurs when a destination is not reachable from the source, we
can add the destination node to the faulty set of the node that detected the Jooping. When looping

occurs (n_kf 2 _]—'i) exchanges of information between all neighbours are then initiated to

propagate the new information among reachable nodes in the whole k-ary n-cube.

2.5 Performance Analysis

In this section, we first analyse the complexity of the calculations in the UV_Routing algorithm,

and then analyse the performance of the algorithm using software simulation.

The calculation of the unsafety sets and then the calculation of the unsafety vectors involve

information exchanges between the network nodes. This calculation is performed in

ul_k,’ ZJ phascs. In cach phase, cach node sends at most 27 messages and receives ab most 2n

Chapter 2: The Unsafety Vectors

messages concurrently. Therefore the computation time complexity is O(n*k) and the total
number of generated messages is O(n*k""). Notice that the computation time complexity of the
routing algorithm in [64] is O((nk" 3?2y and the fotal number of generated messages 1s
OWnk™)* £™Y . Furthermore, the storage complexity of the UV_Routing algorithm is at most a set
of fnode addresses at each node, where f'is the total number of faulty nodes (practically a small
fraction of £"). On the other hand, the storage complexity in [64] is in the order of 4" tuples at
each node, each tuple contains # node address and a probubiity of successful routing of that node
for a given source-destination pair. This excessive communication and computation cost
cffectively reduces routing performance, The UV_Routing algorithim compares favourably with

the routing algorithm in [64] with respect to both communication cost and storage cost.

This section also analyses the performance of the proposed fauli-tolerant routing algorithm. We
have developed a simulation program. The nodes and links were coded according to the
topological properties of the simulated network. Simulation results were tested for different sizes
of the networks and compared against manual calculation of the routing vectors, The simutation
results have matched our manual calculation results. Furthermore, we have also tested our
simulator on an existing safety vectors algorithm [81]. The obtained results have been found to

be in good agreement with thoss presented in [81].

Simulation experiments have been carried out for a 10-ary 3-cube with 1000 nodes with different
random distributions of fauity nodes. We started our experiments with a non-faulty k-ary n-cube
and then the number of faulty nodes was gradually increased up to 75% of the network stze with
random fault distribution. A relatively large number of source-destination pairs (30,000) have
been randomly generated at each run. We have made sure that these generated pairs cover all

possible source-destination distances. In the first two sets of results reported below (in Tigs. 2.4,

26

Chapier 2: The Unsafely Vectors

and 2.5 respectively), the parameter m is fixed at its lowesl value, 1.e. m=1, wherc m is an
adjustable paramecter between 1 and nlk/2], corresponding to the lowest communication
overhead introduced by the algorithm since the exchange of information is only between
neighbours. We will report at the end of this section (in Fig. 2.6} on an experiment that assesses
the effects of the parameter m on the performance of the algorithm. However, before presenting
the results, we define the following variables, which will be used to quantify some performance

measures.

- Total: total number of generated messages
- Routing_Distance: number of links crossed by a message.
- Lee Distance: Lee distance between the message source and destination.
- Fail Count: number of routing failure cases.
- Looping Count: number of messages that cross a number of links beyond a maximum

threshold before being discarded.

Using the above variables we propose the following three perforinance measures as the basis for
studying the new UV Routing algorithm.
- Average percentage of deviation from optimality

_ 1 Z Routing D:stan-ce — Lee_Distance %100
Total Lee_Distance

Fail Count «
Total

- Percentage of unreachability = 100

Looping _ Coumnt o
Total

- Percentage of looping = 100

The average percentage of deviation from optimality indicates how close the achieved routing is

to the minimal distance routing. The percentage of unreachability measures the percentage of

27

Chapter 2: The Unsafetly Vectors

messages that the algorithm failed to deliver to destination due to faulty components. The
percentage of looping indicates the ratio of messages that failed to reach destinations due to
network partitioning; network partitioning occurs when the faulty nodes and links divide the
network to two or more disconnected parts. We believe that these three measures give realistic
indication on the perforinance of a fanli-tolerant routing algorithm and are adequate for the

purpose of our present study.,

¥ig. 2.4 revcals that the UV_Rouling algorithm achieves high reachability with low to moderate
deviation from optimality. 'The average percentage of deviation from optimality grows almost
linearly with nuinber of faulty nodes as long as this later does not exceed 50% of the total
number of faulty nedes. The propesed algorithm is capable of routing messages using optimal or
near optimal distance paths even when there is a large number of faulty components. This is due
to the fact that the algorithm repeatedly chooses to route through areas of the network with the
least number of faults in the neighbourhood, applying a greedy approach giving more weight to
the nearest neighbourhoods. As a result, the algorithm tends to select paths that diverge from
arecas with high counts of faulty componenis. The figure also reveals that the percentage of
looping remains practically negligible when the percentage of faulty nodes remains less than
20%. When there are a high number of faulty nodes in the network, the number of messages
reaching destination becomes low, justifying the drop in the deviation and looping measures in

Fig 2.4.

An experiment was conducted to assess the performance behaviour of the proposed algorithm
when the network size increases. For the sake of illusiralion, we have fixed the value of # to 3,
and increased the valee for & from 2 up to 9 (for a network size varying from 8 to 729). For each

network size, our algorithm has been tested by setting the percentage of faulty nodes to 10% of

28

Chapter 2: The Unsafety Vectors

the nelwork size, then to 20%, 30%, 40%, and 50% of the network size. At each run, a total of
10,000 source-destination pairs were selected randomly. The results presented in Tig. 2.5 show
that the performance properties of the new routing algorithm are maintained as the network size
is scaled up. Furthermore, good performance levels are achieved without imposing any

restriction on the system size or impractical restrictions on the number of faults in the network.

As we have mentioned earlier, each node calculates its m unsafety sets afier calculating its <4

through (] k/2]-1) exchanges with its neighbours. The adjustable parameter m can take values
between 1 and #|k/2], xepresenting the level of complexity of the proposed algorithm. The
larger the value of m is, the better the routing decisions are expected o be. However, this is done
at the expense of more computation and communication overhead. The results in Fig. 2.6 reveal
that when m is increased to 3, the algorithm has a slightly belier performance than in the case
m=1, shown in I'igs. 2.4 and 2.5. 1t is worth noting that we have found that the same conclusions
are obtained even when m is increased beyond 3. The small improvement in the routing
performance for higher values of #2 does not justify the higher communication overhead. We can
therefore conclude that the proposed algorithm yields good performance in terms of routing

distances and percentages of reachability even when the parameter m is at its Jowest value of 1,

corresponding to minimum overhead.

29

Nt

= Uireechanity

hablly

% of Jnre:

¢ Rl an 20 60 200 240 260 32D 360 400 Adu 98D 530 SRO 6 640 63D 720
No. of Faulty Nodas

* bavinlion E

a6

#sC

7 { \ .

tile ! 5

-
J
S

%o 0f Dawiation from Dptirsality

a 40 80 120 160 200 240 290 3720 AGO 400 44C «BR0 520 BG0 ROD E4AD £30 7?20
Ho. of Faulty Nodas

1 —e--'aopng]

62

52
_/h/\\\

LM '

g ,’// “-\\

3w rd K .
231 “0.,/ 1

.r’/.— :

b e = .

L al B0 120 160 200 230 280 320 900 4Uu dAU qau G20 SGU GUL G40 CBD T20
Na. nf Fanlty Narrs

Fig. 2.4: Average pereentage of deviation, percentage of unreachability, and percentage of laoping
in the UV_Routing algorithm.

30

Chapter 2: The Unsafety Vectors

—.—10% —e—20% —d—30% —se—40% —m— 50%

100
90
£ w0
E 7
8
E s
2 W
2 20
3
3
b _/W
0 —=_— ——
2 3 4 5 6 7 8 9
k

o 10% > 20% —a—30% —n— 40% —n— 50% '

8

8 B
N
x

Unreachability
7

|

"x
L
‘\
.>\

2 3 4 7 8 9
k
—o— 10% —o— 20% —ie— 30% x 40% =x— 50%
30
- ¥

25 / o o

¢ -
- - il e el
" 2L Lo o RE -~ —— - -
2 3 4 5 6 7 % ¢

k

Fig 2.5: Average percentage of deviation, percentage of unreachability, and percentage of looping
in the UV_Routing algorithm where »=3 and k value varying from 2 to 9.

Chapter 2: The Unsafety Vectors

1
+ Unreachabiity |
80 — . . 1
_e—
70 *
/
50 /
ui /
.
40 .
L]
W 20 /
.
20
10
o _#
o >
0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720
No. of Faulty Nodes
- e Devintion
100
80 -
I\
80 \
70 \
.
- \
60 / \
/ 1
50 » - \
g » \
40 //" \
g 30 PR \ T
/s
¥ N\
5 20 -
+* -
10 =
o o
0 T e
0 40 B0 120 160 200 240

280 320 360 400 440 4BD 520 560 60O
No. of Faulty Nodes

- Looplngl
45
Y
40 / \
PAes - /A
'S fi™\
35 / \
/ \
30 \

25 / (\

- P T,

% of Looping
@

0 40 80 120 160 200 240 280 320 360 400 440 480

No. of Faulty Nodes

520 560 600 640 680 720

Fig 2.6: Average percentage of deviation, percentage of unreachability, and percentage of
looping in the UV_Routing algorithm when m=3.

32

Chapter 2: The Unsufety Vectors

2.6 Conclusions

There have been a number of studies recenily reported in the literature that have described fault-
tolerant routing algorithms based on limited-global-information. Most of these algorithms,
however, have been discussed in the context of the hypercube. Relatively little research has
considered the other versions of the &-ary n-cube, such as the torus. This chapter has proposed a
new favlt-tolerant routing algorithm for high-radix k-ary z-cubes based on the concept of
unsafety vectors. As a first step in this algorithin, each node 4 determines its view of the faulty

set F,; of nodes which arc either faulty or unreachable from 4, by performing (nLk / 2J~1)

exchanges of fault information with 1fs reachable neighbours. Node A then calculates m unsafety
sets denoted 7, §4,..., S/ where m is an adjustable parameter hetween 1 and #| k/2] The /-
level unsafety set represents the set of all nodes at Lee distance / from A which are faulty or
unreachable from 4 due to faulty links or nodes. Equipped with these unsafety sets each node
calculates its unsafety vectors and uses them to achieve fwult-lolerant routing in the &-ary n-cube.
Larger values of m result in higher communication overhead with little improvement of routing
performance. A performance analysis of the proposed algorithm has been conducted using
software simulation. The results obtained have revealed that the new algorithin provides good
performance in terms of the routing distance and percentage of unreachability even when the

parameter m 18 at its lowest value of 1.

33

Chapier 3: The Probability Vectors ...

Chapter 3

A New Probability-Based Fault-Tolerant Routing
for k-Ary n-Cubes

3.1 Introduction

We have introduced in the previous chapter the Unsafety Vectors [6, 7] as a limited-global-
information-based fauli-tolerant routing algorithm for z-ary n-cubes. This algorithm imposes no
strict conditions on the number of faulty nodes or their locations. Each node A4 starts by
determining the set of faulty or unreachable ncighbours. Node 4 then performs (n[ka’ 2}1)
exchanges with its neighbours to determine ils faully set containing all faully or unreachable
nodes at different distances from node 4. For node 4, the /-level unsafety set S{f L1 £ <m,
where m is an adjustable parameter between 1 and #| k/2 |, represents the set of all nodes at a Lee
distance / fram A4 which are faulty or unreachable from 4 (see [141 for more details on Lee
distances). Equipped with these unsafety sets, node 4 calculates numeric unsafety vectors and

uses them to achieve etficient greedy fault-tolerant routing.

All fault-tolerant ronting algorithms reported in the literature [6, 7, 18, 20, 1], mcluding that

proposed in Chapter 2, use a deferministic approach in that they use exact intormation about

Chapter 3; The Probability Veciors

favlts in the network. We introduce 1n this chapter a new routing algorithm that achieves fanit-

tolerance in k-ary #-cubes using a new probabilistic approach [3].

The new algorithm uses the concept of “probability vectors” to considerably reduce the storage
requirement for maintaining faulf information, compared to the existing algorithms [64]. In the

proposed algorithm, each node A4 starts by determining the set of faulty or unreachable

neighbours. Then each node A caleulates its probability vector P4 =g, _, P”’f,(2]~ The "
clement, PgA , of the probability vector is an estimation of the probability that a destination node
at distance / from 4 cannot be reached from 4 using a minimal path due fo faulty nodes and links.
An analysis through extensive simulation experiments is performed to assess the performance of
the proposcd algorithm. The results presented here reveal that the new algorithm performs near
optimal routing for practical values of the numbers of faulty nodes. Moreaver, the results reveal
that the algorithm exhibits good performance levels in terms of the achieved routing distances

and percentages of reachability even when a large number of faulty nodes exist.

The reader is referred to Section 2.2 in Chapter 2 for the notfation and basic definitions used in the
present chapter. The same assumptions listed at the end of section 2.2 in Chapter 2 are also used
in this chapter. The remainder of the chapter is organised as follows. Section 3.2 presents the new
fault-tolerant routing algorithm for the 4-ary n-cube. Section 3.3 presents an analytical study of
the proposed algorithm. Section 3.4 conducts a performance evaluation of the new algorithm
through simulation experiments. Section 3.5 compares the performance of the proposed
algorithm against that introduced in the previous chapter. Finally, Section 3.6 concludes this

chapter.

3.2 The Proposed Probability-Based Fault-Tolerant Routing Algorithm

The proposed limited-global-information-bascd fault-tolerant routing algorithim uses the concept

of probability vectors. The probabilily vector of 4 node 4 is denoted P = (77 ,.,..,P,,’fmzj), where

35

Chapter 3: The Probability Vectors

P1‘4 is an estimation of the probability that a destination node ut Lee distance { cannot be reached
from node 4 using a minimal path due to faulty nodes and links. To calculate its probability
vector, node A starts by determining the faulty sct F,;, which comprises those neighbouring nodes

that are either faulty or unrcachable from A due to faulty links. After determming 7, node 4

then calculates its probability vector P/ =(R”,..,Rfy;,) through nlk/2]-1 exchanges of

information with neighbours (as described below). The probability vectors are used by all the

nodes to perform efficient fauli-tolerant routing in the network.

Definition 3.1: The faulty set 7, of anode 4 is defined as 7 = U f4,where [} is given by

sisn

£ {u e {a®, 400} pis fauly or link(d, B) is faulty] 3.1)

To simplify our calculation of the probability vectors, we alse assume that all the nodes at Lee
distance /-1 from 47 are at Lee distance / from A. The implications of this assumption will be
addressed later in this section. Notice that node 4 considers the other end of a faulty link as a

faulty node. The /® element B/ of P is an estimation of the probability that a destination at Lee

distance / from A4 is not minimally reachable, i.c. reachable using a minimal path, from 4. Since

node A has [F A\ faulty or unreachable immediate neighbours, and only one of the 2n edges

incident from A constitutcs a tminimal path to a specific destination at Lee distance one, the first
clement of the probability vector, A%, is given by
P _IF4l (3.2)
2n
For a destination at Lee distance / and Hamining distance 4, let ¢ be the number of preferred
neighbouss. When £ is odd, ¢ = &. Howover, when k is even ¢ can be either g =4 or g =24,

The latter case arise when the source and destination arc diametrically opposite on a given

(¥

dimension i, and routing to any of the two neighbours, 4" or 497, is considered as a preferred
2 ¥ g P

move on that dimension. When this is the case for all dimensions, the number of preferred

36

_Chapter 3: The Probability Vectors

neighbours will be g=24. T.et R,”Ut} be the probability that a destination at Lee distance / from A4 is
minimally reachable via its neighbour 4. Minimal reachability via 4“*' is only possible if
A" is a preferred neighbour. The probability for 4" to be a preferred neighbour is ¢/2.
Assuming that all the nodes which are at Lee distance /-1 from AY* are at Lee distance I from 4
then

0 if node A" is faulty
RI = (3.3)

= (- ng: Y otherwise
2n

(i+)

Notice that 4" means 4" or 4“7, If every node at Lee distance / from 4 were reachable

minimally via cxactly one of its 2n neighbours, then the probability of reaching minimally a node

. . 3 (+)
at Lee distance / from 4 would have been Z(Rf

it

RA"”Y since probabilities can be added

when the events are disjoint. However, a destination node at Lee distance ! from 4 ¢an be reached
minimally via g preferred neighbours (not only one). Adding these probabilities includes
therefore a redundancy factor whose effect could be reduced by dividing this summation by 4.
Therefore, the probability of reaching minimally a destination at Lee distance from 4 can be

A)
approximated as —Z(R, T+ RATY. Hence,

i=l

_ L__Z(RA{H') fI(’)

aul
1—~—§](q(1 RA e La-pA)

A—~Zw~ﬁ(wa A7) G4

The resulting expression can be also intuitively interpreted as follows. The ability of & node A to

reach minimally destinations at Lee distance / depends only on the ability of its neighbours

37

Chapier 3. The Probability Vectors

reaching minimally destinations at distance /-1. For instance, if each neighbour 4! of 4 can
reach minimally all nodes at Lee distance /-1 then 4 can reach minimally all nodes at Lee
distance /. On the other extreme, if for each neighbour 4" of 4, 4" cannot reach minimally
any node at Lee distance /-1 then 4 cannot reach minimally any node at Lee distance 7. We
therefore propose to approximate the probability of reaching minimally destinations at distance {
from 4 by the average of node 4’s neighbours probabilities of reaching minimally destinations at

i " .
distance I-1, i.e., 1— P :LZ((I—P}ﬂt e —P}i‘f Y.
23

Algorithm Compute_Probability Vector (4. node)

/* called by node A to determine its probability vector (P, P ,..‘.,P,,’f,dg D
F/l
Bt = |2_\;
n

Jori=>2to n|ki2] do
{ send P2 to all neighbours
R =0,
fori=1lwn dof
receive P,-’_ifm from A%,

,), -
receive P from A7 ;

AUEY o Uty A(:’-H 1(:'—}

R’ =R +(1I-PZ,)+ {(1-P5)}

.F;A - 1 . L‘R;A(iu ,
2n

2

Fig. 3.1: The algorithm for calcwlating the probability vector in the k-ary n#-cube.

Chapter 3: The Probability Vectors

The probability vector (R?, B,...., Pn’gk 12]) is computed for each node A using the equations (3.2)-

(3.4).). If a node A has a faulty neighbour A", then 4 assumes the probability vector of 4" to

be (1, 1,..., 1). The following algorithm implements this probability vector calculation.

0% {5 at Lece

Next, we analysc the cffect of the assumption that a node at Lec distance /-1 from A4
distance / from 4 by deriving an error margin caused by the approximations used in the
calculation of the elements of the probability vector as a result of this assumption. A node D at
Lee distance /-1 from 4 it is either at Lee distance / or /-2 from 4. In fact if & is odd and D is
diametrically opposite to 4% on dimension /, then D would be at Lee distance /-1 from 4. This

special casc only occurs with prebability 1/(k-1). Let S, be the number of nodes at Lee distance -

| from A“" and at Lee distance / from 4, and let S,be the number of nodes at Lee distance /-1

from A" and at Lee distance /-2 or [-1 from 4. So the error margin of assuming that the nodes

at Lee distance I-1 from 4™ are at Lee distance ! from 4 is estimated as the ratio

S,

e =—2 3.5
"S5 as, (3.5)

The number of nodes in §; corresponds to the number of ways we can distribute /-1 moves over

the » dimensions in either direction except for dimension / where the moves must be in the same

direction as the move from 4 to A" The number of nodes in §, corresponds to the number of

ways we can distribute -1 moves aver the n dimensions in either direction except for dimension f
where (he moves must be in the opposite dircction of the move from 4 to 4™ with at least on

th g .
such move on the i dimension,

From this description it is clear that S, < §|. Furthermore, the error ratio, e, = 2. is equal

I 2

| P
—<e <

to L for I=2. 'l'herefore, for 2<17 ﬂf{-{é—J. This error is reduced by giving

b f—

2n 2n

39

Chapter 3: The Probability Vectors

preference to preferred neighbours in the selection of the next node, guaranteeing a decrease in
the Lee distance to the destination, and thus reducing the effect of the error caused by the

approximations used in the probability calculations.

Example 3.1: In a fault-free 3-ary 3-cube, all the nodes calculate the first element of their
probability vectors. Since there are no faulty nodes then £*= 0 for all the nodes. In the next
stage, all nodes collect the first elements of the probability vector of their neighbours to calculate
the 2™ element of their probability vectors using equation 3.4. Obviously, calculations at each
stage depend on the calculations of the previous stage. In a given stage, all the nodes perform
their own calculations simultaneously in the same stage. After completing the 3™ stage,

n|k/2|=3, for the fault-free 3-ary 3-cube, the probability vector for any node 4 is (0, 0, 0) which

means the probability of not minimally reaching a destination at any Lee distance form 4 is 0.

00 01 02
e\
bl
10 "
N\ £\
By O1——© | i

20
Fig. 3.2: An example of a 3-ary 2-cube with four faulty nodes.

Table 3.1: The faulty sets and probability vectors in a 3-ary 2-cube with 4 faulty nodes
Node

00 01 02 10 11 12 20 21 22

F, | Faulty | {00,02} | Faulty | {00,12} | {12} | Faulty | {00,22} | {22} | Faulty
PIA Faulty | 0.500 Faulty 0.500 0.250 | Faulty 0.500 0.250 | Faulty
P | Faulty | 0.625 | Faulty | 0.688 | 0.563 | Faulty | 0.688 | 0.563 | Faulty

40

Chapter 3: The Probability Vectors

Example 3.2: Consider now a 3-ary 2-cube with four faulty nodes, as shown in Fig. 3.2 (fauliy
nodes arc represented as black nodes). Table 3.1 shows the corresponding faulty set and

probability vectors associated with each node A4 according to the algorithm presented in Fig. 3.1.

Assume that the source node is 01 and we need to calculate the probability of reaching minimally
a destination at Lee distance 2 from the source node. Let us try to compute the exact probability
using a probabilistic argument. Node 01 has 2 fault-free neighbours: 11 and 21, and the
probability of routing via any of them is % as shown in Fig. 3.3. Node 11 has only one faulty
neighbour and the probability of node 11 to reach minimally its own neighbours 1s %. However,
notice that not all neighbours of 11 are at Lee distance 2 from the source node causing the error
ratio as discussed earlier, Similarly, node 21 has a probability % of reaching minimally its own
ncighbours, This means that the probability of node 01 reaching a destination at distance 2 via its
neighbours is V(¥ + %)=0.375. Therefore, the probability of not reaching destination at distance
{wo from the source node is 1-0.375=0.625. This result is the same as the value £ given by the

calculation ol Fig 3.1 as shown in Table 3.1.

____Faulty
E_—{II
1/4 34 14 o1
— 1]

é

Faulty
14
1/4
14 34 ”
1
La

Faulty

2

;

Fig. 3.3: Probabilities of reaching the nodes within distance two from the node 01.

41

Chapter 3: The Probability Vectors

Let us now study the accuracy of these approxumnate probability calculations. Notice that there are
exactly 4 nodcs at Lee distance 2 from the node 01, and these are: 12, 22, 20, and 10. Only 2

nodes, 20 and 10, of these 4 nodes are minimally reachable from 01. Therefore, the exact value of

P should be 0.5. Our algorithm Las estimated it to 0.625. The relative error in this case is
0.625-0.5 o , . .k 1
—————=0.25 which is within the earlier claimed margin, o fe < 5

f

Algorithm PV Routing (M: message; 4, S, D: node)

/* Called by node A to route the message M initiated af source node S
fowards its destination node D */

if A=S then M Route distance =0
if M Route_distance < di(A, D) + (k-2) % no_faulty nodes then
{ M Route distance: =M Route distance+ 1
if D is a reachable neighbour then deliver M to D; exit; /* destination reached */
{ = Lee distance between A and D
Let A™ be a reachable preferrved neighbour with least Pf]m value;
Po= (1= PAY 4+ (L +DVBA™ - 1% Jeast expected distance through A %/
Let AY9 be a reachable spare neighbour with least P value;
Ifw; <|k/2] then Sp= (I+2)(1~Pi/P)+ (1 +3) RV
else Sp= (+DA— PN 4 (1 + 2PV s fogr expecied distance through AYE 5y
if 7 A and ((FAY® and Pr<§ Jor(~FAYD) then send M to AW ;
else if 7 AV and ((F4™and p, > Spor (7 A")) then send M to A ;
else failure /* destination unveachable */

£ else Detecting Looping
End.

Fig. 3.4: Outline of the proposed “PV_Routing” fanlt-telerant routing algerithm

42

When a node A has to route a message M towards its destination D, it applies the probability
vectors-based routing algorithm, referred to here as “PV_Routing”, outlined in Fig. 3.4, If node 4
can route through a preferred neighbour, 4%, then the associated least expected routing distance
is given by
Po=10-24" Y+ (R (3.6)

where P,ff*) is the estimated probability of not minimally reaching a destination at distance I-1
from the preferred neighbour 4%} This expression is justified by the fact that (1~ szfi)) is the
estimated probability of exislence of a fault-tiee minimal path via A%, If bowever such a path
does not exist (with an estimated probability]-'}fgii) }, then reaching the destination via 4Y%) will
require at least one more hop longer than the Lec distance . Notice that in such a case if 4%
and the destination are diametrically opposite on dimension ¢ and & is odd then a path is at least
one extra hop longer, otherwisc a path is at least two extra hops longer. On the other hand, if
node A can route through a spare or a disturb neighbour, 4%, then the least expected routing

distance is computed as (using similar arguments as for the calculation of P,)

¢ a+Da- B0 @28 ifw, =02)and ks odd whete 6

P 14 j ’ h] - .
G+ - BA Y e 4328 otherwise

w, =min(la, —dj|,k~—‘aj —a'j|) .

s j<n

Notice that in this case each spare move may cost the path to be one hop longer than the Lee
distance (via a neighbour 4Y*) diametrically opposite to the destination on ditmension 7). Fig. 3.4
gives an outline of the proposed fauli-tolerant routing algorithm PV_Routing used by node A.
When node A has to forward a message M towards its destination D, the algorithm PV_Routing
checks first if" the destination is a rcachable immediate neighbowr in which case the message is

delivered to destination. If not, PV_Routing irics to forward the message to a non-faulty

43

Chapter 3: The Probability Vectors

intermediate (preferred, disturb, or spare) neighbour that is associated with the least expected
routing distance to the desired destination. PV _Routing selects the forwarding neighbouring node
using the probability-based estimations of the least expected routing distance (equation 3.6, and
3.7). If an immediate non-faulty neighbounr is not available then the destination is unreachable.

Routing failurc occurs in such cases.

Example 3.3: Consider a 3-ary 2-cube with four tauliy nodes, as described in Fig. 3.2. Toroutc a
message from the source node 20 to the destination node 01, the PV_Routing algorithm checks
first if node D is a reachable immediate neighbour to deliver the message directly to it. In our
case where D is not an immediate neighbour, the algorithin tries to forward the message to a non-
faulty intermediate (preferred, disturb, or spare) neighbour that is associated with the least
expected routing distance to D. Node 20 has only 2 non-fault neighbours, 10 and 21, the first is a
spare and the second is a prefeited neighbour. The Lee distance, /, between S and D ig 2. Using
equations 3.6 and 3.7, we compute the least expected routing distance when routing through the

non-faulty neighbours 21 and 10 as
P.(21)=2(1-0.25)+3(0.25)=2.25
§,(10) = 3(1 - 0.688) + 4(0.688) = 3.688

Since P,{21)<S,(10), the proposed routing algorithm will route to node 21 as an intermediate

node, then routes directly to the destination node 01.

The proposed algorithm can detect and minimise the effect of looping. Notice from the above
description of PV_Routing in Fig. 3.4 that looping is detected if the routing distance exceeds the
specified limit (Lee distance plus £ (k~2) where f'is the number of faulty nodes). Since each faulty

node may cause a derouting and an increase in the routing distance by a value ranging between 1

44

Chapter 3: The Probability Veciors

and k-2, the maximum increase in the routing distance should not exceed f{(£-2). Since Ivoping
occurs when a destination is not recachable from the source node then the algorithm will discard

such a message.

3.3 Performance Analysis

This section analyscs some perforimance properties of the proposed PV _Routing algorithm in
terms of the achieved minimum and average routing distances for various types of the &-ary n-
cube. In the remainder of the chapter, we assume that there are f faulty nodes in the network, and
that all the N nodes are equally likely to be faulty with a failure probability p=// N. Furthermore,
we assume that the source and destination nodes are non-faulty. In this section we only consider
faulty nodes. Faulty link cases can be thought of as faulty node cases by considering the other
end node of a faulty ink as a faulty node. Let us now start by deriving a lower bound on the

probability of minimum distance routing using the new algorithm.

3.3.1 A Lower Bound for the Probability of Minimum Distance Routing

For any two nodes at Hanuning distance %, # > 2, and Lee distance [, A <! <#|k/2], the k-ary -
cube with £ > 5is known [24} to embed a family = of 2x# node-disjoint paths of the following
lengths:

A paths of length 1, k<1 <n|k/2],

2n— 24 paths of length 42, and

paths of length /4

Assume there exisls a “hypothetical” routing algorithm R that attempts to route along a non-

faulty path from the family = of shortest possible length before considering other paths. The

45

Chapter 3: The Prohability Vectors

following theorem provides a lower bound on the probability of mintmum distance routing

achieved by the algorithm R.

Theorem 3.1: For any source 4 and destination D at Lee distance /, £ <! <n|k/2], and Hamming

distance &, 2<h <n,and k> 2 the routing algorithm R routes from 4 to D on a path of length at

most / 4+ 4 with a probability at least 1- 7, - B, - B4, where

p=(-a-p'f ‘ (3.8)

Pz === py2 (3.9)

Py =fi-0-pytf (3.10)
LS

p=L=1 (3.11)

Proof: Let Py, be the probability that all node-disjoint paths in z of length / are faulty. Such a
path is faulty if at least one of its / nodes (other than the source node) is faulty. Each nodc is
faulty with probability p = f/N since there are f faulty nodces and all the N nodes in the network
are equally likely to be faulty. Therefore a path of length / from = is fanlty with probability

~(— p), and hence P =[-(1- 1" Similar analysis yields the expressions for B,,and P,

Therefore at least one of the 2n paths of 7 is non fanlty with probability {—F - P, - Py . | |

The PV_Routing algorithm attempts to route through a neighbour that has the highest probability
of minimum distance routing. The algorithm keeps ail options open and may select from any of
the possible paths. As a result, it does not have any preference for a particular family of paths as
does algorithm R in Theorem 3.1, It is therefore expected that PV_Routing will perform at least

as good as R. In other words, the probability that PV_Routing routes from a source 4 to a

46

 Chapter 3: The Probability Veciors

destination 7 at Lee distance ! on a minimum distance path with at least the probability

Y0 B B

Claim 3.1: PV_Routing rouies in f-ary #-cubes with & =5 between any given pair of nodes at
Lee distance , h=<i< nl_k/ ZJ, and Hamming distance A, 2< A< n, on a minimum length path

with probability at least 18- 7,5 B4

This claim 1s verified experimentally by analysing the performance of the PV _Routing algorithm
in order to measure the path lengths against the number of faulty nodes in the network. To this
end, stmulation experiments have been carried out over an 8-avy 3-cube with 512 nodes with
different random distributions of faulty nodes. We started our experiments with a non-faulty &-
ary n-cube and then the number of faulty nodes was increased gradually up o 70% of the
network size with random fault distribution. Paths from every node to all destinations at Lee
distance 6 and Hammiing distance 3 (as an average Lee and Hamming distances) were selected.
Fig. 3.5 shows the calculation probability of the minimal paths routing analytically and
cxperimentally against the number of faulty nodes in the 8-ary 3-cube when the Lee distance is

=6 and the Hamming distance is #=3.

Other simulation experiments have been carried out over an 8-ary 3-cube with a fixed number of
faulty nodes 153 (30% of the nodes) with different random distributions. A total of 30,000
source—destination palrs were randomly selected. Table 3.2 contains the probability of minimum
distance routing calculated analytically from claim 3.1 and measured experimentally by the

simulation for different Lee distances and Ilamming distances.

47

Chapter 3: The Probability Vectors

—a— Analytically —A Ekperim@lally

-
|

9
®

o
o

Probability

o o
o N >
o

/

Q o S R \Q.,Q ng '_pr q?’g “;19
Faults

Fig. 3.5: Probability of minimum distance routing against the number of faulty nodes in the
8-ary 3-cube.

Table 3.2: Probability of minimum distance routing for a fixed number of faulty nodes
(30% of the nodes) in the 8-ary 3-cube.

Lee Dist. Hamming Dist. | Analytical Prob. | Experimental Prob.
2 2 0.885 0.985
3 2 0.751 0.957
3 3 0.783 0.985
4 2 0.604 0.937
4 3 0.636 0.964
5 2 0.467 0.934
5 3 0.495 0.950
6 2 0.351 0.931
6 3 0.373 0.945
7 2 0.258 0.936
7 3 0.275 0.944
8 2 0.187 0.936
8 3 0.200 0.943
9 3 0.144 0.943
10 3 0.103 0.937
11 3 0.073 0.928
12 3 0.052 0.918

48

Chapter 3: The Probability Vectors

Both Fig. 3.5 and Table 3.2 confirm that the probability of muminum distance routing for
PV_Routing is always better than the corresponding probability for the hypothetical routing
algorithm R. This shows that the probability that PV _Routing routes from a source 4 to a

destination D at Lee distance / on a minimum length path is atleast 1 -5 - Py - By .

3.3.2 Average Routing Distance in the k-Ary 2-Cube (or 2-D Torus)

We restrict the discussion in this section to the class of the k-ary 2-cube (or 2-D torus). We will
later extend our results to the 3-dimensional tori and then generalise them for the A-ary n-cube. In
order o evaluale the average routing distance of PV _Routing, we define a general class of
probabilistic routing algorithms. We then evaluate the average routing distance for these

algorithms and use it as an approximation for the PV_Routing average routing distance.

We define a hypothetical class of probabilistic routing algorithms PRA as follows:

Definition 3.2: A routing algorithm is called a Probabilistic Routing Algorithm (or PRA for
short) if the routing decisions are based on maximising the probabilities of minimum distance

routing when selecting a node from the fauli-free neighbours.

The following assumptions are also made to simplify the analysis for the PRA algorithms and to

derive bounds on the performance of the PV_Routing algorithm:

i) In selecting the next move in PRA, the neighbours are costsidered in the following
order: preferred on the first dimension, preferred on the second dimension, spare

on the first dimension, and spare on the sccond dimension.

i) After f'spare rouling moves, the messagc is discarded to avoid looping.

49

Chapter 3: The Probability Vectors

We now derive an expression for the average routing distance in the PRA algorithm. Since the &-

ary n~cube has a symmetric network topology, we will focus, without loss of gencrality, our

discussion on a particular source node, 4. We will use the following notation during the

derivation:

- F}l 1. - probability of making cxactly s sparc moves when routing between the source node A

and a destination with Lee distance components (4,), where 7=/,+,, and / and [; arc

the distances across the first and second dimension, respectively.

- D, :average routing distance from the source node A4 to destinations at Lee distance /.

- D, ,, ' average routing distance from the source node 4 to destinations with Lee distance
components (7, 5).

- Wy - ratio of the number of nodes with Lee distance companents ({1, /) to the number of

nodes at lee distance /= [, + [from the source node 4.

- Ny the number of nodes at Lee distance { from the source node 4.

Lemma 3.1: W), is given by
N S
4 ki2}-20+2

1
———————— [>|k/2)and(l, > 0andZ, >0
|2[k/2]-1+1 72] and ¢, > 0andl, > 0) 3.12)

[>|k/2] and(, =0o0rl, =0)

w"l‘IZ = 1
o 1<|k/2] and(l, =0orl, = 0)
% I2k/2} and > 0and/, > 0)

54

Chapter 3: The Probability Vectors

Proof: For a given /jand /y, 0<{,7, g[!cr’ 2J, and a fixed source node A = (x;, xz) in the s-ary 2-
cube, it /) # 0 and /3 # 0 then there are four possible destination nodes with Lee distance
components {({}, &) from A. These are: (x, 17y, x,15), (x1H), x2-f), (x1-1y, x2+5), and (x:-1y, x2-1). If
however £;=0 or 4=0 then there are only two such possible destinations. Furthermore, the number

of destinations N; at a given Lee distance / from the source node 4 is given by

Ny =a2ki2f-1+) I>|k/2] (3.13)

This is derived from the fact that the range for each 7 and 7, should be [k/2], [x/2]-1, [#/2]-2,

..oy &-|k/2]. The number of values in this range is 2|k/2]-I+1. Furthermore there are four

destinations with Lee distance components (/;, {-/;) for each case. Using a similar reasoning
yields the result N;= 4 [for the case [< |_k / 2J. flence the claimed result for W, l

Lemma 3.2: 'The average routing distance, D, 4, » rom the source node 4 to destinations with Lee
distance component (/;, /) is given by
= &
th!iz = Z‘Rr} Jg,.&' - (i’l + 12 + 25') 3 Whe]‘e (3. 14)
s=0

Phiys =U=p)B s +PA-p)B 116 + pii- Py s (1~ P st (3:15)

and the probability 7 ;, ; satisfies the following boundary conditions:

51

Chapter 3. The Probuability Vectors

| I =1, =0, 50
1 {150,32:]15:0
(1-p)"! I 50,1,=0,5=0
1 py2! L =00y >0, 5=0
(l-p | 2
(1=p)Py 0 +PA—PYFy 4y 10 L >0,1; >0,5=0
0 !r]=1,!2:0,3>0
0 IIEO,JZ:LS\)‘O
(- Y105 + PA= I 010,61 7+ pia- Py 1< < |2 |1, =0,5>0
Pyt s =30=pIF _10,5 + PO~ PIF 1 5o h=|k2)1=0550
A= PV, pyois +PA= PP gy ot + P2 A= pYWPy s L =0,1<]y <{k2] 550
A=pYPyys, 15+ PUL= PIP 0y {| =04, =|k2}s>0
(L=PIP; 1y + PU—PYPtyis + 22— D)P 15 .
X h=bzs hob s Mg g <uiz] o<z <l 2)]s >0
+ [) (] - p}‘Pﬁ .1';_ +i,s—§
G=PIPy 11y +20=PIB 4y 1e + P =P) Py sy sr L =[H2L0<1, <|H2]5>0
(1= Pty s + PA=PIB 1y s + 22 U= PPy b =|M2]0< <[ki2)s>0
(1= P) ity s + POE= PPy iy h =2}ty = k2] s >0
(3.16)

Proof: Lot 5,],;2 be the average routing distance between a given pair of nodes with Lec distance

components (/),/,). Since each spare move increases the routing distance by 2 hops, and since

messages are discarded after making f spare moves, we can write I—)fn 5 @8

L
Dyjy =2 (h+h+29)F, 4 s (3.17)
5=}

To make s spare maves when routing a message at Lee distance / from its destination, we

distinguish the following cases based on the first move:

iy A preferred move on the first dimension leading to a node with a lLecc distance

component (/4 -1,/;) from dcstination, and the remaining route must include ¢ sparc

MOYES.

52

Chapter 3: The Probability Vectors

ii) A preferred move on the sccond dimension lcading to a node with a Lec distance
component (7,1, -1) from destination, and the remaining route must include s spare

moves.

ifi} A spare move on the first dimension leading to a node with a Lee distance component

(; +1,/,) from destination, and the remaining route must include s-1 spare moves

iy) A spare move on the sccond dimension leading (o a node with a Lee distance
component (/,,/, +1) from destination, and the remaining route must include s-1 spare

MOVes.

It can be easily verified that i gq=1,P,¢ =1, Fp, =0and Ay =0 for all s > 0 since the source
and destination nodes are both assumed to be non faulty. For /=l +5,2 2, £, is the
probability that a destination with Lee distance components (7),0) is minimally rcachable. This
probability is equal to (1 p)"™" as this requires all 7, —1 preferred intermediate nodes to be non
faulty. Following similar arguments the probabilities #y;,, and £, , are obtained. For

0<l<|k/i2)0<ty <|k/2] and s> 0, we therefore can write Py 1,588

Bgys == DB _igy s+ 2= DIBy pyors + 22 (L= PIPygigy 5t + 2 A= PPy pyuigmt (3-18)

When the destination is at distance |£/2 on one dimension or both dimensions, then the first
move can only be a preferred move on that dimension, and in this case
2 ¢
(l - p)‘Pi'|—],I'2,.S + p(l - p)PFI,Eg—l,s + p-(l - p)Pfl,fz-l-i,S"'l Ii = LF(J’ zjan 0 < ;:‘. < |_k‘lr2.J
P

I dy,s = (1~ P)B,-],f?_ o pi- p)P!l,iz—l,s + Pz(l = P)P.q AP 0<f < |_k12,.| andf; = [_f‘fz_J (3.19)
(=PYPyagys * D= DBy 1 h=[#12]and 1, = k72]

The results of Lemuma 3.1 and Lemma 3.2 are used to obtain the following theorem.

wh
(S

Chapter 3: The Probability Vectors

Theorem 3.2: For any PRA algorithm, the average routing distance D, between a given pair of

nodes at Lee distance / in the k-ary 2-cube is given by

1’ —
. ZD.'. by Wi, YIS U{;’2J
D, = ﬁ[ﬁzj (3 ‘20).

ZEU—ﬁ W if 1> Lk;’ZJ
h=i-k/z]

Claim 3.2: The average routing distance between two nodes at Lee distance / in PV_Routing in

k-ary 2-cubes is approximated by D, .

This claim is intuitively justified by the fact that PV _Routing and PRA algorithms are based on
similar probabilistic nature, and therefore we expect them to perform similarly in terms of the

achieved average routing distances.

To support this intuitive claim, we have compared the results obtained using the above-derived

expressions against those obtained through simulation. We have f{irst solved the equations related

t0 Wy Pipysi Dy, and Dy given by Lemma 3.1, Lemma 3.2, and Theorem 3.2. These

calculations yield the average routing distance vector D =(Dy Dy, ... D,[/»)) - We have then

performed experiments of the proposed PV_Routing algorithm to measure experimentally the

corresponding average routing distances vector.

54

r
E
4

Chapter 3: The Probubility Veciors

Table 3.3: The average routing distance between two nodes at Lee distance { for different
numbers ol faulty nodes in the 15-ary 2-cube using PV_Routing,

It Number of faulty nodes in 15-ary 2-cube (for PV-Routing) E

0.5 [10|15 |20 |25 |30 |35 |40 |45 | 50|55} 60]

1 (1] 1.00] 1.00] 1.00{ 1.00[1.00} 1.00] 1.00[1.00] 1.00] 1.00[1.00] 100

212 | 209 2.2 217 217 224 226 2.39 2,39] 2.44] 258 2.70| 2.55

303 3.14] 321 329 3.300 3.35 3.39 3.59 3.62) 3.66 3.70] 3.98 3.79

4 14| 414 424 433] 440 444 4.54] 4.73] 4.77] 486 4.90] 519 5.03

51 5| 514 526 535 546 552 563 581 591| 600 610 626 621

6] 6| 614 628 639 6.5l 6.60] 6.76| 6.961 7.02| 7.16] 730 7.38 741

717 | 74| 730 742 7.58] 7.65| 7.86| 8.08] 8.12] 8.28 8.46| 847 8.54

8 18| 813 829 840 8.56] 8.68 8.83| 9.04] 9.07[9.25| 2.50] 9.44| 9.53

919 | 912 926 938 953 9.62| 9.76| 9.94 9.97[10.19] 10.42{ 10.39| 10.46

10 110]10.12| 10.27] 10.38} 10.52| 10.61| 16.75{ 10.91] 10.93| 11.18| 11.37| 11.40/11.42

| 11[11] 1113 11.28) 1140} 11.54| 11.61] 11.77| 11.89) 11.97| 12.26| 12.44| 12.52| 12,5}
i 12 |12 |12.14/ 12.29] 12,411 12.55{ 12,60] 12,74 12.85{12.95]| 13.35| 13.46 13.55| 13.58
| 13 1131316 13.30] 13.42) 13.55} 13.59] 13.75{ 13.89; 13.9§| 14.38| 14.48| 14.57| 14.60
14114 114.16] 14.31) 14.45] 14.55} 14.601 14.76] 14.81] 14,91 15.28| 15 40| 15.57| 15.48

Table 3.4: The average routing distance between two nodes at Lee distance { for different
number of faulty nodes in the 15-ary 2-cube using PRA (Eq 3.20).

{ Number of faulty nedes in 15-ary 2-cube (PRA Probability)

0 5 10 { 15 [20 1 25 130§ 35] 40 | 45 [50 | 55 | &0
141 1 |1.00]1.00]1.00{1.00]1,00]3.00]1.00(1.00(1.00]1.00]1.00
2121202(2051208 2112141218]2.21225(2.29]2.33]2.38][241
313]3.0513.10|3.15}§321[328|3.35|3.42{349)1356}13.63]|3.70]3.76
414 1407 [4.15142314321441 45114061471 |4811490/([4.98]5.05
515 15091520530 [542|554 15675791591 (6.03}6.14|6.23 | 6.29

61616121624 16381652667 682696 |7.10|723|734]|7.42]|7.47
717 171417291744 17.60177717.93 808823 [835]844|849 (849
8 | 8 {814(829 845|861 |878!8.94]9.10|9.24[935]9.429.45|0.42
919 1916)932)94919.65]9.8219.98 [10.12]10.25|110.35[10.40|10.41]10.34
10 [10]10.2 110.306(10.55|10.73[10.96[11.06111.20|11,32|11,39;11.42|11.38[11.27
11111 §11.2111.41[11.61(11.81]111,99(12.15/12.29112.39]12.45(12.44[12.36]12.18
12 112 §12.2 112.45(12.67(12.88]13.07(13.2413.37]13.45|13.47[13.42[13.27|13.02
131131132 [1349113.72113.94114.13(14.29114.39{14.4314.39]14.26(14.01]14.64

{14114 143 [14.49{14.68{14.84{14.94]14.931{14.95{14.83114.62|14.25|14.84]14.27

Chapter 3: The Probability Vectors

Tables 3.3 and 3.4 show results for the calculated average routing distances using PV_Routing
and PRA (equation 3.20), respectively, in a 225-nodes 15-ary 2-cube where the faulty nodes are
increased gradually up to 60 faulty randomly distributed nodes. All possible source-destination
pairs have been generated and tested. The experimental resulis and the analytical results are in
close agreement with thosc obtained using simulation, demonstrating the accuaracy of our above
analytical derivation. The results also show that PV_Routing can achicve as good a performance
as any fault-tolerant routing algorithm, e.g. the PRA algerithm that achieves high ratios of

minimal routing in the presence of faults in the network.

A second set of simulation experimenis has been carried out for a k-ary 2-cube with a fixed
number of faulty nodes (20% of the nodes) with different random distributions. All possibie
source—destination pairs in the network have been generated and tested. Table 3.5 contains both
the calculated probability of the minimal path routing using PV_Routing and theorem 3.2 for
different Lee distances. This table also supports the claim that the proposed PV_Routing and
hypothetical PRA algorithis exhibit similar performance characteristics in terms of the achieved

average routing distances.

3.3.3 The Average Routing Distance in the £-Ary 3-Cube (or 3-D Torus).

Using similar analysis fo that introduced for l.emma 3.1 and Lemma 3.2, the average rouiing

distance D, for the PRA algorithm in the k-ary 3-cube can be expressed as

Dy =33 > Dyt Wiy » Where I 1y + 1y =l and x =min(l,[% /2) (3.21)
i=01y=00=0
— L
Dy =2 i+l + 14258, 1 o (3.22)
s=0

56

Chapter 3. The Probability Vectors

Table 3.5: The average roufing distance using PV_Routing and PRA (Eq.3.20) for a fixed
number of faulty nodes {(20% of the nodes) in the &k-ary 2-cube.

k Lee Dist [PV Routing} PRA k Lee Dist|PV Routingl PRA
1 1 1 I 1 1

3 2 2 2 2 2.577 2.295
1 L1 3 3891 | 3562
2 2.265 2171 4 4.923 4.807

5 3 3.315 3.179 5 6.152 6.023
4 4.343 3.999 13 6 7.249 7.152
1 1 1 7 8.176 8.158
2 2.184 2.278 8 9.203 9.171
3 3.357 3.442 9 10.366 10.225

| 7 4 4.312 4.463 10 11425 11.271
| 5 5.240 5.487 11 12.442 12.226

6 6.287 6.184 12 13.121 12.566
1 1 1 1 | 1
2 2.300 2.284 2 2.379 2.293
3 3.465 3.530 3 3.650 3.559

9 5 5.528 5.701 5 5.938 6.031
6 6.559 6.744 6 7.103 7.231
7 7.600 7.768 7 8.269 8.349
8 8.474 8.375 15 8 9.139 9.348
I 1 1 9 10.146 10.347
2 2.329 2.289 10 11.120 11.392
3 3.487 3.549 {1 12.152 12.447
4 4.643 4.780 (2 13.142 13.473
5 5.794 5.920 13 14.065 14.392

i 6 6.815 6.934 14 14.920 14.618
7 7.764 7.965
8 8.727 9.022
S 9.655 10.02
10 10.603 10.502

)
}Dﬁ ,1'2,.["_1,,.5‘ = (‘I' - p)lvil—l,.!'z,fg,s + p(l - P)‘}:;'] Jg'-‘l,fg,.s + p (1 - p)‘Pf; ,!2,134,3 +
3 4 .5 ,
P =Dy gyt + 2 A= DIPy paagyst + 27 (= DIFY gy s

(3.23)

_Chapter 3: The Probability Veciors

»-5—- hy>00rly >00riy >0
Wy gz = 73—— L =00rl, =001k =0 (3.24)
!
&
— {i,>0andfy, >0und/y >0
Ny

L+l +ly=land/>[k/2]
Q=0 h=0 b=t (3.25)

Vet]| k2)lkiz]
P
N, =
=2
I12f'-6+82f 1<|k/2]
i=0)

Table 3.6 shows both PV Routing results against PRA (equation 3.21) results for the average
routing distances for different sizes of the k-ary 3-cube, where the number of faulty nodes is 20%
of the total network size. The results demonstrate that the above derived expressions predict the

average routing distance with a reasonable degree of accuracy.

Table 3.6: The average routing distance using PY_Rouling and PRA (Eq.3.21) for a lixed
number of {faulty nodes (20% of the nodes) in the k-ary 3-cubes.

% |Lee Dist{PV Routing} PRA 7 7.522 7.693
1 1 1 8 8,540 8.754
3 2 2.024 2.043 9 9.513 0.726
3 3.014 3.014 1 1 1
1 1 1 2 2.204 2.235
2 2.277 2.203 3 3.394 3.426
3 3.257 3.277 4 4,501 4.602
5 L4 |..4263 | 4233 5 5.565 5.709
5 5.309 5.354 6 | 6581 | 6.785
6 6.279 6.347 9 7 7.594 7.875
1 1 1 8 8.597 8.954
2 2.297 2.232 9 9.601 10.012
7 3 3.477 3.408 10 10.872 11.083
4 4546 4.501 11 11.912 12.159
5 5.539 5.573 12 12.965 13.096
6 6.546 6.643

58

Chapter 3. The Probability Vectors

3.3.4 The Average Routing Distance for the k-Ary #-Cube (the gencral case).

We now compute the expected average routing distance in the k-ary n-cube. To reduce the
complexity of the combinatorics inveolved, and thus simplify the analysis, we assume that the Lee
distance /; (1<i=<n) across any of the » dimensions is equal 7, =&/4, which is the average
routing distance along a dimension assuming that a message can be destined (o any node in the
network with equal probability. Assuming equal chances of encountering faulty nodes on each of
the » dimensions, the number of spare moves on cach dimension is at most f/z#. Since each spare
move causes two extra routing steps, the overall average routing distance can thus be written as
AL
D= > (ki4+25)P (3.26)

=] =0

where F, | is the probability that s spare moves are made on dimension /. In order to evaluate 7

-
we assume the routing algorithm attempts to make a preferred move on one of dimensions 1, 2,
..., #1 in this order. If that is not possible, the routing attempts to make a spare move on one of
dimensions 1, 2, ..., 2 in this order. Consequently, a spare move is performed on dimenston i if
all » preferred moves are not possible (due to faulty nodes or links) and the /-1 spare moves on
dimensions 1, 2,..., 7 -1 are not possible. Hence the probability of making one spare move on
dimension i is p™"" (1~ p). The probability of making s spare moves on dimension ; is given

by

B = a-p) asisw (3.27)

The following Table 3.7 shows results using the above equations and simulation for estimating
the average routing distance in the k-ary 3-cube for differcnt sizes, where the number of faulty

nodes is 10% of the network size. The results show that in each case PV_Routing and PRA

(equation 3.26) average routing distances are in close agreement with each other.

59

Chapter 3: The Probability Vectors

Table 3.7: The PV_Routing and PRA (Eq.3.20) average routing distance for a fixed number
of faully nodes (10% of the nodes) in the A-ary 3-cubes.

k | PV Routing D PRA
2 1.705 1.502
; 3 2.004 2.253
4 3.029 3.003
5 3.665 3.753
6 4.562 4.503
7 5.266 5.254
8 0.295 6.004
96T 8754
10 7.775 7.504

3.4 Experimental Performance Analysis

In this section, we first analyse the complexity of the calculations of the PV_Routing algorithm,

and then analysc the performance of the algorithun using simulation.

The calculation of the probability vectors involves information exchanges between network

nodes. This calculation is performed in n|/4/2 |phases. In each phase, each node concurrently
sends at most 2r messages and receives at most 2r messages. Therefore the computation time
complexity is O(n’k) and the total number of generated messages is O(n?%™*'). Notice that the
computation time complexity of the routing algorithm in [64] is O((k")?} and the total number
of generated messages is O((#k")Y* &™) . Furthermore, the storage complexity in PV_Routing is
:z|_kf 2_| real numbers at cach node. On the other hand, the storage complexity of the algorithm
proposcd in [64] is in the order of k" tuples at cach node, cach tuple contains a node address and
a probability of successful routing of that node for a given source-destination pair. This excessive

communication and computation cost effectively reduces routing performance. The PV_Routing

60

Chapter 3. The Frobability Vectors

algorithm compares favourably with the algorithin of [64] with respect to both commumication

cost and storage cost,

This section also obtains experimentally three additional performance measures on the proposed
PV_Routing algorithm, namely deviation from optimality, unreachability, and looping. To this
end, simulation experiments have been carried out over a 3-ary 3-cube with 27 nodes with
different random distributions of faelly nodes. We started our cxperiments with a non-faulty &-
ary n-cube amd then the number of faulty nodes was increased gradually up to 75% of the
network size with random fault distribution. A tofal of 30,000 sourcc-destination pairs were
selected randomly at each run. In the first two sets of results reported below (in Figs. 3.6, and 3.7
respectively), However, before presenting the results, we recall the definitions of the following

variables and performance measures (se¢ Section 2.5):

- Total: total number of generated messages
Routing Distance: number of links crossed by a mcssage.
- Lee Distance: Lee distunce between the source and destination nodes.

- Fail Count: number of routing failure cases.

Looping Count: number of messages that cross a number of links beyond a maximum

threshold before being discarded.

- Average percentage of deviation from optimality
1 E Routing _ Distance— Lee_Distance «

= 100
Total

Lee Distance

Fail _Count
Total

- Percenlage ol vireachability = x 100

Looping Count
Total

- Percentage of looping = %100

61

Chapter 3: The Probability Vectors

Fig. 3.6 reveals that PV_Routing achieves a high reachability with low average percentage of
deviation from optimality. The deviation from optimality remains iow as long as this namber of
faulty nodes does not exceed 50% of the total number of nodes, then it grows almost linearly with
the number of faulty nodes. The proposed algorithm is capable of routing messages using optimat
distance paths even when there are a large number of faulty components. This is due to the fact
that the algorithm repeatedly chooses to route through areas of the nefwork with the least number
of faults in the neighbourhood by choosing to route to a prefetred neighbour with the least
probability that a destination at distance ! from A is not minimally reachable from 4. As a result,
the algorithm tends to select paths that diverge from areas with high counts of faulty components.
The result also reveals that the percentage of looping remains practically negligible when the

percentage of faulty nodes is less than 40%.

Another experiment was carried out to evaluate the performance behaviour of the new algorithm
when the network size increases. For the sake of illustration, we have fxed the value ufﬂn fo 3,
and increased the value for £ from 2 up to 9; we have found that the same conclusions are
reached when other values of # arc considercd. For cach nctwork size, the algortthm has been
tested by setting the percentage of faulty nodes to 10% of the network size, then to 20%, 30%,
40%, and 50% of the network size. At each run, a total of 30,000 source-destination pairs were
selected randomly. The result presented in Fig. 3.7 shows that the performance properties of the
PV Routing are not affected as the network size is scaled up. This reveals that the proposed

algorithm possesses the desirable property of mamtaining good performance levels without

imposing any restriction on the system size.

Chapter 3: The Probability Vectors

Percentage of Unneachsbility
u

. /
01 oo o o oottt o e, & —e—
& 1 3T 3 4 % & 7 M s w oo 3 % e a8 s e

Number of Faulty Nodes

2
) "‘.
i’ }/ \
[\
& '|| \
E M \
for
& i\ ,,} \
-: L} \" \
E |
& ['\ /o
s / v/
- 2% o
= o =
R e e o -
® 1 2 3 4 5 6 T M % 10 N N OB W15 s 17w
Number of Fauity Nodes

Fig. 3.6: Percentage of unreachability and average percentage of deviation in the proposed
PV_Routing algorithm for 3-ary 3- cube.

63

Chapter 3: The Probability Vectors

2838

—a—10%

——20%

——30%

——40%

——50%

g

Deviation form Optimality
N £-3
o (=]

3

o

~o— 10% —o—20% —a— 30% —n— 4% —u— 50%

A b
N s
L)
L

Unreachability
5 N

ON & O ®
Ny

10% ——20% —a—30% —u-40%

= 50%

_x
2254‘

Fig. 3.7: Average percentage of deviation, percentage of unreachability, and percentage of
looping in the proposed PV_Routing algorithm for different sizes of the k-ary n-cube.

64

Chapter 3: The Probability Vectory

3.5 Performance Comparison

This section comparcs the performance of owr two algorithms proposed for the k-ary n-cube,
namely PV_Routing and UV_Routing (proposcd m Chapter 2), in terms of reachability, deviation
from optimality, percentage of looping, average routing distance, communication complexity,

and computation overhead.

3.5.1 Comparison of the Performance Merits

We have used the three performance measures defined in the previous chapter (average
percentage of deviation fromn optimality, percentage of unreachability, and percentage of looping)
as the basis for comparing the performance of PV_Routing and UV_Routing algorithms.
Simulation experiments have been carried out over a 9-arv 3-cube with 729 nodes with different
random distributions of faulty nodes. We started our experiments with a non-fauity k-ary n-cube
and then the mumber of faulty nodes was increased gradually up to 50% of the network size with
random fault distribution. A total of 50,000 source-destination patrs were selected randomly at

gach run.

Figs. 3.8, 3.9, and 3.10 reveal that both algorithms achieve a high reachability with low
percentage of deviation from optimality. The deviation from optimality remains low as long as
the number of faulty nodes docs not cxceed 25% of the total number of nodes. It then grows
almost linearly with the number of faulty nodes. Both algorithms are capable of routing messages
using optimal distance paths even when there are a large number of faulty components. This is
due to the fact that both algorithms repeatedly choose to route through areas ol the network with
the least number of faults in the neighbourhood via attempting to maximize the chances of
minimal distance routing. As a resulf, both algorithms tend to select paths that diverge from areas

with high counts of faulty components. The results also reveal that the percentage of looping

65

A
:
:

Chapter 3: The Probability Vectors

remains practically negligible when the percentage of faulty nodes is less than 30% for both
algorithms. In general, the PV_Routing and UV_Routing algorithms exhibit similar performance

in terms of reachability and deviation from optimality.

Deviation

—8— Probability —aA— Unsafety

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350
Faulty Nodes

Fig. 3.8: Average percentage of deviation in the PV_Routing and UV_Routing
algorithms in the 9-ary 3-cube.

Unreachability

| e 'V =i Unsafcty |

0 25 50 s 100 125 150 175 200 225 250 275 300 325 350
Faulty Nodes

Fig. 3.9: Percentage of unreachability in the PV_Routing and UV_Routing algorithms in
the 9-ary 3-cube.

66

Chapter 3: The Probability Vectors

Looping

=B Probability =—gr——Unsafety

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350
Faulty Nodes

Fig. 3.10: Percentage of looping in the PV_Routing and UV_Routing algorithms in the
9-ary 3-cube.

Another set of performance experiments has been conducted to evaluate the behaviour of the
PV_Routing and UV_Routing algorithms when the network size increases. For the sake of
illustration, we have fixed the value of n to 3, and increased the value of & from 2 to 9 (for a
network size varying from 8 to 729 nodes). For each network size, our algorithms have been
tested by setting the percentage of faulty nodes to 10% of the network size, then to 20%, 30%,
40%, and 50%. At each run, a total of 30,000 source-destination pairs were selected randomly.
The results presented in Figs. 3.11 through 3.16 show that the performance properties of the
PV_Routing and UV_Routing are not affected as the network size is scaled up. This reveals that
both algorithms possess the advantageous property of maintaining good performance levels

without imposing impractical restrictions on the network size.

As stated above, the experimental performance comparison shows that both algorithms have
similar performance in terms or reachability, deviation from optimality, and looping. However,
the nature and amount of the calculations of the unsafety vectors are different from those of the
probability vectors. This difference is reflected in the computational complexity and

communicational overhead for the two algorithms, as will be discussed below.

67

Chapter 3: The Probability Vectors

Deviation of Unsafety Vectors Algorithm

—B— 10% ——20% —A—30% —H*—40% —¥—50%

L)
=
E S
w
>
~
o0
-]

k values

Fig. 3.11: Average percentage of deviation in the UV_Routing algorithm.

Deviation of Probability Vectors Algorithm

—8— 10% ——20% —A— 30% —¥—40% —¥— 50%

100

80

60

Y
20 & A A
0

2 3 4 5 6 7 8 9

k values

Fig. 3.12: Average percentage of deviation in the PV_Routing algorithm.

Unreachability of Unsafety Vectors Algorithm

—8—10% ——20% —&—30% —¥—40% —¥—50%

(5]
e
o
wn
=3
~
o
o

k values

Fig. 3.13: Percentage of unreachability in the UV_Routing algorithm.

68

Chapter 3: The Probability Vectors

Unreachability of Probability Vectors Algorithm

—8—10% ——20% —&—30% —¥—40% —¥—50%

15
10
5
0 - el
2 3 4 5 6 7 8 9
k values

Fig. 3.14: Percentage of unreachability in the PV_Routing algorithm.

Looping of Unsafety Vectors Algorithm

| —B—10% —0—20% —A—30% —H—40% —¥—50%

K values

Fig. 3.15: Percentage of looping in the UV_Routing algorithm.

Looping of Probability Vectors Algorithm

—B— 10% —8—20% —A—30% —%—40% —%—50% |

k values

Fig. 3.16: Percentage of looping in the PV_Routing algorithm.

69

Chapter 3: The Probability Vectors

3.5.2 Comparison of the Average Routing Distance

In section 3.3 we have introduced a Probabilistic Routing Algorithm (PRA) model in order to
evaluate the average rouling distance for probability-based algorithms that satisfy the PRA

conditions. Analytical results kave been presented based on this model.

We now compare the analytical results against the experimental results using both UV_Routing

and PV_Routing algorithms. We first solve the equations (3.21 — 3.24) related to w;, ,;,

P Lds » 53”,1,;] ,and D, given by Lemma 3.1, Lemma 3.2, and Theorem 3.2. These calculations

yield the average routing distance vector D, =[D,,D,,..,D,]. We then simulate both

PV_Routing and UV_Routing algorithms to measure the experimental average routing distance

vector for both algorithins.

Table 3.8 shows both analytical results nsing PRA and experimental results using both
PV Routing and UV Routing for different kary 3-cubes where the number of faulty nodes
equals 10% of the nodes with random distribution for these faulty nodes. All possible source-
destination pairs have been generated and tested. The experimental and analytical results for both
algorithms are in close agreement. This reflects the good performance of both PV _Routing and

UV_Routing in achieving high ratios of minimal routing in the presence of faults in the network.

1t is worth noting that other experiments have been conducted for a varying the number of faulty

nodes. The same conclusion has been reached from those experiments regarding the relative

performance behaviour of both algorithms.

70

Chapter 3: The Probability Vectors

Table 3.8: Average routing distances using PV_Routing, UY_Routing, and PRA in k-axy 3-

cubes.
k | PV Routing D |UV Routing I} | PRAD
2 1.705 1.718 1.502
3 2.004 2.092 2.253
4 3.029 3.062 3.003
5 3.665 3.756 3.753
6 4.562 4.663 4.503
7 5.266 5.564 5.254
8 6.295 6.307 6.004
9 6.717 7.016 6.754
10 7.775 7.889 7.504

3.5.3 Communication Complexity and Calculation Overheads

The performance of the UV_Routing and PV_Routing algorithms is primarily dependent on the
overhead associated with the calculations of the unsafety and probability vectoss, respectively,
and which involve message-passing communication between network nodes. The UV_Routing
algorithm performs in the order of nka 2J phases. In each phase, each node sends at most 2n
messages and receives at most 21 messages. Therefore the computation time complexity at each
phasc is O nk) and the total number of generated messages in the network is O(»%4™!). Notice
that the PV _Routing algorithm performs the same order of message exchanges with the
difference being that probability vectors messages are substantially of smaller size. This cost is

quite substantial (especially in terms of the total number of generated messages).

The PV_Routing algorithm requires from each node A4 to build a set 74 of all faulty immediate
neighbouring nodes. The size of this set is, in the worst case, proportional to the number of fauity

nodes in the network. Based on the global information set F4, node 4 will then calculate a local

71

Chapter 3: The Probability Vectors

probability vector Py of n[_k! 2_| numeric components and use it for routing. This compares

favourably with global-information-based routing algorithms which require in the order of %"

global information in the k-ary #-cube to be collected and used during decision making.

The excessive conununication and computation cost for global-information-based algorithms
does not justify the little gain in achieving optimal routing as compared to near optimal routing
achieved by the UV_Routng algoxithms and PV_Routing. On the other hand, the UV_Routing
algorithm requires substantially higher initial computation and communication overhead in
calculating the unsafety vectors as compared to the initial calculation of the probability vectors

for the following reasons:

1) Unsafety sets arc destination dependent while probability vectors are destination

independent.

ii) Calculating the unsafety sets involves exchanging the sets I74 between neighbours while
calculating the probability vectors involves exchanging single numeric values between

neighbours.

3.6 Conclusions

K-ary n-cubes have been one of the most popular netwerks for multicomputers. This chapier has
first introduced the concept of “probability vectors”, and then used it to propose an efficient fault-
tolerant routing algorithin for k-ary n-cubcs. As a [irst sicp in the algorithm, cach node 4
determines its view of the fauity set F,of neighbouring nodes which are either faulty or

unreachable from A. Equipped with these faulty sets, node 4 calculates its probability vector P*

by exchanging fault information with its reachable neighbours. An element P;A ,1gi<nkr2],

Chapter 3: The Probability Vectors

of the vector is an estimation of the probability that a destination node at distance / cannot be
reached from node 4 using a minimal path due to a faulty node or link aleng the path. Each node
then uses the probability vectors to perform efficient fault-tolerant routing in the &-ary s-cube

network,

An analytical study has been presented to derive upper bounds on the uverage message distance
achieved by the proposed algorithm. A performance analysis of the proposed algorithm using
simulation experiments has also been reported. The results have revealed the validity of the
analytical model and have confirmed that the algorithm provides good performance in terms of
the routing distance and percentage of reachability even when the number of faulty nodes in the
network is large. The results have alsoe revealed that the proposed algorithm maintains good

performance levels as the network size scales up.

This chapter has also compared the performance of the probability vectors algorithm with the one
proposed in the previous chapter. The results have shown that both algorithins exhibit similar
performance with regards to the achieved average routing distance, reachability, and deviation

from optimality. However, the probability vectors algorithim has the advantage of lower storage

requirement and communication overhead.

73

Chapter 4: Adapting The Unsafety Vactors to Hypercubes

Chapter 4

Adapting The Unsafety Vectors Algorithm to
Hypercubes

4.1 Introduction

The hypercube (or the binary s-cube) has been one of the most popular networks for
multicomputers due to its attractive topological properties, e.g. regularity, recursive structure, low
diameter, and ability to exploit communication localify. Several commercial and experimental
systems have employed this network, including the NCUBE-2 {54], iPSC/2 [58], Cosmic Cube
[68], and SGI Origin 2000 muitiprocessor [75]. There have been a number of attempts to design
limited-globat-information-based fault-tolerant algorithms for the hypercube, and the paragraph
below briefly reviews some of the important algorithms that have been proposed in the literature

[18, 46, 81, 83].

Chapter 2 has introduced the unsafety vectors as a new concept for designing a new fault-tolerant
routing algorithm for f-ary n-cubes. The new routing algorithm has two tmportant advantages
over those already existing in the relevant literature, c.g. [18, 32, 64, 83]. Firstly, it can casure

fault-tolerance under more relaxed assumptions, regarding the number of faulty nodes and thetr

4

Chapter 4 Adapting The Unsafety Vectors to Hypercubes

locations in the network. Secondly, the algorithm is more geneval in that it can easily be adapted
to different topologies, including those that belong to the family of k-ary n-cubes (e.g. torl and

hypercubes) and those that do not (e.g., generalised hypercubes and meshes).

As most previous studies on fault-tolerant routing have mainly focused on the hypercube [18, 46,
81, 83], the objective of the present chapter is to demounstrate how the concept of unsafety vectors
can be adapted and applied to the hypercube for the design of effictent new fault-tolerant routing
for this network. The resulting new algorithim is then compared against the safety vectors
algorithm [81]. The reason we have selected the safety vectors algorithm in the present study is
because besides being the most recent algorithm proposed in the literature, it has been shown to

possecss superior characteristics to existing similar algorithins [44, 46, 84].

In the unsafety vectors approach, each node 4 staris by determining the sct of faulty or
unrcacheble neighbours. Then, each node A performs (n-1) exchanges with ifs neighbours to
determine its faulty set containing all faulty or unreachable nodes at different distances from node
A. The unsafety sets are derived from the faulty sets according to the Hamming distance between
the node and the clements of its faulty set. The k-level unsafety set §7 for all { < k& < m, where
1< m<n, represents the set of all nodes at Hamming distance & from 4 which are faulty or
unreachable from 4. Each node uscs the unsafety sets to calculate numeric unsafety vectors o
achieve fault-folerant routing in the network. The chapter includes an analytical study proving
some properties of the proposed algorithm. The performance of the proposed routing algorithm is
comparcd against that of the safety vectors algorithin using simulation. The results demonsirate
that the new unsafety vectors algorithm exhibits superior performance characteristics to the

existing safety vectors algorithm,

The amount of the limited-global information used in the unsafety vectors is substantially smaller

75

Chapter 4: Adapting The Unsafety Vectors to Hypercubes

(at most f addresses, where £ is the number of faulty nodes which is typically a small fraction of
2™y than the amount of information usually needed by global-information-based algorithms which

is proportional fo the number of nodes 2",

The simplicity and reduced size of the routing information result in faster routing decisions and
reduce the amount of exchanged information. Global-information-based algorithims have the
advantage of achieving optimal routing. However, our propesed limited-global-information-
based algorithm achieves near optimal routing with a big reduction in the amount of exchanged

routing information and in the complexity of the routing algorithm.

Before presenting the adaptation of the unsafety vectors algorithm for the hypercube, this chapter
reviews some background information (preliminaries and notation) that will be useful for the
subsequent sections. Then a description of the recently proposed safety vectors approach is

presented [81].

4.2 Preliminaries and Nofation

The n-dimensional hypercube, 0, , is an undirected graph with 2" vertices, representing nodes,
which are labelled by the 2" binary strings of length ». Two nodes are joined by an edge if, and
only if, their labels differ in exactly one bit position, The label of node A is written a,a,.5...a,
where @; € {0, 1} is the i bit (or bit at /* dimension). The neighbour of a node 4 along the ™
dimension is denoted 4@ . A faulty n-dimensional hypercube contains faulty nodes and/or links.
The Hamming distance between a node 4 and a nede B, denoted H (A,), is the number of bits at
which their labels differ. In other words, H (4, E) = |4 @ B| where @ denotes the "exclusive or”
binary operation. A path between two nodes 4 and B is an opfimal path if its length is equal to

T4, B).

76

Chapter 4: Adapting The Unsafety Veciors to Hypercubes

With respect to a given destination node, D, a neighbour 4 of node 4 is called a preferred
neighbowr for the routing from A to D if the i bit of 4 @ D is 1. We say in this case that i is a
preferred dimension. Neighbours other than preferred neighbours are called spare neighbaurs.
Routing through a spare neighbour increases the routing distance by two over the minimum
distance. An optimal path can be obltained by routing through all preferred dimensions in soine
arder. A node 7 1s called an (A, D)- preferred transit node if any preferred dimension for the

routing from 4 to T'is alse a preferred dimension for the routing from A to .

Example 4.1: Suppose that 4 = 1101 and D = 1010, We have 4 € D = 0111. Therelore, smong
the neighbours of 4, nodes 1100, 1111, and 1001 are preferred neighbours and node 0101 is a
spare neighbour. Nodes 1000, 1001,1011,1100,1110 and 1111 are preferred transit nodes for the

routing from A4 to D.

We make the following assumptions for the purpose of our present study. These assumptions

have also been used in similar previous studics {46, 81, 83, 84].

i} A faulty n-dimensional hypercube contains faulty nodes and/or links. The faults are

distributed with equal probabilities across the network nodes and links.

if) Each node is provided with the status of its own communication links and the status ol

its neighbouring nodes when routing veetors nced to be calculated.

iif) If there is a faulty link between two nodes, then cach of the two nodes considers the

node at the other end as faulty.

iv) Lower software/hardware layers are responsible of detecting changes m the

fault/recovery configuration and activation of the routing vector recalculation,

77

Chapter 4. Adapting The Unsafely Vectors to Hypercubes

4.3 The Safety Vectors Approach

Wu [81] has presented a reliable communication scheme for hypercube-based multicomputers
using the safety vector concept. In the safety vector approach, each node in the n-dimensional
hypercube is associated willt a safely vector, which can be considered as an approximated
measure of the number and distribution of faulis in the neighbourhood. As will be described
below, an optimal routing between two nodes at a Hamming distance & is guaraniced if the £ s

element of the associated safety vector is set to one.

Basically, each node int an »-dimensional hypercube is associated with a bit vector, called a safety
vecior, calculated through r - 1 rounds of information exchange among neighbouring nodes. In
this approach, fault information is captured in a safety vector of » bit numbers, (1) , ua , ..., #;),
associated with each node, u#. Specifically, u; represents the routing capability of node u to k-
Hamming distance destinations. Based on the topological property of the hypercube, the &A™ bit of
a safety vector can be determined from the (k - 1)" bit, #{?, , of safety vectors of its neighbours if

-1

k>1, or directly if k =1. The safety vectors () , #2 , ..., #,) is defined as follows:

[0 The first bit:
{D if node u is a faulty nodc or an cnd nodc of a faulty link
u, =

. 4.
1 otherwise @
[0 The X" bit, where 2 £ k < n:
. I ()
uy = 0 1f§uk_1 <n-k (4.2)

1 othorwise

78

Chapter 4: Adapiing The Unsafety Veciors to Hypercubes

If the #% bit of the safety vector of a node is one, then there exists at least one preferred neighbour
that has 1 in the (k - 1) bit of its safety vector. This neighbour is one step closer to the
destination. Using this property inductively, a minimal path can be constructed to any destination
which is 4-Hamming distance away from a given node. Faulty nodes are assumed to be
associated with safety vector (0, 0, ..., 0) which corresponds o the lowest order of safety degree.
A nodg associated with (1, {, ..., 1) as its safety vector has the highest order of safety degree and

the corresponding node is calicd a safe node; otherwise, it is called an unsafe node.

4.3.1 Calculation of Safcty Vectors

The GLOBAL_STATUS (GS) algorithm, described in Fig. 4.1, calculates the safety veetor of
cach node in the network. Suppose that a source node intends to forward a message to a node k-

Hamming distance away. The optimality is guaranteed if the A™ bit of its safety vector is 1 or one
g Y P yisg

th

of its preferred neighbours’ safety vector (k- 1) bitis 1.

th

Routing starts by forwarding a message to a preferred neighbour with a 1 in the (k- 1) bit of its

safety vector. This node, in turn, forwards the message to one of its preferred neighbours which

has 1 in the (& - 2)th bit of its safety vector, and so on. If there is no preferred neighbour that has 1

in the (& -1)" bit of its safety vectors but there exists a spare neighbour which has 1 in the (5+1)"
bit ol iis safety vector, the message is [rst forwarded to this neighbour and, then, the optimal

routing algorithm is applied. In this case, the length of the path is the Hamming distance plus

two, resulting in routing through a spare neighbour.

Chupter 4: Adapting The Unsafety Vectors to Hypercubes

Algorithm GLOBAL STATUS (GS)
/* determine safety vector (uy, uz,..., i) of node u in n-cube Q, */
Begin
Forallu & Q, /* determine the first bit u; */
if'uis an end node of a fawlty link then u; = Q else uy = 1;

fork=2step | ton /*determine the K" bit u,, where 2 <k <n*/

forallu e Q,/* (k- 1)™ bits, ul) ,of neighbors’ safety vectors */

i
y:ZuE’L Sn-kthen u, = Oelse u, — 1
=1

End.

Fig. 4.1: The algorithm for calculating the elements of the safety vectors for a given node in
an x#-dimensional hypercube.

4.3.2 The Routing Algorithm Using Safety Vectors

The routing process consists of two parts: UNICASTING AT SOURCE NODE, cutlined in
Fig. 4.2, is applied at the source node to decide the type of routing process and to perform the
first routing step. UNICASTING AT INTERMEDIATE NODE, outlined in Fig. 4.3, is used at
the intermediate nodes along the message path. After the first routing step, both
OPTIMAL UNICASTING and SUBOPTIMAIL, UNICASTING, as described in Fig. 4.2, sclect
a Hamming distance path to route the message to the destination node. Therefore there is no need

to distinguish the type of routing process in UNICASTING AT INTERMEDIATE NODE,

The main drawback of the safety vectors approach is that it is too pessimisiic in deciding whether

there is an optimal path between two nodes when there are failures in the neighbourhood. As will

80

Chapter 4: Adapting The Unsafety Veciors to Hypercubes

be subsequently discussed, there are some situations where 1t 1s possible to [ind an oplimal path

between iwo nodes, but the safety vectors approach is not capable of locating them.

Algorithm UNICASTING _AT SOURCE _NODE

N=s @d;, H=|s &d|;
/* calculate navigation factor N and Hamming distance H %/
ifSu=1vIi(S, =1AN"=J)

/¥ the ITth bit of the safety vector is one or the (H - 1)th bit of the safety
vector of a preferred neighbour is one */

then OPTIMAL UNICASTING:
send (m, NV 10 57), where § LL =1and NV =}

/* send message m to preferred neighbour s ¥, where the (H - 1)th bit
of ifs safety vector is one, logether with N afier resetting bit i ¥/

else if F(S, ~1ANY=0)
/* the (H - Dth bit of u spare neighbour's safety vector is one */
then SUBOPTIMAL UNICASTING:
send (m, N7 1o Sm), where S:il = f

/* send message m to spare neighbour s ¥ , where the (H + 1)th bit of
its safety vector is ane, together with N after resetiing bit i ¥/
else failure

End.

Fig. 4.2: Routing at a source node using safety vectors.

Example 4.2: Consider a 4-dimensional hypercube with four faulty nodes as described in Fig.

4.4. A total of (»-1) rounds of information exchanges are performed to calculate the safety

81

Chapter 4: Adapting The Unsafety Vectors to Hypercubes

vectors for all nodes in the network. Table 4.1 shows the formation of the safety vectors after

each round of the safety vector calculation algorithm (described in Fig. 4.1).

Algorithm UNICASTING AT INTERMEDIATE NODE

Begin

/* at any intermediate node u with message m and navigation vector N */
if N=0 /* the navigation factor is empty */ then stop /* the current
node is the destination node */
else send (m, NV to u”), where u) |, =1and N” = I
/ * send message m to preferred neighbour u” , where the (H - 1)th bit is

one, together with N after resetting bit i */
End.

Fig. 4.3: Routing at an intermediate node using safety vectors

Chapter 4: Adapting The Unsafety Vectors to Hypercubes

Table 4.1: The safcty vectors in a 4-dimensional hypercube with 5 faulty nodes.

{A) The initial safety vector assignments

Node | 0000 0001 0010 0011 0100___ [0101 0110 0ill
Safet o
Safety g |y | (LALD | 0000 | 0000 [oL 0000 | oL
- Node 10060 1001 1010 1011 1100 1101 1110 1111
Sy Ly | 00003 | {LLLY LG [L | {LLLL HLLLL | LT
(B) The safety vectors after the first round
Node 0000 0001 0010|0011 _ [0l00 010] 0110 o1
f,if:ltgr MLLLY 001 ({1,001 | 0,0000 | (0,000 | 8,1,1,1) | £0,0,0,0) | {1,0,1,1}
Node 1000 [1001 1010 1041 1100 | 1101 1110 1111
31:[:;-0)’1 {1!1,1,1} {0,0’0,0} {1’0’1’1} {1515131} {191 ?151} {151 5.l31} {]-)]-al)l} {1}15-131}
(C) The safety vectors atter the second round
Node 0000 0001 0010 0011 0100 0101 0110 0111
Safet
Veotne | GO0 | {051 | (LOL1 | 0,000} | {0,0,000 | {1101} | {0,000} | {1,011
Node 1000 1001 1010 1011 1100 | 1101 1110 111
Safet _ N
oo LI | 000,00 | (LY | {LLLY [LLLG [ILLLEY [{LLLL | 4L
(D) The safety vectors after the third (final) round
Node 0000 0001 0010 0011 0100 0101 0110 011l
Safot
Safely L a0n | 4000 | (051 | 0000 | 0000 [{1101 | 0000 |e1n
Node 1000 1001 1010 1011 1100 1101 1110 1111
%ﬁtgr 1,1,1,13 | {0,0,0,0% | {1,0,1,1} | {1,111} | {5,111} | {LL,L1} | {LLLL] {LLL1

83

Chapter 4: Adapting The Unsafety Vectors to Hypercubes

4.4 The Unsafety Vectors Fault-Tolerant Routing Algorithm

The adapted (ault-tolerant routing algorithm, based on the concept of unsafety sets (defined
below), presents a remedy for the major limitations of the safefy vectors algorithm proposed for
the hypercube [81]. These limitations are related to its conservative (pessimisiic) routing
approach and inapplicability to the network partitioning fault contigurations. Belore presenting

the new algorithm let us first discuss how a node in the hypercube calculates its unsafety sets.

4.4.1. Calculation of Unsafety Sets

Definition 4.1: The first-level unsafety set 5{* of a node 4 is defined as

sf = Ufé , where £ is given by

1<iga
fie (A i A s fandty
4 P Otherwise

S{is the set of faulty or unreachable neighbours of A.

Definition 4.2: An isolated node is associated with first-level unsafety set containing 7 addresses
Si.d

=n.

of faulty nodes, i.c.,

Definition 4.3: If for some node A4,

S l = n -1, then node 4 is called a dead-end node.

Each node then determines the faulty set £, , which comprises those nodes that are either faulty

or unreachable from 4 due to faulty nodes or links. This is achieved by performing (n—1)

exchanges of the sets of detected faunlty nodes with the reachable neighbours. Atter determining

#,,node 4 calculates m unsafety sets, | <m <, denoted SfI , S{‘ yeeny S (defined below).

Chapter 4: Adapting The Unsafety Vectors to Hypercubes

Definition 4.4: The k-level unsafety set S;',1<k <m, for node 4 is given by

Sit ={Be F,| H(4,B) =k}

The k-level unsafety set S;' represents node A4’s view of the set of nodes at Hamming distance k

from A which are faulty or unreachable from A4 due to faulty nodes and links. Notice that if the
network is disconnected due to faulty nodes and links, 4’s view about unreachable nodes may not
be accurate. In this case message looping will occur. We later present (see Section 4.4.3) a
method for detecting and handling such looping. Fig. 4.6 provides an outline of the

Find Unsafety Sets algorithm that node 4 uses to determine its faulty and unsafety sets.

1

1100

Fig. 4.5: A 4-dimensional hypercube with five faulty nodes (represented in dark colour).

Example 4.3: Consider a four-dimensional hypercube with five faulty nodes, as shown in Fig. 4.5

(faulty nodes are represented as black nodes). Table 4.2 shows the corresponding first-level

unsafety set, S;’, associated with each node A. The Find Unsafety Sets algorithm calculates the

sets S,‘f1 forall 1 <k <m, 1<m<n, after calculating F4. To achieve this, (n-1) exchanges of fault

information are performed among neighbouring nodes.

Chaprer 4: Adapting The Unsafety Vectors to Hypercubes

Let m=n and for the sake of a specific illustration we show how to compute the unsafety sets
associated with node 4=0000. First, the node assigng the addresses of its immediate faulty
neighbours to its faulty sct . Then cach node performs n-1 exchanges of the new elements of its
faulty set 7y with the immediate non-faulty neighbours. After determining £, node 4 calculates

m unsafety sets denoted Si*, $4,..., §7 according to the Ilamming distance between node 4 and

each element of 4. So, the faulty set for node A in our example, given in decimal representation,

Fy={1, 8, 10, 12, 15}, and the unsafety sets are S{'={1, 8),57 =410, 12}, §;={}, and S/ ={15}.

Algorithm Find Unsafety Sets (A: node)
/* called by node A to determine its faulty set and unsafety sets™/
Fy = set of faulty immediate neighbours;
fork:=1tan-7 do
/
fori:=1fondo
if 49 & Fy then

{
send Fq to AV,
receive Fu¥ from AV ;
Iy=Fy word
4

}
fori:=1tondo

iflink(A, AY)) faulty then Fy=F, w{AV};
fork:=1{tomdo
5f ={BeF,| H(AB) =k}

End.

Fig. 4.6: Faulty and unsafety sets calculation in the hypercube.

Chapter 4: ddapting The Unsafety Vectors to Flypercubes

Table 4.2. The {irst level unsafety se(s of nodes in a 4-dimensionak hypercube with 5 faulty

nodes.
Node 0000 0001 0010 001! 0100 010! 0il0 0111
S{ {1,8} Faulty {10} {1} {12} {1} {3 {15}
Node 1000 1001 1010 1011 (100 1101 1110 1111
SIA Faulty {1,8} Faulty £10,15} Faulty 112,15} 110,12,15} Faulty

4.4.2. The Unsafety Vectors Routing Algorithm

Definition 4.5: For a given source-destination pair of nodes (4, D), we define the (4, D)-unsafety

A.D AD

vector UAP = (P .. uP .. uPy where its k"

element is given by

ult=1{ Te S, such that T'is an (4, D)-preferred transit node}|.

In other words, ;" is the number of faulty or unreachable (4, D)-preferred transit nodes at

distance & from 4. u;** can be viewed as a measure of routing unsafety at distance k from 4 when

routing to destination D, hence the name unsafety vectors for /4% . We also define an ordering

relation ‘<’ {or numeric vectors as follows. For any two numeric vectors U = {u, us,..., u,,) and ¥V
={(V1, V2, ooy Vi), U< Viff 34,1 <i<m, such that u; < v, and u; = v; for all j < i. Fig. 4.7 shows
the proposed fault-tolerant routing algorithm that each node in the network applies to route a
message towards a destination node D. In the rest of the present chapter, we will refer to the new

rouling algorithm as the “unsalety vectors algontbm™ to contrast it with the “safety vectors

algorithm proposed by Wu [81].

87

Chapter 4: Adapting The Unsafety Vectors o Hypercubes

Algorithm Unsafety Vectors (M. message; A, S, D: node)

PR called by node A to route message M initiated at source S towards its
© destination node D */
if A =S then M Route_distance = ()

D if M Route distunce<= H(A,D) + 2 x IFA| then

{ M Route distance:=M Route distance + | i
if A =D then exii; /* destination reached */ '

if 3 a preferred non-faulty neighbour AV such that

wAOP < W 1S FSHAD) -1 thensendto AV /¢ Theorem 4.1%

Let AV be the reachable preferred neighbour with least
(A D)-unsafety vector U AL and AD is not dead-end
if AD exists then
send M to 4D

else

{
Let AY be the reachable spare neighbour with least (A", D)-unsafety

D

! i ooy L
i vector U P and A is not dead-end;

if AV exists then
send Mo AV

else fuilure /* destination unreachable */

}

¥

else Handle looping /* will be discussed in section 4.4.3 %/

i

Fig. 4.7: A description of the unsifety vectors routing algorithm in the hypercube.

38

Chapter 4: Adapting The Unsafety Vectors to Hypercubes

Example 4.4: Consider the hypercube depicted in 1'ig. 4.5. Consider the source node A=0010 and
the destination node D=1101, and assume m=1. According to the unsafety vectors algorithin, the
source node 4 will rounte a message (o a preferred neighbour associated with the least number of
preferred faulty nodes in its unsafety sets, which is node 0110. By performing the same

operattons the message will be routed to node 0100 then 0101 and finally to its destination 1101.

4.4.3. Handling of Message Looping

The unsafety vectors algorithm can be improved to minimise the effect of looping. Notice from
the description of the unsafety vectors algorithm given in Fig. 4.7 that looping is detected if the
routing distance exceeds the specified limit (Hamming distance plus 2f where /is the number of
faulty nodes). Since cach faulty nodc may causc a derouting and an increase in the rouiing
distance by a value 2, the maximum increase in the routing distance should not exceed 2f. Since
looping occurs when a destination is not reachable from the source we can add the destination
nede to the faulty set of the node that detected the looping. When this occurs (12-1) exchanges of
infonmation between all neighbours are then initiated to propagate the new information among
reachable nodes in the whole hypercube. Experimental simulations showed that the percentage of
looping decreases significantly to less than 1%, rcgardless of the number of faulty nodes in the

network, when we include this simple mechanism to handle message looping.

4.4.4. Properties of the Unsafety Vectors Algorithm

The new routing algorithm is capahle of routing messages in a fanlty network via fault-free
minimal paths if they exist, otherwise the algorithm routes messages via fault-free near-minimal

paths 1f they exist. The unsafety vectors algorithm always attempts to route messages along

minimum distance paths between the source and destination nodes if they exist.

89

Chapter 4: Adupting The Unsafety Vectors to Hypereubes

Theorem 4.1: Given a non-faulty pair of source and destination nodes (4, D), if u*? <i, for all

;
1<i< H(A,D) -1, then there exists at least one minimal fault free path between the source A and

the destination D.

Proof: (By induction on H (4, D)). For H (4, D)=2, assume that »;*” <1. Let 4 and AV ve

the two (4, D)-prefetred transit nodes. Since #;” <1 either 4 or 4 is non faulty (assume it

is A9, Therefore, the path 4 —» 4¥ — D is minimal and fault-free.

Let us assume that the property is satisfied for £ (4, D) < k for some 2 < k < n. Now, consider the
case H (4, D) = &+1. Since U,f'D <k at least one of the k+1 (A4, D)-preferred transit nodes at
distance k from A is non fanlty. Let B be such a node. Notice that the set of (4, B)-preferred

fransit nodes at any distance / from A, 1 </ <%, is a subsct of the set of (4, D)-preferrcd transit

nodes at the same distance 7 from 4. Therefore U/ <UM <i.

By induction hypothesis, there exists a minimal fauli free path from A to B. Hence the existence

of a minimal fault-free path from 4 to D going through B. .

Corollary 4.1: The unsafety vectors algorithin selects a preferred neighbour positioned on a
minimal fault-free path if there exists at least one such a path between the source 4 and the

destination D,

Theorem 4.2: Let AV and AY) be two non faulty (4, D)-preferred neighbours of A. If all

preferred neighbours of AY are faulty and at least one preferved neighbour of AW is non fuulty

then the unsafety vectors algorithm does not route messages of destination D via AY

. (i) AD 4% p i p W
Proof: Since ut P <udP then U7 <UA7 | Therefore, U*” is nol the smallest

vector and therefore 4V is not selected as a forwarding node.

90

Chapter 4: Adapting The Unsafety Vectors to Hypercubes

FExample 4.5. Consider a four-dimensional hypercube with seven faulty nodes, as depicted in I'ig.

4.8. Table 4.3 shows the unsafety set and the safety vector associated with each node. Consider a

source 4=1110 and a destination D=1001. The safety vectors algorithm fails to route a message

between the pair (4, D) since the third bit (A=3) of the safety vector of the source node is not one

and since none of the preferred neighbours has one at the sccond bit (#-1) of their safety vectors.

Also none of the sparc neighbours has onc at the fourth bit (A+1) of their safety veetors. On the

other hand, the unsafety vectors algerithm is capable of achieving an optimal route between the

source and destination (4, D)} in this case. The unsafety vectors algorithm will route the message

to the intermediate node 1010 since it has the least number of preferred faulty nodes in its

unsafely set, {hen to node 1000, and finally to the destination node 1001. While the safety vectors

approach is not able to route at all (unreachable destinations), the following paths are achieved

using the unsafety vectors approach

(0011 —» 0001 — 1001 — 1101)

(1110 — 1010 — 1000 — 1001 — 0001)

(1010 = 1110 —» 1111 —> 1101)

(1111 > 1101 -> 1001 --> 0001 —> 0011)

Table 4.3. The first level unsafety sets and the safety vectors of a 4-dimensional hypercube

with § faulty nodes,
Node 0000 0001 0010 0011 0100 0101 110 0111
AN 1‘4 Faulty {0,5} Faulty {2,711} {0,5,6,12} Faulty Faulty Faulty
S.v |0000 1,000 | 0,000 1,0,0,0 1,0,0,0 0,0,0,0 0,0,0,0 0,0,0,0
Node 1000 1001 1010 1011 1100 1101 1w | Tl
57 £0,12} {11} (2,11} Faulty Faulty | {12,15} (6,12} (7,11}
SV 1,0,0,0 1,1,0,0 1,0,0,0 0,0,0,0 0.0,0,0 1,0,0,0 1,0,0,0 1,0,0,0

94

Chapter 4: Adapting The Unsafety Vectors to Hypercubes

1111

1110

1100

Fig. 4.8: A 4-dimensional hypercube with seven faulty nodes (represented in dark colour).

4.5 Performance Comparison

This section starts by analysing the complexity of the calculations of unsafety vectors phase, and

then performs performance comparison against the safety vectors algorithm [81].

The performance of the unsafety vectors calculations is dependent on the performance the
unsafety sets calculations algorithm, described in Fig. 4.6, which involves message-passing
communications between the hypercube nodes. The unsafety sets calculations are performed in
the order of n phases. In each phase, each node sends at most » messages and receives at most
messages. So, the computation time complexity is O(n’) and the total number of generated

messages is O(n*2").

Notice that the safety vectors algorithm performs the same order of message exchanges, with the
difference being that our messages are relatively of larger size. This cost is quite substantial

(especially in terms of the total number of generated messages). In real systems the frequency of

92

Chapter 4. Adapting The Unsafety Vectors to Hypercubes

fault occurrence is rather low and this cost is incurred only when a [auli oceurs. Therefore this

relatively high communication cost can be tolerated in practical sitnations.

Our algorithm requires from each node 4 to build an unsafety set ol all reachable faulty nodes.
The size of this set is in the worst case propottional to the humber of faulty nodes in the network.
Based on the unsafety set, node 4 will then calculate a local unsafcty vector S of n components
(numbers) and use it efficiently for roufing. This compares favourably with global-information-
based routing algorithms which require in the order of 2" global information in the »-dimensionai
hypercube to be collected and used during decision making. This excessive communication and
computation cost for global-information-based algorithms does not justify the little gain in
achieving optimal routing as compared to near optimal routing achieved by limited-global-

information-bascd algorithms as demonstrated in the simulation results of this section.

A simulation stady of both the unsafety and safety algorithms has been carried out over
hypercubes of different sizes. However, we report below the results for a 1024 node nctwork only
as the general conclusions have been found not to change much for other system sizes. We have
considered in our experiments different random distribations of faulty nodes in the network; we
started with a non-faulty hypercube in the first experiment, and then increased in each subsequent
experunent the number of [anlty nodes gradually up to 75% of the network size with random
fault distribution. A fotal of 30,000 source-destination pairs were setected randomly in cach

simulation ramn.

As in the previous Chapters 2 and 3, we use the [ollowiug three perfonmance measures as the

basis for the comparative analysis (see Chapter 2 for more details on the calculations of these

mcasures)

93

Chapter 4. Adapting The Unsafety Veciors to Hypercubes

Fail _Count N
Toral

- Porcentage of unreachability = 100

- Average percentage of deviation from optimality
L Rowting . Distance - Hamming Distance

= 100
Total

Hammin g _{Jistance

Looping Count
Total

- Percentage of looping = =100

In all the reported results, the parameter # has been set to its lowest value (m=1) in the unsafety
vectors algorithm. As expected, our simulation experiments have confirmed that larger values of
m greatly improve performance, but, of course, at the expense of increased communication
overhead. Results in Fig. 4.9 reveal that even with lhe modest value of m=1 the unsafety vectors
algorithm achieves much higher reachability than the safety vectors algorithim with low to
modcrate deviation from optimality, as depicted by Fig. 4.10. The figure also shows that the
deviation from aptimality becomes noticeable for the unsafety vectors algorithm only when the
percentage of faulty nodes exceeds 50% of the total number of nodes in the network. Fig. 4.11
reveals that message looping in the unsafety vectors algorithm remains very low (practically
zero) when the percentage of faulty nodes is less than 30%. From the three figures, we can
conclude that the proposed algorithm exhibits superior performance characteristics over the

existing safety vectors algorithm under realistic network working conditions.

The unsafety vectors algorithm is more capable of ronting messages using optimal distance paths,
especially for a large number of [aulty componenis. Under high fault rates our algorithm is
capable of routing a large percentage of messages for which the safety vectors algorithm
announces a routing failurc. This is duc to the fact that the unsafety vectors algorithm repeatedly
chooses to route through areas of the hypercube with the least number of faults in the

neighbourhood, applying a greedy approach rhat gives more weight o the nearest neighbourhood.

94

Chapter 4: Adapting The Unsafety Vectors to Hypercubes

The safety vectors algorithm, on the other hand, routes via a neighbour only if that neighbour
guarantees optimal routing to all destinations at the desired distance, not just to the desired
destination. Furthermore, owing to its inherent properties, the unsafety vectors algorithm tends to

select paths that diverge from areas with high counts of faulty components.

_—l—UnsafetyVedors +— Safety Vectors |

1o PTG a
-

g s ./’/0

a

©

§w 4

g /

c 4

s /

-

S 20 x

® / x
0 o L_H""x/

0 100 200 300 400 500 600 700 800
No. of Faulty Nodes

Fig. 4.9: Percentage of unreachability in the unsafety vectors and safety vectors algorithms.

- U;sréfaty Vectors —e— Safety Vectors

60
50 A o s

40 | e
30 4)/‘
20 g
10 x
0 botbauvysdy aee
0 100 200 300 400 500 600 700 800
No. of Faulty Nodes

% of Deviation

Fig. 4.10: Average percentage of deviation in the unsafety vectors and safety vectors
algorithms.

95

Chapter 4: Adapting The Unsafety Vectors to Hypercubes

| —x— Unsafety Vectors ——Safety Vectors |

A%
08 / ~
o
£ N
2 06
o x \
= /
S 04 % X
2 ¥l
°* 02 /
B x
0 l—.—-—.—d—‘d/’r 4mets o e
0 100 200 300 400 500 600
No. of Faulty Nodes

Fig. 4.11: Percentage of looping in the unsafety vectors and safety vectors algorithms.

4.6 Conclusions

This chapter has adapted the new fault-tolerant routing based on the concept of unsafety vectors
for the hypercube in order to compare it with existing fault-tolerant routing algorithms. As a first
step in this algorithm, each node 4 determines its view of the faulty set 4 of nodes that are either

faulty or unreachable from A. This is achieved by performing (n-1) exchanges with the reachable

neighbours. Node 4 then calculates m unsafety sets denoted Si*, S5',..., S, where 1<m<n.

The k-level unsafety set, S;', represents the set of all nodes at Hamming distance k from 4 which

are faulty or unreachable from 4 due to faulty links or nodes. Nodes use these unsafety sets to
compute unsafety vectors and use them to achieve a fault-tolerant routing algorithm in the
hypercube. A comparison between the unsafety vectors and safety vectors algorithm has been
presented. Results for the achieved routing distance and percentage of reachability have revealed
that the new algorithm outperforms the safety vectors algorithm even when the parameter m is set
to 1, corresponding to the case where a node exchanges fault information with its neighbours

only.

96

Chapter 5: Adapting The Probability Vectors to iiypercubes

Chapter 5

Adapting the Probability Vectors Algorithm to
Hypercubes

5.1. Imtroduction

In Chapters 2 and 3, we have infroduced two new algorithins, based on the unsafety and
probabilily veciors, respectively, for providing fauli-tolerant routing in the &-ary n-cube. While
the first algorithm uses a deterministic approach, which has been widely employed by existing
algorithms in the past, the second algorithm is the first limited global information algorithm that
uses a probabilistic approach to achieve fault-tolerance. The two algorithms have two important
advantages over those existing in the literature. They both ensure fault-tolerance under more
relaxed assumptions regarding the number of faulty nodes and their jocations in the network.
Moreover, they are more general i that they can easily be adapted to different topologies,

including those that belong to the family of k-arv n-cubes (e.g. tori and hypercubes) and those

that do not (e.g., generalised hypercubes |10}).

97

Chapter 5: Adapting The Probability Vectors to Hypercubes

Since very iittl;e work has been carried out on providing favlt-tolerant routing for the k-ary n-
cube, Chapter 3 has compared the relative performance merits of the unsafety and probability
vectors approaches on this network. Furthermore, since previcus work has focused mostly on the
hypercube, Chapter 4 has adapted the previous unsafety vectors approach to the hypercube in
order to conduct a comparative study against cxisting routing algorithms, such as the safety

vectors proposed in [81].

Motivated by the observation that most algorithms proposed for the hyp-ercube, including the
unsafety vectors [0, 7], use a deferministic approach, i.e. they use exact information about faults
in the network, this chapter adapts the probability vectors approach io the hypercube, and
gvaluates its performance against the existing safety vectors algorithm. The rest of this chapter is
organised as follows. Section 5.2 presents the adapted fault-folerant algorithm and derives some
of its properties. Section 5.3 presents an analysis of the probability-based fault-tolerant routing,.
Section 5.4 presents a comparative evalunation between the probability vectors and the safety

vectors algorithms. Finally, Section 5.5 coneludes this chapter,

5.2 The Adapted Probability Vectors Routing Algorithm

The same assumplions outlined m Section 4.2 are used for the purpose of the present study, To
simplify our calculation of the probability vectors, we also assume that all the nodes at distance
k-1 from A" are at distance & from 4. The effect of this assumption will be addressed in the next

section, Tn the adapted probability vectors algorithm, each node 4 determines tis faulty set F, of

faulty or unreachable neighbours uses this fanlty set to calculate its estimated probability vectors

P, (1<k<n)y, and then to perform efficient routing in the hypercube based on these probability

vectors.

98

Chapter 5: Adapting The Probability Vectors to Hypercubes

5.2.1 Calculating the Faulty Scts

Definition 5.1: The faulty set F, of a node 4 is defined as follows:

F, = |Jsi, wherc f} is given by

1=i<n

- A9 i 4D s fauly
J1 {Qf’ Ctherwise (5.1)

5.2.2 Calculating the Probability Vectors

After determining its faulty set, F,4, mnode A calculates its probability vector

P =P P/,...P). The element P! in this vector is an estimation of the probability that a
destination at distance & from A is not minimally reachable from 4. With respect to a source node
A, a path is faulty it it includes at least one taulty or unreachable node. Siuce node A has ’F Al
faulty or unreachable immediate neighbours, and only one of the # edges (or links) incident from
A constitutes a minimal path to a specific destination at distance one, we derive the probability
P as:

p (5.2)
n

() - _—
I order to compute the other elements 21, k> 2, let R{® be the probability that a destination at

distance & from A is minimally reachable via its neighbour 4. Minimal reachability via 4@ is
only possible if 4% is a preferred neighbour. The probability for 4 to be a preferred neighbour

is k/m. If we assume that all the nodes which are at distance k-1 from 4% are at distance k from A4

. A6)
we can write R us

) 0 if node AY) is Jaulty
R = (3.3)

k) .
=0 -PA otherwise
n

99

Chapter 5: Adapting The Probability Vectors to Hypercubes

If a node at destination £ from A4 were reachable mimimally via exactly one of its »
neighbours, then the probability of rcaching mintmally a destination at distance & from A4

\ SR - .
would be given by ZR{‘ since prababilitics can be added when the events are disjoint.
i=l

However, a destination at distance & from 4 can be reached minimally via k-preferred
neighbours (not only one). Adding these probabilities includes therefore a redundancy factor
whose effect could be reduced by dividing this summation by %. 'l'hercfore, the probability of

reaching minimally a destination at distance & [fom A4 can be approximated by ZR’*(’ .
!J—.

Henee,
B 4——21{‘40)
_1_12—(1— A0
k il 7t
Py _1——2(1 PAYy (5.4)

The resulting expression can be also intuitively interpreted as follows. The ability of a node A4 to
reach minimally destinations at distance & depends only on the abilily of its neighbours 1o reach
minimally destinations at distance %-1. For instance, if each neighbour 4% of A4 can reach
minimally all nodes at distance k-1 then 4 can reach minimally all nodes at distance k. On the
other extreme, it for each neighbour A9 of 4, A cannot reach minimally any node at distance
-1 then A4 cannot reach minimally any node at distance k. We therefore propose to approximate

the probability ol reaching minimally destinations at distance & from 4 by the average probability

of reachino minimally destinations at distance %-1 from the neighbours of node 4, i.e

(r]

100

Chapter 5: Adapting The Probabifity Vectors to Hypercubes

The probability vector (B, 5" ,...., ") is computed for each node A using the equations (5.2)-
(5.4). If a node / has a faulty neighbour 4% then A assumes the probability vector of 4 to be

(1, L,..., 1). The following algorithm implements this probability vector calculation.

Algorithm Compute FProbability Vector (4: node)

/* called by node A to determine its probability vector (B’ P}Pf) */

:

fork:=2tando
{ send P/ to all neighbours;

RA=0; /* summation of reachability via all neighbours of A */
Jfori=lron dof

. M . ;
receive P, from AV,

RA=RA 4+ (-2))
4 I o
PA=1-~R4;
n
£
End,

Fig. 5.1: The algorithm for caleulating the probability vector in the hypercube.

An upper bound on the error caused by assuming that the nodes at distance %-1 fram A" are at
distance k from A can be estimated as the ratio of nodes at distance -1 from A but not at

distance & from A, and is given by

{n-1
Uc—2 _ k-1 (S 5)

()

Chapter 5: Adapting The Probability Vectors to Hypercubes

Notice that this error ratio increases as k increases. The impact of this error is reduced by giving
preference to preferred neighbours in the selection of the next node guaranteeing a decrease of

the distance to the destination and therefore reducing the effect of this estimated error.

Example 5.1: Let us consider the calculation of the probability vectors in a fault-free 4-
dimensional hypercube. All the nodes calculate the first element of their probability vectors.
Since there are no faulty nodes then 7= 0 for all the nodes. In the next stage, all nodes collect
the first elements of the probability vector of their neighbours to calculate the 2™ element of their
probability vectors using equation 5.4. Obviously, calculations at a given stage depend on the
calculations of the previous stage. In each stage, all the nodes perform their own calculations
simultaneously. After completing the 4™ stage in the fault-free 4-dimensional hypercube, the
probability vector for any node A4 is (0, 0, 0, 0), i.e. the probability of not minimally reaching a

destination at any distance form 4 is 0.

1100

Fig. 5.2: A 4-dimensional hypercube with 7 faulty nodes.

Example 5.2: Consider now a 4-dimensional hypercube with seven faulty nodes (faulty nodes are

indicated by dark colour), as shown in Fig.5.2. Table 5.1 shows the probability vectors associated

102

Chapter 5: Adapting The Probability Vectors to Hypercubes

with each node calculated using the algorithm outlined in Fig 5.1.

Table 5.1: The probability vectors in a 4-dimensional hypercube with 7 faulty nodes.

Node | 0000 | 0001 | 6010 | 0011 | 0100 | 0101 | 0110 § 0111

A Faulty Faulty Faulty | Faulty [Faulty
pto 1050, __ [0.75,|[0.75,F - o
2 1081, _ |088,[081,| __ . -
pd | _ o089, _ loos foso, | | |
P | 095) . 1097110941 __ - o
Node| 1000 | 1001 [1010 | 1011 [1100 | 1101 [1110 § 1111
4 Faulty Faulty
pt | [0.25, [[0.50,1[0.50,| __ 1{025,) _ 1[0.25,|[0.75,
gl] 056, 1069,1063,1 _ |056,| __ |0.63, 08I,
Pt 1072,1038,1080,f __ 075 | _ |075 091,
pf | 0851 (0901 [0.87] __ |0.84]| __ |0.86]]0.94]

Suppose that the source node is D001, Let us compute the exact probability of reaching minimally
a destination at distance 2 from node G001 using a probabilistic argument. Node 0001 has 2 fauli-
free neighbours, 0011 and 1001. The probability of routing via any of them is 4 as shown in Fig.
5.3. Node 0011 has only one fault-free neighbour and the probability of node 0011 reaching
minimally its own neighbours is ¥4. Notice that not all neighbours of 0011 are at distance 2 from
the source node. Now, node 101 has a probability ¥z of reaching its own neighbours. As a result,
the probability of node 0001 reaching minimally a destination at distance 2 via its neighbours is

Yo { Va + %)= 0.1875. Therefore, the probability that a destination at distance 2 from the source

node is not minimally reachable = 1 - 0.1875 = 0.8125. This rcsult is the samc as the value P!

shown in table 5.1 (and calcunlated using the algorithm of Fig 5.1).

103

Chapter 5: Adapting The Probability Vectors to Hypercubes

Faulty
5001 0000
Fault 0101
Faulty

1/4 1/4
——{ 01} Faulty

Fauity
1/4

0111
0010
1011

i

1/4
S g 1Ty N L

1060

1011
_Faulty 7707

Fault

:

i

Fig. 5.3: Probability distribution of the nodes within distance two tfrom the node 0001.

Let us now study the accuracy of these approximate probability calculations. Notice that there are
cxactly 6 nodes at distance 2 from the node 0001 which are {1000, 0100, 0010, 0111, 1011, and

1101}. Only the node 1000 of these 6 nodes is minimally reachable from 0001. Therefore, the

exact value of £,™' should be 0.833. Our algorithm has estimated it to 0.8123. The relative error

i this case Is w =0.025 which does not exceed the earlier derived error bound

0.833
k-1
n

= {1.25.

5.2.3 A Probability-Bascd Fault-Tolerant Routing Algorithm

When a node 4 has to forward a message to its destination, it applics the probability-based
routing outlined in Fig 5.4 in order to achieve fault-tolerance, We will refer to this as the
“probability vectors™ algorithin to contrast it with the safety vectors algorithm proposed by Wu
[81]. The probability vectors algorithm checks first if the destination is a reachuable immediate

neighbour in which case the message is dclivered directly to the destination. 1f not, the proposed

104

Chapter 5: Adapting The Probability Vectors io Hypercubes

algorithm trics to forward the message to a non-faulty intermediate (preterred or sparc) neighbour
that is assoctated with the lcast expected routing distance to the desired destination. If the
message is routed through a preferred neighbour, 4", then the associated lcast expected routing

distance is calcunlated as follows:

P.= h(1- BAY v (h+2)P10 (5.6)

Algorithm Probability Vectors (M: message; A, S, D: node)
/* called by node A to route message M initiated at source S towards its destination node D */

if A =S then M. Route distance = @}

if M Route_distance<=IIA4,D) + 2 = no_faulty_nodes then

{ MZRoute distance:=M Route distance + 1

if D is a reachable neighbour then deliver M (o destination D; exit, /* destination reached */
h = Hamming distance between A and D

Let A be a reachable preferred neighbour with least P2 value;

Pr= h(- P};‘f(lf)) 1 (A Z)P;,{(li) ; /* least expected routing distance if we route through AW sy

Let AY be a reachable spare neighbour with least P value;

Sp= (h+)1~ Py + (h + 4)&,1(1}) ; /% least expected routing distance if we route through AV x
i 7AY and ((7 4 and P, <8,) or ("7 A)) then send M 10 A©;

else if 7 AP and ((F 49 and p, > 8,) or (=T AP)) then send M to A'”;

¢lse failure /¥ unreachable destination */ }

else Detect looping

End {Algorithm}

¥ig. 5.4: Qutline of the adapted probability vectors fault-tolerant youting algovithm in the
hypercube.

105

Chapter 3; Adapting The Probabifity Vectors o Hypercibes

where E,’f,n is the estimated probability of not minimally reaching a destination at distance A-1
from the preferred neighbour 4. "This expression is justified by the fact that (1- 277) is the
estimated probability of existence of a fauk-free minimal path via A", If however such a path
does not exist (with estimated probability P,,’f(ln) then reaching the destination via A® will require
the path to be at Jeast two more hops longer than the Hamming distance (%). On the other hand, if
the message is routed through a sparc ncighbour, 4 then the least expected routing distance is

calculated as follows (using similar arguments as for the calculation of P,):

Sy = (h+2)(A - PAY+ (h+ HpAD (5.7)

I+l

The probability vectors algorithim selects the forwarding neighbouring node with least expected
routing distance using these probability-based estimations of the least expected routing distance.
If an immediate non-faulty neighbour is not available then the destination is unreachable. Routing

fatlure occurs in such cases.

Example 5.3: Consider a 4-dimensional hypercube with seven faulty nodes (faulty nodes are
indicated by dark colour), as shown in Fig. 5.2, Table 5.1 shows the probability vectors
associated with each node.

For instance, to route a message from node 4=0001 to destination node D=1010, the probability
vectors algorithm checks first il node D is a reachable immediate neighbour to deliver the
message directly to it. In our case D is not an immediate neighbour, the algorithm iries to forward
the message to a non-faulty intermediate (preferred or spare) neighbour that is associated with the
least expected routing distance to D. Node 4 has 2 preferred non-faulty neighbours 1001 and
0011, It has no non-faulty spare neighbours. The Hamming distance, /, between S and D is 3.
Using equation 5.6, we compute the expected routing distance when routing through the

preferred non-faulty neighbours, 1001 and 0011, as:

£ (1001) =3(1~0.69)+5(0.69) = 4.38

106

Chapter 3: Adapting The Probability Vectars to Hypercubes

P(0011)=3(1-0.88)+5(0.88) = 4.76
The algorithm routes to node 1001 since il has the least expected routing distance. Then for the
same reason, the message will be forwarded to node 1000, and finally o the destination node
1010, Tt is worth noting that the safefy vectors approach [81] fails to route for this source-
destination pair. The following theorem presents a sufficient condition for optimal routing vusing

the proposed algorithm.

Theorem 5.1 If node /4 has a reachable preferred neighbour 4 such that P,,{(,” =0, k=2, then

the probability vectors algorithm will perform minimal distance routing to any destination at

distance k.

Proof: (by induction on &) Let & =2 and let 4™ be a preferred neighbour satisfying P{iw =0.
This implies that F g, =¢ (from the definition of P*). Therefore A% has no faulty or
unreachable immediate neighbours. Furthermore, it is clear from the description of the
probability vectors algorithm provided in Fig. 5.4 that in this case the message is forwarded
either to A" or to a similar preferred neighbour. 4“ will then deliver the message to

destination.

Assume that the claim is true for a distance £ > 2. Consider the routing from a node A4 1o a
destination D at distance &+1. Assume there exists a preferred neighbour 4 such that Pf(i) =0.
The proposed routing algorithm will select this preferred neighbour or a similar one since the
least expecied routing distance, Pr, of such a neighbour is & which is the minimum Pr value.
Since A is at distance £, & = 2, fiom destination D, A7 has at least one preferred neighbour

AED (with respect to the same destination D).

. @ . . _ . A .
Since A is the probability that a destination at distance & fromm 4 is not minimally reachable

107

Chapter 5: Adupting The Probability Vectors to Hypercubes

r> o . i o .
and PkA(=0, this implies that all minimal paths of 4 to a destination at distance k are non-

faulty. Furthermore, any minimat path from 4%/ to a destination at distance &-1 is a sub-path of

a minimal path from A" to a destination at distance k. Hence all minimal paths from 4% to a

destination at distance £-1 are non-faulty (otherwise there would exist a faulty minimal path from
i . . . (.7

A9 to a destination at distance k). Therefore P1,” =0.

The induction hypothesis implies that the proposed routing algorithm will perform minimal

routing from 4% to a destination at distance % yielding in the overall a minimal routing from A

to the destination D at distance k+1. I

5.3 Analysis of the Probability Vectors Fault-tolerant Routing Algorithm

In this section, we analyse the properties of the new routing algorithm. In particular, we derive
analytical cxpressions that predict the average routing distance in this algorithm. In the remainder
of the section, we assume that there are ffaulty nodes in the network, and that all the » nodes are
equally likely to be faulty with failure probability p. Furthenmore, we assume that the source and
destination nodes are non-faulty. In this section we consider only faulty nodcs. Faulty link cases
can be thought of as faulty node cases by considering the other end node of a faulty link as a
faulty node. Let us first define a “hypotherical” class of probabilistic routing algorithms. We then
evaluate the average routing distance for these algorithins and use it as an approximate for the

probability vectors average routing distance.

Definition 5.2: A routing is called a Probabilistic Routing algorithin (PRA) if it satisfics the

following assumptions:

i} A message is discarded after making over / spare moves in the network.

108

Chapter 5: Adapiing The Probability Vectors to Hypercubes

ii) The routing decisions at a given node are based on maximising the probability of minimnul

distance reachability when selecting a fault-free neighbour.

A PRA algorithm routes messages depending on a probabilistic value. The maximum number of
sparc moves along a given path is /. The total path length in this case 15 the Hamming distance
between the source and destination nodes plus 2/ We use the following notation in the theorem,

which will be stated below.

P, Probability of making exactly s spare moves when routing between two nodes at

Hamming distance £.
B ., Probability of making more than f spare moves (i.c,, probability of discarding a

message).

D, : Average routing distance assuming message is not discarded.

Theorem 5.2: In the PRA algorithm, the average routing distance D, between a given pair of

nodes at Hamming distance % is given by

D, = 1 —Pi,fu é{(k +25)P, ¢, where (5.8)
Fo=1 ...K%.mﬁzu’j: , with NF being the number of non-faulty nodes 5.9
Py=0,1<s<f (5.10)
HJ»1:;§~ > At (5.11)

* nen fardty A

Z PkA

5 non faudty A

..ﬂ~l——§?—?—,k22 (5.12)

109

Chapter 5: Adapting The Probability Vectors io Hypercubes

Py =(l=p" Py + p* Py, L Ss<fH, 25k <n (5.13)

Pu,s :‘(1"' prr)‘Pn-l_s H 1<s Sf-'_l (514)

Proof. Every spare move increases the routing distance by fwo hops. Since messages are

discarded after making fspare moves, we can write

f
Dy = Z{k +25) - Prob[making s spare moves given that the message is not discarded](5.15)
s=0

o L P,
Dy =) (k+28)—=— (5.16)
5=0 TR S

It can be easily shown that £y =land £ =0, Vs 21, since the source and destination nodes are

both assumed non taulty. For £ = 2, the probability, F, , that a destination at Hamming distance
& 1s minimally reachable, is given by

Peo= z Prob{source node is A]- (1 -) (5.17)
non faulty 4

where the 2% is computed using the same calculation for the probability vectors (equations 5.2,

5.3 and 5.4). For a message at distance & from its destination to make s spare moves, it either

starts by making a first preferred move (with probability 1- p*) leading to a node at distance & —1

from destination for which the remaining routing will include s spaic moves {(with probability

Py). Or it starts by making a first spare move (with probability ") leading to a node at
distance & +1 from destination with remaining s-1 spare moves to make (with probability B,

). Therefore, P, , can be written as:

Pfc,s = (1 - Pk)Rfc—l,.v + pkj:)r’c-.l-l,s--l d 1<y £f+1, 22k<n-1 (518)

When the destination is at distance x, the first move can only be a preferred move, and theretore

110

Chapter 5: Adapting The Probability Vectors to Hypercubes

P:'T,-"' :(l_p”)Prl--!,.vv t ﬁS_'(_-j‘-l'] (5[9)

Notice that D; is calculated using F, which is defined recursively using as a basis the

exprossion (5.17) of P, 4. This expression in turn caleulated using the same probabilities, P,

used in the calculation of the probability vectors. It is therefore expected for these caleulations to

provide an estimate of the average routing distance in the probability vectors algorithm.

Claim: The average ronting distance in the probability vectors algorithm is approximated by D,

given in theorem 5.16.

To support this intuitive claim, we have compared the results of the average routing dislance
abtained using the ahove-detived expressions against those obtained through simulation. We
have programmed the calculation provided in theorem 5.2 in order to obtain analytically the

vector of average routing distances in an #-dimensional hypercube, denoted by

D, :(?)_1,52 yerens 12,), where 7; is the average routing distance from a node 4 to destinations at
Hamming distance &, (1<% <n). We then used a simulation program that mimics the behaviour

of the proposed algorithm in the network in order to measure experimenially the vector of

average routing distances, denoted by Dy .

Fig. 5.5 depicts both the analytical results using the PRA routing algorithm and experimental
results using the proposed algorithin for a 128-node 7-dumensional hypercube, where the number
of faulty nodes was set to 40, and distributed randomly over the network nodes. A total of 30,000
source-destination pairs were also sclected randomly. The experimental results demonstrate that
the analytical expressions predict the average routing distance with a reasonable degree of
accuracy. Since we assume that both the source and destination nodes are non-faulty, the average

routing distance to a destination at distance one 1s always one. In this case, as revealed by Fig.

111

Chapter 5: Adapting The Probability Vectors to Hypercubes

5.5, the analytical and experimental results are identical. The figure also reveals that, as predicted
in our claim, the experimental average distance, which corresponds to the actual average routing
distance in the probability vectors algorithm, is always smaller than the analytically-derived
average distance for the PRA algorithm. This fact reflects the good performance of the
probability vectors algorithm as a fault-tolerant routing that can achieve high ratios of minimal

routing in the presence of faults in the network.

‘—Q—DA —m—DE '

Average Distance
N W D g ;O N ®® O
|

-

Distance (k)

Fig. 5.5: The average distance in the 7-Dimensional hypercube calculated analytically @)
and experimentally (D).

5.4 Performance Considerations and Comparison with Safety Vectors

This section first presents an analysis of the complexity of the calculation phase of the probability
vectors. The performance of the probability vectors calculations is dependent on the number of
unreachable immediate neighbours. As outlined in Fig. 5.1, such calculations are performed in n-
| phases. In each phase, each node sends a real number to all its neighbours and receives a real

number from each neighbour concurrently. Therefore the computation time complexity is O(n”)

112

Chapter 5: Adapting The Probubility Vectors to Hypercubes

and the total number of gencrated messages is O(n22"). Notice that the safety vectors algoritlim
performs the same order of message exchanges with the difference that our messages are of
relatively larger size. This cost is quite large (especially in terms of the total munber of gencrated
messages). In real systems the frequency of fault occurrence is rather low and this cost 1s incurred
only when a fault ocours. Therefore this relatively high communicalion cost can be tolerated in

practical situations.

The proposed algorithm requircs from cach node 4 to know the mumber of its unreachable
immediate ncighbours, node A4 will then calculate a local probability vector P4 of # components
(real numbers) and use it efficiently for routing. This compares favourably with global-
information-based routing algorithms which require in the order of 2" global information in the z-
dimensional hypercube to be collected and used during decision making. This excessive
communication and computation cost for global-information-based algotithms does not justity
the little gain i achieving optimal routing as compared to near optimal routing achieved by
limited-globul-information-based algoritiuns as demonstrated in the simulation results of this

section.

Let us now report results from simulation cxperiments comparing the performance of the adapted
probability vectors algorithm against that of the safety vectors algorithm [81]. A simulation study
has been conducted of both algorithms over a 10-dimensional hypercube (1024 nodes) with
differcnt random distributions of faulty nodes. We started imitially with a non-faulty hypercube.
Then, the number of faulty nodes was increased gradually up to 75% of the network size with
random fault distributions. A total of 20,000 source-desiination pairs were selected randomly
during each simulation run. The three performance measures, namely the percentage of

unreachability, average percentage of deviation from optimality, and percentage of looping

Chapter 5: Adapting The Probability Vectors to Hypercubes

introduced in section 4.5 are used for the purpose of the present comparison.

The results depicted in Fig. 5.6 reveal that the probability vectors algorithm achieves much
higher reachability witlr low to moderate deviation from optimality. The rcsults in Fig. 5.7 may
suggest that the safety vectors algorithm provides better performance in terms of deviation from
optimality. However, the difference becomes substantial only when the number of faulty nodes is
high (exceeding 50%). But when the number of faults becomes high (exceeding 50%), the safety
vectors algorithim delivered less than 25% of the total number of messages. A maore realistic
comparison should consider the fact that the proposed probability vectors algorithm delivers
messages to their destinations in most cases while the safety vectors algorithm has a substantial
unreachability ratio, as revealed in Fig 5.6. 't'he deviation from optimality becomes substauntial
(30%) in the new algorithm only when the percentage of faulty nodes exceeds 60% of the total
number of nodes. I'urthermore, the looping percentage, as shown in Fig 5.8, remains practically

zero as long as the percentage of faulty nodes is less than 40%.

The probability vectors algorithm can route more messages through the network than the safety
vectors algorithm using minimal or near minimal distance paths especially in the presence of a
large number of faulty nodes. Under high fault rates the proposed algorithm is able to route a
large percentage of messages for which the safety vectors algorithm announces a routing failure.
This is due to the fact that the new algorithm tends to select paths that diverge from areas with
high counts of faulty components. The safety veclors algorithm on the other hand routes via a
neighbour only if that neighbour gnarantees optimal routing to all destinations at the desired

distance not just to the desired destination.

114

Chapter 5: Adapting The Probability Vectors to Hypercubes

% Probability Routing + — Safety Vectors
100 e i
z ot
= 4
< f
S S0 -
g 1 ' d
s |
L ’// =
0 e S L = B SR
0 150 300 450 600 750
Number of Faulty Nodes

Fig. 5.6: Percentage of unreachability in the probability and safety vectors algorithms.

[» Probability Routing — « Safety Vectors i

= 100 -

8 ‘

8

g ~a

Q504 o
| (5]

%0 x"""“/

§ | el -

P
* () o not-uysi l‘_"'_tf—o—o—o—q—o—&o—o o o9
0 150 300 450 600 750
Number of Faulty Nodes

Fig. 5.7: Average percentage of deviation from optimality in the probability and safety
vectors algorithms.

I_; »— Probability Routing —— Safety Vectors

40 -

A
él) 30 ‘/“ ‘\;
N~ ol »

g 20
3 J
10 o
'.
0||----Q--}H—."U'{‘:—!-zoooyooooo

0 150 300 450 600 750
Number of Faulty Nodes

Fig. 5.8: Percentage of looping in the probability and safety vectors algorithms.

115

Chapier 5. Adapting The Probability Vectors to Hypercubes

5.5 Conclusions

This chapter has adapted the probability vectors approach for the hypercube, and conducted a
performance comparison against an existing fault-tolerant routing algorithim. In the adapted
probability vectors algorithm, cach node 4 determines first the faulty set, 7, which represents
the set of all neighbouring nodes which are faulty or unreachable from A4 due to faulty nodes or
links. Using this faulty sef as a basis and through message exchanges with neighbouring nodes,
node 4 derves recursively an approximation of a numeric probability vector £*. This probability
vector is then used by node 4 to perforn an efficient fault-tolerant routing in the hypercube. A
probability-based analysis of some properties of the adapied probability vectors algorithm has
been presented. The performance of the new algorithm has also been compared against that of the
existing safety vectors algorithm. The rcsults have shown that the new algorithm has a higher
percentage of reachability than the safety vectors algorithin, Furthermore, even in situations
where both algorithms achieve reachability, the probability vectors algorithm exhibits lower

deviation from optimality.

116

Chapter 6: Conclusions and Futuwre Directions

Chapter 6

Conclusions and Future Directions

Routing in fauli-free networks has been extensively studied in the past. As the network size
scales up, the probability of processor and link failure also increases, [t is therefore essential
to design fault-tolerant routing algorithms that allow messages to reach their destinations even
in the presence of faulty components (links and nodes). Althongh many fault-tolerant routing
algorithms have been proposed for common multicomputer networks, very little research has
been devoted to developing fault-tolerant routing for &-ary n-cubes, low-dimensional versions
in particular, which are an important class of interconnection networks widely used in
expoerimental and commercial parallel systems. The following points summarise the major

contributions of the research work reported in the present thesis:

* A new limited-global-information-bascd fault-tolerant routing algorithm, using the

concept of unsafety vectors, has been proposed for k-ary n-cubes. This algorithm uses

117

Chapter 6: Conclusions and Future Directions

a deterministic approach where a numeric vector is used to reflect the status of the
network. Although the deterministic appreach has been widely employed by other
algorithms in the past, the new algorithim has an important advantage over those
existing in the literature in that it can ensure fault-tolerance under more relaxed

assumptions regarding the number of faulty nodes and their locations in the network.

s An extensive simulation study has been conducted in order to evaluate the
performance of the new fault-tolerant routing algorithm based on the umsafety
vectors. The study has considered the performance of the algorithm for different
network sizes. Three common performance measures have been used, notably the
percentage of reachability, average percentage of deviation from optimality, and
percentage of looping. Results presented here have revealed that for a practical
nummber of faulty nodes, the new algorithin achieves good performance levels in terms

of the routing distance and percentage of reachability.

. A performance study has been conducted to measwe the effects of the level of
complexity (r) on the unsafety vectors, with m being the number of calculations
performed by a given node to determine its unsafety sets. The larger the value of m 1s,
the better the routing decisions are, but ai the expense of more computation and
communication overhead. The results have demonstrated that the proposed algorithm
yields good performance in terms of routing distances and percentages of reachability
even when the parameter m is at its lowest value of 1, corrcsponding to minimum

communication overhead.

. Another new limited-global-information-based fault-tolerant routing algerithm using

the concept of probability vectors has also been proposed for k-ary n-cubes. The

118

Chapter 6: Conclusions and Future Directions

algorithm is the first in the literature that uses probabilities to achieve fuuli-tolerance.
The algorithm ensures fauli-tolerance under relaxed assumptions regarding the
number of faulty nodes and thcir locations in the network. It is also simpler to
implement and has lower computational and storage overhead, when compared to

algorithms that are based on the deterministic approach.

. A simulation study has also been conducted to evaluate the performance of the
algorithm based on the probability vectors. The results have revealed a good outcome
for the achieved percentage of reachability and routing distance. Moreover, the
analysis has also shown that in addition to being simple to timplement, the algorithm

cxhibits low computational overhead during message routing,.

» A comparative study of the relative performance merits of the two proposed
algorithms, the unsafety and probability vectors, has revealed that for practical
number of faulty nodes, both algorithins achieve geod performance levels in k-ary #-
cubes. Howevcr, as stated above, the probability vectors algorithm has the advantage

of being simpler (o mplement.

. While existing algorithms have addressed specific topologies, this study has shown
that one of the main attractive features of our proposed algorithms is the ease with
which they can be adapted to different k-ary n-cube topologies, e.g. hypercube and

torus.

» Previous studies have focused mostly on fault-tolerance in the hypercube. Both the
unsafely and probability vectors algorithms have been adapted for the hypercube in

order to compare their performance against the recently proposed safety vectors

119

Chapter 6: Conclusions und Future Directions

algorithm. Extensive simulation experiments have confirmed that the new algorithms
exhibit superior performance and fault tolerance characteristics over the safety

vectors algorithm,

. An analytical study that examincs the propertics of the proposed probability vectors
algorithm has been presented. The study has confirmed that the algorithm is capable
of routing messages in a faulty network via fault-free minimal paths if they exist,
otherwise it routes messages via fault-free pear-minimal paths if they exist. The
algorithm has been shown to be able to perform minimal distance routing to any
destination at distance % from a given source node that has a reachable preferred

neighbour with a zero in the 4-1 element of its probability vector.

Therc arc several interesting issues and open problems that require further investigation.

These are summarised below.

® Meshes arc another class of networks that have been widely used in multicomputers
due to their simple structurcs and casc of implementation. Unlike £-ary n-cubes,
however, they are based on an asymmelric topology because nodes at the edges have
fewer neighbours than those located in the center. An obvious step of this work
would extend both the proposed unsafety vectors and probability vectors approaches
to meshes. However, this would require careful re-examination of the major factors,
such as preferred neighbours, spare neighbours, minimal path characterisation,

diameter, and degree, in order Lo deal with the inherent asymmetry of these networks.

. Multicast (one-to-many) and broadcast (one-to-all) are important cominunication

operations required by many rcal-world parallel applications found in Science and

120

Chapter 6: Conclusions and Future Divections

Engineering [52, 71, 83]. A lot of research activities have been devoted in the past to
devising efficient algorithms to supporl these operations [11, 26, 34, 53}. Moreover,
some research work has tried fo augment those algorithms to deal with faults in the
network. A possible continuation of this rescarch would extend the ideas of the
probability and unsafety vectors to support efficient favlt-tolerant multicast and

broadcast operations.

e The switching technique determines the way a message visits intermediate routers
when crossing the network. Among the well-known switching techniques are packet
switching [79], circuit switching [79] and wormhole routing [27]. The switching
technique considerably influences the router architecture, and has great impact on
network performance. For instance, wormhole swiiching provides a magnitude
improvement in network performance over packet switching since it makes latency
less sensitive to the message distance under light traffic [27]. While this thesis has
discussed the idea of the unsafety vectors and probability vectors at the “network
topology™ level, an interesting line of research would investigate implementation-
refated issues and study the performance of both algorithms when a particular

switching technique, e.g. wormhole switching, is used.

. Analytical models that measure message latency and throughput in k-ary n-cubes
have been widely proposed in the literature [49, 50, 59, 67]. All these wmodels,
however, have been discussed in the context of fault-free networks, and as a result :
there has been relatively liitle activity in the analytical modelling of fault-toferant
routing algorithms. Another interesting research work would develop analytical

models for both the probability and unsafety vectors and validate their accuracy

121

Chapter 6: Conclusions and Future Dirvections

through simulation experiments. Such models will be a very useful performance tool
as they can be used to assess the performance of the proposcd algorithms in large
networks, that are not feasible to simulate duc to the amount of time and computing

resources required to run large simulations.

122

References

References

[1] S.B. Akers, D. Hared, B. Krishnamurthy, The star graph: An Aftractive alternative to the
n-cube, Proc. Int. Conf. Parallel Processing, University Park, Pennsylvania, 1987, vol.

923, pp.393-400.

[2] B.F. Almohammad, B. Bose, Fault-tolerant communication algorithms in loroidal

networks, /EEE Trans. Parallel & Distribuied Systems, vol. 10, no.10, pp.976-983, 1999,

[3] J. Al-Sadi, K. Day, M. Ould-Khaoua, Probability vectors: A new fault-tolerant routing
algorithm for k-ary r-cubes, Proc. 17" ACM Symposium on Applied Computing, Madrid,
March 10-14, 2002, pp. 830-834.

[4] J. Al-Sadi, K. Day, and M. Ould-Khaoua, Fault-tolerant routing in the binary #-cube using
unsafety sets, Proc. Int. Conf. Parallel & Distributed Processing: Techniques &

Applications (PDPTA'99), Las-Vegas, June 29-July 1, 1999, pp. 2190-2194.

[5] J. Al-Sadi, K. Day, M. Ould-Khaoua, Probability-based fault-tolerant routing in
hyperceubes, Proc. Europer’2000, Lecture Notes in Computer Science, Springer-Verlag,

Munich, Aug.29-Sept. 1, 2000, pp. 935-938

[6] I. Al-Sadi, K. Day, M. Ould-Khaoua, Unsafety vectors: A new fault-tolerant ronting for £-

ary n-cubes, Microprocessor and Microsystems, vol. 25, no. 5, 2001, 2000, pp. 239-246.

123

References

[7]

(8]

[9]

[10]

[11]

J. Al-Sadi, K. Day, M. Ould-Khuoua, A new fault-tolerant routing for £-ary s-cubes using
unsafety vectors, Proc. The 2000 Arah Conference on Information Technology

(ACIT'2000}, Zarka Private University, Jordan, Oct.31-Nov. 2, 2000, pp. 119-126.

E. Anderson, J. Brooks, C. Grassl, S. Scott, Performance of the Cray T3E muliiprocessor,
Proc. Supercomputing Conference, San Jose, California, 1997, CD-ROM

hitp:/www.supercomp.org/scY7/processing.

W.C. Athas, C.L. Seitz, Multicomputers: message passing concurrent computers, JEEZE

Compuier, vol. 21, no. 8, 1988, pp. 9-24.

.M. Bhuyan, P.D. Agarwal, Generalised hypercube and hyperbus structores for a

computer network, I[EEE Trans. Computers, vol. 33, no. 4, 1984, pp. 323-333.

K. Bolding, W. Yost, The express broadeast network: A network for low cost broadcast of
control messages, Proc. Int. Conf. Algorithms & Architectures for Parallel Processing,

Brisbane, Australia, vol. 1, April 1995, pp. 93-102.

[12] R. Boppana, S. Chalasani, Fault-tolerant communication with partitioned dimension-order

[13]

[t4]

routers, IEEE Trans. Parallel & Distributed Systems, vol. 10, no.10, 1999, pp.1026-1039.

S. Borkar, R. Cohen, G. Cox, S. Gleason, T. Gross, H.'T. Kung, M. Lam, B. Moore, C.
Peterson, J. Pieper, L. Rankin, P.S. Tseng, J. Sutton, J. Urbanski, and J. Webb, iWarp: An
intcgrated solution to high-speed parallel computing, Proc. Supercomputing ‘88, Orlando,

Flonda, Nov. 198§, pp. 330-339.

B. Bose, B. Broeg, Y. Kwon, Y. Ashir, Lee distance and topological properties of 4-ary n-

cubes, IEEE Transactions on Computers, vol. 44, no. 8, 1995, pp. 1021-1030.

124

http://www.supercomp.org/sc97/processing

References

[15]

[16]

[17)

(18]

(19}

[20]

[22]

{23}

M.S. Chen, K. G. Shin, On hypercube fauli-tolerant routing using global information,
Proc. 4th Conf. Hypercube Concurvent Computers & Applications, Monterey, California,

March 1989, pp. 83-86.

M.S. Chen, K.G. Shin, Adaptive fault-tolerant roufing in hypercube multicomputers,

IEEE Trans. Computers, vol. 39, no. 12, 1990, pp. 1406-1416.

M.S. Chen, K.G. Shin, Depth-first search approach for fauli-tolerant routing in hypercube

multicomputers, [£ELE Trans. Porallel & Distributed Svstems, vol. 1, no. 2, 1990, pp.

152-159.

G.M. Chiu, K.-S. Chen, Fault-lolerant routing strategy using routing capability in
Hypercube Multicomputers, Proc. Int. Conf. Parallel and Distributed Systems, Tokyo,
Japan, 1996, pp. 396-403.

G.M. Chiu, K.-S. Chen, Use of routing capability for fauli-tolerant routing in hypercube

multicomputers, {EEE Trans. Computers, vol. 46, no. 8, 1997, pp. 953-958.

G.M. Chiu, 3.P. Wu, A Faujt-tolerant routing strategy in hypercube multicomputers,

IEEE Trans. Computers, vol. 45, no. 2, 1996, pp. 143-156.

R. Cypher, F. Meyer, C. Scheideler, B. Voking, Universal algorithms for store-and-
forward and wormhole rouiing, Proc. 28™ ACM Symp. on Theory of Computing,
Philadelphia, Pennsylvamia, 1996, pp. 356-365.

W.I. Dally, C.L. Scitz, Deadlock-free message routing in multiprocessor interconnection

networks, IEEE Trans. Computers, vol, 36, no. 5, 1987, pp. 547-553.

W.IL Dally et al., The Reliable Router: A reliable and high-performance communication

125

_References

[24]

{25]

[26]

[27]

[28]

[29]

[30]

131]

substrate for parallel computers, Proc. Parallel Computer routing and Communication, in

Lecture Notes in Computer Science, Seattle, Washington, vol. 853, 1994, pp. 241-255.

K. Day, A. Al-Ayyoub, Fault diameter of k-ary n-cube networks, IEEE Trans. Parallel &
Distributed Systems, vol. 8, no. 9, 1997, pp. 9G3-907.

P.W. Dowd, M. Carrato, 1ligh speed routing in a parallel processing enviconment: a
simulation study, Proc. 24th Annual Simulation Symposium. New Orleans, Louisiana,

IEEFE Computer. Society. Press, 1991, pp. 60-72.

J. Duato, Theory of deadlock-free adaptive multicast routing in wormbhole networks, IEEE

Trans. Parallel Distributed Systems, vol. 6, no. 9, 1995, pp. 976-987.

J. Duato, S. Yalamanchili, L. Ni, Interconnection networlks: An engincering approach,

IEEE Computer Society Press, 1997.

J. Duato, A necessary and sufficient condition for deadlock-free routing in cut-through
and store-and-{orward nctworks, IEEE Trans. Parallel Distributed Systems, vol. 7, no. 8,

1996, 841-854.

S. Felperin, P. Raghavan, E. Uptal, A theory of wormhole routing in parallel computers,
IEEE Trans. Communications, vol. 45, no. 6, 1996, pp. 704-713.

S. Fujita, A fault-tolerant broadcast schesne in the star graph under the single-port, half-
duplex Communication model, IEEE Trans. Parallel & Distribuied Systems, vol. 10, no.

10, 1999, pp. 1123-1126.

P.T. Gaughan, S. Yalamanchili, Adaptive routing protocols [or hypercube interconnection

networks, IEEE Computer, vol. 26, no. 5, 1993, pp. 12-24.

126

References

(32]

[33]

[35]

[36]

(37}

[38]

[39]

[40]

JM. Gordon, Q.F. Stout, Hypercube message routing i the presence of taults, Proc. 3rd
Conf. Hypercube Concurrvent Computers and Applications, Pasadena, California, Jan.

1988, pp. 251-263.

A. Gottlieb et @, The NYU Ultracompueti- Designing a MIMD Sharcd Memory Parallel
Computer, JEEE Trans. Computers, vol. 32, no. 2, 1983, pp.175-189.

S. Graham, S. Seidel, The cost of broadcasting on star graphs and &-ary hypercubes, JEFE
Trans. Computers, vol. 42, no. 6, 1993, pp. 756-759.

L. Gravano, G. Pifarre, P. Berman, J. Sanz, Adaptive deadlock- and livelock-free routing
with all minimal paths in torus networks, IEEE Trans, Parallel & Distributed Systems,

vol. 5, no. 12, 1994, pp. 1233-1251.

Q.P. Gu, S. Peng, Unicast in hypercube with large number of faulty nodes, IEEE Trans.
Parallel & Distributed Systems, vol. 10, no. 10, Oct. 1999, pp. 964-975.

K.T. Herley, G. Bilardi, Deterministic simulations of PRAMs on bounded-degrec

networks, SIAM J. Computing, vol. 23, no. 2, 1994, pp. 276-292.

R.E. Kessler, JI.. Schwarzmeier, CRAY T3D: A new dimension for Cray Research,
Proc.38" IEEE Computer Soc. Intl. Conference. (CompCon), Houston, Texas, Feb. 1993,
pp. 176-182.

S.Y. Kim, K.Y. Chwa, Optimal embeddings of multiple graphs into a hypermesh, Proc.
Int. Conf. Parallel & Distributed Systems (ICPADS’97), Hsinchu, Taiwan, 1997, pp. 436-
443.

J. Konicek et al, The organization of the Cedar syslem, Proc. Int. Conf Parallel

127

T P R S

References

[41]

[42]

[43]

[44]

[45]

[46]

147]

[48]

[49]

Processing, Austin, Texas, 1991, pp. 49-56.

M. Kunde, Block gossiping on grids and tori: determimstic sorting and routing maich the
bisection bound, Proc. European Symposium Algorithms, Bad Honnef, Germany, Lecture

Nates in Computer Science, Springer_Verlag, vol. 726, 1993, pp. 272-283.

M. Kunde, Routing and sorting on mesh connected processor arrays, Proc. VLSI

Algorithms and Architectures, Corfu, Greece, Lecture Notes in Computer Sctence,

Springer_Velag, vol. 319, July 1988, pp. 423-433.

Y. Lan, A fauli-tolerant routing algorithim in hypercubes, Proc. Int. Conf. Parailel

Processing, Aug. 1994, pp. II1163-111166.

Y. Lan, An adaptive fault-tolerant routing algorithm for hypercube malticomputers, [EEE

Trans. Parallel & Distributed Systems, vol. 6,no. 11, 1998, pp. 1147-1152,

S. Latifi, Combinational analysis of fault-diameter of the n-cube, IEEE Irans. Compufters,

vol. 42, no. 1, 1993, pp. 27-33.

T.C. Lee, J.P. Hayes, A fault-tolerant communication scheme for hypercube computers,

1EEFE Trans. Computers, vol. 41, no. 10, 1992, pp. 1242-1256.

D. Linder, J. Harden, An adaptive and fauli-tolerant wormhole rouling sirategy for k-ary

hypecubes, IEEE Trans. Computers ,vol. 40, no. 1, 1991, pp. 2-12.

K.I. liszka et al, Problems with comparing interconpection networks: Is an alligalor

better than an armadille?, IEEE Concurrency, vol. 5, no. 4, 1997, pp. 18-28.

S. Loucif, M. Quld-Kbaoua and L.M, Mackenzie, The "Express Channcl" concept in

128

References

hypermeshes and k-ary n-cubes, Proc. 8th IEEE Symp. Parallel & Distributed Processing,

IEEE Computer Socicty Press, New Orleans, Louisiana (USA), Oct. 1996.

[50]1 S. Loucif, H. Sarbazi-Azad, M. Ould-Khaoua, Message latency in k-ary n-cubes with hop-
based routing, IEE Proceedings-Computers and Digital Techniques, vol. 148, no. 2, 2001,
pp. 89-94.

[51] A. Lubiw, Counterexample to a conjecture of Szymanski on hypercube routing,

Information Processing Letters, vol. 33, no 2, 1990, 57-61.

[52] P.K. Mckinley, C. Tretfiz, Efficient broadcast in all-port wormhole-routed hypercabes,

Proc. 7" Int. Conf. Parallel Processing, New Port Beach, California, 1993, pp. 288-291.

(531 PXK. Mckinley e @, Unicast-based multicast communication in wormhole-routed
networks, IEEE Trans. Parallel & Distributed Systems, vol. 5, no. 12, 1994, pp. 1254-
1265.

[54] nCUBE Systems, N-cube Handbook, nCUBE, 1986.

[55] L.M. Ni, P.K. McKiunley, A survey of routing techniques in wormhole networks, /KL
Computer, vol. 26, no. 2, 1993, pp. 62-76.

[561 M. Noakes ef al, The J-machine multicomputer: An architectural cvaluation, Proc. 20" .

Symp. Computer Architecture, San Diego, California, May 1993, pp. 224-235.

[57] A.G. Nowatzyk ef al., S5-Connect: From networks of workstations to supercomputer

performance, Proc. 22nd International Symp. Computer Architecture, Santa Margherita,

{taly, June 1995, pp. 71-82.

129

References

[58]

[59]

[61]

[63]

[64]

S.F. Nugent, The iPSC/2 Direct-Connect Communication Technology, Proc. Conf

Hypercube Concurrent Computers & Applications, Pasadena, California, vol. 1, Jan.

1988, pp. 51-60.

M. Ould-Khaoua, H. Sarbazi-Azad, An analytical model of adaptive wormhole routing in
hypetrcubes in the presence of hot-spot traffic, IEEE Transactions Parallel & Distributed
Systems, vol. 12, no. 3, 2001, pp. 283-238.

Paragon XP/S Product Overview. Inicl Corporation, Supercomputer Systems Division,

Beaverton, Or, 1991.

G.I. Plister ef «l, The IBM Research Paraliel Processor Prototype (RP3): Introduction and
Axchitectare, Proc. Int. Conf. Parallel Processing, Los Alanmitos, California, Aug. 1985,

pp. 764-771.

C.S. Raghavendra, PJ. Yang, S.B. Tien, Free dimension— an effective approach to
achicving fault-tolerance in hypercubes, Proc. 22™ Int. Symp. Fault-Tolerant Computing,

Boston, Massachusetts, 1992, pp. 170- 177.

J. Raitler, Concurrent Processing: A new direction in scientific computing, Proc. Of

National Computer Conf., AFIPS press, vol, 54, 1985, pp. 157-166.

C.P. Ravikumar, C.S. Panda, Adaptive routing in k-ary n-cubes using incomplete diagnostic

information, Microprocessors and Micracomputers, vol. 20, 1997, pp. 351- 360.

Y. Saad, M.H, Schulfz, Data communication in hypercubes, J. parallel Distributed

Computing, vol. 6, no, 1, 1989, pp. 115-135.

Y. Saad, M.H. Schultz, Topological properties of hypercubes, IEELE Trans on computers,

130

References

(671

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

{76)

vol. 37, no. 7, 1988, pp. 867-872.

H. Sarbazi-Azad, M. Ould-Khaoua, L.M. Mackenzie, An accurate performance model of
adaptive wormhole routing in k-ary n-cube interconpection networks, Performance

Evaluation, vol. 43, no. 2-3, 2001, pp. 165-179.
C.L. Seitz, The cosmic Cube, CACM, vol. 28, 1985, pp. 22-23.

C.L. Seitz, The Hypercube Communication Chip, Dep. Comp. Sci., CalTech, Display File
5182:DF:85, 1985.

H. Shen, F. Chin Y. Pan, Efficient fault-tolerant routing in multi-hop optical WDM
networks, IEEE Trans. Parallel & Distributed Systems, vol. 10, no. 10, 1999, pp. 1012-
1025.

J-P. Sheu, M.~Y. Su, A multicast algorithm for hypercube multiprocessors, Proc. Int.

Conf. Parallel Processing, University Park, Pennsylvania, 1992, pp.18-22.

LF. Sibeyn, Deterministic routing and sorting on rings, Proc.8" IEEE Int. Parallel

Processing Symp., 1994, pp. 406-410.

H.J. Siegel, C.B. Stunkel, Trends in parallel machine interconnection uctworks, /EEE

Computer. Science. & Eng., 1996, pp. 69-71.

H.J. Siegel et af, PASM: A partitionable SIMD/MIMD System for Image Processing and

Pattern Recognition, IEEE Trans. Computers, vol. 30, no. 12, 1981, pp. 934-947,
Silicon Graphics, Origin 200 and Qrigin 2000, Technical Report, 1996.

H. Sullivan, T.R. Bashkow, D. Klappholz, A large scale homogeneocus futly distributed

131

References

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

parallel machine. Proc. 4" Ann. Symp. Compuier Architecture, JEEE, Now York, NY,
vol. 3, Mar. 1977, pp. 105-117.

T. Szymanski, Hyper-meshes: Optical interconnection networks [or parallel processing,

Journal Parallel & Distributed Compuiing, vol. 26, 1995, pp. 1-23.

T. Szymanski, On the permutation capability of a circuit-switched hypercube, Proc. Int.

Conf. Parallel Processing, IEEE Society Press, vol. 1, Aug. 1989, pp. 103-110.
A.S, Tancnbaum, Computer Networks, Prentice-Hall Int, | Inc. (2“d Ed.) 1989.

B. Vanvoorst, S. Seidel, E. Barscz, Workload of an iPSC/860, Proc. 8" Scalable iigh-

Performance Computing Conf., Knoxville, May 1994, pp. 221-228

J. Wu, Adaptive fault-tolerant routing in cube-based multicomputers using safety vectors,

IEEE Trans. Parallel and Distributed Systems, vol. 9, no. 4, 1998, pp. 321-334.

J. Wy, F. Gao, Z. Li, and Y. Min, Optimal fault-tolerant routing in hypercubes using
extended safety vectors, Proc. of 7th Int. Conf. Parallel and Distributed Systems (ICPADS),
Twate, Japan, July 2060, pp. 264-271.

J. Wu, E.B. Fernandez, Broadcasting in faulty hypercubes, Microprocessors and

microprogramming, vol. 39,no. 1, 1993, pp. 43-53,

J. Wu, Reliable unicasting in faulty hypercubes using safety levels, IFEE Trans.
Computers, vol. 46, no. 2, 1997, pp. 241-247.

132

L arlet tbome s . *

Publications During Research

Publications During Research

J. Al-Sadi, K. Day, M. Ould-Khaoua, Unsafety vectors: A new fanlt-tolerant routing for

k-ary n-cubes, Microprocessors and Microsystems, vol. 25, no. 5, 2001, pp. 239-246.

J. Al-Sadi, K. Day, M. Ould-Khaoua, Fault-tolerant routing in hypercubes using

probabitity veciors, Parallel Computing, vol. 27, no. 10, 2001, pp. 1381-1399.

Al-Sadi, K. Day, and M. Ould-Khaoua, Probability-based fault-tolerant routing io

hypercubes, The Computer Journal, vol. 44, no. 5, pp. 368-373, 2001.

J. Al-Sadi, K. Day, M. Quld-Khaoua, Unsafety vectors: A new Fault-tolerant routing for

the binary n-cube, Journal of Systems Architecture, vol. 47, no. 9, 2002, pp. 783-793.

J. Al-Sadi, K. Day, M. Ould-Khaoua, Probability-based fault-tolerant routing in
hypercubes, Proc. Europar’2000, in Lecture Notes in Computer Science, Springer-

Verlag, Munich, Aug, 29-Sept. 1, 2000, pp. 935-938.

J. Al-Sadi, K. Day, and M. Quld-Khaoua, Fauli-tolerant routing in the binary n-cube
using unsafety sets, Proc. int. Conf. Parallel & Distributed Processing: Techniques &

Applications (PDPTA'99), Las-Vegas, June 29-July 1, 1999, pp. 2190-2194,

J. Al-Sadi, K. Day, M. Ould-Khaoua, A new fault-tolerant routing for &-ary n-cubes using

133

ol s Pt gttty " s s) ®

H
j
1
!

Publications During Research

10-

11-

13-

unsafety vectors, Proc. 2000 Arab Conference on Information Technology (ACIT'2000),
Zarka Private University, Jordan, Oct.31-Nov. 2, 2000, pp. 119-126.

J. Al-Sadi, K. Day, M. Ould-Khaoua, Probability vectors: A new fault-tolerant routing
algorithm for k-ary n-cubes, Proc. 1 7" ACM Symposium on Applied Computing, Madrid,
March 10-14, 2002, pp. 830-834.

J. Al-Sadi, K. Day, M. Ould-Khaoua, Efficient fault-tolerant routing in multicomputer
networks, Technical Report TR-2001-88, Department of Computing Science, University
of Glasgow, April 2001.

J. Al-Sadi, K. Day, M. Ould-Khaoua, Performance evaluation of a probability-based
fault-tolerant routing algorithm, Technical Report TR-2001-89, Department of Computing

Science, University of Glasgow, April 2001.

J. Al-Sadi, K. Day, M. Ould-Khaoua, A new fault-tolerant routing algorithm for k-ary n-

cube networks, under review, International Journal of High-Speed Computing, 2001.

J. Al-Sadi, K. Day, M. Ould-Khaoua, Performance analysis of a fault-tolerant routing

algorithm in hypercubes, under review, Journal of Supercomputing, 2001.

J. Al-Sadi, K. Day, M. Ould-Khaoua, Analysis of Fault-Tolerant Routing Algorithms in .-

Ary n-Cubes Networks, under review, Journal of Information Science and Engineering

(JISE), 2001.

134

[GrasGow
UNIVERSITY
LIBRARY

