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Abstract

Abstract

The interconnection network is one of the most crucial components in a multicomputer as it 

greatly influences the overall system performance. Networks belonging to the family of /c-ary n~ 

cubes (e.g., tori and hypercubes) have been widely adopted in practical machines due to their 

desirable properties, including a low diameter, symmetry, regularity, and ability to exploit 

communication locality found in many real-world parallel applications.

A routing algorithm specifies how a message selects a path to cross from source to 

destination, and has great impact on network performance. Routing in fault-free networks has 

been extensively studied in the past. As the network size scales up the probability o f processor 

and link failure also increases. It is therefore essential to design fault-tolerant routing algorithms 

that allow messages to reach their destinations even in the presence o f faulty components (links 

and nodes). Although many fault-tolerant routing algorithms have been proposed for common 

multicomputer networks, e.g. hypercubes and meshes, little research has been devoted to 

developing fault-tolerant routing for well-known versions of A:-ary «-cubes, such as 2 and 3- 

dimensional tori.

Previous work on fault-tolerant routing has focused on designing algorithms with strict 

conditions imposed on the number o f faulty components (nodes and links) or their locations in 

the network. Most existing fault-tolerant routing algorithms have assumed that a node knows 

either only the status of its neighbours (such a model is called local-information-based) or the 

status of all nodes (global-infonnation-based). The main challenge is to devise a simple and 

efficient way of representing limited global fault information that allows optimal or near-optimal 

fault-tolerant routing.

This thesis proposes two new limited-global-information-based fault-tolerant routing 

algorithms for /c-ary «-cubes, namely the unsafety vectors and probability vectors algorithms.
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While the first algorithm uses a detenninistic approach, which has been widely employed by 

other existing algorithms, the second algorithm is the first that uses probability-based fault- 

tolerant routing. These two algorithms have two important advantages over those already existing 

in the relevant literature. Both algorithms ensure fault-tolerance under relaxed assumptions, 

regarding the number of faulty components and their locations in the network. Furthennore, the 

new algorithms are more general in that they can easily be adapted to different topologies, 

including those that belong to the family of /r-ary «-cubes (e.g. tori and hypercubes) and those 

that do not (e.g., generalised hypercubes and meshes).

Since very little work has considered fault-tolerant routing in /c-ary «-cubes, this study 

compares the relative performance merits of the two proposed algorithms, the unsafety and 

probability vectors, on these networks. The results reveal that for practical number of faulty 

nodes, both algoritlims achieve good performance levels. However, the probability vectors 

algorithm has the advantage of being simpler to implement. Since previous research has focused 

mostly on the hypercube, this study adapts the new algorithms to the hypercube in order to 

conduct a comparative study against the recently proposed safety vectors algorithm. Results from 

extensive simulation experiments demonstrate that our algorithms exhibit superior perfoimance 

in terms of reachability (chances of a message reaching its destination), deviation from optimality 

(average difference between minimum distance and actual routing distance), and looping 

(chances of a message continuously looping in the network without reaching destination) to the 

safety vectors.
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Chapter 1: Introduction

Chapter 1

Introduction

Large-scale parallel systems are generally considered to be the most feasible way of achieving 

the enormous computational power required by many real-world applications in science, 

engineering, and a number of other fields [25, 27, 61, 76]. In such systems, parallel tasks 

inherent in an application are distributed over a set o f processors to run simultaneously. The 

processors are physically interconnected by an interconnection network, and co-ordinate their 

activities to solve a common problem by exchanging information. Depending on the way the 

communication is achieved between processors, two types o f parallel systems can be 

distinguished: multiprocessors, where processors share a common memory through which they 

communicate [33, 40, 61, 74], and multicomputers, where each processor has its own local 

memory, communicating with the other processors by message passing [54, 58, 60]. 

Multicomputers have experienced rapid development during the past decade and have gained 

more popularity over multiprocessors due to their superior scalability [9, 48, 73].

The interconnection network is one o f the most crucial components in a multicomputer as it 

greatly influences the overall system performance. It is desirable for a network to be able to 

accommodate a large number of processors while maintaining low communication overhead.
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Furthermore, it should be able to deliver messages reliably to their destinations through using 

alternative paths when some faults are detected. In order to allow processors to concentrate on 

computational tasks and permit the overlapping of communication with computation, a router, is 

used for handling message communication among processors, and is usually associated with 

each processor; the assembly of processor and router is called a node.

Input Channel n

Injection channel

A

Crossbar
Switch

Output Channel 1

— c Processor > J

Output Channel n

Ejection channel

Fig. 1.1: The node structure in an interconnection network.

Fig 1.1 shows a typical node stiucture in an interconnection network. Each node consists o f a 

processor and router. A node is connected to its neighbouring nodes through input and output 

channels. The injection/ejection channel is used by the processor to inject/eject messages to/from 

the network. A crossbar switch directs messages from any input channel to any output channel.

Network topology describes the way system nodes are connected, and is often characterised by 

its degree, diameter, and regularity. An interconnection topology can be modelled as an 

undirected graph where the vertices (nodes) represent the processors and the edges represent the
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communication links between the processors. The node degree is the number of channels 

connecting the node to its neighbours, and the degree of a topology is the maximum degree of 

any node. The diameter of a topology is the maximum value o f the shortest distance over all 

pairs o f nodes. Finally, a topology is said to be regular if all its nodes have the same degree. 

Ideally, a network topology should have a small number of edges, a small degree, a low 

diameter, and regular structure. Needless to say, a large variety o f topologies have been 

suggested in the hope of approaching these goals [1, 14, 24, 27, 66, 77].

Most practical multicomputers [8, 38, 63, 68, 80] employ direct networks where each node has a 

point-to-point or direct connection to some of the other nodes (known as its neighbours) 

allowing for direct communication between processors. An indirect network is another major 

class o f interconnection networks where nodes are connected to other nodes (or memory banks 

in a shared-memoiy architecture) through multiple intermediate stages o f switches. Because of 

their ability to exploit communication locality found in many parallel applications and better 

scalability, direct networks have been very popular in practical parallel machines. In particular, 

A:-aiy «-cubes have been widely used in cun'ent multicomputers [8, 75], due to their ease of 

implementation, regularity, and ability to exploit communication locality to reduce message 

delays.

The A:-ary «-cube, where k  is referred to as the radix and « as the dimension, has N=ld nodes, 

arranged in n dimensions, with k  nodes per dimension. Links in the /c-aiy «-cube can be either 

uni- or bi-directional. In this thesis, we will focus on /c-ary «-cubes with bi-directional links as 

they have been more popular in multicomputers [13, 38, 54, 56, 58, 68]. Each node can be 

identified by an «-digit radix k address {a\, a2 a,j). The P  digit o f the address vector, 

represents the node position in the P  dimension. Nodes with address («i, «2 , ...,«») and {b[,b2
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, are connected if and only if there exists i, ( ! < / < « ) ,  such that =(6, ±1) mod k and aj 

bj for \ < j  < n ',i ^  ]■ Typical properties o f /c-aiy «-cubes include

• The number of nodes = k "

•  The diameter

The degree =

0 if  A: = l 

n\_kl2\ i f /c > 2

0 if/c = l 

n if /c = 2 

In  if /c> 2

•  The number of linlcs :
nk'^ i f / c > 2

«Â:" if  7c = 2

Fig 1.2 gives examples o f the 2 and 3-dimensional torus and binary hypercube (or hypercube for 

short), which are the most common instances of /c-aiy «-cubes. While the hypercube has been 

used in early multicomputers such as the Cosmic Cube [68], iPSC/2 [58], and NCube [54], the 

torus has become more common in the last generation of multicomputers, such as in the case of 

the iWarp [13], J-machine [56], CRAY T3D [38], and Cray T3E [8].

1.1. Routing Algorithms

A message usually travels across several intennediate nodes before reaching its destination. The 

routing algorithm specifies how a message selects a path to cross from source to destination, and 

has great impact on network performance. It may happen that due to some faulty network
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components (either nodes or links), messages are not able to reach their destinations, even if 

fault-free paths exist connecting the source and destination nodes. It is therefore important to 

develop fault-tolerant routing algorithms that allow the network to continue to function as 

normally as possible, even in the presence o f a large number o f faults.

(a)

A

(b)

(c)

Fig. 1.2: Examples of A-ary «-cubes, (a) 9-ary 2-cube (2D-torus) (b) 3-ary 3- 
cube (3D-torus) (c) 2-ary 4-cube (hypercube).
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Routing algorithms can be broadly classified as deterministic or adaptive [27]. The fonner offers 

a predetermined path to each message fixed by its source and destination addresses [37, 41, 42, 

72]. The latter gives flexibility to messages in choosing their paths to avoid congested or faulty 

regions [16, 26, 31, 35, 44, 47, 64].

In a non-faulty network, a simple idea to route messages is to use a detenninistic approach. A 

typical way of implementing this is seen in the classic deterministic routing, widely known as the 

dimension-ordered routing algorithm (also known as e-cube [22, 69]) used in the /c-ary n-cube. 

In this form o f routing, messages are restricted to change dimensions in a pre-defined (increasing 

or decreasing) order to ensure message reachability toward their destinations. Several practical 

multicomputers, such as the J-machine [56], Cray T3D [38], and N-Cube [54], have employed 

deterministic routing [37,41].

Adaptive routing enables messages to explore all alternative paths to avoid congested regions or 

faulty components inside the network. Adaptive routing algorithms can be classified as 

progressive or backtracking [16, 17, 18, 20]. Progressive routing always moves forward, 

reserving a new node at each routing operation. Backtracking routing allows a message to 

backtrack to previously reserved nodes in cases where faulty nodes block the message to move 

forward. Backtracking is not often used for fault-tolerant routing because it is complex and 

costly to implement. The Cray T3E [8] and Reliable Router [23] are examples o f recent practical 

systems that use adaptive routing.

Communication among nodes can be viewed as a hierarchy o f services, starting from the 

physical layer that synchronises the transfer o f bit streams to higher-level protocol layers that 

perfoim functions, such as packetisation. There are three major layers in the operation o f the 

interconnection network, the physical layer, switching layer, and routing layer [27]. The physical
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layer refers to link-level protocols for transferring messages across links interconnecting two 

adjacent routers. The switching layer utilises the physical layer protocols to implement 

mechanisms for forwarding messages from one router to the next. Finally, the routing layer 

makes routing decisions to determine a candidate intermediate node to route to and thereby 

establish the path through the network. The design of switching techniques (e.g., wormhole [26, 

29], circuit [27, 51, 78], and store-and-forward switching [21, 28]) and their properties, (e.g. 

deadlock avoidance, live lock detection), are determined by the services provided by the 

switching layer [27, 28]. While our results are general enough and can be discussed in the 

context of, for example, wonnhole and store-and forward switching this thesis deals primarily 

with issues related to the routing layer. More specifically, this thesis will show how the 

topological properties of a given interconnection, the /c-ary n-cube in our case, can be exploited 

to provide efficient message routing that exhibits good fault-tolerance.

1.2. Fault-Tolerant Routing

Multicomputer systems are more susceptible to failure than conventional uniprocessor machines. 

This is because as the system size scales up, the probability of a component failure (node or link) 

also increases. There are two classes o f faults. Either the entire node or any channel may fail. 

The former is referred to as faulty node and the latter as a faulty link. An unreachable node is a 

node that cannot be reached from the current node due to faulty links. Messages usually travel 

across several inteimediate nodes before reaching their destinations. However, it may happen 

that some messages are not able to reach their destinations, even if  fault-free paths exist 

connecting the source and destination nodes, due to failures of the routing decisions. In this 

work, we are interested in routing algorithms that can route a message from source to 

destination, if  a path exists between such two nodes, in the presence of faulty components.
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Fault-tolerant routing algorithms provide techniques to guarantee message delivery in the 

presence of faulty components in the network. The objective o f a fault-tolerant routing algorithm 

is to ensure that the routing is successful in the presence of faults. In addition, the algorithm 

attempts to reduce latency by giving priority to a shorter alternative path over the longer ones 

when the optimal path is faulty.

Routing in faulty networks has been extensively studied in the past [15, 18, 81, 46, 83, 27]. As 

the network size scales up the probability o f processor and link failure also increases. It is 

therefore essential to design fault-tolerant routing algorithms that allow messages to reach their 

destinations even in the presence of faulty components (links and nodes).

A fault-tolerant routing algorithm is optimal if  it finds an optimal feasible path for every 

message, whenever a path exists. A path is feasible if it contains no faulty nodes. A path is 

optimal if  it is the shortest feasible path. In direct interconnection networks, the diameter is 

usually a measure of the perfonnance degradation caused by faults. Indeed, for a number of 

networks including hypercubes and /r-ary n-cubes, it has been proved [24, 45] that an upper 

bound on the length of fault-free paths between non-faulty nodes in faulty networks (fault 

diameter) is closely related to the diameter o f the network. A network is k~node connected if 

there exists at least k node-disjoint paths from any node S  to any node D  in the network [24]. 

Two paths are node-disjoint if they do not have any common intermediate node.

Although many fault-tolerant routing algorithms have been proposed for common multicomputer 

networks such as hypercubes [15, 16, 32, 43], very little research has been devoted to developing 

fault-tolerant routing for other versions o f /c-ary //-cubes, such as tori. Moreover, previous studies 

on fault-tolerant routing have focused on designing algorithms with strict conditions imposed on 

the number of faulty nodes or their locations in the network.
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Most existing fault-tolerant routing algorithms have assumed that a node knows either only the 

status of its neighbours (such a model is called localdnformation-based) [16, 17, 32] or the status 

o f all nodes {global-information-based) [15, 71]. Local-information-based routing yields sub- 

optimal routes (if not routing failure) due to the insufficient information upon which the routing 

decisions are made. Global-infonnation-based routing can achieve optimal or near optimal 

routing, but often at the expense of high communication overhead to maintain up-to-date 

network-wide fault infonnation. The main challenge is therefore to devise a simple and efficient 

way o f representing limited global fa td t information that allows optimal or near-optimal fault- 

tolerant routing. There have recently been a number of attempts to design limited-global- 

information-based algorithms [19, 20, 46, 81, 84].

Among the family o f /c-ary «-cube direct networks, the binary hypercube has received the most 

attention in the past, for which a number of fault-tolerant routing algorithms have been proposed 

[18, 46, 81, 83]. For instance, Gordon and Stout [32] have described a fault-tolerant routing 

based on "'Sidetracking") where a message is de-roiited to a randomly chosen fault-free 

neighbouring node when no fault-free neighbour exists along any of the existing optimal paths 

leading to the destination. With this approach a routing failure may occur (although with low 

probability for large «), and excessive delay may arise even in the presence of few faulty 

components [20].

Chen and Shin [17] have proposed a routing strategy based on depth-first search in which 

backtracking is required if all the required forward links cannot be used due to faulty 

components. The traversed path is recorded and attached to the message. A simplified version of 

this approach that tolerates fewer faults was presented in [16], where routing is progressive 

without backtracking, and where a message is routed to its destination on an optimal path with
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high probability. Lan [44] has presented a fault-tolerant routing algorithm based on local 

infonnation, and which guarantees an optimal or near-optimal routing. However, the algorithm is 

based on a restricted model o f fault distribution as it can tolerate only («-1 ) faulty nodes (and/or 

links) in an «-dimensional cube.

Lee and Hayes [46] have used the concept of unsafe nodes to design a fault-tolerant routing 

strategy for the hypercube. Message routing is achieved by avoiding unsafe nodes, which could 

possibly lead to communication difficulties and excessive delays. Chiu and Wu [20] have used 

the concept of unsafe nodes [46] and its extensions to show that a feasible path o f length not 

more than the Hamming distance plus four can be guaranteed, provided that the number of faulty 

nodes does not exceed («-1), where « is the dimension o f the hypercube. The concept of unsafe 

nodes has also been discussed in [83].

Wu in [84] has introduced the concept of safety levels, based on limited-global-infonnation, as 

an enhancement of the unsafe node concept. The safety level is an approximate measure o f the 

number as well as the distribution o f faulty nodes. Optimal routing is guaranteed if  the safety 

level of the source node is less than the Hamming distance between the source and destination. 

Chiu and Chen [19] have proposed a concept called routing capability, which further enhances 

the safety levels concept.

The safety vectors algorithm, proposed by Wu [81], uses a similar concept to the routing 

capability with some extensions related to dynamic routing adaptivity and application to the 

generalised hypercube [10]. The safety vectors approach requires each processor to maintain a 

bit vector (safety vector) computed through a number o f fault information exchanges between 

adjacent processors. The algorithm guarantees optimal routing to all destinations that are at a 

Hamming distance k  from node A, if and only if, the bit of the safety vector at node A  is set

10
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(the safety vectors approach will be described in detail later in chapter 4). The safety vectors 

approach has been extended in [82] for better handling of faulty links.

The only modest contribution in designing fault-tolerant routing algorithms for /c-ary «-cubes 

was described in [64]. In this work, Ravinkumar and Panda [64] have proposed an adaptive 

routing algorithm for /c-ary «-cubes where a large table of information is stored at each node, 

containing a sorted list o f entries for eveiy candidate destination in the Æ-ary «-cube. Each entry 

corresponds to the address o f a given destination and a list o f optimal neighbours that lead to that 

destination. This algorithm is very costly in tenns o f computational complexity and storage due 

to the size 0{n1C) o f the routing table at each node. Also, the algorithm selects an intermediate 

node randomly among the candidate nodes through a complex procedure during routing.

The following three measures have often been used to give indications of the performance of a 

given fault-tolerant routing algorithm [6, 81, 83]:

■ Unreachability: is the percentage o f messages that cannot be routed towards their 

destinations due to failures over the total number of generated messages.

■ Deviation from  optimality: is the average difference between the minimal routing

distance and the actual routing distance.

■ Looping: is the percentage o f messages continuously looping in the network without

reaching their destinations over the total number o f generated messages.

1.3. Motivations

Many studies have proposed fault-tolerant routing algorithms in the past [16, 17, 20, 44].

11
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However, most of these studies have imposed strict conditions on the number of faulty nodes in 

the network and their locations. Some studies have defined and used the concepts of safe and 

unsafe nodes according to their location in a faulty network (see [44, 46, 83, 84] for more 

detailed definitions). Such studies often impose strict conditions on the number o f safe, unsafe, 

and faulty nodes in order to ensure message deliveiy.

Although many fault-tolerant routing algorithms have been proposed for common multicomputer 

networks, such as the hypercube, very little research has been devoted to developing fault- 

tolerant routing for other versions o f /c-ary «-cubes, e.g. 2 and 3-dimensional tori. Furthermore, 

most existing fault-tolerant routing algorithms are either global-information-based, and as a 

result suffer fi'om costly communication overhead, or local-information-based, and as a result are 

unable to make optimal routing decisions. Therefore the challenge is to design an efficient fault- 

tolerant routing algorithm based on limited-global-infoiination. The main objective o f this thesis 

is to contribute towards filling this gap by introducing and investigating new and efficient fault- 

tolerant routing algorithms for /c-ary «-cubes.

Motivated by the above observations, this thesis introduces two new limited-global-infonnation- 

based fault-tolerant routing algorithms for A-ary «-cubes, namely the unsafety vectors and 

probability vectors. In the unsafety vectors algorithm, each node A starts by determining the set 

o f faulty or umeachable neighbours. Then, node A performs («[/C/2J-1) exchanges with its 

neighbours to deteimine its faulty set containing all faulty or unreachable nodes at different 

distances from node A. For node A, the /-level unsafety set S f , 1 < I < m, where m is an 

adjustable parameter between 1 and «[/c/2j, represents the set of all nodes at distance I from A 

which are faulty or unreachable fi*om A. Equipped with these unsafety sets, each node calculates 

numeric unsafety vectors and uses them to achieve efficient fault-tolerant routing.

12
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The new fault-toierant routing algorithm routes messages to their destinations over an optimal 

path in the network. If  all optimal paths are faulty, then the new algorithm seeks the shortest 

available path to route messages toward their destinations. The algorithm routes messages to 

their reachable destinations without any strict conditions on the number of faults or their 

locations, and it can deal with both faulty nodes and faulty links during routing. Furthermore, the 

algorithm exhibits good perfonnance characteristics in terms of the achieved routing distance 

and reachability.

Most fault-tolerant routing algorithms reported in the relevant literature, including the proposed 

unsafety vectors [6, 7], use a deterministic approach (non probability based) to reflect 

infonnation about faults in the network. Motivated by this observation, we develop another new 

routing algorithm, refened to as ^'probability vectors"", that achieves fault-tolerance in k-ary n- 

cubes using a new probabilistic approach. To compute the probability vectors, a node first 

determines its faulty set, which represents the set o f all its neighbouring nodes that are faulty or 

unreachable due to faulty links. Each node then calculates a probability vector, where the 

element represents an estimated of the probability that a destination node at distance k cannot be 

reached through an optimal path due to a faulty node or link. The probability vectors are used by 

all the nodes to achieve an efficient fault-tolerant routing in the network. This new algorithm has 

the advantage of being the first fault-tolerant routing algorithm that uses the probability 

approach. Moreover, it is simpler to implement than those algorithms that use the detenninistic 

approach. Each node maintains probability information about nodes at distance k  for every /c. The 

routing algorithm is source-destination independent, and always chooses the neighbour with the 

best probability o f reachability towards the desired destination.

In the second part of this study, we compare the relative performance merits o f the two proposed

13
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algorithms, the unsafety and probability vectors in tenns of communication overhead, 

computation complexity, average routing distance, deviation from optimality, and unreachability. 

We also show how to adapt the new algorithms, unsafety and probability vectors, to the 

hypercube in order to conduct a comparative study against the safety vectors algorithm, that has 

been recently proposed for the hypercube. This study highlights an important advantage of our 

proposed algorithms and their ability to be easily adapted to other topologies. Moreover, results 

from the comparative study reveal that the new algorithms exhibit superior performance 

characteristics over the safety vectors.

1.4. Outline of the Thesis

Chapter 2 presents the unsafety vectors approach as a new deterministic fault-tolerant routing 

algorithm for the /c-ary «-cube. The calculations o f the unsafety vectors and the routing algorithm 

along with its properties are presented. A simulation study that evaluates the unreachability, 

deviation from optimality, and looping o f the new algorithm is also described.

Chapter 3 presents the second new approach, namely the probability vectors algorithm, for the k- 

aiy «-cube. The calculations of the probability vectors, the routing algorithm along with its 

properties, and related simulation results are presented. Furthermore, this chapter compares the 

relative performance merits of the two proposed algorithms, the unsafety and probability vectors, 

in the k-ary «-cube.

Since there exist hardly any fault-tolerant routing algorithms for the /c-ary «-cube against which 

to compare the two routing algorithms proposed in this work. Chapter 4 adapts the unsafety 

vectors algorithm to the hypercube, and conducts a comparative analysis against the recently 

proposed safety vectors routing algorithm for the hypercube.

14
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As in Chapter 4, Chapter 5 adapts the probability vectors algorithm for the hypercube, and 

conducts a comparative study against the safety vectors algorithm.

Finally, chapter 6 summarises the results presented in this thesis, and discusses some possible 

directions for future research.
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Chapter 2

The Unsafety Vectors: A New Fault-Tolerant 
Routing Algorithm for A-Ary «-Cubes

2.1 Introduction

Most practical multicomputers [8, 38, 58, 80] have employed ^-ary «-cubes for low-latency and 

high-bandwidth inter-processor communication. The /c-ary «-cube has an «-dimensional grid 

structure with k  nodes in each dimension such that every node is comiected to its neighbouring 

nodes in each dimension by direct channels. The two most popular instances of /c-ary «-cubes are 

the hypercube (where /c=2) and torus (where «=2 or 3). The former was used in early 

multicomputers such as the iPSC/2 [58] and iPSC/860 [80] while the latter has been adopted in 

more recent systems, like the CRAY T3D [38] and CRAY T3E [8].

Routing in fault-free cubes has been extensively studied in the past [15, 27, 46, 81, 83]. As the 

network size scales up the probability of processor and link failure also increases. It is therefore 

essential to design fault-tolerant routing algorithms that allow messages to reach their 

destinations even in the presence o f faulty components (links and nodes). There have been a 

number o f recent studies reported [18, 46, 81, 83] that have described fault-tolerant routing

16
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algorithms based on limited-global-information. Most of these algorithms, however, have been 

developed for the hypercube [18, 46, 81, 83]. As a result, few studies have considered the other 

versions o f the /c-ary «-cubes, such as tori. In fact, most o f the existing research on /c-ary «-cubes 

has dealt with the practical and implementation issues associated with fault-tolerant routing [27, 

31, 35]. Except for the research o f [64], there has been hardly any study that investigates the 

topological properties of /c-ary «-cubes for the provision of efficient fault-tolerant routing 

algorithms.

In [64], the authors have described a fault-tolerant routing algorithm for /c-aiy «-cubes, which 

requires a large information table in each node. The table contains an entry for every other node 

in the network, containing a list o f optimal neighbours leading to a particular destination node, 

along with the associated probabilities. The algorithm suffers from high computational 

complexity and storage cost since nodes maintain global infonnation about the network.

This chapter introduces a new limited-global-information-based routing algorithm for the high- 

radix A:-ary «-cube, like the torus. The proposed new algorithm uses a greedy approach by giving 

higher attention to the immediate next routing step in avoiding faulty neighbourhoods. As we 

shall see later in this chapter, the algorithm uses the concept o f "unsafety vectors"" to 

considerably reduce the storage requirement for maintaining fault infonnation, compared to the 

algorithm proposed in [64]. In the proposed algorithm, each node A starts by detennining the set 

of faulty or unreachable neighboms. Then, node A perfonns (« [/c /2 j-l)  exchanges with its

neighbours to determine its faulty set containing all faulty or umeachable nodes at different 

distances from node A. For a node A, the /-level unsafety set s f , \ < I < m, where m is an 

adjustable parameter between 1 and «[/c/2j, represents the set o f all nodes at Lee distance / from 

A which are faulty or unreachable from A  (a definition of a Lee distance is provided in the

17
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sequent).

Equipped with these unsafety sets, we show how each node calculates numeric unsafety vectors, 

and uses them to achieve efficient greedy fault-tolerant routing. The larger the value of m is, the 

better the routing decisions should be, but at the expense of more computation and 

communication overhead.

The amount of the limited-global-information-based using the unsafety vectors { f addresses, 

w h ere /is  the number of faulty nodes which is a small fraction of / / )  is substantially smaller than 

the amoimt of information usually needed by global-infonnation-based algorithms which is in the 

order of /c". The simplicity and reduced size of the routing infonnation results in faster routing 

decisions and decreases the amount of exchanged information. Global-infonnation-based 

algorithms have the advantage o f achieving optimal routing. However, our proposed limited- 

global-infonnation-based algorithm achieves near optimal routing with a big reduction both in 

the amount o f exchanged routing information and in the complexity o f the routing algorithm.

This chapter also includes a performance evaluation of the proposed algorithm through extensive 

simulation experiments. The results reveal that the algorithm performs near optimal routing for 

practical values of the numbers of faulty nodes. The obtained measures of routing distances and 

percentages o f reachability are very efficient even when the parameter m is at its lowest value of 

1 coiTesponding to minimum communication overhead. Before presenting the new fault-tolerant 

routing algorithm, this chapter reviews first some background information (preliminaries and 

notation) that will be useful for the subsequent sections.

18
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2.2 Preliminaries and Notation

The /c-ary «-cube, , is an undirected graph with k" vertices (nodes). Each node A is labelled 

in the fonn where each digit satisfies: 0 < «, < k. Two nodes . .,«o

and are joined by a link if, and only if, there exists /, 0 < z < «, such that

-b f ±1 (mod k) and aj -  bj for / j . For the sake of clarity, we will omit writing mod k  in

similar expressions in the remainder o f our discussion. has degree 2« and diameter n[k/ 2 j .

The shortest path between nodes A and B is equal to their Lee distance [14] given by
M-l

d i (A, B) = ' y  w,., where w/ = min (|a,- -  6,1, k ~ \â  -  6,1).

The Hamming distance between two nodes A and B, denoted H{A, B), is the number of digits at 

which their labels differ. A path between A and B is an optimal path if its length is equal to

A routing algorithm R for a network G can be viewed as a function that returns the address o f the 

next node to visit in order to achieve routing between a given source and a given destination. A 

fault-tolerant routing algorithm is a routing algorithm that is able to function in a network with 

faulty components (nodes and links).

Consider two nodes A and D  where A is the source and D  is the destination of a message

exchange. Let Â ~̂̂  represent the two neighbours of node A along the dimension and

let A '̂~  ̂ d e n o t e o r  A^‘~ \ The symbol z± denotes the positive or negative direction along 

dimension i. If n, ^ d j ,  & neighbour o f A is called a preferred neighbour for routing from

node to D if c/z,( , D) ^  di{A, D) - \ . We say in this case that z± is a preferred direction. If

aj ^  di, a neighbour Â ^̂  ̂ such that dL(A^'~\ D) > di{A, D) is called a spare neighbour.
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Neighbours other than prefen-ed or spare are called disturb neighbours. For routing from A to Z>, 

a disturb neighbour of A corresponds to the case ai = di and therefore the digit is

disturbed. Routing through a disturb neighbour increases the total routing distance by at least two 

over the minimum distance. Routing through a spare neighbour increases the total routing 

distance by at least one over the minimum distance. A minimal path can be obtained by 

perfonning a preferred direction move at every routing step. With respect to routing from node A 

to Z), node T  is called a preferred transit node if  di{T, D)< di{A, D).

We make the following assumptions for the proposed algorithm and perfonnance study. Similar 

assumptions have been made in earlier related works, e.g. [27, 64, 81].

i) A faulty /c-ary «-cube contains faulty nodes and/or links. The fault pattern remains fixed 

for the duration o f calculations o f unsafety sets. In other words, the faulty sets calculation 

has to be restarted if additional faults occur before completing the calculation.

ii) Each node can deteimine the status o f its own links and the status of its neighbouring 

nodes.

Hi) Node failures are fault-stop failures.

2.3 The Proposed Fault-Tolerant Routing Algorithm

Our proposed fault-tolerant routing algorithm uses the concept of unsafety sets. The /-level 

unsafety set of a node A contains faulty or unreachable nodes at distance / from A. The unsafety 

sets o f a node A are obtained from the faulty set Fa , which comprises those nodes which are 

either faulty or unreachable from A. is first initialised to the set of faulty immediate 

neighbours o f A. F^ is then updated by perfonning (« [/c /2 j-l)  exchanges of this set between 

non-faulty immediate neighbours. After each such exchange, new faulty nodes are detected and
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added to . Added to those detected faulty nodes is the set o f unreachable neighbours of A due 

to faulty links. After detennining F^, node A calculates m unsafety sets, where m is an 

adjustable parameter between 1 and n[/c / 2J, denoted , 6"^,..., 6"j  as defined below:

Definition 2,1: The /-level unsafety set 6 '/ , \ < l < m ,  for node A is given by 

s f  y B e F À d A A , B ) ^ i ]

Alsorithm Find Unsafetv Sets (A: node)

/* called by node A to determine its faulty and unsafety sets */

= set o f  faulty immediate neighbours;

for l:= 1 to n\_k/2]-I do { 

for /:=! to n do f

i f  0  F^ then { 
send F^ to A^‘' \̂- 
receive frotn A^''^\-

P'a = Fa 
i f  A^’̂  ̂0  F^ then {

send F^ to A^'~\- 
receive from  A^’~\-

Fa = F^

}  }  }  
for l:=J to n do {
i f  link (A, A^'^f faulty then F^ := F^
i f  link (A, A^’̂ }  faulty then F^ := F^ u {A^'F};

for I 1 tom dp S f  =\b  & F^\dj^{A,B) = l\

End.

Fig. 2.1: The algorithm  for calculating faulty and unsafety sets.
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Definition 2.2: If for some node A, = 2/7 - 1 ,  then node A is called a dead-end node.

The /-level unsafety set s f  represents node ^ ’s view o f the set o f nodes at Lee distance / from A 

which are faulty or unreachable. As it will be subsequently seen in this study, when the routing 

distance exceeds a certain threshold, network partitioning is assumed. In this case the desired 

destination D  is considered in a different network partition. The detecting node propagates to all 

the reachable nodes the fact that D  is unreachable. All these nodes add node D  to the set . Fig.

2.1 gives an outline o f the “Find_Unsafety_Sets” algorithm that node A uses to determine its 

faulty and unsafety sets.
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Fig. 2.2: An example of a 3-ary 2-cube with three faulty nodes.

Example 2.1: Consider a 3-ary 2-cube with three faulty nodes, as shown in Fig. 2.2 (faulty nodes 

are represented in dark colour). Table 2.1 shows the corresponding unsafety sets associated with 

each node A.

Table 2.1: The unsafety sets of nodes in a 3-ary 2-cube with 3 faulty nodes

Node
A 00 01 02 10 11 12 20 21 22

S f Faulty {00} {00,12} Faulty {10,12} Faulty {00,10} {} {12}

Faulty {10,12} {10} Faulty {00} Faulty {12} {00,10,12} {00,10}
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2.4. Outline of the Algorithm

Definition 2.3: For a given source-destination pair of nodes {A, D), the {A, D)-unsqfety vector 

U ^ ’̂ =  is given by:

u f ’̂  = \{T  B S f  , such that T is a (A, £))-prefeiTed transit node}].

In other words, the element u f ' ^  is the number o f faulty or unreachable {A, Z))-preferred transit 

nodes at distance / from A. can be viewed as a measure of routing unsafety at distance / from 

A, hence the name unsafety vectors for . We also define an ordering relation ‘<’ for numeric 

vectors as follows. For any two numeric vectors t / =  (ui, u„i) and V=  (vi, V2, U < V

iff 3 i, 1 < i < m ,  such that Ui < and uj = vj for all j  < i. This ordering relation will correspond to 

a greedy approach in making routing decisions.

Fig. 2.3 provides a description o f the proposed UV_Routing algorithm. When a node A has to 

forward a message M  towards its destination D  it uses UV_Routing in order to achieve fault- 

tolerance routing in the network. The algorithm checks first if  the destination is a reachable 

immediate neighbour in which case the message is delivered to destination. If not, UV Routing 

tries to forward the message to a non-faulty intermediate preferred neighbour that is associated 

with the least unsafety vector. If  all preferred neighbours are faulty then the algorithm tries to 

route through a ‘disturb’ neighbour with the least unsafety vector as a second choice or through a 

non-faulty spare neighbour with the least unsafety vector as a third choice. Notice that routing 

through a disturb neighbour increases the routing distance by at least 2 but routing through a 

spare neighbour (long cycle) may increase the routing distance by k-2 in the worst case. The 

worst case may occur when the source node and the destination are at distance 1 on this spare 

dimension and the fault situation imposes moving on the long part of the cycle of this dimension
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Al2 orithm UV_Roiiting (M: message; A, S, D: node)

/* called by node A to route the message M  initiated at source node S 

towards its destination nodeD  */ 

i f A = S  then M.Route_distance = 0 

ifM .Route distance < d fA ,  D) + {k-2) x |/^ | then

{
i f A —D then exit; /* destination reached */

M.Route jiistance: =M.Route_distance + 1

Let A^‘~̂  be the reachable preferred neighbour with least

( D)-unsafety vector and Â ~̂̂  is not dead-end

or ( =D)

i f  3^'“  ̂ exists then sen d M  to A^‘̂ ^

else { Let Â ~̂̂  be the reachable Disturb neighbour with least

( A^‘- \  D)-unsafety vector and is not dead-end

i f  A^‘~̂  exists then sendM  to

else { Let be the reachable spare neighbour with least

( ,  D)~unsafety vector and A^‘̂  ̂is not

dead-end;

i f  exists then send M  to A^‘̂ ^

else failure /* destination unreachable V

}
}

}
else Handle looping

End.

Fig. 2.3: The proposed fault-tolerant (JV Routing algorithm.
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(of length /c-1). Therefore k-2 extra moves are imposed. If an immediate non-faulty neighbour is 

not available then the destination is unreachable. Routing failure occurs in such cases.

Example 2.2: Consider a 3-ary 2-cube with three faulty nodes, depicted in Fig. 2.2. To route a 

message from the source node 22 to the destination node 01, first node 22 has two preferred 

neighbours 02 and 21, but since node 21 has the least number of faulty preferred neighbours, the 

UV Routing algorithm will route to it as an intennediate node, and then finally to its destination 

node 01.

Notice from the description of the UV_Routing algorithm, given in Fig. 2.3, that looping is

detected if  the routing distance exceeds the specified limit (Lee distance plus/(/c-2) where / i s

the number o f faulty nodes). Since each faulty node may cause a derouting and an increase in the

routing distance by a value ranging between 1 and /c-2, the maximum increase in the routing

distance should not exceed /(/c-2). The proposed algorithm can be improved to minimise the

effect of looping. Since looping occurs when a destination is not reachable from the source, we

can add the destination node to the faulty set o f the node that detected the looping. When looping 

occurs (n |_ ^ /2 j- l)  exchanges of information between all neighbours are then initiated to

propagate the new information among reachable nodes in the whole Ar-ary n-cube.

2.5 Performance Analysis

In this section, we first analyse the complexity of the calculations in the UV Routing algorithm, 

and then analyse the performance of the algorithm using software simulation.

The calculation o f the unsafety sets and then the calculation of the unsafety vectors involve 

information exchanges between the network nodes. This calculation is perfonned in 

//[/c/2J phases. In each phase, each node sends at most 2n messages and receives at most 2n
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messages concuiTently. Therefore the computation time complexity is 0{n^k)  and the total 

number of generated messages is . Notice that the computation time complexity o f the

routing algorithm in [64] is 0{{nk"Ÿ)  and the total number of generated messages is 

0((/7/c")^/c” ) . Furthermore, the storage complexity of the UV Routing algorithm is at most a set 

of/  node addresses at each node, where /  is the total number of faulty nodes (practically a small 

fraction o f /c” ). On the other hand, the storage complexity in [64] is in the order of /c" tuples at 

each node, each tuple contains a node address and a probability of successful routing of that node 

for a given source-destination pair. This excessive communication and computation cost 

effectively reduces routing performance. The UV Routing algorithm compares favourably with 

the routing algorithm in [64] with respect to both communication cost and storage cost.

This section also analyses the perfonnance o f the proposed fault-tolerant routing algorithm. We 

have developed a simulation program. The nodes and links were coded according to the 

topological properties of the simulated network. Simulation results were tested for different sizes 

of the networks and compared against manual calculation of the routing vectors. The simulation 

results have matched our manual calculation results. Furthennore, we have also tested our 

simulator on an existing safety vectors algorithm [81]. The obtained results have been found to 

be in good agreement with those presented in [81].

Simulation experiments have been carried out for a 10-ary 3-cube with 1000 nodes with different 

random distributions of faulty nodes. We started our experiments with a non-faulty Â -ary «-cube 

and then the number of faulty nodes was gradually increased up to 75% of the network size with 

random fault distribution. A relatively large number of source-destination pairs (30,000) have 

been randomly generated at each run. We have made sure that these generated pairs cover all 

possible source-destination distances. In the first two sets of results reported below (in Figs. 2.4,
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and 2.5 respectively), the parameter m is fixed at its lowest value, i.e. m=l, where m is an 

adjustable parameter between 1 and / 2j , con'esponding to the lowest communication

overhead introduced by the algorithm since the exchange of information is only between 

neighbours. We will report at the end of this section (in Fig. 2.6) on an experiment that assesses 

the effects o f the parameter m on the performance o f the algorithm. However, before presenting 

the results, we define the following variables, which will be used to quantify some performance 

measures.

- Total: total number o f generated messages

- Routing_Distance: number of links crossed by a message.

- LeeJDistance: Lee distance between the message source and destination.

- FailjCount: number of routing failure cases.

LoopingjCount: number of messages that cross a number o f links beyond a maximum 

threshold before being discarded.

Using the above variables we propose the following tliree performance measures as the basis for 

studying the new UV Routing algorithm.

Average percentage of deviation from optimality

— L
\ Routing D istance-Lee Distance-   xlOO

Total ^  Lee Distance

Percentage of unreachability

Percentage of looping -  x 100

The average percentage of deviation from optimality indicates how close the achieved routing is 

to the minimal distance routing. The percentage of unreachability measures the percentage of
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messages that the algorithm failed to deliver to destination due to faulty components. The 

percentage of looping indicates the ratio o f messages that failed to reach destinations due to 

network partitioning; network partitioning occurs when the faulty nodes and links divide the 

network to two or more disconnected parts. We believe that these three measures give realistic 

indication on the performance o f a fault-tolerant routing algorithm and are adequate for the 

purpose of our present study.

Fig. 2.4 reveals that the UV Routing algorithm achieves high reachability with low to moderate 

deviation from optimality. The average percentage of deviation from optimality grows almost 

linearly with number of faulty nodes as long as this later does not exceed 50% of the total 

number of faulty nodes. The proposed algorithm is capable of routing messages using optimal or 

near optimal distance paths even when there is a large number o f faulty components. This is due 

to the fact that the algorithm repeatedly chooses to route through areas of the network with the 

least number of faults in the neighbourhood, applying a greedy approach giving more weight to 

the nearest neighbourhoods. As a result, the algorithm tends to select paths that diverge from 

areas with high counts of faulty components. The figure also reveals that the percentage of 

looping remains practically negligible when the percentage of faulty nodes remains less than 

20%. When there are a high number o f faulty nodes in the network, the number o f messages 

reaching destination becomes low, justifying the drop in the deviation and looping measures in 

Fig 2.4.

An experiment was conducted to assess the performance behaviour of the proposed algorithm 

when the network size increases. For the sake of illustration, we have fixed the value of « to 3, 

and increased the value for k from 2 up to 9 (for a network size varying from 8 to 729). For each 

network size, our algorithm has been tested by setting the percentage of faulty nodes to 10% of
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the network size, then to 20%, 30%, 40%, and 50% of the network size. At each run, a total of 

10,000 source-destination pairs were selected randomly. The results presented in Fig. 2.5 show 

that the perfonnance properties o f the new routing algorithm are maintained as the network size 

is scaled up. Furthennore, good perfonnance levels are achieved without imposing any 

restriction on the system size or impractical restrictions on the number of faults in the network.

As we have mentioned earlier, each node calculates its m unsafety sets after calculating its Fa 

through (« [/c /2 j-l)  exchanges with its neighbours. The adjustable parameter m can take values 

between 1 and «[/c/2j, representing the level o f complexity o f the proposed algorithm. The 

larger the value of m is, the better the routing decisions are expected to be. However, this is done 

at the expense of more computation and communication overhead. The results in Fig. 2.6 reveal 

that when m is increased to 3, the algorithm has a slightly better performance than in the case 

m=^l, shown in Figs. 2.4 and 2.5. It is worth noting that we have found that the same conclusions 

are obtained even when m is increased beyond 3. The small improvement in the routing 

performance for higher values o f m does not justify the higher communication overhead. We can 

therefore conclude that the proposed algorithm yields good performance in terms of routing 

distances and percentages of reachability even when the parameter m is at its lowest value of 1, 

corresponding to minimum overhead.
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Fig, 2.4: Average percentage of deviation, percentage of unreachability, and percentage of looping 
in the UV Routing algorithm.

30



Chapter 2: The Unsafety Vectors

-10% •  20% A 30% —M— 40% ■ 50% I

100
90
80
70
60
50
40
30
20
10

0
3 4 5 7 8 9

□ 10% 20% - 30% • 40% - 50%

30

€ 15

72 3 4 5 6 8 9

10% 20% 30% « -  50%M 40%

g- 15

Fig 2.5: Average percentage of deviation, percentage of unreachability, and percentage of looping 
in the UV Routing algorithm where «=3 and k value varying from 2 to 9.
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Fig 2.6: Average percentage of deviation, percentage of unreachability, and percentage of 
looping in the UV Routing algorithm when m=3.
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2.6 Conclusions

There have been a number of studies recently reported in the literature that have described fault-

tolerant routing algorithms based on limited-global-information. Most o f these algorithms,

hov^ever, have been discussed in the context o f the hypercube. Relatively little research has

considered the other versions of the /c-ary n-cube, such as the torus. This chapter has proposed a

new fault-tolerant routing algorithm for high-radix /c-ary 77-cubes based on the concept of

unsafety vectors. As a first step in this algorithm, each node A detennines its view of the faulty 

set Fa o f nodes which are either faulty or unreachable from A, by performing { n \ k H \ ~ \ )

exchanges o f fault information with its reachable neighbours. Node A then calculates m unsafety 

sets denoted s f  , S2 where m is an adjustable parameter between 1 and . The l-

level unsafety set represents the set of all nodes at Lee distance I from A which are faulty or 

unreachable from A due to faulty links or nodes. Equipped with these unsafety sets each node 

calculates its unsafety vectors and uses them to achieve fault-tolerant routing in the /c-ary n-cube. 

Larger values of m result in higher communication overhead with little improvement o f routing 

performance. A perfonnance analysis o f the proposed algorithm has been conducted using 

software simulation. The results obtained have revealed that the new algorithm provides good 

performance in terms of the routing distance and percentage of unreachability even when the 

parameter m is at its lowest value o f 1.
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Chapter 3

A New Probability-Based Fault-Tolerant Routing 
for k-Ary w-Cubes

3.1 Introduction

We have introduced in the previous chapter the Unsafety Vectors [6, 7] as a limited-global-

information-based fault-tolerant routing algorithm for /c-ary n-cubes. This algorithm imposes no

strict conditions on the number o f faulty nodes or their locations. Each node A starts by 

determining the set of faulty or unreachable neighbours. Node A then performs { r \ ] U l \ A )

exchanges with its neighbours to determine its faulty set containing all faulty or unreachable 

nodes at different distances from node A, For node A^ the /-level unsafety set S f   ̂ \ < I < m, 

where m is an adjustable parameter between 1 and n[]cl2\, represents the set of all nodes at a Lee 

distance I from A which are faulty or unreachable from A (see [14] for more details on Lee 

distances). Equipped with these unsafety sets, node A calculates numeric unsafety vectors and 

uses them to achieve efficient greedy fault-tolerant routing.

All fault-tolerant routing algorithms reported in the literature [6, 7, 18, 20, 81], including that 

proposed in Chapter 2, use a deterministic approach in that they use exact infonnation about
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faults in the network. We introduce in this chapter a new routing algorithm that achieves fault- 

tolerance in /c-aiy n-cubes using a new probabilistic approach [3].

The new algorithm uses the concept o f “probability vectors” to considerably reduce the storage

requirement for maintaining fault information, compared to the existing algorithms [64]. In the

proposed algorithm, each node A starts by deteimining the set of faulty or unreachable 

neighbours. Then each node A calculates its probability vector ....^„f/c/2j)- The

element, , o f the probability vector is an estimation of the probability that a destination node

at distance I from A cannot be reached trom^f using a minimal path due to faulty nodes and links. 

An analysis through extensive simulation experiments is performed to assess the performance of 

the proposed algorithm. The results presented here reveal that the new algorithm perfoims near 

optimal routing for practical values o f the numbers of faulty nodes. Moreover, the results reveal 

that the algorithm exhibits good perfonnance levels in tenns of the achieved routing distances 

and percentages of reachability even when a large number of faulty nodes exist.

The reader is referred to Section 2.2 in Chapter 2 for the notation and basic definitions used in the 

present chapter. The same assumptions listed at the end o f section 2.2 in Chapter 2 are also used 

in this chapter. The remainder o f the chapter is organised as follows. Section 3.2 presents the new 

fault-tolerant routing algorithm for the Ar-ary «-cube. Section 3.3 presents an analytical study of 

the proposed algorithm. Section 3.4 conducts a performance evaluation o f the new algorithm 

through simulation experiments. Section 3.5 compares the performance of the proposed 

algorithm against that introduced in the previous chapter. Finally, Section 3.6 concludes this 

chapter.

3.2 The Proposed Probability-Based Fault-Tolerant Routing Algorithm

The proposed limited-global-infonnation-based fault-tolerant routing algorithm uses the concept 

of probability vectors. The probability vector of a node A is denoted = { P f ,...., , where
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p{  ̂ is an estimation of the probability that a destination node at Lee distance I cannot be reached 

from node A using a minimal path due to faulty nodes and links. To calculate its probability 

vector, node A starts by determining the faulty set Fa, which comprises those neighbouring nodes 

that are either faulty or umeachable from A due to faulty links. After deteimining Fa , node A 

then calculates its probability vector = (P /,....,F ,|jt/2j) through n\_k/2j- l  exchanges of

information with neighbours (as described below). The probability vectors are used by all the 

nodes to perform efficient fault-tolerant routing in the network.

Definition 3.1: The faulty set Fa of a node A is defined as = [ J / ^  , where is given by
!</</;

e , A^'~^ |j B is faulty or link(4, B) is faultyj (3.1)

To simplify our calculation of the probability vectors, we also assume that all the nodes at Lee

distance /-I from A^'-^ are at Lee distance / from A. The implications o f this assumption will be

addressed later in this section. Notice that node A considers the other end of a faulty link as a 

faulty node. The element p f  of is an estimation of the probability that a destination at Lee

distance I from A is not minimally reachable, i.e. reachable using a minimal path, from A. Since 

node A has |F^| faulty or unreachable immediate neighbours, and only one o f the In  edges

incident from A constitutes a minimal path to a specific destination at Lee distance one, the first 

element of the probability vector, P / , is given by

f /  (3.2)
2n

For a destination at Lee distance I and Hamming distance h, let q be the number of preferred 

neighbours. When k  is odd, q -  h . However, when k  is even q can be either q ~ h  or q - l h  .

The latter case arise when the source and destination are diametrically opposite on a given 

dimension /, and routing to any of the two neighbours, or , is considered as a preferred 

move on that dimension. When this is the case for all dimensions, the number of preferred
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neighbours will be q=2h. Let p f  ’ be tlie probability that a destination at Lee distance I froinH is 

minimally reachable via its neighbour . Minimal reachability via Â '~'' is only possible if  

A^‘̂  ̂ is a preferred neighbour. The probability for to be a preferred neighbour is q/2n. 

Assuming that all the nodes which are at Lee distance /-I from A^‘~̂  are at Lee distance I from A 

then

R r

0 i f  node is faulty

(3.3)

— (1 -  ' ) otherwise
2n

Notice that means If  every node at Lee distance / from A were reachable

minimally via exactly one o f its 2n neighbours, then the probability o f reaching minimally a node 

at Lee distance / from A would have been )̂ since probabilities can be added

when the events are disjoint. However, a destination node at Lee distance I from H can be reached 

minimally via q preferred neighbours (not only one). Adding these probabilities includes 

therefore a redundancy factor whose effect could be reduced by dividing this summation by q. 

Therefore, the probability o f  reaching minimally a destination at Lee distance I from A can be 

approximated as —  ̂ ^ ) . Hence,

P =i--ZcV

The resulting expression can be also intuitively interpreted as follows. The ability of a node A to 

reach minimally destinations at Lee distance I depends only on the ability of its neighbours
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reaching minimally destinations at distance /-I. For instance, if  each neighbour of ^  can 

reach minimally all nodes at Lee distance /-I then A can reach minimally all nodes at Lee 

distance I. On the other extreme, if  for each neighbour A '̂^  ̂ o f A, A '̂^  ̂ camiot reach minimally 

any node at Lee distance LI then A cannot reach minimally any node at Lee distance I. We 

therefore propose to approximate the probability o f reaching minimally destinations at distance / 

from A by the average of node yFs neighbours probabilities of reaching minimally destinations at

distance /-I, i.e., 1 -  P /  = i V C O  -  ) + (1 -  )) ■
2n .

i = l

Alsorithm Compute Probability Vector (A: node)

/* called by node A to determine its probability vector {P^ , P f V

P f  = W ;
' 2n

for I :=2 to n[/c/2j dp

{ send Pi\ to all neighbours

for i '= \  ton  do (

receive  ̂from

receive Pii\  ̂from  Â '~̂  ;

R f "  + ( J - P , C )  + ( 1 - P i U ) ; }

p f  = 1 - 3 - 7 ? / '" ;
' I n '

}
End.

Fig. 3.1 : The algorithm for calculating the probability vector in the Æ-ary n-cube.
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The probability vector {P\  ̂,P-i is computed for each node T using the equations (3.2)-

(3.4). ). If  a node A has a faulty neighbour A ’̂̂ ^, then A assumes the probability vector of A '̂^^ to 

be (1, 1 , . 1 ) .  The following algorithm implements this probability vector calculation.

Next, we analyse the effect o f the assumption that a node at Lee distance /-I from is at Lee

distance / from A by deriving an error margin caused by the approximations used in the 

calculation of the elements o f the probability vector as a result o f this assumption. A node D  at 

Lee distance LI from Â ~̂̂  it is either at Lee distance I or 1-2 from A. In fact if k is odd and D  is 

diametrically opposite to A '̂^  ̂ on dimension /, then D  would be at Lee distance LI from A. This 

special case only occms with probability l/(/c-l). Let Si be the number of nodes at Lee distance L 

1 from Â ~̂̂  and at Lee distance / from A, and let 5'2be the number of nodes at Lee distance LI 

from and at Lee distance L2 or LI from A. So the error margin o f assuming that the nodes

at Lee distance LI from Â ~̂̂  are at Lee distance I from A is estimated as the ratio

- -  (3.5)
Si + Sj

The number of nodes in Si corresponds to the number of ways we can distribute LI moves over

the n dimensions in either direction except for dimension i where the moves must be in the same 

direction as the move from A to A^^~^. The number of nodes in S2 corresponds to the number of

ways we can distribute LI moves over the n dimensions in either direction except for dimension i 

where the moves must be in the opposite direction of the move from A to A '̂~  ̂ with at least on 

such move on the dimension.

g
From this description it is clear that Sj < Si. Furthermore, the enor ratio,  ----- -— , is equal

Si + S 2

to “  for 1=2. Therefore, —  < e  < ~ fo r  2 < l < n  
2« 2« ' 2

. This error is reduced by giving
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preference to preferred neighbours in the selection o f the next node, guaranteeing a decrease in 

the Lee distance to the destination, and thus reducing the effect of the error caused by the 

approximations used in the probability calculations.

Example 3.1: In a fault-free 3-ary 3-cube, all the nodes calculate the first element of their 

probability vectors. Since there are no faulty nodes then 0 for all the nodes. In the next

stage, all nodes collect the first elements o f the probability vector of their neighbours to calculate 

the 2"  ̂ element of their probability vectors using equation 3.4. Obviously, calculations at each 

stage depend on the calculations o f the previous stage. In a given stage, all the nodes perform 

their own calculations simultaneously in the same stage. After completing the 3̂  ̂ stage, 

n\_k / 2j = 3, for the fault-free 3-ary 3-cube, the probability vector for any node A is (0, 0, 0) which

means the probability of not minimally reaching a destination at any Lee distance form A is 0.

01 02

12

Fig. 3.2: An example of a 3-ary 2-cube with four faulty nodes.

Table 3.1: The faulty sets and probability vectors in a 3-ary 2-cube with 4 faulty nodes

Node
A 00 01 02 10 11 12 20 21 22

P'a Faulty {00,02} Faulty {00,12} {12} Faulty {00,22} {22} Faulty

Px Faulty 0.500 Faulty 0.500 0.250 Faulty 0.500 0.250 Faulty

Pi Faulty 0.625 Faulty 0.688 0.563 Faulty 0.688 0.563 Faulty
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Exam ple 3.2: Consider now a 3-aiy 2-cube with four faulty nodes, as shown in Fig. 3.2 (faulty 

nodes are represented as black nodes). Table 3.1 shows the conesponding faulty set and 

probability vectors associated with each node A according to the algorithm presented in Fig. 3.1.

Assume that the source node is 01 and we need to calculate the probability of reaching minimally 

a destination at Lee distance 2 from the source node. Let us tiy to compute the exact probability 

using a probabilistic argument. Node 01 has 2 fault-free neighbours: 11 and 21, and the 

probability of routing via any of them is Va as shown in Fig. 3.3. Node 11 has only one faulty 

neighbour and the probability o f node 11 to reach minimally its own neighbours is Va. However, 

notice that not all neighbours o f 11 are at Lee distance 2 from the source node causing the error 

ratio as discussed earlier. Similarly, node 21 has a probability Va o f reaching minimally its own 

neighbours. This means that the probability of node 01 reaching a destination at distance 2 via its 

neighbours is %(% + %)=0.375. Therefore, the probability of not reaching destination at distance 

two from the source node is 1-0.375=0.625. This result is the same as the value given by the

calculation of Fig 3.1 as shown in Table 3.1.

Faulty

Faulty 02
1/41/4 3/4
1/4

Faulty

1/4

1/41/4 3/4
1/4

1/4 20
Faulty

Fig. 3.3: Probabilities of reaching the nodes within distance two from the node 01.
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Let us now study the accuracy of these approximate probability calculations. Notice that there are

exactly 4 nodes at Lee distance 2 from the node 01, and these are: 12, 22, 20, and 10. Only 2

nodes, 20 and 10, o f these 4 nodes are minimally reachable from 01. Therefore, the exact value of

7^' should be 0.5. Our algorithm has estimated it to 0.625. The relative error in this case is

——  = 0.25 which is within the earlier claimed margin, —  < e < i .
0.5 2» ' 2

Alsorithm P V  Routine (M: message; A, S, D: node)

/* Called by node A to route the message M  initiated at source node S  
towards its destination node D  */

ifA==S then M.Route__distance = 0

i f  M.Route_distance < di{A, D) + (/c-2) x no_faidty_nodes then 

{ M .Routejiistance: =M. Routejdistance + 1

ifD  is a reachable neighbour then deliver M  to D; exit; /*  destination reached */

I = Lee distance between A and D

Let Â '~̂  be a reachable preferred neighbour with least P t̂i value;

P r — /(I — Pi \̂'~^) + (/ + ; /*  least expected distance through V

Let be a reachable spare neighbour with least value;

l f w j< [ ] d 2 \ th e n  Sp= {I+ 2 ) { l - +  3)Pff-^

else Sp~ (/ + 1)(1 -  (/ + least expected distance through V

else i f  3  and (  (3A^'^^ and p .̂ > Sp) or (~ 3  A^'^^) )  then s e n d M  to Â ^^  ̂ '

else failure /* destination unreachable V

} else DetectingJLooping 

End.

Fig. 3.4: Outline of the proposed Routing" fault-tolerant routing algorithm
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When a node A has to route a message M  towards its destination D, it applies the probability 

vectors-based routing algorithm, referred to here as “PV_Routing”, outlined in Fig. 3.4. If node/I 

can route through a prefen'ed neighbour, , then the associated least expected routing distance 

is given by

P r = l ( \ - P ,C )  + Q + '^)P,~r (3.6)

where 7)̂ }  ̂ is the estimated probability of not minimally reaching a destination at distance l~\ 

from the preferred neighbour This expression is justified by the fact that ) is the

estimated probability of existence of a fault-free minimal path via . If however such a path 

does not exist (with an estimated probability P{t^^ ), then reaching the destination via A^‘~'̂  will 

require at least one more hop longer than the Lee distance I. Notice that in such a case if 

and the destination are diametrically opposite on dimension i and k  is odd then a path is at least 

one extra hop longer, otherwise a path is at least two extra hops longer. On the other hand, if  

node A can route through a spare or a disturb neighbour, then the least expected routing 

distance is computed as (using similar arguments as for the calculation o f Pr)

_ \{l +1)(1 -  ) + (/ + i f  w ,=  \m\ and k is odd\ ^
4 =  ̂ , where (3 .7)

[(/ + 2)(i -  P/f ; ) + (/ + 3)7}f; otherwise J

w. = min(L,. -  J .L /c -la , - d  
■' o<y<H I I ^

Notice that in this case each spare move may cost the path to be one hop longer than the Lee 

distance (via a neighbour diametrically opposite to the destination on dimension j). Fig. 3.4 

gives an outline of the proposed fault-tolerant routing algorithm PV_Routing used by node A. 

When node A has to foiward a message M  towards its destination D, the algorithm PV Routing 

checks first if  the destination is a reachable immediate neighbour in which case the message is 

delivered to destination. If  not, PV Routing tries to forward the message to a non-faulty
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intemiediate (prefen'ed, disturb, or spare) neighbour that is associated with the least expected 

routing distance to the desired destination. PV Routing selects the foiwarding neighbouring node 

using the probability-based estimations o f the least expected routing distance (equation 3.6, and 

3.7). If  an immediate non-faulty neighbour is not available then the destination is unreachable. 

Routing failure occurs in such cases.

Exam ple 3.3: Consider a 3-ary 2-cube with four faulty nodes, as described in Fig. 3.2. To route a 

message from the source node 20 to the destination node 01, the PV Routing algorithm checks 

first if  node D is a reachable immediate neighbour to deliver the message directly to it. In our 

case where D  is not an immediate neighbour, the algorithm tries to foiward the message to a non- 

faulty intermediate (preferred, distmb, or spare) neighbour that is associated with the least 

expected routing distance to D. Node 20 has only 2 non-fault neighbours, 10 and 21, the first is a 

spare and the second is a preferred neighbour. The Lee distance. I, between S  and D is 2. Using 

equations 3.6 and 3.7, we compute the least expected routing distance when routing through the 

non-faulty neighbours 21 and 10 as

P, (21) = 2(1 -  0.25) + 3(0.25) = 2.25

(10) = 3(1 -  0.688) + 4(0.688) -  3.688

Since P,.(21)<,^(10), the proposed routing algorithm will route to node 21 as an intermediate 

node, then routes directly to the destination node 0 1 .

The proposed algorithm can detect and minimise the effect o f looping. Notice from the above 

description of PV Routing in Fig. 3.4 that looping is detected if  the routing distance exceeds the 

specified limit (Lee distance plus/ (/c-2) w here /is  the number of faulty nodes). Since each faulty 

node may cause a derouting and an increase in the routing distance by a value ranging between 1
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and /c-2, the maximum increase in the routing distance should not exceed /(/c-2). Since looping 

occurs when a destination is not reachable from the source node then the algorithm will discard 

such a message.

3.3 Performance Analysis

This section analyses some performance properties of the proposed PV Routing algorithm in 

terms of the achieved minimum and average routing distances for various types of the /c-ary n- 

cube. In the remainder of the chapter, we assume that there are /fau lty  nodes in the network, and 

that all the N nodes are equally likely to be faulty with a failure probability p = f / N .  Furthermore, 

we assume that the source and destination nodes are non-faulty. In this section we only consider 

faulty nodes. Faulty link cases can be thought o f as faulty node cases by considering the other 

end node of a faulty link as a faulty node. Let us now start by deriving a lower bound on the 

probability of minimum distance routing using the new algorithm.

3.3.1 A Lower Bound for the Probability of Minimum Distance Routing

For any two nodes at Hamming distance /?, h > 2 ,  and Lee distance /, h <l <  n\_k!2\ , the /c-aiy n- 

cube with /c>5is known [24] to embed a family t v  of 2« node-disjoint paths of the following 

lengths:

h paths o f length /, h< I < n\_k / 2 j ,

2n -  2h paths of length 1+2, and 

h paths of length /+4

Assume there exists a “hypothetical” routing algorithm R that attempts to route along a non- 

faulty path from the family tt o f shortest possible length before considering other paths. The
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following theorem provides a lower bound on the probability of minimum distance routing 

achieved by the algorithm R.

Theorem  5.7: For any source A and destination D at Lee distance /, h < I < n\_kH\ , and Hamming

distance h, 2 < h < n ,  and k > 2  the routing algorithm R routes from A to D  on a path of length at 

most / + 4 with a probability at least 1 -  /  • ‘ ̂ i+4 , where

(3.8)

(3.9)

P M = d ( i - p ) ' d ‘ (3.10)

P roof: Let / ,  be the probability that all node-disjoint paths in n o f length / are faulty. Such a

path is faulty if  at least one of its / nodes (other than the source node) is faulty. Each node is 

faulty with probability p  = f  I N  since there are/ faulty nodes and all the N nodes in the network

are equally likely to be faulty. Therefore a path of length I from n  is faulty with probability 

l - ( l - p ) ^ ,  and hence = [l -  (l -  p)^ . Similar analysis yields the expressions for and P/+4 .

Therefore at least one o f the 2n paths of 7t is non faulty with probability 1 -  P/ - F/+2 ’ • I

The PV Routing algorithm attempts to route through a neighbour that has the highest probability 

o f minimum distance routing. The algorithm keeps all options open and may select from any of 

the possible paths. As a result, it does not have any preference for a particular family o f paths as 

does algorithm R in Theorem 3.1. It is therefore expected that PV Routing will perform at least 

as good as R. In other words, the probability that PV Routing routes from a source A to ^
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destination D at Lee distance / on a minimum distance path with at least the probability 

l - P f  ■ Pi+2 ■ f+4 •

Claim 3,1: PV R outing routes in A-ary «-cubes with k> 5  between any given pair of nodes at 

Lee distance I, h <I <n\_k/2j,  and Hamming distance h, 2 < /? < « , on a minimum length path 

with probability at least 1 ~ * P/^2 * - /̂+4 •

This claim is verified experimentally by analysing the performance of the PV Routing algorithm 

in order to measure the path lengths against the number of faulty nodes in the network. To this 

end, simulation experiments have been earned out over an 8-ary 3-cube with 512 nodes with 

different random distributions o f faulty nodes. We started our experiments with a non-faulty k~ 

ary «-cube and then the number of faulty nodes was increased gradually up to 70% of the 

network size with random fault distribution. Paths from every node to all destinations at Lee 

distance 6 and Hamming distance 3 (as an average Lee and Hamming distances) were selected. 

Fig. 3.5 shows the calculation probability of the minimal paths routing analytically and 

experimentally against the number o f faulty nodes in the 8-ary 3-cube when the Lee distance is 

1=6 and the Hamming distance is h=3.

Other simulation experiments have been carried out over an 8-ary 3-cube with a fixed number o f 

faulty nodes 153 (30% of the nodes) with different random distributions. A total o f 30,000 

source-destination pairs were randomly selected. Table 3.2 contains the probability of minimum 

distance routing calculated analytically from claim 3.1 and measured experimentally by the 

simulation for different Lee distances and Hamming distances.
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□  A nalytica lly  — A — Experim entally
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Fig. 3.5: Probability of minimum distance routing against the number of faulty nodes in the 
8-ary 3-cube.

Table 3.2: Probability of minimum distance routing for a fixed number of faulty nodes 
(30% of the nodes) in the 8-ary 3-cube.

Lee Dist. H am m ing Dist. Analytical Prob. Experim ental Prob.
2 2 0.885 0.985
3 2 0.751 0.957
3 3 0.783 0.985
4 2 0.604 0.937
4 3 0.636 0.964
5 2 0.467 0.934
5 3 0.495 0.950
6 2 0.351 0.931
6 3 0.373 0.945
7 2 0.258 0.936
7 3 0.275 0.944
8 2 0.187 0.936
8 3 0.200 0.943
9 3 0.144 0.943
10 3 0.103 0.937
11 3 0.073 0.928
12 3 0.052 0.918
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Both Fig. 3.5 and Table 3.2 confmn that the probability of minimum distance routing for 

PV Routing is always better than the con'esponding probability for the hypothetical routing 

algorithm R. This shows that the probability that PV Routing routes from a source A to a 

destination D at Lee distance / on a minimum length path is at least l -P j  ■ ' ̂ i+4 •

3.3.2 Average Routing Distance in the k-Ary 2-Cube (or 2-D Torus)

We restrict the discussion in this section to the class of the /c-aiy 2-cube (or 2-D torus). We will 

later extend our results to the 3-dimensional tori and then generalise them for the /c-ary «-cube. In 

order to evaluate the average routing distance of PV Routing, we define a general class of 

probabilistic routing algorithms. We then evaluate the average routing distance for these 

algorithms and use it as an approximation for the PV Routing average routing distance.

We define a hypothetical class of probabilistic routing algorithms PRA as follows:

Definition 3.2: A  routing algorithm is called a Probabilistic Routing Algorithm (or PRA for 

short) if  the routing decisions are based on maximising the probabilities of minimum distance 

routing when selecting a node from the fault-free neighbours.

The following assumptions are also made to simplify the analysis for the PRA algorithms and to 

derive bounds on the performance of the PV Routing algorithm:

i) In selecting the next move in PRA, the neighbours are considered in the following 

order: prefen'ed on the first dimension, prefened on the second dimension, spare 

on the first dimension, and spare on the second dimension.

ii) After/ spare routing moves, the message is discarded to avoid looping.
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We now derive an expression for the average routing distance in the PRA algorithm. Since the k~ 

ary «-cube has a symmetric network topology, we will focus, without loss of generality, our 

discussion on a particular source node, A. We will use the following notation during the 

derivation:

- ■ probability o f making exactly s spare moves when routing between the source node A 

and a destination with Lee distance components {h h), where / =/i+/2 , and h and I2 are 

the distances across the first and second dimension, respectively.

- D , : average routing distance from the source node A to destinations at Lee distance /.

- D  : average routing distance from the source node A to destinations with Lee distance

components (/i, h).

~ : ratio of the number of nodes with Lee distance components (/i, I2) to the number of

nodes at lee distance I = l\ + Î2 from the source node A.

- Nr. the number of nodes at Lee distance I from the source node A.

Lemma 3.1: is given by:

1
4 [ /c /2 j-2 / + 2

/ > [A: / 2J and (/j = 0 or = 0)

 ̂ / > |_/c / 2 J and (/j > 0 and > 0)
2[A :/2j~/ + l

/ < |_A: / 2J and (/j = 0 or Ij -  0)

1 
/

(3.12)

/ < [/f / 2 J and (/, > 0 and > 0)
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Proof: For a given l\ and h, 0< /i,/2  <L/c/2j, and a fixed source node A = (%i, %%) in the /c-ary 2- 

cube, if  /] V 0 and hi=- ^  then there are four possible destination nodes with Lee distance 

components (/i, /%) from ^. These are: (xi+/i, X2+/2), (xi+/i, X2-/2), (xi-/i, X2+/2), and (xi-/i,X2-/2). If 

however /i=0 or /2=0 then there are only two such possible destinations. Furthermore, the number 

of destinations Ni at a given Lee distance I from the source node A is given by

A; = 4 (2 L /c /2 j - /  + l) l > \ k l 2 \  (3.13)

This is derived from the fact that the range for each l\ and h  should be |_A:/2 J , L/c/2j-l ,  [A:/2j-2, 

. . . . ,  / - [ /c /2 j .  The number of values in this range is 2 [ /c /2 j - /+ l .  Furthennore there are four

destinations with Lee distance components (/], 14\) for each case. Using a similar reasoning 

yields the result Ni= A I for the case / < [A:/2 J . Hence the claimed result for |

Lemma 3.2: The average routing distance, , from the source node A to destinations with Lee 

distance component (/i, If) is given by

P hh  = • (4 + 4 +  25), where (3.14)
5=0

/̂i,/2,5 = (1 “ P)P'1-U2X + ~ P ) P (1 "  p)F/j+i,/2.5-i ^  P^{1~ ;?)F/j,/2+i,s-i (3.15)

and the probability 5 satisfies the following boundary conditions:
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1

1

(I-P)'*"'

(1 -  P ) f / ,  -l,/2,0 +  P(1 -  P )^ /j,/2-l,0

0
0

P,

/j = 1,/2 =0, 5 = 0
h  -  0, 2̂ “  f  5 = 0 

/j > 0, /2 = 0, 5 = 0 

/j = 0,/2 > 0, 5 = 0 

b  > 0,^2 > 0, 5 = 0 

h — 1, /% 0, 5 > 0
/i = OT2 = 1, 5 > 0

(1 -  p ) P / , -1 ,0 ,5  +  p ( l  -  p ) ^ / i + i , 0 .5 -1  +  p ^  (1 -  p ) P / , ,1,5-1 1 <  / i  <  L / c /2 j , /2  =  0, 5 > 0
( l “ P ) f / , -1 ,0 ,5 + p ( l ~ p ) f / i  ,1,5-1 h  -  j ,  ^2 =  0, 5 > 0

( 1 " P ) / o , / 2 - i , 5 + p ( 1 ”* p ) - ^ i , / 2 ,5 - i+ P ^ ( 1 ’“ P)-^o,/2+i,5-i h  < [ /c /2 j ,  5 > 0

(1 - p)R),,2 - 1.5 +  p(l -  P)^i,/2,5-i h  -  0, / 2  = \jd2\, 5 > 0

( l - p n - , , / 3 .  < L « 2 j.0 < /2 < L « 2 j,s> 0
+  P ^ ( l - P ) ^ / l . / 2 + U - l  J
( l - p ) f / | - l , / 2 , 5  + P ( l - p ) 4 i , / 2 - U  + P ^ ( l - p ) f /^,/2+1,5-1 4  =  L^c/2j, 0  <  /g < [ / c /2 j ,5  > 0

( l - p ) ^ , - i , / 2 , 5  + P ( l - p ) - ^ i , / 2 - V  + P ^ ( l - P ) ^ 4 + i , / 2 , 5 - i  h  = L ^ ^ 3 j , 0 < / |  < [ / c / 2 j , 5 > 0

( l - p ) ^ , _ i . / 2 , 5  + P ( l - p ) f / i , / 2 - i , 5  h  = \] d .2 \ j2  =L æ /2J ,5  > 0

(3.16)

Proof: Let the average routing distance between a given pair o f nodes with Lee distance

components (h , ̂ 2 ) - Since each spare move increases the routing distance by 2 hops, and since 

messages are discarded after m aking/spare moves, we can write as

(3.17)
5=0

To make 5  spare moves when routing a message at Lee distance I from its destination, we 

distinguish the following cases based on the first move:

i) A preferred move on the first dimension leading to a node with a Lee distance 

component (/i - h / 2 ) from destination, and the remaining route must include s spare 

moves.
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ii) A preferred move on the second dimension leading to a node with a Lee distance 

component QiJi  -1) from destination, and the remaining route must include s spare 

moves.

Hi) A spare move on the first dimension leading to a node with a Lee distance component 

(/i + h /2) from destination, and the remaining route must include s-\ spare moves

iv) A spare move on the second dimension leading to a node with a Lee distance 

component +1) from destination, and the remaining route must include 5-I spare 

moves.

It can be easily verified that Q g = 1, Pô,i,o = 1, / ,o ,5 = 0 and Pg.i.j = 0 for all 5 > 0 since the source 

and destination nodes are both assumed to be non faulty. For / = /, + ^  2, is the

probability that a destination with Lee distance components (/,,0) is minimally reachable. This 

probability is equal to (1 -  as this requires all -1  prefeiTed intermediate nodes to be non 

faulty. Following similar arguments the probabilities Pq./j .o obtained. For

0 < /j < [A:/2J, 0 < /2 < \_k ! 2\, and 5 > 0 , we therefore can write as

\ h , s  =(1“ P)^/i-i,/2,5 + p(l +P^(l-P)f/i,/2+M-i (3.18)

When the destination is at distance [k / 2j on one dimension or both dimensions, then the first 

move can only be a preferred move on that dimension, and in this case

0-- P)Piy-i,i2,s P^O-- h =L/r/2jan 0< /2< [/c /2 j

+P^(1-P)^1+V2,^-I 0< /i <[/c/2j and/2 =L/c/2j (3.19) 

(1~P)P/j„],/2,5 +P(l-p)/"/i,/2-U A =L/c/2 jan d /2 = \]d2\

The results o f Lemma 3.1 and Lemma 3.2 are used to obtain the following theorem.
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Theorem 3.2: For any PRA algorithm, the average routing distance D, between a given pair of 

nodes at Lee distance I in the /c-ary 2-cube is given by

A
/pO
l k / 2 j _

î / /> L /c /2 j
/,=/-L*/2j

(3.20).

Claim 3.2: The average routing distance between two nodes at Lee distance I in PV Routing in 

/c-ary 2-cubes is approximated by Z)/.

This claim is intuitively justified by the fact that PV Routing and PRA algorithms are based on 

similar probabilistic nature, and therefore we expect them to perform similarly in tenns of the 

achieved average routing distances.

To support this intuitive claim, we have compared the results obtained using the above-derived

expressions against those obtained through simulation. We have first solved the equations related 

to , and D; given by Lemma 3.1, Lemma 3.2, and Theorem 3.2. These

calculations yield the average routing distance vector =(Di D2 2j) • We have then

performed experiments of the proposed PV Routing algorithm to measure experimentally the 

corresponding average routing distances vector.

54



Chapter 3: The P robability Vectors

Table 3.3: The average routing distance between two nodes at Lee distance / for different 
numbers of faulty nodes in the 15-ary 2-cube using PV Routing.

I Number o f faulty nodes in 15-ary 2-cube (for PV-Routing)

0 5 10 15 20 25 30 35 40 45 50 55 60

1 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 2 2.09 2.12 2.17 2.17 2.24 2.26 2.39 2.39 2.44 2.58 2.70 2.55

3 3 3.14 3.21 3.29 3.30 3.35 3.39 3.59 3.62 3.66 3.70 3.98 3.79

4 4 4.14 4.24 4.33 4.40 4.44 4.54 4.73 4.77 4.86 4.96 5.19 5.03

5 5 5.14 5.26 5.35 5.46 5.52 5.63 5.81 5.91 6.00 6.10 6.26 6.21
6 6 6.14 6.28 6.39 6.51 6.60 6.76 6.96 7.02 7.16 7.30 7.38 7.41

7 7 7.14 7.30 7.42 7.58 7.69 7.86 8.08 8.12 8.28 8.46 8.47 8.54

8 8 8.13 8.29 8.40 8.56 8.68 8.83 9.04 9.07 9.25 9.50 9.44 9.53

9 9 9.12 9.26 9.38 9.53 9.62 9.76 9.94 9.97 10.19 10.42 10.39 10.46

10 10 10.12 10.27 10.38 10.52 10.61 10.75 10.91 10.93 11.18 11.37 11.40 11.42

11 11 11.13 11.28 11.40 11.54 11.61 11.77 11.89 11.97 12.26 12.44 12.52 12.51

12 12 12.14 12.29 12.41 12.55 12.60 12.74 12.85 12.95 13.35 13.46 13.55 13.58

13 13 13.16 13.30 13.42 13.55 13.59 13.75 13.89 13.98 14.38 14.48 14.57 14.60

14 14 14.16 14.31 14.45 14.55 14.60 14.76 14.81 14.91 15.28 15.40 15.57 15.48

Table 3.4: The average routing distance between two nodes at Lee distance / for different 
number of faulty nodes in the 15-ary 2-cube using PRA (Eq 3.20).

I Number o f faulty nodes in 15-ary 2-cube (PRA Probability)

0 5 10 15 20 25 30 35 40 45 50 55 60

1 1 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 2 2.02 2.05 2.08 2.11 2.14 2.18 2.21 2.25 2.29 2.33 2.38 2.41

3 3 3.05 3.10 3.15 3.21 3.28 3.35 3.42 3.49 3.56 3.63 3.70 3.76

4 4 4.07 4.15 4.23 4.32 4.41 4.51 4.61 4.71 4.81 4.90 4.98 5.05

5 5 5.09 5.20 5.30 5.42 5.54 5.67 5.79 5.91 6.03 6.14 6.23 6.29

6 6 6.12 6.24 6.38 6.52 6.67 6.82 6.96 7.10 7.23 7.34 7.42 7.47

7 7 7.14 7.29 7.44 7.60 7.77 7.93 8.08 8.23 8.35 8.44 8.49 8.49

8 8 8.14 8.29 8.45 8.61 8.78 8.94 9.10 9.24 9.35 9.42 9.45 9.42

9 9 9.16 9.32 9.49 9.65 9.82 9.98 10.12 10.25 10.35 10.40 10.41 10.34

10 10 10.2 10.36 10.55 10.73 10.90 11.06 11.20 11.32 11.39 11.42 11.38 11.27

11 11 11.2 11.41 11.61 11.81 11.99 12.15 12.29 12.39 12.45 12.44 12.36 12.18

12 12 12.2 12.45 12.67 12.88 13.07 13.24 13.37 13.45 13.47 13.42 13.27 13.02

13 13 13.2 13.49 13.72 13.94 14.13 14.29 14.39 14.43 14.39 14.26 14.01 14.64

14 14 14.3 14.49 14.68 14.84 14.94 14.98 14.95 14.83 14.62 14.29 14.84 14.27
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Tables 3.3 and 3.4 show results for the calculated average routing distances using PV Routing 

and PRA (equation 3.20), respectively, in a 225-nodes 15-ary 2-cube where the faulty nodes are 

increased gradually up to 60 faulty randomly distributed nodes. All possible source-destination 

pairs have been generated and tested. The experimental results and the analytical results are in 

close agreement with those obtained using simulation, demonstrating the accuracy of our above 

analytical derivation. The results also show that PV Routing can achieve as good a performance 

as any fault-tolerant routing algorithm, e.g. the PRA algorithm that achieves high ratios of 

minimal routing in the presence o f faults in the network.

A second set of simulation experiments has been caiTied out for a /c-ary 2-cube with a fixed 

number o f faulty nodes (20% of the nodes) with different random distributions. All possible 

source-destination pairs in the network have been generated and tested. Table 3.5 contains both 

the calculated probability o f the minimal path routing using PV Routing and theorem 3.2 for 

different Lee distances. This table also supports the claim that the proposed PV Routing and 

hypothetical PRA algorithms exhibit similar performance characteristics in terms o f the achieved 

average routing distances.

3.3.3 The Average Routing Distance in the /c-Ary 3-Cube (or 3-D Torus).

Using similar analysis to that introduced for Lemma 3.1 and Lemma 3.2, the average routing 

distance D, for the PRA algorithm in the /c-ary 3-cube can be expressed as

= where /j -h f +/] = /andx = min(/,LA:/2j) (3.21)
/■j~0l2 =0/3=0

h  h  + 4  +^3 + 25)Aj (3.22)
j=0

56



Chapter 3: The Probability Vectors

Table 3.5: The average routing distance using PV Routing and PRA (Eq.3.20) for a fixed 
number of faulty nodes (20% of the nodes) in the /c-ary 2-cube,

k Lee Dist PV Routing PRA
1 1 1

3 2 2 2
1 1 1
2 2.265 2.171

5 3 3.315 3.179
4 4.343 3.999
1 1 1
2 2.184 2.278
3 3.357 3.442

7 4 4.312 4.463
5 5.240 5.487
6 6.287 6.184
1 1 1
2 2.300 2.284
3 3.465 3.530
4 4.577 4.682

9 5 5.528 5.701
6 6.559 6.744
7 7.600 7.768
8 8.474 8.375
1 1 1
2 2.329 2.289
3 3.487 3.549
4 4.643 4.780
5 5.794 5.920

11 6 6.815 6.934
7 7.764 7.965
8 8.727 9.022
9 9.655 10.02
10 10.603 10.502

k Lee Dist PV Routing PRA
1 1 1
2 2.577 2.295
3 3.891 3.562
4 4.923 4.807
5 6.152 6.023

13 6 7.249 7.152
7 8.176 8.158
8 9.203 9.171
9 10.366 10.225
10 11.425 11.271
11 12.442 12.226
12 13.121 12.566
1 1 1
2 2.379 2.293
3 3.656 3.559
4 4.817 4.805
5 5.938 6.031
6 7.103 7.231
7 8.269 8.349

15 8 9.139 9.348
9 10.146 10.347
10 11.120 11.392
11 12.152 12.447
12 13.142 13.473
13 14.065 14.392
14 14.920 14.618

P)Ph-\,l2,h,s  ̂Pî  -  P)\l2-\,h,s + P̂  PWhhhds
3 / 1  4 / 1  \  r ,  . 5 / 1  \  r

+

P^{^~ PWî̂ +\,i2,h,s-̂  +  (1  -  P ) / i , / 2 + l , / 3 , ^ - l  +  (1  -  P ) f / , , / 2 , / 3 + 1,5-1

(3.23)
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N,

A
N,

N,

/i > 0 or I2  > 0  or > 0

/j =  0 or 2̂ =  0 or ~ 0

/] > 0 and I2  > 0  and 3̂ > 0

(3.24)

N, =i

lk/2j[k/2\[k/2\
1 1  z *
/j=0 /2=0 /3=0

1-2

12 /-6  +8^^/ 
/=0

li + 1 2  + It, =  I and I > \ j c /  2j

/<L/c/2j

(3.25)

Table 3.6 shows both PV_Routing results against PRA (equation 3.21) results for the average 

routing distances for different sizes o f the A:-ary 3-cube, where the number of faulty nodes is 20% 

of the total network size. The results demonstrate that the above derived expressions predict the 

average routing distance with a reasonable degree o f accuracy.

Table 3.6: The average routing distance using PV Routing and PRA (Eq.3.21) for a fixed 
number of faulty nodes (20% of the nodes) in the Â -ary 3-cubes.

k Lee Dist PV Routing PRA
1 1 1

3 2 2.024 2.043
3 3.014 3.014
1 1 1
2 2.277 2.203
3 3.257 3.277

5 4 4.263 4.233
5 5.309 5.354
6 6.279 6.347
1 I 1
2 2.297 2.232

7 3 3.477 3.408
4 4.546 4.501
5 5.539 5.573
6 6.546 6.643

7 7.522 7.693
8 8.540 8.754
9 9.513 9.726
1 1 1
2 2.294 2.235
3 3.394 3.426
4 4.501 4.602
5 5.565 5.709
6 6.581 6.785

9 7 7.594 7.875
8 8.597 8.954
9 9.601 10.012
10 10.872 11.083
11 11.912 12.159
12 12.965 13.096
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3 .3.4 T h e  A verage R o u tin g  D is tan ce  fo r th e  /c-Ary « -C u b e  (th e  g en e ra l case).

We now compute the expected average routing distance in the /c-ary «-cube. To reduce the 

complexity of the combinatorics involved, and thus simplify the analysis, we assume that the Lee 

distance k (1 < / < n) across any o f the n dimensions is equal /,• = k / 4 , which is the average

routing distance along a dimension assuming that a message can be destined to any node in the 

network with equal probability. Assuming equal chances of encountering faulty nodes on each of 

the « dimensions, the number of spare moves on each dimension is at most fin . Since each spare 

move causes two extra routing steps, the overall average routing distance can thus be written as

^  = + (3.26)
i—\ s= 0

where  ̂ is the probability that s spare moves are made on dimension /. In order to evaluate f

we assume the routing algorithm attempts to make a preferred move on one o f dimensions 1, 2, 

..., « in this order. I f  that is not possible, the routing attempts to make a spare move on one of 

dimensions 1, 2, ..., « in this order. Consequently, a spare move is performed on dimension i if 

all « prefeiTed moves are not possible (due to faulty nodes or links) and the z-1 spare moves on 

dimensions 1, 2 ,..., i -1 are not possible. Hence the probability o f making one spare move on 

dimension i is /7”̂ '̂“‘̂ ( l - /7 ) . The probability of making s spare moves on dimension i is given

by

(3,27)

The following Table 3.7 shows results using the above equations and simulation for estimating 

the average routing distance in the /c-ary 3-cube for different sizes, where the number of faulty 

nodes is 10% of the network size. The results show that in each case PV Routing and PRA 

(equation 3.26) average routing distances are in close agreement with each other.
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Table 3.7: The PV Routing and FRA (Eq.3.26) average routing distance for a fixed number 
of faulty nodes (10% of the nodes) in the /c-ary 3-cnbes.

k PV Routing D PRA
2 1.705 1.502
3 2.004 2.253
4 3.029 3.003
5 3.665 3.753
6 4.562 4.503
7 5.266 5.254
8 6.295 6.004
9 6.717 6.754
10 7.775 7.504

3.4 Experimental Performance Analysis

In this section, we first analyse the complexity of the calculations of the PV Routing algorithm, 

and then analyse the performance of the algorithm using simulation.

The calculation o f the probability vectors involves information exchanges between network 

nodes. This calculation is performed in «L/c/2jphases. In each phase, each node concurrently

sends at most 2n messages and receives at most 2n messages. Therefore the computation time 

complexity is 0{n^k) and the total number o f generated messages is . Notice that the

computation time complexity o f the routing algorithm in [64] is 0((«/c")^) and the total number 

o f generated messages is 0((n/c”)^/c"). Furthermore, the storage complexity in PV Routing is 

«[/c/2jreal numbers at each node. On the other hand, the storage complexity o f the algorithm 

proposed in [64] is in the order of /c" tuples at each node, each tuple contains a node address and 

a probability of successful routing of that node for a given source-destination pair. This excessive 

communication and computation cost effectively reduces routing performance. The PV Routing
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algorithm compares favourably with the algorithm of [64] with respect to both communication 

cost and storage cost.

This section also obtains experimentally three additional performance measures on the proposed 

PV Routing algorithm, namely deviation from optimality, unreachability, and looping. To this 

end, simulation experiments have been carried out over a 3-ary 3-cube with 27 nodes with 

different random distributions o f faulty nodes. We started our experiments with a non-faulty k~ 

ary «-cube and then the number of faulty nodes was increased gradually up to 75% of the 

network size with random fault distribution. A total of 30,000 source-destination pairs were 

selected randomly at each run. In the first two sets of results reported below (in Figs. 3.6, and 3.7 

respectively), However, before presenting the results, we recall the definitions of the following 

variables and performance measui'es (see Section 2.5):

- Total, total number o f generated messages

- RoutingJDistance: number o f links crossed by a message.

- Lee Distance'. Lee distance between the source and destination nodes.

- Fail_Count: number of routing failure cases.

- Looping_Count: number o f messages that cross a number o f links beyond a maximum

threshold before being discarded.

- Average percentage of deviation from optimality
1 ^  Routing _ Distance -  Lee_Distance

Total Lee Distance

Percentage of unreachability = x loO

T. r-i • Looping CountPercentage o f looping = -----------   x 100
Total
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Fig. 3.6 reveals that PV Routing achieves a high reachability with low average percentage of 

deviation from optimality. The deviation from optimality remains low as long as this number of 

faulty nodes does not exceed 50% of the total number of nodes, then it grows almost linearly with 

the number o f faulty nodes. The proposed algorithm is capable of routing messages using optimal 

distance paths even when there are a large number of faulty components. This is due to the fact 

that the algorithm repeatedly chooses to route through areas o f the network with the least number 

o f faults in the neighbomhood by choosing to route to a prefeined neighbour with the least 

probability that a destination at distance I from A is not minimally reachable from A. As a. result, 

the algoritlim tends to select paths that diverge from areas with high counts o f faulty components. 

The result also reveals that the percentage of looping remains practically negligible when the 

percentage o f faulty nodes is less than 40%.

Another experiment was carried out to evaluate the performance behaviour of the new algorithm 

when the network size increases. For the sake of illustration, we have fixed the value of « to 3, 

and increased the value for k  from 2 up to 9; we have found that the same conclusions are 

reached when other values o f n are considered. For each network size, the algorithm has been 

tested by setting the percentage o f faulty nodes to 10% of the network size, then to 20%, 30%, 

40%, and 50% of the network size. At each run, a total o f 30,000 source-destination pairs were 

selected randomly. The result presented in Fig, 3.7 shows that the performance properties of the 

PV Routing are not affected as the network size is scaled up. This reveals that the proposed 

algorithm possesses the desirable property o f maintaining good performance levels without 

imposing any restriction on the system size.
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Fig. 3.6: Percentage of unreachability and average percentage of deviation in the proposed 
PV Routing algorithm for 3-ary 3- cube.
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Fig. 3.7: Average percentage of deviation, percentage of unreachability, and percentage of 
looping in the proposed PV Routing algorithm for different sizes of the /c-ary /i-cube.
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3.5 Performance Comparison

This section compares the performance of our two algorithms proposed for the /c-ary n-cube, 

namely PV Routing and UY_Routing (proposed in Chapter 2), in terms o f reachability, deviation 

bom  optimality, percentage o f looping, average routing distance, communication complexity, 

and computation overhead.

3.5.1 Comparison of the Performance Merits

We have used the three perfonnance measures defined in the previous chapter (average 

percentage o f deviation from optimality, percentage o f unreachability, and percentage o f looping) 

as the basis for comparing the perfonnance of PV Routing and UV Routing algorithms. 

Simulation experiments have been carried out over a 9-aiy 3-cube with 729 nodes with different 

random distributions of faulty nodes. We started our experiments with a non-faulty /c-ary n-cube 

and then the number of faulty nodes was increased gradually up to 50% of the network size with 

random fault distribution. A total o f 50,000 source-destination pairs were selected randomly at 

each run.

Figs. 3.8, 3,9, and 3.10 reveal that both algorithms achieve a high reachability with low 

percentage of deviation from optimality. The deviation from optimality remains low as long as 

the number of faulty nodes does not exceed 25% of the total number of nodes. It then grows 

almost linearly with the number o f faulty nodes. Both algorithms are capable of routing messages 

using optimal distance paths even when there are a large number o f faulty components. This is 

due to the fact that both algorithms repeatedly choose to route tluough areas o f the network with 

the least number of faults in the neighbourhood via attempting to maximize the chances of 

minimal distance routing. As a result, both algorithms tend to select paths that diverge from areas 

with high counts of faulty components. The results also reveal that the percentage of looping
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remains practically negligible when the percentage o f faulty nodes is less than 30% for both 

algorithms. In general, the PV Routing and UV Routing algorithms exhibit similar performance 

in terms o f reachability and deviation from optimality.

Deviation

- B —  Probability — A —  U nsafety

0 I H
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

Faulty Nodes

Fig. 3.8; Average percentage of deviation in the PV Routing and UV Routing 
algorithms in the 9-ary 3-cube.

Unreachability

“ Unsafely

Nodes

Fig. 3.9: Percentage of unreachability in the PV Routing and UV Routing algorithms in 
the 9-ary 3-cube.
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Looping
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Fig. 3.10: Percentage of looping in the PV Routing and UV Routing algorithms in the 
9-ary 3-cube.

Another set o f perfonnance experiments has been conducted to evaluate the behaviour o f the 

PV Routing and UV Routing algorithms when the network size increases. For the sake o f  

illustration, we have fixed the value o f  % to 3, and increased the value o f  k from 2 to 9 (for a 

network size varying from 8 to 729 nodes). For each network size, our algorithms have been 

tested by setting the percentage o f  faulty nodes to 10% o f the network size, then to 20%, 30%, 

40%, and 50%. At each run, a total o f  30,000 source-destination pairs were selected randomly. 

The results presented in Figs. 3.11 through 3.16 show that the performance properties o f  the 

PV Routing and UV Routing are not affected as the network size is scaled up. This reveals that 

both algorithms possess the advantageous property o f maintaining good performance levels 

without imposing impractical restrictions on the network size.

As stated above, the experimental performance comparison shows that both algorithms have 

similar performance in terms or reachability, deviation from optimality, and looping. However, 

the nature and amount o f the calculations o f  the unsafety vectors are different from those o f the 

probability vectors. This difference is reflected in the computational complexity and 

communicational overhead for the two algorithms, as will be discussed below.
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Fig. 3.11: Average percentage of deviation in the UV Routing algorithm
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Fig. 3.12: Average percentage of deviation in the PV Routing algorithm.
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Fig. 3.13: Percentage of unreachability in the UV Routing algorithm.
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Unreachability of Probability Vectors Algorithm 
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Fig. 3.14: Percentage of unreachability in the PV Routing algorithm.

Looping of Unsafety Vectors Algorithm

50%■B— 1 0 % 30% 40%

10  -

0  »

k values

Fig. 3.15: Percentage of looping in the UV Routing algorithm.
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Fig. 3.16: Percentage of looping in the PV Routing algorithm.
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3.5.2 Comparison of the Average Routing Distance

In section 3.3 we have introduced a Probabilistic Routing Algorithm (PRA) model in order to 

evaluate the average routing distance for probability-based algorithms that satisfy the PRA 

conditions. Analytical results have been presented based on this model.

We now compare the analytical results against the experimental results using both UV Routing 

and PV Routing algorithms. We first solve the equations (3.21 -  3.24) related to

, &nd Di given by Lemma 3.1, Lemma 3.2, and Theorem 3.2. These calculations

yield the average routing distance vector =[Di,D2 ,....,D„]. We then simulate both

PV Routing and UV Routing algorithms to measuie the experimental average routing distance

vector for both algorithms.

Table 3.8 shows both analytical results using PRA and experimental results using both 

PV_Routing and UV Routing for different A:-ary 3-cubes where the number of faulty nodes 

equals 10% of the nodes with random distribution for these faulty nodes. All possible source- 

destination pairs have been generated and tested. The experimental and analytical results for both 

algorithms are in close agreement. This reflects the good performance of both PV Routing and 

UV Routing in achieving high ratios of minimal routing in the presence of faults in the network.

It is worth noting that other experiments have been conducted for a varying the number of faulty 

nodes. The same conclusion has been reached from those experiments regarding the relative 

performance behaviour o f both algorithms.
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Table 3.8: Average routing distances using PV Routing, UV Routing, and PRA in A-ary 3- 

cubes.

k PV Routing D UV Routing D PRAD
2 1.705 1.718 1.502
3 2.004 2.092 2.253
4 3.029 3.062 3.003
5 3.665 3.756 3.753
6 4.562 4.663 4.503
7 5.266 5.564 5.254
8 6.295 6.307 6.004
9 6.717 7.016 6.754
10 7.775 7.889 7.504

3.5.3 Communication Complexity and Calculation Overheads

The perfonnance of the UV Routing and PV Routing algorithms is primarily dependent on the

overhead associated with the calculations o f the unsafety and probability vectors, respectively,

and which involve message-passing communication between network nodes. The UV Routing 

algorithm performs in the order of phases. In each phase, each node sends at most 2n

messages and receives at most 2n messages. Therefore the computation time complexity at each 

phase is O(n^k)  and the total nmnber o f generated messages in the network is 0(n^k"^^ ). Notice 

that the PV Routing algorithm performs the same order of message exchanges with the 

difference being that probability vectors messages are substantially of smaller size. This cost is 

quite substantial (especially in terms of the total number of generated messages).

The PV Routing algorithm requires from each node A to build a set Fa of all faulty immediate 

neighbouring nodes. The size o f this set is, in the worst case, proportional to the number of faulty 

nodes in the network. Based on the global infonnation set Fa , node A will then calculate a local
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probability vector Pa of ?z[/c/2j numeric components and use it for routing. This compares

favourably with global-information-based routing algorithms which require in the order o f /c" 

global infonnation in the /c-ary «-cube to be collected and used during decision making.

The excessive communication and computation cost for global-infonnation-based algorithms 

does not justify the little gain in achieving optimal routing as compared to near optimal routing 

achieved by the UV Routing algorithms and PV Routing. On the other hand, the UV Routing 

algorithm requires substantially higher initial computation and communication overhead in 

calculating the unsafety vectors as compared to the initial calculation of the probability vectors 

for the following reasons:

i) Unsafety sets are destination dependent while probability vectors are destination 

independent.

ii) Calculating the unsafety sets involves exchanging the sets Fa between neighbours while 

calculating the probability vectors involves exchanging single numeric values between 

neighbours.

3.6 Conclusions

Æ-ary «-cubes have been one of the most popular networks for multicomputers. This chapter has 

first introduced the concept of “probability vectors”, and then used it to propose an efficient fault- 

tolerant routing algorithm for /c-ary «-cubes. As a first step in the algorithm, each node A 

determines its view of the faulty set F ^ o f neighbouring nodes which are either faulty or

unreachable from A. Equipped with these faulty sets, node A calculates its probability vector 

by exchanging fault information with its reachable neighbours. An element , 1 < / < «[/c / 2 j ,
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of the vector is an estimation o f the probability that a destination node at distance / cannot be 

reached from node A using a minimal path due to a faulty node or link along the path. Each node 

then uses the probability vectors to perform efficient fault-tolerant routing in the /c-ary «-cube 

network.

An analytical study has been presented to derive upper bounds on the average message distance 

achieved by the proposed algorithm. A performance analysis of the proposed algorithm using 

simulation experiments has also been reported. The results have revealed the validity o f the 

analytical model and have confirmed that the algorithm provides good performance in terms of 

the routing distance and percentage of reachability even when the number of faulty nodes in the 

network is large. The results have also revealed that the proposed algorithm maintains good 

performance levels as the network size scales up.

This chapter has also compared the performance of the probability vectors algorithm with the one 

proposed in the previous chapter. The results have shown that both algorithms exhibit similar 

performance with regards to the achieved average routing distance, reachability, and deviation 

from optimality. However, the probability vectors algorithm has the advantage of lower storage 

requirement and eommunication overhead.
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Chapter 4

Adapting The Unsafety Vectors Algorithm to 
Hypercubes

4.1 Introduction

The hypercube (or the binary «-cube) has been one of the most popular networks for 

multicomputers due to its attractive topological properties, e.g. regularity, recursive stmcture, low 

diameter, and ability to exploit communication locality. Several commercial and experimental 

systems have employed this network, including the NCUBE-2 [54], iPSC/2 [58], Cosmic Cube 

[68], and SGI Origin 2000 multiprocessor [75]. There have been a number o f attempts to design 

limited-global-information-based fault-tolerant algorithms for the hypercube, and the paragraph 

below briefly reviews some o f the important algorithms that have been proposed in the literature 

[18,46,81,83].

Chapter 2 has introduced the unsafety vectors as a new concept for designing a new fault-tolerant 

routing algorithm for /c-ary «-cubes. The new routing algorithm has two important advantages 

over those already existing in the relevant literature, e.g. [18, 32, 64, 83]. Firstly, it can ensure

fault-tolerance under more relaxed assumptions, regarding the number of faulty nodes and their
—
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locations in the network. Secondly, the algorithm is more general in that it can easily be adapted 

to different topologies, including those that belong to the family o f /c-ary «-cubes (e.g. tori and 

hypercubes) and those that do not (e.g., generalised hypercubes and meshes).

As most previous studies on fault-tolerant routing have mainly focused on the hypercube [18, 46, 

81, 83], the objective of the present chapter is to demonstrate how the concept of unsafety vectors 

can be adapted and applied to the hypercube for the design of efficient new fault-tolerant routing 

for this network. The resulting new algorithm is then compared against the safety vectors 

algorithm [81]. The reason we have selected the safety vectors algorithm in the present study is 

because besides being the most recent algorithm proposed in the literature, it has been shown to 

possess superior characteristics to existing similar algorithms [44, 46, 84].

In the unsafety vectors approach, each node A starts by determining the set o f faulty or 

unreachable neighbours. Then, each node A performs («-1) exchanges with its neighbours to 

determine its faulty set containing all faulty or unreachable nodes at different distances from node 

A. The unsafety sets are derived from the faulty sets according to the Hamming distance between 

the node and the elements o f its faulty set. The /c-level unsafety set for all I < k < m ,  where 

1 < m < « , represents the set o f all nodes at Hamming distance k  from A which are faulty or 

unreachable fiom A. Each node uses the unsafety sets to calculate numeric unsafety vectors to 

achieve fault-tolerant routing in the network. The chapter includes an analytical study proving 

some properties of the proposed algorithm. The perfonnance of the proposed routing algorithm is 

compared against that o f the safety vectors algorithm using simulation. The results demonstrate 

that the new unsafety vectors algorithm exhibits superior performance characteristics to the 

existing safety vectors algorithm.

The amount o f the limited-global infonnation used in the unsafety vectors is substantially smaller
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(at m ost/  addresses, w h e re /is  the number o f faulty nodes which is typically a small fraction of 

2") than the amount of infonnation usually needed by global-information-based algorithms which 

is proportional to the number of nodes 2”.

The simplicity and reduced size of the routing information result in faster routing decisions and 

reduce the amount of exchanged information. Global-infonnation-based algorithms have the 

advantage of achieving optimal routing. However, our proposed limited-global-infonnation- 

based algorithm achieves near optimal routing with a big reduction in the amount of exchanged 

routing information and in the complexity o f the routing algorithm.

Before presenting the adaptation o f the unsafety vectors algorithm for the hyperciibe, this chapter 

reviews some background information (preliminaries and notation) that will be useful for the 

subsequent sections. Then a description of the recently proposed safety vectors approach is 

presented [81].

4.2 Preliminaries and Notation

The «-dimensional hypercube, , is an undirected graph with 2" vertices, representing nodes, 

which are labelled by the 2" binary strings o f length «. Two nodes are joined by an edge if, and 

only if, their labels differ in exactly one bit position. The label of node A is written «i,

where e {0, 1} is the bit (or bit at dimension). The neighbour of a node A along the 

dimension is denoted A faulty «-dimensional hypercube contains faulty nodes and/or links. 

The Hamming distance between a node A and a node B, denoted / f ( ^ ,  B), is the number of bits at 

which their labels differ. In other words, H  (A, F) = |ri 0  B\ where 0  denotes the "exclusive or" 

binary operation. A path between two nodes A and B is an optimal path  if its length is equal to 

H{A,B).
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With respect to a given destination node, D, a neighbour A^‘̂  of node A is called a preferred 

neighbour for the routing from to D if the bit o f 0  D is 1. We say in this case that i is a 

preferred dimension. Neighbours other than prefened neighbours are called spare neighbours. 

Routing through a spare neighbour increases the routing distance by two over the minimum 

distance. An optimal path can be obtained by routing thi'ough all prefeired dimensions in some 

order. A node T  is called an {A, D)- preferred transit node if any preferred dimension for the 

routing from% to T  is also a preferred dimension for the routing from A to D.

Example 4.1: Suppose that A =  1101 and D = 1010. We have A 0  D = Oil 1. Therefore, among 

the neighbours o f A, nodes 1100, 1111, and 1001 are prefened neighbours and node 0101 is a 

spare neighbour. Nodes 1000, 1001,1011,1100,1110 and 1111 are preferred transit nodes for the 

routing from A to D.

We make the following assumptions for the purpose of our present study. These assumptions 

have also been used in similar previous studies [46, 81, 83, 84].

i) A faulty «-dimensional hypercube contains faulty nodes and/or links. The faults are 

distributed with equal probabilities across the network nodes and links.

ii) Each node is provided with the status of its own communication links and the status of 

its neighbouring nodes when routing vectors need to be calculated.

in) If there is a faulty link between two nodes, then each of the two nodes considers the 

node at the other end as faulty.

iv) Lower software/hardware layers are responsible of detecting changes in the 

fault/recovery configuration and activation of the routing vector recalculation.
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4.3 The Safety Vectors Approach

Wu [81] has presented a reliable communication scheme for hypercube-based multicomputers 

using the safety vector concept. In the safety vector approach, each node in the «-dimensional 

hypercube is associated with a safety vector, which can be considered as an approximated 

measure of the number and distribution o f faults in the neighbourhood. As will be described 

below, an optimal routing between two nodes at a Hamming distance k  is guaranteed if  the 

element of the associated safety vector is set to one.

Basically, each node in an «-dimensional hypercube is associated with a bit vector, called a safety

vector, calculated through « - 1 rounds o f information exchange among neighbouring nodes. In

this approach, fault information is captured in a safety vector of « bit numbers, {u\ , «2 , ),

associated with each node, u. Specifically, Uk represents the routing capability of node u to k-

Hamming distance destinations. Based on the topological property of the hypercube, the bit of 

a safety vector can be determined from the (/c - 1)*̂  bit, « 2 i , of safety vectors o f its neighbours if

/c>l, or directly if /c=L The safety vectors {ti\ , «2 , •••> ) is defined as follows:

□ The first bit:
fO if  node w is a faulty node or an end node o f a faulty link

m • (4.1)1 otherwise

□ The /d’' bit, where 2 < k  < n:

0 (4.2)
1 otherwise
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If the bit o f the safety vector of a node is one, then there exists at least one prefeiTed neighbour 

that has 1 in the (/c - 1)* bit of its safety vector. This neighbour is one step closer to the 

destination. Using this property inductively, a minimal path can be constructed to any destination 

which is /c-Hamming distance away from a given node. Faulty nodes are assumed to be 

associated with safety vector (0, 0, ..., 0) which corresponds to the lowest order of safety degree. 

A node associated with (1, 1, ..., 1) as its safety vector has the highest order of safety degree and 

the corresponding node is called a safe node; otherwise, it is called an unsafe node.

4.3.1 Calculation of Safety Vectors

The GLOBAL_STATUS (GS) algorithm, described in Fig. 4.1, calculates the safety vector of 

each node in the network. Suppose that a source node intends to forward a message to a node k- 

Hamming distance away. The optimality is guaranteed if  the bit of its safety vector is 1 or one 

of its preferred neighbours’ safety vector {k ~ 1)*̂ ’ bit is 1.

Routing starts by forwarding a message to a preferred neighbour with a 1 in the {k - 1)‘̂  bit of its 

safety vector. This node, in turn, forwards the message to one of its preferred neighbours which 

has 1 in the (/c - 2)̂ ’̂ bit of its safety vector, and so on. If  there is no preferred neighbour that has 1 

in the {k -1)' ’̂ bit of its safety vectors but there exists a spare neighbour which has 1 in the {k+lf^ 

bit of its safety vector, the message is first forwarded to this neighbour and, then, the optimal 

routing algorithm is applied. In this case, the length o f the path is the Hamming distance plus 

two, resulting in routing through a spare neighbour.
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Algorithm GLOBAL^STATUS (GS)

/* determine safety vector (ui, U2,..., u„) o f  node u in n-cube Q„ V 

Besin

For all u e  Q„ determine the firs t bit uj */

i f  u is an end node o f  a faulty link then uj = 0 else ui = 1;

for k  2 step 1 to n /* determine the bit u/., where 2 < k <n  */ 

for all u e  Q„ (7c - 7/^' bits, ,o f  neighbors ' safety vectors */

—ti-k then uĵ  = 0 else = 1
/=!

End.

Fig. 4.1: The algorithm for calculating the elements of the safety vectors for a given node in 
an «-dimensional hypercube.

4.3.2 The Routing Algorithm Using Safety Vectors

The routing process consists of two parts: UNICASTE^G_AT_SOURCE_NODE, outlined in 

Fig. 4.2, is applied at the source node to decide the type of routing process and to perform the 

first routing step. UNICASTING AT INTERMEDIATE NODE, outlined in Fig. 4.3, is used at 

the intenmediate nodes along the message path. After the first routing step, both 

OFTIMAL„UNICASTING and SUBOFTIMAL UNICASTING, as described in Fig. 4,2, select 

a Hamming distance path to route the message to the destination node. Therefore there is no need 

to distinguish the type of routing process in UNICASTING_AT_INTERMEDIATE_NODE.

The main drawback of the safety vectors approach is that it is too pessimistic in deciding whether 

there is an optimal path between two nodes when there are failures in the neighbourhood. As will
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be subsequently discussed, there are some situations where it is possible to find an optimal path 

between two nodes, but the safety vectors approach is not capable o f locating them.

Algorithm UNICASTING_AT_SOURCE_NODE 

Besin 

N= s ®d; H ^ \ s  0 d \;

/* calculate navigation factor N  and Hamming distance H  V 

i£S„=‘ I v 3 (  s l f l A N < ‘> = l)

/  * the Hth bit o f  the safety vector is one or the (H  - l)th bit o f  the safety 
vector o f  a preferred neighbour is one V

then OPTIMALJJNICASTING:

send (m, to where  ̂= 1 a n d = 1

/* send message m to preferred neighbour s , where the (H - l)th  bit 
o f  its safety vector is one, together with N  after resetting bit i */

else i f  3 i( S^'^ = 1 A  N^‘̂ = 0)
  '  H+\

/* the (H + l)th bit o f  a spare neighbour's safety vector is one */ 

then SUBOPTIMALJJNICASTING:

send (m, to ŝ ^̂ ), where = 7

/* send message m to spare neighbour s , where the (H  + l)th bit o f  
its safety vector is one, together with N  after resetting bit i V

else failure

End.

Fig. 4.2: Routing at a source node using safety vectors.

Exam ple 4.2: Consider a 4-dimensional hypercube with four faulty nodes as described in Fig.

4.4. A total o f («-!) rounds of information exchanges are performed to calculate the safety
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vectors for all nodes in the network. Table 4.1 shows the formation o f the safety vectors after 

each round o f the safety vector calculation algorithm (described in Fig. 4.1).

A horith m  UNICASTING_ATJNTERM EDIATE_NODE  

Be2in

/*  at any interm ediate node u with m essage m and navigation vector N  * / 

i f N  =  0 /*  the navigation fa c to r  is em pty  * / then stop  /*  the current

node is the destination node  * /

else sen d  (m, to where  =  1 and  =  1

/  * sen d m essage m to preferred  neighbour û ‘̂ , where the (H  - l)th  bit is 

one, together with N  after resetting b it i * /

End.

Fig. 4.3: Routing at an intermediate node using safety vectors

III)

1100
0110

0100
0101

0011

000(

1011

1010

1001

Fig. 4.4: A 4-dimensional hypercube with four faulty nodes (represented in dark colour).
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Table 4.1: The safety vectors In a 4-dimensional hypercube with 5 faulty nodes. 

(A) The initial safety vector assignments

Node 0000 0001 0010 0011 0100 0101 0110 o i n
Safety
Vector {1,1,1,!} {1,1,1,1} {1,1,1,1} {0,0,0,0} {0,0,0,0} {1,1,1,!} {0,0,0,0} {1,1,1,1}

Node 1000 1001 1010 1011 1100 1101 1110 1111
Safety
Vector (1,1,1,1} {0,0,0,0} {1,1,1,1} {1,1,1,1} {1,1,1,1} {1,1,1,1} {1,1,1,1} {1,1,1,!}

(B) The safety vectors after the first round

[ Node 0000 0001 0010 0011 0100 0101 0110 0111
Safety 

I Vector {1,1,1,1} {1,0,1,1} {1,0,1,1} {0,0,0,0} {0,0,0,0} {1,1,1,1} {0,0,0,0} {1,0,1,1}

1 Node 1000 1001 1010 1011 1100 1101 1110 n i l
Safety 

1 Vector {1,1,1,1} {0,0,0,0} {1,0,1,1} {1,1,1,1} {1,1,1,1} {1,1,1,1} {1,1,1,1} {1,1,1,1}

(C) The safety vectors after the second round

Node 0000 0001 0010 0011 0100 1 0101 0110 0111
Safety
Vector {1,1,0,1} {1,0,1,1} {1,0,1,1} {0,0,0,0} {0,0,0,0} 1 {1,1,0,1} {0,0,0,0} {1,0,1,1}

Node 1000 1001 1010 1011 1100 1 1101 1110 n i l
Safety
Vector {1,1,1,1} {0,0,0,0} {1,0,1,1} {1,1,1,1} {1,1,1,1} 1 {1,1,1,1} {1,1,1,1} {1,1,1,1}

(D) The safety vectors after the third (final) round

Node 0000 0001 0010 0011 0100 0101 0110 0111
Safety
Vector {1,1,0,1} {1,0,1,0} {1,0,1,1} {0,0,0,0} {0,0,0,0} {1,1,0,1} {0,0,0,0} {1,0,1,!}

Node 1000 1001 1010 1011 1100 1101 1110 n i l
Safety
Vector {1,1,1,1} {0,0,0,0} {1,0,1,!} {1,1,1,1} {1,1,1,1} {1,1,1,!} {1,1,1,1} {1,1,1,1}
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4.4 The Unsafety Vectors Fault-Tolerant Routing Algorithm

The adapted fault-tolerant routing algorithm, based on the concept of unsafety sets (defined 

below), presents a remedy for the major limitations o f the safety vectors algorithm proposed for 

the hypercube [81]. These limitations are related to its conservative (pessimistic) routing 

approach and inapplicability to the network partitioning fault configurations. Before presenting 

the new algorithm let us first discuss how a node in the hypercube calculates its unsafety sets.

4.4.1. Calculation o f U nsafety Sets

Definition 4.1: The first-level unsafety set s f  o f a node A is defined as

' ^here / j  is given by
i<i<n

f  _ i f  A^‘̂  is faulty
\(f) Otherwise

s f  is the set o f faulty or unreachable neighbours of A.

Definition 4.2: An isolated node is associated with first-level unsafety set containing n addresses 

o f faulty nodes, i.e., -  n .

Definition 4.3: If for some node A, S f  = « -1 ,  then node A is called a dead-end node.

Each node then determines the faulty set , which comprises those nodes that are either faulty 

or unreachable from A due to faulty nodes or links. This is achieved by performing { n - \ )

exchanges of the sets of detected faulty nodes with the reachable neighbours. After determining 

, node A  calculates m unsafety sets, \ < m < n ,  denoted S f , Sj  ,■■■, (defined below).
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Definition 4.4: The A:-level unsafety set , \ < k < m,  for node A is given by 

S i  = {B^F^\H(A,B)  = k\

The A:-level unsafety set S'/ represents node A's  view o f the set o f nodes at Hamming distance k 

from A which are faulty or unreachable from A due to faulty nodes and links. Notice that if  the 

network is disconnected due to faulty nodes and links, ^ ’s view about unreachable nodes may not 

be accurate. In this case message looping will occur. We later present (see Section 4.4.3) a 

method for detecting and handling such looping. Fig. 4.6 provides an outline o f the 

Find Unsafety Sets algorithm that node A uses to determine its faulty and unsafety sets.

n i l

1011100
0110

0100
0101

0011.0010
OOOQ,

0001
1011

1010

1000

Fig. 4.5: A 4-dimensional hypercube with five faulty nodes (represented in dark colour).

Exam ple 4.3: Consider a four-dimensional hypercube with five faulty nodes, as shown in Fig. 4.5 

(faulty nodes are represented as black nodes). Table 4.2 shows the corresponding first-level 

unsafety set, 5"/ , associated with each node A. The Find Unsafety Sets algorithm calculates the 

sets 5 /  for all 1 < k < m ,  1 < w < n , after calculating To achieve this, (» -l)  exchanges o f fault 

information are perfonned among neighbouring nodes.
_
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Let nï=n and for the sake o f a specific illustration we show how to compute the unsafety sets 

associated with node ^4=0000. First, the node assigns the addresses of its immediate faulty 

neighbours to its faulty setF^. Then each node perfonns n-\ exchanges of the new elements of its 

faulty set Fa with the immediate non-faulty neighbours. After detennining Fa, node A calculates 

m unsafety sets denoted s f , 5 "/,..., 5"/ according to the Hamming distance between node A  and

each elem ent o f  F a. So, the faulty  set fo r node A in our exam ple, g iven in  decim al representation, 

F ^ ^ { 1 ,8 ,  10, 12, 15}, and the unsafety  sets are 5"/= {1, 8), 5 '/= { 1 0 , 12}, 5 '/= { } , and 5*/={15}.

Alsorithm Find Unsafetv Sets (A: node)

/* called by node A to determine its faulty set and unsafely sets^/

Fa ~ set o f  faulty immediate neighbours; 

for k : = 1 to n-1 do 

{
for i:=I ton  do

i f  Â '  ̂ 0  Fa then 

{
send Fa to A^‘\- 

receive FJ^^ from

}
}

for i : = 1 to n  do
iflink(A, Â ^̂  ) faulty then F a -  F a u { A ^ ' ^ } ;

for k  : = 1 tom  do 

s ;  ={BeF^\H{A,B)  = k]

End.

Fig. 4.6: Faulty and unsafely sets calculation in the hypercube.
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Table 4.2. The first level unsafety sets o f nodes in a 4-dimensional hypercube with 5 faulty 
nodes.

Node 0000 0001 0010 0011 0100 0101 0110 0111
{1,8} Faulty {10} {1} {12} {1} { } {15}

Node 1000 1001 1010 1011 1100 1101 1110 n i l

5 / Faulty { 1,8} Faulty {10,15} Faulty {12,15} {10,12,15} Faulty

4.4.2. The U nsafety V ectors R outing A lgorithm

Définition 4,5: For a given source-destination pair of nodes (A, Z>), we define the (A, D)-unsafety 

vector where its /c'̂ ' element is given by

= I { r  G s f , such that T  is an {A, f))-preferred transit node} j.

In other words, is the number o f faulty or unreachable {A, D)-preferred transit nodes at 

distance k  from A. can be viewed as a measure of routing unsafety at distance k from A  when 

routing to destination D, hence the name unsafety vectors for . We also define an ordering

relation ‘< ’ for numeric vectors as follows. For any two numeric vectors U= (uuU2 ,..., u„i) and V 

= (vi, V2, ..., v,„), t /  < F iff 3 Ï, 1 < z < m, such that m < v,-, and uj = vj for all J < i. Fig. 4.7 shows 

the proposed fault-tolerant routing algorithm that each node in the network applies to route a 

message towards a destination node D. In the rest of the present chapter, we will refer to the new 

routing algorithm as the “unsafety vectors algorithm” to contrast it with the “safety vectors 

algorithm proposed by Wu [81].
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Alsorithm Unsafety Vectors (M: message; A, S, D: node)

/* called by node A to route message M  initiated at source S towards its 

destination node D  */

v f A=S  then M.Route_distance = 0 

ifM.Route_distance<=H{A,D) + 2 x |F^| then

{ M.Route_distance:=M.Route_distance + 1

i f  A = D then exit; /* destination reached V

i f  3  a preferred non fau lty  neighbour such that

< j V j ,  \ < J < H ( A , D ) - l  then send to A^‘̂  Theorem 4 .1V  

Let A^‘̂  be the reachable preferred neighbour with least

(  A^^\D)-unsafety vector and A^‘̂  is not dead-end

i f  Â ^̂  exists then

send M  to A^‘̂  

else

{

Let Â -̂  ̂ be the reachable spare neighbour with least ( A^^\D)-unsafety 

vector and Â ^̂  is not dead-end;

i f  Â -̂  ̂ exists then 

send M  to Â ^̂  

else failure /* destination unreachable V 

}

}
else Handle looping/"^ will be discussed in section 4.4.3 V 

End.

Fig. 4.7: A description of the unsafety vectors routing algorithm in the hypercube.
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Example 4.4: Consider the hypercube depicted in Fig. 4.5. Consider the source node ^=0010 and 

the destination node Z)=1101, and assume m=\. According to the unsafety vectors algorithm, the 

source node A will route a message to a preferred neighbour associated with the least number of 

preferred faulty nodes in its unsafety sets, which is node 0110. By performing the same 

operations the message will be routed to node 0100 then 0101 and finally to its destination 1101.

4.4.3. H andling o f M essage Looping

The unsafety vectors algorithm can be improved to minimise the effect of looping. Notice from 

the description o f the unsafety vectors algorithm given in Fig. 4.7 that looping is detected if the 

routing distance exceeds the specified limit (Hamming distance plus 2 /  where /  is the number of 

faulty nodes). Since each faulty node may cause a derouting and an increase in the routing 

distance by a value 2, the maximum increase in the routing distance should not exceed 2/. Since 

looping occurs when a destination is not reachable from the source we can add the destination 

node to the faulty set of the node that detected the looping. When this occurs (zz-l) exchanges of 

information between all neighbours are then initiated to propagate the new information among 

reachable nodes in the whole hypercube. Experimental simulations showed that the percentage of 

looping decreases significantly to less than 1%, regardless of the number o f faulty nodes in the 

network, when we include this simple mechanism to handle message looping.

4.4.4. Properties o f the U nsafety V ectors A lgorithm

The new routing algorithm is capable of routing messages in a faulty network via fault-free 

minimal paths if they exist, otherwise the algorithm routes messages via fault-free near-minimal 

paths if  they exist. The unsafety vectors algorithm always attempts to route messages along 

minimum distance paths between the source and destination nodes if they exist.
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Theorem 4.1: Given a non-faulty pair o f  source and destination nodes (A, D), i f  uf ' ^  < i , for all 

l < i < H { A , D ) - l ,  then there exists at least one minimal fault free path between the source A and 

the destination D.

Proof: (By induction on H  (A, D)). For H  (A, D)=2, assume that < 1. Let A '̂  ̂ and Â -̂  ̂ be 

the two (A, D)“preferred transit nodes. Since u f ’̂  < 1 either A '̂  ̂ or Â -̂  ̂ is non faulty (assume it 

is A^'^). Therefore, the path A —> A '̂  ̂ —> D is minimal and fault-free.

Let us assume that the property is satisfied for Tf (A, D) < k for some 2 < k < n .  Now, consider the 

case H  (A, D)  = /c+1. Since <k  at least one of the /r+1 (A, Z))-preferred transit nodes at

distance k  from A is non faulty. Let B be such a node. Notice that the set o f (A, F)-preferred

transit nodes at any distance i from A,  1 <i <k, is a subset of the set o f {A, D)-preferred transit 

nodes at the same distance i from ^. Therefore < i .

By induction hypothesis, there exists a minimal fault free path from A to B. Hence the existence 

o f a minimal fault-free path from ̂  to D going through B. |

Corollary 4.1: The unsafety vectors algorithm selects a preferred neighbour positioned on a 

minimal fault-free path i f  there exists at least one such a path between the source A and the 

destination D.

Theorem 4.2: Let A^‘̂  and A^^  ̂ be two non faulty (A, D)-preferred neighbours o f  A. I f  all 

preferred neighbours o f  A'̂ ^̂  are faulty and at least one preferred neighbour o f  A^‘̂  is non faulty 

then the unsafety vectors algorithm does not route messages o f  destination D  via A -̂’ .̂

Proof: Since u f  < u f ^  then < U ^  ,D the smallest

vector and therefore A^^  ̂ is not selected as a foi*warding node.
_
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Exam ple 4.5. Consider a four-dimensional hypercube with seven faulty nodes, as depicted in Fig. 

4.8. Table 4.3 shows the unsafety set and the safety vector associated with each node. Consider a 

source ^=1110 and a destination F>=1001. The safety vectors algorithm fails to route a message

between the pair (A, D) since the third bit (/z=3) of the safety vector of the source node is not one

and since none of the preferred neighbours has one at the second bit {h~l) o f their safety vectors. 

Also none o f the spare neighbours has one at the fourth bit (h+l)  of their safety vectors. On the

other hand, the unsafety vectors algorithm is capable o f achieving an optimal route between the

source and destination {A, D)  in this case. The unsafety vectors algorithm will route the message 

to the intermediate node 1010 since it has the least number of preferred faulty nodes in its 

unsafety set, then to node 1000, and finally to the destination node 1001. While the safety vectors 

approach is not able to route at all (unreachable destinations), the following paths are achieved 

using the unsafety vectors approach

• (0011 ^ 0 0 0 1  -»  1001 1101 )

•  ( 1110 1010 1000 1001 ->  0001 )

•  ( 1 0 1 0 ^  1 1 1 0 - ^  n i l  - >  1101  )

• (1111 -> 1101 1001 ^ 0 0 0 1  ->0011 )

Table 4.3. The first level unsafety sets and the safety vectors of a 4-dimensional hypercube 
with 5 faulty nodes.

Node 0000 0001 0010 0011 0100 0101 0110 0111
5 / Faulty {0,5} Faulty {2,7,11} (0,5,6,12} Faulty Faulty Faulty

S.V 0,0,0,0 1,0,0,0 0,0,0,0 1,0,0,0 1,0,0,0 0,0,0,0 0 ,0,0,0 0 ,0,0,0

Node 1000 1001 1010 1011 1100 1101 1110 n i l

{0,12} {11} {2,11} Faulty Faulty {12,15} {6,12} {7,11}

S .V 1,0,0,0 1,1,0,0 1,0,0,0 0,0,0,0 0,0,0,0 1,0,0,0 1,0,0,0 1,0,0,0
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111

1100

0 1 0 0
0 1 0 1

0 0 1  1

0001

1000 1001

1 0 1 1

Fig. 4.8: A 4-dimensional hypercube with seven faulty nodes (represented in dark colour). 

4.5 Performance Comparison

This section starts by analysing the complexity o f  the calculations o f unsafety vectors phase, and 

then performs performance comparison against the safety vectors algorithm [81].

The performance o f the unsafety vectors calculations is dependent on the performance the 

unsafety sets calculations algorithm, described in Fig. 4.6, which involves message-passing 

communications between the hypercube nodes. The unsafety sets calculations are performed in 

the order o f  n phases. In each phase, each node sends at most n messages and receives at most n 

messages. So, the computation time complexity is 0{n^) and the total number o f generated 

messages is

Notice that the safety vectors algorithm performs the same order o f message exchanges, with the 

difference being that our messages are relatively o f  larger size. This cost is quite substantial 

(especially in tenns o f  the total number o f generated messages). In real systems the frequency of
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fault occun'ence is rather low and this cost is incurred only when a fault occurs. Therefore this 

relatively high communication cost can be tolerated in practical situations.

Our algorithm requires from each node A to build an unsafety set of all reachable faulty nodes. 

The size of this set is in the worst case proportional to the number of faulty nodes in the network. 

Based on the unsafety set, node A will then calculate a local unsafety vector o i n  components 

(numbers) and use it efficiently for routing. This compares favourably with global-information- 

based routing algorithms which require in the order o f 2" global infoiination in the «-dimensional 

hypercube to be collected and used during decision making. This excessive communication and 

computation cost for global-infonnation-based algorithms does not justify the little gain in 

achieving optimal routing as compared to near optimal routing achieved by limited-global- 

information-based algorithms as demonstrated in the simulation results o f this section.

A simulation study o f both the unsafety and safety algorithms has been earned out over 

hypercubes o f different sizes. However, we report below the results for a 1024 node network only 

as the general conclusions have been found not to change much for other system sizes. We have 

considered in our experiments different random distributions of faulty nodes in the network; we 

started with a non-faulty hypercube in the first experiment, and then increased in each subsequent 

experiment the number of faulty nodes gradually up to 75% of the network size with random 

fault distribution. A total of 30,000 source-destination pairs were selected randomly in each 

simulation run.

As in the previous Chapters 2 and 3, we use the following three perfonnance measures as the 

basis for the comparative analysis (see Chapter 2 for more details on the calculations o f these 

measures)
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- Percentage of uni’eachability = x 100

- Average percentage of deviation from optimality
1 'ST'Routing Distance -  H amm ing Distance ■>  "     _  - - .........—-xlOO

Total ^  Hanimmg Distance

Percentage of looping = i, x 100

In all the reported results, the parameter m  has been set to its lowest value (m=l) in the unsafety 

vectors algorithm. As expected, our simulation experiments have confirmed that larger values of 

m greatly improve performance, but, of eourse, at the expense o f increased communication 

overhead. Results in Fig. 4.9 reveal that even with the modest value of m=l the unsafety vectors 

algorithm achieves much higher reachability than the safety vectors algorithm with low to 

moderate deviation from optimality, as depicted by Fig. 4.10. The figure also shows that the 

deviation from optimality becomes noticeable for the unsafety vectors algorithm only when the 

percentage of faulty nodes exceeds 50% of the total number of nodes in the network. Fig. 4.11 

reveals that message looping in the unsafety vectors algorithm remains very low (practically 

zero) when the percentage of faulty nodes is less than 30%. From the three figures, we can 

conclude that the proposed algorithm exhibits superior perfonnance characteristics over the 

existing safety vectors algorithm under realistic network working conditions.

The unsafety vectors algorithm is more capable of routing messages using optimal distance paths,

especially for a large number o f faulty components. Under high fault rates our algorithm is

capable o f routing a large percentage o f messages for which the safety vectors algorithm

announces a routing failure. This is due to the fact that the unsafety vectors algorithm repeatedly

chooses to route through areas of the hypercube with the least number o f faults in the

neighbourhood, applying a greedy approach that gives more weight to the nearest neighbourhood.
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The safety vectors algorithm, on the other hand, routes via a neighbour only if that neighbour 

guarantees optimal routing to all destinations at the desired distance, not just to the desired 

destination. Furthermore, owing to its inherent properties, the unsafety vectors algorithm tends to 

select paths that diverge from areas with high counts of faulty components.

# — Unsafely Vectors Safety Vectors

100

200100 300 400

No. of Faulty Nodes

500 600 700 800

Fig. 4.9: Percentage of unreachability in the unsafety vectors and safety vectors algorithms.

U nsafely  V ectors — • — Safety  V ectors

0 1 0 0  2 0 0  3 0 0  4 0 0  5 0 0  6 0 0  7 0 0  8 0 0
No. of Faulty N odes

Fig. 4.10: Average percentage of deviation in the unsafety vectors and safety vectors 
algorithms.
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- M —  Unsafety Vectors $ Safety Vectors

100 200 300 400

No. of Faulty Nodes

Fig. 4.11: Percentage of looping in the unsafety vectors and safety vectors algorithms.

4.6 Conclusions

This chapter has adapted the new fault-tolerant routing based on the concept o f unsafety vectors 

for the hypercube in order to compare it with existing fault-tolerant routing algorithms. As a first 

step in this algorithm, each node A determines its view o f the faulty set Fa o f  nodes that are either 

faulty or unreachable from A. This is achieved by performing (/z-1) exchanges with the reachable 

neighbours. Node A then calculates m unsafety sets denoted S f , 5 '^ ,..., , where \ < m < n .

The A:-level unsafety set, , represents the set o f  all nodes at Hamming distance k from A which 

are faulty or unreachable from A due to faulty links or nodes. Nodes use these unsafety sets to 

compute unsafety vectors and use them to achieve a fault-tolerant routing algorithm in the 

hypercube. A comparison between the unsafety vectors and safety vectors algorithm has been 

presented. Results for the achieved routing distance and percentage o f reachability have revealed 

that the new algorithm outperforms the safety vectors algorithm even when the parameter m is set 

to 1, corresponding to the case where a node exchanges fault information with its neighbours 

only.
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Chapter 5

Adapting the Probability Vectors Algorithm to 

Hypercubes

5.1. Introduction

In Chapters 2 and 3, we have introduced two new algorithms, based on the unsafety and 

probability vectors, respectively, for providing fault-tolerant routing in the /c-ary «-cube. While 

the first algorithm uses a deterministic approach, which has been widely employed by existing 

algorithms in the past, the second algorithm is the first limited global information algorithm that 

uses a probabilistic approach to achieve fault-tolerance. The two algorithms have two important 

advantages over those existing in the literature. They both ensure fault-tolerance under more 

relaxed assumptions regarding the number o f faulty nodes and their locations in the network. 

Moreover, they are more general in that they can easily be adapted to different topologies, 

including those that belong to the family o f /c-ary «-cubes (e.g. tori and hyperciibes) and those 

that do not (e.g., generalised hypercubes [10]).
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Since veiy little work has been carried out on providing fault-tolerant routing for the /c-ary «- 

cube, Chapter 3 has compared the relative performance merits of the unsafety and probability 

vectors approaches on this network. Furthennore, since previous work has focused mostly on the 

hypercube, Chapter 4 has adapted the previous unsafety vectors approach to the hypercube in 

order to conduct a comparative study against existing routing algorithms, such as the safety 

vectors proposed in [81].

Motivated by the observation that most algorithms proposed for the hypercube, including the 

unsafety vectors [6, 7], use a deterministic approach, i.e. they use exact information about faults 

in the network, this chapter adapts the probability vectors approach to the hypercube, and 

evaluates its perfonnance against the existing safety vectors algorithm. The rest of this chapter is 

organised as follows. Section 5.2 presents the adapted fault-tolerant algorithm and derives some 

of its properties. Section 5.3 presents an analysis of the probability-based fault-tolerant routing. 

Section 5.4 presents a comparative evaluation between the probability vectors and the safety 

vectors algorithms. Finally, Section 5.5 concludes this chapter.

5.2 The Adapted Probability Vectors Routing Algorithm

The same assumptions outlined in Section 4.2 are used for the purpose of the present study. To 

simplify our calculation o f the probability vectors, we also assume that all the nodes at distance 

/r-1 from are at distance k  from A. The effect of this assumption will be addressed in the next 

section. In the adapted probability vectors algorithm, each node A determines its faulty set of

faulty or unreachable neighbours uses this faulty set to calculate its estimated probability vectors 

P jf, (1 < /c < « ) , and then to perform efficient routing in the hypercube based on these probability

vectors.
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5.2.1 Calculating the Faulty Sets

Definition 5.1: The faulty set o f a node A is defined as follows:

Fa = \ J f A ^  where is given by

f i  ^  i f  A^‘  ̂ is fa u lty
^ O th erw ise

5.2.2 Calculating the Probability Vectors

After determining its faulty set, F a , node A calculates its probability vector 

pA = The element Pjf in this vector is an estimation of the probability that a

destination at distance k from A is not minimally reachable from A. With respect to a source node 

A, a path is faulty if  it includes at least one faulty or unreachable node. Since node A has \F̂  ̂|

faulty or unreachable immediate neighbours, and only one of the n edges (or links) incident from

A constitutes a minimal path to a specific destination at distance one, we derive the probability 

as:

(5.2)
n

In order to compute the other elements Pjf , k> 2, let be the probability that a destination at 

distance k  from A is minimally reachable via its neighbour . Minimal reachability via is 

only possible if  is a preferred neighbour. The probability for A '̂  ̂ to be a preferred neighbour 

is k/n. I f  we assume that all the nodes which are at distance k-l from A^‘̂  are at distance k from A 

we can write i ? /   ̂as

0 i f  n ode Â ^̂  is fa u lty
(5.3)

— (1 -   ̂ ) O therwise
m
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If  a node at destination k  from A were reachable minimally via exactly one o f its n

neighbours, then the probability of reaching minimally a destination at distance k  from A 
” (0

would be given by since probabilities can be added when the events are disjoint.
j=i

However, a destination at distance k  from A can be reached minimally via /c-preferred 

neighbours (not only one). Adding these probabilities includes therefore a redundancy factor

whose effect could be reduced by dividing this summation by /c. Therefore, the probability of
\ " .(/)

reaching minimally a destination at distance k  from A can be approximated by .
^ /=!

Hence,

i=i

(5.4)
” ;=l

The resulting expression can be also intuitively interpreted as follows. The ability of a node A to

reach minimally destinations at distance k  depends only on the ability of its neighbours to reach

minimally destinations at distance /c-1. For instance, if each neighbour of A can reach

minimally all nodes at distance /c-1 then A can reach minimally all nodes at distance k. On the

other extreme, if for each neighbour A^‘̂  of A, A '̂  ̂ cannot reach minimally any node at distance

/c-1 then A cannot reach minimally any node at distance k. We therefore propose to approximate

the probability of reaching minimally destinations at distance k  from A by the average probability

o f reaching minimally destinations at distance /c-1 from the neighbours of node A, i.e. 

1 y , ,  n #
/=!
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The probability vector {P f ,P f  , . . . . ,Pf)  is computed for each node A using the equations (5.2)-

(5.4). If a node A has a faulty neighbour , then A assumes the probability vector of A^‘̂  to be 

(1, 1,..., 1). The following algorithm implements this probability vector calculation.

Algorithm Compute Probability Vector (A: node)

/* called by node A to determine its probability vector {P f , P f P , f  ) */

p a J i A .

for k '=2 ton do 

{ send P ff to all neighbours',

r A^ Q . y* sufYijyidiîQfi o f  reachability via all neighbours o f  A V  

fo r  i'~ I ton  d o {

receive Pj£^ from A^'\-

P '̂‘ = l - - R ' ^ ;
n

}
End.

Fig. 5.1: The algorithm for calculating the probability vector in the hypercube.

An upper bound on the error caused by assuming that the nodes at distance k~ 1 from Â '̂  are at 

distance k from A can be estimated as the ratio o f nodes at distance /c-1 from vf but not at 

distance /c from A, and is given by

« - 1  
k - 2 ]  k - l

n
k - l

(5.5)
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Notice that this error ratio increases as k increases. The impact of this error is reduced by giving 

preference to preferred neighbours in the selection o f the next node guaranteeing a decrease of 

the distance to the destination and therefore reducing the effect of this estimated error.

Example 5.1: Let us consider the calculation of the probability vectors in a fault-free 4- 

dimensional hypercube. All the nodes calculate the first element o f their probability vectors. 

Since there are no faulty nodes then 0 for all the nodes. In the next stage, all nodes collect

the first elements of the probability vector of their neighbours to calculate the 2"  ̂element of their 

probability vectors using equation 5.4. Obviously, calculations at a given stage depend on the 

calculations o f the previous stage. In each stage, all the nodes perform their own calculations 

simultaneously. After completing the 4̂  ̂ stage in the fault-free 4-dimensional hypercube, the 

probability vector for any node A is (0, 0, 0, 0), i.e. the probability o f not minimally reaching a 

destination at any distance form A is 0.

n i l
Il lO

11011100
0110

0100
0101

0011
.0010

0001
1011

1010

1000 1001

Fig. 5.2: A 4-dimensional hypercube with 7 faulty nodes.

Example 5.2: Consider now a 4-dimensional hypercube with seven faulty nodes (faulty nodes are 

indicated by dark colour), as shown in Fig.5.2. Table 5.1 shows the probability vectors associated
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with each node calculated using the algorithm outlined in Fig 5.1.

Table 5.1: The probability vectors in a 4-dimensional hypercube with 7 faulty nodes.

Node
A

0000
Faulty

0001 0010
Faulty

0011 0100 0101
Faulty

0110
Faulty

0111
Faulty

p f _ [0.50, _ [0.75, [0.75,

Pi 0.81, 0.88, 0.81,

P3 0.89, 0.95, 0.89,

P4
0.95] 0.97] 0.94]

Node
A

1000 1001 1010 1011
Faulty

1100 1101
Faulty

1110 1111

Pi [0.25, [0.50, [0.50, _ [0.25, __ [0.25, [0.75,

Pi 0.56, 0.69, 0.63, 0.56, 0.63, 0.81,

P3 0.72, 0.38, 0.80, __ 0.75, 0.75, 0.91,

Pa 0.85] 0.90] 0.87] 0.84] 0.86] 0.94]

Suppose that the source node is 0001. Let us compute the exact probability of reaching minimally 

a destination at distance 2 from node 0001 using a probabilistic argument. Node 0001 has 2 fault- 

free neighbours, 0011 and 1001. The probability of routing via any o f them is % as shown in Fig.

5.3. Node 0011 has only one fault-free neighbour and the probability of node 0011 reaching 

minimally its own neighbours is %. Notice that not all neighbours of 0011 are at distance 2 from 

the source node. Now, node 1001 has a probability 14 of reaching its own neighbours. As a result, 

the probability of node 0001 reaching minimally a destination at distance 2 via its neighbours is 

14 ( 14 + 14 )= 0.1875. Therefore, the probability that a destination at distance 2 from the source 

node is not minimally reachable = 1 - 0.1875 = 0.8125. This result is the same as the value 7^^^'

shown in table 5.1 (and calculated using the algorithm of Fig 5.1).
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0001
Faulty 4  0 0 0 0
Faulty 0101

1/4 4 0011

1/4 1001

1/4

1/2

Faulty

Faulty

Faulty

1/4

1/4

1/4

Faulty

Faulty

0111

0010

1011

0001

0001

1000

1011

1101

Fig. 5.3: Probability distribution of the nodes within distance two from the node 0001.

Let us now study the accuracy o f these approximate probability calculations. Notice that there are 

exactly 6 nodes at distance 2 from the node 0001 which are {1000, 0100, 0010, 0111, 1011, and 

1101}. Only the node 1000 o f these 6 nodes is minimally reachable from 0001. Therefore, the

exact value of 7^°°' should be 0.833. Our algorithm has estimated it to 0.8125. The relative error 
Q g33 _ Q 8225

in this case is —— —— ------- = 0.025 which does not exceed the earlier derived enor bound
0.833

k ~ l 0.25.

5.2.3 A Probability-Based Fault-Tolerant Routing Algorithm

When a node A has to foi*ward a message to its destination, it applies the probability-based 

routing outlined in Fig 5.4 in order to achieve fault-tolerance. We will refer to this as the 

“probability vectors” algorithm to contrast it with the safety vectors algorithm proposed by Wu

[81]. The probability vectors algorithm checks first if the destination is a reachable immediate 

neighbour in which case the message is delivered directly to the destination. If not, the proposed
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algorithm tries to foi-ward the message to a non-faulty intermediate (preferred or spare) neighbour 

that is associated with the least expected routing distance to the desired destination. If  the 

message is routed through a preferred neighbour, A^‘̂ , then the associated least expected routing 

distance is calculated as follows:

Pr = h(\ -  P , f f )  + (h + 2 )P ^ f  (5.6)

Algorithm Probability ̂ Vectors (M: message; A, S, D: node)
/* called by node A to route message M  initiated at source S towards its destination node D  */ 

i£A —S then M.Route distance = 0

i£M.Route_distance<= H{A,D) + 2 x no faulty nodes then 

{ M.Route_distance:—M.Route_distance + 1

i f  D is a reachable neighbour then deliver M  to destination D; exit; /*  destination reached */ 

h = Hamming distance between A and D

Let A^’̂  be a reachable preferred neighbour with least value;

P, = h{\ -  Pff}^ )-v{h + ; /*  least expected routing distance i f  we route through A '̂  ̂V

Let A^P be a reachable spare neighbour with least P^f^p value;

Sp= {h + 2)(1 -  Pjf}p ) + {h + ; /* least expected routing distance i f  we route through A^^ */

i f  3  A^‘̂  and ( (3  A^^ andP,- -Sp) or ( ' '3  A ^^j j  then sendM  to A^^\-

else i f  3  A^^ and (  (3  A^‘̂  andp^. > Sp) or (~  3  A^'^J ) then sendM  to A^^ ;

else failure /* unreachable destination */ }

else Detect looping

End {Algorithm}

Fig. 5.4: Outline of the adapted probability vectors fault-tolerant routing algorithm in the 
hypercube.
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where P,f^  ̂ is the estimated probability of not minimally reaching a destination at distance h~ 1 

from the prefeiTed neighbour A^'K This expression is justified by the fact that ) is the

estimated probability o f existence of a fault-free minimal path via A^'^. If however such a path 

does not exist (with estimated probability ) then reaching the destination via Â '̂  will require

the path to be at least two more hops longer than the Hamming distance (h). On the other hand, if  

the message is routed through a spare neighbour, 4  then the least expected routing distance is 

calculated as follows (using similar arguments as for the calculation of P,):

S p= ( h  + 2)(1 -  P,fy> ) + (A + 4)P„y> (5,7)

The probability vectors algorithm selects the forwarding neighbouring node with least expected 

routing distance using these probability-based estimations o f the least expected routing distance. 

If  an immediate non-faulty neighbour is not available then the destination is unreachable. Routing 

failure occurs in such cases.

Exam ple 5.3: Consider a 4-dimensional hypercube with seven faulty nodes (faulty nodes are 

indicated by dark colour), as shown in Fig. 5.2. Table 5.1 shows the probability vectors 

associated with each node.

For instance, to route a message from node 4=0001 to destination node 79=1010, the probability 

vectors algorithm checks first if  node 79 is a reachable immediate neighbour to deliver the 

message directly to it. In our case 79 is not an immediate neighbour, the algorithm tries to foivyard 

the message to a non-faulty intermediate (preferred or spare) neighbour that is associated with the 

least expected routing distance to 79. Node A has 2 preferred non-faulty neighbours 1001 and 

0011. It has no non-faulty spare neighbours. The Hamming distance, h, between S  and 79 is 3. 

Using equation 5.6, we compute the expected routing distance when routing through the 

preferred non-faulty neighbours, 1001 and 0 0 1 1 , as:

P, (1001) = 3(1 -  0.69) + 5(0.69) = 4.38
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7^.(0011) = 3(1 -  0.88) + 5(0.88) = 4.76 

The algorithm routes to node 1001 since it has the least expected routing distance. Then for the 

same reason, the message will be forwarded to node 1000 , and finally to the destination node 

1010. It is worth noting that the safety vectors approach [81] fails to route for this source- 

destination pair. The following theorem presents a sufficient condition for optimal routing using 

the proposed algoritlnn.

Theorem 5.1: If  node A has a reachable preferred neighbour Â ‘̂  such that = 0 , k > 2 ,  then 

the probability vectors algorithm will perfoim minimal distance routing to any destination at 

distance k.

Proof: (by induction on k) Let k  =2 and let 4 '̂  ̂ be a preferred neighbour satisfying P̂ ^̂   ̂ = 0 . 

This implies that ~<j) (from the definition of Pf^). Therefore A ’̂  ̂ has no faulty or

unreachable immediate neighbours. Furthermore, it is clear from the description o f the 

probability vectors algorithm provided in Fig. 5.4 that in this case the message is forwarded 

either to 4*-'̂  or to a similar preferred neighbour. 4 '̂  ̂ will then deliver the message to 

destination.

Assume that the claim is tiue for a distance k > 2. Consider the routing from a node 4  to a 

destination D  at distance 7c+l. Assume there exists a preferred neighbour 4 '̂  ̂ such that P jf ’̂  = 0 .

The proposed routing algorithm will select this preferred neighbour or a similar one since the 

least expected routing distance, Pr, o f such a neighbour is k  which is the minimum Pr value. 

Since 4 '̂  ̂ is at distance k, k > 2, from destination D, 4 '̂  ̂ has at least one prefennd neighbour 

4 6 .4  (with respect to the same destination D).

Since P jf  ̂ is the probability that a destination at distance k fiom 4 '̂  ̂ is not minimally reachable
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and = 0 , this implies that all minimal paths o f to a destination at distance k  are non- 

faulty. Furthemiore, any minimal path from to a destination at distance /c-1 is a sub-path of 

a minimal path from to a destination at distance /c. Hence all minimal paths from to a 

destination at distance /c-1 are non-faulty (otherwise there would exist a faulty minimal path from 

A '̂  ̂ to a destination at distance k). Therefore = 0.

The induction hypothesis implies that the proposed routing algorithm will perform minimal 

routing from A^‘̂  to a destination at distance /c yielding in the overall a minimal routing from A 

to the destination D  at distance /c+1. g

5.3 Analysis of the Probability Vectors Fault-tolerant Routing Algorithm

In this section, we analyse the properties o f the new routing algorithm. In particular, we derive 

analytical expressions that predict the average routing distance in this algorithm. In the remainder 

o f the section, we assume that there are / faulty nodes in the network, and that all the n nodes are 

equally likely to be faulty with failure probability p. Furthermore, we assume that the source and 

destination nodes are non-faulty. In this section we consider only faulty nodes. Faulty link cases 

can be thought of as faulty node cases by considering the other end node of a faulty link as a 

faulty node. Let us first define a “hypothetical” class o f probabilistic routing algorithms. We then 

evaluate the average routing distance for these algorithms and use it as an approximate for the 

probability vectors average routing distance.

Definition 5.2: A routing is called a Probabilistic Routing algorithm (PRA) if  it satisfies the 

following assumptions:

/) A message is discarded after making over/spare moves in the network.
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ii) The routing decisions at a given node are based on maximising the probability o f minimal 

distance reachability when selecting a fault-free neighbour.

A PRA algorithm routes messages depending on a probabilistic value. The maximum number of 

spare moves along a given path is f .  The total path length in this case is the Hamming distance 

between the source and destination nodes plus If, We use the following notation in the theorem, 

which will be stated below.

: Probability of making exactly s spare moves when routing between two nodes at 

Hamming distance k.

Pkj+\'- Probability of making more than /  spare moves (i.e., probability of discarding a 

message).

Dĵ  ; Average routing distance assuming message is not discarded.

Theorem 5.2: In the PRA algorithm, the average routing distance D,̂  between a given pair o f 

nodes at Hamming distance k  is given by 

1 ^— J^{k  + , where (5.8)
1 -  ^kj+l  s ô

A 0 = 1 — — V  P f  , with NF  being the number of non-faulty nodes (5.9)
non fau lty  A

A , = 0 , \ < s < f  (5.10)

(5.11)
non fau lty  A

Zf/
/„,,/» .4 (5.12)

2 “ - /
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Pt., < /+ l ,  2 < l c < «  (5.13)

P„^ = (l-f")y ),_ ,,. , 1 ^ J < / + 1  (5.14)

Proof: Every spare move increases the routing distance by two hops. Since messages are 

discarded after m aking/spare moves, we can write

D/. = ^ ( /c  + 25) - Prob[making s spare moves given that the message is not discarded] (5,15)
.9=0

D, = f ^ i k  + ls) f  (5.15)
9=0  ̂“  ^lcJ+\

It can be easily shown that /  q ^ 1 ^nd ^ 0 , V5 > 1, since the source and destination nodes are 

both assumed non faulty. For k > 2, the probability, Ac.o, that a destination at Hamming distance

k  is minimally reachable, is given by

0 = Xi Prob[source node is ^] • (1 ~ F /  ) (5.17)
non fau lty  A

where the P f  is computed using the same calculation for the probability vectors (equations 5.2,

5.3 and 5.4). For a message at distance k  from its destination to make s spare moves, it either 

starts by making a firstprefened move (with probability 1-p^) leading to a node at distance k -1

from destination for which the remaining routing will include s spare moves (with probability 

), or it starts by making a first spare move (with probability p ’' ) leading to a node at

distance k +1 from destination with remaining 5-1 spare moves to make (with probability Pĵ +î s-i

). Therefore, can be written as:

Pk^ = ( l - p ' ) 4 - u + f % + i , . ^ , . l  < s < f + \ , 2 < k < n - l  (5.18)

When the destination is at distance n, the first move can only be a preferred move, and therefore
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P „ ^ s = { ^ - p " ) P n - u A < s < f ^ \  (5.19)

Notice that Dj, is calculated using which is defined recursively using as a basis the 

expression (5.17) o f A-. q. This expression in turn calculated using the same probabilities, F /  ,

used in the calculation of the probability vectors. It is therefore expected for these calculations to 

provide an estimate of the average routing distance in the probability vectors algorithm.

Claim: The average routing distance in the probability vectors algorithm is approximated by Dj, 

given in theorem 5.16.

To support this intuitive claim, we have compared the results o f the average routing distance

obtained using the above-derived expressions against those obtained through simulation. We

have programmed the calculation provided in theorem 5.2 in order to obtain analytically the

vector o f average routing distances in an «-dimensional hypercube, denoted by 

Da =(D| F 2 F„),  where Dĵ  is the average routing distance from a node A to destinations at

Hamming distance /c, (1 < /c < « ) . We then used a simulation program that mimics the behaviour

o f the proposed algorithm in the network in order to measure experimentally the vector of 

average routing distances, denoted by Dg .

Fig. 5.5 depicts both the analytical results using the PRA routing algorithm and experimental 

results using the proposed algorithm for a 128-node 7-dimensional hypercube, where the number 

of faulty nodes was set to 40, and distributed randomly over the network nodes. A total of 30,000 

source-destination pairs were also selected randomly. The experimental results demonstrate that 

the analytical expressions predict the average routing distance with a reasonable degree of 

accuracy. Since we assume that both the source and destination nodes are non-faulty, the average 

routing distance to a destination at distance one is always one. In this case, as revealed by Fig.
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5.5, the analytical and experimental results are identical. The figure also reveals that, as predicted 

in our claim, the experimental average distance, which corresponds to the actual average routing 

distance in the probability vectors algorithm, is always smaller than the analytically-derived 

average distance for the PRA algorithm. This fact reflects the good performance of the 

probability vectors algorithm as a fault-tolerant routing that can achieve high ratios of minimal 

routing in the presence of faults in the network.

DA DE

Distance (k )

Fig. 5.5: The average distance in the 7-Dimensional hypercube calculated analytically (D^) 
and experimentally (D^).

5.4 Performance Considerations and Comparison with Safety Vectors

This section first presents an analysis o f the complexity of the calculation phase of the probability 

vectors. The performance o f the probability vectors calculations is dependent on the number of 

unreachable immediate neighbours. As outlined in Fig. 5.1, such calculations are performed in n- 

1 phases. In each phase, each node sends a real number to all its neighbours and receives a real 

number from each neighbour concurrently. Therefore the computation time complexity is 0{n^)
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and the total number of generated messages is 0(n^2"). Notice that the safety vectors algorithm 

performs the same order of message exchanges with the difference that our messages are of 

relatively larger size. This cost is quite large (especially in terms o f the total number o f generated 

messages). In real systems the frequency of fault occurrence is rather low and this cost is incurred 

only when a fault occurs. Therefore this relatively high communication cost can be tolerated in 

practical situations.

The proposed algorithm requires from each node A to know the number of its unreachable 

immediate neighbours, node A will then calculate a local probability vector Pa of n components 

(real numbers) and use it efficiently for routing. This compares favourably with global- 

information-based routing algorithms which require in the order of 2" global infonnation in the n~ 

dimensional hypercube to be collected and used during decision making. This excessive 

communication and computation cost for global-infoimation-based algorithms does not justify 

the little gain in achieving optimal routing as compared to near optimal routing achieved by 

limited-global-information-based algorithms as demonstrated in the simulation results o f this 

section.

Let us now report results from simulation experiments comparing the perfonnance o f the adapted 

probability vectors algoritlim against that o f the safety vectors algorithm [81]. A simulation study 

has been conducted o f both algorithms over a 10-dimensional hypercube (1024 nodes) with 

different random distributions o f faulty nodes. We started initially with a non-faulty hypereube. 

Then, the number of faulty nodes was increased gradually up to 75% of the network size with 

random fault distributions. A total of 20,000 source-destination pairs were selected randomly 

during each simulation run. The three perfonnance measures, namely the percentage of 

unreachability, average percentage of deviation from optimality, and percentage of looping
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introduced in section 4.5 are used for the purpose of the present comparison.

The results depicted in Fig. 5.6 reveal that the probability vectors algorithm achieves much 

higher reachability with low to moderate deviation from optimality. The results in Fig. 5.7 may 

suggest that the safety vectors algorithm provides better performance in terms of deviation from 

optimality. However, the difference becomes substantial only when the number of faulty nodes is 

high (exceeding 50%). But when the number o f faults becomes high (exceeding 50%), the safety 

vectors algorithm delivered less than 25% of the total number of messages. A more realistic 

comparison should consider the fact that the proposed probability vectors algorithm delivers 

messages to their destinations in most cases while the safety vectors algorithm has a substantial 

um*eachability ratio, as revealed in Fig 5.6. The deviation from optimality becomes substantial 

(30%) in the new algorithm only when the percentage of faulty nodes exceeds 60% of the total 

number o f nodes. Furthermore, the looping percentage, as shown in Fig 5.8, remains practically 

zero as long as the percentage o f faulty nodes is less than 40%.

The probability vectors algorithm can route more messages through the network than the safety 

vectors algorithm using minimal or near minimal distance paths especially in the presence o f a 

large number of faulty nodes. Under high fault rates the proposed algorithm is able to route a 

large percentage o f messages for which the safety vectors algorithm announces a routing failure. 

This is due to the fact that the new algorithm tends to select paths that diverge from areas with 

high counts of faulty components. The safety vectors algoritlim on the other hand routes via a 

neighbour only if that neighbour guarantees optimal routing to all destinations at the desired 

distance not just to the desired destination.
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Probability Routing Safety Vectors
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Fig. 5.6: Percentage of unreachability in the probability and safety vectors algorithms.
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Fig. 5.7: Average percentage of deviation from optimality in the probability and safety 
vectors algorithms.

Probability R outing — ♦—  Safety  V ectors

40

o  20  

10 y
r

* #  m m rn-m -m -m r

150 300 450
N um ber o f  Faulty N od es

600
-  ^  I

750 I

Fig. 5.8: Percentage of looping in the probability and safety vectors algorithms.
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5.5 Conclusions

This chapter has adapted the probability vectors approach for the hypercube, and conducted a 

perfonnance comparison against an existing fault-tolerant routing algorithm. In the adapted 

probability vectors algorithm, each node A detennines first the faulty set, Fa, which represents 

the set o f all neighbouring nodes which are faulty or unreachable from A due to faulty nodes or 

links. Using this faulty set as a basis and through message exchanges with neighbouring nodes, 

node A derives recursively an approximation of a numeric probability vector P^. This probability 

vector is then used by node A to perform an efficient fault-tolerant routing in the hypercube. A 

probability-based analysis of some properties of the adapted probability vectors algorithm has 

been presented. The perfonnance of the new algorithm has also been compared against that of the 

existing safety vectors algorithm. The results have shown that the new algorithm has a higher 

percentage of reachability than the safety vectors algorithm. Furthennore, even in situations 

where both algorithms achieve reachability, the probability vectors algoritlim exhibits lower 

deviation from optimality.
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Chapter 6

Conclusions and Future Directions

Routing in fault-free networks has been extensively studied in the past. As the network size 

scales up, the probability of processor and link failure also increases. It is therefore essential 

to design fault-tolerant routing algorithms that allow messages to reach their destinations even 

in the presence o f faulty components (Iniks and nodes). Although many fault-tolerant routing 

algorithms have been proposed for common multicomputer networks, very little research has 

been devoted to developing fault-tolerant routing for /c-ary n-cubes, low-dimensional versions 

in particular, which are an important class of interconnection networks widely used in 

experimental and commercial parallel systems. The following points summarise the major 

contributions o f the research work reported in the present thesis:

* A new limited-global-infoimation-based fault-tolerant routing algorithm, using the 

concept of unsafety vectors, has been proposed for /c-ary «-cubes. This algorithm uses
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a deterministic approach where a numeric vector is used to reflect the status of the 

network. Although the deterministic approach has been widely employed by other 

algorithms in the past, the new algorithm has an important advantage over those 

existing in the literature in that it can ensure fault-tolerance under more relaxed 

assumptions regarding the number of faulty nodes and their locations in the network.

An extensive simulation study has been conducted in order to evaluate the 

perfonnance of the new fault-tolerant routing algorithm based on the unsafety 

vectors. The study has considered the perfonnance of the algorithm for different 

network sizes. Three common performance measures have been used, notably the 

percentage of reachability, average percentage of deviation from optimality, and 

percentage o f looping. Results presented here have revealed that for a practical 

number o f faulty nodes, the new algoritlnn achieves good performance levels in terms 

of the routing distance and percentage o f reachability.

*

A performance study has been conducted to measure the effects of the level of 

complexity (m) on the unsafety vectors, with m being the number o f calculations 

performed by a given node to detennine its unsafety sets. The larger the value o f m is, 

the better the routing decisions are, but at the expense o f more computation and 

communication overhead. The results have demonstrated that the proposed algorithm 

yields good performance in terms o f routing distances and percentages o f reachability 

even when the parameter m is at its lowest value of 1, corresponding to minimum 

communication overhead.

Another new limited-global-information-based fault-tolerant routing algorithm using 

the concept o f probability vectors has also been proposed for /c~ary «-cubes. The
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algorithm is the first in the literature that uses probabilities to achieve fault-tolerance. 

The algorithm ensures fault-tolerance under relaxed assumptions regarding the 

number of faulty nodes and their locations in the network. It is also simpler to 

implement and has lower computational and storage overhead, when compared to 

algorithms that are based on the deterministic approach.

* A simulation study has also been conducted to evaluate the performance of the 

algorithm based on the probability vectors. The results have revealed a good outcome 

for the achieved percentage of reachability and routing distance. Moreover, the 

analysis has also shown that in addition to being simple to implement, the algorithm 

exhibits low computational overhead dining message routing.

A comparative study of the relative performance merits of the two proposed 

algorithms, the unsafety and probability vectors, has revealed that for practical 

number of faulty nodes, both algorithms achieve good performance levels in /c-ary n- 

ciibes. However, as stated above, the probability vectors algorithm has the advantage 

of being simpler to implement.

While existing algorithms have addressed specific topologies, this study has shown 

that one of the main attractive features of our proposed algorithms is the ease with 

which they can be adapted to different /c-aiy «-cube topologies, e.g. hypercube and 

torus.

Previous studies have focused mostly on fault-tolerance in the hypercube. Both the 

unsafety and probability vectors algorithms have been adapted for the hypercube in 

order to compare their performance against the recently proposed safety vectors
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algorithm. Extensive simulation experiments have confirmed that the new algorithms 

exhibit superior performance and fault tolerance characteristics over the safety 

vectors algorithm.

• An analytical study that examines the properties of the proposed probability vectors 

algorithm has been presented. The study has confirmed that the algorithm is capable 

of routing messages in a faulty network via fault-free minimal paths if they exist, 

otheiwise it routes messages via fault-free near-minimal paths if  they exist. The 

algorithm has been shown to be able to perform minimal distance routing to any 

destination at distance k  from a given source node that has a reachable preferred 

neighbour with a zero in the k -1 element of its probability vector.

There are several interesting issues and open problems that require further investigation.

These are summarised below.

® Meshes are another class of networks that have been widely used in multicomputers

due to their simple structures and ease of implementation. Unlike /c-ary «-cubes, 

however, they are based on an asymmetiic topology because nodes at the edges have 

fewer neighbours than those located in the center. An obvious step of this work 

would extend both the proposed unsafety vectors and probability vectors approaches 

to meshes. However, this would require careful re-examination of the major factors, 

such as preferred neighbours, spare neighbours, minimal path characterisation, 

diameter, and degree, in order to deal with the inherent asymmetiy of these networks,

» Multicast (one-to-many) and broadcast (one-to-all) are important communication

operations required by many real-world parallel applications found in Science and
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Engineering [52, 71, 83]. A lot o f research activities have been devoted in the past to 

devising efficient algoritlnns to support these operations [11, 26, 34, 53]. Moreover, 

some research work has tried to augment those algorithms to deal with faults in the 

network. A possible continuation of this research would extend the ideas o f the 

probability and unsafely vectors to support efficient fault-tolerant multicast and 

broadcast operations.

The switching technique detennines the way a message visits intennediate routers 

when crossing the network. Among the well-known switching techniques are packet 

switching [79], circuit switching [79] and wonnhole routing [27]. The switching 

technique considerably influences the router architecture, and has great impact on 

network perfonnance. For instance, wormhole switching provides a magnitude 

improvement in network performance over packet switching since it makes latency 

less sensitive to the message distance under light traffic [27]. While this thesis has 

discussed the idea of the unsafety vectors and probability vectors at the “network 

topology” level, an interesting line o f research would investigate implementation- 

related issues and study the perfonnance of both algorithms when a particular 

switching technique, e.g. wormhole switching, is used.

Analytical models that measure message latency and throughput in /c-ary «-cubes 

have been widely proposed in the literature [49, 50, 59, 67]. All these models, 

however, have been discussed in the context o f fault-free networks, and as a result 

there has been relatively little activity in the analytical modelling of fault-tolerant 

routing algorithms. Another interesting research work would develop analytical 

models for both the probability and unsafety vectors and validate their accuracy
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through simulation experiments. Such models will be a very useful performance tool 

as they can be used to assess the performance of the proposed algorithms in large 

networks, that are not feasible to simulate due to the amount o f time and computing 

resources required to run large simulations.
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