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Abstract

I have calculated the potential energy induced by stressors on the surface of a 

semiconducting heterostructure with 43m symmetry. The stressors may be single 

gates of arbitraiy shape or one- and two-dimensional arrays of such gates, and I give 

results for an arbitrary surface. When the gates are metal, the strain arises from the 

differential thermal contraction of the gates and the substrate. Strain can also be 

induced by including a deliberately strained layer in the heterostructure and partly 

etching it away. The strain couples to the electrons by the deformation potential and 

the piezoelectric effect. The deformation potential does not depend on orientation but 

the piezoelectric effect usually dominates, and its angular dependence breaks the 

symmetry of the gate.

I provide direct results in real space for single stripe gates, which is useful because 

even fast Fourier transforms take time and computing power. I also provide results in 

Fourier space for arrays o f stripe gates, single circular and square gates and two- 

dimensional arrays of such gates. I consider the (100), (110), (111) and (311) surfaces 

in detail. Of these, the (111) surface may prove to be attractive for experiments since 

the piezoelectric effect is both strong and approximately isotropic. 

Harnessing this potential has allowed a range of new experiments on lateral surface 

superlattices to be designed and carried out at Glasgow. These have utilised the 

piezoelectric effect to produce a potential that has half the period of the fabricated 

structure. The strong potential induced by the piezoelectric effect has also revealed 

new features in the transport thi'ough a superlattiee. These calculations have also 

shown that the piezoelectric potential can no longer be ignored when designing or 

modelling structures built on piezoelectric semiconductors, which include GaAs and 

other III-V materials. I have shown that placing a gate on the surface will produce a 

potential of around 1 meV at a depth roughly equal to half the width of the gate, 

which will have a measurable effect on devices. I also show how the piezoelectric 

potential can be minimised or eliminated iT p o s^ l^ .
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1 Introduction

Figure 1 A general surface structure on the surface of a semiconductor

1.1 Potentials from a surface Structure

While semiconductors are important in modem electronics, a lump of homogeneous 

semiconductor has limited uses. Often the semiconductor is patterned by structures on 

the surface. These structures are then used to produce potentials in the semiconductor, 

which can either confine or guide electrons or holes. This potential can arise from 

various sources. One source that has previously received little attention is strain. 

However, recent experiments and calculations have shown the importance of strain 

when characterising or designing devices, particularly in III-V compounds where the 

piezoelectric effect produces large potentials’’̂ .

The strain can arise from several sources. If the surface structure is another 

semiconductor then strain can arise from a mismatch in the lattice constants of the two 

semiconductors. When the surface structure is a metal gate, then strain can arise if the 

sample is cooled and the metal contracts at a different rate to the semiconductor^’̂ . 

This strain leads to a potential in the semiconductor through two effects, either 

directly shifting the energy of the bands that the holes and electrons exist in resulting 

in the deformation potential  ̂ or by causing a polarisation of the semiconductor atoms 

resulting in a piezoelectric potential*. I have investigated the potentials arising from 

strain, due to surface gates of various geometries including stripe, square, and circular 

gates, both in isolation and in arrays’’’’” .

The potentials arising from the strain, however, depend not only on the nature and 

shape of the surface structures but also on the underlying semiconductor. While I 

calculate the strains and potentials arising when the semiconductor considered is just a



homogeneous block, I am mainly interested in the effect on a two-dimensional 

electron gas in a heterostructure. Thus, the main results of each section are the 

potential energy arising in such a system. I will also show how these results can be 

used to design systems to either eliminate these potentials or minimise them. In 

addition, I will also show how to engineer systems to take advantage of these 

potentials by maximising their effect or eliminating certain harmonics from them.

1.2 Heterostructures

A heterostructure is any semiconductor composed of more than one material. 

Different semiconductors have different band energies and different lattice constants, 

it is therefore possible to design and build heterostructures to control the motion of the 

electrons and holes in the semiconductor, This is called band engineering’̂ .

If  the layers in a heterostructure are grown so that there is one potential well in the 

conduction band below the Fermi energy, the maximum energy allowed for an 

electron in the system, then all the electrons will be trapped in this well. If  the 

temperature is lowered sufficiently and the density of states is sufficiently low, then 

all the electrons will lie in one quantum mechanical state perpendicular to the surface 

of the semiconductor, although they remain free in a plane parallel to the surface of 

the semiconductor. Such a system is called a two-dimensional electron gas (2DEG), a 

typical example of which can be seen in Figure 2 ’̂ ’” . A 2DEG has several advantages 

over a general n-type semiconductor; the mobility is much higher, the mean free path 

is longer, typically around 20 pm and the electron density is much higher. The 

2DEG’s considered here are made from GaAs/AlGaAs heterostmctures because they 

offer a larger mobility than their Si counterparts’'’.

Another feature that can be used when constmcting these devices is 8-doping’'’. This 

is when instead of having a doped slab o f semiconductor grown in the heterostructure, 

a doped layer is grown. In this way, all the donors are confined to a plane. This allows 

the 2DEG to be grown shallower so that a potential applied at the surface is attenuated 

less when it reaches the 2DEG than for the equivalent slab doped heterostructure. If 

the density of donors is too high then the energy can dip below the Fermi energy and 

give rise to a parasitic layer of elections m the donor layer’ ,̂ as shown in Figure 7. 

This effect has important consequences for the potential energy in the 2DEG, since it



Figure 2 Self-consistent solution of the conduction band E^(z) through modulation- 

doped layers with no gate bias v^^=0 .2 V and = 3xlO’̂  m'̂  electrons in the 

2DEG. The 2DEG is shown as |m,(z)|̂  .

[Modelling program courtesy of Prof. G. L. Snider, University of Notre Dame.]

Figure 9.1 from Davies'^

increases the screening and can act as an equipotential plane between the 2DEG and 

the surface. However, these electrons are not totally free to move and remain bound to 

the donors. It is however, a reasonable approximation to treat some of the electrons as 

free when calculating the screening, this will be dealt with in §2.4.

1.3 Experimental systems

The primary experimental system for which these potentials have been devised is the 

lateral surface superlattice (LSSL). This is an array of gates on top of a heterostructure 

with a 2DEG. A one-dimensional LSSL is an array of stripe gates and a two- 

dimensional LSSL is an array of either circular or square gates, as shown in Figure 3. 

These devices were originally fabricated to look for quantum mechanical effects such 

as Bloch oscillations, where the electrons oscillate instead of continually increasing 

their kinetic energy as they would in a classical system, and the Hofstadter butterfly, a 

remarkable self similar pattern produced by the splitting of the Landau levels by a 

two-dimensional periodic potential and a magnetic field*H owever, the periods of 

potential that can be currently fabricated are too large to observe any of these effects, 

instead semi-classical effects were observed. Two of these effects have been



Figure 3 A ID LSSL and a 2D LSSL. The gates are grey, the semiconductor is red 

and the 2DEG is blue.

explained for a one-dimensional LSSL, Weiss oscillations* '̂^*, for B < 0.5 T and a 

positive magnetoresistance (PMR) peak at B « 0.1 Both of these effects can be 

used to measure the potential in the 2DEG, while the Weiss oscillations can be used to 

measure the harmonic content of the potential^.

1.4 Weiss osciiiations

When the electrons in a 2DEG are subjected to a perpendicular magnetic field then 

they move in circles called cyclotron orbits, the radius of which is given by 

Rc = mVpjeB, where is the Fermi energy, e is the electronic charge and m is the 

effective mass of the electrons in the substrate. If in addition to the perpendicular 

magnetic field the electrons are subjected to a periodic electric field from a ID LSSL, 

then the interplay between the cyclotron orbit and periodicity of the potential 

produces some commensurability effects [Figure 5]. One such effect is 

commensurability oscillations in the magnetoresistance of the 2DEG*\ first 

discovered by Weiss, von Klitzing, Ploog and Weimann* .̂ At low magnetic fields 

(<0.5T at 4.5K) there are oscillations in the magnetoresistance which are periodic in 

1/B. These oscillations were explained semi-classically by Beenakker^ .̂



n o n - r e s o n a n t r e s o n a n t

Figure 4 Possible trajectories for an electron moving in a magnetic field and a 

sinusoidal potential. The horizontal lines are equipotentials at y  j i b ,  where b is the 

period of the potential, blue is a negative potential and red is positive. On resonance, 

the guiding-centre drift is maximal; off resonance, the drift is negligible.

If  the potential is small, then the motion of the electrons can be considered a 

perturbation o f the cyclotron orbits produced by a magnetic field alone. This is done 

by considering the motion of the centre of the cyclotron orbit or guiding centre. When 

the effect of the periodic potential is averaged over the path of the election (the 

cyclotron orbit), it is found that for most of the orbit there is no net effect, since the 

electron passes over a full period and the forces cancel. This however does not hold at 

the edges of the orbit when the electron does not cross a full period. Therefore, when 

the signs of the potential for the extremities of the cyclotron orbit are the same the 

drift velocity is enhanced and when the signs are opposite the drift velocity is 

diminished to zero and the electrons just orbit as in the absence of a potential [see 

Figure 4]. On solving the semi-classical Boltzmann equation, Beenakker was able to 

find this approximate expression for the oscillations in the magnetoresistance.

cos^ jb-Tv/A), (1.1)

where is the resistance measured by the current in the x  direction of a hall bar 

when a voltage is applied m the x direction and is the resistance of the sample at 

zero magnetic field, V is the magnitude of the potential in the 2DEG, Ej, is the Fermi 

energy, b is the period of the potential and I is the mean free path.
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Figure 5 Experimental result for magnetoresistance as a function of magnetic field B. 

The commensurability oscillations occur for B < 0.5 T, and show a strong second 

harmonic content. This is confirmed by the power spectral density (PSD inset) 

obtained from a Fourier transform of the magnetoresistance considered as a function 

of 1/B. The peaks at low frequency arise from commensurability oscillations, 

showing a strong fundamental and second harmonic but little third harmonic; the peak 

at 7-8 T is from the Shubnikov-de Haas effect. A positive magnetoresistance peak at 

0.1 T can also be seen.

[Figure from Davies and Larkin ]̂

This result was later generalised by Gerhardts to include higher harmonics^ .̂

Po
= Z n L

aR
cos I tt nR^ 7t

a 4 y
( 1.2)

where is the magnitude of the nth harmonic of the potential in the 2DEG. This

result can be used to determine the square of the Fourier components of a periodic 

potential by analysing the magnetoresistance. Unfortunately, this does not give the 

sign of the Fourier components.



However, there are some problems with this theory. While it correctly identifies the 

position of the peaks, it gets most of the amplitudes wi’ong. This is thought to arise 

due to only considering isotropic scattering. This has been considered by Mirlin and 

Wolfe^^ semiclassically, and by others quantum mechanically^^’̂ ,̂ however the results 

they give are not as amenable to a straightforward interpretation of the data as 

Beenakker’s result. Several authors have also looked at this issue numerically^^.

Gerhardts has attempted to extend the results for a one-dimensional LSSL to a two- 

dimensional LSSL^^’̂®. He proposes that the addition of a second perpendicular 

periodic potential has no effect on the magnetoresistance measured perpendicular to 

the original periodic potential. It only introduces additional commensurability 

oscillations when the magnetoresistance is measured perpendicular to the new 

periodic potential. However, recent experimental and theoretical work has cast doubt 

on this^\ Although there has been an attempt to look at the two-dimensional case 

quantum mechanically^^ it is still not yet understood and needs to be investigated 

further. It is hoped that the calculation of the two-dimensional potentials will facilitate 

this investigation.

1,5 Effect on FETs

These potentials also have applications in some devices. While this work 

demonstrates that strain should be considered in all surface structures, it is particularly 

applicable to surface structures in GaAs/AlGaAs where the piezoelectric coupling of 

the strain to the elections induces a strong potential. However, the devices to which 

my work are most easily applicable are FETs particularly MODFETs. Since a 

MODFET is effectively just a gate with a 2DEG beneath it, the results for single 

stripe gates are directly applicable.

Although some results exist for arrays of gates on (100) these require a lot of Fourier 

components to be included for an accurate calculation when reduced to a single gate. 

It is desirable to have a simple expression in real space for potentials produced by a 

single gate.



Strain potentials give rise to a number of observable effects in FETs, the most 

prominent of which is a shift in the threshold voltage^^. This arises straightforwardly 

as potentials arising from the strain in the gates shift the energies of the electrons in 

the 2DEG, sometimes by as much as a few meV, thus requiring a different voltage to 

remove the electi'ons from the channel^^. Sometimes it is desirable to minimise these 

strain effects while at other times it could be useful to harness the built in potential 

generated. It is therefore a goal to find the conditions under which this can be 

achieved.

The first work in this area was carried out by Asbeck et. al.^ .̂ They recognised the 

dominance of the piezoelectric effect in the shift of the threshold voltage of FETs. 

They were able to calculate the charge density produced by a gate aligned to the 

cleavage planes on a (100) surface. They also deduced from this the change in the 

threshold voltage of a FET, however they gave no expression for either the potential 

produced by this system or the effect on a 2DEG. I will therefore calculate the 

potentials arising from single gates as well as arrays of gates.

1,6 Synopsis

In chapter 2 I consider the physical model and establish the elastic and electrostatic 

models, the approximations and the assumptions I will use.

Then in chapter 3 I calculate the sti'ain fields produced by a single stripe gate. For 

one-dimensional stripe gates, this is done by considering a two-dimensional elastic 

potential. I can then calculate the charge density produced via the piezoelectric tensor. 

This must be rotated to the correct orientation first. This rotation of the piezoelectric 

tensor is responsible for the angular dependence of the resulting charge densities and 

potentials. Once I have the charge densities for the stripe gates, I then calculate the 

potential using Poisson’s equation. I then screen it using an approximation to Thomas 

Fermi screening to allow for the presence of the 2DEG and any nearby equipotential 

planes. I thus calculate an expression for the screened potential in a 2DEG in real 

space.



In chapter 4 I calculate the potential arising from an array of gates, or lateral surface 

superlattice by Fourier transforming the potential and then limiting the Fourier wave 

vector to certain values.

In chapter 5 I consider the potential produced by island gates. The situation becomes 

more complex and a tlrree-dimensional elastic potential is required. Therefore, I have 

abandoned the approach of chapter 3 for the two-dimensional case and used the 

superimposition o f the results for point forces, instead. The foimdation of this work is 

the displacement from a point force, which was solved by Cerruti. This is then used to 

calculate the sti'ain. The piezoelectric tensor is then used in like manner to the stripe 

gate to calculate the charge density. It is hard to proceed from here in real space, so 

the quantities are Fourier transformed. The potential can then be calculated and 

screened giving the potential in the 2DEG. I also introduce the idea of a 

pseudopotential derived from the displacement, which simplifies multiple calculations 

on different surfaces.

I then extend these results in chapter 6 to consider the case of two-dimensional LSSLs 

by limiting the Fourier wave vectors of the potentials to certain values.

Then in chapter 7 I present my conclusions and some of the experimental applications 

o f my work and some suggestions for future work.



2 Physical Model

stressor

lOnm GaAs
6nm Ino.2Gao.8 As 

2 nm GaAs
^  3 nm Alo.3Gao.7 As 

2nm GaAs 
lOnm Alo.3Gao.7 As

+  +  +  +  +  +  +  +  + &-Si (5 X IO16 m-2) 

20 nm Alo.3Gao.7As

GaAs

Figure 6 The layers for the stressor

2.1 Physical system

A heterostructure is grown on top of a GaAs substrate as shown in Figure 6 . This 

modifies the conduction band of the semiconductor to trap electrons in one plane at 

the junction of the heterostructure and the substrate, as can be seen from Figure 7. 

This plane of electrons is called a 2-dimensional electron gas or 2DEG. While the 

confinement to one plane is simplistic, and in reality the electrons are in a quantum 

mechanical state spread over a depth of around 7 nm, the plane approximation is a 

good one and used here' .̂ The depth used for the 2DEG is taken as an average value.

On top of this heterostructure, another structure is placed on the surface. This can 

either be a metal gate or a stressor layer as shown in Figure 6 , which can be etched to 

produce stripes and other patterns. These structures are referred to as gates for 

simplicity throughout the rest of this document, although the stressor layers are 

strictly not gates. Their elastic behaviour differs only in the sign and magnitude of the 

effect and will be treated with the same methods'*.
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Figure 7 Self-consistent solution of the conduction band through modulation-

doped layers with no gate bias = 0 V . Both the 2DEG and the parasitic layer of 

electrons around the donors can be seen clearly.

[Modelling program courtesy of Prof. G. L. Snider, University o f Notre Dame.]

The choice of axes is awkward, because it is most convenient for the calculation to 

have z  pointing into the substrate, whereas the conventional specification of a surface 

is by the outward normal. The outward normal is used to avoid confusion over the 

orientation, as shown in Figure 8 . Equations will be written with \z\ to avoid 

misleading signs. The exposed surface o f the semiconductor defines the plane z = 0

Table 1 Notation for orientation of crystal axes

Outward normal to the Principal direction in plane

of surface (^ = 0 )surface

z

[100]

[110]

[il l]

[311]

[010]

[OOl]

[oil]

[on]

Third axis (0  = 90°)

y
[OOl]

[iTo]
[111]

[133]

11



Principle direction
in plane o f surface

2DEG

Figure 8 Axes used.

and X is chosen as the principle direction in this surface. Table 1 gives the notation for 

the surfaces that are considered.

The figures included are for a 2DEG of depth d = 50 nm in layers that are ô doped 

with a plane of donors at depth c = 25 nm. Results will be presented for circular and 

square gates with a diameter or width of 2 a = 1 0 0  nm, either isolated or in square 

arrays of period b = 200 nm. Finally, the one-dimensional superlattices have equal 

gates and gaps of 1 0 0  nm, giving a period of 2 0 0  nm.

2.2 Elastic model

In a metal gate, the stress arises from the thermal contraction that occurs when the 

semiconductor and the gate are cooled down to the measurement temperature e.g. 

4.2K. However, the coefficients of the thermal expansion are different for the metal 

and the semiconductor. This differential thermal contraction strains the gate and the 

semi-conductor below it̂ .

The semiconductor is assumed to be a semi-infinite solid. It is also assumed to be 

homogenous and thus the elastic properties are assumed to be the same throughout, 

although in reality they differ in the different layers of the heterostructure. This is a 

reasonable approximation for AlGaAs and GaAs and it is hard to relax this 

approximation in analytical work. Similarly, the semiconductor is also assumed to be 

isotropic for elastic purposes. This is definitely not a good approximation for a semi-
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conductor with 43m symmetry, like GaAs and AlGaAs. Again however, it is difficult 

to do better analytically.

I consider two models for the distribution of stress in the gate, both given by Larkin 

et. al.® but modified for single gates rather than superlattices, the elastic and the rigid 

gate models. Both these models assume that the gate is thin enough so that it exerts no 

normal forces on the surface of the semiconductor.

1. The elastic gate is the limit o f a thin gate, such that the lattice constant parallel to 

the surface in the gate is forced to match that of the underlying substrate. Thus the 

gate is in constant stress, and only exerts a force along the edges of the gate. This 

model is applicable when the thickness of the gate is veiy small compared to the 

width of the gate.

2. The rigid gate is the limit of a thick gate, such that the lattice constant in the 

substrate, directly beneath the gate, is forced to match that of the gate. Thus, on 

the surface of the substrate cr .̂ is constant underneath the gate. This is applicable 

to a gate where the thickness of the gate is much larger than the width of the gate.

The force distribution for these models is obviously umealistic and should be spread 

over the width of the gate^. However this is hard to model accurately® especially for a 

two-dimensional gate. The rigid gate is the better model for the experimental system 

under consideration. However it is mathematically more complex than the elastic 

gate®. While either gate can be treated with the Airy stress functions used in Chapters 

3-4, the more complicated island gates of Chapters 5-6 use the elastic gate model and 

so this model is used for most calculations for comparison purposes. The effect of the 

different models is only on the harmonie content of the potentials and does not effect 

the symmetry of the potentials.

The differential thermal contraction of a Ti gate on à GaAs substrate strains the gate 

by about + 0.001, which generates a stress cr  ̂= j5/(i~ 0.15 G P a, where v is

Poisson's ratio and £  is Young’s modulus^'^. These gates have a typical thickness 

30 nm , and the force per unit length at the edge of the gate is the product of these, 

F  - -her « -5 N m “' ; the sign shows that this is directed toward the centre of the
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gate^. In a stressor layer, the stress is caused by a lattice mismatch between the 

stressor (InGaAs in Glasgow experiments) and the AlGaAs/GaAs, and gives rise to a 

strain of around -0.002 for a 20% InGaAs channel of width 6nm. These gates have a 

typical thickness of /? = 18 mn"̂ .

The strain is defined to be 
f  ^ \

(2 .1)
1 du.j_ + . J

where w, is the displacement .

The standard stress/strain equations for an isotropic medium, which are used 

throughout, are

E e ,,= a „ -v{(T ^+ < x^)

= (2 .2) 

.ë£ „= o -„ -v (o -„+ (T ^ ),

Due to the homogeneous approximation v  and E  are assumed constant throughout the 

heterostmcture. Poisson’s ratio is given by v  == 0.31 ^ This value of v  is appropriate 

for tensile stress along the principal axes. I use a value of £ - 9 0  GPa for Young’s 

modulus \

2,3 Piezoelectric effect

If  semiconductors with 43m symmetiy, including AlGaAs/GaAs, are strained, this 

produces a polarisation as the electrons and nuclei are separated. This polarisation is 

given by

~ djjkCr, (2.3)

where dy,̂  is defined by this expression to be the piezoelectric tensor. There is also an 

alternative definition for an alternative piezoelectric tensor , which relates the 

polarisation to the strain by

(2.4)

The piezoelectric tensors me related by the shear modulus, G -c^^  = 5 9 G Pa', with

-  Gdy, .̂ For a cubic crystal with 43m symmetry with the primary axes, most of the

14



elements disappear leaving only the elements with indices ijk equal to a permutation 

of 123^. Each of these elements is equal to which in GaAs and consequently 

our assumed isotropic semiconductor is = -2 .69x10“^̂ mV “̂ }  The corresponding 

value for the strain piezoelectric tensor is given by =~0.16Cm'^.^ For

other orientations the piezoelectric tensor has to be rotated. If  the gates are not aligned 

with the crystal axes the piezoelectric tensor must be rotated by dyĵ  = Ry" " .

This is accomplished by a rotation of 0  about the z-axis. The rotation tensor 

necessary for this is

f  COS0 -s inO  0^

(25)R' sin (9 COS0 0

Due to the symmetry of the piezoelectric tensors, not only does the polarisation 

change with angle but also according to the surface on which the semiconductor has 

been grown. The rotation matrices for the surfaces I considered are

•̂n/2 0 0 ^

" f ’ - è
0 1 -1  
o i l ,V y

(311)

V3 -V 3 o '  
1 1 - 2  

V2 V2 V2

V ît -VÎT o '
3 3 - 2

V2 V2 3V2

(2.6)

These rotations to the correct surfaces take place before the rotation of the z-axis, thus 

the fiilly transformed tensor dy^ for the new surface is given by

d ijk
nca nca nca ns ns ns it 
^il ^jm^kn^lo^mp^\iq^opq ' (2.7)

where Rl is the rotation matrix for the new surface.

It is more convenient to work with the charge density p  produced rather than the 

polarisation. This is given by
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p  = = (2.8)

where R  is a three-dimensional vector given by R  = (x ,y ,z ).

2.4 Electrical model

Again, the semiconductor is considered to be homogeneous with regard to electrical 

properties as well as elastic ones. Thus, the dielectric and piezoelectric constants are 

assumed to be the same throughout the material. This is a reasonable approximation 

as the values in GaAs and AlGaAs are similar. The dielectric constant s,. is taken as 

£, = 1 3 .‘

The piezoelectric potential is assumed to have developed slowly, as the sample is 

cooled, so that the electrons in the 2DEG and the suiTaces states have time to come to 

equilibrium. Therefore, the Fermi level can be considered to be pinned with the 

electrons free to move between the surface states and the 2DEG to maintain the Fermi 

Energy on the surface. Therefore, the surface can treated as an equipotential^^.

There are two alternative approximations for a mobile charge around the donors. 

Sometimes there is a parasitic channel of electrons that remain free or very loosely 

bound even at low temperatures, but usually they are trapped in DX centres as the 

sample is cooled. However, even in these cases, the occupation is not random and 

some screening occurs. The two extreme models are either to ignore these electrons 

completely or to assume that the screening is so good the donor layer can be treated as 

an equipotential planê "̂ .

The potential is calculated from the charge density using Poisson’s equation

— — ■ (2.9)

The boundary conditions for a two-dimensional potential are 

>0 as x,z->oo

^(x,z -  0)= 0
(2 .10)
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This second boundary condition can be modified to allow for the presence of a 

parasitic layer of elections around the donors, so that the potential vanishes on this 

plane instead of the surface. The modified boundary conditions would be 

^ “>0 as x,z->oo
/ \ (2.11)

(j)\X̂  z — d j  — 0

where d  is the depth of the donor layer. It is trivial to extend these boundary 

conditions to those for an island gate where the potential is tliree-dimensional and 

tends to zero as the y  coordinate tends to infinity as well as x and z.

This potential however, does not take account of the 2DEG and the effect it has on the 

potential by redistributing itself in response to the applied potential. This is taken care 

o f by screening using a Thomas-Fermi dielecti’ic function^^, modified to allow for the 

nearest equipotential plane^.

T̂F (?, f  ) = 1 + — [l -  exp(- g)] (2.12)

where p  is the depth of the nearest equipotential plane and the Bohr Radius is 

given by -1 0  nm for this system.^ This screening takes place in Fourier space, 

however it can be approximated in real space by the d/dz  approximation, details o f 

which are given in §3.3.

The notation A is used for the Fourier transform of a quantity A throughout this 

document. Also ^ is used for potentials and V is used for potential energies.

2.5 Deformation potential

In addition to the piezoelectric effect, the strain also interacts with the electrons 

through the deformation potential^^. While the piezoelectric potential remains the 

same if the carriers are holes, the deformation potential given here is only for 

electrons, the case for holes is more complicated. For electrons, the stress causes the 

edges of the energy bands to shift up or down proportionally to the dilation^^, 5 given

by'

^  = (2.13)
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Using the standard elastic equations [Eq. (2.2)], this can be expressed in terms of the 

stress as

+ + (2.14)

The constant of proportionality is the deformation potential energy constant S, so that

the deformation potential energy is given by

= ■35 = + e ,, + £„ ) = S  + cr„ ). (2.15)

The value for S  rs assumed to be that for GaAs, a  = - 8 eV.^ The deformation

potential energy can also be screened using a Thomas Fermi dielectric function.
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3 Single Stripe Gate
Larkin et. al.* calculated the piezoelectric potential arising from a sfripe gate on (100), 

and an array of such gates, in Fourier space. However, while this is good for an array 

of gates it is desnable to have a simple expression for the potential from a single gate 

in real space, due to the high number o f Fourier components involved. I have 

therefore calculated this simple expression in real space. I have also extended these 

results to consider other surfaces for the gate as well as the [100] case. The ‘stripe 

gates’ considered here are rectangular gates whose length is much greater than their 

width so they can be considered infinitely long. Therefore these gates have one 

defining parameter, the width of the gate, and are therefore sometimes refeixed to as 1 

dimensional gates.

3,1 Strain field

The Elastic models considered here are those given by Larkin et. al.®, I will briefly 

review them here.

The elastic gate is the limit of a thin gate, such that the lattice constant in the gate is 

forced to match that of the underlying substrate. Thus the gate is in constant sti’ess, 

and exerts a force along the edges of the gate.

The rigid gate is the limit of a thick gate, such that the lattice constant in the substrate, 

directly beneath the gate, is forced to match that of the gate, while the lattice constant 

elsewhere on the surface is unaffected. Thus, the surface of the substrate is in constant 

stress underneath the gate.

Since we have assumed that there are no forces normal to the surface acting and 

consequently no bending, therefore we have plane strain which is defined by®

= cr^=(T^=0 and =v(<j„ (3.1)

Using (3.1) to eliminate from the standard relations between normal stress and 

strain [Eq. (2.2)] gives
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(3,2)
L |z |)  = (l -  v" )cr= k |z |)- '■ '(l + '" K ,  (̂ > N) 

where E  is Young’s modulus and v is Poisson’s ratio for the semiconductor.

Since we are considering the case o f a thin gate, it is reasonable to consider that the 

stress and strain are independent of z tlnoughout tlie thickness of the gate. Therefore 

since crff ® = 0 , this is held throughout the gate. The normal stress and strain along x, 

the length o f the gate are then related by (x) = (l -  (x ).

The relation between stress and applied force is F = -d ivn with a body force F per 

unit volume. On a surface, this becomes P -  ct n where P is the force per unit area 

and n is an outward unit normal. On the exposed surface of the semiconductor, 

between the gates where no force is applied this gives = (T„ = 0. We have

assumed that = 0 because the gate is thin and therefore = 0 holds over the 

whole of the surface of the semiconductor.

The remaining stress in the gate exerts a force per unit area T^(x) on the 

semiconductor underneath. Assuming a constant stress in the gate through the 

thickness h of the gate, the body force integrates to P ^ (x ) - h d a ^ ^ /d x  (since the 

force is exerted by the gate on the semiconductor). This generates a shear stress on the 

semiconductor given by cr^^(x,z = 0) = ~P^(x), on the surface. Thus, the stresses in 

the gate and semiconductor are related by
^  gate

o 'j.zkz = 0) = -P^(x) = ~. (3.3)
dx

According to standard elastic theory^, the two-dimensional stress can be deduced from 

a biharmonic Airy stress function x  defined by

V'% = 0 , (3.4)

as follows
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d X  9 y d X ( \
= - Z f r ,  (3,5)a|z|" "  axa|z | "  6%

Because the system is in plane stiain, the biharmonic potential x  can then be written 

as % = \z\(p where V̂ ç!) ™ 0. It is convenient when calculating the elastic potential to 

choose (p to be the imaginary part of a complex potential^ , which is a

function of the complex coordinate Ç ~ x  + i\z\. The stress in the semiconductor is 

given by

CT. .(x, |z| )= = 2 ^ + z  ̂  = 2 Re(m ')- |z| Im(® ") ̂
d\z\ o\^ d\z\

(x,z) = = | z | ^  = |zllm(a)"),
dx^ ' ' dx'

where derivatives of o) are taken with respect to the complex variable Ç . Thus, it 

only remains to calculate for the different models of gate.

Taking the limit of -> oo using sinx = x in Eq. (2.16) in Larkin et. al.Umx-»0

where Z  - ttÇl{a-¥b) and A ~ m l{ a  + b), we obtain the function o){^) for a single 

elastic gate

û>(V) = - — (ln(V -û)-ln (V  + «)). (3.8)K

For a single rigid gate is obtained from Davies and Larkin^ Eq. (4.8) 

with the branch cut chosen so that - a ^  > 0 , on the positive y  axis.

Since = 0 , then Fourier transforms are of the form
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V(x,z)=  Jv(^)exp(~/^x)exp(-^|z|) dq . (3.10)

Therefore, taking derivatives by z  is equivalent to multiplying the Fourier transform 

by - Ç ,  and taking derivatives by x is equivalent to multiplying by - iq . This will be 

used later when calculating arrays of gates or when exact Thomas Fermi screening is 

required.

3.2 Deformation potential

The deformation potential is proportional to the dilation, which is given by [Eq. 

(2.15)]

„ 1 — 2v ( \
e,, = - y -  O-,, j .

However = 0 [Eq. (3.1)] and = y(cr.^ + ) [Eq. (3.5)], for this system

therefore

<5 = «-„ + e ,  = ^ - ^ ( l  + vXo-„ + o-,.). (3.11)

Using the expressions for the stress in Eq. (3.6), the dilation is given by

â  = ^ ~ { l  + v)2Re{o}j. (3.12)

To obtain the potential energy in the 2DEG this is multiplied by S  the deformation

potential constant [Eq. (2.15)].

= S â  = M ± Æ l M R e ( û , ' )  (3.13)

This can then be Fourier transformed and screened, using Thomas Fermi screening

[Eq.(2.12)],

L f  .9:) = ^ . 9:)) ' (3.14)

However, the dielectric flmction 6"̂  ̂ [Eq. (2.12)] can be approximated by the 

following expression

{g,p) = ̂ ,  (3.15)TF appox '
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when y p « q  « Ifa^ , and g 9^0. This approximation is good when the 2DEG is far 

from the equipotential plane.

Since q) and ^ , and consequently the real and imaginaiy parts of derivatives of a) are 

harmonic functions, then Fourier components decay with depth like exp(-^|z|). 

Multiplication by q is therefore equivalent to taking the derivative -d ld \z \ .  

Therefore, the approximate inverse dielectric function approx [Eq. (3.15)] can be 

written in real space as 

ün Ô.-1 -  tfs,
2 d\z\d̂jdz 0 (3.16)

This gives the screened deformation potential as

(3.17)

I have therefore found a method for calculating an approximation to the screened 

deformation potential in real space.

Unlike the piezoelectric potential (§3.3-3.4), the dilation and consequently the 

deformation potential do not depend on orientation.

3.3 Piezoelectric potential on [100]

Larkin et al.® calculated the potential arising from an array of gates (an LSSL) through 

the Fourier transform of the potential. While this only needs a few Fourier 

components, the single gate requires many more. It is therefore desirable to have an 

expression for the potential in real space.

The charge density is given by [Eq. (2.8)]

dr,

For the (100) surface this works out to
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p - d ^ ^  sin 2(9 a 1 a 1 aH ----- — cryydx “  2a|z| “  2S|z

Using Eq. (3.5) to eliminate

p  -  K , 4  ^“ 2 0 [ ^ 2 £ t T „  +  (1 -  

and then substituting derivatives of (p for from Eq. (3.6) gives

(3.18)

(3.19)

P~2^\A  sin26*
dx

d^(p
alzl^

Sizf

(3.20)

Since ^  is a harmonic function “ - y  = — Thus allowing us to simplify this
dx'

expression to

p ~ \d ^ ^  sin 26* ( 5 - 2 v ) | i + 3 z | ^
a|z| a|z|

This can be expressed simply in terms of o){^)

p ~ - \ d ^ ^  sin 26>[(5 ~ 2y)lm(û)")+3zRe((5)"')] .

(3.21)

(3.22)

This is equivalent to the result by Asbeck et. al.^  ̂ for the charge density under a gate 

aligned along [oi l]  on (100)
Xiz(xf - P

P^ïb< yfdA (3.23)

where = Id^^ (4 + v ) l n , Xj = x -  « , r^~ ^ x f  4-z^ , X2 ~ x  + a ,  r^= -yjxl +z^ , 

J3 -  (2 + v)/(4h-v), cTy is the tensile stress in the gate and dj- is the thickness of the 

gate.

To get the potential, Poisson’s equation [Eq. (2.9)]

vVb„=— ^
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needs to be solved. The boundary conditions I have used are those given by Eq. (2.9), 

for no parasitic layer.

(j) —y 0 as X, z  —y oo

^(x,z = 0) = 0

I have solved Poisson’s equation by assuming tlie form of the potential to be

(j) -  /4|z|Re(<î?')+bB|z|̂  Im(a>')+ C|z|Re((»")+D|zp Im(n)"), (3.24)

and then substituting this into Poisson’s equation to find the constants. This gives

A a r e  = -^^sin26^[(7  -  4v)|z|Re(fi?')“ 3|z|  ̂Im(m") 
0^0 /̂-

(3.25)

This can be Fourier transformed in x and |z| to allow us to calculate the screened 

potential. The approximation to screening, discussed in §3.2, cannot be directly 

applied since is not a harmonic function. However, it is noticed that

A .ro= E ^< N ’-^/> (3.26)

where the îî^ are harmonic functions and the A. are constants. Therefore the

approximate inverse dielectric function [Eq. (3.16)] can be applied just to the

harmonic parts of the potential. So that for the general potential expressed in Eq. 

(3.26), the screened potential is given by

= ' (3.27)

Using this expression, we can obtain the following expression for the approximate 

screened potential energy in the 2DEG

V = _  4v)|z|lm(a)")+3|zj* Re(®'") (3.28)

where - e  is the electronic charge. This approximation can also be applied to the 

deformation potential.

Thus we have a simple expression in real space that is an approximation to the 

screened potential energy in the 2DEG.
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3.4 Piezoelectric potential on different surfaces

Using the rotation matrices in Eq. (2.6) to rotate the piezoelectric tensor dy^ for some

common surfaces [(110),(111),(311)^^] it is possible to calculate the charge densities 

for gates on these surfaces using Eq. (2.8)

in terms of derivatives of the stress or,,. These are

Pi 10 ~ 8 d]14

)cos36'

2V3
^ (o’», + o ';y -2o-^)+2 4 -o '^+ V 2 ^ ( ,
dx dx ax

Jsin36*

P 311 -
d.14

22VÎT [ a|z
a
dx

sin (9

+ 24
4 ^  XX ^yy A

dx
)+2~~<t . cos26>

+15V2^((Tĵ  -o-„)sm36'

(3.29)

(3.30)

(3.31)

which in terms of derivatives of g)(^^ are

Piio = “  8 ̂ 4  [(2(11 + v)Re[û)"]- I5|z|lm[ft>"'])cos^ 

+ (6(y ~l)Re[<2)"]+3|z|lm[nj"])cos 3^]

All = —^^[(7 + 2y)lm[û)"]+5|z|Re[cu"']
2V3

a /2 (2(y -  l)Re[ft)"]+ |z| Im[n>'"])sin 3(9

(3.32)

(3.33)
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A h = [- 9(7 + 2v)lm[a,"] -  4S|z| Re[m"]

+ 4(2(11 + v)Re[m "]-15 V2|z|lm[®"])sin e  

+ 24((2t/ -  5)lm[a)"]+ 3|z|Re[ffl"])cos20 

+ is(2(v -  l)Re[®"]+V2|z|lm[co"'])sm3é']

(3.34)

The bare potential can be found by solving Poisson’s equation [Eq. (2.9)] using the 

same technique as in §3.3.1 assumed the same form for the solution [Eq. (3.24)]

^  = ri|z|Re((î?')+ Im(cu')+ C|z|Re(ft)")+/9|z|^ Im(a>")

and then substituting this back into Poisson’s equation to work out the constants. The 

bare potentials for these surfaces are given by

c 32^06"

Æ™ = 4v)Re[®']- 5|z|lm[®’]

+ V2 ((4 -  3 v)lm[c»'] -  |z| Re[<y"])sin W

= 38. ^ e  e  2y + 27)Re[co']- 45|z|lm[a)"]

+ 4((29 + 4v)lm[n?']+15's/2|z|Re[(2?'’])sin(9 

+ 3((56 -  32v)Re[û)']- 24|z| Im[(u"])cos 16 

+15((4y -  3)lm[n?']~ V2|z|Re[6?"])sin3é>

—j|z|[((29 + 4v)lm[n?']+15|z| Re[6>"])cos 6 

(3(4y -  3)lm[û)'] -  3|z| Re[m"])cos w \
(3.35)

(3.36)

(3.37)

And the approximate screened potential energies in the 2DEGs, given by the djdz  

approximation to Thomas Fermi screening [Eq’s (3.16) and (3.27)], are

ed, 1̂1 jj<̂ e[n?" j -1  :>|z| lm[a?'" j jcos t>
(3.38)

Elio = ■̂^‘'̂ ----|z|[((29 + 4v)Re[n?"] - 1 5|z| Im[a?'"])cos6'

+ (3(4^ -3)Re[cu"]+3|z|lm[û?"'])cos3(9]

p —■■ lz|[(9 + 4v)lm[<w"] + SlzlReffy'"]
1 6 7 3 ^ 0 ^ / ' ^ ^  /  L J i l  L J

-  V2((4 -  3y)Re[ft»"]+ |z|lm[^u"])sin3^

111

(3.39)
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V ,"=  3(12k + 27)lm[m"]- 45|z|Re[®”]

+ 4((29 + 4y)Re[iy"]-15V2|z|lm[^y'"])sin6' (3.40)

-  3((56 -  32v)lm[a)"] -  24|z| Re[m'"])cos 26 

+15^4y -  3)Re[m"]+ V2|z| Im[(»'"])sin 36*]

3.5 Results

The piezoelectric potential on (100) is even in x, and varies as sin2P with angle 6 

from (010). The potential therefore reaches a maximum when aligned with the 

cleavage planes (Oil), at 45° to the crystal axes. The piezoelectric potential vanishes 

for gates aligned along the cleavage planes, although the deformation potential, which 

does not vary with orientation, is still present.

The piezoelectric potential on (110) is odd in x and has two components which vary 

with angle, one proportional to cos 6 and one proportional to cos 3 6 . The 

cos^  term dominates. The potential reaches a maximum when the gate is aligned to 

the crystal axis (010). Unlike (100), there is no orientation of gate for which the 

piezoelectric potential vanishes.

On (111) the piezoelectric potential again has two components, a dominant even 

component, which is isotropic and a smaller odd component, approximately one third 

the size, with an angular dependence o f sin 3 6 .

On (311) there are four components. The first is isotropic and even, while the second 

is also even but with an angular dependence of cos 2 6 . The two odd components 

have angular dependencies of sin 6  and sin 36̂ .

The potential energy for the different orientations on the different substrates is shown 

in Figure 9 along with the deformation potential, which is the same on all surfaces, 

with these approximations, for comparison.
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For a gate aligned with the cleavage planes on the (100) surface the ratio between the 

deformation potential energy and the piezoelectric potential energy is given by

Epiezo ëd^^E
(3.41)

S'16£„£,(1 + vXi -2 )/) '

Thus the deformation becomes more important the nearer the 2DEG is to the surface, 

and it also depends on the elastic model used. The ratio between the potential energies 

works out at around 10 for tlie surfaces considered here.

The different approximations to the screening are shown in Figure 10. The 

d/dz  approximation is compared with the exact Thomas Fermi screening and a further 

approximation in which the exponential term is omitted, hereafter referred to as the no 

exponential approximation. The approximations have two effects on the screened 

potential energy. The magnitude o f the potential is slightly reduced, in the d/dz  

approximation and the no exponential approximation. This is not very prominent in 

Figure 10, but when the depth of the 2DEG is reduced it becomes more prominent, 

with a reduction in magnitude of around 0.8 for the d/dz  approximation when the 

depth is set to 25 nm. The oscillations under the edge of the gate are also increased. 

This is most marked in the d/dz  approximation but also occurs in the no exponential 

approximation.

29



g
>t
?oc
liJ
n
c
0)

14

12

10

8

6

4

2

0

-2
-200 -100-150 -50 500 100 150 200

X (nm)

‘(100) — (110)
’(311) 0“ — (311) 4 5 '
‘Deformation potential___________

( 111)
’(311) 90 '

Figure 9 Screened piezoelectric potential energy in 2DEG’s, at a depth of 50 nm with 

no parasitic layer, under stripe gates of width 100 nm on various surfaces. Curves are 

offset for clarity with the corresponding zero’s shown as dashed lines. The 

deformation potential energy is also shown for comparison.
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Figure 10 Approximations to the screened piezoelectric potential energy in a 2DEG, 

at a depth of 50 nm with no parasitic layer, under a stripe gate of width 100 nm. 

Curves are offset for clarity with the corresponding zero’s shown as dashed. The 

d/dz  approximation is shown along with the exact Thomas Fermi screening and a 

further approximation where the exponential term is neglected in Thomas Fermi 

screening.
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3.6 Conclusions

I have calculated expressions in real space for the piezoelectric potential energies and 

the deformation potential energy in a 2DEG below a stripe gate on the (100), (UO), 

(111) and (311) surfaces. I have also provided a method for the calculation of these 

potential energies on any surface given a rotation matrix, that rotates the (100) axis to 

the defining direction in the perpendicular to the chosen surface.

The d/dz  real space approximation to Thomas Fermi screening is not perfect and 

results in distortions of the oscillations under the edges of the gate. However, the 

gains in speed and ease of calculation are in my opinion worth this loss of accuracy 

where only a rough calculation is needed, since the Fourier transform can be avoided.

If it is desirable to avoid the piezoelectric potential under the gate experimentally then 

this can be achieved on (100) if the gate is aligned to the crystal axes. However, the 

deformation potential which is isoti’opic will remain. The deformation potential is 

approximately a factor of 10 smaller though. This avoidance is not possible with any 

of the other surfaces considered here. If the piezoelectric potential is to be harnessed, 

then the effect can be maximised by choosing the orientation of the device. On (100), 

the gate should be aligned with the cleavage planes. However, the effect can be 

increased even more if a different surface can be chosen. The largest effect is from the 

(111) surface.

The size of the potentials is around 1 meV for a metal gate, and several times this and 

up to at least 10 meV if strained layers are used.

If  a metal gate is used and a voltage is applied to the gate, then the potential produced 

in the 2DEG will be an even function and will combine with the potential produced 

from the piezoelectiic effect. Either potential can be used to enhance the potential or 

to reduce it. However, this method cannot be used to eliminate the built in potential 

since the shape of the potentials will be different.
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The unexpected nature of the potentials under the edge of the gate can be explained 

trivially with reference to the method of calculation discussed in §5. It can be seen 

from Figure 15, that if  the gate is modelled as two forces at either side of the gate then 

the overlapping structure of the charge densities produced from two point forces 

would look like that shown in Figure 9. It should also be noted that this effect is 

somewhat enhanced by the approximations involved in djdz  screening.

Since the results I have presented are in real space, they are useful for quick 

calculations of an estimate of the potential under a single gate. While they are not as 

accurate as an inverse Fourier transform of the correctly screened version as presented 

in Larkin et. al®, they are a lot quicker to calculate, since even fast Fourier transforms 

(FFTs) require a large amount of computer time to calculate.

The effect on FETs can also be calculated from my results. These results demonstrate 

the need to include strain effects, particularly the piezoelectric effect when modelling 

devices. In this case, it should be straightforward to include the potentials as presented 

here in models for all types of FET. The screened potential should be used for 

MODFETs and the bare potential for other types of FET without a 2DEG. However, 

some effects can be calculated more directly, e.g. the shift in the threshold voltage. 

This can be calculated by simply adding the maximum of the bare potential to the 

threshold voltage calculated neglecting strain. The bare potential should be used even 

for MODFETs since the threshold voltage is when the channel is completely depleted 

and therefore the 2DEG is not present and cannot screen.
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4 One-dimensional Lateral Surface Superiattices

Figure 11 A section of a one-dimensional LSSL, made by etching InGaAs layers. 

Purple - GaAs, Red - AlGaAs, Yellow - Delta doped AlGaAs, Blue - InGaAs.

4.1 Extension to Lateral Surface Superiattices

It is straightforward to extend the results for the Fourier transform of the potential 

produced by a single gate to that for an array of gates (a ID LSSL), as shown in 

Figure 11. For a square array of gates aligned along the principle axis jc, with period b, 

the Fourier transform, in %, of the potential for a single gate must be changed to a 

Fourier series. This is achieved by limiting the coefficients to the wave vectors of the 

reciprocal lattice and dividing the Fourier Transform by b.

J e x p ( - 9„|z|) (4.1)

where V{q) is the Fourier transform of the potential energy in the 2DEG. The 

reciprocal lattice vectors q„ are given by

2Æ
(4.2)
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Thus the Fourier coefficients of the bare potential energy of a ID LSSL aligned to the 

crystal axis on a (100) surface aie 

ed.
f t . .  = ) -  3|z| Im(S,')]sin 2g (4.3)

oSqS,.

where This can be expressed in terms of derivatives of ÿ  instead,

sin 2^ (4,4)
8£-ô ,

allowing the use of the trick discussed at the end of §3.1 to replace derivatives with 

multiplication by -  . The screened potential energy is therefore given by

% J =  i7 ; ~7 7  V [7- 4 v - 39„|z|]sin26,  (4.5)

which is consistent with Larkin et. al.®.

The equivalent expressions for the other surfaces considered are

^  10 = [(29 + 4v - 1 |z|)cos 6>+ (l2v -  9 + 3^„ |z|)cos 3<9] (4.6)
^■^^d^r^TFyin}

f)i, = „ ' [9 + 4i/-5g,,|z |+V 2i(4-3v + g,,|z|)sin3g] (4.7)
8V3£„e,£rfW j

Fj,, = — —r [36y+81 -  45g |z| + 3(56 -  32v -  24g |zl)cos20 

+ ({4(29 + 4 y - l  5-\/2^„ |z|)sin 6 + 15(4y -  3 - |z|)sin 3^|]

4.2 Comparison with experiments

Evidence for the dominance o f the piezoelectric potential in LSSLs with metal gates 

at low gate voltage, has been produced by experiments earned out at Glasgow^’̂ .̂ 

Initial experiments showed that the orientation dependence of the potential was 

exactly of the form predicted by tlieory. The magnitude of the potential with the 

predicted theory is also in remarkable agreement. However, the harmonic content has 

not been so successful, with the harmonic content matching that of the deformation 

potential and not the piezoelectric potential. This lack of agreement can be attributed 

to the crude approximations in the elastic model and ignoring any bending in the gates
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or forces perpendicular to the surface of the semiconductor. In this case, it would 

appear only a coincidence that tire harmonic content matches that for the deformation 

potential for the elastic model.

These effects have also been seen in the deliberately strained layers grown in 

Glasgow'^’̂ - These layers include the addition of a InGaAs layer grown on top o f a 

standard heterostructure [Figure 6] which is then etched to pattern the strain. 

However, a number of other effects have been raised, as can be seen from the 

magnétorésistance traces [Figure 12]. The effects can be summarised as

1. There are commensurability oscillations (COs) along the [001], [010] directions, 

where none should be expected if the effect is due enthely to the piezoelectric 

effect.

2. In the [Oil] direction, the COs are much more pronounced, reflecting a stronger 

potential modulation. None of the higher harmonics expected from the 

piezoelectric effect are observed in the magnétorésistance. However when the 

COs are Fourier transformed weak higher harmonics are observed.

3. In the [Oil] direction the COs are smaller than in the other directions studied. 

Additional minima at 0.29 and 0.49 T show clearly the expected second harmonic 

but the magnitudes are larger than expected. When the COs are Fourier 

transformed the second harmonic is dominant with a weaker first harmonic.

These results aie explained by the recognition that there is an additional potential in 

the system, due to the etching of the InGaAs. When the surface is etched, it brings the 

surface states closer to the 2DEG; this produces an effective positive potential under 

the areas etched. This effect is referred to as the surface potential and is estimated to 

be around 0.7 meV for this system" .̂ This potential produces the COs in the control 

sample with no InGaAs and in the [001] and [010] directions where no piezoelectric 

potentials are present. In the piezoelectric directions, [Oil] and [O il], it is the 

interplay between the surface potential and the piezoelectric potential that produces 

the COs. In the [Oil] direction the surface potential and the fundamental component 

of the piezoelectric potential are of the same sign and combine to give a large 

potential that swamps the much smaller harmonics. In the [Oil] direction the
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fundamental piezoelectric component and the surface potential come close to 

cancelling each other, leaving tlie smaller second harmonic to dominate.

Similar experiments were carried out in München by Luyken et. al.̂ ®. They, however, 

concluded that the COs were the result o f the deformation potential, due to the 

harmonic content. These conclusions are disputed by Glasgow, particularly in the 

light of my calculations, which show that the piezoelectric potential should be 

dominant. Since the direction of the current is not given by Luyken et. al. it is difficult 

to compare results directly but, with the orientation agreement of the Glasgow 

samples and the difference in magnitudes mean that it is hard to believe that the 

deformation potential should be dominant.
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Figure 12 Magnetoresistance of four Hall bars with stressed superiattices of different 

orientations. Curves are offset for clarity as follows: [01T] +50 Q; [010] +100 Q; and 

[011] +150 Q. The temperature was 5.1 K to suppress Shubniko-de Haas oscillations. 

The strong dependence on orientation is a signature of the piezoelectric effect. The 

magnetoresistance of an unstressed [0 1 T] control sample is shown by the dashed blue 

line and depends only weakly on orientation.
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4,3 Conclusions

I have produced expression for the screened potential under a LSSL on some common 

surfaces (100), (110), (111) and (311). In the experiments conducted at Glasgow"^’̂ , 

the theory has been confirmed and the piezoelectric potential is dominant over the 

deformation potential.

An interesting effect that can be harnessed is that the sign of the Fourier components 

changes as the depth is varied. This allows tuning of the gate width and 2DEG depth, 

to null any given Fourier component. If  this is used to null the fundamental 

component then the second harmonic dominates and the effective period of the 

superlattice is halved. This is extremely useful when the aim is to construct LSSLs 

with as small a period as possible to observe quantum effects. This effect can also be 

achieved by the interplay between the different sources of potential in the system, as 

in the experiments at Glasgow'^.
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5 Island Gates

Figure 13 A general surface structure of the surface of a semiconductor

I have calculated the strain arising when an isolated square or circular gate is placed 

on the surface of a semiconductor and used this to calculate the deformation and 

piezoelectric potentials produced. I started by calculating the piezoelectric charge 

density and potentials, when feasible, in real space using the incompressible 

approximation and then moved to Fourier space for a more complete picture. Finding 

an elastic potential is more complicated in 3 dimensions than in 2, and I therefore 

abandoned this approach in favour of considering the potential from a single point 

force and building up the overall potential from this.

An island gate is defined to be any isolated structure on the surface o f a 

semiconductor, as shown in Figure 13. This applies to traditional gates made by 

depositing metal on the surface or more exotic structures like etched InGaAs layers'*’̂ . 

Although some of these structures are strictly not gates, the term ‘gate’ is less 

unwieldy than the more general ‘surface structure’ and the structures are therefore 

referred to as ‘gates’ throughout this document. In principle, the methods discussed 

here will work for any such structure, however the cases explicitly considered here are 

regular shaped gates, either rectangular or circular.

5.1 Elastic model

I used the elastic model for the gate as described in §3.1. The gate is in constant 

stress. Thus, the gate exerts a force on the substrate around the perimeter of the gate 

and parallel to the surface of the semiconductor, as shown in Figure 14.
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Figure 14 Some of the forces for the elastic model of gate.

We build up this elastic field from the Cerruti problem '̂*, of a single point force 

parallel to and on the surface of a semi-infinite elastic medium. In conformity with 

our chosen axes, the equations given here are for a medium with z > 0. The 

displacement is given for z > 0 by

AtiG \ R
i —+ - r j  + (1 ~ 2v)

1

«v(r) =
4;zG

/? + |z| /?(^ + |z|)̂

xy
(5.1)

where R -  +y^+z^ .This simplifies if the substrate is considered incompressible

( y = i ) '

^7rG\R R^

wi(r) = 

u[{r) =

R^ (5.2)

4;zG

x|z|
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This allows some calculations to take place in real space. However in Fourier space, 

this approximation does not simplify the result. There is a singularity along the 

negative z-axis in the displacement, which is not a physical problem since this is 

outside the medium but it does prevent the Fourier transform from converging. 

Therefore the transform is carried out in x and y  only leaving z in real space. This is 

convenient because this allows us to specify the depth of the 2DEG and the donors in 

real space.

The Fourier transform is done in two parts. Firstly, the incompressible part of the 

displacement is Fourier transformed and then we can add the part that depends on v , 

which is tricky to Fourier transform. Using the relation

(5.3)

it is easiest if the Fourier transform is done in polar coordinates, r = , (j)

which transform to ç = ^ q l  ,q ^ . \\’ can be built up from Eq. (5.3) and Fourier

transforms of ~  and where R -  + z^ . These Fourier tmnsforms are

relatively straightforward to calculate since integrating over (?) simply gives a ID 

Fourier transform in r with the following equation

f { q )  = l7c ̂ f{x)j^{qr) dr

The Fourier transform of u for a force along the x  axis is therefore given by 

VI G ^
- I -

q^

(5.4)

(5.5)

The part of u that depends on v is given by

u
AttG

1 X xy
(5.6)

.R+|z| 4 /? + |z|)"’ ij(^ + |z |)" ’ 4 ^  + |z|)’

However, the Fourier ti'ansform can be simplified when it is recognised that this is 

simply
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X

Therefore to calculate ul! we need to know the Fourier transform of X

use the relation

' d fFT
dx

= qFT[f],

(5.7)

and then

(5.8)

where q is the Fourier transform of x. The Fourier transform of X

RAtZ
is given by

FT

Thus, is

X

jR + Z (5 9)

(5,10)

Combining the two Fourier transforms gives a Fourier transform for the displacement 

for a force in the x-direction.
f  r , 1 f n  . I i t  2  /’ I I . \  f  ] \ r .  I t

. (5.11)2G
2q '  -  (2v + q \ z ^ l  q^q^ {q\z\ + 2v) . q^ [q\z\ +1 -  2 v)
  ......  =------------i--------  2-----

q q q' .

By symmetry the equivalent expression for a force in the y  direction is given by

u, jL q-M
2G

+ 2q^ ~ { ^ v y q \ z ^ l  ^qy{q\z\ + l~ 2 v )
. (5.12)

q q g

Therefore combining Eq’s (5.11) and (5.12), the Fourier transform of the 

displacement is given by

_ ex p (-^ |z |)f
u(q,z)

2Gq
2F -  (2v + g |z |)-^^ q , z(l -  2i/ + ̂ |z |)-9-î

q q
(5T3)

where F = is a force in an arbitrary direction in the plane of the surface and

^-[qx^qy]  with q ~ ^ q l  + , u is a three-dimensional vector with two components

in Fourier space , ,7  ̂ and one in real space . This can then be integrated over the 

gate. When using the elastic gate model, the only force exerted is round the edge of 

the gate. There is an element of force dF = Fds for each element of the perimeter, 

where F  is the force per unit length and ds is an outward perpendicular. There is also
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a phase factor since the force does not originate at the centre of the gate but rather at 

the edge of the gate a distance r away. Thus

F = F’ ̂ e x p (- zq • r  )c/s = -zqF J e x p (- zq • r)c/S = -zqg(q). (5.14)

We define g(q) to be the gate factor, which is determined by the distribution of stress 

within the gate and so is dependent on both the shape of the gate and the elastic model 

used to describe the gate. Although this calculation holds for an elastic gate, a similar 

gate factor can be defined for any distribution of stress in the gate, however it may no 

longer be proportional to q . I n  general, the gate factor is defined to be

-zq g (q )=  |jF(r)exp(-zq-r)û6(:<fy. (5.15)

We can thus obtain an expression for the displacement caused by an elastic gate on 

the surface of an infinite semiconductor, by substituting for the force F with -  zqg(q) 

[Eq. (5.14)].

u(q,^) = ~ ^ ^  2\/)q,(^|z| +1 -  2v)q] (5.16)

The gate factor for a circle of radius a is

g % )  =  ; z n ^ F - ^ A A , (5 .1 7 )
qa

and that for a rectangle that occupies {±a,±b) is

^ { q )  = AabF sinc(^^a)sinc(^^ô) (5.18)

sinxwhere sincx
X

5.2 Deformation potential

The deformation potential can also be calculated for island gates. This is simpler 

because it is proportional to the dilation, which does not depend on the surface or the 

orientation, within the approximation of an isotropic medium. The dilation fiom a 

Cerruti force in the x-direction is

The Fourier transform in x and}», when combined with a force alongp, is
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^( q. z) = — • q exp(- q\z\) ■

Once integrated round the gate this becomes

^(q>z) = ̂ -^ g - (q )? e x p (-  q\z\).

To obtain the potential energy in the 2DEG this is multiplied by S , the deformation 

potential constant.

f^« (q .z )= ■= ^ ’̂ ^g(q)gexp(-g|z|).

(5.20)

(5.21)

(5.22)

The deformation potential energy is shown in Figure 17. The deformation potential 

energy can also be calculated directly from Eq. (5.16), recognising that the dilation is 

the divergence of the displacement. Therefore

def V u . (5.23)

Whichever method is used for the calculation, the deformation potential can then be 

screened using the Thomas Fermi dielectric function [Eq. (2.12)] giving

ts (l — 2v)
depth), G

■g(q)gexp(™^|z|). (5.24)

5.3 Piezoelectric potential

The polarisation is given by and the charge density by p

strain field is given by

2
ÔUj

V P The

(5.25)

Therefore, the charge density is given by

duj duj.
— —g ijk dRfdR,

(5.26)

To find the bare potential Poisson’s equation [Eq. (2.9)] needs to be solved. In

real space this is

P
VVbare
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To get the potential in the 2DEG the Fourier transform is then screened using Thomas 

Fermi screening [Eq. (2.12)] to give

(5.27)
^rp(9',(^Gpth)

No simple approximations for this in real space exist like in the case of the stripe gate, 

because we do not derive the potential from a harmonic function. Thus, the Fourier 

transform is required to calculate the potential in the 2DEG. However, some work can 

be done in real space.

5.4 Piezoelectric potential in real space

Bare potentials for square gates can be calculated, as can charge densities for square 

and circular gates on all the common surfaces, for the incompressible approximation.

The charge density for the incompressible approximation [Eq. (5.2)] from a single 

Cerruti force pointing in a direction 0 from the [010] axes can be calculated by using 

the displacement from such a force in the x-direction by Eq. (5.2) in Eq (5.26). When 

the piezoelectric tensor, , for [100] is substituted into Eq. (5.26) we get

■2S]4
^ d^U,. d^u,+  ------------ ;— p ■

V
(5.28)

dyd ẑ  ̂ dxd\z^ dxdy 

The resultant charge density for a force in the x-direction [010] is

The charge density for a force in the y-direction can be deduced from this by 

symmetry

3Fye^^xr U y ^ - x ^ - z ^
4;iG +

Figure 15 shows this charge density arising from a Cerruti force in the 

[010],[011],[001] and [011] directions on the (100) surface. Eq. (5.29) can then be 

integrated around the edges of the gate in the same manner as the displacement in 

§5.1 to give the charge density for any shape of gate.
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Figure 15 Piezoelectric charge density in a plane 50 nm below a (100) surface due to 

point forces at the origin, aligned along the [OlO] crystal axis, the [Ol l] direction, the

[OOl] crystal axis and the [oT l] direction. Each plot shows an area of (200 nm) .̂ Blue 

is negative charge density, which leads to a positive potential energy and red is 

positive charge density.

The charge density for a square gate can thus be worked out relatively straight 

forwardly by integrating round the edges o f the gate e.g. for the right side of a square 

gate, centred on the origin with a width of 2 a, the integral becomes

Summing over all four sides results in the following charge density for a square of 

side 2a.

47



p
Feur
4?tG

,2
)7T

,2
)5 Ï2

(5.32)

?((x -  a f  + (y -  a f  ) -  2z^ 7((x + a f  + (j; -  a f  ) - 2z"

((x-a)^ + { y ~ a f  + z^J  ((x + a)^ + (y -a )^  +z^J^

7((x -  + (_y + g)  ̂) -  2z  ̂  ̂ li^xygY A-(y+ af^-2z'
((x -  a f  +{y + a f  -hz^J ((x + a f  + (_y + a)^ +z^}

where F  ~F^=Fy  is the magnitude of the force along the edges. As can be seen from

Figure 15 a force along the [010] is antisymmetric along the [010] axis, tlius a row of 

such forces, as exists along the edge of a square gate aligned to the ciystal axes would 

cancel except at the ends. Thus for this square gate the charge density cancels out 

along the sides of the gates, only leaving a charge density under the corners, which is 

shown by Eq. (5.32). For a gate aligned with the cleavage planes the opposite effect 

happens, with the charge density cancelling in the corners and only appearing under 

the edges of the gate. This can be seen in Figure 20.

A\z \
,2

Î/T

.2

vT

(5.33)

The bare potential can then be calculated by solving Poisson’s equation [Eq. (2.9)]. I 

have solved this equation by assuming that the potential will take the form

b [{x - a f  + (y " a f  )+ Cz  ̂ b ([x + a f  + (y - a)  ̂)+ Cz'
((x -  a f  + { y - a f  + ẑ  ̂  ((x + a f  + (y - a f  +z^J^

. (̂(x —g) +(y + g) )+2z^ is((x + g) + (y + a) )+ Cz‘‘
((x “ a f  +{y + c f  + ẑ  ((x + c f  + (y + a f  + ẑ

I then substituted this into Poisson’s equation [Eq. (2.9)] to find the values of the 

constants A,B and C. Thus the potential produced by a square gate, of side length 2g, 

aligned to the crystal axes is given by

5((x - aY + (y - a f  )+ 2z^ s((x + g)^ + (y ~ a f  )+ 2z'
((x-g)^ +(y-g)^  ((x + g)̂  Ar{y-af  A-z'^y

5{(x -a f  +(y + ay)+2z^  ̂ 5((x + g y + (y  + g)^)+2z'

((x~g)^ -{-{y + a f  + z^J  ̂ ((x + g)̂  +(y + g)̂  +

F e jz \
32nG

.2

iTT

. (5.34)

However solving Poisson’s equation for general charge densities is extremely difficult 

and the resultant equations are usually sprawling messes. It is much easier to proceed 

via the Fourier Transform, which is necessary for screening anyway.
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5.5 Piezoelectric potential in Fourier space

Taking Fourier transforms allows the incompressible approximation to be dropped. 

The Fourier transform of the charge density of a Cerruti force along the x-axis can be 

calculated by using Eq. (5.28) replacing the derivatives by x and y with multiplication 

by and [Eq. (5.8)] to give

p  -  -2e^
du^

■+q.
ÔÏÏ,

• + q,qyU^ (5.35)
a|z| a|,

This combined with [Eq. (5.11)] for a force in the x-dhection gives rise to a charge 

density

Px 2 - - ^ ( 3 ^ |z |- l  + 2v)
q q

(5.36)

Poisson’s equation [Eq. (2.9)] now needs to be solved to find the bare potential. In 

semi-Fourier space, Poisson’s equation is given by

V Sr,E
(5.37)

Ô r

The boundary conditions are the same as the as one-dimensional case Eq. (2.10) or 

(2.11), modified for three dimensions.

^ -> 0  as x ,y ,Z “ >oo 

^(x,z = 0 )= 0
(5.38)

Solving Poisson’s Equation for a force along the x-axis, by assuming the form of the 

potential and then substituting back into Poisson’s equation, reveals the potential to be

Aare ~ ^ |z |exp(-Jz |)—  4 “ % -(3Jz| + l + 4v) 
^ q

(5.39)

This when combined with the result for Fy and integrated over the gate, as for the 

displacement gives

Arne = V|^|exp(- ç|z|Ï3^|z| -  7 + 4v]sin2 0 , (5.40)

where 0  is the azimuthal angle in the xy plane, measured from the [010] axes. With 

screening the potential energy can be expressed as
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f(q,ri)=Fo(q,6f)g(q)[3^c/-7 + 4v]sin26>, (5.41)

where -  e is the electronic charge and is given by

 —y ■ ,^qd&xp{-qd). (5,42)
8s„ff,fiTFW.<7)

5.6 Piezoelectric potential on an arbitrary surface

The piezoelectric potential for a gate on an arbitrary surface is given by

To simplify calculations it is convenient to define a piezoelectric pseudopotential 

by

V ^ = 2 G u , ,  (5.44)

or in semi-Fouider space

0 ,= 2 G u .,  (5.45)q^ + a '
iz p ;4

which holds for all surfaces. Then the potential can be calculated as

^  = (5.46)
2G^0 ;̂- ^Ô r

The boundary conditions can be satisfied by adding any solution of Laplace’s 

equation, thus we only have to solve 3 Poisson’s equations for and we can then 

calculate the potential on any surface straightforwardly.

To solve this equation for 0 ,̂ I assumed the form of the potential to be

0^ -  — — [Â q'  ̂ + qlyAt + +A^v +

= ^-^4 q,qy{B^ yByi^ArB^q\zf (5.47)

0^ = 1_L  iqj\z\[c^ + Q y4-Q g |z |).
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Then I substitute this into Eq. (5.45) and determine the constants by comparison with 

Eq. (5.11). Thus, the piezoelectric pseudopotential for a Cerruti force in the x- 

direction, , is given by

V ^

The result for a Cerruti force in they-direction, F  , is obtained by symmetry.

4 - {q\z\ +1 + 4 v \-^ ^ ^ {q \z \ +1 + 4 v \ i — {q\z\ + 3~ 4v)
q q q

(5.48)

f  2 ^
[q\z\ +1 + 4v),4~ ^ { g \z \ +1 + 4 v \ i~ { g \ z \ + 3- 4v)

(5.49)

/

Combining these results and then integrating round the gate as in §5.1 gives

0 (q , z) = - g ( q ) M î ^ L i t i )  -  3 + 4v)q, {q\z\ + 3 -  4v)]. (5.50)
4q

We can then differentiate this expression, and use the symmetries of the piezoelectric 

tensor to get the following result for the potential energy

- iz ( l5qd- 2 9 - 4v)(jj33 cos9 - d̂ ^̂  sinû)

+ ̂ (3g<7 -  7 4- 4v)[(t7223 ~ )cos 29 + 2d̂ ^  ̂sin 2^]

+ i{qd- 3  + 4i/)[((5ijj - 3 d ^ 2 i 39 + )sin39

where 4 , = ^ ^
2^14

We can then rotate the piezoelectric tensor as in §3.4, to obtain the result for the 

potential on any surface.

Thus the potentials for gates on some common surfaces are 

P̂ (uo)(q /7) 1 3
—T y V t “  5 q d - 2 9 -  4v)cos6> + --i{qd -  3 + 4v)cos39 (5,52)

51



L — - 9 - 4v)+ i . pfarf -  3 + 4v)sin30 (5.53)
Po(?.rf)g(q) 13 V3"''

“  4 v ) - ^ ^ ( 3 g r f  -  7 + 4v)cos2^ 

- i - ~ Æ ( l5 q d - 2 9 - 4 y ) s i n û  (5.54)

+ /A  I - 3  + 4v)sin3^
11 v i r  ^

The one-dimensional results can be deduced from this result, and shown to be 

consistent with §3.3-3.4. If we take the width of the gate to lie along the y-axis and 

the current (either for a FET or in a LSSL magnetoresistance experiment) to pass 

along the x-axis, then we can calculate a new gate factor (q), by taking the limit as 

the width tends to infinity for a rectangular gate (5.18).

lnng°(g)== 2;r^(^^,)x 2gFsincg,g = 2M(^^)g" (5.55)

The inverse Fourier transform of 2frj{qy) simply gives unity showing that the 

potential does not depend on y  as expected. Thus we can find the results for a stripe 

gate by choosing as the direction of the current by rotating q by 9° from the

principal axis in the plane of the surface and then setting = 0 , and g(q) = ĝ ' (g^).

5.7 Results

The results of the screened potentials energies in a 2DEG 50 mn below circular Ti 

gates of diameter 100 nm and 30mn thick which are strained by +0.001, on various 

surfaces are shown in Figure 16. It can clearly be seen that the 43m symmetry of the 

semiconductor breaks the circular symmetiy of the gate. On the (100) surface, the 

potential is proportional to sin 26 .̂ It reaches a maximum of around ±0.4 meV. The 

potential crosses 0 twice as r is increased for the dimensions plotted in Figure 16 but 

this varies with depth. As can be seen from Figure 17 the potential does not just decay 

with increasing depth but rather changes shape and sign with varying depth. The 

effect of including a parasitic channel of electrons trapped around the donor layer is 

also shown. In this case the effect of screening is not large, with the potential growing 

slightly larger. The deformation potential is also shown, which can be seen to be
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much smaller than the piezoelectric potential for these parameters. The deformation 

potential also has circular symmetry and so unlike the piezoelectiic potential reflects 

the symmetry of the gate.

The (110) surface is antisymmetric along the [llO] axis, and symmetric along the [001] 

axis. The magnitude of the potential is also larger than on the (100) surface. The (111) 

surface is very interesting because it almost preserves the symmetry of the gate due to 

the sin 3^ term being much weaker than the dominant isotropic term, by a factor of 

around 1/3. Thus for the circular gate shown the potential has roughly circular 

symmetry. The magnitude is much larger than (100), around -1 meV, for these 

parameters. The (311) surface has more terms, which lower the overall symmetry, 

leaving only one symmetry plane, [233]. The potential is smaller than (111) but 

larger than the (100) suiTace. Square gates can also be calculated; plots of arrays of 

square gates for the (100) surface are shown in Figure 20.

The piezoelectric potential is larger than the deformation potential for electrons in the 

devices considered here; however holes are more complicated and the deformation 

potential may impact them more. The ratio between the two potentials is given by

+ (5.56)

which depends on the size of the gate. The deformation potential becomes more 

important as the size of the gate shrinks^^. This works out at around 5 for the surfaces 

and gates considered here.
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(a) (100) (b ) ( l l O )

( c ) ( l l l ) (d)(3 l l )

Figure 16 Screened piezoelectric potential energy in a 2DEG situated 50 nm below 

circular gates of diameter 100 nm (black outline) on different surfaces. The scale goes 

from -1.5 meV (blue) through 0 meV (white) to +1.5 meV (red).
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Figure 17 Screened piezoelectric potential energy in 2DEG’s of different depths 

under a circular gate of diameter 100 nm on a (100) surface (thick lines). The radius is 

along [Oil], where the piezoelectric effect reaches its maximum. Curves are offset for 

clarity as shown by horizontal lines. The effect of additional screening by a parasitic 

layer of electrons around the donors, 25 nm deep, is shown for the 50-nm depth 

(broken thick orange line). The screened deformation potential energy (thin purple 

line) has circular symmetry, and the corresponding bare energy (thin dotted cyan line) 

is proportional to the dilation; both are for a depth of 50 nm with no parasitic layer.
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5,8 Conclusions

I have shown how to calculate the deformation potential and piezoelectric potential 

for an arbitrary gate shape on an arbitrary surface. I have calculated the deformation 

potential for rectangular, square and circular gates and the piezoelectric potential for 

rectangular, square and circular gates on the (100), (110), (111) and (311) surfaces.

Unlike the stripe gates, it is not possible tlirough choice o f surface, orientation or 

dimensions to build square or circular gates, which do not produce a piezoelectric 

potential. However, it is possible to vary these parameters to design a gate to 

minimise tliese effects or to produce a potential with a variety of symmetries.

The piezoelectric potentials generated do not in general have the same symmetry as 

the gates that produce them. However, the (111) surface produces a potential with 

almost the same symmetiy as the gate, due to the dominant isotropic term. This makes 

(111) attractive for experiments where the potential is required to be the same along 

both axes. ( I l l )  is also attractive for experiments that are designed to harness the 

piezoelectric potential because it has the largest potential of all the surfaces, around 1 

meV for the dimensions used here.

Square gates aligned to the crystal axes on (100) surface, produce potentials that are 

concentrated under the corners of the gates, while square gates aligned to the cleavage 

planes produce a potential under their sides and not the corners.

Electrons and holes can be confined by these gates, if the potentials are made large 

enough, either by increasing the size of the gate or the strain. However, due to the 

symmetries and variation with the radius of piezoelectric potentials, the confinement 

of electrons and/or holes underneath gates is non-trivial. Gates on the (100) surface 

have the effect that they trap electrons and holes in separate places. Gates on (111) 

will confine electrons under the centre of the gate if they are produced by a strained 

layer, such as InGaAs, or in a ring between the centre of the gate and the edge if it is a 

metal gate. A gate on (110) will trap electrons under one side of the gate but not the 

other.
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The deformation potential does reflect the symmetry of the gate. However due to its 

much smaller size it can usually be neglected when considering electrons in AlGaAs. 

This will no longer be the case if holes are being considered or other semiconductors 

are being used which have a smaller piezoelectric constant.

A bias can also be applied to a metal gate, which produces a potential that has the 

symmetry of the gate. When added to the built in piezoelectric potential this breaks 

the symmetry even further, resulting in areas of large negative potential and small 

positive potential, or vice versa depending on the sign of the applied bias.
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6 Two-dimensional Lateral Surface Superiattices

6.1 Extension to Lateral Surface Superiattices

Figure 18 A section of a two-dimensional LSSL, with circular gates, made by 

etching InGaAs layers. Purple - GaAs, Red - AlGaAs, Yellow - Delta doped 

AlGaAs, Blue - InGaAs.

It is straightforward to extend the results for the Fourier transform of the potential 

produced by a single gate to that for an array of gates (a 2 0  LSSL), as shown in 

Figure 18. For a square array of gates aligned along the principal axes x  and y, with 

period b, the Fourier transform of the potential for a single gate must be changed to a 

Fourier series. This is achieved by limiting the coefficients to the wave vectors of the 

reciprocal lattice and dividing the Fourier Transform by .

V{x,y) = )exp{iq^x)exp{iq„y) (6.1)
^  m,n

The reciprocal lattice vectors are given by 

I tt . .
9m/, --^(/M ,M ). (6.2)

Thus the Fourier coefficients for a square array of gates aligned to the crystal axes on 

a (100) surface can be written as
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K,„  ̂[3g(rf + c ) -  7 + 4 v ] - p ^ , (6.3)
+n^

where q = {27r/bylm^ +n^ , when the sin2(9 term is written in terms of q. This 

potential is shown in Figure 20. The symmetry of the piezoelectric effect causes this 

to vanish for m = 0 or n - 0 ,  which includes the fundamental components 

((m ,« )-(± l,0 ) and (/w,n) = (0,±l)). The smallest surviving Fourier components have 

= (+ l,± l). These can be combined into two cosines that vary along directions at 

± 45° to the principal axes of the crystal and the array. Each has a peak value of 0.11 

meV for circular gates with a -  100 nm in an anay with b -  200 nm. Adding the two 

cosines gives a spacial dependence of

V {x ,y ,d )^  -4  — —  ̂[3^W -  7 + 4 v ] s i n ^ ^ s i n - ? ^ , (6.4)
b b b

where q’ = l4 2 7 r lb . The linear period of this potential is smaller than that of the 

gates by a factor of 4 Ï .

The Fourier coefficients for a square array aligned to the cleavage planes can be found 

by rotating this through 45°, giving a factor o f cos 26̂  instead of sin 2 6 .

V„„, {d) = ) [3g(rf + c ) -  7 + (6.5)
b m

This potential is also shown in Figure 20. The ftmdamental components now survive, 

and give

V{x’, y , d ) «  - 7  + 4 v ( ^ c o s ~  -  c o s ^ j , (6.6)

where q" = 27r/b. This has a peak value in each direction of 0.19 meV for our 

example of a 2DEG at a depth of 50nm beneath an array with period 200nm, of Ti 

gates of width lOOnm and height 30nm, stiained by +0.001.

It is also relatively straightforward to extend these results to an array of gates, where 

the gates are set in a square array but they touch at the corners, as shown in Figure 19. 

We have chosen to call this configuration the “chess board”. This is achieved through 

a structure function that defines the unit cell. This is given by
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Figure 19 A section of a two-dimensional LSSL, in chessboard layout i.e. square 

gates touching at the comers, made by etching InGaAs layers. Purple - GaAs, Red - 

AlGaAs, Yellow - Delta doped AlGaAs, Blue - InGaAs.

5/  =  1 -I- e x p
2 2 JJ

(6 .7 )=  1 +

J2 (w + «)even 
[0 (w2 + «)odd

Therefore, the potential from a chessboard array of gates aligned to the crystal axes is 

given by

(ûf) = + c) -  7 + 4 v |l + . (6.8)

This can be seen in Figure 21. At first glance this looks the same as for a normal array 

of gates. However, the magnitude is greater, since the potentials arising from the 

comers of touching gates add.

The potential from the array aligned to the cleavage planes is given by

L  id) = + c ) -  7 + 4v][l + • (6.9)
b m +n

This can also be seen in Figure 21. The potential is much more symmetric with the

potential in the areas without gates becoming the inverse of the areas with gates. This

is to be expected since the chessboard can be equivalently defined as either an array of

60



dots or anti-dots and our model assumes that the only difference between the potential 

produced by dots and anti-dots is the sign o f the effect.

The potentials for gates on the surfaces considered can be deduced from Eqs, (5.52), 

(5.53) and (5.54) and are given by

(6.10)

^ ^ ^ ^ ^  = - j l ( 5 , d - 9 - 4 v ) + / j | ( , ^ - 3  + 4 y ) ^ ^  (6.11)

- l ± f ( l 5 , . - 2 9 - 4 v ) ^  ( 6 , . )
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Figure 20 Screened piezoelectric potential in a 2DEG of depth 50 nm below arrays of 

Ti gates on a (100) surface. They are aligned to the crystal axes in (a) and (b) and to 

the cleavage planes in (c) and (d). The gates (black outline) have width or diameter of 

100 nm, a height of 30nm and are strained by +0.001. The arrays are square and have 

a period of 200 nm. The scale goes from -1 meV (blue) through 0 meV (white) to +1 

meV (red).
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Figure 21 Screened piezoelectric potential in a 2DEG of depth 50 nm below array of 

Ti gates on a (100) surface. The gates (black outline) have width or diameter o f 100 

nm, a height of 30nm and are strained by +0.001. They are arranged in a square chess 

board array of period 200 nm and the scale goes from -1 meV (blue) through 0 meV 

(white) to +1 meV (red).
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6,2 Conclusions

I have shown how to calculate the piezoelectric and deformation potentials arising 

from a 2D LSSL of arbitrary orientation, on an arbitrary surface, composed of gates of 

an arbitrary shape. I have calculated the piezoelectric potentials arising firom a 2D 

LSSL composed of square and circular gates on the (110), (111) and (311) surfaces 

aligned to the ciystal axes. On (100) I have calculated the piezoelectric potentials 

arising from 2D LSSLs aligned with the crystal axes and the cleavage planes of both 

square and circular gates. I have also calculated the potentials arising from a 

chessboard configuration of square gates on (100).

While the potentials arising from arrays and gates aligned to the crystal axes are 

invariant for current travelling in the % or y  directions, this is not true when the arrays 

and gates are aligned along the cleavage planes. If the current flows along [Oil] then 

it faces an array of barriers with breaks in the direction perpendicular to current flow 

where there ar e channels for the electrons to flow down. However, if the current flows 

along [ Oi l ]  then it faces an array of troughs with breaks in the directions 

perpendicular to current flow where there are barriers to the electron flow. This 

should lead to different transport properties for the two directions, and could provide a 

possible route for manufacturing arrays with broken symmetry"^ ̂

Although experiments on 2D LSSLs are not extensive, the drive to understand the 

commensurability oscillations for a 2D LSSL and the search for Hofstadter butterfly 

like structures means that more experiments aie planned. The calculation of these 

potentials should prove useful in these experiments and in simulations of 2D LSSLs.

Although it is not possible to work out a simple period halving like in the ID case, 

due to the more complex geometry, it is possible to null certain Fourier components 

and maximise or minimise the potential. For example, on (100) if the array is aligned 

along the cleavage planes rather than the ciystal planes, then even for identical gates 

with identical spacing the potential is larger. This effect is compounded if square 

gates are used and the edges of the gates are chosen to align with the array. However, 

this is not true if the chessboard array is used. While it is true that the potentials are
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7 Conclusions
I have calculated the deformation and piezoelectric potential energy under single gates 

of arbitrary shape and one- and two-dhnensional lateral surface superlattices on an 

arbitrary surface of a cubic III-V semiconductor. These potentials are generated by 

strain, either due to differential thermal contraction of the gates with respect to the 

semiconductor, or by a deliberately strained layer grown into the heterostiucture. The 

deformation potential is independent of orientation, within the isotropic 

approximation for the elastic behaviour, but the piezoelectric potential varies strongly 

with orientation. These calculations show that the piezoelectric potentials cannot be 

ignored in III-V semiconductor devices. Furthennore, it is possible to use my 

calculations to harness the piezoelectr ic effect to provide the modulation of electrons 

in devices.

One example where this has been used effectively is in LSSL experiments at Glasgow 

m which a 2DEG is patterned with an etched sti'essor layer' .̂ These layers have 

produced potentials with magnitudes of several meV. It has been possible to cancel 

the fundamental component of the piezoelectric potential leaving only the second 

harmonic, effectively halving the period of the potential. This technique has promise 

for creating very short period LSSL with the goal of observing Bloch oscillations and 

other quantum effects.

Unfortunately, my calculations also show that a similar halving of the period is not 

possible for island gates. However, it is possible to decrease the period of an array of

square gates by a factor of V2 if they are aligned to the crystal axes instead o f the 

cleavage planes, to which gates are normally aligned, and the current flows at 45° to 

the array. It is also possible to produce different effects according to the symmetry of 

the surface. While (111) has a dominant isotropic term, other surfaces produce totally 

potentials with totally different symmetries in perpendicular directions, for example 

when an anay of gates is aligned along the cleavage planes of (100). If the cunent 

flows along [Oil] then it faces an array of barriers with breaks in the direction 

perpendicular to current flow where there are channels for the electrons to flow down. 

However, if the current flows along [ Oi l ]  then it faces an array of troughs with
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breaks in the directions perpendicular to current flow where there are barriers to the 

electron flow. This should lead to different transport properties for the two directions. 

Experiments and simulations of magnétorésistance in two-dimensional LSSLs have 

been conducted at Glasgow using my calculations to design the experiment and to 

help interpret the results and more are planned. However, at the moment they are not 

well understood and more research is necessary.

However, when the devices considered are FETs then the goal is usually to minimise 

any piezoelectiic effects. If  the FET can be modelled by a shnple stripe gate then on 

the (100) surface the piezoelectric effect can be eliminated by aligning the gate to the 

ciystal axes. Unfortunately, this is not possible on other surfaces, although my 

calculations can be used to minimise the effect, and the deformation potential is 

always present although it is generally much smaller than the piezoelectric effect. The 

piezoelectric potential is typically around 1 meV for a metal gate on (100).

The island gates are also of interest to quantum dot experiments. The piezoelectric 

potentials do not reflect the symmetry of the gate and therefore have important 

implications for the confinement of electrons and holes under such gates. Without the 

application of an electrostatic potential the electrons and holes will be confined in 

different areas under the gates, and usually not under the centre of the gate. The 

deformation potential does reflect the symmetry of the gate, however due to its much 

smaller size it can usually be neglected when considering electrons in AlGaAs. 

However, this will no longer be the case if  holes are being considered or other 

semiconductors are being used which have a smaller piezoelectric constant. The 

deformation potential also becomes more prominent as the size of the dots is reduced.

Thus, I have shown that strain camiot be ignored when either designing or modelling 

devices on III-V semiconductors. I have also calculated the main potentials arising 

from gates of arbitrary shape on arbitrary surfaces, which should prove to be useful 

when designing or modelling these structures.

Future work is needed to better account for some of the assumptions and 

approximations that I have made. It should be relatively straightforward to account for 

bending in the gates and the forces perpendicular to the surface that arise from this.
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Preliminary work on this has been done^\ It should also be possible to have a better 

elastic model for the interaction o f the gate and the substrate, particularly in the case 

o f the stressor layer where the interaction is well understood. However, how far these 

approximations can be relaxed and an analytic solution retained is unknown. I have 

also only looked briefly at the effects of the piezoelectric effect on FET 

characteristics. This is another area that could be explored more fully in further 

research.
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