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ABSTRACT

For the sake of both economy and safety, the ability to diagnose a fault or disturbance 

is of great interest for an operator/engineer in process industries. To be practicable an 

on-line system with this capability must contain a suite of methods because no single 

method is likely to diagnose all possible faults. This thesis aims to contribute one 

novel component to this suite.

This thesis envisages the situation where the detection and diagnosis of faults and 

disturbances would be distributed to separate modules, each associated with the 

individual control systems located throughout a plant. In particular the thesis 

addresses those plants whose control systems inherently eliminate steady state error. 

Thus it seeks to address the large proportion of process plants that have proportional 

plus integral action as standard. By reasoning about changes in steady state an 

approach is proposed that requires very little process specific information and 

therefore should be attractive to control systems implementers who seek economies of 

scale. Because the approach can be implemented as modules that are largely based on 

standard control systems, the hnplementation can be configured and commissioned 

using various generic programmes and hence has the potential to be commercialised.

The approach is applicable to virtually all types of process plant, whether they are 

open loop stable or not, have a type number of zero or not and so on. It is founded on 

the application of both signed dhected graph (SDG) and control systems theory to 

single and cascade control systems with integral action. This results in the derivation 

of cause-effect knowledge and fault isolation procedures that take into account factors 

like interactions between control systems, and the availability of non-control-loop- 

based measurements.

Following on from a survey of the more relevant methods published in the literature, a 

theoretical analysis is carried out of what happens to control systems when they are

x iv



subjected to various faults and disturbances. The main purpose is to derive equations 

to describe how control systems respond in the steady state to these occurrences. 

Although providing a foundation, these equations are unlikely to be suitable for direct 

use and a cause-effect analysis of the faults/disturbances involving signed-directed- 

graph (SDG) representation is then pursued. This leads to a search and test strategy 

for fault isolation involving interacting control systems, minimal knowledge 

acquisition and knowledge evolution. Since the approach is based on steady state 

deviations, a steady state change detection algorithm is proposed. The approach is 

tested by applymg it to a continuous stirred tank reactor (CSTR) and to the Tennessee 

Eastman (T-E) process benchmark. Some recommendations are made for integrating 

the approach into a commercial software tool.

In principle, the approach can form the basis for the diagnosis of faults/disturbances m 

both control systems and in the process itself. One of the key features is that the 

approach can work at different levels of detail. Diagnosis is based on knowledge of 

the signs of steady state interactions (gains) between individual control loops, non- 

control-system-related measurements and on the steady state effects of disturbances. 

Both faults and disturbances (e.g. a load change) can be diagnosed, although 

diagnostic detail, i.e. degree of isolation, is clearly dependent on the measurements 

and knowledge that is available.

The concept of a distributed, control system based approach to the diagnosis of faults 

and disturbances, its development and apphcation to various processes are ah original, 

as are the integration aspects.
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CHAPTER 1 

INTRODUCTION

1.1 Background

The demand for real thne diagnostic systems that enable the timely detection and 

isolation of abnormal operation is well-known. For instance, industrial statistics 

esthnate the economic hnpact due to abnormal situations in the petrochemical 

industries in the US alone to be about US$20 billion per year (Nimmo, 1995). In 

addition “economic pressures are dispersing machine intelligence away from 

centralized computers toward distributed (Fieldbus) devices “ (Clarke, 1995) to 

exploit economies of scale. If one looks at the measurements collected from a 

process plant, a large proportion relate to the control loops, the rest are largely 

collected to ensure that operation is within allowable constraints. Since these 

control loops are distributed throughout the plant, it seems sensible to examine the 

possibility of distributing fault detection and diagnosis tasks with them. Economies 

of scale would then be achieved by making use of common software which would 

be configured at the same time as individual loops were tuned. Clearly these 

economies of scale would be diminished if the algorithms were too plant specific 

and requii'ed knowledge not readily available from the plant.

1.2 The Overall Objective

This thesis describes a distributed process control system based, steady state 

approach for isolating incipient faults and disturbances in plants with control loops 

that inherently eliminate steady state error (Chen & Howell, 1998a, 1998b, 1998c, 

1998d, 1998e, 1999a, 1999b). It is argued that this is the first step towards the long

term ahn of providing distributed control systems with their own diagnostic 

capability so that they are not only self-validating, but are also able to isolate in- 

process faults.
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In particular, the approach should be appropriate for the large number of process 

plants that adopt distributed proportional plus integral control strategies under 

supervisory control (Figure 1-1) (Chen & HoweU, 1998d). Note the emphasis is on 

the steady state. Although the diagnosis of fault induced transients is clearly an 

issue and worthy of investigation, steady state analysis is equally important because 

it is quite possible that the ‘faulty’ plant would acliieve a revised steady state. 

Cleaiiy, in certain situations a new steady state would not be obtained and in others, 

the time to reach it might be too long. It is therefore envisaged that fii'stly other 

approaches would also be adopted and secondly a ‘loose’ defmition of steady state 

would be requii'ed.

COMMUNICATONS
BUS

SLC

1 0PROCESS

3-
SLC: Single Loop Controllers 
CC: Cascade Controllers

SUPERVISOR

Figure 1-1: A distributed control system structure

Traditionally, a diagnostic engineer’s view of feedback control is that it 

complicates, rather than aids, diagnostic reasoning. Feedback control adds to the



complexity of fault detection in process plants by masking measurement deviations 

that might indicate a fault, and by making it difficult to distinguish between a 

sensor, actuator, or plant failure (Hemy & Clai'ke, 1993). Wilcox & Himmelblau 

(1994a) have pomted out that control systems offer little decision-making 

assistance to an operator during the occurrence of process faults or abnormal 

disturbances, and in many cases, the actions of the control system can mask 

manifestations of the fault that would aid the operator in determinmg the cause of 

the process fault. In contrast to these opinions, this thesis attempts to show that 

some benefit can be obtained from individual controllers.

1,3 The Prem ise

Nowadays, feedback control loop components can be smart and have self- 

computational capabilities hnked by a high-speed bi-dhectional data 

communication bus, which allows the central supervisory system to interrogate 

devices for status and other information. A natural extension to this structure 

would be to distribute fault detection and diagnosis (FDD) tasks in a shnilar way by 

associating a sepai'ate FDD module with each control system. The role of each of 

these modules would not be confined to the validation of the performance of the 

closed loops associated with it, each module would also monitor the performance of 

the process located in the proximity of these loops. The aim of monitoring 

performance is to detect and diagnose both faults and disturbances. The acronym 

FDD is then assumed to encompass both faults and disturbances. The boundaries 

specified for individual FDD module responsibilities would overlap one another 

and then union would encompass the entire plant. This overlapping would mean 

that devolution would not be complete necessitating some form of high level 

supervision and evaluation.

This thesis envisages a distributed FDD system which

• is modular in design;

• can be installed with minimal additional design costs;

• has low maintenance costs and

• can improve with operational experience.



This would be of considerable benefit for a large industrial process where 

scalability is a major issue. To be practicable such an FDD system would have to 

contain a suite of methods because no single method is likely to suit the diagnosis 

of all possible faults. This thesis aims to contribute one novel component to this 

suite, distributed steady state or pseudo steady state FDD.

It seeks to achieve these goals by

• making use of functional decomposition to produce novel simple signed 

directed graph (SDG) representations of a plant;

• basing these representations on a minimum amount of knowledge so that design 

costs and implementation effort are minimised;

• enabling these representations to evolve when additional knowledge becomes 

available after the FDD system is installed and is running;

• enabling individual control system FDD modules to reason about steady state 

deviations;

• knowing when a plant is in steady state and whether it has changed/deviated or 

not;

• gaming an understanding of control systems’ steady state responses to various 

faults and disturbances and thereby

• developing a search and test strategy for inferring sets of likely 

fault/disturbance candidates from changes in steady state;

• making use of known interactions between control systems to improve this 

strategy;

• making use of a Supervisor to co-ordinate and to reach a final conclusion.

The approach (Figure 1-2) assumes that the plant meets the following fahiy general 

criteria:

(1) controllers themselves perform to specification and all control loops are able to 

guarantee zero steady state error e.g. they have integral actions;

(2) controller outputs, together with measurements of the controlled variables are 

available as obseiyations\

(3) the process is operated continuously.
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Figure 1-2: Plant-wide distributed self-validating control systems architecture

Note in Figure 1-2 that the term self-validating control system (SEVACS) has been 

adopted. Although not strictly conect, because the intention is that process faults as 

well as control system faults would be detected, SEVACS was chosen to 

acknowledge a certain similarity to SEVA components as described by Hemy & 

Clarke (1993) and Clarke (1995).

The systems are designed in two stages, an offline design stage followed by an 

online design stage. The following steps are performed at the offline stage:

1) the plant is decomposed into compartments that broadly relate to individual 

process units;

2) for each compartment, each control system is examined in turn, and various 

characteristics of each control system are identified;

3) appropriate SEVACS configurations are then specified:

• standard forms are adopted where appropriate ;

• if not appropriate, the representation is analysed to generate one;

4) the FDD supervisor is specified. In particular an approach must be specified for 

integrating the various components of the FDD suite.

The various standard forms that are available ate categorised by the types of control 

system installed:

• the process Type Number (Dorf, 1995);

• open loop stability.



The following steps are performed at the online stage:

1) the SEVACS is configured;

2) procedures are configured to detect changes in steady state;

3) the FDD supervisor is configured.

In addition, steady state gains between interacting loops need to be identified at 

either of the offline or online stages.

Finally it is envisaged that the suite of methods found in any FDD system that is 

installed on a process plant, might consist of 4 strategies:

1) a strategy using heuristic rules,

2) where available sensor and actuator validation (Clarke et a l,  1995),

3) a SEVACS approach and

4) a strategy based on governing equations and SEVACS.

The fu’st strategy is well established (Ki'amer, 1987a; Becraft et a l, 1991,1993; 

Ayoubi & Isermann, 1996; Leonhardt et a l, 1997; Alonso et a l, 1998). It is 

essentially suitable for ‘filtering ouf the obvious faults or disturbances that are easy 

to diagnose. The second makes use of ‘intelligent’ or ‘smart’ hai'dwaie to generate 

device-specific diagnostic messages so that each individual sensor or actuator can 

have its own diagnostic capability. The thkd is the focus of this thesis. Like sensor 

and actuator validation, SEVACS can provide each control system with its own 

diagnostic capability. However, individual SEVACS do not have a global view so a 

Supervisor is needed to perform overall isolation. The fourth is an extension to an 

approach published by Ki'amer (1987a), which can be viewed as a verifier in the 

Supervisor.

Figure 1-3 summaiises the overall procedure (Chen & Howell, 1998e). It is 

intended that the SEVACS would be configured using a number of generic 

computer programs.

The overall procedure can be described by the following action hst.

• Decompose the plant functionally into compartments that broadly relate to 

individual control systems.



• Construct a simple representation of each compai'tment.

• Consider the design of the individual SEVACS within each compartment.

• Reason about deviations in measured variables by referring to these individual 

SEVACS: each SEVACS has 2 distmct features, cause-effect knowledge 

relating the deviations to likely faults and a choice of reasoning processes that 

are based on a search and test strategy.

• Configure, test and implement these SEVACS using a number of generic 

computer programs,

• Configure the Supervisor to co-ordinate the decision-making process.

Although the approach proposed here has the potential to be commercialised, more 

research is still needed on the generic programs, which should be considered from 

the viewpoint of software engineering and on the Supervisor where artificial 

intelligence techniques might be appropriate.

Compai'tmeiiL
Representation

Compai-tmentalisation

Online 
Implementation

Supervisor
Configuration

SEVACS
Configiu'ation

Test & 
Verification

SEVACS 
Formulation

Generic
Computer
Programs

Figure 1-3: Development of the plant-wide diagnostic scheme



1.4 Outline of The Thesis

Chapter 2 contains a survey of those aspects of process monitoring and fault 

diagnosis that are hnportant to this thesis. Thus there is an emphasis on functional 

decomposition, statistical approaches, model-based methods and the self-validating 

concept. Statistical approaches are included because they might be viewed as a 

competitor to the proposed approach. Although model-based methods have rarely 

been applied in process industries, they have attracted much academic interest 

because the principle of model-based methods is general and structuially attractive, 

and hence aie discussed here. The self-validating concept is obviously relevant to 

this thesis and hence self-validating sensors, self-validating actuators and loop 

performance assessment are discussed.

To gain an understanding of the steady state performance of a control system when 

subjected to various faults/disturbances, a theoretical analysis is carried out in 

Chapter 3 for different processes, such as open-loop stable processes, open-loop 

unstable processes and capacitive processes. Various interactions between control 

systems as well as single loop control systems and cascade control systems will be 

discussed intensively for the purpose of fault detection and diagnosis.

It is a good philosophy to design systems that fit into the way people think when 

they perform a diagnosis, rather than to try to adapt people to fit them (Mjaavatten, 

1994). In practice, people are accustomed to taking advantage of cause-effect 

knowledge to do fault diagnosis, so a more ‘people-based’ approach to 

understanding control system steady state response is to reason on the basis of 

simple SDGs. This is described in Chapter 4.

Various fault isolation issues, including the search and test strategy, will then be 

investigated in Chapter 5. A fault isolation principle and general procedure are 

suggested and by considermg control system interactions, two alternative fault 

isolation improvements are introduced. One is to make use of different knowledge 

for different processes, the other is to make use of modified SDGs and to reason 

about them.



By now it should be clear that minimal amount of knowledge would be requked to 

implement the proposed strategy on a plant. If this information is not available at 

the design stage, Chapter 6 introduces a method to acquke this by applying step 

tests. In addition the continued acquisition of knowledge is examined by proposing 

a framework and some guidelines for knowledge evolution so that the SEVACS 

based approach can have a learning and updating capability. A CSTR process is 

used as an application for illustrating the method and the framework.

Because the approach relies on knowing when a plant is in steady state and whether 

it has changed/deviated or not, a practical and useful steady state identification and 

change detection procedure is given in Chapter 7.

Chapter 8 wül give two applications of self-validating control systems; one is to a 

simulated CSTR (Continuous Stkred Tank Reactor) (Appendix 1), the other is to a 

larger and more complicated chemical process benchmai'k, the Tennessee Eastman 

(T-E) process benchmark (Downs & Vogel, 1993) (Appendix 4). These two 

apphcations will show the potential use of self-validating control systems in 

process industries.

The conclusions of the work wiU be made and some future dkections will be 

advised in the final chapter. Chapter 9.

1.5 Originality

The concept of a SEVACS, its development and application to various processes 

are aU original, as aie the integration aspects.



CHAPTER 2

SOME BACKGROUND TO PROCESS 

MONITORING AND FAULT DIAGNOSIS

This chapter reviews those general methods for process monitoring and fault 

diagnosis that had an influence on the development of the SEVACS approach. It is 

generally accepted that no single diagnostic method adequately addresses ah the 

challenges of complex, industrial-scale diagnostic problems. As 

Venkatasubramanian (Harrold, 1998) says, “One or two doctors are unable to 

diagnose the illness. It takes a team o f specialists each looking at the symptoms, 

each developing an opinion, peiforming additional tests, and then conferring with 

team members to reach a final conclusion. And referring to chemical plants, 

“Getting four or five methods looking at the same problem, each in its own unique 

way, yet each reaching the same conclusion is very challenging. ”.

Although now 20 yeai's old the comprehensive survey of Hhnmelblau (1978) sthl 

provides a basic introduction to fault detection and diagnosis methods that are 

available to the chemical process industry. Since the publication of that monograph, 

vigorous activity has resulted in many new approaches (see for instance, Watanabe 

& Hhnmelblau, 1982; Isermann, 1984, 1993, 1997; Frank, 1987; de Kleer & 

Williams, 1987; Milne, 1987; Peng & Reggia, 1987a, 1987b; Gertler, 1988, 1992, 

1993, 1998; Patton et a l, 1989; Watanabe et a l, 1989; Chang et a l,  1990; Becraft 

et a l, 1991; Patton 1991; Bassevhle et a l, 1993; Blanke et a l, 1993, 1997; 

Mjaavatten, 1994; Chen, 1995; Blanke, 1996; Dorr, 1997; Isermann & Ballé, 1997; 

Leonhardt et a l, 1997; Mo et a l, 1997; Patton & Chen, 1997; Dragoni et a l, 1998; 

Gertler et a l,  1999). These various approaches can be classified in a number of 

different ways, for example, is the method quantitative or quahtative? signal-based, 

knowledge-based or model-based? artificial intelligence based or not? Is it based on 

neural networks, expert systems or fuzzy logic? (Ki'amer, 1987a, 1987b; Reiter, 

1987; Rich & Venkatasubramanian, 1987; Finch et a l,  1990; Petti et a l,  1990;
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Venkatasubramanian et a i, 1990; de Kleer et al., 1992; Becraft & Lee, 1993; 

Kavuri, 1993; Kavuri & Venkatasubramanian, 1993a, 1993b, 1994; Lee, 1994; 

Rangaswamy 1995; Rangaswamy & Venkatasubramanian, 1995; Ayoubi & 

Isermann, 1996; Alonso et a l, 1998; Xiao et a l,  1998). The main advantage of 

using neural networks is that they only need the input-output data of the process, no 

detailed process models or other knowledge are necessary. However they need 

plenty of training data, face not only the problem of efficiency, but also the problem 

of the ability to detect and diagnose novel faults, and lack the physical explanation 

and understanding that can be useful to the operators. The expert system approach 

is a knowledge based heuristic solution that is simple and understandable. It has 

proved to be widely successful, provided the bottle-neck of knowledge acquisition, 

especially deep knowledge acquisition, can be overcome. Because vague 

information often exists in an engineering system, the approaches often recourse to 

fuzzy logic theory as provided by Zadeh (1973).

These are too many to be considered here in any detaü, so this chapter will 

concentrate on the most relevant: knowledge-based hierarchical diagnosis usmg 

functional decomposition, statistical approaches, model-based methods, a self

validating concept and a control system performance index.

2.1 Hierarchical Diagnosis Using Functional Decomposition

In comparison to those nonliierarchical approaches that require process models and 

diagnostic algorithms sufficiently detailed to resolve individual faults at the unit 

level, the knowledge-based, multitiered and hierarchical diagnostic approach 

suggested by Finch and Kramer (1987) is arguably a more efficient and suitable 

approach to monitoring and improving large and complex processes. Based on 

functional decomposition, the approach has similarities to that proposed in this 

thesis. As such, some basics about their approach will be reviewed in this section.

Their approach is based on a two-stage diagnostic procedure. In the fkst stage, the 

potentially faulty systems of the plant are located. Based on the states of systems 

adjacent to the faulty system, the second stage involves the application of rules that 

narrow the fault candidate space further. This procedure is common and general to 

a lot of FDD systems.

11



For a large-scale plant, a proper decomposition or abstraction of the plant into a set 

of subsystems can reduce the perceived complexity of the plant in question. When a 

fault occurs, the fault diagnosis task can be quickly narrowed by identifying those 

affected control systems or other measurements in one or more of these sub

systems.

Rasmussen (1985) & Scarl et al. (1987) have observed abstraction in two 

dimensions: a structural dimension corresponding to physical groupings of 

components, and a functional dimension related to the purpose and behaviour of the 

equipment. Theoretically functional information should be discernible from 

structural descriptions, but in complex devices this transition is difficult (Davis, 

1984). Finch and Kramer’s functional decomposition (1988) deliberately masks 

details of system structure that are krelevant at the early stages of the diagnostic 

task. This avoids the approach seeking all units that are causally connected to all 

fault symptoms via flows of mass, energy or information and hence requiring 

complete measurement of stream var'iables for complete effectiveness. Thus recycle 

streams and control feedback loops can be accommodated.

Finch and Kramer’s functional decomposition idea is not only beneficial to whole 

plant compartmentalisation, but also to the identification and investigation of 

mteractions between SEVACS. In then approach, the plant is represented as a set of 

abstract functional subsystems, each responsible for controlling certain aspects of 

the overall process. Any abnormal measurements would mean one or more of these 

subsystems is malfunctioning. Then by identifying the process units or control 

system components responsible, either directly or indirectly, for the regulation of 

the measurements that are abnormal, the focus of the diagnosis can quickly be 

narrowed to those components. The objective of their work is to identify the 

malfunctioning subsystems, not the actual faults within them. The latter is part of 

the work in this thesis.

However, having emphasised decomposition, Finch and Ki'amer fail to decompose 

the reasoning processes as well by focusing on process performance as a whole. In 

many ways, the focus of this thesis attempts to address this failure.
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Another aspect of their work is that they classify three system types:

• control systems are characterised by an ability to actively regulate the process 

through manipulation of various process variables and parameters;

• passive systems or open-loop systems can be identified as those systems that 

produce measured outputs not directly involved m process regulation;

• external systems are systems on the periphery of the process being analysed, 

they can be either control systems or passive systems.

Control systems are deemed to have four states (Table 2-1), all of which depend on 

the deviation of control eri'or e and the deviation of manipulated variable x from 

their- nominal values. If both deviations are within their tolerances, the system is 

functional. If a fault/disturbance occurs but can be compensated by a control action, 

the system is said to be stressed. If the system is unable to compensate for a 

fault/disturbance, it is saturated. If the regulatory mechanism of the system fails to 

work, the system is uncontrolled.

Table 2-1: Four control system states (Finch and Kr-amer, 1988)

Observation States

lei > 0 & Ixl > 0 

lei > 0 & Ixl TC 0 

lei 7C 0 & Ixl > 0 

lei 7T 0 & Ixl n 0

Functional

Stressed

Uncontrolled

Saturated

Passive systems have two states: functional and rnalfunctional. If the measured 

outputs of the passive systems deviate from their- desired values, the systems are 

malfunctioning; otherwise, the systems are functioning.

In this thesis, the focus of the SEVACS approach is on diagnosing those sensor 

biases, valve biases and process disturbances that cause control systems to be 

stressed. However those faults or disturbances that cause control systems to be 

uncontrolled or saturated can still be diagnosed by that part of the hybrid approach 

that consists of a strategy using heuristic rules.
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2.2 Statistical Approaches

Statistical approaches are prevalent in process industries, particularly in the 

detection of faults. Their main role in this thesis is in the detection of a change in 

steady state (Chapter 7). As will be discussed here, they ai’e of little use for fault 

isolation. To explain why this is the case, univaidate statistical process control 

(SPC) and multivaiiable SPC, which is one of hot topics in process monitoring, will 

be introduced briefly.

2.2.1 Univariate Statistical Process Control (USPC)

Univariate statistical process control (USPC) is a traditional method of monitoring, 

controlling and, ideally, improving a process through statistical analysis. There are 

seven major tools for USPC, they are often called “the magnificent seven” 

(Montgomery, 1990):

• histogram;

• check sheet;

• Pareto cliait;

• cause and effect diagram;

• defect concentration diagram;

• scatter diagram;

• control chart.

Among these magnificent seven, the control chart is the simplest type of on-line 

USPC procedure for process monitoring and fault diagnosis. The typical control 

chart given in Figure 2-1, shows a graphical display of sample measurements 

versus time. The chart contains a centre line (CL), which represents that value 

expected when the characteristic variable is in its in-control state, and two other 

horizontal lines, called the upper control limit (UCL) and the lower control Ihnit 

(LCL).

When the process variable is subject only to tolerable random fluctuations, all of 

the sample points will fall between the control hmits (UCL and LCL) and scatter 

above or below the CL randomly; it is said that the process variable is in statistical
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control (or in control) and no action is necessary. However, a point that plots 

outside of the conti’ol limits is an indication that the process is out of statistical 

control (or out of control), and investigation and corrective action is requiied to find 

and eliminate the assignable cause or causes responsible for this behaviour.

Faulty
' (Out of control)

(S3
I(U

Î<X\

upper control limit (UCL)

Centre line (CL)^v A. /  \
r — ----

Lower control limit (LCL)

Time
7^

Acceptable 
performance 
(In control)

Faulty
(Out of conti'ol)

Figure 2-1: A typical control chart

The control Hmits can be determined from probability confidence intervals. 

Regardless of the distribution of the characteristic variable, it is standard practice in 

the United States to specify the control Hmits as a multiple of the standard deviation 

of the statistic plotted on the chart. The multiple usually chosen is 3; hence, 3- 

sigma limits are customarily employed on control charts, regardless of the type of 

chart employed.

Output
Process

Measurement System

Verify and 
foil own

Implement
corrective

action

Detect 
assignable 

cause

Identify 
root cause 
of problem

Figure 2-2: Process improvement using the control 
chart (Montgomery 1990)
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Figure 2-2 illustrates a procedure for using a control chart to detect a fault and 

improve the process. The control chart will only detect assignable causes; 

management, operator and engineering action will usually be necessary to identify 

then elhninate the cause.

USPC can only be used as an indicator for faulty conditions. To diagnose and 

identify these faulty conditions remains a heavy duty for the operator. The operator 

might make use of either his/her own knowledge or some other tools such as expert 

systems to perform fault diagnosis further. However this task is beyond the ability 

of USPC.

2.2.2 Multivariate Statistical Process Control (MSPC)

Although the above conventional USPC methods are widely used in the field of 

process monitoring and fault detection, they are fraught with problems, notably 

(Wilson e ta l,  1996);

• alarms are not raised until the fault is actually manifesting itself at the outputs, 

by which stage it may be too late to prevent product quality from being 

adversely affected;

• noise on the outputs will often be lai'ge enough to mask incipient faults until 

they have become quite serious; implementing a control loop on an output 

variable will also tend to “cover up” problems;

• many lai'ge plants have so many measured variables that it would be extremely 

cumbersome to attempt to monitor all of them separately.

MSPC aims to solve the above problems by treating a large number of data 

simultaneously, extracting more confnmatory information from observations on 

many variables and reducing the noise levels through averaging. Extensive research 

into the application of MSPC to process monitoring and fault detection has been 

done in recent years with considerable effort being put into implementation in real 

process industries.

Although, like USPC, there are multivariate versions of the Shewhart chart, the 

CUSUM chart and the EWMA chai't, the most practical approaches to MSPC
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appear to be those based on multivariate statistical projection methods among 

which principal component analysis (PCA) and partial least squares (PLS) are the 

two most widely used. PCA and PLS methods are ideal for handling the large 

number of highly correlated and noisy process variable measurements that are 

collected by process computers on a routine basis; they can also handle missing 

data aiising from sensor failure while multivariate control charts can’t (MacGregor 

et al., 1995).

2.2,2.1 PCA and PLS Mlodels

A PCA model decomposes an m x 1 normalised vector into two portions,

x = x + x

X and X are the modelled and residual portions of x , respectively. Vector x is the 

projection of x on its principal component subspace(PCS):

x=Pt=PP’ x=Cx

where P is the m x l  PCA loading matrix, t is the /x  1 score vector, I < m is the 

number of principal components(PC) and C is an /nxm  projection matrix on the / 

dimension PCS. Vector x can be viewed as the projection of x on its residual 

subspace(RS):

x=(I-C )x  = C x  

where C is an m xm  projection matrix on the m-l dimension RS.

In the above, the loading matrix P can be determined by I eigenvectors, [pi p% ... 

p/], of the covariance matiix 'EmXm of the reference matrix X„ x m which includes 

n rows of fault-free measurements of m variables, where Z  can be estimated by 

X^X/(/7~l), Pi is the eigenvector with the largest corresponding eigenvalue Xi, p% is 

the eigenvector with the second largest corresponding eigenvalue X2, and p/ is 

the eigenvector with the I largest corresponding eigenvalue Xi.

PCA can be viewed as the special case of PLS and PLS can be viewed as an 

extension of PCA. The difference is that the reference data of PLS includes not 

only the measurement matrix X, but also the process quahty data matrix 

which consists of n rows of analytical values of q process quality variables.
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Information is extracted that explains not only the variation in the process data X, 

but also the variation in the product quahty data Y Thus PLS may detect an out-of

control situation online before lab data on product quality becomes available. PLS 

can accomplish this by working on the reference covariance matrix of (X^Y)(Y^X) 

instead of X^X as with PCA.

PCA or PLS model can be illustrated geometrically by Figure 2-3. In a well defined 

model, X can be very close to x and can capture the intrinsic coiielation among 

variables; the magnitude of x should be very small.

PCS

Figure 2-3: Geometrical explanation of PCA or PLS model 

2.2.2.2 Fault Detection Using PCA or PLS Models

From the viewpoint of process monitoring, a change in variable correlation 

indicates an unusual situation because the variables do not conserve thek normal 

relations. Under this situation the sample x increases its projection x on the 

residual subspace (RS). As a result, the magnitude of x reaches unusual values 

compaied to those obtained during normal conditions.

Typically there are two methods using PCA or PLS to detect abnormal conditions 

in a process. One is based on the score distance and another is based on the model 

residual.

(1) The score distance based method

Testing if an observation is within the control envelop can be performed on a 

modified Hotelling’s J^-statistic s/(MacGregor et a l, 1995):
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S/<Sa

with s, = X ^  ttnd = y —..
M  A ;  ( / Î  -  /7 î)

where u is the iih element in the score vector t and F,n,n-m,a is the F-statistic at 

confidence level a.

(2) The model residual based method

Another statistic for detecting abnormal conditions is the Square Prediction Error 

(SPE) on the residual subspace(RS):

SPE=||xp=x’'C x

Jackson and Mudholkar (1979) developed a confidence limit expression for the 

SPE when x follows a normal distribution, which is known as the Q-statistic: the

process is considered normal if SPE < 5^ and there exists an abnormal condition

when SPE>5^,

where

r I r
n J 2 0 . h} 0 h fh _n

and

0, = for/=l,2,3;
y=/+i

where is the confidence limit for the 1-a percentile in a normal distribution; Xi, 

Xi, Xi+i, ...,Xjn are eigenvalues, in descending order, of the covariance matrix

X^X.

The result is derived under the following assumptions:

• the sample vector x follows a multivariate normal distribution;
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• the result holds regardless of how many principal components are retained in the 

model;

• an approximation for the distribution is made when deriving the confidence 

limit.

To reduce unnecessary false alarms in cases where the data are not normally 

distributed, exponentially weighted moving average (EWMA) filters can be applied 

to the residuals. Since an EWMA filter is roughly equivalent to a windowed 

approach to a group of data samples, the filtered residuals are closer to normal 

distribution than the unfiltered residuals. The general EWMA expression for 

residuals is :

= (I “  r)ët_i + TXf. ,

SPE, = ë
_  ||2

Although the SPE is designed to reduce false alarms and provide more flexibility 

in detecting different types of faults, the original Q-statistic developed by Jackson 

et a l  is not applicable any more. Qin et a/. (1997) have extended the Q-statistic for

the SPE under the simplicity assumption T = yl and defined a tighter confidence

limit for the SPE

As a consequence , the Q-statistic for the SPE is as the following: the process is

considered normal if SPE <5^ and there exists an abnormal condition when

SPE > 6 ! .a

2.2.2.3 Fault Diagnosis Using PCA or PLS Models

Multivai’iate control charts based on PCA or PLS can help to diagnose assignable 

causes. By interrogating the underlying PLS or PCA model at the point where an 

event has been detected, one can extract diagnostic or so-called contribution plots 

which reveal the group of process variables making the greatest contributions to the 

deviations in the SPE or the scores. Although these plots wiU not unequivocally
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diagnose the cause, they will provide much greater insight into possible causes and 

thereby greatly naiTow the search (MacGregor et a i, 1995). An alternative means 

of fault diagnosis would be to analyse the path of the score vector after the fault 

has been detected. However the abstract nature of the scores means that such 

diagnosis would depend on knowing which faults tend to cause the scores vector to 

move in a given direction, which, of course, requkes a large database of past 

“faulty” plant behaviour, not to mention a good pattern recognition system (Wilson 

et aL, 1996).

In short, PCA or PLS models have great potential for use in fault detection systems 

in process mdustries as long as the vaiiables are highly correlated. However they 

are unlikely to detect a fault in a controlled variable because these don’t correlate to 

other variables. Of most significance to this thesis is that raiely can they be used for 

fault diagnosis.

2.3 Analytical Redundancy Based Methods (M odel-Based M ethods)

Model-based methods using analytical redundancy aie stül very attractive for 

researchers because of thek elegant mathematical structures and explanations. 

Unfortunately they have limited applications in the process industries because of 

thek need for complicated models. Mainly for theoretical completeness, these 

methods will be introduced in this sub-section briefly.

In order to perform the task of fault detection and fault diagnosis, it is necessaiy to 

access redundant information of the process. Tlnee redundancy techniques are 

available theoretically and practically (Clarke, 1995; Rengaswamy, 1995):

(1) physical redundancy: multiple sensors are installed to measure a particular 

variable, normally this is restricted by cost and physical conditions although it 

is often necessary in safety critical processes such as in the nuclear and 

aerospace industries; data fusion theory can be used to analyse multiple data 

from various sensors;

(2) data redundancy: this makes use of history data and a prior knowledge; for 

example, the signal data requked for control is often of low bandwidth, higher
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frequency components in the raw data can often indicate fault modes; statistical 

analysis is a kind of data redundancy technique;

(3) analytical redundancy: the philosophy is to use mathematical models of the 

fault-free process to determine how different measurements should relate. If the 

relations don’t hold, something is wrong. The pattern of the deviations between 

the predicted relations and the normal relations can then be used to distinguish 

the fault.

2.3.1 Introduction to The Analytical Redundancy Technique

Analytical redundancy based methods generally fall into one of three categories

(Chow & Willsky, 1984; Isermann et a l, 1984, 1993, 1997b; Frank, 1987; Gertler,

1988, 1998; Patton e ta l,  1989, 1991, 1997; Leonhardt & Ayoubi, 1997):

(1) parity space based methods;

(2) observer based methods;

(3) paiameter estimation based methods.

All tliree suffer from the following complications:

• unmeasured disturbances and normal measurement noise;

• modelling errors;

• the mapping from deviation patterns to causes.

The different approaches share a common methodology which can be summaiised

by the two steps shown in Figure 2-4:

(1) residual generation: mathematical models are used to generate residuals, which 

are variables sensitive to faults; the residuals are designed to be zero or close to 

zero under normal (non-faulty) conditions and deviate significantly from zero if 

a fault occurs;

(2) residual analysis and decision making: this aims at detecting and, if possible, 

isolating the faults. While a single residual may be sufficient to detect a fault, a 

set of residuals is needed for the isolation of the fault. For ease of solution, one 

of two approaches is generally chosen. One is to use residuals that are said to be 

structured when each residual is designed to be sensitive to a given subset of 

faults, while remaining insensitive to other faults. The other way is to use

2 2



dil'ectional residuals which are designed to lie in a fixed fault-specific direction 

in the residual space in response to a particular fault.

Faults—i FeedbackI__

Process

Residual
Generator

Model

Residual
Analysis

Decision
Makmg

Figure 2-4: The general structure of model-based FDD schemes

The different approaches are closely related because all of them evaluate the same 

signals, namely the inputs and outputs of the actual process of interest. Hence only 

the parity space approach will be explained in detail, with a very brief introduction 

given for the others. Depending on the situation, each of the methods might be 

more or less efficient and hence the approaches are often used in combination.

2.3.2 Fault Detection Using Parity Space

The term parity is inspired by the use of parity bits for error checking in digital data 

transmission: an extra parity bit is added to a group of bits so that the coincidence 

of the binary sum of the digits before and after the transmission can be checked, 

any contradiction indicates a transmission error. By analogy, in the FDD area, the 

parity vector is a function of the measured and manipulated variables defined in 

such a way that a non-zero value indicates a fault while it is zero m normal 

conditions.

2.3.2.1 The Static Parity Space

The parity space approach is most clearly explained using an algebraic system 

having an unknown state vector x of dimension n, and a measurement vector y of 

dimension q. It is assumed y is related to x by the algebraic equation:
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y  = Cx + f  + T],

where C represents the qxn observation matrix, q x \  vector f  contains instrument 

faults and is zero when there is no fault, gxl vector T[ contains zero-mean 

measurement noises. Since x is unknown, the idea is to eliminate it in the previous 

equation in the following way: one defines the subspace called parity space, 

spanned by the row vectors of a (q-n)xq matrix V so that:

V={v independent | v^C=0}.

By projection of the initial equation in the parity space, q-n independent analytical 

redundancy relations are obtained given by:

p=Vy 

=Vf+VTl.

The columns of V define q distinct fault directions associated with each 

measurement. The {q-n)xl vector p is called the parity vector. The components of p 

are used as residuals. Under non-faulty conditions, since Vf=0, p is ahnost nuU. 

The distribution of p is related to the distribution of the noise so that a non- 

vanishing parity vector mdicates measurement error. Fault detection might be 

achieved by monitoring the norm of p.

2.3.2.2 The Dynamic Parity Space

The above static parity space approach can be extended to a dynamic system and 

temporal redundancy relations of the system can be obtained. Suppose the system is 

modelled by the discrete hnear state space equations:

Jx(k -f 1) = Ax(&) + Bu{k)
|y(/:) = Cx(k)

where n x l  vector x(k) is the unknown state at the kth instance, y{k) is the ^x l 

measurement vector and u(k) is the p x l  input vector, Bnxp and C^x,, are model 

coefficient matrices. If the model is written in observation form with time window 

of size s:

y (k - n(& -  s)
: = H oX (k-^)-l-H | :

_  y(^) . u(k)
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where

0
c

CB
CA

and = CAB • .

_CA\
CA' B ... CAB CB 0

Hr

then the parity space can be spanned by the row vectors of the 

rank(Ho))x^(^+l) dimensional matrix V so that:

V={v independent | v^Ho=0}.

By projection of the initial equation in the parity space, (g(^+l)-rank(Ho)) 

independent analytical redundancy relations are obtained given by:

~y{k- s ) u ( k - s )
= Y n ,

y(k)
-  U(^) „

At time mstant k the residual vector which is used for FDD is then expressed by:

y { k - s ) n(^ -  ,y)
r(^) = V -V H , :

,  y(A) _ n(^)

Ideally the residual vector is near zero when there is no fault and non zero in faulty 

conditions. Thus the scheme of residual generation using parity space method is 

shown m Figure 2-5.

Paiity space model

Process

Figure 2-5: Residual generation using parity space method 

2.3.3 Fault Detection Using Observers

Analytical observer-based residual generation is based on the reconstruction or 

estimation of outputs or states of the process of interest and on the subsequent use
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of the estimation error (or innovation, respectively) or a function of it as the 

residual. There are two kinds of observers which can be used in the FDD scheme: 

state observers which are needed for state feedback in the case of incomplete 

measurement of the state vector, and output observers which can be designed in the 

frequency domain without using state space theory. Different observer based 

residual generation schemes are shown in Figure 2-6 and Figure 2-7 respectively.

Figure 2-6: Residual generation 
using a state observer

State Observer
Output Observer

Feedback

Process Process

Mbdel

Figure 2-7: Residual generation 
using an output observer

2.3.4 Fault Detection Using Parameter Estimation

Parameter estimation based approaches use system identification techniques to 

esthnate onhne process parameters, the results are then compared with the 

parameters of the reference model obtained initially under fault-free conditions. 

Any substantial discrepancy indicates a change in the process and may be 

interpreted as a fault. The procedure of pai'ameter estimation consists of two major 

steps, the estimation of the mathematical parameters, q , and their transformation

into the physical parameters, p , as shown in Figure 2-8.

2.3.5 Fault Isolation Issues Related to Model Based Approaches

Having detected the occunence of a fault, it is then often hnportant to isolate its 

cause. Although there ai'e different model based fault detection approaches, there 

are some common fault isolation issues. Whilst a single residual signal might be

26



sufficient for fault detection, a residual vector including a set of residuals is usually 

requned for fault isolation. If a fault can be distinguished from others using a single 

residual vector, then it can be said that tliis fault is isolable using this residual 

vector. If the residual vector can isolate all faults, it can be said the residual set has 

the requked isolability property.

Parameter Estimation
(matliematical parameters q  )

Residual r=Ap=p-p

Parameter Transformation 

(physical parameters p)

Process

Figure 2-8: Residual generation usmg parameter estimation

The following sub-sections describe two fault isolation methods that are broadly 

acknowledged in the literature.

2.3.5.1 Fixed Direction Residual Vector

Fault isolation may be achieved by seeking the greatest correlation between the 

residual vector and the fault directions. If the dhnension of the space spanned by 

the vector is less than 4, fault directions can be monitored graphically. The 

emphasis of this method is to design a dkectional residual vector which lies in a 

fixed and fault-specified direction (or subspace) in the residual space, in response to 

a particular fault. The fault isolation problem is then one of determining which of 

the known fault signature directions the generated residual vector lies closest to.
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2 3 ,5.2 Binary Incidence Matrix and Structured Residual Vector

If the dimension of the space spanned by the residual vector is bigger, it is both 

difficult and complicated to design a directional residual vector. A binary incidence 

matrix is usually used to help to analyse the sensibility of the residuals against the 

different faults: in the matrix, each row is associated to a residual, each column to a 

fault. A value of 1 denotes a significant sensibility of the residual to the 

cori'esponding fault, a zero the relative insensibility of the residuals. The columns 

of the matrix are called the theoretical fault signatures and are compared at each 

instant with the experimental signature. Since each component of the residual 

vector is a linear combination of input and output variables of the system, any 

linear combination of these residuals is a residual too. A structured residual vector 

can be designed with structured or dkectional properties for easier fault isolation: 

each residual is designed to be sensitive to a subset of faults, whilst remaining 

insensitive to other faults.

The design procedure consists of two steps. The fir st step is to specify the sensitive- 

insensitive relationships between residuals and faults according to the isolation 

task, and the second is to design a set of residual generators according to the desked 

sensitive-insensitive relationships. The fault isolation is simply to determine which 

residual is non-zero.

It is worth mentioning the isolability structures proposed by Gertler and Anderson 

(1992). For each fault to be detectable, no column of the incidence matrix should 

contain only zero elements, and for each signature to be unique, all columns must 

be different, such a structure is called deterministically isolable. Under the 

conditions of statistical testing, deterministic isolability may not be sufficient. A 

fault of intermediate size may cause some of the tests to fke while others not to, in 

spite of a 1 in the concerned position of the incidence matrix. The resulting 

signature wül then be a degraded version of the respective column, in that some of 

the I ’s are replaced by O’s. If there is a fault for which this is the vahd signature, 

then partial fking leads to misisolation of the fault. To avoid this, such structures 

are needed where no column can be obtained from any other column by 

degradation ( by replacing Us with O’s ). Such structures are called statistically
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isolable. A column canonical structure, where each column has the same number of 

O’s, each in a different pattern, is statistically isolable. For example, of the 

following thiee incidence matrices, the first is not isolable, the second is isolable 

deterministically but not statistically and the thkd is statistically isolable:

1 1 1 0 '  
1 1 0  1

1 1 1 0 '  
1 1 0  1 
1 0  1 1

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

2.3.6 Criticism

Due to both technical and economic problems, model-based FDD theory that uses 

analytical redundancy has rarely been applied in a process industry although it has 

attracted much academic interest. Technically it has been demonstrated that it is 

difficult to develop plant models that are reliable and robust to plant disturbances 

because many process plants are non-linear. Economically such schemes are 

expensive, as each is unique and must be created and maintained by highly skilled 

personnel (Henr y, 1995b).

2.4 Sensor, Actuator and Loop Validation

Any hybrid FDD strategy must take into account the fact that increaskigly, smart 

(or intelligent) sensors and actuators are being designed with a self-diagnostic 

capability. Diagnostic data, measurements and command signals can be 

communicated via a high speed and bi-dkectional communication link such as 

Fieldbus, which is able to provide an integrated structure of control, maintenance 

and management functions as shown in Figure 2-9 (Wood, 1995). This sub-section 

describes the types of features that the SEVACS approach must seek to 

complement.
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Operators and procedures

control maintenance management

Fieldbus

------1
1------------- 11------------- ki -------------11------------- 1I""'—

sensors actuators robots pumps others

Figure 2-9: Fieldbus integration of control, maintenance and management
(Wood, 1995)

2.4.1 Sensor Validation

Although, currently, most commercially available intelligent sensors that provide 

diagnostics generate a device-specific fault code or message (e.g. “fault 43 -  fouled 

membrane”) (Henry, 1995a), both field operators and commercial vendors are still 

not fully satisfied with it, the former need to know how the measurement has been 

affected by the device fault, the latter wonder how the code or message can be 

standardised so that it is device-independent and thek customers can exploit the 

advantages of intelligent instruments without being forced into single-vendor 

solutions. It is therefore encouraging that the SEVA (SElf-VAlidating) framework, 

devised by Clarke et ciL at Oxford University, allows any intelligent instrument to 

transfer measurement and validity information using a standardised message 

content and enables the integration of measurement vahdation with process control 

(Hemy et a t,  1993; Hemy 1995a, 1995b; Clarke, 1995).

A SEVA sensor not only employs self-diagnostics, but also provides extra stages of 

processing. If a fault occurs, its impact on each measurement is assessed and the 

measurement is corrected if necessary. Validity indices are generated which 

describe the resulting quality of each measurement in generic, device-independent 

terms. These enable the control systems to make an appropriate response to the 

sensor fault irrespective of the particular sensor technology or supplier. Some
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prototypes of self-validating sensors have been developed, such as a coriolis mass 

flow meter (Henry, 1994), thermocouple (Yang et a l, 1997a), pulse oximeter and 

polarographic oxgen tension meter (Leahy et a l, 1997) etc.

Figure 2-10 shows a SEVA sensor framework (Henry, 1995b). There are two 

validity indices generated for each validated measurement value (VMV, 

coiTesponding to the conventional measurement): validated uncertahity (YU) and 

the measurement value status (MY status). Additionally, a single device status is 

generated, which summarises the physical health of the sensor itself. Of course, a 

detailed, device-specific diagnosis of any fault is always available for the 

maintenance engineer.

Validated Uncertainty (VU)

Fieldbus

Yahdated Measurement Value (YMY)

the self- 
validating 
(SEVA) 
sensor

Validated Uncertainty (YU)

Measurement Value Status (MY status)

Device Status

Detailed Diagnosis

one
per
measurement

'I one 
Iper
J instrument

Figure 2-10: Sensor vaUdity parameters (Henry, 1995b)

Uncertainty is a well-established engineering concept. For any measurement x, the 

associated uncertainty , ôx, expresses a reasonable bound for the measurement error, 

at a given level of probability. In other words, it is expected that the true value of 

the measurand is within x ± &.
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The uncertainty of arbitrar y functions can be calculated by the root-sura-squares 

rule. For instance, given the uncertainty Ôx of x and Ôy of y, the uncertainty Ôr of R 

which is a non-linear function f(x, y) can be calculated by

/  nf Ÿ f  Y 
8 ^ =  5^+  5 ;

provided the non-linearity in the function f  is not significant and the uncertainties of 

X and y are independent and sufficiently small.

Traditionally uncertainty has been a static analysis, assigning a single uncertainty 

value to an instrument, the SEVA scheme proposes that uncertainty analysis should 

be extended to give an on-line estimate of measurement accuracy as a function of 

varying operating conditions. Based on the above uncertainty analysis, the validated 

uncertainty VU provides the major indicator of the quahty of the validated 

measurement value (VMV).

Measurement value status (MV status)

Under normal conditions, VMV is calculated using the latest data from the 

transducer, but after a fault comes, VMV may be calculated by projection from 

historical data while the VU will increase to accommodate the reduced accuracy of 

VMV. A second, discrete, validity index, called the measurement value status (MV 

status) is also generated with the VMV to inform the control system or supervisor 

in effect ‘how this VMV was calculated, by live data or historical data’.

There are six possible values of the MV status, corresponding to six different 

scenarios for how the VMV has been generated. The principal values are:

• CLEAR indicates that there is no fault, and that the VMV has been calculated 

normally from the latest transducer data;

• BLURRED mdicates that the measurement has been partially impahed by the 

presence of a sensor fault, and that a collection has been applied in the 

calculation of the VMV. The VU is increased appropriately to indicate the 

reduced accuracy of the estimate;
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• BLIND indicates that a diagnosed fault has occurred which has a severe impact 

on the measurement, and so the current VMV is projected from historical data, 

not live transducer data. A BLIND measurement should never be used for 

feedback control;

• DAZZLED is a temporary status used when transducer data is clearly

erroneous, but there is insufficient internal evidence to confirm that a 

substantial fault has occuiTed. The current VMV is projected from historical 

data, but the expectation is that the internal diagnosis will soon be resolved and 

that the status will then switch to one of the other values. DAZZLED is used to 

deal with the occuiTence of temporary but severe effects such as a spike. It 

would, for example, be undesiiable for a control loop to be switched to manual 

in response to the controlled measurement turning BLIND and then, only a few 

seconds later, the measurement was to return to CLEAR.

Two additional states are as follows:

• SECURE indicates that the VMV has been generated from redundant

transducers or sensors, all of which are in nominal condition. This status is 

useful in critical applications where the user need the reassurance that, even if 

one transducer or sensor fails, CLEAR data will still be available;

• UNVALIDATED indicates that validation has not been in operation in the

sensor which generated the measurement.

Device Status

Device Status is a generic, discrete value summarising the health of the sensor foi-

maintenance purposes. It belongs to one of the following values:

• GOOD: the sensor is in nominal condition;

• TESTING: the sensor is performing diagnostic tests which may have caused 

any loss of measurement quality;

• SUSPECT: the sensor may have suffered an aberration; the condition has not 

yet been diagnosed;

• IMPAIRED: the sensor is suffering from a diagnosed fault which has a minor 

impact on performance, wananting a low priority maintenance call;
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• BAD; the sensor is suffering from a diagnosed fault which has a major impact 

on performance, warranting a high priority maintenance call;

• CRITICAL: the sensor is in a potentially dangerous condition that may cause or 

have caused a hazard, such as a leak of the process fluid or a dangerous reagent, 

file or explosion. It requiies immediate attention.

It is stressed that the (single) Device Status refers to the health of the sensor, 

whereas the MV status refers to the quality of each (of one or more) measurement. 

Normally there will be some correlation between them, for example, if the prmcipal 

measurement is BLURRED then the Device Status is likely to be IMPAIRED.

2.4.2 Actuator Validation

A similar approach has been proposed for actuators (Yang and Clarke, 1997b). The 

basic scheme is shown in Figure 2-11: in response to an Actuation Demand (AD), 

the SEVA actuator should generate the best possible actuation signal, and output 

the following information at each sample:

• actuation Value (AV): the best estimate.

• actuation Uncertainty (AU): as in SEVA sensors, it is believed that at a certain 

confidence level (say 95%) the true actuation signal u is within the range 

(AV-AU) < u<  (AV+AU);

• attainable Actuation Value (AAV): responds to a value supplied by the system, 

and returns the closest actuation signal that can currently be supplied because of 

the non-linear chai acteristic of the actuator;

• actuation Status (AS): this can take one of a number of states:

READY;

DEGRADED (OFFSET/HYSTERESIS);

UNACHIEVABLE (LIMITED/JUMP);

CHANGED DYNAMICS;

INCAPACITATED: dead;

UNVALIDATED, 

device Status: follows the scheme adopted by SEVA sensors; 

detailed Information: bi-directional.
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Actuation Demand (AD)-

the self- 
validating 
(SEVA) 
actuator

-Actuation Value (AV)
■“Actuation Uncertainty (AU)

"Attainable Actuation Value (AAV) 
-Actuation Status (AS)
-Device status 
-Detailed Information

Figure 2-11; A self-validating actuator scheme (Yang et a l, 1997)

2.4.3 Loop Validation

According to Yung and Clarke’s hierarchical validation scheme (Figure 2-12), 

given validated sensors and actuators it is natural to move toward loop validation. 

Clarke has only proposed a loop validator structure, as in Figure 2-13, and pointed 

out that aU the tools available from FDI, signal processing and parameter estimation 

can be used. However, there is no generic and economical solution which can be 

easily and reliably implemented or embedded into commercial control systems.

Process
validation

Loop
validation

Sensor
validation

Actuator
validation

Figure 2-12: Yung and Clarke’s hierarchical 
validation scheme (1989)
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Figure 2-13: A loop validator (Heni’y et a l,  1993)

Potentially loop performance assessment may be a useful approach to loop 

validation. Loop performance assessment is normally related to the dynamic 

response of the system to a step disturbance in set-point or load upset variable. 

Performance is defined by measures such as integral of the absolute value of the 

error (lAE), maximum deviation and decay ration (Smith et a l ,  1985) or process 

gain kp, apparent dead time L  and apparent time constant T  (Âstrôm, 1991). 

Because these methods assume that experiments or set-point changes can be made 

periodically on each control loop, it seems that they are not preferable for online 

implementation. More recently, some alternative online control system (or loop) 

performance monitoring approaches using various control system performance 

indices have been put forward and respective reseai'ches are becoming popular. By 

considering its link with fault detection, a control system performance mdex will be 

discussed in the next section.

2.4.4 Relevance to SE VACS

It has been envisaged in Chapter 1 that, where available, sensor and actuator 

validation would be included in the FDD suite. In Figure 1-2, SEVA sensors and 

actuators would then be used instead of normal sensors and actuators. Clearly this 

depends on these facilities being supplied with the sensor & actuator sub-systems. 

They have a number of states, which would be collected and used by the 

Supervisor. In this thesis, SEVACS would provide less states than those provided 

by the SEVA sensors and actuators. By using both approaches, some states would
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be cross-verified. For some states, SEVACS and SEVA components would 

complement each other because they provide some other information differently 

and they can not be replaced by each other.

2.5 A Control System Performance Index

There have been a number of papers published recently on loop performance 

monitoring (Smith et a l ,  1985; Harris, 1989; Desborougli et a l ,  1992,1993; 

Stanfelj et a l ,  1993; Thornhill et a l ,  1996, 1997, 1999; Tyler et a l ,  1996; Kesavan 

et a l,  1997). Of these Harris and Desborough have developed a technique for 

determining the best possible control performance for a single loop control system. 

They have proposed a control system performance index that provides a measure of 

how close the performance of an existing control system is to that for an ideal 

optimal controller, namely, a minimum variance controller. The performance index 

is updated recursively using only measurements of the controller variable. Thornhill 

et a /.’s practical experiences of applying this technique to some large refmery 

plants have shown that the control system performance index can routinely monitor 

individual control loops and focus on exceptions that need attention (Thornhill et 

a l ,  1996, 1997, 1999). An important theoretical advantage of the technique is that 

the value of the performance is not affected by load disturbances, and hence 

changes in the performance index can be attributed to a change in one or more of 

components in the feedback loop itself, e.g., a sensor or actuator ‘fault’. Fasolo and 

Seborg have used this performance index as a fault detection teclinique for the 

online monitoring of feedback control systems and have demonstrated the 

feasibility via a simulation study for an HVAC heating coil subsystem (Fasolo et 

a l,  1995).

2.5.1 Definition and Estimation of The Control System Performance Index T|

Figure 2-14 shows a single loop contiol system: Y{i) is the controlled variable, 

Ysp{i) is the setpoint, y{i)-Y{i)-Ysp{i) is the control error, F(/) is the forecast of Y{i),

y ( i ) =Y( i ) - Ys p ( i }  is the forecast of y(z) and e{i) =  y d )  ~ 9 ( 0  = Y is the
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forecast error of y(i) or Y(i). If the minimum variance controller is used, then there 

is <yl ~ var[y(ij\ = var[e(i)] = (Desborough & HaiTis, 1992).

Note that any other feedback controller wül have a larger variance of the control 

error than the minimum variance controller, i.e., .

A normalised performance index, rj, which is bounded by [0,1] and characterises 

the controller performance relative to minimum variance control, was defined by 

Desborough and Harris (1992) :

ĜT| = l  ^  = 1
mse[y{i)]

where nise[y{i)] represents the mean square error of y(/) and is the mean 

deviation from the set-point.

-y(i) > Y{i)ProcessController

Figure 2-14: A single loop control system

If a PI controller is used, it can be assumed that py=0 and r| can be estimated by

n O ) = i -

where variances and s^ii) are recursively calculated by exponentially

weighting the squares of the forecast eiTor e(i) and the control error y{i), 

respectively:

(0 = (i -  1) + (0

and si (i) = 7^1 {i ~ i)  + y^{i) , 

the forgetting factor Xe [0,1] provides exponential discounting of past data.
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In order to calculate e{i) , the forecast y(0 must be known. It can be derived as 

follows. Assuming that the closed-loop system is stable, the closed-loop response 

can be parameterised by the following form (Desborough et a l  1992):

y(i) = 5(0 + 2  y { i - b - k  + \),
k=i

where 5(0 is a linear combination of past and present disturbances {ak}, integer b is 

the process delay expressed by a multiple of the sampling period. In practice, it is 

often feasible to truncate the infinite series in the above equation after m terms to 

yield an autoregressive (AR) model:

y d )  -  ^(0 + ^ ^ k y d ~ b ~ k  + i).

The AR model parameters {â t} can then be estimated using recursive least squares 

(RLS). This AR model can be used to estimate y(i).

Rearranging the AR model in the standard form:

y(0 = # y e + 5 ( 0
where

4*(0  ̂ = [yd ~ b)^- - -, y{i — b -  m + 1)] 

and 0^

a RLS estimate of 0 can be obtained by employing the variable forgetting algorithm 

of Fortescue e ta l  (1981):

6(0 = ë ( f - l )  + K (0 [y (0 -ÿ (0 ] ,

where y(i) = <|)(O^0(/ -1 ) and K(i) is updated by the following equations:

k ( a -  ^ d - m o  . 
i + * ( , y p ( z - i ) # ) '

1 (f )- 1  6 ( / : - i ) f  .
To[l + <t>(0'P(/“ l)<t)(0]’

P(0 = U ( i )  Mi)
W(/) otherwise ;

W(i) = P(i -1 ) -  P(/ -1 ) .
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In the RLS algorithm, Zo and C are design parameters. The variable forgetting 

strategy allows small values of X{i) to be used when the forecast error e{i) is large, 

while 1(0 goes to one when e{i) is small. The covariance matrix P(0 is designed to 

be prevented from becoming excessively large during periods of low excitation.

2.5.2 Fault Detection Using The Estimation of T[

Fasolo and Seborg (1995) have proposed a fault detection strategy using 

performance index r| as follows. At each sampling instant, the estimate of the 

performance index f|(0  is updated via RLS as described above. The estimate is

then compaied to its confidence limits, f| ± 3(7^, where f| is calculated as the

sample mean of f\ for the base case conditions and can be estimated by the

approximation of the variance of f| for n observations. This has been derived by 

Desborough and Harris (1992) as:

cr̂  -  Vvaiffj] -  - |~ (1  -Tj)^ 2^ [p (0 -p e(0 1 ^
i= l i=b

where p and pe represent the output and residual autocorrelations, respectively. In 

practice, for a fmite time series z(l), z{2), ..., z(n) of n observations, the estimate of 

the Ml lag autocorrelation pAO can be estimated by (Box et al., 1976)

Pz(/:)=—
Co

where

C, = - y , U ( 0 - a U ( t  + 0 - ï ] ,  1=0,1, •••,6-1

and z is the mean of the thne series.

2.5.3 Criticism

Although the control system performance index is helpful to fault detection in 

feedback loops, it lacks the ability to isolate faults. Furthermore, although 

immunity to load disturbances is thought to be an important theoretical advantage 

of this approach, disturbances in a process should still be alerted.
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2,6 Summary

In this Chapter, some background to process monitoring and fault diagnosis has 

been given. The emphasis lies in those aspects related to this thesis: functional 

decomposition, statistical approaches, model-based methods, the self-validating 

concept and control system performance monitoring.

Finch and Kramer's functional decomposition is especially beneficial to large-scale 

processes and is pertinent to this thesis. It will be seen in Chapter 8 that the 

representation of interactions between control systems is similar to theirs. However, 

their approach has remained on process performance as a whole. A systematic 

approach for distributed and detailed diagnosis is needed and is the core of this 

thesis.

Univariate statistical process control (USPC) is used extensively in process 

monitoring systems including fault detection. Multivariate statistical process 

control (MSPC) can be used when it is difficult for an operator to monitor a large 

number of inter related variables in a plant simultaneously. However both USPC 

and MSPC cannot cope with fault isolation or fault diagnosis very well.

The principle behind model-based methods is general and structurally attractive. 

However model development costs are expensive especially in process industries. 

These methods suffer from the same problem as that of statistical approaches, they 

cannot deal with fault isolation or fault diagnosis very well. This is also the case 

with the control system performance index that has been of recent interest in 

process monitoring and fault diagnosis.

Clarke et aL’s self-validating concept has been accepted by many industrial 

pai'tners and might become an industrial standard in the future. Their theory treats 

sensors, actuators, controllers and processes separately. However all of these can be 

viewed as a single entity in which controller/SEVACS combinations act as co

ordinators among sensors, actuators and processes because they detect and 

compensate for various faults or disturbances.
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CHAPTER 3

THEORETICAL ANALYSIS OF 
SELF-VALIDATING CONTROL SYSTEMS

This chapter describes how, in theory, steady state faults can be isolated in a 

continuous process plant under distributed process control. The emphasis is on 

distributed fault isolation with a minimal role for the FDD Supervisor. Reasons as to 

why tins approach is not practicable will then be presented. In spite of these, various 

results in this chapter whl then be used in later chapters.

3.1 Overview

This thesis envisages a network of autonomous control systems that have the ability 

to self-detect and diagnose abnormalities, either specifically or as categories, and are 

then able to communicate then fmdings to a Supervisor, winch would have the 

capacity to reason further about the information received. The distributed structure 

of plant-wide control systems would look something like that shown in Figure 1-1, 

winch is copied here as Figure 3-1 for ease of reading. The process is controlled by 

m single loop controllers (SLCi, i:l<i<m) that input measurements (controlled 

variables) 0 j and output demands (controller outputs) x,i, and n cascade control 

systems (CCi, i:(m+l)< i <(n+m)), each of which are composed of 2 or more 

controllers (CCf, CC2i, ..) that input measurements §i(jn+i) (outer loop controlled

variables) & 02,(ni+i) (inner loop controlled variables) and output demands xi,(m+i) 

(inner loop controller outputs) & X2,(m+o (outer loop controller outputs); in addition 

other measurements 0; might be recorded from other instrumentation. Potentially, 

the set of observations that could be transmitted around the communications 

network would be {xi, xi,(m+i) , X2,(m+i> 0rSLci .,0icci , . . . ,0 i ,
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•••’0i,(m+i)’ 02,(m+i)’ •••} wliGi'e 0rSLci and 01CC1 denote set-points. This

represents a considerable amount of communications traffic and in order to minimise 

this it is hypothesised here that, as far as steady state detection and diagnosis is 

concerned, only the signs of any deviations in steady state values need to be 

communicated. In other words, an algorithm would be run on each SEVACS to 

ascertain whether each of the vaiiables in its associated controller was in a steady 

state and if so, whether that steady state had changed by a significant amount; it 

would then output, for instance x,i=normal, high or low depending on whether or 

not x,i had deviated. Some of the other SEVACS might then accept both this 

variable and other variables pertaining to other controllers and to additional 

instrumentation. Each SEVACS would then test its collection of variables regularly 

to see whether it could diagnose any of the deviations identified; if successfiil, the 

deviations would be declared as explained and messages like normal_disturbance 

would be transmitted so that the new steady state could be declared as normal or 

otherwise.
COMMUNICATONS

BUS

SLC

PROCESS

W -

SLC; Single Loop Conli’ollers 
CC: Cascade Controllers

SUPERVISOR

Figure 3-1: Structure of plant-wide distributed control systems
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3.2 Nomenclature

The various variables used aie defined before going any further. The ith single loop 

control system is represented by the block diagram shown in Figure 3-2: all variables 

represent deviations, 0r,i is the deviation in the set-point/reference variable, 0j in the 

controlled variable, dmi.iin the sensor bias, dvi,i in the valve bias, dpi.i in the process 

disturbance and x,i in the controller output. Pai'ameter IQi.i is the proportional gain 

of the controller and pai'ameters Ky.i, Kpi,i and Kdi,i are respectively the valve, 

process and process disturbance steady state gains. Gci.i(s), Gv,i(s), Gpi,i(s) and 

Gdi,i(s) are transfer functions of the controller, valve, process and disturbance 

respectively. Variables that pertain to a cascade control system are defmed in a 

similar way (Figure 3-3). The approach that wiU be described in this chapter is 

based on an analysis of qualitative vaiiables that assumes that the basic qualitative 

operations are as defmed in Table 3-1: a qualitative variable [x] is merely defmed as 

the sign of variable x (De Kleer & Brown, 1984; Forbus, 1984). In comparison with 

its normal or nominal value, [x] has four qualitative values: ‘+’ means x deviates 

high; means x deviates low; ‘0’ means x has no change and ‘?’ means the 

deviation of x cannot be decided.

[x]+[y] [x]-[y]

+ - 7 0

+ + ? 7 +

- ? - 7 -

? ? ? 7 7

0 + - ? 0

+ - 7 0

+ 7 + 7 +

- - 7 7 -
7 7 7 7 7

0 - + 7 0

Table 3-1: Definition Of Qualitative Operations

In order to implement qualitative operations, another definition is required: {K} 

represents the sign of the gain K and can be viewed as an operator. Qualitative
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operator {K} only has two values: ‘+’ when K>0 and when K<0. The operation 

{K} is defined as follows:

{+Ki}=+{Ki}={Ki};

-{-Ki}={Ki};

{KiK2}={Ki }{K2}={K2}{Ki };

{Ki/K2} = {KiK2}.

GviCs)

dy,i

■hr

dp 1,1

Gdi,i(s) K(ii,i

Gpi,i(s) - * 0 ---  ►

K c l , i  K v , i Kpi,i

dml,i

Figure 3-2: A single loop control system

■dl,i

pl.i

-pl,i-p2,i

O

Figure 3-3: A cascade control system
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3.3 Different Process Types and Their CIosed-Loop Characteristics

The diagnostic approach depends on the type of process involved. This sub-section 
identifies those attributes that ai’e important and needed.

3,3,1 Open Loop Stable Processes

For reasons of safety and for ease of operation, a process plant designer wül seek to 
ensure that, whenever possible, a process plant wül be open loop stable. Hence 
most mdustrial processes are open loop stable per se. A  related PID control system 
block diagram is shown in Figure 3-4, in which some subscripts have been dropped 
for clarity and simplicity.

- O ■> 0

Figure 3-4: A single loop control system

Assuming that the process and disturbance models can be linearised and that the 
valve dynamics are fu’st order (this is not strictly necessary), the various blocks can 
be represented by:

G„ (s) = K, (1 + i  + T,s) Ti>0, T,>0 ;

Gv(s) =

G ,(s) =

T s -k l

s" -f Ajj_jS“  ̂+ • • *-f AjS + A q

GXs)
s" + Ajj_jS”  ̂H 1-AjS +A(

(3-1) 

(3-2)

-m,neZ, m>0, n>l, Aj>0(j=0,..,n-1), Bo?̂ 0;

(3-3)

d,neZ, d>0, n>l, A j > 0  (j=0,..,n-l), Dô ^O.

(3-4)
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The conditions in the above two equations ai’e necessary for open loop stability. The 

process dynamics can then be described as a set of state space equations:

X = Ax + Bu

y = Cx + Du

where x is an nxl state vector, u is an m xl input vector, y is a p x l output vector, 

Anxa, Buxm, Cpxi,, Dpxm ate the coefficient matrices respectively.

The transfer function matrix G(s) between u(s) and y(s) can be obtained by:

G(s) = ^  = C (sI-A) B + D 
u(s)

If the process disturbances can be viewed as one of the elements of u, then their 

characteristic polynomial wül be determined by (sI-A)'^ . So it is reasonable to 

assume Gp(s) and Gd(s) wül have the same denominator.

Equations (3-1) to (3-4) can be substituted into the normal equation for a closed 

loop transfer function to produce:

A(s)

, Ts(Ls + l)(B^s'"+...+BiS + Bo),, , T,s(i;s + l) (D ,s V - .+0,8 + 00)^ , ,
A(s) A(8)

(3-5)

and

= + + + A._, +■ ■ -+A,s + A„ )[0, (s) -  d„(s)]

“ (^mS“ +---+BiS + B{))d^(s)-(Dj,s‘*H— hD,s + D(j)dp(s)}

(3-6)

w here .
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A ( s )  =  T iS (T ,s  +  l ) ( s " + A „ _ , s " - ' + - . . + A , s  +  Ao) +  K , K , ( T i V + T i S  +  l ) ( B ^ s ' " + - - + B i S  +  Bo).

It can be seen that if the Routh-Hurwitz Criterion were to be applied to the above, 

then one of the necessary conditions for closed loop stability would be KcKvBo>0.

Because Bo/Ao is equivalent to the steady state gain Kp of the process and Ao>0, the 

following is an alternative condition for stability: KcKvKp>0.

Suppose that a change in steady state occurs either because of a fault or because of a 

change of disturbance. If the controller functions properly, then from Equation (3- 

5) and Equation (3-6) by setting s=0,

e = e, -  d„ (3-7)

and X will deviate:

_ _  8, Kddp d .
KpK. KpK. K,

(3-8)

3.3.2 Purely Capacitive Processes (Processes with A Pure Integrator)

Processes with integral action most commonly encountered in a chemical process 

aie tanks with liquids, vessels with gases, inventory systems for raw materials or 

products, and so on.

An uncontrolled purely capacitive process will cause serious problems, because it 

cannot balance itself. Take a tank as an example, we can adjust manually the speed 

of the constant-displacement pump, so as to balance the flow coming in and thus 

keep the level constant. But any small change in the flow rate of the inlet stream will 

make the tank flood or run dry (empty). This attribute is known as non-self

regulation (Stephanopoulos, 1984).
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LV

Fo (constant)

LC

Figure 3-5: A pure capacitive process

One can recognise that a process is a purely capacitive process by viewing it either 

quantitatively or qualitatively.

• By quantitative equations: in Figure 3-5, the total mass balance around the tank 

yields

where A is the cross-sectional area of the tank.

(3-9)

Because Fo is a constant, then the transfer function G(s) between the controlled 

variable (level L) and the control variable (inflow rate FJ is

G (j) = - ^  = —

F,(s) s 

wliich includes a pure integrator 1/s.

By qualitative knowledge of the process: in Figure 3-5, from the qualitative 

knowledge of the control action, If the set-point of L is changed and the control 

variable Fi doesn’t change in steady state at ah, this indicates the process 

transfer function G(s) includes a pure integrator 1/s.

Generahy capacitive processes can be controhed by a PID controher, the control 

system structure is the same as that shown in Figure 3-4 and the various transfer 

functions can now be represented by:

G„ (s) = (1 + + TjS) Kc5̂ 0, T i>0, Td>0 ;
1;S

(3-10)
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G,(s) = - ^  T^O ; (3-11)

G = -1-H -B ,s + B„ ni^nez „ i>o ,i^o , Ao5^0,Bo7<); (3-12)
s(s“ -f A„_,s”"‘ -F ■ ■ •-I-A,s + Ao )

_  DjS^ 4-Djj_jS"̂   ̂ +*** + DjS + D(- 
s(s'  ̂ + Aj,_ĵ s“  ̂H h AjS + Aq)

G , (s) = ----- - T ^ — r-^  d,neZ, d>0, n>0, A #0 , Do^O. (3-13)

Once again, Gp(s) and Gd(s) have the same denominator.

Substituting equations (3-10) to (3-13) into the usual equation for a closed loop 

transfer function yields:

 K ç K X T j /  +T,s + l)(B ,s-+...+B ,s + B ,) ^̂ ^̂ „̂

T ŝ(TyS + l)(Bjj^s“ +• • -+BjS + Bq) j  \ , TiS(T^s + l)(D^s'^ +• • -+D,s + Dq)
A(s) A(s)

(3-14)

and

= +... +A,s + A„)[0,(s)-d„(s)]

-(B „s” + -  + B,s+B„)d,{s)-(D,s“+ -  + D,s+D„)d,(s)}
(3-15)

where,

A(s) = T;S^(TyS + l)(s“ + Ajj_jS”  ̂ 4 h AjS + A g) + Kj,Ky(TjTjS^ +T^s + l)(BjjjS‘" -i 1-BjS 4-B g)

Therefore, in order to meet the need of the stability of the closed loop, one of the 

necessary conditions should be; KcKvBo>0.
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In this case, the steady state gains Kp and Kd in Figure 3-4 tend to be at ±00.

3,3.3 Processes with Unstable Open Loop Poles

Processes with unstable open loop poles also exist commonly in a chemical process. 

For example, consider a continuous stkred tank reactor (CSTR) in which an 

irreversible exothermic reaction takes place. The heat of reaction is removed by a 

coolant medium that flows thi'ough a jacket ai'ound the reactor. Figure 3-6 

demonstrates the relation between the amount of heat released by the exothermic 

reaction which is a sigmodial function of the temperature T in the reactor (curve A) 

and the heat removed by the coolant wliich is a linear function of T (Une B). When 

the CSTR is at steady state, the heat produced by the reaction should be equal to the 

heat removed by the coolant. So in Figure 3-6, there are thiee steady states PI, P2 

and P3. Steady states PI and P3 ai'e stable, whereas P2 is unstable, from the 

viewpoint of control engineering, the process operated at P2 has at least one 

unstable pole.

Heat/time

P2

Temperature T

Figure 3-6: A CSTR operating states

Although the process has unstable poles, a PID controller can stabilise the process 

so that the closed loop system is stable.

Figure 3-4 can represent the PID control system of a linearised process with 

unstable open loop poles, where,
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G,(s) = K„(l + ; ^  + T,s) Kc?iO, Ti>0, Td>0 ; (3-16)

’ (3-17)

B , s" +  B„_,s-° -+ ...+ B ,s -hB,
 ̂ s" + A^_^s" ^+-•-t A ĵs + A q

m,neZ, m>0, n>l, Aq5*0, Bq̂ O , 3Aj<0 (j=0,...,n-l) ; (3-18)

G  (3) -   ̂ -I- • • • +  D^s +  Dp

s" +  Ajj_]̂ s"  ̂+  • • *-l-Aj ŝ +  A q

d,neZ, d>0, n>l, Ao#0, Do?̂ 0 , 3Aj<0 (j=0,...,n-l) ; (3-19) 

Again, Gp(s) and Gd(s) have the same denominator.

Also

= K.K.(T,T,s- +

T.s(T ŝ-4-l)(B,„s”'-t---fBiS-f Bp) TiS(TyS + l)(D^s'‘+---+DiS-f Dp)
A(s) A(s)

(3-20)

and

A(s)

~ (B ^ s “ -I- • *+BiS + B q )d  A s) -  (D<js“ +• • -f-DjS +  D q )clp ( s ) }

(3-21)

where,

A(s) = TjS(T̂ ,s H-l)(s" + A,j_jS" 'h— f-A,s-r A^) + K^K (̂TjT(,s  ̂+ TjS + l)(B^s™-l— i-B,s + Bg)
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Once again, in order to meet the need of the stability of the closed loop, one of the 

necessary conditions should be: KcKvBo>0.

The process steady state gain Kp is equivalent to Bo/Ao, for the stability of the 

closed-loop system, if Ao>0, wliich means Gp(s) has an even number of poles located 

in the unstable right half plane, KcKyKp>0 holds; if Aq<0, which means Gp(s) has an 

odd number of poles located in the unstable right half plane, KcKvKp<0 holds .

3.4 The Issue of Interaction Between Control Systems

In Figure 3-2 and Figure 3-3, individual control loops are influenced by thek 

envkonment via process disturbances dpi,i for a single loop and dpi,i & dp2,i for a 

cascade control system. Although, in practice process disturbances can also be 

represented by a valve disturbance dv,i, this possibility is ignored here because it is 

equivalent to applying them at dpi.i or at dp2,i having fk'st passed thi'ough identical 

versions of thek respective process blocks. Process disturbances might stem from 

other control loops or they might represent other influences like inputs into the 

plant. To separate these two possibilities and to focus solely on the steady state, 

define the following compound disturbances:

^ d l * l p l K o o " K .o ' 0 . , '

0 „ .
„

Om + e :  +

_ K d 2 4 p 2 _ _^ o i _ _ 8 , _

(3-22)

where the dash denotes the fact that these are compound disturbances; 0* e 91“^” is 

composed of the m single loop controlled variables together with the n controlled 

variables pertaining to the outer loops of the cascade control systems (i.e.

01 = [0j0il ); 02 is the vector of n inner variables: 02 g dpi g dp2 e 91" ;

K die9tm+n,ra+n Kd2e9U": Kdi =

K di,i

K cii,2

0 K

0

dl ,in+ii

and
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^ d 2 ,l

Ï̂ cl2 ~
K d2,2

Kooj. K II, Kio,

K d2,u

K o i e K , „  =[o„„  ! ] and K„, =
n̂i,ni+n

. The valions subscripts are

used to denote relationsMps e.g. OI means outer (O) to inner (I) and so on. It is 

likely that a large proportion of the elements of the steady state gain matrices Koo , 

K io , K qi and Kn will be relatively smaU and would therefore be zeroed. In addition 

it must be stressed that only the signs would be analysed so these gains need not be 

known qualitatively. Seborg, Edgai' & Melhchamp (1989) suggest that the 

determination of the signs of the vaiious gains should be relatively straightforward.

Two examples are given here to demonstrate the above.

A. The case of a single loop controller interacting with the inner loop of a cascade 

controller, in both dkections:

K.o =

■ 0 /

_^1,2_
, 02 — [02,2]’

"0 O' '0 o ' ' 0 o '
K o o - 0 0

, K g  =
0 0

’ K qj -
0

0 K 21

0 0

and

B. The case of the inner loops of two cascade controllers interacting, in both 

dkections:

0* =
' 0 , / 62.1 '0 0" ■ 0 K21" '0 o '

, 00 = K tt —’ “ 00 0 0 K2I 0 ’ 01 0 0
and

K lO
0  o ' 

0 0
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Finally denote any steady state information that pertains to the controlled variables 

and is obtained from any additional sensors that are installed by

(j) =
e:
00

+ d (3-23)

where <j) and ds are the measurements and other sensor related influences 

respectively.

3.5 Steady State Deviations in Controller Outputs

Consider fu'st the case of a single loop controller in Figure 3-2. Suppose that a 

change in steady state occurs either because of a fault or because of a change of 

disturbance. From Equations (3-7) and (3-8), if the controller functions properly, 

then e,i=0 so that

and X1 will deviate:

(3-24)

ml, i (3-25)

Consider, now, a cascade control system (Figure 3-3) instead. In the steady state, if 

ei,i=0 and e2,i=0 , then there are:

^Pl,i ^Pl,i
4-d m2,i (3-26)

^2,i —
i^pl,i^p2,i^v,i ^pU^p2,i^v,i

ml,i ^d2.i^p2,i
(3-27)

Kpi,iKp2_jKy ; Kp2jK^i
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0l.i =0r.l -dmlj (3-28)

0 _ ®r.i "̂ rnl.i
2.1

Kp.,. Kp,i ^pl.i
(3-29)

Turning to the effect of interactions, again consider fii'st the case of a single loop 

controller (Controller j) affected by other controllers. Substituting equation (3-24) 

and the quantitative equivalent of equation (3-28) into equation (3-22) and focusing 

on the jth row leads to

i = l
d'pi, = + 1  Kooj,. + p . ,  - d .w ) - Z K ,o w

p l . i i = l K
(3-30)

pl. i

Substituting into Equation (3-25) leads to 

d.8,.j ml.j_______________________ ^(H.jdpij

'  KpujKvo Kp.jKv,j Kp..iK„j

- s
i=i Kpi,i

0,
+ ^00j.i +

K IOj,i

ifj
Kp,i

ml.i (3-31)

Consider now interactions on a cascade controller; equation (3-30) still holds for the 

outer disturbance whereas, by repeating the above approach, the inner disturbance 

can be represented by

m + n

dp2.j -  Kd2,jdp2j + %
i = l

K o i j . i  +
Kpu

m + ii

(® r , i  “
i = l Kpi.i

(3-32)

This then leads to:
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‘ I.j
_ Kdi.j*̂

Kpi.j K p,j Kpi

+ Èi=l

f

Kooj.i
\

Kio,i 1
Kpi.i ^

-I
i = l

(

KpLj

m l, i -h d m 2,j

r . J in l.j

- X
i = l
î j

+
i = l
i ĵ

^OOj,i "h

^ooj.i ■*■

K lOj.i

K pl. i f^pl,jf^p2jKv,j

K pl.i

ml. i

^pl,j^p2,jK^v.j

^  l̂Oj.i ^dl.jdpij _ ^d2.j^p2.j
i = l  K p l . i  K p , j K p 2 j K ^ _ j  K p 2 j K ^  j 
î J

- I
i = l
i ĵ

K̂OIj.i +
Kn,i

^pl.i

0r.i +
^ p 2 , j ^ v , j  i = l

K IIj,i

K pl.i

m l. i

_J_ ^  ^ n j . i  ^ d i . i d p i j  d ^  j

i = i  K p i . i  ï ^ p 2 , j K v , j  j

(3-33)

(3-34)

3.6 Qualitative Representations of Controller Deviations

A  number of qualitative relationships must fnst be derived before the equations, 

developed in Section 3.5, can be interpreted qualitatively. For stability in a single 

closed loop control system with a PI controller, KcKvBo>0 regardless of the type of 

the open loop process (Section 3.3). If the process is open loop stable, Ao>0 and 

KcKvKp>0, {KvKp}={Kc}, if the process is open loop unstable and if Ao>0, then 

KcKvKp>0 and {KvKp}={Kc}, otherwise if Ao<0, then KcKvKp<0 and (KvKp} =

~ { K c } .  For the capacitive process, —  = 0 except that = — .
Kp Kp Bo

In a standard cascade control system, the steady state gain of the inner loop can be 

viewed as 1. Tins means that the observations above also hold here. That is for
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stability of both the outer loop and inner loop systems, KciBoi>0 and Kc2KvBq2>0

and therefore {K .} = and {k 2K^}=
'  1a „ J  {a „,}

B 02K , _  Kc2

These relationships can now be used together with those in Section 3.3.3 to interpret 

qualitative versions of the equations obtained in Section 3.5. For example, in a single 

loop control system. Equation (3-24) can be viewed as:

= (3-35)

and Equation (3-25) as

[0r,] Wmlj] (K aiJW pul [ d ,J

{KpuK,il

[Qr.J W m iJ {K d ,i} [d p iJ  [d^ .] _ process is witii a (3 -3 6 )

{^oi,iK ci,i} {-^01,1 Kcij } {-^oi.iKci,!} {K v,i) Type Number = 0

_  ; the process is with a
{ K , ;} Type Number > 0

where,

r n f +  ; the process is stable or has an even number o f unstable poles;
iAoi.i

; the process has an odd number o f unstable poles.

These qualitative equations indicate that any change/fault/disturbance in 0r,i, dmij, 

dpi,i and dv.i would cause the controlled variable 0,i or the controller output x,i to 

deviate or both. By observing [x,d and [0,i], in which the latter might not be 

observed directly but could be reasoned from its descendants, the fault could be 

detected and isolated. If ONLY one fault happens, the sign or dkection of it can be 

determined by the equations because those qualitative gains in the equations are 

known once the control system is designed and process disturbances are 

hypothesised.

In a standard cascade control system, there are:
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[x ,J
_ [ e ,J  [d „ ,J

{Kpi,} {Kp,J {Kp,J

[0 ,J  [d ^ ,J  {Kai,}[dpiJ

{Doi,i }[dp,J

{K ,u}
+ [d^2,i]

+ [d^2 i] ' die outer-lcx)p process is

with a Type Number = 0

; tlie outer-loop process is

witli a Type Number > 0 
(3-37)

[0r.i] {Kdi.i }[dpi,j] [dmi,i] {K(j2,i }[dp2,il [d^. ]
{Kp,*Kp2,K,,J {Kp2,K^,}

K iJ -{ K d u } [d p ,J - [d ^ ,J  {Kd2,}[dp2,iJ [ d , J .

{^01,i^02,iKcl,iK^2,i } {^02,iKc2,i }

{Doi,i}[dpi,J {Kd2,i}[dp2,J [ d .J

{^02,iKc,iKp2,i } {Ao2,iKc2,i} {Ky,i} 
{ P o 2 , i  } [ d p 2 , j ]  [ d y ^ j ]

; both the inner and outer- 
loop processes are with a 
Type Number = 0

; only the outer-loop process 
is with a Type Number > 0

; only tlie inner-loop process 
is with a Type Number > 0

(3-38)

(3-39)

re 1 W '."] (Kdu
(Kpia) {Kp,J {Kpu}

 [djj^y] {Kj,; }[dp,J . (jre outer-loop process is
{A oi,iK ,y} {A y  .K y . } {Aoi .K , , i } with a Type Number = 0

{Doi.i}[dp,i]
{K.y}

; the outer-loop process is 
with a Type Number > 0

(3-40)

where,

[+ ; the related open-loop process is stable or has an even number of unstable poles; 

" ; the related open-loop process has an odd number of unstable poles.
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r  ̂ r+ ; the related open-loop process is stable or has an even number of unstable poles;
1^02,i J |_

; the related open-loop process has an odd number of unstable poles.

Similai'ly, any change/fanlt/disturbance in 0r,i, dmi,i, dpi,;, dmz.n dp2.; and dv,i would 

cause the controlled variable 0i,; and 02,; or the controller output xi,; and X2,; to 

deviate. By observing [xi,;], [X2.;], [0i,i] and [02,;], in wliich the latter two might not 

be observed directly but could be reasoned from its descendants, the fault could be 

detected and isolated. If ONLY one fault happens, the sign or direction of it can be 

determined by the equations because those qualitative gains in the equations are 

known once the control system is designed and process disturbances are 

hypothesised.

The qualitative forms of other equations with interactions can be derived and 

explained shnUaiiy.

It is worth pointing out that the signs of the deviations in the controlled variables 

can also be determined from additional measurements that are available (equation 3- 

23), thus

[<!>] = { K j
[on
j e j

+ [ d j  (3-41)

Equation (3-41) can then be developed further by substituting equations (3-35), (3- 

39) & (3-40) into it.

3.7 Fault Isolation

It is likely that more than one control system would seek to compensate for a 

process fault. This section examines that the various changes should be analysed to 

isolate the fault. It is assumed that a set of qualitative equations have been formed 

for each control system on the basis of equations (3-36), (3-37), (3-38) & (3-41). 

Note that various variables appear in more than one of the equations. A set of rules
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are now developed that exploit this redundancy and it is these rules that would be 

implemented on the controller. The rules are more likely to be implemented 

implicitly, rather than explicitly, because the computer program is likely to be 

constructed using loops and tests. However for ease of understanding here, rules 

ai’e generated explicitly. To generate this set of rules Hi st let set Hq contain those kj 

controllers whose single loops interact with Controller Number j, and those koj 

controllers whose outer loops interact with the Controller. Then Hoj = {Controller 

Y j , i ,  . . . . ,  Controller Y j,., Controller %j,i, ...., Controller }, let set Hij contain

those kij controllers whose inner loops interact with Controller j, then Hij s  

{Controller A,j,i, Controller }, and let set H,j)j contain those k̂ j instruments

that interact with Controller Number j. Then form sets that contain the aH the 

variables that are contained in each of the equations: Csj for single loop controller j, 

Ccij for the outer loop of cascade controller j, Cc2j for the inner loop of cascade 

controller j, and C,|,,j for Instrument Number j, for instance:

Cs,j “  dy j } u  (3"42)

^  v -d jj , ^,}u{lpi ;^ ,y ...d p i

f'clj ”  {®r,j= j’ (3-43)

'c 2

Identify aU the controller output variables and additional measurements associated 

with (Controller j}uHojUHijuH,i,j, and generate the rule set based on aU possible 

combinations of then having deviated. To do this let [X,;], [O J be the Booleans that 

denote [x;] null, [<|)i] ^  null and so on, then rules can be generated LIKE the 

following
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[X j ]  A [X 2 ] A  A  A  ^ ............. [^2,(1^+!)] A ........ A [O ^ ]  A ...

^ f^ s .l  ^  f^ s ,2  ^  f^ c l ,(tn + l)  ^  f" c l ,( in  + 2)  ^ c 2 ,( m + l )  ^ -------^  ^<{i,l ^  ” *

^ s , l  ................... ^ c l , ( m + l )  f " c l , ( m + 2 )  C ( | . , l ” - ^  f - s , 2  .........^ c 2 , ( m + l )  ^ ' ”

Rulel

where the last form would be the way it is likely to be implemented in practice. 

Note that the consequent consists of a set of variables, the deviation in a single 

element of which would cause deviations in the appropriate control variables and 

measurements. Each rule would also contain sign information to indicate the 

direction each element would have to take cause the deviations observed. These 

rules can be refmed in a number of ways:

1. knowledge pertaining to set-points may be incorporated;

2. groups of equations may be analysed for contradictory directions;

3. knowledge pertaining to correlated disturbances may be incorporated; the SDG 

provides a convenient representation for doing this.

Most of these aspects are demonstrated by an example in the next Section and 

applications in Chapter 8. Having generated a set of rules, the Supervisor then needs 

to combine the various consequents that are actually generated. If only single faults 

are to be considered, then the Supervisor need only take their intersection. 

However, if multiple faults are also sought, then it should be possible to isolate them 

provided the control systems they affect don’t interact with each other dnectly. For 

example, suppose that fault Fi affects a single loop controller i and fault F2 affects 

another single controller j simultaneously, they can be detected and diagnosed so 

long as the equation C»,; n  Csj = 0  (null) holds.
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3.8 An Example For A Process With Two Single Control Loops 
That Interact

In this section we give a simple example to show how to reason about sign 

information, how the majority of the rules generated can be enhanced using this 

information and how the theory helps in process monitoring and fault diagnosis. 

More complicated examples and large-scale applications will be given in Chapter 8.

In this case disturbance d'pi,i is re-defined as

^pU “  Kfiydpi j +  1^210,2 “  K y  idp,i +  (0r,2 “ ^ml,2) (3-45)

and d'p,2 is re-defined as

l̂pl,2 — K j,2dp,2 + Ki20,1 = Kj,2dpl,2 + Ky (fir.l "" ) (3“46)

where either K12 or K21 would be zero if interaction was only one-way. Thus 

0 K.
Koo =

“21
, K n  — K io  — K o i — 0 ix 2  ■

For simplicity only Type Number 0 processes aie considered here. Substituting into 

Equation (3-36) gives

. . .  [d„,]

 ̂ K J   ̂  ̂ ^

r -,_[^r,2]“ {Ki2}[0r.ll + (Ky}[d,y J-[d„^12]-{Kdl,2}[dpi,2] [clv,2]

 ̂ K J w  K J   ̂  ̂ ^
and applying equation (3-42) to the above gives Cs,i = { 6r,i , 0r,2, dmi.i, d„ü,2 , dv,i , 

dpi.i } and Cs,2 = { 0r,i , 0r,2, dinia , dini,2 , dv,2 , dpi,2 }. These sets indicate that there 

are a number of variables that are of common interest to both controllers and hence 

should be communicated between them. The following rules can now be generated 

for Controller 1 :

[ X , i ]  A  [ X , 2 ]  — > C s , l  n  C s , 2  — > {  0 r , l  , 0 r ,2  , d „ j i , l  ,  d , n l , 2  } R u l C  1 . 1

[X,i] A [X n  Cg 2 { dv,i, dpi,i } Rule 1.2

and for Controller 2:
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[X,i] A [X,2] Cs,i n  Cs,2 { 0r,i, 01,2, dmi.i, dmi,2 } Rule 2.1

[X J  A [X,2] j riCg 2 —> { dv,2 , dpi,2 } Rule 2.2

Rules 1.1 & 2.1 can be refined by noting that both [0r,i] and [0r,2] could be acquned 

at any time e.g. if Rule 1.1 has fired but neither set-point has changed, then deduce 

that either dmi.i or dmi.2 has occurred. Next equations (3-47) & (3-48) can be 

compared for contradictory diiections; assume that set-point deviations have been 

eliminated and suppose that [x,i] = + a  [x,2] = +, then by considering Rule 1.1 there 

are 2 solutions:

[ ( K 2 . } [ d n , u ]  [ d . , , ]  1  _ 1

[ { A o , i K ( . y }  { A o y  K p y  } J [  {  A q 1 , 2 ^ ^ , 2  } ( ^ 0 , 2 ^ ^ y  1 J

Let Boolean P21 denote the fact that {K21} has a positive sign, Pc,i the fact that 

{Aoi,iKci,i} has a positive sign and so on, then to detect dmi,2 and not dmi,i note that 

for this to happen either

[ [ ( P 21  A  P . ,  )  V  ( P „  A  P , ,  ) ]  A  P . , ,  ]  A  [ ( P , ,  A  ^  , )  V  ( P , ,  A  P „  , ) ]

^  [ [ P a i  A  P j 2  A  ^  [^ 2 1  A  P 1 2  A  P „  , ]J  A  P p  2

or

[ [ ( P 2 1  A  P . . J v  ( P , ,  A  P . , . ) ]  A  P . , 2 ]  A  [ ( P , 2  A  P „ , , )  V  ( P , 2  A  P .  J ]

^  [ [ ^ 2 1  A  P 1 2  A  P ,, 1 ]  V  [ P j i  A  P i3  A  P g  J j  A  P g  3

and the same result will be obtained for [x, 1] = - a  [x,2] = - . To detect dmi,i instead 

of dmi,2 the following must happen;

[[^21 Bi2 [^21 f l2  A  P c ,i]]  A  2 01

[[^21 A  P12 A  P c ,i]  V  [̂ 2̂1 A  Pj2 A  A  P̂ . 2

Thus the two disturbances can only be separated if one of these four exclusive 

statements are true. Combining these 4 statements leads to (P21 A % )v  a P ^ ) ,  

i.e. the signs of {Kn} and {K21} must be opposite. An identical result is obtained if
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the two controlled variables deviate in opposite directions. Thus if {K12} and {K21} 

are of opposite sign additional rules like the following can be generated:

[ X j ]  =  +  A  [ x , 2 ]  =  +  A  P21 A  Pcl.l A  Pci,2 A  [dml,l] =  “  Rule 1.3

[x i] = + A  [x,2] = — A  P21 A  Pci,i A  Pci,2 A  Pjj —> [d^Lz] = + RulC 2.3

3.9 Remarks On Some Other Cases

3.9.1 Ratio Control Systems

Ratio control systems are mostly used to control the ratio of the flow rates of two 

streams. Both flow rates are measured but only one can be controlled by the ratio 

controller. Conventionally there are two different ratio control configurations for 

two streams:

• in Figure 3-7A, both flow rates ai'e measured and their ratio is taken to be 

compared to the set-point (deshed ratio) in the ratio controller;

• in Figure 3-7B, the set-point of flow rate F2 is adjusted by the product of flow 

rate FI and the desired ratio.

Stream 1 Stream 1

Desired ratio

divider

Stream 2

Ratio 
pontroller

^

multiplier Desired ratio

! Ratio 
controller

Stream 2

B

Figure 3-7: Alternative configurations of ratio control systems
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No matter what the configuration is, these ratio control systems can be viewed as a 

single loop control system and the single loop self-validating control system based 

approach can be applied in fault detection and diagnosis of these ratio control 

systems. Whenever the ratio is controlled by another controller, the ratio control 

system can be viewed as an inner loop of a cascade control system.

3.9.2 Feedforward-Feedback Control Systems

In the presence of load or set-point changes, dynamic feedback control systems can 

never achieve perfect control of a process, that is, keep the output of the process 

continuously at the deshed set-point because they rely on an error or rate of change 

of error. Feedforward control systems measure the disturbance or load diiectly and 

take control actions immediately to ehmhiate its impact on the process output. 

Therefore, feedforward controllers have the theoretical potential for perfect control

dmf

■SP

Kd

Figure 3-8 : A generalised block diagram for feedforward- 
feedback control systems

However, feedforward controllers cannot cope with unmeasured disturbances; 

combined feedforward-feedback control systems are conventionally adopted if one 

disturbance can be measured and a model of its impact on the process is available.
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Figure 3-8 shows a generalised block diagram for feedforward-feedback control, in 

wliich, G c f(m ) is the feedforward controller and G c (s )  is the feedback controller, df is 

the measurable disturbance, G f ( s )  the model of its impact on the process output 0, 

and dmf is the measurement error of the disturbance df.

In order to completely compensate for the process disturbance df or the set-point 

change 0r, the feedforwai'd system must satisfy the following equations at the design 

stage:

G X s)G /s)

and

G , , ( s ) = ^  (3-50)

Repeating the previous approach: for the feedforwaid-feedback control system 

(Figure 3-8) and assuming it is at steady state:

6 = 6, - d „ , ,  (3-51)

KpK, K /   ̂ ^

and

^ c f  =  ^ S P ^ c f ^ r  ~  ~

6, K fd „, K ,d , • (3-53)
KpK.

Qualitatively:

[6] = [ e , ] - [ d „ ] ,  (3-54)
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[ x ] =  [O'] Wm] (Kd)[dp] {K f} [d J  [ d j
{KpKJ {KpKJ (K,KJ (KpKJ {KJ

[ e J - [ d J - { K , l d J - { K j d J  [d J

{A qK^} {k ^} ; tlie process is with a

r iT 1 r u 1 r 1 " Type Number = 0
 ^ 0   t^of ; the process is with a

{k .̂ } {Kv } Type Number > 0

(3-55)

and

k ] - K X d ^ ] - K M ]
{K pK J

[^r] ] {Kf][df ] , process is with a (3-56)

° Type Number = 0

~  Of X^nif ]  ~  {P Of }[  ̂f ] ; tlie process is wMi a

Type Number > 0

where,

{-t- ; tlie process is stable or has an even number of unstable poles;

“  ; the process has an odd number of unstable poles.

If these equations are compared to the ones derived in a single loop control system, 

some additional information for fault isolation will be obtained. For exatnple, for a 

process with a Type Number of 0, because a deviation in 6r causes 0, x and Xcf to 

deviate, and one in dm causes 0 and x to deviate, then changes of 0r and dm can be 

isolated; similarly because a change in df causes both x and Xcf to deviate, wlhlst one 

in dmf only causes x̂ f to deviate, then changes of df and dmf can be isolated.

3.9.3 Double-Cascade Control Systems

On the odd occasion a further outer loop might be added to a cascade controller 

resulting in tlii'ee measured controller outputs, [x j , [X2] and [xs].
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3.9.4 Type 1 Actuators

It is sometimes the case that the controller merely outputs a raise/lower signal to an 

actuator. In such cases the actuator behaves hke an integrator and control action like 

proportional plus integral control is obtained inherently by virtue of the presence of 

the integration; controller output x is then effectively the position of the actuator. 

Diagnosis is somewhat difficult if tliis position is not measured because it then relies 

on knowledge of external effects.

3.10 Criticism

This chapter has analysed deviations in control systems, which has led to a fault 

diagnostic approach that is based on set operations. It considers all the controller 

deviations at the same time and gives a prescription based on a pre-set knowledge 

base which contains aU the explanations for the different combinations of the 

controller deviations. The set operation approach can be easily explained and 

understood, however, it has two main drawbacks. Firstly, it is doubtful that the 

approach would scale to most large processes, and secondly any small deviations, 

which cannot be detected statistically, could result in a wrong explanation and it is 

not clear how these instances would be resolved. Thus it would reduce the reliabihty 

of the diagnostic system greatly and should be avoided in practice. Because of this, 

the approach described in the following chapters, Chapter 4, 5 and 6, is thought to 

be more practicable. However it is worth noting that these chapters draw on the 

analysis of this current chapter.
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CHAPTER 4 

CAUSE-EFFECT KNOWLEDGE REPRESENTATION 
FOR VARIOUS CONTROL SYSTEMS

In the last chapter, the SEVACS approach was presented in the form of block 

diagrams and equations. In practice, plant operators take advantage of cause-effect 

knowledge to perform process monitoring and fault diagnosis, and it is important 

that such knowledge can be used to complement these equations. In this chapter, a 

steady state based SDG approach to the representation of cause-effect knowledge is 

fii’st mtroduced. This is then used to represent the SEVACS and by referring to 

these graphs and to the equations of Chapter 3, cause-effect knowledge is tabulated. 

Signed-diiected-graph will be revisited in later chapters when there is a need to 

represent the interaction between SEVACS and to elaborate on the effect of process 

disturbances.

4.1 SDG Representation

The SDG is commonly used to represent the causal effects between process 

variables in fault diagnosis (Iri et a l, 1979; Umeda et a l, 1980; Shiozaki et al. 

1985; Ki’amer et al., 1987; Chang et al., 1990; Wilcox & Himmelblau, 1994a, 

1994b; Lee et a i,  1999; Raghuraj et a i, 1999). Kramer and Palowitch (1987) 

pioneered the modern version of the SDG based fault diagnostic system when they 

used rule-based forward reasonmg as an efficient method to identify possible 

causes. This has been improved by Chang and Yu (1990) who have proposed a 

method to deal with problems such as spurious interpretations and erroneous 

interpretations. A modified SDG approach (PCEG) has been suggested by Wilcox 

and Himmelblau (1994a, 1994b). All have focused on representation and 

simplification for the purpose of fault diagnosis, most haven’t considered the 

control system as a special case. Kiamer and Palowitch (1987) have discussed a 

rather crude classification of control loop behaviour that categorised control loops
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as either ‘working’ or ‘saturated’. Chang and Yu (1990) have proposed an approach 

that involves checkmg the velocity form of the controlled variable as well as the 

standard form of that controlled variable when a PI controller is used. None have 

considered interactions between control systems and none have considered control 

systems mvolvmg special processes such as capacitive processes or open loop 

unstable processes.

An SDG can be viewed as an ordered pair', (G, s). Directed graph G can be 

represented as an ordered quadruple (N, B, i, t) consisting of a set of nodes N, a set 

of branches B, and two incidence functions / and t which map the branches to then 

initial and terminal nodes, respectively. The second component  ̂of the pah (G, s) 

is a function that maps the branches of 5  to the set {+ ,-} , m which ‘+ ’ means the 

initial node causes the termmal node to increase and represents the former 

causes the latter to decrease. The state of a system is described qualitatively by a 

pattern p  which is a function from the nodes of the graph to the set {+, 0, A 

node mapping to qualitative value +, 0 or -  indicates that the corresponding process 

variable is high, normal or low respectively.

An example of an SDG representation is shown in Figure 4-1. Here nodes D, E or F 

are mapped to +, 0 or -  to indicate that the corresponding process variable is high, 

normal or low respectively and s{B) maps each element of B either to ‘+’ or

D
b2

-►E

Af={D, E, F)
B={bi, bi, bj. b4]

bi i(bi) t(bi)
bi D E
b2 F D
bs D F
b4 F E

Figure 4-1: An example of SDG representation

Process signed dhected graphs can either be constructed diiectly from plant data 

and/or from experienced operators, or from a mathematical model of the process 

(Iri et al, 1979). Clearly there might be some difficulty in obtaining the plant data 

and operator experiences needed to obtain a consistent representation of the
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process. The mathematical model approach is usually based on process models 

consisting of ordinaiy differential equations (ODEs) and algebraic equations.

In general, an ODE can be written in the form:

dx. _ . .

A branch is defined to start from xj and end at Xj if ^  0. The sign of is
dXj dXj

assigned to the branch. No self-loop is defined even if ^  0 because the self-
8X;

loop has nothing to do with the search for the origin of fault. Note that the signs can 

vary with operating points.

However, for our purposes, only a steady state representation is required. Time 

derivatives in the process equations are first zeroed, and then the equations are 

effectively linearised to form a perturbation model. The SDG is then constructed:

for a linear" algebraic equation of the form X; = ^^a.jXj, a branch is defined to start
j=i

from Xj and end at xi and to take the sign of aij; no self-loops are defined because 

the search for the origin of a fault has nothing to do with self-loops. Process 

deviations or perturbations from the steady state are then transformed into 

quahtative states of high, normal or low.

4.2 SDG-Based Fault Diagnosis

The above representation helps in defining a pattern of observed symptoius on the 

process SDG. A nonzero node sign signifies a change in steady state in the process, 

and a set of nonzero signs in the SDG either represents a pattern of fault symptoms 

or a change in operation. It is well understood that not all the variables of the 

process in a complex plant can be measured or estimated due to technical and 

economical infeasibilities. The pattern defined is therefore always partially 

observed and is hence called the partial pattern, which can be used to obtain a 

cause-effect (CE) graph to find the structure of fault propagation.
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To aid the fault diagnosis studies, a node or a cycle with no input arcs is considered 

to be a maximally strongly connected component (MSCC) in an SDG (Iri et a l, 

1979). The CE graph also consists of so-called MSCCs. A branch is said to be 

consistent if its sign is equal to the product of both of the node signs it is connected 

with. And a nonzero node is marked as a valid node. When a process is 

decomposed into a CE graph, involving only the consistent branches and the valid 

nodes, the faults aie assumed to originate from an element in one of the MSCCs (Iri 

et a l, 1979).

Faults in cycles are very difficult to isolate and therefore conventionally a cycle is 

viewed as a super-node (Raghuraj et a l, 1999). The task of automatic fault 

diagnosis would normally be stopped on encountermg a super-node as the one that 

mcludes the root fault because little can be done further to analyse this super-node 

online. Operators would then be requiied to isolate the root fault on the basis of 

their own knowledge and experience. This procedure is unacceptable because a 

super-node can consist of a number of super-nodes as well as single nodes. If this 

situation was to arise m practice, the operators would be confused and the reliability 

of the automatically diagnostic system would be reduced.

Two kinds of SDG-based reasoning methods for fault diagnosis have been 

proposed:

(1) forward search methods, such as those of O’Shima et a l  (Shiozaki et a l,  1985; 

Umeda et a l,  1980) and Kiamer & Palowitch (1987), hypothesise possible root 

causes for observed symptoms, then examine each hypothesis in turn by 

seai'ching in the diiection of the graph branches to compare its consequences 

with the abnormal measurements;

(2) backward search methods, such as those of Kokawa et a l  (1983), identify 

possible causes by working backwards from all abnormal measurements to find 

common explanations.

All rely on a global view of the process data, and are not easily adapted to the kind 

of distributed approach sought here. Although Mohindra and Clark (1993) have 

developed a distributed fault diagnosis method based on digraph (SDG) models, the 

focus is on the reasonmg issues between nodes in the SDG and not on individual
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control systems. Derived from Kiamer and Palowitch (1987), theli- method uses an 

off-line analysis of the SDG structure to develop simple diagnostic tests that can be 

conducted on-hne by the sensors and controllers. These tests seek explanations for 

observed abnormalities by working backwai'ds through the SDG.

Control systems complicate or even disable the above SDG-based fault diagnosis 

methods because they form cycles in an SDG and cause spurious or uncertain 

explanations. The cycles that arise from control systems are so different and special 

compared with other kinds of cycles in the SDG: on the one hand, control systems 

have the ability to compensate for faults or disturbances per se\ on the other hand, 

there is implicit information related to them, which can be useful for fault 

diagnosis. In order to deal with control systems this implicit information should be 

taken into account while reasoning about an SDG.

4.3 Representing Control Systems By SDGs

These problems can be overcome by shifting the focus from a global representation 

to a sepaiate representation of each of the individual control systems and by 

examining how both control loop and process faults hnpinge on thek performance. 

Figure 4-2A shows an SDG representation of a typical single loop control system. 

In the figure, C, V, X and M represent the controller output, the valve openmg, the 

controlled variable and the sensor measurement respectively; 6r, dy, dp, d„i represent 

deviations in set-point, valve bias, process disturbance and sensor bias respectively. 

Signs of the branches m the SDG are determined from the equations in the last 

chapter. This SDG cannot provide complete information for fault diagnosis by 

itself.

It is important to note that only dp and node X interact with nodes or variables in 

other paits of the plant. To indicate this, the circled parts in Figure 4-2A can be 

lumped together and the figure can be simplified to Figure 4-2B: 0i- and C are 

lumped into C node; dy and V are lumped into V node; M and X are lumped into S 

node; dp is replaced by E, which is generalised to include exogenous disturbances 

and other process variables. The simplified SDG doesn’t compromise any
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understanding and reasoning processes because individual elements can still be 

treated separately when performing fault diagnosis. The whole control system can 

be viewed as a super-node and this super-node can be analysed using control 

system related cause-effect knowledge.

dp

>

E

(A) (B)

Figure 4-2; The SDG of a standard single loop control system

A standard cascade control system can be treated in a similar way. Figure 4-3 

shows a cascade control system where C l, C2, V, 82 and SI represent the output of 

the outer loop controller, the output of the inner loop controller, the valve opening, 

the inner loop sensor node and the outer loop sensor node respectively. Nodes E l 

and E2 represent outer loop process disturbances and inner loop process 

disturbances respectively. The entire cascade control system can be viewed as a 

super-node in which individual elements are treated separately when performing 

fault diagnosis. Only nodes SI and S2 of the super-node can niter act with other 

nodes or variables in the plant.

It is worth pointing out that, as discussed in the previous chapter, for stability the 

sign product of any of the loops in the above SDGs must be
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C I

jC2

E l
E2

Figure 4-3: The SDG of a standard cascade control system 

4.4 SEVACS Super-node Caiise-Effect Knowledge

In this section, SEVACS super-node cause-effect knowledge is described that has 

been derived on the basis of equations in Chapter 3.

4.4.1 Cause-Effect Knowledge Pertaining To The Controlled Processes 
With Type Number = 0

In particulai' Equations (3-35) — (3-40) were referred to extensively when deriving 

this knowledge. Tables 4-1 and 4-2 describe the various effects that individual 

faults would have on the observations available for single loop and cascade loop 

control systems respectively. Faults hke a dead sensor, or a sticking valve or a 

large process disturbance are not considered because, in these ciicumstances the 

steady state is unlikely to be obtamed. These faults would be addressed by usmg 

other approaches (see Chapter 1), The following sub-sections discuss the 

determination of signs of the fault or disturbance (e.g. high or low).

Table 4-1: Cause-effect knowledge pertainmg to a single loop control system

Effect/Observation Cause

Controller deviates
• sensor bias
• valve bias
• process disturbance
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Table 4-2: Cause-effect knowledge pertaining to a cascade control system

Effect/Observation Cause
Only inner loop controller deviates • valve bias

• inner loop process disturbarrce
Only outer loop controller deviates • inner loop sensor bias
Both controllers deviate • outer loop sensor bias

• outer loop process disturbance

A sensor bias in a single loop control system or in the outer loop o f a cascade 

control system. If the sensor biases, the controller will take action to compensate for 

this with the net effect that there will be a deviation in the controller output and the 

sensor measurement will return to its normal value. The dir ection of the sensor bias 

can then be determined by looking at the following (Figure: 4-4):

• R-sc\ the steady state relation (i.e. forwar d or reverse acting) between the sensor 

measurement and the controller output defined in Figure 4-2B and Figure 4-3;

• Dc: the steady state deviation of the controller output.

The various possibilities are listed in the decision table.

R-sc.

E

Dc R~sc Sensor bias

T T faîls-high

iiilBiilli fat Is-high

+ - fails-low

- + fails-low

Figure 4-4: The effect of the sensor bias in a single 
loop control system and the fault-decision table

A sensor bias in the inner loop o f a cascade control system. Both the inner and the 

outer loop controllers will attempt to compensate (Figure 4-5) with the net effect 

that the sensor deviation observed IPs') will have the same dkection as the (inner) 

sensor bias. The decision table in the Figure 4-5 summarises this.
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€1

m

E l
E2

Ds Inner sensor bias

'F faiKvhigh

- fails-low

Figure 4-5: The effect of the inner loop sensor bias in 
a cascade control system and the fault-decision table

An exogenous/ancestor fault or disturbance. In both single and cascade loop cases, 

such occurrences wül be compensated by the controllers with the net effect that 

there will be a deviation in the controller outputs. The direction of the 

exogenous/ancestor fault or disturbance can then be determined by looking at the 

following:

• R-sc: the steady state relation (i.e. forward or reverse acting) between the sensor 

measurement and the controller output defined in Figure 4-2B and Figure 4-3;

• R-ex\ the steady state relation (i.e. forward or reverse acting) between the 

exogenous/ancestor variable and the sensor measurement as defined in Figure 4- 

2B and Figure 4-3;

• Dc\ the steady state deviation in the controller output.

Although these 3 factors refer to the various loops differently (see Figure 4-6) the 

various outcomes can be represented in a single decision table as shown.
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/ R-sc.

E

C l

R-scj

R-e.
HI E2

C l C 2

R -sq

E l
E2

Dc R~sc R-ex
Exogenous/ 

Ancestor fault 
or disturbance

+ + lails4d^h

+ i i i i i B isiiswiliw lails-bigh

iîiiiliii failS“high
I I I I IP lails-lugh

+ + - fails-low

+ - + fails-low

- + + fails-low

- - - fails-low

Figure 4-6; The effect of an exogenous/ancestor 
fault or disturbance and the fault-decision table

A Valve bias. If the valve biases, there will be a deviation in the controller output 

with the effect that the sensor measurement wÜl return to its normal value. The 

diiection of the valve bias can then be determined by looking at the foUowhig 

factors (Figure 4-7):

• R-cv: the steady state relation between the controller output and the valve 

opening defined m Figure 4-2B and Figure 4-3;

• Dc: the steady state deviation in the controller output.

The possible outcomes are as shown in the table.
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\Dc

E

Dc R-cv Valve bias

- ’f- fails-high

- fails-high

+ + fails-low

- - fails-low

Figure 4-7: The effect of the valve bias in a 
control system and the fault-decision table

4.4.2 Cause-Effect Knowledge Pertaining To The Controlled Processes 
With Type Number > 0

Again Equations (3-35) — (3-40) were referred to extensively when deriving this 

knowledge. This depends on the type of control system and on how it is affected 

by the process. There aie two options: i) a single loop control system or the outer 

loop of a cascade control system is affected, or ii) the inner loop of the cascade 

control system is affected instead. In the case of smgle and outer loops, the 

knowledge is as described previously but with one exception: a sensor bias needs to 

be distmguished differently because the output of the relevant controller doesn’t 

deviate; although the relevant smgle or outer loop controller output will change 

transiently, it will return to the same value in the steady state. Instead the sensor 

bias must be viewed as a disturbance to its descendants, in which case deviations of 

its descendants can be analysed to determine whether the sensor has biased and in 

which direction (i.e. high or low). Table 4-1 should then be replaced by Table 4-3.

Table 4-3: Cause-effect knowledge pertaining to a single/outer loop 
capacitive process

Effect/Observation Cause

Smgle / Outer loop controller deviates • valve bias
• process disturbance

Single / Outer loop controller doesn’t deviate • sensor bias
• no fault
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If the capacitive process is in the inner loop of a cascade control system, then the 

following faults will cause the outer loop controller to deviate whilst having no 

affect on the inner loop controller output: faults pertaining to the outer loop and an 

inner loop sensor bias. These faults cannot be isolated without extra information, 

perhaps from other controllers. However the directions of the faults might be 

inferred from related knowledge. With reference to a cascade control system block 

diagram in Figure 3-3 and its SDG in Figure 4-3, and Equations (3-37) — (3-40), in 

a steady state, if its outer loop process Gpi,i(s) is a capacitive process then the outer 

loop sensor bias dmi,i will not cause the outer loop controller Gd,i(s) to deviate, but 

either an inner loop sensor bias dm2,i or a process fault or a disturbance dp2,i 

pertaining to this capacitive process, will cause the outer loop controller to deviate. 

If its mner loop process Gp2,i(s) is a capacitive process, then faults dpi  ̂pertaining to 

the outer loop together with the sensor bias dm2,i pertaining to this capacitive 

process, will cause the outer loop controller to deviate but not the inner loop 

controller Gc2,i(s). The net result is that Table 4-2 must be revised and that the 

revisions depend on the location of the capacitive process. The three alternatives 

are given in Tables 4-4 — 4-6.

Table 4-4: Cause-effect knowledge pertaining to a cascade control system, only the 
outer loop process is capacitive

Effect/Observation Cause
Only inner loop controller deviates • valve bias

• inner loop process disturbance
Only outer loop controller deviates • inner loop sensor bias
Both controllers deviate • outer loop process disturbance
Controllers don’t deviate • outer loop sensor bias

• no fault

Table 4-5: Cause-effect knowledge pertaining to a cascade control system, only the 
inner loop process is capacitive

Effect/Observation Cause
Only inner loop controller deviates • valve bias

• inner loop process disturbance
Only outer loop controller deviates • inner loop sensor bias

• outer loop sensor bias
• outer loop process disturbance
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Table 4-6: Cause-effect knowledge pertaining to a cascade control system, both 
processes are capacitive

Effect/Observation Cause
Only inner loop controller deviates • valve bias

• inner loop process disturbance
Only outer loop controller deviates • inner loop sensor bias

• outer loop process disturbance
Contt’ollers don’t deviate • outer loop sensor bias

• no fault

4.5 Summary

Cause-effect knowledge for a SEVACS has been described by referring to an SDG 

representation. If SDGs are to be referred to whilst performing fault diagnosis 

through the SDG, control systems should be viewed as super-no des and the 

knowledge pertaining to the super-nodes should be used. In Chapter 5, fault 

isolation issues based on this chapter will be discussed m detail.
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CHAPTER 5 

FAULT ISOLATION

Although the problems of fault isolation and interacting control systems have been 

probed in Chapter 3, the solutions are rather general and abstract. This Chapter re

investigates them from an SDG representation perspective. A fault isolation 

principle and general procedure will be expounded. Different types of control 

system interactions will be discussed so that the fault isolation procedure can be 

improved. A modified representation of interacting control systems will then be 

proposed in order that the fault isolation procedure can deal with different process 

types in an unified manner.

5.1 The Fault Isolation Principle and General Procedure

The following paragraph describes a principle, which can be deduced from either 

the basic equations in Chapter 3 or the knowledge m Chapter 4.

Any steady state deviation in any control system must be caused either by a fault in 

a loop element such as in the sensor or in the actuator/valve or by a process 

disturbance. Although, by the application o f appropriate simple heuristic rules, it is 

very easy to isolate faults like a dead sensor, or a large exogenous 

fault/disturbance, or a sticking valve, it is more difficult to isolate faults like a 

sensor bias, or a small exogenous fault/disturbance. In these circmnstances, the 

controlled variable, and its effect on descendants, is arguably the key to fault 

isolation: with a sensor bias, the controlled variable will deviate from  its nominal 

value and descendants o f the controlled variable will be affected; with a valve bias, 

or with an exogenous fault/disturbance, the controlled variable will remain at its 

nominal value and its descendants will not be affected.
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The above fault isolation principle suggests that the search and test strategy shown 

in Figure 5-1 could be used.

NoAi*e the root 
faults located?

Yes

^ '^ a s  all t h ^  
deviated nodes 
'\checked‘L ^

No

Yes

Test process 
(Forward reasoning)

Report to 
the process operator

Search process 
(Backward reasoning)

Start from another un
checked deviated node

Start from 
a deviated node

Figure 5-1 : The general procedure for fault isolation

Staiting from a deviated control system and by referring to the process SDG and 

SEVACS knowledge (Chapters 3 and 4), a search strategy fii'st finds all possible 

faults or disturbances. This is followed by a strategy that tests which of the faults or 

disturbances would result in the observed deviations. Backward reasoning is used 

to carry out the search strategy and forward reasoning is used to carry out the test 

strategy. The two strategies iterate tlirough aU the deviated nodes. This general 

procedure would be easily implemented at the Supervisor level in a distributed 

process monitoring and fault diagnosis system so long as the individual control 

system information as well as other available measurements information at the

84



lower level could be communicated to it (see Figure 1-1). The procedure would be 

configured during the SEVACS configuration and supervisor configuration stage m 

Figure 1-3. Obviously an operator can be viewed as the Supervisor if the procedure 

is carried out by the operator.

However the general procedure is somewhat cumbersome. Sections 5.2 and 5.3 

describe ways in which the search and test processes can be improved by 

identifying interactions from a simple SDG representation of a plant.

The following section describes the method dealing with interactions, which 

depends on whether or not any two controlled nodes interact bi-diiectionally and on 

whether or not these relationships are actually ‘invoked’ when a particular fault 

aiises.

5.2 Improving The Fault Isolation Procedure by Considering 

Control System Interactions

5.2.1 Control Systems with Uni directional Interactions

A simple set of rules can be derived for those control systems with uni-diiectional 

mteractions that have the fairly general feature shown in Figure 5-2. Of importance 

here are the relationships between a measured control variable and its neighbouring 

measured nodes: SI is a controlled variable, S2 is a measured descendant of SI (it 

could be another controlled variable), E l is an ancestor of both SI and S2 (as theii* 

process disturbance), it affects SI and S2 simultaneously, E2 is an ancestor of SI 

and only affects SI. Thus Sl-sensor-bias should be viewed as a process disturbance 

to S2, the descendant of SI.

If SI is pertammg to a Type Number 0 controlled process and its control loop 

deviates (any element in the control loop deviates), then, initially, the fault 

candidate will be {Sl-sensor-bias, E l, E2, valve-bias in the SI control loop}. There 

are now two possibilities:
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• S2 is affected: because E l is the common ancestor of SI and S2 and according 

to the fault isolation prmciple, the fault candidate set shrinks to {Sl-sensor-bias, 

E l}; if the dhection of the deviation of S2 contradicts that expected from the S l- 

sensor-bias, (E l)  is the only fault root.

• S2 is not affected: the fault candidate set shiinks to |E2, valve-bias in the SI 

control loop}. If there is no more mformation about E2, then these t'wo 

possibihties can not be sepaiated. Otherwise, if E2's descendants deviate, E2 

will be the only root fault.

It should be noted that when S2 is m another control loop, if that controller 

deviates, S2 should be viewed as being affected, though the sensor measurement of 

S2 itself doesn’t deviate.

E l

E2

Figure 5-2: Uni-dkectional interaction

If SI is pertaining to a Type Number > 0 controlled process mstead then, although 

Sl-sensor-bias doesn’t cause the SI control system to deviate, it causes SI 

descendants to deviate. Therefore in this case, only the valve-bias m the SI control 

loop and the SI process disturbances such as E l and E2 can cause SI control loop 

to deviate, Sl-sensor-bias cannot be deduced from the deviation of any element m 

the S1 control loop but from the deviation of S2, the S1 descendant.

5,2.2 Control Systems with Bi-directional Interactions

Here the controlled variables SI and S2 affect each other (Figure 5-3); either can 

pertain to a single loop (s.l.) control system or to the inner loop (i.l.) or to the outer 

loop (o.l.) of a cascade control system. Then three different types of interactions 

must be considered: Type A mteraction involves s.l./s.l., s.Uo.l. or o.L/o.l.

86



mteractions, Type B interaction occurs when one, and only one, of the loops is an 

inner loop and Type C interaction occurs when both are inner loops. Note that the 

treatment of smgle and outer loops is the same because, m the latter, the non

interacting inner loop can be viewed as a viitual valve node. This can be seen in 

Figure 5-4 where V2' is a viitual valve node.

Figure 5-3; Interacting control systems

5.2.2.1 Type A Interaction: Solely Single/Outer Loops Interact

Referrmg to Figure 5-4, SI is one controlled variable that is controlled by the 

controller C l and manipulated by the valve/actuator V 1 ; S21 is the other controlled 

vai'iable which mteracts with SI, here S21 is controlled by a cascade control system 

that mcludes an outer loop controller C21 and an inner loop controller C22, S22 is 

as the inner loop controlled variable, V2 is as the manipulated valve/actuator. 

Nodes C22, S22 and V2 can be lumped together as a super-node V2" (as a viitual 

valve node) so that this cascade control system can be viewed or analysed as a 

single loop control system. Signs a  and (5 represent the dkections of the 

mteractions between the two controlled variables SI and S21.

Fii'st consider the case that the controlled processes belong to Type Number 0 

processes. If only one of the control systems deviates, then the fault is local to that 

control system so the fault can be isolated using the method above; if both the 

control systems deviate, there are two possibilities:

♦ if SI and S21 have at least one common ancestor, the fault candidate set is {Sl- 

sensor-bias, S21-sensor-bias, one of the common ancestors’ faults};

• if SI and S21 have no common ancestor, the fault candidate set is {Sl-sensor- 

bias, S21-sensor-bias}.
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If the directions of the interactions between SI and S21 are opposite, Sl-sensor- 

bias and S21-sensor-bias in the above fault candidate sets can be separated by the 

knowledge related to the two control systems, as shown in Table 5-1; otherwise 

they cannot be separated without further information. Table 5-1 has been derived 

by modifymg and subsequently analysing equations (3-47) and (3-48).

Figure 5-4: Type A interaction

If either or both the SI controlled process and the S21 controlled process are 

capacitive, both sensor biases above cannot cause both control systems to deviate. 

However one sensor bias can be viewed as a process disturbance to the other 

controlled process and cause the respective control system to deviate; if both 

controlled systems deviate, there must be at least one common ancestor, which is 

the fault.



Table 5-1: A sensor bias decision table for Figure 5-4 when {a}= ‘+’ and {p}=

R-scl R-sc2 Del Dc2 Sensor bias fault

+ i S s i l B i i SI fails high

F iillllllllllllp 1 ^ 8 1  1 Si fails high

iS i îB i i ï i l i SI fails high

SI fails high

+ + - + S1 fails low

+ - - - SI fails low

- - + - S1 fails low

- + + + SI fails low

Illllliliillllliws i i i i j j i i i i i i i S2I fails high

4 iiîi i i iiiliii li S21 fails high

iiii i i i i i i i l i i i l i i l l l l l l l l l l l l l S2l fails high

- S2Ï fails high

+ + - - S21 fails low

+ - - + S21 fails low

- - + + S21 fails low

- + + - S21 fails low

5.2.2.2 Type B Interaction: The Inner Loop of Only One of The Control 

Systems Interacts

For Type B interaction, a smgle control loop or the outer loop of a cascade control 

system interacts with an inner loop of a cascade control system. For example, in 

Figure 5-5, SI is a smgle loop controlled variable that is controlled by controller C l 

and manipulated by valve/actuator VI. Node SI interacts with S22. S22 is the inner 

loop controlled variable in a cascade control system in which C21 is the outer loop 

controller, C22 is the inner loop controller, S21 is the outer loop controlled variable 

and V2 represents the valve/actuator of the control system. Signs a  and p represent 

directions of the mteractions between the two controlled variables SI and S22. 

Node E2 represents the process disturbance to S21.
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C21
E2

S 2 l

C2:C l

S22,
V2V I

Figure 5-5: Type B mteraction

For convenience, suppose there is no common ancestor between the two control 

systems. According to the theoretical analysis in Chapter 3, a sensor bias on SI can 

be viewed as an external disturbance/fault to the inner loop of the cascade control 

system, but an inner loop sensor bias on S22 has no effect on the smgle control 

system in the steady state. An external disturbance/fault to the outer loop of the 

cascade control system, say E2 in Figure 5-5, or a sensor bias on S21 can cause the 

single loop control system to deviate.

So, Sl-sensor-bias, S22-sensor-bias, E2 or S21-sensor-bias can be isolated no 

matter what the relations between SI and S22 are. For example, suppose all 

controlled processes here are not capacitive, if only C21 deviates, S22-sensor-bias 

is the fault; if only C l and C22 deviate, Sl-sensor-bias is the fault; if C l, C21, C22 

deviate, E2 or S21-sensor-bias is the fault. The fault directions can be mferred from 

the cause-effect knowledge described in Chapter 4.

It is worth pointing out that the knowledge or rules above will be different if some 

of the controlled processes ai'e capacitive. However faults can still be isolated: if the 

SI controlled process is capacitive, Sl-sensor-bias doesn’t cause C l to deviate but 

it can affect the cascade control system and only cause C22 to deviate; if the inner 

loop controlled process is capacitive, C22 cannot be affected by E2 or S21-sensor- 

bias; if the outer loop controlled process is capacitive, C l cannot be affected by 

S21-sensor-bias.
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S.2.2.3 Type C Interaction: Inner Loops of Both Cascade Control Systems 

Interact

A Type C interaction is shown in Figure 5-6; one inner loop controlled variable S12 

interacts with the other inner loop controlled variable S22. Node S12 is the inner 

loop controlled variable in a cascade control system in which C l l  is the outer loop 

controller, C l2 is the inner loop controller, SI I is the outer loop controlled variable 

and VI represents the valve/actuator of the control system. Node S22 is the inner 

loop controlled variable in the other cascade control system in which C21 is the 

outer loop controller, C22 is the inner loop controller, S2l is the outer loop 

controlled variable and V2 represents the valve/actuator of the control system. 

Signs a  and p represent dkections of the interactions between the two controlled 

variables S12 and S22. Node E l represents the process disturbance to S l l  and E2 

represents the process disturbance to S21.

E l E2

S21
C l C2:

^S22
VI V2

Figure 5-6: Type C interaction

Again, for convenience, suppose there is no common ancestor between the two 

control systems. The inner loop sensor bias of one cascade control system will not 

affect the other cascade control system in the steady state. First consider the 

situation in which the controlled processes here are not capacitive. If only C ll  

deviates, S12-sensor-bias is a possible fault; if only C21 deviates, S22-sensor-bias 

is a possible fault. An outer loop process disturbance or outer loop sensor bias of 

one cascade control system can cause the other system to deviate, in which case 

the fault can be isolated using the following: if Cl l ,  C12 and C22 deviate, S l l -  

sensor-bias or E l is a possible fault; if C21, C22 and C12 deviate, S21-sensor-bias
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or E2 is a possible fault. Once again, the above faults dkections can be inferred 

from the cause-effect knowledge m Chapter 4.

The knowledge or rules above will be also different if some of the controlled 

processes are capacitive: if the S12 inner loop controlled process is capacitive, C 12 

cannot be affected by E l or Sll-sensor-bias; if the S l l  outer loop controlled 

process is capacitive, C22 cannot be affected by Sll-sensor-bias; if the S22 inner 

loop controlled process is capacitive, C22 cannot be affected by E2 or S21-sensor- 

bias; if the S21 outer loop controlled process is capacitive, C12 cannot be affected 

by S21-sensor-bias.

5.3 An Alternative Way of Reasoning about Control System  

Interactions

The procedures described in the last section requke different knowledge or rules for 

different processes. In this section, an SDG-based fault isolation approach wÜl be 

developed that is applicable to aU processes. In addition this approach is easier to 

realise as an auto-reasonmg algorithm in a real-time fault diagnosis system because 

it does not rely on a large number of rules. The approach is to modify the SDGs by 

breaking the interactions between the control systems, and then to use the 

knowledge relating to the smgle or cascade control systems to isolate the faults. 

Thus the effect of one control system on the other is viewed as a process 

disturbance to that control system. Havmg modified the relevant SDGs, fault 

isolation pertaining to mdividual controllers can now be apphed as before. Having 

isolated a fault, and if it is identified by more than one controller, then this 

hypothesis would be accepted provided that associated signs do not contradict. The 

rest of this section examines each type of interaction in turn.

5.3.1 The M odified SDG of Type A Interaction

The SDG of two control systems with Type A mteraction can be modified as shown 

in Figure 5-7. The sensor biases (i.e. Sl-sensor-bias and S21-sensor-bias) are 

represented by special process disturbances. Relationships R-11 and R-22 are
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always '+ ’ unless the process pertainmg to SI or S21 is capacitive. If the process 

pertaining to SI is capacitive, Sl-sensor-bias doesn’t affect S im  the steady state, 

so the link from the node Sl-sensor-bias to SI doesn’t actually exist. Thus R-11 can 

be assigned as ‘O’; if the process pertaining to S21 is capacitive, R-22 ~ ‘0’ mstead. 

Relationships R-12 and R-21 depend on the relation between SI and S2L For 

example if SI sensor biases high, then the respective controlled variable will be 

controlled at a value less than its nominal value and the controlled variable S21 will 

see this effect as a negative go mg disturbance. It follows that, if the relations 

between SI and S21 ai'e as shown in Figure 5-4, then R-12= -a  and R-27- - p .

D el Sl-sensor-bias

.R zl
Dc2

V2'

R-21 

S21-sènsor-bias

Figure 5-7: The modified SDG of Type A interaction in Figure 5-4 

5.3.2 The Modified SDG of Type B Interaction

The SDG of two control systems with Type B interaction can be modified as shown 

in Figure 5-8. Again the sensor biases (i.e. Sl-sensor-bias and S21-sensor-bias) are 

represented by special process disturbances. S22-sensor-bias doesn’t cause the 

other control system to deviate in the steady state because the effect of this inner 

sensor bias can be compensated by the output of the outer loop controller C21. 

Vai'iable E2 is represented as an exogenous disturbance to both SI and S21 because 

although E2 affects S21 dkectly, it affects SI indkectly via C22 and S22 and hence 

thi’ough the relations p i and p2. Suppose the relations between SI and S22 are as 

shown in Figure 5-5 and suppose that a , p, p2, T) are known, then the signs of a l ,  

a 2 , p i, yl, 72 can be determined.
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S21-sensor-bias
a 2 C 2I

S21

V I

Figure 5-8: The modified SDG of Type B interaction in Figure 5-5

Equation (3-37) can be analysed to consider how the S21-sensor-bias can affect SI 

via the mner loop controlled variable of S22. If the outer loop process is not

capacitive, the outer loop controller C21 will deviate in the direction of -
fKpu)

and so will S22. Comparing Figure 5-8 and Figure 4-3, it can be seen that {Kpi} of 

controller 2 is the same as T| he. {Kpi,2}; if the outer loop process is capacitive, the 

outer loop controller C21 doesn’t deviate with the sensor bias and neither does S22. 

This leads to the following relation:

f-l- ; the process pertainmg to S21 is not capacitive;
0(2 ”  1 _

[0 ; the process pertaining to S21 is capacitive.

and

_ f -  P • T| ; the process pertaining to S21 is not capacitive;

[ 0  ; the process pertaining to S21 is capacitive.

Similarly:

pi = -p-p2.n

r+ ; the process pertahimg to SI is not capacitive;
yl = ■<

[0 ; the process pertaining to SI is capacitive.

and

y2 = - a .
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5.3.3 The Modified SDG of Type C Interaction

The SDG of two control systems with Type C interaction can be modified as shown 

m Figure 5-9. Again the sensor biases (i.e. S l l  bias and S21 bias) are represented 

by special process disturbances. Variable E l is represented as an exogenous 

disturbance to both S l l  and S22 because although E l affects S l l  directly, it affects 

S22 indhectly via C l2 and S12 and hence through the relations p i and p2. Similar 

relationships can be constructed for E2.

S ll-sensor-bias
C l C2Tc2

S2I

C12
S12) S22

VI V2
S21-sensor-bias

Figure 5-9: The modified SDG of Type C mteraction in Figure 5-6

Suppose the relation between S12 and S22 is as shown in Figure 5-6 and suppose 

that a , P, p i, 72 , T]!, T|2  ai'e known, then the signs of a l ,  a 2 , P2 , yl, XI, XI can be 

determined. Again by referring to Equation (3-37) and Figure 4-3 the following 

relations can be obtained:

al =

a2

\+ ; the process pertaining to SI 1 is not capacitive;

[0 ; the process pertaining to S l l  is capacitive.

f -  a  • T|1 ; the process pertaining to S11 is not capacitive; 

[ 0 ; the process pertainmg to S11 is capacitive.

p2 = - a  ■ pi • T|1 

yl = -p • 72 • ri2

p . n2 ; the process pertahiing to S21 is not capacitive;
A.1 =

0 ; the process pertaining to S21 is capacitive.
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and

(+ ; the process pertaining to S21 is not capacitive;
X2 = <

[0 ; the process pertaining to S21 is capacitive.

5.4 Summary

In this chapter, the fault isolation procedures have been discussed, which can be 

improved by appropriate reasoning about interacting control systems. Some 

examples of various methods will be given in Chapter 8 .

For the mteracting control systems, two sorts of fault isolation hnprovements have 

been introduced. One is to make use of different knowledge for different processes, 

the other is to make use of the modified SDGs and to reason about them. The latter 

doesn’t rely on a lot of rules. However both methods build on the theory of Chapter 

3. In essence they are the same.
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CHAPTER 6 

KNOWLEDGE ACQUISITION AND EVOLUTION

When implementing these distributed tasks it is intended that individual modules 

would start from with a minimum amount of knowledge. The intention is then that 

this knowledge would grow with operational experience. That is the signed dkected 

graphs are expected to evolve with time. This Chapter describes a framework and 

some guidelines for knowledge evolution so that the approach can have a learning 

and updating capability. A method is also introduced to acquire the initial 

knowledge by applying step tests. A CSTR process will be used as an application 

for illustrating the method and the framework.

6,1 Evolutionary Signed Directed Graphs (E-SDG)

Traditionally, SDG-based fault diagnosis assumes that the SDG reflects the system 

completely and accurately. It is unhkely that this assumption is ever satisfied in 

practice with the net effect that there is a lack of confidence with diagnostic results 

obtained. When coupled with the amount of effort requiied to produce an SDG m 

the fh'st place, it is hardly surprising that SDG-based diagnosis has not found much 

support m industry. To elaborate on this further, consider the incomplete SDG 

shown in Figure 6-1A where A is a controlled variable in a SEVACS super-node, 

and B is a measured variable. Suppose a fault now occurs that causes A and B to 

deviate, according to the SEVACS approach and assuming that the SDG is 

complete, it can be inferred that the fault is A-sensor-bias. This may be wrong if 

there exists a common ancestor C of A and B (Figure 6- IB), or there is a link from 

B to A (Figure 6-1C), which is hnphcit.
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(A ) (B ) (C)

Figure 6-1: A probably incomplete SDG 

Thus, it is important that

1) if readily available, any knowledge should be incorporated into the initial 

implementation;

2) erroneous diagnostic conclusions must be fedback to enable the knowledge to 

be refined;

3) a structure is in place to enable evolution to take place.

An alternative to the SDG, the evolutionary SDG (E-SDG) is proposed to facilitate 

this. Built by a mixed method (Figure 6-2), it would be constructed by combining 

mathematical models, empnical knowledge, process step test experiments and 

SEVACS-based knowledge together. It can be updated by learning.

SBVACS-
Based

Knowledge

Mathematical
M odels

Empirical
K nowledge

S tep T est 
Experiments

Human
Intervention

Leai'ning & 
UpdatingE-SDG

Figure 6-2: Constructing and updating an E-SDG
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6.2 Step Testing

The SEVACS based knowledge can help to identify the open loop characteristics of 

the process in a feedback control loop. A step test can be applied to the set-pohit of 

the controlled variable, by observing the steady state change of the output of the 

controller, the open loop process characteristics can be obtahied:

• if the output of the controller doesn’t change, the related open loop process is 

capacitive;

• otherwise, according to Equation (3-36), if [xi]={Kd,i}[0r,i], then {Aoi,i}=‘+’, 

which means the related open loop process is stable or includes an even number 

of unstable poles; if [xi]=-{Kd,i}[0r,i], then {Aoi,i}=‘- ’, which means the 

related open loop process mcludes an odd number of unstable poles.

This section explores how step tests can be used to obtain SEVACS interactions 

and to examine how process disturbances affect the SEVACS. This then leads to a 

procedure for the construction of an E-SDG and an example of how it can be 

applied is given in Section 6.5. Various E-SDGs whl then be considered when 

derivmg SEVACS for various applications m Chapter 8.

6.2,1 A Single-Loop Control System to A Measured Variable

In Figure 6-3, suppose node A is controlled by a smgle control system or the outer- 

loop of a cascade control system and node B is a measured (but not controlled) 

variable. A step test can be applied to the set-point of node A, and interaction 

can be obtained by looking at deviations Da and Db in the steady state. The decision 

table is shown m Figure 6-3.
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Figure 6-3: Identify the effect from a single control 
system to a measured variable

6.2.2 The Interaction between Two Single-Loop Control Systems (or 
Outer Loops)

Suppose A and B are controlled by two single-loop control systems or the outer 

loops of cascade control systems (Figure 6-4). Step tests can be applied to the set- 

points of A and B separately, the change in one controlled var iable can be viewed 

as a process disturbance to the other, and then and Rm  can be determmed by 

the SEVACS cause-effect knowledge described in previous chapters.

Km

Figure 6-4: Identify the interaction 
between two single-loop control systems

6.2.3 A Cascade Control System to A Measured Variable

Suppose A l is controlled by the outer-loop controller A lC, A2 is controlled by the 

inner-loop controller A2C (Figure 6-5) and apply a step test to the set-pomt of A l. 

If there is a change in B, it mdicates that B is affected by this cascade control 

system. It is very difficult to decide whether A l, A2 or both affect B, so if possible, 

other related knowledge should then be used, e.g. if the outer loop process is 

capacitive, it is certain that A l affects B. If the outer loop process is not capacitive, 

for robust fault isolation, it is quite acceptable to assume it is the inner loop 

controlled variable A2 that affects B. This is because this assumption can 

accommodate the situation in which A l is the true cause: if A2 affects B, then when
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B deviates, the fault candidate is {Al-set-point-change, Al-sensor-bias, process- 

disturbance-to-Al}; if A l affects B, then when B deviates, the fault candidate is 

{Al-set-point-change, Al-sensor-bias}, the former can accommodate the latter.

A l

Figure 6-5: Identify the effect from a cascade 
control system to a measured variable

It should be noted that although A2 can be assumed to be one of ancestors of B just 

for the purpose of fault diagnosis, it is possible that it is not A2 at all but Al 

actually affects B. For example, if in one case, either controllers A lC  or A2C or 

both deviate but B is not affected, process disturbances to A l cannot be rejected 

due to an observation that B is not affected under the assumption that A2 affects B. 

This is because it is still possible that A l affects B, and thus in this case, the control 

system compensates for the fault, B is not affected. However an Al-set-point- 

change and an Al-sensor-bias can be rejected due to the previous observation if the 

process pertaining to A l is not capacitive.

6.2.4 The Interaction between A Cascade Control System and Another 
Control System

Thi’ee sub-cases are considered.

(1) A. single-loop control system or the outer loop of a cascade control svstem 

affects another cascade control system. Suppose A is controlled by a single

loop control system, B1 is controlled by the outer-loop controller BIG and B2 

is controlled by the inner-loop controller B2C (Figure 6-6). If a step test is 

applied to the set-point of A and the cascade control system is affected, it 

indicates A affects this cascade control system. If the outer loop controller BIG 

deviates, A affects B1 or both B1 and B2 and in the latter case, the link from A
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to B2 can be neglected because it doesn’t affect the final diagnostic result. If 

only the inner loop controller B2C deviates, A only affects B2.

MB2<B2

Figure 6-6: Identify the effect from a single
loop control system to a cascade control system

(2) A cascade control svstem affects a single-loop control svstem. Suppose A l is 

controlled by the outer loop controller AlC, A2 is controlled by the inner loop 

controller A2C and B is controlled by a single-loop controller (Figure 6-7). The 

case is quite similai* to that in Section 6.2.3. If a step is applied to the set-point 

of A l, and the single control system deviates, it indicates B is affected by this 

cascade control system. It is very difficult to decide whether A l, A2, or both, 

affects B and in this situation, if possible, process knowledge should be used, 

e.g., if the outer loop process is capacitive, it is quite certam that A l affects B. 

For the same reason as before, if the outer loop process is not capacitive, for 

robust fault isolation, it is acceptable to assume it is A2 that affects B. 

However, similar to the case in the last paragraph of Section 6.2.3, this is only 

an assumption and faults like process disturbances to Al should not be rejected 

deliberately because of this assumption.

A l

Figure 6-7: Identify the effect from a cascade 
control system to a single-loop control system
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(3) A cascade control system affects another cascade control svstem (Figure 6-81 

The interaction between them can be determined by the combination of (1) and 

(2).

A l B1 M B l

A2 B2

Figure 6-8: Identify the interaction 
between two cascade control systems

6.2.5 Summary of The Identification of Process Interactions

The identification of process interactions can be guided and summarised as the

following.

(1) The question as to whether or not a deviation in a controlled variable (not a 

slave variable in a cascade control system) will affect a measured variable, 

controlled or not, can be investigated by applying a step test to the set-point of 

the controlled variable. It is more difficult to determine whether a deviation in 

an uncontrolled variable will affect another variable because an appropriate step 

test is not likely to be realised. It might be possible to obtain this from related 

process knowledge.

(2) If there exists two controlled variables (not a slave var iable in a cascade control 

system), A and B, the mteractions between them can be determined by a step 

test. There are four possible relationships between A and B (Figure 6-9). The 

link dkections can be determined by the step test and by referring to the cause- 

effect knowledge of the SEVACS. If the change in A set-point can cause B 

related control system to deviate, it indicates A is an ancestor of B, and vice 

versa. If neither a change in A set-point can cause B related control system to 

deviate nor a change in B set-point can cause A related control system to 

deviate, it indicates A and B ai'e independent of each other.
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Figure 6-9; Four possible relationships between 
two controlled variables

(3) If a step applied to the set-point of A doesn’t cause B or its related control 

system to deviate, there are two possibilities: (1) A and B are independent of 

each other; (2) A is not an ancestor of B, but B may be an ancestor of A. If a 

step, applied to the set-point of A, causes B or its related control system to 

deviate, there are also two possibilities: (1) A is an ancestor of B, but not vice 

versa; (2) A is an ancestor of B, B may be an ancestor of A.

(4) For a cascade control system, there exists some ambiguities.

6.3 Constructing and Modifying An E-SDG

An E-SDG can be constructed as follows:

(1) classify nodes into controller related nodes (including controlled nodes, valve 

nodes and controller output nodes) and other measured nodes;

(2) apply step changes to controlled nodes one by one, observe and record how 

other nodes change in steady state;

(3) identify process charactenstics, interactions and construct the E-SDG;

(4) update the E-SDG by leai'ning.

Learning can be realised by:

(1) expert knowledge;

(2) reasoning about contradictory cause-effects: for example, suppose a plant is 

thought to have interactions as in Figure 6-1 A, the A related controller output 

and B deviate, A-sensor-bias-high is inferred from knowledge of SEVACS, and
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A-sensor-bias-low is inferred from testing, then this contradiction might be 

explained as either Figure 6-IB or Figure 6-1C interaction mstead;

(3) comparmg a diagnostic result with a known fault or disturbance: if they 

contradict, then something unknown exists. For example, in Figure 6-1, if A- 

sensor-bias is inferred, then the operator should check and confirm whether it is 

true. If it is not true, then either Figure 6-IB or Figure 6-lC  is possible;

(4) applying other possible methods, for example, add additional measurements or 

observers etc.

Human investigation and intervention should be incorporated mto the learning and 

updating process.

6.4 A CSTR Case Study

This section describes how the above procedure would be applied to a CSTR 

process that might, or might not, be open loop unstable. Hence two possibilities are 

examined: with stable parameters, with unstable parameters. Consider the simulated 

CSTR process shown m Figure 6-10: there are two outlets, the flow rate, Fi, is 

manipulated to regulate level, L, whilst a nominally constant flow rate, F, is drawn 

for a sepai'ate purpose; the reactor temperature, T, is maintained by varying the 

flow rate, FJ, through a heat exchanger installed in the CSTR and, in addition, 

concentration Ca is measured. The detail model of this CSTR process is described 

in Appendix 1. Note that there are three control systems, two of which have single 

loops, the other has a cascade arrangement.

(1) Classify nodes: there are three main controlled nodes F, L and T, in addition, FJ 

is an inner loop controlled node. There are three main controllers FC, LC and 

TC, plus one inner loop controller, FJC, thiee valve nodes FV, LV and FJV and 

one additional measurement node Ca- This example is somewhat simple 

because SDGs pertaining to the thiee control systems can be derived at the 

design stage. However this might not always be the case so here it is assumed 

that this is not possible.
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(2) Step tests: step changes are applied to L , F and T respectively, all the set-points 

are increased and the deviation dhections of other var iables aie then observed in 

the steady state (Table 6-1). Note that steps are only applied to outer loops.

TC

FJC

FJV

LV

LC

FC

Figure 6-10: A shuulated CSTR process

Table 6-1: Step tests

Step changes Observed deviation directions

LC set-point(+) FC(+), Ca(-), TC(+), FJC(-), FJ(+), LC(+), L(+)

TC set-point(-i-)
Unstable parameters: Ca(-), TC(-), FJC(+), FJ(-), T(+)

Stable parameters: Ca(~), TC(+), FJC(-), FJ(+), T(+)

FC set-pomt(+) FC(-), LC(+), F(+)

(3) Construct super-nodes for control systems: by referrmg to Equations (3-36) to 

(3-38), it can be deduced that the open loop processes of L, F and FJ are either 

stable or have even numbers of unstable poles. Turning to the open loop process 

that affects T: for the case where stable paiameters are present, it is either stable 

or has an even number of unstable poles; for the case where unstable parameters 

aie present, it has an odd number of unstable poles. All the open loop processes 

here have a type number of zero.
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(4) Identify process interactions: using SEVACS knowledge, the super-nodes 

constructed and the deviation directions in Table 6-1, process mteraction can be 

estabhshed and an E-SDG of the CSTR can be built as in Figure 6-11. Note that 

a set-point change can cause either positive or negative deviations depending on 

the sign of {AqKc} (Figure 4-2) or {AoKd} (Figure 4-3).

(5) Learn and modify the E-SDG: for instance if there is expert knowledge that FJ 

can only affect Ca indhectly through T, then the diiect Ihik from FJ to Ca can 

be removed from the E-SDG. Or for instance if there is a disturbance or fault 

that causes C a (~ ) ,  TC(+), FJC(-), FJ(+) and LC(+), it is unlikely that the cause 

is L-sensor-bias because T control system deviates and Ca deviates, but F 

control system doesn’t deviate. To infer this fault note that there must be a 

common ancestor of L, T and Ca- After investigation, the common ancestor is 

found to be Fq because the decrease of Fq can cause those variables to deviate in 

those directions. Now the E-SDG can be updated as in Figure 6-12.
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TV

TC
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(A) With stable parameters

FJV

Vl.V

TC

FV FC

(B) With unstable parameters 

Figure 6-11: Constructing an E-SDG for the CSTR
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LC FJV

\L V FJC

TC

FV

(A) With stable parameters

LC FJV

\L V FJC

TC

FV
FC

(B) With unstable parameters

Figure 6-12: The updated E-SDG for the CSTR
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CHAPTER? 

STEADY STATE IDENTIFICATION 
AND CHANGE DETECTION

The approach described in this thesis relies on the fact that faults cause sustainable 

changes to the steady state and that a change in the steady state can be detected and 

quantified. In practical terms this means that the process must be continually 

monitored to observe whether it is in a steady state or not. Having detected that the 

process has entered a ‘non-steady’ phase, and having waited for this phase to end, a 

decision must then be made as to whether the process has returned to its previous 

steady state or to a new one. Qualitative deviations can then be obtained. Figure 7-1 

summarises this procedure.

Measurements and 
controller outputs

Is the process at 
a steady statê Z

Has the steady 
state deviated^

Trigger SEVACS 
based FDD procedure

Figure 7-1 : Steady state identification and change detection
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7.1 Steady State Identification

The steady state identification algorithm described here is due to Cao & Rhinehart 

(1995). They assume that the measured vaiiable from a real process can be viewed 

as representing the true process value corrupted by additive noise. If the true 

process value remains unchanged at every sampling time during a certain time 

interval, it can be considered that the corresponding variable is at a steady state (or 

pseudo steady state if steady state is too strict) during this time interval. As fai* as 

this thesis is concerned, if all measured vaiiables of a process are at a steady state, it 

can be considered that the corresponding process is at a steady state. It should be 

noted that the concept of steady state here is less strict than stationary or strictly 

stationary in statistics. In statistics, stationary requires not only the mean of the 

time series data to be constant but also the distribution and autocorrelation, if any, 

to remain unchanged with time.

There are three main approaches to steady state identification based on different 

statistics as follows:

• t-statistic: the idea is to perform a linear regression over a data window and then 

to perform a f-test on the regression slope. If the slope is significantly different 

from zero, the considered data variable is almost certainly not at a steady state, 

otherwise, it is at a steady state;

• F-statistic: this is to use an F-test type statistic, a ratio of variances as measured 

on the same set of data by two different methods. The data in the most recent 

window aie averaged and the variance is first conventionally calculated as the 

mean-square-deviation from the average. The variance can also be calculated 

from the mean of squaied differences of successive data. If the time series is 

stationary (i.e. if the relevant variable is at a steady state), then ideally the ratio 

of these two variances wül be unity. Alternatively, the ratio will be unusually 

large if the data variable is not at a steady state;

• R-statistic: which was developed by Cao and Rhinehart (1995) and is styled 

after the F-test type of statistic. R is also the ratio of variances as measured on 

the same set of data by two different methods. However this time R-statistic" s
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fil'st estimate of the variance (or numerator) is based on the filtered squared 

deviation from previous filtered value.

The fii'st two approaches are usually used offline because theii" online versions 

requiie considerable data storage, associated computational effort and user 

expertise. For instance, there are no universal rules to choose the length of the data 

window and the selection will be judgmental, these two approaches could suffer 

false alarms often because of noise change and autocorrelation.

The R-statistic based approach is intentionally designed to be used online because it 

is computationally inexpensive and does not suffer from the other drawbacks 

mentioned above. It has proved to be effective when applied to several chemical 

processes online. Thus the R-statistic is recommended for the SEVACS. Details of 

the R-statistic are given in the next section and the reader is refened to Cao and 

Rhinehait (1995, 1997) for more details.

7.1.1 The R-statistic

The primitive way of estimating variance is:

If an EWMA (exponentially weighted moving average) filtered value where

X  + (l-? lj)X  y M (7-2)

and

<1,

is used to replace the sample mean X # , a  mean squared deviation can be defmed as 

the expectation:

V '= E ( ( X , - X y y _ j ' )  

and can be estimated by :

(7-3)

Assuming {X,} is uncorrelated, then there is no autocorrelation between Xi and X//.; 

and ( f  can easily estimated from v .̂
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Define:

(7-4)

suppose the process is at a steady-state condition and there is no autocoiïelation in 

the sequential measurement, then Xi and Xfj.] ai'e independent, so that the variance 

on Û? is related to the variance on X  and X /  :

(7-5)

Further, for the EWMA, when { Xi } are independent and stationary, the variance on 

X f  becomes:

(7-6)

From the above two equations, we have:

(7-7)

and so:

à l = ^ v ^  (7-8)

If we use a filtered value instead of the traditional average as represented in 

equation (7-3):

v}, = ^^(X, -  X y ,_ j' + (1 -  , (7-9)

( 0 <  A., < 1)

and suppose the process is stationaiy:

E(v},) = E((X,-Xy,_i)')=v'  

we have :

var(v ji) = - ^ - v a r ( ( X , .  -  X

Â2

which means that provides a computationally efficient, unbiased esthxiate of 

( X i - X f . i . , Ÿ .

Then the estimate of the noise variance from this first approach will be:

(7-10)
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Using this method, ^5 will be increased from its steady-state value by a recent

shift in the mean. Such a measure could be used to trigger the not-at-a-steady-state 

condition; however, the thi’eshold is dependent on both the measurement units and 

the unknown process noise variance.

The second method to estimate the variance uses the mean squared differences of 

successive data. Define:

6 " = E ( ( X , - X , _ Q ' )  (7-11)

and

E { s l ^ = j E ( ( X , - X ; _ , Ÿ ) .  (7-12)

If we use the filtered data:

6},; =X3(X, +(1-X 3)6},_1, (7-13)

( 0 < X s  < 1)

obviously we have the estimate of the variance:

4 = % ^ .  (7-14)

then the ratio expressed by

fi,- = (7-15)

can be used to be the criteria for a steady state as foUows:

1. if the process data is at a steady state (process mean is constant, additive noise 

is independent and identically distributed), then Ri will be near 1;

2 . if the process data mean shifts, or if the noise is autocorrelated, then Ri will be 

greater than 1. When there is a shift in mean, both the calculations of the 

vai'iance will be influenced temporally. The fii'st calculation will increase more 

and persist longer, so Ri will be greater than 1 for a period of time, and that is 

the way that the not-at-a-steady-state condition can be identified;

3. if the sequentially sampled process data alternate between high and low 

extremes, then Ri will be less than 1. This would be very uncommon in 

chemical processes. Hence the work only tests whether Ri is greater than a 

critical value Rait -
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7.1.2 Correlated Processes

The preceding algorithm is available for uncorrelated processes. If the process is 

autocorrelated, then Cao and Rhinehart recommend that an appropriate sampling 

interval should be selected to ‘eliminate’ the influence of autocorrelation 

efficiently. For example, for a fhst-order autoregressive process which is sampled 

every P data points:

Xi ~ (pXi-j + Ui, (7-16)

where JJ. + m , m is zero mean noise and 0 < <̂ < 1 for the process to be stable, 

Cao and Rhinehart (1995) give:

= i£ (S } . , )  = i f i ( ( X ,  -  = ( l - P p ) o l  (7-17)

and

Eisl,}= V/ , ) = - ■ (7-18)
Z Z i — ti — AQ-pp

where Pp=(j)^ is the autocorrelation coefficient at lag P for the first-order 

autoregressive process.

For stable autoregressive processes, the bigger the step size P, the smaller the p ̂ . 

So, the above equations indicate that a big sampling interval could make the means 

of those estimations close to the true process variance; and, as a result, /?, the ratio 

of those two estimates wül be centred towaids unity and the probability density 

function of R wül be close to that of uncorrelated cases.

7.1.3 Choice of Critical Values

Cao and Rhinehart (1997) have proven that the distribution of the R-statistic is 

effectively only a function of A,i, X2 and X3 so that the critical value Rcru need only 

be calculated for different combinations of Ài, and ^3 values. A table of Rcit is 

given below (Table 7-1). Its construction is based on the probability density 

functions of R calculated by simulation using computer generated pseudo-random 

numbers.
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Note from Table 7-1 that, if ^i=0.01, A,2=0.02 and A,3=0.02, an Rent value of 1.27 

would be requii’ed to be 99% confident that the process is in steady state. However, 

it will be seen in the next section that the approach fails to accommodate the long 

term fluctuations that are prevalent in real plants. Although this effect has been 

recognised by Cao and Rhinehart, they failed to recommend a solution and hence 

the approach here is to choose Rent on the basis of actual performance. In addition 

they fail to point out that an EWMA is a filter with filter like attributes, which need 

to be taken into account. The foUowmg sub-section examines these attributes, in 

particulai’ the interdependence between the A-’s, the sampling time interval AT and 

the filter time constant.

Table 7-1: Critical values of the R-statistic (Cao and Rliinehart, 1997)
A-2 Aa oc=0.50 0=0.25 0=0.10 0=0.05 (X=0.01

0.5 0.5 0.5 0.99 1,29 1.70 2.01 2.72
0.2 0.5 0.5 0.96 1.43 2.21 2.93 4.97
0.1 0.5 0.5 0.94 1.47 2.40 3.29 6.05

0.05 0.5 0.5 0.94 1.49 2.50 3.50 6.69
0.02 0.5 0.5 0.93 1.49 2.56 3.63 7.11
0.01 0.5 0.5 0.93 1.50 2.57 3.66 7.21
0.5 0.2 0.2 1.00 1.15 1.32 1.45 1.72
0.2 0.2 0.2 1.00 1.22 1.51 1.74 2.32
0.1 0.2 0.2 0.99 1.24 1.57 1.84 2.57

0.05 0.2 0.2 0.99 1.25 1.60 1.90 2.70
0.02 0.2 0.2 0.99 1.25 1.62 1.93 2.79
0.01 0.2 0.2 0.99 1.26 1.63 1.95 2.82
0.5 0.1 0.1 1.00 1.10 1.21 1.28 1.43
0.2 0.1 0.1 1.00 1.15 1.32 1.44 1.73
0.1 0.1 0.1 1.00 1.16 1.35 1.49 1.83
0.05 0.1 0.1 1.00 1.17 1.37 1.52 1.89
0.02 0.1 0.1 1.00 1.17 1.38 1.53 1.93
0.01 0.1 0.1 1.00 1.17 1.38 1.55 1.95
0.5 0.05 0.05 1.00 1.07 1,14 1.18 1.28
0.2 0.05 0.05 1.00 1.10 1.21 1.28 1.44
0.1 0.05 0.05 1.00 1.11 1.23 1.31 1.50

0.05 0.05 0.05 1.00 1.11 1.24 1.33 1.52
0.02 0.05 0.05 1.00 1.12 1.24 1.34 1.54
0.01 0.05 0.05 1.00 1.12 1.25 1.34 1.55
0.5 0.02 0.02 1.00 1.04 1.08 1.11 1.16
0.2 0.02 0.02 1.00 1.06 1.12 1.16 1.24
0.1 0.02 0.02 1.00 1.07 1.14 1.18 1.27
0.05 0.02 0.02 1.00 1.07 1.14 1.19 1.28
0.02 0.02 0.02 1.00 1.00 1.14 1.19 1.29
0.01 0.02 0.02 1.00 1.07 1.14 1.19 1.30
0.5 0.01 0.01 1.00 1.03 1.06 1.07 1.11
0.2 0.01 0.01 1.00 1.04 1.08 1.11 1.16
0.1 0.01 0.01 1.00 1.05 1.09 1.12 1.18

0.05 0.01 0.01 1.00 1.05 1.10 1.13 1.19
0.02 0.01 0.01 1.00 1.05 1.10 1.13 1.19
0.01 0.01 0.01 1.00 1.05 1.10 1.13 1.19
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7.1.4 The Balance between and The Sampling Interval AT

Parameters IhXiAs and AT should be chosen so that noise effects are abated 

efficiently and the statistics reflect the truth in time. To explain this, compare the 

EWMA to the conventional first order filter (Figure 7-2).

1
---w

Ts + l
w

Figure 7-2: The first-order filter 

The fii'st-order filter can be represented by the continuous form:

Y + T ^  = X  , (7-19)
at

or the discrete form:

= (7-20)AT

where Xi is the input at the ith instant,

Yi is the filtered output at the ith instant,

T  is the time constant of the filter, 

and AT  is the sampling time or time interval of the filter.

Then Y in recursive form:

AT

(7-21)
T T

= %X,+{l-X)Y._,

where 0 < A. < 1 is the filter factor.

It can be seen that if A. is kept constant, whilst changing the time interval AT, the 

time constant T  is changed as well. The smaller the time constant T, the better the 

tracking ability of the filter but the worse the de-noising ability of the filter, and
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vice versa. Because T  can affect the performance of the filter significantly, AT  can 

have a great influence on the identifier performance.

7.1.5 The Application of The R-statistic

The R-statistic based steady state identifier has been applied to a simulated CSTR 

process (see Appendix). At time Ihi*, the temperature (TEMP) set-point was 

changed from 600 °R to 597 °R, R-statistics of the temperature (TEMP) and the 

output of the FJ controller (FJC) under different sampling intervals are shown in 

Figures 7-4A —  7-4H. These statistics have been generated using A,i=0.01, Â %=0.02 

and A,3=0.02. Note that a threshold of Rcnt=2 has been drawn. It has been increased 

from 1.3 since this value would result in an unacceptable level of false detection 

and Rcrit was raised to 2 to accommodate this.

It has been seen that the bigger the sampling interval the less difference between at- 

a-steady-state and not-at-a-steady-state conditions (Figure 7-4C), and also the 

longer the time duration of the transient response (Figure 7-4G).

Autocorrelation of TEMP is not an issue because sensor dynamics are not modelled 

so that the only autoconelation will be due to the process time constant [500 secs, 

2000 secs] which is very long relative to the sampling interval (Figure 7-4E). One 

step lag autoconelation coefficients of TC, FJC, TEMP and Ca have been 

calculated for different sampling intervals (Table 7-2). Only point of interest are the 

two controllers’ (TC and FJC) autoconelations, though still very small. It can be 

seen from the Figure 7-3 that they could be decreased effectively by increasing 

their time intervals.

Table 7-2: One step lag autoconelation coefficients

Sampling intervals
1 sec 2 secs 5 secs >10 secs

TC 0.0107 0.0095 0.0061 -0

FJC 0.0026 0.0025 0.0021 -0

TEMP -0 -0 -0 -0

Ca -0 -0 -0 ~0
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One step lag autocorrelation 
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different sampling intervals
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Figure 7-3: Autocorrelation tests

Sampling intervals should be reasonably selected for optimal steady state 

identification performance. For example, the average value of R is bigger than its 

critical value even when the process is actually in steady state if the sampling 

interval is too small (Figure 7-4B and 7-4F), but increasing the sampling interval 

will cause R to decrease and the transient response time duration to increase (Figure 

7-4C and 7-4G). As shown in the Figures, the best sampling interval is 25 seconds 

for FJC (Figure 7-4D), and 10 seconds for TEMP (Figure 7-4H). Four steady state 

identifiers for FJC, TC, TEMP and Ca under the above set-point change are shown 

in Figures 7-5 A —  7-5H with A,i=0.01, A-2=0.02 and 2.3=0.02. The vaiious sampling 

intervals 25 seconds, 10 seconds, 10 seconds and 10 seconds are compromise- 

balanced. Note in Figure 7-5F that the statistic returns to at-a-steady-state for a 

short while before returning to not-at-a-steady-state', as wül be explained in the 

next section, this occurrence is ignored when deriving the qualitative changes in 

steady state. So the performances in Figures 7-5 A — 7-5H are acceptable.

To summarise, it is suggested that A.1, X2, X3, AT  and Rcu should be tuned 

reasonably and scrupulously for the best steady state identification performance on 

a real application.
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7.2 Steady State Change Detection

This section examines how steady states can be compared to determine qualitative 

deviations. The procedure is in 2 parts, a quantitative test is applied followed by a 

qualitative one. The quantitative part is a common hypothesis test in statistics, the 

aim is to compare the difference between the sample means of two independent 

SRSs (simple random samples) with unknown variances.

Suppose there are two independent SRSs Xi with size m  and X2 with size «2, which 

are drawn from different normal populations with unknown means and |Lt2 and 

unknown variances a f  and respectively. In order to test the hypothesis Ho: \i\

= p.2, a two-sample t-statistic can be used:

t =

with

È È
estimated sample means Z^  and Z j = —

(7-22)

estimated sample variances s^ = --------------- = — —-------- ^ iî=l
«i(«i -  I)

« 2  (  «2  Y

"  X  is l
and 2̂ = 1=1

77.2 («0-1)

These sample means and vaiiances can be easily calculated onhne. For a

1 -Cconfidence level C, t = t{k) is the upper critical value for the t-statistic,

where t{k) is the value from the table of t distribution critical values with k the 

smaller of nj- 1 and 71.2-1.
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Note that there will then be periods of time when the test cannot be applied because 

the sample means and variances are in the process of being formed be. there will be 

blackout periods. Obviously there will also be other times when the test cannot be 

applied because the process is not in a steady state. Suppose that a variable enters 

an unsteady state at time and arrives at a new steady state at a time 7b. Then 

there will be an unsteady period fro T,i to 7b, which would be followed by a

blackout period until To+naAT. At that time the ^statistic would be computed on 

the basis of data collected during the two time periods from Tu-mAT to T» and from 

7b to To+n2AT. Comparing with t* , a threshold evaluated at a certain confidence 

level C, if t>t*, the variable is said to be at-a-high-value with confidence level C; if 

t<-t\ the variable is said to be at-a-low-value with confidence level C; otherwise 

the variable is said to be unchanged or normal with confidence level C. Any 

deviation or change in status would be reported to a higher level system, e.g. the 

SEVACS based FDD system (see Figure 7-1), which would acknowledge its 

occurrence. On acknowledgement, aU statuses would be reset to normal so that the 

procedure could be repeated. The procedure would then enter a blackout period 

immediately to ensure that it had sample means and variances prior to the 

occurrence of another unsteady phase. If an unsteady phase did arise during this 

period, then the reset would be cancelled i.e. effectively the variable would be 

deemed to be in the same unsteady phase as before.

To demonstrate this consider the same CSTR process data as before. The various 

stages are shown in Figures 7-6A —  7-6F. Figures 7-6A & 7-6D show the raw 

data, 7-6B & 7-6E thek R-statistics and 7-6C & 7-6F their t-statistics. Focusing on 

FJC change detection (Figures 1-6A  —  7-6C):

(1) [0, ?a], the fii'st nominal steady state test; FJC is in its nominal steady state, but 

since the program has just been activated, data is collected to derive the 

statistics for X\, and hence blackout is output;

(2) [/a, tB\: the state remains unchanged and so at-a-normal-value is output until a 

change is detected on the basis of the R-statistic at time tsl this is as a result of a 

change in TEMP set-point at time 1 hour;

(3) [ts, tc\: not-at-a-steady-state is now output until a time shortly before tc when 

the R-statistic exceeds its thi’eshold transiently causing the output to switch

123



between not-at-a-steady-state and blackout. Under these two states, the high 

level FDD system won’t do anything and consequently short-term fluctuations 

into and out of steady state are effectively ignored.

(4) {tc, to]: The output is at blackout for hours where m=101and 722=101. A 

change in steady state is now detected, using the confidence level C=95% and a 

thi'eshold of r*=r(100)=1.984, and the output changes to at-a-high-value.

(5) [to, to]: This output remains until it is acknowledged at to-

(6) [to, to]: The mean and sample variances are obtained so the output is blackout. 

Finally the output returns to at-norinal-value.

Note that the FDD program starts to diagnose the fault at times to and r a .
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Figures 1-6A  —  7-6F: Steady state change detection of FJC and TEMP 
(TEMP set-point changed from 600 °R to 597 °R at the 1 hour time) 
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CHAPTER 8 

APPLICATIONS

For better understanding of the SEVACS based approach to process monitoring and 

fault diagnosis, two applications will be investigated in this Chapter, one is to a 

simulated CSTR, the other is to the Tennessee Eastman Process Benchmark.

8.1 Application to The CSTR Process

8.1.1 The SDG Representation and Simulated Faults

The CSTR process has aheady been introduced in Chapter 6, Chapter 7 and 

Appendix 1. Figures 8-1(a) & (b) show its signed diiected graph (SDG) 

representation, for both stable and unstable parameters, that have been constructed 

from the equations given in the Appendix 1. Note that there are three control 

systems (enclosed by dashed lines), two of which have single loops, the other has a 

cascade aiTangement. Compaied to the stable case, the unstable case requiies a 

number of changes, the signs of the branches from FJ to T, T to TC and all the 

disturbances to T aie inverted. It is assumed that the output from each cii'cled node 

can be recorded either because it can be measured, as is usually the case for sensors 

and valves, or because it has been calculated, as m the case of a digital control 

output. The list of faults considered is given in Table 8-1 together with theii’ 

consequent deviations in the varions measurements that can be recorded. These 

were obtained from a simulation.
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Figure 8-1: The SDG of the CSTR example (circled variables are measured)
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Table 8-1: Simulated faults and steady state deviations in the CSTR

FAULT LC FC TC FJC FJ Ca
(1) L-sensor-bias-high — — — + _ +
(2) T-sensor-bias-high stable + — + +

unstable — + —
(3) F-sensor-bias-low + —
(4) FJ-sensor-bias-low — —
(5) LV-valve-bias-high +
(6) FV-valve-bias-high -f-
(7) FJV-valve-bias-low —
(8) Low Fimax
(9) Low FJmax —
(10) Low Fmax —
(11) Low Fo + — -r —
(12) Low Ko — + — ■f
(13) High Cao + — + +
(14) Low Uo + - +

8.1.2 SEVACS Analysis

Label the L controller as controller 1 with output xi, F as controller 2 with output x% 

and T/FJ as a cascade controller 3 with its outer loop output xi,3 and inner loop 

output X2,3, and refer to the nomenclature in Chapter 3, then take the stable case as 

an example:

Kii = Kio = Koi = 03x3 ,

[X j ]  —

'  0 K fl O'
= K lf 0 0

_^LT 0 0

[ e , j Wml,]

{Keul {K e,J {Kcu} {Kcul

[dp.,.] [ d , J-T
(K..,.) {K„.}

[ 9 r . J  [ d „ . . J  [ d ; . , J  { K , p } [ 9 , J   ̂ ( K , p ) [ d , , , . ]  [ d , J

{K,.,,} {K „,J {K„,,} {K„,,)

[x.,3] 

[*2.3] =

[e„3] [d„.,3] [d;.,3l { K „ )[6 ,,]  {K „} [d „„] , , ,  , ,
 -----------------------------------------------------+ ------------------ + [d„2,]  and

{Ke.,3} {K,,.,} (K^.,3} {Kp.,,}

[6 , , ]  [d„,,3] [dp.,3] [K pp}[e,J

+

(K o.,3){Ko2,3) {K..,3)(K.2,3) (K..,3}{K,„}

[ K L T ) [ d , „ . , . ]  [ d p 2 , 3 l  [ d , , 3 ]

lKo.,3l[Kp2,3} (K.2,3l [K,,3>
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where {Kc,i} = +, {Kc,2} = -  {Kd.s) = - ,  {Kc2,3} = ~ {Kfl} = - ,  {Klf} = +, {Klt} 
= +, {Kv,i} = - ,  {Kv,2} = -  and {Kv.s} = -  so that

[x J  = [0 ,J  -  [d ^ ,J  -  [dp,J + [0 ,,]  -  [d ^ ,J  + [ d , J ,

[X2] = -[0r,z] + [dml.2] + WpFl] + [Qr,J “ + Wv.z],

[ ^ 1,3 ]  =  J  +  [ d p i , 3 ]  +  [ 0 r , J  -  [ d m l . l ]  +  [ d m 2 , 3 ]  ^ n d

[^2,3] = [Or.3] ~ [dtni.3] “  [dpi,3] -  [Or,J + [d^i,J + [dp2,s] + [dv.sl-

From Section 3.7, to generate a set of rules fii'st let set Hoj contain those kj 
controllers whose single loops interact with Controller Number j, and those koj 

controllers whose outer loops interact with the Controller. Then Hoj = {Controller 

Yj,!, Controller Yj,k,, Controller Controller }, let set Hij contain

those kij controllers whose inner loops interact with Controller j, then Hij = 

(Controller Controller }, and let set H,j)j contain those k,|,j instruments

that interact with Controller Number j. Then those sets that contain the all the 
variables that are contained in each of the equations can be formed: Csj for single 
loop controller j, Cdj for the outer loop of cascade controller j, Cc2j for the inner 
loop of cascade controller j, and C,},j for Instrument Number j.

Consider first the case where no additional instrumentation is available, then 
Hoi-(Controller % Controller 3}, Hq2=(Controller 1}, Ho3={Controller 1}, 
Hii=Hi2=Hi3=( }, and there are sets

Cs,l — {®r,l’®r,2’djni,i,dini,2’dpi,i,dy 1},

Cg,2 — {^r,I’̂ r,2’dmij ,dnii,2’dpi,2’dy,2 }’

C c l . 3  — { ^ r , l ’^ r , 3 ’d m l . l ’d , n i , 3  j d p î , 3  ,d j j j2 ,3  }  ,

a n d  C ^ 2 , 3  — { ^ r , l ’® r , 3 ’d m l , l » d n i l , 3 , d p i , 3 , d p 2  3 , d ^ 3  } .

The next step is to identify all the controller output variables and additional 
measurements associated with (Controller j}uHojUHijUH,j,j, and generate the rule 
set based on all possible combinations of their having deviated. To do this let [ X i ] ,  

[d>i] be the Booleans that denote [xi] ^  null, [(|)i] nuU and so on, then there are:

Controller 1: [X J a [X 2] a[X i,3] a [ X 2.3] “ > {0 ,̂1, d^u} Rule 8-1.1

[X J A  [ X j ]  a  [X13] A  [ X 2 3 ]  j d v , i ' d p i i j  Rule 8-1.2

Controller 2: [X J a  [Xj] -> {0 , 2, d^^j} Rule 8-2.1
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[X,] A  [X ,] ^  Rule 8 - 2 . 2

Controller 3 :  [X,] a  [X ^] a  [X23] -> {d̂  j .d j^ }  Rule 8 - 3 . 1

[Xil A  [ X p g ]  A  [X 2  3 ]  — > {^r.a’̂ mrs’̂ pi.s} Rulc 8 - 3 . 2

p ÿ A [ X ,3] A p Q - ^ { d „ 3,,}- Rule 8 - 3 . 3

In this particular case, the consequences aie identical to those that would be 
generated if the loops were non-mteracting; exchanging knowledge about controller 
outputs has failed to separate the various possibihties any further. Greater 
sepai'ation can only be obtained by either representing correlated disturbances 
and/or making use of additional measurements and/or making use of sign 
information. An example of the fnst possibility involves elaborating on dp,i and 

dpi,3 by replacing these elements by theii- components, i.e. {f^, F^^^^ i  for dp,i and

{C^ ,K, Fq ,Tq ,Uq , Tp }for dpi,3. Then Rule 8-1.2 can be re-written as

[Xj] A [X j] A [X13] A [X^,^] {d^i,dpi}-> {dv,i,Fo,F^j^x} 8-1.2a

and the following extra Rules can be added:

Controller 1 : [ X j  ] a  [ X j ]  a  [ X ^  3 ]  a  [ X 2 ,g ] ^  { F q  }, Rule 8-1.3

Controller 3: [X J a [ X i 3 ]  a [ X 2 ,3 ]  {Fq}. Rule 8-3.4

That is, it is possible to isolate Fq. Turning to the possibility of incorporating 
additional measurements, if a measurement of concentration Ca is now made 
available then knowledge of its relationships with other variables can be exploited 
to separate the possible options further. For mstance the following relationship can 
be obtained from the SDG in Figure 8-1:

[C A ]-{K ,eA }[e.J + [Fo] + [C ^o]-[K ]

= - [ 6 , J  + [d ^ J  + [Fp] + [C^p] -  [Kp] -  [0 , 3] 

where [0u ]  = [B,,s] ~[d^i,3] •

Then let [ï1>i]=[Ca], H^,i={Ca}, H<j,,2={}, H0,3={Ca}, and

~ {0 r,i ,0 r,3 ̂ dm,i ^1,3 fo  ao ̂ ^0 ) : tGplace Ca by all elements of C<j),i in the sub

set for dpi,3, similarly replace K by {Kp,0^ 3,d„j^3}. Rules 8- 1.2a, 8-1.3 and 8-3.4 

above can now be revised to separate Fq from Fimax^

Controller 1: [X J  A  [X^] A  [X  ̂3 ] A  [X^ ̂  1A  [0  J  {I^} Rule 8- 1.3a
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[X, ] A  [X J  A  [X ,3 ] A  [X ,,3 ] A  [O J  {d,, I R^lC 8- L2b

Controller 3: [X J a  [Xj 3] a [X 2,3] a [ O J  {Fp} Rule 8-3.4a

and parameter Ko can be separated by splitting Rule 8-3.2 above as

Controller 3: [X J  a [ X 3 3] a [ X 2,3] A[d> J -> {Tp,Uo,TJp} Rule 8-3.2a 

[X J A[X^31A[X2,3] A [ 0 J  ^  {C^p,Kp,0 ^3,d ,,,3 3} Rule 8-3.2b

Rules 8-1.1, 8-2.1, 8-2.2, 8-3.1 & 8-3.3 stdl apply but do not involve Ca- As in 
Section 3.7, sign information can also be incorporated, for instance faults in dmi,3 
(i.e. temperature sensor, T) can be separated from faults in dpi,3 (e.g. Ko). Finally 
an example of the method’s ability to diagnose multiple faults can be observed by 
considering the simultaneous occuixence of faults in F Jm ax  and F m ax- Although the 
condition Cs,2 Cc2,3 = 0  (see Section 3.7) doesn’t hold, in this case it is possible 

to diagnose both faults separately because FnAxG dpi,2, FfMAxG dp2,3, dpi 2^ Q ,2 only

and dp2,3GCc2,3 only.

It has been pointed out in Section 3.9 that it is doubtful that the above set operation 
approach would scale to most large processes. The procedures proposed in Chapter 
5 are thought to be more practicable and are applied in the next section.

8.1.3 Fault Isolation Examples

To save space, a detailed description of the isolation process for Fault 1 will be 
described, less will be given for the other 13 faults. Only single faults wiU be 
discussed.

Fault 1 : L-sensor-bias-high. If L sensor biases, then in the steady state aU control 

systems will deviate (Table 8-1). If the general procedure of Section 5.1 is applied 

then the following would take place.

1. The reasoning process can stait from any deviated controller node.

2. Start, say, at the level controller LC: by assessing Table 4-1 and tables in Figure 

8-2, Figure 8-3 and Figure 8-4, which have been adapted from Figure 4-4, 

Figure 4-6 and Figure 4-7 accordingly, the search process would produce the 

following possibilities: {L-sensor-bias-high, LV-valve-bias-low, high-Fo, low- 

F im a x , F-sensor-bias-high/low-F}.
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Figure 8-2: The effect of L-sensor-bias in the level 
control system and the fault-decision table
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disturbance to the level control system and the fault-decision table
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Figure 8-4: The effect of the valve bias in the level 
control system and the fault-decision table

3. Refer to the fault isolation principle in Section 5.1, in the steady state, a valve 

bias and process disturbances wouldn’t cause the corresponding controlled 

variable to deviate and thus wouldn’t affect descendants of that controlled 

variable; a sensor bias would cause the controlled variable to deviate and its
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descendants would be affected. Therefore the test process would eliminate the 

LV-valve-bias-low, high-Fo and 1 o w -F im a x  because the descendants of L (T and 
F) have been affected. This leaves L-sensor-bias-high and F-sensor-bias-high.

4. Further examine the flow rate controller FC m the test process, F-sensor-bias- 

high would be eliminated because only L-sensor-bias-high/low-L would cause 

FC to deviate negatively (refer to tables in Figure 8-2 and Figure 8-3). Thus the 

root fault L-sensor-bias would be located.

If the procedure is stalled from the deviated temperature controller TC, then 

initially T-sensor-bias as well as process disturbances including changes in C a , F q, 

L, K, To, Uq and TJo would form a fault candidate set (see Section 4.4) in the 

search process. In the test process, the fault candidate set would shiink to be {L- 

sensor-bias-high, high-Fo} and other elements would be rejected because LC 

deviates. High-Fo would be further rejected in the test process because the flow rate 

control system has been affected. Thus the root fault L-sensor-bias would be also 

located.

As has been said in Section 5.1, the above procedures are somewhat cumbersome. 

Note that both the level and the flow rate control systems have smgle loops and the 

interaction between L and F is of Type A. This means that either the improvements 

of Section 5.2 or of Section 5.3 could be applied.

If Section 5.2 is applied (and in particular Section 5.2.2.1) and it is started from the 

level (L) controller LC, then initially the fault candidate set is {L-sensor-bias-high, 

F-sensor-bias-high} because both controllers deviate and there is no common 

ancestor for L and F. In addition the effects between L and F are opposite (Table 5- 

1), so it would be possible to reject F-sensor-bias-high and only leave L-sensor- 

bias-high, which can be further tested by forward reasoning about the temperature 

cascade control system.

If Section 5,2 is applied instead (and in particulai' Section 5.3.1), the fault isolation 

procedure can be improved by constructing the modified Type A interaction shown 

in Figure 8-5. Here L-sensor-bias and F-sensor-bias can both be viewed as process 

disturbances to L and F. The LC deviation (-) implies that the fault candidate set 

could be (L-sensor-bias-high, F-sensor-bias-high}, after using the test strategy, F- 

seiisor-bias-high can be rejected because the FC deviation (-) implies that the fault
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candidate set could be {L-sensor-bias-high, F-sensor-bias-low}. Therefore L- 

sensor-bias-high is the only possible fault.

L-sensor-bias

-h
LCJ

LV FV,

F-sensor-bias

Figure 8-5: Type A modified SDG for L & F mteraction

Fault 2: T-sensor-bias-high. If T sensor biases, then in the steady state both the 
outer loop and the inner loop controllers of the temperature cascade control system 
will deviate. However neither the level control system nor the flow rate control 

system will be affected although concentration Ca will also deviate. It is worth 
noting that, if the temperature is open loop unstable, then the controller deviations 
will be opposite to those of the stable case.

Starting from deviated TC, in the search process, initially the fault candidate set 
would be (high-CAo, low-Ko, Iow-Fq, T-sensor-bias-high, high-To, Iow-U q, high- 
TJq} (Section 4.4.1). Then in the test process, high-To, low-Uo and high-TJo can be 
removed from the fault candidate set because Ca deviates and these variables 
cannot cause Ca to deviate according to the fault isolation principle in Section 5.1. 
Low-Fo can also be removed from the candidate set by noting that LC controller 

doesn’t deviate. High-CAo, low-Ko or T-sensor-bias-high can all cause Ca to deviate 
high. Low-Ko and T-sensor-bias-high aie not distinguishable from the SDG. High- 
Cao can only be eliminated if it meets the latter condition of the following;

• if the temperature process is open loop stable or has an even number of open 
loop unstable poles, then a high Cao wül cause the same deviations as T-sensor- 
bias-high so a Cao fault can not be separated and eliminated;

• if the temperature process mcludes an odd number of open loop unstable poles, 
the deviations caused by high Cao contradict with the deviations caused by T- 
sensor-bias-high so Cao can be separated and eliminated.

Fault 3: F-sensor-bias-low. Similai’ to the L-sensor-bias-high, this can cause both 
the level and the flow rate control systems to deviate. The interaction between 
these two control systems is of Type A (Section 5.2.2.1), they have opposite effects
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so that L-sensor-bias-high would be diagnosed either from Table 5-1 or by applying 
the general fault isolation procedure (Section 5.1 or Section 5.3.1).

Fault 4: FJ-sensor-bias-low. FJ sensor is located in the inner loop of the 
temperature cascade control system. Refer to Table 4-2 and Figure 4-5, if only the 
outer loop controller deviates, mner loop sensor bias is the fault and the sensor bias 
has the same direction as the deviation of that sensor measurement.

Fault 5; LV-valve-bias-high. A valve bias only causes its own control system to 
deviate. Refer to Table 4-1, Figure 8-2 and Figure 8-4, and according to the fault 

isolation principle, the fault candidate here is {LV-valve-bias-high, 1 o w -F im a x } -

Fault 6: FV-valve-bias-high. Similar to Fault 5; the fault candidate is {FV-valve- 

bias-high, high-FMAx}.

Fault 7: FJV-valve-bias-low. FJV valve is located in the inner loop of the 

temperature cascade control system. According to Table 4-2, if only the inner loop 
controller deviates then the fault relates to the inner loop. Refer to Figure 4-6 and 
Figure 4-7, the fault candidate set is {FJV-valve-bias-low, I o w -F J m a x } .

Faults 8 to 10: 1 o w -F im a x , Io w -F J m a x , Io w -F m a x - These three faults cannot be 

separated from their related valve biases as Faults 5 —  Faults 7.

Fault 11: low-FO. If Fq is low, both the level and the temperature control systems 
deviate. Flow rate Fq can be isolated in the test process because the flow rate 
control system doesn’t deviate and Fq is the only common ancestor of the level and 

temperature control systems. The direction of Fq can be determined from either the 
deviation in the level or in the temperature controller outputs.

Fault 12: Io w -K q . Both the outer and the mner loop controllers of the temperature 
control system wül deviate, as wül Ca- In the search process, based on Table 4-2, 

the fault candidate set would be {1 o w -C a , low-K, high-Fo, T-sensor-bias-low, low- 
T q, high-Uo, 1 o w -T J o } ({ 1 o w -C a , low-K, high-Fo, T-sensor-bias-high, low-To, high- 
Uo, low-TJo} for the unstable process). In the test process, 1 o w -C a  contradicts with 
the observed C a  that deviates positively and 1 o w -C a  would be eliminated. The 
positive deviation of Ca also eliminates faults in To, Uo, TJo because, these are not 
the diiect ancestors of C a , they just affect C a  via the controUed variable T. High-Fo

135



can be eliminated as weU because it is the ancestor of L and LC doesn’t deviate. 
Further separ ation depends on the stability of the open loop process:

• if the temperature process is open loop stable or has an even number of open 
loop unstable poles, T-sensor-bias-low would be eliminated because it should 
cause Ca to deviate negatively, which contradicts with the observed Ca. And 
low-Ko would be diagnosed because low-K has aheady been located.

• if the temperature process has an odd number of open loop unstable poles, now 
the fault candidate is {low-K, T-sensor-bias-high} and then it should be {low- 

Ko, T-sensor-bias-high).

Fault 13: high-CAo. Concentration Ca will be high and both the outer and the inner 
loop controllers of the temperature control system will deviate. In the search 
process, based on Table 4-2, the fault candidate set would be {high-CAo, high-K, 
low-Fo, T-sensor-bias-high, high-To, Io w -U q , high-TJo}({high-CAo, high-K, Io w -F q ,  

T-sensor-bias-low, high-To, Io w -U q , high-TJo) for the unstable process). In the test 
process, high-K would cause Ca to deviate negatively, which contradicts with the 
observed Ca that deviates positively and high-K would be eliminated. The positive 

deviation of Ca also eliminates faults in To, U q, TJq because, these are not the dkect 

ancestors of Ca, they just affect Ca via the controlled variable T. low-Fo can be 
eliminated as weU because it is the ancestor of L and LC doesn’t deviate. Further 
separation depends on the stabUity of the open loop process:

• if the temperature process is open loop stable or has an even number of open 
loop unstable poles, high-CAo and T-sensor-bias-high cannot be separated;

• if the temperature process has an odd number of open loop unstable poles, T- 
sensor-bias-low would be eUmmated because it should cause Ca to deviate 
negatively, which contradicts with the observed Ca. And high-CAo would be 
located.

Fault 14: Io w -U q . Both controUers in the temperature cascade control system 
deviate. In the seai'ch process, the fault candidate is {high-To, low-Uo, high-TJo, 

low-Fo, high-K, L-sensor-bias-low, T-sensor-bias-high)({high-To, low-Uo, high- 
TJo, low-Fo, high-K, L-sensor-bias-low, T-sensor-bias-low) for the unstable 

process). However, in the test process, Ca, the descendant of Fq, T and Ko, doesn’t 
deviate, enabUng low-Fo, high-K and T-sensor-bias-high (T-sensor-bias-low for the 
unstable process) to be removed from the fault candidate. The L-sensor-bias-low 
can also be removed because the level control system doesn’t deviate. High-To, 
low-Uo and high-TJo cannot be separated further.
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8.2 Application to The Tennessee Eastman Process Benchmark

Besides being of larger scale, and highly interactive, the main difference between 

this and the previous CSTR apphcation is that a list of faults/disturbances actually 

come with the benchmark. A wide range of scenarios are hypothesised and only a 

number of these would be diagnosed by the new approaches described here. Thus it 

provides an opportunity to show how the new approaches would form part of a 

hybrid strategy. Another difference is that it would be extremely difficult to form a 

complete, detailed SDG representation of the plant and hence is an ideal candidate 

for the methods proposed here.

8.2.1 Process Description

The Tennessee Eastman (T-E) process benchmark is a simulation of a real plant 

that has been disguised for proprietaiy reasons, the flow diagram and its basic 

control scheme is shown in Figure 8-6, The process produces two products, G and 

H, from four reactants. A, C, D and E. Also present aie an inert B and a by-product 

F. The process has five major units: a reactor, a product condenser, a vapour/liquid 

separator, a recycle compressor and a product stripper. The gaseous reactants are 

fed to the reactor where they react to form hquid products. The gas phase reactions 

are catalysed by a non-volatile catalyst dissolved in the liquid phase. The products 

leave the reactor as vapours along with umeacted feeds and the catalyst remains m 

the reactor. The process has 41 measurements and 12 manipulated variables. A 

plant-wide decentralised control scheme has been developed by McAvoy et al. It is 

based on multiple single-input-single-output (SISO) control loops. Many of them 

are standard cascade control systems. Further details of the process and its control 

systems can be found in (Downs & Vogel, 1993; McAvoy & Ye, 1994; McAvoy et 

al., 1995; Howell et al., 1997).
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Figure 8-6: The flow diagram and basic control of the T-E process benchmark

8.2.2 The SEVACS Nodes

There are 9 distributed SEVACS as shown in Table 8-2.

Table 8-2: The nine SEVACS

Tag SEVACS

SVl A/C composition —  A flow rate cascade control system

SV2 G/H composition —  reactor level —  D,E flow rate control system

SV3 Reactor pressure —  temperature cascade control system

SV4 Condenser coohng control system

SV5 Purge composition B —  purge flow rate cascade control system

SV6 Separator level —  underflow rate cascade control system

SV7 Stripper level —  product flow rate cascade control system

SV8 Product flow rate —  C flow rate cascade control system

SV9 Product composition E —  stripper temperature cascade control system
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It can be seen that SV4 is a smgle loop control system, SVl, SV5, SV6, SV7 and 

SV8 are standard cascade control systems, SV3 and SV9 are cascade control 

systems with two inner loops, and SV2 is a much more complicated control system.

All thiee level processes are open loop capacitive.

8.2.3 Faults/Disturbances

Table 8-3 shows the 28 faults or disturbances hypothesised, IDV(l) — IDV(20) are 

from the original benchmark, F(l) —  F(8) are new.

Table 8-3: Disturbances or faults injected into the plant

Tag Process variable Type
IDV(l) A/C feed ratio, B compositon constant (stieam 4) Step
IDV(2) B composition, A/C constant (stieam 4) Step
IDV(3) D feed temperature (stream 2) Step
IDV(4) Reactor cooling water inlet temperatuie Step
IDV(5) Condenser cooling water temperature Step
IDV(6) Partial A feed loss (stream 1) Step
IDV(7) C header pressure loss —  reduced availability (stream 4) Step
IDV(8) A, B, C feed composition (stream 4) Random variation
IDV(9) D feed temperature (stream 2) Random variation

IDV(IO) C feed temperature (stream 4) Random variation
IDV(ll) Reactor cooling water inlet temperatuie Random variation
IDV(12) Condenser cooling water inlet temperature Random variation
IDV(13) Reaction kinetics Slow drift
IDV(14) Reactor cooling water valve Sticking
IDV(15) Condenser cooling water valve Sticking
IDV(16) Unknown Unknown
IDV(17) Unknown Unknown
IDV(IS) Unknown Unknown
IDV(19) Unknown Unknown
IDV(20) Unknown Unknown

F(l) Purge composition B measurement (stream 9) Bias-low
F(2) Reactor pressure measurement Bias-high
F(3) Reactor level measurement Bias-low
F(4) A/C composition ratio (stream 6) Bias-low
F(5) Product How rate measurement Bias-low
F(6) D flow rate measurement (stieam 2) Bias-high
F(7) E flow rate measurement (stream 3) Bias-high
F(8) G/H composition ratio measurement (stieam 11) Bias-low
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Note that IDV(8) —  IDV(12) are intended to assess control system performance 

and hence, are of no interest here. Similarly IDV(16) —  IDV(20) have also been 

ignored because it is not known whether they are intended for performance 

assessment or for fault detection and diagnosis studies.

Some of the graphs obtained by running the benchmark simulation when subjected 

to the various faults/disturbances are given in Appendix 4. Some examples for 

steady state identification and change detection aie shown in Appendix 5. Note that 

in certain cii'cumstances, not all vai’iables achieve a steady state and hence the 

steady state detector described in Chapter 7 would remain in its ‘not-at-a-steady- 

state' mode. However, as can be seen from the graphs, these variables have 

deviated in one dhection and are merely taking a long time to reach a new steady 

state. Thus as far as SEVACS ai'e concerned they can be viewed as having deviated 

and the problem is therefore with steady state detection rather than with the 

SEVACS approach m general. This will be discussed m the section on future work 

in Chapter 9.

8.2.4 The Hybrid Strategy

The hybrid strategy adopted to detect and isolate the above faults is described in 

this sub-section.

8.2.4.1 Basic Heuristic Rules

Being based on observed changes in steady state, the SEVACS approach is not 

suited to diagnosing faults like a dead sensor, or a large exogenous fault (or 

disturbance), or a sticking valve, which cause the plant to ‘run-away’. Such faults 

can be isolated by the application of appropriate simple heuristic rules. This 

teclinique has been widely adopted by many expert system based process 

monitormg and fault diagnosis systems and has proven to be efficient.

The T-E process benchmark is particularly amenable to a heuristic approach 

because of the relatively high density of instrumentation mstalled (Howell et aL,

140



1997). However there is a âuidamental problem when producing heuristics to detect 

faults in a benchmark: there is a temptation to examine benchmark results with a 

view to generating heuristics; clearly these will then fke on the same benchraai'k 

but that is no guarantee that they would do so on the real plant. Typical rules are 

like, in G2 format:

FOR any flow-sensor LS

IF  the sensor-reading o f LS during the last 5 minutes has no value 

THEN conclude that the status o f LS is FAILED

FOR any flow-sensor LS

IF the maximum value o f the sensor-reading o f LS during the last 5 minutes = the 

minimum value o f the sensor-reading o fLS  during the last 5 minutes 

THEN conclude that the status o fLS is DEAD

IF the valve-position o f any control-valve CV - 1 0 0  

THEN conclude that the status o f CV is SATURATED

Other rules can relate to the performance of individual control loops: a change in 

the controller’s output should result in a change in the sensor-reading and also in 

the measurement of valve opening (if available). It is relatively easy to detect faults 

such as frozen/failed sensors and locked/stuck valves, e.g., IDV(14) and IDV(15), 

by means of the simple heuristic rule:

1. examine the maximum and the minimum output of the controller during the last 

few minutes; if the difference between them is large enough, then perform next 

step;

2. examine the maximum and minimum measurement of the sensor during the last 

few minutes; if the difference between them is too small, then conclude that 

there might be somethmg wrong with either the sensor or the valve: if the 

maximum is close to zero, it is most likely that the sensor failed, otherwise 

either the sensor froze or the valve locked/stuck.

Much extremely useful insight into the interactions and relationships in a process is 

confined to reports m the drawers of engineers and scientists or gathers dust in the
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ai'chives (Mjaavatten, 1994). Much of this knowledge could be used to formulate 

effective heuristics.

8.2.4.2 Heuristic Rules to Identify Faults Through Global Changes

Some faults or disturbances can cause global changes m a plant. It is a good 

strategy to identify these before applying the distributed SEVACS approach 

because it can take less tune to locate them and this will lead to less ambiguous 

diagnostic results.

Global changes are always caused by those faults or disturbances that can affect the 

entire process, i.e. from beginnmg to end. This need not be the actual begmning of 

the plant but can be a complete section where its input and output variables have 

changed. Expert knowledge and heuristic rules can be applied to identify these 

situations.

For example, the change in the throughput of the T-E process or F(5) causes global 

changes, aU the flow rates of the reactants A, C, D and E wiU be affected and so 

will most of the variables in the process. If a global change strategy is applied, the 

fault can be located correctly in time.

8.2.4.3 SEVACS

The SEVACS approach is used wherever possible. Note that the T-E benchmark 

contains control schemes not met previously in this thesis and these will be 

discussed in detail in sub-section 8.2.6.

8.2.4.4 Governing Equations

For hidustrial processes, the governing equation based method (Kramer, 1987a) is 

often used to do fault detection or gross error identification and data reconciliation. 

The principle is to make use of a set of mathematical equations, normally these 

equations hold, they could be violated if a fault or disturbance happens. For 

instance, for a flow system in Figure 8-7, the sum of the outputs of the system
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should be equal to those of the inputs of the system in steady state, normally 

= 2 ^Fqj holds, otherwise something is wrong, e.g, a leak happens.

System ► Outputs
F oj

Figure 8-7: Governing equation between system inputs and outputs

For every measurement, we assume that

true value (F) + sensor bias (B) = sensor reading (R )

Reconsidering the governing equation, we have

X ( R „ - B J  = Leak + ;g (R „ j-B o j)
i=l j=l

or

E = =Leak + X B „ .
i=l j=l i=l j=l

where

R ii is the sensor reading of the itli input,

B ii is the sensor bias of the ith input,

Roj is the sensor reading of the jth output,

Boj is the sensor bias of the jth output,

Leak is any ‘loss’ from the system: Leak> 0 

and

E is the difference between the sum of sensor readings of the inputs and outputs.

Suppose there is one fault at a time, if E = 0, there is no fault; if E < 0, there is no

Leak, the fault can be one of sensor biases of the inputs and the outputs, i.e., { Bn,

..., Bii, ... , Bn, Boi, ..., Boj, ..., Bqj } would be the fault candidate set; if E >0, the 

fault can be Leak or one of sensor biases of the inputs and the outputs, i.e., {Leak, 

Bn, Bii, Bn, Bqi, ..., Bqj, ..., Bqj } would be the fault candidate set-
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Take an example, let Fl-F2=0  represent the mass balance of a process unit, FI is 

the sensor reading of its inflow mass and F2 is the sensor reading of its outflow 

mass. If the left-hand side of this expression is significantly less than zero, then the 

inference (FI-SENSOR-BIAS-LOW) v (F2-SENS0R-BIAS-HIGH) can be 

established; if the expression is significantly greater than zero, then the inference 

(Fl-SENSOR-BIAS-HIGH) v (F2-SENS0R-BIAS-L0W) v (SYSTEM-LEAK) can be 

established. Importantly, these conditions are the only explanations for violation of 

the constraint (assuming no leaks into the system). Logical combination of the 

inference drawn horn the full set of process constraints yields the pertinent 

diagnosis.

For the T-E process benchmark, if the material accumulations in the vessels are 

ignored, then the following mass balance equations can be obtained (it is assumed 

there are additional measurements for Stream 5 and Stream 7):

Streaml + Stream2 + StreamS + StreamS + StreamS -Sîream ô  = 0 (8-1)

Streamô — StreamS — StreamÇ -  Streaml 0 = 0 (8-2)

Stream4 + Streaml 0 -^StreamS -  Streaml 1 = 0 (8-3)

Streaml + Stream2 + StreamS + Stream4 —Stream9 — Streaml 1 = 0 (8-4)

Streamô -  Stream? = 0 (8-5)

Values, averaged over the relatively short period time, say 5 minutes, are used to 

overcome random deviations, disturbances and uncertainties in the process. In 

addition, the benchmark’s ‘chemical’ units of flow rate (kscmh and mVh) are 

changed to kg/h to perform mass balances.

Any of the constraints is then deemed to be in conflict if it is in error by more than 

5% of the total mass either into or out of the node (e.g. Streamô in Equations (8-1) 

& (8-2)). The percentage can be chosen by trial and error. When conflict arises, 

various logical statements can be formulated based on the various balances; for 

instance, suppose that the second governing equation has a discrepancy less than its 

lower limit of tolerance, then the statement can be established: (Stream6-BIAS- 

LOW) V  (StreamS-BIAS-HIGH) v (Stream9-BIAS-HIGH) v  (Streaml 0-BIAS- 

HIGH), i.e., [Ui Ui Ui Ui Ui Li Ui Hi Hi Hi Ui Ni Ni Nj Ni Ul] where each
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element denotes a different stream from Stream 1 to Stream 11 and five respective 

system leaks; N denotes normality, H denotes high, L denotes low and U denotes 

undetermined; the subscript denotes hkeliness of the fault, the bigger the number, 

the more likely the fault. These statements can then be combined by applying the 

operator defmed m Table 8-4 where R is the ambiguous result of L^H.

Table 8-4: Combining

A Li Ni Hi Ri Ui

Li Li+i Ni Ri Ri Li

Ni Ni Ni Ni Ni Ni

Hi Ri Ni Hi+i Ri Hi

Ri Ri Ni Ri Ri Ri

Ui Li Ni Hi Ri Ui

For example, suppose that, on one occasion, the governmg equation (8-2) has a 

discrepancy less than its lower limit of tolerance whilst the governing equation (8- 

3) has a discrepancy greater than the upper limit of tolerance whilst the other 

equations are withm the limits of thek tolerances. Five governing vectors v l, v2, 

and v5 can be inferred from the hypothesis:

vl=[Ni Ni Ni Ul Ni Ni Ul Ni Ui Ui Ui Ui Ui Ui U% U J, 

v2=[Ui Ul Ul Ul Ul Li Ul Hi Hi Hi Ui Ni Ni Ni Ni U J, 

v3=[Ui Ul Ul Hi Li Ul Ul Ul Ul Hi Li Ui Ui Ui Ui Hi], 

v4=[Ni Ni Ni Ni Ul Ul Ul Ui Ni Ui Ni Ni Ni Ni Ni Ni],

and

v5=[Ui Ul Ul Ul Ul Ni Ni Ul Ul Ui Ui Ni Ui Ui Ui Ui].

Thus,

vUv2^v3^v4^v5=[Ni Ni Ni Ni Ni Ni Ni Ni Ni H2 Ni Ni Ni Ni Ni NJ 

can be obtained, the 10*̂  element of the vector is Hz and it indicates that the sensor 

value of stream 10 is most likely to have failed high.
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In Table 8-3, faults F(5) —  F(7) would violate the governing equations and hence 

could be detected using this approach. This can be achieved by combhiing the 

governing equations with SEVACS and this approach is discussed m the next sub

section.

8.2.4.5 Combining Governing Equations with SEVACS

The approach is fkst to generate a set of fault candidates by analysing the 

appropriate governing equations. Vaiious possibilities are then eliminated by 

referring to SEVACS knowledge.

For example, if fault F(5) happened, then the governmg equations (8-3) and (8-4) 

would be violated whilst the others would not. Thus according to the logical 

operation, C-flow-rate-sensor-bias-high (stream 4), product-flow-rate-sensor-bias- 

low (stream 11) and the system leak would form a fault candidate set. Because C 

flow rate sensor is in the inner loop of a cascade system and referring to SEVACS 

knowledge in Table 4-2, this sensor bias shouldn’t cause the inner loop controller to 

deviate and thus this sensor bias would be rejected.

If fault F(6) happened, the governing equations (8-1) and (8-4) would be violated 

whilst the others would not. Then A-flow-rate-sensor-bias-high (stream 1), D-flow- 

rate-sensor-bias-high (stream 2), E-flow-rate-sensor-bias-high (stream 3) and the 

system leak would form a fault candidate set. These three flow rate sensors are aU 

in inner loops, refen’ing to Table 4-2, any inner loop sensor bias would cause the 

respective outer loop controller to deviate, thus both A-flow-rate-sensor-bias-high 

(stream 1) and E-flow-rate-sensor-bias-high (stream 3) would be rejected.

Fault F(7) is very similar to the fault F(6) and would be diagnosed similarly.

8.2.5 Identification of Process Type Numbers And Control System 

Interactions

This sub-section focuses on the preliminary work that must be carried out to apply 

the SEVACS approaeh to the T-E benchmatk. A more formal approach is needed
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because of the increased complexity compared with, e.g., the CSTR example. 

Clearly the first step is to identify the various SEVACS, thek process Type 

numbers, and their mteractions. It is then sensible to construct a simple SDG to 

describe these interactions.

Another complication is that control systems other than with single and double loop 

are used and this is addressed fust before gomg any further. SEVACS SV3 and 

SV9 can be viewed as normal cascade control systems if the most mner loop is 

viewed as a vktual valve node (see Section 5.2.2). Node SV2 can be viewed 

similarly.

8.2.5.1 Identification of Process Type Numbers

Process types and interactions can be identified by doing step tests on the process 

control systems’ set-points one by one. As a result of doing these tests, it was found 

that the three level processes are capacitive (Type 1 processes) because thek related 

controller outputs don’t change or deviate in steady state when thek set-pomts’ are 

step changed. All the other SEVACS related processes are open-loop stable or have 

an even number of unstable poles (Ao>0).

8.2.5.2 Identification of SEVACS Interactions

This is carried out in two parts, fkst the fact that two SEVACS interact is sought, 

secondly the type of interaction is established. Section 8.2.5.2 describes the fkst. 

Section 8.2.5.3 the second. If a set-point change in a SEVACS results in any steady 

state change of an element in another SEVACS, then the latter SEVACS is affected 

by the former. If each SEVACS is viewed as a super-node (see Section 4.3), a 

branch or a link from the former super-node to the latter one can be assigned. A 

simple SDG representing process interactions can then be constructed by repeating 

this operation for aU SEVACS. Figure 8-8 shows that derived for the T-E 

benchmark.

For example, the positive ehange of A/C composition set-point in the A-feed flow 

results in steady state changes in the outputs of the reactor pressure controller (-), 

the product flow rate controller (-), the condenser coohng controUer (+), the purge
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flow rate controller(-) and the stripper temperature controller (+); it indicates that 

the super-node SVl affects the super-nodes SV3, SYS, SV4, SV5 and SV9. 

Branches from SVl to those nodes can be assigned (Figure 8-8).

SV6

SV4
SV8

SV2SV3

S V l

SV9

SV5

Figure 8-8: T-E process interactions

S.2.5.3 Describing The Process Interactions

As discussed previously, process interactions have causal signs and can affect 

control systems in different ways. In addition it is sometimes sensible to describe 

interactions in a different way so that the right faults can be accommodated. This is 

particularly important here because of the prevalence of cascade control systems. 

For cascade control systems, and as discussed in Section 6.2.3, interactions can be 

treated as always stemming from the inner loop. Thus for example, there is a 

cascade arrangement in SVl (see Figure 8-6), so the effects given in the previous
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sub-section can be treated as stemming from the inner loop set-point Fa (Figure 8-

9 ) .

Having identified the causal element of SVl, those elements directly affected ai'e 

now identified. For instance, the outermost/main controller node ( P C r )  in SV3 has 

deviated, so Fa can be viewed as an exogenous disturbance to the controlled node, 

reactor pressure P r  (Figure 8-9). It is also possible that Fa is an exogenous 

disturbance to the two inner loops in SV3, but these effects can be ignored because 

if Fa is the true fault, it can still be inferred from the change of the outermost 

controller output (Section 6.2.4). Directions can now be inferred. For instance. Fa 

has a negative impact on P r  because the positive change of Fa causes a negative 

change of output of the reactor pressure controller and because of the negative 

proportional gain of this controller. For the same reason, Fa has a positive impact 

on the product flow rate Fo in SV8, a positive impact on the condenser cooling 

temperature Tccw hi SV4, a positive impact on the purge flow rate Frrg m SV5 and 

a negative hnpact on the stripper temperature T s t r  in SV9.

Figure 8-9: Elements involved in the interactions

Other effects or interactions between internal nodes in different super-nodes can be 

determmed m a similar way. Table 8-5 shows the various results.
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Additional measurements, which are not within any control systems, are useful and 

might therefore be considered in fault isolation. These include the temperature and 

pressure in the sepai’ator, the pressure in the stripper, the compressor work and the 

recycle flow rate. This can be viewed as ‘sink’ nodes on the simple SDG.

In a similar way, disturbances can be viewed as ‘source’ nodes. For instance, if 

IDV(I) occurs. A, C composition ratio in SVl would change, as would Purge B 

composition in SV5 and product flow rate in SV8; similaiiy IDV(2) would affect 

A, C composition ratio in SVl, the G, H composition ratio and the reactor level in 

SV2, the reactor pressure in SV3, Purge B composition in SV5, product flow rate 

in SV8, the stripper temperature in SV9 and the additional measurement of the 

stripper pressure.
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Table 8-5: Interactions between nodes

Beginning_node Ending_node Branch_sign

A feed flow rate in SVl

Reactor pressure in SV3 -

Condenser Cooling Temperature in SV4 +
Purge flow rate in SV5 +

Product flow rate in SV8 +
Stripper temperature in SV9 -

D, E flow rate ratio in SV2
Reactor pressure in SV3 -

Stripper temperature in SV9 -

Reactor level in SV2

Reactor pressure in SV3 +
Condenser Cooling Temperature in SV4 -

Purge flow rate in SV5 —

Stripper temperature in SV9 +

Reactor cooling 
temperature in SV3

Condenser Cooling Temperature in SV4 -

Purge flow rate in SV5 -
Stripper temperature in SV9 +

Condenser cooling 
temperature in SV4

G,H product composition ratio in SV2 -
Reactor pressure in SV3 +

Purge B composition in SV5 -
Separator level in SV6 +

Product flow rate in SV8 -
Stripper temperature in SV9 +

Purge flow rate in SV5

Reactor pressure in SV3 -
Condenser Cooling Temperature in SV4 +

Product flow rate in SV8 +
Stripper temperature in SV9 —

C feed flow rate in SV8

A, C composition ratio in SVl -
Reactor level in SV2 +

Reactor pressure in SV3 +
Condenser Cooling Temperature in SV4 4-

Purge B composition in SV5 —
Separator level in SV6 +

Product composition E in SV9 +
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8.2.6 SEVACS Analysis

This section describes the fault candidates that would be generated by each of the 

SEVACS if any of the faults/disturbances considered here, were to occur. Section

8.2.7 then summaiises these candidates and Section 8.2.8 discusses how individual 

candidates might then be isolated. For simplicity, the nomenclature in this chapter 

is somewhat different from that in Chapter 3.

(1) SVl (A/C composition —  A flow rate cascade control system)

This is a standard cascade control system, A/C composition is controlled by 

manipulating A flow rate into the process. Faults or disturbances only affecting its 

inner loop can be compensated by the control system, thek effects are only local to 

this system and are iixelevant to other systems. IDV(6) (partial feed A loss), the 

valve bias and A flow rate sensor bias belong to this category. If only its inner loop 

controller deviates, IDV(6) or the valve bias is the fault, however they are not 

distinguishable. If only its outer loop controller deviates, A flow rate sensor bias is 

the fault. If both controllers deviate, the fault comes from its outer loop 

disturbances. For mstance, IDV(l), IDV(2) and F(5) (see Section 8.2.4.2), or the 

outer loop sensor bias, i.e., the A/C composition analyser bias F(4).

A decision table is given in Table 8-6. Fault or disturbance dkections can be 

determined as described in Chapter 3 and Chapter 4.

Table 8-6: The knowledge pertaining to SVl

If only the inner loop controller deviates, then the fault can be:

• IDV(6)
• The valve bias

If only the outer loop controller deviates, then the fault should be:

• A flow rate sensor bias

If both the controllers deviate, then the fault can be:

• outer loop disturbances such as IDV(l), IDV(2) and F(5).

• A/C composition analyser bias
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(2) SV2 (the G/H composition —  reactor level control system)

0 - ^ G , i(s) | -^ G w(s)[-h ;0 — »|G p K s)p > t ÿ

Kci Kvi Uy2 p* (
    +1 __
Gc2(s) —* Gvz(s) - > U - ^  Gp(s) —►(

Figure 8-10: G/H composition-reactor level control

m̂O

Figure 8-11: The simplified G/H composition-reactor level control

SV2 is quite a complicated control system, Figure 8-10 shows a block diagram 

representation that is pseudo-linear because it contains ‘x ’ and D flow rate (yi) 

and E flow rate (yz) are controlled and should be kept in a ratio xq for two purposes, 

one is to mamtain the G/H composition ratio in the final product 6o at its set-point

153



0ro, the other is to mamtain the reactor level 9 at the set-point Or. Four controllers, 

two valves, four processes ai*e mvolved here. The four controllers are the G /H  

composition controller G c o (s ) ,  which has proportional gain K^o and output x o , the 

reactor level controller G c ( s ) ,  which has proportional gam and output x ,  the D 

flow rate controller G d ( s ) ,  which has proportional gain K d  and output x i ,  and the E 

flow rate controller GczCs), which has proportional gain Kc2 and output xz. The two 

valves are the D flow rate valve G v i ( s ) ,  which has gain K v i and the E flow rate 

valve Gv2(s), which has gain Kvz. The four processes are the D flow rate process 

G p i ( s ) ,  which has gam K p i, the E flow rate process G pzC s), which has gain K pz, the 

G / H  composition process G p o (s ) ,  which has gain Kpo and the reactor level process 

G p ( s ) ,  which is a capacitive process with an infinite gain K p. In the figure, dmo, dmi, 

dm2 and dm represent respective sensor biases, dvi and dv2 represent respective valve 

biases, d'po, d'pi, d'pz and dp represent respective process disturbances. Kd is the 

steady state gain of the level process disturbance transfer function G d ( s ) ,  similar to 

K p, it also tends to infinity. All variables represent deviations from thek nominal 

values.

The ckcled part in Figure 8-10 can be viewed as the D/E flow ratio (r) control 

system, which can then be viewed as the mner loop of the cascade system shown in 

Figure 8-11. Because D/E flow ratio should be maintained, around its nominal 

point and after lineaiisation, there are i-ayi-pyz and dmr^admrpdmz (cc>0, p>0). 

Because Gp(s) is a capacitive process, at a steady state.

yi+y2 = ydp

_ r̂O ~ '̂pO~dmO
Kpo 

Pyd + r

ayd - r  

X o = « d ^ - P d „ 2 + r
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X. =
Yi - d '  i~K„, dp i " v l

K p r K ,

Y2 ~d'p2-Kp2 -d^2

Kp: ' ICv2

Some observations that can be derived from these equations are summarised in 

Table 8-7. It can be seen that the change of dvi and d'pi can only cause x% to change 

and the change of dyz and d'p2 can only cause x% to deviate because all of them are 

in the mnermost loops m the control system. Change of dmi, i.e. F(6), can only 

cause xo to deviate and dî z, i.e. F(7), can cause both xq and x to deviate. The 

change in dp, e.g. F(5) can cause x , xi and x% to deviate. The changes in 0ro, d'po, 

dmo, i.e. F(8) can cause x q ,  x  , Xi and X2 to deviate. 1DV(2) is a very complicated 

disturbance that can be viewed as both dp and d'po, it causes x q ,  x  and X2 to deviate. 

The directions of the faults or disturbances can be determined from the equations 

developed m this section. However, the reactor level sensor bias F(3) cannot be 

detected and diagnosed by this SEVACS.

Table 8-7: The knowledge pertaining to SV2

Combination of deviations Fault

X Xo Xi X2 Candidate

✓ {dmi(F6)}
✓ ✓ {dm2(F7)}

✓ {dvi, dpi}

{dv2, d'p2}
✓ {dp(e.g.,F(5)andlDV(2))}

{8io, d'po(e.g., 1DV(2)), dmo(F(8)))

(3) SV3 (the reactor pressure —  temperature cascade control system)

This is a cascade control system with double inner loops. The SDG of this system is 

shown in Figure 8-12. In this system, the reactor pressure Pr is controlled by the
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controller PCr by manipulating the reactor temperature Tr, which is controlled by 

the controller TCr by manipulating the reactor cooling water temperature Trc, 

which is controlled by the controller TCrc by manipulating the cooling water valve 

opening Vr. 0pr is the set-point of the reactor pressure.

0PR

PC; H  TCi

V r

TR dpRC

Figure 8-12: The SDG of SV3

The cii'cled part of the system in Figure 8-12 can be viewed as a viitual valve Vr  ̂

enabling the standard cascade SEVACS analysis approach to be apphed to this 

system. Note that IDV(4) is a disturbance to the innermost loop (diRc), i.e., the 

coohng water temperature control loop; IDY(3) is a disturbance to the second inner 

loop (dxR), i.e. the reactor temperature loop; F(3) would cause a disturbance to the 

outermost loop (dpp), i.e., the reactor pressure loop. These tliree disturbances can be 

distmguished by the SEVACS theory because they affect the control system from 

different nodes. However each of them might not be distinguishable or isolatable 

from other faults or disturbances that affect the system from the same node. For 

instance, IDV(3) may not be distinguished from E feed temperature disturbance or 

the fault due to the deterioration of the heat transfer coefficient of the reactor.

In some cii'cumstances the same fault or disturbance will affect different loops in 

SV3, e.g. a change in reactor level wül affect both dpR and djR. In this case, the 

fault or disturbance would still be determined by its effect to the outer loop from 

node dpR for two reasons (see Section 6.2.4). One is that once both the outer loop 

and the inner loop deviate, the fault should not be from or related to the mner loop
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dii'ectly; the other is that although the fault or disturbance can cause both the inner 

and outer loop controller to deviate, the dkection of the fault should be determined 

by the deviation in the outer loop controller because the diiection of the deviation in 

the mner loop controller might be ambiguous, the fault diiection is not easily 

determined by it.

A decision table is given in Table 8-8. Fault or disturbance dkections can be 

determined from the equations or knowledge in Chapter 3 or Chapter 4.

Table 8-8: The knowledge pertaining to SV3

If only the controller TCrc deviates, then the fault could be:

• dxRc such as IDV(4)
• the valve-bias
If only the controller TCr deviates, then the fault should be:
• the cooling-water-temperature-sensor-bias (TRc-sensor-bias)
If only controllers TCrc and TCr deviate, then the fault should be:
• dxR such as IDV(3)
If only the controller PCr deviates, then the fault should be:
• the reactor-teraperature-sensor-bias (TR-sensor-bias)
If all the controllers TCrc, TCr and PCr deviate, then the fault could be:
• dpR such as F(3)
• the reactor-pressure-sensor-bias (PR-sensor-bias)

(4) SV4 (Condenser cooling control system)

SV4 is a single loop control system, IDV(5) can be easily detected but it might not 

be isolated from other faults or disturbances like the maximum flow rate of the 

condenser cooling water and the heat transfer effect of the heat exchanger in the 

condenser.

(5) SV5 (Piu'ge composition B —  purge flow rate cascade control system)

SV5 is a standard cascade control system, B purge composition is controlled by 

manipulating the purge flow rate leaving the separator. Faults or disturbances 

affecting the outer loop such as IDV(l), IDV(2) and F(5), and the outer loop sensor
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bias F (l) can cause both the two controllers in this control system to deviate. Faults 

or disturbances only affecting its inner loop such as F(2), F(3), F(4) and the valve 

bias can only cause the inner loop controller to deviate. Inner loop sensor bias can 

only cause the outer loop controller to deviate.

A decision table is given in Table 8-9. Fault or disturbance directions can be 

determined from the equations or knowledge in Chapter 3 or Chapter 4.

Table 8-9: The knowledge pertaining to SV5

If only the mner loop controller deviates, then the fault could be:

• the inner loop disturbances such as F(2), F(3), F(4)
• the valve bias

If only the outer loop controller deviates, then the fault should be:

• inner loop flow sensor bias

If both controllers deviate, then the fault could be:

• outer loop disturbances such as IDV(l), IDV(2) and F(5)

• the outer loop sensor bias F(l)

(6) SV6 (Separator level— underflow rate cascade control system)

Again, SV6 is another standard cascade control system, the separator level is 

controlled by raanipulatmg its under flow rate leaving the separator. It should be 

noted that the level process in the outer loop of this control system is a capacitive 

process. Faults or disturbances affecting the outer loop, such as F(5), can cause both 

the two controllers in this control system to deviate. However the outer loop level 

sensor bias won’t cause the two controllers to deviate in the steady state because of 

the capacitive level process. The valve bias can only cause the inner loop controller 

to deviate. Inner loop flow sensor bias can only cause the outer loop controller to 

deviate.

A decision table is given in Table 8-10. Fault or disturbance directions can be 

determined from the equations knowledge in Chapter 3 or Chapter 4.
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Table 8-10: The knowledge pertaining to SV6

If only the inner loop controller deviates, then the fault can be:

• inner loop process disturbances
• the valve bias

If only the outer loop controller deviates, then the fault should be:

• inner loop flow sensor bias

If both the controllers deviate, then the fault can be:

• outer loop disturbances such as F(5)

If none of the controllers deviate, then there might be:

• the outer loop level sensor bias

(7) SV7 and SV8 (Stripper level —  product flow rate cascade control system and 

Product flow rate —  C flow rate cascade control system)

Nodes SV7 and SV8 are so tightly coupled that they have to be analysed together. 

This can be seen from Figure 8-13, which shows a block diagram for these two 

control systems when hneaiised. Broadly speaking the upper part represents SV8 

and the lower one represents SV7. Variables 0i,i and 01,2 represent the product flow 

rate and the stripper level, 0r,i and 0r,2 are thek set-pomts respectively. Although 

SV7 and SV8 are two standard cascade control systems, they have a common 

controlled variable, product flow rate 0 i,i, which is the inner loop controlled 

variable in SV7 as well as the outer loop controlled vaiiable in SV8. The stripper 

level is controlled by manipulating the product flow rate out of the stripper through 

processes Gzn(s) and Gz2z(s) and by manipulating the C flow rate into the stripper 

thiough the process Gzi2(s). Steady state gains are as shown. The product flow rate 

is controlled by manipulating the level of the stripper through processes Gzi2(s) and 

Gz2i(s) and via the product valve opening through Gzn(s).

Controller outputs and X2,i relate to the outer loop controller Gcn(s), which has 

proportional gain Kd.i, and the inner loop controller Gc2 i(s), which has proportional 

gain Kc2,i. These two controllers have control errors ei,i and 02,1 respectively. 

Deviations dv.i, d'p2 ,i, d'pi.i, dm2 ,i and dmi,i represent the bias of the valve Gvi(s), 

which has steady state gam Kv,i, the disturbance to the inner loop process Gp2 i(s),
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which has steady state gain Kp2,i, the disturbance to the product flow rate related 

processes G z n ( s )  and G z 2 i(s ) , which have steady state gains and Kz2,i

respectively, the inner loop sensor bias and the outer loop sensor bias in SV8 , in 

which dmi.i is also the inner loop sensor bias in SV7.

Ip 1,2

-zl,2

‘Zl,2ĉ2.1
C Flow Rate 
Controller

■p2,l
p2,lProduct Flow 

Rate Controller

■z2,2■z2,l

Gzii(s) 
Product How ^  

Valve Opening

Product 
Flow RateĴ c2,2

Product How  
Rate Controller

ĉl,2
Level

Controller

p l.l

O *

Figure 8-13: The block diagram for SV7 and SV8

Controller outputs xi,2 and X2,2 relate to the outer loop controller G d2(s), which has 

proportional gain Kci.z, and the inner loop controller Gc22(s), which has proportional 

gain Kc2,2. These two controllers have control errors ei,2 and 62,2 respectively. 

Deviations dv,2, dpi,2 and dmi,2 represent the bias of the valve Gv2(s) which has 

steady state gain Ky,2, the disturbance to the level related processes Gzi2(s) and 

Gz22(s), which have steady state gains Kzi,2 and Kz2,2 respectively, and the level 

sensor bias in SV7. Transfer function Gdi2(s) has a steady state gain Kdi,2 and 

represents a disturbance process from dpi,2 to the level 91,2.
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All the controllers have an integral action in the steady state,

ei,i=0

e2,i=0

e 1,2=0 

02,2=0

Controller outputs are given by

_  -  K̂2.20r,l + 0, 2 + K,2 -  d̂ i 2 ~ 2̂ pl.2 , ^
TT m 2,l
^zl.2

“  ^ z 2 , 2 0 r , l  +  O r ,2 +  ^ ^ 2 ,2 ^ 0 1 1 ,1  ~  ^ ^ 1 ,2  “  ^ ^ 2 ,1  d ,

K^2.iKv.iK,i,2 K,2,iK^,

Xl,2= Or,l

^  _  O f ,l  ~  ^ z 2 , l 0 r , 2  "  ^ m l , l  +  ^ z 2 , l ^ m l ,2  ~  ^ p l,l ^ v 2

K,,2

To analyse the above equations qualitatively, first note that the level related 

processes are capacitive, which means that steady state gains Kzi,2 +^, K.22,2 —> 

-00 and Kdi,2 ±®o. However, any ratio between two of these thiee steady state 

gain should be finite. Thus,

^^dl,2 ^
"zl,2

r„ 1„. Wm,..] [dp«] K«,2 L  , [d„]
LX2.1J -  — — ^ ^ -7  -  — — ;r - T  “  t t ;— — ; r —;;— K^puJ -

{ Ï ^ p 2 , l l ^ v , l }  { K p 2 , l K v , l )  { l ^ p 2 , l l ^ v , i }  [ K . p 2 , l ^ v , l l ^ z l , 2  J  { K v , l )

[X l,2 ]=  [Or,l]

[x „ ]  =
{ K ^ v , 2 l ^ z l , l }  [ K v , 2 l ^ z l , i J  { l ^ v . 2 l ^ z l , l }

+ ( j % - | [ d w n
Kv,2K,u J (Kv.2K,y) {K,.d
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Based on the above qualitative equations, a decision table for fault detection and 

diagnosis can be made (Table 8-11). Directions of various faults or disturbances 

can be also determined from these equations.

Consider the fault scenarios in Table 8-3 and the simulation results in Appendix 4, 

F(l), IDV(l) and IDV(2) can cause xi,i and X2,i to deviate and thus can be detected 

and diagnosed as dpi,2. F(5), namely as dmi,i would be detected and diagnosed from 

deviations in xi,%, X2,i and X2,2. IDV(7) would be detected and diagnosed as d'p2,i 

from a deviation in X2,i only.

Table 8-11: The knowledge pertaining to SV7 and SV8

Combination of deviations Fault

Xi.i X2.1 X1.2 X2,2 Candidate

y {diti2,i}
y y {dpi,2 (e.g., F(l), IDV(l) and IDV(2)) }

y (ciVi(IDV(7)),dv.i}
y (d'pl,l, dv,2, 8r,2, dmi,2}

y y y {dmi,i(F(5))}
y y y y

(8) SV9 (Product composition E —  stripper temperature cascade control system)

Like SV3, SY9 is another cascade control system with double inner loops. The 

SDG of this system is shown in Figure 8-14. In this system, the E composition in 

the product E? is controlled by the controller EC? by manipulating the stripper 

temperature Tp, which is controlled by the controller TC? by manipulating the 

stripper heating steam flow rate Fps, which is controlled by the controller FCps by 

manipulating the steam valve opening Vps. 0ep is the set-point of the E composition 

in the product.
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0EP

A  TC]
FCi

Figure 8-14: The SDG of SV9

If the cii'cled part of the system in Figure 8-14 is viewed as a virtual valve 

then the standard cascade SEVACS analysis approach can be applied to this 

system. For example, IDV(2), F(l), F(2), F(3), F(4) and F(8) can cause the 

temperature of the material, fed into the stripper from the sepai'ator, to deviate and 

thus can be viewed as the faults or disturbances (djp) to the second inner loop, the 

stripper temperature loop; F(5) can cause the outermost controller EC? to deviate 

and can be seen as the disturbance (dpp) to the outermost or primary controlled 

variable and can be isolated from the foregoing faults or disturbances.

A decision table is given in Table 8-12. Fault or disturbance directions can be 

determined from the equations or knowledge in Chapter 3 or Chapter 4.
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Table 8-12: The knowledge pertaining to SV9

If only the controller FCps deviates, then the fault could be:

• dpps
• the valve-bias
If only the controller TCp deviates, then the fault should be:
• Fps-sensor-bias
If only controllers FCps and TCp deviate, then the fault should be:

• dxp such as IDV(2), F(l), F(2), F(3), F(4) and F(8)
If only the controller ECp deviates, then the fault should be:

• Tp-sensor-bias
If all the controllers FCps, TCp and ECp deviate, then the fault could be:
• dpp such as F(5)
• Ep-sensor-bias

8.2.7 Distributed Diagnosis of 9 SEVACS

9 SEVACS have been analysed when subjected to different faults or disturbances. 

The overall fault and disturbance effects on the SEVACS of the T-E benchmark can 

be summarised in Table 8-13.

From the table, it can be seen that each SEVACS has its own diagnostic capability 

so that distributed diagnosis can be realised. However this is not to say that they 

could be individually isolated. Overall isolation would be achieved in a Supervisor 

by a search and test strategy. By referring to 2 examples, this is elaborated on in the 

next section.
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Table 8-13: Faults and disturbances effects’ on the SEVACS of the T-E benchmark

SVl SV2 SV3 SV4 SV5 SV6 SV7 SV8 SV9
IDV(l) / y y
IDV(2) / y y y y y y
IDV(3) y
IDV(4) y
IDV(5) y
IDV(6) y
IDV(7) y

F(l) y y y y y
F(2) y y y y y
F(3) y y y y
F(4) y y y y y
F(5) y y y y y y y y y
F(6) y
F(7) y
F(8) y y y y

8.2.8 Two Isolation Examples

• IDV(l): lower A/C feed ratio and constant B composition in stream 4.

In the steady state, SVl, SV5 and SV8 will be affected (Table 8-11):

SVl: the A, C composition ratio (A/C) controller and the A feed flow rate 

controller have positive deviations;

SV5: the purge B composition controller and the purge rate controller have 

negative deviations;

SV8: the product flow rate controller and the C feed flow rate controller have 

negative deviations (see Appendix 4).

If the fault isolation procedures described in Chapter 5 were to be apphed then: 

search process: starting from the super-node SVl, A/C-sensor-bias-low and 

process disturbances including product-flow-rate-sensor-bias-high, IDV(l) and 

IDV(2) would form a fault candidate set because of the outer-loop controller 

deviation;
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test process: from Figure 8-8, A/C-sensor-bias-low would be rejected because it 

should cause SVl, SV3, SV4, SV5, SV8 and SV9 to deviate; product-flow-rale

sensor-bias-high would be rejected because it should cause SVl, SV2, SV3, 

SV4, SV5, SV6, SV8 and SV9 to deviate; IDV(2) would be also rejected 

because it should cause SVl, SV2, SV3, SV5, SV8 and SV9 to deviate (Section 

8.2.5.3). This leaves IDV(l), which can cause SVl, SV5 and SV8 to deviate in 

the above dkections.

Note the emphasis on ‘should’ rather than ‘would’. This is because some of the 

deviations sought by the search process didn’t actually happen in the simulation. 

However sufficient super-nodes did deviate to enable the process to eliminate the 

alternatives. Also, as always, it is worth pointing out that IDV(l) is just one 

disturbance, other disturbances might exist that have similar effects and this 

possibility should not be ruled out. It is therefore important that a dialogue takes 

place with the operators to ensure that the system ‘learns’.

• F(3): reactor-level-sensor-bias-low.

In the steady state, although the fault actually occurred in SV2, this would not be 

apparent, locally, because the level process is capacitive and nothing wrong would 

be observed in SV2. However SV3, SV4, SV5, and SV9 will be affected:

SV3: the reactor pressure controller and the reactor temperature controller have 

positive deviations, and the reactor cooling controller has a negative deviation; 

SV4: the condenser cooling controller has a negative deviation;

SV5: the purge flow rate controller has a positive deviation;

SV9: the stripper temperature controller and the stripper steam controller have 

negative deviations.

The additional measurements, the compressor work and the recycle flow rate wül 

also deviate, negatively.

Similar to the previous example, If the fault isolation procedures described in 

Chapter 5 were to be apphed then:
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search process: stalling from the super-node SV3, the fault candidate set would 

be {reactor-pressure-sensor-bias, condenser-coohng-temperatiire-sensor-bias, 

purge-B-composition-sensor-bias, reactor-level-sensor-bias, other process 

disturbances including IDV(2)}. Note that this contains the outer loop sensor 

bias for SV2 ie . reactor-level-sensor-bias because the reactor level process is 

capacitive and hence the sensor bias can be viewed as a process disturbance to 

SV3 (see Section 5.2.1).

test process: the reactor-pressure-sensor-bias in SV3 can be rejected because the 

additional measurements such as the separator pressure and the stripper pressure 

don’t deviate. The condenser-cooling-temperature-sensor-bias in SV4 can be 

rejected because it should lead to deviations in SV2, SV6 and SV8. The purge- 

B-composition-sensor-bias in SV5 can be rejected because it should lead to a 

deviation in SV8. Since there are no deviations in SV2 and IDV(2) is a 

disturbance to SV2, IDV(2) can be rejected. This leaves reactor-level-sensor- 

bias in SV2, which can cause SV3, SV4, SV5 and SV9 to deviate in the 

observed dkections.

Once again it is unlikely that the observed effects can be attributed, uniquely, to one 

fault, so it is important that a dialogue takes place with the operators to ensure that 

the system Teams’.

8.3 Summary

In this Chapter, two applications have been demonstrated for control system based 

distributed diagnosis, in which each individual SEVACS has its own diagnostic 

capability and the Supervisor performs the overall isolation. The fkst application is 

to a simple CSTR process, in which in the Supervisor level, the set-operation based 

isolation approach of Chapter 3 is used. However, the set-operation approach is 

clearly limited by scale. For the second application, which is more complex, a 

search and test strategy has to be used in the Supervisor.

It should be mentioned that, m practice, accurate isolation may not be possible if 

there is not enough process knowledge. However, at least the approach can be
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successful in finding the locality of the fault or disturbance and further isolation can 

be done with more knowledge. Finally the human being is still important in such an 

isolation process.
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CHAPTER 9 

CONCLUSIONS AND 
FUTURE RECOMMENDATIONS

9.1 Conclusions

Process monitoring and fault diagnosis is an important R & D issue for industries. 

For example, Honeywell Inc., a global leader in control technology, is currently 

leading the $20 million ASM (Abnormal Situation Management) project that seeks 

to demonstrate the technical feasibility of collaborative decision support 

teclinologics for improving the performance of operations personnel. Although 

there has been considerable research into process monitoring and fault diagnosis 

(Chapter 2)it is clear that solutions are still sought. Statistical process control can 

offer httle help to fault isolation or fault diagnosis. Analytical redundancy 

techniques ai'e unpopular because it is very difficult and expensive to obtain process 

models. In addition, as with the statistical process control method, it is also difficult 

to isolate a fault even when a discrepancy has been detected. The self-validating 

concept proposed by Hemy and Clarke et al. (1995) looks practicable but only 

focuses on sensors and on actuators. Control system performance assessment might 

be useful for fault detection but not for isolation.

This thesis proposes an original, generic and systematic approach to the distributed 

diagnosis of faults and disturbances. The approach has some distinguishing features 

(Table 9-1). Its inspiration derives from the structure of various distributed control 

systems that are used widely in process industries and from the self-validating 

concept of Hemy & Clarke (1993). The approach is control system based and hence 

is dkectly relevant to distributed systems. The theoretical philosophy that underpins 

the approach is described in Chapter 3. In particular equations that describe how 

one controller responds to faults and disturbances that originate elsewhere are
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derived. Chapter 3 also describes a fault isolation approach that is largely not 

practicable.

Table 9-1: Features of the SEVACS based approach

—  distributed;

—  qualitative model based;

—  knowledge based;

—  steady state based;

—  easy, cheap and widely applicable;

—  can work with a minimal amount of knowledge, 

although the more the better;

—  learning and updating capability.

In general, knowledge is the key to fault diagnosis. Thus knowledge acquisition and 

knowledge representation for distributed diagnosis are of great interest. This is 

considered in Chapter 4, which focuses on fault diagnostic knowledge for single 

loop and cascade controllers. Of importance is the need to know the process Type 

number and whether it is stable or not. Having gained an understanding of 

controllers and how they respond to faults, a search and test strategy for fault 

isolation is proposed in Chapter 5. This is found to be somewhat cumbersome so 

various improvements are then made.

Although the approach would produce some form of diagnosis when given a 

minimal amount of knowledge, clearly greater resolution can be obtained with more 

knowledge. Chapter 6 introduces a method to acquire the mmimum knowledge by 

applying step tests and gives a framework and some guidelines for knowledge 

evolution so that the SEVACS based approach can have a learning and updating 

capability. A CSTR process is used to illustrate the method.

Being steady state based, algorithms are needed to detect when a plant is in steady 

state and then to ascertain whether this steady state has changed.. Chapter 7 

describes a steady state identifier, the R-statistic, which is the ratio of two variances 

as measured on the same set of data by two different methods, and a steady state
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change detection procedure. The R-statistic is a ratio in which the numerator is 

estimated from the filtered squared deviation from previous filtered values and the 

denominator is estimated from the mean of squared differences of successive data. 

The R-statistic can be calculated online and has proved to be an effective steady 

state identifier when applied to several chemical processes online (Cao and 

Rhinehart, 1995, 1997). Steady state change detection is based on the t-statistic, 

which compares the difference between the sample means of two independent SRSs 

(simple random samples) with unknown variances. The R-statistic is sensitive to 

various parameters, which should be carefully selected in order to differentiate 

between steady and unsteady states. The change detection performance depends on 

sample sizes. The smaller the sample sizes, the less the blackout period although 

the less the ability to get rid of the wrong state indication from the R-statistic.

As can be seen in Chapter 8, the approach has been applied to two applications, to a 

simulated CSTR process and to the Tennessee Eastman (T-E) process benchmark. 

The small size of the CSTR application is convenient for developing a process SDG 

from process equations. This graph can then be used to obtain sign information for 

the set-operation based fault isolation approach of Chapter 3. Although successful 

this is clearly limited by scale and the T-E benchmark is too large and complicated 

for this approach to be practicable. Instead a kind of hierarchical approach where an 

outline SDG describing controller super-nodes and interactions is first constructed, 

and then each super-node is elaborated on in turn. Both design information and step 

tests might provide appropriate knowledge. The set-operation based approach is 

then replaced by a search and test strategy. Once again the CSTR application can 

provide a simple example of this strategy. Its application to the T-E benchmark 

shows that the sets of possible faults & disturbances can be reduced effectively. 

However it is appreciated that it will always be difficult to say ‘this is the fault’ 

although ‘the fault’ should always have the same symptoms as those hypothesised. 

As such it is most important that the operator is involved in the decision making 

process. Clearly this is only one part of a hybrid strategy combining other 

tecliniques such as heuristic rules, sensor and actuator vahdation, governing 

equations.
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9.1.1 Pros and Cons

The main strengths and weaknesses of the approach can be summarised in 4 points.

(1) Notionally it requires the process to be in steady state before any decision can 

be made. Thus the time to make a decision might be quite long, which might be 

a serious problem in some situations. However as seen in the applications 

chapter, this requkement is not strictly necessary. Further work is needed to 

determine how the steady state algorithms of Chapter 7 might be ‘relaxed’ to 

accommodate this.

(2) It is qualitative-based. Its reasoning processes are based on just tliree states [-, 

0, +], which requires thresholds to switch between them. As can be seen in the 

applications it is sometimes difficult to detect small changes and the approach 

needs to be lenient towards cases where a certain deviation is not observed.

(3) Complicated, quantitative mathematical equations that are difficult and 

expensive to be developed are not necessary for the approach, although they can 

contribute to knowledge acquisition for the approach.

(4) The qualitative steady state based method means simple algorithms that can be 

easily understood, knplemented and maintained.

In principle, the approach can form the basis for the diagnosis of faults m both 

control systems and in the process itself. One of the key features is that the 

approach can work at different levels of detail. Diagnosis is based on knowledge of 

the signs of steady state interactions (gains) between individual control loops, 

additional measurements and on the steady state effects of disturbances. Both faults 

and disturbances (e.g. a load change) can be diagnosed, although diagnostic detail, 

i.e. degree of isolation, is clearly dependent on the measurements and knowledge 

that is available. For instance it would not be possible to isolate a ‘hidden’ process 

fault if nothing is known about the process itself. This, then, is the core of the 

problem: there is a conflict between the need for, and cost of this knowledge; the 

cost would be in terms of both the loss of generality and in acquisition. To address 

this problem, and in order to keep costs down, it is proposed that the initial 

implementation on a plant should requke a minimal amount of knowledge 

requisition. Driven by normal plant disturbances, the distributed systems would 

then acquke additional knowledge for the knowledge base. In addition successes
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and failures at fault diagnosis together with conflicts (contradictory diagnoses) 

between distributed systems would also be interpreted to acquire new knowledge.

The following recommendations are made for the future research.

9.2 Future W ork

9.2.1 Knowledge Representation for Distributed Diagnosis

The SDG representation has been used to determine the sources of the observable 

effects. Although, in theory, SDGs can be constructed on the basis of process 

mathematical models, in practice the construction of a mathematically strict SDG is 

considerably difficult and expensive. Even if some equations are available, only an 

incomplete SDG can be obtained, thus the diagnostic result based on the incomplete 

SDG would be wrong. For the purpose of fault diagnosis, the initial hnplementation 

would be based on a minimal SDG which has not been researched enough yet, 

hence the fii’st task would be to establish its form. The overall aim would be to 

provide appropriate knowledge for the configuration of individual SEVACS.

9.2.2 Incremental Knowledge Acquisition

Knowledge would be acquired from mathematical models, process step test 

experiments, process operators and associated support staff, and from the 

performance of the SEVACS. Each route would be considered in turn and an 

appropriate method developed. For instance, research would fast be carried out into 

the actual specification of step tests so that appropriate additional knowledge can be 

obtained, the method of knowledge acquisition would then be examined in detail. 

Knowledge might be acquired simultaneously by more than one distributed system. 

Although some work has been done in Chapter 6, it needs more research. The focus 

should be on how to cany out incremental knowledge acquisition and how to keep 

updated.

That proposed is essentially an instance of the Frame Problem (Cawsey, 1998), 

which centres on issues of representation, completeness and knowledge acquisition.

173



9.2.3 Conflict Resolution

There are two kinds of conflict that are of relevance here;

a) the first derives from the incompleteness of the SDG, the diagnostic result 

may be different from the real fault which is investigated and confinned by 

operators;

b) due to statistical uncertainties, if some deviations are insufficiently large to be 

detected, the deviation information in a SDG may conflict.

Item a) can be used to acquire new knowledge whilst Item b) is needed to ensure 

coiTect performance. Fuzzy logic may help to solve the conflict problem.

9.2.4 The Supervisor or Co-ordinator

Like with distributed control systems, distributed fault detection & diagnosis still 

requkes a Supervisor or Co-ordinator to collect and display information and to 

enable the plant operator to interact with the systems. Certain aspects of conflict 

resolution would be performed at this level as would fault appraisal/evaluation.

9.2.5 Fault Appraisal/Evaluation

It is important that the approach is attractive to the end-user. It is better that before 

the result is presented to operators, each fault can be evaluated and ordered 

quantitatively so that operators can make use of this information to locate the true 

fault reasonably and rapidly. Bayes Theorem has a good reputation for doing this.

9.2.6 Ergonomic Considerations

So far, only the technical problems have been considered, however there is nothing 

is as wise as a human being, ah process monitoring and fault diagnosis systems 

need human operators’ co-operation. It is very important to ensure that human 

operators are involved in the decision making process.
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APPENDIX 1 

THE MODEL OF A SIMULATED CSTR PROCESS

A l l  The Description of A Simulated CSTR

A simulated CSTR process undergoing an iixeversible fii'st-order exothermic 

reaction is used to test the effectiveness of the proposed approach in this thesis 

(Figure Al-1): the reactant A is fed into the reactor with the initial concentration 

Cao, flow rate Fo and temperature To, after the reaction, A leaves the reactor with 

the final concentration Ca and temperature T which is viewed as the same as that in 

the reactor, note there are two outlets, the flow rate, Fi, is manipulated to regulate 

the level, L, whilst a nominally constant flow rate, F, is drawn for a separate 

purpose; the reactor temperature, T, is maintained by varyhig the coohng water 

flow rate, FJ, through a heat exchanger installed in the CSTR and, in addition, 

concentration Ca is measured. There are thiee control systems, two of which have 

single loops, the other has a cascade arrangement. Thus four PI controllers, the 

level controller LC, the outlet flow rate controller FC, the temperature controller 

TC and the cooling water flow rate controller FJC, are employed to manipulate 

three valves LV, FV and FJV.

TC

|FJC —

LV

LC

FC

Figure Al-1: A simulated CSTR process
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A 1.2 The Reactor Model

The dynamic model of the CSTR is as the following;

dC F —
—  = “ (C A o -C J-k o e« ^ C ,

dt V

- E

—  = S _(x   (T -T J )
dt V '  "  ̂ pC„ Vpc„

After linearization around the nominal operatmg point, there are: 

dT
— 2̂1 L'A ^22T4"a^gTfQ + bjjTp + b^^f^

dTJ
= a^^T + a^gTJ + b^^TJ ̂  + b^^FJ

where:

an = - ( |- + k „ e - '< “»>) 

1̂2 -  RX"

v 4

C -  CK -  ^AO t̂ l3 -  y
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'•21

2̂2 -  “ (t7 +

_ p C p

Fn UA . X/kgCAe -E /(R T )

2̂3 ~

V VpC, 

UA

E
pC RT-

VpC,

b . 4

UA
'■ 3 2

VjPjCpj

/PJ , UA ,

' 3 4

3̂5

FJ

^  _  
TJo -T J

Vj

In the above, X means the nominal value of the variable X.

The above equations can be represented as the state space equation matrix:

X = Ax + Bu 
where

x = [C^ T TJ]'

■a.. 1̂2 0 ■
A = 2̂1 2̂2 2̂3

0 3̂2 3̂3 _

bn 0 bl3 0 0 “
B = 0 2̂2 2̂3 0 0

_ 0 0 0 3̂4 b35_

u = [Ca„ To To TJo FJ]^
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then the denominator of (sI-A)"^ (where I  is an identity matrix of dimension 3) 

represents the process characteristic polynomial, the characteristic equation is:

A ( s )  =  s^ + B g S ^  + B jS +  B q = 0

where

B 2 = -(an + a2 2 + a3 3 )

^Il422 "I” 1̂1̂ 33 ”̂ ^22^33 ~ “ ^32̂ 23

^nUg^a^g + a32a2ga^ ~ana22a33

So the open loop process is stable if all the roots of the chaiacteristic equation have 

negative real parts; the open loop process is unstable if any root of the characteristic 

equation has real part zero or positive, in other words, if either B% or B i  or B o  is 

negative, the characteristic equation has at least one root which has positive real 

part, the open loop process is unstable.

A1.3 The Control M odel

TC = bias(l) + KC(1) ■ (x -  x )+  J (x -  x)jt

FJ
FT = 12---- — + 3

TJmax

FJC = bias(2) + KC(2)(XC -  FX) + f (XC -  FX)dt
t,(2 ) J

FJV=

L =
A

12
Ima:

V
FJ = F J ^ x F J V

FC = bias(3) + KC(3) ■ ^  -  f )+ |  (f  -  F)dt

F V  = 1 5 -F C  
12

LC = bias(4) + KC(4) • (l  -  l )+  f (l  -  l W
t , (4) J '
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LV =
30-LC

24
V

P = FmaxX'vI=xLV 

Li “  Limax X X LV

A1.4 Parameters for The Open Loop Stable Process

Parameters for the open loop stable process are shown m Table Al-1. The process 

characteristic polynomial is A(s)=s^+191s^+253s+322.

Table Al-1: Parameters for the open loop stable process

F = 40 ftVh bias(l) = 7.75 psi

V = 72 ft^ bias(2) = 10.25 psi

C ao = 0.5 mol/ft^ bias(3) = 11.3 psi

CA= 0.1952 mol/ft^ bias(4) = 18.3 psi

T = 600 Uo= 150Btu/(h-ft^-°R)

TJ=597 °R A = 250 ft^

FJ = 79 ftVh TJo =575 °R

VJ=3.85ft^ To =575 °R

Ko = 7.08x10^° h"̂ A, = -30000 Btu/mol

E = 30000 Btu/mol Cp=0.75Btu/(lbm'°R)

R = 1.99 Btn/(moh°R) Cpj=1.0 Btu/(lb™-°R)

FJmax= 199.6 ftVh p = 50 Ib-mol/ft^

FMAx-64.8ftVh pj = 62.3 lb mol/ft^

Fimax— 41 ftVh

KC(1) = -1.2 psi/°R Ti(l) = 353 sec

KC(2) = -0.5 T i ( 2 )  = 2  sec

KC(3) = -600 psi-sec/ft^ Ti(3) = 60 sec

KC(4) = 300 psi/ft 'Ti(4) = 900 sec
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A1.5 Parameters for The Open Loop Unstable Process

Parameters for the open loop unstable process are shown in Table Al-2. The 

process chaiacteristic polynomial is A(s)=s^+184s^-384s-69.

Table Al-2: Parameters for the open loop stable process

F = 40 ftVh bias(l) = 7 psi

V = 72 ft'’ bias(2) = 11.008 psi

C ao = 0.5 mol/ft’ bias(3) = 11.3 psi

C a =  0.1952 moVft’ bias(4)= 18.3 psi

T = 600 “R Uo=150Btu/(hTt^-°R)

Tj = 593 °R A = 250ft^

Fj = 66.4ft’/h Tjo = 530 °R

Vj = 3.85ft^ To =530 °R

Ko= 7.08x10’° h"’ X = -30000 Btu/mol

E = 30000 Btu/mol Cp=0.75 Btu/(lbm-°R)

R = 1.99 Btu/(mol-°R) Cpj = 1.0 Btu/(lbm-°R)

FJmax= 199.6 ft^/h p = 50 Ib-mol/ft^

Fmax= 64.8 ft^/h pj = 62.3 Ib-mol/ft^

F imax = 41 ftVh

K C (1)=-1 .2  psi/°R Xi(l) = 353 sec

KC(2) = -0.5 Xi(2) = 2 sec

KC(3) = -600 psi-sec/ft^ Xi(3) = 60 sec

KC(4) = 300 psi/ft Xi(4) = 900 sec
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APPENDIX 2 

THE STABLE CSTR PROCESS RESPONSES UNDER 
DIFFERENT FAULTS
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APPENDIX 3 

THE UNSTABLE CSTR PROCESS RESPONSES 
UNDER DIFFERENT FAULTS
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Figure A3-10: The unstable CSTR process responses under low Fmax
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APPENDIX 4 

THE TENNESSEE EASTMAN PROCESS BENCHMARK

A4.1 Process M easurements and M anipulated Variables

Table A4-1: Process manipulated variables

Variable Base case Low I-Hgh
Vaiiable name number Value (%) limit limit Units
D feed flow (stream 2) XMV(l) 63.053 0 5811 kgh"'
E feed flow (sUeam 3) XMV(2) 53.980 0 8354 kgh'
A feed flow (stream 1) XMV(3) 24.644 0 1.017 kscmh
A and C feed flow (stream 4) XMV(4) 61.302 0 15.25 Kscmh
Compressor recycle valve XMV(5) 22.210 0 100 %
Purge valve (stream 9) XMV(6) 40.064 0 100 %
Separator pot liquid flow (stream 10) XMV(7) 38.100 0 65.71 m4i'^
Stripper liquid product flow (stream 11) XMV(8) 46.534 0 49.10
Stripper steam valve XMV(9) 47.446 0 100 %
Reactor cooling water flow XMV(IO) 41.106 0 227.1 m̂ h’*
Condenser cooling water flow XMV(ll) 18.114 0 272.6
Agitator speed XMV(12) 50.000 150 250 rpm

Table A4-2: Continuous process measurements

Variable Base case
Variable name number value Units
A feed (stream 1) XMEAS(l) 0.25052 kscmh
D feed (str eam 2) XMEAS(2) 3664.0 kgh'̂
E feed (str eam 3) XMEAS(3) 4509.3 kgh'̂
A and C feed (stream 4) XMEAS(4) 9.3477 kscmh
Recycle flow (stream 8) XMEAS(5) 26.902 kscmh
Reactor feed rate (stream 6) XMEAS(6) 42.339 kscmh
Reactor pressme XMEAS(7) 2705.0 kPa gauge
Reactor level XMEAS(8) 75.000 %
Reactor temperature XMEAS(9) 120.40 '̂ C
Purge rate (stream 9) XMEAS(IO) 0.33712 kscmh
Product separator temperature XMEAS(ll) 80.109 "C
Product separator level XMEAS(12) 50.000 %
Pr oduct separator pressure XMEAS(13) 2633.7 kPa gauge
Product separator underflow (stream 10) XMEAS(14) 25.160 m V
Stripper level XMEAS(15) 50.000 %
Stripper pressure XMEAS(16) 3102.2 kPa gauge
Stripper underflow (stream 11) XMEAS(17) 22.949 m V
Stripper temperature XMEAS(18) 65.731 '̂ C
Stripper steam flow XMEAS(19) 230.31 kgh'̂
Compressor work XMEAS(20) 341.43 kW
Reactor cooling water outlet temperature XMEAS(21) 94.599 °C
Separator cooling water outlet temperature XMEAS(22) 77.297
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A4.2 The Process Responses Under Different Faults/Disturbances
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Figure A4-1: Some Tennessee Eastman Process responses under F(l)

219

5 0 83

1
4 5 [ ^

82

X M E A S (19)

4 0

3 5

3 0

V \v u  X(^V(9) 81

8 0

1 X M E A S (II)



r  ^  X M E A 3(9)

XM E A S (13 )

20
T im e (hour)

20
T im e (hour)

4 0

XM E AS(5)

0 20
T im e (hour)

yy 3120 342

98 3100 340

97 3080 338

96 3060
XMEAS(16)

336
XMEAS(20)

k. .Llk.k J,
95

XMEA3(21)
3040 334

94 3020 33220
Tim e (hour)

4 0 20
T im e (hour)

4 0 0 20
T im e (hour)

20
Tim e (hour)

4 0 20
Tim e (hour)

4 0 0 20
T im e  (hour)

19,5

19

18.5
XMEA3(11)

18
-------------------------------- --

17.5

17

16.5
XMV(11)

2 0  4 0
Tim e (hour)

0 20
Tim e (hour)

4 0

4 0

46 240 50

44 220 45
200

42 40
180 .

40 \ XMEA8(19) 35
160 ■ V A , V

XMV(9)
38

36

' XMV(IO)
140

120

30

25
4 0

XM V (6)

0 2 0  4 0
T im e (hour)

Figure A4~2: Some Tennessee Eastman Process responses under F(2)

220



13 0

126
120

11 5

T im e (hour)

X M E A S (21 )

10  2 0  3 0  40
Tim e (hour)

XluiV(10)

20
20

T im e (hour)100

90

80

7 0

X M E A S (11 )

1 0  2 0  3 0  4 0
T im e (hour)

2 50

200

150

100

X M E A S (IS )

irf-* ilrrnM-iu

T im e (hour)

3 6 0

3 4 0

3 2 0

3 0 0

Tim e (hour)

XM E A S(20)

10  2 0  3 0  4 0
T im e (hour)

6 0

40

3 0

200 10 20 3 0 4 0

2 8

2 6

24

22

200 10 20 3 0 4 0

10 2 0  3 0  4 0
T im e (hour)2b . 55 r

20 L 50
15

r  ‘.............'
XM V (11) 4 5

10 4 0

6 , 3 5 .
10 2 0  3 0  4 0

T im e (hour)
10  2 0  3 0  4 0

T im e (hour)

Figure A4-3: Some Tennessee Eastman Process responses under F(3)

221



XM EAS(1 9)
XM EA3(9)

X M E A S (I)

20
T im e (hour)

20
T im e (hour)

20
T im e (hour)

XIVIEA8(21)
XMV(9

20
T im e (hour)

20
Tim e (hour)

20
T im e (hour)

XM EAS(4)
XM V (10)

XM EAS(5)

82

80

20
T im e (hour)

20
Tim e (hour)

0 20
T im e (hour)T im e (hour)

XM V (11) XMV(6)

20
T im e (hour)

20
T im e (hour)

20
T im e (hour)

3 7 0 6 1 .5

1
3 0 0

1 X M E A S (20)

61

1/ XM V (4)

X M E A S (11 )

3 4 0

6 0 .5

60

V

20
T im e (hour)

4 0

Figure A4-4: Some Tennessee Eastman Process responses under F(4)

222



X M E A S(I)

20
T im s (hour)

30 j----------------------------------- 0.36

0.34
25 1 0.32

20 i w É i É J i 0.3

if l iW P i 0.28
15 [[ 'I 1 1 Ir !

XMV(3) 0.26

10 0.24

4600

4 4 0 0

4 2 0 0

4 0 0 0

3 8 0 0

3 6 0 0

3 4 0 0
200 40

T im e (hour)

20
T im e (hour)

T im e (hour)

4 0

3 8 0 0

3 6 0 0

55
3 2 0 0

40
Tim a (hour) T im e (hour)

XMV(2)

X M E A S (10

20
T im e ;■ ;

20
Tim e (hour)

XMEAS(5)

20
T im e (hour)

9 .6 345

9 340

B.5 335

8 330
XMV(4)

7.5 325

7 45 32020
T im e (hour)

0 4 0 40 4 020
T im e (hour)T im e (hour)

Figure A4-5: Some Tennessee Eastman Process responses under F(5) 
(to be continued)

223



122 4 2 9 4 .6

120
4 0 9 4 .4

3 8
I 9 4 .2

118 \ 3 6

\ 3 4
l | i j  XM V (10) 94

11 6 \  XM EAS(9)
3 2 9 3 .8

114 3 0 9 3 .620
T im e (hour)

4 0

8 0 .5

7 9 .5

7 8 .5

7 7 .5

T im e (hour)

2 5

2 4

23

22
21
200 20 4 0

T im e (hour)

3 4 0

3 0 0

200

260

240

2200 20 4 0

20
T im e (hour)

20
T im e (hour)

4 0

3 1 0 5

X M V 11)

0 20
T im e (hour)

4 0

1----------------------------------------- --

XIVIV(7)

80

7 0

60
XMV(9)

5 0

4 0 0 20 4 0

X M E A S (21 )

T im e (hour)

X M E A S (16

20
T im e (hour)

68
67

65 0 20 4 0
T im e (hour)

T im e (hour) T im e (hour)

4 8

4 6

4 2

40

3 6 20
T im e (hour)

4 0

Figure A4-5: Some Tennessee Eastman Process responses under F(5) 
(continued)

224



3850

3800

3750

3700

3050

XMEAS(2)

T im e (hour)

Figure A4-6; XMEAS(2) response under F(6)

4750

XMEAS3

15 20 25
Tim e (hour)

Figure A4-7: XMEAS(3) response under F(7)

225



IP.
XMV 1)

XM EAS(2)

20
T im e (hour) T im e (hour)

4 6 0 0

Tim e (hour)

6 0

4 6

121

1 2 0 .5

120

119.5

T im e (hour)
20

T im e (hour)

  i
XM E A S(5)

2 0  4 0
T im e (hour)

8 0 .6

7 9 .5

X M E A S (II)

7 8 .5

7 8

7 7 .5
4 0

T im e (hour) T im e (hour)

X M V iO l

X M E A 8 (21 )

20
T im e (hour)

2 8 0 3 5 0

2 7 0 5 4 3 4 8

2 6 0
5 2

2 6 0
6 0 3 4 4

2 4 0

3 4 22 3 0

220 3 4 020
Tim e (hour)

4 0 4 0 20
T im e (hour)

4 0
T im e

Figure A4-8: Some Tennessee Eastman Process responses under F(8)

226



X M EAS(1)

0.8

0.7

0.5

0.4

0.3

0.2

T im e (hour)

100

XM V (3)

30

20

T im e (hour)

9 .4

9 .2

9

a. S

8,
3 0 4 010 200

T im e (hour)

61.5

60,5

59.5
XMV(4)

53.5

58

57.5
30

T im e (hour)

0.38

0.36

X M E A S (10 )
0.34

0.32

0.3

0.28

T im e (hour)

34
3020

T im e (hour)

Figure A4-9: Some Tennessee Eastman Process responses under IDV(l)

227



X M E A S(I)

10

9 .5

20
T im e (hour)

20
T im e (hour)

20
T im e (hour)

20
T im e (hour)

36
, 1 IJ 1 .

122

30

yiM & ÉÉ 121 A26 t  \  -  - -

. 0 "I 120

16 1 19

XIVIEAS(3)

X M E A 3(4)

XIVlEAS(IO)

X M E A S (19 )

4 0

20
T im e (hour)

4 0 20
Tim e (hour)

4 0

X M V 2

20
T im e (hour)

96

95

94

93
0 20 4 0

T im e (hour)
63 4 4

X M V (10)

6 2 .6 /  XMV(4)
J iliU w L A ililJaliulii

/ 4 2

62 /
4 0 ■f61 .5 J  ]

61 3 8
2 0  4 0

T im e (hour)
20

T im e (hour)
4 0

XM V (6)

X M E A S (1 i

2 0  4 0
Tim e (hour)

2 0  4 0
T im e (' ;

X M E A S(16

Tim e (hour)
20

T im e (hour)

Figure A4-10: Some Tennessee Eastman Process responses under IDV(2)

228



X M E A S(21)

XMV(1 0)

10 2 0  3 0  4 0  0 10  2 0
Tim e (hour) T im e (hour)

Figure A4-11: XMEAS(21 and XMV(IO) under IDV(3)

XM V(10)

10  2 0  3 0  4 0
Tim e (hour)

Figure A4-12: XMV(IO) under IDV(4) 
60

XMV(3)

10  2 0  3 0  4 0
Tim e (hour)

Figure A4-14; XMV(3) under IDV(6)

XIVIV(11)

10  2 0  3 0  4 0
T im e (hour)

Figure A4-13: X M V (ll) under IDV(5) 
80

10 20 
T im e (hour)

Figure A4-15: XMV(4) under IDV(7)

229



APPENDIX 5 

STEADY STATE IDENTIFICATION AND CHANGE 
DETECTION EXAMPLES FOR THE T-E PROCESS
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Figures A5-1A —  A5-1H: R-statistics for XMEAS(l) and 
XMV(IO) of the T-E process under different sampling intervals 
(IDV(2) happened at the 10 hours time, Ti=X2=?t3=0.02)

It can be seen that a thieshold (Section 7.1.5) of 1.5 and a sampling thne of 6.5 
mins for XMEA(l) and of 3 mins for XMV(IO) would be suitable.
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Figures A5-2A —  A5-2F: Steady state change detection of XMEAS(l) 
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