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Abstract

The regulation of carbohydrate metabolism in Arabidopsis thaliana was 

investigated using a genetic approach. A new class of carbohydrate insensitive mutant 

(cai) was characterised in order to gain insight into the control of carbohydrate 

metabolism. Wild type seedlings germinated on media containing 100 mM sucrose and 0.1 

mM nitrogen but their cotyledons did not expand and accumulated anthocyanins. After 1 

week growth was arrested. The internal carbohydrate content increased accompanied by 

repression of photosynthetic genes and induction of chs gene expression, cai mutants 

germinated on agar media containing 100 mM sucrose and 0.1 mM nitrogen but their 

cotyledons expanded and greened. After initial characterisation of a number of the 

mutants, two were selected for further analysis. When germinated on a range of different 

carbon; nitrogen ratios cai 10 and cai 28 displayed a reduced sensitivity to the high 

carbohydrate and low nitrogen conditions, cai 10 also displayed a mannose insensitive 

(mig) phenotype compared to the post-germinative growth of wild type which was arrested 

by mannose. This growth arrest in the wild type on mannose correlates with phosphate 

sequestration, cai 10 metabolises mannose at a different rate and accumulates less hexose 

phosphate than the wild type when germinated on mannose, thus indicating that the 

mannose insensitive phenotype may be a consequence of a disruption in metabolism. 

Overexpression of Arabidopsis hexokinase 1 in cai 10 did not complement the cai 10 

phenotype. In contrast to previous results by Jang et al ., (1997), who found that plants 

overexpressing hexokinase were hypersensitive to sugars, our results indicate that they are 

less sensitive than wild type. This is not in agreement with the proposed model of 

hexokinase as a sugar sensor (Jang et ah, 1997).

Seeds of the hexokinase overexpressors germinated rapidly (within 18-20 h). The 

seeds also contained elevated levels of some amino acids, smaller lipid bodies and less 

lipid than the wild type. It is proposed that hexokinase overexpression increases glucose-6- 

phosphate concentration which activates phosphoenolpymvate carboxylase (PEPCase) and 

in so doing diverts carbon from lipid biosynthesis to amino acid synthesis.
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Chapter 1 

Introduction

1.1.1 Source-sink relations in plants

In order to survive, all organisms need to be able to modify their cellular 

metabolism and growth in response to environmental and developmental cues, and in 

particular the availability of nutrients. Sugars not only serve a major function as the 

substrates for growth and development, but are also capable of signalling the metabolic 

status of cells which affects sugar sensing systems and initiates changes in gene expression. 

Plants must be able to adapt their metabolism to perceived changes in nutrient status and 

stresses because they are, on the whole, unable to move to more favourable conditions.

Plants are autotrophic and must coordinate photosynthetic production of 

carbohydrate with its mobilisation, allocation and utilization. The ability to sense and 

respond to the sugar status in different organs is vital to the efficient metabolism of the 

plant. Sugar-regulated genes not only provide a means of balancing carbon metabolism with 

the requirements of individual cells but also initiate carbon transport from source cells (such 

as in photosynthetic leaves) to sink cells (such as developing seeds or roots). Thus, sugar 

sensing must be integrated at the level of cell, tissue, organ and whole plant and hence, there 

must be cross-talk between sugar- and other signalling pathways such as those that signal 

developmental stage. Much work needs to be done to establish the mechanisms used by 

plants to sense sugars. However, there is evidence to show that plant sugar signalling has 

parallels with the situation in yeast and bacteria, mutants of which have been extensively 

studied (Trumbly, 1992, Saier, e ta l,  1995).

Sucrose produced in source leaves is the predominant source of carbon for 

developing sink tissues in most higher plants. The flux of sugars into the sinks is thought to 

be a major determinant of plant growth and crop yield. Sucrose is the major form of 

transportable carbohydrate in most plants and much work has gone into studying the 

regulation of sucrose biosynthesis with the aim of altering crop yield (Stitt and Quick, 

1989). In recent years, the manipulation of specific enzyme activities in transgenic plants



has been used to probe the control of assimilate flow. Several groups have tried to alter the 

partitioning of carbon using transgenic plants.

1.1.2 Manipulation of sucrose synthesis in source tissues

The major controlling steps in the sucrose biosynthetic pathway are thought to be 

the interconversion of fructose-1,6-bisphosphate (F16BP) to fructose-6-phosphate (F6P), 

the formation of sucrose-6-phosphate (S6P) from UDP-glucose (UDPG) and F6P (Stitt and 

Quick, 1989) and the dephosphorylation of S6P to yield sucrose. F16BP is converted to F6P 

by F -1,6-bisphosphatase (F16BPase) and the reverse reaction is catalysed by 

phosphofructokinase (PFK). A third enzyme, pyrophosphate dependent: 

phosphofructokinase (PFP) is able to catalyse the reaction in both directions. In contrast, 

only one enzyme (sucrose phosphate synthase) is responsible for the formation of S6P and 

one enzyme (sucrose phosphate phosphatase) dephosphorylates S6P to sucrose.

The activities of FBPase and PFP are subject to allosteric control by the signal 

metabolite fructose-2,6-bisphosphate (F-2,6-BP) (Stitt, 1990). Cytosolic FBPase is also 

regulated at the transcriptional and post-translational level (Harn and Daie, 1992, Khayat, et 

al., 1993).

The importance of the interconversion of F-1,6-BP and F6P in vivo was studied in 

transgenic potato and tobacco by expressing a pyrophosphatase from E. coli (Jelitto, et a l, 

1992), antisense inhibition of FBPase (Zrenner, et a l, 1996) or antisense inhibition of PFP 

(Hajirezaei, et a l, 1994, Paul, et a l, 1995). Overexpression of E. coli pyrophosphatase 

decreased the PPi pool and effectively made the reaction catalysed by PFP irreversible, thus 

increasing the flux of carbon towards sucrose. However, the growth of the plants was 

stunted and carbon was allocated to sucrose in preference to starch (Jelitto, et a l, 1992). 

Reduction of the cytosolic FBPase in potato limited photosynthetic sucrose biosynthesis but 

did not alter plant growth and tuber yield (Zrenner, et a l, 1996). Reduction of PFP in 

tobacco plants also had no affect on the phenotype, and the partitioning of sucrose and 

starch in source leaves was identical to wild type (Paul, et a l, 1995). Transgenic potato 

plants with strongly decreased expression of PFP also showed no visible phenotype



(Hajirezaei, et al., 1994). It was suggested that PFP does not play a significant role in 

photosynthate partitioning. Numerous roles for PFP have been proposed including 

regulation of PPi concentration and general adaptability to stress (Black, et ah, 1987) and 

gluconeogenesis (Botha and Botha, 1993) although the precise function of PFP remains an 

enigma.

The relative importance of other Calvin cycle enzymes in regulating carbon flow 

and partitioning has also been investigated using transgenic plants. Photosynthetic carbon 

assimilation is thought to be limited by Rubisco in high light intensities and temperature or 

low CO2 concentration (Stitt and Schulze, 1994), whereas at low light intensities the 

regeneration of ribulose-1,5-bisphosphate (RuBP) is thought to limit carbon assimilation 

(Gray et a l, 1995). Photosynthesis was not inhibited by Rubisco until 40-50 % of Rubisco 

protein was removed (Stitt and Schulze, 1994) when grown under constant low light 

conditions but when transferred to high light conditions the control coefficient of Rubisco 

increased. Plastid FBPase did not affect photosynthesis until 60 % of wild type activity was 

removed (Kossmann, et al, 1995). Plants with less than 15 % of wild type sedoheptulose- 

1,7-bisphosphatase (SBPase) activity were found to have reduced carbon assimilation rates 

and contain less than 5 % of wild type starch levels (Harrison, et a l,  1998). 

Phosphoribulokinase (PRK) did not affect carbon assimilation rate until less than 15 % of 

wild type activity had been remained (Gray, et a l, 1995). When PRK activity was 5-15 % 

of wild type the transformants contained 20 % more starch and 20 % less soluble sugars. 

Photosynthesis was inhibited when NADP-glyceraldehyde-3-phosphate dehydrogenase 

(NADP-GAPDH) activity was reduced to 65 % of wild type activity (Price, et a l, 1995). In 

none of the above studies has the decrease in enzyme activity been found to correlate with a 

proportionate decrease in photosynthesis. However, small changes in the activity of plastid 

aldolase, a Calvin cycle enzyme which has no known regulatory properties and was thought 

to be iiTclevant in control of metabolism and growth (Haake, et a l, 1998), were found to 

have marked consequences for photosynthesis, carbon partitioning and growth (Haake, et 

a l, 1998).



Modulation of SPS by protein phosphorylation has been well documented, with 

changes in the phosphorylation state of the protein occurring in response to light-dark 

transitions (Huber, et al., 1989), G6P, Pi, pH (Doehlert and Huber, 1983), and changes in 

the total amount of protein (Walker and Huber, 1989). Maize SPS was overexpressed in 

tomato (Gaultier, et a i, 1993) but analysis of the plants revealed only a very small 

stimulation in sucrose synthesis. Another study showed that most of the excess SPS protein 

was deactivated, probably due to post-translational modification (Krause, 1994). 

Overexpressing SPS in Arabidopsis led to overall lower carbohydrate levels in leaves 

possibly due to increased export of sucrose. Unlike the SPS in many species, Arabidopsis 

SPS is not regulated by light-dark induced phosphorylation and so the expression of the 

gene is reflected in the enzyme activity (Signora, et al, 1998).

The major conclusion of these experiments was that a single gene does not control 

carbon flux and sucrose biosynthesis. To increase the flux through a pathway it may not be 

enough to increase the expression of 'key' regulatory enzymes. Moreover, there is no 

evidence that the importance of a particular enzyme can be gauged by its regulatory 

properties or its ability to catalyse irreversible reactions (Haake, et a l, 1998).

1.1.3 Allocation of carbon in sink tissues

Assimilates that are produced in the chloroplasts of mature leaves are exported to 

the cytosol. The surplus that is not needed for leaf metabolism is converted to sucrose or 

amino acids and is transported through the vascular system to the sink tissues. Seeds, roots, 

fruits, tubers and young leaves can all be classed as sink tissues during their development. 

In seeds, sucrose is transported to the developing embryo via the phloem. In many species 

the embryo is symplastically separated from the maternal seed coat (Thorne, 1985). 

Assimilates, therefore, have to pass at least 2 membranes and possibly 2 different transport 

systems (Frommer and Sonnewald, 1995, McDonald, e ta l, 1996, Weber, e ta l, 1996).

There is continuing discussion over whether the rate of import into growing sinks is 

source- or sink-limited (Farrar, 1996). There is evidence for both source- and sink-limitation



of carbon metabolism depending on the growth conditions (Wardlaw, 1990, Zrenner, et a l, 

1995, Weber, et a l, 1996, Sweetlove, e ta l,  1998).

Imported sucrose must be cleaved prior to use in metabolism or storage product 

synthesis. Sucrose synthase and invertase are involved in catalysing this process and it has 

been proposed that each enzyme operates in a specific metabolic pathway (Weber, et a l, 

1997, Weber, et a l, 1998a). In general the invertase pathway is directed towards growth and 

cell expansion, whereas seed tissues actively synthesising starch often depend on a sucrose 

synthase (Edwards and apRees, 1986, Weber, et a l, 1995). The latter mechanism, which 

can be classed as sink regulation of metabolism, lowers the sucrose concentration in the 

embryo and creates a sucrose gradient which drives import (Weber, et a l, 1997).

Several groups have overexpressed invertase in sink tissues in an attempt to 

increase the strength of storage sinks. In both potato tubers and Vicia narbonensis 

cotyledons overexpression of invertase lead to a decrease in sucrose and an increase in 

hexoses which resulted in less carbon being partitioned into starch (Sonnewald, et a l, 1997, 

Weber, et a l, 1998b). It has been suggested that the sink does not have the capacity to 

metabolise glucose fast enough to keep up with its production (Trethewey, et a l, 1998). 

Glucokinase was introduced into invertase overexpressing potato tubers in an attempt too 

increase the rate of glucose metabolism and increase starch accumulation but starch 

synthesis was again drastically reduced (Trethewey, e ta l,  1998). However, glycolysis was 

stimulated and there were large increases in glycolytic intermediates, organic acids, amino 

acids and 3-5 fold increase in CO2  production. Flux through glycolysis was increased at the 

expense of starch production (Trethewey, et a l, 1998). Hexokinase activity was increased 

both in tubers overexpressing invertase (Trethewey, et a l, 1998) and in tubers where the 

activity of SUSY was inhibited by antisense repression (Zrenner, et a l, 1995), Recent work, 

varying the flux to growing potato tubers by changing the light intensity or using transgenic 

manipulations that specifically affect the source or the sink, found that the flux control 

coefficient of the source was 0.8 and the sink was 0.2 (Sweetlove, et a l, 1998). However, 

this work is restricted to the short-term control of flux and does not take into account long

term regulation of enzyme activity through changes in gene expression. The authors



suggested that the best way of manipulating tuber yield will involve photosynthetic capacity 

rather than sink metabolism (Sweetlove, et a l, 1998). This is in agreement with the work of 

Weber et al, (1998) who found that starch accumulation in Vida narbonensis cotyledons is 

a function of sucrose concentration. In contrast, inhibition of SUSY in potato tubers also 

lead to a decrease in starch accumulation and supports the hypothesis that SUSY is the 

major determinant of sink strength (Zrenner, et a l, 1995). The debate continues.

Active storage organs like seeds often contain high levels of sugars. In Vidafaba, 

high concentrations of hexoses are found in non-differentiated premature regions of the 

cotyledon whereas mature starch-accumulating regions contain low glucose concentrations 

(Borisjuk, et a l, 1998). The glucose distribution is related to the developmental gradient 

and high hexose state is correlated with growth and mitotic activity (Weber, et a l, 1997, 

Borisjuk, et al, 1998).

In mature Brassica napus seeds the main storage products are oil and protein 

(Murphy and Cummins, 1989) but starch accumulates transiently during the early phase of 

oil deposition (Kang and Rawsthorne, 1994). Of a number of carbon substrates tested, G6P 

was most effective at synthesising starch and pyruvate was best substrate for fatty acid 

synthesis (Kang and Rawsthorne, 1994). There is little competition between the 2 substrates 

for fatty acid and starch synthesis. Fatty acid synthesis requires both NADPH and NADH 

due to the specificities of the enzymes in the pathway to C-18 fatty acids (Harwood, 1988). 

Metabolism of G6P via the plastidial OPPP can potentially contribute to the NADPH 

requirement for fatty acid synthesis (Kang and Rawsthorne, 1996).

1.1.4 Interactions between carbon and nitrogen assimilation: Regulation of carbon 

flow into amino acids

Carbohydrate and nitrogen metabolism are interconnected. The flow of carbon into 

sucrose, starch and amino acids is subject to regulation by light, photosynthesis related 

metabolites and nitrogenous compounds (Champigny and Foyer, 1992, Lam, et a l, 1995); 

Champigny, 1992). In conditions of high sugar but limiting nitrogen, carbohydrates 

accumulate in preference to amino acids whereas in conditions of high sugars and plentiful



nitrogen a larger proportion of the carbon is partitioned into amino acids (Champigny and 

Foyer, 1992, Sadka, e ta l,  1994).

In tobacco, nitrate can act as a signal to induce organic acid metabolism and repress 

starch metabolism (Scheible, et a l,  1997). Sucrose feeding stimulates amino acid 

assimilation and increased rates of a-ketoglutarate synthesis in leaves (Moracuende, et a l ,

1998).

The main routes of entry of carbon into the citric acid cycle are via 

phosphoenolpyruvate carboxylase (PEPCase) and pyruvate kinase (PK). There is substantial 

evidence that they regulate the increase in anapleurotic carbon flow during nitrogen 

assimilation (Turpin, et a l, 1990). PEPCase is a cytosolic enzyme that converts PEP from 

glycolysis to oxaloacetate (OAA). The OAA produced is rapidly converted to malate and is 

imported into the mitochondrion where it enters the TCA cycle to replace ketoacids which 

have been siphoned off for amino acid synthesis (Turpin, et a l, 1997). The addition of 

nitrogenous compounds induces PEPCase expression in maize leaves (Sugiharto, et a l , 

1992) and activates PEPCase enzyme (Mahn, et a l, 1993, Chollet, et al, 1996). PEPCase 

enzyme is also activated by phosphorylation by PEPC kinase and allosterically by G6P 

(Chollet, et a l, 1996). Pyruvate kinase, the other route of carbon into the citric acid cycle, is 

inhibited by amino acids such as glutamate and glutamine (Podesta and Plaxton, 1994). In 

nitrogen-rich conditions, there is also an increase in cellular respiration, because of the 

demand placed on respiratory pathways to supply carbon skeletons needed for the 

incorporation of nitrogen into organic form. This regulation of respiration, and PEPCase 

and PK activities coordinates the supply of carbon in glycolysis and the need for carbon 

skeletons for amino acid synthesis.

The primary route of amino acid biosynthesis is the incorporation of ammonium 

and glutamate into glutamine by glutamine synthetase (GS). The glutamate synthase 

enzyme (GOGAT; L-glutamate : ferredoxin oxidoreductase[rra«j-aminating]) transfers the 

glutamine amide group to a-ketoglutarate to yield 2 molecules of glutamate. Glutamate is 

the net product of the GS/GOGAT cycle. Glutamate is then transaminated into aspartate, 

which is then either converted into asparagine by asparagine synthetase, or converted to
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other amino acids in the aspartate family (lysine, threonine, methionine or isoleucine) 

involving aspartate kinase/homoserine dehydrogenase (AK/HSD) (Zhu-Shimoni and Galili, 

1998).

The synthesis of glutamine, glutamate, aspartate and asparagine is subject to 

coordinate metabolic regulation. The expression of Arabidopsis and pea glutamine 

synthetase is stimulated by light (Lam, et a l, 1994, Lam, et a l, 1995) and the expression of 

AK/HSD is metabolically induced by sucrose and repressed by phosphate but is not 

regulated by nitrogenous compounds (Zhu-Shimoni and Galili, 1998). The expression of 

asparagine synthetase is repressed by light and sucrose and stimulated by dark and nitrogen 

(Tsai and Coruzzi, 1990, Tsai and Coruzzi, 1991, Lam, et a l, 1994, Lam, et a l, 1995, 

Chevalier, et a l, 1996). The sucrose repression affect on asparagine synthetase can be 

partially rescued by the addition of exogenous amino acids (Lam, et a l, 1994). Thus 

asparagine which has a high nitrogen: carbon ratio is synthesized when nitrogen is abundant 

and sugars levels are low. This suggests that the nitrogen : carbon ratio rather than carbon 

alone is responsible for the regulation of the asparagine synthetase gene (Lam, et a l, 1994). 

It has been suggested that during the day, when glutamine synthetase and AK/HSD are 

expressed, plants accumulate glutamine, glutamate and aspartate, which are used for the 

synthesis of other amino acids and at night, when asparagine synthetase is expressed, 

aspartate is converted to asparagine for storage (Lam, et a l, 1995, Zhu-Shimoni and Galili, 

1998).

1.2 Arabidopsis Seeds

1.2.1 Deposition of reserves within seeds

Under optimal conditions, a single Arabidopsis thaliana plant can produce 20, 000 

seeds in fruits known as siliques. The seeds are very small, with the wild type being only 

0.5 mm long and 18-30 jig in weight at maturity (Meinke, 1994). Within a single silique, the 

development of seeds is generally synchronous and the seeds are usually the same size.

The accumulation of seed reserve materials in developing Arabidopsis has been 

studied in some detail, storage protein and lipid synthesis being most extensively examined.



The reserves accumulate during a well-defined and relatively short period during late 

embryogenesis 144-216 hours after fertilisation (HAF)(Mansfield and Briarty, 1992).

1.2.2 Amino acid transport to seeds

Amino acid import is essential for seed development since the accumulation of 

storage compounds must be preceded by import and since metabolites are involved in 

storage protein accumulation (Martin, et a l,  1997). Amino acids produced in the roots or 

shoots are transported to sink organs via the phloem and xylem. In Arabidopsis, asparagine, 

aspartate, glutamine and glutamate are the major transport forms of amino acids (Lam, et 

al,  1995). Amino acids arriving at the seed via the phloem are taken up symplastically. 

They have to cross a plasma membrane and so two transport steps are necessary (Thorne, 

1985) and several types of amino acid transporters have been isolated (Frommer, et al,  

1995; Hirner, et al, 1998).

1.2.3 Storage proteins

Seed storage proteins accumulate in membrane-bound protein bodies present in the 

hypocotyl and cotyledons of developing embryos (Patton and Meinke, 1990, Mansfield and 

Briarty, 1992). Microscopy studies of developing legume seeds revealed that protein bodies 

are of vacuolar origin, and the presence of vacuolar enzymes within the protein bodies 

supports this theory (Casey, et a l,  1997). At the end of the cell expansion phase the 

cotyledon cells usually contain 1 or 2 vacuoles. At the onset of storage protein deposition, 

the protein accumulates on the luminal side of the vacuolar membrane. The membrane then 

surrounds these deposits and small, virtually mature protein bodies are pinched off. This is 

repeated throughout the protein accumulation phase during which the central vacuole 

divides and is replaced by many small vacuoles and protein bodies (Casey, et al, 1997).

Cereal seed proteins have been classified into 4 different groups, albumins, 

globulins, glutelins and prolamins depending on their solubility. The nutritional value of 

these proteins is determined by their content of amino acids. Albumins and globulins are not 

seriously deficient in any amino acids. Prolamins, which predominate in maize, are



seriously deficient in lysine. Attempts have been made to increase the content of lysine in 

maize. The maize opaque-2 mutant is high in lysine and contains less prolamin storage 

protein and more lysine rich glutelin resulting in an altered total amino acid composition 

(Mertz, eta l ,  1964).

Most storage proteins should not be thought of as a single protein but rather as a 

complex of individual proteins bound together by a combination of intermolecular 

disulphide groups, hydrogen bonding, ionic bonding and hydrophobic bonding (Bewley and 

Black, 1994). Characteristically, storage proteins are made up of 2 or more subunits which 

may be made up of several slightly varying polypeptides that differ in amino acid 

composition. For instance, Arabidopsis contains abundant 12 S (cruciferin) and 2 S (arabin) 

proteins. Separation of the subunits by SDS-PAGE reveals that in total the subunits are 

composed of at least 9 different polypeptides (Heath, et al, 1986).

1.2.4 Protein body inclusions

The protein bodies of Arabidopsis and many other species contain inclusions called 

globoids which are non-crystalline, globular structures (Mansfield and Briarty, 1992). 

Globoids appear in the developing protein bodies before storage protein accumulates and act 

as nuclei for the deposition of material (Mansfield and Briarty, 1992). Globoids are the sites 

of phytin deposition. Phytin is the collective name for the insoluble potassium, magnesium 

and calcium salts of phytic acid (myo-inositol hexaphosphoric acid). Phytin is present in 

relatively minor quantities but it is an important source of phosphate and mineral elements 

(Bewley and Black, 1994). Although the biosynthetic pathway of phytin is unclear, it is 

likely that myoinositol-1-P is synthesized from G6P and then a further 5 phosphates are 

added, with ATP as the donor, to form myoinositol hexaphosphoric acid (phytic acid). The 

association of ions with phytic acid is believed to occur randomly by attraction of the 

metallic cations to the strong negative charges on the exposed phosphate groups (Bewley 

and Black, 1994). Phytase hydrolyses phytin during germination to release phosphate, its 

associated cations and myoinositol. The released myoinositol phosphate may be used by the 

growing seedling for cell wall synthesis since this sugar is a precursor of pentosyl and
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uronosyl sugar units normally associated with pectin and other cell wall polysaccharides 

(Bewley and Black, 1994).

1.2.5.1 Lipid reserves

Lipids in the form of energy rich triacyl glycerols (TAG) are a major form of 

storage carbon in many seeds. The seed lipids of Arabidopsis contain substantial 

proportions of both unsaturated 18-carbon fatty acids (30 % 18:2, 20 % 18:3) and long 

chain fatty acids (22 % 20:1) derived from 18 :1 (Browse and Somerville, 1994). The de 

novo synthesis of 16-carbon and 18-carbon fatty acids takes place almost exclusively in the 

chloroplasts (Ohlrogge, et al,  1991, Ohlrogge, et al, 1993) whereas this process occurs in 

the cytoplasm of animals and yeast (Schmid, et al, 1997). Subsequent elongation steps that 

provide long-chain fatty acids for seed triacyl glycerols are believed to occur in the 

endoplasmic reticulum.

The fatty acid synthesis pathway uses acetyl-CoA as the building block for 

assembly of carbon chains (C l6 and C l8). Pyruvate, G6P, DHAP, acetate and malate can 

all serve as substrates for acetyl CoA synthesis in isolated oil seed rape plastids (Kang and 

Rawsthorne, 1994). Of these, pyruvate and G6P support the highest rate of fatty acid 

synthesis although G6P was utilised at 70% of the rate at which pyruvate was used (Kang 

and Rawsthorne, 1994). Acetyl CoA is probably primarily supplied to the pathway by the 

action of the pyruvate dehydrogenase complex (PDC) which catalyses the decarboxylation 

of pyruvate to acetyl CoA (Schmid, et al,  1997). In chloroplasts, pyruvate can also be 

derived from the 3-phosphoglycerate produced in the Calvin cycle. In addition, plastids 

contain very active acetyl CoA synthetase, and in vitro, incorporate acetate into acetyl CoA. 

Therefore, it appears that acetyl CoA for fatty acid biosynthesis can be derived from the 

PDC reaction inside the plastid or from extraplastidial production of acetate followed by its 

activation inside the plastid by acetyl CoA synthetase (Schmid, et a l,  1997).

Nine 2 carbon units derived from acetyl CoA are condensed in the synthesis of a 

C l8 fatty acid. The first committed step of fatty acid synthesis is the activation of acetyl 

CoA which is carboxylated to malonyl-CoA by acetyl CoA carboxylase (ACCase)
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(Harwood, 1988). After formation of malonyl CoA all further steps of plant fatty acid 

synthesis require the acyl carrier protein (ACP). A repeated series of condensation, 

reduction, dehydration and saturation leads to the production of a fatty acid which is 16 or 

18 carbons long (Schmid, et al, 1997). In both seeds and leaves, 16:0-ACP is elongated to 

18:0-ACP and then desaturated to 18:1-ACP by soluble desaturase (Shanklin and 

Somerville, 1990). The fatty acids are hydrolysed from ACP by a thioesterase and the free 

fatty acids are thought to move through the plastid envelope and are converted to acyl-CoA 

thioesters on the outer envelope, from where they are transported to the endoplasmic 

reticulum. The 18:1 free fatty acid can then undergo a series of modification reactions to 

produce TAG, polyunsaturates, epoxides, wax esters, hydroxides, conjugates or very long 

chain fatty acids (Muiphy, 1993).

1.2.5.2 Lipid bodies

The TAG reserves in seeds are laid down in discrete subcellular organelles 

generally known as lipid or oil bodies. In Arabidopsis seeds, the oil bodies occupy a 

substantial volume of the cell. The oil bodies are surrounded by what appears to be half of a 

normal bilayer membrane (Yatsu and Jacks, 1972). The polar head groups of the membrane 

face the cytoplasm and the hydrophilic acyl groups face the centre of the oil body. The unit 

membrane is embedded with abundant structural proteins termed oleosins. Oleosins are 

alkaline proteins with a molecular mass of 15-24 kDa depending on species (Napier, et al,

1996). They completely cover the surface of the oil body and can account for as much as 8- 

15 % of total seed protein (Murphy, 1993, Huang, 1996). Oil bodies remain as individual 

small organelles even after prolonged storage in plant seeds (Slack, et al, 1980). Their 

stability is a consequence of steric hindrance and electronegative repulsion provided by 

proteins on the surface of the oil bodies (Tzen, et al, 1992)

The mechanism of oil body biogenesis in plants is the subject of controversy and 

there are several hypotheses to explain their ontogeny. Oil bodies are first observed in 

oilseeds at an early to mid stage of seed development, and appear to lack any clear 

association with the protein synthesis machinery. Thus it has been postulated that they
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originate by a budding off from the ER (Frey-Wyssling, et al,  1963). It has been proposed 

that TAG is deposited between the leaflets of the phospholipid bilayer in the ER. Its 

accumulation causes a localised swelling of the ER, which buds off to form a small oil body 

enclosed by phospholipid monolayer (Wanner, et ai, 1981). Several observations support a 

second theory which proposes that oil bodies originate as naked oil droplets in the 

cytoplasm. Firstly, there is, as yet, no convincing electron microscopic evidence of budding 

off from the ER membrane (Bergfield, et al, 1978). There is also evidence that isolated ER 

membranes are capable of synthesising TAG in vitro, forming oil droplets which do not 

coalesce and do not appear to have a phospholipid boundary (Stobart et al., 1986). From 

these results, TAG synthesis was postulated to occur on the outer surface of the ER (Stobart 

et al., 1986).

In addition to the continuing debate on the progenitor of oil bodies, there is also a 

great deal of uncertainty as to when the oleosins are incorporated. There is evidence that 

TAG and oleosins are synthesized concomitantly in the ER, from which a nascent mature 

lipid body is formed (Loer and Herman, 1993; Tzen et ai, 1993)- Other investigations show 

that oleosin accumulation lags temporally behind that of TAG, and that oleosin is 

subsequently inserted into the oil bodies in the cytoplasm (Murphy and Cummins, 1989; 

Cummins and Murphy 1990). A third hypothesis suggests that during early seed 

development, oil bodies have very little oleosin on the surface. This correlates with low 

levels of oleosin transcript present during the early stages of TAG biosynthesis. These oil 

bodies are able to coalesce and the increasing surface density of the oleosins following each 

fusion event would limit their final size. During the mid late stages of seed development, 

when the rate of oleosin synthesis is higher, new oil bodies contain a relatively dense 

coating of oleosin. The oil bodies produced during late seed development would undergo 

fewer fusion events and the final size would be smaller than oil bodies made during an 

earlier stage, as has been observed experimentally (Rest and Vaughan, 1972; Cummins and 

Murphy, 1990).
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1.2.6 Seeds with altered storage products

A number of mutants of Arabidopsis, including wril,fus3, le d  and tag have been 

isolated which do not accumulate TAG in their seeds to the same extent as the wild type 

(Baumlein, et al,  1994, Meinke, et al,  1994, Katavic, et a l,  1995, Pocks and Benning, 

1998).

A wrinkled seed mutant (wri\) has been isolated which has a low lipid content and 

a low seed weight (Pocks and Benning, 1998). The wri\ mutation maps to the bottom of 

chromosome 3 and causes an 80 % reduction in seed oil content. The mature plants of wri I 

and wild type are indistinguishable. However, developing seeds of wril mutants are 

impaired in the incorporation of sucrose and glucose into TAG, although pyruvate and 

acetate are incorporated at an increased rate. The activities of several glycolytic enzymes, 

including hexokinase and pyrophosphate dependent-phosphofructokinase are reduced in the 

developing seeds of homozygous wril mutants. The authors suggest that WRIl is involved 

in developmental regulation of carbohydrate metabolism during seed filling. They suggested 

that WRIl is either a regulatory protein governing carbohydrate metabolism during seed 

development or a novel hexokinase that may act as a sugar sensor in developing seeds, 

controlling the activity or expression of other glycolytic enzymes (Pocks and Benning, 

1998).

In the tag mutant, AS 11, a decreased diacylglycerol acyltransferase (DGAT) 

activity is correlated with delayed seed development, a reduced TAG content and a 

repression of very long chain fatty acid synthesis (Katavic, et a l,  1995). The tag mutants 

have low 20:1 and 18:1, and high 18:3 fatty acids. Low diacylglycerol acyltransferase 

activity leads to a reduction of 20: 1 biosynthesis during seed development, leaving more 

18:1 available for desaturation to an 18:3 chain (Katavic, et a l ,  1995). The authors 

suggested that overexpression of DGAT earlier in development might provide a means of 

channelling more carbon into very long chain fatty acids and, ultimately, into TAG.

Leafy cotyledon mutants of Arabidopsis {led , lec2 and fus3) also have altered 

storage product accumulation during embryo development (Meinke, e ta l ,  1994). Wild type 

embryos are normally filled with protein and lipid bodies but contain relatively small
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amounts of starch at maturity and the hypocotyl and cotyledons are indistinguishable with 

respect to major storage products (Mansfield and Briarty, 1992). The cotyledons of le d  and 

fu s3 (allelic mutants) primarily contained starch. In fus3, two major classes of storage 

proteins, the 12S cruciferins and the 2S arabins are nearly absent, storage lipids are reduced 

and their composition is changed (Baumlein, et al, 1994). Iec2 have a gradient of starch and 

protein bodies in the cotyledons (with more starch at the tip and more protein bodies at the 

base of the cotyledon) but contained abundant lipid bodies in the hypocotyl (Meinke, et al, 

1994).

Th.tfus3 mutants seeds are desiccation intolerant although the immature seeds 

germinate precociously if transferred from the immature silique to humid conditions. 

Moreover, mutant alleles of the FUS3 gene are specifically defective in the gene expression 

programme responsible for seed maturation (LuerBen, et al, 1998). Transcripts of abnormal 

sizes were found in the fus3 mutants due to aberrant splicing caused by point mutations at 

intron termini (LuerBen, et a l, 1998). It has also been shown that the FUS3 gene product 

strongly induces the activity of several seed-specific gene promoters (Baumlein, et al,

1994).

Seed specific immunomodulation of abscisic acid was achieved in Arabidopsis by 

transforming plants with the gene for an antibody to abscisic acid under the control of the 

seed specific USP promoter (Phillips, et al, 1997). In this way plants were created which 

had low or no abscisic acid in the seeds. The embryos contained fewer protein and oil 

bodies. Like the fus3 mutants, seeds of plants with seed-specific immunomodulation of 

abscisic acid were intolerant of desiccation and germinated precociously if removed from 

the siliques during development.

1.2.7 Pattern of reserve mobilisation

Arabidopsis seed is said to have germinated when the radicle has protruded from 

the seed coat. The stimulation of embryo growth is the consequence of a signal cascade 

which emanates from the required environmental signal. In Arabidopsis, light is required for
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germination and the active form of phytochrome (Pfr) is thought to be the initial trigger of 

this pathway (Shropshire, e ta l ,  1961).

The transition in metabolism between the phases of seed development and 

germination is remarkable. During seed development, metabolism is anabolic, 

manufacturing large amounts of lipid, proteins and carbohydrates. Germination and post- 

germinative growth is dominated by catabolic metabolism, when the reserves are broken 

down for seedling growth. These 2 opposite processes are separated by seed maturation and 

desiccation. During this period storage protein synthesis slows down and the storage protein 

mRNAs are degraded (Casey, et al, 1997). Upon germination a different set of mRNAs are 

expressed in order to perform the catabolic function of storage reserve mobilisation.

Imbibition and germination in a small seeded weed-species such as Arabidopsis 

thaliana is a rapid process. The transition from the resting state to a phase of rapid reserve 

mobilisation and organelle differentiation occurs extremely quickly in the cotyledons, with 

major developmental changes occurring 24-36 h after imbibition (HAI) (Mansfield and 

Briarty, 1996). Structurally and biochemically, the transition from storage to photosynthetic 

tissues occurs within 48-60 hours after imbibition. After this point the tissue is no longer 

dependent on diminishing storage reserves. There are 3 phases in the development of the 

seedling: imbibition 0-24 HAI, seedling emergence 24-48 HAI, and the seedling 

development after emergence 48+ HAI (Mansfield and Briarty, 1996). In Arabidopsis, the 

hydrated cells become activated in an ordered sequence. Changes begin near the radicle 

apex and proceed acropetally with respect to the cotyledons. Reserves are mobilised first in 

all the epidermal cells. Reserve mobilisation in the radicle begins at the tip and progresses 

towards the hypocotyl (Mansfield and Briarty, 1996).

During protein hydrolysis, the protein bodies undergo significant changes in 

volume (V), surface area (SA) and V: SA ratio, as they are converted from a protein store to 

a sap-filled vacuole. In all oil seed species studied so far, including A. thaliana, the protein 

bodies swell initially and then fuse during hydrolysis, forming a large central vacuole 

(Mansfield and Briarty, 1996).
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Hydrolysis of storage proteins to their constituent amino acids requires the 

presence of proteinases. The amino acids liberated from the storage proteins may be 

reutilized for protein synthesis or deaminated to provide carbon skeletons for respiration 

(Casey, et a l,  1997). Amides, such as asparagine and glutamine, are the major transportable 

form of amino acid and are carried by the vascular system from the storage organs to the 

growing seedling. Some amino acids, e.g., aspartate, glutamate, alanine, glycine and serine 

can be converted to sucrose and transported as sugar to the growing seedling (Bewley and 

Black, 1994).

In Arabidopsis extremely few microbodies are observed during seed development 

(Mansfield and Briarty, 1992) or maturation and the vast majority of microbodies are 

probably synthesized during germination. The increase in single microbody volume during 

early germination (12-36 hours) support the theory that enzymes are added to the 

microbodies present in early imbibed tissue (Kunce, et al,  1984). Following germination all 

the gloxysomal enzymes increase during the first 2-3 days of growth (if grown at a constant 

25-30 °C) and then decline.

When seeds germinate the TAG reserves are mobilised. The process commences 

with lipases which catalyse the hydrolysis of fatty acid from the glycerol backbone (Huang, 

1987). The fatty acids are converted to oxaloacetate by the enzymes of 8-oxidation 

(Gerhardt, 1992, Gerhardt, 1993) and the glyoxylate cycle (Weir, et a l,  1980). These 

reactions are confined to the glyoxysome. In 8-oxidation, 2 carbon units are cleaved from a 

fatty acyl-CoA beginning at its carboxyl end. Each 2-carbon is oxidised by a series of 

reactions culminating in the release of acetyl CoA. The oxidation of acyl CoA to enoyl CoA 

releases hydrogen peroxide which is detoxified by catalase, a key enzyme in the 

glyoxysome (Gerhardt, 1992). In the process of gluconeogenesis, the glyoxylate cycle 

converts acetyl CoA to 4-carbon compounds. The acetyl CoA condenses with oxaloacetate 

to form citrate which is then isomerised to isocitrate. Isocitrate lyase, an enzyme unique to 

the glyoxylate cycle, converts isocitrate to succinate and glyoxylate. Malate synthase, also a 

unique glyoxylate cycle enzyme, combines the acetyl CoA with glyoxylate to form malate 

(Graham, et al,  1989). Oxaloacetate is regenerated from malate to complete the cycle. The
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net gain of the glyoxylate cycle is succinate. Succinate is metabolised in the mitochondria 

by citric acid cycle enzymes to form oxaloacetate, from where it migrates to the cytosol. 

There it is converted to PEP, and sucrose is produced by gluconeogenesis (ap Rees, et al, 

1974).

1.3 Carbohydrate control of gene expression in higher plants

1.3.1 Introduction

Sugars control the expression of many plant genes and thereby many metabolic and 

developmental processes (Koch, 1996). Genes involved in photosynthesis, reserve 

mobilisation and reallocation are down regulated by high sugar levels. In plants, the 

regulation of gene expression by sugars may function to control carbohydrate metabolism 

among tissues and organs (Koch, 1996). The regulation of photosynthetic genes by sugars 

guarantees the efficient use of carbon, ensuring that excessive carbohydrate is not 

manufactured in source leaves and that sink tissues receive enough sugars for metabolism 

and storage. Genes involved in carbohydrate allocation, and accumulation of storage 

reserves are induced when sugar levels are high. For instance, in developing seeds, where 

sugar concentrations are high, the genes for its utilization in storage products are induced. 

Similarly, when cellular carbohydrate levels are low the expression of genes required for 

sucrose production by photosynthesis and storage remobilization is induced.

1.3.2 Sugar repression of gene expression

1.3.2.1 Photosynthesis

Repression of transcription of many photosynthetic genes is an important 

mechanism for the sustained feedback inhibition of photosynthesis and ensures that levels 

of carbohydrates in the source tissues are maintained (Krapp, et al,  1993, Krapp and Stitt,

1995). The photosynthetic genes down-regulated by sugar accumulation include those 

enzymes involved in the primary fixation of CO2 of both C3 and C4 plants and other genes 

crucial to photosynthesis (Sheen, 1990, Cheng, e ta l,  1992, Sheen, 1994).
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When sucrose levels are elevated above a particular threshold, i.e. by high 

photosynthetic activity, the expression of genes involved in photosynthetic sucrose 

biosynthesis are repressed. Sugar repression of photosynthetic genes has been studied in 

several situations where the condition of high photosynthetic activity has been intentionally 

mimicked. These include sugar feeding of cell cultures, detached leaves and leaf disks; 

cold-girdling and transfer of ambient grown plants to 5°C, and overexpression of invertase 

in the apoplast, all of which result in elevated levels of intracellular sugars and repression of 

photosynthesis.

Initial work using a maize protoplast transient expression system, showed that 

seven maize photosynthetic promoters are repressed by the photosynthetic end-products, 

sucrose, glucose and fructose and by exogenous acetate (Sheen, 1990). Krapp et a l . (1993) 

found that high levels of sugars lead to a rapid and reversible decrease in transcription rates 

and the steady state level of rbcS, cab, and atpD in autotrophic Chenopodium cell- 

suspension cultures. Cold-girdling of the petiole of tobacco and potato leaves showed a 

similar rapid decrease of transcripts (Krapp, et al, 1993). Similarly, in plants that were 

grown at 23 °C and then transferred to 5°C, there was severe repression of photosynthesis 

which corresponded with a decrease in transcripts for rbcS and cab (Strand, et al,  1997). 

The transient activation of the plastocyanin gene of Arabidopsis is repressed by sucrose 

(Dijkwel, et a l ,  1996). Glucose or sucrose feeding also led to repression of a number of 

genes encoding other Calvin cycle enzymes (Fructose 1,6-bisphosphatase, sedoheptulose 

1,7-bisphosphatase, phosphoglycerate kinase) in wheat or sugar beet (Jones, et al,  1996, 

Lee and Dale, 1997).

Sugar repression of photosynthetic genes overrides other regulation such as light, 

tissue type and developmental stage (Sheen, 1990). This is also seen in rape seed culture 

where 2 % sucrose inhibits the light-dependent accumulation of chlorophyll a/b binding 

protein (Harter, et al, 1993), and Arabidopsis, where 2 % sucrose or glucose represses the 

light induction of rbcS in dark-adapted seedlings (Cheng, e ta l ,  1992) and sucrose represses 

the developmentally controlled transient expression of the plastocyanin gene (Dijkwel, et 

al,  1996). Photosynthetic genes are often repressed more strongly by hexoses than sucrose
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(Sheen, 1990, Jang and Sheen, 1994, Sheen, 1994). However, acetate also represses 

photosynthetic genes and often has a stronger affect than sugars (Sheen, 1990). Repression 

by sugars and by acetate appear to be mediated by different mechanisms (Sheen, 1990) and 

interact with a number of other regulatory signalling pathways.

1.3,2.2 Repression of photosynthetic gene expression hy elevated CO2

Photosynthesis is inhibited when production of photosynthate exceeds the rate of 

utilization, and carbohydrate accumulates in the leaves (Krapp, et a l,  1991, Krapp, et al,

1993, Sheen, 1994, Krapp and Stitt, 1995). High CO2 treatment of plants leads to an initial 

increase in photosynthesis followed by a long term decrease (Van Oosten, et al, 1994). The 

negative acclimation of photosynthesis observed in plants subjected to CO2 enrichment has 

been explained in part by repression of photosynthetic genes (Sheen, 1994, Van Oosten, et 

a l,  1994, Van Oosten and Besford, 1994, Krapp and Stitt, 1995). Nuclear genes encoding 

enzymes functioning in the chloroplast are repressed to a greater extent than chloroplastic 

genes when plants are exposed to high CO2 or supplied with sugars (Van Oosten, et al,

1994, Van Oosten and Besford, 1994). Increasing SPS may be valuable in preventing the 

high CO2 induced acclimation of photosynthesis (Signora, et al,  1998). Evidence for this 

comes from Arabidopsis plants overexpressing SPS. When grown in high CO2 , 

overexpression of SPS led to a decrease in the foliar carbohydrate content whilst the sugar: 

starch ratio and photosynthetic capacity were increased.

Contrasting studies indicated that there was little correlation between increased 

soluble carbohydrate, decreased levels of nuclear transcripts and acclimation of 

photosynthesis in high CO2 (Nie, et a l,  1995, Moore, et al, 1998). However, in high CO2 

there was a relationship between low Rubisco, acid invertase activity, and the leaf hexose: 

sucrose ratio. The data indicated that the carbohydrate repression of photosynthetic gene 

expression at elevated CO2 may involve leaf sucrose cycling through acid invertase and 

hexokinase (Moore, e ta l ,  1998).

Arabidopsis mutants which are impaired in sucrose repression of genes have been 

isolated by several groups. These will be useful in the dissection of the mechanism of sugar
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repression in higher plants and should lead to the identification of components of the signal 

transduction pathways. Sucrose uncoupled (sun) mutants have been isolated which showed 

reduced repression of the plastocyanin promoter-luciferase fusion gene (Dijkwel, et al,

1997). Plastocyanin gene (pc) is activated independently of light during early seedling 

development (Dijkwel, et a l ,  1996). In etiolated seedlings, pc  mRNA levels peak 

transiently after 2 days growth in darkness. The transient increase in mRNA can be 

repressed by sugars which are phosphorylatable by hexokinase, suggesting that hexokinase 

induces the signal (Dijkwel, et al,  1996, Van Oosten, et al,  1997). As well as being 

repressed by sugars, the plastocyanin gene is also developmentally- and light-regulated. The 

affect of sucrose on far-red high irradiance responses was studied in wild type and several 

sun mutants. In wild type seedlings, sucrose repressed the far red light-induced opening of 

cotyledons and inhibition of hypocotyl elongation, sun? showed a reduced repression of 

these responses. The results provide evidence for a close interaction between sucrose and 

light signalling pathways (Dijkwel, e ta l ,  1997).

The development of Arabidopsis wild type seedlings is arrested on 6 % glucose. A 

number of glucose insensitive (gin) mutants have been isolated which are less sensitive to 

the presence of 6 % glucose in the growth medium (Zhou, et al, 1996).

1.3.3 Induction of genes under low carbohydrate conditions

Genes for the synthesis and remobilization of sugars and other small molecules 

from storage products such as lipids, starch and proteins are induced by starvation 

conditions and repressed by sugars.

Malate synthase (MS) and isocitrate lyase (ICL) are key components of the 

glyoxylate cycle and their gene expression has been shown to be repressed by sugars 

(Graham, e ta l ,  1992, Graham, eta l,  1994a, Graham, eta l,  1994b, McLaughlin and Smith, 

1994, Sarah, et al, 1996). ms and id  are expressed during early post-germinative growth of 

lipid storing seedlings, when the glyoxylate cycle converts two molecules of acetyl CoA, 

derived from fatty acids, to succinate which is then converted to sucrose via 

gluconeogenesis. ms and id  are expressed again at the onset of cotyledon senescence, or
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during sugar starvation conditions (Graham, et al, 1992, Graham, et al, 1994b). It has been 

proposed that expression of ms and ici can be repressed by sugars during senescence or 

starvation conditions but not during germination (Kim and Smith, 1994b, Kim and Smith, 

1994a, Reynolds and Smith, 1995). Evidence to support this comes from analysis of the 

cucumber ms promoter which was found to contain distinct regions required for 

carbohydrate control and for regulation of gene expression during germination (Sarah, et al,

1996).

In germinating monocot seeds, endosperm starch is hydrolysed by enzymes such as 

a-amylase to provide sugars for export to the developing seedling. In rice, at least 10 genes 

encode a-amylase isoforms but only two of them, RAmy3D and RAmy3E, are strongly 

under the control of sugars and the expression is inversely related to the sugar concentration 

in the culture medium (Huang, et al,  1993, Yu, et al,  1996). Expression of a-amylase 

genes is induced in the aleurone tissue by gibberellin (Fincher, 1989) and repressed in the 

embryo by sugars (Yu, et al,  1991, Huang, et al, 1993, Sheu, e ta l ,  1994). Hexokinase has 

been implicated as a possible sugar sensor for sugar repression of a-amylase gene 

expression (Perata, et a l,  1997, Umemura, et al, 1998). Studies with okadaic acid, a potent 

and specific inhibitor of protein serine/threonine phosphatases 1 and 2A, have shown that 

protein phosphorylation is required for the induction of aAmy3 whereas inhibitors of 

protein kinase c, calcium, calmodulin and calcium dependent protein kinases had no affect 

(Lue and Lee, 1994). Three cw-elements are required for the high level gene expression of 

rice a-am ylase Amy 3D and aAmy3 (Hwang, et a l,  1998, Lu, et al, 1998). Nuclear 

proteins which bind to the TATCCA element in a sequence specific and sugar dependent 

manner have also been identified (Lu, et a l,  1998). The TATCCA element is also an 

important component of the gibberellin response complex of the a-amylase genes in 

germinating cereal grains, suggesting that the regulation of a-amylase gene expression by 

sugar and hormonal signals may share common regulators (Hwang, et al, 1998, Lu, et al,

1998). An interaction between hormonal and metabolic regulation of a-amylase genes has 

also been suggested in barley grains (Perata, et al, 1997).
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The extent of protein remobilization (and associated gene expression) varies with 

the degree of carbohydrate depletion (Elamrani, et al, 1994, James, et al, 1994). Starvation 

conditions induce a protease in maize root tips and breakdown of leaf storage proteins in 

non-photosynthetic cells (James, et al, 1994, Stepien, et al, 1994).

Mannitol, the key source of carbon in celery, is broken down by mannitol 

dehydrogenase to mannose (Stoop and Pharr, 1993). In cultured celery cells, mannitol 

dehydrogenase is induced by sugar depletion and repressed by sugars (Prata, et al, 1997). 

However, Pi is required for mannitol dehydrogenase derepression upon sugar depletion. The 

rbcS gene has also been reported as being insensitive to carbohydrate levels in Pi-limited 

seedlings (Stitt, et al, 1995). Thus, it has been suggested that the dramatic affect of Pi may 

be due to the essential nature of Pi in the central metabolism rather than to a role as a signal 

molecule (Prata, e ta l ,  1997).

Both light and sucrose repress the gene expression of asparagine synthetase in 

Arabidopsis (Lam, et a l, 1994). The sucrose repression affect can be partially rescued by 

the addition of exogenous amino acids, which suggests that the nitrogen : carbon ratio rather 

than carbon alone is responsible for the regulation of the asparagine synthetase gene (Lam, 

e ta l ,  1994).

1.3.4 Induction of Gene Expression under High Carbohydrate Conditions

Conditions of high cellular carbohydrates inhibit photosynthetic production of 

sucrose and permit the reallocation of carbon and nitrogen to other processes such as storage 

product assimilation. Abundant carbohydrate induces the expression of genes encoding 

starch biosynthetic enzymes, storage proteins, defence related proteins and secondary 

metabolites. Sugar also up-regulates genes for nitrate reductase so that plants will reduce 

nitrate only when there is sufficient carbohydrate in the cells for incorporation into amino 

acids (Cheng, et a l ,  1992). This may prevent plants from over taxing the carbohydrate 

reserves by excess nitrate reduction (Cheng, et al, 1992).
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Much of the research into induction of storage products has been carried out in 

potato (Solarium tuberosum), sweet potato (Ipomoea batatas) and maize (Zea mays) all of 

which store large amounts of starch and protein in their respective tubers or kernels.

Sugar inducible genes involved in carbohydrate metabolism in potato include 

ADP-glucose pyrophosphorylase (AGPase) (Müller-Rôber, et a l ,  1990), plastidic 

phosphorylase (St-Pierre and Brisson, 1995, Duwenig, et al, 1997), starch-branching 

enzyme (Kossmann, et al, 1991), starch synthases (Visser, et al, 1991, Abel, et al,  1996) 

and sucrose synthase (Salanoubat and Belliard, 1989).

Sugar also modulates two enzymes, invertase and sucrose synthase which catalyse 

the cleavage of sucrose during its import into sink cells. It has been proposed that each 

operates in a pathway of specific significance. Invertase converts sucrose to fructose and 

glucose favouring growth and cell expansion (Weber, et a l,  1997) and SUSY converts 

sucrose to UDP-glucose and D-fructose favouring starch synthesis (Weber, et al, 1997). 

Both enzyme activities are comprised of 2 isozymes which are differentially expressed by 

sugars (Maas, et al, 1990, Koch, et al, 1992, Xu, et al, 1996). The maize sucrose synthase 

gene, Susl, is upregulated by high carbohydrate conditions whereas the Shi is expressed 

even under carbon starvation conditions. Similarly one of the genes coding for invertase is 

expressed in high carbohydrate conditions (Ivr2) and the other is expressed in carbon 

starvation conditions (Ivrl). The two classes display differential expression throughout 

development with sugar enhanced genes (Susl and lvr2) expressed in many importing 

organs. The sugar repressed, starvation tolerant Shi and Ivrl are expressed primarily during 

reproductive development (Xu, et a l,  1996). Sucrose modulation and developmental 

expression regulates both pathways of sucrose metabolism and as such can have a profound 

affect on the allocation of carbon among plant parts (Xu, et al, 1996). Induction of the 

sugar inducible sucrose synthase in Chenopodium rubrum by 6-deoxyglucose suggests that 

the signal for sugar induction is non-phosphorylated-glucose (Godt, et al, 1995).

Vegetative storage proteins accumulate in the somatic tissues of organs where 

dehydration is not normally required (Berger, et al,  1995). Examples include patatin in 

potato (Rocha-Sosa, et a l,  1989, Wenzler, et al, 1989b), sporamin in sweet potato (Hattori
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and Nakamura, 1988, Hattori, et a l,  1991), and VSP A/B (DeWald, et a l,  1994) and 

lipoxygenase (Tranbarger, eta l,  1991) in soybean.

The expression of genes encoding patatin, which accounts for 30-40 % of the total 

soluble protein in potato tubers, is not specific to tubers as it can be induced by sugars in 

stems and leaves (Wenzler, et al, 1989b). In sweet potato {Ipomoea batatas), the genes 

encoding sporamin and 8-amylase are induced by sugars with the concomitant accumulation 

of starch (Nakamura, et al,  1991). Like patatin, sporamin and 8-amylase can be induced in 

leaf-petiole cuttings which have been supplied with a sugar solution (Nakamura, et a l , 

1991, Mita, e ta l ,  1995). The expression of the gene 8-amylase is also induced in starchless 

mutants of Arabidopsis which accumulate high levels of soluble sugars during the 

photoperiod (Caspar, et al,  1989). The evidence that patatin, sporamin and 8-amylase can 

be induced by sugars in tissues where they are not normally expressed implies that the 

expression may be regulated by the carbon partitioning and source-sink relations of the 

whole plant (Mita, et al, 1995) and that sugar signals may be dominant over other signals 

(Graham, 1996).

Many of the vegetative storage proteins have enzymatic activity and these have 

been implicated in the defence response. Patatin is a lipophilic acyl hydrolase and may 

cleave fatty acids from membrane lipids as part of a wounding (Andrews, et a l,  1988) and 

sugar response (Wenzler, e ta l ,  1989a, Wenzler, e ta l ,  1989b). Proteinase inhibitor II, 

another abundant protein in potato tubers is also induced by sugars (Johnson and Ryan, 

1990, Kim, et al,  1991) and wounding (Ryan and An, 1988). The inhibitor is thought to 

protect the plant against herbivores by decreasing the digestibility and nutritional quality of 

the leaf proteins (Ryan, 1989). The soybean VspA and VspB encode proteins with 

phosphatase activity (Mason, et al, 1992). Another soybean vegetative storage protein has 

lipoxygenase activity (Grimes, et al,  1993). Studies of sugar responsiveness in these genes 

have also revealed important interactions between carbohydrate status and other signals. 

The sugar inducible genes encoding the vegetative storage proteins are activated by 

jasmonate, wounding, sugars and light and down-regulated by phosphate and auxin (Bell 

and Mullet, 1991, Mason, e ta l ,  1992, DeWald, e ta l,  1994, Sadka, eta l,  1994).
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Chalcone synthase is a key enzyme in the synthesis of anthocyanins. Anthocyanins 

are secondary metabolites which pigment flower petals and autumn leaves and are involved 

in plant defence. Sugars induce the expression of the gene encoding chalcone synthase 

(chs). CHS is also inducible by stresses such as high light, particularly UV, and nitrogen 

starvation (Tsukaya, et al, 1991).

Extracellular invertases are induced by wounding or bacterial infection (Sturm and 

Chripeels, 1990). The hydrolysis of apoplastic sucrose by the extracellular invertase may 

lead to a higher influx of glucose and fructose which in turn triggers the repression of 

photosynthetic genes (Jang and Sheen, 1994). Increased soluble sugar concentrations may 

also stimulate the defence related proteins such as lipoxygenase (Bell and Mullet, 1991, 

Mason, et al, 1992), proteinase inhibitor II (Johnson and Ryan, 1990), patatin (Andrews, et 

al., 1988, Wenzler, et a l ,  1989a), pathogenesis related proteins (Herbers, et al,  1995, 

Herbers, et al, 1996b) and chalcone synthase (Tsukaya, et al, 1991).

It is known that abundant carbohydrates promote an increase in respiration in 

leaves (Azcon-Bieto and Osmond, 1983) and potato tubers (Trethewey, et al, 1998). Some 

genes encoding enzymes involved in the cytoplasmic portion of respiration are induced by 

sugars (Koch, 1996). Recently, sugars have also been shown to induce the expression of 

cytochrome c in sunflower mitochondria (Feletti and Gonzalez, 1998). The affect could be 

mimicked by sugars, such as mannose and 2-deoxyglucose, that are phosphorylated by 

hexokinase but not further metabolised suggesting that the hexokinase reaction was 

involved in the induction of cytochrome c by sugars (Feletti and Gonzalez, 1998). It has 

been suggested that carbohydrates provide the link for the coordinated expression of genes 

involved in photosynthesis and respiration (Koch, 1996).

1.3.5 Promoter analysis and signal transduction of sugar inducible genes

Little is known about the signalling pathways for sugar induction. However, some 

progress has recently been made in determining the factors involved in the sugar induction 

of patatin and 8-amylase. Carbohydrates, nitrogen supply and amino acids appear to be 

involved in the induction of class I patatin genes (Pena-Cortés, et a l,  1992, Martin, et a l.
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1997). Dissection of the class I patatin promoter has revealed that separate cis sequences 

and trans factors regulate the metabolic and developmental expression of patatin (Grierson, 

et a l,  1994). The region found to confer sugar inducibility of patatin has homology with 

other sugar enhanced genes (Grierson, et a l,  1994). The patatin promoter contained 

sequences called SUREs CSucrose Response Elements) that are similar to a motif called SP8 

found in sweet potato (Ishiguro and Nakamura, 1992), other motifs have been found in the 

promoters of sugar inducible 6-amylase, and sporamin (Ohta, et al, 1991) and proteinase 

inhibitor II (pin2) (Kim, et a l,  1991). The evidence indicates that sequences for sugar 

inducible expression are conserved among several genes (Grierson, et al, 1994).

Analysis of the patatin class I promoter in Arabidopsis roots revealed that 

expression requires transport of sugar into the cells but not hexokinase activity (Martin, et 

al,  1997). Mutants showing reduced sugar response {rsr) and modified expression patterns 

{mep) have been isolated (Martin, et al,  1997). Further analysis and cloning of the 

mutations will contribute to the understanding of sugar sensing (Martin, et al, 1997).

Mutants with reduced expression of 6-amylase, designated low-level beta-amylase 

{Ibal and lba2) mutants have been identified in Arabidopsis  which show reduced 

responsiveness to sugars (Mita, et a l,  1997b). Landsberg erecta ecotype naturally has the 

lba2 mutation and has a reduced level of sugar inducible 6-amylase compared to other 

ecotypes. This may partly explain why different ecotypes respond differently to different 

sugars (personal observation). Although the mutations Ibal and lba2 did not affect sugar 

inducible expression in general, the lesions caused a decrease in anthocyanin accumulation 

in the plants in response to sucrose, suggesting that there is a link between the expression of 

6-amylase and anthocyanin accumulation (Mita, e ta l,  1997b). The opposite type of mutant, 

the high-level beta-amylase Qiba) mutants have also been found (Mita, et al, 1997a). These 

have a hypersensitive response to sugar which stimulates 6-amylase gene expression even at 

low concentrations (Mita, et a l ,  1997a). Like the Iba mutants, the hba mutants do not have 

altered general carbohydrate metabolism but do accumulate high levels of anthocyanins 

(Mita, et al, 1997a). The results suggest that there is a linkage between the signal cascade
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of 6-amylase and anthocyanin production and that the expression of sugar induced genes 

may be regulated by several signal transduction pathways (Mita, et al, 1997b).

Okadaic acid, a potent and specific inhibitor of protein phosphatases strongly 

inhibites the sucrose-inducible accumulation of mRNA for sporamin, 6-amylase and the 

small subunit of ADP-glucose pyrophosphorylase in sweet potato (Takeda, et al,  1994). 

Thus, the authors suggest that the continuous dephosphorylation of proteins by protein 

phosphatases is required for expression of at least some sugar inducible genes (Takeda, et 

al, 1994). There is also evidence that calcium signalling and plasma-membrane associated 

calcium dependent protein kinases are involved in the sugar inducible expression of genes 

encoding sporamin and 6-amylase (Ohto, et al,  1995, Ohto and Nakamura, 1995). It has 

been proposed that the calcium dependent protein kinases are involved in the regulation of 

sugar transport because they are associated with the plasma membrane (Ohto and 

Nakamura, 1995).

There is now a large body of evidence which supports the idea that there is cross 

talk between signals for carbohydrate status and signals for many other factors in plants. We 

now know that sugar responsive expression of many genes occurs in a tissue specific 

manner under the influence of other factors such as phytohormones (Hattori, et al,  1991, 

Mason, et a l ,  1992, Ohto and Nakamura-Kito, 1992, DeWald, et a l,  1994), light (Pena- 

Cortés, e ta l ,  1992, Mita, e ta l ,  1995), and wounding stress (Johnson and Ryan, 1990). This 

suggests that sugar-responsive gene expression in plants might occur via a complex 

regulatory network of signal transduction cascades (Mita, et al, 1997b).

1.6 Sugar sensing

1.6.1 Sugar sensing in Yeast

Glucose repression is a widespread phenomenon in yeast {Saccharomyces 

cerevisiae) and bacteria whereby cells grown on glucose repress a large number of genes 

that are required for the metabolism of alternative carbon sources such as sucrose, maltose 

and galactose (Gancedo, 1992, Trumbly, 1992, Ronne, 1995, Saier, et a l,  1995, Thevelein
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and Hohmann, 1995). Sugar sensing and glucose repression have been extensively 

investigated in yeast and as such yeast serves as a eukaryotic model for plants.

The mechanism for glucose repression is not fully understood but hexokinase 

seems to play an important role. Yeast contains three glucose phosphorylating enzymes, 

hexokinase PI {HXKl), hexokinase PH {HXK2)and glucokinase (GLKl). The hexokinase 

PII appears to play an important role in the glucose mediated response (Entian, 1980, Ma, et 

a l ,  1989, Rose, et a l ,  1991). Mutations in hexokinase PII (HXK2) abolish glucose 

repression (Entian, 1980, Ôzcan and Johnston, 1995). This led to the speculation that 

hexokinase PII could have a regulatory role that was distinct from its catalytic function. 

However, if overexpressed, the hexokinase PI can also mediate glucose repression, and the 

catalytic and regulatory domains have so far been inseparable (Ma, et al, 1989, Rose, et al, 

1991).

A feature of the hexokinase PII is that it is a phosphoprotein. This is important 

because protein phosphorylation is essential in most metabolic signal transduction pathways 

in eukaryotes (Randez-Gil, et al, 1998). The hexokinase PII enzyme exists in vivo in a 

monomeric-dimeric equilibrium which is affected by phosphorylation. Only the monomeric 

form is phosphorylated. The reversible phosphorylation of the hexokinase PII protein is 

dependent on the carbon source, the protein being more highly phosphorylated on poor 

carbon sources such as galactose, raffinose and ethanol. Addition of glucose promotes the 

dephosphorylation of hexokinase PII. This affect is not present in glucose repression 

mutants catSO/grrl, hex2/regl and cidl/glc7 (Randez-Gil, e ta l ,  1998). The authors suggest 

that CID1/GLC7 phosphatase together with its regulatory HEX 1/REGI subunit are involved 

in the dephosphorylation of the hexokinase PII monomer. A mutant hexokinase PII protein 

which is unable to be phosphorylated could not cause glucose repression of invertase. Other 

recent work has revealed that the hexokinase PII protein is located in both the nucleus and 

the cytoplasm of S. cerevisiae cells and nuclear localisation of the hexokinase (Herrero, et 

a l,  1998) PII protein is necessary for glucose repression signalling of the SUC2 gene. 

Furthermore, the hexokinase PII protein participates in regulatory DNA-protein complexes 

which are necessary for the glucose repression of the SUC2 gene (Herrero, et al, 1998).
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Hexokinase PII is also required for the induction of the HXT gene encoding a 

hexose transporter (Ozcan and Johnston, 1995). The glucose induction of H X T  gene 

expression is also affected in cells expressing the mutated hexokinase PII. The results 

suggest that the phosphorylation of hexokinase is essential for glucose signal transduction in 

vivo (Randez-Gil, gr a/., 1998).

Initially, it was thought that steps in glycolysis after hexokinase were not involved 

in glucose repression. However, mutants lacking glucose-6-phosphate isomerase do not 

initiate glucose repression when given a pulse of glucose (Sierkstra, et a i,  1993). In 

opposition to this, fructose which enters glycolysis beyond glucose-6-phosphate isomerase 

does trigger repression. However, fructose repression is only seen after 15-30 minutes, 

which coincides with the time that glycolysis is resumed after a transient inhibition. This 

was used as evidence that repression is triggered by glycolytic flux and not by an early 

intermediate of glycolysis (Sierkstra, et al,  1993).

Hexokinase PII initiates a signal transduction pathway that is perceived by the 

GLC7 complex (Tu and Carlson, 1995). This activates the SSN6/TUP1 complex which, by 

binding to the transcription factor MIGl, modulates chromatin structure. Exactly how the 

HXK2, GLC7, and SSN6/TUP/MIG 1 complexes are connected is unknown.

In the absence of glucose the glucose-repressed genes are derepressed by a 

different set of gene products. The SNFl kinase (sucrose non-fermenting) forms a complex 

with other proteins, including the activating subunit SNF4 and other adaptor proteins. The 

interaction between SNFl and SNF4 is strongly regulated by glucose and is affected by the 

components upstream in the glucose signalling pathway, such as HXK2, GLC7 and REGl. 

The SNF2-containing chromatin modulation complex is also involved in the derepression 

process. It consists of approximately 10 proteins and reverses the glucose induced closed 

chromatin conformation into an open conformation that can be transcribed. Like the 

SSN6/TUP1 complex, the SNF2 complex is a general chromatin modulator and is directed 

to a specific chromosomal target by transcription factors. The glucose repressing and 

derepressing pathways interact with the GLC7 phosphatase complex, antagonising the
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function of the SNFl protein kinase. The mechanism by which cellular glucose levels are 

perceived and a signal is created is still not understood (Wilson, et al, 1996).

Hexokinase PI and hexokinase FIT activities are inhibited by physiological 

concentrations of trehalose-6-phosphate (T6P) (Blazquez, et al, 1993, Thevelein and 

Hohmann, 1995). Yeast strains with mutations in T6P synthase or with a very low content 

of this enzyme cannot properly control sugar influx into glycolysis (Thevelein and 

Hohmann, 1995). This is indicative that T6P synthase controls hexokinase activity. By 

controlling hexokinase activity, trehalose-6-phosphate may be a regulator of glucose 

induced signalling. Whether this control requires direct interaction of the hexokinases with 

subunits of the trehalose-6-phosphate synthase /phosphatase complex is not known.

Hexokinase is not the only sugar sensor in yeast. Two glucose transporters are also 

involved in sugar sensing and generate an intracellular glucose signal (Ozcan, et al, 1996). 

The snfBp high affinity glucose transporter appears to function as a low glucose sensor since 

it is required for the induction of several hexose transporter genes by low levels of glucose 

(Ozcan, et a l,  1996). Another glucose transporter Rgt2p (similar to snf3p) is required for 

maximal induction of gene expression in response to high levels of glucose. Dominant 

mutations in RGT2 or SNF3 caused constitutive expression of several hexose transporter 

genes. Thus the glucose transporters appear to act as glucose receptors that generate an 

intracellular glucose signal, suggesting that glucose signalling in yeast is a receptor 

mediated process (Ozcan, et al, 1996) and does not require metabolism of glucose.

1.6,2 Sugar sensing in animals

The hexokinase pathway seems to be at least partially conserved in eukaryotes as 

hexokinase has been implicated in sugar-mediated gene regulation in animals. In mammals 

glucose sensing is mediated through an increase in the rate of intracellular catabolism of 

glucose. Glucokinase (HXKIV) has been proposed as being the glucose sensor (Matchinsky, 

et al, 1993) but no direct evidence for its function as a sensor has been found. It is possible 

that the catalytic activity of glucokinase alters the flux of carbon, perturbing metabolite 

concentrations. Either carbon flux or other metabolites may be sensed. Functional
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glucokinase is mainly expressed in the pancreatic 6-cells and in liver with the primary role 

of glucose sensing and control of blood glucose homeostasis. Mammalian glucokinase is 

very similar to yeast hexokinase. In liver cells glucokinase is essential for the disposal of 

excess glucose through glycogen accumulation, whereas in the pancreas it is required for 

glucose stimulated insulin release from 6-cells. Mutations in the glucokinase gene affecting 

Vmax and/or Km cause MODY2 (maturity onset diabetes of the young) in humans 

(Hattersley, et al,  1992, Froguel, et a l,  1993). Targeted disruption of the glucokinase gene 

in mice causes a severe diabetic phenotype in homozygous knockout animals and a weak 

MOD Y like diabetes in heterozygous animals (Grupe, et al, 1995).

1.6.3 Sugar sensing in plants

1.6.3.1 Evidence for hexokinase mediated sugar signalling

Evidence for hexokinase mediated sugar signalling in plants has come from several 

different sources. Initial work using a maize protoplast transient expression system found 

that phosphorylation of hexoses by hexokinase was critical for signalling because only 

hexoses and glucose analogues that can be phosphorylated by hexokinase were effective 

(Jang and Sheen, 1994, Jang, et al,  1997, Jang and Sheen, 1997). The affect was reversed 

by adding mannoheptulose, a competitive inhibitor of hexokinase. In addition, when 

delivered directly into the maize leaf cells by electroporation, glucose, but not G6P or other 

downstream metabolites in the glycolytic pathway, triggered the repression. It was 

concluded that the hexokinase reaction caused the signal. Hexokinase was also thought to 

be involved in the sugar repression of rbcS in Chenopodium cell culture (Krapp, et al, 

1993).

The hexokinase reaction has also been implicated in the initial sugar sensing step 

resulting in repression of ms and id  (Graham, et al, 1994a, McLaughlin and Smith, 1994, 

Sarah, et a l ,  1996). In cucumber cell cultures, ms and id  were derepressed when the 

intracellular levels of sucrose, glucose and fructose fell below a threshold of approximately 

3 mM (Graham, et a l,  1994b). Maintenance of cells in glucose, fructose or sucrose 

containing media resulted in the repression of ms and id  expression, whereas culture in 3-
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O-methylglucose does not result in repression. Similar results were obtained in a cucumber 

protoplast transient expression system (Graham, et ai, 1994a). Hexokinase or the events 

associated with the hexokinase reaction are implicated in the initial sugar-sensing step.

There is also evidence that hexokinase is involved in the repression of mannitol 

dehydrogenase (Prata, e ta l ,  1997) and a-amylase (Perata, et al., 1997, Umemura, et al,

1998), and in the induction of cytochrome c (Feletti and Gonzalez, 1998),

Two Arabidopsis hexokinase genes have been cloned. AtHXKl is located on 

chromosome 4, and AtHXKl is located on chromosome 2 (Jang, et al., 1997). The 

hexokinase clones were used in overexpression and antisense experiments to investigate the 

in vivo function of hexokinase sugar sensing (Jang, et al., 1997). Although wild type plants 

germinated on 6 % glucose, the greening and expansion of the cotyledons, the initiation of 

true leaves, and the elongation of the hypocotyl and root were suppressed. In addition 

greening of cotyledons was suppressed in wild type germinated on 0.2 mM 2-deoxyglucose. 

Plants carrying the sense hexokinase transgene showed hypersensitivity to 6 % glucose as 

indicated by extremely stunted cotyledons, hypocotyls and roots. Plants carrying the 

antisense hexokinase greened, expanded and elongated normally on 6% glucose plates, 

suggesting that they were relatively hyposensitive to glucose (Jang, et a l,  1997). This 

altered sensitivity was also observed for the regulation of expression of cab and rbcS genes. 

Furthermore, overexpressing the yeast sugar sensor YHXK2 caused a dominant negative 

affect by elevating the hexokinase catalytic activity but did not provide the regulatory 

function for signalling in the transgenic plants. In fact, the transgenic plants overexpressing 

the yeast YHXK2 gene were less sensitive to glucose. They also found that it was possible 

to restore the catalytic activity but not the regulatory function in the yeast hxkl hxk2 double 

mutant using ArHXKI. The authors suggest that the transgene exerts a dominant negative 

affect, presumably by competing with the endogenous hexokinase for substrate. They also 

suggest that hexokinase in yeast and plants is not interchangeable with respect to the 

regulatory function required for control of gene expression (Jang, et a l,  1997). This is 

supported by the evidence that even the closely related yeast, Kluveromyces lactis, can only
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complement the catalytic function, and not the regulatory function, in S. cerevisiae (Prior, et 

al, 1993).

In plants sugar induction of apoplastic invertase and sucrose synthase in 

Chenopodium cell cultures does not involve the hexokinase reaction (Godt, et a l,  1995, 

Roitsch, et al,  1995). The affect of induction of extracellular apoplastic invertase and 

sucrose synthase by glucose could be mimicked by the non-metabolisable glucose analogue 

6-deoxyglucose (Godt, et a l,  1995, Roitsch, e ta l ,  1995). This suggests that hexose sugars 

themselves act as the primary signal for sugar induction of these genes. However, the sugar 

inducible promoter of the potato proteinase inhibitor II gene is not induced by 6- 

deoxyglucose (Kim, et a l,  1991). This indicates that there are at least two mechanisms for 

transmitting the signal for sugar induction of genes. This type of sugar sensing seems to be 

evolutionarily conserved, since it is also reported for the unicellular algae Chlore lia kessleri. 

This alga is able to grow both autotrophically, and heterotrophically on glucose in the dark. 

Several genes, including a glucose transporter (HUPl) are induced when glucose is added to 

C. kessleri. The glucose affect may be mimicked by adding 6-deoxyglucose, and it was 

suggested that a glucose transporter functions as a sensor (Hilgarth, et al, 1991).

The promoter of the sugar- and amino acid- induced class 1 patatin is induced by 6- 

deoxyglucose and 3-0-methylglucose, glucose analogues which are transported but not 

phosphorylated by hexokinase. This is evidence that in intact plants hexose transport but not 

hexose metabolism is required for sugar induction of genes (Martin, et al, 1997). In yeast 

specialised hexose transporters can function as sensors (Ozcan, et al, 1996), but there is no 

evidence for sugar transporters having the ability to transduce sugar signals. The above 

results can be explained by assuming the presence of sugar binding proteins with a 

signalling function (Smeekens and Rook, 1997).

Expression of yeast invertase in either the cytosol, apoplast or vacuole of 

transgenic tobacco plants leads to sucrose hydrolysis and an increase in glucose and fructose 

levels which are stored in the vacuole (Heineke, et al, 1994). The excess glucose and 

fructose were only sensed in the vacuole and apoplasm resulting in bleaching of the plants, 

reduced photosynthesis-related gene transcripts and an increase in the transcripts of a
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pathogenesis related protein (Herbers, et al, 1996a). The plants which expressed invertase 

in the cytosol did not sense the hexoses because they did not show these affects. Hexokinase 

is a cytosolic enzyme so if it is involved in sugar sensing the plants with invertase expressed 

in the cytoplasm would have shown signs of bleaching. The authors proposed that sugar 

signalling for the activation of defence related genes and repression of photosynthetic genes 

is associated with sensing mechanisms located at the secretory membrane system, possibly 

at the endoplasmic reticulum or Golgi apparatus (Herbers, et al, 1996a). The apoplastic and 

vacuolar invertases both traverse the endomembrane system and are enzymatically active in 

this compartment. In addition it is known that sucrose is present in the endomembrane 

system because plants expressing a fructosyl transferase in this compartment accumulate 

fructans (Turk, et al,  1996). The monosaccharides generated in the endomembrane system 

by this fructosyl transferase must be sensed because the plants have a severe chlorotic 

phenotype (Turk, eta l,  1996).

As mentioned previously, yeast hexokinase PI and hexokinase PII activities are 

inhibited by physiological concentrations of trehalose-6-phosphate. Trehalose is synthesized 

from G6P and UDP-glucose in a two-step process, analogous to sucrose synthesis, by 

trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase (Cabib and Leloir, 

1958). However, until recently trehalose was thought to be absent from higher plants. In 

yeast and other micro-organisms it has an established role in the protection from various 

stress factors such as heat and desiccation (Vogel, et al, 1998). Several groups have 

transformed tobacco with microbial genes for trehalose synthesis, in the hope of increasing 

the plants stress tolerance (Gaff, 1996, Holmstrom, et a l,  1996, Romero, et al, 1997). 

Some transformed plants exhibited slight drought tolerance but the expression of microbial 

genes for trehalose synthesis always gave rise to severe growth defects, such as dwarfism, 

although only traces of trehalose were found. This gave hints that trehalose or related 

metabolites might have a function as regulators of plant growth and development. 

Furthermore, in yeast, trehalose seems not only to be involved in stress protection, but its 

precursor, possibly T6P, appears to be an important regulator of glucose influx and 

metabolism (Thevelein and Hohmann, 1995). Moreover, results indicate that trehalose may
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interfere with sugar-regulated gene expression as application of trehalose to roots of soy 

bean induces sucrose synthase expression (Müller, e ta l,  1998).

1.6.3.2 Do plants sense specific sugars?

Sucrose is readily hydrolysed to glucose and fructose so it is difficult to establish 

the direct function for particular sugar molecules. However, there is increasing evidence that 

there are specific sugar sensing and signalling systems in plants. Sucrose-specific induction 

of gene expression has been reported for the patatin promoter (Wenzler, et a l,  1989a, 

Jefferson, et al,  1990) and for the phloem specific ro/C promoter (Yokoyama, et al, 1994). 

In these cases a combination of glucose and fmctose was less effective. In addition, fmctose 

was consistently more effective than sucrose or glucose at inducing the gene for cytochrome 

c in sunflower (Feletti and Gonzalez, 1998). The Arabidopsis bZIP transcription factor gene 

ATB2 is specifically repressed post-transcriptionally by sucrose. Other sugars alone or in 

combination were ineffective (Rook, et al,  1998).

In potato, sucrose and glucose exert different affects on the metabolism of growing 

tuber parenchyma. In particular, sucrose selectively stimulated starch synthesis whereas 

glucose stimulated respiration (Geiger, et a l,  1998). The work concentrated on the rapid 

changes induced by sugars, presumed to be due to regulation by effectors or post- 

translational mechanisms. It is not yet known whether sucrose and glucose have different 

affects on the expression of the genes involved (Geiger, et al,  1998).

1.6.3.3 How is the signal transduced?

It has been postulated that sugar sensors activate a signal transduction cascade that 

initiates gene repression or induction. However, the evidence for this is fragmentary. In 

yeast, SNFl protein ser/thr kinases play a role in the derepression of several glucose 

repressed genes. SNFl homologues have been identified in plants and animals (Hardie, et 

al,  1994). The mammalian member of the family is adenosine monophosphate-activated 

protein kinase (AMPK) and a cDNA encoding its catalytic subunit has been cloned from rat 

(Carling, et al,  1994). Plant members of the SNFl family have been found in rye (RKINl)
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(Alderson, et a l, 1991), barley (BKINl and BKIN12) (Halford, e ta l,  1992, Hannappel, et 

a l, 1995), Arabidopsis (AKIN 10) (Le Guen, e ta l,  1992), tobacco (NPK5) (Muranaka, et 

a l, 1994) and potato (PKINl) (Man, et al, 1997).

Antisense expression of a SNFl-homologue in potato resulted in a decrease in the 

expression of sucrose synthase and loss of sucrose inducibility of sucrose synthase 

transcripts in leaves. Activities of other enzymes which catalyse the conversion of sucrose 

to glucose and hexose phosphate, i.e. invertases, glucokinase and fructokinase were 

unaffected (Purcell, et a l, 1998). PKINl may be involved in a signal transduction pathway 

that mediates the response of changing sugar levels on the expression of sucrose synthase, 

and possibly other enzymes of carbohydrate metabolism. However, as yet, plant SNFl- 

related protein kinase activity has not been shown to be regulated by glucose or other 

hexose or hexose phosphate levels (Purcell, et al, 1998) .

As has been mentioned previously, a number of mutants in different sugar sensing 

pathways have been isolated in Arabidopsis. Sucrose uncoupled {sun) (Dijkwel, et al,

1997) and glucose insensitive {gin) (Zhou, et a l, 1996) mutants are altered in sugar 

repression signalling. Reduced sucrose response {rsr} mutants are defective in the sugar 

induced expression of the class I patatin promoter (Martin, et a l, 1997). Mutants showing 

reduced sugar-induced 6-amylase gene expression {lowdevel beta-amylase; lb a) (Mita, et 

a l, 1997b) and high-level beta-amylase gene expression {hba) (Mita, et al, 1997a) have 

also been isolated. Further characterisation of the mutants and cloning of the mutant genes 

will be useful in the dissection of the signal transduction pathways. If hexokinase does play 

a role in signal transduction of carbohydrate status, mutants in hexokinase regulatory and / 

or catalytic activities might be expected. Similarly sugar transport genes might also be 

isolated in the rsr mutants. In addition, it is possible that components which are involved in 

the intersection of several signal transduction pathways could be isolated.

The aim of my project was to characterise a new class of Arabidopsis mutant which 

are altered in the response to high sucrose concentration and low nitrogen concentration in 

the growth medium. They have been classed as carbohydrate insensitive {cai) mutants. It is 

expected that this class of mutant will contain mutants in sugar sensing and signalling,
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nitrogen sensing and signalling and even carbon: nitrogen ratio sensing and signalling. In 

addition, it is likely that the cai class also contains mutants which are altered in carbon 

metabolism.
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Chapter 2 

Materials and Methods

2.1 Materials

2.1.1 Plant material

Arabidopsis thaliana ecotypes columbia-2 and Wassilewskija were propagated from seeds 

obtained from Prof. C. Somerville's laboratory, Carnegie Institute, Wahington, 290 Panama 

St., Stanford, CA94305, USA.

2.1.2 Bacterial strains

Escherichia coli

XLl Blue recA l endAl gyrA96 thi-1 hsdR l?  supE44 relAl lac[FproABlac9 ZAM15 Tn70 (TeÜ)]

D H 5-0( (p80d/acZAM75 recA l endAl gyrA96 thi-1 H s d R 1 7 ( i \ ~ s u p E 4 4  relA l deoR

A{lacZYA-argF)U169

JM103 endAl hsdR supE sbcB lS  thi-1 strA A(lac-proAB) [F' tm D 36 proAB lacN ZA inl5]

Agrobacterium tumifaciens strain GV3101(pMP90) (Koncz and Schell, 1986)

2.1.3 cDNA clones

2.1.3.1 Expressed Sequence Tags (ESTs)

tVDP glucose pyrophosphorylase clone ID 135L24T7

Hexokinase Clone ID 84G1T7

Isocitrate lyase Clone ID VBVO1-30492

Malate synthase 1 clone ID 34F10T7

Nitrate reductase Clone 160F3T7

Rubisco Clone ID 33G4T7

All ESTs verified by sequencing.

2.1.3.2 Other cDNAs

chlorophyll ab binding protein pAB165 in JM103 (Leutwiler, et a l, 1986) 

chalcone synthase (pCHS) in DH5-a (Trezzini, et a l, 1993)
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plastocyanin pPC8.130 (Vorst, e ta l,  1988)

AtHXK 1 and 2 cDNAs cloned into a pBIN19 35S GUS derived vector (Jang, et al, 1997)

HI plasmid pHl is in PAT 153 (Lawton and Lamb, 1987)

2.1.4 Antibodies

anti-AtHXKl polyclonal antibody (production bleed) (Jang, e ta l,  1997)

2.1.5 Chemicals

Unless stated, all chemicals were purchased from Sigma Chemical Co. Ltd., Poole, 

Dorset, U.K. or

Fisher Scientific (U.K.) Ltd., Loughborough, U.K., or 

BDH Chemicals, Poole, Dorset, U.K.

Enzymes were from Boehringer Mannheim Corp. (London) Ltd., Lewes, Sussex, U.K. 

Restriction enzymes were from Promega (U.K.) Ltd., Southampton, U.K.

Radioisotopes and Hybond-N were from Amersham International, Bucks, U.K.

2.2 Methods

2.2.1 Plant growth conditions

2.2.1.1 Seed sterilisation

Surface sterilising solution was freshly prepared each time it was required by 

dissolving 1 Covclor tablet (Coventry Chemicals Ltd., Coventry) in 35 ml H20, 1% Tween- 

20. The working solution was made from this solution by adding 5 ml to 45 ml of 95% 

ethanol. Seeds were soaked in the working solution for 10 minutes and were rinsed twice in 

95% ethanol. The sterile seeds were allowed to dry in a sterile flow hood.

2.2.1.2 cai screen

A modified Murashige and Skoog medium (M&S) (Murashige and Skoog, 1962) was 

prepared containing with 0.1 mM nitrogen (ammonium nitrate and potassium nitrate) plus 

100 mM sucrose, pH 5.6-5.8 solidified with 0.8% agar. Table 2.1 shows the components of
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M&S solutions with reduced nitrogen concentrations. The loss of potassium ions in the M&S 

solution, caused by the reduction in potassium nitrate, was replaced by the addition of 

potassium chloride.

The following stock solutions were made;

(1) 100 X stock macronutrient solution (165 g/1 ammonium nitrate and 190 g/1 

potassium nitrate).

(2) 100 X stock potassium chloride solution (130 g/1 potassium chloride).

(3) 100 X micronutrient solution (0.62 g/1 boric acid, 2.5 mg/1 cobalt chloride,

2.5 mg/1 cupric sulphate, 1.69 g/1 manganese sulphate, 25 mg/1 molybdic acid,

83 mg/1 potassium iodide, 0.86 g/1 zinc sulphate).

(4) 200 X stock solution containing 5.56 g/1 ferrous sulphate and 7.45 g/1 EDTA 

(disodium salt; 40 ml of a 0.5 M EDTA, pHS.O). The solution was boiled for 10 

minutes until the colour changed from green to brown.

A 11 solution of 0.1 mM nitrogen M&S solution was made up by adding 0.016 ml of 

100 X macronutrient solution, 9.984 ml of 100 X potassium chloride solution, 10 ml of 100 X 

micronutrient solution and 5 ml of 200 X ferrosulphate/EDTA solution. The calcium 

chloride, magnesium sulphate and potassium phosphate were added individually. The pH of 

M&S solution was increased to pH 5.6-5.8 by adding 0.1 M KOH. Sucrose (34.23 g/1) and 

agar (8 g/1) were added to the solution before autoclaving, and pouring plates in a sterile flow 

hood.

Sterile seeds were sown on the agar plates and were kept in darkness at 4 °C for 4 

days before being transferred to continuous white light (120 |imol m"^s"l) at 22° C for 7 days.

2.2.1.3 gin screen

Sterile seed were sown on 1/2 strength M&S medium containing 333 mM glucose and 

0.8% agar and grown as described in 2.2.1.2

2.2.1.4 mig screen

Sterile seed were sown on 1/2 strength M&S medium containing 5 mM mannose and 

0.8% agar and grown as described in 2.2.1.2.
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Murashige and Skoog Medium with varying Nitrogen concentrations

Final nitrogen concentration (m SI)
M&S components 60 6 0.6 0.1 0

Macronutrients (mg / I)

ammonium nitrate 1650 165 16.5 1.65 0

potassium nitrate 1900 190 19 1.9 0

potassium chloride 0 1170 1287 1298 1300
calcium chloride (anh) 332.2 332.2 332.2 332.2 332.2
potassium phosphate 
(monobasic salt)

170 170 170 170 170

magnesium sulphate 180.7 180.7 180.7 180.7 180.7

Micronutrients (n,K /n

Doric acid 6 .2 6 .2 6 .2 6 .2 6 .2

cobalt chloride 6 H2O 0.025 0.025 0.025 0.025 0.025
cupric sulphate 5 H2O 0.025 0.025 0.025 0.025 0.025
manganese sulphate H2O 16.9 16.9 16.9 16.9 16.9
molybdicacid(2 H2 0 ; 
Na salt)

0.25 0.25 0.25 0.25 0.25

potassium iodide 0.83 0.83 0.83 0.83 0.83
zinc sulphate 8 .6 8 .6 8 .6 8 .6 8 .6

Iron/EDTA (mgA)
ferrous sulphate.7 H2Û 27.8 27.8 27.8 27.8 27.8
Na2EDTA 37.26 37.26 37.26 37.26 37.26
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2.2.1.5 sig screen

Sterile seed were sown on 1/2 Murashige and Skoog medium containing 350 mM 

sucrose and 0.8% agar. The plates were kept in darkness at 4 “C for 4 days before being 

transferred to continuous white light (120 fimol m“̂ s" )̂ at 22“ C for 2 weeks.

2.2.1.6 Soil grown plants

Seedlings selected by the above screens were pricked out into 1:1 mixture of potting 

and bedding compost (William Sinclair Horticulture Ltd., Lincoln, U.K.), and sharp sand 

and grown in 16h light (120 pmoL^s"^), 8 h dark at 22“C.

2.3 Genetic analysis

2.3.1 Crosses

The maternal flower was prepared for crossing when the bud appeared to reach its 

maximal size but before there was any protrusion of the petals. The sepals and petals were 

removed from the bud using watchmakers forceps. The bud was then emasculated by 

removing all 6  anthers leaving an exposed stigma. Ripe anthers were separated from the 

pollen donor and were brushed over the stigma to fertilise the maternal plant. The fertilised 

bud was wrapped in a small piece of plastic wrap for 24h to prevent dehydration during 

pollen tube growth. If the cross was successful a silique extended from the ovary over the 

next few days.

2.3.2 Parental crossing

Reciprocal crosses were performed between the cai mutants and their parental 

ecotypes to eliminate unwanted additional mutations. The FI seed were grown on selection 

media to look for dominant mutations. The F2 were grown on selection media to look for 

recessive mutations which would have an expected ratio of 3:1 wild type:mutant.
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2.3.3 Complementation analysis

The cai mutants were crossed reciprocally between themselves to determine whether 

the mutations were allelic. Recessive non-allelic mutations should complement each other 

and the FI will have the wild type phenotype on the selection media. If the mutation of one 

parent is dominant the FI phenotype will be mutant whether the mutations are allelic or not.

Complementation of a mutation hy Arabidopsis transformation (see section 2.4.12)

2.4 Molecular techniques

2.4.1 Production of competent cells of Escherichia coli

Competent cells of E. coli were produced by the calcium chloride method. A 5 ml 

aliquot of LB broth (1% (w/v) Bacto Tryptone, 0.5% (w/v) Bacto yeast extract, 1 % (w/v) 

NaCl, pH 7.5) was inoculated with a single colony of XLl Blue MRP' E. coli and incubated 

overnight at 37°C with shaking (approximately 225 rpm). This culture was used to inoculate 

500 ml fresh LB broth and grown at 37“C with shaking for 3-4 h until an OD^oo of between 

0.4 and 0.6 was reached. The cells were centrifuged at 3000 rpm using a 6  X 250 ml angled- 

rotor (JS-14) in a Beckman centrifuge (model J2-21) for 10 minutes at 4“C. The pellet was 

gently resuspended in 250 ml ice-cold CaCl2 and left on ice for 1 h. The cells were 

centrifuged again (3000 rpm, 4“C, 10 minutes) and the pellet was resuspended in 50 ml 50 

mM of ice-cold CaCl2 /2 0  % glycerol. The cells were then aliquoted into 1.5 ml Eppendorf 

tubes, frozen in liquid nitrogen and stored at -70°C.

2.4.2 Transformation of E. coli with plasmid DNA

A 100 jLll aliquot of competent cells was thawed on ice and 10-100 ng plasmid DNA 

was added. The solutions were mixed by gently flicking the tube. The tube was incubated 

on ice for 20 minutes followed by 42°C for 2 minutes. After cooling on ice, 1 ml of LB was 

added and the tube was incubated at 37°C for 1 h. 100 pi of the transformed cells were 

spread on LB agar plates (as for LB broth plus 1.5 % 9 (w/v) Bacto agar) containing 100
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pg/ml ampicillin (added before pouring the plates when the temperature of the LB-agar is 

approximately 45°C). The plates were incubated overnight at 37°C.

2.4.3 Plasmid DNA isolation

A single colony was picked from the selection plate (see above section) using a 

sterile yellow tip. The whole tip was ejected into a sterile universal bottle containing 5 ml of 

LB broth plus 100 pg/ml ampicillin. The culture was grown overnight at 37“C with shaking. 

The plasmid DNA was isolated using the QIA-prep spin plasmid miniprep kit (Qiagen, 

U.K.) according to the manufacturer's instructions.

2.4.4 Electrophoresis of DNA and RNA in non-denaturing conditions

Samples of purified DNA and RNA were checked for integrity and molecular weight 

distribution using agarose gel electrophoresis. 0 .8  % (w/v) agarose gels were prepared and 

run in 1 X TAB (40 mM Tris-acetate, 1 mM EDTA, pH 8.0) containing 0.25 flg/ml 

ethidium bromide. Samples of DNA or RNA were mixed with 4 X loading buffer (0.25 % 

(w/v) bromophenol blue, 0.25 5 (w/v) xylene cyanol and 30 % (v/v) glycerol in water) and 

loaded alongside 1 Kb DNA ladder (Gibco, BRL, U.K.). The gel was electrophoresed at 5 

V/cm for 1-2 hours depending on the dimensions of the gel.

2.4.5 Isolation of total RNA

All solutions, except for Tris, were treated with 0.1 % diethylpyrocarbonate (DEPC) 

to destroy RNase activity and were subsequently autoclaved to destroy the DEPC (forms 

ethanol and CO2 upon autoclaving). Total RNA was isolated from approximately 500 mg 

fresh weight plant material by grinding it to a fine powder in liquid nitrogen using a pestle 

and mortar. 900 jll of extraction buffer (25 mM Tris-Cl, 25 mM EDTA, 75 mM Na Cl, 1 % 

SDS, 7.8% P-mercaptoethanol, pH 8.0) was added to the frozen powder in the mortar and 

was ground into the plant material. 900 |ll of PIC (phenol: chloroform: isoamylalcohol 

25:24:1) was added to the mortar and the mixture was ground until it had melted. The 

mixture was transferred to an Eppendorf tube and centrifuged (Microcentaur, 13,000 rpm.
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4“C) for 10 minutes. The aqueous layer was transferred to a fresh Eppendorf tube and 1 

volume of PIC was added. After vortexing the tube it was centrifuged again and the aqueous 

layer was transferred to a clean Eppendorf tube. 10 M LiCl was added to the aqueous 

extract to a final concentration of 2M (to preferentially precipitate RNA) and the tube was 

vortexed immediately. The tube was incubated at 4°C overnight before being centrifuged 

(Microcentaur, 13,000 rpm, 4°C) for 10 minutes. The supernatant was gently poured off and 

the pellet was washed with ice-cold 2 M LiCl by shaking. The tube was centrifuged again to 

consolidate the pellet and all the supernatant was removed. The pellet was resuspended in 

500 |ll of DEPC-treated H2O and then 0.1 volumes of 3M sodium acetate (pH 5.5) and 2.5 

volumes of ethanol were added to precipitate the RNA. It was then incubated on ice for 20 

minutes. The tube was centrifuged (Microcentaur, 13,000 rpm, 4“C) for 15 minutes and the 

supernatant was discarded. The pellet was washed with 70 % ethanol and then the pellet was 

dried for 5 minutes in a Speed Vac Plus (Savant, model SCI 10A) connected to a vacuum 

pump (Vacuubrand Gmbh and Co., Wertheim, Germany). The pellet was finally redissolved 

in a minimal volume of DEPC-treated H2O and allowed to rehydrate on ice for 3-4 h .

The quantity and purity of the RNA was determined spectrophotometrically by 

measuring its absorbance at 260 nm and 280 nm. An A26O nm of 1 is equivalent to an RNA 

concentration of 40 |ig/ml. The purity of RNA is determined by the ratio of its absorbance at 

260 nm to its absorbance at 280 nm. An A26O/28O ratio of between 1.8 and 2.0 indicates that 

the RNA is free from protein contamination. The quality of the RNA was determined by 

agarose gel electrophoresis and the ribosomal RNA bands were checked for signs of 

degradation.

2.4.6 Denaturing agarose gel electrophoresis of RNA

Samples of 5 P-g RNA were separated by electrophoresis through a 1.3 % (w/v) 

agarose gel containing 10 % formaldehyde and 1 x MOPS buffer, pH 7.0 (20 mM MOPS, 5 

mM sodium acetate, 1 mM EDTA). The RNA samples were mixed with 1 % (v/v) 

formaldehyde, 30 % (v/v) formamide, and Ix MOPS, pH 8.0. The samples were heated at
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65°C for 2.5 minutes, snap cooled on ice and loaded on to the gel. The gel was run for 2 h at 

lOOV in 1 X MOPS, pH 7.0.

2.4.7 Northern hybridisation using Hybond N

RNA was transferred onto Hybond N nitrocellulose membrane using 20 X SSC (3 M 

NaCl and 0.3 M sodium citrate, pH 7.0) as described in the manufacturers protocol 

(Amersham International pic). Prehybridisation and hybridisation were carried out in 0.5M 

Na2 HP0 4  7 % SDS and 10 mg/ml BSA as described by Church and Gilbert (1984). 

Northern blots were exposed onto X-ray film (Fuji RX) using an intensifying screen at 

-70“C for 1-7 days. Radioactive blots were also phospho-imaged using a Fuji Bio-Imaging 

Analyser (Fuji Photo Film Co. Ltd., Japan) by exposing the blot on to a pre-blanked 

imaging plate for 1 - 24 h in a cassette at room temperature. Exposed plates were developed 

by the Fuji Bio-Imaging Analyser and the images were captured using Mac-Bas software 

(Fuji Photo Film Co. Ltd., Japan).

2.4.8 Preparation of radiolabelled DNA probes

Plasmid DNA was digested with restriction endonucleases to release the insert. The 

digestion products were separated by electrophoresis through a 0 .8  % (w/v) agarose gel 

buffered with 1 x TAE (40 mM Tris-acetate, 1 mM EDTA, pH 8.0). The required fragment 

was excised and extracted from the agarose using the QIA-quick gel extraction kit 

according to the manufacturer’s instructions. Radiolabelled DNA probes were prepared for 

use as probes on Northern blots by oligonucleotide random priming using the Decaprime™ 

DNA labelling kit (Ambion Inc., Austin, U.S.A.) according to the manufacturer's protocol. 

G-50 spin columns were used to separate the unincorporated nucleotides from the 

radiolabelled DNA probe. Once synthesized, the probe was denatured by heating to 95- 

100“C for 5 minutes followed by chilling on ice before adding to the hybridization solution.
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2.4.9 Isolation of Arabidopsis genomic DNA

3-4 mature rosette leaves were ground to a fine powder in liquid nitrogen with a 

pestle and mortar. The powder was added to a 30 ml plastic tube (Sarstedt, U.K.) containing 

15 ml extraction buffer (2 % (w/v) hexadecyltrimethyl ammonium bromide (CTAB), 1.34 

M NaCl, 20 mM EDTA, 0.002 % (v/v) p-mercaptoethanol, 100 mM Tris-Cl, pH 8.0) at 65 

°C. The tube was mixed by inversion and incubated at 65 “C for 30 minutes. An equal 

volume of chloroform: isoamylalcohol (24: 1) was added to the tube which was shaken for 

15 minutes. The tube was centrifuged at 4°C for 10 minutes at 4000 rpm in a 8 X 50 ml 

angled rotor (JA-20) in a Beckman centrifuge (model J2-21). The aqueous layer was 

transferred to a new tube containing 0.67 volumes of isopropanol and was shaken for 20 

minutes at room temperature. The tube was centrifuged, as before, at 4000 rpm for 10 

minutes to pellet the nucleic acids and the supernatant was discarded. The pellet was 

resuspended in 500 jll TE (10 mM Tris-Cl, pH 8.0, 1 mM EDTA) and transferred to an 

Eppendorf tube. The nucleic acid solution was treated with RNase (10 |il of 5 mg/ml stock) 

and incubated for 30 minutes at 37 “C. 1 volume of PIC (phenol: chloroform: 

isoamylalcohol; 50: 49: 1) was added and the mixture was vortexed. The aqueous layer was 

removed to a new tube and 0.1 volumes 3 M sodium acetate and 2 volumes of 95 % (v/v) 

ethanol were added to precipitate the DNA. The tube was incubated at -20 “C for 1 hour. 

The DNA was centrifuged (MicroCentaur, 13000 ipm, 4°C) for 10 minutes, the pellet was 

washed with 70 % (v/v) ethanol and desiccated. The pellet was resuspended in 50 fll T E. 

The quantity and purity of the DNA was determined spectrophotometrically by measuring 

its absorbance at 260 nm and 280 nm. An A26O nm of 1 is equivalent to a concentration of 50 

|lg/ml. The purity of DNA is determined by it A26O/28O ratio. An A26O/28O ratio of between

1.8 and 2.0 indicates that the DNA is free from protein contamination.

2.4.10 Primer design

Primers were designed which were specific to the Arabidopsis thaliana hexokinase 1 

and hexokinase 2 pBIN19 constructs (the full length coding sequences of At HXK 1 and 2 

cloned into a pBIN19 35S GUS derived vector; a gift from Dr J-C Jang). The forward
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primer was designed in a region of the 35S promoter and the reverse primers were designed 

in regions of the hexokinase genes which were non-homologons (Figure 2.2).

The primer sequences were:

hexokinase 1 reverse (athHXKls-R) 5' -gAg g AT AgC CAA A AC ACg - 3' 

hexokinase 2 reverse (athHXK2s-R) 5’-CAA TAT CTC TAT CAC TCT - 3'

35 S forward (camV 35S-F) 5'.-ggA TTg ATg TgA TAT CTC - 3'

2.4.11 The polymerase chain reaction (PCR)(Mullis and Faloona, 1987)

The polymerase chain reaction was used to specifically amplify fragments of 

AtHXK 1 or 2 flanked by T-DNA in order to verify whether plants were transformed with 

hexokinase 1 or hexokinase 2. The 20 fll reaction mix was comprised of 2 pi 10 X PCR 

buffer (500 mM KCl, 100 mM Tris-Cl, pH 8.4, 15 mM MgCla, 200 pg/ml gelatine), 2 pi 

MgCl2 , 0.5 pi 35 S forward primer, 0.5 pi of a specific hexokinase reverse primer, 0.18 pi 

25 mM dNTP, lU Taq, 14.62 pi water plus 10-100 ng genomic DNA. The reaction was 

performed on a thermocycler (Perkin Elmer Gene Amp PCR Syetem 2400). The reaction 

conditions were : 94 “ C 3 minutes

followed by 40 cycles of: 94 “ C 15 seconds

55 “ C 15 seconds 

72 “ C 30 seconds 

followed by 72 ° C 5 minutes

The PCR products were separated by electrophoresis through a 0.8 % agarose gel buffered 

by TAE.

2.4.12 Complementation of a mutation by Arabidopsis transformation (vacuum 

infiltration method)(Bechtold, e ta l, 1993)

A mutation in a specific gene can be complemented by transforming the mutant with 

the correct gene in the sense orientation under the control of either its own promoter or a 

constitutively expressed promoter. Plants of the appropriate ecotype were grown to a stage 

at which the bolts were just emerging. These bolts were clipped to promote growth of
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Figure 2.1 Vector derived from pBIN19 containing the 35S:AtHXKl or 35S:AtHXK2 

construct.



Bam HI Sac 1
CaMV 35S-F

CaMV35 S promoter AtHXKl nos terminator

atHXKls-R

Bam HI Sac 1

CaMV35 S promoter AtHXK2 nos terminator

atHXK2s-R
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multiple secondary bolts and infiltration was done 4-8 days after clipping. A 400 ml culture 

of Agrobacterium (GV3101) containing the AtHXK I construct was prepared in LB plus 

25pg/ml gentamycin and 50 pg/ml kanamycin and grown to an ODgoo >2 .0 . The cells were 

harvested by centrifugation (5K, 10 minutes in a GSA rotor at RT) and resuspended in a 

volume of infiltration medium (1/2 MS salts, 1 X B5 vitamins, 5 % sucrose, 0.044pM 

benzylaminopurine) calculated to give an ODôoo of approximately 0.8. The bolts and rosette 

leaves of the Arabidopsis were submerged in the Agrobacterium containing infiltration 

medium and placed under a 1.7 m^/h vacuum (Vacuubrand MZ2C pump, Gmbh and Co. 

Wertheim, Germany) for 3 minutes. The vacuum was briefly released to dislodge trapped 

air bubbles before a final 30 second vacuum period. After this treatment the rosette leaves 

had lost turgidity and appeared dark green. The plants were removed from the solution and 

allowed to drain before being put back in the growth room. The plants were allowed to bolt 

and the siliques were collected when they were mature and dry. Putative transformant seeds 

were sterilised, resuspended in 0 .1  % agar and spread on selection plates ( 2 0 0 0  seed per 150 

X 15 mm plate: 1/2 MS salts, 0.8% agar, 1 x B5 vitamins, 50|ig/ml kanamycin, 25 mg/1 

nystatin). After 2 days in the cold room the plates were moved to the growth room . After 

about 7 days in the growth room transformants were identified as dark green seedlings with 

secondary leaves and roots that extend into the selective medium. Transformants were 

transferred to soil and allowed to set seed.

2.5 Protein Analysis

2.5.1 Soluble protein extraction for western blotting and hexokinase assays

Plant tissue was ground up using a pestle and mortar in 50 mM Tris-Cl, pH 7.3, 1 

mM DTT, 15 % (v/v) glycerol, 5 mg/ml BSA (Ig fw/ml buffer), and 120 mg/g fw 

polyvinylpolypyrollidone at 4°C and transferred to an Eppendorf tube. The sample was 

centrifuged (Microcentaur, 13000 rpm) for 5 minutes at 4°C. The extracts were rapidly 

desalted by a centrifugation (Microcentaur, 400 rpm, 2 minutes) through a 1 ml Sephadex 

G50 mini-column pre-equilibrated with the extraction buffer and the eluate was used in 

enzyme assays and westerns.
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2.5.2 Storage protein Extraction

Seeds were ground up in 50 mM Tris-Cl, pH 7.3, 1 mM EDTA, 1 mM DTT, 120 

mg/g fw PVPP, 1 % SDS and were boiled for 5 minutes to solubilise and denature the 

proteins. The sample was centrifuged (Microcentaur, 13000 rpm) for 5 minutes at 4“C,

2.5.3 Quantitation of total protein

The protein concentration of the extracts was measured by 2 methods. Soluble 

protein extract concentrations were determined using Biorad Bradford's reagent (Bradford, 

1976). The Bradford method depends on the binding of Coomasie Brilliant Blue to an 

unknown protein and comparing this binding to that of different amounts of a known 

protein, IgG. The Bradford method cannot be used to measure protein concentration in 

samples containing SDS. Storage protein concentration was measured using the method of 

Lowry (Lowry, et a l, 1951, Peterson, 1977) which is not perturbed by the presence of SDS 

in the extract. The Lowry method depends on quantitating the colour obtained from the 

reaction of Folin-Ciocalteu phenol reagent with the tyrosyl residues of an unknown protein 

and comparing this colour value to the colour values derived from a standard curve. 1-10 pi 

of the unknown protein extract was placed in an Eppendorf and the volume was made up to 

200 pi with water. 20 pi of 0.15% (w/v) sodium deoxycholate was added, the tube was 

vortexed and allowed to stand for 10 minutes at room temperature. 20 pi of 72 % (w/v) 

trichloroacetic acid was added and the tube was vortexed. The tube was centrifuged at 3000 

X g and the pellet was redissolved in 200 pi water. 200 ul of copper tartrate/carbonate 

solution [0.1 % (w/v) CUSO4 .5 H2O and 0.1 % (w/v) potassium tartrate, 10 % (w/v) sodium 

carbonate] was added, the tube was vortexed and left to stand for 10 minutes at room 

temperature. 100 pi of 20 % Folin-Ciocalteu was added, the tube was vortexed and left to 

stand for 30 minutes at room temperature. The A750  was determined and was compared to a 

standard curve of between 1 and 2 0  pg of protein.
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2.5.4 Electrophoretic separation of proteins (SDS PAGE)

Proteins were separated by discontinuous SDS-PAGE (Laemmli, 1970). Storage 

protein gels were made with a 12.5 % polyacrylamide separating gel and all other gels were 

made with an 8  % polyacrylamide separating gel. The stacking gel was 3 % polyacrylamide. 

Protein samples were denatured by boiling for 4 minutes in 25 mM Tris-HCl, pH 6 .8 , 0.5 % 

(w/v) SDS, 5 % (w/v) glycerol, 0.01 % (w/v) bromophenol blue and 0.5 % (w/v) 2- 

mercaptoethanol. The samples were then loaded onto the gel and electrophoresed at 60 mA 

for 2-2.5 hours.

2.5.5 Staining SDS PAGE gels

The stacking gel was removed and the separating gel was stained for 30 minutes at 

37 “C in 0.1 % Coomassie Brilliant Blue G250, 50 % (v/v) methanol, 10 % (v/v) glacial 

acetic acid, and destained in several changes of 1 0  % (v/v) methanol, 1 0  % (v/v) glacial 

acetic acid at 37 “C.

2.5.6 Western blot analysis

After electrophoresing protein extracts against prestained markers (Biorad, UK.) by 

SDS PAGE, the protein was transferred to nitrocellulose using a miniblot system (Biorad, 

U.K.) using the manufacturers protocol. The nitrocellulose was stained with Ponceau S 

solution (Salinovich and Montelaro, 1986) to stain the proteins and to check that loading of 

the wells was equal. The filter was then completely destained in water. The filter was placed 

overnight in a plastic box containing the blocking solution (25 mM Tris-Cl, pH 7,5, 150 

mM NaCl, 0.05 % Tween-20, 5% Marvel). The blocking solution was poured off and the 

blot was incubated with the A^HXK antibody (1 in 1000 dilution; a gift from J-C. Jang) in 

TBS-Tween-milk for 4 h. The blot was washed 3 times in TBS-Tween and then incubated 

for 2  hours with the secondary anti-rabbit antibody linked to alkaline phosphatase diluted 1 

to 20000 in TBS-Tween. The blot was washed 3 times in TBS-Tween. The blot was 

developed with an alkaline phosphatase/ nitroblue tétrazolium (NBT)/5-bromo-4-chloro-3- 

indolyl phosphate (BCIP) system for immunodetection. The blot was incubated in 20 ml of
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developer buffer (0.1 M Tris-Cl, pH 9,5, 0.1 M NaCl, 5 mM MgCl^, 4.4 mg NET and 3.3 

mg BCIP) at 37°C in the dark. The reaction was stopped by washing in distilled water.

2.5.7 Hexokinase assays

Hexokinase activity in the protein extract was assayed using a modified version of 

that described by Bouny and Saglio (1996). The rate of NADP reduction was recorded (ATi 

Unicam UV/Vis Spectrometer-UV4) at 340nm (25“C or 37“C) in a cuvette containing the 

protein extract plus 50 mM Tris-Cl, pH 7.3, 1 mM glucose, ImM MgCl2 , 1 mM NADP, 1 

mM ATP, 0.1 mM EDTA, 5 units G6 PDH.

2.6 Metabolite Measurements

2.6.1 Radioactive -mannose and -glucose feeding experiments

10 mg dry weight of sterile seeds was sown in a 24 well culture plate on 3 discs of 

3M filter paper soaked in 150 |il 1/2 MS salts containing 1) 5 mM mannose plus 1 |iCi D- 

[U-^4(2]niannose; 2) 5 mM glucose plus 1 |iCi D-[U-^^C]glucose or 3) 5 mM mannose plus 

1 jlCi D-[U-1^C]mannose plus 50 mM glucose. The plate was sealed with Nescofilm and 

the seeds were imbibed at 4°C in the dark for 4 days. Transfer to the growth room (22 “C, 24 

h continuous white light, 120 |lEm'2 s’ )̂ represents time zero. Samples were taken at time 

intervals thereafter. The germinating seeds were washed in ice cold water to remove any 

exogenous sugars and MS salts. The seedlings were then finely ground in a glass 

homogeniser in an excess of 80 % ethanol and left to extract for 1 hour at room temperature. 

The solution was centrifuged, the supernatant was lyophilised in a Speed Vac Plus (Savant, 

model SCllOA) connected to a vacuum pump (Vacuubrand Gmbh and Co., Wertheim, 

Germany) and the resulting pellet was resuspended in 40 |il H2O. The samples were then 

loaded onto a paper chromatogram (PC) and developed for 18 h in ethyl acetate: pyridine: 

water (8:2:1) as described by Fry (1988). The PC was dried and imaged using a Packard 

Instant Imager (Packard Instrument Company, USA) which allows visualisation and 

accurate quantitation of the metabolites, amino acids and deacetylated amino sugars.
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2.6.2 Alkaline phosphatase treatment of metabolites

Metabolites extracted from germinating seeds fed with labelled compounds

were treated with alkaline phosphatase to determine the amount of hexose phosphates that 

were present. 25 |L ll of extract was incubated for 3 hours at 25 “C in a 100 )il reaction mixture 

containing 50 mM NH4HCO3 (pH 8.0), 1 mM MgCl2 , 0.1 mM ZnCl2 and 5 units alkaline 

phosphatase. The digested extract was then separated by paper chromatography and 

compared with the undigested extract.

2.6.3 Invertase treatment of metabolites

Metabolites extracted from germinating seeds fed with labelled compounds

were treated with invertase to identify a radioactive compound which had the same Rf value 

as sucrose. 25 |il of extract was incubated for 1 h at 37“C in a 100 |il reaction mixture 

containing 100 mM imidazole (pH 6.9), 5 mM MgCl2 and 5 units invertase. The digested 

extract was then separated by paper chromatography.

2.6.4 Silver nitrate staining of sugars and alditols

The PCs were stained with silver nitrate to detect sugars and alditols (Fry, 1988). 

After drying, the PC was briefly dipped in solution 1 (0.5 ml saturated aqueous silver nitrate 

added to 100 ml acetone). The PC was dried again and was dipped in solution 2 (1.25 ml 

ION NaOH added to 100 ml ethanol) which stains the sugars brown. After drying again, the 

PC was dipped in 10 % (w/v) sodium thiosulphate to stabilise the colour reaction and 

prevent fading.

2.6.5 Extraction and paper chromatographic analysis of amino acids and de-acetylated 

amino sugars (Fry, 1988)

50 seeds were ground in a glass homogeniser in 0.3 ml 80 % (v/v) ethanol. The 

extracts were centrifuged (Microcentaur, 13000 rpm) for 10 minutes at RT and the pellet 

was re-extracted in 0.3 ml 80 % ethanol. After centrifugation (Microcentaur, 13000 rpm, 10 

minutes), the pellet was re-extracted with 20 % (v/v) ethanol. The suspension was
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centrifuged as before and all 3 supernatants were combined and lyophilised in a Speed Vac 

Plus (Savant, model SCllOA) connected to a vacuum pump (Vacuubrand Gmbh and Co., 

Wertheim, Germany) and redissolved in 50 |ll H2 O. The amino acids were separated by 

paper chromatography in butan-l-ol: acetic acid: water (120: 30: 50) for 18 hours. The 

paper chromatogram was dried and briefly dipped in a solution of 0.5 % (w/v) ninhydrin in 

acetone. The paper was dried and then heated to 105 "C to allow the colours to develop. 

Most amino compounds are violet and proline and hydroxy proline are yellow.

2.6.6 Sucrose, glucose and fructose measurements

Frozen plant tissue (200-300 mg) was heated for 1 hour at 70°C in 3 X 500 |il 80 % 

ethanol. The extracts were combined, lyophilised in a Speed Vac Plus (Savant, model 

SCllOA) connected to a vacuum pump (Vacuubrand Gmbh and Co., Wertheim, Germany) 

and redissolved in 50 \i\ H2 O. Metabolites were measured using enzyme-linked assays 

according to Stitt et al (1989).

2.6.7 Chlorophyll measurements

Chlorophyll was extracted from whole seedlings using a modification of the method 

described by Arnon (1949). 50 mg plant material was ground up in 200 p-1 80 % acetone in 

an Eppendorf tube using a plastic homogeniser. The sample was centrifuged (Microcentaur,

13000 ipm, 2 minutes) and the supernatant was removed to a new tube. The pellet was re

extracted with 2 X 200 jil 80 % acetone until it was colourless and the supernatants were 

combined. The absorption of the supernatant was measured at 663 and 645 nm. The 

equations for determining chlorophyll concentration is set out below.

Chlorophyll a = 12.7 X A663 - 2.69 X Aô45 (mg/1)

Chlorophyll b = 22.9 X A645 - 4.68 X A663 (mg/1)

Total chlorophyll = 20.2 X A645 + 8.02 X Ag63 (mg/1)
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2.6.8 Lipid extraction

50 seeds were ground on ice in a glass homogeniser in 800 |ll chloroform : methanol 

:formic acid (10: 10 :l(v/v)). The mixture was transferred to an Eppendorf tube, centrifuged 

(Microcentaur, 13000 rpm, 2 minutes) and the supernatant was kept. The pellet was re

extracted in 300 jJ.1 chloroform : methanol : water (5: 5 :l(v/v)), centrifuged again and the 

supernatant was combined with the first. The supernatant was washed with 400 \i\ 0.2 M 

H3PO4 , 1 M KCl and the lipid was recovered in the chloroform phase. The chloroform 

phase was dried in a Speed Vac Plus (Savant, model SCI 10A) connected to a vacuum pump 

(Vacuubrand Gmbh and Co., Wertheim, Germany) and the lipids were redissolved in 50 |xl 

of chloroform. The sample was then separated by thin layer chromatography (TLC).

2.6.9 Thin layer chromatography (TLC) of lipids

Lipid samples were applied to a silica plate (General Purpose, silica on glass. Sigma) 

150 mm apart and 150 mm from the bottom of the plate. The TLC was developed 

immediately in a filter paper lined tank containing the solvent (hexane: ether: acetic acid 

(70: 30: 1)) until the solvent front was 200 mm from the top of the plate. The TLC was 

sprayed with a fine mist of 50 % (v/v) sulphuric acid and was baked for 3-5 minutes at 160 

°C to char the lipids. Alternatively, the lipids can be visualised by putting the TLC in a tank 

saturated with iodine gas.

2.6.10 Amino acid extraction for HPLC analysis

Fifty seeds were ground up in a glass homogeniser in 300 |al 80 % ethanol. The 

extract was transfered to an Eppendorf tube and a further 300 \i\ of 80 % ethanol was used 

to wash out the homogeniser. The extracts were combined and centrifuged (Microcentaur, 

13000 rpm, 5 minutes). The supernatant was transfered to another tube and the pellet was 

reextracted in 300 \x\ 20 % ethanol. The tube was centrifuged and the supernatant was added 

to the 80 % extracts. The extract was lyophilized in a Speed Vac Plus (Savant, model 

SCllOA) connected to a vacuum pump (Vacuubrand Gmbh and Co., Wertheim, Germany) 

and was resuspended in 50 |il H2O.
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2.6.11 Amino acid HPLC analysis

Amino acid samples analysed by HPLC (Spheri-5PTC column 5um, 0.2 X 22 cm; 

solvent A: 50 mM sodium acetate, pH 5.4; solvent B: 70 % acetonitrole, 32 mM sodium 

acetate pH 6.1; flow: 300ul/minute; target pressure 2000 Kpa, target time 0.1 minutes). The 

samples were sent to Dr M. Cusack, who provides an analytical HPLC service at the 

University of Glasgow, Molecular Palaeontology Department.

2.6.12 Fatty acid measurements using GC (performed by Dr T. Larson)

Fifty seeds were placed in a 16 x 100 mm screw-top glass tube. 100 ]il hexane and 

1 0  jil of a 5mg/ml heptadecanoic acid dissolved in chloroform (internal standard) was 

added. 1 ml IN HCl in methanol was added to the tube which was then sealed and 

incubated at 85 ° C for 1 h. The solution was allowed to cool for 10 minutes and then 0.5 ml 

0.9 % (v/v) KCl (aq) was added. The tube was vortexed. The upper hexane layer containing 

the fatty acid methyl ester derivatives was aspirated into an Eppendorf tube. 1 |L ll of the fatty 

acid methyl ester derivatives was injected into the GC (GC8000, CE Instruments) equipped 

with a 30 m long 0.32 mm I. D. Hewlett Packard Innowax crosslinked polyethylene glycol 

column (HP part number 19091N-213). The carrier gas was Helium with a 1 ml/minute 

flow rate, split ratio 30:1. Peaks were eluted at 50° C for 5 minutes then ramped at 10 ° C 

/minute to 250 °C and held at this temperature for 5 minutes. The peaks were detected with 

a flame ionisation detector. The peaks were analysed using Chromcard software.

2.7 Treatment of data

All experiments were carried out twice unless otherwise stated and the average 

value was presented. The error bars represent the standard deviation P of the data. Standard 

deviation P is the calculation of the standard deviation based on the entire population given 

as arguments. The standard deviation is a measure of how widely values are dispersed from 

the average value. The standard deviation P was calculated using the formula described in 

Microsoft Excel Help.

58



Chapter 3

Characterisation of carbohydrate insensitive {cai) mutants

3.1 Introduction

Tobacco seedlings which have been grown on a medium containing high levels of 

carbon (100 mM sucrose) and low levels of nitrogen (0.48 mM) accumulate sugars ((Paul 

and Stitt, 1993). This leads to a decrease in the level of protein in the shoots and, 

particularly, Rubisco and chlorophyll. A possible explanation for this carbohydrate 

accumulation is that there is insufficient nitrogen to support the flux of carbon into amino 

acids. This would lead to a decrease in flux through glycolysis, and hence, a build up of 

hexoses. A further consequence of growing the tobacco seedlings on high carbon/ low 

nitrogen is that the root : shoot ratio increases.

The observations of Paul and Stitt (1993) formed the basis of a screen which was 

developed by Dr I. A. Graham to select for carbohydrate insensitive {cai) mutants of 

Arabidopsis thaliana. In a prototype experiment Dr Graham grew wild type A. thaliana 

were grown on an agar medium containing Murashige and Skoog salts (M&S) with 0.48 

mM nitrogen and 100 mM sucrose and were characterised with regard to the root: shoot 

ratio. In addition to an increase in root : shoot ratio, the seedlings also had purple cotyledons 

suggesting the accumulation of elevated levels of anthocyanins. Anthocyanin production is 

a typical stress response and in this case it was probably triggered by the high concentration 

of soluble sugars. Such conditions have previously been found to induce chalcone synthase 

expression in Petunia (Tsukaya, et a l, 1991). CHS is a key enzyme in anthocyanin 

biosynthesis. It is also possible that the Arabidopsis seedlings were stressed due to limiting 

nitrogen. Dr. Graham used these conditions (100 mM sucrose, 0.48 mM nitrogen) to screen 

a population of ethyl methanesulphonate (EMS) mutagenised Arabidopsis seeds (ecotypes 

Columbia-2 and Wassilewskija) for seedlings which developed healthy green cotyledons 

rather than the typical purple cotyledons produced by the wild type. Approximately 70,000 

seeds were screened and around 70 putative mutants (putants) were selected by virtue of 

their green cotyledons, of which 30 survived. It was envisaged that these putants could 

represent plants which were insensitive to growth on high sugar/ low nitrogen
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concentrations due to a mutation in either the sugar sensing mechanism, carbon metabolism 

or the uptake of sucrose and/or nitrogen.

The objectives of the work described in this chapter were to:

(1) characterise the wild type under the cai screen,

(2) identify which of the M2 putants were real mutants in carbohydrate signalling and

(3) describe the cai phenotype.

3.2 Results

3.2.1 Growth of wild type Arabidopsis seeds on cai selection conditions

Seeds of wild type Arabidopsis were germinated in high carbon/ low nitrogen 

conditions in order to determine whether they responded like tobacco seedlings as described 

in Paul and Stitt (1993). Figure 3.1a shows wild type (col-2 ecotype) which were grown on 

M&S salts with decreasing concentrations of nitrogen plus 100 mM sucrose for 11 days. 

The root : shoot ratio increased as the nitrogen concentration decreased. In addition, the 

cotyledons of the seedlings became increasingly purple as the nitrogen concentration 

decreased. In Figure 3.1b sucrose was replaced by the non-metabolizable alditol, mannitol. 

This simulates the osmotic affect of sucrose but avoids the accumulation of soluble sugars 

associated with exogenous sucrose. The cotyledons do not have purple cotyledons and 

develop primary leaves as normal (Figure 3.1b). Figure 3.2a shows that as the nitrogen 

concentration decreases rbcS, cab and pc expression is repressed and chs expression is 

induced. The fall in rbcS, cab and pc expression correlates with an increase in seedling 

soluble sugars (Figure 3.2b) and a decrease in chlorophyll (Figure 3.2c). As the nitrogen 

becomes limiting the root : shoot ratio increases (Figure 3.2d) and fresh weight decreases 

(Figure 3.2e). The actual root length increases as nitrogen concentration decreases from 60 

mM to 6  mM and may be due to the seedlings having to scavenge for nitrogen (Figure 3.2 

f). Figure 3.3 shows seedlings of col-2 grown on decreasing nitrogen concentration plus 100 

mM sucrose and complements the data illustrated in Figure 3.2 A-F. Figure 3.3 also shows 

that the phenotypes of the population vary as some seedlings have green cotyledons and 

others have purple cotyledons. This may be a result of varying quantities of seed reserve.
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Figure 3.1 The affect of carbon-nitrogen ratio on seedling phenotype.

a: Wild type A. thaliana (col-2) were grown on M&S agar media containing 100 mM 

sucrose and varying concentrations of nitrogen for 7 days at 22 °C in continuous white 

light (120 /<Em“2sA).

b; Wild type A. thaliana (col-2) were grown on M&S agar media containing 100 mM 

mannitol and varying concentrations of nitrogen for 7 days at 22 °C in continuous white 

light (120
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Figure 3.2 Changing carbon nitrogen ratios affects a range of growth parameters in 7 

day old A. thaliana seedlings.

a: Northern blot analysis of the expression of rbcS, cab,pc and chs.

b: Seedling soluble sugars increase as the carbon-nitrogen ratio of the media increases,

c: Chlorophyll concentration decreases as carbon nitrogen ratio increases.

d: Root: shoot ratio

e: Fresh weight

f: Root length
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Figure 3.3 The variable phenotypes within a population of A. thaliana grown on 

different carbon-nitrogen ratios.

Wild type A. thaliana (col-2) were grown on M&S agar media containing 100 mM sucrose 

and varying concentrations of nitrogen for 7 days at 22 “C in continuous white light (120 

;/Em" ŝ"l).
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3.2.2 Optimisation of the cai screen

A problem encountered with the screening conditions of high carbon / low nitrogen 

was background levels of green seedlings in the wild type. The frequency of purple versus 

green seedlings varied in response to slight changes in temperature and light conditions. 

This made genetic analysis very difficult as one could not be certain (without further genetic 

analysis in subsequent generations) that a seedling with green cotyledons actually was a cai 

mutant. The growth parameters (imbibition time, light regime, light intensity and 

temperature) were changed systematically to optimise the cai screen. The results of a 

substantial amount of optimisation work are as follows: sterilised seeds were sown on to 

agar plates containing M&S salts with 0.1 mM nitrogen and 100 mM sucrose. The plates 

were given a 4 day cold treatment (4°C) in the dark and were transferred to a growth room 

with continuous fluorescent white light (120 jXmol m^ s 'l) at 22“C for 1-2 weeks. These 

parameters gave the best reproducibility of results although wild type seedlings still had a 

background of 5 - 10% green cotyledons.

3.2.3 Penetrance of the cai phenotype

Initial work included rescreening the 30 putative mutants (M2 generation) on M&S 

salts with 0.1 mM nitrogen concentration and 100 mM sucrose. Figure 3.4 shows col-2 and 

cai 28 grown for 7 days on cai selection conditions. Six mutants, from a different sibling 

pools, were selected for further experimentation. Figure 3.5 shows five of these mutants 

grown on M&S salts with 0.1 mM nitrogen plus 100 mM sucrose. As can be seen all five 

plants are greener and have a larger root system than the wild type plant in figure 3.1a. 

Figure 3.6 shows the cai 10 and cai 28 in soil for 25 days, cai 10 has a phenotype similar to 

ws. cai 28 is slower to grow, is smaller and has paler green leaves than ws.

Whilst rescreening of the M2 and subsequent generations of the cai mutants it was 

repeatedly found that only a percentage of the seedlings had green cotyledons (typically 20- 

30 % penetrance for cai 10 and 28) even though the seeds theoretically had identical 

genotypes (Table 3.1). The results also illustrate the variation in the penetrance of the cai 

phenotype between experiments. To determine whether this was due to incomplete
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Figure 3.4 An example of the cai phenotype on cai selection conditions.

a: Wild type seedlings were grown on M&S agar media containing 100 mM sucrose and 

0.1 mM nitrogen for 7 days at 22 °C in continuous white light (120 /fEm-^s"^). 

b; cai 28 seedlings were grown on M&S agar media containing 100 mM sucrose and 0.1 

mM nitrogen for 7 days at 22 °C in continuous white light (120 /^Em'^s'l).
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Figure 3.5 Cai mutants grown on M&S agar media containing 100 mM sucrose and 

0.1 mM nitrogen.

cai mutant seedlings were grown on M&S agar media containing 100 mM sucrose and 0.1 

mM nitrogen for 7 days at 22 “C in continuous white light (120 ifEm’̂ s'l).
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Figure 3.6 The phenotype of adult cai mutants grown on soil.

The cai mutants were grown for 25 days in soil at 22 “C in 120 white light (16h

light, 8 h dark regime).
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Table 3.1 The percentage seedlings with a cai phenotype is highly variable between 

experiments and with different nitrogen concentrations.

cai mutant seeds were sown on M&S agar media containing 100 mM sucrose and varying 

concentrations of nitrogen. The plates were imbibed for 4 days at 4 “C and were transferred 

to a growth room at 22 "C in continuous white light (120 //Em"^s“l) for 7 days. The 

percentage of seedlings which had a cai phenotype (green cotyledons) was calculated.



% penetrance of cai phenotj 
nitrogen concentrations (mM)

p̂e on different 
plus 100 mM sucrose

cai
mutant

0 0 0.1 0.1 0.1 0.48

15 58 13 6.3 25
cai 28 16 33.3 14 25 79
cai 31 0 0 28 77
cai 76 2 15 1 24 48
c a i112 6 29 5 49
cai 172 0 16 1 29
col-2 0 7 2 3.8 5 13
'WS ■ 1 10 3,6 2.7 9 20
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penetrance of the phenotype, seedlings with either purple or green cotyledons were rescued 

from the selection media and grown up for seed. Their progeny were then also grown on cai 

selection media. The progeny of both purple and green parents had a mixture of seedlings 

with purple and green cotyledons (Table 3.2). However, the progeny of parents with a 'very 

pale with purple halo' phenotype do have a lower penetrance than progeny of green parents. 

This indicates that there may be some segregation of the cai mutation in the M5 generation. 

This implies that both segregation and penetrance influence the phenotype of cai 28. 

Reasons for incomplete penetrance of a gene are not well understood but it is known that 

they arise when the trait is modified strongly by environmental factors; e.g., light intensity 

or light quality during seed development or post-germinative growth. In Arabidopsis this is 

the case with genes affecting flowering time, seed dormancy, photomorphogenesis and 

anthocyanin formation (Koorneef, 1994). Communication with Dr S. Smeekens and Dr J-C 

Jang revealed that their sugar insensitive mutants (sun, mig and gin ; see section 3.2.7.2) 

also display a low penetrance so it appears that several classes of sugar sensing mutants 

have this phenomenon.

3.2.4 Ecotypes of the cai mutants

The original pool of EMS mutagenised seed that had been screened for cai mutants 

were reportedly col-2 and so for 3 years col-2 was used as the wild type control for cai 10 

and cai 28. However, while mapping cai 10 Dr F. Regad, a postdoc in Dr Graham's lab, 

discovered that the cai 10 and cai 28 and a number of the other cai mutants were actually in 

the Wassilewskija (ws) background. The cai mutants were crossed into Landsberg errecta 

(Ler) wild type. Simple sequence length polymorphism (SSLP) markers were chosen which 

had a known banding pattern in ecotypes col-2 and Ler. However, when used with the cai 

10/Ler F2 crosses, these markers did not give the bands expected for col-2 and Ler. Use of 

other SSLP markers revealed that the cai 10/Ler F2 crosses matched the banding patterns 

expected from ws /Ler F2 crosses. We now believe that the initial EMS mutagenised seed 

pool that was screened for these mutants was a mixture of col-2 and ws.
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Table 3.2 Penetrance of the cai phenotype in cai 28.

cai 28 seeds were sown on M&S agar media containing 100 mM sucrose and 0.1 mM 

nitrogen and were grown for 7 days at 22 °C in continuous white light. Seedlings which 

had a range of phenotypes from dark green to very pale green with a purple halo were 

selected, transferred to soil and allowed to set seed. The progeny were sown on M&S agar 

media containing 100 mM sucrose and 0.1 mM nitrogen and their phenotypes were 

assessed after 7 days.



Phenotype of progeny on 0.1 mM nitrogen plus 100 mM
sucrose, (cY/i screen)

Parental phenotype No. of green 
seedlings

No. of purple 
seedlings

% penetrance of 
cai phenetype

dark green MS 28 58 58 50
mid green MS 28 46 110 29

pale green MS 28 50 78 39
V pale with pnrple halo 
MS 28

11 151 7

col-0 5 131 3.6
6 110 5.1
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3.2.5 Characterisation of the growth of wild type and cai mutants on media containing 

varying carbon : nitrogen ratios

cai 10 and cai 28 were chosen for further analysis because they had the highest 

penetrance and had cai phenotypes that were most reproducible, cai 10, cai 28, col-2 and ws 

were grown on various carbon : nitrogen ratios in order to characterise their response. Seeds 

were sown on M&S agar plates containing 100 mM sucrose and either 60 mM, 6 mM, 0.6 

mM, 0.1 mM or 0 mM total nitrogen. The plates were incubated at 4°C for 4 days in the 

dark and then transferred to the growth room for 7 days. The whole population of each plate 

was used for all parameters measured. Seeds to be analysed for root length were grown on 

vertical plates and seeds to be analysed for other parameters were held horizontally. The 

root: shoot ratio of cai 10 increased as nitrogen concentration decreased but there was only 

a slight increase in root : shoot ratio for cai 28 (Figure 3.7a). The root : shoot ratio of col and 

ws also increased as nitrogen decreased. The root length of the cai mutants was measured 

(Figure 3.7b). The root length of cai 10 increased as nitrogen decreased from 60 to 0.6 mM. 

Below 0.6 mM nitrogen the root length decreased probably because the seedling growth 

was restricted by lack of nitrogen for amino acid production. At lower concentrations of 

nitrogen the root length of cai 10 was higher than the wild type. In contrast, nitrogen 

concentration had very little affect on root length of cai 28. It appears that cai 28 is either 

less sensitive to carbon-nitrogen ratio or nitrogen concentration than the wild type. An 

alternative explanation could be that cai 28 has greater nitrogen reserves in the seed or 

metabolises its nitrogen reserves more slowly than the wild type and consequently nitrogen 

does not limit carbon incorporation into amino acids. The fresh weights of the seedlings 

were also measured under these conditions (Figure 3.7c). In all cases seedlings on 6 mM 

nitrogen had the highest fresh weight. 60 mM nitrogen appears to have been inhibitory to 

biomass production. As is expected fresh weight decreases as nitrogen is restricted. 

However, cailQ has a greater fresh weight than cai 28 and both are greater than ws at 0 mM 

nitrogen. Chlorophyll was extracted from the seedlings (Figure 3.7d). It can be seen that 

while chlorophyll decreased in cai 10 and cai 28 this does not occur to the extent as 

observed for the wild types. This correlates with the colour of the cotyledons under these
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Figure 3.7 The phenotype of the cai mutants grown for 7 days on varying carbon- 

nitrogen ratios.

Seeds were grown on M&S agar media containing 100 mM sucrose and varying 

concentrations of nitrogen for 7 days at 22 “C in continuous white light (120 

I I col-2 H  ws [2] caiXO [%] ca/28

a: Root: shoot ratio 

b: Root length 

c: Fresh weight 

d: Chlorophyll
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Figure 3.7e Seedling cellular soluble sugars

Seedlings were washed in ice-cold water and the soluble sugars were extracted. The 

concentration of soluble sugars was measured using enzyme linked assays.

I I sucrose |  glucose [%] fructose
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conditions and is further evidence for carbohydrate repression of photosynthesis in the wild 

types. The concentration of soluble sugars was measured in the seedlings grown under these 

conditions (Figure 3.7e). In all cases the concentration of seedling cellular soluble sugars 

increases as nitrogen concentration decreases corroborating the evidence that was found in 

tobacco seedlings (Paul and Stitt, 1993). There are no significant differences between the 

wild type and the cai mutants. However, the standard error is quite large. The experiment 

needs to be repeated several times in order to ascertain whether there are significant 

differences in the soluble sugar content of the cai mutants.

As previously mentioned, the whole population of each plate was used for 

measurement of growth parameters although only a percentage of the plate showed the cai 

phenotype. Thus, any differences between the cai mutants and wild types are caused by a 

minority of the seedling population. In growth conditions where the penetrance of the 

phenotype was 100 %, the differences between cai mutant and would be expected to be 

much greater.

RNA was isolated from seedlings grown on varying carbon/ nitrogen conditions 

and transcript hybridisation analysis was performed using a range of genes (Figure 3.8). 

Two sets of hybridisation data have been presented because the data varied slightly between 

experiments. In both experiments the rbcS, cab and pc transcripts decrease as nitrogen 

concentration decreases and soluble sugar concentrations increase (Figure 3.8 a and b). In 

figure 3.8a the repression of rbcS, cab and pc is less severe in the cai mutants than in col-2. 

However, in figure 3.8b gene expression of rbcS, cab and pc in the cai mutants is higher 

than ws but similar to col-2. This is typical of the small variations found between 

experiments and is probably due to slight fluctuations in growth conditions. In both wild 

type and cai mutants, chs and nr were induced by the low nitrogen, high sucrose conditions. 

agpase was approximately constitutive under these conditions.

During post-germinative growth of oil seed plants, the glyoxylate cycle functions 

together with 8-oxidation to mobilise stored fat for conversion into sugars. The sugars are 

then transported to the growing regions of the seedlings and are used as a carbon source in 

the period before the seedling becomes fully photosynthetic. The synthesis of the glyoxylate
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Figure 3.8 The steady state gene expression of sugar modulated genes in the cai 

mutants varies with carbon nitrogen ratio and between experiments.

RNA was extracted from seedlings which had been grown on M&S agar media containing 

100 mM sucrose and varying concentrations of nitrogen for 7 days at 22 "C in continuous 

white light (120 /^Em'^s"^). The RNA was separated by denaturing agarose gel 

electrophoresis and the RNA was transferred to HybondN membrane. The RNA was 

hybridised with various radioactive probes and visualised using a phosphoimager. 

a: experiment 1. 

b: experiment 2

rbcS - small subunit of Rubisco

cab - chlorophyll a/b binding protein

pc- plastocyanin

chs- chalcone synthase

nr - nitrate reductase

agpase- ADP-glucosepyrophosphatase

ms - malate synthase

id  - isocitrate lyase

hi - constitutive probe encoding a gene product of unknown function.
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cycle enzymes, malate synthase (MS) and isocitrate lyase (ICL) are coordinately and 

developmentally controlled during germination (Weir, et a l,  1980) and senescence (De 

Beilis, et a l,  1990). In cucumber seedlings ms and id  expression rise to a peak 3 days after 

seed imbibition and then again during senescence or starvation (Graham, et a l, 1992). The 

dark induced senescence of ms can be repressed by incubation in the dark with sugars 

(Sarah, et a l, 1996). The northern data shows that, as expected, both wild types expressed 

very little ms and id  on 60 mM nitrogen plus 100 mM sucrose after 7 days. Interestingly, 

ms and id  were induced even after 7 days post-germinative growth when the nitrogen 

concentration was decreased and seedling soluble sugar concentrations increased. This is 

unexpected because ms and id  are normally not expressed after 3 days of post-germinative 

growth and because ms and id  are also known to be repressed by sucrose. However, the ms 

germination response is thought to be dominant over the ms sugar response (I. Graham, 

pers. comm.). These data may imply that seedlings grown on low nitrogen and 100 mM 

sucrose are developmentally retarded because the whole of metabolism is slowed down and 

could mean that there is still lipid in the cotyledons after 7 days in these conditions. The low 

nitrogen conditions may trigger a general/carbon starvation response which would induce 

ms and id  expression. In this case it appears that the cause of ms and id  induction is 

dominant over the sugar repression response. At 60 mM nitrogen, cai 10 behaves like the 

wild types with respect to ms and id  expression but cai 28 is significantly different, ms 

expression is 5-fold higher in cai 28 than ws. It is difficult to speculate why this occurs 

without further experimentation. However, cai 28 does germinate more slowly than ws and 

is less developed than ws after 7 days on high nitrogen concentration plus sucrose.

3.2.6 Analysis of cai mutant seed reserves

One theory to explain why cai mutants maintain green cotyledons on high carbon 

low nitrogen conditions is that their seeds contain a large reserve of nitrogen which can be 

utilised during early seedling growth. The seed storage reserves were analysed to investigate 

this. Variations in penetrance of the cai phenotype on high carbon, low nitrogen conditions
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could also be caused by differences in the seed storage reserves as some seeds may have 

more reserves than others.

Storage proteins were extracted from wild type and mutant seeds and seedlings 

during post-germinative growth to examine whether there were any differences between the 

cai mutants and the wild types. The protein concentration was measured using the Lowry 

method (Lowry, et a l,  1951). 20 ug of each sample was loaded onto a 12.5 % acrylamide 

gel and the proteins were separated by SDS-PAGE (Figure 3.9). The storage proteins were 

broken down during days 1 and 2 and are used as a source of carbon and nitrogen during 

early seedling growth. The results show that the composition of seed storage proteins 

appears to be similar in both the wild type and the mutants. The storage proteins in cai 28 

appear to be broken down more slowly than in the wild type (see day 2 low molecular 

weight proteins). The observation correlates well with the observation that cai 28 is slower 

to germinate than wild type. It does, however, lead to difficulties in interpreting the results 

as it is not easy comparing the proteins in seedlings that are at different developmental 

stages.

The amino acid contents of the wild types and cai 10 were analysed by paper 

chromatography. The paper chromatogram gave an indication that ws had a higher 

concentration of amino acids than col-2. The data also suggested that the cai mutants had a 

higher concentration of amino acids than ws (data not shown). The amino acid contents of 

col-2, ws and cai 10 were further analysed by HPLC (Figure 3.10). Preliminary results 

indicate that cai 10 has an elevated amount of glutamic acid and histidine compared to the 

wild types. The soluble sugar content of cai mutant seeds was analysed (Figure 3.11). The 

extracts were separated by paper chromatography and was stained with silver nitrate to 

visualise the sugars, ws contains a sugar which runs at the same Rf as myoinositol which is 

present in only a low concentration in col-2, cai 10 and cai 28 ( both ws background) also 

possess a large amount of the sugar that runs at the same Rf as myoinositol, cai 31 (col-2 

background) contains only a small amount of this sugar. These results indicate ws and col-2 

have different soluble sugar contents and that the cai mutants may be segregated into col-2 

and ws genetic backgrounds by analysis of their sugars. The differences between the wild
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Figure 3.9 The breakdown of seed storage proteins in germinating seeds is retarded in 

cai 28.

Seedlings were grown on 1/2 strength M&S agar media containing 20 mM sucrose for 0-3 

days at 22 “C in continuous white light (120 Total proteins were extracted from

seedlings and 20 ug of each samples was separated by SDS-PAGE on a 12.5 % acrylamide 

gel. The proteins were stained with Coomassie brilliant blue.
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Figure 3.10 Seeds of cai 10 have a higher concentration of glutamic acid and histidine 

than wild type.

Amino acids were extracted from 50 seeds and the concentrations of individual amino 

acids was determined by HPLC. 

col-2 H  ws I leaf 10
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Figure 3.11 Variation in the soluble sugar content of cai mutant seeds.

Soluble sugars were extracted from 50 seeds. The soluble sugars were separated by paper 

chromatography for 18 hours (ethyl acetate: pyridine iwater; 8 :2 :1 ) and were stained with 

silver nitrate.
1 = fructose
2 -xylose
3 = glucose
4 = fucose
5 = arabinose
6 = galactose
7 = mannose
8 = trehalose
9 = myoinositol
10 = xylitol
11 = galactitol
12 = sucrose
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Figure 3.12 cai 10 seeds contain less triacyl glycerol than wild type.

Triacylglycerol (TAG) was extracted from 10 seeds and separated by thin layer 

chromatography (TLC)(a). The TAG was visualised by spraying the TLC with 50 % (w/w) 

sulphuric acid and charring in an oven. The TAG was quantified using a standard curve 

and plotted on a histogram (b).
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type sugar contents may also help to explain why col-2 and ws behave differently on the cai 

screen.

Lipids were extracted from the seeds of the cai 10 and the wild types. Triacyl 

glycerols (TAG) were analysed by TLC (Figure 3.12 a and b) and quantified using a 

standard curve, cai 10 has less TAG than col-2 and ws. The total lipid content and the fatty 

acid profile of cai 10, ws and col were analysed by gas chromatography (collaboration with 

Dr. T. Larson; Figure 3.13) which is a more accurate method than TLC. col-2 has slightly 

more total fatty acids than ws and ws has slightly more total fatty acid than cai 10. The fatty 

acid profile is similar in all cases.

These preliminary results indicate that cai 10 may have an altered flux of carbon 

into lipids and amino acids. Further experimentation is required to establish if this is the 

case.

3.2.7 Characterisation of the cai mutants on different growth conditions

3.2.7.1 Growth of cai mutants in the dark on 0 % and 3 % sucrose

A second approach was employed in an attempt to find a clear difference between 

the wild type and the cai mutants at the level of transcript abundance. The experiment was 

based on evidence that the plastocyanin gene (pc) is activated independently of light during 

early seedling development (Dijkwel, et a l, 1996). In etiolated seedlings, pc mRNA levels 

increase transiently and the maximum dark level is reached after 2 days growth in darkness. 

The transient increase in mRNA can be repressed by sucrose and it was hypothesised that 

the high concentration of sugars found in seedlings grown on 3 % sucrose induce the signal 

for pc repression. Only sugars which are phosphorylatable by hexokinase cause the 

repression of gene expression and the authors suggested that hexokinase induces the signal 

(Dijkwel, et a l, 1996). pc is not the only gene to display a transient increase in expression. 

A similar increase of nuclear encoded photosynthetic genes has been found in other species 

(Walden and Leaver, 1981, Fiebig, et a l, 1990) and in Arabidopsis chlorophyll a/b-binding 

protein (CAB) and the small subunit of RUBISCO were transiently expressed during 

etiolated seedling development (Brusslan and Tobin, 1992). The transient expression of

82



Figure 3.13 cai 10 seeds contain less total fatty acids than wild type although the fatty 

acid profile remains the same.

Fatty acids were extracted from 10 seeds and analysed by gas chromatography (GC).

I I individual fatty acids total fatty acid
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rbcS is also repressed by 3 % sucrose (Dr.S. Smeekens; pers. comm.). Sucrose uncoupled 

(sun) mutants had been isolated which showed reduced repression of the plastocyanin 

promoter-luciferase fusion gene (Dijkwel, et a l, 1997). The aim of this experiment was to 

establish if the cai mutants were also insensitive to sucrose repression of the transient 

expression of sugar modulated genes. Seeds were sown on 1/2 strength M&S agar medium 

containing either 0% or 3% sucrose and were kept at 4 “C for 4 days. The seeds were then 

given a 45 minute red light treatment to promote germination (Dijkwel, et a l, 1996) before 

being incubated at 23 °C in the dark for 1-3 days. The etiolated seedlings were harvested 

and samples were taken for RNA expression analysis and soluble metabolite measurements. 

The expression of several photosynthetic and sugar modulated genes was analysed in 

etiolated seedlings of the cai mutants grown on 0 or 3 % sucrose (Figure 3.14). The wild 

types ws and col expressed rbcS after 2 days growth in the dark on 0 % sucrose, whereas 3 

% sucrose repressed this expression. On day 3 rbcS expression on 0 % sucrose increased 

and was only partly repressed by 3 % sucrose, cab and pc were expressed on 0% sucrose 

and repressed by 3 % sucrose on day 3. chs was highly expressed in seedlings grown on 3 % 

sucrose. The cai mutants were sampled after 2 days growth in the dark. Hybridisation 

analysis shows that cai 10, cai 28 and cai 172 show the same repression of photosynthetic 

genes as the wild types. In contrast, cai 31 and cai 112 express rbcs, cab and pc on day 2 

although the wild types do not express cab and pc until day 3. This may be significant but is 

more likely to be due to a difference in developmental stage as cai 112 is known to 

germinate rapidly in the dark (personal observation). Rapid germination could account for 

the precocious peak of cab and pc expression.

Soluble hexoses were extracted from the seedlings grown on 0 % and 3 % sucrose 

(Figure 3.15). The results show that during the first 3 days of post-genninative growth wild 

type cellular hexoses increased. Seedlings grown on 3% sucrose had a higher internal 

soluble hexose concentration than seedlings grown on 0% sucrose (Figure 3.15) indicating 

that they do take up the exogenous sucrose. The concentration of hexoses in the wild types 

rose dramatically after 2 days growth on 3% sucrose. The concentration of hexoses was 

measured in cai 10, cai 28 and cai 31 after 2 days. In each mutant the concentration of
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Figure 3.14 Sucrose represses the developmentally-induced expression of sugar 

-modulated genes.

Seeds were grown for 1-3 days in darkness on M&S agar media containing 0% or 3% 

sucrose. The seedlings were harvested and their RNA was extracted. The RNA was 

separated by denaturing agarose gel electrophoresis and transferred to HybondN 

membrane. The RNA was hybridised with radioactive probes of several sugar-modulated 

genes and was visualised using a phosphoimager.
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Figure 3.15 The soluble hexose content of seedlings grown in the dark on 0 % or 3% 

sucrose.

Seeds were grown for 1-3 days in darkness on M&S agar media containing 0% or 3% 

sucrose. The seedlings were harvested, the soluble hexoses were extracted and analysed 

using enzyme linked assays.

I I glucose H  fructose
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glucose and fructose was higher in seedlings grown on 3 % sucrose than 0% sucrose. The 

elevated cellular sugars are likely to have caused the repression of photosynthetic genes 

during dark germination on 3 % sucrose. The concentration of soluble hexose is similar in 

the wild types and the cai mutants. Thus the cai mutants behaved like the wild types 

throughout this experiment.

3.2.T.2 Growth of the cai mutants on other sugars

At the same time as the cai mutants were being selected, workers in other 

laboratories in Europe and USA were isolating other sugar insensitive Arabidopsis mutants 

using different screens. Dr J-C. Jang designed a screen for glucose insensitive {gin) mutants 

based on work with hexokinase antisense plants which were found to be insensensitive to 6 

% glucose (Jang, et a l, 1997). Growth of wild type seedlings was arrested at the cotyledon 

stage on 6 % glucose, gin mutants were isolated by virtue of their continued development 

on 6 % glucose. Dr S. Smeekens isolated sucrose insensitive growth {sig) mutants. Wild 

type Arabidopsis accumulated anthocyanins and growth was arrested at the cotyledon stage 

on 12 % sucrose but the sig mutants continued to develop. J. Pego and Dr. S. Smeekens also 

isolated mannose insensitive growth {mig) mutants (Pego, et a l,  1999). Wild type 

Arabidopsis germinated on 5 mM mannose and produced a radicle of 1-3 mm but no 

cotyledons emerged. The mig mutants developed green cotyledons on 5 mM mannose. The 

cai mutants were germinated on the screening conditions for gins, sins and migs with the 

aim of establishing whether any of the cai mutants were also insensitive to other sugars.

col-2 and ws were grown on 1/2 strength M&S agar medium containing 6 % (W/V) 

glucose, fructose, sucrose or mannitol for 8 days (Figure 3.16). The seedlings developed 

cotyledons but did not produce primary leaves when germinated on 6 % glucose or 6 % 

fructose although growth on 6 % mannitol was normal indicating that it is hexose sugars per 

se and not the osmotic effect that is affecting seedling growth. Seedling growth was 

enhanced at 6 % sucrose compared to 6 % mannitol. However, if seedlings are grown on 12 

% sucrose, vigour is poor and the cotyledons contain a lot of anthocyanins. 12 % sucrose 

(350 mM) is approximately equivalent to 6 % glucose or fructose (333 mM). However, 12 

% mannitol also arrests seedling development (data not shown) and this may indicate that
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Figure 3.16 The affect of different sugars on wild type seedling growth.

Wild type A. thaliana (ecotypes col-2 and ws) were grown for 7 days on 6 % glucose, 6 % 

fructose, or 6 % sucrose. 6 % mannitol was used as an osmotic control.
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the affect of 12 % sucrose is mostly osmotic. The germination frequency of the cai mutants 

sown on the above sugars was calculated. The differences between wild type and mutant 

were not great enough for use as a screen in genetic analysis.

ws and col-2 were also sown on 1/2 strength M&S agar medium containing 5 mM 

mannose, a hexose which is phosphorylated by hexokinase but further metabolised less 

readily than other hexose sugars. The seedlings germinated but post-germinative growth 

was arrested when 1-3 mm of radicle had emerged. The cai mutants were also sown on 5 

mM mannose (Figure 3.17) and 4 of the 30 putants displayed mannose tolerance. cailQ had 

almost 100 % germination on 5 mM mannose and will be discussed in detail in chapter 4.

3.2.8 Genetic analysis of cai mutants

3.2.8.1 Parental crosses

Reciprocal parental crosses were carried out extensively between the cai mutants 

and col gll -1 (joint work in collaboration with Drs T. Martin and F. Regad) in order to 

remove any secondary mutations from the genotype and to establish whether the cai 

mutations were dominant or recessive. EMS mutation usually gives rise to recessive mutant 

phenotypes because the nature of mutagenesis is to disrupt genes, thereby destroying or 

diminishing the activity of the proteins they encode. For a recessive mutation, the FI of a 

parental backcross has the wild type phenotype and for a dominant mutation the FI will 

have the mutant phenotype. However, very few seeds are produced with each cross so the 

F2 were analysed. A recessive mutation gives rise to an F2 with a 3:1 ratio of wild type to 

mutant phenotype whereas a dominant mutation gives rise to an F2 with a 9: 7 ratio of wild 

type to mutant phenotype. The segregation ratios of the F2 were analysed on cai selection 

media (M&S agar containing 0 mM nitrogen, 100 mM sucrose). However, there are 2 

reasons why the data has not been included. (1) The cai mutants were crossed with col gll-1 

which was at a later date discovered not to be the parent ecotype as cai 10 and 28 were from 

the ws background. (2) Analysis of the F2 progeny proved to be very difficult because the 

segregation ratios were distorted by low penetrance. However, these crosses did prove to be 

useful in mapping cai 10 (carried out by Dr. F. Regad) since cai 10 is 100 % resistant to
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Figure 3.17 Cotyledon emergence is inhibited by mannose in wild type seedlings but 

not in cai 10.

Seeds of wild type and several cai mutants were sown on 1/2 strength M&S agar medium 

containing 5 mM mannose. The plates were imbibed at 4 °C for 4 days and were then 

transferred to a growth room (22 °C, 120 /<Em‘̂ s"l continuous white light) for 5 days.



ws ccd 10

cca 24 ccd 27

* e # . •

cca 171

2 mm 90



Table 3.3 FI analysis of the cai mutant crosses indicates that cai 10 has a dominant 

mutation.

The cai mutants were crossed and the FI seeds were collected. The FI seeds were sown on 

1/2 strength M&S agar media containing 5 mM mannose. The plates were imbibed for 4 

days at 4 "C and were transferred to a growth room at 22 °C in continuous white light (120 

/<Em'“S'^) for 5 days. The percentage of seedlings which had a mig phenotype was 

calculated. For each cross the female parent is written first.



Crosses  on mannose  screen

FI ^  , % m ia
cai 10 X colon -1 80
colon -1 X cai 1 0 22
co lo n -1 X cai 31 4
colon -1 X cai 31 8
cai 31 X colon “1 14
cai 10 Xca/ 27 65
cai 10 Xca/ 28 85
cai 10 Xca/ 31 84
cai 10 X ca/ 31 96
cai 10 Xca/ 76 75
cai 31 Xca/ 28 51
FO
col 0
col oil -1 12
cai 10 80
cai 27 1.
cai 28 10
cai 31 0
cai 76 22
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mannose. Mannose was used to select the F2 progeny of the crosses which had a mig 

phenotype (Table 3.3).

3.2.5.2 Complementation crosses

It is possible to determine whether 2 mutants are allelic by crossing them and 

analysing their progeny. If two allelic mutants are crossed the FI progeny have the mutant 

phenotype. If the mutations are non-allelic and recessive the progeny will have the wild type 

phenotype but if one or both of the mutations is dominant the FI will have a mutant 

phenotype. The cai mutants were divided into groups and crossed in an attempt to organise 

them into complementation groups (collaborative work with Drs T. Martin and F. Regad). 

The FI were germinated on cai selection media and the phenotypes were recorded. A 

percentage of each of the FIs had the cai phenotype which could be interpreted as allelism 

between all the cai mutants. However, the low penetrance of the phenotype made it difficult 

to be confident of the data and the work was not continued.

3.2.5.3 Crosses on the mannose screen

cai 10 displayed 90-100 % mannose insensitive growth (mig) on 5 mM mannose 

and ws and col-2 were 0 % mannose resistant. Therefore, 5 mM mannose was chosen as a 

selection for genetic analysis of cai 10. If the mutation is recessive none of the FI would be 

expected to have a mig phenotype because the mutation is complemented by the wild type 

allele. However, the results show that the FI has 22 % m/g phenotype (Table 3.3). This 

suggests that the cai 10 mutation is dominant. Further work by Dr F. Regad corroborated 

this data. As stated in the previous section, EMS mutation rarely cause a dominant mutation 

because the nature of mutagenesis is to knock-out genes, destroying or diminishing the 

activity of the proteins they encode. However, there are circumstances in which a dominant 

mutation is possible. For example, a dominant mutation could cause the binding site for a 

negative regulator of a gene to be disrupted. This would lead to enhanced expression of the 

gene which would not be complemented by the wild type allele. A dominant mutation could 

also cause an alteration of the regulatory or activity domain of an enzyme which could
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result in increased enzyme activity. The crossing of cai 10 with other cai mutants (which do 

not have a mig phenotype) also results in FI which have mig phenotype (Table 3.3) and 

further corroborates the evidence that cai 10 is a dominant mutation.

3.3 Discussion

Wild type seedlings accumulate cellular soluble sugars under conditions of limiting 

nitrogen and 100 mM exogenous sucrose causing repression of photosynthesis. The lack of 

nitrogen for incorporation of carbon skeletons into amino acids is thought to be responsible 

for the build up of cellular soluble sugars which reach toxic concentrations and repress 

photosynthesis. As the carbon : nitrogen ratio of the media increases the root: shoot ratio 

increases, photosynthetic gene expression is repressed and chlorophyll is depleted. The cai 

mutants are less sensitive to high carbon : nitrogen ratios than the wild types and maintain 

green cotyledons. The repression of rbcS, cab and pc is reduced in cai 10 and cai 28.

cai 10 accumulates less soluble sugars than wild type on high carbon/low nitrogen 

conditions. This indicates that cai 10 may be a sucrose uptake mutant or it may be able to 

metabolise sugars rapidly into other compounds, cai 10 does not have a gin, sun or sin 

phenotype but it does show mannose insensitive growth (mig). On soil, cai 10 has a 

phenotype identical to wild type. Preliminary results indicate that cai 10 seeds have a higher 

amino acid content than wild type and a lower lipid content. This may indicate that cai 10 

diverts carbon from lipid synthesis into amino acids.

cai 28 germinates slowly and has paler green leaves than wild type when grown on 

soil. The storage proteins are also broken down more slowly than wild type during 

germination but are identical in composition, cai 28 also differs from wild type when 

germinated on different carbon: nitrogen ratios. It does accumulate soluble sugars at similar 

concentrations to wild type which indicates that it is not a sucrose uptake mutant. It may 

thus respond differently to wild type on high carbon/ low nitrogen conditions because it is a 

mutant in sugar sensing, carbon: nitrogen sensing or nitrogen sensing. In addition it may be 

able to compartmentalise the soluble sugars such that critical sugar sensitive processes are 

unaffected. The root length of cai 28 is shorter than the wild type and does not respond to

93



the decrease in nitrogen. The response ofcai 28 to 60 mM nitrogen plus 100 mM sucrose is 

also different from the wild type. After 7 days growth on 60 mM nitrogen plus 100 mM 

sucrose ms and id  are expressed in cai 28 although they are not present in the wild type, ms 

and id  are not expressed at 6mM nitrogen which may indicate that cai 28 is altered in 

nitrogen sensing. This phenomenon needs to be further investigated. Preliminary data 

indicate that cai 28 has a higher concentration of amino acids than wild type and this may 

be one reason why the seedlings are are tolerant to low nitrogen conditions. The cai 28 

seedlings may be able to survive for longer in high carbon: nitrogen conditions as nitrogen 

does not limit as soon as occurs in the wild type.

The penetrance of the cai phenotype is low. Communication with Dr S. Smeekens 

and Dr J-C. Jang revealed that their sun, mig and gin mutants also display a low penetrance 

so it appears that several classes of sugar sensing mutants manifest this phenomenon. The 

growing conditions of all classes of sugar sensing mutant has to be very precise during 

selection as any fluctuation in temperature or light levels results in the wild type behaving 

like the mutants. The conditions during seed development are also likely to be a factor in 

reduced penetrance as each seed may receive a slightly different amount of sucrose, 

nitrogen or light resulting in only a certain proportion of the seedlings being subjected to 

nitrogen limiting/ sucrose accumulating threshold which causes the cai phenotype. Genetic 

analysis of the cai mutants proved very difficult due to the low penetrance of the phenotype.

The cai phenotype is a distinct class of sugar sensing mutants as many of the cai 

mutants do not fall into the sun, mig, gin or sig categories, cai 10 however, is also a mig and 

displays 100 % penetrance. This enabled it to be genetically analysed and results of 

segregation of the parental crosses and complementation crosses (FI, F2 and F3) on 5 mM 

mannose indicated that the cai 10 mutation was dominant. This is a very unusual occurrence 

in EMS mutagenised plants as the process knocks out genes. However, there are several 

circumstances when a EMS mutation could cause a dominant mutation: (1) the mutation is 

in a negative regulator of a gene and so expression of the gene is enhanced rather than 

reduced, (2) the mutation is in a regulatory domain of a gene which makes it more sensitive
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to a regulory compound or (3) the mutation is in a regulatory domain of an enzyme which 

makes it more active.

In theory, the cai screen can select mutants in sugar, nitrogen or carbon: nitrogen 

ratio signalling but it could also select mutants in metabolism and sugar uptake. The 

metabolic mutants could be altered in nitrogen storage reserves which could decrease the 

nitrogen limitation affect of the cai screen and maintain chlorophyll concentration in the 

cotyledons. Other metabolic mutants which could avoid the build up of soluble sugars 

would also be selected on the cai screen. These include seedlings that can metabolise sugars 

so rapidly that their concentration never reaches a toxic threshold or reaches it later than in 

wild type. Theoretical candidates for the cai mutants might be plants altered in glycolysis or 

biosynthesis of sink products such as starch, lipids, proteins or ascorbic acid, all of which 

are high in carbon and can be present in the cells at a high concentration. Several groups 

have designed screens for sugar sensing mutants but it is likely that a large proportion of the 

plants will be metabolic mutants.
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Chapter 4

Detailed characterisation of cai 10

4.1 Introduction

A. thaliana plants will flourish on growth media containing relatively high 

concentrations (i.e. 100 mM) of the metabolisable hexoses, such as glucose and fructose if 

there are sufficient macronutrients for their incorporation into amino acids and other carbon- 

rich molecules. However, mannose, another hexose, is toxic to many higher plants even at 

low concentrations (i.e. 5 mM). The entry of glucose, fructose and mannose into 

metabolism is catalysed by hexokinase which phosphorylates the carbon chain at position 6 

resulting in hexose-6-phosphate. Glucose-6-phosphate (G6P) and fructose-6-phosphate 

(F6P) are inter-convertible by the action of phosphoglucose isomerase (PGI) and can be 

diverted directly into other pathways for energy production or biosynthesis (e.g. glycolysis 

or sucrose synthesis). In vitro, PGI from yeast does not act on mannose-6-phosphate 

(M6P)(personal observation). Plants require phosphomannose isomerase (PMI) to utilise 

M6P for entry into glycolysis. PMI converts M6P to F6P and only certain higher plants 

possess this enzyme in a high enough concentration to allow them to utilise exogenously 

supplied mannose. Celery cell cultures have very high PMI activity (Stoop and Pharr, 1993) 

and are able to survive on mannitol which is oxidised to mannose and phosphorylated by 

hexokinase to M6P before being isomerised to F6P by PMI. Mannose has an herbicidal 

affect on plants that do not contain PMI or which have low levels of enzyme. In mannose 

sensitive plants, it is thought that mannose exerts its toxic affect by sequestering inorganic 

phosphate (Pi) as M6P (Herold and Lewis, 1977) Sequestration of Pi may cause a decrease 

in phosphorylated metabolites and ATP formation, and inhibit photosynthesis by perturbing 

Pi : DHAP ratios.

During germination and post-germinative growth the glyoxylate cycle is required 

for gluconeogenesis, a process which generates sucrose from the breakdown products of 

seed storage triacyl glycerols. The sucrose is used as a carbon source by the developing 

seedling before it becomes fully photosynthetic. Malate synthase (MS) and isocitrate lyase 

(ICL) are 2 key components of the glyoxylate cycle and their gene expression has been
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shown to be repressed by sugars (Graham et al, 1994 a and b). The hexokinase reaction has 

been implicated in the initial sugar sensing step resulting in repression of ms and id. Thus, 

when mannose is supplied to a germinating seedling, the phosphorylation of mannose or the 

build up of M6P may instigate the signal for catabolite repression of glyoxylate cycle genes.

Wild type Arabidopsis seeds germinate on 5 mM mannose, producing a 1 -3 mm 

radicle but do not develop green cotyledons (Pego, et a i,  1999). Arabidopsis is likely, 

therefore, to have little or no PMI. Pego and Smeekens (J. Pego; pers. comm.) used 

transgenic Arabidopsis containing the ms promoter linked to the GUS coding region to 

study the affect of mannose during germination. Their results showed that GUS activity was 

repressed by 5 mM mannose. They hypothesised that mannose is toxic during germination 

because it represses glyoxylate cycle gene expression and thus gluconeogenesis. This was 

the first report of sugar repression causing developmental arrest during post-germinative 

growth. However, this theory does not exclude the possibility that sequestration of Pi is the 

cause of seedling arrest during post-germinative growth. A series of experiments were 

designed to address this, the results of which form a large part of this chapter.

Previously, Pego et al. (1999) had selected Arabidopsis mutants which were 

insensitive to mannose. These mutants were defined as having a mig (mannose insensitive 

growth) phenotype. Several different types of mutant might be insensitive to mannose. 

Mutants in sugar sensing might be insensitive to mannose because the signal for sugar 

repression is not transduced. More specifically, mutants in hexokinase may be insensitive to 

mannose either because Pi is not sequestered or because the signal for sugar repression is 

not transduced. Mutants overexpressing PMI may also be insensitive to mannose because 

mannose phosphate is converted to fructose phosphate which can then be quickly 

metabolised releasing the Pi. With these possible mechanisms for mannose resistance in 

mind, the cai mutants were rescreened on mannose to see if any of them have a mig 

phenotype, cai 10 was found to have a mig phenotype with a penetrance of 100 %. This 

made cai 10 suitable for biochemical characterisation and genetic analysis. The experiments 

in this chapter investigate mannose metabolism, the mechanism of mannose toxicity and 

attempt to ascertain why cai 10 is mannose insensitive.

97



4.2 Results 

4.2.1 Screening the cai mutants for mannose insensitive growth (mig) phenotype

All the cai mutants described in chapter 3 were screened for mannose insensitive 

growth on 1/2 M&S agar containing 5 mM mannose. Four of the cai mutants (vai 10, 24, 27 

and 171) had mig phenotypes, cai 24, cai 27 and cai 171 had approximately 5 % penetrance 

of the mig phenotype (Figure 3.17, chapter 3) and were not further characterised, cai 10 was 

found to exhibit 100 % mannose insensitive growth (mig) phenotype during germination 

whereas ws displayed 0% mig phenotype (Figure 4.1). ws extends a radicle of 1-3 mm in 

length before growth is arrested whereas cai 10 develops green cotyledons and a short root.

4.2.2 Glucose alleviates the mannose affect

The affect of mannose on wild type Arabidopsis seeds can be relieved by adding 50 

mM glucose or mannoheptulose (a specific hexokinase inhibitor) (Coore and Randle, 1964) 

to the growth medium (Pego, et al. 1999). This affect was repeatable with ws and col-2 

(Figure. 4.2), To determine the concentration at which glucose can relieve the affect of 

mannose, wild type seeds (col-2) were allowed to germinate on 1/2 M&S agar plates 

containing 5 mM mannose and 0 - 5 0  mM glucose for 5 days. Figure 4.2 shows that at 5 

mM mannose and 0 mM glucose none of the seeds developed green cotyledons. At 30 mM 

glucose 95 % of the seeds had developed green cotyledons. The concentration at which 

there was 50 % greening of cotyledons was about 7.5 mM glucose plus 5 mM mannose. 

This suggests that glucose competes directly with the mechanism causing mannose toxicity 

and that mannose is taken up and /or phosphorylated in slight preference to glucose.

4.2.3 Investigating the route of mannose metabolism using l^C-mannose and tritiated 

mannose feeding experiments

Figure 4.3 shows two possible fates of mannose metabolism. D-mannose is 

phosphorylated to M6P which can either be converted to F6P by PMI (reaction 1) or to 

mannose-1-phosphate (MIP) by phosphomannomutase (reaction 2). F6P is diverted into 

glycolysis, storage compounds and carbon skeletons (Pharr et al., 1995) Sucrose is
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Figure 4.1 The affect of 5 mM mannose on the post-germinative growth of ws and cai 

10.

Seeds were sown on 1/2 strength M&S agar media containing 5 mM mannose. The seeds 

were imbibed for 4 days at 4 °C and were then transferred to a growth room (22 "C, 120 

/fEm'^s"^ continuous white light) for 5 days.
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Figure 4.2 Glucose relieves the affect of mannose on seedling post-germinative 

growth.

Wild type seeds were sown on M&S agar media containing 5 mM mannose and increasing 

concentrations of glucose. The plates were imbibed for 4 days at 4 °C and were transferred 

to a growth room (22 °C, 120 //Em'^s’l continuous white light) for 5 days when the 

phenotype was assessed. The arrow indicates the concentration of glucose added to the 

medium at which 50 % of the seedlings develop green cotyledons.
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Figure 4.3 The fate of the tritiated and moieties of mannose during metabolism.

C______C = labelled carbon

= tritium

1 = phosphomannose isomerase

2 = phosphomannomutase
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synthesised from F6P by the enzymes G6P isomerase, phosphoglucomutase, UDP-glucose 

pyrophosphorylase, sucrose phosphate synthase and sucrose phosphatase. MIP is converted 

by GTP-mannose-l“phosphate guanyltransferase to GDP-mannose (De Asua et a l, 1966) 

the building blocks of cell wall polymers, glycoproteins and also a precursor of L-ascorbic 

acid (Wheeler et a l, 1998).

4.2.3.2 D-[U-1^C] mannose feeding experiments

D-[U-14c] mannose was supplied to cai 10 and ws to investigate the metabolism of 

mannose in mannose sensitive and mannose insensitive plants. The aims of the experiment 

were to (1) determine whether mannose is metabolised in ws and cai 10 and if so, into 

which compounds and (2) to establish if there are differences in mannose metabolism in cai 

10 and ws.

10 mg aliquots of dry seed were imbibed for 4d at 4 °C on filter paper soaked in 5 

mM mannose (1/2 M&S salts) spiked with D-[U"14c]mannose. The seeds were then put 

into continuous white light (120 umols /m^/s) at 21 °C to germinate for 36 hours. After this 

period of germination both ws and cai 10 possess a 1-3 mm radicle emerging from the seed 

and appear developmentally identical. The seedlings were rinsed off extensively in cold 

water and ground up in 80 % ethanol to extract the metabolites. The extracts were loaded on 

to paper chromatograms and developed in EPW (100:35:25). The radioactive metabolites of 

D-[U-14c]mannose were measured using a image analyser which was used to quantitate 

the amount of radioactivity present in the resolved compounds.

4.2.3.3 Invertase treatment of the D- [U- I'^Cjmannose metabolites

Figure 4.4 shows that D-[U-^^C] mannose is metabolised in ws and cai 10 as the 

D-[U-^4C] mannose has been converted into other compounds visible as 'hot' spots on the 

paper chromatogram. The 'hot' spot at the origin is made up of polar compounds (i.e. sugar 

phosphates) which do not migrate with the solvents used. In order to identify whether the 

spots which run at an Rf similar to sucrose actually were sucrose, a portion of the sample 

was pre-treated with invertase before loading onto the chromatogram. Invertase cleaves any 

terminal fructosyl moieties from polysaccharides and sucrose. The digestion of the
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Figure 4.4 Invertase treatment identifies sucrose as a metabolite of mannose.

Seeds were sown on 1/2 strength M&S medium containing 5 mM mannose spiked with 

mannose. The seeds were imbibed at 4 “C for 4 days and transferred to a growth room 

(22 “C, 120 //Em’̂ s"̂  continuous white light) for 36 hours. The soluble sugars were 

extracted from the seedlings. One aliquot of the extract was treated with invertase. An 

invertase treated sample and an untreated control were separated by paper chromatography,

(a) shows the quantification of radioactivity in the metabolites of mannose before and after 

invertase treatment.

sucrose H  glucose [2] fructose

(b) shows the radioactive metabolites of mannose separated by paper chromatography.

The relative intensity of radioactivity in each compound corresponds to the colour of the 

image. The intensity of radioactivity is illustrated by a colour spectrum. Red is the most 

intense radioactivity and violet is the least intense radioactivity.



n I
6 

5 

4 

3
S

2

1

0
invertase

W *

mannose/
fructose

glucose

sucrose

polar compounds 

invertase

« 1
#

I

ws

103



"sucrose" spots by invertase into spots which migrate at the same Rf s as glucose and 

fructose confirms that a large proportion of mannose fed to both ws and cai 10 seedlings is 

metabolised to sucrose.

4.2.3.4 Alkaline phosphatase treatment of the D-[U-l4C]mannose metabolites

To test the hypothesis that mannose-fed seedlings accumulate high concentrations 

of mannose phosphates, seedling extracts were treated with alkaline phosphatase prior to 

loading on to a paper chromatogram. Before alkaline phosphatase treatment a large 

proportion of D-[U-^^C] radioactivity is visible as polar compounds at the origin of the 

paper chromatogram (Figure 4.5 ). Theoretically, the polar compounds will include M6P 

and F6P (precursors of sucrose) and also MIP which is metabolised via a different pathway 

to cell wall polymers. The samples that were digested with alkaline phosphatase show a 

dramatic decrease in the polar compounds and a concurrent increase in mannose and/or 

fructose (fructose and mannose have the same Rf using this solvent system). This indicates 

that the polar compounds were mannose phosphate and/or fructose phosphate but it is not 

possible to determine whether the mixture contained M6P, M IP or both.

4.2.3.5 Alkaline phosphatase treatment of seedlings fed D-[U-f4(j]niaj|nose plus 50 mM 

glucose

As shown in figure 4.2 glucose relieves the affect of mannose on seedling 

development resulting in ws seedlings developing normally at 50 mM glucose plus 5 mM 

mannose. In figure 4.6 extracts of seedlings germinated for 36 h on 5 mM mannose spiked 

with D-[U-14c]mannose plus 50 mM glucose were digested with alkaline phosphatase prior 

to loading on a paper chromatogram. The figure shows that the concentration of radioactive 

sugar phosphates in seedlings fed D-[U-l4c]mannose plus glucose is significantly less than 

seedlings germinated on 5 mM mannose alone. This data supports the hypothesis that 

germination is stopped because of sequestration of Pi.
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Figure 4.5 Identification of hexose phosphates metabolites of mannose by alkaline 

phosphatase treatment.

Seeds were sown on 1/2 strength M&S medium containing 5 mM mannose spiked with 

mannose. The seeds were imbibed at 4 °C for 4 days and transferred to a growth room 

(22 °C, 120 /(Em'^s'l continuous white light) for 36 hours. The soluble sugars were 

extiacted from the seedlings. An aliquot was treated with alkaline phosphatase. An alkaline 

phosphatase-treated sample and an untreated control were separated by paper 

chromatography.

(a) shows the quantification of radioactivity in the metabolites of mannose before and after 

alkaline phosphatase treatment.

n  phosphates H  sucrose Q  mannose/ fructose

(b) shows the radioactive metabolites of mannose separated by paper chromatography.

The relative intensity of radioactivity in each compound corresponds to the colour of the 

image. The intensity of radioactivity is illustrated by a colour spectrum. Red is the most 

intense radioactivity and violet is the least intense radioactivity.
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Figure 4.6 Identification of hexose phosphates metabolites of mannose by alkaline 

phosphatase treatment.

Seeds were sown on 1/2 strength M&S medium containing 5 mM mannose spiked with 

mannose plus 50 mM glucose. The seeds were imbibed at 4 °C for 4 days and 

transferred to a growth room (22 '’C, 120 continuous white light) for 36 hours.

The soluble sugars were extracted from the seedlings. An aliquot was treated with alkaline 

phosphatase. An alkaline phosphatase-treated sample and an untreated control were 

separated by paper chromatography.

(a) shows the quantification of radioactivity in the metabolites of mannose before and after 

alkaline phosphatase treatment.

n  phosphates B  sucrose O  mannose/ fructose

(b) shows the radioactive metabolites of mannose separated by paper chromatography.

The relative intensity of radioactivity in each compound corresponds to the colour of the 

image. The intensity of radioactivity is illustrated by a colour spectrum. Red is the most 

intense radioactivity and violet is the least intense radioactivity.
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4.2.3.6 Determining the proportions of mannose diverted into sucrose metabolism and 

cell wall polymers

It was not possible to distinguish between mannose and fructose phosphates in the 

D-[U-14c]mannose feeding experiments; nor was the route of mannose metabolism to 

sucrose determinable by this method. In this experiment tritiated mannose was used to 

distinguish between M6P and F6P and to establish the route of sucrose biosynthesis. The 

proportion of mannose that is either recruited by glycolysis or directed to structural 

polymers or ascorbate can be determined by feeding seeds with D-[2-^H]mannose. The 

tritium on C-2 of M6P is lost as tritiated water when M6P is isomerised to F6P but the 

tritium is retained when M6P is converted to Ml P. On drying, tritiated water is lost from the 

extract leaving a residue of tritiated MIP and tritiated mannose. The loss of radioactivity is 

equivalent to the amount of mannose that is converted to F6P.

cai 10, ws and col-2 seeds were germinated for 36h on 1/2 strength M&S solution 

containing 5 mM mannose spiked with [2-3H]mannose. The seedlings were rinsed with cold 

water and ground up in 80 % ethanol to extract the metabolites. The sample was divided 

into two equal aliquots. One aliquot was dried and the other was not. The amount of tritium 

was measured in each sample using a liquid scintillation counter (Figure 4.7). The fact that 

80 % of the radioactivity is lost though evaporation indicates that this is the amount of 

tritiated mannose converted from M6P to F6P.

In cai 10, ws and col-2 approximately 80 % of the tritiated mannose is metabolised 

to F6P and 20% remains as unmetabolised mannose or has been converted to MIP. Thus a 

considerable amount of the exogenous mannose is metabolised via F6P to sucrose. This 

correlates with the large sucrose spot on the paper chromatogram (Figure 4.4), which is 

visualised as a consequence of D-[U-^'^C]mannose labelling, as this label is not lost.

4.2.4.1 Measuring the flux of mannose and glucose into metabolism in cai 10 and ws

The metabolites of D - [ U - ^ m a n n o s e  and glucose in ws and cai 10

were measured over the 36 h germination period. The aims of this experiment were to (1)
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Figure 4.7 The percentage of mannose metabolised into mannose/mannose-1- 

phosphate and fructose -6-phosphate.

Seeds were sown on 1/2 strength M&S medium containing 5 mM mannose spiked with 

^H-mannose. The seeds were imbibed at 4 °C for 4 days and transferred to a growth room 

(22 °C, 120 /<Em"2s"l continuous white light) for 36 hours. The soluble sugars were 

extracted from the seedlings and were divided into equal aliquots. One aliquot was air- 

dried and then the radioactivity in each aliquot was measured by a scintillation counter. 

The loss of radioactivity from the air dried sample is equivalent to the percentage of 

mannose which is metabolised to fructose-6-phosphate.

133 mannose/MlP fjH F6P
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establish if ws and cai 10 metabolise mannose at the same rate and (2) determine whether 

mannose and glucose were metabolised at the same rate.

4.2.4.2 Mannose metabolism

Figure 4.8 shows the metabolism of D-[U-i^C]mannose to hexose phosphates and 

sucrose. In both ws and cai 10 metabolism of D-[U-l^C]mannose began 4-8 hours after 

transferral to the light at 22 “C. By 12 to 18 hours ws was accumulating more hexose 

phosphates and sucrose than cai 10. By 36 hours ws had accumulated 5-fold more hexose 

phosphates and 3-fold more sucrose derived from D-[U-1^C]mannose than cai 10. The data 

indicate that cai 10 is metabolising mannose at a different rate to ws but it is not possible to 

say whether it is metabolising it faster or slower than ws. The reason for this is that although 

sucrose is not accumulating as much in cai 10 as ws, it may be respiring or converting the 

D-[U-^4c]sucrose to other compounds (such as proteins and fatty acids) faster than ws and 

this would not be detected by this method. However, whichever strategy cai 10 employs, 

hexose phosphates do not accumulate and Pi is, therefore, presumably not sequestered to the 

same extent.

4.2.4.3 Glucose metabolism

Figure 4.9 shows the accumulation of metabolites of D-[U-l^C]glucose by ws and 

cai 10. As for D-[U-14c]mannose, ws and cai 10 started to metabolise D-[U-14c]glucose 

after about 4 h in the light. Between 12 and 18h ws accumulated more hexose phosphates 

and sucrose than cai 10. Again this can be interpreted as cai 10 metabolising glucose more 

slowly than ws or respiring the end product sucrose more rapidly than ws. A comparison of 

mannose and glucose metabolism shows that ws and cai 10 both accumulate more than 

twice the amount of sucrose when metabolising glucose rather than mannose. The critical 

difference between glucose and mannose metabolism in ws is that hexose phosphates do not 

accumulate to the same extent when glucose is fed as substrate compared to when mannose 

is fed as a substrate. Therefore, when ws is germinated on glucose, Pi is not sequestered. 

Like ws, when cai 10 is germinated on glucose more sucrose but less hexose phosphate
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Figure 4.8 The uptake tîmecourse of mannose by cai 10 and ws during 

germination.

Seeds were sown on 1/2 strength M&S medium containing 5 mM mannose spiked with

l^C mannose. The seeds were imbibed at 4 °C for 4 days and transferred to a growth room

(22 “C, 120 /iEm'^s"! continuous white light). Transfer to the growth room is the 0 hour

time point. Seedlings were taken at time intervals for 36 hours. The soluble sugars were

extracted from the seedlings. The soluble sugars were separated by paper chromatography

and the radioactive metabolites of mannose were quantified.
hexose phosphates in cai 10  sucrose in cai 10

hexose phosphates in ws —O— sucrose in ws

Figure 4.9 The uptake timecourse of l'Hü glucose by cai 10 and ws during 

germination.

Seeds were sown on 1/2 strength M&S medium containing 5 mM glucose spiked with

glucose. The seeds were imbibed at 4 for 4 days and transferred to a growth room (22

“C, 120 /^Em'^s'l continuous white light). Transfer to the growth room is the 0 hour time

point. Seedlings were taken at time intervals for 36 hours. The soluble sugars were

extracted from the seedlings. The soluble sugars were separated by paper chromatography

and the radioactive metabolites of mannose were quantified.
—D— hexose phosphates in cai 10 —i — sucrose in cai 10

—a — hexose phosphates in ws —O— sucrose in ws
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accumulates than when germinated on mannose. These results provide an explanation for 

the cai 10 phenotype on mannose. An interesting feature of the D-[U-^^C]mannose uptake 

time course was that both ws and cai 10 metabolised a small amount of mannose but not 

glucose into arabinose and xylose within 2 h (data not shown). This is evidence that 

mannose is metabolised into cell wall precursors very soon after imbibition of the seed.

4.2.5 Does mannose alter the conversion of lipid into sugars during germination?

4.2.5.1 Analysis of soluble sugars in seedlings germinated on mannose

Figure 4.10a-d shows the differences in metabolites extracted from seedlings 

germinated for 36 hours on 5 mM mannose, 5 mM mannose plus 50 mM glucose, 50 mM 

glucose and zero carbon source. A striking feature of figure 4.10a is that cai 10 seedlings 

possess approximately 30 % of the amount of sucrose, glucose and fructose present in ws 

and col-2 when germinated on 5 mM mannose. This agrees with the radiolabelling data in 

figure 4,8. In addition seedlings germinated on mannose have higher cellular soluble sugars 

than seedlings germinated on no exogenous carbon source (Figure 4.10 d). This agrees with 

the evidence that mannose is being used as carbon source and corroborates the radioactive 

labelling data (Figure 4.8). In figure 4.10b the seedlings all have the potential to develop to 

the green cotyledon stage because glucose is relieving the affect of mannose. The metabolite 

concentrations in all 3 seed types are similar but are much higher than in the seedlings 

which were germinated on 5 mM mannose. When germinated on 50 mM glucose only 

(Figure 4.10c) the metabolite concentrations are similar between each seed type and are also 

similar to those of seedlings grown on 5 mM mannose plus 50 mM glucose (Figure 4.10b), 

Not surprisingly, seedlings germinated on media containing no exogenous sugar the 

metabolite concentrations are very low (Figure 4.10d).

4.2.5.2 Analysis of steady state transcript levels in seedlings germinated on 5 mM 

mannose

To investigate the hypothesis that mannose arrests seedling development by 

repressing glyoxylate cycle gene expression and in so doing prevents the conversion of
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Figure 4.10 Mannose is used as a carbon source during germination.

Seeds were sown on 1/2 strength M&S agar medium containing (a) 5 mM mannose, (b) 5 

mM mannose plus 50 mM glucose, (c) 50 mM glucose or (d) zero carbon source. The 

plates were given a 4 day cold treatment at 4 °C and were transferred to a growth room at 

22 °C in continuous white light (120 /<Em"^s‘l) for 36 hours. The seedlings were rinsed in 

ice-cold water and the soluble sugars were extracted and analysed using enzyme linked 

assays.

sucrose |  glucose [Z] fructose
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lipids into sugars ws, col-2 and cai 10 were germinated for 36 h on 1/2 M&S agar plates 

containing 5 mM mannose, 5 mM mannose plus 50 mM glucose, 50 mm glucose or no 

carbon source. RNA was isolated from the seedlings and 5 ug of each sample was separated 

on a formaldehyde gel. The RNA gel blot analysis (Figure. 4.11) shows the steady state 

transcript levels of several genes which are known to be regulated by sugars. The glyoxylate 

cycle genes ms and id  are known to be co-ordinately repressed by sucrose in germinating 

cucumber cell cultures and protoplasts (Graham et al., 1994 a and b). In contrast to all 

published sucrose repression data the results presented in figure 4.11 show that ms is 

repressed but id  is induced by mannose. This is the first published report of conditions 

which cause uncoordinated expression of ms and id. However, although id  appears to be 

induced by 5 mM mannose it is not possible to discern from this whether mannose has an 

affect on transcription of the ICL gene or whether id  RNA stability has been affected. 5mM 

mannose decreases the expression of 2 other genes {rbcS, cab) known to be repressed by 

sucrose. The addition of glucose to the medium containing mannose partially relieves the 

repression of cab, rbcS and ms in ws and col-2. In cai 10, 5 mM mannose has the same 

repression affect on rbcS and cab as 50 mM glucose but 5 mM mannose plus 50 mM 

glucose does not reduce the repression in cai 10 as it does in ws and col-2. In both wild 

types 5 mM mannose is much more effective than 50 mM glucose at repressing rbcS. In cai 

10, 50 mM glucose is as effective as 5 mM mannose at repressing rbcS. In ws and col-2, chs 

is induced by glucose and repressed by mannose. Glucose relieves the affect of mannose 

repression. Mannose and glucose have little affect on chs expression in cai 10, the transcript 

abundance being little different to seedlings germinating on no carbon source. It is 

interesting to note that in all seed types chs expression is repressed by mannose even though 

glucose induces its expression. One explanation for this is that mannose cannot mimic 

glucose in the induction of chs. Alternatively, 5 mM mannose (by sequestering Pi) may be 

depleting the seedling's pool of carbon skeletons which would induce a carbohydrate 

starvation signal. The carbon starvation signal could prevent carbon skeletons from being 

diverted into non-essential pathways such as anthocyanin biosynthesis by repressing chs.
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Figure 4.11 Mannose represses /«s, rbcS and cab but induces ici gene expression after 

36 hours of germination.

Seeds were sown on 1/2 strength M&S agar medium containing 5 mM mannose, 5 mM 

mannose plus 50 mM glucose, 50 mM glucose or zero carbon source. The plates were 

given a 4 day cold treatment at 4 °C and were transferred to a growth room at 22 °C in 

continuous white light (120 for 36 hours. RNA was extracted from the

seedlings, separated by denaturing agarose gel electrophoresis and transferred to HybondN 

membrane. The RNA was hybridised with radioactive probes of several sugar-modulated 

genes and was visualised using a phosphoimager.



r e l a t i v e  i n t e n s i t y

5 mM mannose 

50 mM glucose 

no carbon source

ca i  10col-2

40 100 96 90 40 69 65 47 58 75 72 80

50 100 93 86 40 53 42 45

ms

ici

rbcS

cab

chs

k l

114



4.2.6 cai 10 is only mannose insensitive during post-germinative growth

So far the experiments in this chapter have all been aimed at establishing why cai 

10 is insensitive to mannose during post-germinative growth. An experiment was designed 

to investigate whether older cai 10 seedlings were also insensitive to mannose. cai 10 seeds 

were germinated on vertical agar plates containing 1/2 M&S plus 50 mM glucose for 7 

days. The seedlings were then transferred to vertical agar plates containing 5 mM mannose 

and the plates were turned through 90 degrees. After a further 7 days growth the seedlings 

were assessed. Figure 4.12 shows that the roots of cai 10 do not extend after the seedlings 

have been transferred to mannose. The slightly bulbous root tip is a typical response to 

toxicity, ws responds in the same way as cai 10. Thus the mutation that makes cai 10 

mannose insensitive has a germination specific effect. The roots of control seedlings which 

were transferred to identical 50 mM glucose agar plates after 7 days continued to grow and 

after 14 days were approximately 42 mm long (data not shown).

4.8 Discussion

Mannose is toxic to wild type Arabidopsis and arrests seedling growth after radicle 

emergence, cai 10 is mannose insensitive at the germination stage and develops cotyledons 

on growth media containing 5 mM mannose.

Experiments feeding D-[U-l4c]mannose to germinating wild type (ws) 

Arabidopsis show that although growth is arrested by mannose, the mannose itself is 

metabolised. Treatment of extracts with invertase and alkaline phosphatase allowed 

identification of sucrose and hexose phosphate spots on paper chromatograms. It was found 

that the wild type metabolises mannose to hexose phosphates and sucrose. Feeding 

germinating seedlings with mannose tritiated at carbon-2 demonstrated that the route of 

mannose metabolism to sucrose was via F6P and that 80 % of supplied mannose was 

metabolised to F6P. The remaining mannose was split between unmetabolised mannose and 

MIP, a precursor for the biosynthesis of cell wall polymers and ascorbate. Indeed, within 2 

hours of transferring germinating seedlings to light some mannose had been converted into 

compounds such as arabinose and xylose (cell wall precursors).
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Figure 4.12 cai 10 is not insensitive to mannose after 7 days post-germinative grov t̂h.

Seeds of cai 10, ws and col-2 were sown on 1/2 strength M&S agar medium containing 50 

mM glucose. The plates were given a 4 day cold treatment at 4 °C and were transferred to a 

growth room at 22 "C in continuous white light (120 /tEm'^s'l) where the plates were held 

vertically for 7 days. The seedlings were gently transferred to plates containing 1/2 

strength M&S agar medium plus 5 mM mannose. The plates were turned 90 ° and were 

held vertically for 7 days in the same growth conditions. Root growth on mannose was 

noted.
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Wild type and cai 10 were fed D-[U-l4C]mannose and D-[U-^4c]giucose and 

samples were taken during the first 36 hours of germination in order to investigate the 

differences in mannose and glucose metabolism (Figures 4.8 and 4.9). When D-[U- 

^4c]mannose was fed to wild type a large amount of hexose phosphates and sucrose 

accumulated. However, when wild type was supplied with D-[U-14c]glucose, little hexose 

phosphate accumulated although a large amount of sucrose was synthesized. In contrast, 

when cai 10 was fed D-[U-l4c]niannose or D-[U-l4c]glucose very little hexose phosphate 

accumulated and 2-fold less sucrose accumulated than in wild type. However, there is a 

discrepancy between the amounts of hexose phosphates which accumulate in figures 4.5a 

and 4.8. In figure 4.5a ws and cai 10 accummulate similar amounts of hexose phosphates 

after 36 h, whereas in figure 4.8 cai 10 accumulates 3-fold less hexose phosphates than ws. 

However, figure 4.8 shows a more complete representation of mannose metabolism during 

germination than figure 4.5a as metabolite measurements have been taken at several time 

points indicating that cai 10 and ws do metabolise mannose at different rates. Another 

possible explanation for the difference between figure 4.5a and 4.8 is that the rate of 

germination varied between experiments due to subtle changes in environmental conditions. 

The critical difference in mannose metabolism between wild type (ws) and cai 10 seen in 

figure 4.8 is that ws accumulates hexose phosphates and cai 10 does not. This implies that 

sequestration of Pi may have a role in mannose toxicity in ws plants, a fact which is 

supported by previous work on other species (Herold and Lewis, 1977).

Another important point is that cai 10 accumulates less sucrose and hexose 

phosphate than wild type when it is supplied with D-[U-l4c]mannose and D-[U- 

14c]glucose. This suggests that cai 10 metabolises mannose and glucose at a different rate 

to wild type but it is not possible to say whether it metabolises them faster or slower than 

wild type because although it does not accumulate as much sucrose as wild type, cai 10 may 

simply respire the D-[U-l4c]sucrose faster than wild type. This would not be detected with 

the method used here. The respiration rate of D-[U-14c]mannose and D-[U-^4c]gjucose 

needs to be measured in wild type and cai 10 to clarify this. This could be done by capturing 

the respired ^^Q02 with KOH and measuring the radioactivity in a scintillation counter.
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When wild type seed was germinated on 5 mM mannose spiked with D-[U- 

14C]mannose plus 50 mM glucose the concentration of D-[U-14C] hexose phosphates in 

seedlings was significantly lower than in seedlings germinated on 5 mM mannose spiked 

with D-[U-14C]mannose alone. This suggests that glucose relieves the toxic effect of 

mannose by reducing the amount of Pi sequestration and maintaining a pool of carbon 

skeletons for biosynthesis into other compounds.

Although sequestration of Pi appears to have a role in mannose toxicity it does not 

exclude the possibility that mannose could also repress expression of genes that are vital to 

post-germinative growth. Since the phenotypes of cai 10 and wild type are so different on 5 

mM mannose it seemed appropriate to investigate the steady state transcript level of a range 

of genes during germination. To avoid comparing transcript abundance in an arrested seed 

and a green seedling, the time point for RNA isolation was chosen when all the seedlings 

looked similar, i.e. radicle emergence. From this experiment it is possible to say that 

mannose may arrest seedling development in the wild types by repressing ms transcript 

abundance or increasing the turnover of ms transcript, especially as in cai 10 the ms 

transcript level was decreased to a lesser extent. Unexpectedly, the transcript abundance of 

id  was induced by mannose in all cases. This result is contrary to all previously published 

data on ms and id  and is the first report of non-coordinate regulation of these two genes. 

However, it is not possible to discern from hybridisation analysis whether i d  RNA 

transcription stability was affected by growth in 5 mM mannose. Promoter-reporter gene 

studies in transgenics could be used to investigate this.

The stabilities of the MS and ICL enzymes may also differ in cai 10 during 

germination which might result in the presence of a complete glyoxylate cycle and thus 

continued gluconeogenesis even though the ms gene is not being expressed. It would be 

necessary to assay MS and ICL enzyme activities to determine if the glyoxylate cycle is in 

operation. In addition malate synthase from germinating castor beans has been found to 

undergo in vitro phosphorylation on a serine residue, although the affect of phosphorylation 

on the in vivo activity of the enzyme was not determined (Yang et a l ,  1988). If 

phosphorylation is vital for MS activity, mannose may affect MS activity by sequestering
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Pi. This could prevent post-germinative growth in the wild type and cause negative 

feedback regulation of ms gene expression.

Soluble sugar measurements of seedlings germinated on 5 mM mannose for 36 

hours revealed that cai 10 seedlings have approximately 70 % less sucrose, glucose and 

fructose than the wild types. This data correlates with the uptake time course and is further 

evidence that cai 10 metabolises mannose at a different rate to the wild type, cai 10 has a 

lower concentration of soluble sugars when grown on 5 mM mannose than ws and col-2. 

This fact might also explain the decreased repression of ms by mannose in cai 10. It is 

possible that the wild types fail to develop beyond the 1-3 mm radicle stage because MS 

activity is too low to support gluconeogenesis.

In conclusion, the results suggest that cai 10 resists the toxicity of mannose during 

germination by avoiding the sequestration of Pi into hexose phosphate pools, and its low 

soluble sugar concentrations may lessen the affect of mannose repression of gene 

expression. The low soluble sugar concentration and altered hexose metabolism in cai 10 

indicate that it is more likely to be a metabolic/uptake mutant than a sugar signalling 

mutant, cai 10 is only insensitive to mannose during post-germinative growth. Seven day 

old seedlings are no longer insensitive to mannose. This may imply that the sugar repression 

of ms is important in mannose metabolism. It would be interesting to compare the mannose 

metabolism in cai 10 during post-germinative growth and in 7 day old seedlings.
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Chapter 5

Characterisation of cai 10 overexpressing hexokinase 1 (A/HXKl)

5.1 Introduction

Hexokinase has been proposed as a key component of the signal transduction 

cascade which leads to carbohydrate repression of a range of metabolic genes (Graham, et 

a l, 1994b, Jang and Sheen, 1994, Jang and Sheen, 1997). Studies involving feeding sugars 

to cucumber cell cultures found that 2-deoxyglucose and mannose which are 

phosphorylated by hexokinase can initiate the signal for repression of ms and i d  in a 

manner similar to that of metabolisable sugars (Graham, et a l, 1994b). However, 3-methyl 

glucose, which was taken up by the cell culture but is not known to be phosphorylatable by 

hexokinase, did not cause repression of the expression of ms and id  transcripts. From this 

evidence it was suggested that hexose sugars are important in the sugar response. Hexose 

sugars themselves, were excluded as the initiators of the signal because 3-methyl glucose, 

which is not phosphorylated, did not induce the sugar response. Furthermore, a specific 

hexokinase inhibitor, mannoheptulose (Coore and Randle, 1964), can block glucose 

repression of photosynthetic gene expression in maize protoplasts (Jang, et a l, 1997). The 

evidence showing that mannose and 2-deoxyglucose, which are phosphorylated by 

hexokinase, caused sugar repression, and that mannoheptulose can block sugar repression, 

suggests that the hexokinase reaction transduces the signal reporting the metabolic status of 

the cell. The signal from the hexokinase reaction could be initiated by (1) the ATP substrate, 

(2) the phosphorylated products, (3) the flux through the hexokinase reaction, (4) or a 

combination of the above. Hexokinase has also been implicated in initial transduction of the 

signal leading to carbohydrate repression in S. cerevisiae as mutation of the hexokinase PII 

(HXK2) results in constitutive expression of glucose repressible genes (Entian, eta l, 1985).

A mutant which does not express active hexokinase may be unable to sense sugars 

(Jang and Sheen, 1997) including mannose or its product M6P and so may not activate the 

signal transduction cascade which leads to the carbohydrate repression of ms and i d . Seeds 

unable to break down their lipid storage reserves are unable to grow without an external 

carbohydrate source. This may be one reason why glucose can relieve the affect of mannose
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on seedling post-germinative growth. If the hexokinase reaction initiates the signal 

transduction pathway for sugar repression and communicates the metabolic status of the 

cell, a plant with mutant hexokinase may not be able to sense the presence of hexoses. 

Previous experiments showed that wild type seedlings do not develop cotyledons when 

germinated on a media containing mannose, a hexose which is phosphorylated by 

hexokinase. The fact that cailO germinates and develops green cotyledons on mannose 

implied it may not sense mannose and thus, might be a hexokinase mutant. An additional 

hypothesis to explain the cai 10 phenotype on mannose is that cai 10 is mutated in the 

signal transduction pathway downstream from hexokinase. This could lead to reduction or 

abolition of the sugar repression signal.

Genetics can prove a phenotype is due to a mutation in a single locus. Having 

cloned a candidate gene for a mutant locus, the definitive proof that a mutation in that gene 

caused the mutant phenotype is complementation. This involves transforming the mutant 

plant with the wild type gene. To prove that the mutant gene causes a phenotype the 

corresponding wild type gene must restore the plant to the wild type phenotype.

The experiments in this chapter were initiated before all the data presented in the 

previous chapters had been obtained. For instance, it is now known that cai 10 is a dominant 

mutation. However, when the work was started the aim was to determine whether cai 10 

was a hexokinase mutant using complementation with the wild type hexokinase gene.

The rationale of the work was as follows: if cai 10 had a recessive mutation in 

hexokinase or an upstream signalling component, overexpression of hexokinase 1 in cai 10 

could restore the wild type phenotype on mannose by (1) complementing a mutation in 

hexokinase or (2) by increasing the amplitude of the hexokinase signal thereby overriding a 

weak signal caused by a mutation in the signal cascade upstream of hexokinase. The aim of 

this chapter was to assess whether the cai 10 lesion could be complemented by 

transformation by overexpression of hexokinase 1 and to characterise the affect of 

hexokinase 1 overexpression on wild type.
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5.2 Results 

5.2.1 Immunoblot analysis of hexokinase in cai 10

Protein extracts were made from cai 10 seeds and seedlings during post- 

germinative growth. The protein extracts were rapidly desalted, separated by SDS-PAGE 

and blotted onto nitrocellulose. The hexokinase isozymes were visualised by 

immunodetection with hexokinase polyclonal antibodies (a gift from Dr J-C. Jang; Figure 

5.1). The western blot reveals that cai 10 manufactures two proteins that are detected by the 

hexokinase antibody, one of approximately 25 kDa in seeds and another of 56 kDa in 

germinating seedlings. This corroborates the work of Jang et a l, (1997) who, using the 

same antibody, detected a 56 kDa protein in 6 day old seedlings. The hexokinase antibody 

also shows that the pattern of hexokinase expression is similar in both wild type and cai 10. 

However, it is not possible to ascertain whether the hexokinase proteins are active in the cai 

10 mutant, or whether a depletion of 1 isozyme is masked by another isozyme of the same 

size.

5.2.2.1 Transformation of cai 10 with sense-orientated hexokinase 1 (35S:AlHXKl)

col-2, ws and cai 10 were transformed with A. thaliana hexokinase 1 under the 

control of the CaMV 35S promoter in the sense orientation (35S:ArHXKl; a gift from Dr. J- 

C. Jang; Jang, et a l, 1997) using an A. tumifaciens vacuum infiltration method (Bechtold, et 

a l, 1993). Transformation with sense-orientation hexokinase resulted in 2 lines of cai 10, 9 

lines of ws and 14 lines of col-2 overexpressing hexokinase 1.

5.2.2.2 Analysis of the hexokinase 1 transformants on different sugar selection media

The T2 lines were selected on kanamycin and the T3 generation were germinated 

on either 50 flg/ml kanamycin; 5 mM mannose; 0 mM nitrogen and 100 mM sucrose; or 6 

% glucose (Figure 5.2). Some of the lines were still segregating as revealed by a less than 

100 % resistance to kanamycin. As was expected, there were large phenotypic variations 

between the different lines probably due to position affect of the transgene. The results 

show that in the 2 lines obtained, hexokinase 1 overexpression did not restore a wild type
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Figure 5.1 Western blot analysis reveals that cai 10 contains hexokinase protein

Seeds of cai 10 and ws were sown on 1/2 strength M&S agar medium containing 20 mM 

sucrose. The plates were given a 4 day cold treatment at 4 “C and were transferred to a 

growth room at 22 °C in continuous white light (120 for 3 days. Transfer to the

growth room is the day 0 time point. Seedlings were harvested after 0-3 days. Total protein 

was extracted. 50 ug of each protein sample was separated by SDS-PAGE. The proteins 

were transferred to nitrocellulose and were cross-reacted with polyclonal hexokinase 

antibodies.
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Figure 5.2 Growth of T3 transformants overexpressing hexokinase on different 

selection media.

The T3 transformant lines were sown on 1/2 strength M&S agar media containing 50 

pigtml kanamycin, 5 mM mannose, 100 mM sucrose minus nitrogen, or 6 % glucose and 

were imbibed at 4 “C for 4 days. The plates were transferred to growth room conditions (22 

'C, 120 /(Em-^s'l) for 7 days and the seedling phenotypes were assessed, mig = mannose 

insensensitive growth phenotype, cai = carbohydrate insensitive growth phenotype, gin = 

glucose insensitive growth phenotype. MSCD= kanamycin resistant control, 

d  % kanamycin resistance H % mig O % cai % gin
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phenotype in cai 10 when germinated on mannose (Figure 5.2). The observation that 

hexokinase overexpression does not complement the cai 10 lesion suggests that cai 10 is not 

a hexokinase mutant. It does not exclude the possibility that the cai 10 lesion completely 

blocks a possible sugar repression signal downstream of hexokinase. cai 10 hexokinase 1 

overexpressors also exhibit similar percentages of mig, cai and gin phenotypes as cai 10 

which have not been transformed (Figure 5.2). Interestingly, lines of col-2 overexpressing 

hexokinase 1 displayed a good mig phenotype and / or cai phenotype and some also had a 

gin phenotype.

Kanamycin resistant T3 seedlings were grown up for seed (T4). Seed from the T4 

generation of each transformed line was also grown on a range of selective media (Figure 

5.3). The percentage of kanamycin resistance in the T4 generation was higher than in the T3 

generation. The col-2 hexokinase overexpressors all displayed some degree of mannose 

resistance and cai phenotype but no gin or sig phenotype. This apparent loss of gin 

phenotype from T3 to T4 could have been due to slight environmental fluctuations which 

can affect selection on the gin screen. The fructokinase mutant {mig 7; a gift from Dr S. 

Smeekens) which has a ws genetic background was used as a control. It is interesting to 

note that both seedlings overexpressing hexokinase 1 and a fructokinase deletion mutant are 

mannose resistant. MSCD seedlings were also used as a control as they contain the 

kanamycin resistance gene. Since MSCD seedlings do not have mig cai or gin phenotypes it 

is assumed that transformation with the kanamycin gene does not confer the sugar 

insensitive phenotypes observed in the hexokinase overexpressors.

5.2.2.3 Assessing the transformants for T-DNA insertion

DNA was extracted from the kanamycin resistant transformants. PCR primers were 

designed to the hexokinase 1 construct (collaboration with Dr F. Regad) in order to check 

the transformants for the presence of the hexokinase 1 transgene. These were used in a PCR 

reaction to verify that the transformants actually contained the hexokinase 1 transgene 

(Figure 5.4). There was no band in col-2, cai 10 or the water control. Furthermore, the 

primers do not detect hexokinase 2 as can be seen in the lane containing the vector
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Figure 5.3 Growth of T4 transformants overexpressing hexokinase on different 

selection media.

The T4 transformant lines were sown on 1/2 strength M&S agar media containing 50

/<g/ml kanamycin, 5 mM mannose, 100 mM sucrose minus nitrogen, 6 % glucose or 12 %

sucrose and were imbibed at 4 “C for 4 days. The plates were transferred to growth room

conditions (22 °C, 120 //Em’̂ '* ) for 7 days and the seedling phenotypes were assessed.
I I % kanamycin resistance % mig % cai [ ^ %  g//z | [ % sig



T-TI3[00

Oireo

(7l-nxuxroo

CT-OXUXTOD

0î-ÏXxqxioo

U-TXxqxioo

Q-TXXUXIOO

i-TXxqxiOD

9-lXXttxioo

g-nxqxioo

t7-TXXt(XlOD

G-Ixxxxioo

^  93%u9ai@d

126



Figure 5.4 Presence of the 35S:AtHXKl construct in the transgenic plants was 

assessed using PCR.

DNA was extracted from the leaves of plants transformed with the 35S:AtHXKl construct. 

The transgenic DNA was amplified using PCR, the products were separated by agarose gel 

electrophoresis. pBINhxkl and pBINhxk2 were used as controls. pBINHXKl contains the 

35S:AtHXKl construct. pBINhxk2 contains the 35S:AtHXK2 construct and is not 

amplified by the primers which are specific for the 35S:AtHXKl construct.
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pBINhxk2. All the putative col-2 transformants contain the hexokinase 1 construct. Line 24 

of the cai 10 transformants and line ws hxk-40 also contain the hexokinase 1 construct. Line

23 of the cai 10 transformants was a false positive.

S.2.2.4 Analysis of hexokinase transcript expression in the transformants

RNA was extracted from 3 individual kanamycin resistant plants per line. It was 

separated by agarose gel electrophoresis, blotted onto Hybond N and probed with a 32p 

radiolabelled hexokinase probe which hybridises to hexokinase 1 and 2 (Figure 5.5). col-2 

hxk lines 3, 4, 6, 7, 8, 10, 12, 13 and 14 all have increased steady state levels of hexokinase 

mRNA. Lines 5, 9 and 11 are low hexokinase expressors even though they do contain the T- 

DNA (Figure 5.4). The constitutive probe hi indicates that the loading and quality of the 

RNA is approximately equal in all lanes and thus low hexokinase expression is not due to 

variations in the RNA loaded. However, although lines 5, 9 and 11 show low expression of 

hexokinase RNA in leaf tissue, they all display some degree of mannose resistance in both 

the T3 and T4 generations (Figures 5.2 and 5.3) indicating that hexokinase 1 RNA 

expression in leaves does not necessarily correlate with a mig phenotype in seedlings. Line 

12 is segregating between high and low expressors. Of the 2 cai 10 transformants only line

24 shows high expression of hexokinase which agrees with PCR data (Figure 5.4) and of the 

9 ws transformants only lines 43, 44 and 49 are high expressors.

5.2.3 Analysis of the hexokinase protein in the transformants

5.2.3.1 Immunodetection of hexokinase in the transformants

Protein was extracted from rosette leaves of the T3 transformants and 20 |Llg of 

each sample was separated by SDS-PAGE, blotted onto nitrocellulose and cross-reacted 

with hexokinase antibodies (a gift from Dr J-C. Jang;(Jang, et a l,  1997)). Ponceau S 

staining of the nitrocellulose blots showed that the amount loaded was even (Figure 5.6 b). 

It also shows that there is a high concentration of BSA which was added to the extract to 

stabilise the proteins. Figure 5.6a reveals that the hexokinase 1 overexpressors (Figure 5.5) 

do manufacture more hexokinase protein in leaves than the low hexokinase expressors, e.g. 

compare line 9 and 3 in figures 5.5 and 5.6. The hexokinase protein has a size of 49.5 KDa.
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Figure 5.5 Hexokinase is overexpressed in several transformant lines containing the 

35S:AtHXKl construct.

RNA was extracted from leaves of 3 plants from each T3 col-2 line transformed with the 

35S:AtHXKl construct. RNA was also extracted from the T2 lines of cai 10 and ws 

transformed with the 35S:AtHXKl construct. The RNA was separated by agarose gel 

electrophoresis and was blotted onto Hybond N membrane. The RNA was hybridised with 

a hexokinase probe and was analysed using a phosphoimager. hxkl = hexokinase probe 

and hi = constitutive probe.
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Figure 5.6 Inununodetection with hexokinase polyclonal antibodies detects the 

overexpression of the hexokinase protein in the hexokinase 1 overexpressors.

L/E = low expressor control

10 X hxkl = cai 10 transformed with hexokinase 2

(a) The blots were stained with Ponceau S to assess accuracy of equal loading.

(b) Immunodetection with hexokinase polyclonal antibodies.



m

k

m

I 11301X01

1 2 ^ 1 ^ X 0 1

cd

130



This is smaller than the size reported for hexokinase in figure 5.1 and may be a result of 

distortion of the protein migration due to the excess of BSA.

5.2.3.2 Analysis of hexokinase activity in transformant leaves and whole seedlings

Hexokinase assays were performed on rapidly desalted protein extracts from both 

leaf and seedlings (Figures 5.7 a and b). For the leaf assays (Figure. 5.7a) line 9 was used as 

a control for base rate hexokinase activity for the col-2 transformants because it contains the 

sense hexokinase 1 construct but RNA is not overexpressed. Overexpressors exhibited 1.8- 

fold to over 5-fold increases in hexokinase activity compared to the control, cai 10 

hexokinase 1 overexpressor line 24 also displayed a 2-fold increase in hexokinase activity 

compared to its control line 23. Hexokinase activity in 7 day old seedlings was determined 

(Figure 5.7b). In this case line 11 was used as the low expressor control. Line 14 which had 

the second highest hexokinase activity in leaf had very low activity in seedlings. The only 

lines which had increased seedling activities were line 3 and 6 and overall the hexokinase 

activity in seedlings was much less than in rosette leaves. This could be a feature of the 

position of transgene insertion, or the 35S promoter being more highly expressed in leaves 

than in 7 day old seedlings.

5.2.3.3 Mannose metabolism in transformants overexpressing hexokinase 1

Since the transformants overexpressing hexokinase 1 germinated rapidly and 

showed mannose insensitive growth (mig), the rate of D-[U-14c]mannose metabolism was 

investigated as in chapter 4, section 4.2.4. The labelled products of D-[U-i4C]mannose 

metabolism, hexose phosphate and sucrose, were measured after 8 h growth. Figure 

5.8 shows that several of the lines of transformants overexpressing hexokinase 1 

accumulated a much higher concentration of labelled hexose phosphates and sucrose than 

the wild type. The low expressor line 5 from leaf analysis accumulates wild type amounts of 

hexose phosphates and sucrose but the low expressor lines 9 and 11 accumulate elevated 

levels of these compounds. In addition, the T4 generation of line 5 shows a 10 % mig 

phenotype whereas line 9 and 11 both show approximately 50 % mig phenotypes. There is,
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Figure 5.7 Hexokinase activity in seedlings and leaves of the transformants 

overexpressing hexokinase 1.

Seeds were sown on 1/2 strength M&S agar medium containing 20 mM sucrose. The 

plates were imbibed for 4 days at 4 °C. The plates were transferred to growth room 

conditions (22 °C, 120 ^Em'^g-l) for 7 days. Soluble proteins were extracted from the 

seedlings, the extracts were rapidly desalted and the hexokinase activity was measured 

spectrophotometrically. The hexokinase activity from 2 extracts of col-2 from leaves and 

seedlings was measured 3 times. The range of hexokinase between the 2 leaf extracts was 

negligable. The range of hexokinase between the 2 seedling extracts was also negligable. 

Hexokinase activity in seedlings (a) and in rosette leaves (b) of transformants. 10 X hxk2 is 

cai 10 transformed with a hexokinase 2 (low expressor control).
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Figure 5.8 Mannose is metabolised by the hexokinase overexpressons.

Seeds were sown on 1/2 strength M&S medium containing 5 mM mannose spiked with

mannose. The seeds were imbibed at 4 °C for 4 days and transferred to a growth room

(22 °C, 120 /fEm-^s'l continuous white light). Transfer to the growth room is the 0 hour

time point. The seeds were allowed to germinate for 8 hours. The soluble sugars were

extracted from the seedlings. The soluble sugars were separated by paper chromatography

and the radioactive metabolites of mannose were quantified.

P I  hexose phosphates | | |  sucrose

I I % mig phenotype
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in general, a much better correlation between the accumulation of elevated hexose 

phosphates and sucrose and the mig phenotype after 8 h than with RNA and enzyme activity 

in leaves and seedlings. This is not surprising as the mig phenotype is dependent on 

alterations in metabolites or signalling very early in post germinative growth as has been 

demonstrated for cai 10. Interestingly, mig 1 which is a fructokinase deletion mutant also 

accumulated elevated levels of hexose phosphates and sucrose after 8h. The other migs, mig 

2 mig 3 and cai 10 accumulate similar amounts as their respective wild types. This is in 

agreement with figure 4.8 which shows that cai 10 only differs from the wild type after 18- 

24 h.

5.2.4 Sensitivity of hexokinase 1 overexpressors to mannose after the germination stage

The hexokinase 1 overexpressors were examined in order to establish whether they 

were insensitive to mannose after the germination stage as in chapter 4 section 4.2.6. Seeds 

were germinated for 7 days on vertical agar plates containing 1/2 strength M&S media and 

50 mM glucose. The seedlings were then transferred to 1/2 strength M&S agar medium 

plates containing 5 mM mannose and the plates were turned through 90°. After 7 days the 

root growth of the seedlings was analysed. Figure 5.9 shows that the hexokinase 1 

overexpressor (col X hxk-14) grows initially on 5 mM mannose and then root growth is 

terminated, mig 1 and cai 10, which also display mannose insensitive growth during 

germination display the same sensitivity to mannose after the cotyledon stage. The roots of 

control seedlings which were transferred to identical 50 mM glucose agar plates after 7 days 

continued to grow and after 14 days were approximately 40 mm long (data not shown).

5.3 Discussion

The definitive way of testing whether a phenotype is caused by a recessive 

mutation in a specific gene is to transform the genome with the wild type gene. To link the 

mutant gene to a phenotype, the wild type gene must complement the mutant gene, restoring 

the wild type phenotype. At the time when this work was planned, cai 10 was assumed as 

being recessive because it was created using EMS and the majority of EMS induced
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Figure 5.9 Root growth of 7 day old hexokinase overexpressor seedlings is arrested by 

mannose.

Seeds of the hexokinase overexpressors were sown on 1/2 strength M&S agar medium 

containing 50 mM glucose. The plates were given a 4 day cold treatment at 4 °C and were 

transferred to a growth room at 22 °C in continuous white light (120 /fEm'^s'l) where the 

plates were held vertically for 7 days. The seedlings were gently transferred to plates 

containing 1/2 strength M&S agar medium plus 5 mM mannose. The plates were turned 

90° and were held vertically for 7 days in the same growth conditions. Root growth on 

mannose was noted.
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mutants are recessive. When a transformant of cai 10 overexpressing hexokinase 1 was 

germinated on mannose the phenotype was identical to the cai 10 control.

The results presented here are consistent with more recent work which indicates 

that cai 10 contained a dominant mutation. A dominant mutation in hexokinase could result 

in several different phenotypes. A dominant mutation in the proposed regulatory domain of 

hexokinase could result in a constitutive sugar signal resulting in plants that perceive a high 

concentration of sugars even when none is present. A dominant lesion in the catalytic 

domain would result in high hexokinase activity. The hexokinase activity in cai 10 soluble 

protein extracts was undetectable indicating that cai 10 was not originally a dominant 

hexokinase mutant. This did not rule out the possibility that the cai 10 lesion specifically 

affects the signalling domain of hexokinase and does not affect hexokinase activity.

Previous studies using glucose analogues had found that hexokinase was a putative 

sugar sensor (Graham, et a l, 1994b, Jang and Sheen, 1994). The role of hexokinase in vivo 

was further investigated using overexpression and antisense technologies (Jang, et a l, 

1997). Transformants overexpressing hexokinase were hypersensitive to sugars as had been 

predicted. The prediction was based on the hypothesis that an increased number of sugar 

sensors would transduce a larger sugar signal which would result in a more severe response. 

Plants expressing antisense hexokinase 1 were less sensitive to sugars and it was suggested 

that this was because there were fewer hexokinase enzymes to sense the sugars present 

(Jang, et a l, 1997).

cai 10 was transformed with sense AtHXKl in an attempt to reverse the sugar 

insensitive mutation. Overexpression of hexokinase in cai 10 did not make the plants more 

sensitive to sugars which implied that cai 10 does not have a lesion in the hexokinase 

signalling domain. Moreover, cai 10 has recently been mapped to a region at the top of 

chromosome 1 (Dr F. Regad; postdoc in Dr I. Graham's lab). This region of chromosome 1 

has been sequenced and there are no hexokinase genes present on it. Since the two known 

hexokinase genes in Arabidopsis map to chromosome 2 (hexokinase 2) and chromosome 4 

(hexokinase 1), it is highly unlikely that cai 10 was a hexokinase unless there are other as 

yet unmapped alleles of hexokinase in the genome.
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In this experiment, the controls proved to be very informative. Some col-2 

transformants that overexpressed hexokinase 1 displayed a range of sugar resistant 

phenotypes. All the lines displayed a degree of mannose insensitive growth (mig) and a cai 

phenotype. However, hexokinase gene expression and protein activity in the leaf did not 

correlate well with mig, cai and gin phenotypes in the seedlings. In contrast, the mig 

phenotype in the T4 did correlate with the accumulation of elevated levels of hexose 

phosphates and sucrose after 8 h and it is during early post germinative growth that the mig 

phenotype appears. Thus it appears that the time point at which hexokinase activity is 

analysed is crucial. Later in development hexokinase activity and gene expression do not 

correlate with the mig phenotype. However, it must be noted that the phenotypes that I have 

observed are not what is predicted from the conventional model of hexokinase, since this 

suggests that hexokinase overexpressors are hypersensitive to sugars.

Remarkably, a fructokinase knockout mutant, mig 1 also accumulated an increased 

amount of hexose phosphates and sucrose. It is interesting to note that both a hexokinase 1 

overexpressor and a fructokinase knockout mutant are both mannose resistant and both 

accumulate metabolites of mannose at the same rate. A possible explanation for this is that 

the fructokinase mutant compensates for its lack of fructokinase by overexpressing 

hexokinase. This is in stark contrast to cai 10, also a m/g but which accumulates mannose 

metabolites to a lesser degree.

Overexpression of hexokinase may cause a mig phenotype in several ways: (1) The 

activity of the hexokinase may be so high that mannose is rapidly phosphorylated to M6P 

and sucrose. This may enable the seedling to prevent phosphate sequestration because 

sucrose production releases Pi. (2) If mannose itself is toxic to the seedling, its affect would 

be alleviated by high hexokinase activity because mannose would be rapidly converted to 

M6P. (3) High activity of hexokinase in the leaves may have a maternal affect on the 

phenotype of the seeds by increasing the flux of carbon into sugars in the seeds. An 

increased sugar content in the seeds could compete with mannose for phosphorylation by 

hexokinase during germination and thereby prevent phosphate sequestration, a possible 

cause of mannose toxicity.
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Overexpression of hexokinase could cause a cai phenotype by rapidly metabolising 

sugars which build up in seedlings grown in high carbon / low nitrogen conditions, thus 

preventing the internal sugar concentration from reaching a toxic threshold. Alternatively, 

high hexokinase activity in the rosette leaves of the overexpressors could lead to an increase 

of nitrogen storage products in the seeds which would prevent the seedling from becoming 

nitrogen limited during germination on cai conditions.

The final results chapter investigates the above hypotheses and analyses the seed 

storage contents of Arabidopsis overexpressing hexokinase.
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Chapter 6

Analysis of the seed storage reserves of Arabidopsis transformants overexpressing

hexokinase 1

6.1 Introduction

Apart from the constituents found in all plant tissues, seeds contain additional 

quantities of compounds for use as a source of nutrients to support germination and early 

seedling growth. These are principally lipids, proteins and carbohydrates but also include 

minor but important reserves (e.g. phytin, alkaloids, lectins, proteinase inhibitors, raffinose 

and oligosaccharides). The chemical composition of seeds is ultimately determined by 

genetic factors and thus varies from species to species. However, some modification of 

composition may result from growth conditions i.e. light, temperature and addition of 

fertiliser, but the changes are relatively minor (Bewley and Black, 1994).

A major constituent of Arabidopsis seed are the triacylglycerols (TAG) which are 

esters of glycerol and fatty acids. TAG reserves are laid down in discrete subcellular 

organelles called oil bodies and range in size from 0.006 to 25 jxm (Murphy, et a l, 1997). In 

high TAG-containing seeds, such as Arabidopsis, the oil bodies occupy a substantial 

volume of the cell. The oil bodies are surrounded by oleosins, proteins of approximately 19 

KDa in Arabidopsis (M. Hill, pers comm.). They are believed to preserve the individual 

lipid bodies as discrete entities (Huang, 1996).

Arabidopsis contains 2 major classes of seed storage protein, the 12 S (cruciferin) 

protein and the 2S (arabin) protein (Heath, et a l, 1986). Seed storage proteins are usually 

deposited within specialized organelles called protein bodies which are 0.1-25 \xm in 

diameter and are contained within a single membrane. Inclusions frequently occur in the 

protein bodies, particularly crystalloids (insoluble proteinaceous inclusions), and globoids 

(non crystalline sites of deposition of phytin) and occasionally druse (calcium oxalate) 

(Bewley and Black, 1994).

Free sugars are rarely the main storage carbohydrate in seeds but disaccharides 

(sucrose) and oligosaccharides (raffinose and stachyose) are often found as minor reserves 

in the embryo and reserve tissue. There is increasing evidence that they are an important

139



source of sugars for respiration during germination and early seedling growth (Bewley and 

Black, 1994). Sucrose, raffinose and stachyose increase in association with the onset of 

desiccation tolerance. In the desiccation intolerant stage of seed development hexoses 

(glucose, fructose, mannose and galactose) predominate. ABA mutants {abi3A, abi3-5) 

which have a low or no desiccation tolerance {abi3-l, aba 1) have relatively high amounts 

of total sugars (mono- and disaccharides) but have much lower oligosaccharides (raffinose 

and stachyose) (Bewley and Black, 1994).

In mature seed of oilseed rape, the main storage products are oil and protein 

(Murphy and Cummins, 1989), but starch accumulates transiently during the early phase of 

oil deposition (Kang and Rawsthorne, 1994, Kang and Rawsthorne, 1996). Arabidopsis is 

also an oilseed and also accumulates starch transiently during the early phase of oil 

deposition (Mansfield and Briarty, 1992).

Recently, a wrinkled seed mutant (wri\) has been isolated which has a low lipid 

content and a low seed weight (Pocks and Penning, 1998). The wril mutation maps to the 

bottom of chromosome 3 and causes an 80 % reduction in seed oil content. The mature 

plants of wril and wild type are indistiguishable. However, developing seeds of wril 

mutants are impaired in the incorporation of sucrose and glucose into TAG, although 

pyruvate and acetate were incorporated at an increased rate. The activities of several 

glycolytic enzymes, including hexokinase and pyrophosphate dependent- 

phosphofructokinase are reduced in the developing seeds of homozygous wril mutants and 

the authors suggested that WRIl is involved in developmental regulation of carbohydrate 

metabolism during seed filling. The authors suggested that WRIl is either a regulatory 

protein governing carbohydrate metabolism during seed development or a novel hexokinase 

that may act as a sugar sensor in developing seeds, controlling the activity or expression of 

other glycolytic enzymes (Pocks and Penning, 1998).

A number of other Arabidopsis mutants with low seed lipid have also been 

isolated. The seeds of fus3, le d  and tagl do not accumulate TAG to the same extent as the 

wild type (Baumlein, e ta l,  1994, Meinke, et ai, 1994, Katavic, etaL, 1995).
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While the work in this chapter was being carried out, evidence was published 

which corroborated our work. The overexpression of glucokinase and invertase in potato 

tubers lead to stimulation of glycolysis and a dramatic reduction in starch biosynthesis 

(Trethewey, et a l,  1998). In addition, the tubers contained an increase in metabolic 

intermediates, organic acids and amino acids. The tubers also had a 2-3 fold increase in 

maximum catalytic activities of several key respiratory enzymes and a 3-5 fold increase in 

carbon dioxide production. Parallels will be drawn between the evidence presented in this 

chapter and this work in the discussion.

6.1.1 Rationale

One of the most exciting discoveries about the hexokinase overexpressing 

transformants was that they appear to germinate extremely quickly, the first cotyledons 

emerging after only 18h-20h in the growth room (Figure 6.1) compared to wild type which 

usually takes 2-3 days to germinate. This observation led to several experiments aimed at 

determining the factor that caused the rapid germination. There are several hypotheses that 

could explain the rapid germination observed in the hexokinase overexpressors: (1) Seed 

lipid reserves are mobilised more rapidly than wild type due to an increase in flux through 

6-oxidation or gluconeogenesis which could be the result of high hexokinase activity 

causing a depletion of hexoses and induction of ms and icl\ (2) the metabolic rate of the seed 

is increased due to increased glycolytic flux; (3) the seed storage reserves have a different 

composition, i.e. high elevated levels of compounds which can be mobilised more rapidly 

than the reserves in the wild type. Seed storage compounds could be increased or altered 

because high hexokinase activity in the rosette leaves of the parent could perturb the sink 

strength of the seed or modify carbon / nitrogen allocation during seed development.

6.2 Results 

6.2.1 Lipid Analysis

In order to assess whether the rate of TAG breakdown was greater in the 

hexokinase 1 overexpressors seeds were germinated on 1/2 strength M&S agar medium
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Figure 6.1 Rapid germination of hexokinase overexpressors.

Seeds of the hexokinase overexpressors were sown on 1/2 strength M&S agar medium 

containing no exogenous carbon source. The plates were imbibed for 4 days at 4 °C. The 

plates were transferred to growth room conditions (22 °C, 120 for 20 hours after

which time they were assessed.
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containing no exogenous sugar for 1-4 days. Fifty germinating seedlings were harvested per 

sample and the lipid was extracted and separated by TLC (Figure 6.2). The TLC shows that 

the hexokinase overexpressors do not break down their storage triacyl glycerols (TAG) 

more rapidly than the wild type. The seeds transformed with sense hexokinase 1 contain 

decreased TAG content, the value ranging between 34 and 82 % of the amount in wild type 

seeds (Figure 6.3a and b). However, the seeds of lines 5, 9 and 11 which expressed low 

amounts of hexokinase RNA in leaves also showed a decrease in TAG. It is therefore 

possible kanamycin resistance causes a decrease in lipid. Further experimentation is 

required to ascertain the actual cause of low TAG in the seeds. The total lipid content of the 

seeds was analysed by GC (performed by Dr T. Larson, a postdoc in Dr I Graham's 

lab;Figure 6.4). The GC data corroborated the TLC evidence that lipid content is lower in 

the overexpressors. GC analysis was also used to establish whether a decrease in flux into 

seed storage lipids could alter the fatty acid composition as a consequence of enzymes in 

fatty acid biosynthesis having differential activity dependent on substrate concentration. A 

decreased flux of carbon into seed lipid storage could cause an alteration in the fatty acid 

composition. However, the fatty acid composition of the seed lipid is not significantly 

different from the wild type (Figure 6.4).

6.2.2 Seed dry weight

The dry weight of seeds from each line was measured using a fine balance to 

determine whether the decrease in lipid content was a consequence of lower seed mass. 

Figure 6.5 shows that, in general, the seed mass of the overexpressors is lower than the wild 

type. This could be significant as smaller seeds would have proportionally less lipid. 

However, the hexokinase overexpressors did germinate faster than the wild type so they had 

to have some rapidly mobilizable reserve.

6.2.3 Seed carbohydrate analysis

The seeds of the hexokinase 1 overexpressors appeared to be slightly wrinkled 

(Figure 6.6) which indicated that the seeds might contain a compound with high osmotic
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Figure 6.2 Fast germination of the hexokinase overexpressors is not a result of rapid 

triacylglycerol (TAG) breakdown.

Seeds of the hexokinase overexpressors were sown on 1/2 strength M&S agar medium 

containing no exogenous carbon source. The plates were imbibed for 4 days at 4 °C. The 

plates were transferred to growth room conditions (22 °C, 120 and germinating

seeds were harvested at time intervals. Lipids were extracted from 25 seedlings of each line 

and the lipid and TAG content were analysed by TLC. C = TAG standard.
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Figure 6.3 Hexokinase overexpressors contain a reduced amount of TAG in their 

seeds.

Lipids were extracted from 10 dry seeds of each line and the lipid and TAG content were 

analysed by TLC (a). The TAG content was quantified using standard curve (b).
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Figure 6.4 GC Analysis of the fatty acid content of the hexokinase overexpressors.

The fatty acids were extracted from dry seeds and were separated and quantified by GC.

The purple bars represent the individual fatty acids and the pink bars represent the total

fatty acid content, uncal equals the unidentified fatty acids in the seeds.

I I individual fatty acids H  total fatty acids
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Figure 6.5 The dry weight of the seeds of the hexokinase overexpressors is generally 

less than the wild type.

Three batches of fifty seeds from a single T4 plant were counted and weighed. The seed 

were all from plants which had been grown at 120 /fEm-2s-l at 22°C in 16 h light and 8 h 

dark.
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Figure 6.6 Seed phenotype of the hexokinase overexpressors.

Seeds were observed with a binocular microscope using dark field illumination.
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strength. Seed extracts were assayed for sucrose, glucose and fructose content but levels of 

all 3 metabolites in the overexpressing lines were similar to the wild type on a per seed basis 

(Figure 6.7a). However, when measured on the basis of mg sugars per g dry weight, the 

hexokinase overexpressors contained more sucrose than the wild type (Figure 6.7b). This 

indicates that a larger proportion of carbon is allocated to sugars in the hexokinase 

overexpressors than in wild type and may account for the slightly wrinkled appearance of 

the seeds. Soluble sugars were separated by paper chromatography and stained with silver 

nitrate. Figure 6.8 shows that the profile of sugars in the wild type and the hexokinase 

overexpressors are slightly different. For instance, the hexokinase overexpressors have more 

of the compound that runs between myoinositol and trehalose. GC analysis of the sugars 

will be necessary to clarify the differences between the wild type and the hexokinase 

overexpressors.

Iodine staining of seeds established that both wild type and overexpressors contain 

undetectable amounts of starch.

6.2.4 Seed amino acid analysis

Ethanol extracts of seeds were separated by paper chromatography and were 

stained with ninhydrin. The results indicated that there was an increase in amino acids in 

seeds of plants overexpressing hexokinase 1 (Figure 6.9). The amino acids were analysed in 

detail by HPLC by Dr M. Cusack; Molecular Palaeontology, Glasgow University. The 

amino acid concentrations of aspartate, asparagine, glutamine, serine, histidine and arginine 

are much higher in the hexokinase overexpressors than in col-2 (Figure 6.10). In addition to 

this there is a huge peak which runs at a retention time slightly shorter than serine which 

appears in lines 4, 6 and 14 but which is not in col-2. It is not possible to discern whether 

this compound is serine or a different compound. The structure of this compound needs to 

be resolved by LC-MS.
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Figure 6.7 The soluble sugar content of seeds of the hexokinase overexpressors.

(a) //g soluble sugars per seed

(b) mg soluble sugars per g dry weight of seed.

□  sucrose ■  glucose ■  fructose
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Figure 6.8 Analysis of the seed sugar content of the hexokinase overexpressors using 

paper chromatography.

The samples were separated by paper chromatography in ethyl acetate : pyridine : water (8 

:2 :1) for 18 hours. The sugars on the paper chromatogram were stained with silver nitrate.
1 = fructose
2 = xylose
3 = glucose
4 = fucose
5 = arabinose
6 = galactose
7 = maiuiose
8 = trehalose
9 = myoinositol
10 = xylitol
11 = galactitol
12 = sucrose
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Figure 6.9 Paper chromatographic analysis indicates that seeds of a hexokinase 

overexpressor contain an elevated level of amino acids.

Amino acids were extracted from seeds and were separated by paper chromatography 

(butan-l-ol : acetic acid: water ; 120:30:50) for 18 hours. The paper chromatogram was 

then stained with 0.5 % (w/v) ninhydrin solution.
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Figure 6.10 HPLC analysis indicates that seeds of the hexokinase overexpressors 

contain elevated levels of amino acids.

Amino acids were extracted from seeds and were analysed by HPLC.
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6.2.5 Storage protein analysis

Storage proteins were extracted from seeds of the overexpressors. The protein 

concentration was measured using the Lowry method and 20 fig of each sample was 

separated by SDS-PAGE on a 12.5 % acrylamide gel (Figure 6.11). Oleosin, which has a 

size of 19 KDa is present in approximately equal amounts in both col-2 and overexpressors. 

There are no striking differences in storage protein composition between the wild type and 

the transformants.

6.2.6 Electron microscopy of dry seeds

Electron microscopy of the dry seeds revealed that the histology of sense- 

hexokinase 1 transformants is very different to col-2 (Figure 6.12). The oil bodies in col-2 

and ws are large and coalesced, filling the cells. Electron micrographs of the transformants 

show that the oil bodies are smaller than the wild type and there are about 4 times more of 

them. The overall size of the cells also appears to be smaller in the overexpressors than the 

wild type. It must be noted that line 9 which expressed low amounts of hexokinase 1 in 

leaves but which had high hexokinase activity in germinating seedlings also shows the small 

oil body phenotype. The lack of correlation between hexokinase expression in leaves and 

the phenotype of the transformant at other stages in development has been observed 

repeatedly. This may be a consequence of differential expression of the 35S promoter 

during different stages of development.

6.3 Discussion

Seeds of transformants overexpressing hexokinase 1 germinated more rapidly than 

wild type seeds. Extraction of TAG over the germination period showed that TAG reserves 

in hexokinase overexpressors were not depleted more rapidly than wild type reserves. This 

implied that the rate of 8-oxidation and gluconeogenesis was the same in both wild type and 

transformants. The hexokinase overexpressors did, however, have a lower TAG and fatty 

acid content per seed. Although there was less lipid in the hexokinase overexpressors than 

the wild type, the proportion of each fatty acid remained the same except for line 4 and 14
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Figure 6.11 The storage proteins in seeds of the hexokinase overexpressors are 

qualitatively similar to the wild type.

Total protein was extracted from the seeds of the hexokinase overexpressors. 20 of each 

sample was separated by SDS-PAGE on a 12.5 % acrylamide gel. The proteins were 

stained with Coomassie brilliant blue.
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Figure 6.12 Electron micrographs of seeds of the hexokinase overexpressors reveal

numerous small lipid bodies.

Magnification x 6000

(a) col-2

(b) col X hxk -4
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Figure 6.12 Electron micrographs of seeds of the hexokinase overexpressors reveal

numerous small lipid bodies.

Magnification x 6000

(c) col X hxk -6

(d) col X hxk -14
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Figure 6.12 Electron micrographs of seeds of the hexokinase overexpressors reveal

numerous small lipid bodies.

Magnification x 6000

(e) col X hxk -9 (low expressor control)
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Figure 6.12 Electron micrographs of seeds of the hexokinase overexpressors reveal

numerous small lipid bodies.

Magnification x 6000
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(g) ws
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which had less 18:1 relative to other fatty acids. The dry weight of the transformant seeds 

was generally lower than the wild type, except for line 14, so it was not surprising that they 

contained less lipid. On a per seed basis there was a similar amount of sucrose, glucose and 

fructose in the wild type and transformants. Thus, the sucrose content of the hexokinase 

seeds is not the storage resource which causes rapid germination. Moreover, starch is not the 

storage compound enabling rapid germination because neither wild type or hexokinase 

overexpressors contain a detectable amount.

The total soluble sugars in seeds were qualitatively analysed by paper 

chromatography and there were some differences between wild type and hexokinase 

overexpressors. In particular, the hexokinase overexpressors appear to contain more of a 

compound which has a similar Rf value to trehalose.

Trehalose is synthesized from G6P and UDP-glucose in a two-step process, 

analogous to sucrose synthesis, by trehalose-6-phosphate synthase and trehalose-6- 

phosphate phosphatase(Cabib and Leloir, 1958) but until recently was thought to be absent 

from higher plants. In yeast and other micro-organisms it has an established role in the 

protection of various stress factors such as heat and desiccation (Vogel, et a l, 1998). 

Several groups have transformed tobacco with microbial genes for trehalose synthesis, in 

the hope of increasing the plants' stress tolerance (Gaff, 1996, Holmstrom, et a l, 1996, 

Romero, et a l, 1997). Some transformed plants exhibited slight drought tolerance but the 

expression of microbial genes for trehalose synthesis always gave rise to severe growth 

defects, such as dwarfism, although only traces of trehalose were found. This gave hints that 

trehalose or related metabolites might have a function as regulators of plant growth and 

development. Furthermore, in yeast, trehalose seems not only to be involved in stress 

protection, but its precursor, possibly T6P, appears to be an important regulator of glucose 

influx and metabolism (Thevelein and Hohmann, 1995). Moreover, results indicate that 

trehalose may interfere with sugar-regulated gene expression as application of trehalose to 

roots of soy bean induces sucrose synthase expression (Müller, et a l, 1998).

The hexokinase overexpressors could be expected to contain a steady supply of 

G6P which could be diverted into trehalose synthesis. If, by chance, the unknown
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compound was trehalose, it could have some serious ramifications for the plants. Trehalose 

may be regulating glucose influx and metabolism, as in yeast, possibly resulting in the 

mannose tolerant phenotype. Opposing this speculation is the fact that the hexokinase 

overexpressors do not show any consistent growth defects, a trait seen in all trehalose 

overexpressing tobacco plants. The seed extracts need to be analysed by GC-MS to 

establish the identity of the sugars present in the hexokinase 1 overexpressors. It would also 

be interesting to study the expression of sugar regulated genes in the transformants and 

compare them to the wild type. If there is an abundance of trehalose, the transformants 

might be expected to express high levels of sucrose synthase.

Three metabolites of glycolysis and the citric acid cycle serve as the major 

withdrawal points for inorganic carbon in the syntheses of the amino acids; pyruvate, 

oxaloacetate and a-ketoglutarate. Since phosphoenolpyruvate (PEP) is dephosphorylated to 

pyruvate (by pyruvate kinase) and is carboxylated to form oxaloacetate (by PEP 

carboxylase) (Andreo, et a l,  1987), it is a very important compound for both lipid and 

amino acid biosynthesis. Oxaloacetate is a carbon donor for amino acid synthesis and 

pyruvate is a substrate for both amino acid and fatty acid biosynthesis (Kang and 

Rawsthorne, 1994). In the hexokinase overexpressors it would appear that the allocation of 

carbon has been diverted from lipid synthesis into amino acid production. The results 

suggest that more of the PEP is being carboxylated by PEP carboxylase and less is being 

dephosphorylated by pyruvate kinase to pyruvate.

The demand for carbon skeletons for amino acid synthesis varies according to 

many factors - age, time of day, stress, nutrient conditions. When nitrogen deficient plants 

are transferred to a nitrogen-rich environment the rate of amino acid synthesis increases. 

Concomitantly, there is an increase in cellular respiration because of the demand placed on 

respiratory pathways to supply carbon skeletons needed for the incorporation of nitrogen 

into organic form. The consumption of a-ketoglutarate by the nitrogen assimilating 

activities of GS/GOGAT cycle causes a depletion of citric acid cycle intermediates. The 

plant's response to this is to increase the activities of glycolysis, and PEP carboxylase which 

is thought to have the anapleurotic role of replenishing oxaloacetate to the citric acid cycle.
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The increases in PEP carboxylase and glycolysis may be coordinated because G6P (an 

glycolytic intermediate), is known to activate PEP carboxylase.

The conditions for high amino acid biosynthesis may be being mimicked in the 

hexokinase overexpressors as follows : (1) the high hexokinase activity may stimulate 

glycolysis in the adult plant and provide a large pool of carbon skeletons which can be 

transported to the developing seeds (sink) and converted into the major reserves, lipids and 

amino acids. (2) As a result of high hexokinase activity and rapid phosphorylation of 

glucose, the plants have an elevated concentration of G6P. The G6P allosterically activates 

PEP carboxylase which can now effectively compete against pyravate kinase for PEP. This 

would divert PEP into oxaloacetate synthesis in preference to pyruvate synthesis and could 

result in an increase in amino acid synthesis and a decrease in lipid biosynthesis. A future 

experiment would be to feed PEP to the developing embryos of the hexokinase 

overexpressors and monitor the proportion of label that went into oxaloacetate and pyruvate, 

and compare this with the wild type.

G6P is also a good substrate for lipid synthesis. In experiments supplying ^^C- 

labelled compounds to plastids of developing oilseed rape embryos, G6P, pyruvate, DHAP, 

malate and acetate were all found to be good substrates for fatty acid synthesis (Kang and 

Rawsthorne, 1994, Kang and Rawsthorne, 1996). However, amino acids were not measured 

in these experiments so it is not possible to ascertain whether the allocation of carbon to 

lipids and amino acids in the plastids was altered.

Aspartic acid/ asparagine, glutamic acid and a compound which may be serine 

were extremely elevated in the hexokinase overexpressing transformants. These 4 amino 

acids are all synthesized as primary products of ammonia assimilation, and then serve as 

precursors and amino donors in the synthesis of other amino acids (Ireland, 1997). 

Glutamate is the net product of the GS/GOGAT cycle and aspartate, asparagine, and serine 

are all products of its metabolism. Aspartate and asparagine are synthesized by the 

transamination of oxaloacetate by glutamate or alanine. Serine can be synthesized by 3 

routes. It is a product of photorespiration : in this process, glycol ate is oxidised to 

glyoxylate, which is transaminated to glycine. Then 2 molecules of glycine are converted to
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a single molecule of serine. Serine can also be synthesized by 2 routes not involving 

glycine. Both of these pathways use phosphoglycerate, derived from the Calvin cycle or 

glycolysis, as a starting point. In the first, phosphoglycerate is converted to glycerate and 

then to hydroxy pyruvate, which can be transaminated to serine. In the second, 

phosphoglycerate is converted to serine via phosphohydroxypyruvate and phosphoserine 

(Ireland, 1997). Excessive photorespiration could be the cause of the high 'serine' 

concentration but would not account for the elevated levels of asparagine, aspartate and 

glutamate because serine is not easily converted to these amino acids (deduction from 

amino acid synthesis pathways (Ireland, 1997). Furthermore, it is difficult to see how high 

hexokinase activity could lead to an increase in the oxygenase activity of RUBISCO. A 

more likely explanation, perhaps, is that high hexokinase activity increases the flux of 

carbon through glycolysis. Hexose phosphates are converted to F16BP. F16BP is converted 

to 3-phosphoglyceraldehyde, followed by 1, 3-bisphosphoglycerate and 3- 

phosphoglycerate. 3-phosphoglycerate is metabolised via 2-phosphoglycerate to PEP. 

Carbon can be diverted via phosphoglycerate to serine and also via PEP and oxaloacetate to 

aspartic acid, asparagine and glutamate.

In order to test this hypothesis the concentration of G6P and the activities of PEP 

carboxylase and other glycolytic enzymes should be measured. Hexokinase overexpressing 

transformants might also be expected to have an increase in sucrose phosphate synthase 

activity because this enzyme is activated by G6P and inhibited by Pi (Stitt, et a l, 1988), 

conditions which might prevail in these plants. This might also account for the slight 

increase of sucrose in the hexokinase overexpressors per mg of dry seed.

Interestingly, the amino acids which are elevated in the transgenic seeds are all 

gluconeogenic amino acids, and as such, can be converted to sucrose during germination 

(Bewley and Black, 1994). Therefore, the factor which enables the rapid germination of the 

hexokinase overexpressing seeds could be the pool of free amino acids. The rate of 

gluconeogenesis of these amino acids could be measured by supplying germinating seeds 

with 14c-labelled serine, glutamine, aspartate and asparagine and monitoring the 

concentration of l^C-labelled sucrose and its metabolites during germination.
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Another possibility is that the compound which has been nominally called serine is 

actually a different compound which is masking the actual serine peak on the HPLC trace. 

Analysis of the compound by LC-MS will be necessary to confirm the identity of this 

compound.

Work by various groups have shown that oleosins are vital in determining oil body 

size. Oleosins are believed to stabilise oil body size and allow a large surface area to volume 

ratio (i.e. small oil bodies). A cell with a large amount of oleosin is hypothesised to have 

small oil bodies (Murphy, et a l, 1997). A large surface area: volume ratio may also be 

useful for rapid lipid breakdown as the lipid breakdown enzymes are in contact with a 

greater proportion of the total lipid at one time. In this case, however, rate of lipid 

breakdown appears to be equal in the transformants and the wild type.

The electron micrographs of the hexokinase overexpressors show that the seed cells 

contain numerous small oil bodies, whereas the wild type possess fewer, larger oil bodies. 

According to one hypothesis (Murphy, et a l, 1997), seeds with small lipid bodies are 

expected to have abundant oleosin synthesis. However, this was not apparent in the storage 

protein analysis of the hexokinase overexpressors.

The evidence for numerous, small lipid bodies correlates with the data indicating 

that the transgenic plants contain an altered lipid content, and rapid germination. 

Interestingly, other electron micrographs of identical seeds show lipid bodies with non- 

uniform contents although the shape of the organelles remain intact. An example of lipid 

bodies with non-uniform contents is illustrated by the electron micrograph of cai 10. This 

phenomenon may be an artefact of the fixation process because aqueous fixatives were used 

prior to embedding and sectioning. It is known that small seeds imbibe water very rapidly. 

When Arabidopsis seeds are put into aqueous fixatives the cells rapidly imbibe water, 

resulting in partial to complete hydration before adequate fixation occurs. This can lead to 

distortion of cellular contents, and the resultant picture is obviously not that of a dry cell. A 

better fixation, giving a truer picture of the inclusions within the dry cells, can be obtained 

by using non-aqueous fixatives or osmium vapour, or by freeze etching (Bewley and Black, 

1994). In the electron micrographs cells in certain parts of the cotyledons showed non
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uniform lipid bodies whereas a few cells away, the lipid bodies appeared to be uniform. 

This again, may be due to the aqueous fixation process which allows partial imbibition 

before fixation occurs. The sequential hydration that appears to occur during fixation of dry 

seeds could be a consequence of the natural phenomenon of sequential hydration that occurs 

during seed imbibition (Mansfield and Briarty, 1996). However, this phenomenon does not 

invalidate the electron micrograph evidence for small lipid bodies.

The hexokinase activity of the transformants was higher than the wild type as was 

illustrated by germination of seeds supplied with l^C-mannose (refer to chapter 5 section 

5.2.3.3). After 8 hours germination, the hexokinase overexpressors had accumulated more 

hexose phosphates and sucrose than the wild type. This correlates with the evidence that 

hexokinase overexpressing transformants germinate fast because the seeds have a high 

metabolic rate. A further experiment would be to feed the specific hexokinase inhibitor, 

mannoheptulose to germinating hexokinase overexpressing seeds. If the rate of germination 

is a result of high hexokinase activity, then inhibition of hexokinase activity will slow 

germination. Of course, a problem with this experiment is that mannoheptulose may also 

inhibit other unknown processes which slow germination.

The wril mutants are similar to the hexokinase overexpressors with respect to low 

seed oil content (Focks and Benning, 1998). However, the wri 1 seeds required sucrose for 

germination whereas the hexokinase overexpressors did not. In contrast to the wri I mutants 

which displayed a reduction in glycolytic activities, the hexokinase activity was high in the 

hexokinase overexpressors. This, coupled with the evidence that both the hexokinase 

overexpressors and a fructokinase knockout mutant display increased glycolytic activity 

indicate that perturbations leading to increase or decrease of glycolytic activity cause altered 

allocation of carbon in the developing seed.

The evidence presented in this chapter parallels work which was done in potato 

tubers (Trethewey, et a l,  1998). In essence, overexpression of glucokinase and invertase 

stimulated glycolysis and diverted allocation of storage carbon from starch into amino acids 

and carbon dioxide. This is mirrored in the hexokinase overexpressors where an increase in 

a glycolytic enzyme lead to reallocation of carbon from lipid to amino acids. The group of
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elevated amino acids was similar in both transgenic potato and the Arabidopsis hexokinase 

overexpressors described in this chapter, and could be attributed to increased flux of PEP 

into oxaloacetate catalysed by PEP carboxylase. The main difference was alanine, which 

accumulated highly in the potato plants but only slightly increased in hexokinase- 

overexpressing Arabidopsis plants. The Arabidopsis plants contained 5 - 4 7  fold of a 

compound designated as serine (based on its retention time on HPLC) than their control 

whereas the potato plants had 2.5-2.S fold more serine than their controls.

In summary, the hexokinase overexpressing transformants may germinate faster 

than the wild type for several reasons. (1) they contain a large amount of gluconeogenic 

amino acids which may be rapidly mobilised or the 'serine' compound may fuel rapid 

germination; (2) the activity of hexokinase is higher than wild type 8 hours after being put 

in the growth room and this may lead to more rapid radicle emergence. Further experiments 

are necessary to determine whether one or both of these factors are involved in the rate of 

germination of the hexokinase overexpressors.
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Chapter 7 

Discussion

The work presented here investigates several mechanisms by which Arabidopsis 

seedlings avoid the affects of high cellular carbohydrate concentrations during post- 

germinative growth. Methods of escaping the affects of high cellular sugars include 

prevention of uptake of exogenous sugar, metabolism of the sugar such that its concentration 

does not reach a toxic threshold, and altered sugar sensing/signalling ability. Characterisation 

of several cai mutants has been used to investigate these methods and cloning of the cai 

mutants could reveal genes involved in each of these mechanisms. The role of hexokinase as a 

sugar sensor has been investigated using transgenic Arabidopsis plants which overexpress 

hexokinase. Analysis of mannose metabolism in sensitive and insensitive Arabidopsis 

seedlings has been useful tool for determining the mechanism of mannose toxicity and the 

way that mannose insensitive seedlings avoid its toxic affects.

Low concentrations of the glucose analogue, mannose, inhibit post-germinative growth 

of Arabidopsis seedlings. The results presented in this thesis serve as evidence that mannose 

is phosphorylated by hexokinase but only slowly further metabolised. The developmental 

arrest in wild type Arabidopsis coincides with an accumulation of hexose phosphates, 

indicating that sequestration of Pi may be a cause. The phenomenon mannose-induced 

seedling arrest has recently been studied by Pego et al (1999). The authors found that only 

phosphorylatable analogues of glucose, such as mannose and 2-deoxyglucose were capable of 

suppressing seedling development, whereas 6-deoxyglucose and 3-O-methylglucose (which 

are transported into cells but are not phosphorylated by hexokinase) were not. In addition, 

mannoheptulose, a specific inhibitor of hexokinase (Coore and Randle, 1964) relieved the 

affect of mannose. From this evidence it was proposed that the hexokinase reaction was 

involved in mannose-induced seedling arrest (Pego, et a l, 1999).

The results presented in this thesis imply that Pi sequestration is correlated to seedling 

arrest of wild iypo Arabidopsis. However, Pego et al (1999) reached a different conclusion. 

They found that it was not possible to relieve the affect of mannose by adding exogenous 

phosphate to the growth medium and proposed that the seed phosphate content is sufficient to
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support germination even on mannose. There are several possible explanations for these 

different conclusions. One is that Pi levels are not, in fact, adequate for germination on 

mannose. It may be that it is the concentration of Pi in a particular compartment, or the ratio 

of Pi in one compartment relative to another compartment that is important for preventing 

sequestration of Pi. Phosphate feeding experiments may not be able to achieve the required 

concentrations or ratios. It is also possible that subtle differences in experimental conditions 

affect the extent to which phosphate availability controls germination. Another reason to 

explain why Pego et a l, (1999) could not relieve mannose germination arrest by adding 

phosphate whereas our results indicate that phosphate sequestration may involved, is that cai 

10 and is a different type of mig from those selected by J. Pego.

It has also been proposed that seeds germinating on concentrations of mannose which 

repress seedling development contain sufficient ATP for germination (Pego, et a l, 1999). 

This was used as further evidence to support their hypothesis that mannose-induced seedling 

arrest is not a consequence of Pi sequestration. However, the experimental method which they 

employed to gain this information is open to question. ATP was measured per p.g of soluble 

protein in seedlings allowed to germinate on agar plates containing 0 mM, 0.5 mM, 7.5 mM, 

50 mM mannose. All the seeds germinated but the growth of seedlings on 7.5 mM and 50 

mM mannose was arrested. Their results showed that the log moles ATP per ug soluble 

protein dropped by two orders of magnitude in the seedlings which were germinated on 0 mM 

or 0.5 mM mannose. In the seedlings which arrested (on 7.5 mM and 50 mM mannose), there 

was no drop in ATP concentration during 4 days of growth. However, Arabidopsis seeds 

contain a high proportion of insoluble storage protein which would not be measured by their 

method. It is known that the storage proteins are broken down during germination (see Figure 

3.9), creating a large increase in soluble protein during early seedling development. The large 

drop in ATP per fXg soluble protein seen in seedlings germinated on 0 mM or 0.5 mM 

mannose can be explained as followed: On day 0, there is relatively little soluble protein in 

the seeds so the concentration of ATP per ug soluble protein would be relatively high. After 2 

days growth, when a significant proportion of the storage proteins would have broken down 

to soluble proteins, the relative proportion of ATP would be significantly lower. However,
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when germinated on 7.5 mM mannose or above, the seedlings arrest so the storage proteins 

are unlikely to have broken down. Thus, the relative proportion of ATP to soluble protein 

would remain unchanged. Had the researchers measured total seedling protein and related this 

to the amount of ATP present the experiment might have been more informative. However, 

on days 0-1, before radicle emergence, the amount of ATP per ug protein was similar in both 

samples which had the potential to germinate and in samples which would have development 

arrested. This was used as evidence that there was sufficient ATP in seedlings germinated on

7.5 mM mannose and that ATP depletion was not a cause of seedling arrest. The results 

presented in figures 4.8 and 4.9 do not support this argument, since wild type accumulates 

more hexose phosphates when germinated for 24 h on mannose-containing medium than on 

glucose-containing medium.

Further evidence to support the role of Pi sequestration in mannose-induced seedling 

arrest is the observation that the mannose insensitive mutant, cai 10, sequesters less hexose 

phosphates than the mannose sensitive wild type (Figure 4.8). This could be a consequence of 

either a higher or lower rate of mannose metabolism such that only a small proportion of the 

total cellular Pi is sequestered at any one time. Since mannose also acts as a carbon source 

(Figure 4.10 a), it is possible that it induces respiration (Koch, 1996, Feletti and Gonzalez, 

1998) which could either respire the mannose to CO2 or convert it to lipid or protein. 

However, not all mannose insensitive seedlings accumulate less hexose phosphate. Most of 

the hexokinase overexpressors accumulate more hexose phosphates than their respective wild 

types (Figure 6.13). In contrast, mig 7, which is a fructokinase deletion mutant also 

accumulates more hexose phosphates than the wild type. This implies that there may be 

several mechanisms by which seedlings are able to be mannose insensitive. Plants with 

altered mannose metabolism may have a mig phenotype (1) by very slow metabolism of 

mannose such as may be the case for cai 10 and (2) by rapid phosphorylation of mannose by 

hexokinase and fast turnover of the hexose phosphates. Alternatively, a mig phenotype could 

be a consequence of the mutation of a sugar sensor (3). The fructokinase deletion mutant {mig 

7) may have a mig phenotype because fructokinase is a sugar sensor and thus cannot sense the 

mannose and does not respond to the accumulation of hexose phosphates, or it may be that the
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mig phenotype and the accompanying accumulation of hexose phosphates (Figure 6.13) is 

caused by the upregulation of another hexokinase gene in the germinating seedling to 

compensate for the lack of fmctokinase.

Pego et al (1999) also proposed that hexokinase mediates the mannose repression of 

Arabidopsis post-germinative growth via energy depletion. They suggested that in 

Arabidopsis seeds, the phosphorylation of mannose by hexokinase triggers a signalling 

cascade leading to the repression of genes required for germination. It is known that the 

glyoxylate cycle genes ms and id  are repressed by sugars and there is evidence that 

hexokinase mediates the carbohydrate repression of these genes (Graham, et a l, 1994b). 

Detailed analysis of the ms and id  promoters has found that distinct regions are required for 

the response to sugar and for regulation of gene expression in during germination (Reynolds 

and Smith, 1995, Sarah, et al., 1996). It has been shown that sugars can repress the expression 

of ms and id  during starvation and senescence (Graham, et a i, 1994b, Reynolds and Smith, 

1995, Sarah, et a l, 1996). Pego et al (1999) suggest that genes required for germination are 

repressed by mannose. The results presented in Figure 4.11 show that mannose represses ms 

expression but induces id  expression in germinating wild type Arabidopsis. Transcript blot 

analysis simply measures the presence of RNA and it is not possible to determine whether 

transcription of the i d  gene is actually occurring during germination on mannose. The 

enzyme activities of MS and ICL could be measured to give an indication of whether the 

glyoxylate cycle is active. Alternatively, transgenic plants carrying the MS or ICL promoter 

fused to GUS could be used to determine whether glyoxylate cycle genes are repressed in 

seeds germinating on mannose. In addition, the level of ms and id  transcription in seeds 

germinating on mannose could be measured by nuclear run-on assays.

The work of Jang et al (1997), showed that transgenic A ra b id o p sis  plants 

overexpressing hexokinase were hypersensitive to 6 % glucose whereas in plants containing 

the antisense hexokinase construct were hyposensitive to 6 % glucose. This agreed with their 

model for hexokinase sugar sensing which had been devised on the basis of previous 

experiments with glucose analogues which found that sugar repression of photosynthetic gene 

expression required the hexokinase reaction. The hexokinase overexpressors described in this
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thesis were transformed with the same construct (AtHXKl) as the plants described by Jang et 

al (1997), yet the opposite phenotype was reported. It must be noted, however, that the plants 

were all individual transformants and so could vary with the position of DNA insertion. A 

large proportion of the T3 generation of hexokinase overexpressors showed approximately 20 

% penetrance of the gin phenotype. However, this was not reproducible in the T4 generation, 

possibly due to slight variations in growth conditions which are known to affect the 

phenotype. Lines in both the T3 and the T4 generation did have cai and mig phenotypes. This 

does not agree with the model of the hexokinase sugar sensor proposed by Jang et al (1997) 

which proposed that hexokinase overexpressors are more sensitive to sugars due to an 

increased number of sugar sensors. However, the authors did report that several lines of 

hexokinase 1 overexpressor had phenotypes similar to wild type on 6% glucose. They 

proposed that the sugar hyposensitivity in the transgenics carrying the 35S:AtHXKl sense 

transgene resulted from cosuppression (Napoli, et a l, 1990). It is possible that these plants 

represent the true phenotype resulting from hexokinase 1 overexpression. The yeast 

hexokinase PII (YHXK2; the proposed sugar sensor in yeast) gene was also overexpressed in 

Arabidopsis (Jang, et a l,  1997). These plants were less sensitive to glucose although 

hexokinase catalytic activity was increased. The authors proposed that the regulatory domain 

of the yeast hexokinase PII is different to the hexokinase regulatory domain in plants and is 

thus not interchangeable. This is supported by the evidence that it was possible to restore 

catalytic but not the regulatory function in the yeast hxkl hxk2 double mutant by 

complementation with AtHXKl or AtHXK2 (Jang, et a l,  1997). They suggested that 

transgenic plants overexpressing YHXK2 were less sensitive to sugars because the transgene 

exerts a dominant negative affect, presumably competing with the endogenous hexokinase for 

substrate and thus reducing the sugar signal. The results with yeast hexokinase 

overexpression are similar to the results that we found with transgenic plants overexpressing 

AtHXKl. It would be interesting to see whether the plant overexpressing yeast hexokinase 

showed the same phenotype in our hands.

As has been described there are many unanswered questions relating to the mechanism 

by which mannose represses germination, and the role of hexokinase in sugar sensing in
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plants. Our results indicate that sequestration of Pi, and possibly repression of ms are involved 

in mannose-induced seedling arrest. A future experiment would be to determine the relative 

importance of each of these factors in seedling arrest.

In addition it would be interesting to establish the underlying cause of the altered 

carbon partitioning in the seeds of the hexokinase overexpressors. It is not clear whether the 

increase in amino acids in the hexokinase overexpressors seeds is a maternal affect, whereby 

the high hexokinase activity in the leaves results in an upregulation of nr, leading to high leaf 

amino acid concentrations which are then transported to the developing seeds. To determine 

this, the amino acid content of leaves of the hexokinase overexpressors needs to be compared 

to wild types grown in the same conditions. Then, the amino acid content of their progenies 

should be analysed. If the concentration of amino acids is higher in the hexokinase expressors 

than the wild type then the composition of the progeny seed may be due to maternal affects.

Alternatively, the high hexokinase activity could result in a high concentration of G6P 

which could allosterically activate PEP carboxylase and increase the rate of amino acid 

synthesis relative to the rate of lipid synthesis. The activity of PEP carboxylase in leaves and 

developing embryos of the hexokinase overexpressors could be measured to answer this. In 

addition, it would be valuable to measure the activity in the hexokinase overexpressors of 

other key enzymes in central metabolism such as SPS, PFK, PFP, pyruvate kinase, acetyl 

CoA carboxylase, sucrose synthase and NR. This would give a clearer picture of how an 

increase in hexokinase activity can affect the flux of carbon in transgenic plants. Feeding 

PEP to developing embryos of the hexokinase overexpressors could be useful in determining 

the partitioning of PEP between lipids and amino acids.

The hexokinase plants germinate rapidly but then the plants grow more slowly and set 

seed later than the wild type. If high hexokinase activity is a cause of rapid germination it may 

be possible to engineer plants which germinate quickly but then set seed at the same rate as 

wild type by making transgenic plants which contain the hexokinase gene fused to the MS 

promoter so that hexokinase activity is only high during germination. In addition constructs 

could be made in which the napin seed storage promoter was fused to the hexokinase gene. 

This could result in transgenic plants which only overexpressed hexokinase during seed
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development and may result in plants whose progeny contain altered carbon composition but 

develop in the same time as the wild type. Finally, plants containing both the ms promoter 

fused to the hexokinase and the napin promoter fused to the hexokinase may germinate 

rapidly, set seed in the same time as wild type, and produce seed with altered carbon 

composition.

Now that a large number of putative sugar sensing mutants have been isolated there is a 

lot of work to be done categorising them into allelic groups and cloning the mutant genes. 

Recent work on the hexokinase PII in yeast has revealed hexokinase PII participates in DNA- 

protein complexes, with cw-acting regulatory elements of the SUC2 gene promoter which is 

necessary for the glucose repression of the SUC2 gene in yeast (Herrero, et a l, 1998). Trying 

to identify homologous regions of glucose repressed genes in plants is one research area 

which needs to be expanded.

The observation that altering hexokinase activity in plants significantly alters carbon 

allocation indicates that it has an important role in the control of carbon metabolism. From the 

purely scientific viewpoint, this is interesting because much research has been done to 

determine which enzymes are important in metabolic flux control and many of these 

experiments have shown that altering the activity of enzymes in metabolism has a negligible 

affect. In addition, plants which overexpress hexokinase are potentially of economic value. 

Seeds which germinate rapidly have the potential to outcompete weeds. Thus, production of 

rapidly germinating transgenic plants could be of great commercial value. Furthermore, 

manipulation of the rate of carbon and the allocation of carbon into the different storage 

polymers is also highly desirable. For centuries, traditional plant breeders have been selecting 

plants which possess certain traits such as high protein content or high lipid content and the 

hexokinase overexpressors may provide an alternative method for manipulating carbon flow.
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