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ABSTRACT

Despite promising results on efficient vaccine and the development of effective 

new drugs, malaria continues to kill more than 1-2 million of people each year, and 

resistance to drugs has become a pressing problem. In the context of new drug 

discovery, it is important to identify key regulators of the development of the human 

malaria parasite, Plasmodium falciparum.

P. falciparum has a complex life cycle consisting of a succession of 

developmental stages. Some of these stages are characterised by intense cell 

divisions, while others undergo differentiation accompanied by cell cycle arrest. 

Eukaryotic protein kinases (ePKs) form a large family of enzymes with crucial roles 

in such cellular processes; hence malarial ePK represent potential drug targets. The 

availability of a genomic database for P. falciparum had permited a systematic 

analysis of the entire complement of protein kinases encoded in the genome (the so- 

called “kinome”). The resulting plasmodial kinase set was classified into eukaryotic 

protein kinase families. During this analysis, a novel subfamily of twenty protein 

kinases unrelated to any. of the ePK families was identified and called FIKK. This 

new family, localized in subtelomeric regions of the P. falciparum chromosomes, is 

conserved in the Apicomplexa phylum, but no homologues were found in other 

organisms so far. The phylogenetic studies of P. falciparum kinases confirmed the 

presence of two genes encoding atypical CDK(cycin-dependent kinases)-related 

kinases in the genome, Pfcrk-3 and Pfcrk-4. Comparison of their sequences to those 

of CDKs from other organisms revealed that in addition to large extensions, Pfcrk-3 

and Pfcrk-4 possess two large insertions within the catalytic domain. These 

extensions and insertionswere shown to be expressed in the parasite.

The characterisation of these proteins (the FIKK family, Pfcrk-3 and Pfcrk-4) 

lead to the conclusion that in standard conditions of kinase assay experiments, these 

proteins do not display any kinase activity in vitro. However, protein-protein 

interaction studies showed that Pfcrk-3 and Pfcrk-4 are part of in complexes, which 

display kinase activity.



RESUME

L’agent responsable du paludisme est Plasmodium falciparum, un protozoaire 

parasite appartenant au phylum des Apicomplexes. P. falciparum a développé des 

résistances aux drogues suite à leur utilisation massive, et continue de tuer 1 à 2 

millions de personnes par an. Il est crucial d’identifier de nouvelles cibles 

thérapeutiques afin de contrer l’émergence de nouvelles résistances. Les protéines 

kinases eucaryotes (ePK) forment une large famille d’enzymes qui jouent un rôle 

important dans les mécanismes moléculaires contrôlant la prolifération et la 

différentiation cellulaire, et certaines de ces protéines pourraient être validées, chez 

P. falciparum^ comme cibles potentielles pour le développement de nouveaux anti- 

paludiques.

Afin de mieux comprendre les réseaux qui contrôlent la multiplication et la 

différentiation cellulaire chez P. falciparum, il est nécessaire de constituer une liste 

des régulateurs potentiels (ceci étant rendu possible par l’achèvement du séquençage 

de son génome). L’analyse du « kinome » montre que le génome de P. falciparum 

contient 65 gènes codant pour des ePKs. Cette recherche nous a permis d’identifier 

une nouvelle famille de 20 gènes apparentée aux ePKs, principalement localisés dans 

la région sub-télomérique des chromosomes. Cette famille, que nous avons nommée 

FIKK en raison d’un motif d’acides aminés conservé (FIKK), semble s’être étendue 

au phylum des Apicomplexes, et aucun autre homologue n’a été trouvé chez d’autres 

organismes jusqu’à présent. Parmi les ePKs, Pfcrk-3 et Pfcrk-4 sont apparentées à la 

famille des « cyclin-dependent kinases » (CDKs), et sont donc susceptibles 

d’intervenir dans le développement de P. falciparum. En comparant leurs séquences 

à d’autres CDKs connues chez d’autres organismes eucaryotes, il s’avère que Pfcrk-3 

et Pfcrk-4 possèdent des caractéristiques structurales atypiques, telles que des 

extensions et deux insertions dans le domaine catalytique. Nous avons montré que les 

insertions sont exprimées au cours du développement érythrocytaire, et il semblerait 

qu’elles ne perturbent pas la structure générale de ces kinases.

L’importance fonctionnelle des FIKKs, Pfcrk-3 et Pfcrk-4 dans le 

développement de P. falciparum reste à élucider. Dans les conditions d’essais 

enzymatiques classiques, aucune de ces protéines ne présente d’activité kinase in 

vitro. Cependant, l’étude des interactions protéine-protéine suggère que Pfcrk-3 et 

Pfcrk-4, dont nous avons montré qu’elles sont exprimées lors de la schizogonie 

erythrocytaire, sont associées à des complexes qui eux possèdent une activité kinase,

2
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Chapterl: INTRODUCTION



During my University course, I have always been interested and fascinated by host- 

parasite relationship. It is amazing to look at the different models of parasitism and to 

see how propagation strategies have emerged through evolution. A parasite uses its 

host (such as energy apd resources) in order to replicate, and in most cases, 

contribute to the killing of its host, but with a tight precision to just have time to 

“jump” to another host. Some parasites are transmitted through ingestion of spores; 

other may pass from one vertebrate host to another through predation. With the 

evolution of hemophagy in invertebrates, it is likely that ancestral invertebrate 

parasites (such as the apicomplexan P, falciparum, see below) developed adaptations 

to invade a secondary vertebrate host.

The complex life cycle of P. falciparum, the causative agent of the severe form of 

human malaria reflects a series of evolutionary adaptations that optimised its ability 

to exploit its host. Working in the laboratory of Dr Christian Doerig, during the last 

three years, I have been interested in looking at molecular mechanisms controlling 

cell proliferation and stage transition in P. falciparum.

1.1 MALARIA

1.1.1 History of malaria and identification of the causal agent

The name “Malaria” comes from the 17th century. In Italian, "mal-aria" means bad 

air, associated with “evil-smelling” vapours from swamps. In 1630, Don Francisco 

Lopez showed the curative property of quinquina’s bark. Two centuries later, from 

this tree, the French chemists J. Pelletier and J. Caventou identified quinine as the 

active molecule. In 1880, the French surgeon Charles Laveran observed parasites in 

fresh patient blood. Twenty-seven years later (1907), his discovery allowed him to 

get the Nobel prize for medicine, hi 1885, the Italian histologist Golgi observed 

multiplication of asexual blood forms of the parasite. In the late 1890’s, Patrick 

Manson postulated transmission by mosquitoes, which was revealed by Dr. Ronald 

Ross, who had observed development of Plasmodia in the midgut of mosquitoes, 

thereby establishing a major feature of the life cycle, in which the development of the 

malaria parasite, occurs through two obligate hosts: an anopheline mosquito and 

human.
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The causal agent of malaria is a unicellular eukaryotic parasite of the genus 

Plasmodium, which belongs to the phylum Apicomplexa. Four species are known to 

infect humans: Plasmodium falciparum (P. falciparum), P. vivax, P. ovale and P. 

malariae. P. falciparum is responsible for the lethal form of malaria. However, in 

some cases, P. vivax and P. malariae can also cause complicated disease (see section 

below).

1.1.2 Geographic distribution and clinical features of the disease

The World Health Orgmization estimates that yearly 300-500 million cases of 

malaria occur (>90% of them in Africa), and that more than 1-2 million people die of 

malaria (half of these are children under 5 years of age) (WHO sources, 

http://www.who.int/mediacentre/factsheets/fs094/en/).

Malaria, the world's most prevalent vector-bome disease, occurs in over 100 

countries. More than 40% of the world’s population are at risk. Large areas of 

Central and South America, Hispaniola (Haiti and the Dominican Republic), Africa, 

the Indian subcontinent, Southeast Asia, the Middle East, and Oceania are considered 

malaria-risk areas and malaria generally occurs in areas where environmental 

conditions allow parasite multiplication in the mosquito vector. Thus, malaria is 

usually restricted to tropical and subtropical areas (Fig. 1) and altitudes below 1,500 

m. However, this distribution might be affected by climatic changes, especially 

global warming, and population movements. P. vivax and P. falciparum are the most 

commonly encountered species, with P. vivax being the most widespread 

geographically. P. falciparum (as well as P. malariae) is encountered primarily in 

tropical and subtropical areas; P. falciparum is by far the most prevalent. P.vivax 

and P. ovale are traditionally thought to occupy the complementary niches of the 

precedent species. However, mixed infections P.vivax!P. falciparum are common in 

endemic areas. P. ovale predominate in Sub-Saharan Africa and P. vivax in the other 

areas, but P. ovale and. P. vivax are not always distinguishable on the basis of 

morphologic characteristics alone and the increasing use of molecular tools will help 

to clarify their exact distribution.
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Malaria Endemic Countries, 2003

k
No Malaria ''

I 1 Countries with Malaria Risk \

I  Note This map shows countries with endemic malaria 
In most of these countires, malana risk is limited to certain areas

Fig. 1; Geographical distribution of malaria

Malaria is widespread through the world (South America, Africa, Asia), mostly 

localized in tropical and subtropical regions (in yellow). 

(http.V/dpd. cdc. sov/DPDx/HTML/Malaria. htm)

In most cases, symptoms begin 10 days to 4 weeks after infection, although a person 

may feel ill as early as 8 days or up to 1 year later. Untreated malaria can progress to 

severe disease that may be rapidly (<24 hours) fatal. The most frequent symptoms 

include fever and chills, which can be accompanied by headache, myalgia (pain in 

muscle), arthralgia (pain in a joint), weakness, vomiting, and diarrhea. Other clinical 

features include splenomegaly (enlargement of the spleen), anemia, 

thrombocytopenia (decrease in the number of platelets in the blood), hypoglycemia, 

pulmonary or renal dysfunction, and neurologic changes. The clinical presentation 

can vary substantially depending on the infecting species, the level of parasitemia, 

and the immune status of the patient. Infections caused by P. falciparum can 

progress to severe, potentially fatal forms with central nervous system involvement 

(cerebral malaria), acute renal failure, severe anaemia, or adult respiratory distress 

syndrome. Complications of P. vivax malaria include splenomegaly (with, rarely, 

splenic rupture), and those of P. malariae include nephrotic syndrome.

1.1.3 Controlling Malaria

In 1955, the WHO began a worldwide malaria eradication program. DDT (dichloro- 

diphenyl-trichloroethane) was sprayed to kill mosquitoes and chloroquine was used 

in large amounts to treat people. Initially, the DDT program was very successful, but
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was abandoned by 1969 because of undesirable consequences of large-scale release 

of the molecule in the environment, such as accumulation in the food chain. One of 

the most critical problems was the occurrence of DDT-resistant strains of mosquitoes 

and also emergence of chloroquine resistant strains of Plasmodium. At the present 

time, P. falciparum is widely genetically resistant to chloroquine (WHO, 2001) 

(Fig.2) and resistance to chloroquine of P. vivax has increased in South Asia 

(Murphy et al., 1993). Plasmodium strains became resistant also to quinoline 

derivative products after intensive curative use (see section 1.1.4).

19W  I ,
H

Fig. 2: Geographical distribution of Plasmodium to chloroquine treatment:

The first cases o f chloroquine resistance were identified in south Asia and in the 

north o f South-America at the end o f 1950's, followed by a rapid spread o f this 

resistance through Asia, South-America, and Africa (http://www.sciencenews.org)

1.1.4 Treatment and chemotherapv development:

Treatments differ according to the infecting species, the geographic area where the 

infection occurred, and the severity of the disease. In terms of prophylaxis (travellers 

to malaria-risk areas in South America, Africa, the Indian subcontinent, Asia, and the 

South Pacific), it is recommended to take one of the following drugs: mefloquine 

(Lariam®), doxycycline, or Malarone' '̂^. Malarone is a combination of two drugs 

(atovaquone and proguanil), which is an effective but expensive alternative for 

travellers who cannot take mefloquine or doxycycline. Chloroquine (Aralen®) and 

Hydroxychloroquine sulfate (Plaquenil®) are also greatly used. However, P.
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falciparum has developed resistance to chloroquine (see section controlling malaria), 

and the best antimalarial drug for treating chloroquine-resistant malaria parasite 

remains quinine (or mefloquine and intravenous quinidine), which is fairly toxic. 

However, quinine resistance is also increasing, especially in Southeast Asia, 

particularly in the border areas of Thailand (Panisko and Keystone, 1990). 

Chloroquine (CQ) has also been replaced by sulfadoxine pyrimethamine (SP) for 

treatment of Plasmodium falciparum malaria, but there is evidences demonstrating 

that malaria parasites bearing high-level pyiimethamine resistance originally arrived 

in Africa from southeast Asia (Roper et al., 2004).

Attempts to develop an effective malaria vaccine have so far failed, because of 

variability of Plasmodium surface proteins (Staalsoe et al., 2002), however, recent 

studies have shown promising phase II results of a trial to test the efficacy of 

RTS,S/AS02A vaccine (Alonso et al., 2004). Nevertheless, to date, despite 

emergence of resistance, chemotherapy has been the only efficient strategy to fight 

against the parasite. So, current efforts focus on research into new compounds with 

novel mechanisms of action and on measures to prevent or delay resistance when 

drugs are introduced.

In this context, complementary approaches have been started over the past 20 years: 

(i) the screening of chemical libraries on parasite culture and (ii) the identification of 

a specific target followed by the search for specific inhibitor. Most currently used 

drugs were found to inhibit parasite development through interference with two main 

pathways (Olliaro and Yuthavong, 1999).

- Hemoglobin digestion; quinine, quinoline derivative compounds: chloroquine, 

mefloquine, naphtoquinone (atovaquone, which is also known to target a 

mitochondrial enzyme), halofantrine, and artemisine

- Nucleic acid synthesis: anti-folic I (sulfadoxine, dapsone) and II (pyrimethamin, 

proguanil, cycloguanil).

Research is in progress to identify new drugs aimed at specific targets such as lipid 

metabolism, proteases, and protein kinases. Parasite proteases, for instance, are 

required for the invasion of erythrocytes by merozoites and for the degradation of 

hemoglobin by intraerythiocytic trophozoites (see section 1.1.5 below). Different 

anti-protease compounds (such as vinyl sulfones which inhibit falcipain) (Rosenthal 

et a l, 1996) blocked P. falciparum development. Moreover, plasmodial proteases 

thought to be involved in rupture/invasion events have been identified, and
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consequently have lead to the beginning of a drug development process (Rosenthal et 

a l, 2002). Although relatively few new antimalarial drugs are undergoing clinical 

testing, progress has been made on drugs targeting the parasite haemoglobin 

digestion. Due to its toxicity, halofantrine, for instance, identified in the 1940s, was 

not developed until the 1980s and its use has been limited (Bryson and Goa, 1992). 

The most effective new dings are artemisinin and related compounds. Artemisinin 

was isolated in 1972 from a plant traditionally used in China for treating fever 

(Meshnick et al., 1996). Artemisinin and its derivatives have been synthesized and 

are undergoing clinical testing. The first results have shown that these compounds 

are effective against chloroquine-resistant P, falciparum (de Vries and Dien, 1996) 

and have been combined with currently used standard drugs for the treatment of drug 

resistant falciparum malaria. Most research work has focused on the use of artesunate 

combined with, namely, mefloquine, amodiaquine, sulfadoxine/pyrimethamine, and 

chloroquine. There is clear evidence that combinations improve efficacy without 

increasing toxicity. However, the absolute cure rates that are achieved by 

combinations vary widely and depend on the level of resistance of the standard drug 

(Rosenthal et al., 2002).

1.1.5 Life cvcle

The malaria parasite life cycle involves two hosts (Fig.3). During a blood meal, a 

malaria-infected female Anopheles mosquito inoculates sporozoites into the human 

host (see Fig.3, 0). Sporozoites infect liver cells #  and mature into schizonts 0, 
which rupture and release merozoites #  After this initial replication in the liver (exo- 

erythrocytic schizogony S ), the merozoites invade red blood cells, where they 

undergo asexual multiplication (erythrocytic schizogony 13)#. During erythrocyte 

invasion, the parasite establishes a parasitophorous vacuole membrane, inside which 

it resides. It then matures fi’om the initial ring stage to the trophozoite stage, and 

finally develops into a schizont, the rupture of which leads to the release of up to 32 

merozoites # .  Erythi'ocytic schizogony is the stage of the life cycle that is 

responsible for malaria pathogenesis. Instead of undergoing asexual multiplication, 

and under the control of stimuli that are not understood, some parasites withdraw 

from proliferation and differentiate into sexual erythrocytic stages (male or female 

gametocytes) 0  (see Fig. 4 for microscopic identification of the different RBC 

stages). During a blood meal, a female Anopheles mosquito can ingest male
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(microgamétocytes) and female (macrogamétocytes) gametocytes O , which initiate 

the parasites’ multiplication in the mosquito known as the sporogonie cycle Q. 

While in the mosquito’s midgut, the gametocytes develop into gametes. The male 

microgamétocytes, undergo a process called exflagellation, whereby eight flagellated 

gametes are formed from every microgamétocyte. Fertilisation of the female 

macrogamete then ensues generating zygotes O. The zygotes in turn develop into 

motile and elongated ookinetes (D), which cross the midgut epithelium of the 

mosquito, and become attached to the outer surface of the midgut, where they 

develop into oocysts The oocysts, in which intense asexual multiplication occurs, 

grow. Its rupture releases sporozoites 0 ,  which make their way to the mosquito's 

salivary glands. Inoculation of the sporozoites into a new human host reinitiates the 

malaria life cycle O.
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QOocyst ^ s pofozoites

f a
Sporogonie CycJo
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O A
Mosquito takes 
a blood meal 
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o
Mosquito takes 
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Fig.3; Life cycle of Plasmodium falciparum (for legend, see section 1.1.5)

(http.7/dpd.cdc.gov/DPDx/HTML/Malaria.htm)
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In contrast to other types of parasite (e.g. phylum Microsporidia), which can infect a 

wide range of hosts, only a limited range of vertebrates (including mammals, birds,
«

reptiles) is susceptible to infection by malaria parasites. Mosquitoes of the genus

Anopheles transmit parasites that infect humans, monkeys and rodents, whereas 

Culex and Aedes mosquitoes predominate in the transmission of Plasmodium species 

infecting birds. The vectors of malaria parasites of reptiles are largely unknown. 

Although in both hosts (vertebrate/invertebrate) Plasmodium undergoes rounds of 

massive asexual division punctuated by phases of differentiation, all Plasmodium 

species however have their particularities.

Life cycle features can differ between plasmodial species in several ways (Table 1). 

For instance, the duration of the erythrocytic schizogony cycle varies among 

vertebrate hosts. The simian P. chabaudi asexual erythrocyte division is completed in 

24 hours, whereas for P. falciparum, P. vivax, P. ovale it takes around 48 hours and 

for P. malariae 72 hours. Furthermore, mature P. falciparum schizonts contain 8-32 

merozoites, whereas, P. vivax and P. ovale schizonts produce 12-24 and 6-12 

merozoites, respectively. In P. vivax and P. ovale, some of the sporozoites undergo 

latency in the liver for months to years (in a so-called dormant hypnozoite form) 

cause relapses by invading the bloodstream weeks, or even years later whereas P. 

falciparum, and P. malariae sporozoites appear to develop immediately after liver 

invasion (Chin and Coatney, 1971).

1.1.6 Phvlogenv and specific features

Species of the genus Plasmodium (class Sporozoea, sub-class Coccidia, order 

Eucoccidiorida, sub-order Haemosporoina, family Plasmodiidae) (Appendix A) are 

characterised by an apical complex constituted of vesicular structures such as 

rhoptries and micronemes, by the presence of an apicoplast (Fig.6 , section 1.1.7) and 

by an obligate intracellular life (Fig.4, section 1.1.5). Due to the presence of an 

apicoplast, Plasmodium species have been grouped in the so-called Apicomplexa 

phylum. The genus Plasmodium is closely related to the Hepatocystis and 

Haemoproteus genera, which form a paraphyletic assemblage (Perkins and Schall,

2002). Particularly, all Plasmodium species are characterized by features such as 

schizogony, production of crystalline pigment (hemozoin) and gametocyte 

differentiation in blood cells.
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Fig. 4: Erythrocyte stages of Plasmodium falciparum
(http://dpd.cdc.gov/DPDx/HTML/Malaria.htm)

The first drawing panel represent each stage during red blood cell development 

(from ring to merozoite and gametocyte stage). Microscopy pictures (on the right 

panel) have been done using a Giemsa coloration in which parasite (blue) could be 

visualized into red blood cell (pink).
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Key Morphological Différences Between 
Human Plasmodium Species in Blood Smears

vivax ovale malariae falciparum

Ring Stage

Trophozoite

Schizont

Segmenter

Gametocytes
m

sequestered

Table 1 : Comparison of development features between Plasmodial species

Among the four human Plasmodium species, each o f them displays specific 

morphological features, and erythrocyte schizogony leads to a different number o f 

merozoites into the segmenter.
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There are over 200 described species of Plasmodium that infect various species of 

vertebrates (reptiles, birds, and mammals) (Rich and Ayala, 2003).

Evolutionary studies suggest that divergence of the Plasmodium lineage occurred 

several hundreds million years ago, which gave rise to several parasitic species about 

129 million years ago (Escalante and Ayala, 1995). The origin of P. falciparum 

parasitism in human is still unclear. Some studies suggest a lateral transfer from birds 

in the past 10 000 years whereas others suggest that an ancestor o î Plasmodium was 

present in the common Primate ancestor before the divergence between humans and 

chimpanzees (Sherman, 2001).

Apicomplexa form a monophyletic group with the dinoflagellates and ciliates within 

the alveolates assemblage of protist eukaryotes (Fast et al., 2002) (Fig.5) (Baldauf, 

2003). This assemblage is characterized by the presence of sac systems beneath the 

plasma membranes (called alveoli) and also the presence of a plastid.

1.1.7 Ultrastructure of P. falciparum

Plasmodium ultrastructure is complex and involves several cellular compariments 

and their relatives’ membranes.

The apicoplast, homologous to the chloroplasts of plants and algae, is thought to 

have originated from a secondary endo-symbiosis of an algae (Foth and McFadden, 

2003) (Fig.6 ). Because of this archeal origin and hence its absence from metazoan 

cells, the apicoplast could be a potential therapeutic target in apicomplexan parasites 

(Ralph et al., 2004; Soldati, 1999). This essential cellular compartment is important 

for the biosynthesis of fatty acids components of many membrane proteins and for 

iron metabolism (Wirth, 2002). The 35kb apicoplast genome encodes only 30 

proteins, but as it is the case for mitochondia and chloroplasts, the apicoplast 

proteome is supplemented by protein encoded in the nuclear genome. Approximately 

10% of the predicted nuclear genes encode proteins potentially associated with the 

apicoplast (Foth et al., 2003), as suggested by the presence of a bipartite signal 

targeting these proteins to the organelle.
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Additionally, there is evidence for a single mitochondrion in Plasmodium, which has 

a 6 kb genome. The mitochondrion and apicoplast are always attached to each other 

at their edges, their ends or some other region (Bannister et ah, 2000a).

An apical complex, composed of rhoptries, micronemes and dense bodies (Fig.6 ), is 

present in the invasive stages (merozoite, sporozoite, ookinete) and is directly 

involved in invasion (release of host cell binding protein for contact, discharge of 

material for the formation of the parasitophorous membrane in which the parasite 

will develop inside the host cell). During intra-erythrocytic development, the parasite 

is able to enlarge a tubulovesicular membrane extension of the parasitophorous 

membrane, leading to the formation of Maurer’s clefts (Fig.7).

cercozoo
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C. e legans  
H. sa p ie n s  
D rosophila

Fig, 5: Phylogenetic distance between malaria parasites and the organisms used 

as model eukaryotes.

With the exception o f the plant Arabidopsis, the organisms whose kinome has been 

characterised (yeast, worms. Drosophila and human), all belong to the Opisthokonta 

lineage, which is vastly distant from the Alveolata branch, which include the 

Apicomplexa, Dinoflagellate and Ciliate (Baldauf 2003)
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Fig. 6; Ultra-structure of Plasmodium merozoite

Plasmodium possesses a plastid called apicoplast like other species o f the phylum o f 

Apicomlexa (Bannister et al, 2000a).
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Fig. 7: Ultrastructure of Plasmodium trophozoite (left) and schizont (right)

During erythrocytic cycle, Plasmodium develops vesicular membrane extensions 

called Maurer’s cleft (Bannister et al, 2000a).
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1.1.8 The malaria parasite genome, transcriptome and proteome

The genome of the 3D7 clone of P. falciparum has recently been sequenced through 

an international effort, and the sequence is available (together with a variety of 

information and bioinformatics tools) on the PlasmoDB Website 

(http ://plasmodb.org).

It is 24.6 Mb in length and consists of 14 chromosomes ranging from -0.6 - 3.4 Mb 

(Gardner, 1999; Wellems et al., 1999). Thus the P. falciparum genome is twice the 

size of that of the yeast S. cerevisiae (Table 2 ).

Specie Genome size (Mb)

E. coli 4.7

S. cerevisiae 14

P. falciparum 24.6

C. elegans 1 00 .2

Z). melanogaster 120 

Human 3000

Table 2: Genome size comparison

(E, coli: Escherichia coli, S. cerevisiae: Saccharomyces cerevisiae, C. elegans: 

Caenorhabditis elegans, D. melanogaster: Drosophila melanogaster)

The genome contains about 5300 predicted genes (Gardner et al., 2002). P. 

falciparum chromosomes vary considerably in length, with most of the variation 

occurring in subtelomeric regions. Field isolates exhibit extensive size polymorphism 

that is thought to be due, to recombination events between different parasite clones 

during meiosis in the mosquito (Hinterberg et al., 1994). Var/Rif/Stevor genes, for 

example, are located on the subtelomeric regions of P. falciparum chromosomes. 

These genes have been duplicated and recombined during evolution, which lead to a 

repertoire of 59 var, 149 rif genes and 28 stevor genes in P, falciparum 3D7 (Voss et 

al., 2000). The genome is very A+T-rich (80% overall, but almost 100% in non­

coding regions). As mentioned above, malaria parasites also possess a mitochondrial 

genome of approximately 6  kb, and a 35 kb circular DNA that has been localized to 

the apicoplast.
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During erythrocytic schizogony, mRNA expression increases during development 

into the trophozoite and is maintained during maturation from trophozoite into 

schizont (Fig.8) (Amot and Gull, 1998). LeRoch et al (2003) and DeRisi et al (2003) 

have performed two independent expression profile studies of the predicted genes 

expressed during erythrocyte and sporozoites stages (Le Roch et a l, 2003) (Bozdech 

et al., 2003) (see PlasmoDB Web site, http://plasmodb.org). In the first analysis, 

5159 genes were studied (i.e 98% of the predicted genes) and the data suggested 

4557 genes (i.e 8 8% of the predicted genes) were expressed in at least one of the 

stages, which corroborate the transcriptome study of DeRisi et al. (Bozdech et al.,

2003) in which 4488 genes were analysed and 80% of ORFs (open reading frame) 

were expressed and revealed changes in transcript abundance during RBC 

development of the parasite.

0 #
Protein

0 6 
Invasion

IS 24 30
T im e (h )

36 42

Fig. 8; DNA, RNA, protein synthesis during development of P. falciparum in 

synchronised cultures (Amot and Gull, 1998)

Synthesis has been measured as incorporation o f radiolabelled precursors. R: ring 

stage; ET: early trophozoite; LT: late trophozoite; S: schizont, MS: mature schizont

Of the 5268 predicted proteins, about 60% (i.e. 3208 hypothetical proteins) did not 

have sufficient similarity to proteins in other organism to justify prediction of 

functional assigmnents (Gardner et al., 2002). Compared to homologous sequences 

from other organisms, miany Plasmodium proteins are distinguished by the presence 

of numerous insertions. Mass spectrometry analyses have shown that at least 2415 

genes are translated during four stages of the Plasmodium life development 

(merozoite, trophozoite, gametocyte and sporozoite) (Florens et al., 2002), which
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represent about 46% of the predicted proteins. In another study, 1289 proteins were 

identified in erytlirocytic stages and gametocytes (Lasonder et al., 2002). During 

erythrocyte stages, overall protein translation increases progressively through the 

early stages of the cycle, with a peak of expression in late trophozoites and a 

subsequent decrease in schizonts (Fig. 8).

1.2 PROTEIN KINASES

P. falciparum has a complex life cycle, which involves two hosts in which the 

parasites undergo several stage transitions. We are interested in molecular 

mechanisms controlling cell cycle progression. In eukaryotes protein kinases are well 

known to be involved in this process.

1.2.1 Importance of protein nhosnhorvlation in cellular processes

In response to specific environmental stimuli, cellular proteins involved are 

activated/deactivated through a variety of regulation processes, some of which 

involve post-translational modifications such as méthylation, phosphorylation, 

ubiquitination, glycosylation, or acétylation.

For instance, the arginine méthylation of the protein STATl (signal transducer and 

activator of transcription) has been characterized as a signalling requirement for 

interferon a/(5 induced transcriptional induction (Mowen et al., 2001). However, 

modulation of protein phosphorylation through the antagonistic effects of protein 

kinases (PKs) and protein phosphatases (dephosphorylation) has been recognised as 

the major regulatory mechanism of most cellular processes, PKs constitute one of the 

largest families of enzymes in nature (Sowadski, 2001). The NCBI non-redundant 

database currently contains 5271 protein kinase-like sequences (Protein kinase 

resources http://pkr.sdsc.edu), and approximately 2 % of the eukaryotic genome 

codes for PKs (Rubin et al., 2000). PKs are classified in two groups: the eukaryotic 

protein kinases (ePKs) and prokaryotic protein kinases (which comprise histidine 

protein kinases, see below). The kinome of S. cerevisiae contains 115 ePKs (Hunter 

and Plowman, 1997), and the genomes of D. melanogaster, C. elegans and H, 

sapiens comprise respectively 239, 454-493 and 510-518 ePK-coding genes
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(Morrison et al., 2000) (Kostich et al, 2002; Manning et al, 2002a; Manning et al, 

2002b; Plowman et al, 1999).

1.2.2 Phosphorylation definition

Phosphorylation is an enzymatic reaction catalysed by protein kinases, in which the 

y-phosphate of ATP (adenosine triphosphate) is transferred to a specific residue 

(histidine, serine, threonine or tyrosine) within a polypeptide. The intrinsic 

biophysical properties of the phosphoryl group, such as its high charge density, its 

property to form strong salt bridges with arginine and lysine, and its capacity for 

forming multiple hydrogen bonds, render it a prevalent agent for perturbing protein 

structure (Johnson and Barford, 1993). In general, there are three major classes of 

protein kinases in eukaryotes, with differing amino acid targets:

• Serine/threonine protein kinases transfer a phosphate (P) from ATP to a 

serine or threonine residue in the target protein

• Protein tyrosine kinase: to a tyrosine residue

• Dual-specificity protein kinases transfer P to both threonine and tyrosine 

residues.

In prokaryote, the major class is:

• Histidine protein kinase

In eukaryotes, protein kinases related to HK have been identified as well and play an 

important role in plants (see section 1.2.4.2 below).

1.2.3 Eukaryotic protein kinases. Hanks classification and conserved residues

Hanks et al, organized the known members of the eukaryotic protein kinase super­

family into distinct families that share basic structural and functional properties 

(Hanks and Quinn, 1991). The primary criterion used in the development of this 

classification scheme is “similarity in catalytic domain amino acid sequence”. This 

property, considered alone, has proven to be a good indicator of other features held 

in common by the different members of a family, such as similarity (i) in overall 

structural topology; (ii) modes of regulation, and (iii) substrate specificities. The 

initial classification system distributed ePKs into four major groups:
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• The AGC group: including cAMP-dependent PK, cGMP-dependent PK and 

PKC

• The CMGC group: constituted of the eyelin-dependent- (CDK), mitogen- 

activated- (MAPK), glycogCn-synthase- (GSK) and CDK-like kinases

• The CaMK group: the calmodulin-dependent kinases

• The TyrK group: the tyrosine kinases.

ePKs that did not clearly fit into any of these groups were at this time placed into the 

OPK (“other protein kinases") group.

Later on, analyses of the entire complement of protein kinase (“kinome”) encoded in 

a few genomes have been published. On the basis of these new data, tliree additional 

major ePK groups were recognized (Hanks, 2003) (a full classification scheme is 

available at http://wwww.kinase.com):

• The CKl group: the casein kinase 1

• The STE group, which includes many enzymes functioning in MAPK 

pathway (although the MAPKs themselves belong to the CMGC group)

• The tyrosine kinase-like (TKL) group, which, as its name indicates, includes 

enzymes that are related to those in the TyrK group although they are serine- 

threonine protein kinases.

The residues essential for the integrity of the structure and the active site of ePKs 

were identified by multiple alignments of protein kinase amino acids sequences 

(Hanks et al., 1988), and also by chemical modifications (Taylor et al., 1993) and 

alanine scanning mutagenesis (Gibbs and Zoller, 1991). Based on these results, 11 

(to 14) residues are considered to be really important for protein kinase activity 

(Hanks et al., 1988; Knighton et al., 1991) (see Fig. 9: 11 key residues highly 

conserved in the protein kinase catalytic domain). Over the past ten years, the crystal 

structure of several protein kinases has been solved. As well as primary sequence, 

structural features are shared by all the protein kinases studied so far. Structurally, 

protein kinases are composed of two lobes (N terminal and C terminal lobes). The 

space between these globular structures forms the catalytic cleft (see section 1.5.4).
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Fig 9; 11 key residues highly conserved in the protein kinase catalytic domain

(Knighton et al., 1991)

The glycine triad GxGxxG (corresponding to G51, 53 and G56 in human PKAa) 

directly participate in binding ATP. The lysine in subdomain II (K73) is also 

involved in the anchoring o f ATP (contacts the a- and /3-phosphate). In some case 

(e.g hPKAa, but not hCDK2) K73 forms a salt bridge with the carboxyl group o f the 

conserved glutamate o f subdomain III (E92). The aspartate and asparagine within 

the HRDXXXXN signature motif o f ePKs in subdomain VIb (D167, N172) at̂ e 

directly involved in the phosphotransfer. The aspartate in the DFG motif o f 

subdomain VII (DJ85), which binds to the Mg '̂  ̂ (or Mn^^) ion, associates with the J3 

and /-phosphates o f ATP. The glutamate in subdomain VIII (E209), which forms a 

salt bond with the arginine in subdomain XI, provides structural stability o f the C- 

terminal lobe. The aspartate in subdomain IX  (D221) is involved in structural 

stability o f the catalytic loop o f subdomain VI through hydrogen bonding with the 

backbone.

Despite the fact that most serine-threonine ePKs groups ai*e found in all eukaryotes, 

indicating that their appearance occuiTed early in evolution, afterwards, each of the 

kinomes has evolved specifically. For instance, some genomes have developed 

through evolution a considerable extension of specific ePK families. Yeast and 

Drosophila have 4 and 10 members of the casein kinase 1 (CKl) group respectively, 

whereas the C. elegans genome encodes 85 CKl-related proteins (Plowman et a l,

1999). Recent data on the Trypanosoma brucei and Leishmania major kinome 

analysis suggest also an expansion of a subfamily of the STE group and the NIMA- 

like family (unpublished result Parsons M., Ward P. and Mottram, J.C., personal 

communication).

A comparative description of the plant Arabidopsis thaliana kinome to the 

previously available kinomes (yeast, worm, insects, mammals and plants) has been 

published (Champion et a l, 2004). It emerged that whereas members of all the major 

serine/threonine kinase families are found in all eukaryotes studied (fi'om yeast to 

mammals), TyrK members are not found in yeast. Moreover, it has been also
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reported that only a few unicellular eukaryotes {Chlamydomonas, Entamoeba and 

Phytophthora so far) possess putative TyrK family members (Shiu and Li, 2004), 

whereas 90 tyrosine kinase genes have been identified in the human genome (58 

receptor tyrosine kinases (RTKs) and 32 non-receptor tyrosine kinases (NRTKs)) 

(Madhusudan and Ganesan, 2004; Shiu and Li, 2004). So, it has been suggested that 

because TyrKs function is mostly linked to hormone-response receptor pathways, 

this family has been expanded in multi-cellular organisms as an adaptation to the 

needs for intercellular communication.

Some genes encoding “eukaryotic type” protein kinases are also present in 

prokaryotes genomes and display kinase activity on serine, threonine, and tyrosine 

residues, like classical ePK. For example, phosphotransfer by AfsK from 

Streptomyces coelicolor to a regulatory protein substrate (Matsumoto et al., 1994), as 

well as the autophosphorylation of the recombinant Pknl at serine and threonine 

residues from Myxococcus xanthus (Munoz-Dorado et a l, 1991) were reported. Pkn- 

related kinases are also present in other prokaryotic genomes {Streptomyces, 

Bacillus, Mycobacterium, Pseudomonas) (Leonard et a l, 1998). However, there are 

no Pkn kinase homologues in some bacterial genomes (such as E. coli) or in Archea, 

suggesting theses “eukaryotic type” protein kinases may have been acquired later in 

some prokaryotic genomes by horizontal transfer from an ancestral eukaryote to a 

common ancestor of Streptomyces, Bacillus, Mycobacterium and Pseudomonas 

(Plowman et a l, 1999).

1.2.4 Protein kinases in Prokaryotes

1.2,4,1 Microbial-like kinase

In contrast to Pkn-related kinase, other “eukaryote type” protein kinases are found 

both in prokaryote and in Archea species, suggesting in this case the existence of an 

ancestral protein kinase prior to the divergence of eukaryotes, bacteria and Archea 

(Leonard et a l, 1998). Four distinct families of the so-called “microbial like protein 

kinase” have been identified so far: ABCl, RIOl, AQ578 and YGR262C (piD261) 

(Leonard et a l, 1998). Despite the presence of “eukaryote type” protein kinases in 

prokaryotes, most prokaryotic signal transduction systems (and few eukaryotic 

pathways) use a phosphotransfer scheme involving histidine kinases (HKs).
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1.2A.2 Prokaryotic histidine kinases

In bacteria and archea, more than 400 histidine PKs (HPKs) have been identified, 

and they serve a wide range of functions, including chemotaxis, osmoregulation, and 

nitrogen metabolism (Maltsev et al., 2002). HKs show little similarity to protein 

kinases that phosphorylate serine, threonine or tyrosine residues, but may share a 

distant evolutionary relationship with these enzymes. HKs are composed of two 

domains: the kinase domain and the response regulator (RR) domain. The HK is 

regulated by environmental stimuli and autophosphorylates on a histidine residue. 

Autophosphorylation is a bimolecular reaction between homodimers, in which an 

HK monomer catalyses the phosphorylation of the conserved histidine residue in the 

other monomer. The high-energy phosphoryl group is subsequently transferred to an 

aspartate residue in the RR domain, which results in activation of an associated 

domain that affects the response. (Foussard et al., 2001; Stock et al., 2000; West and 

Stock, 2001; Wolanin et al., 2002). A number of studies have shown that HKs could 

be also involved in hormone-dependent developmental processes in eukaryotes, 

notably in plants. For example, Catharanthus roseus (Madagascar periwinkle) 

expresses CrCKRl, a histidine kinase receptor homologue (Papon et al., 2002). It 

have been shown that a family of such receptors (related to bacterial histidine 

kinases) mediates ethylene signalling in Arabidopsis (Wang et al., 2003). The fact 

that only one of the eleven HK subfamilies is present in eukaryotes suggests that a 

lateral transfer has occurred in these organisms (Wolanin et al., 2002).

1.2.5 Unusual protein kinases

1.2.5.1 PK-like proteins with no kinase activity and inactive altered protein kinase 

Surprisingly, several ePK domains are known to lack kinase activity, and these 

proteins have been postulated to act as kinase substrates and scaffolds for assembly 

of signalling complexes. (Kroiher et al., 2001; Morrison, 2001). A few genes also 

encode so-called “altered protein kinases”. For instance, the mammalian Kit gene 

encodes a protein kinase whose domain contains an amino acid sequence (called 

“kinase insert”), located between the “N-terminal-ATP binding” lobe and the “C- 

terminal-substrate binding” lobe. And interestingly, the full-length Kit gene is only 

expressed before meiotic phase in the embryonic gonad, whereas in the post meiotic 

cell testis, two transcripts are found: the first transcript encodes the N-terminal half 

of the kinase domain (i.e. ATP-binding lobe) and the second one encodes the second
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part of the gene (i.e. missing the extra-cellular N-terminal domain, the 

transmembrane domain, the ATP-binding site and the kinase insert domain) (Rossi et 

al., 1992). Recently, a gene encoding a truncated tyrosine kinase (TK) has been 

identified in Hydra vulgaris as well. This gene, termed Hint (Hinterteil), encodes 

only the substrate-binding domain of the TK such as that seen in Kit (Kroiher et al.,

2000). Interestingly, Hydra Hint is the only member of a family, which has been 

shown to encode partial-length proteins (Reidling et al., 2000). There is no obvious 

evolutionary relationship between Kit and Hint. Nevertheless, the fact that the 

truncation yields a transcript encoding the same part of the kinase domain (substrate- 

binding lobe) is quite intriguing. How were genes encoding inactive kinase selected 

through the evolution? Kroiher suggested a possible route of evolution by which 

^^duplication events precede the appearance o f the inactivating mutation. In this case, 

the negative effect o f the mutant would be diluted to the point where it would not be 

expected to cause a problem. The system would be free to evolve signalling pathway 

involving inactive kinaseX As mentioned earlier, such inactive kinases have been 

postulated to act as kinase substrates and scaffolds for assembly of signalling 

complexes. For instance, KSR (Kinase suppressor of Ras), identified as a component 

of the Ras pathway in mammals, is thought to act as a MAPK scaffold (Kroiher et 

al., 2001; Morrison, 2001)

1.2.5.2 Atypical kinase (aPK)

In contrast to the lack of enzymatic activity of some PK, several enzymes, which are 

unrelated (or only distantly related) to ePKs at the primary structure level, possess 

protein kinase activity. These proteins have been termed “atypical protein kinases” 

(aPKs). In several organisms, different aPKs have been identified. This includes lipid 

kinases (such as phosphatidyl-inositol 3’kinase (PI3K)), DNA-dependent proteih 

kinase, and members of pyruvate dehydrogenase kinase family (Meek et al., 2004; 

Wymann and Pirola, 1998). Although lipid kinases (type I: PI3Ks, PI4Ks, and type 

II: PIPKs), contain only a few short sequence motifs similar to motifs in the ePK 

domain, structural analysis of PIPKIIp (human PIPKs type II) has shown a conserved 

ATP binding core which is similar to the conventional one of PK (Rao et al., 1998).

1.2.5.3 Active kinase missins important residues

Other residues can actually substitute the «invariant» residues, conserved in almost 

all ePKs. For instance, WNKl is a mammalian serine kinase in which the conserved
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lysine residue (“VAIKK”, critical for ATP binding) is replaced by a cysteine 

(Cys250), Surprisingly, WNKl still display a kinase activity. Structural modelling 

and site-directed mutagenesis indicate that the missing lysine in position 250, which 

is involved in ATP positioning, is apparently substituted by another lysine (located at 

a position usually occupied by a conserved glycine) (Xu et al., 2000). However, in 

most of the cases, the kinases in which a point mutation leads to the loss of an 

important residue are inactive. For example, some receptor-tyrosine kinases (RTKs) 

have diverged to become, signal-transducing molecules that lack kinase activity (such 

as the vertebrate ErB3 kinase, CCK-4, Rick). CCK-4 receptor tyrosine kinase 

subfamily (found in invertebrates and vertebrates) lacks the conserved DFG (in 

which D is directly involved in the association of Mg^^/Mn^^, which are coupled to 

ATP), CCK-4 also shares additional unusual N-conserved features. Moreover, 

mutation of the non-conserved FLS to DFG in Hydra CCK-4 does not restore the 

kinase activity, whereas restoration of this motif in the Rick family confers activity 

to the protein (Kroiher et al., 2001).

Throughout the eukaryotic kingdom, the protein kinase family is large and 

diversified. Despite phylogenetic distances and divergences of signalling pathways, 

genes encoding protein kinases have been conserved from prokaryotes to eukaryotes.

1.3 SIGNALLING MECHANISMS IN P. FALCIPARUM

We have seen in the previous section that phosphorylation by protein kinases is an 

important process of protein modification. This crucial mechanism triggers the 

activation or deactivation of many signalling pathways. Many of these signalling 

pathways are dependent on external stimuli, and are associated with cell surface 

receptors located in the cell membrane. None of these receptors have been identified 

so far in Plasmodium species; however, there have been many reports of external 

factors that influence the development of the parasite. It has been shown for instance 

that exposure to “stress” causes asexual erythrocyte stage parasites to commit to 

sexual development (gametocytogenesis). But the specific nature of the stimuli and 

the signalling pathways involved in sensing and responding to them is still unknown 

(Dyer and Day, 2000b). Previous experiments with human host hormones have 

shown that insulin, progesterone, 17-p-oestradiol and testosterone (Lingnau et al.,

32



1993) enhance gametocyte conversion of P. falciparum, in vitro. Neither the 

mechanism of hormone action nor the signalling pathway, which is activated in the 

parasite, has been investigated (Dyer and Day, 2000b). In concordance with the 

precedent experiments, two studies have provided evidence of the involvement of a 

receptor-dependent pathway, which control the sexual development o ïP. falciparum. 

Firstly, a cAMP-dependent pathway (Inselburg, 1983) and G protein coupled 

receptor (Dyer and Day, 2000a) have been proposed as mediators of the 

commitment to gametocytogenesis. Second, another study has revealed that 

xanthurenic acid (XA, a by-product of the tryptophan catabolism pathway in 

mosquitoes) induces exflagellation in vivo and in vitro (Billker et al., 1998). 

Moreover, recent data suggests that in this case, a calcium dependent protein kinase 

(CDPK4) functions downstream of the XA-induced signal as an essential regulator of 

differentiation into the male gamete (Billker et al., 2004).

Previous studies on either gametocytogenesis commitment or gametogenesis show 

that Plasmodium is responsive to environmental influences through signalling 

pathways. The characterisation of proteins involved in these pathways is necessary to 

understand the biology of the parasite and also to define crucial pathways with which 

it could be possible to interfere using specific inhibitors.

1.4 SEARCH FOR P. FALCIPARUM KINASE INHIBITORS

Most extracellular signals are amplified and transduced inside cells by protein kinase 

cascades whose activities are normally tightly regulated. However, in mammals, 

mutant alleles of these protein kinase genes (or of other oncogenes that signal 

through these protein kinase cascades) are able to perturb entire signalling networks!, 

leading to the deregulation of diverse biological processes (such as control of cell 

growth found in cancer). Indeed, intensive research on cancer leads to the 

development of selective protein kinase inhibitors that can block (or modulate) 

“abnormal” kinase activity. Most of them have been designed directly against the 

ATP-binding site of various protein kinases. For instance, purines that are 

structurally similar to ATP have become attractive for rational drug design and 

purine-derived kinase inhibitors have been synthesised (Fabbro et a l, 2002) (Cohen,

2001). These investigations lead the commercialisation in 2002 of the first protein
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kinase inhibitor (called-Gleevec®) as an anti-cancer agent (Cohen, 2002), and 

several more kinase inhibitors are in clinical trial for a variety of diseases.

In the case of malaria, purine-derived kinase inhibitors have been tested for their 

selective activity against parasite culture and recombinant plasmodial kinases. In this 

context, libraries of various purine derivatives were screened for antimalarial activity 

in culture (Harmse et a l, 2001). This study indicated that some purine-based kinase 

inhibitors are able to interfere with parasite growth. Structure analysis of these active 

compounds revealed common features, which could be exploited to synthesise new 

compounds with higher inhibitory activity and specificity towards P. falciparum 

(Harmse et a l, 2001). Affinity chromatography approaches, using immobilised 

inhibitors and Plasmodium protein extracts, have been also carried out to isolate 

parasite targets. This method allowed the identification of OKI (casein kinase 1) as a 

target for purvalanol B (95), a compound shown in the Harmse et al. study to inhibit 

the parasite cell culture growth (Knockaert et a l, 2000).

A number of Plasmodium protein kinases identified in the laboratory have sufficient 

in vitro activity as recombinant enzymes to be used in medium throughput screening 

procedures, and adaptation of inhibition assays has been achieved for a few enzymes, 

in collaboration with L. Meyer (CNRS, Roscoff) and M. Sauvain (IRD, Toulouse) in 

the context of a screening project of chemical and natural extract librairies, 

repsectively.

1.5 CYCLÏN DEPENDENT KINASE (CPIO

1.5.1 Definition

The main characteristic of the cyclin-dependent kinase (CDKs) family is the fact that 

their activity requires association with specific activator proteins (cyclins). CDKs 

play a well-established role in the regulation of the eukaryotic cell division cycle and 

have also been implicated in the control of gene transcription and other processes. 

The activity of the cell cycle machinery is itself under the control of upstream 

signalling pathways (Fig.GO).
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1.5.2 Mammalian cell and yeast models of cell cvcle control by CDKs

The control of cell division is relatively well understood in yeast and mammalian 

cells (Kitazono AA, 2001; Morgan, 1997; Sowadski, 2001). While resting cells are in 

GO, cell division is composed of four phases: the phase (Gl), the DNA synthesis 

phase (S), following by a short arrest phase (G2), which ends with mitosis (M).

1.5.2.1 Mammalian model

In higher eukaryotes, several CDK and cyclins control the transition between the 

different phases of the cell cycle division (Fig. 9). In the human genome, 11 CDK 

proteins have been identified (Cdkl-Cdkll). In the case of human cyclins, only A- 

type, B-type, D-type, and E-type are directly involved in cell cycle control, whereas 

cyclin H, in association with Cdk7 is required for complete activation of other CDKs 

(see below) (Kitazono AA, 2001). Cdc2 (Cdkl) and Cdk2 are functionally 

homologous to yeast Cdc2/Cdc28 and are clearly involved in central cell division 

functions, as they are responsible for the entry into M and S phase, respectively (Fig. 

10.). Cdk2 interact with CycE at the beginning of S phase, which induce DNA 

synthesis, whereas interaction with CycA plays an undefined role on the progression 

through DNA synthesis. ‘

G l/S transition: the retinoblastoma protein (pRB) acts as a key regulator of the Gl-S 

transition of the cell cycle by its capacity to modulate the activity of E2F 

transcription factors. pRB can exist in a hyper- and hypophosphorylated form. The 

latter form sequesters the transcription factor E2F, suppressing the transcription of 

E2F target genes. pRB phosphorylation induces conformational changes, which lead 

to the release of E2F and consequently, the transcription of E2F target genes can 

occur and trigger cell cycle progression. Phosphorylation of pRB is dependent on 

cyclin D- or E-dependent kinase activities such as Cdk2/Cyc E and Cdk4,6/Cyc D 

complexes. Recent functional genetic studies on mouse show that a loss of Cdk2 

affects the timing of S phase. This result suggests that Cdk2 is not essential for 

development, and other CDKs could replace its function. However, the authors 

demonstrate that Cdk2 is required for germ cell development and meiosis (Berthet et 

al., 2003).

G2/M transition: M phase is then initiated by the binding of Cdkl and CycB. 

(Owen, 2001). The Cdkl/CycB complex triggers the entry into mitosis. It has been 

also published that Cdkl/CycA may also contribute to the preparation for mitosis.
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Others CDKs play auxiliary cell cycles roles or are not involved in cell cycle 

function. Cdk3 is closely related to Cdkl and 2. Expression of Cdk3 dominant 

negative mutants slows down the progression through Gl, which may indicate a role 

in the cell cycle (van den Heuvel and Harlow, 1993).

Cdk4 and Cdk6  in association with cyclins of the CycD family are indirectly 

involved in mitosis by suppressing the antiproliferative effects of retinoblastoma 

(pRb) protein (Owen, 2001). Cdk4 and Cdk6 seem to not be essential, indeed, in 

cells lacking pRb, Gl progression could occurs in the absence of Cdk4-6/CycD 

activity (Bartek et al., 1996) (Hirai and Sherr, 1996). Cdk5 is involved in neural 

differentiation (activated by p35) (Lew et al., 1994) (Tsai et al., 1994). Cdk7, related 

to yeast Kin28/Mcs6, is a CDK-activating kinase (CAK), which in specific 

association with cyclin H, activates Cdk2 by phosphorylating this protein on Thirl 60. 

Cdk7-CycH is also associated with the transcription factor TFIIH, and 

phosphorylates the C-terminal domain (CTD) of RNA polymerase II during 

transcription (Svejstrup et al., 1996). Cdk8 (homologue to the S. cerevisiae SrblO), 

CdklO and Cdkl 1 are involved in transcriptional control too.

1,5.2,2 Yeast model

In yeast, a single CDK is able to regulate the cell division (Cdc28 in the budding 

yeast Saccharomyces cerevisiae, Cdc2 in the fission yeast Schizosaccharomyces 

pombe). Progression through the cell cycle phases is controlled by association of the 

CDK with specific cyclins. In Saccharomyces cerevisiae, during the Gl phase, three 

“G l” cyclins are required: Clnl, Cln2, Cln3 (with overlapping functions). A partially 

redundant family of six cyclins (Clbl-6) governs the entry into S phase (primarily 

Clb5, 6), and M phase (CIbl-4) (Nasmyth, 1996). In Schizosaccharomyces pombe, 

the mechanism is less complex. A single cyclin, Cdcl3 is required for mitotib 

function of Cdc2, whereas initiation of DNA synthesis involves the cyclins Clgl and 

Clg2.

There are other yeast protein kinases related to the CDK family that play roles in 

different processes. Saccharomyces cerevisiae Kin28 is related to CDKs, and more 

specifically related to the CDK-activating kinase (CAK). This protein kinase is 

associated with Cell (a human CycH homologue, see below) (Valay et al., 1996). 

Despite its sequence homology with CAKs, its functions are limited to the regulation 

of transcription through (i) association with TFIIK transcription factor (Keogh et al.,
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4:
12002) and (ii) activity on the C-terminal domain (CTD) of RNA polymerase II
-I

(Feaver et al, 1994). Surprisingly, although the closest S. cerevisiae relative of CAK 

does not possess CAK activity, another protein kinase related to CDKs, Cakl (or
’■j

Civl) is required for Cdc2 phosphorylation in vivo (Espinoza et al,, 1996) (Thuret et 

al., 1996).The Schizosaccharomyces pombe Mcs6  (also known as Mopl or Crkl), a 

CAK homologue, forms a complex with cyclin Mcs2, and is also involved in 

regulation of transcription. In contrast to the Saccharomyces cerevisiae Kin28, Mcs6 

posses a CDK-activating kinase (CAK) activity (Niggl996) like the human Cdk7 

homologue (see below). In S. cerevisiae, the CDK Pho85 functions in complex either 

with Pell (Hcs26) or Pcl2 (OrfD) and may overlap with cdc28 in Gl control. Indeed, 

although Pho85 and Pci 1-2 are not essential for cell growth, in the absence of Cdc28,

these complexes are required for passage through Gl (Espinoza et al., Î994; 

Measday et a l, 1994). SrblO and Ctkl (in association with their relative cyclin-like 

Srbl 1 and Ctk2 respectively) are associated with RNA polymerase II, display kinase 

activity on the C-terminal domain (CTD) of RNA polymerase II, and are involved in 

other transcription processes (Kuchin et a l, 1995; Liao et a l, 1995; Sterner et al, 

1995).

In addition to activation through cyclin binding, CDK activity is governed by a 

complex network of regulatory subunits and phosphorylation/dephosphorylation 

events, whose precise effects on CDK conformation have been revealed by recent 

crystallographic studies.
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Fig. 10: Control cell cycle progression by CDK in mammalian cells 

(http://viroIogie.free.fr/ll-Cycle_cellulaire/Cycle_celluIaire.htm)

Cell cycle progression in mammals is controlled through a complex network o f 

phosphorylation-déphosphorylation process involving CDK (e.g Cdc2 which control 

the entrance into mitosis), cyclin activators (e.g. cyclin B/Cdc2), phosphatase 

activators (e.g cdc25C) or kinase inhibitors (e.g Weel).
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1.5.3 Regulation of CDK activity

1.5.3.1 Resulation bv cvclins

Cyclins comprise a diverse family of proteins of 30-90kDa that share weak 

homology, except in the so-called cyclin box (a region of 100 amino acid residues 

involved in interaction with CDK) (Andrews and Measday, 1998). The binding of 

the cyclin to the CDK, which occurs on a conserved motif of the kinase subunit 

called the PSTAIRE helix, induces a conformation change in the structure of the 

enzyme and exposes the catalytic residues and regions important for substrate 

binding. In vivo experiments have shown that monomeric recombinant human Cdk2 

is essentially inactive on histone HI (a usual CDK substrate), whereas in the 

presence of equimolar amounts of cyclin A, the HI kinase activity is many fold 

higher than Cdk2 alone (Connell-Crowley et al., 1993).

The yeast and human cell cycle models have revealed the specificity of CDK-cyclin 

interactions, which depends not only on the affinity between the two molecules, but 

also on timing of protein expression and subcellular localisation. For instance, in 

CDK-cyclin interactions during mitosis, the first level of regulation is the abundance 

of cyclins, which fluctuate during the cell cycle, thereby underlying the stage- 

specific timing of CDK activity. Later on, small proteins (ubiquitin) are coupled with 

mitotic cyclins, and mark them for rapid degradation by the proteasome. Moreover, 

during interphase, human mitotic cyclins (CycA/CycB) localize in the cytoplasm and 

are actively transported to the nucleus during mitosis, where the specific CDKs are 

also localized (Pines and Hunter, 1991).

Although the cyclin binding is the primary determinant of CDK function, the 

phosphorylation state of specific residues on the CDK moiety and additional 

regulatory subunits also modulate its activity.
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1.53.2 Resulation bv phosphorylation:

For full activation, most CDKs need to be phosphorylated by the Cdk-activating 

kinase (CAK) at a conserved threonine residue (Thrl60 for Cdk2), located in the 

flexible T loop. Cdk2 structural studies have revealed that Thrl60 phosphorylation 

induces an extension of the T loop. In contrast to cyclin binding, Thrl60 

phosphorylation has a relatively minor effect on the active site architecture, but its 

role is probably to improve protein-substrate binding. In vitro experiments have 

revealed that incubation of recombinant human Cdk2/cycA with CAK resulted in a 

80-fold increase in HI kinase activity (Connell-Crowley et al., 1993).

It has also been noticed that phosphorylation on specific residues (Cdk2 

phosphorylation on Thrl4 and Tyrl5) inhibits CDK activity. In mammals, the major 

enzyme responsible for Tyrl5 phosphorylation is Weel, whereas Mytl 

phosphorylates either Thrl4 or Tyrl5. Dephosphorylation of both residues by the 

Cdc25 phosphatase increases Cdk2 activity (Morgan, 1997). For instance, 

immunoprecipitates of cyclin A /hCDK2 incubated with recombinant Cdc25 

increased the histone HI kinase activity of these immune complexes 5- to 10-fold 

(Owen, 2001; Sebastian et al., 1993).

1.5.3.3 Remlation bv regulatory subunits:

The activity of CDK-cyclin complex is also controlled by Cdk-inhibitory-subunits 

(CKIs) (Morgan, 1997).

In veast: three CKIs have been identified in S. cerevisiae (Farl, Sicl, PhoSl) 

whereas only one CKI has been found in Schizosaccharomyces pombe (Ruml). 

During mating-type differentiation (in response to pheromone stimuli), Farl is 

phosphorylated by a MAPK and inhibits the Cdc28/Clnl-3 complexes involved in 

the transition from G1 to S phases, which leads to cell cycle arrest. Sicl plays a role 

in the tight control of the activity Cdc28/Clb5-6 complexes, which trigger entry into 

S phase: Sicl prevents this activity until the end of Gl. PhoSl inhibits

Pho85(/Pho80) complexes under low phosphate condition. In S. pombe., Ruml 

contribute to the inhibition of Cdc2/Cdcl3 before mitosis, hence preventing 

premature entry into mitosis.

In mammals', there are two classes of mammalian CKIs: the Ink4 and the Cip/Kip 

families. The former (which includes pl5, p i6, pl8 and p i9) is involved in the 

inhibition of Cdk4/6-cycD complexes (Jeffrey et al., 2000), whereas the latter (which 

contains three members: p21, p27 and p57) inhibits specifically Cdk2-cycE/A during
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the Gl/S and Cdk4/6-cycD during Gl (Viallard et al., 2001). The inhibitory 

mechanisms are not fully understood, however, in the case of Cdk2/cycA/p27, 

crystallography studies have shown that the binding of p27 disturbs CDK-cyclin 

complex conformation, preventing substrate ATP binding (Russo et al., 1996).

1.5.4 CDK Structure

Cdk2 is one of the smallest protein kinases known. Monomeric, unphosphorylated 

Cdk2 is an inactive 33kDa protein. Cdk2 has been crystallized in the presence and 

absence of cyclin partners and its structure, in both the inactive and active 

conformation, is well understood. Cdk2 has the typical “two-lobe” structure (Fig. 11 

and 12) that is conserved among Ser/Th/Tyr PKs. The active site cleft, where ATP 

and the substrate bind, lies between the two lobes.

Eleven CDK subdomains and related conserved residues:

Hanks et al. have divided S/Th kinases into XI subdomains (Fig. 10), on the basis of 

conserved residues (Fig.9, section 1.2.3).

S u b d o f u i i n  IV

: î>ut)(Joriuâif^ V

%  /  %

Fig. 11: Human CDK2 structure

The kinase domain has been divided into XI subdomains by Hanks et al. 

(http://pkr.sdsc. edu/html/3D/xray/cyclin/htmlmaincdk2. htm)
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Fig 12: Human CDK2 structure and conserved domains involved in the catalytic 

activity (De Azevedo et al., 1996)

The glycine-rich loop of the ATP binding site, which has the consensus sequence 

Gly-x-Gly-x-x-Gly is located in subdomain I. The Gly triad serves as a phosphate 

anchor, fonning bonds to the phosphates of the ATP. Thrl4 and Tyrl5 of the 

glycine-rich loop are the sites that act to regulate Cdk2 activity, as a phosphate bound 

to the Thrl4 hydroxyl group would prevent ATP from entering the pocket. 

Phosphorylation at either Thrl4 or Tyrl5 may also interfere with protein substrate 

binding or change the conformation of the glycine-rich loop, preventing ATP from 

binding in the right orientation, thus inhibiting kinase activity. Subdomain II 

includes the conserved lysine residues needed for maximum enzyme function (at 

position K33 of the small lobe). In mutation experiments, it was found that the 

residues Arg36, Asp38, Glu40, and Glu42 of subdomain II must be intact in order for 

cyclin to bind. Subdomain HI is made up of residues 44-58 which form the large 

alpha-1 helix, the only alpha helix of the small lobe. The Subdomain III includes the 

PSTAIRE sequence, a conserved region of the cyclin dependent kinases. Mutations 

in this region have been shown to abolish cyclin binding. Subdomain IV does not 

contain any important conserved residues or motifs and does not seem to be directly 

involved in catalysis or substrate recognition (it may be just important structurally). 

Subdomain V links the small and the large lobes. Subdomain Via is a large
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hydrophobic region, which is the “backbone” of the protein kinase and supports its 

structure. Subdomain VIb is composed of two hydrophobic beta strands. The region 

between them forms the catalytic region directly involved in the phosphotransfer, 

which contains the consensus motif “HRDLKxxN”. Asp 127, Lys 129 and Asnl32 are 

highly conserved residues through the protein kinases and are involved in positioning 

of ATP. Subdomain VII in Cdk2 contains the conserved DFG motif and also the N- 

terminal portion of the T-loop. D binds to the Mg^  ̂(or Mn̂ "̂ ) ion associated with the 

P and y-phosphates of ATP. Subdomain VIII is important because it contains most 

of the T-loop, which is the activation region of the molecule that gets phosphorylated 

by CAK (for CDKs) by other proteins kinases (for many protein kinases other than 

CDKs). Although subdomain X is not highly conseiTed within the protein kinase 

family, it is conserved within the cyclin-dependent kinases, where it contains the 

GDSEID motif. The importance of the subdomains IX and XI is still unknown, 

although it has been established that the glutamate in subdomain VIII (E209), which 

forms a salt bond with the arginine in subdomain XI, provides structural stability to 

the C-terminal lobe. The aspartate in subdomain IX (D221) is involved in structural 

stability of the catalytic loop of subdomain VI through hydrogen bonding with the 

backbone.

1.6 iP. FALCIPARUM CDK

1.6.1 Cell cvcle control in Plasmodium ervthrocvtic schizogonv

Plasmodium falciparum is capable of initiating different types of cell division to 

facilitate different growth modes during its life cycle (section 1.1.5). Both in the 

mosquito or in the human host, the parasite has developed different cell division 

programs: mitosis/meiosis, arrest, differentiation, and schizogony (in which a 

polynucleated schizont leads to the formation of daughter cells).

Indeed, during sporogony “m the mosquito, the diploid ookinete stage divides by 

normal mitosis and meiosis to form haploid sporozoites. In the vertebrate host P. 

falciparum reproduces asexually both in erythrocytes and in hepatocytes by 

schizogony, where multiple rounds o f DNA replication occur, followed by nuclear 

division without corresponding cytoplasmic division. This creates a single syncytial 

cell, which then forms individual merozoites. Merozoites are also capable o f
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developing into gametes in the erythrocyte, during which the cell cycle temporarily 

ceases and the parasite differentiates into the appropriate gametocyte’’'’ (Leete and 

Rubin, 1996).

In Plasmodium, during the erythrocyte asexual multiplication, DNA synthesis occurs 

thoughout the trophozoite stage development (Fig.8, section 1.1.8). Microscopic 

picture analysis of spindle and nuclear body numbers in parasites indicate that there 

is an apparent asynchrony in chromosomal multiplication within a single parasite 

(Read et al., 1993). Indeed, the number of merozoites in a given schizont does not 

follow the powers of two that would be expected if nuclear division was synchronous 

(Bannister et al., 2000b). In other apicomplexan parasites, such as Toxoplasma, odd 

numbers of nuclei have been also noticed in multinucleated stages (Hu et al., 2002). 

Based on these data, it is currently though that “m multinucleated parasites, 

individual nuclei could he autonomous with respect to DNA replication ” (Hu et al.,

2002). Moreover, in contrast to mammalian cell division, there is an absence of 

chromosome condensation or maintain of nuclear membrane. Based on theses 

results, a model has been proposed (Fig. 13) in which the invading merozoite is 

thought to be in Gl and S is initiated at the trophozoite stage with no significant 

G2/M period, except at the segmenter stage of the schizont (Jacobberger et al., 1992).

Merozoite
invasion _ Ring Trophozoite 8|-26 merozoites

I-------------------- 1----------------- 1-----------------------
0 24 36 48 hours post invasion

typical eukaryotic mitosis

Fig. 13; Peculiarities of the Plasmodium cell cycle during erythrocytic 

schizogony (adapted from Doerig et al., 2000)

In Plasmodium, the invading merozoite is thought to be in Gl (in grey) and S (in 

green) is initiated at the trophozoite stage. Schizogony occurs with asynchronous 

nuclear divisions (in blue), which differ from eukaryotic mitosis model. Indeed, the 

schizont can contain 8 to 26 merozoites, including an odd number.
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1.6.2 Characterized PtowofJmw CDK and cvclins

Four P. falciparum enzymes related to CDKs have already been identified: PfPK5, 

Pfinrk, Pfcrk-1 and PfPK6 (Table 3).

PfPK5 is the plasmodial CDK, which is the most closely related to Cdc2. However, 

the cyclin binding domain (“PSTAIRE” region), which is usually well conserved in 

Cdc2“homologues is substituted in PfPK5 by PSTTIRE. In a first study, PfPK5 gene 

failed to complement Cdc2/28 yeast mutant (presumably because the gene was not 

expressed in yeast) (Ross-Macdonald et al., 1994). Nevertheless, other independent 

work has shown that neither the PfPK5 homologous gene from P, knowlesi nor P. 

berghei is able to complement a yeast cdc28 mutant (although, this time, the 

recombinant PK5 was expressed). In vitro, the recombinant PfPK5 is active on 

several exogenous kinase substrates (such as a-casein, histone HI, the carboxy- 

terminal domain (CTD) of RNA polymerase II) and also autophosphorylates (neither 

the intrinsic mechanism nor the residue(s) involved are yet determined). Moreover, 

PfPK5 is activated by heterologous activators (human cyclin H, xenope ringo) and 

also by plasmodial cyclins (Pfcyc-1 and Pfcyc-3, section plasmodial cyclin). Western 

blot analysis has shown that the protein is expressed in similar amounts throughout 

the erythrocyte development (Ross-Macdonald et al., 1994), but its real function is 

still unknown.

Pfinrk was initially identified by Li et al (Li et a l, 1996), and sequence homologies 

have revealed similarity to the CAK family. It has been noticed also that two inserts 

are present in the kinase domain: 5 amino acids just before the cyclin binding motif 

(PSTAIRE) and 13 amino acids within the T-loop region. Northern blot analysis has 

shown that a 2500-nucleotide transcript is expressed predominantly in gametocytes, 

suggesting that this gene could be involved in sexual stage development. 

Complementary studies demonstrated that the recombinant protein is active on 

histone HI. Moreover, addition of human cyclin H (the physiological paitner of 

Cdk7) increases its activity (Waters et a l, 2000). No activation of plasmodium CDK 

by Pfinrk has been demonstrated so far. Thus, the function of Pfinrk as a CAK 

remains undetermined.
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Pfcrk-1, a second gene encoding a Cdc2-related protein kinase has been identified in 

P. falciparum by Doerig C et al (Doerig et al., 1995). Sequence analysis of the open 

reading frame suggests the presence of a large extension up-stream of the kinase 

domain. The gene is expressed during erytlirocyte stages and a doublet at 2.5kb and 

3.5kb were detectable on Northern blot studies (only in gametocytes stage), however, 

the significance of this doublet is still unknown. No kinase activity has been 

demonstrated so far.

PfPK6 shows similarity to both CDK and mitogen-activated protein kinases 

(MAPK) families. In vitro, without any cyclin activators, the recombinant protein 

autophosphorylates and phosphorylates exogenous substrate such as histone HI 

(Bracchi-Ricard et al., 2000) and myelin basic protein (MBP) (Equinet L, 

unpublished data). Immunofluorescence studies indicated that the protein is 

expressed both in nucleus and cytosol during late erythrocyte stages (trophozoite and 

shizont). Study of its probable role in activating nuclear proteins, such as MCM 

(mini-chromosome maintenance proteins, involved in DNA replication) is in process 

(Bracchi-Ricard V., Chakrabarti D,).

Four cyclins have been identified in the Plasmodium genome database: Pfcyc-1, 

Pfcyc-2, Pfcyc-3 and Pfcyc-4 (Merckx et al., 2003). Pfcyc-1 and Pfcyc-3 activate 

PfPK5 in vitro, however, no activation has been shown by Pfcyc-2 so far, and 

activation of PflPK5 by Pfcyc-4 was not reproducible (Merckx et al., 2003). Among 

the plasmodial cyclins, Pfcyc-1 is the most similar to human cyclin H. In the human 

model, cyclin H forms an active complex with Cdk7. To investigate further 

similarities between hCdk7 and Pfinrk, kinase assays with recombinant protein have 

been performed. Result shown that addition of Pfcyc-1 indeed increased the activity 

of Pfinrk, but at a very low level (about 2-fold) (Le Roch et al., 2000).
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Enzyme Family
ePK
AGC

Substrate

PfPKA PKA kemptide
PfPKG PKG PKG peptide s

PfPKB PKB

CMGC

histone HI am

Pfinrk CDK (CAK) HI, CTD
Pfcrk-1 CDK

PfPK5 CDK HI, CTD

PfPK6 CDK/MAPK HI, MBP

Pfmap-1 MAPK MBP

Pfinap-2 MAPK MBP
PfPK7 MAPK/PKA MBP, Casein
PfGSK3 GSK3 Peptide
PfPKl GSK3
PfLAMMER Lammer like 

C a m P K
PfCDPKl Ca+DK Casein, histone
PfCDPK2 Ca+DK
PfCDPK3 Ca+DK
PfCDPK4 Ca+DK
PfPK2 Ca+DK

PfCKl C K ]

OPK

Casein

Pfhek-1 NIMA like Casein
PfKin SNFl
PfEST exported PK

PfPK4 eIF-2alpha
PK

Reference

(Syin et al., 2001)
(Deng and Baker, 2002)

(Kumar et al, 2004)

(Li et a l, 1996; Waters et al, 2000) 
(Doerig et al, 1995)
(Le Roch et a l, 2000; Merckx et al. 
2003; Ross-Macdonald et a l, 1994) 
(Bracchi-Ricard et al, 2000)
(Doerig et al, 1996; Graeser et a l 
1997; Lin et a l, 1996)
(Dorin et a l, 1999)
(Dorin, 2004)
(Droucheau et a l, 2004)
(Kappes et al, 1995)
(Li et al, 2001)

(Zhao et a l, 1994) 
(Farber et a l, 1997) 
(Li et a l, 2000) 
(Billker et al, 2004) 
(Zhao et al, 1992)

(Barik et a l, 1997)

(Dorin et al, 2001) 
(Bracchi et al, 1996) 
(Kun et al, 1997)

(Mohrle et al, 1997)

R45 F I K K (Bonnefoy et al, 1992)

Table 3: 23 previously identified Plasmodium protein kinases

Each protein is represented by the name given by the authors who reported its 

characterisation (see last column for references) as well the protein kinase family 

(red) or subfamily (black) to which each protein belongs. The third column indicates 

some o f the proteins that have been shown to be substrates for the plasmodial protein 

kinases.
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1.7 SMALL MOLECULE PLASMODIUM  CDK KINASE INHIBITORS

Two CDK inhibitors (olomoucine and roscovitine, two ATP competitors) have been 

tested for their ability to inhibit Pfinrk activity in vitro (Waters et ah, 2000). 

However, both of them failed, and structural models suggested that Pfinrk residues 

avoid the entrance of these compounds into the ATP pocket. In contrast, PfPK5 is 

sensitive to olomoucine, suggesting that drug susceptibility differs between 

plasmodial protein kinases (as it is the case for human protein kinase). Additional 

inhibition tests have been performed using a broad spectrum of CDK inhibitors as 

well as compounds from a chemical database (Woodard et al, 2003). In this analysis, 

effective inhibitors were identified to be specific to Pfinrk only (no cross reactivity 

against PfPK5), which demonstrates that selective inhibitors can be identified,' and 

consequently rational drug design should be possible also for plasmodial CDKs. The 

kinase activity of PfPK6 is sensitive to both CDK inhibitors (Bracchi-Ricard et a l, 

2000).

Plasmodial CDKs identified so far display atypical features, such as large N-terminal 

extensions, small insertions within the kinase domain, and cyclin independent 

activity. As mentioned above, PIPK6 shows similar levels of homology to CDKs and 

to MAPKs.

Recombinant PIPK5 and Pfinrk display cyclin-dependent stimulation of kinase 

activity in vitro. Recombinant PfPK6 has cyclin-independent kinase activity in vitro, 

whereas recombinant Pfcrk-1 does not display any activity in vitro (possibly because 

of a lack of an activator,-such as a cyclin partner). PfPK5 and PIPK6 (as well as P. 

falciparum protein kinases from other families, see Table 3) are sufficiently active in 

vitro (see above) to allow high throughput screening of chemical libraries, an avenue^ 

that is currently being explored.
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1.8 A IM  O F  M Y PhD  P R O JE C T

The human malaria parasite, P. falciparum, has a complex life cycle consisting of a 

succession of developmental stages. Some of these stages are characterised by 

intense cell divisions, while others undergo differentiation accompanied by cell cycle 

arrest. The asexual development of the parasite in the red blood cell corresponds to 

the symptomatic phase of malaria, whereas differentiation into gametocytes 

contributes to transmission to the mosquito host. A strategy to stop either the 

infection in patients or transmission of the disease could be developed. In this 

context, it is really important to understand the molecular mechanisms controlling 

Plasmodium cell cycle development in order to interfere with it.

Kinase inhibitors have been found, and used as anti-proliferative compounds in 

cancer therapy. Moreover, compared to human ePKs, structural divergence of 

parasitic kinases suggest, that specific inhibitors could be found (Hammarton et al., 

2003). Study of the role of protein kinases in the life cycle of the parasite, as well as 

their potentiality as a drug target are the main research project of our laboratory 

(WCMP-INSERM, U609, Glasgow, Dr C. Doerig,), the final purpose of which is the 

identification of specific kinase inhibitors.

In order to identify crucial pathways and atypical protein kinases, the entire 

complement of potential protein kinases in the parasite’s genome has been 

investigated. The first part of my PhD project is focussed on the identification, 

analysis and classification of the protein kinases present in the genome of P. 

falciparum. This analysis underlined the presence of a new “Plasmodial” kinase 

family (the so-called FIKK), the characterisation of which corresponds to the second 

part of my work. The central role played by cyclin-dependent family (CDK) in 

eukaryotic cell division, suggests that these enzymes could play a major role in 

parasite life-cycle progression and therefore may represent attractive drug targets. 

The last part of my project concerns the molecular and biochemical characterization 

of atypical CDK-related kinases, including Pfcrk-3 and Pfcrk-4.
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Chapter!: MATERIALS AND METHODS
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2.1 MATERIALS AND METHODS concerning P. FALCIPARUM

2.1.1 Culture of ervthrocvtic stages o f f ,  falciparum

The P. falciparum clone 3D7 (Szarfinan et al., 1988) was cultured in vitro as 

described by (Jensen and Trager, 1978). Briefly, the parasites were grown at 5% of 

hematocrit in complete RPMI 1640 medium (5 liter: 79.45g RPMI 1640 powder 

(Gibco BRL), 0.25g hypoxanthine, lOg sodium bicarbonate - NaHCOs, 0.25 mg 

gentamycin sulphate, 0.5% w/v of albumax II- lipid rich bovine serum albumin, pH

7.2, filter-sterilize and store), either in 25cm^ (5 ml stocks) or 75cm^ ventilated-flasks 

(25ml preparative cultures). The flasks were kept in a 37°C incubator with a 3% CO2, 

1% O2,96% N2 atmosphere. To remove serum and leukocytes, the blood (obtained in 

donation pouches from the Blood Transfusion Service, Gartnavel Hospital, Glasgow) 

was washed three times (centrifugation at 2000g, 5min) in RPMI 1640 before use. 

The medium was changed every day. The parasitemia was controlled daily by 

examining Giemsa-stained blood smears (Sigma). When the parasitemia reached 8- 

10%, the culture was harvested or diluted (usually to 0.5%)

2.1.2 Synchronisation of cultures

2.L2J Svnchronisation bv sorbitol treatment

This synchronisation technique (Lambros and Vanderberg, 1979) relies on the fact 

that late trophozoites and schizonts, but not rings and early trophozoites, are killed by 

incubation in sorbitol. A 5ml stock of young stage parasite culture (8% parasitemia 

rich in ring or young trophozoite) was spun down, and the cells were resuspended in 

4ml of 5% sorbitol. After incubation at room temperature for lOmin, the cells were' 

washed twice into complete RPMI 1640 medium and resuspended in complete 

medium. This procedure was repeated 30min later to narrow the synchronisation 

window. To keep the parasites synchronized, the sorbitol treatment must be repeated 

once a week.

2.L2.2 Svnchronisation bv Per coll flotation

A washed infected RBC pellet was resuspended in RPMI 1640 medium (1:4), and 

layered on top of 70% Percoll (Pasvol et al., 1978) (2 culture volumes). After 2000g / 

lOmin of centrifugation, mature stage infected RBC form a band in an upper layer,
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whereas rings and uninfected RBCs sediment to the pellet. After recovery of mature 

stages, followed by a wash of infected red blood cells, flasks were set at 5% of 

hematocrit in complete RPMI 1640 medium.

2.1.3 Harvest of parasites

Cultures were harvested for protein or nucleic acid extraction when they reached 8% 

parasitemia. The cells were washed once in PBS (Gibco) and the pellet was 

resuspended in 2 packed cell volumes of 0.3% of saponin and incubated on ice for 10 

min. After a 5000g, 5 min, 4°C centrifugation, the parasites were resuspended a 

second time in 2 volumes of 0.3% of saponine for 5 min. The pellet of parasites was 

washed three times in cold PBS and stored at -80°C.

2.1.4 Preparation of parasite protein extracts

Fresh or frozen saponin-lysed P. falciparum (3D7) pellets were sonicated in RIPA 

buffer (30 mM Tris pH 8.0, 150 mM NaCl, 20 mM MgCb, 1 mM EDTA, 1 mM 

dithiothreitol (DTT),10pM ATP, 0.5% Triton XlOO, 1% NP40, 10 mM p- 

glycerophosphate, 10 mM NaF, 0.1 mM sodium orthovanadate, 1 mM PMSF, 10 

mM benzamidine and Complexe t m  protease inhibitors). Lysates were cleared by 

centriftigation at 10,000g for 15 min at 4°C, and the total amount of proteins in the 

supernatant was measured by the Biorad Protein Assay.

2.1.5 gPNA extraction

A parasite pellet was resuspended in a solution of 10 volumes of PBS containing 

150pg/ml proteinase K. Sodium dodecyl sulfate (SDS, Sigma) was added to a final 

concentration of 2%. After a gentle agitation, the tube was incubated at 55°C for at 

least 2 hours. DNA was subsequently recovered by two steps of phenol-chloroform 

extraction, in which one volume of phenol: chloroform: isoamyl alcohol (25:24:1) 

(saturated with lOmM of Tris, pH8, ImM EDTA (Sigma)) was added to the DNA 

solution. The tube was repeatedly inverted gently on a wheel until the emulsion was 

homogeneous. After centrifugation (lOOOOg, 5 min), the top aqueous layer was 

transferred to a new tube. The DNA was precipitated by addition of 0,1 volumes of 

sodium acetate (3M, pH 5.2, Sigma) and two volumes of absolute ethanol and
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incubation at -20°C for 30 min. DNA pellet was spun down for 15min at 10 OOOg, 

and the dry pellet was resuspended in an appropriate volume of dH2 0 . Concentration 

and purity were measured using a spectrophotometer at 260nm and 280 nm (OD26o=l 

means a DNA concentration 50 pg/pl).

2.1.6 mRNA extraction (bv Trizol preparation)

A parasite pellet was resuspended in 10 volumes of Trizol (Gibco BRL), and left on 

ice for 5 min (or stored at -80°C). Two volumes of RNAse-free chloroform were 

added, and the tube was shaken for 15sec and left at room temperature (rt) for 3min. 

After centrifugation at 6000g for 30min, the aqueous supernatant was removed to a 

fi-esh tube. 0,83 volume of isopropanol was added to the tube and left on ice fôr at 

least 30min. RNA was recovered by centrifugation for 30min, at 10 OOOg. After air- 

drying, the RNA pellet was resuspended in an appropriate volume of 

diethylpyrocarbonate (DEPC) water or formamide (for Northern blots; in this case, 

the sample was incubated for lOmin at 60°C, before loading the gel). RNA 

concentration was measured 150pg/ml using a spectrophotometer at 260nm 

(OD26o=1 means a RNA concentration 40 pg/pl) and the integrity of the RNA was 

checked on a gel.

2.1.7 Transfection

Two electroporation methods are widely used for transfection of Plasmodium 

falciparum. The first one consists of transfecting infected RBC (synchronous parasite 

at high parasitemia, rich in young rings at the time of transfection), whereas the, 

second method consists of first transfecting non-infected RBCs (niRBC), which are 

then infected by addition of late schizonts/segmenters. In the latter method, 

transfected niRBC are conserved at 4°C and infected later on. In both cases, for 

electroporation, RBC are pelleted and resuspended in 500pl of cold cytomix. 50- 

lOOpg of DNA previously suspended in lOOpL of cytomix are added to the former 

RBC solution (Cytomix: 120mM KCl, 0.15mM CaCb, 2mM EGTA, 5mM MgCb, 

lOmM K2HPO4/KH2PO4, 25mM HEPES, pH 7.6). The mix is transferred to a cold 

0.2cm cuvette for electroporation (settings are 0,31kV/960pF, the time constant 

should be around 12-15ms). Immediately after the electrical pulse, fresh medium is



added, and then the cells are transferred from the cuvette to a culture flask with 10ml 

of culture medium, and placed in the incubator. On day two, the medium is changed, 

50 pi of fresh RBCs (50% hematocrit) are added, and the selection drug is added to 

the culture medium (2.5pg/ml of Blasticidin, Calbiochem). The medium is then 

changed daily until parasites become microscopically detectable on Giemsa-stained 

slides. Once parasites are detectable, the culture can be frozen by cryopreservation. 

To check for integration, gDNA extraction is done every month.

2.1.8 Crvonreservation of parasites in liquid nitrogen

5 ml of a 5% parasitemia culture (containing a high proportion of ring stages) were 

centrifiiged at 5000g for 5 min, and the supernatant was removed. One packed cells 

volume of deep-freeze solution (28% glycerol, 3% sorbitol, 0.65% NaCl) was added 

drop-wise to the cell pellet. Cells were resuspended and placed into cryotubes for 

immediate freezing in liquid nitrogen. In order to establish a new culture from a 

frozen stock, the cryotube was incubated in a water bath at 37°C for 15min. The 

content was transferred to a sterile 15ml tube and the volume was measured. For 

each ml of red blood cell solution, 0,2mL of solution A (12% NaCl in distilled water) 

was added drop-wise, stirred constantly, and left for 3min. Secondly, 10ml of 

solution B (1,6% NaCl in distilled water) was added to the tube drop-wise. After 

centrifugation for 5min at 5000g, the infected RBCs were resuspended in 10ml of 

solution C (0.2% Dextrose, 0.9% NaCl in distilled water) added drop-wise. Finally, 

after another centrifugation, the supernatant was removed and discarded. Cells were 

resuspended in 5ml of culture medium with fresh blood to obtain a haematocrit of 

5%. The culture was then maintained as described above.

2.2 BIO- COMPUTING METHODS

2.2.1 Identification of kinase genes in the P. falciparum genome

2.2.1.1 Gene search bv keywords

A search for kinases by text search has been performed on 

http://www.PlasmoDB.org using Plasmodium database (PlasmoDB) and “kinase” as 

a query. The algorithm allows regular expression searching of gene names for 

PlasmoDB genes using' the approximate pattern match program agrep. Agrep
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program allows regular expressions, as well as boolean combinations using for 

"AND" and for "OR". The resulting matches will be the best match possible 

against the database of official gene names, descriptions, user comments or gene 

synonyms,

2.2.1.2 Gene search bv Hidden Markov Model search, performed bv P. Ward

The set of predicted peptides of the Plasmodium falciparum genome 3D7 was 

downloaded firom PlasmoDB. A Hidden Markov Model search of the predicted 

proteins encoded by the genome was carried out using a consensus eukaryotic 

protein kinase profile downloaded from the Protein families database (Pfam) web 

site (http://www.sanger.ac.uk/Software/Pfam/). In addition, PlasmoDB was searched 

for proteins carrying a Gene Ontology molecular fiinction assignment of ‘protein 

kinase activity’ (G0:0004672). The two lists were compared to ensure none had 

been missed. All the hits were aligned using our own Hidden Markov Model, trained 

on a complete set of human protein kinases, to check for the presence of the key 

kinase motifs. In this way non-kinases were identified and removed, and the FIKK 

family members (see below) were identified and subsequently treated as a separate 

set. Furthermore, the genomic context of each kinase gene was examined to check 

for missing exons using GeneDB (www.genedb.org) and the alignment was 

optimised manually. Once a definitive set of 65 sequences representing typical ePKs 

had been assembled, a phylogenetic tree was produced using Phylip (Felsenstein, 

2002), with the Protdist and Fitch algorithms.

2.2.2 Genes encoding aPKs

Basic local alignment sejarch tool Protein (BLASTP) searches on PlasmoDB were, 

performed using atypical protein kinases (aPKs) from Homo sapiens (or mammals) 

as queries (A6 kinases [A55922], lipid kinases [000443], aminoglycoside 

phosphotransferases [P00555], pyruvate dehydrogenase kinase [AAB60498], ATM 

[2124355A], ATR [AAC50929], BCR [NP_004318], transient receptor potential 

cation channel6/channel-kinase 2 [NP_061197], actin-fragmin kinases (protein 

sequence of [Q94706]) (Kostich et al., 2002). GeneDB was also used to look for 

Pfam domains (ABCl, FAT, FATC, Bromodomain, RIO performed by P. Ward).
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2.2.3 ClustalW

Multi-alignment of nucleic acid or protein sequences were done using the ClustalW 

algorithm, available on http://www.infobiogen.ff (Thompson et al., 1994)

2.2.4 Phvlo genetic tree of P. falcwarum ePKs (done bv J. PakerT

For phylogenetic analysis of P. falciparum ePKs, non-conserved portions of aligned 

sequences were ignored and the tree was compiled using a protein distance matrix 

method. All major groupings discussed were observed in a 100 replicate bootstrap 

tree (for more details see reference (Ward et al., 2004)).

2.2.5 FIKK search on general databases and Apicomplexan genomes

A broad investigation of eukaryotic general genome databases was performed to 

investigate the presence of any FIKK-related sequences in other organisms by 

BLASTP analysis (on NR prot All, Swall, Swiss-prot protein databases) and 

TBLASTN analyse (on Genbank, dbEST nucleic databases), using FIKK amino acid 

sequences as queries. Motif searches were also conducted using conserved FUCK 

motifs as queries. Protein homologs from other apicomplexan species were identified 

by blasting conserved FIKK domains protein sequence against the databases from 

various genomic sequencing project sources: P. yoelii yoelii, P.vivax, P. berghei, P. 

chabaudi, P. knowlesi and P, reichenowi on PlasmoDB [http://plasmoDB.org]; 

Cryptosporidium parvum at the National Center for Biotechnology Information 

[http://www.ncbi.nlm.nih.gov], Theileria annulata at the Wellcome Trust Sanger 

Institute [http://www.sanger.ac.uk]. Toxoplasma gondii the Toxoplasma Database 

[ToxoDB, http://toxodb.org/], Eimeria tenella at the Wellcome Trust Sanger Institute 

[http://www.sanger.ac.uk/Projects]). Except for the hit sequences from P.vivax and T. 

gondii, whose genomes have been annotated, other sequences (the conserved kinase 

domain sequences) were manually recovered based on sequenced homology with 

FIKK family.
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2.2.6 FIKK sequence alignment and phylogenetic tree

The conserved regions of all predicted P. falciparum FIKKs (except PF14_0733/34) 

and of FIKK homologues from P. yoelii yoelii, P.vivax, P. berghei and P. knowlesi 

were aligned using the ClustalW software. For the phylogenetic tree, the kinase 

domains of 23 FIKK-like proteins were taken and gaps between the subdomains 

were removed. Phylogenetic relationships were inferred by using a protein distance 

matrix method. The reliability of the trees was assessed, as previously described, by 

the bootstrap method on the same analysis using only P. falciparum FIKK (see 

Appendix E ((Ward et al., 2004), Fig. 6).

2.2.7 Compilation of DeRisi et al, and Le Roch et al microarrav datas

Microarray data from the Le Roch et al. (Le Roch et al., 2003) and De Risi et 

al. (Bozdech et al., 2003) studies were downloaded from PlasmoDB 

(http://plasmoDB.org) and compiled to produce a comprehensive expression 

profile. Genes were arranged as a function of the timing of their expression 

during the erythrocyte development according Bozdech et al. data. The 

phaseogram (data generated by De Risi et al.) represent the relative 

abundance of mRNAs throughout the erythrocytic asexual cycle. The 

Bozdech et al. study was based on microarrays of specific oligonucleotides 

designed for each P. falciparum gene (representing 4488 of the 5409 

predicted PlasmoDB ORFs, (Bozdech et al., 2003)). mRNA level was 

measured by two-colour competitive hybridisation between total RNA from 

each time point and a reference pool of total RNA from all time points during 

48 hours. The starting point was one-hour post invasion, and measurements 

were done every hour for 48h of the asexual cycle. (See material and methods 

from (Bozdech et al., 2003) for details). Data from Le Roch et al. included 

also a transcriptome analysis of additional development stages: free

merozoites (M), gametocytes (G) and sporozoites (S). fri order to simplify 

these data, we use a color code (red/orange/white boxes; see legend to Fig.

16) (see (Le Roch et al, 2003) for details).
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2.3 MOLECULAR METHODS:

2.3.1 Reverse transcription

DNAse 1-treated RNA was reverse transcribed and subsequently amplified using (i) 

the Superscript™ First-Strand Synthesis System from the RT-PCR Kit (Invitrogen) 

and (ii) the Oligo(dT) method for first-strand synthesis. In brief, 5pg of total RNA 

was mixed with oligo(dT) [50ng/pl final concentration], dNTP mix [ImM final 

concentration], incubated for 5min at 65°C and then placed on ice for Imin. The 

reaction was then mixed with IX final RT buffer, MgCb [5mM], DDT [lOmM] and 

RNase OUT™ recombinant ribonuclease inhibitor [40U], incubated at 42 °C for 2 

min. Then, 50 units of reverse transcriptase were added (except in the “no RT 

control” mix) and incubated at 42°C for 50min, followed by incubation at 70°C for 

15min.

2.3.2 Polvmerase chain reaction fPCRl

Amplification of the target cDNA was carried out in 100 pi of reaction buffer 

containing Ipl of cDNA (from the previous preparation, or from a plasmid-based 

cDNA library from asexual parasites, kindly provided by P. Alano), 1 pM each 

primer, 100 pM dNTP, 1.25 mM MgCb, and 1 Unit DNA polymerase and IX of the 

corresponding DNA polymerase buffer (provided by manufacturer), under the 

following PCR conditions: 2 min at 94°C for one cycle, 45 sec at 94°C, 45 sec at 

50°C, 1 min/kb at 68°C for 35 cycles, 10 min at 68°C. Different thermostable DNA 

polymerases have been used: TaKaRa Ex Taq™ polymerase (Takara Bio Inc.), Taq 

DNA polymerase (Invitrogen) and Platinium® Pfx DNA polymerase (Invitrogen, 

which possesses a proofreading 3’-5’ exonuclease activity. PCR products amplified 

by the two first polymerases have one A added at their 3 Termini, which allow direct 

TA-vector cloning of the fragment. In the case of amplicons obtained with the 

Platinium® Pfx DNA polymerase (which does not add As at the 3’ termini), an 

additional PCR cycle was performed using TaKaRa Ex Taq™ polymerase (Takara 

Bio Inc.) or Taq DNA polymerase (Invitrogen) to allow, subsequent cloning into the 

pGEM®T Easy cloning vector (Promega, see below for cloning methods). For 

protein expression, coding sequences were cloned into expression vectors such as
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glutathione S-transferase (GST)-tagged pGEX4T3 (Amersham Biosciences), His- 

tagged Champion ™ pET directional TOPO® (Invitrogen) or 6xHis-tagged pQE30 

(Qiagen) expression vectors; the inserts were verified by automated DNA sequencing 

prior to protein expression.

23.2.1 Gene-smcific PCR conditions and primers used for FIKK PCR 

amplifications

MALI 3P 1.109 amplification

A variety of PCR conditions were tested to amplify MALI 3P 1.109 from either 

gDNA or cDNA: 3 different DNA polymerases (the polymerases mentioned above), 

Mg+ concentration (from 1.25 to 2.5 mM), annealing T° (from 40 to 55°C), 

elongation time (up to 3min), and different combination of primers:

My4X7iP7.7C/P_Forward_PlasmoDB: 5'CACCCGCGG.4 rcCATGAAAAAGAAAGAAAA

TAG; M4X75P7.70P_Reverse_PlasmoDB: 5'CCGCrCG^GTTAAATACATATATATATAT 

TTATATATAT TATTACG

MAL7P1.175 and MAL7P1.144 amplifications

MAL7P1.175 and MAL7P1.144 fragments were only amplified with Takara DNA 

polymerase and the following primers:

MAL 7P1.1 ̂ 4_Forward_PlasmoDB : 5'CACCCGCGG/( TCCATGAAATTCAGGAAAAGT 

MAL7P1.744_Reverse_PlasmoDB: 5'CCGCrCG^GTTACTTTTTTTTGTACCACCACGG 

MAL 7PI. 175_Forward2 JPlasmoDB : 5 'C ACCCGCGG^ rcCATGGATAAATGGACAAAT 

AAACC; MAL 7P1.175_Reverse_PlasmoDB : 5 'CCQCTCGA GTTAAATATTGGATGACCAC 

CAAGG

MAL7P 1.115 oligonucleotides were firstly designed to contain the start and stop 

codons of the full-length ^IMAL7P 1.115 open reading frame predicted on PlasmoDB 

(using MAL7P1.175_Forwardl_PlasmoDB:5'CACCCGCGG^T’CCATGAAATTCAGGAA 

AAGT). However, this did not yield the expected amplification product, possibly 

because of hybridization between the two primers, which might anneal (48.5% of 

complementarity). So we amplified the fragment using 

AMX7P7.775_Forward2_PlasmoDB, a primer designed 7 amino acids downstream 

of AMX7P7.775_Forwardl_PlasmoDB. Moreover, according to Genefinder 

predictions, AMX7H7.7 75_Forward2_PlasmoDB corresponds to the start codon.
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P F ll  0576 amplification

Amplification from gDNA was performed under classical conditions using 

forward2/reverse (same- amplification product with forward 1/reverse around 

1900bp). Amplification tests from cDNA were carried out using different foiward 

primers suggested by gene predictions models oligonucleotides: PF11_0510 

_Forward_l_Glimmer S'CACCCGCGG^TCCATGATTTATA TTAAATTACGCTTA; 

fjF7 7_0J7 0_Forward_2_PlasmoDB: 5’ CACCCGCGG^rcCATGAAAAATGAATGGAA 

TGAATTTATA; PF11_0510 _Forward_3_ PlasmoDB:5' CACCCGCGG^fCCATG 

ATTAATTTATGT AAAATATGG; and PFll_0510 _Reverse_ Glimmer/ PlasmoDB 5' 

QCQCTCG ̂ GTTATTCTTT CCACCATGG ATTTTTACT.

PFIOlOOc and PFL0040c amplifications

Both genes were amplified from the cDNA library using the following primers, 

fFY07 OOc_Forward_PlasmoDB 5'CACCCGCGG^rCCATGAGTTTTTATAATTGTTC7’G 

AT; 7W07OPc_Reverse_PlasmoDB 5’ CCGCrCG^GTTACAAATCTGTCGACC ACCATGG 

PFX6046c_Forward_Glimmer 5'CACCCGCGG/t rcCATGTATATTTTGAGAAATATGTTC 

PFL0040c_Kq\OX^q2_ PlasmoDB 5' GGGGCrCG^GTTATGTTTCGTTAAACCATGGGTG 

TGTCA, whereas fFX0040c_Reversel_Glimmer 5’ CCGCrcG^GTCATAAGTTCTTCTT 

CATA AAC did not allow any cDNA amplification.

2.3.2.2 Primers used for expression studies o f Pfcrk-3 and -4 extensions

PCR fragment Forward primer Reverse primer

Pfcrk-3/a Pfcrk-3/BamHI/wh.l/F2 R/Pfcrk-3/a

Pfcrk-3/b F/Pfcrk-3/b R/Pcrk-3/a

Pfcrk-3/c F/Pfcrk-3/b R/Pfcrk-3/extension

Pfcrk-3/d Pfcrk-3_Forward_catalytic R/P fcrk"3/SalI/cat_wh. 1

Pfcrk-3/e F/Pfcrk-3/C00H_ext R/Pfcrk-3/SalI/cat_wh.l

Pfcrk-4/a Pfcrk-4/ wh.ldbt/BamHI R/Pfcrk-4/a

Pfcrk-4/b F/ Pfcrk-4/b R/Pfcrk-4/a

Pfcrk-4/c F/Pfcrk-4/b R/Pfcrk-4/b

Pfcrk-4/d F/ Pfcrk-4/c R/Pfcrk-4/c

Pfcrk-4/d' F/Pfcrk-4/d R/Pfcrk-4/extension

Pfcrk-3/BamHI/wh.l/F2: cgcggatccatgaacgttaaagatgtg; R/Pfcrk-3/a: atcccattcaaaaca 

act; F/Pfcrk-3/b: aactctttgtggaaggta; R/Pfcrk-3/extension: ctttcaattttatttctcc; Pfcrk-
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3_Forward_catalytic: gggggatccgataaaagtaatgtaagttacacaaat; F/Pfcrk-3/C00H_ext: 

aaaggcttatcttcgaagta; R/Pfcrk-3/Saliycat_wh.l: gaggggtcgactta tattttctttttcttttcaaccc; 

Pfcrk-4/ wh.ldbt/BamHI: cgcggatccatgaatatcgaccaaaat; R/Pfcrk-4/a: tgcataccatatcatat 

ga; F/ Pfcrk-4/b: caaagcgatagacacattgaa; R/Pfcrk-4/b: tgtaggaacaaaaattc; F/ Pfcrk- 

4/c: catctaatgacatcacttcca; R/Pfcrk-4/c: taaatcctccaaagtgtat; F/ Pfcrk-4/d: aactg 

cgcagtaagttta; R/Pfcrk-4/extension: aaaatcacggggaaataaat

2.3.3 Plasmid construction

233 .1  Cloning into dGEM ^TEasy vector (Promesa)

T cloning into the pGEM®T Easy vector allowed a rapid cloning of PCR product 

(see technical manual from manufacturer for details). In brief, the 10 pi ligation 

reaction contained IX ligation buffer, 50ng of vector, a 3:1 to 1:3 molar ratio of PCR 

product:vector (using 50 ng of vector), 3 units of T4 DNA ligase, and was incubated 

overnight at 4°C. After transformation into JM109 bacteria (see section 2.3.4), 

recombinant clones were identified by color screening on agar-amplicillin plates, the 

presence of the expected insert was verified by PCR on the white colonies and 

overnight cultures were set-up for plasmid purification (see below). The inserts were 

then sequenced.

2.3.3.2 Clonins into vGEX4T2 (Amersham Biosciences) and vOE30 (Oiasen) 

expression vectors

PCR products containing appropriate restriction digestion sites in the forward and 

reverse primers were purified by Wizard® PCR Preps DNA purification system 

(Promega) prior to digestion. Digestions of plasmid expression vector and PCR insert 

were performed in the appropriate buffers of the restriction enzymes according 

manufacturer recommendations (Biolabs), and the digestion reactions were stopped 

by heating at 65°C for 20 min. The ligation of the insert into the vector was 

performed with the T4 DNA ligase (Invitrogen) under the same condition as ligation 

of the PCR product into pGEM®T Easy vector (see above), and an aliquote of the 

ligation reaction was transformed into an appropriate bacterial strain: BL21 Star™ 

DE3 (Invitrogen) and SGI3009 (Promega) strains for pGEX4T3 and pQE30 

respectively. Recombinant clones were identified by PCR from resuspended bacterial 

colonies.
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:

Molecular cloning o f Gst-Pfcrk-3 and Gst~Pfcrk-3dead:

Oligonucleotides (i^rX-5_Foi-ward_catalytic: 5 ’GGGGGATCCGATAAAAGTAATG 

TAAGTTACACAAAT; 7^rX-5_Reverse_catalytic : 5 ’g g g g t c g a c t t a t cgttt

TTGATTACTCTGT) were designed to contain the initiation and the stop codons, 

respectively (double underline) of the Pfcrk-3 kinase domain firstly predicted on 

PlasmoDB (PFD0740w) before February-March 2003, as well as BamHl and Sail 

sites respectively (single underline). Since February-March 2003, PlasmoDB 

predicts a large C terminal extension. The presence of this extension was verified 

by sequencing after amplification fi-om cDNA, confirming that the initial predicted 

C-terminal sequence was erroneous (see appendix F). The ORF was amplified by 

PCR from a cDNA library with TaKaRa DNA polymerase by Karine Le Roch. The 

1926 bp PCR product was directly digested with BamHl and Sail prior to 

insertion in the pGEX 4T3 vector (Amersham Biosciences, see above). The pGEX- 

4T3-Pfcrk-3 plasmid was electroporated into E, colt BL21, and the insert was 

verified by sequencing prior to expression of the recombinant protein (by Karine 

Le Roch).

Catalytically inactive (“kinase-dead”) Pfcrk-3 (Gst-Pfcrk-3dead) was obtained by 

site directed mutagenesis (Lys1335 ->M) using the overlap extension PCR technique 

(Ho et al., 1989). A 869 bp BamHi-Xhol cDNA fragment carrying the mutation was 

amplified and used to replace the corresponding region of wild type Pfcrk-3, yielding 

the plasmid pGEX-Pfcrk-3/Kl 335M. The entire Pfcrk-3dead coding region was 

verified by sequencing prior to expression of the recombinant protein in E. coli.

Molecular clonins o f Gst-Pfcrk-4wt. Gst-Pfcrk-4AD and Gst-Pfcrk-4ADdead: 

Oligonucleotides (7^rX-4_Forward_catalytic: 5 ’GGGGGATCCACAAGCAATCCTT

ATATGAAAGA; /ycrX -4_R everse_cata ly tic: 5 ’ GGGCTCGAGCTA a a a g t a  a t a t g

TTCCGTTATC) were designed to contain the initiation and the stop codons, 

respectively (double underline) of Pf-crk-4 kinase domain predicted on PlasmoDB 

(PFC0755c), as well as BamHl and Xhol sites respectively (single underline). The 

ORF was amplified by PCR from a cDNA library with TaKaRa DNA polymerase by 

Ali Jafarshad. The 2208 bp PCR product was directly digested with BamHl and 

Xhol prior to insertion in the pGEX 4T3 vector (see above). The pGEX-4T3-Pfcrk- 

4wt plasmid was electroporated into E, coli BL21, and the insert was verified by 

sequencing prior to expression of the recombinant protein. Previous studies 

performed by Ali Jafarshad, have shown that in vitro expression of pGEX-4T3-
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Pfcrk-4wt is impossible, due to the presence of a homopolymeric stretch of Asp 

residues (from the 11 amino-acid to the 1191 '̂, see appendix F) inside the kinase 

domain. Deletion of 243 bp (nt 3330-3573 of the ORF, including this Asp-rich 

stretch) to generate the Gst-Pfcrk-4AD plasmid (i) allowed the expression of the 

recombinant protein (Jafarshad Ali, Doerig C.).

Catalytically inactive (“kinase-dead”) Gst-Pfcrk-4AD (Gst-Pfcrk-4AD dead) was 

obtained by site directed mutagenesis (Lys2733->M) using the overlap extension 

PCR teclmique (Ho et ah, 1989). A 580 bp BamHl- Nsil cDNA fragment carrying the 

mutation was amplified and used to replace the corresponding region of wild type 

Pfcrk-4AD, yielding the plasmid pGEX-Pfcrk-4AD /K2733M. The entire Pfcrk- 

4ADdead coding region was verified by sequencing prior to expression of the 

recombinant protein in BL21 E. coli.

Molecular clonins: ofHis-Pfcrk-4AD:

The Pfcrk-4 AD 1956-bp BamHHXhoX digested fragment was inserted between the 

BamHl and Sail sites of the PQE30 vector, yielding the plasmid PQE30-Pfcrk-4AD, 

The plasmid was electroporated into SGI3009 E. coli, and the insert was verified by 

sequencing prior to expression of the recombinant protein.

2.3.3.3 Clonins into Champion ™ pET directional TOPO^ (Invitrosen)

Blunt end PCR products, amplified with VÎK.-Taq DNA polymerase, were cloned 

into Champion ™ pETlOO directional TOPO® In this system, PCR products were 

directionally cloned by adding four bases to the forward primer (CACC). The 

overhang in the cloning vector (GTGG) invades the 5’ end of the PCR product and 

anneals to the added bases, which allow the correct orientation of the PCR product. 

Plasmid construct was electroporated into BL21 Star' '̂̂  DE3 E.coli strain and 

recombinant clones were identified by PCR.

Molecular clonins ofHisrPFL0040c

PFL0040c was amplified from the cDNA library using the following primers: 

PFL0040c_Forward_Glimmer: 5'CACCCGCGG^rCCATGTATATTTTGAGAAATATGTTC 

and PFL0040c_Reverse_PlasmoDB: 5 'g g g c t c g a  g t t a t g t t t c g t t  a  a  a  g g

ATGGGTGTGTGA, which contains start and stop codons (double underline), and four 

bases at the 5’end of the forward primer (“CACC”), to allow directional TOPO®
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cloning (see above). After amplification from a P. falciparum cDNA with PfX-Taq 

DNA polymerase, the PCR product was directly cloned into TOPO pETlOO vector. 

The TOPO-PfPFL0040c plasmid was electroporated into BL21 E. colt, and the insert 

was verified by sequencing prior to expression of the recombinant protein.

2.3.3.4 Clonins into pCam-BSD vector for transformation o f  asexual stase P. 

falciparum parasites

pCam-BSD (see annexe G for a map) is a selectable episomal plasmid kindly 

provided by David A. Fidock (Department of Microbiology and immunology, A. 

Einstein College of Medecine, NY, US), which has been previously used for allelic 

replacement in P. falciparum (selection with blasticidin). Transfection plasmids 

(pCam-BSD/Pfcrk“l, pCam-BSD/Pfcrk-3, pCam-BSD/Pfcrk-4) were constructed by 

amplifying partial fi*agments of the kinase domain of Pfcrk-1, -3 and -4, using the 

following primers:

pCam-BSD/Pfcrk-1 /F/BamH 1 igcgcgga^ccacgtatggagcagtatataga; pCam-BSD/Pfcrk- 

1/R/Notl :ataagaatgqggcqgcaggtgctcgataccataatgtgac; pCam-BSD/Pfcrk-3/F/BamHl : 

gcgc^^flfccgcatatggagatgtttggatg; pCam-BSD/Pfcrk-3/R/Not 1 :ataagaatgcggccgctggt 

ggtctataccataatgtaataactct; pCam-BSD/Pfcrk-4/F/BamH 1 :gcgcgga^ccgtatatggaaaagta 

tttaaggct; pCam-BSD/Pfcrk-4/R/Notl:ataagaatgqggccgctggtggtctatattgtaaagttataatatt. 

Primers were designed to contain BamHI and Ndel restriction sites (in italic). 

Amplified products were digested by the appropriate restriction enzymes and ligated 

into pCam-BSD digested with the same enzymes. Plasmids were transformed into 

XL 1 blue E. coli under ampicillin pressure, and positive clones were selected 

following PCR (using pCam-BSD/F: tattcctaatcatgtaaatcttaaa and pCam-BSD/R: 

caattaaccctcactaaag) and sequenced before parasite transformation.

2.3.4 Bacterial transformation by electroporation:

50-100 ng of DNA previously dissolved in sterile water are added to 40-5Opl of 

electrocompetent bacteria pellet (see below for preparation of electrocompetent 

bacteria). The mix is transferred to an ice cold 0,2cm cuvette for electroporation 

(setting are 2.5kV, the time constant should be around 5ms; Biorad Micropulser™). 

Immediately after electroporation, the cuvette is placed on ice and then the cells are 

transferred from the cuvette to a tube with 1ml of LB culture medium (Luria-Bertani
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medium, sigma), and placed for agitation into the incubator at 37°C for Ih. The 

bacteria are then plated on solid LB-agar containing the appropriate selective drug.

2.3.5 Preparation of electrocompetent bacteria

Stocks of E. coli JM109, BL21, XL 1 blue electrocompetent cells were produced by 

the following method. 1 1 of LB was inoculated with 10ml of a fresh overnight 

culture and placed at 37°C, under vigorous shaking until the OD reached 0.6-1. The 

culture was then placed on ice for 30 min before centrifugation at 1500g for 15 min
" îi

at 4°C. The pellet was washed twice with 500ml of ice-cold sterile water and then 

resuspended in 20ml of sterile ice-cold 10% glycerol-water. After a final 

centrifugation at 1500g for 15 min at 4°C, the pellet was resuspended in a final 

volume of 2-3ml of the previous glycerol solution and aliquoted into Eppendorf 

tubes (50pl/tube). The aliquotes were then stored at -80°C.

2.3.6 Plasmid purification:

Plasmid DNA was purified with the QIAprep Miniprep Kit (QIAGEN; see the 

manufacturer’s recommendation for details). In brief, this plasmid purification 

procedure is based on alkaline lysis of bacterial cells followed by selective 

adsorption of plasmid DNA onto silica in the presence of high salt. Elution occurred 

at low salt concentration. In the case of higher quantity of plasmid purification,

QIAGEN Plasmid Maxi kits were used (see manufacturer for protocol).

2.3.7 Northern blot analysis

Northern blot analysis was performed using a membrane kindly provided by H.

Taylor, on which approximately 5 pg of total RNA from synchronized asexual 

parasites (ring, trophozoite or schizont stages) were loaded on an agarose gel before 

membrane transfer as described previously (Taylor et al., 2001). The membrane was 

hybridized to a ^̂ P labelled probe under the following conditions. Membrane was 

pre-hybridized for at least 2h at 55°C in Church and Gilbert buffer (0.5 M sodium 

phosphate, pH 7,2, 7% SDS). The probe was a ^̂ P labelled PCR product of a partial 

coding sequence within the catalytic domain of either Pfcrk-3 or Pfcrk-4. A 1926- 

Pfcrk-3 PCR product was amplified using /ycrA:-i_Forward_catalytic and Pfcrk-
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3_Reverse_catalytic primers (see appendix F) from the pGex4T3-Pfcrk-3, under the 

following PCR conditions: 2 min at 94°C for one cycle, 45 sec at 94°C, 45 sec at 

50°C, 2 min at 68°C for 35 cycles, 10 min at 68°C. A 1968-Pfcrk-4AD PCR product 

was amplified using iycrÆ^-^_Forward_catalytic and iycrÆ^-¥_Reverse_catalytic 

primers (see appendix F) from the pGex4T3-Pfcrk-4AD, under the same PCR 

conditions. The PCR products were purified (Wizard®, Promega) before labelling. 

PfRhopH2 probe (Ling et al., 2003) was used as a positive control. Labelling was 

done using Prime-It® II Random Primer Labeling Kit (Stratagene). In brief, the 

reaction tube contained 25 ng of DNA in 23 pi and 10 pi of random oligonucleotide 

primers. The reaction was heated at 100°C, for 5 minutes. After a brief 

centrifugation, the following reagents were added into the reaction tube: 10 pi of 5 x 

dATP primer buffer (containing dCTP, dGTP and dTTP), 5 pi of labeled [a-^^P] 

dATP (3000 Ci/mmol) nucleotide, 1 pi of Exo(-) Klenow (5 U/pl), and incubated at 

37-40°C for 2-10 minutes. Reaction was stopped by adding 2 pi of stop mix. The 

probe was purified from unincorporated radiolabel on MicroSpin columns 

(Amersham), denatured by heating at 95-100°C during 5 min, and added to the 

membrane in Church and Gilbert buffer for 3-4h, at 55°C. Then the membrane was 

washed twice into 2X SSC (0.3M NaCl, 30mM Na3 citrate), 0,1% SDS for 15min at 

65®C. Hybridized RNA was visualized by autoradiography.

2.3.8 Bacterial expression and nurification of recombinant proteins

2.3.8.1 His-ta22ed protein: PFL0040c and His~Pfcrk-4AD

PFL0040C protein expression was induced for 3h at 37°C with 1 mM isopropyl-P-D- 

galactoside (IPTG), after the 250ml culture has reached an ODeoo value of 0.6 in LB 

medium (Sigma) with lOOpg/ml ampicillin. His-Pfcrk-4AD expression (with 

lOOpg/ml ampicillin and 25pg/ml kanamycin) was tested under different conditions: 

induction at 30°C and 37°C, from 0 to 1 pM IPTG for 2h-4h. Batch purification of 

His tagged protein under native conditions was performed at 4°C on nickel- 

nitrilotriacetic (Ni-NTA) metal affinity chromatography column (Ni-NTA agarose 

resin, QIAGEN) according manufacturer recommendations. In summary, bacterial 

pellets were lysed with lysosyme and sonication in 5 ml of lysis buffer (50mM 

NaH2P0 4 , 300mM NaCl, lOmM imidazole [Sigma], 1 mM phenylmethyl-sulfonyl 

fluoride (PMSF) and Complex™ mixture protease inhibitor tablet from Roche 

Molecular Biochemicals, pH8). Lysates were cleared by centrifugation (8000 g, 4°C,
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30 min.) and the soluble fraction was incubated for lh30 at 4°C under mild agitation 

with 0.5 ml of Ni-NTA agarose resin. The resin was washed twice in a wash buffer 

(Lysis buffer, double concentration of imidazole, i.e. 20mM) and the His-tagged 

protein was eluted with elution buffer (Lysis buffer, 250mM final concentration of 

imidazole) concentrated to l-2pg/pl using Amicon ultracentrifuge concentrator 

(Millipore) and stored at -80°C.

2.3.8.2 GST-tassed protein: Gst-Pfcrk-3, Gst-Pfcrk-3dead. Gst-Pfcrk~4AD.Gst- 

Pfcrk-4ADdead and Pfcvlins. by batch purification

Pfcrk-3 and Pfcrk-4 protein expression was induced with 0.5mM IPTG, at 30°C for 

4h. GST fusion proteins were purified under native conditions at 4°C from bacterial 

lysate using the affinity matrix Gluthatione Sepharose (Sigma). Cell pellets were 

resuspended in lysis buffer (PBS IX, pH 7.5, Triton 0.1%, ImM EDTA, ImM DTT, 

1 mM PMSF and Complex^'^ mixture protease inhibitor tablet), sonicated and 

centrifuged. The supernatant was incubated with Gluthatione Sepharose for Ih. The 

resin was washed 4 times with lysis buffer and once with a buffer containing 50 mM 

TrisHCL, pH 8.7, 75 mM NaCl. The recombinant protein was eluted with the former 

buffer containing 15 mM Glutathione (Sigma) and concentrated to l-2pg/pl using 

Amicon ultracentrifuge concentrator and stored at -80°C.

GST-Pfcyc-1, GST-Pfcyc-2, GST-Pfcyc-4 proteins expression and purification 

were performed as described previously (Merckx et al., 2003).

2.3.8.3 GST-taesed protein: Gst-Pfcrk~3. Gst-Pfcrk-4AD by Fast Performance 

Liquid Chromatosraphv fFPLC)

In both cases, expression was induced with O.lmM IPTG, at 20*^0 overnight. Cell 

pellets were resuspended in buffer A (40mM HEPES, pH 7.5, 300mM NaCl, 0.02% 

monothioglycerol, 1 mM PMSF and Complex^*^ mixture protease inhibitor tablet). 

Proteins were purified under native conditions from the soluble fraction by 

glutathione affinity chromatography using FPLC equipment (AKTA FPLC, 

Amersham, 4mL Gluthatione Sepharose column). The column was washed twice 

with buffer A (each time, 10 volumes of the column) and proteins were eluted with 

buffer A containing 20mM of glutathione. Thirty fractions of 1ml were collected and 

analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS- 

PAGE). Fractions containing the protein were pulled together, concentrated to 1- 

2pg/pl using Amicon ultmcentrifuge concentrator and stored at -80°C.
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2.3.9 Preparation of SDS-nolvacrvlamide protein samples

Protein solutions were denatured and reduced by adding an equal volume of 2x 

Laemmli buffer (2X Laemmli buffer contains 20% glycerol, 5ml of 0.1% of 

bromophenol blue-dH20, 4% SDS, O.IM TrisHcl pH6.8, 5% 2-mercaptoethanol). 

The samples were heated at 95 °C for 5 min prior to loading onto an SDS- 

polyacrylamide gel.

2.3.10 SDS-nolvacrvlamide gel electronheresis

Protein concentration was first estimated by a dye-binding assay based on the 

differential color change of a dye in response to various concentrations of protein, 

using BSA as a standard (Bio-Rad Protein Assay, see manufacturer for details), and 

the integrity and purity of the protein was monitored by SDS-polyacrylamide gel 

electropheresis.

Polyacrylamide gels are composed of two phases: a 5% stacking gel (5% acrylamide, 

125mM TrisHcl pH6.8, 0.1% SDS, 0.1% ammonium persulfate and 0.001% of 

TEMED) and a resolving gel (containing 9 to 12% of acrylamide, 375mM TrisHcl 

pH8.8, 0.1% SDS, 0.1% ammonium persulfate and 0.001% of N'-

tetramethylenediamine-TEMED). The gels were run under standard conditions (80V, 

15min; 180V, Ih).

2.3.11 Colloidal coomassie staining

Polyacrylamide gels were first fixed for 1 hr in 40% EtOH, 10% acetic acid and 

washed in (IH2O before staining in a fresh colloidal Coomassie stain (for 625ml: 

500ml Colloidal Coomassie dye stock (50g Ammonium sulphate, 6ml 85% 

Phosphoric acid, dH20 to 490ml, 10ml of 0.5% Coomassie Brilliant Blue G-250 in 

water, and 125ml MeOH) with gentle agitation, for Ih. Then gels were rinsed in 

dH20 and dried.

2.3.12 Western Blotting ,

Proteins were transferred to a nitrocellulose membrane using a semi-dry transfer 

apparatus (23V, 150mA for Ih, Biorad Trans-Blot® SD semi-dry transfer cell). The
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transfer buffer contained 14.4g/l glycine, 20% methanol and 25mM Tris HCl, pH

8.3. Then, the membrane was blocked with a blocking buffer containing 3% of w/v 

nonfat dry milk-PBS-Tween (PBST: PBS and 0.5% Tween20) for 1 h at room 

temperature or overnight at 4°C with agitation. The membrane was incubated with 

the primary antibody diluted to the appropriate concentration, in blocking buffer for 

Ih or overnight at 4 with agitation. Usually rabbit anti-histidine (QIAGEN) and 

immunopurified chicken anti- Pfcrk-3 and anti-Pfcrk-4 were used at 1/2000, whereas 

mouse anti-GST was used at 1/5000. The blot was rinsed in PBST and then washed 

twice for 5 min each and twice for 15 min at room temperature. The horseradish 

peroxidase (HRP) labelled secondary antibody (anti-rabbit, anti-chiken, or anti­

mouse) was diluted as recommended (usually 1/10000) in blocking buffer, and 

incubated for Ih at room temperature with the membrane. Next, the blot was rinsed 

in PBST and washed twice for 5 min each and twice for 15 min at room temperature 

and a final wash was performed with PBS. Proteins were detected by Western 

Lightning™ Chemiluminescence reagent (PerkinElmer) and visualized by 

autoradiography.

2.3.13 Immunological methods

2.3.13.1 Preparation o f chicken antibodies

Immunopurified antibodies were prepared from immunised eggs of chickens with 

peptides derived from the Pfcrk-3 and Pfcrk-4 kinase domains and for Pfcrk-3 and 

Pfcrk-4 insertions 1 (Dean Goldring, University of Natal, South Africa).

To obtain chicken antibodies (IgYs), synthetic peptides: VVD- Pfcrk-3 

(ÇKNRRTLNEDMLSVVD), insertion PN”G”-Pfcrk-3 (PNERDIKYLRNLPCWN), 

LKA-Pfcrk-4 (CLKAETKDSNIITLQY), insertion ITI-Pfcrk-4

(CITIEDLEKDLVMHSID) derived from Pfcrk-3 and Pfcrk-4 sequences (see 

Annexe) were produced by Neosystems and used for immunization of chickens. 

Peptides were designed with a cysteine residue for coupling to rabbit albumin (except 

for VVD-Pfcrk-3 and LKA-Pfcrk-4 peptides whose chosen peptides do not contain a 

cysteine, a N-terminal Cys residues (underline) was added) and peptides were 

coupled to rabbit albumin using 3-maleimidobenzoic acid Nhydroxysuccinimide 

ester (Kitagawa and Aikawa, 1976). Two chickens were immunized intramuscularly 

in the breast muscle with 200pg of the peptide (as a conjugate) emulsified with 

Freund's complete adjuvant on day 0 of the experiment, and at weeks 2, 4 and 6 with
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conjugate emulsified with Freund's incomplete adjuvant (Kitagawa and Aikawa, 

1976). Eggs were collected and labeled for 16 weeks after immunisation and stored 

at 4°C until processed. Immunoglobulin Y (IgY) was isolated from chicken yolks 

using the method of Poison et al (Poison et al., 1985) involving a series of 

polyethylene glycol precipitations. The final IgY pellet was resuspended in 0.1 M 

sodium phosphate buffer pH 7.6 containing 0.02% sodium azide and stored at 4oC. 

IgY was isolated from eggs each week. Anti-peptide antibodies were affinity purified 

by cycling the isolated antibodies over a SulfoLink-peptide affinity column prepared 

according to the manufacturer's instructions (Pierce). Antibodies were eluted with 

glycine-HCl pH 2.8 and the pH of the eluant neutralized with 10% volume of IM 

phosphate buffer at pH 8.5. Protein was measured at 280 ran and the concentration 

determined using the IgY extinction coefficient of 1.25.

23.13.2 Immunofluorescence assays (IFAs)

The immunopurified peptide antibodies were used in immunofluorescence assays, 

essentially as described previously (Dorin et al., 1999). Thin films of synchronized 

P. falciparum infected erytlirocytes were dried on glass slides and fixed for 5 min at - 

20°C in methanol. All subsequent steps were at Room temperature. The slides were 

rinsed with PBS and incubated for 20 min in PBS containing 3% of w/v nonfat dry 

milk (blocking buffer). They were incubated for 60 min in a humidified chamber 

with primary antibody (1: 100 dilution of peptide antibody), and washed with block 

buffer (3 times, 5 min each). They were then incubated for 30 min with rhodamine- 

conjugated rabbit anti-chicken IgG (Abeam®) diluted 50-fold in block buffer, washed 

again with block buffer (3 times, 5 min each), mounted in PBS containing 0.5 pg/ml 

of the DNA-staining reagent DAPI (4',6-diaminido-2-phenylindole). The parasites 

were then viewed using a DeltaVision fluorescence deconvolution microscope 

(Applied Precision).

2.3.14 Kinase assay

2.3.14.1 Standard kinase assay

The assays were performed in a standard reaction (30 pi) containing (25mM Tris, pH 

7.5, 15mM MgCl2, 2mM MnClz) (Le Roch et al., 2000), 35|aM [y-^^P]dATP (3000 

Ci/mmol, Amersham), 0.5-1 pg recombinant kinase, 5pg substrate at 30°C for 30min. 

Reactions were stopped by adding 8 pi of 2X Laemli buffer, and samples were loaded
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on SDS-acrylamide gel. The dried gel was exposed at least overnight against Kodak 

film and autoradiogram was analysed for protein phosphorylation. Different 

substrates were tested: histone HI (Life Technologies, Inc.), MBP (Invitrogen), 

casein (a and p. Sigma).

2.3.14.2 Test o f Pfcrk-3 and Pfcrk-4 enzymatic activity

Kinase assay were performed in different kinase buffers (25mM Tris, pH 7.5, 15mM 

MgClz, 2mM MnCb) (Le Roch et al., 2000), (50mM Tris, pH 7.5, lOmM MgCb) 

(Waters et al., 2000), (50mM Tris, pH 7.5, 15mM MnCL) (Bracchi-Ricard et al, 

2000), and MAPK buffer for Pfcrk-4 only (20 mM Tris/HCl, pH 7.5, 20 mM MgCb, 

2 mM MnCb) (Dorin et a l, 2001), using 500 ng of recombinant enzyme.

In the test of activation by exogenous or Plasmodium cyclins, reactions were initiated 

by the addition of 0.5 pg each of the recombinant protein kinase and a cyclin partner 

after both proteins had been allowed to form a complex at 30 °C for 30 min in kinase 

assay buffer. Pfcrk-3 and Pfcrk-4 were also tested on a peptide substrate derived fi'om 

histone HI (PKTPKKAKKL) (Signa TECT® cdc2 Protein Kinase Assay System, 

Promega), which is selective to cdc2 kinase activity. In this case, quantification of 

peptide substrate phosphorylation was measured by scintillation counting (see Signa 

TECT® protocol for details, Promega).

2.3.14.3 FIKK kinase assay:

FIKK kinase assays were carried out using a kinase buffer containing (25mM Tris, 

pH 7 .5 ,15mM MgCL, 2mM MnCE), under standard conditions.

2.3.14.4 Preparation o f  parasite protein extract for Kinase assay

Proteins extracts from asynchronous parasites were used as substrates in kinase 

assays. The extracts were first passed through a G25 Sephadex column to remove 

endogenous ATP and then incubated for 15 min at 30°C and for 15min at 55-65°C to 

inactivate endogenous kinases. The kinase assay was performed using 20pg of total 

protein extract per reaction.
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2.3.15 Protein interaction studies

2.3.15.1 Pulldown experiments

Glutathione-agarose beads coated with GST, GST-Pfcrk-3, GST-Pfcrk-3dead, GST- 

Pfcrk-4 or GST-Pfcrk-4dead were incubated in parasite extracts or in RIPA buffer 

alone at 4°C, under mild agitation for Ih (100 pg of total parasite proteins for 10 pg 

of recombinant protein on beads). The beads were then washed three times in RIP A 

buffer, once in RIPA buffer with 0.1% SDS and once in a standard kinase buffer 

containing 10 mM NaF, 10 mM p-glycerophosphate, 1 mM PMSF, and Complexe t m  

protease inhibitors. Beads were resuspended in a volume of kinase buffer equal to the 

volume of beads. A standard kinase assay was then performed in a final volume of 

30pl, and the samples were analyzed by SDS-PAGE and autoradiography.

2.3.15.2 Immunoprécipitation (IP) experiments

For immunoprécipitation, parasite extract (lOOpg) was incubated with 

immunopurified anti- chicken antibodies (1.5 pg) on ice for 2h. Protein A Sepharose 

CL4B (Pharmacia Biotech) was coated with anti-chicken IgY rabbit antibodies 

(Pierce) for 90 min under, mild agitation at 4°C in RIPA buffer, and washed 4 times 

with RIPA buffer. The immunocomplexes in the parasite extract were then 

precipitated with lOpl of Protein-A/anti-chicken rabbit antibodies beads at 4°C under 

mild agitation for 90 min. The following chicken IgY antibodies were used as 

negative controls: non-immune, immunopurified anti-human C5a Receptor (against 

the peptide sequence DSKTFTPSTDDTSPRKSQAV). Another negative control was 

performed by omitting the primary IgY and incubating the extract only with anti­

chicken / protein A beads. Immunocomplexes were washed three times in RIPA 

buffer, once in RIPA buffer with 0.1% SDS, and once in kinase buffer, and finally 

suspended in lOpl kinase buffer. The kinase assays were performed in a standard 

reaction of 30pl as described above.
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Chapter 3; THE ENTIRE COMPLEMENT OF 

PROTEIN KINASES ENCODED TN THE 

GENOME OF P. falciparum
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Overview

Reversible phosphorylation is the most important mechanism commonly used to 

control the functional states of proteins. Indeed, covalent attachment of a phosphate 

group on a specific protein residue (His, Ser, Thr or Tyr) by a protein kinase 

modulates target protein activity, by inducing a conformation change. Protein kinases 

are key regulators of signal transduction, and are involved in a number of cellular 

processes such as DNA replication, cell cycle control, gene transcription and energy 

metabolism. Through evolution, from yeast to human, these proteins have conserved 

important motifs, which are crucial for catalytic activity, structural stability, and 

recognition of specific ligands (substrate/activator/inliibitor). Based on their 

sequence homology, a classification of eukaryotic protein kinases (ePKs) has been 

initiated by Hanks et al (see Chapter 1, section 1.2) ePKs have been divided into 

seven major groups, which themselves are organized into functional kinase families. 

Biological computing software programmes have been developed over the last 

decade, much of which are available on the Web and constitute a series of useful 

tools to explore the features of amino-acid sequences. For instance, for rapid 

sequence comparison, basic local alignment search tool (BLAST) is an easily 

handled software in which one can compare a query sequence against either 

nucleotide or protein databases. The output of a BLAST analysis is a list of 

sequences that display more similarity to the query within the target database.

Only 23 protein kinases had been identified in P. falciparum at the start of this study 

in January 2003 (see Table 3, chapter 1). The availability of the complete sequence 

of the Plasmodium falciparum genome on the “PlasmoDB” database, 

http://www.PlasmoDB.com (Kissinger et al., 2002) allowed us to identify all genes 

encoding protein kinases (the so called “kinome”). Whereas the "proteome” contains 

the whole set of proteins, which are expressed in an organism, the “kinome” is 

limited to the protein kinase family. In our analysis, we have limited this definition to 

the genes, which are potentially expressed. “Kinome” is a recent word used by 

scientists working on protein kinases.

The work described in this section is focused on the identification, classification and 

analysis of the genes encoding protein kinases in P. falciparum: the eukaryotic 

protein kinases (ePKs) and atypical protein kinases (aPKs). The final part of this
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chapter presents a compilation of mRNA expression data available on PlasmoDB, 

leading to a comprehensive expression pattern of the kinome during the erythrocytic 

stages.

3.1 SEARCH FOR EUKARYOTIC PROTEIN KINASES IN P. FALCIPARUM

In order to identify genes encoding protein kinases in P. falciparum, we first 

searched the predicted PlasmoDB protein database using a text “kinase” search. Only 

61 potential protein kinases were found among 5268 predicted proteins. Recent 

papers published on the human, worm, yeast and plant “kinomes” suggest that 

predicted protein databases are not complete and complementary studies are 

necessary to “build-up” a “kinome”. So, to further our search, we collaborated with 

bioiniformaticians (J, Paker (Abbott Laboratories, US) and P. Ward (University of 

Glasgow, WCMP)) to perform a Hidden Markov Model search (HMM), a method 

usually used for this purpose (Manning et al., 2002a; Plowman et al,, 1999). This 

HMM search is based on a conserved protein kinase motif search, using a consensus 

eukaryotic protein kinase profile (Pfam kinase profile (G0:0004672)).

Given a HMM value cut-off of 2.4 10-5 (HMM value of plasmodial genes below 2.4 

10-5), P. Ward identified a set of 87 potential ePKs (Table 4, accession number in 

blue). Comparison of our two sets (text search and HMM search) allowed us to find 

27 additional potential protein kinases, which were missed by the text search (Table 

5, accession number in blue). Only one potential protein kinase (PFE0170c), 

identified in the first set of 61, was not found in the “HMM” set (Table 4, orange 

box). Indeed, although its HMM value is above the cut-off (1.1 10-2 >2.4 10-5), its 

primary structure assigns this protein to a potential protein kinase. To prevent 

missing any other probable protein kinases, I looked at the amino acid sequence of 

the 21 “improbable protein kinases” (Table 4, accession number in black), which 

HMM value is above thé cut-off. Based on the eleven-conserved motifs defined by 

Hanks et al (see Chapter 1, section 1,2.3, Fig.9) (Hanks and Quinn, 1991; Knighton 

et al., 1991), only PFE0170c seems to be a potential protein kinase, which leads to a 

total of 88  potentials ePKs.

Among the 88  “probable protein kinases” set, we selected only the protein kinases 

that possess the 11 residues required to assign a protein to the protein kinase family 

according to Hanks classification. Alignment of the 88  “probable” protein kinases,
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allowed us to identify the protein kinase domain (data not shown). Some of these 

predicted proteins are characterized by lai'ge (N and C-terminal) extensions, as well 

as insertions within the protein kinase domain. These features support our data on 

Pfcrk-3 and Pfcrk-4 (see Chapter 5) and also the fact that many Plasmodium proteins 

are longer than their homologues found in other organisms, a consequence of the 

presence of “low-complexity segments” (Xue and Forsdyke, 2003). In some cases 

protein kinases contain large insertions (up to 600 amino-acid, see supplementary 

material: http://www.biomedcentral.com/content/supplementary /1471-2164-5-79- 

Sl.txt), and multi-alignment software (Clustalw) misplaces important catalytic 

motifs. Therefore, I checked all 88  probable protein kinase sequences and only 65 

genes encoding typical ePKs (i.e. containing typical protein kinase residues) have 

been retained for phylogenetic analysis (Table 5: accession number in red). Among 

the 23 remaining sequences, 20 were identified to share similarities to each other 

(Table 4 and 5: accession number followed by *) and have been grouped into to the 

so-called FÏÏCK family (see Chapter 4).
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Sequence HMM value Sequence HMM value Sequence HMM

MAL6P1.108 1.5e-104 PF11_0156 1.46-49 PFA0130C 1.16-07
PFL1885C 7e-102 MAL13P1.84 3.06-49 PFL0040C 1.96-07
PFL2250C 1.8e-100 PF11_0488 1.86-46 MAL7P1.132 2.46-07
MALI 3P1.279 6.8e-97 PFB0605W 3.96-44 PFI0125C 36-07
PF13_0211 8.6e-9 PF13_0258 2.46-42 PFI0095C 3.56-07
PF14_0516 1e-93 PF14_0423 1.96-40 MAL7P1.175 4.16-07
PF11_0242 4.8e-93 PFI 1280c 2.86-38 PF14_0320 1.26-00
PFB0815W 1.5e-92 MAL6P1.191 26-36 PFE0045C 1.46-00
PFC0420W 3.1e-88 PFL2280W 6.56-35 PF10_0160 5.26-00
PF14_0294 9.6e-87 PF11_0377 2.26-34 PFI0120C 7.46-00
PF07_0072 8.4e-86 PF08_0044 7.06-34 PF11_0079 16-05
PFC0525C 4.1e-84 PFC0485W 5.36-30 PFD1175W 1.46-05
PFD0865C 6.2e-84 PF11_0220 1.26-28 MAL7P1.127 1.86-05
PF14_0346 3.1e-83 PFB0665W 5.96-28 PF13_0166 2.46-05
PF14_0227 1e-82 PF14_0408 1.26-27 MAL7P1.91 2.46-05
PFC0385C 1.46-82 PF11_0464 16-26 PF14_0264 0.00016
PF13_0085 1.36-81 PFL0080C 6.96-25 PFI0105C 0.00086
PFL1370W 7.96-80 PF11_0060 2.26-23 PFI0115C 0.0016
PFE1290W 3.16-77 PFC0755C 1.76-20 MAL13P1.109 * 0.002
PF11_0239 3.56-77 MAL13P1.196 4.06-19 PFE0170C 1 : 3 3 0 .0 1 1
PFI1685W 5.36-76 MAL7P1.73 4.16-18 PF14_0715 0.012
PF11_0096 0.16-75 PFI1290W 8.36-18 MAL8P1.42 0.019
PF10_0141 9.86-75 PFI1275W 8.06-13 MAL7P1.26 0.033
PF11_0147 1.76-74 MAL7P1.18 1.56-12 PF11_0127 0.046
PF13_0206 1.16-71 PFC0105W 1.06-11 PFI0160W 0.1
PF14_0392 1.36-71 MAL6P1.146 7.16-11 MAL13P1.114 0.11
MAL6P1.56 4.46-71 PFI1415W 1.76-10 PF14_0734 0.43
MAL7P1.100 2.36-68 1PFA0380W 2.86-10 PF08_0098 0.9
PFD0740W 4.56-67 PFC0945W 7.46-10 PFD0975W 1.5
MALI 3P1.278 16-60 PFIOIOOc 1.36-09 PFI1650W 3.3
PFB0520W 3.36-60 PFC0060C 5.26-09 MALI 3P1.267 4.2
PF14_0431 1.76-58 PFIOIIOc 8.16-09 PF14_0143 4.6
PF14_0476 46-58 PFD1165W 1.96-08 PFE0935C 5.9
PF11_0227 1.36-55 PF10_0380 2.26-08 PF10_0224 6.2
PFBO150c 1.86-53 PF11_0510 2.46-08 MAL7P1.68 6.6
MAL6P1.271 7.16-52 MAL7P1.144 7.96-08 PFA0410W 7.3

Table 4: 87 potential ePKs among 108 plasmodia! ePK-related sequences found 

by Hidden Markov Model (HMM) search

Genes are represented by their PlasmoDB identifiers in the first column, followed by 

their related HMM value. This table contains 87 "probable” protein kinases (in 

blue), in which the HMM value is below the cut-off (blue box). Among the 21 

"improbable” protein kinases (in black), only PFEOllOc (orange box) possess the 

conserved motif to assign this protein to a probable protein kinase. Protein kinase 

name followed by * belong to the new identified FIKK family (see Chapter 4)
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Table 5: 65 ePK among the 8 8  “probable” plasmodial protein kinases

Genes are represented by their PlasmoDB identifiers accession number and their 

related HMM value. In the second column “text/HMMsearch”, 88 kinases have been 

identified by either text «protein kinase » search on PlasmoDB predicted protein 

database or by HMM search. Protein kinases identified only by text search are in 

orange, whereas protein kinase identified by HMM search only are in blue. Based on 

the 11 important catalytic residues, 65 ePK (in the third column) were identified. 

Interestingly, 16 proteins (*) miss important residues such as the glycine domain and 

share the same conserved motif FIKK (see Chapter 4).



HMM value text/HMMsearch ePK HMM value text/HMM earch ePK

1.50E-104 MAL6P1.108 MAL6P1.108 6,502-35 PFL2280W PFL2280W
7,002-102 PFL1885C PPL1885c 2,202-34 PFI1_0377 PF11_0377
1,802-100 PFL2250C PFL2250C 7,602-34 PF08_0044
6,802-97 MALI 3P1.279 MAL13P1.279 5,302-30 PFC0485W PFC0485W
8,602-96 PF13_0211 PF13_0211 1,202-28 PF11_0220 PF11_0220
1,002-93 PF14_0516 PF140516 5,902-28 PFB0665W PFB0665w
4,802-93 PF11_0242 P F I1 0242 1,202-27 PF14_0408 PF14_0408
1,502-92 PFB0815W PFB0815W 1,002-26 PFI1_0464 PF110464
3,102-88 PFC0420W PFC0420W 6,902-25 PFL0080C PFL0080C
9,602-87 PF14_0294 PF140294 2,202-23 PF11_0060 PF11_0060
8,402-86 PF07_0072 PF070072 1,702-20 PFC0755C PFC0755C
4,102-84 PFC0525C PFC0525C 4,602-19 MAL13P1.196 MAL13P1 196
6,202-84 PFD0865C PFD0865C 4,102-18 MAL7P1.73 MAL7P1.73
3,102-83 PF14_0346 PF140346 8,302-18 PFI1290W PFM290W
1,002-82 PF14_0227 PF140227 8,602-13 PFI1275W
1,402-82 PFC0385C PFC0385C 1,502-12 MAL7P1.18 MAL7P1.18
1,302-81 PF13_0085 PF13_0085 1,602-11 PFC0105W PFC0105W
7,902-80 PFL1370W PFL1370W 7,102-11 MAL6P1.146 MAL6P1.146
3,102-77 PF21290W PFE1290W 1,702-10 PFI1415W PFI1415W
3,502-77 PF11_0239 P F I1 0239 2,802-10 PFA0380W PFA0380W
5,302-76 PFI1685W PFI1685W 7,402-10 PFC0945W
6,102-75 PFI1_0096 PF11 0096 1,302-09 PFIOIOOc *
9,802-75 PF10_0141 PF10_0141 5,202-09 PFC0060C *
1,702-74 PF11_0147 P F I10147 8,102-09 PFIOIIOc
1,102-71 PF13_0206 PF13_0206 1,902-08 PFD1165W
1,302-71 PF14_0392 PF140392 2,202-08 PF10_0380
4,402-71 MAL6P1.56 MAL6P1 56 2,402-08 PF11_0510
2,302-68 MAL7P1.100 MAL7P1 100 7,902-08 MAL7P1.144
4,502-67 PFD0740W PFD0740W 1,102-07 PFA0130C
1,002-60 MALI 3P1.278 MAL13P1.278 1,902-07 PFL0040C
3,302-60 PFB0520W PFB0520W 2,402-07 MAL7P1.132
1,702-58 PF14_0431 PF140431 3,002-07 PFI0125C
4,002-58 PF14_0476 PF140476 3,502-07 PFI0095C
1,302-55 PF11_0227 PF110227 4,102-07 MAL7P1.175
1,802-53 PFB0150C PFB0150C 1,202-06 PF14_0320 PF14_0320
7,102-52 MAL6P1.271 MAL6P1.271 1,402-06 PF20045C
1,402-49 PF11_0156 P F I1 0156 5,202-06 PF10_0160
3,602-49 MAL13P1.84 MAL13P1 84 7,402-06 PFI0120C
1,802-46 PF11_0488 P F I1 0488 1,002-05 PF11_0079
3,902-44 PFB0605W PFB0605W 1,402-05 PFD1175W *
2,402-42 PF13_0258 PF13_0258 1,802-05 MAL7P1.127
1,902-40 PF14_0423 PF140423 2,402-05 MAL7P1.91 MAL7P1.91
2,802-38 PFI 1280c PFI 1280c 2,402-05 PF13_0166
2,002-36 MAL6P1.191 MAL6P1 191 1.10E-02 PFE0170C PFE0170C
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3.2. PHYLOGENETIC ANALYSIS OF P. FALCIPARUM EUKARYOTIC 

PROTEIN KINASES:

According to Hanks et al, based on sequence homology, ePKs can be distributed in 

seven groups including: AGC, CMGC, CaMK, TyrK, CKl, STE, TKL (see Chapter 

1, section 1.2.3), Other ePKs, which do not cluster with any of these groups, are 

placed into the OPK (“other protein kinases”) group. To cluster the 65 malarial 

enzymes to the seven major groups, J. Packer constructed a phylogenetic tree, using 

a multiple aligmnent including the 65 P. falciparum ePK and the human/yeast 

protein kinase representative of each protein kinase family (Fig. 14). Insertions and 

extensions were omitted from amino-acid sequences alignment and only the protein 

kinase domain was used in this analysis. The resulting tree (Fig. 14) indicates that the 

parasite possesses enzymes belonging to most of the ePK groups.

3.2.1 AGC group.

Five malarial protein kinases cluster within this group. Three of them have been 

previously characterized: the cAMP and cGMP dependent protein kinases: 

respectively PfPKA [PFI 1685w] (Syin et al., 2001) and PfPKG [PF14_0346] (Deng 

and Baker, 2002) and also the protein kinase B (PfPKB) [PFL2250c] (Kumar et al., 

2004). In several eukaryotes including numerous protists, the cAMP pathway plays a 

central role in many developmental processes. In eukaryotes, PKA exists as an 

inactive complex of catalytic and regulatory subunits: the cAMP dependent kinase 

(PKAc) and the inhibitory regulatory subunits (PKAr). A screening of the 

Plasmodium database reveals the presence also of a related PfPKAr (PFLlllOc). 

PKB are activated by phosphoinositide-3-kinase (PI3K), and interestingly, the P. 

falciparum genome contains a PI3K-related enzyme (see below). Whereas, in 

mammals, PKC are important transducers of signals that promote phospholipid 

hydrolysis, it appears in our analysis that there is not a clear member of the PKC 

subfamily. This first analysis of the AGC group illustrates the fact that some 

signalling pathways have been well conseiwed in P. falciparum, whereas others may 

differ widely (see below).
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Fig. 14; Phylogenetic tree of P. falciparum ePKs (constructed by J. Packer).

65 sequences from P. falciparum (in red) are shown, together with representative 

members o f  major subgroups o f  human protein kinases (in black). The P. falciparum 

sequences are labelled with their identifier in the PlasmoDB database and, where 

applicable, with the published name o f  the enzymes. Branches with bootstrap value 

> 70 are shown in red and > 40 in blue. The scale bar represents 0.1 mutational 

changes per residue.
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3.2.2 CMGC group

Eighteen malarial protein kinases cluster within this group. Seven enzymes are 

related to the cyclin-dependent kinase family (CDK). A new one (Pfcrk-5: 

MAL6P 1.271) was discovered during the present analysis, and the other six had been 

identified previously (Pfcrk-1 Pfcrk-3, Pfcrk-4, PfPK5, PfPK6 , Pfmrk) ((Doerig et 

al., 2002) for review). In eukaryotes, cyclin activators control CDK activity; in P. 

falciparum, four proteins related to cyclins have been identified so far (Merckx et al.,

2003). In previous primary stmcture analyses, two enzymes, PfPK6  (Bracchi-Ricard 

et a l, 2 0 0 0 ) and Pfcrk-4 (see Chapter 5), have been reported to display features of 

both CDKs and mitogen-activated protein kinases (MAPKs). These previous 

observations are consistent with their position on the phylogenetic tree, as these two 

enzymes do not cluster strongly within the CDK family. Pfcrk-4 is in a cluster 

(composed of Pfcrk-4 and uncharacterized MALI 3P 1.196) at the base of the 

CDK/MAPK/GSK3 branch, and PIPK6 is in a cluster (composed of PfPK6 and 

Pfcrk-5) that is intermediate between the CDK and the MAPK groups. Two 

previously characterised MAPKs, Pfinap-1 (Doerig et a l, 1996; Graeser et a l, 1997; 

Lin et a l, 1996) and Pfmap-2 (Dorin et al, 1999), cluster together with a human 

member of the MAPK family, as expected. One gene, PfGSK3 is tmly related to the 

GSK3 kinase sub-family (Droucheau et a l, 2004). On the base of the GSK3 group, 

there are two additional genes, PfPKl (which has been also characterised previously 

(Droucheau et al, 2004)) and the uncharacterized predicted proteins MALI3P1.84. 

PICK2 [PFI 10096] forms a distant branch on the base of the GSK3-related group. 

Four additional enzymes form another cluster with human Clkl that includes a 

previously described LAMMER-related kinase (Li et a l, 2001).

3.2.3 CamK group

The CamK group contains seven related ePKs, which underlines the importance of 

calcium signalling in the parasite (Garcia, 1999). No malarial protein kinase clusters 

closely with the mammalian CamKs. However, six sequences, form a sister branch 

to the CamK cluster; PfCDPKl, PICDPK2, PICDPK3, PICDPK4 and the 

uncharacterized PFI 1 0242 and PF13_0211. These enzymes share the overall 

structure of the calcium-dependent protein kinases (CDPKs), which have been found 

in Plants and Ciliates, but not in Metazoans. Four of these enzymes have been
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previously described: PfCDPKl [PFB0815w] (Zhao et al., 1994), PfCDPK2 

[MAL6P1.108] (Farber et al., 1997), PfCDKP3 [PFC0420w] (Li et al, 2000) and 

more recently PfCDPK4 [PF07_0072] (Billker et al, 2004). The CamK activity 

described (Silva-Neto et al, 2002) as crucial for P. gallinaceum ookinete 

development in the mosquito vector is likely to be associated with one of the 

enzymes in this group. Recent data, in P. berghei, have shown that the plant-like 

calcium dependent kinase, PfCDPK4, is expressed in the sexual stages and is 

essential for development of the parasite in the mosquito (Billker et al, 2004). This 

protein has been identified as an essential mediator of male gametocyte 

exflagellation induced by xanthurenic acid (XA) (see Chapter 1, section 1.3 (Billker 

et a l, 1998)). The last CamK is PfPK2 [Pfll885c], which constitutes a sister branch 

to the CDPKs group. This enzyme was previously characterized as being related to 

the CamK family (Zhao et a l, 1992).

3.2.4 Absence of members of TvrK group.

No tyrosine kinase has been identified in our analysis. Based on homology sequence 

search, tyrosine kinases have been found especially in metazoans, but only rarely in 

unicellular eukaryotes (see Chapter 1, section 1.2.3; Shiu and Li 2004). Usually they 

are associated with the plasma membrane and play a direct role in the transmission of 

extracellular signals. It has been suggested (Madhusudan and Ganesan, 2004; Shiu 

and Li, 2004) that these proteins have diverged in response to the necessity of 

metazoans to develop intercellular communication. However, Western blot 

experiments using specific phospho-tyrosine antibodies (which do not cross react 

with peptides containing phospho-serine or phospho-threonine) on Plasmodium 

protein extracts have been performed (Fig. 15). Similar amounts of protein extracV 

from P. falciparum erythrocytic stages and from procyclic and bloodstream forms 

from Trypanosoma brucei, (as positive controls) were loaded on the gel In the 

Plasmodium extract (lane I), the antibody recognizes two proteins around 100 and 

50kDa. In T. brucei, two principal bands around 30 and 20kDa are present, consistent 

with previous studies showing that T brucei possesses multiple proteins reacting 

with a specific anti-phosphotyrosine antiserum (Parsons et a l, 1991). Hence, the 

Western blot results suggest the presence of proteins containing phosphoiylated 

tyiosine residues in both species. Preincubation of the parasite protein extracts with
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phosphatases would  def ini t ive ly  confirm that the antigens contain phosphoryla led  

residue(s).

The genome of T, brucei has been sequenced (data published by TIGR institute, 

http://www.tigr.org/tdb), and BLASTP analysis as well as text research suggest that 

no typical receptor-linked tyrosine kinase are present in this genome. Although in 

most cases important residues are conserved thiough evolution, we cannot exclude 

the possibility that in some organisms, some protein kinases have evolved 

specifically, but have conserved their function (see the example of the unusual 

mammalian WNKl kinase, chapter 1, section 1.2.5.3). So, this preliminary result on 

tyrosine kinase underlines the limitation of protein kinase identification by in silico 

search and also the difficulties to find homologous sequences in organisms such as P. 

falciparum, that are divergent from the eukaryotic models (yeast and mammals). 

Because of these divergences, it is likely that using yeast/mammal proteins as 

templates to find homologues would consequently limit our search.

Another explanation for the presence of phosphorylated-tyrosine residues in parasite 

proteins extract is that phosphorylation is due to “dual-specificity protein kinases” 

which are able to phosphorylate tyrosine (Tyr) residues as well as other residues 

(such as threonine (Thr)). Dual specificity protein kinases that phosphorylate the 

Thr- and Tyr-residues within the TXY motif of MAP-kinases play a central role in 

the regulation of various processes of cell growth and are also known as MAP kinase 

kinases (MAPKK). Although no plasmodial ePK is an obvious dual-specificity 

protein kinase (see section 3.2.6 below), it cannot be excluded that enzymes 

possessing this property are present in P. falciparum and are able to phosphorylate 

tyrosine residues.

On the other hand, the monoclonal antibody is derived from mice immunized with 

phosphor-tyrosine-containing peptide in order to interact with a broad range of 

mammalian phosphorylated tyrosine proteins. In other words, this antibody 

recognizes specifically a consensus of residues usually found around phosphorylaled 

tyrosines in mammalian proteins. So, the relative specificity of this antibody on a 

parasite protein extract is difficult to estimate and it is possible that the antibody 

recognized another type of Plasmodium phosphorylated residues.
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AJ autoradiogram B/ Coomassie stained acrylamide gel

MW (kDa) 

100

■m

P. falciparum T. brucei P. falciparum T. brucei

Fig. 15: Western blot using anti-phosphorylated tyrosine antibody (left panel) 

and associated Coomassie stained acrylamide gel (right panel)

1. P. falciparum erythrocyte stage; 2, T. brucei procyclic form; 3, T. brucei 

bloodstream form. 15pg o f  protein extract was loaded on an acrylamide gel (right 

panel). After transfer onto nitrocellulose membrane, Western blot analysis was 

performed using antiphosphorylated tyrosine mouse antibody (fP-Tyr-100], Cell 

signalling) (1/1000) and mouse HRP conjugated antibody (1/10000) (left panel),

3.2.5 CKl group.

Whereas in some other kinomes, this family is vastly expanded (e.g. C. elegans with 

85 genes), only one malarial protein kinase, the previously described PfCKl (Barik et 

al., 1997) has been found to cluster with human CK l.

3.2.6 Absence of members of the STE group.

No malarial protein kinase clusters with the STE group, which is consistent with the 

previous in vitro and in silico search to identify MAPKK malarial homologues 

(Dorin, 2004; Dorin et al., 2001).
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3.2.7 TKL group

Five malarial enzymes are close to the TyrK-like group, including PfRaf 

[PFB0520w]. PfRaf clusters with the TGFp receptor (TGFpi). Despite its name, the 

malarial sequence PfRaf is much more similar to TGFp receptors than to 

mammalian Raf (Rafl). Indeed, like TGFp receptors, the malarial enzyme PfRaf has 

a predicted N-terminal transmembrane sequenee.

3.2.8 Other clusters and “orphan” protein kinases:

3.2.8.1 NIMA/Nek 2 rouv

Five Plasmodium genes, including the previously characterised Pfhek-1 enzyme 

(Dorin et al., 2001), form a cluster with the NIMA/Nek family, a recently identified 

protein kinase family (O'Connell et al., 2003).

3.2.8.2 Orphan protein kinases

Several protein kinases appear not to cluster clearly with any defined group, or 

constitute small “satellite” clusters. Examples of such “orphan” protein kinases are

(i) the cluster formed by PfKIN [PFI40516], an enzyme previously described as 

related to the SNFl family (Braechi et al., 1996), and the two uncharacterized 

PF14_0476 and PF13__0085, located at the base of the CamK and AGC branches, and 

do not associate strongly with any established ePK group.

(ii) the “f .  falciparum exported protein kinase” PfEST, [MAL7P1.91] (Kun et al., 

1997) , which forms an isolated branch at the base of the tree containing the CMGC, 

CamK and AGC groups.

(iii) a small group of three malarial enzymes, including PfPK4 [MAL6P1.146J1 

which was previously ' characterised as mammalian elongation factor kinase 

homologue (eIF-2alpha) (Mohrle et al., 1997),

3.2.9 Absence of prokarvotic histidine kinase ?

In some eukaryotes, especially in plants, enzymes similar to prokaryotic histidine 

kinases have been characterized. Some P. falciparum genes (e.g. PFD0685c and 

PF14 0326) display regions with low-level similarity to the histidine kinase domain, 

but the significance of this observation remains to be established. In yeast and
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I
mammals, MAPKs are activated by MAPKK-dependent phosphorylation on the TxY

"I-

conserved motif. In P. falciparum, Pfmap2, a MAPK-related protein, possesses an 

unusual activation site TxH. The presence of a histidine residue at this position raises 

the question about the potential activation by a histidine kinase, and is in favour of 

the hypothesis that functional homologues of such enzymes do indeed exist in the 

parasite.

3.3 ATYPICAL PROTEIN KINASES IN P. FALCIPARUM

Several eukaryotic enzymes display kinase activity, but share little similarity with 

ePKs. These proteins have been called “atypical protein kinases” (aPKs). I performed 

further analysis to determine whether the P. falciparum genome contains such ^ K s .

Atypical protein kinase (aPKs) include A6  kinases, members of lipid kinases 

(phosphoinositide kinases: PIKs), aminoglycoside phosphotransferases, pyruvate 

dehydrogenase kinase family members, DNA-dependent protein kinase, ATM, ATR,

BCR, transient receptor potential kinase and aetin-fragmin kinases (Kostich et al.,

2002). Microbial-like kinases such as RIO kinase or the ABC family (Plowman et 

al., 1999) have been also included as aPK in our analysis.

BLASTP searches of the Plasmodium genome database were performed using aPK 

protein sequences of human (or other mammals) as a template (A6  kinase [A55922], 

PI3K-C2alpha, aminoglycoside 3’-phosphotransferases, ATM, ATR protein kinase, 

BCR gene, transient receptor potential cation channel6/channel-kinase 2 and actin- 

fragmin kinases). In this analysis, only a phosphoinositide-3-kinase (PI3K)-related 

sequence [PFE0765w] was found, and no significant hits were obtained with other 

human aPKs. The finding of such a malarial PI3K is in agreement with previous 

experimental studies (Elabbadi et a l, 1994) and also with the presence of a PKB 

homologue (see above, AGC group), demonstrating the presence of a phosphatidyl- 

inositol pathway in the parasite. However, the PfPBK homologue appears to not 

contain the FAT and FATC domains, which are present in PIKs from other 

organisms and have been associated with protein kinase activity (Bosotti et al, 

2000). Complementary studies performed by P. Ward have shown the presence of 

two putative members of the ABCl family (PF08 0098 and PF14_0143). These 

enzymes are known to play a role in cellular lipid transport. Finally, two other 

sequences of PIK (PFE0485w and PFD0965w) related to PI4K were found (in
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addition to the PfPBK mentioned above); both of them lack FAT/FATC domains. 

Two members of the RIO kinase family (PFL1490w (RIOKl-like) and PFD0975w 

(RIOK2-like)) have been also identified. In S. cerevisiae for instance, these enzymes 

are involved in rRNA processing (Geerlings et a l, 2003).

3.4 mRNA EXPRESSION PATTERN OF PROTEIN KINASES DURING THE 

P, F A L C IP A R U M U m  CYCLE

Recent data on the gene expression profile (“transcriptome”) in the different stages 

of the parasite for human and mosquito hosts have been published (Bozdech et a l, 

2003; Le Roch et a l, 2003). The results (microarray data) fi'om the Le Roch et al. 

and Bozdech et al. studies, available on PlasmoDB, were compiled to produce a 

general picture of PK gene expression during erythrocytic development, and a 

phaseogram was created by ordering the transcriptional profiles in accordance with 

the timing of their expression (Fig. 16). The genes were arranged in relation to the 

timing of their expression during the erythrocyte phase of parasite development, 

according to DeRisi et al. in PlasmoDB, (Bozdech et a l, 2003), to illustrate the fact 

that essentially all of them are expressed in a regulated way during schizogony, and 

that this process involves sequential but overlapping expression of most protein 

kinases in the genome. -

In all cases, gene expression patterns through the asexual stages are cyclic with a 

peak of expression localized at a specific time, which suggests that mRNA levels are 

tightly regulated. Most of the PKs are expressed in late stages (trophozoites and 

schizonts), but some PK mRNAs are clearly predominantly detected in rings (the 

younger form following erythrocyte invasion). Compilation of these data also 

indicated that a small number of PfPKs are specific to gametocytes.

3.5 PROTEOMICS DATA OF PROTEIN KINASES DURING P. 

FALCIPARUM IA ¥ ^  CYCLE

Proteomics data fi'om Florens et al (Florens et a l, 2002; Johnson et a l, 2004) have 

been compiled in Fig. 17. Plasmodium protein kinases were arranged in the same 

order as the mRNA profile (i.e. in accordance with the timing of their expression 

during the erythrocyte development according Bozdech et al. data, see Fig. 16). 

Although positive data fi'om such proteomics studies strongly suggest that a given
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protein is expressed at a given developmental stage, the absence of a signal for 

specific proteins cannot be interpreted. Indeed, we cannot exclude that absence of a 

signal in the mass spectrometry analysis, is due to low abundance of the polypeptide 

in the extract, or to other limitations of the experimental procedure. So, it is clear that 

such proteomics studies provide a broad representative profile of protein expression 

during the life cycle of the parasite and that additional work needs to be done on 

individual proteins to understand which protein kinase is present at which stage.
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Fig. 16: List of P, falciparum ePKs, aPKs and PK regulators, and mRNA profile 

during erythrocytic development of the parasite.

R: ring, T: trophozoite, S: schizont, M: merozoite, G: gametocyte, Sp: sporozoite, 

Apic: apicoplast, Mitoch: mitochondrion. PlasmoDB gene identifiers are indicated 

in the left column, followed by the published names where applicable. Identifiers oj 

enzymes belonging to defined ePK groups appear in colour (AGC, CMGC, C'ainK, 

Casein Kinase I, TKdike). The phaseogram (data generated by DeRisi et al 

available in PlasmoDB, (Bozdech et al, 2003)) show the red/green colorimetric 

representation o f  gene expression ratio during erythrocyte development o f the 

parasite. Positive ratio in red indicates mRNA expression o f  the gene, whereas green 

correspond to negative ratio (i.e. no expression) and grey or white: no data. mRNA 

expression during M, G and Sp stages (data generated by LeRoch et al, (Le Roch et 

al, 2003)) is represented by red or orange boxes. A white box indicates absence oj 

mRNA in a specific stage whereas its presence is represented by orange or red box 

in S/M/G. Where only one o f  the /wo synchronised merozoite populations gave a 

signal (as well as one o f  the tM>o mature stage IV and V gametocytes), the box is 

coloured in orange. Columns to the right indicate those molecules, which, according 

to the gene prediction algorithm used in PlasmoDB, possess a putative apicoplast or 

mitochondrion targeting sequence.



Name S M G S  ApicJitoch.

e P K s
PF11_0147 Pfmap-2
MAL6P1.146 PfPK4
PFI1280C
PF14_0431 PfLammer
PFD0740W Pfcrk-3
PFC0485W
PF10_0141 Pfmrk
PF11_0096 PfCK2
PFC0105W
PF14_0227 CDPK
PFB0605W PfPK7
PFI1415W
PFB0520W PfRaf
PFD0865C Pfcrk-1
MAL7P1.91 PfFEST
PF11_0488
MALI 3P1.279 PfPKS
PFC0525C PfGSK3
MAL13P1.196
MAL6P1.271 Pfcrk-5
PFL0080C Pfnek-3
PFC0385C
PFL2250C RAC
MAL6P1.56 Pfnek-5
PFL1370W Pfnek-1
MAL7P1.73
PF11 0220
PF11_0227
PFC0755C Pfcrk-4
PFL2280W
PF14_0408

PF11_0156
PFI1290W
MAL6P1.108 PfCDPK2
PF14 0320
PF13_0258
PF14_0392
PF11_0060
PFB0150C
PFL1885C PfPK2
PF11_0377 PfCK1

Name

PF11_0464
PF14 0346 PfPKG
PF07 0072

MALI 3P1.278
PFI1B86W PfPKA
PFB0815W PfCDPKI
PFB0665W
P F1 3 _ 0 2 1 1 CDPK

PF14_0423
PF08_0044 PfPKI
MAL6P1.191
PF14_0476
P F 1 1 0 2 4 2

MAL13P1.84
MAL7P1.100 Pfnek-
PF14_0516 PfKIN
PFA0380W
PFE1290W Pfnek-4
PFC0420W PfCDPK3
PF13_0085
PF13_0206 PfPK6
PF14_0294 Pfmap-1
PF11_0239
MAL7P1.18

a P K s:
PFL1490W Rio K
PFD0975W RioK
PF08_0098 ABC1
PF14_0143 ABC1

PFE0765W PI3K

PK  r e g u la to r s :
PF11_0048 PfCK2R1
PF13_0232 PfCK2R2
PF14_0605 Pfcyc-1
PF13_0022 Pfcyc-4
PFL1330C Pfcyc-2
PFE0920C Pfcyc-3
PFL1110C PfPKAR

8 M G S  Apic.ritoch

i
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Name
ePKs
PF11_0147 Pfmap-2
MAL6P1.146 PfPK4
PFI 1280c
PF14_0431 PfLammer
PFD0740W Pfcrk-3
PFC0485W
PF10_0141 Pfmrk
PF11_0096 PfCK2
PFC0105W
PF14_0227 CDPK
PFB0605W PfPK7
PFI1415W
PFB0520W PfRaf
PFD0865C Pfcrk-1
MAL7P1.91 PfFEST
PFI1_0488
MALI 3P1.279 PfPKS
PFC0525C PfGSK3
MALI 3P1.196
MAL6P1.271 Pfcrk-5
PFL0080C Pfnek-3
PFC0385C
PFL2260C RAC
MAL6P1.56 Pfnek-5
PFL1370W Pfnek-1
MAL7P1.73
P F I10220
PF11_0227
PFC0755C Pfcrk-4
PFL2280W
PF14_0408
PF11_0156
PFI1290W
MAL6P 1 108 PfCDPK2
PF140320
P F13_0258
PF14_0392
PF11_0060
PFBOISOc
PFL1885C PfPK2

R T s  G M Spor Name R T S G M Spor

%

■c

PF110377 PfCKI
PF11_0464
P F I4 0346 PfPKG
PF07 0072
MAL13P1.278
PFM68.5W PfPKA
PFB0815W PfCDPKI
PFB0665W
P F 13_0211 CDPK
PF14_0423
PF08_0044 PfPKI
MAL6P1.191
PF14_0476
P F11_0242
MAL13P1.84
MAL7P1 100 Pfnek-3
PF14_0516 PfKIN
PFA0380W
PFE1290W Pfnek-4
PFC0420W PfCDPK3
PF13_0085
PF13_0206 PfPK6
PF14_0294 Pfmap-1
PF11_0239
MAL7P1.18

aPKs;
PFE0765W PI3K
PFL1490W Rio K
PFD0975W Rio K
PF08_0098 ABC1
PF14_0143 ABC1
PK reaulators:
PF11_0048 PfCK2R1
PF13_0232 PfCK2R2
PF14_0605 Pfcyc-1
PF13_0022 Pfcyc-4
PFL1330C Pfcyc-2
PFE0920C Pfcyc-3
PFLIIIOc PfPKAR

Fie. 17; Proteomic data of ePKs, a PKs and PK regulators.

R: ring. T: trophozoite, S: sporozoite. G: gametocyte, M: merozoite, Spor: 

sporozoite. Based on proteomics analysis (Johnson et al., 2004), a red box indicates 

that peptide(s) derived from the predicted protein has (or have) been identified in 

this stage by mass spectrometry analysis.
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3.6 D ISCUSSION

Of the 5268 predicted proteins in the P. falciparum genome, only 65 correspond to 

typical ePKs, which represents about 1.2%. For comparison, 1.7% and 2.5 % ePK 

genes in the human and Caenorhabditis elegans genomes, respectively, encode 

protein kinases (Manning et al., 2002b; Plowman et al., 1999) and the 

Saccharomyces cerevisiae genome (12Mb), whose size is half that of P. falciparum^ 

encodes 115 ePK out of a total of 5800 predicted proteins, which is approximately 

2% (Hunter and Plowman, 1997). So, the size of the protein kinase repertoire in P, 

falciparum is smaller than that of the other eukaryote species kinomes studied so far.

Predominant features o f the phvlosenetic tree:

(i) Most major ePK families are present in the kinome of P, falciparum.

However, no malarial ePK clustered with the tyrosine kinase group, as is the case in 

yeast and some other unicellular eukaryotes. The STE members are also absent from 

our analysis, suggesting that the organisation of the MAPK pathway may differ from 

that in mammals/yeast models.

(ii) Several enzymes did not cluster into defined PK groups and some of them 

are positioned at an intermediate position between established protein kinase 

families. Complementary analyses of their amino acid sequence have shown that 

these protein kinases share motifs with both protein kinase families. So far, four 

PfPKs have been described that appear to be “hybrid” enzymes displaying features 

from more than one established ePK family. As mentioned above, PfPK6 

[PFI30206] and Pfcrk-4 [PFC0755c] both display relatedness to CDKs and MAPKs ,̂ 

and this is confirmed by their position on the tree. The MAPKK-like activation site 

of Pfiiek-1 [PFL1370w],. a NEMA-related protein kinase, (Dorin et al., 2001) 

provides another example of hybrid enzyme, as well as PfPK7 [PFB0605w], an 

enzyme whose C-terminal region carries a sequence that is conserved in MAPKKs, 

but whose N-terminal region is more closely related to that of fungal PKAs (Dorin,

2004). This feature is not plasmodial specific, indeed, it has been reported in other 

organisms that protein kinases could display such hybrid features. For instance, the 

catalytic domain of human hPRP4 (pre-RNA processing gene), a protein kinase 

involved in mRNA processing, shares significant amino acid identity with the CDKs
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and MAPKs (Huang et al., 2000). In Trypanosoma brucei^ TbMOKl displays 

features of both MAPK and CDK (J. Mottram, personal communication). Whether 

such “dual” enzymes represent common ancestors of subsequently divergent 

families, which have been conserved in the evolution of the Apicomplexan lineage, 

or whether these protein kinases are derived from recombination of domains between 

existing protein kinase genes, remains to be elucidated.

(iii) Among the seven ePK groups, the CMGC group is the most prominent 

group in the Plasmodium kinome. Interestingly, in other eukaryotic systems a 

majority of CMGC kinases are involved in the control of cell proliferation and 

development), and their relative abundance in the P. falciparum kinome may reflect 

the variety of successive* proliferative and non-proliferative stages, which constitute 

the life cycle of malaria parasites.

(iv) A number of Plasmodium ePKs possess insertions in the catalytic domain, as 

well as N terminal extensions or C-terminal extensions. The multiple alignment of 

the 65 P. falciparum ePK sequences, together with those of human/yeast protein 

kinases, shows that almost half of the plasmodial protein kinases possess insertion 

sequences in their kinase domain (from 10 to 570 amino-acids). In contrast, few 

examples of such insertions have been reported in the protein kinases of other 

organisms. In Crithidia fasciculata, cfcrk4, a gene encoding a cdc-related kinase 

(Brown et al, 1992), possesses two insertions, which are localized between 

subdomains VIb and VII (6 6  amino acids size), and between subdomains X and XI 

(79 amino acids size). In P. falciparum, internal regions vary in sizes and are rich in 

repeated motifs rich in asparagine (N) residues and also charged residues such as 

aspartate (D) and arginine (R). PfPKI (PF08__0044), for example, possesses two 

large insertions localized either between subdomains V and Via or subdomains VIb 

and VII (with 178 and 330 amino-acids in size respectively). The biggest insertion 

(570 amino-acids) is localized in MAL6P1.146, between subdomain Via and VIb. 

Interestingly, several of the insertions have been localized at the hinge between the 

p-strands of subdomains II and helix alpha of subdomain III, and presumably do not 

interfere with the folding of the N-terminal lobe of the enzyme (see Chapter 5, 

section 5.1 for illustration) (Kappes et al., 1995). The function of these elements 

(insertions/extensions) inside the catalytic domain of protein kinase is still 

undetermined, although there is indirect evidence in some cases (e.g. Pfmap-1,
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(Graeser et al., 1997)) that extensions are absent from the enzymes in parasite protein 

extracts, presumably as a result of proteolytic cleavage. These findings illustrate the 

fact that Plasmodium is distinguished from other model organisms by the presence of 

numerous low complexity inserts (i.e low diversity of amino acid sequence within 

the globular domains of proteins) (Aravind et al., 2003), Indeed, a comparison of 

orthologous proteins reveals that plasmodial proteins can be up to 50% longer than 

yeast proteins. This increase in plasmodial protein size (and thus genome size) 

contrasts with the compaction of some parasite genomes (such as that of the 

microsporidia Encephalitozoon cuniculi (Katinka et al., 2001). Usually, it has been 

noticed that large insertions in Plasmodium proteins are rich in asparagine residues, 

and may vary in length from small inserts of less than 10 amino acids to large inserts 

of more than 100 amino acids. Similar insertions have been also observed in proteins 

form other eukaryotes, like the tryptophane-aspartate (W-D) repeat regions (Smith et 

al., 1999), In Dictyostelium discoideum proteins, a low complexity W-D regions 

found in MHCK (myosin heavy chain kinase) is involved in substrate binding 

(Steimle et al., 2001). Studies of the plasmodial GTPase domain have shown that the 

insertions are located at an external position of the globular protein, suggesting that 

the insert may not interfere with the functions of the rest of the protein, as proposed 

above for at least some of the insertions found in PfPKs (Aravind et al., 2003). Low 

complexity regions could also be found in N terminal and C-terminal extensions. 

Nearly all of the plasmodial ePK possess an N terminal extension; some of them are 

really large (up to 900 amino acids). Likewise, several protein kinases possess a C- 

terminal extension (up to 500 amino acids). The function of these regions is not 

understood. While there is some evidence that such regions have a role in protein- 

protein interactions or in protein kinase regulation in other eukaryotes (Ellis et al., 

2004; Liu et al., 2002), it has been suggested that in Plasmodium these regions might 

be involved in immune evasion. Indeed, it has been postulated these low complexity 

regions could play a role in causing an ineffective host immune response against the 

asparagine-rich regions (Aravind et a l, 2003).

Among the 65 plasmodial ePKs identified in this study, only 23 have been previously 

characterized and most of them display enzymatic activity in vitro (see Chapter 1, 

Table 3). Hence, additional experimental testing is required to assign a function to 

each potential protein kinase. The characterisation of biochemical function and 

regulation of expression of these protein kinases during specific developmental
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stages will provide useful information in the context of novel drug target 

identification. Both transcriptome and proteome data have to be interpreted 

cautiously, because both mRNA and protein samples were extracted from P. 

falciparum clones that have been maintained in culture for generations (3D7 and 

HB3 strains for respectively Le Roch et al. and De Risi et al. studies, available on 

PlasmoDB). Therefore, the expression pattern may not reflect that existing in 

parasites replicating in the human or mosquito hosts and more experiments should be 

performed for each protein kinase to study the expression profile and its localization 

in the parasite. However, these results provide a picture of gene co-expression in the 

laboratory clones. Co-expressed genes may operate in the same pathway(s), or at 

least in the same cellular process during parasite development. For instance, the 

expression pattern of Pfcyc-1 (a cyclin related to mammalian cyclin H) is almost 

identical to that of Pfinrk (a putative CAK homologue), and it is therefore likely that 

these two elements function in the same process.
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Chapter 4: FIKK.

A NOVEL PROTEIN- KINASE FAMILY
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Overview

The characterisation of the P. falciparum ePK complement led to the discovery of a 

novel family of 2 0  genes closely related to each other and encoding protein kinase- 

related polypeptides. This novel family was called FIKK, on the basis of a conserved 

“FIKK” amino acid motif present in these proteins. The description of FIKK primary 

structure reveals that all important residues in the kinase domain are found in these 

sequences, with the exception of the glycine-rich motif involved in ATP binding (see 

section 4.1 below). However, literature illustrates the fact that some kinases, which 

also lack the glycine triad, are nevertheless active (see Chapter 1, section 1.2.5). To 

test the hypothesis that FIKK family members possess protein kinase activity, we 

cloned and expressed one of them (PFL40c) in E, coli, and tested its ability to 

phosphorylate exogenous substrates in vitro (section 4.4), but so far, we have found 

no evidence of protein kinase activity. To further our understanding of the 

mechanisms that have triggered the emergence of FIKK family in the P, falciparum 

genome, I investigated other Plasmodium, apicomplexan and alveolate genomes in 

order to find FIKK homologues, and I found evidence for the presence of just one 

member of this family in some other apicomplexa (see section 4,2.2).

41 i d e n t i f i c a t i o n  AND CHARACTERISATION OF FIKK GENES IN P. 

FALCIPARUM  GENOME

During our ePKs research on the P. falciparum genome, 16 atypical proteins were 

identified in the “probable“ kinases set (see Chapter 3, section 3.1, Table 5). An 

investigation of P. falciparum genome allowed us to identify four additional geneç 

belonging to this family, which were previously grouped within the “improbable” 

kinase set (see Chapter 3, section 3.1, Table 4). Based on a conserved amino acid 

motif in subdomain II of the ePK catalytic domain, we called this group "FIKK". The 

PlasmoDB accession nuipbers of the 20 FIKK members are represented in Table 6 . 

Only one of them (PFD1175w) has been described in the literature as the R45 

trophozoite antigen, which was recognized by sera from humans living in endemic 

areas (Bonnefoy et al., 1992). However, neither kinase activity nor any other 

function has been demonstrated so far.
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Accession num ber chromosome signal p. CTTD Apicop. M itoch. predicted

PFAOnOc (G) 1 + + - _ 630
PFC0060C (Gf) 3 + + - - 597
PFD1175W -R45 4 - + - - 1222
PFD1165W 4 + + - - 622
PFE0045C 5 + -F - - 600
MAL7P1.175 7 - + - - 523
MAL7P1.144 (G) 7 + + - - 871
PFI0095C 9 + •f + - 569
PFIOlOOc 9 - + - - 521
PFIOlOSc 9 + + + - 610
PFIOllOc 9 + + - - 608
PFI0115C (FP) 9 + + + - 490
PFI0120C 9 - + + - 591
PFI0125C (G) 9 + + + - 621
PF10_0160 10 + - - 61 6 ,
,'PF10_0380 (G) 10 + + - + 913^
PFI 1_0510(G) 11 + + - - 560
PFL0040C(G) 12 + + - - 562
MAL13P1.109 13 + + - - 546
PF14_0733/4 14 + + - 587

Table 6; Accession number, chromosomal location and predicted subcellular 

localisation targeting domains of the 20 FIKK sequences.

signal p.: signal peptide, CTTD: C-terminal transmembrane domain, Apicop.: 

apicoplast targeting peptide, Mitoch.: mitochondrion targeting peptide. The 20 FIKK 

sequences are represented by their PlasmoDB identifiers in the first column, and 

their chromosomal location is indicated in the second column. The prediction o f 

subcellular localisation targeting domains is that corresponding to the PlasmoDB 

entry, except where the PlasmoDB identifier is followed by “( ) ” (first column; G: 

Glimmer, Gf: Genefinder, FP: Fullpath). In these cases, only the indicated algorithm 

predicted the targeting/signal peptide. The predicted sizes o f the full-length proteins 

are indicated in amino acids. The six FIKK whose expression has been studied in 

section 4.2.2 are in blue.
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4.1.1 Structure of the predicted FIKK proteins

A multiple alignment of the FIKK protein sequences (Fig. 18) shows that the kinase 

domain is well conserved tlirough the family, with the exception of the N-terminal 

region localized up-stream the catalytic domain (data not shown). The conserved 

kinase residues are in red, whereas typical FIKK residues are represented in blue. All 

residues which are crucial for phosphotransfer and protein structural stability are well 

conserved through the FIKK family, except for the glycine triad (GxGxxG) usually 

found in ePK subdomain I and which is involved in ATP binding. Nevertheless, a 

conserved GxxY motif (“GVKY” in most of FIKK) is localized up-stream of 

subdomain II and could correspond to a glycine rich motif of subdomain I, and a 

tryptophane residue is conserved in the same region in all FIKKs. Some conserved 

residues involved in the stability of the kinase structure are absent in a few of the 

FIKKs: (i) a glutamate, usually found in subdomain VIII of ePKs, is absent from the 

MAL7.P1.175 sequence (ii) likewise, an arginine residue located in subdomain XI in 

PFI0120C, PFC0060C and MALI3P 1.109 (however, in these last cases, the absences 

could be due to a wrong prediction of the 3’ end of the gene). In addition to the 

residues conserved in typical ePKs, the CLUSTALW alignment emphases the 

presence of several amino-acid motifs, which are well conserved in all FIKK 

sequences but absent in other ePKs (Fig. 18, in blue). These atypical residues have 

been used to define signature motifs so that FIKK motif searches could be made in 

various databases of other organisms (see section search for FIKK in other 

organisms). As previously noted with respect to “typical” plasmodial ePKs, low 

complexity extensions are also found in some FIKK, as well as insertions inside the 

kinase domain (Fig. 18, pink dash). The size of such regions vary among the 20 

FIKK, leading to predicted protein lengths comprised between 520 to 1222 amino 

acids (Table 6 ). Most of these genes display the same structure, composed of 3 exons 

(generally with a large exon 2 flanked by two small exons, exon 1 and exon 3, see 

section cloning FIKK, gene predictions), whereas other genes are composed of a 

large exon 1 followed by a small exon 2 .
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ePK residues
PFI0120C
PFI0115C
MAL7P1.144
PFA0130C
MAL7P1.175
PFE0045C
PFC0060C
MALI 3P1.109
PFIOlOSc
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ePK residues 
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Fig. 18: Comparative primary structure of P. falciparum FIKKs with ePKs 

using CLUSTALW alignment

The residues, which are conserved in most ePKs are indicated in red, whereas 

specific residues, conserved in all FIKK family members, are indicated in blue. 

Extension and insertion are represented by pink dashes.

4.1.2 Prediction of cellular/sub-cellular localization

The Plasmodium ultra-structure is complex and the parasite has many cellular 

compartments bound by membranes (Fig.6 and 7, Chapter 1). Maintenance of 

protein function in a multi-compartmented cell requires specific “protein delivery 

mechanisms” to ensure effective translocation of proteins to their respective
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destinations. Protein trafficking studies have shown that in Plasmodium the 

machinery is similar to that of other eukaryotes. For instance, exported proteins 

possess an N-terminus hydrophobic segment (called a signal peptide), which directs 

the protein to the secretory pathway. Consequently, they transit through the ER and 

the Golgi apparatus, prior to release by exocytosis at the cell surface. It has been also 

shown in Plasmodium that translocation to specific organelles such as the apicoplast 

or mitochondrion is also dependent on specific targeting sequence (Bender et al., 

2003; Foth et al, 2003).

4.1.2.1 Sisnal vevtide and transmembrane re2 ions

Gene predictions from four different algorithms {Plasmodium annotation. Glimmer, 

Fullpath and Genefinder) are available on PlasmoDB. In the case of the FIKK 

sequences, these four predictions differ from each other essentially in the 5’end (see 

Appendix B). According to the prediction that we selected (see Table 6 ), 13 FIKK 

possess a signal peptide: six, one and six under Glimmer, Fullpath and PlasmoDB 

predictions respectively. For instance, PFL0040c PlasmoDB gene prediction does not 

display any signal peptide whereas Glimmer model does. In all cases (except 

PFE0045c and PFI0120c), all algoritluns predict both a C-terminal transmembrane 

domain and a signal peptide. However, such predictions should be interpreted 

cautiously. The significance of gene predictions and signal peptide predictions will 

be discussed in section 4.6.

4.1.2.2 Mitochondrion and aoicovlast tarsetins signals:

Plasmodium possesses two DNA containing organelles, in addition to the nucleus: 

the apicoplast and the mitochondrion. Studies based on genes targeted to plastids 

(including plant chloroplasts) have shown that during evolution, these organelles 

have exported some of their genes to the nucleus and re-import the products by using 

a protein import machinery based on transit peptides (Martin and Herrmann, 1998). 

In the case of Plasmodium organelles (apicoplast and mitochondrion) such genes 

have been identified in the nucleus genome, such as [2Fe-2S] /y-ferredoxin and Pf- 

isocitrate dehydrogenase respectively (Vollmer et a l, 2001; Wronger and Muller, 

2003). In both cases, an apicoplast bipartite peptide (composed of a signal peptide 

followed by a transit peptide) and a mitochondrial transit peptide have been shown to 

be necessary for proper targeting (Bender et a l, 2003; Wrenger and Muller, 2003). 

Based on the amino acid characteristics usually found in transit peptides (such as
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overall positive charge, enrichment in serine and threonine), algorithms have been 

developed to determine the presence of such targeting signals in a given amino acid 

sequence. Although in most cases the four gene predictions available on PlasmoDB 

web site are different for the N-terminus, we used PlasmoDB predicted protein 

sequences to mn transit peptide algorithms (available on PlasmoDB). Five of the 20 

FIKKs, all of which are localized on chromosome 9 are potentially addressed to the 

apicoplast (see Tablet) whereas only one of them (PfPF14_0733) possesses a 

potential mitochondrion-targeting signal sequence, hi the case of R45, no signal 

peptide is predicted, but N and C terminal transmembrane domains are predicted (10- 

38*’̂ and 234-254̂ ^̂  amino-acid respectively under gene finder model).

4.1.23 Host-tarsetins sisnal

A recent bioinformatic study reveals that a conserved 11 amino-acid signal is 

required for the secretion of plasmodial proteins from the parasite vacuole to the 

human erythrocyte (Hiller et al., 2004). An investigation of the predicted proteins set 

encoded in the genome of P. falciparum has been performed as well by the authors, 

and four of the 320 putative secreted proteins belong to the FIKK family 

(PF10_0160, PFI0105C, MAL13P1.109 and PF14_0733) (Hiller et a l, 2004), 

Immunofluorescence assays on parasite cultures will determine whether or not theses 

proteins are exported.

4.2 GENE PREDICTION AND CLONING OF FIKK GENES

4.2.1 Gene prediction of PFI4 0733 and PF14 0734

Based on a multiple alignment between PF14 0733, PF14_0734 and three FIKK 

(MAL7P1.175, MAL13P1.109 and PFIOlOOc), the predicted PF14_0733 FIKK is 

truncated, and contains only subdomains I to V (Fig. 19). Similarly, for PF14_0734, 

the contiguous ORF, seems to correspond to the missing C-terminal part of 

PF14 0733 FIKK with subdomains Via to XI.

Since these two ORFs (PfPF14_0733 “ORFl” and PfPF14_0734 “ORF2”) are 

contiguous in the genome, and separated by a very short region (see below Fig: 20), 

we suspect that there may be an erroneous intron prediction, and that the PF14 0733 

and PF14_0734 are part of a single, full-length FIKK. To verify this hypothesis, we 

performed reverse-transcriptase polymerase chain reaction (RT-PCR) analysis of P.
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falciparum RNA, using a forward primer in the PF14_0733 ORFl and a reverse 

primer in the PF14 0734 ORF2 (Primers have been designed in non-conserved 

region, see localisation of primer in Fig. 19).

MAL7P1.175 
MAL13P1.109 
PFIOlOOc
P"" PFI 4 ■ '33

MAL7P1.175 
MAL13P1.109 
PFIOlOOc 
Pf P F H  07 3 -

MAL7P1.175 
MAL13P1.109 
PFIOlOOc 
PfPFl4 0734

MAL7P1.175 
MAL13P1.109 
PFIOlOOc 
PfPFl4 0734

MAL7P1.175 
MAL13P1.109 
PFIOlOOc 
PfPFl4 0734

MAL7P1.175 
MAL13P1.109 
PFIOlOOc 
PfPF14 0734

MAL7P1.175 
MAL13P1.109 
PFIOlOOc 
PfPF14 0734

I F o r w a i ' t l  p r i m e r   : ► II
VYGMNYDVWELKRITTNNCEIGSSRVHKMYETFISSKNGN GIRLFIKKIPISAWVKQ
FNGVKYSDWKLTSMRRFNLNNNVLKDHKTYKSIINSKKGNDMKKVKLFIKKIPIDIWVEQ 
IGGVNYEKWDLYSIKNENYNESGGRNHEMFSTVISSKSGFRKKKVKLFIKKVPLNSWIEL 
INGVKYPDWK :.K (I I GY:- F :p\'CEMY! T’ •' I V< " PDFNTF rv’F :,FI KK'/P ' F I WVK<G

III IV V
YKLMNEYEGEYIINAENYVMEAVALSFLNEYYPGIAPKLYRVLFQPDVHYIGGEFPQENI
FNLMKKYEGEYLIDKENYVMEAVSLAFLNEYYPGITPKFYKILYESDKNNMNEKNCKKYK
YNKMDIYHGEFLDGAENFVMEAMVSLFLNKYHPGITPKFYNLLYESENDYSELKGLNELM
FDKMAPYPGFYF.vrAFMFVMFAVA.'^AFl.TKYFPG i TPKLYKT LYPPT--------------

Via
FQDLDTFNSVLTNELESNMNGYIIIVSEYFGENINEYIKRQRKK— MFSIGRKKKKKKLL 
FQDLNELNDILTKKLENNINGNIVLISEFFGENVFDYIKRKKNTLFVVSDISNEDKKKIL
FCDIDIFKNELIKIRNRNKKGYVVMIWEFFGQNLKEFLHSEKE---- NLVITKERKK-IL
------------------------------------------- MDDDDD-----DLVLTVEEKKSIL

VIb VII
YNCLNLLRKLHNAGLSHLDFTSHNILIS-DKHEIRLCDFGKATPMYTYNLRHINNINCIH 
YNSLNLLMRLHNAGLTHLDLSPDNMLISPKNYEMRLCDLSQSTPIYTNKLRHKEKLNSIK 
FECLKLINKLHKAGLTHLDISPENILIG-ENYEMRLCDFGKTTPLYVLNNIDEHNKGHLQ 
YKALNLYTRLHEAGLAHLDLSAENVLID-ENNEVRLCDLGKSTPVYTTSLRHLDDSLDLA • • . * » * * ■ •

VIII IX
SFESCAPCV---ELIKKQEELDITYPLEYLKSITDQEERKTFYFNVSSVDKY
PFESFEPCIGKIEYIPPECWKIVWKYKMNNIKNPIEYLKNISNQEERKKYYYDVSCADKY
RFRSYIPYVGKTKYAPPECWNLKKKYKELGIENPLVYLKTLKDYEYKDTLYFDVLAADIY
IFESCVPCVGKEAYMPPECMKLYKEYRKMKISSPFDYANSVRDRRERRKWYFDVLTAEKY

*  *  *  .  • •  . • ir
X XI

MLGIVFIWIWNYNFLWKRSDPSYDLQYLKFEQFDMILDFFKKTKRWPKELKNIIKQ----
MLGIFFIWMWNNGFIWKCSDPIQDKIFEIFMKSNMDLNKFIMTKSWPHELNNLINV----
MLGILFIWISSNRYLWGNFDMSQNSNFKKFVNSDMNFDLFPLTREWPEGLKYIIRK----
ML-IFFMWIWNEGHLWDCSDPSKDEIFNEINECEMDLDKCDLTDNWPEGLKAMIKVNGFD * * * * , * . # * ★ . • » » * * * » * * *

---------------------LLHMDYRKNLNLNDLSKNPWWSSNI
------------------------------------ IIYINIYICI--
---------------------LLDYESRKSLDLNELIEHPWWSTDL
YIYIYIYIYIYIYIYIYRLLNFESRKELNLKDIYDDPWWSTIM

Reverse primer

Fig. 19: CLUSTALW alignment of PfPF14_0733 and PfPF14_0733 with FIKK 

kinase domains of MAL7P1.175, MAL13P1.109 and PFIOlOOc

Position o f primers used for PCR amplification o f PfPF14_0733/34 are represented 

by the arrows. underlines identical amino-acids between sequences, whereas 

". ” and ” show similarities (at least two and three identical residues respectively). 

The first PfPFl4_0733 "ORFl ” is in red and the following PfPF14_0734 "ORF2” 

is in blue.
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PFI 4-0733

F ullP hat (+) 
F u llP hat ( - )  
Genefinder (+) 
Genefinder ( -)  
GlimmerM (+) 
GlimmerM ( - )
Pf Annotation (+) 
Pf Annotation ( - )

IK ] 0 4 = 1 m---— -I

Pf ch rl4  3Mb 3Mb 3Mb 3Mb 3Mb 3Mb

exon location Strand length algorithm coding start

1 3141145 -3141369 + 225bp Pf Annotation 1

2 3141573 -3142391 + 819bp Pf Annotation 1

PFI 4-0734

FullP hat (+) 
FullP hat ( - )  
Genefinder (+) 
Genefinder ( - )  
GlimmerM (+) 
GlimmerM ( - )
Pf Annotation (+) 
Pf Annotation ( - )

Pf ch rl4 3Mb

K

3Mb

CDU

3Mb 3Mb 3Mb 3Mb

exon location strand length algorithm coding start

1 3142560-3143204 + 645bp Pf Annotation 1

2 3143331 -3143411 + 81bp Pf Annotation 1

Fig. 20; PfPF14 0733 and PfPF14 0734 predicted open reading frame, 

according to four gene models (FullPhat, Genefinder, Glimmer, Pf annotation).

According to PlasmoDB prediction, PfPF14_0733 ORFl, as well as PfPF14_074 

ORF2, are composed o f  two exons.
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Fragments of around 1000 bp and 1200 bp (expected size are 938 pb and 1218 pb 

respectively) were amplified from RNA and gDNA respectively (Fig. 21: lane 1 and 

3), indicating first that PF14 0033 and PF 14 0034 ORFs correspond to only one 

FIKK gene, and second that an intron of approximately 200 bp is present. The 

sample in which reverse transcriptase had been omitted from the reaction yielded no 

amplified product (Fig. 21: lane 2).

1 2 3

1000  bp 
800 bp

- -— 1200  bp

#  ■ :

Fig. 21: PfPF14_0733/PfPF14_0733 RT-PCR

RT-PCR product (lane I) was obtained from total RNA from asexual RBC stage, 

using primer represented in the Fig. 19. Reverse transcriptase was omitted in the 

reaction corresponding to lane 2. Lane 3 present the PCR fragment amplified from 

gDNA using the same primers.

Consistent with our RT-PCR results, transcriptome data from DeRisi et al. (Bozdech 

et a l, 2003) display identical expression profiles for both PF14 0033 and 

PF14 0034 genes (see Fig. 30, first lane). The cDNA PCR product was cloned into 

pGEMT-easy vector and sequenced. Two independent PCR reactions performed on 

two cDNAs samples from different 3D7 cultures led to the same result. Indeed, 

sequencing of the junction between “PF14 0033 and PF14 0034” PlasmoDB ORFs 

showed that the predicted intronic region is present in the cDNA, including the stop 

codon (Fig. 22, bracket a). Furthermore, the intron localized at the C-terminus of 

PF14 0034 is longer than predicted (Fig. 22, bracket b), leading to a final PCR 

product of about lOOOpb on cDNA, as observed by agarose gel electrophoresis (Fig. 

21 ).
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Forward primer

gDNA TTATTAAAGGAAATCCAGATGAAAATACAGAAGATGTAAAATTATTTATTAAAAAGGTAC
P f P F 1 4 _ n '^ 3 3  TTATTAAAGGAAATCCAC.ATGAAAATACAGAAGAY'rrAAAATTATTTATTAAA AAGG" AC
.-DMA AAAGGAAA'i CCAGAIGAAAATA- A i . A A G A "  A AA A T  A-'Tl'ATTA A A

gDNA CTATAGAAATATGGGTAAAACAATTTGATAAAATGGCTAGATATCGAGGGGAATATTTAG
r f  PF I •; _ 07  3  ̂ CTATAGAAA':'ATGGGTAAAACAATT':'GATAAAATGGCTAGA'I A TCGAGGGGAATATTTAG
,-I'NA ; ‘ ::AAr.': A . :G'I AA-A'IAA'Fi": A . "  AAAA'D ' F '  K -A  ATA"’'^ '''7 '

gDNA
P F M  m ' n

TAAATGCTGAAAATTTTGTAATGGAAGCTGTCGCTTCTGCTTTTTTAACGGAATATCATC
TA A A T r.. TGAAAATT'':'TG'!'AA'; ■.;GAAi,f. . './r'"G CT'"A-TGCTTTTTTAA/-(v;G AA':'ATCATC

gDNA
P f P F 1 4 _ 0 7  33 
rPMA
gDNA

gDNA

CDNA

gDNA
P f P F 1 4  0 7 3 4

CAGGAATAACACCAAAATTATATAAAATATTATATGATCCGATTTGAGAAAATAAAAAGA
CAOGAATAACACrAAAAT’-ATATAAAATATTATA'; GATi'CGATT----------------------------------
r A G ' ' - ^ T A A < " A ' " -  ' A  -  A "  ' '  . . " A A A A  A T T A " ' -  ‘ ‘  ' ' "  T G A  :A '  A ' l ' A A A A / "  -

GTTTACATAAAATAGCTTTTAATGATTTAGGTGCATTTAATTATATTTTGCGTAATAGAT

■ A " !T r . ‘!

TAAAAAGTAACATTGAAGGAAATATTGTAATAATTTCTGAATTATATGGTCAAGATATAT

A A A A G T A A C A T :  G A A G '  . A A A I A T T ' . T A A T A A ' I  T  : ' ' ~ T G A A " ' "  A : ' A T G G T C A A G A " ' A "

TTAATTATATTGATAAAAAACGACTAGATATTGGTATGGATGATGATGATGATGATTTAG 
------------------------------------------------------------------------------ TGGATGATGATGATGATGATTTAG
" T A . - . ' :  T A T A T ' :  l A  : A A A A A A  ' A G A T A 1  '! G ' . . A - 'G A ' :  ' I A T '  I A T  I A T G A T T T A G

gDNA TTTTAACTGTTGAAGAAAAAAAGAGTATTCTTTATAAAGCTTTAAATTTATATACAAGAT
P f P F 1 4 _ 0 7 3 4  TTTTAACTGTTGAAGAAAAAAAGAGTATTCTTTATAAAGCTTTAAATTTATATACAAGAT

: T  G A A A A  A  A  A A  A C A G T  A ' F  : ■ T T T A T A A A  A A A T T ' T ' A T A ^ A ' I A A A  A ' l ’

gDNA TACATGAAGCAGGTTTAGCACATCTAGATTTATCAGCAGAAAATGTTTTAATCGATGAGA
P f P F 1 4 _ 0 7 3 4  TACATGAAGCAGGTTTAGCACATCTAGATTTATCAGCAGAAAATGTTTTAATCGATGAGA
- ; T A .  T G A A .  . C A G a T T T A G i ' . A '  - . A T C T A G A - ; T "  A T ' I A G C A '  .AAAATOTTTTAAI CGATGAGA

gDNA
P f P F 1 4  0 7 3 4

ATAATGAGGTACGTTTATGTGATTTAGGTAAAAGTACACCTGTGTATACTACTAGCTTAA
ATAATGAGGTACGTTTATGTGATTTAGGTAAAAGTACACCTGTGTATACTACTAGCTTAA
A" ; A" G A A : ......  a ' TAA AA' " AGA. 'CTGT .rATA.rTACTA ACT': AA

gDNA GACATTTAGATGACAGTTTAGATTTAGCAATTTTTGAATCCTGCGTACCATGTGTAGGCA
P f P F 1 4 _ 0 7 3 4  GACATTTAGATGACAGTTTAGATTTAGCAATTTTTGAATCCTGCGTACCATGTGTAGGCA
. NA GACA'-TTAGAT -A' AriTT-A'GATTTA .CAATTTTTGAATC.'lTGCGTACCATGTGTAGGG ''

gDNA AAGAAGCTTATATGCCTCCTGAGTGTATGAAGTTATATAAAGAATATCGTAAAATGAAGA
P f P F 1 4 _ 0 7 3 4  AAGAAGCTTATATGCCTCCTGAGTGTATGAAGTTATATAAAGAATATCGTAAAATGAAGA

■ -I-' A ':  ’  TAAAGAA’: A"’GGTAAAATGAA'.A

g  DNA TAAGTAGTCCCTTTGATTATGCTAATTCTGTAAGGGATAGAAGAGAAAGAAGAAAATGGT
P f P F 1 4 _ 0 7 3 4  TAAGTAGTCCCTTTGATTATGCTAATTCTGTAAGGGATAGAAGAGAAAGAAGAAAATGGT

T A A .-T A G T r.... ';- -  GA'"'; ".'” GC"AAT'; "'TG-AAGGGATAG AAf .A'AAA AG AA A'A T '■

gDNA ATTTTGATGTTTTAACAGCTGAAAAATATATGCTTGGAATTTTCTTTATGTGGATCTGGA
P f  P F I 4 _ 0 7  3 4 ATTTTGATGTTTTAACAGCTGAAAAATATATGCTTGGAATTTTCTTTATGTGGATCTGGA

P'lA ATTTT'"A'; .'I TT': AAGAG' .AAAAATA'I AT'‘-'3TT''.' ,.’*ATTTTC'I "ATGT-GGATCTGGA

gDNA ATGAAGGCCATTTATGGGATTGTTCAGATCCATCAAAAGATGAAATTTTTAATGAAATAA
P f P F 1 4 _ 0 7 3 4  ATGAAGGCCATTTATGGGATTGTTCAGATCCATCAAAAGATGAAATTTTTAATGAAATAA

n ': : ' 'ATGAAG.^O.A'I'Tl A I'GGGA'I TGTTGAGAT'-. ATCAAAAGATGAAATTTTTAATGAAATAA

gDNA ATGAATGTGAAATGGACTTGGATAAGTGCGATTTAACTGATAATTGGCCTGAAGGGTTGA
P f  P F I 4 _ 0 7  3 4 ATGAATGTGAAATGGACTTGGATAAGTGCGATTTAACTGATAATTGGCCTGAAGGGTTGA
> : '-lA ;AA'l',:TGAAATGGA.-"'T7r;ATAAGTG'::GATTTAA''TGATAATTGGGCTr;AAGGGTTGA
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'-'m

gDNA
P f P F 1 4 _ 0 7 3 4
CPNA
gDNA
P f P F 1 4 _ 0 7 3 4
■-DNA

gDNA
P f P F 1 4  0 7 3 4

gDNA
P f P F 1 4 _ 0 7 3 4
■ ■' MA
gDNA
P f P F 1 4  0 7 3 4

AAGCCATGATTAAGGTAAATGGATTTGATTATATATATATATATATATATATATATATAT ^  
AAGCCATGATTA---------------------------------------------------------------------------------------------------------

ATATATATATATATATATATGTATGTATATATGTATGTATGTATGTATATATGTATATAT 
------------------------------------------- GTATGTATATATGTATGTATGTATGTATATATGTATATAT

GTATATATATGTATATCTATCTATATATATATATATAAATATAATAATTTTTTTTTTATT
GTATATATATGTATATCTATCTATATATATATATATAAATATAATAATTTTTTTTTTATT

,p.p.p.p.p.p.^.p.^r[,q..p.^.p.^.^.Y'TTTTTATAGAGATTATTAAATTTTGAATCTAGGAAGGAATTAA

ATCTAAAGGATATATATGACGATCCATGGTGGTCCACCATAATGTAA 
ATCTAAAGGATATATATGACGATCCATGGTGGTCCACCATAATGTAA

Reverse primer

Fig. 22: Alignment of the predicted PfPF14_0733 and PfPF14_0734 sequences 

with sequences of gDNA obtained from PlasmoDB and of cDNA obtained 

experimentally.

Arrows represent primers used for PCR amplification o f PfPFJ4_0733/ 

PfPF14_0734. The predicted PfPFJ4_0733 "ORFl ” is in red, and the PfPF14_0734 

"ORF2” is in blue, whereas cDNA which has been sequenced is in pink.

4.2.2 Cloning of FIKK genes

The following experiments have been performed with Tim Monteil, an 

undergraduate student who has been initiated under my supervision to bio-molecular 

techniques during a three-month stay in our laboratory. Six FIKK sequences without 

large extensions/insertions have been selected for cloning into expression vectors: 

MALP1.175, MALP1.144, PFIOlOOc, PF11_0510, PFL0040c and MAL13P1.109 

(sizes are about 550 amino acids, 745 for MALP1.144). The various gene prediction 

models are not in agreement for most of these six genes, especially for the start 

codon (see below PlasmoDB, Genefinder, Fullpath and Glimmer gene predictions. 

Fig. 23). The PlasmoDB model was arbitrarily chosen (PFIOlOOc and 

MAL13P1.109), except when it did not predict a signal peptide (MAL7P1.175, 

MAL7P1.144 and PFI 10510). In these cases, the Glimmer model, which predicts a 

signal peptide, has been chosen. 5’ and 3’ primers were designed accordingly to 

amplify the coding regions from asexual or gametocyte cDNA libraries, using gDNA 

as positive control.

108



MAL7P1.144 (P f annotation)

F ullP hat (+)
F ullP hat ( - )
Genefinder (+)
Genefinder ( -) ■Hi
GlimmerM (+)
GlimmerM ( - ) ■  ■
Pf Annotation (+)
Pf Annotation ( - ) me
Pf chr7

i
OMb Ofib 1Mb 1Mb 1Mb 1Mb

exon location strand length algorithm coding start coding end
1 1001867- 1004122 + 2256 Pf Annotation 1 2256
2 1004236- 1004316 + 81 Pf Annotation 1 81

MAL7P1.175 (Pf annotation)

F ullP hat <+) 
F ullP hat ( - )  
Genefinder (+) 
Genefinder ( - )  
GlimmerM (+) 
GlimmerM ( -)
Pf Annotation (+) 
Pf Annotation ( - )

Pf chr7 1Mb 1Mb 1Mb 1Mb 1Mb 1Mb

exon location strand length algorithm coding start coding end
1 1261678 - 1262884 + 1207 Pf Annotation 1 1207
2 1262918- 1263201 - f 284 Pf Annotation 1 284
3 1263322- 1263402 + 81 Pf Annotation 1 81
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PFll 0510 (Glimmer)

F ullP hat (+) 
F ullP hat ( - )  
Genefinder (+) 
Genefinder <-) 
GlimmerM (+) 
GlimmerM ( -)
Pf Annotation (+) 
Pf Annotation ( - )

Pf c h r l l

K K

IMb 1Mb 1Mb 1Mb 1Mb 1Mb

exon location strand length algorithm coding start coding end
1 1979264- 1979320 + 57 GlimmerM 1 57
2 1979425 - 1980975 + 1551 GlimmerM 1 1551
3 1981083 - 1981157 + 75 GlimmerM 1 75

PFL0040c (Glimmer)

FullP hat (+) 
FullP hat ( - )  
Genefinder (+) 
Genefinder ( - )  
GlimmerM (+) 
GlimmerM (-)
Pf Annotation (+) 
Pf Annotation ( - )

Pf ch rl2 64kb 66kb 68kb 70kb 72kb 74kb

exon location strand length algorithm coding start coding end
1 70768 - 70842 - 75 GlimmerM 1 75
2 69000 - 70613 - 1614 GlimmerM 1 1614
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PFIOlOOc (Pf annotation)

FullP hat (+) 
FullP hat ( - )  
Genefinder (+) 
Genefinder ( - )  
GlimmerM (+) 
GlimmerM ( - )
Pf Annotation (+) 
Pf Annotation ( - )

Pf p fal_chr9 88kb 90kb 93kb 95kb 97kb 99kb

exon location strand length algorithm coding start coding end
1 95412-95612 - 201 Pf Annotation 1 201

2 94041 -95324 - 1284 Pf Annotation 1 1284
3 93829 - 93909 - 81 Pf Annotation 1 81

MALI3P1.109 (Pf annotation)

F ullPhat (+) 
F ullPhat ( - )  
Genefinder (+) 
Genefinder ( - )  
GlimmerM (+) 
GlimmerM (-)
Pf Annotation (+) 
Pf Annotation ( -)

Pf ch rl3 _ l 820kb 822kb 824kb 826kb

exon location strand length algorithm coding start coding end
1 825203 - 825298 + 96 Pf Annotation 1 96
2 825403 - 826947 + 1545 Pf Annotation 1 1545

Fig. 23; Gene prediction for the six FIKK: MALP1.144, MALP1.175, 

PF11_0510, PFL0040C, PFIOlOOc and MAL13P1.109

MALI 3P 1.109

Despite trying a variety of PCR conditions (several DNA polymerases, Mg^ 

concentration, annealing T° and elongation time), we were unable to amplify 

MAL13P1.109 from either gDNA or cDNA. New primers were designed using 

others gene predictions, without any positive result. In addition to wrong gene
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prediction, the fact that there is no amplification on gDNA suggests that the DNA 

polymerase is maybe causing problems too. Indeed, many commercially available 

DNA polymerases have difficulty in amplifying long stretches of AT-rich DNA 

found in the Plasmodium genome.

MAL7PL175 andMALP7PL144:

We had the same amplification difficulties with MAL7P1.175 and MAL7P1.144. 

However, under specific PCR conditions (see Chapter 2, section 2.3.2), we managed 

to amplify fiagments of the expected size. For MAL7P1.175, fragments have been 

amplified around ISOObp and 1700bp on cDNA and gDNA respectively (Fig. 24); 

for MAL7P 1.144: around 2300bp on cDNA and 2400bp on gDNA. Unfortunately 

amplification was observed only with polymerases lacking proofreading activity, and 

the resulting expression vector clones had numerous mutations. Nevertheless, these 

first data confirm transcrip tome studies indicating that both genes are expressed in 

asexual stages (DeRisi et al., (Bozdech et al., 2003) and suggest that a predicted 

signal peptide is present at the 5' part of MAL7P1.144 translated gene.

P F ll 0510

In the case of PF ll 0510, amplifications were possible from gDNA (Fig.24, 

fragment around 1900bp), but no amplification was observed from cDNA, despite 

testing different forward or reverse primers suggested by gene predictions models. 

Therefore the absence o f amplification fiom cDNA could be due either to a very low 

representation of the cDNA template in the asexual cDNA library, or to the absence 

of full-length cDNA for this gene in the library (reverse-transcription could end 

precociously, leading to truncated cDNA, which would prevent amplification). 

Nevertheless, we could not exclude that all the predictions tested are erroneous. 

Screening of cDNA library and 5’RACE amplification could help to detemiine the 

exact limits of this ORF.

PFIOlOOc and PFL0040c

Both genes have been amplified from the cDNA library using forward primers 

predicting a probable signal peptide (PFIOlOOc PlasmoDB and PFL0040c Glimmer 

models: amplicons around 1500 and 1700bp respectively). But the PFL0040c reverse 

primer designed from the Glimmer algorithm did not allow any cDNA amplification, 

whereas the reverse primer predicted by PlasmoDB did (Fig. 24). There is no
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available transcriptome data on PFIOlOOc (see Fig.30). However, amplification of 

this gene occurs both from asexual or gametocytes cDNA libraries, which suggests 

expression of PFIOlOOc during erythi'ocyte stages. As expected, for PFL0040c (like 

MAL7P1.144), sequence derived from PCR on cDNA predicted a signal peptide in 

the first 50 bp after the predicted start codon. The significance of this signal peptide 

will be analysed in the future using specific antibodies against eaeh FIKK, to 

determine the subcellular localisation of the proteins.

4.3 EXPRESSION OF RECOMBINANT PFL0040c AND ASSESSMENT OF 

ITS KINASE ACTIVITY

-k
PFL0040C was successfully cloned into a His-tag expression vector (see chapter 2, |

section 2.3.3.3). Expression of the recombinant His-tagged PFL0040c was tested 

under different conditions (25°C, 30°C and 37°C) without significant increase of 

yield. His-PFL0040c was purified on a nickel column and a protein of the expected 

molecular mass (about 60kDa) was observed on a Commassie-stained SDS- 

acrylamide gel (Fig. 25).

The recombinant protein was tested for kinase activity. In vitro standard kinase assay 

was perfoimed using several potential substrates (histone HI, Myelin basic protein, 

a-casein and (3-casein), as well as total cell extracts from asynchronous parasite 

culture (see Chapter 2, section 2.3). No kinase activity was detected under our 

experimental conditions, whereas a positive control (PfPK5/RINGO-dependent 

histone HI phosphorylation) gave the expected signal. Even though no kinase 

activity in vitro has been demonstrated so far, we cannot exclude that in vivo, FIKKs 

have conserved such a function. Indeed, lack of a cognate activators or a conect 

substrate, or incorrect folding of the recombinant protein could be explanations for 

the observed absence of kinase activity. Once specific antibodies are available, they 

will be used to test by immunoprécipitation if the native proteins have protein kinase 

activity. Identification of partners (if they exist) will help to understand the functions 

of the proteins and the pathways in which they might operate.
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MALP7P1.144 MAL7P 1.175

I i
2450 bp 

2300 bp

2500 bp
2 0 0 0  bp 2 0 0 0  bp 

1500 bp

1700 bp 

1550 bp

P F ll 0510

t
%

2 0 0 0  bp 
1500 bp

1900 bp

PFIOlOOc

1800 bp

1550 bp

<
Z
%

<z
Û

PL0040C

I I
—  2 0 0 0  bp
—  1500 bp

1800 bp

1700 bp

Fig. 24: MAL7P1.175, MALP7P1.144, PF11_0510, PFIOlOOc and PFL0040c 

PCR using a cDNA library from asexual parasites.

PCR were performed using primers designed to amplify the full-length coding 

sequence (see appendix C)
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—  62kDa

Fig. 25: The purified recombinant His-PFL0040c

4.4 ORIGIN OF THE FIKK FAMILY AND PHYLOGENETIC ANALYSIS

4.4.1 Subtelomeric localization

Based on the nomenclature of PlasmoDB, it was obvious from their “gene identifier” 

number that seven of the 20 FIKKs were localized in tandem on the same 

chromosome (PFI0095c, PFIOlOOc, PFI0105c, PFIOllOc, PFIOllSc, PFI0120c, 

PFI0125c). More precisely, they were located in a subtelomeric region of 

chromosome 9. To further this analysis, I also looked at the position of the other 

FIKKs. We found that the FIKK genes are distributed over most of the nuclear 

chromosomes (chromosomes 1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, see Table 6). 

Interestingly, with the exception of MAL7P1.144, PF10 0160 and MAL13P1.109, 

they are all localized in subtelomeric regions (Fig. 26).

A subtelomerie location is common for genes belonging to families involved in 

antigenic variation, such as Var/Rif and Stevor (Gardner M J et al. , Nature, 2002, 

(419) 498-511). It has been proposed that this localization is favourable to intense 

recombination, a consequence of the fact that telomeres from several chromosomes 

are physically clustered together in stmctures located at the nuclear membrane, 

which is thought to enhance ectopic recombination (Freitas-Junior et al., 2000). 

Hence, in addition to the presence of the tandem array on chromosome 9, which is an 

indicator of gene duplication, the subtelomeric location of FIKK genes gives a 

hypothetical explanation for the origin of FIKK family. Recombination events of 

ancestral FIKK(s) have probably occurred, leading to such a number of FIKK 

members in P, falciparum genome (for comparison, only one member has been 

found in other Plasmodium species; see section 4.4,2).
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Fig. 26; Chromosomal location of P. falciparum  FIKK

FIKK genes are marked as an vertical red bar on the chromosome and red 
symbolize the chromosomal orientation (sense: top, or antisense:bottom).
Chromosomes are represented to scale (in Mb).

4.4.2 FIKK homologues in other organisms

A broad investigation of eukaryotic genome databases was performed to investigate 

the presence of any related FIKK kinases in other organisms. Using BLAST? and 

TBLASTN analyses of a variety of databases using FIKK amino acid sequences as 

queries, as well as using conserved FIKK motifs as queries, no homologues were 

detected in any other organisms, except in a few apicomplexan species.
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4.4.2.1 Plasmodial species

At the time of my research P. yoelii yoelii and P. vivax genome sequences were 

finished, but only P. yoelii yoelii was annotated. P. berghei, P. chabaudi, P. 

knowlesi and P. reichenowi were partially sequenced. By TBLASTN analysis, only 

one representative of the FIKK family was present in the P. yoelii yoelii, P. vivax, P. 

berghei or P. knowlesi genomes (accession number P. yoelii yoelii: PY03326, P. 

vivax: Pv_402596, P. berghei: Pb_75h08plc and P. knowlesi: Pk_2I54bJ IqJc), 

whereas no FIKK homologue was found in partial genomes of P. reichenowi or P. 

chabaudi (see Sanger institute web site http://www.sanger.ac.uk/). The predicted P. 

yoelii yoelii FIKK sequence was accessible on the PlasmoDB database but for P. 

vivax, P. berghei or P. knowlesi, additional searches were necessary using the 

unannotated individual databases. A multiple alignment of the predicted protein 

sequences with those of the P. falciparum FIKKs was performed (Fig. 27), and used 

to construct a phylogenetic tree (Fig. 29). CLUSTALW analysis shows that the 

motifs, previously identified in P. falciparum FIKK (Fig. 18) have been conserved in 

related Plasmodium species. Theses features underline the importance of FIKK 

conserved residues (blue *), which probably play a role in the protein function or 

structure.
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Fig. 27; CLUSTALW alignment of Plasmodium species FIKK

The 8 invariant residues o f  serine/threonine kinase are indicated in red * and 
specific FIKK residue are indicated in blue *. Yellow and blue colour shadings label 
residues that are identical, whereas similar residues are in green. Dashes indicate 
gaps introduced in the sequences to optimise alignment.

4.4.2.2 Other Avicomplexa

Recently, the genomes of other Apicomplexa have been also sequenced 

{Cryptosporidium parvum, Theileria annulata. Toxoplasma gondii) or partially 

sequenced {Eimeria tenella) (genome sequences are available on Sanger and TIGR 

genome project databases, http://www.sanger.ac.uk/ and http://www.tigr.org/). 

However, in most of the genomes, the shotgun sequence assemblies are not finished. 

Although full-predicted ORFs are not accessible, related FIKK gene fragments were 

found in all Apicomplexan genome databases T. gondii (t_gondii/chr0/994720/80), 

C. parvum (gnl/CVMUMN_5807/cparvum_contigl555) and E. tenella (contig4775) 

(Fig.28), with the exception of T. annulata.
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P . f a l c i p a r u m / R 4 5  FFTKKIPIDIWLKQYKLMNEYDGEYLLDGENFVMEAVASAYLSEHYPGLIPKLYKVVY
P . y o e l i  LFIKKIPIYIWVKQFNLMSEFDGEYVTDGENFVMEAASLAFLSEYHPRIAPKLHKILY
T o x op la sm a g o n d i  VFVKKVPSSVWEQQWRLTQRYKGFi-’LTDGENFVGEAAISAFLTG-----------------------------
E i m e r i a  t e n e l l a  -FVKQVPASVWRQQWRQQQRFHGQEVCDGENYVGEAAAAAFLTKKKLQLSLVLLLHSL
C r y p t o s p o r i d i u m  p a rv u m  LFIKKIPRNIWSKQWEMHEIWDGDYVTDGEDFVMEAAALAFT.QNHSVGIAPR-----------

Fig. 28: CLUSTALW alignment of Apicomplexan “FIKK” domain

This alignment represents the conserved FIKK kinase domain located at the N~ 

terminal part o f  the catalytic domain, which includes the well-conserved “FxKK” 

motif Conserved residues are in red. Conserved plasmodial residues, which are 

different in other apicomplexa are in pink.

4.4.2.3 Alveolates

Bio-computing studies have revealed that apicomplexa, ciliates and dinoflagellates 

(Baldauf, 2003) form a phylogénie group, called Alveolates (see Chapter 1). To 

further our study on the origin of the FIKK family, I also looked at these closely 

related groups to determine whether any related FIKK gene was present. However, 

few genes have been sequenced in either ciliates or dinoflagellates species so far. 

Searching for kinases, only 14 Paramecium tetraurelia serine threonine kinases have 

been identified, none of which are related to the FIKK family (same result for 

Tetrahymena thermophila).

On the basis of current genome databases, our genomic investigations indicate that 

the FIKK family appeal's to be restricted to Apicomplexa. Surprisingly, although 20 

FIKK members have been found in P. falciparum only one member is present in 

other apicomplexan genomes, including closely related plasmodial species. 

Moreover, recent investigation of P. reichenowi genome (a chimpanzee/gorilla 

parasite), which at the time of my work was partially sequenced, has identified seven 

FIKK-related genes in this genome so far; apai't from this paificular discrepancy 

(which is presumably due to the fact that the P. reichenowi genome database has 

been updated very recently), our data about the species distribution of the FIKKs are 

identical) to Schneider A. et al, (unpublished data). Since P. reichnowi is the closest 

related plasmodial species of P. falciparum (Escalante et al., 1995) (see appendix D; 

(Qari et al., 1996), these new data suggest that the duplication of the FIKK kinases 

may have occurred in a common ancestor of P. falciparum and P. reichnowi.
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4.4.3 Phvlogenic analysis of Plasmodium FIKKs

In collaboration with Pauline Ward (University of Glasgow, WCMP) a multiple 

alignment was used to construct a phylogenetic tree of the Plasmodium FIKK {P. 

falciparum, P. yoelii yoelii, P. vivax, P. berghei and P. knowlesi) (Fig. 29). 

Extensions and insertions were deleted manually. The resulting tree has a typical 

“star” structure: most of the branche nodes are very close to each other, with no 

major subgroups, and all branches are approximately the same length. Such a 

structure is characteristic of recent expansion. This hypothesis is supported by the 

fact that (i) PFIOlOOc to PFI0125c sequences (7 FIKK sequences located in a tandem 

array on chromosome 9) tend to cluster together and (ii) FIKKs from Plasmodium 

species other than P. falciparum cluster with P. falciparum MAL7P1.144. These 

results are in total accordance with the new data on P. reichnowi in which 7 related 

FIKK have been identified. Indeed, based on the fact that (i) only one FIKK is 

present in other Plasmodium species with the exception of P. reichnowi, and (ii) P. 

yoelii yoelii, P. vivax, P. berghei and P. knowlesi FIKK cluster with only one P. 

falciparum FIKK (MAL7P 1.144), it is probable that the first, duplication events have 

occurred in a common ancestor of P. falciparum and P. reichnowi, before the 

divergence of humans from their close hominoid relatives.

4.5 TRANSCRIPTOME AND PROTEOMIC DATA

Micro array analysis (available on PlasmoDB, DeRisi et al.) indicates that all the 

FIKKs are expressed tlirough the erythrocyte cycle at inRNA level (fig, left panel). 

The one exception might be PFIOlOOc, for which no data are available (however RT- 

PCR studies suggests that the gene is expressed in erythrocytic stages, see section 

4.2.2, Fig.24). Nine of them were also identifed by mass spectrometry analysis (Fig. 

30, right panel, according to Florens et al. proteomic studies, (Florens et al., 2002; 

Johnson et al., 2004). The FIKKs show quite different expression profiles during the 

asexual blood stage cycle, since the expression of some genes peaks at the ring stage 

(PF 14^0733/34, PFCOObOc, PFI0120c, PFD1165w, PFL0040c, PFIOllOc,

PFD1175W, PFI0125C, PF10_0380, PFI0105c, PF10_0160, PF11_0510, PFA0130c), 

the expression of others at the late ring- early trophozoite stage (MAL7P1.144, 

MAL7P1.175, PFI0095c) and still others at the schizont stage (PFE0045c and 

MAL13P 1.109). Most genes are also transcribed in merozoites as well as some in
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sporozoites and gametocytes. Interestingly, the seven tandemly located genes on 

chromosome 9 have quite different expression profiles, suggesting that every 

member has a distinct function along the life cycle.

PFC0060C

*  PFUDCMOC PF1Û0160 P. vivax
P. knowlesi
/». berghei f  plaMn.xli;,l sp e c ie

PFE0045C

P. y  oeiiyoeli

PF0096C MAL13P1.109 *

*  P F ll 0510

PFAD1XC

MAL7P1 175 *PF1G 0380

PFD1175W

PFOIOSc)

PFD1165W
PFD110C

PFD115cpw
PFI0120C

PFD126C

PF0100C *

Chromosome 9

Fig. 29: Phylogenetic tree of FIKKs from P. falciparum, P. yoelii yoeli, P. vivax, 

P, berghei and P. knowlesi.

The tree was compiled using conserved portions o f amino-acid aligned sequences o f 

plamodial FIKK, using PHYLIPS package. P. falciparum FIKK sequences are 

represented by their accession number. Genes selected to be cloned, are represented 

by * The P. falciparum FIKK, which is closer to other plasmodial species, is 

underlined in green (MAL7P1.144). 6 FIKKs located on chromosome 9 cluster 

together. The scale bar represents 0.1 mutational changes per residues.
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Fig. 30: List of P, falciparum FIKK and mRNA profile expression and 

proteomic data during the RBC development of the parasite.

R: ring, T: trophozoite, S: schizont, M: merozoite, G: gametocyte, Sp: sporozoite. 

The 20 FIKK sequences are represented by their PlasmoDB identifiers in the first 

column (genes selected for cloning are in blue). The phaseogram (DeRisi et al., 

((Bozdech et al., 2003)) show the red/green colorimetric representation o f gene 

expression ratio during erythrocyte development o f  the parasite (positive ratio in red 

indicates mRNA expression o f the gene). mRNA expression during M/G and Sp 

(LeRoch et al, (Le Roc h et al, 2003)) is represented in red or orange. Peptides 

identified in proteomics analysis (Florens L. et al, (Florens et al, 2002; Johnson et 

al, 2004) in specific stages are also represented in red.
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4.6 D ISCUSSION

The FIKK family seems to be specific to Apicomplexa; obviously, a definitive 

conclusion about the phylum-specificity of this gene family will have to await the 

completion of additional genome sequencing projects. The presence of only one 

FIKK gene in various other apicomplexan species is consistent with a recent 

expansion of FIKK family in the P, falciparum genome. Complementary 

phylogenetic analysis between plasmodial FIKK has shown that FIKK from five 

different Plasmodium species cluster together, which is an indication of a common 

ancestor. This result suggests also that duplication events in the genome of P. 

falciparum have probably originated from duplication of MAL7P1.144 and occurred 

presumably before P. falciparum and P, reichenowi divergence, approximately 6  to 8 

million years ago (Escalante and Ayala, 1994; Escalante et al., 1995). In common 

with other P. falciparum gene families (such as var, rif, stevor gene), FIKK are 

concentrated at the telomere. Recent studies have shown that the telomere of P. 

falciparum chromosomes cluster together at the nuclear periphery, suggesting a 

potential mechanism in which recombination is facilitated (Figueiredo et al., 2002; 

Freitas-Junior et al., 2000), and could explain the diversity of these families.

Because we know so little about their fiinction in the parasite, it is difficult to 

hypothesize about the reason for their selection in the genome of P. falciparum 

during evolution. One possibility is that mutation events, which led to the emergence 

of this new family in Apicomplexa, have been selected positively through evolution, 

allowing development of a new specific function in the biology of these organisms 

(Copley et al., 2003). To illustrate this point, a recent method to detect differential 

selective pressures on genes has been carried out on the P, falciparum genome; 

among the ten genes that show the strongest signs of positive selection, three of them 

were protein kinases, including one FIKK (R45) (Plotkin et al., 2004). So, the 

presence of 20 FUCK protein kinases (compared to only 65 plasmodial ePK found in 

our kinome analysis) is curious and suggests that FIKK probably play (or have 

played) an important role in the evolution of P. falciparum during the last 6  (to 8 ) 

million years. Nucleotide sequences of orthologous genes could be compared to 

investigate selective pressures. Indeed, a recent study based on the models of 

nucleotide sequence evolution reveals that the relative number of synonymous versus
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non-synonymous substitutions between orthologs could be determined to estimate 

the positive or negative pressures (Hall et al., 2005).

Based on sequence homology, the conservation of the C-terminal kinase-like domain 

of FIKK suggests a function in protein phosphorylation. However, the absence of a 

canonical ATP-fixation motif from the FIKK family raises interesting questions 

about how the kinase domain binds to the phosphate donor and also about which 

kind of substrate FIKKs phosphorylate. In a standard kinase assay, no evidence for 

kinase activity has been observed so far, but this may due to experimental conditions 

rather than to true inactivity of the protein, and more work is needed to ascertain this 

point. Indeed, it is possible that these enzymes do not recognize the substrates, which 

have been tested. So, despite the absence of either a glycine rich ATP binding 

domain or kinase activity of the recombinant PfPFL0040c, we cannot exclude any 

function for this family at this stage. Protein kinases lacking important residues have 

been previously characterized in other organisms and nevertheless display phospho- 

transfer aetivity (Chapter 1, section 1.2,5.3).

Alternatively, it is also possible that some of these FIKK have evolved with kinase- 

independent functions. Indeed, in addition to the laek of the Glyeine rich motif, the 

observation that some sequences lack typical conserved residues involved in the 

structural stability of the kinase (see section 4.1.1), raises the question of the ability 

of these particular FIKK to function as a proper kinase. These may represent inactive 

kinases involved in protein scaffolding similar to those found in other eukaryotes 

(Kroiher et ah, 2001; Morrison, 2001), In addition, cases have been reported in other 

organisms, in which receptor protein tyrosine kinases, lacking kinases activity, are 

involved in cell signalling (such as “dead”/”fractured’* RTKs (see chapter 1, section 

1.2.5.1).

In line with this hypothesis, the presence of transmembrane domains and a signal 

peptide in most of the FIKK suggests potential membrane localization for these 

proteins (such as the surface of the parasite, the parasitophorous vaeuole, the host 

cell or sub-cellular organelles). A search for specific motifs indicated that five of the 

20 FIKKs possess an apieoplast-targeting signal sequence, whereas one is potentially 

addressed to the mitochondrion and four could be exported to the erythrocyte. 

However, these results must be considered with caution until the 5’end of each 

coding region has been verified experimentally. In the case of R45, which has been 

previously described as a trophozoite antigen recognized by sera from patients 

(Bonnefoy et al., 1992), N and C-terminal transmembrane domains are predicted, but
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no signal peptide. Numerous antigenic proteins have already been identified in 

Plasmodium. Most of them are addressed to the RBC membrane such as PfEMPl, 

which plays a role in antigenic variation and cytoadhesion of the infected RBC (Bull 

et al., 1998). In order to verify in situ the exact localization of protein expression, 

antibodies, which specifically recognize each FIKK (including R45), will need to be 

produced. To this end, antigenic peptides have been designed to non-conserved 

regions (D. Goldring, University of Kwazulu-Natal, see appendix C), synthesized, 

and used for IgY production in chickens.

During the study of FIKK family, it has been shown that PfPF14_0733 and 

PfPF14_0734 correspond to only one ORF. Surprisingly, sequencing analysis 

revealed that the transcript contains an internal stop codon. To exclude the possibility 

that this feature was strain specific, it would be interesting to test for the presence of 

such a stop codon in 3D7-unrelated strains.

Expression by read-through of an internal stop codon usually occurs in bacteria and 

virus (Gesteland and Atkins, 1996), however it has already been obseiwed in P. 

falciparum too, in a member of the Pf60 multigene family (the 6,1 gene; (Bischoff et 

al., 2000), In this case also, the cDNA contained two ORFs separated by an in phase 

ochre codon (“TAA“), whereas in the case of PfPF14_0733/34, it is an opal codon 

(“TGA”). In the Pf60 study, several lines of evidence (such as immunoblot and 

double-site immuno-assay) suggest that the whole-length Pf60.1 protein is expressed 

by read-through of the internal stop codon. However, the precise molecular 

mechanism remains to be investigated. In our case, proteomic data (Florens et al., 

2002) indicates that at least the first part of the protein (“PF14_0033”) is expressed in 

sporozoites (see also PlasmoDB, mass spectrometry studies of PF14 0033). Wp 

intend to raise antibodies against the downstream PF14 0034 exon in order to test 

whether or not the entire protein is expressed. If the whole protein were expressed, it 

would be interesting to investigate this prokaryote expression mechanism in P. 

falciparum, hi contrast, if PF14 0033/34 were translated into a truncated protein, as 

occurs in most of the transcripts that possess an internal stop codon (for reviews, see 

(Farabaugh, 1996); Gesteland and Atkins 1996) , this would lead to a protein 

containing the kinase subdomains I to V (see Fig. 19). This potential trunctated 

protein would correspond, only to the N terminal small lobe of usual protein kinase 

since subdomain V links the small and the large lobes (see Chapter 1, section 1.5.4).
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So, this would raise important questions about whether PF14_0033/34 is a 

pseudogene or provides evidence for the emergence of a new protein. Obviously, in 

the case of a truncated protein, the simplest explanation would be the “pseudogene” 

hypothesis. Nevertheless, we have to keep in mind that such an N-terminal truncated 

protein kinase could have emerged in P. falciparum as this has been previously 

reported in other organisms (Chapter 1, section 1.2,5.1).

Finally, the identification of partners (such as pull-down and immunoprécipitation 

experiments followed by mass spectrometry analysis) is likely to yield insights into 

the specific function of these enzymes and should determine in which pathway(s) 

such proteins are involved.
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Chapter 5: CHARACTERISATION OF TWO 

ATYPICAL P. FALCIPARUM CDK-RELATED

KINASES
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Overview

The long-term objectives of our research are to control parasite proliferation in the 

human host, and to contribute to disease control through preventing transmission of 

the parasite to the mosquito vector. Towards this purpose, we are interested in 

molecular mechanisms controlling cell division in Plasmodium falciparum, and we 

have been focusing our studies on parasite development in red blood cells, which 

accounts for malaria pathogenesis.

In Eukaryotes, cyclin dependent kinases (CDK) are well known to control cell cycle 

progression (Chapter 1, section 1.5). Based on sequence homology, 7 CDK-related 

kinases have been identified, of which only four (PfPK5, Pfinrk, Pfcrk-1 and PfPK6) 

display an overall primary structure that is similar to that of CDKs of higher 

Eukaryotes. The other three (Pfcrk-3, -4 and -5) display atypical extensions and 

insertions within the catalytic domain. Recombinant PIPK5, Pfinrk, and PfPK6 

display kinase activity in vitro (a cyclin is required for PfPK5 and Pfinrk activities, 

but not for PIPK6 ), whereas recombinant Pfcrk-1 does not show any activity in our 

experimental conditions (Equinet L,, Doerig C.). The role of each kinase in cell cycle 

progression is still under study, and at the time of my work, we do not know which 

of these enzymes (if any) are essential for the development of the parasite. In 

contrast, Pfcrk-3, Pferk-4 and Pfcrk-5 are still uncharacterized at the biochemical 

level. Interestingly, compared to CDKs of yeast or mammals, these plasmodial CDK- 

like enzymes display strongly atypical features at the primary structure level. 

Characterization of such atypical CDKs would be interesting, in view of the possible 

development of specific inhibitors. Cancer therapy studies have led to the 

identification and synthesis of protein kinase inhibitors, which could be used for 

parasite protein kinase screening. In particular, inhibitors with little effect on human 

cells could be (i) tested on active recombinant parasite protein kinases and (ii) 

redesigned to improve selectivity.

The work presented in ' this chapter is focussed essentially on the biochemical 

characterization of Pfcrk-3 and Pfcrk-4. The first part of this chapter concerns gene 

structure analysis, completed by data pertaining to their expression during 

erythrocyte schizogony. The last part presents our work on the enzymatic activity of 

these two proteins.
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5.1 IDENTIFICATION OF TWO NOVEL CDK-RELATED PROTEIN

KINASES: Pfcrk-3 and Pfcrk-4

Both the Pfcrk-3 and Pfcrk-4 ORFs were identified in the Plasmodium database 
(PlasmoDB) by BLASTP analysis using various CDK sequences as queries (Le 
Roch, Juin 2001). Pfcrk-3 and Pfcrk-4 predicted ORFs have been subsequently 
analyzed by BLASTP on generalist databases, which confirmed the relatedness of 
these genes to the CDK family.

5.1.1 Sequence homology of Pfcrk-3 and Pfcrk-4

Phylogenetic analysis on the kinome (Chapter 3), allowed us to identify 18 protein 

kinases belonging to the CMGC kinase group, including Pfcrk-3 and Pfcrk-4. The 

former clearly clusters within the CDK group, whereas the latter is localized at an 

intermediate position near the base of the CMGC group (Ward et al., 2004), which 

confirms the previously detected relatedness of these enzymes to both CDKs and 

MAPKs (Doerig et al., 2002).

The size of predicted Pfcrk-3 and Pfcrk-4 is unusually large for CDKs: around 1339 

and 1569 amino acids respectively, compared to approximately 300 residues in 

typical CDKs. Indeed, in addition to the protein kinase domain (in blue. Fig. 31), 

both ORFs contain extensions and insertions (in yellow. Fig. 31).

The Pfcrk-3 kinase domain displays maximal homology to CDKl/2 homologues of a 

variety of organisms (37.5 % and 36% of identity at the amino-acid level to human 

CDKl and CDK2, respectively). Like PfPK6 , Pfcrk-4 shows similar levels of 

homology to both CDKs and MAPKs (27.3% identity at the amino-acid level to 

human CDK2 and 17 % to human ERKl, not including extensions and insertions). 

For comparison, PfPK5 displays 60% identity with human CDKl.
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Fig. 31; Structure of the Pfcrk-3 and Pfcrk-4 ORFs, compared to that of human 

CDK2 and PfPK5

HCDK2: human CDK2. Blue boxes symbolize the protein kinase catalytic domain. 

Yellow boxes correspond to insertions and extensions (see below). The A TP binding 

and cyclin binding motifs are two important domains, which are usually well 

conserved in CDK (“p*p**RE” in human CDKs). Important phosphorylation sites 

are indicated in yellow, aa: amino-acids

5.1.2 CLUSTALW analysis

Comparison of Pfcrk-3 and Pfcrk-4 amino-acid sequences to those of CDK from 

other organisms, reveals similar atypical features (Fig. 32):

(1°) A large extension at the N-terminus, which is usually not found in CDKs (378 

and 835 amino-acids respectively for Pfcrk-3 and Pfcrk-4) (Fig. 31, yellow box).

(2°) Two insertions within the catalytic domain, located in both ORFs, at the same 

positions in the N-terminal lobe of the protein kinase domain (Fig. 31, yellow box). 

The sizes of Pfcrk-3 and Pfcrk-4 insertions are similar (respectively 198 and 280 

amino-acids for the largest insertions, 20 and 50 for the second insertions). There is a 

third insertion of 12 amino acids in Pfcrk-4 sequence (NIQYLSDGLNDP), which is 

located in the C-terminal lobe, downstream of the conserved HRD motif.

(3°) In both cases the PSTAIRE cyclin-binding motif is not conserved. The motif is 

substituted in Pfcrk-3 and Pfcrk-4 by AKTYIRE and EEFAVNE respectively, which 

does not resemble any of the known cyclin-binding motifs of other CDKs.

(4°) Both Pfcrk-3 and Pfcrk-4 display the conserved “Y15” (human CDK2 

numbering) and “T^^O” residues involved in the regulation of CDK activity, 

whereas, the residue is substituted by A in Pfcrk-3 and by V in Pfcrk-4.
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(5°) Finally, Pfcrk-3 possesses a C-terminus extension (335 amino-acids), which 

according to the PlasmoDB gene prediction algorithms, is not present in Pfcrk-4. 

However, despite these atypical characteristics, 11 key residues that are conserved in 

most protein kinases (Hanks et al., 1988; Knighton et al., 1991) are present in Pfcrk- 

3 and -4  (red *, Fig.32).
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Fig.32: ClustalW alignment of the catalytic domains of Pfcrk-3 and Pfcrk-4 with 

those of other CDKs (yeast Cdc28 [a CDKl homologue], PfPK5 and Pfcrk-1)

The 11 invariant residues o f  serine/threonine protein kinase are indicated by red *. 

Black and grey colour shadings label residues that are identical or similar, 

respectively. Dash indicates gaps introduced in the sequences to optimize alignment. 

Insertions and extensions are symbolized by yellow rectangles.

5.1.3 3D modelling

In order to predict aspects of Pfcrk-3 and Pfcrk-4 protein structure, we ran the 

automatic 3D SWISS MODEL procedure using the “whole-length” (i.e. with the
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insertions) kinase domain of the proteins (http://swissmodel.expasy.org//SWISS- 

MODEL.html). Based on sequence alignments of Pfcrk-3 (or Pfcrk-4) with a 

template (i.e a related protein sequence, such as that of hCDK2, whose structure has 

been resolved), this software is able to predict the 3D structure of the protein of 

interest. The left panel of Fig. 33 represents the 3D structure of hCDK2 (grey), with 

the N- and C-terminal lobes (see Chapter 1, section 1.2.3) indicated blue circles. The 

N-lobe contains the cyclin-box (PSTAIRE, red box), whereas, the C-terminal lobe 

contains the T loop (including T160, whose phosphorylation by hCDK7 ensures full 

activation of CDK-see Chapter 1, section 1.5.2.1). For both proteins, the program 

was able to give the predicted structure of the C-lobe domain only, which 

corresponds to the protein sequence located downstream of the second insertion (Fig. 

33, right panel, Pfcrk-4 in yellow). The algorithm is unable to accurately position the 

gaps for loop insertions or deletions, and consequently, the 3D SWISS MODEL 

procedure did not find enough similarity with the template protein to run the 

modelling program of the N-tenninal lobe (conditions required by SWISS-MODEL 

to generate models: BLAST search P value: < 0.00001, global degree of sequence 

identity: > 25 %, sequence of minimal 25 amino acids length). However, these first 

results show that the C-lobe domain is stmcturally well conserved in both cases, 

except for a displacement of the Pfcrk-4 T-loop structure (Fig. 33, right panel. Red 

*). According to the CLUSTALW alignment (Fig. 32), insertion 1 is localized 

directly after the cdc28 “LYDIVHS” motif, whereas insertions 2 is situated just 

before cdc28 “KKFMKL” motif, which correspond in both case to an external hinge 

region between adjacent protruding alpha helices and beta-sheets (Fig. 33, insertions 

1 and 2, green arrows, left panel). Hence, it is possible that these insertions do not 

interfere with the overall structure of these enzymes. Similarly, the third insertion of 

12 amino acids found only in Pfcrk-4, fonns an external loop protruding from the C- 

terminal lobe (Fig. 33, insertions 3, gieen arrow, right panel).
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Fig. 33; Structure of human CDK2 and 3D modelling of Pfcrk-4 using Swiss- 

Pdbviewer

The left panel represents the 2D structure o f hCDK2 (grey). The right panel is the 

superposition o f  hCDK2 and the predicted C-terminal lobe o f  Pfcrk-4 (yellow). Red * 

highlights important regions mentioned in the text. Green arrows localize the 

insertions into the catalytic domain.

5.2 EXPRESSION OF Pfcrk-3 and Pfcrk-4 IN BLOOD STAGES OF THE 
PARASITE

5.2.1 Gene structure predictions

According to the gene prediction algorithms available on PlasmoDB, the Pfcrk-3 

ORF is composed of 2 exons. Exon 1 includes the protein kinase domain and the N- 

terminal extension, whereas the second exon corresponds to the C-terminal 

extension. Only one exon is predicted for Pfcrk-4, which encompasses the N- 

terminal extension and the putative catalytic domain (Fig.34).

133



5.2.2 mRNA expression

5.2.2.1 RT-PCR and PCR on cDNA library

RT-PCR studies performed by Dr P. Alano, ISS, Rome, using primers for the cloning 

of the protein kinase domain (see below), showed that both Pfcrk-3 and Pfcrk-4 

mRNAs are present in asexual and sexual blood stages (RT-PCR products around 

1900bp and 2200bp respectively, Fig.35).

^ ...... <

^  i
r

Pfcrk-3 ORF

Wlndc-lcii'jih

Nlcr-extension

C l c r - o \ l c n s i o i i

Pfcrk-4 ORF

^  W’holc-loiuilh 
Nter-extension

kinase domain

Fig.34: PlasmoDB Pfcrk-3 and Pfcrk-4 ORF predictions and associated C- 

terminal and N-terminal extensions

The ORFs are symbolized by red boxes. N-terminal extensions are highlighted in 

green, and the C-terminal extension o f  Pfcrk-3 in pink. Putative protein kinase 

catalytic domains are highlighted in blue. Arrows represents the location o f the 

primers used for the PCR amplifications described in the text.

kinase domain Pfcrk-4 Pfcrk-3

2 2 0 0 bp — 1900bp

cDNA

Fig. 35: RT-PCR of total RNA from gametocytes (G) and asexual parasites (A) 

using kinase domain primers.

Lanes -  correspond to the RT-PCR in which the reverse transcriptase was omitted.
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This experiment concerned only the catalytic domains. To determine whether the 

large N- and C-terminal extensions of Pfcrk-3 and Pfcrk-4 are transcribed and 

present in mature mRNA, I next performed PCR on cDNA libraries from asexual 

parasites and gametocytes, using extension-specific primers as indicated on Fig. 35. 

Neither the whole-length PCR fragments (Fig. 36, left panel, lane 1 and 2) nor the N- 

terminal extension PCR fragments (Fig. 36, right panel, lane 1) were amplified from 

the cDNA libraries, although whole-length products were obtained for both genes 

from genomic DNA (lanes 3-4). Absence of amplification from the cDNA libraries 

might be explained either by a low representation of full-length mRNA, or by 

erroneous gene structure prediction.

Wliolc-lcnmh of Plcrk-3 and l’lcrk-4 Nter-extension of Pfcrk-4

1 2 3 4 1 0

.4700bn
■4200bp __

2500bp

cDNA gDNA cDNA gDNA

Fig. 36: PCR products obtained from cDNA libraries using full-length and N- 

terminal extension primers

Left panel (full-length): I, 3: PCR using Pfcrk-3 primers on cDNA and gDNA

respectively: 2, 4: PCR using Pfcrk-4 primers on cDNA and gDNA respectively.

Right panel (Nter-extension): 1, 2: PCR using Pfcrk-4 primers on cDNA and gDNA 

respectively.

To overcome these problems, additional primers were designed to amplify smaller 

fragments, which would overlap the boundary between the extensions and the 

putative catalytic domain (Fig. 37, left panel). In all cases, amplification products 

were obtained of the expected molecular weight, which confirm the PlasmoDB ORFs 

predictions (Fig. 34). In addition, as expected, the amplification of Pfcrk-3 C- 

terminal extension yielded fragments of approximately 1 OOObp and 11 OObp from 

cDNA and gDNA respectively (Fig. 37, right panel, e), which allowed us to exclude 

any contamination of cDNA library by gDNA. Taken together, the PCR and RT-
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PCR data indicate that mRNA from both genes is present in erythrocytic stages, and 

that the extensions/insertions appear to be maintained in the mRNAs.
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Fig.37; PCR of Pfcrk-3 and Pfcrk-4 extensions using cDNA library and gDNA

a, b, c, d and d ' represent different fragments localized at the N-terminal extension o f  

the predicted ORF, whereas the e fragment is the predicted Pfcrk-3 C-terminal 

extension. For each fragment, PCR amplifications have been performed on a cDNA 

library and gDNA. The cDNA library is representative o f  mRNA present in red blood 

cell stages.

5.2.2.1 Northern blot analysis

Northern blot analysis allowed the detection of one mRNA species each for Pfcrk-3 

and Pfcrk-4 (approximately 4 and 6  kb, respectively) (Fig. 38). The Pfcrk-3 signal 

was very weak. It is important to mention that a subsequent control on the same 

membrane was performed using a PfRhopH2 probe, a gene expressed in schizonts 

(I.T Ling, et al., MBP, 2002, H. Taylor). As expected, a mRNA species is present
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only in the schizont lane, around 7.5 kb. Therefore, it appears that the membrane 

contained enough mRNA, which allowed us to conclude that Pfcrk-3 is expressed at 

a very low level (at least in the 3D7 strain in vitro). The fact that only one transcript 

is present suggests there is only one type of mature transcript, containing the protein 

kinase domain.

4000bp

R I S R T S

7500bp

R I S

—  6000bp

Crk-3 Control Crk-4

Fig.38; Northern blot analysis of RNA extracted from erythrocytic stages

(R: ring, T: trophozoite, S: schizont) using Pfcrk-3 and Pfcrk-4 probes (against the 

protein kinase domain). A positive control using PfRhopH2 probe (a gene expressed 

only in schizont, probe provided by H. Taylor, WCMP) was performed to test the 

quality o f the membrane.

Microarray data from DeRisi et al. available on PlasmoDB indicate that Pfcrk-3 is 

preferentially expressed at the ring stage, and that mRNA levels decrease during the 

trophozoite stage. In contrast the peak of Pfcrk-4 expression occurs during the late 

trophozoite and schizont stages (Fig. 39). Our Northern blot analysis confirms the 

transeriptome data, except for the apparent absence of Pfcrk-3 expression during the 

ring stage. The reason for this discrepancy is unclear; a possible explanation may the 

low levels of the mRNA in young rings depicted on the microarray data (Fig. 39).
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Fig. 39; Microarray data for Pfcrk-3 and Pfcrk-4, obtained from the dataset 

from the De Risi study available on PlasmoDB (Bozdech et al., 2003). 

x-axis Time in hours after adding synchronized culture o f  HB3 parasites to fresh 

blood: blue plot: averaged smoothed normalized log base(2) o f  Cy5/Cy2 for Pfcrk-3 

or Pfcrk-4; grey plot: averaged normalized log base(2) o f Cy5/Cy3 for Pfcrk-3 or 

Pfcrk-4; Trophs: trophozoite. Blue curves represent the profile o f  mRNA expression 

through the RBC parasite cycle development, from ring stage (Oh) to schizont (48h 

post-invasion) (X-axis). Expression data is displayed as a graph o f  log ratio 

(cy5/cy3) (Y-axis, from -2 to 2) versus time. This ratio represents the relative 

abundance o f mRNAs measured by two-colour competitive (cy5/cy3) hybridisation 

between total RNA from each time point and a reference pool o f  total RNA from all 

time points (48 time points, i.e. one per hour during the 48 hours o f the asexual 

cycle, starting one hour post invasion).

5.2.2 Protein expression

5.2.2.1 Western blot on parasite extract

IgY antibodies against peptides derived from Pfcrk-3 and Pfcrk-4 (both in the large 

insertion and putative catalytic domain; see Annexe F) were obtained by 

immunisation of chickens and immunopurified on the immobilised peptides by Prof 

Dean Goldring (University of Kwazulu-Natal, Republic of South Africa), in the 

context of an ongoing collaboration between our laboratories. These antibodies 

recognised the recombinant protein, purified as described in materials and methods 

(see Chapter 2, section 2.3.13 and appendix F) in Western blots, as shown in Fig. 40.
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Anti-Pfcrk-3 Anti Pfcrk-4

Fig.40; Western blot on GST recombinant proteins using anti-Pfcrk-3 and anti- 

Pfcrk-4 antibodies

Lanes 1 and 3: recombinant Pfcrk-3, lanes 2 and 4: recombinant Pfcrk-4. Westerns 

have been performed using anti-Pfcrk-3 (PNG immunopurified peptide antibody) and 

anti-Pfcrk-4 (LKA immunopurified peptide antibody) (the name o f  the 

immunopurified peptide antibodies refer usually to the first three letters o f the 

peptides used to immunised chicken)

Western blot analysis using parasite extracts and antibodies raised against the 

“protein kinase domain” showed that both proteins are present in extracts from 

unsynchronised asexual parasites (Fig. 41, lanes 4, and Fig. 42, lane 4 and 5, 

respectively for Pfcrk-3 and Pfcrk-4). Complementary Western blot studies were 

performed with extracts from synchronous parasites in collaboration with the 

laboratory of Prof. D. Chakrabarti, Univ. of central Florida (Fig. 41, lanes 1 ,2 ,3  and 

Fig. 42, lanes 1 ,2 ,3 ) and showed that despite Pfcrk-3 mRNA being expressed in an 

early stage, the protein is present at a later stage (Fig. 41, lanes 2 and 3), this result 

was confirmed by immunofluorescence assay (Fig. 43). Pfcrk-4 protein is also 

present in erythrocyte stages (Fig. 42, lanes 1, 2, 3).

Pfcrk-3 appears to be proteolytically processed from a large precursor in rings, 

whose size approximates the expected molecular weight of the whole length protein 

(160kDa), to a protein around 120kDa at later stages (using VVD-Pfcrk-3 antibody, 

Fig.41, lane 1,2,3). Determination of the exact processing events will require 

additional studies using antibodies directed against the various parts of the protein. 

Using the antibody directed against the largest insertion (PNG antibody, Fig.41, lane

4), we obtain the same Western blot profile (i.e proteins around 160 and 120 kDa),
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which strongly suggests that the insertion is maintained in the protein. In addition, 

there are also proteins of similar intensity around 200kDa and 70kDa. The 70kDa 

protein is also detectable with the “protein kinase domain” VVD antibody (Fig.41, 

lane 1 ). However, the low intensity of the signal suggests that this protein could be a 

proteolytic degradation product. The protein above 200kDa is not found using the 

VVD antibody, which suggests that the PNG antibody may recognize an unspecific 

protein in the parasite extract around 200kDa. Pulse-chase experiments would permit 

to determine whether or not Pfcrk-3 is processed by proteolysis. Nevertheless, since 

both the «protein kinase domain» antibody and «insertion» antibody recognize the 

same proteins (see appendix F, for the localization of the antibody recognition 

peptides), we can conclude that the largest insertion is not proteolytically processed 

during RBC stages.

Pfcrk-3 (VVD, 1:10 000) Pfcrk-3 (PNG insertion, 1:10 000)
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70kDa

6 0 k  )a
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■ 9 i

6()kD;i
20k l)n

Fig.41: Western blots using anti-Pfcrk-3 antibodies with parasite extracts from 

rings (R), trophozoites (T), schizonts (S) or unsynchronised asexual parasites 

(A).

In the same way, the expected molecular weight of the full-length Pfcrk-4 protein is 

around 182kDa, and large proteins around ISOkDa and 250kDa are recognized in 

parasite extract by both antibodies (catalytic domain (LKA) and insertion (ITI) 

antibodies. Fig. 42). In extracts from either synchronous or asynchronous parasites, 

both antibodies recognize numerous proteins. Prominent proteins are observed at 

approximately 30, 55, 70, 100, 150kDa and superior to 250kDa, but it is difficult to
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determine their origin (it could proceed from degradation products or processed 

Pfcrk-4 molecules). Use of specific antibodies against extension or smaller insertions 

will be required to further in analysis. However, the fact that the same Western blot 

profile has been obtained by the used of the unrelated “protein kinase domain LKA” 

and “insertion ITI” immunopurified antibodies leads to the conclusions (i) that the 

recognised proteins are likely to represent Pfcrk-4-derived proteins, and (ii) that the 

large insertion (which size is around 31 kDa) is not processed during erythrocyte 

stages too.
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Fig.42: Western blot using anti-Pfcrk-4 antibodies with parasite extracts from 

rings (R), trophozoites. (T), schizonts (S) or unsynchronised asexual parasites 

(A).

5.2.2.2 Immunofluorescence assays

Immunofluorescence assays (IFAs) were performed using unsynchronized parasites 

and the anti-Pfcrk-3 and Pfcrk-4 IgYs, using deconvolution technology (these 

experiments were performed during my stay at the Chakrabarti laboratory). Signals 

were obtained for Pfcrk-3 and Pfcrk-4 in asexual parasites (Fig. 43), showing that 

both Pfcrk-3 and Pfcrk-4 are expressed in the cytoplasm during the erythrocytic 

stages. The Pfcrk-3 antibodies gave a punctuated signal in late schizonts 

(segmenters). In every instance, these data confirm the previous results on Western 

blot analysis. Interestingly, Pfcrk-3, which according to DeRisi et al. microarray
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study (available on PlasmoDB) is only expressed in ring stage, may also be present 

in later stages (trophozoite, schizont, and segmenter) at the protein level.

Trophozoite Schizont Segmenter

rfirW

l ' fcrk-4 Trophozoite Schizonte

Fig.43: Immunofluorescence assays

Pfcrk-3 and Pfcrk-4 antibodies are labelled in red, whereas the blue colour is from  

DAPI staining o f  DNA. Each panel shows parasite stages from trophozoite to 

schizont.
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5.3 EXPRESSION OF RECOMBINANT Pfcrk-3 and Pfcrk-4 AND IN  VITRO 

KINASE ACTIVITY ASSAYS

The catalytic domain of both Pfcrk-3 and Pfcrk-4 had been cloned into pGEX 

expression vectors (by K. Le Roch) prior to my thesis (see Annexe F). I expressed 

the GST fusion catalytic domains of Pfcrk-3 and Pfcrk-4 (without the N-terminal 

extensions) in E. coli, purified the recombinant protein on glutathione-agarose beads, 

and assayed the eluted proteins for kinase activity in vitro.

5.3.1 Expression of the recombinant GST- Pfcrk-3 and GST-Pfcrk-4

Both recombinant GST-Pfcrk-3 and GST-Pfcrk-4 proteins have the expected 

molecular mass (around 100 kDa). Whatever expression conditions tested, 

recombinant proteins are degraded during batch-purification, probably by bacterial 

proteases (Fig. 44, lanes 1 and 4, for GST-Pfcrk-3 and GST-Pfcrk-4 respectively). 

Nevertheless, optimised conditions of expression (Fig. 44, lane 3 for Pfcrk-3) and 

liquid chromatography purification (Fig. 45, lanes 1 and 3, for GST-Pfcrk-3 and 

GST-Pfcrk-4 respectively) allowed us to improve the yield of full-length 

recombinant protein.

In an attempt to improve protein yields and stability, Pfcrk-4 was also cloned in an 

expression vector designed to add an N-terminal His-tag (instead of a GST tag) to the 

catalytic domain. Protein expression in bacteria was toxic (increase of IPTG 

concentration lead to decrease of bacterial gi owth). Moreover, the His-tagged protein 

was still unstable in bacteria. Four hours after induction at a low IPTG concentration, 

the expected protein is poorly detected (Fig. 46, lane 5, size around SOkDa), whereas 

a major protein is detected around 35kDa with the anti-Pfcrk-4 antibody. Protein 

purification did not allow a better yield compared to GST-recombinant protein. 

Nevertheless the His-tagged protein was tested for its activity (see section below).
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inokDir

f
3 MW (KDa) 4

—  83 —  4iAiifci

62

47.5

32.5

25 I
Anti-Pfcrk-3 Anti-GST

Fig.44: Coomassie-stained 12% SDS-PAGE and Western blot of recombinant 

proteins obtained by batch purification 1: GST-Pfcrk-3, 2: Western blot using 

anti-Pfcrk-3, 3: GST-Pfcrk-3 obtained with optimised condition o f  expression, 

4:GST-Pfcrk-4, 5: Western blot using commercial anti-GST antibodies.
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Fig.45: Coomassie stained 12% SDS-PAGE and Western blot of recombinant 

proteins obtained by glutathione affinity liquid chromatography (AKTA FPLC, 

Amersham)

1: GST-Pfcrk-3, 2: Western blot using anti-GST, 3: GST-Pfcrk-4, 4: Western blot 

using anti-GST.
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His-Pfcrk-4
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Fig.46: Western blot of His-Pfcrk-4 and Coomassie stained 12% SDS-PAGE.

Western blot using anti-Pfcrk-4 (LKA immunopurified antibody) was performed (1-

5), on bacterial pellet extract. Lanes 6-10 represents the Coomassie-stained SDS- 

PAGE acrylamide gel. 1: non induced; 2: after 2h without IPTG; 3; after 4h without 

IPTG; 4: after 2h induction (O.IpM IPTG); 5; after 4h induction (O.IpM IPTG)

5.3.2 Kinase assay on GST-Pfcrk-3/GST-Pfcrk-4 and activation bv parasite extract

Kinase assays were performed with recombinant GST-Pfcrk-3 and -Pfcrk-4, using y- 

^^P-ATP and a variety of exogenous protein substrates (histone H 1, MBP, a-casein, 

P-casein and parasite protein extract). In this experiment, RINGO was used as a CDK 

activator (RINGO is a powerful activator of mammalian CDK2, and has been 

previously shown to stimulate recombinant PfPK5 activity by 3-4 orders of 

magnitude, (Merckx et al., 2003)). Fig. 47 illustrates that no kinase activity was 

observed for either Pfcrk-3 or Pfcrk-4 (and Pfcrk-1), under our experimental 

conditions, whereas PfPK5-RINGO is active on a peptide substrate 

(PKTPKKAKKL) derived from histone HI (for comparison: 77000 cpm measured 

on the CDK substrate after incubation with PfPK5 and RINGO compared to 300 cpm 

with the other plasmodial CDK like).
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Fig.47; Kinase activity of recombinant Pfcrk-1, Pfcrk-3, Pfcrk-4 and PfPKS in 

association with an exogenous CDK activator (RINGO).

Quantification o f  peptide substrate (PKTPKKAKKL) phosphorylation was measured 

by scintillation counting in counts per minute (cpm). 1: substrate alone, 2: RINGO + 

substrate, 3: Pfcrk-1 + substrate, 4: Pfcrk-1 + substrate +RINGO, 5: Pfcrk-3 + 

substrate, 6: Pfcrk-3 + substrate +RINGO, 7: Pfcrk-4 + substrate, 8: Pfcrk-4 + 

substrate + RINGO, 9: PfPKS ̂  substrate, 10: PfPKS ̂  substrate + RINGO. The 

experiment was repeated under the same conditions, and standard deviation is 

comprised between 4. S and 42. S cpm.

The His-tagged Pfcrk-4 protein described above was also assayed for activity in 

similar experiments, but displayed no kinase activity.

Cvclin activation

The lack of activity of monomeric GST-Pfcrk-3 and Pfcrk-4 may be due to the 

absence of a specific cyclin-like activator. No cyclin partner has yet been identified 

for these enzymes. Four plasmodial cyclin-related proteins have been recently cloned 

in our laboratory (Pfcyc-1, Pfcyc-2, Pfcyc-3, Pfcyc-4), two of which (Pfcyc-1 and 

Pfcyc-3) activate recombinant PfPK5 in vitro (Merckx et al., 2003). However, 

incubation of either Pfcrk-3 or Pfcrk-4 with these four different recombinant cyclins 

did not allow us to detect an activation of these potential CDKs (data not shown).
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Activation bv parasite extract

Incubation of recombinant Pfcrk-3 or Pfcrk-4 in parasite extracts might result in 

activation of this protein kinase, possibly via the binding of a cyclin-like activator. A 

pull-down experiment was performed, in which recombinant GST-Pfcrk-3 (or Pfcrk- 

4) bound to agarose beads was incubated with parasites extracts or in parasites lysis 

buffer (as a negative control). The beads were washed, and assayed for kinase 

activity.

After incubation in extracts horn asynchronous parasites and late stage parasite 

extracts (trophozoite and schizont), the pull-down experiment allowed us to detect 

histone HI kinase activity associated with GST-Pfcrk-3, as well as the 

phosphorylation of a protein with the same molecular mass as GST-Pfcrk-3 

(96KDa), which may be GST-Pfcrk-3 itself (Fig. 48, lane 2). No signal was observed 

in the absence of parasite protein extract or GST-Pfcrk-3 (Fig. 48, lane 1 and 3). The 

activity might result either from Pfcrk-3 itself, or from another protein kinase from 

the parasite extract that had been copurified with GST-Pfcrk-3. To discriminate 

between these possibilities, we used an expression plasmid encoding a GST-Pfcrk-3 

kinase-dead mutant, carrying a point mutation of a residue involved in catalytic 

activity: K445M. If the post-incubation activity is not found when the kinase-dead 

Pfcrk-3 mutant is used, this would demonstrate that the activity is indeed due to 

Pfcrk-3. The mutants were generated by site-directed mutagenesis, and the pull­

down experiment showed the same signal either with the mutated kinase (Fig. 48, 

lane 6 ) or the “wild type” (Wt) recombinant protein (Fig. 48, lane 5). This suggests 

that the signal is due to a plasmodial protein kinase that is pulled down by the GST- 

Pfcrk-3 beads.
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Fig.48: Pull down experiments using GST-Pfcrk-3, following by a kinase assay

For each point, histone HI has been added into the kinase assay.

Recombinant GST proteins were incubated with parasite extracts (U) or Ivsis huffcr (ut

1: GST heads + parasite extracts; 2: GST-Pfcrk-3 heads + parasite extracts; 3: GST- 
Pfcrk-3 heads + lysis buffer; 4: Histone HI alone; 5: GST-Pfcrk-3 heads + parasite 
extracts; 6: GST-Pfcrk-3dead beads + parasite extracts; 7: GST heads + parasite extracts; 
8: GST-Pfcrk-3 heads + lysis buffer; 9: GST-Pfcrk-3dead heads + lysis buffer; 10: GST 
heads + lysis buffer

A pull-down experiment was also performed on GST-Pfcrk-4 followed by a standard 

kinase assay on HI. After incubation of GST-Pfcrk-4 in an extract from synchronised 

parasites (trophozoite and schizont), a kinase activity was detected on histone HI 

(Fig. 49, lane 2), whereas no activity was observed in the controls (lane 1 and lanes

3-6). In contrast to the Pfcrk-3 pull-down experiments, there was no additional 

phosphorylated protein. The pull-down experiments using late trophozoite and 

schizont parasite extracts allowed us to obtain kinase activity either from GST-Pfcrk-

4-coated beads (Fig. 49, lane 7) or GST-Pfcrk-4 (K91IM) dead mutant-coated beads 

(Fig. 49, lane 8 ), which suggests that this protein kinase, like Pfcrk-3, associates with 

a plasmodial protein kinase. Interestingly, Pfcrk-4 pull-down experiments were 

performed with extracts from rings, and no signal was detected after incubation (data 

not shown). Taken together with expression data demonstrating that Pfcrk-4 is 

expressed late in the asexual cycle (see above), these results are consistent with the 

idea that a complex Pfcrk-4-plasmodial protein kinase is active during schizogony.
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Fig.49: Pull down experiments using GST-Pfcrk-4, following by a kinase assay

For each point, histone HI has been added into the kinase assay. Recombinant GST 

proteins were incubated with parasite extracts (U) or lysis hu f fer  (u). 1: Histone HI 

alone; 2; GST-Pfcrk-4 beads + parasite extracts; 3; GST beads + parasite extracts; 

4; GST-Pfcrk-4 beads + lysis buffer; 5; GST beads + lysis buffer; 6; Histone HI 

alone; 7; GST-Pfcrk-4 beads + parasite extracts; 8; GST-Pfcrk-4dead beads + 

parasite extracts; 9; GST beads + parasite extracts

5.3.3 Immunoprécipitation experiments and kinase assays

In experiments described in the previous section, the N-terminal extensions were not 

present in the recombinant protein, which contained only the catalytic domain (and, 

in the case of Pfcrk-3, C-terminal extension as well). It is unclear at this stage 

whether these extensions are involved in enzyme function, or whether they are 

processed during parasite development (see above). However, it cannot be excluded 

that the absence of kinase activity of the recombinant proteins is due to the absence 

of the N-terminal extensions, which might play a role in tri-dimensional 

conformation, interaction with activators, or substrate recognition. Experiments 

involving native proteins, such as immunoprécipitations from parasite extracts, may 

overcome such limitations of the “ i/7  vitro ” studies using recombinant protein.

Specific anti-Pfcrk-3 and -Pfcrk-4 antibodies bound to A sepharose beads were 

incubated with specific stage parasite extract (late trophozoite and schizont). Because 

of the low affinity of chicken antibodies to protein A (and others) sepharose beads, 1
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first incubated the antibody with a rabbit anti-chicken antibody before coupling to A 

sepharose beads. After incubation, A sepharose beads-bound complexes were 

washed and assayed for kinase activity.

Both native Pfcrk-3 and Pfcrk-4 were associated with a HI kinase activity (Fig. 50, 

lane 5 and 6  respectively), whereas no activity was detected in the negative control 

(in Fig. 49, lane 3 and 4). This result is in agreement with the pull-down experiments. 

In view of the results of the pull-down experiments using protein kinase-dead Pfcrk- 

3 and -4, it cannot be excluded that native Pfcrk-3 (or Pfcrk-4), in this conditions, do 

not have any enzymatic activity, and that the activity detected in immunoprecipitates 

results from another co-purifying protein kinase.

Pfcrk-3 Pfcrk-4

Fig.50: Incubation of immunopurified antibodies with parasite extracts followed 

by a kinase assay

1: Histone HI; 2: positive control (anti-Pfcyc4 + parasite extracts); 3: A sepharose 

beads + parasite extracts; 4: irrelevant chicken IgY + parasite extracts; 5: anti-Pfcrk- 

3 (PNG) + parasite extracts; 6 : anti-Pfcrk-4 (LKA) + parasite extracts 

Previous immunoprécipitation studies followed by kinase assay have shown that the 

cyclin Pfcyc-4 (Merckx et al., 2003) is associated with a kinase activity in parasite 

extract (positive control).
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5.4 DISCUSSION

Residues that maintain the fold of the protein kinase domain or which are important 

in catalysis are well conserved in Pfcrk-3 and Pfcrk-4. In contrast, regulatory 

elements such as the P ST AIRE cyclin-binding motif and “T14” (human CDK2 

numbering) residue involved in regulation of CDK activity are missing (see Chapter 

1, section 1.5.3), which may indicate that these enzymes, despite good sequence 

similarity to the CDK family, may actually be regulated through mechanisms that are 

divergent from those controlling the activity of CDKs in higher eukaryotes. The 

presence of a large extension surrounding the protein kinase domain is an unusual 

feature, as are the insertions within the catalytic domain. PCR on cDNA has shown 

that the extension(s) and insertions are transcribed into mRNA, and Western blot 

experiments using specific antibodies suggest that the proteins are constitutively 

expressed during the erythrocyte stages and that largest insertions are not processed 

(the presence or absence of small insertions cannot be determined from 

electrophoretic mobility, as the relative difference in size would be too small to cause 

a visible shift). Protein expression of extensions during the parasite development 

remains to be elucidated experimentally using antibodies targeting specific parts of 

the polypeptides (as well as the smallest insertions).

No significant histone HI kinase activity of recombinant Pfcrk-3 and Pfcrk-4 was 

observed, even in the presence of different cyclin activators. Pull-down experiments 

indicated that Pfcrk-3 and Pfcrk-4 are associated in complexes with protein(s), which 

display kinase activity on HI. Considering that all residues that are important for 

phosphor-transfer catalysis are conserved in Pfcrk-3 and Pfcrk-4, it is possible that 

absence of kinase activity is caused by our experimental conditions. The limits for 

using the right substrate in our kinase assay could be overcome by testing 

commercial micro arrays of kinase substrate peptides (such as PepChip®Kinase from 

Pepscan company, which contain more than 1150 Ser/Thr peptides). Moreover, we 

have no idea about the function of insertions or extension(s) (the latter of which were 

absent from our recombinant proteins) in the activity of these kinases. Despite the 

fact that insertions may well not interfere with the structure of the kinase, it is also 

possible that they are implicated in the folding of the “active” protein. The roles of 

the extensions are still unknown and the regulation of such complex proteins is
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difficult to predict. Thus, absence of kinase activity could be due to the folding of the 

protein itself or lack of appropriate activation inside the extension domains.

Indeed, it has been established for a wide range of kinases that the C-teiminus 

domain plays a role in the stability or regulation of the protein (Etchebehere et al., 

1997); (Grasselli et al., 2004). Such long C-terminal extensions are found for 

example in number of mammalian MAPKs, such as ERK5 (1 lOkDa, compared to the 

usual 300 amino acid kinase which has a molecular mass of around 30kDa) (Yan et 

al., 2001), ERK7 (Abe et al., 1999) and ERK8 (Abe et al., 2002) (both molecular 

masses are around 60kDa). In the case of ERK 5 and 7, these extensions have been 

found to have a regulatory role (negative regulation of ERK5 activity and 

autoregulation of ERK7), Moreover, in vivo expression of a C-tenninal truncated 

ERK7 resulted in growth arrest of the transgenic cell line (Abe et al., 1999). So far, 

nothing is known about the function of ERK8 C-terminal extension. In Trypanosoma 

brucei also, a MAPK/CDK-kinase (like Pfcrk-4), TbECKl, possesses a long C- 

terminal extension, which is constitutively expressed. Expression of the truncated 

TbECKl protein (i.e without the extension) results in a change of the cell growth 

phenotype with the emergence of aberrant karyotypes, and site-directed mutagenesis 

experiments demonstrate that this domain has a negative regulatory function, which 

prevents TbECKl “from perturbing” the noimal growth (Ellis et al., 2004). Only one 

recent study has been reported so far on the role of an extension in a Plasmodium 

kinase; PfPKB possesses a C-terminal extension and contains also a N-terminal 

region of 28 amino acids (NTR, which in PKB homologues from other organisms is 

usually replaced by a PH domain) (Kumar et al., 2004). Interestingly, the truncated 

protein with the kinase domain and the C-terminal extension (i.e without the NTR) is 

active in vitro whereas expression with the N-terminal region appears to negatively 

regulate its kinase activity.

Based on these data, it is likely that extensions and insertions have an importance in 

the function regulation of some protein kinase. In our case, the cloning of the gene 

encoding the recombinant Pfcrk-3 protein kinase domain with its 335 amino acids C- 

terminus extension is in progress, in order to test its enzymatic activity. However 

expressions of the full length Pfcrk-3 and -4 are problematic because of the 

difficulties of amplifying the entire cDNA (see section 5.2.2.1).
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With respect to insertions, there is some evidence in the literature that they have a 

role in protein-protein interactions. Hence, the human serine/threonine phosphatase 

Calcineurin possesses a 95 residues insertion that is important for calmodulin binding 

(Liu et al., 2002). Insertions have been also observed in Dictyostelium discoideum 

MHCK (myosin heavy chain kinase), and are involved in the binding of the substrate 

(Steimle et al, 2001). However, despite only a few examples of serine-threonine 

protein kinases with such insertions (see Chapter 3, section 3.6, (iv)), their function is 

still undetermined. In some cases, their presence does not perturb enzymatic activity. 

To determine if these domains are involved in protein interactions with Pfcrk-3 and 

Pfcrk-4, we could generate different constructs with or without the large and the 

small insertions. Using these constructs, pull down experiments followed by SDS- 

PAGE could be carried out to identify the binding of partners (including the kinase 

partners, revealed in section 5.3.2). Moreover, since the functions of Pfcrk-3 and 

Pfcrk-4 in the parasite are still unclear, as hypothesized in section 4.6 with respect to 

FIKKs, these proteins could either play a kinase function, or be involved in the 

regulation of signalling pathways in spite of lack of intrinsic kinase activity. In this 

context, identification of the upstream partners that regulate their activity and their 

down-stream targets will be crucial for understanding their cellular role(s). Several 

strategies have been chosen for this purpose and preliminary experiments have been 

carried out (see Chapter 6 , section 6.1: perspectives).
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Chapter 6; PERSPECTIVES AND

GENERAL CONCLUSION
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6.1 PERSPECTIVES FOR THE CLOSE FUTURE

6.1.1 Identification of partners

Several strategies have been undertaken to identify binding partners of the protein 

kinases. Preliminary experiments were carried out to (i) identify partners by 

immunoprécipitation (IP) followed by mass spectrometry analysis or to (ii) identify 

binding motifs by screening of peptide libraries, and finally to (iii) identify potential 

substrates in silico by using the PREDIKIN program (http://www. biosci.uq.edu.au 

/kinsub/home.htm; (Li et al., 2003). The yeast two-hybrid system is difficult to utilise 

in this context, because the P, falciparum AT rich sequences mimic yeast 

transcription termination signals, which causes many plasmodial genes to be 

expressed very poorly in yeast cells. So, the feasibility of applying such an approach 

to this organism is difficult, although not impossible as there are several examples in 

the literature (Bergman et al., 2003; Li et al., 2004; Mello et al., 2002).

(i) Mass spectrometry is a common strategy employed for protein identification. In 

addition to pull-down and IP results on Pfcrk-3 and -4 (described in Chapter 5, 

sections 5.3.2 and 5.3.3) and results on P. falciparum cyclins (Merckx et al. 2003), 

preliminary experiments were performed using antibodies raised against P. 

falciparum CDK. For instance, in synchronized parasite extracts, antibodies against 

Pfcrk-1 and PfPK5 immunoprecipitate (i) phosphorylated proteins (proteins around 

30-35, 50 and 62 kDa, see appendix I, lanes 4 and 6) and (ii) complexes that are 

clearly associated with a histone HI kinase activity (Appendix I, lanes 2, 4 and 9).

We plan, therefore to analyse further the bound partners for all plasmodial CDKs and 

cyclins. To effectively resolve a crude mixture of substances by mass spectrometry- 

based approaches, several factors have to be considered including the amount and 

purity o f the protein desired. For this purpose, cross-linking strategies have been 

considered. Indeed, chicken antibodies and polyclonal rabbit antibodies have been 

cross-linked on beads to prevent antibody contamination in the sample. As expected, 

cross-linkage experiments gave a better resolution, and allow us to detect additional 

proteins (See appendix J, lane 1 and 4). However, at the time of my work, further 

optimisation is necessary to improve the coupling efficiency of antibodies.
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(ii) Screening of libraries

Screening peptide libraries has been used as another method to identify protein 

kinase substrates. This approach is based on the functional binding o f peptides from 

a library (often from a random expression system) to the immobilised ligand (in our 

case, the target protein kinase). In order to identify PfCDK binding motifs, 

preliminary studies have been carried out using a random peptide library: the FliTrx 

system (Invitrogen). This system is based on the display o f random peptides at the 

cell surface (Xu et a l, 2001). The phage display is another potentially powerful 

method for identifying partners (Lauterbach et a l, 2003), Prof. D. Chakrabarti, 

Univ. of central Florida, has produced an asexual cDNA phage display library from 

Plasmodium falciparum using a T7 lambda vector system (Novagen), which was 

used in conjunction with some of the PfCDKs o f interest. No data are yet available, 

however, such approaches are quite promising.

(iii) in silico identification of potential substrates using the PREDIKIN program.

A computational procedure has been developed recently to identify specific kinase 

substrate residues (Li et a l, 2003). This bio-computing study has shown that using 

the present data on the kinase structures, it is possible to predict the substrate 

phosphorylation site of a conserved kinase. We ran the program for all the 

plasmodial CDK-like kinases. The program failed for those enzymes, which possess 

insertions within the catalytic domain, because the progiam could not pinpoint the 

conserved residues used for the prediction. However it worked with Pfcrk-1, PfPK5 

and PfPK6. Different putative substrate motifs were predicted, and were used as 

queries in BLAST analyses of PlasmoDB. Several potential substrates containing the 

phosphorylation motif were identified, and a few hits are worthy of further attention 

(Appendix K). For instance, based on these results, PfPK6 is predicted to 

phosphorylate a plasmodial minichromosome maintenance-related protein (MCM) 

implicated in initiation of DNA replication and DNA elongation in eukaryotes. 

Interestingly, interaction between both proteins was confirmed first by phage display 

(using the T7 library from P. falciparum described above) and secondly in vitro 

kinase assays, in which PfPK6 phosphoiylates this MCM protein (D.Chakrabarti, 

personal communication).

156



6.1.2 Functional gene study bv gene disruption

With the purpose of determining whether or not the kinases are essential to asexual 

multiplication, we intended to inactivate Pfcrk-3 and Pfcrk-4 in vivo using « knock­

out » approaches (KO). Pfcrk-3, Pfcrk-4 (and Pfcrk-1) plasmids were constructed 

using the pCam-BSD vector (allowing inactivation o f the target gene following 

homologous recombination, from David Fidock) (see appendix G and Chapter 2, 

section 2.3.3.4). Pfcrk-3, Pfcrk-4 and Pfcrk-1 plasmid constructs were introduced 

into parasites by electroporation (Chapter 2, section 2.1.7). After one month under 

selective pressure, parasites have emerged, and PCR-based genotype analysis 

performed two months after transfection allowed the detection of only the episomal 

form. Hence, none of the thiee genes had been inactivated (see appendix H), 

whereas under the same experimental conditions, a gene related to MAPK has been 

integrated (Dominique Dorin, personal communication). Formal demonstration that 

these genes are essential for parasite survival will require a complementary 

experiment, in which the KO construct will be co-transfected with another plasmid 

able to express the relevant protein. If the endogenous copy o f the gene can be 

inactivated in these conditions, this will allow us to exclude that the absence of 

integration when the KG plasmid is transfected alone is due to non- 

recombinogenicity of the targeted locus, and will demonstrate that the gene is indeed 

essential (Krnajski et al., 2002).
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6.2 G EN ERA L CO NCLUSIO N

Because Plasmodium falciparum {P. falciparum) parasites are increasingly resistant 

to antimalarial drugs, new targets must be identified. Potential targets for 

chemotherapy include protein kinases (PKs). Candidates for protein kinases involved 

in cell cycle control and differentiation of P. falciparum have been identified, and 

some of them have been characterized biochemically (see Chapter 1, Table 3). 

Among these recombinant malarial kinases, some proteins display enough activity in 

vitro for high throughput screening. “Unusual” parasite protein kinases have also 

become attractive for drug design.

Numerous studies have been carried on kinase inhibitors in the context of cancer 

research (Dancey and Sausville, 2003). Targeting the catalytic site of the kinase with 

ATP-competitive compounds seems to be the most promising approach for drug 

activity. Diversity in the amino acid residues of the ATP binding site allowed the 

development of rational drug design. In the case of human cancer, finding a 

compound that specifically inliibits a single type of protein kinase, involved in 

dysregulation pathways, leaving the healthy cell unaffected is quite difficult. 

However, a few compounds have been shown to be efficient towards their target 

using a well-tolerated dose (Dancey and Sausville, 2003). In P. falciparum, the same 

approach could be envisaged. As a long-term strategy, we are hoping to find or 

design specific compounds inhibiting specifically atypical kinases important for 

parasite development without affecting human cells.

The identification of all the protein kinases in P. falciparum is an important 

milestone both in our understanding of the biology of this pathogen and also in the 

definition of potential novel drug targets. The analysis of the entire complement of 

protein kinases encoded in the genome o f P. falciparum corresponds to the first part 

of my PhD project (Chapter 3, in collaboration with P. Ward and J. Packer). Based 

on these results, different aspects of the kinome have been found to be specific to P. 

falciparum, such as the absence of clear MAPKK member and PKC homologue, and 

also the presence of insertions inside the catalytic domain o f a large number of 

kinases. Moreover, the kinome analysis gives an important clue about the different 

type of kinases that may be involved in signalling pathways during the life of the 

parasite. The compilation of microarray and proteomic data (from DeRisi JL. et al., 

LeRoch K. et al. and Florens L. et al.; available on PlasmoDB) produced a first draft
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of the timing of kinase expression during the erytln*ocyte stages. Our analysis 

underlines also the presence o f a set a 20 proteins, which share partial homology with 

eukaryotic protein kinase (ePK), the so-called FIKK family, which, in relation to the 

current available genomic sequences, seems to be restricted to Apicomplexa. 65 ePK 

have been identified in our study, compared to “61 PK belonging to known kinase 

subfamilies”, according to a recent paper that also performed a genome analysis for 

protein kinases encoded in the P. falciparum genome (Srinivasan N, 2004). Among 

plasmodial ePK, only 1/3 have been characterized to date, so, it is really important to 

understand their function and their role through the life cycle of the parasite. In this 

context, part of my work was dedicated to the characterisation o f the newly identified 

FIKK family (Chapter 4). Furthermore, the relative importance o f the CMGC group 

in the P. falciparum kinome, and our interest in the control of cell proliferation in the 

parasite, lead us to study two atypical CDK related kinases: Pfcrk-3 and Pfcrk-4 

(Chapter 5).

Only one FIKK has been cloned so far in our laboratory; whilst the other FIKK genes 

will be cloned in different in vitro expression systems in order to test their activity as 

well. In our analysis, the presence of an internal stop codon in the mRNA of 

PF14 0033/34 has been noticed. The discovery of the protein expression of 

Pfalciparum P 160.1 thi'ough an internal codon (Bischoff et al., 2000) raises the 

question about the translation process of PF14 0033/34. Additional immuno- 

analyses will be perfoimed to rule out or confirm the possibility of such a protein 

expression mechanism for this gene.

The primary amino acid sequence of protein largely determines its tlnee dimensional 

structure and structure often determines function. Based on this postulate, in order to 

study the biological function o f the FIKK (PFL0040c), Pfcrk-3 and Pfcrk-4, we 

investigated their potential enzymatic activity as a kinase. Analysis o f their activity 

by standard kinase assays has been carried out, and under our conditions of 

experiment, there was no evidence for phosphotransferase activity in vitro. 

Nevertheless, since most of the important residues involved in the catalytic function 

are conserved in FIKK (PFL0040c), Pfcrk-3 and Pfcrk-4, it is also possible that they 

have maintained their kinase activity. So, it is probable that because of their atypical 

features, standard experimental conditions could limit our investigation.
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Alternatively, absence o f kinase activity could be obviously due to total absence of 

kinase activity itself. Indeed, it has been proposed that non-functional kinases could 

play a role in the regulation o f cellular responses. It could have been an efficient way 

for an organism to control its signalling pathway by inhibition with “dead kinases” 

(Pils and Schultz, 2004b). To illustrate this point, a recent study of the protein 

tyrosine phosphatase (PTP) family (Pils and Schultz, 2004a), revealed that a subclass 

of PTPs are inactive, but have retained the ability to specifically bind phosphorylated 

substrate, and thus to compete in vitro with the active phosphatases.

The same authors (Pils and Schultz, 2004b) have investigated substitutions at 

catalytic sites of a large set of enzyme sequences among metazoans, and they showed 

that a large variety of enzyme families contain inactive enzyme-homologues. For 

instance, based on the absence of some o f the 11 conserved residues, serine/threonine 

kinomes from mammals, Drosophila and woims contain between 2 to 4.4% of 

“potential” inactive enzymes. In contrast, the Plasmodium genome encodes about 

26% serine/threonine kinases, which do not possess the 11 catalytic residues 

(according to Table 5, Chapter 3). This may be a result o f the phylogenetic distance 

between the opisthokonts and alveolates (see Fig. 5, Chapter 1) and illustrates the 

fact that the cuirent eukaryotic models, which describe for instance the control of cell 

proliferation (Chapter 1, section 1.5.2), do not represent necessarily the right models 

for such organisms. Such differences could be usefull for identifying new P. 

falciparum target as protein kinase involved in crucial process.

Functional studies by “Knock-out”, which are currently being pursued (see section 

1.6.2), may provide usefUl information about the role o f these kinases in the P. 

falciparum life cycle. Partner-interaction experiments performed on Pfcrk-3 and 

Pfcrk-4 (Chapter 5, section 5.3.2 and appendix J), and on Pfcrk-1 and PfPK5 

(appendix I) are promising as well, and show that one can immunoprecipitate or/and 

pull-down phosphorylated proteins and complexes that are associated with a histone 

HI kinase activity. Clearly, further work is needed to identify partners, which in turn 

is necessary to understand the function of these related kinases in cell molecular 

events.

In long term, the characterization of elements involved in signalling pathways will 

help in a future appreciation of the entire network of cell signalling, and may lead to 

the discovery of new pathway(s). Cunent research priorities o f the laboratory are to
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better characterize the biological roles and biochemical features of P. falciparum 

protein kinases. In parallel, efforts to identify specific inliibitors as antimalarial drugs 

are underway, and the study o f potential targets is complemented by the screening of 

kinase inhibitors directly against parasite culture.
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Appendix A: Phylum Apicomplexa

Class Sporozoea
o  Subclass Gregarina

■ Order Eugregarinidia
■ Suborder Septatina

" Gregarina sp.
o  Subclass Coccidia

■ Order Eucoccidiorida
■ Suborder Eucoccidea

■ Hemogregarina sp.
■ Suborder Eimeriorina

■ Family Eimeriina
■ Eimeria spp. (coccidiosis)
■ Isospora spp. (coccidiosis)
■ Isospora belli

■ Family Sarcocystidae
■ Sarcocystis spp.
■ Toxoplasma gondii (toxoplasmosis)

■ Fawi/y Cryptosporidiidae
■ Oyptosporidium parvum 

(cryptosporidosis)
■ Cyclospora cayetanensis
■ Pneumocystis carinii 

• Suborder Haemosporoina
Plasmodium  spp. (malaria)

o Subclass Piroplasmasina
“ Family Babesiidae

■ Babesia bigemina (babesiosis)
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Appendix B: Multiple sequence alignment of different PFL0040c gene 

predictions

Black squai’es at the N-terminus and C-terminus domain underline the differences 

between Glimmer, Fullpath and PlasmoDB gene prediction models.

g lim m e r
F u l l p a t h
Plasm oD B

g lim m e r
F u l l p a t h
Plasm oD B

MYILRNMFCIKFMLYFLWLLYLLFLNIEFIKFKTFQSLVSYDRPSKCLSENSKHHVNSDN 60
 MRRIIGQE-
 MRRIIGQE-

- '3NIEFIKFKTFQSLVSYDRPSKCLSENSKHHVNSDN 44
- '3NIEFIKFKTFQSLVSYDRP3KCLSENSKHHVNSDN 4 4

c ' ^ ' k ' k ' k ' k ' k ' k ' k ' ^ ' ^ ' k ' k ' k ' k ' k ' k ' k ' c ' k ' k - k ' k ' k ' k ' k ' i c - f c ' k ' k ' k ' k

NKGNKLFGQKQFGNINKCDVKDDELKISKDNTSKKKKICFKKEKRSNEEEYNNLEKESVE 120 
NKGNKLFGQKQFGNINKCDVKDDELKISKDNTSKKKKICFKKEKRSNEEEYNNLEKESVE 104 
NKGNKLFGQKQFGNINKCDVKDDELKISKDNTSKKKKICFKKEKRSNEEEYNNLEKESVE 104

g l im m e r
F u l l p a t h
Plasm oD B

GTCNLLNILNVEKTKVFDNYESTYKHGENNDIICMSNLKEDESKENYIYNWNLGKESLVK 180 
GTCNLLNILNVEKTKVFDNYESTYKHGENNDIICMSNLKEDESKENYIYNWNLGKESLVK 164 
GTCNLLNILNVEKTKVFDNYESTYKHGENNDIICMSNLKEDESKENYIYNWNLGKESLVK 164

g l im m e r
F u l l p a t h
P lasm oD B

FLGFSDYFKINGVKYSDFELTSIPIIGENKSKGRVQEMFKTVIPSNDGDPAKEVKLFIKR 240  
FLGFSDYFKINGVKYSDFELTSIPIIGENKSKGRVQEMFKTVIPSNDGDPAKEVKLFIKR 22 4 
FLGFSDYFKINGVKYSDFELTSIPIIGEKKSKGRVQEMFKTVIPSNDGDPAKEVKLFIKR 224

g l im m e r
F u l l p a t h
P lasm oD B

IPVEWWIKQFNLMEKYDGEYLVKAENYVMEGVALSFLSEHHPGIAPKLLKILYDGKNVNH 300  
IPVEWWIKQFNLMEKYDGEYLVKAENYVMEGVALSFLSEHHPGIAPKLLKILYDGKNVNH 28 4 
IPVEWWIKQFNLMEKYDGEYLVKAENYVMEGVALSFLSEHHPGIAPKLLKILYDGKNVNH 284

g l im m e r
F u l l p a t h
P lasm oD B

DIMEEYKFKDIYEFNNMLIERINNNMDGYIVMVSELFGEDLFDFNKRFTKEKSDVRNSDE 360 
DIMEEYKFKDIYEFNNMLIERINNNMDGYIVMVSELFGEDLFDFNKRFTKEKSDVRNSDE 34 4 
DIMEEYKFKDIYEFNNMLIERINNNMDGYIVMVSELFGEDLFDFNKRFTKEKSDVRNSDE 34 4

g l im m e r
F u l l p a t h
P lasm oD B

FKKELLYKCL-RLLVRLHSAGLSHLDLTAENVLITDDYDIRLCDFAKSTPLYSDKLRHIDK 420 
FKKELLYKCLRLLVRLHSAGLSHLDLTAENVLITDDYDIRLCDFAKSTPLYSDKLRHIDK 404 
FKKELLYKCLRLLVRLHSAGLSHLDLTAENVLITDDYDIRLCDFAKSTPLYSDKLRHIDK 404 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

g lim m e r
F u l l p a t h
P lasm oD B

KKKKKVYLFESCVPTIGKREYTPIECWRIRKKLREKNITDPFEHVKTISMQRFRKEYYFN 4 00 
KKKKKVYLFESCVPTIGKREYTPIECWRIRKKLREKNITDPFEHVKTISMQRFRKEYYFN 4 64 
KKKKKVYLFESCVPTIGKREYTPIECWRIRKKLREKNITDPFEHVKTISMQRFRKEYYFH 464

g l im m e r
F u l l p a t h
P lasm oD B

VSHADYFMLGVLFIWIWNCGHMWKTSFPSESVNFTTFLENNMNLSCYPSTKSWPSDFKFI 540 
VSHADYFMLGVLFIWIWNCGHMWKTSFPSESVNFTTFLENNMNLSCYPSTKSWPSDFKFI 524 
VSHADYFMLGVLFIWIWNCGHMWKTSFPSESVNFTTFLENNMNLSCYPSTKSWPSDFKFI 524

g l im m e r
F u l l p a t h
P lasm oD B

KV
KV

v:
V
VM
*

IYN--TIKKMNLNEMFMKKNL- 
lY N — TIKKMNLNEMFMKKNL- 

ELMNEECRKKLNLKNLMTHPWFNET 
. 4* . .

562
54 6
551
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Appendix C: FIKK sequences of MALP1.144. MALP1.175, P F ll 0510, 

PFL0040C, PFIOlOOc and MAL13P1.109

Peptides have been already designed for antibody production (amino acid sequences 

in red), except for MAL7P 1.144. Black arrows represent the primers used for PCR.

MAL7P1.144 (PlasmoDB prediction) 
 ►

M K F R K S K N E K K N E Q Q D D L 18
ATG AAA TTC AGG AAA AGT AAA AAT GAA AAA AAA AAT GAA CAA CAA GAT GAC CTC 54

L K N K E D D L L K N K E G D L L K 36
TTA AAA AAT AAA GAA GAT GAC CTC TTA AAA AAT AAA GAA GGT GAC CTC TTA AAA 108

N K E G D L L K N K G D L L K N E E 54
AAT AAA GAA GGT GAC CTC TTA AAA AAT AAA GGT GAC CTC TTA AAA AAT GAA GAA 162

G D L L K N E E G D L L K N K G D L 72
GGT GAT CTC TTA AAA AAT GAA GAA GGT GAT CTC TTA AAA AAT AAA GGT GAC CTC 2 1 6

I K N K E G D L L K S K E G D L I K 90
ATA AAA AAT AAA GAA GGT GAC CTC TTA AAA AGT AAA GAA GGT GAC CTC ATA AAA 270

N K E G D h I K N K E G D L L K S K 108
AAT AAA GAA GGT GAC CTC ATA AAA AAT AAA GAA GGT GAC CTC TTA AAA AGT AAA 324

E G D L I K N K E G D L L K S K E G 126
GAA GGT GAC CTC ATA AAA AAT AAA GAA GGT GAC CTC TTA AAA AGT AAA GAA GGT 378

D L I K N K E G D L I K N K E D V L 144
GAC CTC ATA AAA AAT AAA GAA GGT GAC CTC ATA AAA AAT AAA GAA GAT GTT CTC 432

L N K G Y N I L Q N K N D N L L Q N 162
TTA AAT AAA GGT TAT AAT ATA TTG CAA AAT AAA AAT GAT AAT CTC TTG CAA AAT 486

E Y Y N L L Q N E Q D D N Q L K G N 180
GAA TAT TAC AAT CTC TTG CAA AAC GAA CAG GAT GAT AAC CAA CTT AAA GGC AAT 540

T L I T T K K E D K G C M K K T H E 198
ACC TTA ATT ACA ACT AAG AAA GAA GAT AAA GGT TGT ATG AAG AAA ACA CAT GAA 594

N K A E C E K N E D K N C M K K T H 21 6
AAT AAG GCA GAA TGT GAA AAG AAC GAA GAT AAA AAT TGT ATG AAG AAA ACA CAT 648

E N K A E C E K N E D K N C M K K T 234
GAA AAT AAG GCA GAA TGT GAA AAG AAC GAA GAT AAA AAT TGT ATG AAG AAA ACA 702

H G N K A E D E K N E D I L L M S P 252
CAT GGA AAT AAG GCA GAA GAT GAA AAG AAC GAA GAT ATA TTA TTA ATG TCC CCT 75 6

T K G N N L W T R L K K G F S R G M 270
ACA AAA GGA AAC AAC TTA TGG ACA AGA TTA AAA AAA GGT TTT TCA AGA GGT ATG 810

C M N F L L N D N N E K K L S T L Y 288
TGT ATG AAT TTT TTA TTA AAT GAT AAT AAC GAG AAA AAA CTT TCT ACG TTG TAT 864

V T N M L K N Q L N S Y Y G S K N S 306
GTA ACA AAT ATG TTG AAA AAC CAA TTG AAT TCT TAT TAT GGT TCA AAA AAT TCA 918

N D K K L E K S D N E G G E E K Y D 324
AAT GAT AAA AAA TTG GAA AAA TCA GAT AAT GAA GGA GGA GAA GAA AAA TAT GAT 972

N S N K E Q N M I Y N W K I G K E C 342
AAT TCA AAT AAG GAA CAG AAC ATG ATA TAT AAT TGG AAA ATA GGA AAA GAA TGT 1 026

F M K K L D S V H N F E M N G V N Y 360
TTT ATG AAA AAA TTA GAT AGT GTA CAT AAT TTT GAA ATG AAT GGT GTT AAT TAT 1080

Y D F N L I S I P T I G Y S K S S K 378
TAT GAT TTT AAT TTA ATA TCA ATT CCA ACT ATT GGT TAT TCT AAA AGT AGT AAA 1134
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R L Q L M Y K T D V I Y G E N E N D  
AGA CTT CAG TTA ATG TAT AAA ACA GAT GTA ATA TAT GGG GAA AAT GAG AAT GAG

396
1188

K N N L K K K K L F L K K V P A N L  
AAA AAT AAT TTA AAA AAA AAA AAA TTA TTT TTG AAA AAA GTT OCT GCA AAT TTA

414
1242

W I E Q Y K L M K E Y D G E Y V Y S  
TGG ATT GAA GAA TAT AAA TTA ATG AAA GAA TAT GAT GGA GAA TAT GTA TAT AGT

432
129 6

G E N Y V M E F L V L S F L D T Y H  
GGG GAA AAT TAT GTA ATG GAA TTT TTA GTT TTA TGT TTT GTT GAT AGA TAT GAG

450
135 0

P N I G P K L Y K I L Y E P P N K E  
GOT AAT ATA TGT GGT AAG TTG TAT AAA ATA TTA TAT GAG CCT GGA AAT AAA GAA

4 68 
1404

Y I K D E N K K F Q N I D D F V K Y  
TAT ATT AAA GAT GAA AAT AAG AAA TTT GAG AAT ATA GAT GAT TTT GTA AAA TAT

48 6
1458

M E D I  l E H N K R N N A N N N V D  
ATG GAA GAT ATT ATA GAA CAT AAG AAA AGG AAG AAT GCA AAT AAT AAT GTT GAT

504
1512

N N N N I H N H K N N I N Y G I T N  
AAT AAT AAT AAT ATA GAT AAG GAT AAG AAT AAG ATA AAT TAG TGT ATT AGT AAT

522
1 5 6 6

S D N K H D N N N N D N N S D N N C  
AGT GAT AAT AAA GAT GAT AAT AAT AAG AAT GAT AAG AAT TGT GAT AAT AAG TGT

540
1620

G Y V V M V S E Y Y G E D I  F D F I  
GGA TAT GTT GTA ATG GTA TGG GAA TAT TAG GGT GAA GAT ATA TTT GAT TTT ATT

558
1674

I K R R K N I  F L K I R R K D K I N  
ATA AAA GGA AGG AAA AAT ATA TTT TTA AAA ATG GGA AGA AAA GAT AAA ATG AAT

5 76
1728

I  L H A C L K L L A R L H D A G L G  
ATT GTT GAT GGT TGT TTA AAG TTA TTA GCA AGA TTA CAT GAT GGT GGA TTA TGT

594
1782

H L D L T P D N I L I S K S M D L R  
CAT GTT GAT TTA ACA GGT GAT AAT ATA TTA ATA TCA AAA AGT ATG GAT TTA GGT

612
1 836

L C D F A K S T P M Y S N K L R H L  
TTA TGT GAT TTT GGG AAA AGG AGT GGA ATG TAT AGG AAT AAA GTA AGA GAT TTA

630
1 890

K E S E D S Y K F E S Y E T H V A K  
AAA GAA TGT GAA GAT TGG TAT AAA TTT GAG TGT TAT GAA AGG GAT GTA GGA AAA

648
1944

S A Y T P P E G W E I Y W R Y Y E L  
AGT GGA TAT ACA GGA GGT GAG TGT TGG GAA ATA TAT TGG AGA TAT TAT GAA TTA

566
1998

K I K E P L E Y L K L I T N Q E E R  
AAA ATT AAA GAA GGG TTG GAA TAT TTA AAA TTA ATT AGA AAG GAA GAA GAA AGG

684
2 0 5 2

K Q F Y F D V A G A D K F M L G V L  
AAA GAA TTT TAT TTT GAG GTT GGT TGT GGT GAG AAA TTT ATG TTA GGG GTT GTA

702
2 1 0 6

F I W I W T S G N L W V G S D P L Q  
TTG ATA TGG ATG TGG ACT AGT GGT AAT TTA TGG GTT TGT TCA GAT GGT TTA GAA

720
2 1 6 0

D D Y F H G L M K S D M N F N N F P  
GAT GAT TAT TTT CAT TGT GTT ATG AAA TCA GAT ATG AAT TTT AAT AAT TTC GGG

738
221 4

G S Q N W P H G L K H I I K Q L L H  
TGT TGA GAA AAT TGG GGT GAT GGG GTT AAG GAG ATG ATA AAG GAA TTG TTA GAG

75 6
2 2 6 8

M K Y R K D L N L N I L G I H P W W  
ATG AAA TAG AGA AAA GAT TTG AAT TTA AAT ATT TTA GGG ATT CAT COG TGG TGG

774
2 3 2 2

Y K K K * 
TAG AAA AAA AAG TAA

779
2 337
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MAL7P1.175 (PiasmoDB prediction)

M P I L V V M D K W T N K P L N I I
ATG CCT ATT TTG GTG GTA ATG GAT AAA TGG ACA AAT AAA GGA TTA AAT ATA ATT

Y E H S R N L S E Y E K L L N T S N
TAT GAA GAT TGA AGA AAT TTA TGT GAA TAT GAA AAA TTG GTG AAT AGG TGG AAT

I P F I R S I F T N K G I K K K S N
ATA CCT TTT ATT GGT TGT ATA TTT AGT AAT AAA GGA ATA AAA AAA AAG AGT AAT

N W L L N K K T N M C L F G R L N K
AAT TGG TTA TTA AAT AAG AAA AGT AAT ATG TGG TTA TTG GGA AGA TTA AAT AAA

N N C E D N F F E D R T N D T D W G
AAT AAG TGT GAG GAT AAT TTT TTT GAA GAT GGG AGT AAT GAT AGT GAT TGG GGA

G D K H R F G K L N I M N K E N E Y
GGA GAT AAA GAT GGT TTT TGT AAA TTG AAT ATA ATG AAT AAA GAA AAT GAA TAT

I N G I I D N N W D S I K Y M N Y A
ATA AAT GGT ATT ATT GAT AAG AAT TGG GAT TGT ATA AAA TAT ATG AAT TAT GGG

H N N E S C S D S N N L Y N W E L G
CAT AAT AAT GAA AGT TGT TGA GAT TGG AAT AAT TTA TAT AAG TGG GAA TTA GGG

K Q C L L K M L D F S Y N F G V Y G
AAA GAG TGT TTA GTT AAG ATG TTA GAT TTT TGT TAT AAT TTT TGT GTA TAT GGT

M N Y D V W E L K R I T T N N C E I
ATG AAT TAT GAG GTT TGG GAA TTA AAA AGA ATA AGA ACA AAT AAT TGT GAA ATT

G S S R V H K M Y E T F I S S K N G
GGT AGT TGA AGG GTT CAT AAA ATG TAT GAA AGA TTT ATT AGT TGA AAA AAT GGT

N G I R L F I K K I P I S A W V K Q
AAT GGG ATA AGA TTA TTG ATA AAA AAG ATT GGT ATT AGT GCA TGG GTA AAG GAA

Y K L M N E. Y E G E Y I I N A E N Y
TAT AAA TTA ATG AAT GAA TAT GAA GGA GAA TAT ATT ATA AAT GGT GAA AAT TAT

V M E A V A L S F L N E Y Y P G I A
GTT ATG GAA GCA GTT GGT TTA TGT TTT TTG AAT GAA TAT TAT GGA GGG ATA GGA

P K L Y R V L F Q P D V H Y I G G E
CCT AAG TTA TAG AGA GTT TTA TTT GAA CCA GAT GTA GAT TAT ATG GGT GGA GAA

F P Q E N I F Q D L D T F N S V L T
TTT CCT GAA GAA AAT ATT TTG GAA GAT TTG GAT AGA TTG AAT AGG GTA TTA AGA

N E L E S N M N G Y I I I V S E Y F
AAT GAA TTG GAA TCA AAG ATG AAT GGT TAT ATT ATA ATA GTT TGT GAA TAT TTT

G E N I N E Y I K R Q R K K M F S I
GGA GAG AAT ATA AAT GAA TAT ATA AAA AGA GAA AGA AAA AAA ATG TTT TGT ATA

G R K K K K K K L L Y N G L N L L R
GGA AGA AAA AAA AAG AAA AAA AAA TTA TTA TAT AAT TGT TTA AAT TTA TTA AGA

K L H N A G L S H L D F T S H N I L
AAA TTA CAG AAT GGA GGA TTA TGT CAT GTA GAT TTT AGT AGT GAT AAT ATA TTA

I S D K H E I R L G D F G K A T P M
ATA TGA GAT AAA GAT GAA ATA GGT TTA TGT GAT TTT GGG AAA GGT AGT GGT ATG

Y T Y N L R H I N N I N G I H S F E
TAT AGT TAT AAT TTA AGA CAT ATA AAT AAT ATA AAT TGT ATT CAT TGG TTT GAA

S G A P G V E L I K K Q E E L D I T
TCA TGT GGT GGT TGT GTT GAA TTA ATT AAA AAA GAG GAA GAA GTG GAT ATT AGT

Y P L E Y L K S I T D Q E E R K T F
TAT GGA TTA GAA TAT TTA AAG TGT ATT AGA GAT GAA GAA GAA GGA AAA AGG TTT

Y F N V S S V D K Y M L G I V F I M
TAT TTT AAT GTT TGG TGA GTT GAT AAA TAT ATG TTG GGA ATG GTA TTT ATA TGG

18
54

36
108

54
162

72
216

90
270

108
324

126
378

144
432

162
486

180
540

198
594

21 6
648

234
702

252
756

270
810

288
864

306
918

324
972

342
102 6

360
1080

378
1134

396
1188

414
1242

432
1296

450
1350
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I W N Y N F L W K R S D P S
ATT TGG AAT TAT AAT TTT TTA TGG AAG GGT TGT GAT GGA TGA

Y L K F E Q F D M I L D F F
TAT TTA AAA TTT GAA GAA TTT GAG ATG ATG GTT GAT TTT TTT

R W P K E L K N I I K Q L L
AGA TGG GCA AAA GAA TTA AAA AAT ATA ATT AAG GAA TTG TTA

R K N L N L N D L S K N P W
AGG AAG AAT TTA AAT TTA AAT GAT TTG AGT AAA AAT GGT TGG

Y
TAT

ATT TAA

468
1404

486
1458

504
1512

522
1566

524
1572

P F ll 0510 (Glimmer prediction)

M I Y I K L R
W"
L Y I F W F L F L I L 18

ATG ATT TAT ATT AAA TTA GGG TTA TAT ATA TTT TGG TTT GTA TTT TTA ATT GTA 54

L N L T L T D R K I F E Y I R L I D 36
TTG AAT TTG AGA TTA AGA GAT AGG AAA ATA TTT GAA TAT ATA AGA TTA ATT GAT 108

I Y F R I L Y E Y N G I N K L G G G 54
ATA TAT TTT AGA ATT TTA TAT GAG TAT AAT GGA ATA AAT AAA TTA TGT GGT GGA 162

K S G N K I F D Q R I L G E E E C I 72
AAA TGT TGT AAT AAA ATA TTT GAT GAG GGT ATA TTA GGT GAA GAA GAA TGT ATT 21 6

Y K G D D K K K K K T K L I D M I N 90
TAT AAA GGT GAT GAT AAA AAA AAA AAA AAA AGG AAA GTA ATA GAT ATG ATT AAT 270

L G K I W N K I K K V I Y K D E N I 108
TTA TGT AAA ATA TGG AAT AAA ATT AAA AAG GTA ATT TAT AAG GAT GAA AAT ATA 324

L K S G S N L N I K E N K K F I Y K 126
TTA AAA AGT GGA AGG AAG TTA AAT ATA AAA GAA AAT AAA AAA TTT ATT TAT AAA 378

L N G E N T G I N D N Q Q Y I D E L 144
GTA AAT GGG GAA AAT AGT GGT ATT AAT GAT AAG GAA GAA TAT ATT GAT GAA TTA 432

K D N I H S K N I Y N W I E G Y K S 162
AAG GAT AAT ATA GAT TGA AAA AAT ATT TAT AAT TGG ATA GAG GGT TAT AAA TGA 486

L V K M F G L S N N F S I N G V K Y 180
TTG GTT AAA ATG TTG GGG TTA TGA AAT AAT TTT TGG ATA AAG GGA GTT AAA TAT 540

S D W K L I P I S F I E Y N K K K F 198
TCT GAT TGG AAA TTA ATT GGT ATA TGA TTG ATT GAA TAC AAT AAA AAA AAG TTT 594

R V Q E M F K T V I T S K N D D N K 216
AGA GTT GAA GAA ATG TTT AAA AGA GTT ATT AGA TCA AAA AAT GAT GAT AAT AAA 648

N N I S L F X K K I P V D I W L K Q 234
AAT AAT ATA AGT TTA TTG ATA AAA AAA ATA GCA GTA GAT ATA TGG GTA AAG GAA 702

F E M M E L Y N G E Y L V N A E N Y 252
TTT GAA ATG ATG GAA TTA TAT AAT GGT GAA TAT TTA GTG AAT GGA GAA AAT TAT 7 5 6

V M E A S I L A F L N E Y Y Q G F I 270
GTT ATG GAA GGT TGT ATA TTA GGT TTT GTA AAT GAA TAT TAT GAA GGA TTT ATA 810

:

A P K L Y K I L Y E E N Y E E N N K  
GCA CCT AAA TTA TAT AAA ATA TTA TAT GAA GAA AAT TAT GAG GAA AAT AAT AAA

288
864

E N M F P P Y M F N E K K E L N I N  
GAA AAT ATG TTT GCA GCA TAT ATG TTT AAT GAA AAG AAA GAA CTT AAT ATT AAT

306
918

N L H E F K N F L K E R I N K N V N  
AAT TTA GAT GAA TTT AAA AAT TTT TTA AAA GAA AGA ATA AAT AAG AAT GTA AAT

324
972

G Y I V I V S E L Y G Q N V F E Y I  
GGA TAT ATT GTA ATT GTA TCT GAA TTG TAT GGT GAA AAT GTT TTT GAA TAT ATA

342
1026
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E K R Q K E N N N I L S D R E K K K 360
GAG AAA AGA CAA AAG GAA AAT AAT AAT ATA TTA AGT GAT AGG GAA AAA AAA AAA 1080

I L Y E G L K L L I K L H N V G I A 378
ATT TTA TAT GAA TGG TTA AAA TTA TTA ATA AAA TTA GAG AAT GTA GGA ATA GGT 1134

H L D I S L E N I L M T E N Y E F L 396
CAT CTT GAT ATA TGG GTA GAA AAT ATT TTA ATG AGA GAA AAT TAT GAA TTT GTT 1188

L C D F G K S T P I Y T T T L R H V 414
TTA TGT GAT TTT TGT AAA AGT ACA CCT ATA TAT AGA AGA AGG TTA AGA GAT GTA 1242

K E M N H I G L F E S G V P K I G K 432
AAA GAA ATG AAT GAT ATA TGT TTA TTT GAA TGA TGT GTA GGA AAA ATT GGA AAA 1 296

I S Y A P P E G I Q L R K I H E K M 450
ATT TCA TAT GCA GGT GGT GAA TGT ATA GAA CTT GGT AAA ATA CAT GAG AAA ATG 1350

D I K N P L S D L N Y I K D I E E R 468
GAT ATA AAA AAG CCT TTG TGT GAT TTA AAT TAT ATT AAA GAT ATT GAA GAA AGA 1404

R K Y Y F D V T S A D I Y M L G V L 486
AGG AAA TAT TAT TTT GAG GTT AGA AGT GGT GAT ATA TAT ATG GTA GGA GTT GTT 1458

F L R I W N S K P L W L I A N I E E 504
TTT CTT AGG ATT TGG AAT AGT AAA CGC TTA TGG GTA ATT GGA AAT ATA GAA GAG 1512

D L N F S K I F E A D M N F D K F V 522
GAT TTA AAT TTT TGG AAA ATG TTT GAG GGA GAT ATG AAT TTT GAT AAG TTT GTG 1 566

I A K N W P K E F K K I I Q Q L L H 540
ATA GCA AAA AAT TGG GGT AAA GAA TTT AAA AAA ATT ATT CAG CAA TTA TTG GAG 1620

M T S R K N L S L K E L S K N P W W 558
ATG ACC TCT AGG AAA AAT TTA AGT TTA AAA GAA TTA AGT AAA AAT GGA TGG TGG 1674

K E * 561
AAA GAA TAA 1683

PFL0040C (Glimmer/PlasmoDB predictions)

M Y I L R N M F G I K F M L Y F L W 18
ATG TAT ATT TTG AGA AAT ATG TTG TGT ATA AAA TTT ATG TTA TAT TTT TTA TGG 54

L L Y L L F L N I E F I K F K T F Q 36
TTA TTG TAT TTA TTG TTG TTG AAT ATT GAG TTT ATT AAA TTT AAA AGA TTT GAA 108

S L V S Y D R P S K C L S E N S K H 54
TGA TTA GTT TGA TAT GAT AGA GGT TGA AAA TGT TTA TCT GAA AAT AGT AAG GAT 162

H V N S D N N K G N K L F G Q K Q F 72
GAG GTG AAG TGT GAT AAT AAG AAA GGT AAT AAG TTG TTT GGT GAG AAG GAG TTT 21 6

G N I N K G D V K D D E L K I S K D 90
GGA AAG ATA AAT AAG TGT GAT GTT AAA GAT GAT GAA TTA AAA ATA TGT AAA GAT 270

N T S K K K K I G F K K E K R S N E 108
AAT AGA AGG AAG AAA AAG AAA ATA TGT TTT AAA AAA GAG AAA AGG TGG AAT GAA 324

E E Y N N L E K E S V E G T G N L L 126
GAA GAG TAT AAT AAT TTA GAA AAG GAG AGT GTA GAA GGT ACT TGT AAT TTA TTA 378

N I L N V E K T K V F D N Y E S T Y 144
AAT ATA TTA AAT GTA GAG AAA AGA AAA GTT TTT GAT AAT TAT GAA AGT ACA TAT 432

K H G E N N D I I C M S N L K E D E 162
AAA GAT GGA GAA AAT AAT GAT ATA ATA TGT ATG TCT AAT TTA AAA GAG GAG GAA 486

S K E N Y I Y N W N L G K E S L V K 180
TGG AAA GAG AAT TAT ATT TAT AAT TGG AAT TTA GGT AAA GAG TGG TTA GTA AAG 540

F L G F S D Y F K I N G V K Y S D F 198
TTT TTA GGT TTT TGA GAG TAT TTT AAG ATA AAT GGA GTA AAA TAT TCA GAT TTT 594
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E L T S I P I I G E N K S K G R V Q 2 1 6
GAA TTA ACA TCT ATT CCT ATA ATT GGT GAA AAT AAA AGT AAA GGT AGG GTT CAA 6 4 8

E M F K T V I P S N D G D P A K E V 2 3 4
GAA ATG TTT AAA ACA GTT ATT CCT TCA AAT GAT GGG GAG CCT GCG AAG GAA GTA 7 0 2

K L F I K R I P V E W W I K Q F N L 2 5 2
AAA TTA TTT ATA AAA AGG ATA CCT GTT GAA TGG TGG ATA AAA CAG TTT AAC TTA 7 5 6

M E K Y D G E Y L V K A E N Y V M E 2 7 0
ATG GAA AAA TAC GAT GGA GAA TAT TTA GTA AAA GCA GAG AAT TAT GTT ATG GAA 8 1 0

G V A L S F L S E H H P G I A P K L 2 8 8
GGA GTT GCT TTA TCT TTT TTA AGT GAA CAT CAT CCA GGT ATT GCA CCT AAA TTA 8 6 4

L K I L Y D G K N V N H D I M E E Y 3 0 6
TTA AAA ATA TTA TAT GAT GGA AAA AAT GTA AAT CAT GAT ATA ATG GAA GAA TAT 9 1 8

K F K D I Y E F N N M L I E R I N N 3 2 4
AAA TTT AAA GAT ATA TAT GAA TTT AAT AAT ATG TTA ATT GAA AGA ATA AAT AAC 9 7 2

N M D G Y I V M V S E L F G E D L F 3 4 2
AAT ATG GAT GGA TAT ATT GTT ATG GTT TCT GAA TTA TTT GGT GAG GAT TTA TTT 1 0 2 6

D F N K R F T K E K S D V R N S D E 3 6 0
GAT TTT AAT AAA AGA TTT ACA AAA GAA AAA TCT GAT GTA AGA AAT AGT GAT GAA 1 0 8 0

F K K E L L Y K C L R L L V R L H S 3 7 8
TTC AAA AAA GAA TTA CTT TAT AAA TGC TTA CGT TTA TTA GTA AGA TTA CAT AGT 1 1 3 4

A G L S H L D L T A E N V L I T D D 3 9 6
GCA GGT TTA AGT CAT TTA GAT TTA ACT GCT GAA AAT GTA TTA ATA ACA GAT GAT 1 1 8 8

Y D I R L C D F A K S T P L Y S D K 4 1 4
TAT GAT ATA CGT TTA TGT GAT TTT GCT AAA AGT ACA CCT CTT TAT TCA GAT AAA 1 2 4 2

L R H I D K K K K K K V Y L F E S C 4 3 2
TTA AGA CAT ATA GAT AAA AAG AAA AAA AAA AAA GTG TAC TTA TTT GAA TCA TGC 1 2 9 6

V P T I G K R E Y T P I E C W R I R 4 5 0
GTA CCA ACT ATA GGA AAA CGT GAA TAT ACA CCA ATA GAG TGT TGG CGA ATT CGA 1 3 5 0

K K L R E K N I T D P F E H V K T I 4 6 8
AAA AAG TTG AGA GAA AAA AAT ATA ACA GAT CCC TTT GAA CAT GTA AAA ACT ATT 1 4 0 4

S M Q R F R K E Y Y F N V S H A D Y 4 8 6
TCT ATG CAA AGG TTC AGA AAA GAA TAT TAT TTT AAT GTT TCA CAC GCT GAT TAT 1 4 5 8

F M L G V L F I W I W N C G H M W K 5 0 4
TTT ATG CTA GGA GTT TTA TTC ATA TGG ATT TGG AAC TGT GGC CAT ATG TGG AAA 1 5 1 2

T S F P S E S V N F T T F L E N N M 5 2 2
ACA TCT TTT CCA TCT GAG AGT GTA AAC TTT ACA ACT TTT CTT GAA AAC AAT ATG 1 5 6 6

N L S C Y P S T K S W P S D F K F I 5 4 0
AAT TTG AGT TGC TAT CCG TCA ACT AAA TCA TGG CCA AGC GAT TTC AAA TTT ATA 1 6 2 0

V K V I Y N T I K K M N L N E M F M 5 5 8
GTT AAG GTA ATT TAT AAT ACA ATA AAA AAA ATG AAC TTG AAT GAA ATG TTT ATG 1 6 7 4

V K E L M N E E C R K K L N L K N L 5 4 2
GTT AAG GAA TTG ATG AAT GAG GAA TGC AGG AAA AAA CTG AAT TTA AAA AAT TTA 1 6 2 6

PiasmoDB

K K N L * 5 6 3
AAG AAG AAC TTA TGA 1 6 8 9

M T H P W F N E T * 5 5 2 PiasmoDBATG
< -

ACA CAC CCA TGG TTT AAC GAA ACA TAA 1 6 5 6 J
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PFIOlOOc (PiasmoDB prediction)

M S F Y N C S D Y N F N K D Q L C N  18
ATG AGT TTT TAT AAT TGT TCT GAT TAT AAT TTT AAT AAA GAT CAA TTA TGT AAT 54

K N V Y S E I K I I A P F H K N V E  36
AAA AAT GTT TAG TCA GAA ATC AAA ATA ATA GCT CCT TTT CAT AAG AAT GTA GAA 108

E S K K I N Y N L K T W L S R C L I  54
GAA TCA AAA AAA ATA AAT TAT AAT CTG AAA ACA TGG TTA TCA AGA TGT TTA ATA 162

l A Q T I I L V Y T Y L F H L N V L  72
ATT GCA CAA ACC ATT ATA TTG GTA TAT ACT TAT TTA TTT CAT TTG AAT GTA TTA 21 6

S C N I N S D S I S C K G I I R N L  90
AGT TGT AAC ATA AAT TCA GAC TCT ATT TCA TGT AAA GGA ATA ATA AGA AAT TTA 270

S E P C K V N E K S H E T F I D R V  108
TCC GAA CCA TGT AAA GTC AAT GAA AAA TCG CAT GAA ACA TTT ATT GAT CGT GTA 324

F Y G T K K K K D G S N K N K K L F  126
TTT TAT GGA ACG AAG AAA AAA AAA GAT GGA TCA AAT AAA AAT AAA AAG CTT TTT 37 8

N W E L C K Y H I S N R L G K A K E  144
AAT TGG GAA TTG TGT AAA TAT CAC ATA AGT AAC AGA TTA GGT AAG GCT AAA GAA 4 32

Y S I G G V N Y E K W D L Y S I K N  162
TAT TCT ATA GGA GGT GTA AAT TAT GAA AAA TGG GAT TTA TAT AGT ATT AAG AAT 4 86

E N Y N E S G G R N H E M F S T V I  180
GAG AAT TAT AAT GAA TCA GGT GGT AGA AAT CAT GAA ATG TTT TCA ACA GTT ATA 54 0

S S K S G F R K K K V K L F I K K V  198
TCA TCA AAA AGT GGT TTT AGA AAA AAG AAG GTA AAA TTA TTT ATA AAA AAA GTA 594

P L N S W I E L Y N K M D I Y H G E  21 6
CCT TTG AAT TCA TGG ATT GAA TTA TAT AAT AAG ATG GAC ATT TAT CAT GGA GAG 648

F L D G A E N F V M E A M V S L F L  234
TTT TTA GAT GGG GCA GAA AAT TTT GTA ATG GAA GCA ATG GTT TCA TTA TTT TTA 702

N K Y H P G I T P K F Y N L L Y E S  252
AAT AAA TAT CAT CCT GGA ATT ACA CCT AAA TTT TAT AAT TTA TTA TAT GAA TCG 756

E N D Y S E L K G L N E L M F C D I  270
GAA AAT GAT TAT AGT GAA TTG AAA GGT TTA AAT GAA CTG ATG TTT TGT GAC ATA 810

D I F K N E L I K I R N R N K K G Y  288
GAT ATC TTT AAA AAT GAA CTA ATT AAA ATT AGA AAT AGA AAT AAA AAA GGT TAT 864

V V M I W E F F G Q N L K E F L H S  306
GTT GTA ATG ATA TGG GAA TTT TTT GGG CAA AAT CTT AAA GAG TTT TTG CAT TCA 918

E K E N L V I T K E R K K I L F E C  324
GAA AAA GAA AAT TTA GTA ATA ACA AAA GAA AGG AAA AAA ATT CTT TTT GAA TGT 97 2

L K L I N K L H K A G L T H L D I S  342
TTA AAA TTA ATA AAT AAG TTA CAT AAA GCA GGT TTG ACT CAT TTA GAT ATT TCA 102 6

P E N I L I G E N Y E M R L C D F G  360
CCT GAA AAT ATA TTA ATT GGA GAA AAT TAT GAA ATG CGA TTA TGT GAT TTT GGT 108 0

K T T P L Y V L N N I D E H N K G H  37 8
AAA ACT ACA CCT CTT TAT GTT CTT AAT AAT ATA GAT GAA CAT AAT AAA GGT CAT 1134

L Q R F R S Y I  P Y V G K T K Y A P  396
TTA CAA AGA TTT CGA TCA TAT ATA CCA TAT GTA GGA AAA ACT AAA TAT GCA CCA 1188

P E C W N L K K K Y K E L G I E N P  414
CCT GAG TGT TGG AAT TTA AAA AAG AAA TAT AAA GAG TTG GGA ATA GAA AAT CCA 124 2

L V Y L K T L K D Y E Y K D T L Y F  432
TTA GTT TAG TTA AAA ACT TTA AAG GAT TAT GAA TAT AAA GAC ACA TTA TAT TTT 12 96

D V L A A D I Y M L G I L F I W I S  450
GAT GTT CTC GCA GCT GAC ATA TAT ATG CTT GGA ATT TTA TTC ATA TGG ATT TCG 1350

S N R Y L W G N F D M S Q N S N F K  468
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AGT AAT AGA TAT TTA TGG GGA AAC TTT GAT ATG TCA CAA AAT AGT AAT TTT AAA 1404

K F V N S D M N F D L F P L T R E W 486
AAA TTT GTT AAT AGT GAT ATG AAC TTT GAC TTA TTT CCT TTA ACT AGA GAA TGG 1458

P E G L K Y I I R K L L D Y E S R K 504
CCG GAA GGG TTA AAA TAT ATC ATT AGG AAA TTG TTA GAT TAT GAA AGT AGG AAG 1512

S L D L N E L I E H P M W S T D L 522
AGT TTA GAT TTG AAT GAG TTG ATA GAA CAT CCA

< -
TGG TGG TCG ACA GAT TTG TAA 1 566

MAL13P1.109 (PiasmoDB prediction)

M K K K E N T Q K L L N F V Y Y K I 18
ATG AAA AAG AAA GAA AAT ACA CAA AAA TTA TTA AAT TTT GTA TAT TAT AAA ATT 54

Y L T F I V G L L Y I F L L N I L I 36
TAT TTA ACA TTT ATT GTT GGG TTG TTA TAT ATA TTT TTA TTA AAT ATA TTA ATT 108

N H G G S K N D V R F T N I R C V R 54
AAT CAT GGA GGT TCA AAA AAT GAT GTG CGT TTT ACT AAT ATT AGA TGT GTG AGG 162

I F S E N I K N I N E I S K K I Y L 72
ATT TTT TCA GAA AAT ATA AAA AAT ATT AAT GAG ATA TCT AAG AAA ATA TAC TTG 21 6

Y N I K N E K D D I I C R D S L D N 90
TAT AAT ATA AAA AAT GAG AAG GAT GAT ATT ATA TGT AGG GAT TCA TTA GAT AAC 270

I N E I N N K I N Y T S V K G E D I 108
ATT AAT GAA ATA AAT AAT AAA ATT AAC TAT ACT TCC GTA AAG GGA GAA GAT ATA 324

I I L K E G K Y K N G C S D I N F L 126
ATA ATT TTA AAA GAA GGG AAG TAT AAG AAT GGT TGT AGT GAT ATT AAT TTT TTA 378

D R K D V N K N D D Q S F R N Y H K 144
GAT AGA AAA GAT GTG AAT AAA AAT GAT GAT CAA TCT TTT AGA AAT TAC CAT AAA 432

T N N N K D E N V N M K S Y V Y N W 162
ACA AAT AAT AAT AAA GAT GAA AAT GTG AAT ATG AAA TCT TAT GTA TAT AAT TGG 4 8 6

E L G Q K S L I K M L D Y A D N F Y 180
GAA TTA GGT CAG AAA TCA TTA ATA AAG ATG TTA GAT TAT GCA GAT AAT TTT TAT 540

F N G V K Y S D W K L T S M R R F N 198
TTT AAT GGT GTG AAA TAT AGT GAC TGG AAA TTA ACA TCT ATG AGA AGA TTT AAT 594

L N N N V L K D H K T Y K S I I N S 2 1 6
TTA AAT AAT AAT GTT TTG AAG GAT CAT AAA ACA TAT AAA AGT ATA ATT AAT TCA 648

K K G N D M K K V K L F I K K I P I 234
AAA AAA GGG AAT GAT ATG AAA AAA GTA AAA TTA TTT ATA AAA AAA ATA CCT ATT 702

D I W V E Q F N L M K K Y E G E Y L 2 5 2
GAT ATA TGG GTA GAA CAA TTT AAT TTG ATG AAA AAA TAT GAA GGA GAA TAT TTA 756

I D K E N Y V M E A V S L A F L N E 270
ATA GAT AAA GAA AAT TAT GTA ATG GAA GCA GTT TCT TTA GCT TTT TTG AAT GAA 810

Y Y P G I T P K F Y K I L Y E S D K 288
TAT TAT CCA GGA ATA ACT CCT AAA TTT TAT AAA ATA TTA TAT GAG TCA GAT AAA 864

N N M N E K N C K K Y K F Q D L N E 306
AAT AAT ATG AAT GAA AAG AAT TGC AAA AAA TAT AAA TTT CAA GAT TTA AAT GAA 918

L N D I L T K K L E N N I N G N I V 324
TTA AAT GAT ATA TTA ACA AAA AAA TTA GAA AAT AAT ATT AAT GGT AAT ATA GTA 972

L I S E F F G E N V F D Y I K R K K 342
TTA ATA TCT GAA TTT TTT GGT GAA AAT GTA TTT GAT TAT ATA AAA AGG AAA AAA 1 026

N T L F V V S D I S N E D K K K I L 360
AAT ACT TTA TTT GTT GTG TCA GAT ATA AGT AAT GAA GAT AAA AAA AAA ATC CTT 1080
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Y N S L N L L M R L H N A G L T H L  
TAT AAT TCA TTA AAT TTA TTA ATG AGA TTA CAT AAT GCT GGA TTA ACT CAT CTT

3 7 8
1 1 3 4

D L S P D N M L I S P K N Y E M R L  
GAT TTA TCT CCT GAT AAT ATG TTA ATT TCA CCA AAA AAT TAT GAA ATG CGT CTA

3 9 6
1 1 8 8

C D L S Q S T P I Y T N K L R H K E  
TGT GAT TTG TCT CAA TCT ACA CCT ATT TAT ACT AAT AAA TTA AGA CAT AAA GAA

4 1 4
1 2 4 2

K L N S I K P F E S F E P C I G K I  
AAA TTA AAT TCT ATA AAA CCT TTT GAA TCA TTT GAA CCT TGT ATA GGA AAA ATT

4 3 2
1 2 9 6

E Y l  P P E C W K I V W K Y K M N N  
GAA TAT ATA CCT CCG GAA TGT TGG AAA ATT GTG TGG AAA TAT AAA ATG AAT AAT

4 5 0
1 3 5 0

I K N P I E Y L K N I S N Q E E R K  
ATT AAA AAT CCA ATT GAA TAT TTA AAA AAT ATT TCA AAC CAA GAA GAA AGA AAA

4 6 8
1 4 0 4

K Y Y Y D V S C A D K Y M L G I  F F  
AAA TAT TAT TAT GAT GTA TCG TGT GCT GAT AAG TAT ATG TTA GGA ATC TTT TTT

4 8 6
1 4 5 8

I W M W N N G F I W K C S D P I Q D  
ATT TGG ATG TGG AAT AAT GGT TTT ATA TGG AAA TGT TCA GAT CCA ATA CAA GAC

5 0 4
1 5 1 2

K I F E I F M K S N M D L N K F I M  
AAA ATT TTT GAA ATT TTT ATG AAA TCT AAT ATG GAT TTG AAT AAA TTT ATT ATG

5 2 2
1 5 6 6

T K S W P H E L N N L I N V I I Y I  
ACA AAA AGT TGG CCT CAT GAA CTG AAC AAT TTG ATA AAC GTA ATA ATA TAT ATA

N I  Y I C I  * 
AAT ATA TAT ATA TGT ATT TAA

5 4 0
1 6 2 0

5 4 7
1 6 4 1
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Appendix D: Phylogenetic tree o ïPlasmodium species based on small subunit 
rRNA gene sequences (Qari et al., 1996)
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FIG . 2. Phylogenetic tree of 13 PJasinodiuni species and 2 ou t­
group species {Pajk~iniediim tetraureJki mid Toxoplasma gondii) de­
rived by the m axim um  likelihood (fastDNAml) method. Scale bar  in­
dicates an evolutionary distance of 0.01 nucleotide substitu tions per 
position in the  seep i en ce.
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Appendix E: Phylogenetic tree of FIKKs from P. falcipamm (Ward et a l, 2004)

The tree was compiled using conserved portions of aligned sequences (protein 

distance matrix method). The scale bar represents 0.1 mutational changes per 

residues (10 PAM units). Bootstrap values over 75 are shown.

PFC0060C

M13P11CGpwv. MAL7P1 144
PFIOOQÇC

80

92

PF 11 05 1 0

PFI0110C
PF 101 COG0.1
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Appendix F: sequences of Pfcrk-3 and Pfcrk-4

Peptides designed for antibody productions are represented in red and the primers 

used for cloning by black aiTows. Red arrows represent primers used in Chapter 5, 

section 5.2.2.1, Fig. 37 for the study of expression of the extensions. Blue Pfcrk-4 

residues correspond to the Asp-rich domain deleted to generate the Gst-Pfcrk-4AD 

plasmid.

PfcCrk-3
P f c r k - 3 / B a m H I / w h  I / F 2

M N V K D V D T L L D I F R G G P G 18
ATG AAC GTT AAA GAT GTG GAT ACC CTT TTA GAT ATT TTT AGA GGG GGG CCA GGT 54

V H T C S G I E N Y F L E N N T L D 36
GTT CAT ACT TGC TCA GGT ATT GAA AAT TAT TTT TTA GAA AAC AAT ACG TTA GAT 108

V D I K K E F I K R L E N P T F L S 54
GTT GAT ATT AAA AAA GAA TTC ATA AAA AGG TTG GAG AAC CCC ACA TTT TTA TCA 162

K F C M L K R K F V Y N F F L V K K 72
AAG TTT TGT ATG TTA AAG AGA AAG TTC GTT TAT AAC TTT TTT CTA GTC AAA AAG 21 6

E I V K K R L M T Y I E N I I D K L 90
GAA ATA GTA AAA AAA AGG TTA TGG ACT TAT ATA GAA AAT ATT ATT GAT AAA TTA 2 70

N D D D I I K V H K Y L E K E S G N 108
AAT GAT GAT GAT ATT ATA AAA GTA CAT AAA TAT TTA GAA AAG GAA TCT GGG AAT 324

V I H T F L N N L Y L Y K D M E N K 126
GTT ATT CAT ACC TTT TTA AAT AAT TTA TAT TTG TAT AAA GAT ATG GAA AAT AAA 378

R R R R K N I K R K K K E K K K R N 144
AGA AGA AGG AGG AAA AAT ATA AAA AGA AAA AAA AAA GAA AAA AAA AAA AGA AAC 432

N H D I Y N N C N I N S N K L D C N 162
AAT CAT GAT ATA TAT AAT AAT TGT AAT ATA AAT TCG AAT AAA TTA GAT TGT AAT 486

L P Y N L N L E N I F W K Q I N L K 180
TTA CCT TAT AAT TTA AAT TTA GAA AAC ATA TTT TGG AAG CAG ATA AAT TTA AAA 540

F / P f c r k - 3 / b

N Y K K K Y F Y H I N K N I N S L W 198
AAT TAT AAG AAG AAA TAT TTT TAT CAT ATT AAT AAA AAT ATA AAC TCT TTG TGG 594

K V Y L S Y N L L N I N K C E R K D 2 16
AAG GTA TAT TTA TCA TAT AAC TTG TTA AAT ATA AAT AAA TGT GAA CGT AAA GAT 648

L I K N I L H T L L K K E Y E Q L S 234
CTT ATT AAA AAT ATA TTA CAC ACA TTA TTA AAA AAA GAA TAT GAA CAA TTA AGT 702

C F E W D S K V V L Y K L L K N Q D 252
^ T TTT GAA TGG GAT TCA AAA GTT GTT TTA TAT AAA TTG TTA AAA AAT CAA GAT 75 5

R / P f c r k - 3 / a

L K K C S L E N Y T E D D V T S N P 270
TTA AAA AAA TGT TCA CTG GAA AAT TAT ACA GAA GAT GAT GTA ACT AGT AAC CCG 810

S N D F D N T V D I D L N M K E N V 2 8 8
AGC AAT GAT TTT GAC AAT ACT GTG GAT ATA GAT CTT AAT ATG AAG GAA AAT GTA 864

Q N K D K V H V G D K I G S I P E G 306
CAA AAT AAA GAT AAG GTT CAT GTT GGT GAT AAA ATT GGT TCC ATT CCT GAA GGT 918

D N I C L Q T D D Q T Y N H N N N N 324
GAT AAC ATA TGT CTT CAG ACG GAT GAC CAA ACA TAT AAT CAT AAT AAT AAT AAT 972

I M L K K K K K S S E N H I L I N S 342
ATA ATG TTA AAA AAA AAA AAA AAG TCA TCA GAA AAT CAT ATT TTA ATA AAT AGT 1026

196



N N V L L N Y N K N S E L L D D C F 3 6 0
AAT AAT GTT TTA TTA AAT TAT AAT AAA AAT TCT GAA TTA TTA GAT GAT TGT TTC 1 0 8 0

Pfcrk-3 Forward catalytic
K L C N N N N N N V H I Y ' D K S N V 3 7 8

AAA TTA TGT AAT AAT AAT AAT AAT AAT GTT CAT ATA TAT GAT AAA AGT AAT GTA 1 1 3 4

S Y T N L r t H► d L K N G Y Y K D T D I 3 9 6
AGT TAC ACA AAT TTA AAC GAT TTA AAG AAT GGA TAT TAT AAA GAT ACA GAT ATA 1 1 8 8

I Y D L L L K S I K G E I K L K V K 41 4
ATA TAT GAT TTA TTA TTA AAA TCT ATA AAA GAA ATA AAA TTG AAA GTT AAG 1 2 4 2

R / P f c r k ~ 3 / e x t e n s i o c

N F V K V H Q V G Q G A Y G D V W M 4 3 2
AAT TTT GTT AAG GTT CAT CAA GTT GGA CAA GGA GCA TAT GGA GAT GTT TGG ATG 1 2 9 6

A E D I I N N Q R V A L K K L K L N 4 5 0
GCA GAA GAT ATA ATA AAT AAT CAA AGA GTA GCT TTA AAA AAA TTA AAA TTA AAT 1 3 5 0

E E K D G F A K T Y I R E I S I L N 4 6 8
GAA GAA AAA GAT GGA TTT GCA AAA ACT TAT ATA AGA GAA ATA TCT ATT TTA AAT 1 4 0 4

S L K H E N I V E L I G V V H S I L 4 8 6
TCA TTA AAA CAT GAA AAT ATT GTT GAA TTA ATT GGA GTA GTA CAT TCT ATT TTA 1 4 5 8

P V N F N N Q N M I N Q S P Q N S H 5 0 4
CCT GTA AAT TTT AAT AAT CAA AAT ATG ATA AAT CAA TCT CCT CAA AAT TCT CAT 1 5 1 2

P I H I N H N N I F H N K F F D Q N 5 2 2
CCT ATT CAT ATA AAT CAC AAT AAC ATT TTT CAT AAC AAG TTT TTT GAT CAA AAT 1 5 6 6

N Y K D F L I T E K N Y F G N K K N 5 4 0
AAT TAT AAA GAT TTT CTT ATT ACT GAA AAG AAT TAT TTT GGT AAT AAA AAA AAT 1 6 2 0

R R T L N E D M L S p I S S N E 5 5 8
AGG CGT ACA TTA AAT GAA GAT ATG TTG TCA GTT GTA GAT ATA TCA TCA AAT GAA 16 7  4

D M L S V V D I S S N E D M L S V V 5 7 6
GAT ATG TTG TCA GTT GTA GAT ATA TCA TCA AAT GAA GAT ATG TTG TCA GTT GTA 1 7 2 8

D I S S N E D M L S V V D I S S N E 5 9 4
GAT ATA TCA TCA AAT GAA GAT ATG TTG TCA GTT GTA GAT ATA TCA TCA AAT GAA 1 7 8 2

D M L S V V D I S S N V D I S P N Q 6 1 2
GAT ATG TTA TCA GTT GTA GAT ATA TCA TCA AAT GTA GAC ATA TCA CCA AAT CAA 1 8 3 6

D I S P N Q D I S P N D C Y T L N N 6 3 0
GAT ATA TCA CCA AAT CAA GAT ATA TCA CCA AAT GAT TGT TAT ACC TTA AAT AAT 1 8 9 0

L L N H N Q V D P S T S L S I S S Y 6 4 8
TTA TTA AAC CAT AAT CAG GTG GAC CCA TCC ACT TCT CTT TCC ATA TCT TCA TAC 1 9 4 4

E D T T S S N S S H S N C S S S S V 6 6 5
GAA GAT ACG ACT TCA AGT AAT AGC TCC CAT TCC AAT TGT TCA TCC TCG AGT GTA 1 9 9 8

S S F M S Y D K N K E K K S C I W M 6 84
TCT TCA TTC ATG TCA TAC GAT AAA AAT AAA GAA AAA AAA TCA TGT ATT TGG ATG 2 0 5 2

V F E Y V P F D L S G Y S E L L R E 7 0 2
GTG TTT GAA TAT GTA CCT TTT GAT TTG TCA GGA TAT AGT GAA CTT CTA AGA GAA 2 1 0 6

E R N E K E R Y K Y A N L F S I G E 7 2 0
GAA AGA AAT GAA AAA GAA AGA TAT AAA TAT GCT AAC TTA TTC AGT ATA GGT GAA 2 1 6 0

I K N I F I Q L L K A L D Y C H K N 7 3 8
ATC AAA AAT ATT TTT ATA CAA TTA TTA AAA GCT TTA GAT TAT TGT CAT AAA AAT 2 2 1 4

N I I H R D I K I A N L L I D N N G 7 5 6
AAT ATT ATC CAT AGA GAT ATT AAA ATA GCT AAT TTG TTA ATA GAT AAT AAT GGA 2 2 6 8

I L K L A D F G L A R F H S D I N A 7 7 4
ATT TTA AAG CTA GCT GAT TTT GGA CTA GCT AGA TTC CAT TCT GAT ATT AAT GCA 2 3 2 2

S N M T N R V I T L W Y R P P E L L 7 9 2
TCT AAT ATG ACA AAT AGA GTT ATT ACA TTA TGG TAT AGA CCA CCA GAA TTA TTA 2 3 7 6

L G S E N Y M A S V D M W S C G C V 8 1 0
TTA GGT TCT GAA AAT TAT ATG GCA TCG GTT GAT ATG TGG AGT TGT GGT TGT GTT 2 4 3 0
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' L A E L L T S N P L F S A E N E T D 8 2 8
1 CTA GCA GAA TTA TTA ACC AGC AAT CCT TTA TTT TCT GCG GAA AAT GAA ACA GAT 2 4 8 4

' I L K I I V N K L G F P N E R D I K 8 4 6
ATA TTA AAA ATT ATT GTT AAT AAG TTA GGG TTT CCA AAT GAA AGA GAT ATA AAA 2 5 3 8

Y L R N L P C W N L L K L N P I H P 8 6 4
TAT TTA AGA AAT TTA CCC TGC TGG AAT TTA TTA AAA TTA AAT CCT ATA CAT CCA 2 5 9 2

N N I H H N I N H N K K I E T E T S 8 8 2
! AAT AAT ATA CAT CAT AAT ATA AAT CAT AAT AAA AAA ATA GAA ACA GAA ACT TCT 2 6 4 6

i I R N I P G V G D L G L D L I K K F 9 0 0
! ATC AGA AAT ATA CCT GGT GTA GGA GAT CTA GGA TTA GAT CTT ATT AAA AAA TTT 2 7 0 0

L K W N P Y E R I T A S D A L N H P 9 1 8
TTA AAA TGG AAC CCA TAT GAA AGA ATC ACA GCT AGC GAC GCC CTT AAC CAT CCA 2 7 5 4

W F K T Q P L S E K I H Q R N N I K 9 3 6
TGG TTT AAG ACA CAA CCT TTG TCT GAA AAA ATA CAC CAA AGA AAT AAT ATT AAA 2 8 0 8

A A H S F M T K N Y K K R D L P K N 95 4
1 GCA GCT CAT AGT TTT ATG ACC AAA AAT TAT AAA AAA AGG GAC CTA CCC AAA AAT 2 8 6 2

T Y S K I N E N F R F I N V G N Y R 9 7 2
ACT TAT TCG AAA ATT

F/Pfcrk-3/COOH
AAT

exi
GAA 

— ^

AAT TTT AGA TTT ATA AAT GTA GGA AAT TAC AGA 2 9 1 6

K A Y L R s K Y N D H L L Y L N S L 9 9 0
1 AAG GCT TAT CTT CGA AGT AAA TAT AAT GAC CAC CTC CTA TAT CTA AAC TCA CTT 2 9 7 0

1 S S K R D V L K E Q P L Q Q I D K K 1 0 0 8
TCG TCA AAA AGG GAT GTC CTC AAG GAG CAA CCT CTC c ^ CA G ATT GAT AAG AAG 3 0 2 4

/7c rA -J_T îëvefsë2câ  fâ ly t ic
O ld  Piasm oDB .............................Q Q S N Q K

p r e d l o t i o n . c a a c a g a g t  a a t  c a a  a a a g g a  t a a

T E E D K E T K T E T T N M E Q K D 1 0 2 6
ACA GAA GAA GAT AAA GAA ACC AAA ACG GAA ACC ACA AAT ATG GAG CAG AAG GAT 3 0 7 8

K K H K E L V N I K K E D E P G E T 1 0 4 4
AAA AAA CAT AAA GAA TTA GTA AAT ATT AAA AAG GAA GAT GAA CCA GGA GAA ACC 3 1 3 2

K K C K V E S V T D Y S D R E N L K 1 0 6 2
AAA AAA TGT AAA GTC GAA TCG GTC ACG GAT TAC AGT GAT AGG GAA AAT TTA AAA 3 1 8 6

P T F D N D I K K N E H K L N S N K 1 0 8 0
CCC ACT TTT GAT AAT GAC ATA AAA AAA AAT GAA CAC AAA TTG AAT TCA AAT AAA 3 2 4 0

S D I D K T R K S A T I S R D G S L 1 0 9 8
TCA GAT ATA GAC AAA ACT AGG AAA TCA GCT ACC ATA TCA AGA GAC GGA AGC TTA 3 2 9 4

R R N E R K T I A V I K Y Y D H K M 1 1 1 6
AGA AGA AAT GAA AGA AAG ACA ATA GCA GTG ATA AAA TAT TAT GAC CAT AAA ATG 3 3 4 8

K E Y N H N R S P S H A K K Y N N E 1 1 3 4
AAA GAA TAT AAT CAT AAC CGT AGC CCT AGT CAT GCT AAA AAG TAC AAC AAT GAA 3 4 0 2

K R E K E K K I E G I D N R R E S N 1 1 5 2
AAA AGG GAA AAG GAA AAA AAA ATC GAA GGT ATA GAT AAT AGG AGG GAA AGC AAC 3 4 5 6

N Y F R R S R E G I D D R R R Y S T 1 1 7 0
AAC TAT TTT AGG AGA AGT AGA GAA GGT ATA GAT GAT AGG AGA AGA TAT TCA ACC 3 5 1 0

I C K T G Y N N A D V Y R D R I S H 1 1 8 8
ATT TGT AAA ACG GGT TAT AAC AAC GCA GAT GTG TAT AGG GAT AGA ATA AGT CAC 3 5 6 4

R S R E R E W Y K K P Y G R R S R D 1 2 0 6
CGA AGT AGG GAA AGG GAG TGG TAT AAA AAA CCA TAC GGA AGA AGG AGC AGA GAT 3 6 1 8

R D R E R D R D R E R D R E R D R E 1 2 2 4
AGG GAT AGA GAA AGA GAT AGA GAT AGG GAA AGG GAT AGA GAA AGA GAT AGA GAA 3 6 7 2

R D R D R E R D R E R E R D R D R D 1 2 4 2
AGA GAT AGA GAT AGG GAA AGA GAC AGA GAA AGG GAA AGA GAT AGA GAC AGA GAT 3 7 2 6

R D R E R D R N R E R D R D R E R D 1 2 6 0
AGA GAC AGA GAA AGA GAT AGA AAT AGA GAA AGA GAC AGA GAT AGA GAA AGA GAT 3 7 8 0
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R E R D R N R E R D R D R D R D R D  1 2 7 8
AGA GAA AGA GAT AGA AAT AGA GAA AGA GAC CGA GAT AGG GAC AGA GAT AGA GAT 38 34

R D R D R D R D R D R D R D R D R D  1 2 9 6
AGA GAT AGA GAC CGA GAT AGG GAC AGA GAT AGA GAT AGA GAT AGA GAC CGA GAT 3 8 8 8

R D R E K E R K R D K D K D K E N D  1 3 1 4
AGG GAC AGA GAA AAA GAA AGA AAA AGA GAT AAA GAT AAA GAT AAA GAA AAT GAT 3 9 4 2

K S K D A D Q K K H K L D T E E L R  1 3 3 2
AAA AGT AAA GAT GCT GAT CAA AAA AAA CAT AAA TTA GAT ACA GAA GAG TTA AGG 3 9 9 6

V E K K K K I *  1 3 4 0
^ T T  GAA AAG AAA AAG AAA ATA TAA 4 0 2 0

R/P<crk-3/Sall/cat wh.l

Pfcrk-4

Pfctk-4/ wh Idbl BamHI
M N Ï  D Q N N I E K K I A N K R K  18

ATG AAT ATC GAC CAA AAT AAT AAT ATT GAA AAA AAA ATA GCG AAT AAA AGA AAA 54

G N M N K K K N I L L N Q P K N D E  36
GGA AAC ATG AAC AAG AAA AAA AAT ATA CTA CTA AAT CAA CCG AAG AAC GAT GAA 1 0 8

V I M K K N M K K V K N E K I C K N  54
GTA ATT ATG AAA AAG AAT ATG AAA AAG GTG AAA AAT GAA AAA ATA TGT AAA AAT 16 2

G K D N I E E T S T H L I N R R R K  72
GGA AAA GAC AAT ATA GAA GAA ACC TCA ACA CAT TTG ATA AAT AGA AGA AGA AAA 2 1 6

D N H I K E A I Y K D L E K E K K F  90
GAT AAT CAT ATA AAG GAA GCT ATA TAG AAA GAT TTA GAA AAA GAA AAG AAA TTT 2 7 0

A S S T K G T S I K S S G L L D L N  10 8
GCA TCT TCC ACC AAG GGT ACA TCG ATA AAA TCT AGT GGT TTG TTA GAT TTA AAT 3 2 4

K E E H V E K G M V D N K S V I T R  1 2 6
AAA GAA GAG CAT GTT GAA AAG GGC ATG GTT GAT AAT AAA AGT GTA ATA ACA AGA 3 7 8

T S S N Y S I L N Y F K N S K D T N  144
ACG TCT TCT AAT TAT TCC ATA TTG AAT TAT TTT AAA AAT AGT AAG GAC ACC AAT 4 32

K S G M T N N N N N N N N I N N I N  16 2
AAA AGT GGC ATG ACG AAC AAT AAT AAT AAT AAT AAT AAT ATT AAT AAT ATT AAT 4 8 6

N N N N I V K T S S G S N K T R N I  1 8 0
AAT AAT AAT AAT ATT GTG AAG ACA AGT AGT GGT TCC AAT AAG ACA CGT AAT ATT 54 0

S N N R N N I H N K P N G Y N L K R  1 9 8
TCT AAT AAT AGA AAT AAT ATT CAT AAT AAG CCT AAT GGC TAT AAT TTA AAA AGA 594

F/ P fC (k -4 /b

D N I K I T N Y M K Q S D R H I  E K  2 1 6
GAT AAT ATA AAA ATT ACT AAT TAT ATG AAA CAA AGC GAT AGA CAC ATT GAA AAG 64 8 tJ

N N E V H L D K H G Y K D D N Y K K  2 3 4  '
AAT AAT GAG GTT CAT TTA GAT AAG CAT GGA TAT AAG GAT GAT AAT TAT AAG AAG 7 0 2

T F N H N N Y L S M K N N I E N N L  2 5 2  ^
ACG TTT AAT CAT AAT AAC TAT TTA AGT ATG AAA AAT AAT ATA GAA AAC AAT TTG 7 5 6  i

M N Y K K C K L D R I H A E N N S S  2 7 0
ATG AAT TAT AAA AAA TGT AAA TTA GAT CGA ATT CAT GCA GAA AAC AAT AGT AGC 8 1 0

I D S F Q S K D D K N V I I E N K D  2 8 8
ATA GAT TCA TTT CAA TCA AAG GAT GAT AAA AAT GTA ATT ATT GAA AAT AAG GAT 8 64

T Y K N K E Y M I N K D V V N L T E  3 0 6
ACA TAT AAA AAC AAA GAA TAT ATG ATA AAT AAA GAC GTT GTT AAT TTA ACT GAG 9 1 8
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H K N D 
CAT AAA AAT GAT

V N

S Y D M V C N R L G T S C N  
^ A  TAT GAT ATG GTA TGC AAT CGT TTA GGT ACA AGT TGT AAT

R/Pfcrk-4/a
s  L s  Q K N N N N N

GTA TTG AAT ACT ATA TCC TTA TCA CAA AAA AAT AAT GAC AAT ATT AAT TTG AAT

3 24
9 7 2

3 4 2
1 0 2 6

A C N N S L V I K G E E R K S R C T  
GCA TGC AAT AAT TCT TTA GTA ATA AAA GGT GAA GAA AGG AAA AGT AGA TGT ACA

3 6 0
1 0 8 0

G Q N R A S S V G L L K R N S I  Y N 
GGT CAG AAT CGT GCA TCT TCA GTT GGT TTG TTA AAA AGA AAT TCT ATA TAT AAT

3 7 8
1 1 3 4

Y K E N L R D D L I N N C V E M E N  
TAT AAA GAA AAT TTG AGG GAT GAT CTT ATA AAT AAT TGT GTT GAA ATG GAA AAT

3 9 6
1 1 8 8

M D T T K N I N N M K N L D C V S N  
ATG GAT ACA ACT AAG AAT ATT AAT AAT ATG AAA AAC TTG GAT TGT GTG AGT AAC

4 1 4
1 2 4 2

I N Y V N N I N N N V N I N K G L I  
ATA AAT TAT GTA AAT AAT ATT AAT AAT AAT GTG AAT ATC AAT AAA GGG CTT ATA

4 3 2
1 2 9 6

N S S Q E I N N S C K N I E Y E L N  
AAC AGT AGC CAA GAA ATA AAT AAT AGT TGT AAA AAT ATT GAA TAT GAA TTA AAT

4 5 0
1 3 5 0

D L N K E E E N N N F L Y N F K E R  
GAT CTA AAT AAG GAA GAA GAG AAT AAT AAT TTT TTA TAT AAT TTT AAA GAA CGA

4 6 8
1 4 0 4

N H N N N N
AAT ACA GAA TAT TTA CAT TCT ATT AAT ATA CCA TAT ACT TCA AAT AGT AAT AAT 

 F/ Picik-4/c------------------- ^
N N K N H M R N K

AAC ATA AAT AAA AAT CAT CTA ATG ACA TCA CTT CCA ACT GAA TAT AGA AAT AAA

4 8 6
1 4 5 8

5 04
1 5 1 2

K D R N N
AGT AGT AAA AGT AGT GAT GAA TTA TTT TCT AGA AAT TTA TTA GAT TTT GAG AAT

5 2 2
1 5 6 6

K K R N N N N V N N
TTT TGT TCC TAC AAA TTT AAA AGG AAT ATA AAT AAT AAT TTG GTA AAT AAT ATA 

R/Pfcrk-4/b
C N M Y E E V N D L D V Y P E Q M K  

TGT AAC ATG TAT GAA GAA GTA AAT GAT TTG GAT GTG TAT CCT GAA CAA ATG AAA

5 4 0
1 6 2 0

5 5 8
1 6 7 4

R G E G S V S Y G D N N M C N N R N  
AGA GGT GAG GGG AGT GTA TCA TAT GGT GAT AAT AAT ATG TGT AAT AAT AGA AAT

5 7 6
1 7 2 8

G Y E N N I Y N T I K R N S Y F F H  
GGG TAT GAA AAT AAT ATA TAT AAT ACA ATA AAA AGA AAT AGT TAC TTT TTT CAT

5 9 4
1 7 8 2

P Y K D D H F E G E K L F K K P R I  
CCT TAT AAA GAT GAT CAT TTT GAA GGA GAG AAA TTA TTT AAG AAA CCT CGA ATA

6 1 2
1 8 3 6

C V Y N V I N N G N K Y D N N N L S  
TGT GTT TAC AAT GTG ATT AAT AAT GGG AAC AAG TAT GAT AAT AAT AAC CTA AGT

6 3 0
1 8 9 0

V S H Y D D V E K R R R V N L G S S  
GTA AGT CAT TAT GAT GAT GTA GAA AAG AGA AGA CGA GTA AAT TTA GGA AGC AGT

6 4 8
1 9 4 4

G N M D L H Y H H S D L L I N K R E  
GGT AAT ATG GAT TTG CAT TAT CAT CAT TCA GAT TTA TTA ATA AAT AAG AGA GAA

666
1 9 9 8

K V I  I N E D V N N K E I M K G Y I  
AAG GTT ATC ATA AAT GAG GAT GTG AAT AAT AAG GAA ATC ATG AAA GGA TAT ATA

K N F W Y L S K K I F F G K Y K N C  
AAA AAT TTT TGG TAT TTG AGT AAA AAA ATT TTT TTT GGA AAA TAT AAA AAC TGC

— F/ ►
A V S L E N E E V E R L K E I  I S F  

GCA GTA AGT TTA GAG AAT GAG GAA GTT GAA AGA TTA AAG GAG ATT ATT TCT TTT

68 4
2 0 5 2

7 0 2
2 1 0 6

7 2 0
2 1 6 0

D E K K G K Y T L E D L F G W E E R  
GAT GAG AAA AAG GGG AAA ^ C  ACT TTG GAG GAT TTA TTT GGT TGG GAA GAG AGA

K N R K K

R/Pfcrk-4/c
E K K H N K

AAG AAT TTT GAA AGG AAG AAA GAG GAA AAA AAG GAC ACA CAT GGA GGT AAT AAA

7 3 8
2 2 1 4

7 5 6
2 2 6 8

200



M G N Y G D K N W E D N Y C K S E Y 7 7 4
ATG GGA AAT TAT GGA GAT AAA AAT TGG GAG GAT AAT TAT TGC AAG AGT GAA TAT 2 3 2 2

Y N N N N N N N D D D D A Y D D N D 7 9 2
TAT AAT AAT AAT AAT AAT AAT AAT GAT GAT GAT GAT GCT TAT GAT GAT AAT GAT 2 3 7 6

D D S T L L D E G M K D I C D D E T 8 1 0
GAT GAT AGT ACC CTT TTG GAT GAA GGT ATG AAA GAT ATT TGT GAT GAT GAG ACC 2 4 3 0

I S E K D Y V T D K K L K N F R L D 8 2 8
ATA TCT GAA AAG GAT TAT GTG ACG GAT AAG AAA TTA

P f c r k - 4  Reverse
AAA AAT

catalytic
TTT CGA TTG GAT 2 4 8 4

L I D G F L Y fD K Q S L Y E R E M I 8 4 6
TTA ATT GAT GGT TTT TTA TAT GAC AAG CAA TCC TTA TAT GAA AGA GAG ATG ATA 2 5 3 8

E N E K I F S M I S F N H K N Y D I 8 6 4
GAG AAT GAG AAA ATA TTT TCG ATG ATA TCT TTT AAT 

R/Pfcrk-4/extension

CAT AAG AAT TAT GAT ATA 2 5 9 2

H I E K L L L F P R D F M K K Y K 8 8 2
CAT ATT GAA AAA TTA TTA AAT TTA TTT CCC CGT GAT TTT ATG AAA AAA TAT AAA 2 6 4 6

I V K K L G E G V Y G K V F K A E S 9 0 0
ATA GTA AAA AAA TTA GGG GAA GGT GTA TAT GGA AAA GTA TTT AAG GCT GAA TCG 2 7 0 0

L D D C Y L H F A V K V L R Y F W P 9 1 8
TTA GAT GAT TGT TAT TTA CAT TTT GCT GTT AAG GTA TTA AGA TAT TTT TGG CCC 2 7 5 4

N F K Y K F G S E E F A V N E Y N I 9 3 6
AAT TTT AAA TAT AAA TTT GGT TCT GAA GAA TTT GCA GTG AAC GAA TAT AAT ATA 2 8 0 8

M R I L F H P N V V C L I D S F R V 95 4
ATG AGA ATA TTA TTT CAT CCG AAT GTT GTC TGT TTA ATA GAT AGT TTT CGT GTA 2 8 6 2

H T Y R K G K T K N H R N N K G M I 9 7 2
CAT ACA TAT CGA AAA GGA AAG ACA AAA AAC CAT CGT AAT AAT AAA GGA ATG ATA 2 9 1 6

N D E D S A A E Y D F S F Q R H R K 9 9 0
AAT GAT GAA GAT TCT GCA GCT GAA TAT GAT TTT AGT TTT CAG AGA CAT CGA AAA 2 9 7 0

P E R N Q Y S P S L E T V Q R N N R 1 0 0 8
CCT GAG AGG AAT CAA TAT TCC CCT TCT CTT GAA ACT GTT CAA AGA AAT AAT AGA 3 0 2 4

Y S N F V A K N C I T I E D L E K D 1 0 2 6
TAT AGT AAT TTT GTA GCC AAA AAT TGT ATA ACA ATA GAA GAT TTG GAA AAG GAT 3 0 7 8

L V M H S I D K P E N V E Q N F S S 1 0 4 4
TTG GTT ATG CAT AGT ATA GAT AAG CCA GAA AAT GTG GAA CAA AAT TTT AGT TCC 3 1 3 2

Y R D G H V Y N N D I T M G G M Y K 1 0 6 2
TAC AGG GAT GGT CAC GTT TAT AAT AAT GAT ATA ACT ATG GGA GGA ATG TAT AAG 3 1 8 6

K G V K K G E H D S K K V L L Y M G 1 0 8 0
AAG GGT GTT AAA AAA GGA GAA CAT GAT AGC AAA AAG GTT TTG TTG TAT ATG GGG 3 2 4 0

G T N N V M D K C N I R K D S D D V 1 0 9 8
GGT ACT AAT AAT GTG ATG GAT AAG TGT AAT ATA AGA AAA 

1 1 1 0
GAT TCC GAT GAT GTG 3 2 9 4

Y C N Y D Y F K G N A (A V T N D N N 1 1 1 6
TAT TGT AAC TAC GAT TAT TTT AAG GGT AAC GCG GCC GTA ACA A A T GAT A A T AAC 3 3 4 8

K N D D D N N K N D N D N N K G G G 1 1 3 4
AAA A A T GAT GAT GAT A A T AAC AAA A A T GAT A A T GAT A A T AAC AAA GGT GGT GGT 3 4 0 2

D N N K N G D G G D D G G D D G G D 1 1 5 2
GAT A A T AAC AAA A A T GGT GAT GGT GGT GAT GAT GGT GGT GAT GAT GGT GGT GAT 3 4 5 6

D G G D D G D D D D D D G D D D I N 1 1 7 0
GAT GGT GGT GAT GAT GGT GAT GAT GAT GAT GAT GAT GGT GAT GAT GAT A T T AAC 3 5 1 0

N G Y V G N N F V N K 0 V R G V G K 1 1 8 8
A A T GGT TA T  

1 1 9 1
GTT GGT AAC A A T TT T GTT A A T AAG CAA GTT CGT GGT GTA GGT AAA 3 5 6 4

I S ) R G V H N Y A Y K S S C R K K M 1 2 0 6
ATA TCA CGA GGA GTT CAT AAT TAC GCA TAC AAG AGT TCA TGC AGA AAA AAA ATG 3 6 1 8

R K G H V R I K E N T R T I D K L K 1 2 2 4
AGA AAA GGT CAT GTG AGA ATA AAA GAG AAT ACT AGA ACT ATT GAT AAA TTA AAA 3 6 7 2
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Y R K H S K K L K K I E N K N N D Y  1 2 4 2  
TAT AGG AAA CAT TCG AAA AAA TTA AAA AAG ATT GAA AAT AAG AAT AAT GAT TAT 3 7 2  6

l E N W D L F L V I E K C D C S L N  1 2 6 0
ATA GAG AAT TGG GAT TTG TTT TTA GTA ATA GAA AAG TGT GAT TGT AGT TTG AAT 3 7 8 0

D I L N K V K K K H S L F I Q H I K  1 2 7 8
GAT ATA TTA AAT AAA GTA AAG AAA AAG CAT TCT TTA TTT ATA CAG CAC ATA AAG 3 8 3 4

Q C T A Q Y L P N E R I D M T Y D H  1 2 9 6
CAA TGT ACA GCT CAG TAT TTA CCA AAT GAA AGG ATT GAT ATG ACA TAT GAC CAT 3 8 8 8

I R N Y V K Y V Y L P L K K I E N R  1 3 1 4
ATA CGT AAT TAT GTA AAA TAT GTT TAT TTA CCA TTA AAA AAA ATA GAA AAT CGA 3 9 4 2

S F Y P E M P S L T E I Q T K V V I  1 3 3 2
AGC TTT TAT CCT GAA ATG CCA TCT TTA ACA GAA ATC CAA ACA AAA GTT GTG ATA 3 9 9 6

Y Q M L Q G I N H F H K K F I  I H R  1 3 5 0
TAT CAA ATG TTA CAA GGT ATT AAT CAT TTT CAT AAG AAA TTT ATA ATA CAT CGA 4 0 5 0

D I K P A N T L I K N I Q Y L S D G  1 3 6 8
GAT ATT AAA CCG GCT AAT ACA CTT ATA AAA AAT ATA CAA TAC TTG TCA GAT GGA 4 1 0 4

L N D P K E W I V K I A D F G L G V  1 3 8 6
TTG AAT GAT CCC AAA GAA TGG ATA GTC AAA ATA GCT GAT TTC GGA TTA GGT GTA 4 1 5 8

Y D H F L K A E T K D S N I  I T L Q  1 4 0 4
TAT GAT CAT TTC TTA AAA GCA GAA ACA AAG GAT TCA AAT ATT ATA ACT TTA CAA 4 2 1 2

Y R P P E I L C N S T L Y N Y S V D  1 4 2 2
TAT AGA CCA CCA GAA ATT TTA TGT AAT AGT ACT TTA TAT AAT TAT TCA GTG GAT 4 2 6 6

I W S V G I T M C E C L L G F V P V  1 4 4 0
ATA TGG TCA GTG GGT ATA ACC ATG TGT GAA TGT TTA TTA GGT TTC GTT CCT GTC 4 3 2 0

T S K F E S S V L F K I L V F R G I  1 4 5 8
ACA TCG AAA TTT GAA TCA TCT GTT TTA TTT AAG ATA TTA GTA TTT AGA GGT ATC 4 37  4

P N E N F D D L L K K E F I G E L P  1 4 7 6
CCT AAT GAA AAT TTC GAT GAC CTT TTA AAA AAA GAA TTT ATT GGA GAA TTG CCT 4 4 2 8

K F K I D R L K M L Q I I F T D I Y  1 4 9 4
AAA TTT AAA ATT GAC CGA TTG AAA ATG TTA CAA ATT ATA TTT ACG GAT ATA TAT 4 4 82

G R R I L S D E G L D L I D Q F L S  1 5 1 2
GGA AGA AGA ATA TTG AGT GAT GAG GGT TTG GAT TTA ATA GAT CAG TTC TTA AGT 4 5 3 6

Y D Y K N R I T A N E A L K H K W F  1 5 3 0
TAC GAT TAC AAA AAT AGG ATA ACA GCT AAT GAA GCT TTA AAG CAT AAA TGG TTT 4 5 9 0

E D V H L H L N E D L L R Y Y K D N  1 5 4 8
GAA GAT GTA CAC CTA CAT TTG AAT GAA GAT TTG TTG AGA TAT TAC AAA ^ T  AAC 4 64 4

G T Y Y F * 1 5 5 4
GGA ACA TAT TAC TTT TAG 4 6 6 2

Pfcrk-4_ Reverse catalytic
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Appendix G; schematic representation of the nCam-BST construct used for 

allelic replacement in P. falciparum

4.5 Kb

pCam-BSD
(4507bp)

pCam-BSD reverse
pCam-BSD forward

Not I BamH I

Partial sequence of 
the target kinase

gD N A ; W ild type locus

p C am -B S D  forward p C a m -B S D  reverse

pCamBSD/Pfcrk-

Replacement allelic
Pfcrk- Forward p C am -B S D  reverse

g D N A

p C am -B S D  forward Pfcrk- R everse
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Appendix H; Preliminary results on functional studies of Pfcrk-L Pfcrk-3 and 
Pfcrk-4

PCR products (lanes 1-5) were amplified using pCam-BSD primers (forward and 

reverse, represented in appendix G) to test the presence of pCam-BST/Pfcrk-1, -3 

and -4 episomes in the relevant transfected parasite culture. Lane 1, 2 and 3 

correspond to the PCR products obtained from P. falciparum gDNA (asexual RBC 

stage), two months after transfection with respectively pCam-BST/Pferk-1, pCam- 

BST/Pfcrk-3 and pCam-BST/Pfcrk-4 constructs. Lane 4 presents the PCR fragment 

amplified from a pCam-BST/Pferk-4 plasmid solution using pCam-BSD primers (as 

a positive control) whereas lane 5 corresponds to the reaction in which DNA was 

omitted (negative control).

To test allelic replacement events in P. falciparum transfected parasite culture, for 

each gene (Pfcrk-1, -3 and -4), two PCRs were performed using two set of primers 

(Pfcrk- Forward/ pCam-BSD reverse: lanes 6 , 8 and 10) and (Pfcrk- Reverse/ pCam- 

BSD forward: lanes 7, 9 and 11 ) (see appendix G). Lane 12 corresponds to an 

internal positive control of PCR reaction.

Pferk-1 Pfcrk-3 Pfcrk-4
— \  t—
7 8 10 12
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Appendix I: Preliminary results of kinase assays of iitimunoDrecipitated Pfcrk-1 

and PfPK5

Polyclonal anti-Pfcrk-1 and anti-PtPKS, and immunopurified Pfcrk-1 chicken 

antibodies were incubated with parasite extract (late trophozoite, SOOpg of 

total protein), pelleted on protein A-agarose beads (see below for the 

experimental procedures), and the pellet was assayed for kinase activity. 

Immunopurified anti-Pfeye-4, previously shown to immunoprecipitate a 

kinase activity (Merckx et al. 2003), were used as a positive control. .

Pfcrk-1 Pre-I PfPK 5 Pre-1 P fcyc4  -

4 7 .5 -

Pfcrk-1 - 

8 ~9 kT

phosphorylated

proteins

HI

1 and 8 : histone HI; 2: rabbit anti-Pfcrk-1; 3: pre-immun; 4: rabbit anti- 

PfPK5; 5: pre-immun; 6 : immunopurified chicken anti-Pfcyc-4; 7 and 10: 

irrelevant chicken IgY (C5AR); 9: immunopurified chicken anti-Pfcrk-1

20pl of protein A Sepharose CL4B beads were coated with rabbit anti-chicken IgY 

(2pg) for Pfcrk-1 and Pfcyc-4, or directly with anti-Pfcrk-1 and PtPK5 rabbit 

antibodies (1.5 pg) for 90min under mild agitation at 4°C in RIPA buffer, and 

washed 4 times, with RIPA buffer. Then rabbit antichicken IgY- A sepharose beads 

were incubated with anti-Pfeye-4 (1.5 pg) for 90min and washed 4 times in RIPA 

buffer. The immunocomplexes in the parasite extract (late trophozoite, 500pg) were 

then precipitated with 20pl of Protein-A/antibodies beads at 4°C under mild agitation 

for 60 min. After washing, a standard kinase assay was performed, using HI as a 

substrate.
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Appendix J: Preliminary immunopurification results for mass snectrometrv 

analysis using Pfcrk-3 and Pfcrk-4 antibodies

Immunopurified IgY, previously cross-linked to Aminolink® coupling gel (Pierce), 

were ineubated with parasite extract (late stages, 500pg). After standard washes, 

samples were analyzed by SDS-PAGE. Additional proteins detectable by colloidal 

Coomassie staining are represented by dark dot. In negative control, bands below 62 

kDa are detectable as well and correspond presumably to uneross-linked antibodies. 

After the cross-linking step, additional washes with higher stringency should prevent 

these bands.

1 2 3 4 5 6  7
Pfcrk-4 Pfcrk-3 -
am' 'T'

83 -  
62 —

4 7 .5 -

1: immunopurified chicken anti-Pfcrk-4 (LKA) + parasite extract; 2: immunopurified 

chicken anti-Pfcrk-4 (LKA) + buffer; 3; immunopurified chicken anti-Pfcrk-3 (PNG) 

+ buffer; 4: immunopurified chicken anti-Pfcrk-3 (PNG) + parasite extract; 5: 

irrelevant chicken IgY (C5AR)+ parasite extract; 6 : A sepharose + rabbit antichicken 

+ parasite extract; 7: A sepharose + parasite extract
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Appendix K; in silico CDK substrate prediction using the PREDIKIN proeram

CDK substrate prediction

The prediction of substrate peptides was achieved for three P. falciparum ePKs 

related to CDKs: Pfcrk-1, PfPK5 and PfPK6 (see references Table 1 for details).

The predictions are listed below.

Amino acids are represented in one single letter code. “[ ]” matches any character 

contained in the brackets and red letters correspond to the phosphorylation site. 

Pfcrk-1 : [PVALS][RFMIL][ST]P[KRMIDE][RKQSL]

PfPKS: [NGSL][PVALS][RFMIL][S'I ]P[KRMI][RKQSL]

PfPK6: R[PVALS][RFMIL][ST]P[KRMI][RKQSL]

The key kinase motifs used as an initial reference in PREDIKIN program were not 

recognised with Pfcrk-3 and Pfcrk-4.

In silico search for Plasmodium potential substrates

Using the peptide substrate predicted by the software, amino acid motif searches 

were carried out on the P. falciparum annotated protein database (http://plasmodb 

.org/restricted/ plasmodbmotif.shtml). Our search identified 67, 8 and 11 sequences 

matching with Pfcrk-1, PfPK5, PfPK6  predicted patterns, respectively.

Example o f /h75.'Pfcrk-1 : MAL8P1.19: helicase like, PFl 1 0358: RNA polymerase, 

PF13_0040: RNA a chain polymerase

PfPKS: MAL8P1.19: helicase like, PF13_0040: RNA a chain polymerase 

PfPK6: PFL0580w: MCM5 (minichromosome maintenance): initiation DNA 

replication, PFL0560c: MCM2/3/5 , PFL0625c: eif-3 theta (eukaryotic translation 

initiation factor), PFC0840w: P-type ATPase (subunit of multi-proteic complex 

involved in chromaffin remodelling)

I UN:VEnSlTY 
i UBRABY.
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