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SYNOPSIS

The SMS-SB cell line is an acute lymphoblastic leukaemia cell line with pre-B 

lymphocyte-like characteristics. Once removed from the patient, the cells could be 

grown in the absence of all exogenous mitogens, and were density-dependent for 

growth thus demonstrating the synthesis and secretion of an autocrine growth factor. 

Previous studies have found that this autocrine factor (SB-AF) can rescue SMS-SB 

cells from death, but have not been able to identify a cytokine able to substitute for its 

activity.

The original aim of this thesis was to identify and characterise SB-AF and determine 

its anti-apoptotic mechanism. SB-AF was found to sustain the expression levels of the 

anti-apoptotic protein Bcl-2 and promote cell cycle progression. In addition, SB-AF 

seems to be a multi-component factor, whose anti-apoptotic activity results from the 

synergistic action of all its components. During these investigations, SMS-SB cells 

were found to express high levels of Bcl-2, which is unusual for lymphocytes at the 

pre-B developmental stage.

In addition to the autocrine factor, previous work has demonstrated that soluble CD23 

(sCD23) can act in a paracrine fashion to rescue low cell density cultures of SMS-SB 

cells from apoptotic death. This pleiotropic cytokine is a cleavage product of the 

45kDa type II transmembrane CD23 antigen. As SMS-SB cells do not express the 

known receptors for CD23, namely, CD21, GDI lb, and CD llc, the anti-apoptotic 

signals of sCD23 are mediated by a novel CD23 receptor.

The work in this thesis shows that unlike sCD23, 45kDa membrane-associated CD23 

does not seem to elicit the same response in SMS-SB cells, thus suggesting that only 

the soluble forms of CD23 can mediate anti-apoptotic effects via the novel receptor. 

However, the monolayer cell system used to present 45kDa CD23 appeared to be 

affecting SMS-SB cultures possibly influencing their response to CD23.

Investigations were also undertaken to determine whether the novel receptor for CD23 

was unique to the SMS-SB cell line. Preliminary data obtained from BIAcore surface

11



plasmon resonance technology, demonstrate that the leukaemic pre-B cell lines Blin-1 

and Nalm-6 , and the mature B cell line 1E8, are able to bind sCD23 in the absence of 

the known CD23 receptors. Therefore, in addition to SMS-SB these cell lines also 

express a novel CD23 receptor. Further studies are required to determine whether all 

the cell lines express the same molecular receptor species, and whether signalling via 

these receptor(s) can prevent the apoptosis of Blin-1, Nalm- 6  and 1E8 cells.

The discovery of a novel CD23 binding receptor on a mature B cell line implies that, 

in addition to potentially having a role in precursor B cell development, sCD23 may 

also influence the growth and survival of more mature cell types away from the bone 

marrow microenvironment. It will therefore be interesting to investigate the role of 

CD23, and its novel receptor, throughout all stages of B cell development, and 

ultimately in all haematopoietic cells.
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CHAPTER 1

INTRODUCTION



1.1 THE IMMUNE SYSTEM

The immune system is a highly complex adaptable defence system that has evolved in 

vertebrates to protect them from invading pathogenic microorganisms. It generates an 

enormous variety of cells and molecules that specifically recognise non-self molecules 

and co-operate to efficiently eliminate the foreign particle. There are two main types 

of immune response; innate (or non-adaptive) and adaptive. The former is present 

prior to infection with a foreign particle and is mainly mediated by phagocytic cells, 

such as monocytes and macrophages, and the complement serum proteins. The 

opsonisation (coating) of microorganisms with complement aids in the non-specific 

recognition, internalisation and elimination of the infectious agent by the phagocytes. 

In comparison, the adaptive immune response is induced/stimulated by exposure to 

foreign substances, is highly specific, and improves with each successive encounter 

with the same foreign.

Central to all adaptive immune responses are the T and B lymphocytes. T cells are the 

mediators of cellular immunity and play both cytotoxic and helper roles in the 

destruction of an infected cell. They are activated by the specific recognition of 

foreign antigen on antigen presenting cells. B cells are activated by the binding of 

specific antigen to their membrane immunoglobulin (Ig) receptor, and by receiving 

signals from activated T cells in the form of secreted cytokines and cell-cell contacts. 

If all these signals are received simultaneously, the B cell can develop into a plasma 

cell which secretes antibodies, the mediators of humoral immunity.

Antibodies are a soluble form of the a B cell antigen receptor and thus bind to specific 

antigens. The effects of antibodies include the neutralisation of soluble antigens, the 

activation of the complement system, the opsonisation of particles to enhance the 

efficiency of phagocytosis, and antibody-dependent cell-mediated cytotoxicicity 

(ADCC). In addition to producing antibodies, B cells play another important roles in 

the immune response by acting as antigen presenting cells, and as memory B cells they 

are the basis of immunological memory.



This thesis is an investigation into the mechanisms of growth and survival of the pre-B 

acute lymphoblastic leukaemia cell line, SMS-SB, by autocrine and CD23-mediated 

paracrine mechanisms. These concepts will therefore be discussed in this introduction, 

namely; the regulation of precursor B cell development, the function of the CD23 

molecule and cytokine, the control of programmed cell death, and the contribution of 

deregulated cell death to malignancies. Finally, the characteristics of the SMS-SB cell 

line will be discussed.

1.2 B CELL DEVELOPMENT

B lymphocytes, like other haematopoietic cells, are continuously produced in the 

intramedullary cavity of the bone marrow (BM) of adult mammals. They are 

descendants of pluripotent haematopoietic stem cells (HSC), which express CD34, but 

lack all known lineage-specific markers (Andrews et al, 1990). The HSC is believed 

to initially differentiate into either a lymphoid or myeloid stem cell, an idea supported 

by Galy and colleagues, who demonstrated that a CD34Vlineage7B2207CD10^ bone 

marrow cell could only give rise to T, B, natural killer, and dendritic cells but not to 

cells of either the erythroid or myeloid lineages (Galy et al, 1995). In the BM 

microenvironment, haematopoietic cell development occurs on a meshwork of stromal 

cells, which include fibroblasts, adipocytes, macrophages, and endothelial cells. This 

structure is essential for haematopoiesis through the production of cytokines and direct 

cell-cell contact with the developing cells (reviewed by LeBein, 1998).

Development within the BM is antigen-independent and proceeds with a series of 

immunoglobulin (Ig) gene re-arrangements. During this process (termed VDJ 

recombination), the genes encoding the antibody variable regions are assembled from 

gene segments encoding V (variable), D (diversity), and J (joining) regions for the Ig 

heavy chain, and from V and J regions for the Ig light chain. The complex process of 

VDJ recombination will not be discussed here in detail, but has recently been 

reviewed by Grawunder et al, 1998, and Fapavasiliou et al, 1997. All subsequent 

development is antigen-dependent and occurs in the secondary lymphoid organs, such 

as the lymph node, where immature IgM^ cells develop into mature IgMVlgD '' B cells.



which may be activated to become Ab-producing plasma cells or memory B cells 

(reviewed by Liu et al, 1997b). Only precursor B cell, and therefore antigen- 

independent B cell development will be discussed here in detail.

Over the last 13 years, two major phenotypic models of murine antigen-independent B 

cell development have emerged. The first, formulated by Osmond and colleagues, was 

based on the sequential expression of B-lineage-related molecules, including various 

CD antigens (reviewed in Osmond et al, 1994). In the second model, Melchers and 

Rolink compartmentalised developmental stages based on the changing status of Ig- 

gene rearrangements (reviewed in Melchers et al, 1995; ten Boekel et al, 1995). 

Recently, these researchers have recognised the consistency between their two models 

and have combined their findings to produce a unified model of B cell development in 

the bone marrow (Osmond et al, 1998). In addition, the development of new 

techniques and reagents has demonstrated, that contradictory to previous findings 

(reviewed by Billips et al, 1995a), human B cell development is very similar to that in 

the mouse (Ghia eta l, 1998; LeBien, 1998).

The first identifiable stage of B cell development is the pro-B cell (see figure 1.1). 

Based on the expression of terminal deoxynucleotidyl transferase (TdT), an enzyme 

which adds nucleotides at the VDJ joint sites, and tyrosine phosphatase B220 

(CD45RA), these cells have been subdivided into early pro-B (TdU B220"), 

intermediate pro-B (TdU B220+), and late pro-B (TdT B220+) (Osmond eta l, 1994). 

Examination of the Ig genes of these precursor cells revealed them to be either in the 

germline configuration, or as having D Jh rearrangements. The latter population of 

cells were designated as pre-BI cells by Melchers and Rolink and correspond to the 

late pro-B cell of the Osmond model.

The next developmental stage, the pre-B (Osmond), or the pre-BII cell (Melchers and 

Rolink), was initially identified by Raff and colleagues as a cell displaying 

cytoplasmic IgHp, but no light chains or surface IgM (Raff et al, 1976). These cells 

can be sub-divided into large mitotically active cells and their progeny, small non­

dividing pre-B cells. Both of these cells have fully rearranged VDJ heavy chain genes, 

with the small pre-B cell additionally exhibiting VJ light chain rearrangements but no
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surface expression of IgM. At the large pre-B cell stage, the rearranged heavy chain is 

found at the cell surface covalently associated with surrogate light chain (Wl) proteins. 

These proteins are encoded by the VpreB and ks (mouse), or 14.1 (human) genes 

during the pro-B stage of development. The Hp, and chains associate with Iga and 

Ig(3 to form the pre-B receptor complex (reviewed by Lassoued et al, 1996). The 

importance of this receptor is demonstrated in X5 -deficient mice, who are unable to 

generate pre-BII cells (Kitamura etal., 1992). Signalling through the receptor complex 

is believed to select cells with appropriately rearranged heavy chain genes, prevent 

further heavy chain rearrangement, and promote the subsequent differentiation of the 

pre-B cell (Karasuyama et al, 1997).

The final B cell stage to be identified within the BM is that of the immature B cell, 

characterised by the surface expression of IgM. These cells exit the BM and migrate to 

the periphery where they develop into IgM^IgD^ mature B cells.

1.3 REGULATION OF PRECURSOR B CELL DEVELOPMENT 

BY STROMAL CELLS

As previously mentioned, B lymphopoiesis is regulated by the stromal cells of the 

bone marrow via cell-cell contacts and the production of cytokines. As these complex 

interactions are difficult to study in vivo, long-term bone marrow cultures (LTBMC) 

have been developed as a way of mimicking the bone marrow environment. A 

LTBMC system for B lymphocytes was initially developed by Whitlock and Witte in 

1982. Since then, a number of stromal cell lines have been obtained from LTBMC and 

have been extensively used to analyse the regulation of haematopoietic development 

(reviewed by Deryugina and Muller-Sieburg, 1993). These lines have been found to 

exhibit heterogeneity of functions with respect to the stage of B cell development they 

can support. For example, the S17 line can only support the maturation of pro-B to 

pre-B cells, whereas the SIO cell line supports pre-B to immature B cell maturation, 

but cannot regulate earlier stages of differentiation (Henderson et al, 1990). Witte and 

colleagues demonstrated functional differences with regard to interleukin-7 (IL-7)



production in primary cultured stromal cells, thus supporting the notion that the bone 

marrow may consist of distinct populations of stromal cells (Witte et al, 1993). Even 

though the stromal cell lines used in vitro may not accurately reflect the bone marrow 

microenvironment, they have helped to identify a number of important regulatoiy 

factors involved in precursor B cell development.

1.3.1 Role of cell-cell contacts

Developing B lymphocyte precursors have been found in intimate contact with the 

stromal cells in the bone marrow (Jacobsen et al, 1990). In vitro studies have revealed 

that these direct cell-cell or cell-extracellular matrix (ECM) interactions are required 

for both murine and human B lymphopoiesis to occur (Kierney et al, 1987; 

Villablanca et al, 1990). These interactions are responsible for the localisation of 

precursors in the bone marrow and, like cytokine receptors, play an important role in 

the regulation of progenitor proliferation. Adhesion within the bone marrow is 

developmentally regulated, since interactions decline during the progressive stages of 

human B cell maturation (Ryan et al, 1990).

The integrin family of adhesion receptors are believed to have a role in precursor B 

cell development. This family are responsible for adhesion to ECM components (e.g., 

fibronectin, collagen and laminin), and to cell surface expressed Cell Adhesion 

Molecules (CAM’s) (reviewed by Springer, 1990). Direct cell contact is mediated by 

the |31 integrin family member VLA-4 (a4pl) expressed on the surface of pre-B cells 

and VCAM-1 (vascular CAM), expressed on stromal cells (Miyake et al, 1991a). 

Antibodies to either of these two molecules suppress B cell lymphopoiesis in some 

culture systems (Miyake et al, 1991b; Ryan et al, 1992). VLA-4 also binds 

fibronectin at a site distinct from the VCAM-1 binding site, further demonstrating 

how VLA-4 may mediate adhesions within the bone marrow (Elices et al, 1990).

In vivo studies have identified a role for the (31 integrins in the retention of progenitors 

in the BM and for the homing of progenitors to the BM after BM transplantation 

(Williams et al, 1991; Papayannopoulou et al, 1995). However, the (31 integrins are 

expressed on many cell types and so cannot account for the exclusive progenitor-
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marrow interactions. Another receptor(s) must be responsible for the specific 

interactions of HSC and their immediate progeny with components of the bone 

marrow. A recent study by Zannettino et al, 1998, has identified the sialomucin 

CD 164 as a potential candidate receptor for mediating this specific adhesion as a 

number of splice variants of CD 164 were found to exist, some of which are not 

expressed on haematopoietic cells (Zannettino et al, 1998).

In addition to retaining precursor B cells within the bone marrow, adhesion receptors 

also transmit signals that affect proliferation and survival of the precursors. For 

example, Borghesi and colleagues have demonstrated that direct contact with stromal 

cells prevents the spontaneous cell death of pre-B lymphocytes. Interestingly, 

antibodies to VCAM-1 did not interfere with the protective effect of the stromal cells, 

demonstrating that this pair of adhesion molecules does not participate in the delivery 

of sui'vival signals to these B lymphocytes (Borghesi et al, 1997). However, a recent 

study has demonstrated the importance of the VLA-4/VCAM-1 interaction for the 

survival of HSC and B cell precursors up to the pre-BI stage of development (Wang et 

al, 1998).

The effect of stromal cells on precursor cell proliferation seems to be dependent on the 

presence of cytokines. When integrins are engaged on haematopoietic progenitors 

cultured under physiological concentrations of cytokines, precursor proliferation is 

inhibited (Hurley et al, 1995, 1997). In contrast, when progenitors are cultured with 

pharmacological concentrations of cytokines, engagement of Integrins results in the 

recruitment of cells into the cell cycle (Levesque et al, 1996).

In addition to receiving signals from stromal cells, B cell precursors can also signal 

the stromal cells through cell contact to release cytokines such as IL- 6  (Jarvis and 

LeBein, 1995), and IL-7 (Stephan et al, 1998). The B cell precursors therefore are 

able to influence their own fate by controlling cytokine production from the stromal 

cells.

Although the exact role of cell-cell and cell-ECM interactions occurring within the 

bone marrow is not known, they are however important to precursor B cell



development. Understanding how precursor B cells modulate and are affected by 

adhesions has relevance to the spread of leukaemic cells out of the bone marrow. 

Aberrant adhesive interactions caused by decreased function or expression of adhesion 

receptors may underlie the premature mobilisation of progenitors into the blood. In 

addition, these defects may participate in the deregulated proliferation and 

differentiation seen in leukaemic transformation.

1.3.2 Role of cytokines

A considerable amount of research has been performed to assess the role of the IL-7 

cytokine in B cell development. IL-7 was initially identified as a 25kDa soluble 

growth factor capable of stimulating the proliferation of murine B cell precursors in 

vitro (Namen et al, 1988a), and was the first cytokine to be identified and cloned 

from a stromal cell line (Namen et al, 1988b). The importance of IL-7 was initially 

demonstrated by the absence of pre-B cells in mice injected with antibodies to either 

IL-7 or its receptor (IL-7R) (Grabstein et al, 1993; Sudo et al, 1993). Subsequent 

studies, using IL-7 (von Freeden-Jeffry et al, 1995), and IL-7R gene deficient mice 

(Peschon et al, 1994), confirmed that IL-7 mediated signals were essential for the pro- 

B to pre-B transition. The administration of IL-7 to normal mice has been shown to 

increase the number of pre-B cells, which subsequently differentiate into mature 

slgM^/sIgD^ B cells (Morrissey eta l, 1991).

In addition to inducing proliferation, Corcoran and colleagues have demonstrated that 

IL-7 is also involved in B lymphocyte differentiation. The researchers found that a 

mutation (Tyr4 4 9 -»Phe), in the a-chain component of the IL-7 receptor which 

prevented its binding to phosphatidylinositol-3-kinase (PI3-K), abrogated precursor B 

cell proliferation, but still permitted the rearrangement and expression of cytoplasmic 

Hfx chain. This demonstrated that the IL-7/IL-7R interaction actively regulates Ig gene 

rearrangement, and does not simply enable proliferation of cells undergoing 

rearrangement (Corcoran et al, 1996). In support of these initial findings, the 

researchers have subsequently reported impaired Ig H chain gene rearrangements in 

mice lacking the IL-7 receptor (Corcoran et al, 1998). A recent study by Stephan and 

colleagues has demonstrated that the gradual reduction of B cell lymphopoiesis in



ageing mice is related to the impaired release, rather than production, of IL-7 from 

BM stromal cells. They also found that IL-7 was not continually expressed, and 

contact between the lymphoid and the stromal cells was required for proliferation in 

both young and old animals. Based on these findings, the researchers suggest that B 

cells can influence their own fate by signalling the stromal cells through cell contact to 

release IL-7 into the local microenvironment. Stromal cells may therefore regulate B 

lymphopoiesis by limiting the amount of IL-7 available to developing precursors 

(Stephan eta l, 1998).

Although IL-7 can support the pro-B to pre-B transition, it is not required for the 

subsequent maturation to slgM^ immature B cells (Cumano et al, 1990). Late pre-BII 

and immature B cells do not detectably express the IL-7R, thus losing their 

responsiveness to IL-7 (Henderson et al, 1992). However, it has been demonstrated 

that the presence of IL-7 at the earlier pre-BI stage, inhibits any further maturation by 

preventing Ig light chain rearrangement, and thus subsequent IgM expression. 

Subsequent removal of IL-7 allows maturation to continue (Rolink et al, 1993). It was 

recently shown that IL-7-induced inhibition of maturation can be overcome by the 

expression of a transgenic B cell receptor in B cell precursors (Melamed et al, 1997). 

The inhibitory effect of IL-7 also explains why later stages of differentiation within 

the bone marrow are not dependent on stromal cell contact, the cells that actually 

produce the IL-7 cytokine (Ryan et ah, 1990).

In comparison to the mouse, IL-7 has been found to be non-essential for human B cell 

development (Prieyl and LeBien, 1996). However, IL-7 has been shown to down- 

regulate the expression of RAG-l/RAG-2 and TdT, which are involved in the 

recombination and formation of Ig chains, suggesting that this cytokine may modulate 

Ig receptor diversification (Billips et al, 1995b). Although not essential to the 

development of an individual cell, receptor diversification is important for the 

development of a highly effective immune response.

A number of synergistic factors, such as stem cell factor (Funk et al, 1993), flt3- 

ligand (Hirayama et al, 1995; Namikawa et al, 1996), and insulin-like growth factor- 

1 (IGF-1) (Landreth et al, 1992), have also been found to act on B cell precursors, but
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only in combination with IL-7. Other factors, such as pre-B cell stimulating factor 

(PBSF), can stimulate pre-B cell proliferation, both by itself and in synergy with IL-7 

(Nagasawa et al., 1994). Recent studies have demonstrated that IL-7 can form a 

heterodimeric complex with a 30kDa cofactor that selectively stimulates the 

proliferation and differentiation of pre-pro-B cells (i.e., early pro-B cells), and 

‘primes’ them to proliferate in response to monomeric IL-7 (McKenna et al, 1998; 

Lai et al, 1998). In pro-B cell cultures, IL-7 was found to exist almost entirely in the 

heterodimeric complex (termed pre-pro-B cell stimulating factor (PPBSF)), whereas 

in pre-B cell cultures it was found in monomeric form. The exact role and importance 

of this complex in vivo has yet to be determined but the development of pro-B cells in 

IL-7 gene deficient mice (von Freeden-Jeffry et al, 1995), suggests that PPBSF either 

is non-essential to development or compensatory mechanisms exist (Lai et al, 1998).

In contrast to the reported positive effects, some cytokines produced from stromal 

cells have been found to negatively modulate lymphopoiesis, for example: IL-la 

(Hirayama et al, 1994; Fauteux et al, 1996), IL-3 (Hirayama et al, 1994), IL-4 

(Pandrau et al, 1992), and IFNs a/|3 (Wang et al, 1995). The inhibitory effect 

mediated by TGF-(3 has recently been found to be due, at least in part, to its ability to 

down-regulate IL-7 secretion from stromal cells (Tang et al, 1997). In addition to 

inhibiting B cell lymphopoiesis, IL-la, IL-4 and TNF-a have been found to 

simultaneously induce the release of myeloid growth factors, demonstrating how the 

balance between lymphopoiesis and myelopoiesis in the BM might be regulated (Ryan 

e ta l, 1994a).

In addition to the local effects of cytokines, systemic hormones have also been 

implicated as negative regulators of B cell development within the BM. A reduction in 

pre-B cell levels have been obsei’ved during pregnancy, suggesting a role for sex 

steroids in the negative regulation of B cell development (Medina et al, 1993). 

Subsequent studies have demonstrated that oestrogen is the hormone responsible for 

this negative regulation (Medina e ta l, 1994; Smithson eta l, 1995).

Overall the array of positive and negative factors, presented by the BM 

microenvironment in soluble, membrane-bound or matrix-bound form act in concert
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to determine the progression of precursor B cells through their sequential stages of 

development.

1.4 AUTOCRINE GROWTH REGULATION

In addition to receiving growth regulatory signals in a paracrine fashion from bone 

marrow stroma or other cell types, B lymphocytes also respond to autocrine growth 

stimulation, whereby cells both release and respond to a growth promoting factor. This 

mechanism of self regulation is believed to be an important factor involved in 

tumorigenic transformation, as constitutive secretion of autocrine factors may allow 

cells to escape normal paracrine control (Sporn and Roberts, 1985; Lang and Burgess, 

1990).

A number of cytokines, some of which are known to be involved in paracrine control 

of growth and differentiation of B lymphocytes, have been identified as autocrine 

factors (summarised in table 1). The majority of studies have been carried out with 

either EBV-transformed, myeloma, or chronic lymphocytic leukaemia (CLL) B cells. 

The latter is a malignancy of relatively mature B cells and is characterised by the 

accumulation of slowly dividing B lymphocytes in the peripheral blood (reviewed by 

Dighiero and Binet, 1996). At present, very little evidence exists to demonstrate the 

role of autocrine factors in early B cell development.

In addition to acting independently, some cytokines have been found to act 

synergistically as autocrine growth factors. For example, it was reported that IL-1, IL- 

6 , TNF-a and TNF-|3 are all required for the continued growth of immortalised human 

B cell lines (Abken et a l, 1992). With this in mind, the identification of autocrine 

factors can be very difficult.

B cell growth factors have also been found to be produced by normal B cells, 

demonstrating that autocrine growth regulation is not a property specific to malignant 

transformation (Gordon et al, 1985; Jurgensen et al, 1986; Muraguchi et al, 1986; 

Gordon and Cairns, 1991). However, cellular activation of normal B lymphocytes is
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Table 1.1 B cell autocrine factors

Growth factor Cell type Reference

IL-1 -EBV-trans formed 

-ALL

Scaia etal., 1984 

Moi'i et aL, 1994

IL-5 -EB V-transformed Baumann and Paul, 1992

IL- 6 -EB V-transformed 

-myeloma cell lines

Y okoi e ta l, 1990 

Tosato et ciL, 1990 

Kawano e ta l, 1988

IL-7 -EB V-transformed 

-B-CLL

Benjamin of, 1994 

Frishman et al, 1993

IL- 8 -B-CLL Francia di Celle et al, 1996

IL-10 -EB V-transformed Burdin gfaf,  1993, 1997 

Boatty et al, 1997

TNF-a -B-CLL

-normal human splenic B cells

Cordingley <3 /., 1988 

Boussiotis e ta l, 1994

Lymphotoxin

(TNF-p)

-EBV-transformed 

-B-CLL

Estrov et al, 1993 

Kulmhui'g et al, 1998

Lactic acid -EB V-transformed Pike e ta l, 1991

sCD23 -EB V-transforme d 

-normal receptor-stimulated B 

cells

Swendeman & Thorley-Lawson, 

1987

GM-CSF -B ALL (Ph  ̂positive) Estrov^fa/., 1996

PDGF -SS V-transformed Huang et al, 1984

13



required for the production of cytokines, including autocrine factors, to take place 

(reviewed by Pistoia, 1997). The importance of autocrine growth regulation in normal 

B cell development is not known, but it is deemed unlikely that this mechanism plays 

a predominant role, since B cells are largely influenced by stromal cells and 

subsequently by T cells during their development (Pistoia, 1997). B cell autocrine 

factors may therefore play an auxilliary role in the regulation of B cell development.

Although identified in various malignant cell types, the importance of autocrine 

growth factors in tumorigenic transformation has been questioned. A number of 

researchers have reported that autocrine stimulation was in fact inversely proportional 

to the degree of tumorigenicity (Gordon et al, 1985; Swendeman and Thorley- 

Lawson, 1987; Abken et al, 1992). In addition. Young and colleagues demonstrated 

that although the over-expression of IL-7 in pre-B cells caused autocrine growth 

stimulation, the cells did not acquire a tumorigenic phenotype (Young et al, 1991). 

Autocrine factor production is therefore not the sole requirement for the 

transformation of B cells.

Although not the main factor causing transformation, the current view is that autocrine 

loops may still contribute to leukaemogenesis. A recent study found that TNF-j3 was 

expressed in leukaemic B cells, but not in B cells from normal donors, and that 

antisense TNF-p oligonucleotides were able to inhibit B-CLL proliferation (Kulmburg 

et al, 1998). A number of studies have also demonstrated that although autocrine 

factors may not be directly involved in proliferation, they may be important, if not 

essential, for the sui'vival of malignant cells (Francia di Celle et al, 1996; Kulmburg 

eta l, 1998).

In addition to autocrine factors providing a positive survival or proliferative signal to 

B cells, autocrine growth inhibitors, such as TGF-p (Kehrl et al, 1986), have also 

been identified. The down-regulation of these factors could lead to a loss of negative 

regulation, allowing continued cell growth, and thus may play a role in the 

development of malignancies (Gordon and Cairns, 1991). TGF-jl has been found to be 

over-expressed in B-CLL and as such, is believed to contribute to the slow 

proliferative characteristic of this leukaemia (Lotz et al, 1994).
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1.5 CD23 -ADHESION MOLECULE AND CYTOKINE

CD23 is a 45kDa cell surface antigen which is believed to have multiple functions in 

B lymphocytes and in the effector cells of IgE-mediated immune responses (reviewed 

by Bonnefoy et al, 1997). With respect to B cell functions, it is proposed to have roles 

in the regulation of cell growth and development, IgE regulation, antigen presentation, 

cell adhesion, and the prevention of apoptosis. After considering the structure and 

distribution of CD23, these B cell associated functions will be discussed.

1.5.1 Discovery and general distribution of CD23

Historically, the CD23 molecule was originally identified as an IgE receptor on human 

B cells (Gonzalez-Molina and Spiegelberg, 1976), then independently described as a 

cell surface marker expressed on Epstein-Barr-Virus (EBV) transformed B cells 

(Kinter and Sugden, 1981), and as a B cell activation antigen (Blast 2) (Thorley- 

Lawson et al, 1985). Subsequent studies confirmed this antigen as the low-affinity 

receptor for IgE (FceRII) (Bonnefoy et al, 1987; Yukawa et al, 1987). In addition to 

B cells, CD23 is also expressed on various other human cells including T cells, 

monocytes, macrophages, eosinophils, basophils, neutrophils, follicular dendritic cells, 

epidermal Langerhans cells and platelets (Delespesse et al, 1991). Within the mouse, 

CD23 expression is restricted to mainly B lymphocytes and follicular dendritic cells 

(Rao eta l, 1987; Maeda et al, 1992). Although initial studies focused on its ability to 

bind IgE, recent findings have identified other ligands for CD23, indicating that CD23 

has numerous roles, as a cytokine and as an adhesion molecule involved in cell-cell 

interaction (reviewed by Bonnefoy et al, 1997).

1.5.2 Structure of CD23

The CD23 gene is a single gene located on chromosome 19 (Suter et al, 1987; 

Wendel-Hansen et al, 1990). The gene encodes two isoforms (named ‘a’ and ‘b’), 

which differ only at the cytoplasmic amino-terminus where 7 amino acids of CD23a 

are replaced by 6  different amino acids in CD23b, and are generated by the use of
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alternative initiation sites (Yokota et al, 1988). In contrast to other Fc receptors, 

CD23 does not belong to the immunoglobulin superfamily but is a type H 

transmembrane glycoprotein with a short N-terminal intracytoplasmic tail (23 

residues), a single transmembrane domain (20 residues), and a large C terminal 

extracellular region (277 residues). It displays sequence homology to the C-type 

lectins, a family of proteins that bind carbohydrates in a calcium-dependent fashion 

(Drickamer, 1988). The region homologous to C-type lectins spans from cysteine 163 

to 282 and contains four highly conserved (positions 191, 259, 273, 282), and two 

partially consei-ved cysteines (positions 163 and 174) (Kikutani et al, 1986a; Ludin et 

al, 1987) (see figure 1.2). The presence of this lectin domain, the inverted membrane 

orientation, and the presence of several other conserved amino acids, classifies CD23 

as a member of a superfamily of type II integral membrane proteins including CD72, 

the asialoglycoprotein receptor-1, and the selectins (Delespesse eta l, 1992).

Mutational analysis of the lectin region revealed that it comprises the IgE binding site 

(Bettler et al, 1989b, 1992). The binding of IgE to CD23 is calcium-dependent 

(Richards and Katz, 1990), and can be inhibited by fucose-1-phosphate (Delespesse et 

al, 1992). In addition, the interaction also appears to involve protein-protein 

interactions as deglycosylation of IgE does not influence binding (Vercelli et al, 

1989a). The cytokine effects of CD23 however are mediated by an epitope distinct 

from the IgE binding site (Mossalayi et al, 1992).

In addition to the lectin homology domain, CD23 bears a triplet of amino acids DGR 

(Asp, Gly, Arg), at the carboxyl terminus, which in the reverse orientation, i.e. RGD, 

is a common recognition site for the integrin receptors (see figure 1.2). The 

importance of this motif, if any, to CD23 function remains to be determined.

Another feature of CD23 is the presence of 3 short consensus repeats of 21 amino 

acids each, located between the N-glycosylation site and the lectin domain. This 

repetitive region contains 5 heptadic repeats of leucines (or isoleucine) forming a 

Teucine zipper’ motif. Analysis revealed that this region in CD23 and other members 

of the C-type lectin superfamily, adopt an a-helical coiled-coil structure, representing 

a ‘stalk’ separating the lectin heads from the membrane. It was believed that this
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structure would mediate the formation of protein dimers or trimers at the cell surface 

(Beavil et al, 1992). In support of this, more recent studies have found that when 

subjected to protein-protein chemical cross-linking, CD23 forms trimers on the cell 

surface (Beavil et al, 1995).

Similar to other Fc receptors, soluble forms of CD23 (sCD23) are released into the 

extracellular fluids. Five major sCD23 fragments, apparent molecular masses 37, 33, 

29, 25 and 16kDa, have been identified, all derived from cleavage within the stalk 

region of 45kDa CD23 (see figure 1.2). The soluble components are first released as 

the 37kDa oligomeric form, which is subsequently cleaved to the other forms, with the 

25kDa form being the most stable (Letellier et al, 1989). The soluble forms of CD23 

contain the complete lectin domain and thus retain the ability to bind IgE -TgE- 

binding factors’ (Sarfati et al, 1987, 1988). Although able to bind IgE, the 161cDa 

fragment binds with lower affinity than the other fragments, a property believed to due 

to the monomeric nature of this soluble form (Bettler et al, 1989a). In addition to IgE- 

associated activities, sCD23 has been shown to exhibit pleiotropic cytokine activities 

(reviewed by Delespesse et al, 1992).

The rate of cleavage of CD23 is reduced by IgE and anti-CD23 antibodies, and is 

increased after the use of agents that prevent CD23 glycosylation, indicating that the 

carbohydrate chain of CD23 exerts a stabilising effect (Delespesse et al, 1989). The 

specific proteases involved in CD23 shedding have as yet not been identified. 

Previous studies have suggested an autocatalytic mechanism (Letellier et al, 1990), 

although CD23 does not resemble any known proteases. A recent study by 

Marolewski and colleagues, has demonstrated that in several human cell types, the 

initial release of CD23 from the cell surface is mediated by a membrane-bound 

metalloprotease that can be blocked by specific protease inhibitors. The researchers 

suggest that the previous proposal of autoproteolysis is a result of the co-purification 

of a protease with CD23, and speculate that a family of metalloproteases will mediate 

the cleavage of all the sCD23 fragments (Marolewski et al, 1998).

With regard to the oligomerisation, Beavil and colleagues (1995), demonstrated that 

after chemical cross-linking, soluble CD23 exists as hexamers in solution. As only the
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37kDa and 33kDa fragments possess any of the a-helical coiled-coil required for 

oligomerisation, the researchers suggest that the lectin heads in the 25 and 16kDa 

forms could self-associate independently of the stalk, thus allowing oligomerisation of 

these fragments. A recent study has demonstrated that 25kDa sCD23 exists in human 

serum as a trimer complex, which allows efficient interactions with both IgE and 

sCD21, suggesting that this trimeric form of sCD23 is the form exhibiting biological 

activities (Fremeaux-Bacchi et al, 1998). These data, in addition to the previous 

demonstration of trimeric membrane bound CD23 (Beavil et al, 1995), are in 

agreement with a model proposed by Sutton and Gould, in which two of the three 

lectin heads of CD23 are bound to an IgE molecule, thus leaving one of the heads to 

associate with other ligands such as CD21 (Sutton and Gould, 1993). An oligomeric 

form of CD23 therefore binds to IgE leading to an effective interaction.

1.5.3 Murine CD23

In contrast to the human form, 49kDa murine CD23 has 4 (instead of 3) consensus 

repeats, 2 (instead of 1) N-glycosylation sites, and no DGR motif (Better et al, 1989a; 

Gollnick et al, 1990). Initial studies reported 2 murine CD23 isoforms, one that was 

equivalent to the human ‘a’ isoform, and another that was unrelated to the amino 

terminus of the human ‘b’ form (Richards et al, 1991). However, controversy 

surrounds the existence of murine CD23 isoforms as subsequent studies have disputed 

the existence of a second form (Conrad et al, 1993), while others have reported an 

isoform with homology to human subtype ‘b’ at the amino terminus (Kondo et al, 

1994). Like the human form, murine CD23 has been found to require oligomerisation 

for efficient binding to IgE, although it is not known whether they exist as dimers or 

trimers (Dierks et al, 1993).

1.5.4 Regulation of CD23 expression

CD23 is rapidly superinduced in B cells transformed with EBV and, as such, was one 

of the ways in which the CD23 antigen was first identified (Kintner and Sugden, 

1981). Subsequent studies have determined that the EBV nuclear antigen (EBNA-2) 

and the latent membrane protein (LMP-1) induce the CD23a and CD23b membrane
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isoforms respectively, synergistically leading to high levels of membrane CD23 on the 

cells (Wang et al, 1990).

In untransformed B cells, IL-4 is known to be a major regulator of CD23 expression. 

This cytokine induces the expression of the ‘a’ isoform of human CD23, expressed 

exclusively on peripheral blood B cells, and of the ‘b ’ isoform, expressed on B cells 

and a number of other human cells including T cells and monocytes (Yokota et al,

1988). Induction of CD23 expression by IL-4 also occurs in the mouse (Hudak et al, 

1987). IL-13 has also been found to induce human B cell CD23 expression 

independently of IL-4, with no synergistic effect between these two cytokines 

(Punnonen et al, 1993).

In the B cell lineage, CD23 is expressed on normal mature IgM^ IgD^ B cells, but is 

lost following isotype switch and differentiation into Ig-secreting cells (Kikutani et al, 

1986b; Waldschmidt et al, 1988; Kehry and Hudak, 1989). With respect to precursor 

B cells, CD23 can be induced on malignant pre-B cells from acute lymphoblastic 

leukaemia (ALL) patients by IL-4 (Law et al, 1991), and by the ligation of CD40 on 

normal pre-B cells (Saeland et al, 1993). This latter effect has also been demonstrated 

with murine B cells using CD40 ligand in conjunction with IL-4 (Maliszewski et al,

1993).

In addition to cytokine regulation, CD23 expression in vitro is reported to be regulated 

by its ligand, IgE, which prevents the proteolytic cleavage of CD23, thereby stabilising 

its surface expression (Lee et al, 1987; Kawabe et al, 1988). Recent studies by 

Kisselgof and Oettgen have demonstrated this effect in vivo, IgE-deficient mice were 

found to have a defect in CD23 expression on B cells compared to wild-type animals, 

that could be restored by the injection of IgE. The researchers suggest that IgE- 

mediated up-regulation of CD23 may be important in enhancing immune responses by 

participating in the uptake of IgE-antigen complexes, thus facilitating antigen 

presentation by B cells (discussed in section 1.5.6). In addition, they also speculate 

that if the mechanism whereby IgE regulates CD23 expression in vivo is the same as 

its anti-proteolytic effect in vitro, it is possible that IgE binding to CD23 mediates 

additional effects via regulating the release of sCD23 (Kisselgof and Oettgen, 1998).
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Soluble CD23 is reported, albeit controversially, to have various biological activities 

(see section 1.5.7).

1.5.5 Ligands for CD23 other than IgE

In addition to IgE binding, a number of other non-IgE-related activities have been 

described for CD23/sCD23 (described in sections 1.5.6 and 1.5.7), leading researchers 

to investigate whether CD23 could interact with ligands other than IgE. The initial 

demonstration of the existence of an alternative ligand for CD23 was made in 1992 by 

Pochon and colleagues by the use of recombinant full-length CD23 incorporated into 

fluorescent liposomes (Pochon et al, 1992). Since then, a number of CD23 ligands 

have been identified namely CD21, CD 11b and CD llc (see below).

1.5.5a CD21

Human CD21 is a 145kDa membrane glycoprotein expressed on various cell types 

including B cells, a subpopulation of T cells, and follicular dendritic cells. It has been 

identified as a receptor for the gp350/220 envelope glycoprotein of EBV (Tanner et 

al, 1987), interferon-a (Delcayre et al, 1991), and as the complement receptor-2 

(CR2) (Weis et al, 1984). On the membrane of B cells, CD21 is present in part within 

a molecular complex, in association with CD19, Leu 13 and TAPA-1 (Matsumoto et 

al, 1991; Bradbury et al, 1992). Co-ligation of this complex with surface IgM 

decreases the amount of antigen required to trigger B cell activation (reviewed by 

Fearon and Carter, 1995; Carroll, 1998).

Structurally, the CD21 protein is composed of an extracellular domain of 15 to 16 

short consensus repeats of 60 to 75 amino acids (SCRs), followed by a transmembrane 

domain and an intracytoplasmic domain of 24 and 34 amino acids, respectively (Weis 

et al, 1988). Studies using inhibitory anti-CD21 antibodies as well as the binding of 

CD23 liposomes to recombinant CD21 transfected cells revealed that CD21 was an 

alternative ligand for CD23 (Aubry et al, 1992). Subsequently, Aubry and colleagues 

determined the sites of interaction of CD23 on CD21 by the use of CD21 mutants 

bearing deletions in the SCRs. An interaction site was mapped to SCRs 5-8, which 

was found to involve a lectin interaction, as tunicamycin treatment inhibited the
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binding of CD23-containing liposomes to this region. In addition, SCRs 1-2 were also 

found to be involved in binding, but via a protein-protein interaction with CD23 

(Aubry et at, 1994).

A soluble form of CD21 (sCD21) has been identified in human serum and in culture 

supernatants of human lymphocyte cell lines (Myones et al, 1987; Ling et al, 1991; 

Huemer et al, 1993). The soluble 135kDa protein that is cleaved and shed from 

human B and T lymphocytes corresponds to the extracellular portion of the CD21 

molecule (Fremeaux-Bacchi et al, 1996). Recent studies have shown that sCD21 

retains the ligand binding properties of the membrane form, and as such, exists in 

normal plasma in a complex with trimeric sCD23, and thus regulates some sCD23 

activities (see section 1.5.7) (Fremeaux-Bacchi et al, 1998).

Overall, the interaction of CD23/sCD23 and CD21/sCD21 is believed to contribute to 

a number of important events within the immune system including, the regulation of 

IgE production, and the formation of homotypic and heterotypic cell adhesions (see 

section 1.5.6).

1.5.5b C D llb/C D llc

CD llb and CD llc represent the a  chains of the |32 integrin adhesion molecules 

which participate in many cell-cell and cell-matrix interactions. These a  chains 

(17kDa and 15kDa respectively), exist as heterodimers with a common (3 subunit, 

CD18, (95kDa), to form the Mac-1 (CDllb-CD18), and pl50,95 (CDllc-CD18) 

glycoprotein receptors (Kurzinger et al, 1982; Corbi et al, 1987, 1988). The third 

member of this integrin family is CDlla-CD18, known as the leucocyte function- 

associated antigen-1 (LFA-1) (Sanchez-Madrid et al, 1983; Larson et al, 1989). 

LFA-1 is expressed on virtually all leucocytes, whereas Mac-1 and pl50,95 are 

expressed on myeloid cells and on activated but not resting lymphocytes, where they 

can also act as receptors for complement proteins (Anderson and Springer, 1987). The 

final member of this family, CDlld-CD18, is expressed on subsets of peripheral 

blood leukocytes (Van der Vieren et al, 1995).
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The importance of the ^2 integrin family is signified by the clinical syndrome known 

as leucocyte adhesion deficiency (LAD) (Anderson and Springer, 1987). The primary 

defect in LAD is in the p subunit, which is required for the correct processing and 

expression of the a  subunits (Kishimoto et al., 1987). LAD patients have recurrent 

bacterial infections which are sometimes fatal, as circulating neutrophils and 

monocytes are unable to bind and migrate into infected tissue.

In a series of experiments performed by Lecoanet-Henchoz and colleagues, CD23 was 

found to bind to CD llb and C D llc on human monocytes, CD23 containing 

liposomes bound to COS7 cells transfected with cDNA encoding CDllb-CDlS or 

CDllC"CD18, but not CDlla-CD18. CD23 binding to CDlld-CD18 has to date not 

been investigated. The interaction between CD23 and CDllb/c appears to involve 

both lectin and protein-protein interactions, as IgE, which binds to the lectin domain 

of CD23, partially inhibits the binding of CD23 to monocytes (Lecoanet-Henchoz et 

aL, 1995). The binding of these (32 integrin components is thus reminiscent of that 

observed between CD23 and CD21 (Aubry et al, 1994). Although CD23 includes a 

DGR triplet of amino acids, that in the reverse orientation is a common recognition 

site for integrin receptors, this was found not to be involved in the interaction between 

CD23 and CDllb/c (Lecoanet-Henchoz et al, 1995). Upon binding to monocytes via 

CDllb/c, CD23 causes a marked increase in nitric oxide levels and the release of 

proinflammatory cytokines including, IL-la, IL-1 (3, IL-6 , IFN-y and TNF-a 

(Lecoanet-Henchoz et al, 1995). This biological activity of CD23 has also been found 

within the mouse, mediated via CD llb on murine monocyte cells (Lecoanet-Henchoz 

et al, 1997), further demonstrating a role for CD23 as a proinflammatory mediator. 

By mediating this activity, CD23 is believed to have a significant role in 

inflammation, supported by the presence of elevated levels of CD23 in various 

inflammatory diseases (Bonnefoy et al, 1996) (discussed further in section 1.5.9).

1.5.6 Function of membrane CD23 with respect to B cells

CD23 has been postulated to play a role in IgE regulation ever since the finding that 

IL-4 and IL-13 upregulate CD23 expression as well as IgE production from B cells 

(Defiance et al, 1987; Punnonen et al, 1993). In addition, factors which block IL-4
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induced IgE synthesis, such as interferon-y (Pene et aL, 1988), also inhibit CD23 

induction by IL-4 on B cells (Defrance et al, 1987). The importance of CD23, and its 

soluble fragments, in in vitro IgE synthesis, was confirmed by the demonstration that 

anti-CD23 antibodies were able to inhibit IL-4 induced IgE production (Saifati and 

Delespesse, 1988; Pene et al, 1988; Bonnefoy et al, 1990). Subsequently, the same 

result was obtained in vivo with studies in the rat system (Flores-Romo et al, 1993). 

As physical interactions between B and T cells are known to be required for IgE 

production (Vercelli et al, 1989b), these results suggested that CD23 somehow 

contributes to the B cell/T cell interaction necessary for IgE production. Conjugate 

formation between these two cell types is now known to involve interactions between 

CD23 and CD21, as anti-CD21 antibodies, like anti-CD23 antibodies, were found to 

decrease T-B conjugate formation (Aubry et al, 1992, 1993). More importantly, 

engagement of CD21 on B cells by either anti-CD21 antibody or sCD23, resulted in an 

increase of IL-4 induced IgE production (Aubry et al, 1992), thus suggesting that the 

IgE-promoting effects of CD23 are probably mediated through CD21. Based on this 

observation, and the reported induction of CD23 on T cells by IL-4 and allergen (Prinz 

et al, 1990), Bonnefoy and colleagues suggest that in allergic individuals, T cell- 

associated CD23 interacts with CD21 on B cells to cause an increase in IgE 

production. Therefore, in the absence of allergen and IL-4 as in normal individuals, 

the T-B interaction does not take place and the resting B cell is not induced to 

differentiate into an IgE producing cell (Bonnefoy eta l, 1997).

Increased IgE production via triggering of CD21 has been observed in both T cell- 

dependent and independent systems (Henchoz et al, 1994), suggesting that 

heterotypic T-B (Aubry et al, 1993), and also homotypic B-B (Bjorck et al, 1993) 

interactions can occur through CD23/CD21 pairing. The latter effect is believed to be 

important for the exchange of autocrine factors during the later stages of B cell 

activation and differentiation (Bjorck and Paulie, 1993).

The CD23 expressed on B cells regulates two important B cell functions namely, IgE- 

dependent antigen presentation to T cells, and B cell differentiation into Ig-producing 

cells. The role of CD23 in antigen presentation is related to its physical association 

with MHC class II antigens on the surface of B cells which present antigen to T cells
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(Bonnefoy et al, 1988). Flores-Romo et al, 1990, demonstrated that occupancy of 

CD23, by either anti-CD23 antibodies or IgE, prevented B cells from stimulating 

allogeneic T cells. Further studies demonstrated that the CD23/CD21 interaction, 

resulting in T/B conjugate formation, is required for antigen presentation and suggest 

that this interaction provides a co-stimulatory signal to the T cell (Grosjean et al, 

1994).

Antigen presentation by resting B cells is mediated by CD23a, as this isoform is 

expressed exclusively on these cells and has been found to mediate efficient 

endocytosis of IgE immune complexes (IgB-IC) (Yokota et al, 1992). Specific IgE 

antibodies and CD23 on B cells may amplify the T cell response to the corresponding 

antigen by expanding the pool of Ag-specific T cells involved (Delespesse et al, 

1992).

The B cell presenting antigen via the use of CD23 is not antigen specific as the B cell 

antigen receptor is not involved. It was found that cross-linking of B cell CD23 by 

anti-CD23 antibodies or IgE-IC prevented the activation and differentiation of these 

cells, thus preventing B cell differentiation and the production of antibodies with 

unrelated specificities (Luo et al, 1991). This effect suggests that by using CD23, IgE 

down-regulates its own production by preventing the recruitment of new IgE 

producing cells from the sIgM‘̂ /sIgDVCD23'^ B cells (Delespesse et al, 1992). The 

inhibitory effect reported by Luo and colleagues was not observed in the absence of 

IL-4 driven B cell stimulation (Luo et al, 1991). This cytokine induces the expression 

of both CD23 isoforms, predominately isoform ‘b’ (Yokota et al, 1988), suggesting 

that the inhibitory signal is delivered to the B cell after engagement of this inducible 

‘b ’ isoform (Delespesse e ta l, 1992). This theory would explain why the cross-linking 

of CD23 on IL-4 stimulated mouse B cells has no effect on their differentiation into 

IgE-secreting cells, as these do not seem to express the equivalent of the human ‘b’ 

isoform of CD23 (Delespesse et al, 1992).

In contrast to these reports of inhibitory signals, some researchers have demonstrated 

that CD23 may deliver growth-promoting signals to human and mouse B cells. Using 

phorbol ester-pre-activated human B cells, Gordon and colleagues demonstrated that
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anti-CD23 antibodies could promote cell cycle progression and DNA synthesis 

(Gordon et aL, 1986). However, this growth-promoting effect was only mediated by a 

small number of CD23 monoclonal antibodies all directed against the same epitope. In 

addition, the anti-CD23 antibody used by Luo et al. (1991), to demonstrate the 

inhibitory effects of CD23 ligation, failed to increase the proliferation of cells under 

the experimental conditions previously used by Gordon and colleagues (Delespesse, 

unpublished observations in Luo et al., 1991). In light of these results, it was 

suggested that anti-CD23 antibodies may deliver either positive or negative signals to 

B cells, depending on their epitope specificity and also perhaps upon the activation 

state of the cell (Luo et al, 1991).

1.5.7 Function of sCD23 with respect to B cells

In addition to being able to bind to IgE and thus regulate IgE synthesis, soluble 

fragments of CD23 exhibit multiple functions that are IgE-independent, resulting in 

sCD23 being described as a pleiotropic cytokine (Gordon eta l, 1989). With respect to 

IgE, however, human sCD23 is capable of up-regulating the in vitro synthesis of IgE 

in the presence of IL-4 (Pene et a l, 1989; Aubry et al, 1992; Delespesse et al, 1992; 

Saxon et al, 1990). This activity has been shown to be restricted to fragments 

>29kDa, with the 16kDa fragment actually inhibiting IgE synthesis in vitro (Sarfati et 

al, 1992). In comparison, this IgE-dependent activity of human sCD23 has not been 

detected for the murine counterpart, highlighting a major difference between these two 

species (Bartlett and Conrad, 1992). A recent study has shown that human sCD23- 

induced IgE synthesis can be inhibited by sCD21, suggesting that when complexed 

with sCD21, sCD23 is unable to bind to the membrane CD21 receptor and elicit its 

effects (Fremeaux-Bacchi et al, 1998). This result therefore demonstrates that in 

addition to the membrane associated forms of these antigens (discussed previously), 

interactions between the soluble forms of CD21 and CD23 also mediate important 

biological effects.

A number of researchers have studied the B cell growth factor (BCGF) effects 

exhibited by sCD23. Swendeman and Thorley-Lawson (1987), were the first to 

demonstrate that affinity purified sCD23, made of 25 and 12kDa proteins, possessed
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growth promoting activity, and acts as an autocrine factor for EBV-immortalised and 

receptor-stimulated B lymphocytes. In support of this observation, a number of other 

studies have demonstrated the BCGF activity exhibited by sCD23 (Gordon et al, 

1988; Armitage and Goff, 1988; Delespesse et al, 1989). However, by using 

recombinant sCD23 derived from cDNA constructs, Uchibayashi and colleagues 

demonstrated that the 25kDa fragment does not possess any BCGF activity. In light of 

this, the researchers suggested that the BCGF activity of sCD23 is mediated by the 

12kDa protein present in the affinity purified sCD23, which had been used previously 

by researchers (Uchibayashi et al, 1989). In support of this, the co-purified 12kDa 

protein, but not the 25kDa fragment alone, has been found to display growth 

promoting properties (Luo et al, 1989). Subsequent research by Cairns and Gordon 

(1990), found that intact 45kDa CD23, purified from cell lysate material, was 

consistently mitogenic for normal and transformed B cells. They also demomstrated 

that although on occasion sCD23 exhibited BCGF activity, sCD23 preparations were 

highly variable in their biological activity, making its full characterisation 

problematic. They suggest that the BCGF activity may be associated with an unstable 

cleavage product such as the 37kDa isoform, which initially exhibits the activity of the 

45kDa form but is rapidly degraded into the non-stimulatory stable 25kDa fragment 

(Cairns and Gordon, 1990). As sCD23 BCGF activity has only been observed for 

substantially activated B cells, previous reports of no activity (Uchibayashi et al, 

1989), may be due, in part, to inappropriate pre-activation of the B cells (Cairns and 

Gordon, 1990). While these discrepancies exist, and the identity of the soluble isoform 

responsible for cell growth stimulation is unknown, the role of sCD23 in B cell 

growth remains controversial.

Interestingly, sCD23 has been identified as a cytokine able to deliver survival signals 

to germinal centre B cells. Germinal centres have two anatomical compartments: 1) 

the dark zone which is populated by rapidly proliferating activated B cells called 

centroblasts and 2 ) a light zone which contains the progeny of centroblasts, 

centrocytes. Within the ‘basal’ light zone, many centrocytes undergo programmed cell 

death/apoptosis (discussed in section 1 .6 ), by failing to undergo high affinity 

interactions with antigen held on the follicular dendritic cells (FDC) which also 

populate the this zone (MacLennan et al, 1992). Ever since FDC in the ‘apical’ region
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of the light zone, but not the basal region, were found to express high levels of CD23, 

CD23 has been speculated to be involved in the subsequent survival of FDC-Ag 

selected B cells (Gordon et al, 1989). This idea was confirmed by Liu and colleagues 

(1991a), who demonstrated that in synergy with IL-la, recombinant 25kDa sCD23 

promotes the sui'vival of freshly isolated germinal centre B cells placed into culture, 

and promotes plasmacytoid differentiation. Previous studies by these researchers 

demonstrated that death could be prevented, without any subsequent plasmacytoid 

differentiation, by activating the cells via their antigen receptor and CD40 (Liu et al,

1989). In summation, these results lead to a model for germinal centre B cell 

development in which centrocytes initially rescued from apoptosis through re­

encounter with antigen, subsequently develop into plasma or memory B cells by 

receiving signals mediated by sCD23 and IL -la or CD40, respectively (Liu et al, 

1991a).

Studies by Bonnefoy and colleagues (1993), have demonstrated that sCD23 mediated 

rescue of germinal centre B cells from apoptosis can be mimicked by anti-CD21 

antibodies. These antibodies were also found to promote plasmacytoid differentiation 

and up-regulate the expression of the anti-apoptotic proto-oncogene bcl-2 in the B 

cells. These results therefore suggest that FDC-associated CD23 affects B cell 

development in germinal centres by acting through CD21 (Bonnefoy et al, 1993). As 

yet this survival mechanism has not been demonstrated in vivo, and it is unknown 

whether this function is actually mediated by the soluble or membrane form of CD23 

on FDC.

In further support for sCD23 pleiotropic cytokine activity, this protein has proposed 

functions outwith the B cell compartment, namely in the proliferation of T cells 

(Armitage et al, 1989; Bertho et al, 1991), and for the growth and differentiation of 

both early human myeloid and thymocyte precursors (Mossalayi et al, 1990a, 1990b). 

However, it remains to be demonstrated if these effects of CD23, in addition to the 

ones described previously for B cells, represent true in vivo functions and whether 

they are actually mediated by the soluble or membrane bound form of CD23.
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In an attempt to evaluate the in vivo roles of CD23, CD23-deficient mice have been 

generated. Fujiwara and colleagues (1994), demonstrated that these mice have normal 

lymphocyte differentiation and can mount normal antibody responses. These results 

suggested that previously reported in vitro activities were not representative of in vivo 

functions. However, the researchers suggest that these discrepancies may be explained 

by the differences between the human and murine CD23 molecules, namely in the 

differences in cellular distribution, structure, and the inability of murine sCD23 to 

mediate any of the activities ascribed to human sCD23 (Bartlett and Conrad, 1992). 

The results do however confirm the participation of CD23 in antigen presentation, as 

the deficient mice did not display IgE-dependent enhancement of antibody responses 

(Fujiwara et al, 1994).

1.5.8 CD23 and bone marrow haematopoiesis

CD23 has been ascribed a role in Ag-independent phase of haematopoiesis within the 

bone marrow due to the ability of sCD23 to promote the differentiation of human 

myeloid precursors from haematopoietic stem cells (Mossalayi et al, 1990a). 

Subsequent studies by Fourcade and colleagues, 1992, demonstrated that CD23 is 

expressed and secreted as a soluble form in freshly isolated BM cells, and stromal 

cells derived from long-term BM-cultures (LTBMC). The researchers found that 

addition of anti-CD23 antibody to LTBMC significantly reduced haematopoiesis, 

further confirming the ability of CD23 to regulate development (Fourcade et al,

1992).

CD23 has also been shown to be involved in mediating adhesion within the bone 

marrow. Human myeloma cells, the malignant counterpart of plasma cells, have been 

found to attach via their CD21 antigen to BM stromal cell CD23 (Huang et al, 1995; 

Ishikawa et al, 1998), demonstrating another role for this adhesion pair.

Although BM-derived CD23 has yet to be ascribed a direct role in human precursor B 

cell development, it is possible that either the membrane-bound or soluble form, or 

indeed both, may play a contributory role.
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1.5.9 The role of CD23 in disease

Although the precise in vivo roles of CD23 are unconfirmed, the biological importance 

of CD23 is implicated by its involvement in various pathological conditions.

Normal healthy individuals have less than 5ng/ml of sCD23 in serum (Yanagihara et 

al, 1990; Delespesse et al, 1992). In atopic individuals, where there is an 

overproduction of IgE antibodies, sCD23 serum levels are elevated and are correlated 

with those of IgE (Delespesse et al, 1992). Recent studies have demonstrated that Der 

pi, a major allergen of the house dust mite, is able to actively cleave CD23 from the 

surface of B cells, demonstrating how an allergen can disrupt the regulation of IgE 

synthesis mediated by CD23, leading to an excess of IgE in an immune response 

(Hewitt cra/., 1995; Schulz era/., 1997; Shakib eta l, 1998).

There are elevated levels of CD23-positive B cells (Kumagai et al, 1989), and sCD23 

in the serum and more importantly, in the synovial fluid of rheumatoid arthritis (RA) 

sufferers (Delespesse et al, 1991; Hellen et al, 1991; Bansal et al, 1993). In murine 

models of arthritis, injection of anti-CD23 antibodies has been found to ameliorate the 

symptoms of the disease (Plater-Zyberk et al, 1995). A mechanism of action for anti- 

CD23 antibody treatment is believed to be the blocking of the interaction between 

CD23 and CDllb/c on monocytes (Bonnefoy eta l, 1996). As previously discussed in 

section 1.5.5b, this interaction induces the release of proinflammatory cytokines by 

monocytes (Lecoanet-Henchoz et al, 1995), demonstrating how increased levels of 

CD23 may mediate inappropriate inflammatory reactions. In the inflamed synovium, 

macrophages have also been found to express CD23, which if ligated by IgE immune 

complexes or anti-CD23 antibodies, also triggers the release of proinflammatory 

mediators (Dugas et al, 1995). Simultaneous expression of CD23 and CDllb/c may 

also allow stimulatory homotypic interactions to take place, and may explain why, 

once located to the joints, macrophages can maintain and exacerbate inflammatory 

responses (Bonnefoy et al, 1996).

Compared to normal individuals and patients with other B cell lymphoproliferative 

disorders, levels of sCD23 are significantly elevated, up to 500-fold, in the serum of
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patients with B cell chronic lymphocytic leukaemia (B-CLL) (Sarfati et al, 1988).

This malignancy is characterised by the accumulation of slowly dividing mature B 

lymphocytes in the peripheral blood (reviewed by Dighiero and Binet, 1996). Elevated f

sCD23 levels correlate with the clinical stage of the disease (Sarfati et aL, 1988), and 

has recently been shown to help predict disease progression (Knauf et aL, 1997). The 

elevated levels of CD23 in B-CLL arise from both the increased numbers of CD23- 

positive B cells, and also from the over-expression of CD23 on the surface of these 

neoplastic cells (Sarfati et aL, 1990). In contrast to normal B cells that exclusively 

express CD23 isoform ‘a’, freshly isolated B-CLL cells express both the CD23a and 

CD23b isoforms (Fournier et al, 1991). Subsequent studies have shown that CD23a 

and CD23b are abnormally regulated in B-CLL cells by cytokines such as IL-2, IFN-a,

IFN-y and IL-4, and are believed to contribute to the survival and proliferation, 

respectively, of B-CLL cells (Fouriner et al, 1995).

1.6 APOPTOSIS/PROGRAMMED CELL DEATH

Cell death is fundamental for the development and homeostatic maintenance of multi- 

cellular organisms, in processes such as the sculpting of limbs, controlling cell 

numbers, and the elimination of abnormal, misplaced, non-functional, or harmful 

cells. Deregulation of cell death contributes to the pathogenesis of diseases, such as 

lymphomas and leukaemias, and is therefore an essential area of scientific study.

The importance of ‘normal cell death’ was initially highlighted in 1972 by Kerr and 

colleagues. They described a distinct set of morphological features that categorised 

dying cells into one of two categories, either necrosis or apoptosis. The former has 

often been referred to as accidental cell death as it results from acute cellular injury, 

which is typified by rapid cell swelling and lysis. In contrast, apoptotic cell death is 

characterised by controlled autodigestion of the cell, reflecting the operation of an 

active or programmed mechanism of death (Kerr et al, 1972; Wyllie et al, 1980). 

Previously called shrinkage necrosis on morphological grounds (Kerr, 1965), the word 

apoptosis is derived from a Greek term describing the process of leaves falling off
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trees in the autumn, and was chosen to suggest that cell loss is desirable for the 

survival of the host (Kerr et al, 1972).

The terms apoptosis and programmed cell death (PCD) have often been used 

interchangeably causing much confusion within the literature. These terms are now 

however considered non-synomous. PCD is a functional term describing a cell death 

that is normal part of life, while apoptosis is purely a descriptive term that represents a 

type of cell death with distinctive morphological characteristics (Martin et al, 1994).

1.6.1 The morphology of apoptosis

During apoptosis a distinct sequence of morphological events has been characterised 

(Kerr et al, 1972; Wyllie et al, 1980). In the early stages, the nucleus shrinks and its 

chromatin becomes condensed into compact masses along the nuclear membrane. 

Parallel to these nuclear changes, the cytoplasm compacts resulting in the crowding of 

organelles, which characteristically retain their form. As a result of overall cell 

shrinkage the plasma membrane becomes ruffled, a process called zeiosis, or rapid 

blebbing (Cohen et al, 1992b). At this stage the cell often breaks up into membrane 

bound fragments called apoptotic bodies which retain their osmotic balance. These 

apoptotic bodies undergo rapid phagocytosis by either neighbouring cells acting as 

semi-professional phagocytes, or by cells of the macrophage lineage. This rapid and 

efficient removal of apoptotic cells occurs before there is any leakage of cellular 

components, thus preventing the induction of an immune response, a feature that 

clearly distinguishes apoptosis from necrosis.

In addition to the obvious morphological events, the chromatin changes during 

apoptosis are accompanied by the internucleosomal cleavage of DNA. This process 

was originally believed to be the biochemical hallmark of apoptosis, and can be 

visualised upon gel electrophoresis as multiples of 2 0 0 bp oligonucleosome fragments 

- the DNA ladder (Wyllie, 1980). However, this degradation of DNA is now believed 

to be a late apoptotic event, as evidence has arisen for the cleavage of DNA into larger 

300 and/or 50kb fragments due to the severing of DNA from its sites of attachment at 

the nuclear matrix (Oberhammer et al, 1993; Brown et al, 1993). In addition,
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apoptosis has been observed in the absence of a DNA ladder, and, as such 

internucleosomal cleavage cannot be a major criterion for identifying apoptotic cells 

(Cohen et al, 1992a; Oberhammer et al, 1993; Ormerod et al, 1994). Programmed 

cell death has also been found to occur in the absence of a nucleus, suggesting that 

events such as nuclear condensation and nuclear fragmentation are not essential for the 

process, thus implicating the role of a cytoplasmic initiator (Jacobson et al, 1994).

1.6.2 The role of apoptosis in B cell development

During development, the majority of B cells produced from haematopoietic stem cells 

undergo apoptosis, never participating in a specific immune response. This process 

begins in the bone marrow when precursor B cells fail to productively rearrange their 

immunoglobulin genes. It is estimated that around 75% of B cells are eliminated 

during the transition from the pro-B to pre-B cell stage (Osmond et al, 1992). Cells 

with abortive rearrangements die by apoptosis and are engulfed by macrophages 

residing in the bone marrow (Osmond et al, 1994; Lu and Osmond, 1997).

The next stage of B cell development susceptable to apoptosis is the immature B cell, 

which characteristically expresses surface IgM. Engagement of the antigen receptor at 

this developmental stage results in clonal deletion, the mechanisms of which appear to 

include both the induction of unresponsiveness (anergy), and apoptosis (reviewed by 

Rajewsky, 1996),

Mature (IgMVlgD^) B cells are also susceptible to apoptosis. During an immune 

response, these cells undergo affinity maturation, to generate antibodies with high 

affinity for antigen, via the processes of somatic hypermutation and antigen-driven 

selection (reviewed by Liu et al, 1997b). Somatic hypermutation occurs in activated B 

cells (centroblasts) within the dark zone of the germinal centre. The progeny of these 

cells, the centrocytes, are then positively selected based on the affinity of their 

modified antigen receptor to antigen retained on follicular dendritic cells. Centrocytes 

that bind with low affinity do not receive positive survival signals, and thus undergo 

apoptosis. As previously mentioned in section 1.5.7, the signals mediating centrocyte 

survival are delivered via the antigen receptor and CD40 (Liu et al, 1989), and also by
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soluble CD23 and IL -la (Liu et al, 1991a). The former signal is believed to induce 

differentiation into a memory B cell, whereas the latter promotes plasmacytoid 

differentiation (Liu et al, 1991a). As somatic hypermutation may also generate 

autoreactive mutants, a negative selection mechanism also occurs within the germinal 

centre (reviewed by Liu et al, 1997).

1.6.3 The basic apoptotic machinery

The potential to undergo apoptosis is an inherent property of all nucleated cells, each 

constitutively expressing the protein components required to execute the death 

pathway, without the need for additional protein synthesis (Jacobson et al, 1997). 

Evidence for this has come from the use of the drug staurosporine, a bacterial product 

that inhibits many protein kinases. When used in the presence of the protein synthesis 

inhibitor cycloheximide, staurosporine rapidly induces PCD in all the cells that can be 

dissociated from a 13 day mouse embryo (Ishizaki et al, 1995), and in the cultures of 

a variety of neonatal and adult rodent organs (Weil et al, 1996). In addition, the 

nucleus is not required for PCD in cells that normally have one, as anucleate 

cytoplasts also undergo PCD upon treatment with straurosporine (Jacobson et al,

1994). Therefore, with the exception of red blood cells, all mammalian cells are 

capable of undergoing PCD. In those cases where inhibitors of RNA or protein 

synthesis have been shown to inhibit PCD, it is believed that synthesis is required to 

activate rather than execute the pathway (Weil et al, 1996).

The molecular basis of programmed cell death and its control have in recent years 

been the focus of much attention. Considerable progress has been made from the 

genetic analysis of Caenorhabditis elegans which identified three genes, ced-3, ced-4 

and ced-9, that are pivotal to PCD in the nematode (Ellis and Horvitz, 1986). Loss of 

function mutations determined that ced~3 and ced-4 are both essential for cell death to 

occur (Ellis and Horwitz, 1986), whereas ced-9 protects cells from undergoing 

apoptosis (Hengartner et al, 1992). Subsequently, the order in which these cell death 

genes act in the nematode was delineated, namely that ced-9 functions upstream of 

ced-4, and ced-4 acts upstream of ced-3 (Shaham and Hoivitz, 1996). Further studies 

demonstrated that Ced-4 interacts with Ced-3 and promotes its activation, whereas
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Ced-9 binds to Ced-4 preventing its interaction with, and therefore activation of Ced-3 

(Chinnaiyan et al, 1997, Wu et al, 1997). Ced-4 therefore plays a central role in the 

cell death pathway, physically linking the regulators of apoptosis to the effectors 

(Chinnaiyan et al, 1997, Wu et al, 1997).

The importance of these C. elegans studies was only really appreciated upon the 

identification of mammalian homologues to the C. elegans cell death genes that 

regulate mammalian cell death. Ced-3 is homologous to the caspase family (Yuan et 

al, 1993), Ced-4 to mammalian Apaf-1 (Zou et al, 1997), and Ced-9 is related to the 

Bcl-2 family of apoptotic regulators (Hengartner and Horvitz, 1994).

1.6.4 The BcI-2 family of apoptotic regulators

1.6.4a Bcl-2

Bcl-2 is the mammalian homologue of the nematode regulator of apoptosis Ced-9 

(Hengartner and Horvitz, 1994). Importantly, Bcl-2 is able to suppress apoptosis in 

ced-9 mutants (Vaux et al, 1992; Hengartner and Horvitz, 1994), demonstrating the 

conserved nature of the death pathway regulated by Bcl-2. Bcl-2 was first identified in 

follicular B cell lymphomas where a t(14:18) chromosomal translocation puts the gene 

under the powerful transcriptional regulatory elements of the immunoglobulin heavy 

chain gene, resulting in Bcl-2 over-expression (Tsujimoto et al, 1984; Bakhshi et al, 

1985; Tsujimoto and Croce, 1986; Cleary et al, 1986). The discovery that bcl-2, 

unlike oncogenes previously studied, functions by preventing cell death, rather than 

affecting proliferation, established bcl-2 as a new class of oncogene (Hockenbery et 

al, 1990; Nunez et al, 1990; Korsmeyer, 1992). Investigations therefore began into 

the role of bcl-2 in neoplasia, enforced by its initial discovery in follicular lymphoma. 

Researchers found that deregulated expression of bcl-2 as a single agent was not 

sufficient for tumorigenesis (Tsujimoto, 1989; Nunez et al, 1989). However, bcl-2 

was found to complement and even to synergise with the transforming effects of the c- 

myc oncogene in B cell precursors by increasing the frequency and shorting the 

latency of tumour induction in transgenic mice (Nunez et al, 1989; Strasser et al,

1990), thus confirming the importance of bcl-2 in neoplasia.
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The initial observations of the ability of Bcl-2 to enhance survival was that Bcl-2 over­

expression increased the viability of certain cytokine-dependent cells upon cytokine 

withdrawal. In IL-3-dependent pro-B and pro-myeloid cell lines, Bcl-2 promoted cell 

survival in the absence of IL-3 and maintained the cells in the Go phase of the cell 

cycle (Vaux et al, 1988; Nunez et al, 1990). Bcl-2 has since been shown to protect a 

variety of different cell types from apoptosis both in vitro and in vivo, that are induced 

by diverse cytotoxic stimuli including y-irradiation and chemotherapeutic drugs. These 

discoveries led to the important realisation that Bcl-2 blocks a final common effector 

pathway that leads to apoptotic cell death.

The bcl-2 gene encodes two proteins, Bcl-2a and Bcl-2(3, which differ only in their 

carboxy-terminal tails due to an alternative splicing mechanism (Tsujimoto and Croce, 

1986). The presence of a C-terminal hydrophobic domain (which is only possessed by 

Bcl-2a), serves as integral membrane anchor (Chen-Levy et al, 1990; Nguyen et al,

1993). Various studies have localised this 25-26kDa protein to the mitochondrial 

membrane (Hockenbery et al, 1990; Nguyen et al, 1993), suggesting a role for this 

organelle in apoptosis. Other researchers have demonstrated that the protein also 

resides in the endoplasmic reticulum and the nuclear membrane (Krajewski et al, 

1993; Lithgow et al, 1994). Membrane anchor deletion mutants have however 

demonstrated that Bcl-2 does not require membrane attachment for its anti-apoptotic 

activity, thereby suggesting a 'soluble’ activity in the cytoplasm (Nguyen et al, 1994; 

Borner et al, 1994).

Although involved in apoptosis, evidence exists that suggests that Bcl-2 regulation is 

not universal. Firstly, Bcl-2 is unable to prevent cell death in some circumstances, 

such as the apoptosis mediated by the CD95 (Fas/Apo-1) receptor (Strasser et al, 

1995; Scaffidi et al, 1998). Secondly, Bcl-2 is undetectable in some cell types, such 

as the neurons in the central nervous system (Merry et al, 1994), and thirdly, Bcl-2- 

deficient mice are able to develop relatively normally (Veis et al, 1993). This 

evidence suggested to researchers that Bcl-2-independent mechanisms existed, 

prompting a search for other mammalian proteins like Bcl-2 that could regulate 

apoptosis.
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1.6.4b Bcl-2 family members

Bcl-2 is now just one of an ever expanding family of apoptotic regulators, the Bcl-2 

family. The family is unusual in that it contains both inhibitors and promoters of 

apoptosis. The inhibitors include mammalian B c1-xl (Boise et al,  1993), Bcl-w 

(Gibson et al,  1996), Mcl-l (Kozopas et al,  1993; Reynolds et al,  1994), A l (Lin et 

al,  1993), adenovirus ElB19kD (White et al, 1992), Epstein Barr Virus BHRFl 

(Henderson et al,  1993), African Swine Fever Virus LMW5-HL (Neilan et al, 1993), 

and Human Herpes Virus 8  KSBcl-2 (Cheng et al, 1997b). The inducers of apoptosis 

include Bax (Oltvai et al,  1993), Bcl-xs, an alternative splice variant of the Bcl-x gene 

(Boise et al, 1993), Bad (Yang et al,  1995), Bak (Farrow et al,  1995; Kiefer et al, 

1995; Chittenden et al,  1995b), Bik/Nbk (Boyd et al,  1995; Han et al,  1996), Bid 

(Wang et al, 1996a), Harakiri (Hrk) (Inohara et al,  1997), Bok (Hsu et al,  1997), 

Bim (O’Connor et al,  1998), and Blk (Hegde et al,  1998).

The ability of the opposing members of the Bcl-2 family to regulate apoptosis was 

found to be governed by their ability to form homo and heterodimers. Indeed, some of 

the family members such as Bax, were identified through co-immunoprécipitation 

with Bcl-2 (Oltvai et al,  1993; Yin et al,  1994). Bax was found to accelerate death 

and when over-expressed could override Bcl-2 repressor activity. Based on this 

activity, it was believed that the inherent protein ratio of Bcl-2:Bax, and therefore pro- 

apoptotic:anti-apoptotic protein ratios, were important in determining susceptibility to 

apoptosis (Oltvai et al,  1993; Oltvai and Korsmeyer, 1994). This idea was confirmed 

by demonstrations of heterodimer formation between other Bcl-2 family members. For 

example, pro-apoptotic Bax was found to interact with anti-apoptotic B cI-x l, Mcl-l 

and A1 (Sedlak et al,  1995; Sato et al,  1994), and pro-apoptotic Bak could interact 

with B c1-xl and Bcl-2 (Chittenden et al,  1995a).

1.6.4c Bcl-2 homology domains involved in the regulation of apoptosis

All Bcl-2-related proteins share homology in one to four regions designated as the 

Bcl-2 homology domains (BH1-BH4) (figure 1.3). Mutational analysis revealed that 

key BH domains in each Bcl-2 family member are required for their apoptotic activity 

and for their ability to form homo and hetero dimers (reviewed in detail by Kelekar and 

Thompson, 1998).
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The BHl and BH2 domains are essential for the survival functions of Bcl-2 and Bcl- 

xl, and for their dimérisation with the death agonists Bax and Bak (Yin et al, 1994). 

However, heterodimerisation is not required for pro-survival function (Cheng et al, 

1996). In contrast, the death agonists rely on their BH3 domain alone for their pro- 

apoptotic activity which is only exerted through heterodimerisation with the anti- 

apoptotic proteins (Chittenden et al, 1995a; Zha et al, 1996a; Cosulich et al, 1997). 

Recently however, Bax has been shown to have additional mechanisms of inducing 

death based on the presence of the BHl and BH2 domains (Antonsson et al, 1997) 

(see section 1.6.7).

The three-dimensional structure of Bcl-x^ has provided additional insight into the 

physical basis of heterodimerisation and further clarified the BH domains involved. 

B c1-xl has been found to comprise of two central hydrophobic a-helices (a5 and a 6 ), 

surrounded by five amphipathic helices (see figure 1.3). These helices are arranged 

such that the BHl, 2 and 3 homology domains form an elongated hydrophobic cleft 

(Muchmore et al, 1996). Further studies investigated the Bcl-XL:Bak complex, 

demonstrating that the BH3 domain of Bak forms an amphipathic a-helix which binds 

to the hydrophobic pocket of B c1-xl via hydrophobic and electrostatic interactions 

(Sattler et al, 1997). This interaction therefore explains why although only BHl and 2 

domains are required for B c1-2/Bc1-xl anti-apoptotic function (Yin et al, 1994), the 

additional BH3 domain is required for cleft formation allowing interaction with the 

BH3 death domains of the apoptotic induces (Sattler et al, 1997).

Although the importance of the BHl, 2 and 3 domains is well established, the role of 

the fourth N-terminal a-helical domain BH4, has until recently been uncertain. The 

domain is only possessed by Bcl-2, B c I - x l  and Bcl-w, and is essential for their 

suivival activity, but not for their homodimerisation, or heterodimerisation with Bax 

(Borner et al, 1994; Lee et al, 1996; Huang et al, 1998). Recent findings have 

demonstrated that the BH4 domain is essential for interactions with other components 

of the apoptotic machinery, namely Ced-4/Apaf-1 (Huang et al, 1998) (see section 

1.6.6). This implied that other anti-apoptotic members of the Bcl-2 family not 

possessing this domain cannot utilise this mechanism of death regulation (Huang et 

al, 1998).
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1.6.4d Genetic ordering of the agonists and antagonists

Although mutational analysis demonstrated the importance of Bcl-2 family 

protein:protein interactions in regulating apoptosis, it proved inconclusive in 

determining whether the death agonists or antagonists, were dominant in regulating 

apoptosis. In 1997, Knudson and Korsmeyer found that in hc/-2-deficient mice, which 

have reduced lymphocyte populations, the elimination of bax reverses the deficient 

phenotype, demonstrating that bax was functioning in the absence of bcl~2. In 

addition, they demonstrated that bcl-2 could prevent apoptosis in box-deficient mice, 

and thus concluded that Bcl-2 and Bax function independently of each other (Knudson 

and Korsmeyer, 1997). In support of these findings, recent studies have shown that 

members of the Bcl-2 family, including Bcl-2 and Bax are able to form channels in 

lipid bilayers in vitro suggesting a mechanism for apoptotic regulation independent of 

dimérisation (Schendel etaL, 1997; Minn etal., 1997; Antonsson et al, 1997).

1.6,4e Role of the Bcl-2 family in B Lymphocytes

As mentioned previously, cell death plays a pivotal role in the selection of B cell 

populations during B cell development. Bcl-2 was a clear candidate for the regulation 

of this process as over-expression of the protein prevented the death of B cells 

cultured in vitro (Nunez et al, 1990; Strasser et al, 1991), and its expression is 

diminished or absent in germinal centres, a site associated with excessive cell death 

(Hockenbery et al, 1991). In 1994, Merino and colleagues demonstrated 

developmental regulation of Bcl-2 in B lymphocytes, namely that Bcl-2 is highly 

expressed in pro-B and mature B cells, but it is down-regulated in pre-B cells 

undergoing Ig gene rearrangement, and in immature B cells within the germinal 

centre. These findings demonstrated that Bcl-2 expression correlates with the 

susceptibility of B cells to apoptosis: during selection they express low levels of Bcl-2, 

whereas after maturation, the levels increase, rendering the cells non-susceptibie to 

apoptosis (Merino et al, 1994). In contrast to Bcl-2 expression, B c1-xl is highly 

expressed in pre-B, but is down-regulated in pro-B and mature B cells (Grillot et al, 

1996). This reciprocal pattern of B c1-2/Bc1-xl expression suggested that the two 

proteins differ in their anti-apoptotic capacity at developmental stages, which is likely 

to be critical for lymphocyte development.
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The use of gene deficient animals has revealed stage specific roles for Bcl-2 and Bcl- 

Xl in lymphocyte development. Bcl-2-deficient mice develop normally, with 

successful lymphocyte development and differentiation. However, at 4 to 8 weeks of 

age, the lymphoid organs undergo massive cell death and involution, showing a failure 

to maintain homeostasis in both B and T cell populations, while other haematopoietic 

lineages remained unaffected (Veis et al, 1993; Nakayama et al, 1994; Kamada et 

al, 1995). The loss of Bcl-2 function does not seem to impair B cell development, but 

profoundly affects the survival of normal mature lymphocytes (Kamada et al, 1995). 

Other studies have demonstrated that Bcl-2 is essential for B cell selection within 

germinal centres (Liu eta l, 1991b), and for the maintenance of B cell memory (Nunez 

et al, 1991), and so are consistent with the idea that Bcl-2 is required for the long­

term maintenance of the immune system.

In contrast to Bcl-2, Bcl-XL-deficient mice exhibit massive cell death of 

haematopoietic cells in the embryonic liver, and die around embryonic day 13 

(Motoyama et al, 1995). To further study the effects of this deficiency, chimaeric 

mice were generated which had lymphocytes derived from Bcl-XL-deficient embryonic 

stem cells. Motoyama and colleagues found that as the cells were capable of 

differentiation, the dramatic reduction in mature B cell numbers was directly related to 

the reduction in the number of immature (namely pre-B) cells. In addition, the life­

span of immature cells cultured in vitro was greatly reduced compared to those 

derived from wild-type mice. These data suggest that the gene-targeted deletion of 

Bcl-XL in B cells, severely impairs development beyond the pro-B stage, suggesting 

that Bcl-XL expression (probably in pre-B cells), is crucial for B cell development 

(Motoyama eta l, 1995). Recent studies confirm these ideas and suggest that B c1-xl in 

pre-B cells is important for regulating survival during initial light chain 

rearrangements (Fang et al, 1996; Behrens and Mueller, 1997). In addition to its role 

in pre-B cells, Fang and colleagues demonstrated that B c1-xl is important in the clonal 

deletion of autoreactive immature cells. B c1-xl over-expressing B cells are protected 

from developmental arrest and editing, thus allowing immature B cells that bind self 

antigen to survive. In contrast, BcI-2 has no effect on developmental arrest. The 

researchers suggested that B c1-xl protects cells at an early phase of the immature B 

cell stage, within which, antigen receptor engagement can initiate new Ig
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rearrangement. B c1-xl levels then fall in immature B cells allowing Ag receptor 

mediated death to proceed (Fang et al, 1998).

With respect to the pro-apoptotic members of the Bcl-2 family, Bax-deficient mice 

appear healthy but exhibit lymphoid hyperplasia, with mature B cell numbers being 

1.8-fold greater than in wild-type mice (Knudson et al, 1995). Bax has also been 

found to be responsible for the lymphoid death in Bcl-2-deficient mice (Knudson and 

Korsmeyer, 1997). These results suggest that normal cell death during B cell 

development depends on Bax. This result is further supported by the recent finding 

that a loss of function mutation in Bax contributes to haematopoietic malignancies 

(Meijerink et al, 1998).

1.6.4f Regulation of the Bcl-2 family through post-translational mechanisms

Post-translational modifications of the Bcl-2 family have been found to regulate their 

ability to control apoptosis. The best understood mechanism involves the 

phosphorylation of the distant Bcl-2 family member Bad (rewiewed by Fraiike and 

Cantley, 1997). In response to the survival factor IL-3, Bad is rapidly phosphorylated 

on two serine residues causing it to bind to a 14-3-3 protein. Bad is thereby 

sequestered in the cytosol and is no longer able to interact with B cI-xl and inhibit its 

pro-survival function. The released B c1-Xl is then able to resume its activity and 

inhibit apoptosis (Zha et al, 1996b; Franke and Cantley, 1997).

Phosphorylation is also important in the regulation of Bcl-2, as it leads to a loss of its 

anti-apoptotic function (Haider et a l, 1995). This can be induced in acute leukaemia 

and prostate cancer cell lines by the use of anti-cancer drugs such as taxol (Haider et 

al, 1996; 1997). The three dimensional structure of B c I -X l  revealed an unstructured 

60-residue flexible loop within the protein and predicted a similar structure within 

Bcl-2 (Muchmore et al, 1996). Deletion of this loop was found to increase the anti- 

apoptotic activity of the proteins and, in addition, prevented protein phosphorylation, 

demonstrating the importance of this region in post-translational modifications (Chang 

eta l, 1997).
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Evidence also exists for positive Bcl-2 regulation by phosphorylation. Using a growth 

factor dependent myeloid cell line, Ito and colleagues demonstrated that a serine 

mutant (residue 70), was unable to be phosphorylated by IL-3, and when over- 

expressed was unable to support cell survival after IL-3 withdrawal, suggesting that 

phosphorylation is required for the anti-apoptotic activity of Bcl-2 in some cell types 

(Ito et al, 1997).

1.6.5 The Caspase family of apoptotic executioners

The term ‘caspases’ denotes a family of cysteine proteases which cleave their 

substrates after aspartic acid residues (Alnemri et al, 1996). The founding member of 

the family, interleukin-1(3-converting enzyme (ICE or caspase-1), was initially 

identified due to homology with the C. elegans gene ced~3 (Yuan et al, 1993). 

Thirteen caspases have now been identified, which are subdivided into two main 

groups; those that seem to play a role in inflammation (caspases-1, 4, 5, 11, 12 and 

13), and those that are largely involved in apoptosis. All caspases exist in cells as 

inactive precursors (zymogens) that are cleaved at aspartic acid residues to generate 

active proteases. Activated caspases then cleave a number of important cellular 

proteins (e.g. PART, nuclear lamins, DNA-dependent kinases, FKC and Rb), other 

caspases, and some members of the Bcl-2 family, thus leading to irreversible cell 

death (Cohen, 1997; Cheng et al, 1997a; Clem et al, 1998).

Since caspases are cleaved at aspartic acid residues, some caspases can sequentially 

activate others thus establishing a hierarchy of caspases. Such a model was proposed 

by Fraser and Evan in 1996, in which some caspases (such as caspase 8, 9 and 10) act 

as initiator proteases to activate the effector caspases such as caspase-3 and 7. 

Determining the precise sequence of caspase activation is difficult, as expression and 

activation of the proteases seems to be cell type specific (Cohen, 1997).

Caspase-3 (also known as CPP32, Yama or Apopain), represents the closest 

mammalian homologue to Ced-3 (Fernandes-Alnemri et al, 1994), and has been 

identified as a key effector caspase, being partially or totally responsible for the 

cleavage of many key proteins (Nicholson et al, 1995; Tewari et al, 1995; Wang et
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al, 1996). In addition, caspase-3 activates a downstream apoptotic effector DFF 

(DNA Fragmentation Factor), which induces DNA fragmentation, a hallmark of 

apoptosis (Liu et al, 1997a). The activation, and therefore the activity, of caspase-3 

(and Ced-3), can be blocked by anti-apoptotic proteins such as Bcl-2, demonstrating 

that the inhibitors of mammalian apoptosis act, like their nematode counterpart, 

upstream of the death effectors (Shimizu et al, 1996; Chinnaiyan et al, 1996, 1997). 

Interestingly, activated caspase-3 can cleave Bcl-2 and B cI-x l  converting these anti- 

apoptotic proteins into Bax-like proteins that promote death, thereby further enhancing 

the apoptotic demise of the cell (Cheng et al, 1997a; Clem et al, 1998).

The activation of ‘effector’ caspase-3 has been demonstrated in a number of apoptosis 

transduction pathways which involve other activator caspases. The tumour necrosis 

factor-1 (TNF-1) receptor and the CD95-Fas/Apo receptor, utilise the adapter 

molecule F ADD (Fas-associating protein with death domain) to transduce their death 

signals into the cell (Boldin et al, 1995; Chinnaiyan et al, 1995). F ADD recruits 

caspase-8 (FLICE/MACH) to the membrane bringing about its activation, which 

subsequently activates caspase-3 resulting in apoptotic demise of the cell. Within this 

system caspase-8 is therefore the apical caspase (Boldin et al, 1996; Muzio et al, 

1996; 1997). Another pathway for caspase-3 activation involves cytochrome C, which 

in mammalian cells is released from the mitochondria during apoptosis (Liu et al,

1996). Released cytochrome C (Apaf-2), then induces the dATP-dependent formation 

of the Apaf (Apoptosis protease activating factor) protein complex that subsequently 

activates pro-caspase-3 (Liu et al, 1996). The complex consists of the Ced-4 

homologue Apaf-1, and caspase-9 (Apaf-3), which represents the upstream activating 

caspase in this pathway of caspase-3 activation (Li et al, 1997; Zou et al, 1997).

Although an essential component of the apoptotic system, the exact contribution of 

caspase-3 is unclear as requirement for this effector is tissue-specific and can even be 

stimulus-specific within the same cell type, suggesting that the apoptotic machinery 

used to implement death is more complex than originally envisaged (Woo et al, 

1998). This idea supports previous work which demonstrated that Bax was capable of 

inducing cell death independently of known caspases, suggesting an alternative 

pathway to death (Xiang et al, 1996).
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1.6.6 Apaf-1: linking of the regulators and activators of apoptosis

Apaf-1 (Apoptotic pro tease activating factor 1), is the mammalian homologue of Ced- 

4 in C. elegans (Zou et al, 1997). Within the nematode system, Ced-4 was found to 

interact with and activate Ced-3 and members of the mammalian caspase family, 

thereby promoting apoptosis. In addition, Ced-9 and the mammalian homologue Bcl- 

Xl are able to interact with and inhibit Ced-4 death activity and binding to Ced-3 

(Chinnaiyan et al, 1997; Wu et al, 1997).

In the presence of cytochrome C (Apaf-2) and dATP, Apaf-1 has been found to bind 

to caspase-9 (Apaf-3) via its caspase recruitment domain (CARD) (Hofmann et al,

1997), creating an Apaf complex which leads to the activation of caspase-3 (Li et al, 

1997; Pan et al, 1998). In line with the Ced-4 nematode model, Apaf-1 also 

complexes with B c1-x l , suggesting a potential mechanism by which anti-apoptotic 

proteins may prevent Apaf-1 from interacting with and activating the caspases (Hu et 

al, 1998; Pan et al, 1998).

Apaf-l-deficient mice have recently demonstrated the in vivo importance of Apaf-1 in 

apoptosis. These mice exhibit severe craniofacial malformation, brain overgrowth, 

persistence of interdigital webs, and cannot survive beyond embryonic day 16.5 

(Yoshida et al, 1998; Cecconi et al, 1998). In addition, these mice did not respond to 

various apoptotic stimuli and could not activate caspase-3 (Yoshida et al, 1998; 

Cecconi et al, 1998). Caspase-3-deficient mice also have alterations in brain 

development suggesting that the Apaf-l/caspase-3 pathway of apoptosis activation is 

important in these tissues (Kuida et al, 1996). In addition, caspase-9-deficient mice 

are unable to perform caspase-3-mediated death, demonstrating the importance of the 

entire Apaf complex in the activation of apoptosis (Kuida et al, 1998).

Apaf-1 is however, not essential for all apoptotic pathways. Apaf-1 is dispensable for 

the CD95-Fas/Apo signalling pathway that is not subject to Bcl-2 regulation (Scaffidi 

et al, 1998; Yoshida et al, 1998). However, it remains to be seen if this apoptotic 

component is involved in CD95 signalling that is subject to Bcl-2 family regulation. In 

addition, because mammals possess multiple caspase and Bcl-2 homologues, it is

45



envisaged that Apaf-1 will also have relatives that potentially may -mediate other 

pathways of apoptosis.

1.6.7 Bcl-2 family proteins and mitochondria

The multi-functional capability of the Bcl-2 family to regulate apoptosis has already 

been highlighted in that these proteins are able to dimerise with other members of the 

Bcl-2 family, and can also bind to non-homologous proteins such as Apaf-1. A third 

regulatory mechanism has recently come to light, that centres on the regulation of 

various mitochondrial events during apoptosis. The events associated with 

mitochondria during apoptosis such as, changes in electron transport and the alteration 

of cellular reduction-oxidation (redox) potential, will not be discussed here, but have 

recently been reviewed by Green and Reed (1998), and Reed et a l (1998).

The most compelling evidence for the role of mitochondria in the execution of 

apoptosis is the release of the pro-apoptotic proteins cytochrome C and AIF 

(Apoptosis Inducing Factor). The latter appears to directly activate members of the 

caspase family (Susin et al, 1996), whereas cytochrome C, as already discussed, is the 

component in the Apaf complex responsible for the activation of caspase-3 (Liu et al, 

1996; Li et al, 1997). Several research groups have demonstrated that the over­

expression of Bcl-2 can prevent apoptosis by blocking the release of cytochrome C 

from mitochondria (Kluck et al, 1997; Yang et al, 1997). Conversely, Bax was found 

to induce directly cytochrome C release, suggesting a way in which the opposing 

members of the Bcl-2 family may act (Jurgensmeier et al, 1998). The mechanism 

behind cytochrome C release was initially believed to be due to the loss of 

mitochondrial transmembrane potential (AW^), that is mediated by the opening of the 

mitochondrial permeability transition (FT) pore (reviewed by Green and Reed, 1998). 

However, a recent study by Bossy-Wetzel and colleagues, demonstrated that 

cytochrome C is released before any reduction in AWm, suggesting that the FT pore is 

not involved. Based on this and a number of other observations, the researchers 

proposed a model of apoptosis involving mitochondria. The model suggests that 

apoptotic signals induce the release of cytochrome C from mitochondria, activating 

the caspases through the Apaf complex. The activated caspases then act upon
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mitochondria to induce permeability transition and a reduction in , which triggers 

the release of AIF and the generation of reactive oxygen species (ROS) (Bossy-Wetzel 

et al, 1998). A recent study has demonstrated that cytochrome C itself is not 

detrimental to cells, and that Bcl-2 must have important functions downstream of the 

mitochondria, since Bcl-2 could inhibit Bax-induced death, but could not prevent the 

release of cytochrome C from the mitochondria (Rosse et al, 1998).

A clue to how the Bcl-2 proteins exert their mitochondrial effects has come from the 

structural analysis of the proteins, which demonstrated their striking similarity to the 

pore-forming domains of certain bacterial toxins that act as channels for either ions or 

proteins (Muchmore et al, 1996). There is now direct evidence that Bcl-2, B c1-x l  and 

Bax have ion channel activity when incorporated into synthetic lipid membranes 

(Schendel et al, 1997; Minn et al, 1997; Antonsson et al, 1997). Significantly, Bcl-2 

is able to interfere with the ability of Bax to form channels, suggesting a further 

mechanism for the antagonism displayed between these two proteins (Antonsson et 

al, 1997). Bax is believed to be able to form a large channel in the outer 

mitochondrial membrane, allowing the release of cytocluome C without changes to 

AWm (Jurgensmeier et al, 1998). In contrast, the small conductance channels formed 

by Bcl-2 and B c1-x l , seem to have a role in regulating the membrane potential and 

volume homeostasis of mitochondria (Vander Heiden eta l, 1997).

1.6.8 Involvement of the Bcl-2 family and other apoptotic regulatory 

genes in cancer.

Normal lymphoid development and homeostasis can be disrupted by mutations that 

interfere with the normal proliferative or cell death process, leading to the 

development of lymphomas and leukaemias. As discussed, the Bcl-2 family is one of 

the main regulators of apoptosis. Deregulation of these genes, i.e., the loss of function 

of pro-apoptotic genes, or gain of function of anti-apoptotic genes, is therefore of 

significance to the development of cancers. In addition to this family, other proto­

oncogenes traditionally associated with proliferation, have now been found to also 

have roles in regulating apoptosis (reviewed by King and Cidowski, 1998), thus 

widening the contribution of the genes in malignancies. Some of these genes are able
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to cooperate with the effects of deregulated bcl-2, further enhancing the sui'vival and 

growth advantage of the cancer. The contribution of some Bcl-2 family members, p53, 

and c-myc to malignancies will now be briefly discussed.

1.6.8a Bcl-2

Deregulation of bcl-2 expression, leading to elevated levels of Bcl-2 mRNA and 

protein, has been reported in various leukaemias and lymphomas (reviewed by 

Kusenda, 1998). In addition to the classical t(14;18) chromosomal translocation 

associated with this gene (Tsujimoto et al, 1984), Bcl-2 over-expression has also been 

associated with amplification of the gene (Pettersson et al, 1992; Monni et al, 1997). 

However, Bcl-2 on its own is considered to be insufficient to elicit transformation, 

supported by the finding that t(14;18) translocations are regularly generated in normal 

individuals and require additional oncogenic ‘hits’ to establish a malignant phenotype 

(Limpens et al, 1995). In addition to its anti-apoptotic function, Bcl-2 has also been 

found to restrain cell cycle entry, and as such may in part be responsible for the low 

oncogenic potential of Bcl-2 (O’Reilly e ta l, 1996; Huang e ta l,  1997).

1.6.8b Bax

Investigations by Yin and colleagues have demonstrated that the pro-apoptotic protein 

Bax acts in vivo as a tumour suppressor, and that the loss of this molecule promotes 

tumorigeneisis (Yin et al, 1997). Bax mutations have been identified in a number of 

human haematopoietic malignancies, most commonly in the acute lymphoblastic 

leukaemia subset (Meijerink et al, 1995, 1998). These mutations, including 

nucleotide insertions/deletions and single amino acid substitutions, demonstrated 

altered patterns of protein dimérisation and a loss of death promoting activity, thus 

supporting the role of Bax as a tumour suppressor (Meijerink et al, 1998).

1.6.8c p53

Mutations in the tumour suppressor gene p53 are the most frequent abnormality in 

human cancer, implying that loss of this gene function represents a fundamentally 

important step in the pathogenesis of cancer. Wild-type p53 plays a pivitol role in both 

cell cycle arrest (stages G1 and G2), and in the induction of apoptosis under certain 

conditions of DNA damage and cellular stress (reviewed by Levine, 1997).
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Inactivation or loss of p53 therefore allows cells that have sustained DNA damage to 

both survive and replicate, which has two devastating effects. Firstly, the cells 

accumulate further mutations that contribute to malignancy, and secondly, the cells 

can become resistant to anti-cancer drugs and ionising radiation treatments. The ability 

of p53 to induce cell cycle arrest has been ascribed to its ability to induce expression 

of the cellular gene WAFl that encodes the G1 cyclin-dependent kinase inhibitor p21 

(el-Deiry et al, 1994; Harper et al, 1993).

In relation to its apoptotic function, an important finding was the discovery of a p53- 

dependent negative response element in the bcl~2 promoter through which, p53 can 

down-regulate bcl-2 gene expression (Miyashita et al, 1994a; 1994b). It is therefore 

possible that p53 inactivation, and thus the loss of p53-mediated repression of the bcl- 

2 gene, can account in part for the high levels of Bcl-2 found in some malignancies 

that do not exhibit gross chromosomal alterations of the bcl-2 gene (Miyashita et al, 

1994b). In addition, p53 can simultaneously up-regulate the pro-apoptotic bax gene 

(Miyashita et al, 1994b; Selvakumaran et al, 1994; Zhan et al, 1994), through p53- 

responsive elements in the bax promoter (Miyashita and Reed, 1995). This pro- 

apoptotic regulator seems to be a component of the p53-mediated apoptotic pathway 

in some cell types, as Bax-deficient mice exhibit accelerated tumour growth and 

decreased p53-mediated apoptosis (Yin et al, 1997). However, other unidentified p53 

regulated genes must play important roles in a cell-specific manner as bmc-deficient 

thymocytes are not defective in p53-dependent apoptosis (Knudson et al, 1995). It is 

probable that other pro-apoptotic members of the Bcl-2 family such as Bad or Bik will 

be components of the p53-mediated apoptotic pathway.

1.6.8d c-Myc

Substantial evidence implicates the c-myc proto-oncogene in the control of cell 

proliferation; it is one of the immediate early response genes rapidly induced upon 

mitogenic stimulation, and the c-Myc protein is continuously expressed in 

proliferating but not in quiescent cells. Deregulated expression of this gene, resulting 

in constitutive expression, is frequent in cancer (Facchini and Penn, 1998). In addition 

to its proliferative effects, c-myc has also been found to promote apoptosis (reviewed 

by Thompson, 1998). This apparently contradictory activity of c-Myc has been
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demonstrated with the use of growth factor (GF)-dependent cell lines. When over­

expressed in the absence of GF, c-Myc induces apoptosis, but when excess GF is 

present cell death does not occur (Askew et ai, 1991; Evan et al, 1992). c-Myc- 

induced apoptosis can however be prevented by the simultaneous over-expression of 

Bcl-2 (Bissonnette et al, 1992; Fanidi et al, 1992). This confirmed earlier studies that 

demonstrated the cooperation of these two oncogenes in the transformation of 

lymphoid cells (Vaux et al, 1988; Strasser et al, 1990). The simultaneous appearance 

of both bcl-2 and c-myc translocations is common in B cell neoplasms (Facchini and 

Penn, 1998). A ‘dual signal’ hypothesis has emerged to explain c-Myc-dependent 

apoptosis (Harrington et al, 1994). This suggests that c-Myc elicits two signals, one 

for proliferation, and one for apoptosis. In the presence of survival factors (such as 

constitutive Bcl-2 expression), the apoptotic signal is blocked, resulting in potent 

transformation due to the presence of both survival and growth advantages. 

Cooperation between c-myc and bcl-2 is further illustrated by the ability of these 

oncogenes to antagonise p53. Co-expression of these oncogenes has been shown to 

block both growth arrest and apoptotic functions of p53, whereas bcl-2 alone is only 

able to block the latter (Ryan et al, 1994b).

In tumour development, c-Myc has also been found to cooperate with mutant p53. Co­

expression of mutant p53 in myeloid leukaemic cells expressing deregulated c-myc, 

exhibited increased leukaemogenicity in vivo, compared to cells only expressing 

deregulated c-myc (Lotem and Sachs, 1995). These results demonstrate another 

cooperative mechanism causing malignant transformation.

In conclusion, tissue homeostasis requires the coordinated regulation of the 

antagonistic processes of proliferation and apoptosis. Genes involved in the 

intracellular signalling and the final elucidation of these processes are prone to genetic 

alterations, and as such contribute to the multi-causal process of malignancy. In 

addition, mechanisms of malignant cell survival may involve genes involved in cell 

surface interactions, such as those encoding cytokines and their receptors, and cell 

adhesion molecules. This may lead to the deregulated production of cytokines, or 

changes in the ability to receive incoming signals, i.e., an increased number and/or 

affinity of cytokine receptors, and the expression of receptors or adhesion molecules
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not normally present on the cell, thus changing the repertoire of signals to which the 

cell is able to respond.

1.7 SMS-SB CELLS: A CHILDHOOD PRE-B ACUTE

LYMPHOBLASTIC LEUKAEMIA CELL LINE

1.7.1 Acute lymphoblastic leukaemia

Acute lymphoblastic leukaemia (ALL), is a malignant disorder mainly regarded as a 

childhood disease. It is characterised by unrestricted cell growth and maturational 

arrest of haematopoietic precursor cells in bone marrow, peripheral blood and other 

tissues (reviewed by Cortes and Kantarjian 1995; Lilleyman, 1997). The disease is 

currently classified on the basis of immunophenotyping, allowing the cell lineage and 

the step in differentiation in which transformation occurred to be determined. This 

process partly involves the identification of various clusters of differentiation (CD) 

antigens. For example, CD 10, also known as the common ALL antigen (CALLA), 

was the first antigen to be used in the classification of ALL (Greaves et al, 1975). 

This antigen is a lineage-independent marker and is not universally expressed in ALL, 

with lack of expression being often associated with poor prognosis (Cortes and 

Kantarjian, 1995). In addition to CD antigens, other characteristics assessed for 

classification purposes include cytoplasmic and surface immunoglobulins, TdT, and 

HLA-DR which represents the expression of class II histocompatability antigens.

Based on immunophenotyping, ALL can be broadly classified as having a T or B- 

lineage origin. The latter includes a number of subtypes: early-pre-B (cytoplasmic (c) 

Ig“, surface (s) Ig”), pre-B (clg"̂ , sig”), transitional B (clg^, surface \x heavy chains but 

no light chains), and mature B (slg^) (Cortes and Kantarjian 1995). In addition, some 

ALL’S have been found to also express myeloid markers, and may thus represent the 

transformation of a pluripotent cell or a rare progenitor cell expressing markers and 

features from several lineages (Smith et al, 1983; Greaves et al, 1986).
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1.7.2 The SMS-SB cell line

The SMS-SB cell line was initially characterised by Smith and colleagues in 1981. 

The cells were derived from a 16 year old African-American girl (SB) in the 

leukaemic phase of a lymphoblastic lymphoma. The original lymphoma was unusual 

as it originated in and around skeletal bone and bone marrow rather than in lymphatic 

tissue, and did not express any T-lymphocyte markers which are usually typical of 

lymphoblastic lymphomas (Smith et al, 1981; Smith, 1984). This distribution of 

disease is typical of lymphomas induced in mice by the Abelson Leukaemia Virus 

(Abelson and Rabstein, 1970). The cultured leukaemic SMS-SB cells are designated 

as pre-B lymphocytes by virtue of the expression of B-cell markers, the presence of 

cytoplasmic \x heavy chains, and the absence of both surface Ig and any T-cell specific 

markers. SMS-SB cells seem to most closely resemble the major population of pre-B 

cells found in normal bone marrow, and differ from other cultured pre-B ALL cell 

lines in that they do not express high levels of CDIO (CALLA), or the enzyme TdT 

(Smith, 1984).

SMS-SB cells do not contain the Epstein Barr Virus nuclear antigen, demonstrating 

that this virus did not cause transformation of these cells (Smith et al, 1981). 

Karyotypic analysis has shown that SMS-SB cells do not exhibit any gross 

chromosomal abnormalities, such as the t(l;19) translocation which is commonly seen 

in pre-B ALL. This translocation results in the fusion of E2A (an immunoglobulin 

enhancer-binding protein), with PBX (a homeobox protein that acts as a transcription 

factor), to create a constitutively expressed PBX gene not normally found in pre-B 

cells (Nourse et al, 1990). The t(9;22) translocation (the Philadelphia chromosome), 

is also implicated in acute leukaemia. This transposes the c-abl gene (the cellular 

homologue of the Abelson viral oncogene), to the bcr (breakpoint cluster region) gene. 

The resulting chimeric protein has increased tyrosine kinase activity compared to the 

normal c-ABL protein (Konopka et al, 1994). Upon analysis of c-abl in SMS-SB 

cells, Ozanne and colleagues discovered no gross rearrangements but found 2 

additional abl-related transcripts not found in normal cells. The researchers suggested 

that this aberrant expression may have assisted in the initiation of malignancy in these 

cells, and may have synergised with other activated oncogenes (Ozanne et al, 1982).
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The development of new molecular diagnostic techniques have improved the 

characterisation of genetic abnormalities in ALL, and have identified abnormalities 

not identified by routine karotyping (Rubnitz and Pui, 1997). In the light of these 

recent improvements, it is possible that SMS-SB cells do contain as yet undetected 

abnormalities.

In a further attempt to characterise SMS-SB, Tsai and colleagues examined a number 

of nuclear proto-oncogenes, the expression of which are often altered in 

leukaemias/lymphomas. The researchers discovered that compared with other cell 

types, SMS-SB cells exhibit normal expression of c-myc, c-myb and c-jun, but over­

express the c-fos proto-oncogene and the corresponding protein p55^‘̂ °®. The c-fos 

gene did not appear to harbour any mutations, and the elevated levels of c-fos 

transcripts were found to be due to up-regulated transcription, which could be further 

induced by serum. Consistent with the over-expression of c-fos mRNA, the 

protein is also elevated in SMS-SB compared to another ALL cell line, Nalm-6. This 

protein is known to heterodimerise with members of the Jun family of proteins to form 

the transcription factor AP-1 (Activator protein 1) (reviewed by Karin et al., 1997). 

SMS-SB cells do not however exhibit elevated amounts of AP-1 DNA binding 

activity compared to Nalm-6 cells (Tsai et al, 1991).

1.7.2a SMS-SB cells produce growth promoting factors

After removal from patient SB, the leukaemic cells adapted easily to tissue culture 

without going through a crisis phase. The cells were able to be grown in both serum- 

free and protein-free media without the addition of exogenous mitogens (Smith et al, 

1981). The immediate establishment of human leukaemic cells is unusual, and thus 

prompted Zack and colleagues to investigate the growth-regulatory factors produced 

by SMS-SB cells. Two growth activities were identified from culture supernatants, 

one which acts as an autocrine factor to enhance the growth of SMS-SB cells placed at 

low cell density in serum-free medium, and another, termed leukaemia-derived- 

transforming growth factor (LD-TGF), promotes the growth of fibroblasts, but does 

not act on SMS-SB cells or other haematopoietic cells (Zack et al, 1987).
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More recent investigations by White (1995), further studied SMS-SB cell growth 

characteristics, and the production of the SMS-SB autocrine growth factor (SB-AF). 

SB-AF present in the supernatant from normal cultures, was found not to be directly 

mitogenic for SMS-SB cells, but was able to promote the growth of cells placed at low 

cell density in protein-free medium, conditions at which the cells would normally 

cease growth and undergo apoptosis. In an attempt to identify the autocrine factor, 

numerous cytokines were tested for the ability to substitute for SB-AF activity. Two 

potential candidates, platelet-derived growth factor (PDGF), and the soluble form of 

CD23 (sCD23), were identified. Although SMS-SB cells had previously been found to 

secrete PDGF and express PDGF receptors (Tsai et al, 1994), White demonstrated by 

the use of anti-PDGF neutralising antibodies, that PDGF cannot account for the 

autocrine activity of SB-AF. In addition, the cells were found not to express CD23, 

therefore also negating this cytokine as the SMS-SB autocrine factor (White, 1995).

1.7.2b SMS-SB cells express a novel receptor for CD23

As previously mentioned, sCD23 was found to promote the growth of low cell density 

SMS-SB cells but did not constitute the autocrine factor as the cells do not express 

CD23 (White, 1995). In addition, SMS-SB cells were found not to express any of the 

known receptors for CD23 namely, CD21, GDI lb  or C D llc (Aubry et al, 1992, 

Lecoanet-Henchoz et al, 1995), but could specifically bind to full-length (45kDa) 

CD23a-containing fluorescent liposomes. This demonstrated that SMS-SB cells 

express a novel receptor for CD23 (CD23NR), stimulation of which can prevent 

apoptosis of these cells. Preliminary results from CD23 affinity columns suggest that 

the novel receptor has a molecular weight of approximately SOkDa, but further 

characterisation is required. (White, 1995).

1.8 RESEARCH AIMS

The original aim of this thesis was to further study the SMS-SB autocrine growth 

factor. This included, an investigation into the mechanism by which the factor 

influenced the cells, the characterisation and isolation of the factor, and the 

determination of its role in SMS-SB and normal B cell growth and development.
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A second aim was to study the effect of 45kDa CD23a on SMS-SB, and address 

whether, like sCD23, this membrane-associated form of CD23 could also transmit 

anti-apoptotic signals. These studies were also hoped to generate a suitable screening 

procedure for the production of monoclonal antibodies towards the novel CD23 

receptor component(s), since the absence of any readily available 45kDa CD23 to be 

used in liposomes prevented antibodies from being screened for the ability to inhibit 

CD23 liposome binding to SMS-SB.

It was also hoped to investigate the existence of the novel receptor for CD23 on other 

B cell types, with the hope of investigating the role of this receptor in leukaemic and 

normal B cell growth and development.
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CHAPTER 2

MATERIALS AND METHODS
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2.1 MATERIALS

2.1.1 General chemicals and materials

Unless otherwise stated below, all chemicals/reagents were of ‘AnalaR’ grade and 

purchased from Sigma-Aldrich or BDH Chemicals, both Poole, Dorset, England,

Chemical/Reagent Supplier

n-Octyl-(3-D-glucopyranoside (OOP) Alexis Corporation Ltd, Nottingham, UK

a-[^^P]-dCTP (3000 Ci/mmol) 

Methyl-[^H] Thymidine (20-30 Ci/mmol)

Rainbow protein molecular markers 

Hybond™ ECL nitrocellulose membrane 

Hybond™-N

Amersham Life Science Ltd, Bucks, UK

BIAcore Sensor Chip CM5 BIACORE AB, Herts, UK

RNAzol B Biogenesis Ltd, Poole, UK

dNTP’s

Restriction enzymes and Buffers

Boehringer Mannheim Ltd, Sussex, UK

Express Hyb hybridization solution Cambridge Bioscience, Cambridge, UK

Saponin ICN Biomedicals Ltd, Oxfordshire, UK

Ikb DNA ladder 

0.24-9.5kb RNA ladder

Life Technologies Ltd, Paisley, UK

Bacto-agar 

Bacto-tryptone 

Yeast extract

Merck, Leicestershire, UK

MicroSpin ™ S-200 HR Columns Pharmacia Biotech, Herts, UK

T4 DNA Ligase and buffers 

Restriction enzymes and buffers 

JM109 Bacteria

Promega UK Ltd, Southhampton, UK

Cloned PJu DNA Polymerase Stratagene Ltd, Cambridge, UK

Vectashield Mounting Medium Vector Laboratories Inc, Peterborough, UK
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RNase OUT™ VH BIO Ltd, Newcastle, UK

G25 column Gift from Professor J.G. Lindsay, Glasgow 

University, UK

2.1.2 Kits

Kit Supplier

ECL Western Blotting detection system Amersham Life Sciences Ltd, Bucks, UK

Oligo-labelling kit Pharmacia Biotech, Herts, UK

pCR-Script^^ SK (+), cloning vector kit Stratagene Ltd, Cambridge, UK

BigDye™ DNA Sequencing kit PE Applied Biosystems, Warrington, UK

QIAGEN Plasmid Maxi Purification Kit 

QIAGEN, QIAquick Gel Extraction Kit

QIAGEN Ltd, West Sussex, UK

2.1.3 Cell lines

Human B ceil lines Description/Supplier

Blin-1 Pre-B acute lymphoblastic leukaemia (ALL)

Nalm-1 Pre-B ALL

Nalm-6 Pre-B ALL

697 Pre-B ALL

207 Pre-B ALL

1E8 Mature B ALL

Gift from Professor R.E. Callard, Institute of Child 

Health, London, UK

SMS-SB Pre-B ALL, Gift from Professor B Ozanne, CRC 

Beatson, Glasgow, UK

EDR EBV transformed Human Mature B cell

Gift from Professor C Watts, Dundee University, UK
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Non Human lines

COST SV40 transformed, African green monkey 

kidney cells. Gift from Professor G 

Milligan, Glasgow University, UK

NRK-49F Normal Rat ICidney fibroblasts. Gift from M 

Lacy, CRC Beatson, Glasgow, UK

2.1.4 Cell culture materials aud reagents

Reagent/material Supplier

Disposable plastic pipettes Bibby Sterlin Ltd, Staffordshire, UK

BM-Cyclin (mycoplasma removal agent) Boehringer Mannheim Ltd, Sussex, UK

G418 Calbiochem-Novabiochem, Nottingham, 

UK

Tissue culture flasks 

Disposable cell scrapers 

96 and 6 well plates

Corning Costar, Buckinghamshire, UK

RPMI-1640 medium

Protein-Free Hybridoma Medium II (PFHMIÏ)

Optimem

Glutamine

Gentamicin

Trypsin

Foetal calf serum 

Cryovials

Life Technologies Ltd, Paisley, UK

Haemocytometer Phillip Flarris Scientific, Lanarkshire, UK

Cell Dissociation Media 

Trypan blue

Dulbecco’s Modified Eagles Medium 

(DMEM)

Sigma-Aldrich, Dorset, UK

59



2.1.5 Transfection reagents

Reagent Supplier

DOTAP Boehringer Mannheim Ltd, Sussex, UK

Gene Puiser Electroporation Cuvette Bio-Rad Laboratories Ltd, Herts, UK

2,1.6 Antibodies

Antibody Supplier

Protein A horse-radish peroxidase-linked Amersham Life Science Ltd, 

Buckinghamshire, UK

Mouse anti-human B cell, CD19-FITC DAKO, Denmark

Mouse anti-human Bcl-2 monoclonal Pharmingen, San Diego, USA

Rabbit anti-human ; Bcl-2 (N-19)

: Bax (1-19) 

: B c1-Xl (L -19)

Santa Cruz Biotechnology Inc, USA

Sheep anti-mouse IgG-FITC SAPU (Scottish Antibody Production Unit) 

Lanarkshire, UK

Mouse anti-human CD21-FITC 

Mouse anti-human CDlla-FITC

Serotec, Oxford, UK.

Mouse anti-human CDllb/c -FITC 

Rabbit anti-mouse IgG-FITC

Sigma-Aldrich, Poole, Dorset, UK

Mouse anti-human CD23-FÏTC The Binding Site Ltd, Birmingham, UK

Rabbit-anti-human CD23 Gift from Dr J-Y Bonnefoy, Geneva 

Biomedical Research Institute, Switzerland

Mouse anti-human CD23 Gift from Professor J Gordon, Birmingham 

University, UK
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2.1.7 CD23 cytokine

Initial stocks of affinity-purified 25kDa sCD23 were a gift from Dr J-Y Bonnefoy, 

Geneva Biomedical Research Institute, Switzerland. Subsequent stocks were produced 

by Dr. J. Matheson, University of Glasgow, UK. The cytokine was produced in 

baculovirus-infected Sf9 cells as previously described (Jansen et al, 1991; Flores- 

Romo et al, 1993).

2.1.8 Plasmids

Plasmid Description/Supplier

pcDL SRa296CD23a Full length CD23a cDNA in expression 

vector pcDL SRot. A gift from Dr. J-Y 

Bonnefoy, Geneva Biomedical Research 

Institute, Switzerland

pcDNA3.1(+) Expression vector from Invitrogen, 

Netherlands

2.1.9 cDNA probes for Northern blotting

Probe Description

c~fos Full-length cDNA probes. Gifts from Dr. J

c-myc Winnie, CRC Beatson, Glasgow, UK

c-jun

IS
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2.2 METHODS

All solutions and buffers referred to in the following sections are detailed in the 

appendix.

2.2.1 Cell culture

2.2.1a Culture of Human B Lymphocytes

SMS-SB cells were maintained routinely in RPMI-1640 medium supplemented with 

10% (v/v) heat-inactivated foetal calf serum (heated at 57°C for 50 minutes), 2mM L- 

glutamine and 0.05mg/ml gentamicin. For some experiments the cells were also 

cultured in Protein-Free Hybridoma Medium II (PFHMII) or in the serum-free 

medium Optimem. All other B cell lines were cultured in supplemented RPMI-1640 

medium only. All cells were routinely sub-cultured every 2-3 days depending on 

experimental requirements. Cells were cultured in 25 or 75cm^ flasks at 3TC  in a 

humidified 6% CO2  incubator and manipulated aseptically in Laminar-flow-hoods.

2.2.1b Culture of non-B cell lines

COS7 and NRK-49F cells were maintained in Dulbecco’s Modified Eagles Medium 

(DMEM), supplemented with 10% (v/v) foetal calf serum, 2mM glutamine and 

0.05mg/ml gentamicin. Cells were sub-cultured every 3-4 days using trypsin (0.25% 

w/v in PBS). Stably transfected CD23aCOS7 cells were maintained in supplemented 

DMEM medium and 800|Lrg/ml G418, and sub-cultured using non-enzymatic Cell 

Dissociation Solution, to prevent cleavage of the CD23 membrane protein. All cells 

were cultured in 75cm^ flasks or 9cm tissue culture treated petri dishes and maintained 

under conditions as for B cell lines.

2.2.1c Frozen cell stocks

Frozen stocks of each cell line routinely used in culture were maintained in liquid 

nitrogen. 10  ̂ logarithmically growing cells were centrifuged and resuspended in 1ml 

of chilled freezing media (90% (v/v) heat-inactivated FCS and 10% (v/v) DMSO 

(dimethyl sulfoxide)), and quickly transferred to 1ml cryovials. Vials were then kept at
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-70°C for 3-4 days before being transferred to liquid nitrogen. Cells removed from 

nitrogen storage were rapidly thawed and immediately washed in 10ml of appropriate 

medium to remove residual DMSO. The cells were then re suspended in medium and 

allowed to recover overnight before further manipulation.

2.2.1d Detection of mycoplasma

Cell lines were tested for the presence of mycoplasma by staining with the fluorescent 

dye Hoechst 33258 (2- [2- (4-hydroxy-phenyl) -6- benzimidazolyl] -6- (l-methyl-4- 

pierpazyl) -benzimidazol -tri-hydrochloride) as previously described (Chen, 1977). 

Cell culture supernatants where tested for their ability to infect NRK-49F, a cell line 

consistently negative for mycoplasma infection. Briefly, NRK-49F cells were 

incubated for 2-3 days in 50% (v/v) ‘test’ supernatant, which had been in contact with 

cells for 4 days before removal. NRK-49F cells were then fixed with 3:1 

methanoliglacial acetic acid, and stained with Hoechst 33258 (0.05pg/ml in PBS) for 

10 minutes in the dark. Cells were then rinsed with dHzO and visualised under a Leitz 

Laborluxs fluorescent microscope using filter position 2. Mycoplasma contamination 

was identified by the presence of green/yellow fluorescent speckles in and around the 

cells, additional to the main fluorescent nuclear components of normal healthy cells.

Mycoplasma was detected in all SMS-SB cell stocks and so these were treated with 

BM-Cyclin in accordance with the manufacturers instructions. The cells were then 

frequently re-tested for the return of infection and re-treated when necessary. All other 

cell lines used were consistently negative for mycoplasma.

2.2.1e Determination of cell number and viability of B cell lines

Before every experiment cell number and viability were determined using trypan blue 

staining. Dead cells have lost membrane integrity and thus allow the uptake of trypan 

blue and can be easily discriminated from healthy cells. Twenty microliters of cell 

suspension was mixed with an equal volume of trypan blue, loaded onto a 

haemocytometer and counted. All experimental set-ups were based on the number of 

live cells per ml in the original culture. This was estimated by multiplying the average 

live count of 8x16 square area grids by 2 (which accounts for trypan blue dilution), 

and then by IxlO" .̂ The number of dead (blue) cells were also calculated in this way
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and the cells only used if viability was above 90% of the total number of cells in 

culture.

2.2.1f Preparation of Conditioned Medium (CM)

SMS-SB cells routinely grown in Protein Free Hybridoma Medium II (PFHMII) were 

seeded at 5xl0^/ml in fresh medium and cultured for 3 days. The cells were then 

removed by centrifugation at 250 xg and returned to culture for further uses. The 

supernatant (i.e., conditioned medium) was re-centrifuged at 1710 xg to remove any 

residual cells and then sterile filtered through a 0.22p,m filter, aliquotted and stored at 

-20T.

2.2.2 Transfection of mammalian cells

2.2.2a Transfection of human B cell suspension cultures

SMS-SB cells were transiently transfected with a CD23a expression vector using 

DOTAP (N-[l-(2, 3-Dioleoyloxy) propyl]-N, N, N-trimethylammonium 

methylsulphate), a cationic liposome-mediated transfection reagent. The reagent was 

used in accordance with the manufactures recommended cell densities and 

DNA:DOTAP concentrations (5-10p,l DOTAP per jig of DNA). Transfections were 

performed using DNA prepared from a QIAGEN Maxi Plasmid Kit (section 2.2.7b). 

SMS-SB cells were prepared the day prior to transfection in 10ml of fresh serum- 

supplemented RPMI-1640 at a density of 5xl0^/ml.

For the transfection procedure, lOjig of plasmid DNA was diluted in 90p,l of Hepes 

buffer (20mM, pH 7.4) in a sterile glass bijou bottle. In a separate bottle 70fxl of 

DOTAP was added to 130pl of Hepes buffer. The nucleic acid solution was then 

transferred to the DOTAP and carefully mixed by gentle pipetting, and incubated for 

15 minutes at room temperature. After incubation, the DOTAP/nucleic acid mixture 

was added dropwise into the cells and gently mixed. The cells were then incubated for 

4 hours after which the DOTAP containing medium was replaced with fresh culture 

medium. After 24 or 48 hours the cells were assessed for the expression of CD23 by 

flow cytometric analysis (see section 2,2,3b), and for the formation of homotypic 

adhesions. Comparisons were made with untransfected and mock-transfected cells.
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2.2.2b Transfection of non-human cell lines

C0S7 cells were transfected for the generation of stable CD23a-expressing 

transfectants using electroporation. A confluent plate of cells were harvested using 

trypsin, washed in serum-free DMEM and resuspended in 0.8ml of serum-free 

medium. The CD23 expression vector (30p,g) was added and the cells transferred to an 

electroporation cuvette. After a 5 minute incubation on ice, the cells were 

electroporated in a Bio-rad Gene Pulsar System at 0.3kV (960[iFD). The cells were 

then returned to ice for a further 5 minutes and plated back into a 9cm culture dish in 

serum-supplemented DMEM. After 24 hours the cells were sub-cultured by a 1:10 

dilution. At 48 hours, the culture medium was replaced with selection medium 

containing 800qg/ml of G418. The cells were then left for 3-4 weeks with occasional 

replacement of selection medium. The CD23aCOS7 cells were then analysed for 

CD23 expression by flow cytometry and Western blotting compared to untransfected 

COS7 cells (section 2.2.3b and 2.2.15).

2.2.3 Flow cytometry

All analytical flow cytometric analysis was performed on a Becton-Dickinson 

FACScan Flow Cytometer fitted with an argon laser. All samples were prepared in 

6ml Falcon tubes (Becton Dickinson Labware, Plymouth, UK), suitable for use on the 

cytometer.

2.2.3a Analysis of cell cycle and intracellular proteins

To analyse the expression of intracellular Bcl-2 levels as a function of cell cycle and 

apoptosis, cells were subjected to a saponin treatment to permeabilise the cells thus 

allowing entry of the antibodies.

Each centrifugation in the following procedure was performed at 250 xg for 10 

minutes. For each stain, cells were harvested from culture (see individual 

experiments), washed once in PBS and then twice with SBP buffer (0.1% (w/v) 

saponin / 0.5% (w/v) BSA / PBS), and incubated for 20 minutes on ice with lp,g of 

Bcl-2 primary antibody. After two further SBP washes, lOp.1 of a 1:100 dilution of
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sheep anti-mouse IgG-FITC was added to the cells and incubated as before. The cells 

were washed twice in SBP and stained with 0.5ml propidium iodide solution 

(100p.g/ml PI in PBS). All samples were immediately analysed on the Flow 

Cytometer, in two fluorescence channels FL-l/530nm (FITC), and FL-2/585nm 

(Propidium iodide, PI).

Both unstained cells, and cells incubated with secondary antibody alone were also 

analysed to test for autofluorescence and non-specific secondary antibody binding, 

respectively.

2.2.3b Cell phenotyping

Flow cytometry was used to analyse the surface expression of CD (cluster of 

differentiation) antigens on a variety of different cell lines. For each stain, 10  ̂ cells 

were removed from culture and washed twice with ice-cold PBS. Three microliters of 

FITC-conjugated antibody (CD19, CD23, CDlla, CDllb, CD llc, CD21), was added 

to the cells and incubated for 20 minutes on ice protected from light. After incubation, 

cells were washed twice in PBS and resuspended in 0.4ml of PBS ready for analysis. 

All samples were analysed in cytometer channel FL-l/530nm to detect FITC 

fluorescence against cell number. Unstained cells were also analysed to test for 

autofluorescence.

2.2.4 Flow cytometric cell sorting

Flow cytometric cell sorting was performed on a Becton-Dickinson FACstar Flow 

Cytometer that was fitted with an argon laser supplied by Coherent Lasers Ltd, 

Cambridge, UK.

CD23a-expressing COS7 cells (5x10^) were stained with 15pl of FITC-conjugated 

anti-CD23 antibody using the procedure outlined in section 2.2.3b. Finally, the cells 

were resuspended in 5ml of PBS in 6ml Falcon tubes (Becton Dickinson Labware, 

Plymouth, UK). The cells were then analysed in the FL-l/530nm cytometer channel to 

detect FITC fluorescence against cell number. Cells exhibiting a fluorescence above
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1.2x10^ were separated from the rest of the population and subsequently returned to 

cell culture.

2.2.5 Conditioned medium manipulation

2.2.5a CM activity assay (recovery of LCD SMS-SB cells from apoptosis)

The activity of SMS-SB autocrine factor (SB-AF), contained within the cell culture 

supernatant, was determined by a basic assay which assessed the ability of the 

conditioned medium (CM) to rescue low cell density (LCD) SMS-SB cultures from 

death. This basic LCD assay was then used to assess activity after all CM 

manipulations.

SMS-SB cells grown in Protein-Free Hybridoma Medium II (PFHMII) were washed 

twice in fresh medium by gentle centrifugation (250 xg for 10 minutes), due to the 

delicate nature of the cells. The cells were counted and set up at 2xl0Vml 

representative of LCD by diluting the cells in appropriate volumes of PFHMII ± CM 

as presented in the table below. In addition to LCD, cells were also set up at 

intermediate density (IxlO^/ml), to determine the effect, if any, of CM on cells at a 

higher density. The cultures were set up in 75cm  ̂flasks in a final volume of 20ml and 

incubated for 18 hours. The cells were then harvested and stained for intracellular Bcl- 

2 expression and cell cycle status and analysed by flow cytometry (section 2.2.3a).

Cell density Final % CM CM Cells (2xl0=/ml) PFHMII

ICD (IxloVml) 0 0 5ml 15ml

ICD 20 4ml 5ml 11ml

LCD (2xl0Vml) 0 0 1ml 19ml

LCD 5 1ml 1ml 18ml

LCD 10 2ml 1ml 17ml

LCD 20 4ml 1ml 15ml

LCD 50 10ml 1ml 9ml
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2.2.5b Enzymatic and heat treatment of conditioned medium

Conditioned medium was prepared as in section 2.2. If. Aliquots, each of 5ml, were 

then independently treated with RNase, DNase and trypsin all at a final concentration 

of l|ig/ml and incubated at 37“C for 4 hours. Nucleic acid digestion was stopped by 

cooling on ice, and trypsin inhibitor (final concentration of 2p,g/ml) added to the 

trypsin treated sample with a further 1 hour incubation at room temperature. Aliquots 

of CM were also heated to 65“C and 90”C for 1 hour and then cooled. All treated 

conditioned media were sterile filtered through a 0.2p,m filter and assayed at 20% of 

the final culture volume to rescue LCD cells from apoptosis (section 2.2.5a).

2.2.5c Lentil Lectin Chromatography

Lentil lectin-agarose equivalent to 0.6ml of packed beads was washed 5 times in 10ml 

of Protein-Free Hybridoma Medium supplemented with O.IM CaCWMgCL (PFHMII- 

Ca^VMg '̂ )̂. The packed beads (0.5ml) were then transferred to a V-bottomed 

centrifuge tube and 10ml of SMS-SB conditioned medium added and incubated with 

rotation for 3 hours at room temperature. The beads were then pelleted by 

centrifugation at 420 xg for 10 minutes, washed 3 times in 15ml PFHMH-Ca^^/Mg^^ 

medium and resuspended in 10ml of PFHMII supplemented with 0.2M a-methyl-D- 

mannopyranoside and rotated for 1 hour at 37*̂ C. The beads were then pelleted and the 

supernatant retained as the eluate sample. Meanwhile, the supernatant obtained from 

the first bead incubation was transferred to a new tube containing 0.1ml of packed 

washed beads and incubated for 2 hours at room temperature. After the incubation the 

beads were removed by centrifugation and the supernatant retained as the flow­

through sample.

Both the eluate and flow-through media were filter sterilised through a 0.2p.m filter 

and assayed for the ability to rescue LCD SMS-SB cells from apoptosis compared to 

unmanipulated conditioned medium. Cells were also incubated with media containing 

0.2M a-methyl-D-mannopyranoside ± conditioned medium to control for the possible 

effects of the added saccharide. All media were assayed at 20% of the final culture 

volume.
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2.2.5d G25 Chromatography

A G25 column was equilibrated with 30ml of PFHMII. Conditioned medium (3ml) 

was added to the top of the column and allowed to pass into the matrix. PFHMII 

media was then used to elute 8 x 3ml fractions from the column, which were sterilised 

through a 0.2p,m filter and assayed at 20% final volume for ability to rescue LCD 

SMS-SB cells from apoptosis.

2.2.6 Proliferation assay

Tritiated-thymidine uptake assays were performed to assay the response of SMS-SB 

cells to membrane CD23 expressed on COS7 ‘feeder’ cells. Untransfected COS7 cells 

were used to assay the effect of the COS7 cells alone. To prepare the ‘feeder’ layers, 

cells were seeded into the wells of a 96-well flat bottomed plate to achieve 80-90% 

confluency after 24 hours. To allow SMS-SB cell proliferation to be studied 

independently of the feeder layers, the monolayers were fixed in 1% (w/v) 

paraformaldehyde/PBS for 2 hours. After the incubation, the cells were extensively 

washed in PBS supplemented with lOOmM glycine to quench the paraformaldehyde, 

and then further washed a number of times with RPMI-1640 medium supplemented 

with 2% (v/v) FCS.

SMS-SB cells were washed, counted and resuspended in fresh medium (2% (v/v) FCS 

RPMI-1640) and dispensed onto the feeder layers at varying densities (5x10^, 1x10^, 

5x10"̂ , lx lO \ 5x10^, 1x10^ cells/ml) in a final volume of lOOp.1. In addition, SMS-SB 

cells were dispensed into wells without feeders layers (to assess normal proliferation), 

and feeder layers were left without SMS-SB cells (to assess background proliferation 

after fixation). The cells were then placed in the incubator for 24 or 48 hours. For the 

final 4-5 hours of the incubation, each well was pulsed with 0.33fxCi of tritiated 

methyl thymidine (^H-TdR) and then harvested onto glass fibre mats using a LKB 

Wallac 1295-001 Cell Harvester. The mats were then air dried and counted in a LKB 

1205 Betaplate Liquid Scintillation Counter. All determinations were made in 

triplicate.
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2.2.7 Isolation and preparation of DNA

Composition of buffers used are detailed in the appendix.

2.2.7a Small scale preparation of DNA (mini-preps)

A 1ml overnight Escherichia coli bacterial culture was spun in a microfuge tube for 3 

minutes at 9500 xg and the subsequent pellet resuspended in lOOpl of solution I and 

left at room temperature for 5 minutes (see appendix for solution details). Solution U 

(200pl) was then added and incubation for 10 minutes on ice. Pre-chilled solution HI 

(150pl), was added with a further 5 minute incubation on ice. To remove insoluble 

debris, the tubes were microfuged for 10 minutes at 16060 xg and the supernatant 

transferred to fresh tubes containing an equal volume of phenol:chloroform (1:1). The 

sample was then mixed, centrifuged at 16060 xg, and the resulting aqueous phase 

precipitated with 2 volumes of ethanol at -20°C for 30 minutes. The sample was then 

centrifuged as before at 4°C and the pellet washed in 70% ethanol, air-dried and 

resuspended in 20pi of dH20 and stored at -20°C. DNA from cloning procedures was 

subjected to restriction enzyme digestion and electrophoresis to analyse transformants 

(sections 2.2.8a/b).

2.2.7b Large scale preparation of DNA (maxi-preps)

After analysis of mini-prep samples, large quantities of ‘clean’ DNA for use in salt 

sensitive applications such as PCR, sequencing and transfection, were prepared using 

a QIAGEN Maxi Plasmid Kit in accordance with the manufactures instructions using 

the buffers supplied.

Briefly, 200ml cultures (supplemented with lOOpg/ml of ampicillin), were grown 

overnight and harvested at 6000 xg. The bacterial pellet was resuspended in 10ml of 

solution PI with a further addition of 10ml of PII and incubated at room temperature 

for 5 minutes. Chilled PHI solution (10ml) was then added and lysate mixed by 

inversion and incubated for 20 minutes on ice. Samples were then centrifuged at 

20,000 xg for 30 minutes at 4“C. The supernatant was then passed through a muslin 

gauze and loaded on to a pre-equilibrated QIAGEN maxi column. The sample was
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allowed to pass in to the column under gravity, and the column washed three times 

with 30ml of wash buffer (QC). Plasmid DNA was eluted from the column with the 

addition of 10ml of elution butter (QF). Isopropanol (10.5ml = 0.7 volumes) was then 

added to the eluate and the sample centrifuged at 15,000 xg for 30 minutes at 4°C. The 

subsequent pellet was washed twice with 70% ethanol and air dried. The DNA was 

then resuspended in 300pl of TE buffer and the DNA concentration determined by 

spectrophotometry. The DNA was stored aliquotted at -20‘’C.

2.2.8 Basic manipulation of DNA

2.2.8a Restriction endonuclease DNA digestion

Digestion conditions varied depending on the concentration and volume of DNA used. 

A general rule was followed that states that under appropriate conditions, 1 unit of 

enzyme digests Ipg of DNA in 1 hour. Digests were set up in IX restriction buffer 

with the volume of enzymes not exceeding 1:5 of the total reaction volume. Samples 

were incubated for 90 minutes at 37°C, and then mixed with gel loading buffer ready 

for analysis.

2.2.8b Agarose gel electrophoresis

1% agarose gels were prepared using IX TBE with the addition of 0.5pig/ml ethidium 

bromide and submerged in IX TBE electrophoresis buffer. DNA samples were mixed 

with an appropriate volume of 5X DNA loading dye to give a IX final concentration 

and ran at 100V/60mA in a BRL (Cambridge, UK) horizontal electorphoresis tank. 

All gels were ran with Ikb DNA ladder standards. The DNA was visualised on a UV 

transilluminator and photographed.

2.2.8c DNA fragment purification

DNA fragments obtained by PCR were purified for further cloning manipulations by 

agarose gel extraction. The appropriate DNA band was excised from a gel and purified 

with a QIAGEN-QIAquick gel extraction kit in accordance with the manufacturers 

instructions using the solutions supplied. Briefly, 300p,l of QIAGEN solubilisation 

(QXl) buffer was added to each lOOmg of gel (400mg maximum), and incubated at
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50°C for 10 minutes. The dissolved gel mixture was then applied to a QIAquick 

column/collection tube and centrifuged for 1 minute at 10,000 xg. The flow-through 

was discarded, and the column washed with 0.75ml of PE buffer. The flow-through 

was again discarded and the column re-centrifuged to remove residual buffer. Fifty 

microliters of dH2 0  was then directly added to the centre of the column and 

centrifuged as before to elute the DNA into a fresh tube. The DNA was stored at - 

20°C.

2.2.Sd Ligation of plasmid vector and insert DNA

The vector and insert DNA were prepared with appropriate restriction digestion and 

purification. Ligations were then carried out in IX ligation buffer with 1 unit of T4 

DNA Ligase in a final volume of lOpl. A maximum of 250ng of vector DNA was 

used, the amount of insert to be added was calculated as a function of the molar 

concentration of free ends in the reaction. Ligations were set up equivalent to 1:1 and 

1:3 molar ratios of vector:insert.

equation used to convert molar ratios to mass ratios:

ng of vector x kb size of insert x molar ratio of insert = ng of insert 

kb size of vector vector

Ligation reactions were then carried out at 14“C overnight and then 2p,l of each 

reaction used for the transformation of E. coli.

2.2.9 Transformation of DNA into E. coli

2.2.9a Preparation of competent cells (rubidium chloride method)

An overnight culture of JM109 E. coli bacteria was diluted 1:100 in 250ml of LB 

containing 20mM MgS0 4 , and incubated with shaking until the Aeoo reached 0.4-0.6. 

The cells were then centrifuged at 4,500 xg for 5 minutes at 4°C. The cell pellet was 

resuspended in 100ml of ice-cold TFBl (see appendix for solution details), incubated 

on ice for 5 minutes, and centrifuged as before. For all subsequent steps, the cells were 

kept on ice and all solutions and plasticware were chilled before use. The cells were
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resuspended in 10ml of TFB2 and incubated for 30-60 minutes before being aliquotted 

and quick frozen in a dry ice/isopropanol bath. Cells were stored at -70"C and were 

stable for up to 3 months.

2.2.9b Transformation of competent cells

Ten nanograms of plasmid DNA (in a maximum of lOp.1) or 2pl of a ligation reaction, 

was added to lOOpl of competent cells in a microfuge tube and incubated for 30-40 

minutes on ice. The cells were heat shocked at 42"C for 1 minute and cooled on ice for 

2 minutes. SOC medium (1ml) was then added and the cells incubated with shaking 

for 1 hour at 37“C to allow expression of antibiotic resistance. Aliquots (50-100|rl) of 

the transformation mix were plated onto LB-agar selection plates (50p,g/ml 

ampicillin), and incubated overnight at 37°C.

2.2.9c Analysis of transformants

To identify colonies of E. coli containing plasmid or recombinant vector, individual 

colonies were picked and grown up overnight in a 5ml culture of selective LB 

(50pg/ml ampicillin). Mini-preps and restriction digest analysis were then performed 

(see sections 2.2.7a, 2.28a/b), to allow the plasmid to be mapped and the presence of 

cloned insert confirmed.

2,2.10 Polymerase Chain Reaction (PCR)

2.2.10a Oligonucleotide design and preparation

Using the published cDNA sequence of the CD23 gene (Entrez accession number: 

M14766), a series of synthetic oligonucleotides were designed to allow the PCR of the 

different forms of CD23 (a, b, 37kDa and 25kDa). Oligonucleotides were designed

with either BamHÏ GGATCC or Notl GCGGCCGC restriction sites within them to

assist with subsequent cloning steps.

CD23a (sense) 5’- GTAlGGATCdACCGCCATGGAGGAAGGTC -3’

CD23b (sense)5’~ GTAqGATCC^GCATAATGAATCCTCCAAGCCAGGAGATC

GAGGAGCTTCCCAGG -3’
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CD23-37kDa (sense) 5’- CACGjGGArCGIAGATGGCGCAGAAATC -3’

CD23-25kDa (sense) 5’- GACAGGATCqAGGATGGAGTTGCACGT -3’

CD23 (antisense) 5’- GTApCGGCCGÜTCAAGAGTGGAGAGGGGCAG -3’

Oligos were synthesised on an Applied Biosystems 392 RNA/DNA synthesiser. The 

iyophilised DNA produced was resuspended in 50pl of MilliQ water, its concentration 

determined by spectrophotometry, then aliquotted and stored at -20^C.

2.2.10b PCR reaction

All PCR amplification reactions were performed using Pfu DNA Polymerase using the 

plasmid pcDL SRct296CD23a as a template. For each gene amplification, optimal 

components and conditions were determined for both the reaction mixture and the 

cycle parameters as detailed below. All reactions were carried out in 0.5ml 

microcentrifuge tubes and were carried out in a Techne Genius PCR machine. After 

the PCR, samples were analysed on a 1% (w/v) agarose gel, purified, digested and 

cloned into an appropriate vector and then sequenced (sections 2.2.8a/b/c and 2.2.11). 

A negative control (no DNA template), was also performed with each PCR reaction.

Reaction mixture:

template DNA

upstream primer

downstream primer

DNTP mix

lOX Buffer

DMSO

Glycerol

PFU

dHzO

Final concentration 

50ng 

IfxM 

lp,M 

0.2mM 

IX

10% (v/v)

5% (v/v) 

0.025U/^il 

(to final volume 100p,l)
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Cycle parameters:

94°C 5 minutes 1 cycle

94"C 30 seconds (dénaturation)

62°C 30 seconds 20 cycles (annealing)

12^C 1 minute (extension)

72"C 10 minutes 1 cycle

4°C HOLD

2.2.10c Blunt ended PCR cloning of 37kDa and 25kDa CD23 forms

The PCR products for these transcripts were blunt-end cloned using the pCR- 

Script™SK(+) cloning kit which utilises simultaneous action of T4 DNA ligase, and 

SrfI restriction digestion of non-recombinant, re-ligated vector. The kit was used in 

accordance with the manufacturers instructions using all the reagents/vectors supplied. 

Briefly, the ligation reaction was set up as advised and incubated for 1 hour at room 

temperature. The reaction was then heated to 65°C for 10 minutes and transformed 

into XL-1 Blue MRF’ Kan supercompetent cells. The transformation mixture was then 

plated out onto antibiotic selection plates (50p.g/ml ampicillin, 40p.g/ml X-gal (5- 

Bromo-4-Chloro-3-Indolyl-p-D-galactoside)) and incubated for 16 hours at 37°C. 

Plates were then placed at 4”C to allow blue/white colour selection to develop. White 

colonies were then analysed further for the presence of an insert as described in 

section 2.2.9c, and the DNA sequenced.

2,2.11 Nucleotide sequence analysis

The cloned CD23 constructs were sequenced using Biosystems ABI 373A automated 

DNA sequencer. Fifty nanograms of plasmid was mixed with 3.2pmoles of 

sequencing primer and 8p.l of Bigdye ™ termination reaction mix, in a total volume of 

20pl. DNA was subjected to ‘cycle sequencing’ in a DNA thermal cycler for 25 cycles 

(each cycle comprises 10 seconds at 96"C, 5 seconds at 50°C, and 4 minutes at 60“C). 

The products were then ethanol precipitated, washed in 70% ethanol, and dried in a 

Speedivac for 5 minutes prior to being resuspended in loading buffer (95%
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formamide, 25mM EDTA pH8, 1.5mg/ml dextran blue). The samples were then 

denatured by heating to 94°C, chilled on ice, and subject to electrophoresis on the ABI 

373A sequencer, operated as a core service by staff at the CRC Beatson Institute, 

Glasgow. For nucleotide sequencing in pcDNA3.1(+) and pCR-Script™ SK(+), the T7 

and RP, and the T7 and T3 primers were used respectively:

T7 5’- GTAATACGACTCACTATAGGGC -3’

T3 5’- AATTAACCCTCACTAAAGGG -3’

RP (reverse primer) 5’- TAGAAGGCACAGTCGAGGC -3’

2,2.12 RNA manipulation

2.2.12a SMS-SB cell stimulation

To assay the response of SMS-SB cells to membrane CD23a expressed on C0S7 cells 

at the RNA level, SMS-SB cells were exposed to the ‘feeder layer’ for different 

periods of time (0, 15, 30, and 60 minutes) and RNA prepared. SMS-SB cells were 

also placed on untransfected COS7 cells to assay the effect of COS7 cells alone. The 

SMS-SB cells used in this assay were grown for a week prior to the experiment in 

Optimem, a serum-free medium, to rule out serum-stimulated effects.

24 hours prior to use, both types of COS7 cells were sub-cultured into 75cm^ flasks to 

allow 3 flasks of both type for each time point, each achieving 80-90% confluency at 

the time of use. On the day of the assay, CD23aCOS7 and COS7 feeder layers were 

fixed as described in section 2.2.6, and SMS-SB cells counted and diluted in Optimem 

to give 8xl0^/ml. Diluted SMS-SB culture (10ml) was then placed in each feeder flask 

(i.e., a total of 30ml of SMS-SB cells for each time point on each C0S7 cell type), and 

incubated appropriately for each time point. Cells were then removed from the feeder 

layers, and each time point from each and feeder cell type pooled together. The 

resulting 30ml, a total of 2.4x10^ cells, was centrifuged at 270 xg for 10 minutes.

2.2.12b Isolation of RNA from SMS-SB cells

Total RNA was extracted from cells using RNAzol B according to the manufacturers 

instructions using RNase free filter tips and plasticware. Briefly, the pelleted cells
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(2.4x10^), were washed once with PBS and lysed with 4.8ml of RNAzol B (0.2ml per 

10  ̂ cells) by passing the cells through a pipette. Chloroform was then added (0.1ml 

per 1ml homogenate) and the samples shaken vigorously for 15 seconds and put on ice 

for 5 minutes before being centrifuged at 12,000 xg for 15 minutes at 4°C. After 

centrifugation the homogenate forms two phases; a lower blue phenol-chloroform 

phase and a colourless upper aqueous phase where the RNA resides. The upper phase 

was carefully transferred to a fresh tube and an equal volume of isopropanol added 

and the sample stored on ice for 15 minutes to allow RNA precipitation. The sample 

was then centrifuged as before, and the resultant pellet washed with 75% ethanol, air 

dried and resuspended in 30p,l of RNase-free water. The samples were then stored at - 

70°C until analysis. Before use, samples concentrations were determined by 

spectrophotomer readings at A2 6 0  and A2 8 0 . Samples had A2 6 0 /2 8 0  ratios greater than

1.9 indicative of DNA and protein-free preparations.

2.2.12c Northern blotting

All gel equipment used was treated with RNaseOUT before use by liberally spraying 

the reagent over surfaces, leaving it for 10 seconds and washing with RNase-free 

water. RNase-free filter tips were also used to prevent contamination. Twenty 

micrograms (approximately 2p.l), of total RNA was added into sample buffer (0.75p.1 

lOX MOPS, 2.25pi formaldehyde, 7.5pl formamide), and made up to 15pl with 

RNase-free water. The sample was then heated for 15 minutes at 65°C and placed on 

ice for 5 minutes. Ethidium bromide (0.5pi of a lOmg/ml stock) and 0.5pl of RNA 

loading dye (see appendix for details) were added and the sample loaded onto a 50ml 

1% (w/v) agarose gel containing 5ml of lOX MOPS and 9ml of formaldehyde, and 

electrophoresed slowly (50V) In IX MOPS for approximately 3 hours. The gel was 

then washed for 2 x 15 minutes in dH20 and visualised/photographed on a 

transilluminater to assess RNA quality and to align RNA markers. RNA was then 

transferred to Hybond N+ nitrocellulose membrane by overnight capillary blotting 

(Southern, 1975) using 20X SSC. The RNA was UV crosslinked using a UV 

Stratalinker 1800, and stored wrapped in clingfilm at 4°C until probe hybridisation.

2.2.12d Radiolabelling of cDNA probes

Complementary DNA (cDNA) probes were labelled using a random priming oligo-
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labelling kit and radiolabelled dCTP. For each probe, 50ng of DNA, in a volume of 

34pl of dHzO, was denatured by heating to 100*^0 for 5 minutes and then cooled on ice 

for 2 minutes. Ten micoliters of reagent mix (containing dATP, dGTP, dTTP and 

random hexadeoxyribonucleotides), 5pi (3000Ci/mmol) of a-[^^P]-dCTP and Ipl of 

Klenow fragment were all added. The reaction was mixed gently and incubated for 1 

hour at 37°C. After incubation, unincorporated nucleotides were removed by 

centrifugation at 735 xg for 2 minutes through a MicroSpin Sephacryl S-200 Column 

as these are retained in its bead matrix. The probe was boiled for 5 minutes, placed on 

ice for 10 minutes, and then added to the pre-hybridized membrane as detailed below.

2.2.12e Hybridisation with [^^P]-labelled cDNA

Nylon membranes were placed in 20ml plastic tubes and pre-hybridised in 5ml of 

Express Hyb hybridization solution, and incubated with rotation for 1 hour at 65°C in 

a Hybaid oven. The [^^P]-labelled probe was then added directly into the buffer and 

the membrane incubated as before. The filter was then washed for 15 minutes at 65°C 

with shaking in IX SSC/0.1% (w/v) SDS, and then in O.IX SSC/ 0.1% (w/v) SDS. 

The filter was then sealed in saran wrap and exposed to Kodak XAR-5 film for 1-5 

days in autoradiography cassettes with intensifying screens at -70°C. Films were then 

processed in a Kodak X-omat developer.

Membranes to be reprobed were stripped by placing them in boiling 0.1% (w/v) SDS 

solution and leaving them to cool to room temperature with shaking. All membranes 

were reprobed with 7S cDNA as an RNA loading control.

2.2.13 BIAcore analysis of the novel receptor for CD23

BIAcore surface plasmon resonance technology was employed to study the interaction 

of the novel CD23 binding receptor on SMS-SB cells to sCD23, and to investigate the 

presence of the receptor on other cell lines. For this technique, cell membrane extracts 

were passed over sCD23 immobilised on a biosensor chip and the binding of any cell 

material analysed. The binding of cellular material, i.e., the novel receptor for CD23, 

creates a mass change at the chip surface, which in turn changes the resonance angle
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of light emitted from chip, thereby allowing the receptor-ligand interaction to be 

analysed.

2.2.13a Preparation of cell membrane extracts

1x10^ cells were removed from logarithmically growing cultures, washed twice in 

50ml of PBS and resuspended in 1.6ml of ice-cold membrane extraction buffer (see 

appendix for buffer details). The cells were then homogenised (approximately 30 

strokes) in a glass hand held homogeniser, transferred to microfuge tubes and kept on 

ice for 1 hour. The extract was centrifuged at 380 xg to remove nuclei and any 

unbroken cells. The supernatant was then centrifuged at 45,000 xg at 4°C for 40 

minutes, and the resulting supernatant stored at 4°C overnight until analysis. 

Immediately prior to analysis, extracts were diluted 1:10 in HBS buffer.

2.2.13b Surface plasmon resonance measurements

Real-time analysis of the interaction between sCD23 and CD23NR was performed 

with a BIAcore 2000 instrument. sCD23 was covalently immobilised onto a flow cell 

of a CM5 (carboxyl methyl dextran-coated) sensor chip using carbodi-imide coupling. 

This method involves the use of carbodi-imide cross-linking reagents to form a 

covalent bond with carboxylate groups on the sensor chip surface, leaving a bond 

sensitive to attack by free amino groups on the ligand. This procedure was performed 

in association with Dr. J Matheson, University of Glasgow.

Diluted extracts were run individually through the BIAcore machine in a continuous 

flow of HBS buffer using the automated injection procedures and fluidics. Each 

sample was simultaneously monitored in real time for the binding to the sCD23- 

immobilised sensor chip flow cell, and also to a blank flow cell to assess non-specific 

binding to the chip surface. After analysis, the sensor chip surface was regenerated to 

remove non-covalently bound material from the surface by injecting O.IM HCl, and 

then washed with a continuous flow of HBS buffer. Other extract samples were then 

analysed.

Association and dissociation kinetics were determined using the BIAevaluation 2.1 

analysis package supplied with the BIAcore 2000. From these kinetics, the overall 

equilibrium constant of the interaction was determined.
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2.2.14 Immunocytochemistry

To assess the expression of CD23a on adherent transfected CD23aCOS7 cells, 

immunocytochemistry was performed. CD23aCOS7 and mock-transfected C0S7 cells 

were plated onto coverslips in the wells of 12 well plates to achieve 70-80% 

confluency after 24 hours. The monolayers were washed once in sterile PBS, fixed for 

15 minutes at 37®C in 4% (w/v) paraformaldehyde/PBS and washed 5 times in 3ml of 

PBS. To prevent non-specific antibody binding, the cells were incubated for 40 

minutes at room temperature in blocking buffer (0.5% BSA/10% FCS/PBS), and then 

incubated in 1ml of mouse anti-human CD23 antibody (4[xg/ml) in blocking buffer for 

1 hour at room temperature. The cells were washed in PBS as before and then 

incubated with a 1:200 dilution of rabbit anti-mouse IgG-FITC antibody for 20 

minutes in the dark. Cells were washed as before in PBS, mounted onto slides and 

stored in the dark at 4°C until examined. Slides were examined on a Biorad MRC-600 

laser scanning confocal microscope.

Both CD23aCOS7 and control COS7 cells were also stained with the FITC- 

conjugated antibody alone to assess non-specific secondary antibody binding.

2.2.15 Western blotting 

2.2.15a Preparation of cell extracts

Lysates were prepared from logarithmically growing cultures. 1x10^ cells were 

washed once in PBS, resuspended in 0.5ml of RIPA buffer and incubated for 30 

minutes on ice. Lysates were then centrifuged at 16,000 xg to remove cellular debris. 

The supernatant was carefully removed, aliquotted and stored at -70”C until use.

Protein concentration was determined by the Lowry method (Lowry et al, 1951). 

Known amounts of protein were mixed with an appropriate volume of 4X protein 

loading dye supplemented with (3-mercaptoethanol to give a IX final dilution. 

Samples were then boiled for 5 minutes and loaded onto an SDS-PAGE gel.
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2.2.15b SDS-PAGE electrophoresis and Western blotting

A 10 or 12% (w/v) acrylamide separating gel was prepared using a Bio-rad mini-gel 

rig and left to set with an isopropanol overlay, A 5% (w/v) acrylamide stacking gel 

was then poured on top. Both gels were made to the specifications listed in the table 

below. Protein samples were loaded into the stacking gel and run at 15mA in 

electrophoresis buffer. When samples had reached the separating gel, the current was 

increased to 25mA. Rainbow protein molecular weight markers were also run 

alongside samples to allow molecular weights to be determined.

Final concentration of reagent

Reagent separating gels stacking gel

Acrylamide (40% w/v) 10% or 12% (w/v) 5% (w/v)

/bis acrylamide (3.3% w/v)

Tris pH8.8 0.375M -

Tris pH6.8 - 0.13M

SDS 0.1% (w/v) 0.1% (w/v)

Ammonium persulphate 0.05% (w/v) 0.1% (w/v)

TEMED 0.0003% (v/v) 0.0007% (v/v)

Following gel separation, the protein was transferred to nitrocellulose in transfer 

buffer using Bio-rad mini-wet blotting apparatus at 100mA/70V for 2 hours. After 

transfer, the nitrocellulose was blocked for either 3 hours at room temperature or 

overnight at 4°C in 10% (w/v) marvel/PBS. Following blocking, membranes were 

briefly rinsed with PBS and incubated at room temperature on a shaker with the 

appropriate primary antibody for 3-4 hours. Bcl-2, Bax, B c1-x l  antibodies were used at 

0.5[xg/ml, and the rabbit anti-human CD23 antibody at O.Sjig/ml, and were diluted in 

15ml of 1% (w/v) marvel/ 0.1% (w/v) thiomersol/ PBS. After incubation, membranes 

were washed for 3 x 10 minutes with 0.1% (v/v) Tween 20/ 1% (w/v) marvel /PBS 

and incubated with a 1:1000 dilution of Protein A-HRP antibody for 1 hour with 

shaking at room temperature (in 1% (w/v) marvel/ 0.1% (w/v) thiomersol/ PBS). The 

membrane was then washed as before.
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2.2.15c ECL detection system

All blots were developed using the ECL {Enhanced Chemiluminesence) detection kit 

in the darkroom and in accordance with the manufacturers instructions. Equal volumes 

of the two ECL reagents were mixed and poured onto a washed membrane and 

incubated for exactly one minute. Excess reagent was then removed with tissue and 

the membrane wrapped in cling film. The blot was exposed to Fuji RX film for 

between 20 seconds and 30 minutes depending on the intensity of the signal. Films 

were processed in a Kodak X-omat developer.
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CHAPTERS

RESULTS

STUDIES OF AN ANTl-APGPTGTIC AUTOCRINE FACTOR 

PRODUCED BY SMS-SB CELLS
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3.1 INTRODUCTION

Throughout B cell development, the majority of cells initially produced undergo 

apoptosis/programmed cell death. This may be due to the absence of essential 

cytokines or growth factors, or may be as a result of developmental problems at a 

specific differentiation stage. For example, the extensive cell death evident at the pre- 

B cell stage of development is due to the non-productive rearrangement of heavy chain 

genes (Osmond et a l, 1994). Several genes, and their protein products, have been 

implicated in the regulation of apoptosis. The Bcl-2 family is now considered to be 

one of the most important, consisting of both pro and anti-apoptotic members. The 

founding member, Bcl-2, was initially identified as a result of a translocation in a 

human cancer resulting in the over-expression of the gene, and the prevention of 

apoptosis (Tsujimoto et Cleary et aL, 1986; Tsujimoto and Croce, 1986).

Over-expression of Bcl-2 has now been found to prevent apoptosis induced in a wide 

variety of conditions (Reed, 1994).

The regulation of apoptosis, and indeed proliferation and differentiation of B cells is 

governed by the action of various growth factors and cytokines. These factors can 

regulate the expression and activity of proteins in the Bcl-2 family and thereby direct 

the cell either into or away from apoptosis (Franke and Cantley, 1997). Many of these 

factors act in a paracrine fashion, and in the case of precursor B cell regulation, are 

produced by the stromal cells of the bone marrow. In addition, cells can also produce 

factors that can regulate their own fate, so called autocrine factors. The production of 

these autocrine factors has been implicated in the development of cancers, allowing 

the cells to avoid external growth signals and partake in autonomous growth, but alone 

are not sufficient for transformation (Young et al, 1991). Although not solely 

responsible, the identification of B cell autocrine factors and the mechanism by which 

they act to influence a cell is of obvious importance in determining their role in 

leukaemogenesis, and therefore for the development of potential targets for cancer 

treatment.

The data in this chapter demonstrate a potential mechanism for the action of an 

autocrine factor produced by the pre-B acute lymphoblastic leukaemia cell line SMS-
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SB, and an attempt to characterise and isolate the factor from culture supernatant. 

When removed from the patient, these cells grew spontaneously in culture without 

going through a crisis phase. Previous studies into the growth characteristics of these 

cells performed by White (1995), demonstrated that the cells are; i) able to grow in 

medium devoid of all protein at the same rate as cells in serum-containing media, ii) 

cells are density-dependent for growth, with low density cultures undergoing apoptosis 

and iii) supernatant from normal density cultures (referred to hereafter as conditioned 

medium (CM)), apparently promotes the growth of the low density cultures. All these 

characteristics demonstrated the production of an autocrine growth factor by SMS-SB 

cells, which is required at a minimum concentration to maintain cell growth. In 

addition, White (1995), showed that the SMS-SB autocrine factor (SB-AF), could be 

concentrated over a lOOkDa filter, but could not identify the cytoldne responsible. 

Based on these results it was decided that a more directed isolation procedure using 

various chromatography techniques was required for the study of this factor.

All manipulations of the SMS-SB cells in this chapter were performed in Protein-Free 

Hybridoma Medium II (PFHMII), to eliminate any possible interactions between the 

autocrine factor and serum proteins and to prevent the interference of these proteins in 

the isolation procedures. In addition, all assays were based on the ability of CM to 

rescue low cell density (LCD) SMS-SB cultures from apoptosis, as analysed by flow 

cytometric studies of Bcl-2 and cell cycle status.

3.2 RESULTS

3.2.1 SMS-SB cells produce an autocrine factor

White (1995), demonstrated that SMS-SB cells produce an autocrine factor by taking 

CM from normal density SMS-SB cultures and adding it to low cell density cultures, 

at which cells would usually cease proliferation and die by apoptosis.

Figure 3.1 (taken and modified from White, 1995), represents the incorporation of 

[^H]-thymidine by various SMS-SB cell densities in the presence and absence of 20%
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final volume CM over 3 days of culture. The data demonstrate that CM can promote 

the proliferation of SMS-SB cells at 2.5 and 5x10^ cells/ml, although at these densities 

the cells can grow alone after 2 or 3 days in culture. At 1x10^ cells/ml however, CM 

promotes cell growth for 2 days but cannot sustain the effect beyond this time. An 

explanation of these growth differences is the presence of a lag phase in proliferation 

after initial seeding in fresh unconditioned medium. At the two higher densities the 

CM could maintain proliferation during this phase, thus allowing the cells to produce 

enough of their own autocrine factor to continue growth, thus explaining the enhanced 

growth of these cell density cultures in the presence of CM. The short-lived effect on 

proliferation for 1x10^ cells/ml, suggests that the exogenous CM is used initially 

during what would be the lag period, but by 3 days it has been depleted and the cells 

have not produced enough of their own to maintain subsequent growth.

Therefore these data suggest that the exogenous CM is ‘saving’ low cell density cell 

cultures until they can produce a sufficient concentration of their own CM. If the cells 

do not reach this critical concentration they no longer proliferate and undergo 

apoptosis. Thus, this experiment demonstrates that SMS-SB cells produce an 

autocrine growth factor, which if present at high enough concentrations allows the 

cells to grow autonomously under protein-free conditions. The factor does not act as a 

mitogenic signal per se, but rather seems to rescue the cells from death which then 

allows their subsequent proliferation.

3.2.2 SMS-SB cells express Bcl-2

The autocrine factor produced by SMS-SB cells rescues LCD cells from death. A 

potential mechanism for its action could be the regulation/influence of Bcl-2 family 

members. Therefore, to investigate how the autocine factor may influence apoptosis, 

the expression of Bcl-2 in LCD SMS-SB cells in the presence and absence of the 

autocrine factor (present in CM) was investigated.

Flow cytometry was employed to allow the simultaneous analysis of Bcl-2 expression 

and cell cycle status in SMS-SB cells. For this technique the cells had to be 

permeabilised with saponin to allow staining of the intracellular markers. Cells were
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stained with anti-human Bcl-2 antibody (and with an appropriate FITC-conjugated 

secondary antibody), and then with propidium iodide to assess cell cycle status.

Figure 3.2 represents the basic stain for Bcl-2 and cycle analysis. As the Bcl-2 

antibody is not fluorescent, a fluorescently-conjugated secondary antibody has to be 

used which binds to the primary antibody, thus allowing visualisation of Bcl-2 

expression. Dotplot A illustrates the profile achieved when SMS-SB cells are stained 

with both antibodies, while B represents staining with secondary antibody alone. The 

difference in y-axis fluorescence demonstrates that the secondary antibody is 

specifically binding to the primary and not non-specifically to cellular components, 

and, is therefore directly representative of Bcl-2 expression. Propidium iodide (PI) is a 

non-specific fluorescent dye that intercalates between the bases of double stranded 

DNA. The fluorescence of PI (linear x-axis), is therefore proportional to the DNA 

content of the eell and thus indicative of cell cycle status.

In normal cell density (NCD) cultures (figure 3.3), PI staining demonstrates that the 

majority of the cells are cycling (panel A), and can be sub-divided into the distinct 

phases of the cell cycle (panel B). G1 therefore has PI fluorescence of 2n and G2 a 

fluorescence of 4n, due to doubling of DNA content during replication in S phase. 

Cells to the left of the dotplot represent debris and cells undergoing apoptosis in pre- 

Gl. The cell phase marked >G2 represents aneuploid cells and are not counted as 

normal cycling cells. With regard to Bcl-2 expression, NCD cells show strong staining 

in all cycle phases, with a small increase in cells of the G2 phase. Culture debris and 

cells undergoing apoptosis, have low y-axis fluorescence indicative of being negative 

for the anti-apoptotic protein. Panel C represents histogram analysis of the cell cycle 

and shows a characteristic profile indicative of asynchronously cycling cells, as would 

be expected for normal density healthy cultures.

3.2.3 SMS-SB autocrine factor sustains Bcl-2 expression and 

promotes cell cycle progression

To test the hypothesis that the SMS-SB autocrine factor regulates the survival of low 

cell density cultures via the regulation of Bcl-2, CM was added to LCD cultures (at
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which apoptosis normally occurs), and Bcl-2 expression and cell cycle status analysed.

The dot plots in figure 3.4 represent intermediate cell density (ICD) cultures where 

only just above half the cells are actively cycling. The addition of 20% (v/v) of 

conditioned medium to these cultures caused no increase in the expression levels of 

Bcl-2, but promoted cells to cycle rather than undergo apoptosis. Statistical analysis 

(panel C) based on the number of cells in the distinct cycle phases (as detailed in 

figure 3.3 panels A and B), confirms this effect. There are 13.06% more cells in cycle 

in the presence of CM and is seen throughout all the distinct cycle breakdown phases. 

The most obvious difference is the 18.39% reduction in culture cell debris which 

represents cells that have already undergone apoptosis. There are however more cells 

undergoing apoptosis in pre-Gl in the presence of CM. An probable explanation of 

this result is that upon seeding in fresh medium, the cells become stressed due to CM 

removal and go through a lag phase in proliferation and growth. Some of the cells 

residing in G1 proceed into apoptosis within the first few hours and so present 

themselves 24 hours later at the time of analysis as cell debris (on the far left side of 

the dotplot). However, in the presence of exogenous CM the onset of apoptosis is 

initially delayed so more cells are kept within the cycle and can begin to produce their 

own autocrine factor. Later in the assay, some cells still die as the CM is quickly 

depleted and therefore present themselves in pre-Gl at the time of analysis. Bcl-2 

levels are reduced in these cells as they are undergoing apoptosis.

In low cell density cultures (figure 3.5 panel A and table 2), only very few of the cell 

are still cycling after 24 hours (11.14%), with the majority having either undergone 

apoptosis (76.24% debris), and showing no staining for Bcl-2, or are undergoing 

apoptosis in pre-Gl (10.74%). In the presence of increasing amounts of exogenous 

CM, the expression of Bcl-2 is not changed in cycling cells, but there is however a 

profound effect on the number of cells in cycle. Figure 3.5 clearly shows that cells are 

restored into the cycle in a dose dependent manner, from 15.86% with 5% final 

volume CM, to 32.28% with 50%, restoring the cycle profile to that seen in healthier 

ICD cultures (figure 3.5 panel F). With this increase of cycling cells, there is a 

corresponding decrease in cell debris within the culture, a difference of 29.78% from 

LCD cells alone to cells with 50% CM. There is also a slight increase in the number of



apoptotic pre-Gl cells as CM concentration increases. This phenomenon may again be 

explained if cells undergo apoptosis later on in the assay due to initial rescue by the 

CM, whereas in LCD cultures devoid of CM, the cells have already committed to or 

undergone apoptosis.

Figure 3.6 shows more closely the expression of Bcl-2 in SMS-SB cultures. 

Histogram analysis of Bcl-2 expression in each cell analysed by flow cytometry 

shows, that in LCD cultures, only 13.07% of the cells are positive for Bcl-2 expression 

(panel A), compared to 87.73% for normal density healthy cultures (panel C). In the 

presence of exogenous CM the percentage of LCD cells positive for the anti-apoptotic 

protein was increased to 41.48%. These results confirmed that CM was rescuing cells 

from apoptosis by maintaining the expression of Bcl-2 to the level seen in healthy 

cultures.

3.2.4 SMS-SB cells express a number of Bcl-2 family members

Concerns arose that the monoclonal antibody used for flow cytometric analysis was 

directed against the Bcl-2 family as a whole and was therefore not specific for the Bcl- 

2 protein itself. The effect of CM seen by flow cytometry may therefore represent the 

total expression of a number of family members and not give details of individual 

proteins. For instance, the CM may in fact be inducing Bcl-2 expression and 

simultaneously reducing the expression of the pro-apoptotic protein Bax which when 

assayed using this antibody may look like no overall change in expression. In the 

absence at this time of commercially available monoclonal antibodies to each member 

of the Bcl-2 family, Western blot analysis was performed to try and address this 

problem by using antibodies that did not cross react with other members of the Bcl-2 

family.

Figure 3.7 shows the Western blot analysis of SMS-SB cells, grown at normal density 

in PFHMII, using a peroxidase-linked secondary antibody and ECL detection system 

to detect expression of Bcl-2, B cI-x l  and Bax proteins. The results show that at normal 

density, SMS-SB cells express similar amounts of the anti-apoptotic proteins Bcl-2 

and B c1-x l  (25-26kDa), and also of the pro-apoptotic protein Bax (21kDa). The

89



identity of the additional bands on the B c1-Xl  blot are unknown but the size of the 

major band makes the anti-apoptotic protein Mcl-l (37kDa), a candidate, although the 

antibody is reported not to cross-react with other Bcl-2 family members.

Now that the status of Bcl-2, B cIx l  and Bax had been determined in the cells by 

Western blot analysis, it was hoped that the effect of CM on their expression in LCD 

cultures could be determined, giving a more accurate account of the state of the 

apoptotic proteins in the cell and on how the autocrine factor may act to save the cells 

from apoptosis. Unfortunately, extracts could not be successfully made from low 

density cultures. As seen in figure 3.5 panel A and in table 2, nearly 90% of LCD 

culture is debris or cells undergoing apoptosis and are therefore very difficult, if not 

impossible to make extracts from that are suitable for use in Western blotting.

3.2.5 SMS-SB autocrine factor has an essential protein component 

that is heat stable to 90®C

In an attempt to identify the nature of the autocrine factor, CM was exposed to enzyme 

and heat treatment in an attempt to remove the activity, therefore indicating a 

component involved. The graph of figure 3.8, compares the ability of treated CM to 

recover LCD cells from apoptosis and maintain them in the cycle to the recovery seen 

with untreated CM. The data show that the only treatment to have an effect on activity 

was treatment with trypsin, reducing to activity of the CM to that seen when no CM is 

added. The fact that all the activity is removed by this treatment means that the 

autocrine factor must have a protein component that is essential for its activity. In 

addition, the protein component is heat stable to 90°C as after such treatment the 

medium retained activity akin to the untreated CM.

3.2.6 SMS-SB autocrine factor is a multi-component factor

In attempts to further characterise and crudely isolate the autocrine factor, various 

chromatographic procedures were performed, using the basic Bcl-2/PI staining to test 

for the activity of the CM.
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To assess if the autocrine factor had a glycoprotein component which could potentially 

be used for further isolation procedures lentil lectin affinity chromatography was 

performed. The method was based on the theory that any glycoproteins in the CM 

would bind to lentil lectin-agarose and these could then be eluted from the beads with 

a mannose-containing medium. The eluate and the flow-through media were then 

tested for autocrine factor activity.

Figure 3.9 demonstrates that neither the eluate or flow-through samples had any 

capacity to recover LCD SMS-SB cells from apoptosis, as both had Bcl-2/FI staining 

profiles akin to that of LCD cells alone. The conditioned medium used for the 

chromatography was however active, as cells could be rescued in the presence of 

unmanipulated CM (panel B). In addition, the use of mannoside did not have any 

undesirable effects on the procedure, as alone it did not induce cell recovery (panel E), 

or adversely effect the activity of unmanipulated CM (panel F). There are two 

plausible explanations for the loss of autocrine activity during this procedure. Firstly, 

the factor may be a lectin and is therefore binding to the beads with high affinity and 

can not be easily eluted by the addition of mannose. Secondly, the autocrine factor 

may be a multi-component factor, part of which is a glycoprotein. If this is the case, 

the glycoprotein component would bind to the beads and ultimately appear in the 

eluate, while the rest of the factor would remain in the flow-through. Essential 

components of the factor would therefore be separated preventing the effect of 

combined component activity, and the rescue of LCD cells from apoptosis. To test this 

theory, the eluate and flow-through samples could have been pooled together and 

tested for the restoration of activity. Unfortunately, this idea was not tested at the time 

of the investigation. However, this experiment may not have allowed any further 

interpretations to be made, as the absence of pooled sample activity, thereby negating 

the activity of a multi -component factor, would possibly be due to irreversible changes 

caused by binding of components to the lectin beads, thereby preventing any 

subsequent activity.

Previous studies found that SB-AF could be concentrated over a lOOkDa size filter 

(White, 1995). Therefore, in an attempt to define the native molecular size of the 

autocrine factor, conditioned medium was subjected to G25 gel filtration
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chromatography. Eight 3ml fractions were collected from the column and tested for 

the ability to rescue LCD cells from apoptosis compared to unmanipulated CM. Figure

3.10 shows that none of the fractions were able to rescue SMS-SB cells from death, 

each having similar percentages of cells in cycle as LCD cultures alone. The 

conditioned medium put through the G25 column used was active however, as 

unmanipulated CM could rescue cells from death. These data suggest that the 

autocrine activity could be attributed to a multi-component factor, thus supporting the 

results and interpretations of the lentil lectin chromatography experiment. The loss of 

activity from all the G25 column fractions suggests that perhaps at least one of the 

essential components is of a different size to the others, and is therefore residing in a 

different fraction, or is smaller than 25kDa and is being retained within the column. 

The procedure has thus separated the essential components which combine to give the 

overall activity.

3.3 DISCUSSION

The pre-B cell line SMS-SB has previously been found to produce an autocrine factor 

which is able to prevent the cell death of low cell density cultures (Zack et al, 1987; 

White, 1995). The results presented in this chapter demonstrate that this autocrine 

factor rescues the cells from apoptosis and promotes cell cycle progression in a 

titratable manner. In addition, the results suggest that a potential mechanism of action 

for this factor is the maintenance of the anti-apoptotic protein Bcl-2, which seems to 

be over-expressed in SMS-SB cells. In addition, SB-AF seems to be a multi- 

component factor that has an essential protein component that is heat stable to 90°C.

Previous studies by White (1995), found that sCD23 and PDGF were the only tested 

cytokines with the ability to promote LCD SMS-SB cell growth but did not represent 

the autocrine factor. The results of the chromatographic procedures presented here 

suggest that SB-AF is a multi-component factor which requires the presence of all its 

individual components to exhibit anti-apoptotic activity. This may therefore explain 

why the other individual cytokines tested by White failed to show growth promoting 

activity. Synergistic effects between autocrine factors has previously been described
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for immortalised human B cells, which were found to require IL-1, IL-6, TNF-a, and 

TNF-(3 for continued growth (Abken et al, 1992). To investigate which cytokines 

possibly contribute to SB-AF, numerous cytokines, in all possible combinations, 

would have to be tested. This method of investigation however may not identify the 

factors responsible as one, or a number of components, may be an as yet unidentified 

cytokine/growth factor.

The ability of SB-AF to prevent the apoptosis of LCD cultures of cells may be due to 

its effects on the anti-apoptotic protein Bcl-2. Flow cytometric analysis demonstrated 

that conditioned medium maintained the expression level of Bcl-2 to that seen in 

healthy normal cell density cultures. The autocrine factor may therefore provide a 

suivival signal allowing the cells to subsequently proliferate after the initial lag phase 

in growth. Other researchers have reported that autocrine factors may be responsible 

for anti-apoptotic signals (Francia di Celle et al, 1996; Kulmburg et al, 1998), an 

effect that can be mediated by the upregulation of Bcl-2 (Francia di Celle et al, 1996). 

As Bcl-2 levels were only maintained and not up-regulated by SB-AF, it is possible 

that other anti-apoptotic members of the Bcl-2 family may be more significant targets 

for regulation.

Western blot analysis demonstrated that, in addition to Bcl-2, SMS-SB cells also 

express B cI-x l , and the pro-apoptotic protein Bax. Unfortunalty, this method could not 

be used to assess the status of these proteins in LCD cultures preventing the specific 

effect of SB-AF on these proteins from being determined. However, the analysis 

revealed that normal cell density SMS-SB cells have an abnormal expression pattern 

of Bcl-2 family members. During normal development, B cells exhibit a reciprocal 

pattern of Bcl-2 and B c1-x l  expression, which is believed to be essential for the 

survival of cells at each developmental stage. At the pre-B cell stage, Bcl-2 levels are 

low, whereas B c1-x l  levels are high (Merino et al, 1994; Grillot et al, 1996). SMS- 

SB cells express similar levels of both these anti-apoptotic proteins thus 

demonstrating that either Bcl-2 levels are high, or B c1-x l  levels are low. In support of 

the former, SMS-SB cells have similar levels of Bcl-2 expression as the EDR cell line 

(data not shown), which represent the mature B cell developmental stage known to 

express high levels of Bcl-2 (Merino et al, 1994). In addition, other B cell acute
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lymphoblastic leukaemias have been found to over-express Bcl-2 (Campana et al, 

1993; Pontvert-Delucq et al, 1996; Coustan-Smith et al, 1996). To determine 

conclusively if SMS-SB cells over-express Bcl-2, the cells would have to be compared 

with normal bone marrow pre-B cells from healthy individuals.

All the flow cytometric data presented in this ehapter rely on the ability of the 

autocrine factor to rescue LCD SMS-SB cells from apoptosis as an indication of its 

activity. Although all the data are representative of numerous repeats for each 

experiment, the assay was very sensitive to the number of cells used. Although exactly 

the same procedure was used each time, the set up of low cell density was based upon 

a cell count using a haemocytometer. Even though a number of averages were used in 

calculating cell number, an error of even ± 1 in the original count results in a big 

difference in cell number when the cells are diluted down to LCD. If too many cells 

were present in the assay, LCD cells alone would have cells in the cycle preventing the 

activity of exogenous CM from being clearly seen. If there are too few cells in the 

assay, no amount of CM could rescue them from death. A very small window 

therefore exists to test for the activity of the CM by flow cytometry.

As the effects of SB-AF can only be seen when the cells are at low cell density, 

alternative methods for assessing activity, such as Western blot analysis, could not be 

successfully performed. Investigations into the effects of growth factor effects at low 

cell densities are therefore very difficult to perform. A further hindrance to the study 

of SB-AF was having to grow the cells in protein-free medium to prevent any 

synergistic reactions between SB-AF and serum proteins. Although able to be cultured 

in this medium, SMS-SB cells are extremely fragile, making even basic cell culture 

procedures such as centrifugation difficult.

Based on these problems, and the discovery that SB-AF activity seems to be mediated 

by a number of individual components/factors, which as such would be difficult to 

isolate, it was decided to terminate the investigation into the SMS-SB cell autocrine 

factor. However, as previously discussed it would be interesting in the future to further 

investigate whether SMS-SB cells over-express Bcl-2, a potentially significant finding 

from this study.
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Figure 3.1 [̂ H]-Thymidine incorporation by SMS-SB cells cultured 

at various densities in the presence and absence of conditioned 

medium.
(Modified from White, 1995)

SMS-SB ceils grown in Protein-Free Hybridoma Medium II (PFHMII) were seeded 

in the wells of a 96-well plate at lx lO \ 2.5x10"  ̂ and 5x10"̂  cells/ml in PFHMII, in a 

volume of lOOpl. Each density was cultured in the absence and presence of 

conditioned medium (CM) at 20% of the final culture volume. The cultures were 

incubated for 1, 2 or 3 days and pulsed with 0.33p,Ci/well [^H]-thymidine for 6 hours 

prior to harvest. All cultures were in triplicate and the experiment is representative of 

four independent repeats. The error bars represent the standard deviation of triplicate 

data.
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Figure 3.2 Flow cytometric analysis of Bcl-2 expression in SMS-SB

cells by specific antibody staining.

1x10^ SMS-SB cells grown in PFHMII were washed in PBS, permeabilised in 

saponin containing buffer, and stained with mouse anti-human Bcl-2 antibody for 20 

minutes. To visualise primary antibody staining, the cells were washed and incubated 

with an FITC-conjugated anti-mouse-IgG secondary antibody. After further washing, 

cells were stained with 100p,g/ml propidium iodide for DNA analysis and analysed 

by flow cytometry. Cells were also stained with secondary antibody alone to test for 

non-specific antibody binding to the SMS-SB cells leading to false readings in Bcl-2 

expression.

The dotplots illustrate propidium iodide (PI) staining on the x-axis with a linear scale, 

while Bcl-2 expression is represented logarithmically on the y-axis. Panel A 

represents staining with both the Bcl-2 and FITC-conjugated secondary antibody, 

while panel B is secondary antibody staining alone.





Figure 3.3 Flow cytometric analysis of Bcl-2 expression and the cell

cycle status in SMS-SB cells.

Normal cell density (NCD=5xlO^/ml), SMS-SB cells grown in PFHMII were stained 

for intracellular Bcl-2 expression and cell cycle status (propidium iodide staining), as 

described in figure 3.2. The three panels represent the same cell sample and illustrate 

the features that can be determined by flow cytometric analysis. Panel A- all cells in 

cycle, Panel B breakdown analysis of the cell cycle into distinct phases, Panel C- 

histogram representation of cell cycle status (PI staining) as a function of each cell in 

the sample.
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Figure 3.4 Effect of conditioned medium on Bcl-2 expression and

cell cycle status of intermediate density SMS-SB cultures.

SMS-SB cells grown in PFHMII at intermediate cell density (ICD=lxlO^/ml), were 

cultured overnight in the presence and absence of 20% final volume conditioned 

medium (prepared as detailed in Materials and Methods section 2.2.If). The cells 

were then stained with Bcl-2 and PI as described for figure 3.2. Panel A- ICD cells 

alone, Panel B- ICD cells with 20% (v/v) CM, Panel C statistical analysis of cell 

cycle status, based on the distinct phases illustrated in figure 3.3.

The data is representative of six independent repeats, each using different 

preparations of CM.
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Figure 3.5 Effect of conditioned medium on Bcl-2 expression and 

cell cycle status in low cell density SMS-SB cultures.

SMS-SB cells grown in PFHMII were cultured overnight at low cell density 

(2xloVml) supplemented with varying amounts of CM. Panel A- cells alone,. B 

cells + 5% final volume CM, C cells + 10% CM, D- cells + 20% CM, E- cells + 

50% (v/v) CM and F- intermediate density culture (IxlO^/ml) with no CM addition. 

The cells were removed from culture using a cell scraper as many apoptotic cells had 

adhered to the flask, and stained for Bcl-2 expression and cell cycle status as 

described for figure 3.2.

The data shown is representative of at least six independent repeats, each using 

different preparations of CM.
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Table 2. Statistical analysis of the effect of conditioned medium on

cell cycle status in low cell density SMS-SB cultures.

The table shows the percentage analysis of the cell cycle status for the dotplot 

samples in figure 3.5. The analysis was performed on the basis of the total number of 

cells in the cycle (depicted in figure 3.3 panel A), and of the distinct cell cycle phases 

that can be identified by flow cytometric analysis (figure 3.3 panel B).
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Figure 3.6 Flow cytometric histogram analysis of Bcl-2 expression 

in low density SMS-SB cultures in the presence and absence of 

conditioned medium.

The histograms represent an alternative presentation and analysis of the levels of Bcl- 

2 expression in SMS-SB cells at varying densities. Cells were removed from culture 

and stained for Bcl-2 and cell cycle status as previously described and then analysed 

in the FITC fluorescence channel only. The histograms illustrate Bcl-2 expression in 

logarithmic fluorescence on the x-axis, against a linear scale of cell number on the y 

axis. Panel A represents low cell density, Panel B low cell density + 20% final 

volume of conditioned media, Panel C normal cell density cultures. Each histogram 

shows the percentage of cells that are positive for Bcl-2 expression as denoted by the 

horizontal bar.
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Figure 3.7 Western blot analysis of specific Bcl-2 family members in

SMS-SB cells.

SMS-SB extracts were prepared from cells grown in PFHMII as detailed in Materials 

and Methods section 2.2.15a. Protein samples were loaded onto a 12% (w/v) 

acrylamide separating gel: Lane 1= 30fxg, Lane 2= 50fxg of protein. After 

electrophoresis and transfer to nitrocellulose, blots were incubated with 0.5[xg/ml of 

either BcL2, B c1-x l  or Bax antibody. To detect antibody binding, the membranes 

were incubated with 1:1000 dilution of protein-A-HRP and developed with an ECL 

detection system. Rainbow protein molecular weight markers (15pil) were also run to 

determine molecular size, as illustrated. The experiment is representative of over 

eight independent repeats with different cell preparations.
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Figure 3.8 The effects of enzymatic and heat treatment on 

conditioned medium activity.

Aliquots of conditioned medium were independently treated with Ijxg/ml of DNase, 

RNase or trypsin, or heat-treated at 65 and 90°C as described in Materials and 

Methods section 2.2.5b. The treated media was then assayed at 20% final volume for 

ability to rescue LCD SMS-SB cultures from apoptosis, as analysed by Bcl-2 

expression and cell cycle analysis compared to LCD cells alone and cells with 

untreated CM. A percentage activity value was calculated for each sample based 

upon the percentage of cells in cycle (as illustrated in figure 3.3 panel A), with 

untreated CM having 100% activity.

% activity of a sample = % cells in cycle for the sample x 1 0 0

% cells in cycle for untreated CM

The experiment is representative of four independent repeats, with different 

preparations of CM.
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Figure 3.9 Lentil Lectin Chromatography.

Using SMS-SB cell CM, eluate and flow-through samples were prepared from lentil 

lectin chromatography as described in Materials and Methods section 2.2.5c. Using 

the basic Bcl-2/PÏ stain (as detailed in figure 3.2), the samples were assayed for 

ability to rescue LCD SMS-SB cells from apoptosis compared to LCD cells alone, 

and cells cultured with unmanipulated CM. Cells were also incubated with a-methyl- 

D-mannopyranoside in the presence and absence of CM to control for the effects of 

the elution saccharide. All media were assayed at 20% final culture volume. Panel A- 

cells alone, Panel B- cells + unmanipulated CM, Panel C- cells + eluate, Panel D- 

cells + flow-through. Panel E- cells + mannoside medium. Panel F- cells + 

mannoside + CM.

The experiment is representative of three independent repeats with different CM 

preparations.



A. LCD B. LCD + CM

u.

LCD 41̂

u.

IgSigMazmgBaammaH

* 'W % A iÈ 'W ÿ0-r

;e gee sse
PI

D. LCD + flow-thmugh

i

PI

LCD + mannoside + CM
LWRaSSSÏ2*mKJEa-*rarî3T»HnW3ifP̂ ^

u

Üm

c*

8  J *

try

250



Figure 3.10 G25 Gel Filtration Chromatography.

SMS-SB cell CM was applied to a G25 column and 8  x 3ml fractions collected. The 

fractions were then tested at 20% final volume for the ability to rescue LCD cultures 

from apoptosis as analysed by Bcl-2/PI staining compared to LCD cells alone, and 

cells in the presence of unmanipulated CM. A percentage activity value was derived 

for each sample based on the percentage of cells in cycle (as illustrated in figure 3.3 

panel A), with unmanipulated CM having 100% activity (see legend of figure 3.7 for 

equation).

These data are representative of three independent repeats, each performed with 

different preparations of CM.



N

u

?
p
y

rH CN cn xt m VO t-' oofi. pL( PL. Ü, fx, pH pL,

o O o o o o o o(N (N CN Ol (N (N <N tN+ + + + + + + +
P Q P p P P P P

U u U u u u uy P ,p

suoptpuoo 9 .m:%no



CHAPTER 4

RESULTS

ANALYSIS OF THE EFFECTS OF 45kDa MEMBRANE 

ASSOCIATED CD23 ON SMS-SB CELLS
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4.1 INTRODUCTION

The 45kDa membrane form of CD23 has been shown to be involved in a number of B 

cell functions including; antigen presentation, IgE regulation, T-B cell conjugate 

formation, and B cell homotypic adhesion (reviewed by Bonnefoy et al., 1997). The 

influence of the CD23 molecule is broadened by the release of various soluble factors, 

all derived from cleavage of the 45kDa form. When used in conjunction with IL-la, 

the 25kDa form of human sCD23 has been ascribed various cytokine functions 

including the rescue of germinal centre B cells from apoptosis (Liu et al, 1991a), and 

the growth and maturation of early human myeloid and thymocyte precursors 

(Mossalayi et al, 1990a; 1990b). In addition, sCD23 has also been implicated as a 

BCGF due to its ability to promote the proliferation of EBV-transformed and normal 

receptor-stimulated B lymphocytes (Swendeman and Thorley-Lawson, 1987; Gordon 

et al, 1989). However, a number of researchers have disputed this function especially 

with regard to the 25kDa form (Uchibayashi et al, 1989). Cairns and Gordon have 

found that CD23 may mediate its BCGF effects as a membrane-associated cytokine, as 

intact 45kDa CD23 was found to be consistently mitogenic for pre-activated B cells 

(Cairns and Gordon, 1991).

Previous work by White (1995), demonstrated that the 37, 33, 29 and 25kDa forms of 

soluble CD23 (sCD23), can prevent apoptosis and allow the subsequent growth of low 

cell density SMS-SB cells. This response was found to be paracrine, not autocrine, 

since SMS-SB cells do not express CD23. These results were of great interest as there 

had not been any previous reports of sCD23 acting as a growth factor for pre-B cells, 

and the effect did not require synergy with IL-la. In addition, White demonstrated that 

SMS-SB cells do not express any of the known receptors for CD23 namely, CD21, 

CD llb or C D llc (Aubry et al, 1992; Lecoanet-Henchoz et al, 1995), but could 

specifically bind to full-length (45kDa) CD23a-containing fluorescent liposomes. This 

demonstrated that SMS-SB cells express a novel receptor for CD23 (referred to 

hereafter as CD23NR), which may be involved in the regulation of apoptosis and 

growth of these cells.
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Although biochemical and molecular isolation studies for CD23NR were being 

performed outwith this study, it was also decided to produce monoclonal antibodies 

against the putative receptor components(s). These would be valuable tools to aid in 

the isolation studies, and also for studying the distribution of CD23NR on other 

human haematopoietic cells. Obvious screening procedures for the generation of these 

antibodies were to assess the inhibition of either CD23 liposome binding to SMS-SB 

cells, or the growth promoting effects of sCD23. However, in the absence of any 

readily available source of purified 45kDa CD23a protein to use in liposomes, or 

sCD23 to use in growth assays, alternative screening procedures were sought.

This chapter of results describes experiments performed to investigate the effect of 

membrane form (45kDa) CD23a on SMS-SB cells, in the hope of generating an 

alternative screening procedure for the generation of monoclonal antibodies towards 

the component(s) of novel receptor for CD23. Investigations were performed to assess 

the effect of CD23a when it was expressed in SMS-SB cells themselves, or when 

CD23a was delivered as a paracrine signal from feeder monolayers. Also described are 

the construction of various CD23 constructs, and the generation of a CD23a- 

expressing COS7 monolayer used in the investigation.

4.2 RESULTS

4.2.1 The effect of 45kDa CD23a transiently expressed in SMS-SB 

cells

The initial investigation into the effect of 45kDa CD23 was based upon the expression 

of CD23a in SMS-SB cells. Based on the previous findings by White (1995), it was 

hypothesised that expression of CD23a in SMS-SB cells would render the cells 

density-independent for growth, as the survival signal utilised at the low cell density 

would be constitutively present. In addition, it was envisaged that the transfected 

CD23a would permit adhesions between itself and the novel receptors on adjacent 

cells, leading to the formation of homotypic adhesions. It was hoped that monoclonals
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against the novel CD23 receptor could be screened by assessing their ability (like an 

anti-CD23 antibody), to disrupt the formation of SMS-SB cell aggregations generated 

by the novel receptor and the transfected CD23.

To test these hypotheses, SMS-SB cells were transfected with a CD23a isoform 

expression vector (pcDL SRa296CD23a), using the liposome-mediated transfection 

reagent DOTAP. Figure 4.1 illustrates SMS-SB cell culture phenotype at 24 hours 

after CD23a transfection. Cells transfected with CD23a (panel B), exhibited the 

formation of large cell clumps within the culture compared to the single cell 

phenotype of untransfected SMS-SB cells (panel A). Hopes that this effect was solely 

a function of CD23a were dismissed upon analysis of the mock-transfected cells (i.e., 

cell transfected with an empty expression vector) (panel C). These cells also exhibited 

clump formation, suggesting that the phenomenon was mainly being caused by the 

transfection reagent or procedure. Although CD23a may have been causing some 

adhesions, these could not be distinguished from the effects of the transfection 

procedure.

Although a CAT assay of a transfected reporter construct confirmed that SMS-SB 

cells could be transiently-transfected (data not shown), flow cytometric analysis of the 

cells (figure 4.2), demonstrates that the frequency of transfection is very low. The 

results show that both untransfected (panel B) and mock-transfected control (panel C) 

SMS-SB cells exhibit a profile very similar to unstained cells (panel A), 

demonstrating that, as expected, they do not express CD23a. Cells transfected with 

CD23a (panel D), exhibit a slight shift in the histogram profile to the right on the x~ 

axis compared to untransfected and mock-transfected cells, demonstrating that some 

of the cells are weakly positive for CD23a. Meaningful statistical analysis could not be 

performed on these data as the exact point where a cell is regarded as CD23a positive 

was difficult to determine. The data therefore illustrate that the transfection frequency 

of SMS-SB cells is very low, with only a few SMS-SB cells exhibiting weak CD23a 

expression. These findings thus support the data from figure 4.1, which indicate that 

CD23a is not responsible for the extensive adhesion formation within the cultures. 

Based on these results, it was decided not to try and assess whether CD23a could 

render SMS-SB cells density-independent, as transfection at such a low frequency in
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normal density cultures would not affect the cells when they were subsequently seeded 

to low cell density.

In order to try and enhance transfection efficiency, and prevent reagent-associated 

changes to SMS-SB phenotype, transfections were performed using different 

DNA:DOTAP ratios, other transfection reagents (DOSPER, Tfx50, Tfx20, 

Transfectamine, FUGENE- 6  and SuperFect), and also electroporation (data not 

shown). Unfortunately, these changes yielded no significant improvements to SMS- 

SB cell transfection efficiency. In addition, no significant differences were seen in the 

effects of any of the reagents, or in the efficiency of transfection, when the cells were 

assayed at 48 hours post transfection (data not shown).

As the effects of the transfection reagent were still a problem within the time of a 

transient transfection assay, it was decided to try and make cells stably expressing 

CD23a. To do this, CD23a was cloned into an expression vector with a drug resistance 

gene for the selection of resistant stable cells.

4.2.2 Generation and cloning of CD23 constructs

CD23a cDNA was generated by the polymerase chain reaction (PCR), using synthetic 

oligonucleotides and the vector pcDL SRa296CD23a as a template. It was also 

decided at this time to produce other forms of CD23, namely CD23b, and the 37kDa 

and 25kDa soluble forms to allow the subsequent bulk production of CD23 proteins in 

baculovirus, for use in future experiments.

4.2.2a PCR amplification of CD23 constructs

Figure 4.3 shows a diagrammatic representation of the different CD23 forms, and the 

synthetic oligonucleotides used for the generation of their cDNAs by PCR. The 

oligonucleotides were designed to amplify specific forms, and included BmrMl or 

Notl restriction enzyme sites to assist with subsequent cloning steps. After 20 cycles 

of PCR amplification, products of each reaction were electrophoresed and visualised 

on a UV transilluminator (figure 4.4). The expected sizes for CD23a, b, 371cDa and 

25kDa, based on their published sizes (Entrez accession number M14766), plus the

110



Notl and BamHl restriction sites, were 992, 989, 755 and 543bp, respectively. For 

each PCR reaction only a single band was visualised on the gel that was consistent 

with the theoretical size of that specific CD23 cDNA. There were no fragments 

generated in the negative (no DNA template) control, showing that there was no 

contaminating DNA present, and that the amplifications had been specific for each 

form of CD23.

4.2.2b Cloning the CD23 constructs

The CD23 fragments generated by PCR were purified from the agarose gel and cloned 

into plasmid vectors. Using the intrinsic BamRl and Notl restriction sites, CD23a and 

b were inserted into the pcDNA3.1(+) mammalian expression vector containing a 

gene for neomycin resistance. As the soluble forms of CD23 were not going to be 

expressed in mammalian cells they were blunt end cloned into the pCR-Script '" 

SK(+) cloning vector, to allow nucleotide sequencing to be carried out.

The CD23 fragments were ligated into their appropriate vectors, and the plasmids 

transformed into E. colL To identify transformants containing the CD23 inserts, 

restriction digests were performed on DNA preparations derived from individual 

bacterial colonies. Restriction digests using BamVil and Notl should directly liberate 

the cloned insert from its vector, as restriction sites for these enzymes were included at 

the ends of each CD23 construct. Figure 4.5 demonstrates that this restriction digest 

produced two DNA bands after electrophoresis, one corresponding to the CD23 

construct, and the other to the vector, 5.4kb or 2.96kb for pcDNA3.1(+) or pCR- 

Script™ SK(h-), respectively.

4.2.2c Sequence analysis of the CD23 constructs

Figure 4.6 shows the nucleotide sequence, and the corresponding conceptually- 

translated amino acids, for the cloned CD23 constructs. The identity of these cloned 

fragments and the fidelity of the PCR reaction was confirmed by nucleotide sequence 

analysis and comparison to the published CD23 sequence (Kikiitani et al., 1986a; 

Entrez accession number M14766), by GCG pairwise alignment. The sequences of all 

the cloned CD23 forms were shown to be identical to the published sequence except 

for two nucleotide changes at positions 690 (A“~>G) and 717 (T-^C). Analysis of the
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corresponding amino acid sequence showed that these nucleotides were third base 

nucleotides in the codons encoding the amino acids glycine (GGA->GGG), and 

histidine (CAT-^CAC), respectively. However, these changes were degenerate, and so 

did not alter the amino acid sequence of the peptide.

Therefore, each form of CD23 was successfully generated and cloned. Sequence 

analysis of the genes confirmed their identity and revealed only degenerate base 

changes. Outwith this study, 45kDa CD23a, and the 37kDa and 25kDa soluble forms, 

were subcloned into the baculovirus expression system for the generation of CD23 

proteins. The 25kDa sCD23 was subsequently used for BIAcore analysis as detailed in 

Chapter 5.

4.2.3 Stable transfection of 45kDa CD23a into SMS-SB cells

The CD23a expression vector (pcCB-CD23a), was transfected into SMS-SB cells 

using the transfection reagent DOTAP and, as before, caused the cells to form 

adhesions (data not shown). At 48 hours post transfection, the cell culture medium 

was replaced with medium containing 200p.g/ml of G418. After three weeks of 

selection, the majority of the culture had died leaving very few viable drug resistant 

cells, consistent with the low transfection frequency of this cell line. In an attempt to 

enhance the growth and survival of the transfectants, which were essentially at low 

cell density with regard to other live cells in the culture, the transfection was repeated 

with cells in selection medium containing 50% (v/v) conditioned medium. This 

procedure did not have any obvious beneficial effects.

The main problem with this method was how to retrieve the small number of 

transfected cells from the dead ones in a suspension culture. It was feared that the live 

cells would be lost by centrifugation through a Ficoll gradient, and due to local safely 

regulations the cells could not be sorted by flow cytometry. A method put forward by 

Andersen and Junker (1994), exploits the specificity of the lectin concanavalin A for 

a-glucosyl and a-mannosyl residues present on mammalian cells. The researchers 

found that only living cells would adhere to surfaces covalently coated with the lectin, 

allowing dead cells to be discarded, and the live cells removed by forced pipetting and
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returned to culture. This method was attempted for SMS-SB cells (data not shown), 

but unfortunately did not successfully separate any live cells from the culture, 

suggesting that the number of viable drug resistant cells was too low for successful 

separation.

During these attempts to transfect SMS-SB cells, the cells were found to be 

contaminated with mycoplasma, which is known to have adverse effects on 

transfection. Although the cells were treated and cleared of contamination as assessed 

by staining with the fluorescent dye Hoechst 33258, SMS-SB cell transfection was 

unfortunately not improved. Therefore, after many attempts of trying to transfect 

SMS-SB cells, transiently or stably, it could not be determined whether the 

transfection of CD23a into SMS-SB cells caused adhesions to form via their novel 

receptor and transfected CD23. The knock-on effect of this was that this system could 

not be used as a screening technique for the generation of a monoclonal antibody 

towards the novel receptor. This line of work was therefore terminated.

4.2.4 The effect of 45kDa CD23a when presented to SMS-SB cells 

from monolayer cell cultures

As the addition of soluble CD23 to low cell density cultures of SMS-SB cells 

increases the [^H]-TdR incorporation by cells in proliferation assays (White, 1995), it 

was hypothesised that 45kDa membrane-associated CD23 would have a similar effect 

on SMS-SB cells. Indeed, previous studies have shown that purified 45kDa CD23 is 

stimulatory for normal and transformed mature B cells, and is more reliable in its 

activity than the soluble CD23 forms (Cairns and Gordon, 1990). As purified 45kDa 

CD23 protein was not available at the time of this study, CD23 was presented to low 

cell density SMS-SB cells using a monolayer cell line expressing CD23a -CD23a 

'feeder’ cells. It was hoped that if CD23a expressed on these cells could promote 

SMS-SB cell [^H]-TdR incorporation, monoclonal antibodies against the SMS-SB cell 

novel receptor for CD23 could be tested for their ability to inhibit the growth- 

promoting effect, thus providing an alternative screening technique. It was also 

envisaged that SMS-SB cells would bind to these monolayers, as the cells are able to 

bind 45kDa CD23a-containing liposomes.
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4.2.4a Generation of the CD23a expressing ‘feeder’ cells

COS7 cells were chosen for the generation of a monolayer expressing membrane form 

CD23a as these cells are easy to maintain and transfect, and give high levels of 

transgene expression. The cells were transfected with pcCB-CD23a or an empty 

pcDNA3.1(+) expression vector (mock-transfected), using electroporation and 

subjected to 0418 selection for 3-4 weeks. The cells were then assayed for CD23 

expression by flow cytometric analysis (Figure 4.7 panel A). Mock-transfected cells 

exhibited a histogram profile essentially identical to unstained cells (panel Ai), 

demonstrating that they do not express CD23a. Although some pcCB-CD23a 

transfected cells expressed CD23 at their membrane (panel Aii), others seemed to be 

negative for protein expression. This was an unexpected result as after drug selection, 

the surviving cells must be resistant to G418 due to transformation with the vector, 

and so by default should also express CD23a. This result suggested that some of the 

cells were drug resistant but were not expressing membrane CD23. An explanation of 

this may be that as COS7 cells are transformed with the SV40 virus and pcDNA3.1(+) 

uses an SV40 origin of replication, the transfected vector would exist episomally, and 

as such may have variable plasmid propagation leading to low CD23a expression 

levels in some cells. Alternatively, part of the vector containing the drug resistant 

cassette, but not the CD23a coding sequence, may have integrated into the genome 

resulting in CD23a negative drug resistant cells.

As the monolayer was not being used to study directly CD23a, and was only serving 

as a stimulatory layer, it was decided that rather than transfecting another cell line, the 

cells could be sorted on the basis of their CD23a expression using a FACstar 

Fluorescently Activated Cell Sorter. This would produce a population of COS7 cells 

expressing CD23a at a high level. The cells were stained with anti-CD23-FITC 

antibody as for basic analysis, and then those exhibiting a CD23 FITC-fluorescence 

above 1 .2 x1 0  ̂ were separated from the rest of the population and retained for 

subsequent cell culture. Figure 4.7 Aiii, shows the flow cytometric analysis of these 

cells, demonstrating that the majority now have very high expression levels of CD23 

at the cell membrane. Western blot analysis further confirms the CD23 expression of 

the sorted CD23aCOS7 cells (figure 4.7 panel B).
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As the cells were to be used as adherent monolayers, the cells were assayed for CD23 

expression by immunocytochemistry. Cells fixed onto coverslips were stained with 

mouse anti-human CD23 antibody, and then with rabbit anti-mouse IgG-FITC. Figure 

4.8 shows the confocal microscopic images obtained. Sorted CD23aCOS7 cells (panel 

A), are highly positive for CD23a all over their surface, clearly showing the outline of 

the cells. Mock-transfected COS7 cells (panel B), only demonstrate background 

fluorescence. Both sets of cells did not exhibit any fluorescence when stained with the 

FITC-conjugated antibody alone (data not shown), demonstrating the specificity of the 

secondary antibody used.

Thus, overall, a population of monolayer cells expressing 45kDa CD23a had been 

generated for use as a stimulatory layer for SMS-SB suspension cells. In a biosynthetic 

pulse-chase experiment, no radiolabelled CD23, either as 45kDa or the soluble forms, 

could be immunoprecipitated from the culture supernatant at the end of a 24 hour 

chase period (data not shown). Only 45kDa membrane-associated CD23 was thus 

available to the SMS-SB cells.

4.2.4b SMS-SB ceils bind to CD23aCOS7 cells

To determine whether SMS-SB cells would bind CD23a expressing monolayers, 10ml 

of SMS-SB cells, at a density of 5xl0^/ml, were placed onto confluent cultures of 

CD23aCOS7 and untransfected C0S7 cells in 75cm  ̂ tissue culture flasks. After 60 

minutes incubation without disturbance, the cultures were examined by phase contrast 

microscopy. Upon gentle movement of the flasks, the SMS-SB cells cultured with the 

control (untransfected) COS7 cells moved freely, as in cultures of SMS-SB cells 

alone. In contrast, SMS-SB cells cultured with the CD23a expressing C0S7 cells did 

not move within the culture media, suggesting that the cells could be binding to the 

monolayer via their novel receptor for CD23 (results not shown).

4.2.4c 45kDa CD23a on COS7 cells does not promote SMS-SB ceil proliferation 

at low cell density

To investigate whether 45kDa CD23a, like sCD23, could promote an increase in 

TdR incorporation by SMS-SB cells, the cells were seeded at various low cell 

densities onto the ‘feeder’ cells. It was decided to use SMS-SB cells grown in serum-
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containing medium (2% (v/v) FCS/RPMI-1640), as cells grown in protein-free 

medium, as used for the sCD23 studies previously, are very fragile and sensitive to 

manipulation. However, the addition of protein is able to enhance the proliferation of 

SMS-SB cells, although not to the extent of sCD23 or conditioned medium (White, 

1995). Based on this, it was hypothesised that in the presence of this additional 

stimulus, SMS-SB cell growth would be enhanced at densities lower than those for 

cells grown in protein-free media.

The graphs of figure 4.9 show the [^H]-TdR incorporation of various densities of 

SMS-SB cells cultured alone or in the presence of either CD23a-expressing or 

untransfected (control) monolayers. So that SMS-SB cell proliferation could be 

assessed independently, the [^H]-TdR incorporation value of the fixed monolayers (on 

average 300cpm), was subtracted from the values of SMS-SB proliferation in the 

appropriate culture wells. The data demonstrate that 45kDa CD23a had no effect, 

either positively or negatively, on the LCD growth of SMS-SB cells over 24 and 48 

hours, as the mean [^H]-TdR incorporation was the same as SMS-SB cells cultured 

alone. In addition, the results show that the monolayer cells themselves were not 

stimulatory for growth, as untransfected C0S7 control cells did not initiate a change 

in [^H]-TdR incorporation. These results therefore suggest that 45kDa CD23a 

expressed on COS7 monolayers, in contrast to sCD23, does not promote the growth of 

LCD SMS-SB cells.

An explanation of this result might be that although the COS7 cells seem to have no 

direct effect on cell growth, it is possible that their presence is affecting the SMS-SB 

cells by preventing them from responding normally to CD23. Without any purified 

45kDa protein to address this possibility, it cannot be concluded that 45kDa CD23a is 

not stimulatory for SMS-SB cell growth. In addition, it is also possible that the 

presence of serum proteins in the SMS-SB culture medium may have affected the 

sensitivity of the assay. Future experiments would therefore have to be repeated using 

cells grown in protein-free medium.

Although the SMS-SB cells being used for this assay had been treated and cleared for 

mycoplasma, it is possible that a low level of contamination, undetectable by Hoechst
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33258 staining, was still present in the culture. This low level contamination may have 

affected the response of the SMS-SB cells to CD23a.

Overall, these results are inconclusive as to whether 45kDa CD23a is stimulatory for 

SMS-SB cell growth. However, the absence of any noticeable response prevents this 

assay from being used a screening procedure for the generation of a monoclonal 

antibody against the novel receptor.

4.2.4d 45kDa CD23 on COST monolayers does not specifically induce changes in 

the expression of the immediate early genes c-fos, c-jun or c-myc in SMS-SB cells

As 45kDa CD23a expressed on COST ‘feeder’ cells did not seem to be stimulatory for 

the growth of LCD SMS-SB cells, it was decided to investigate whether 45kDa 

CD23a could mediate any changes in SMS-SB cells, at the level of expression of the 

immediate early genes (lEG’s) c-fos, c-jun, and c-myc, which encode important 

cellular transcription factors. c-Fos and c-Jun are members of the Fos and Jun families 

of transcription factors, which dimerise with each other to form the AP-1 (Activator 

Protein 1) transcription factor (reviewed by Karin et ah, 1997). c-Myc mediates its 

transcriptional activity as a heterodimer complex with a related protein Max 

(Blackwood and Eisenman, 1991). These lEG-encoded transcription factors are 

known to mediate multiple cellular signals in haematopoietic cells including the 

induction of cellular proliferation, differentiation, and apoptosis (reviewed by 

Liebermann et al, 1998; Facchini and Penn, 1998). The effects of these transcription 

factors on cell behaviour seems to be dependent on cell type, differentiation state, and 

surrounding environment.

Due to the difficulties in making lysates from low cell density cultures of SMS-SB 

cells (discussed in chapter 3), it was decided to assess changes in the immediate early 

genes in SMS-SB cells at normal cell densities (SxlO^ml), when cultured with either 

CD23aCOS7 or control untransfected COST cells. In addition, the SMS-SB cells were 

cultured in the serum-free medium Optimen, to rule out any serum-stimulated effects. 

Previous studies have demonstrated that the addition of serum to cell cultures 

mediates an increase in the expression of c-fos RNA (Tsai et al, 1991; Lallemand et 

al, 1997), and various Fos and Jun-related proteins (Lallemand et al, 1997). As lEG
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expression has been shown to usually change within 30 minutes after stimulation (Tsai 

et ah, 1991; Lallemand et al, 1997), SMS-SB cells were placed onto confluent 

‘feeder’ layers for 0,15, 30 and 60 minutes, and RNA then prepared.

Figure 4.10 shows the results of Northern blot analysis. The transilluminator images 

(panel A), show that the RNA used for blotting was not degraded. Each membrane 

probed with a specific cDNA probe was stripped of radioactivity and reprobed with a 

7S probe (panel C) to demonstrate RNA loading. The results show that stimulation of 

SMS-SB cells with either control C0S7 or CD23aCOS7 cells resulted in the down- 

regulation of c-fos over 60 minutes {c-fos probe, panel B). As RNA loading was 

essentially equal, this demonstrated that the COS 7 cells themselves were affecting the 

SMS-SB cells. The expression levels of c-jun transcripts {c-jun probe, panel B), were 

similar for all time points and for SMS-SB cells on both types of feeder layers. 

Although after 30 minutes of CD23aCOS7 cell stimulation, the SMS-SB cells had a 

slightly lower level of expression of c-jun, this was not a concern as the 7S probe (c- 

jun probe, panel C), demonstrated that a lower amount of RNA was loaded for that 

sample. With respect to c-myc (c-myc probe, panel B), there was again no clear 

difference between any of the samples, any slight differences being attributable to 

RNA loading.

Overall, the results of Northern blot analysis demonstrated that using this method of 

stimulation, a CD23a-specific signal was not being transduced by c-fos, c-jun or c-myc 

in SMS-SB cells. However this does not necessarily mean that the cells were not 

responding to CD23a. In addition to c-Fos and c-Jun, other Fos related (FosB, Fral, 

Fra2), and Jun related (JunB, JunD) proteins dimerise to form AP-1. It is possible that 

complexes of these proteins are the predominant regulators of transcription in SMS- 

SB cells, and as such, transcripts for these proteins would also have to be tested.

The results also demonstrate that the monolayer cells alone were affecting the SMS- 

SB cells, as the control untransfected COS 7 cells caused a decrease in c-fos 

expression. This possibly explains why SMS-SB cells did not respond to 45kDa CD23 

in the proliferation assay. The presence of the COS7 cells, may in someway be 

affecting the response of the low cell density cultures to the 45kDa CD23 expressed
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on the monolayers. To further address this, an alternative cell line such as CHO, could 

be generated as a feeder line, inconjunction with using purified 45kDa CD23a as a 

control.

4.3 DISCUSSION

The results presented in this section demonstrate the successful cloning of a number of 

CD23 constructs, and the generation of a 45kDa CD23a-expressing monolayer. 

Although SMS-SB cells bind to this monolayer, it does not however seem to promote 

the growth of SMS-SB cells at low cell density as analysed by [^H]-thymidine 

incorporation. As CD23a could not be efficiently transfected into SMS-SB cells, it 

was impossible to determine whether CD23a could generate homotypic adhesions by 

binding to the novel CD23 receptor on adjacent cells. The absence of any effect of 

45kDa CD23a on SMS-SB cells prevents these functional assays from being used as 

screening techniques for the generation of monoclonal antibodies against the novel 

CD23 receptor.

Despite numerous attempts using different transfection reagents, SMS-SB cells were 

not able to be efficiently transiently-transfected with CD23a. The cells are very 

sensitive to this type of manipulation, highlighted by the fact that a number of 

commonly used reagents, and electroporation, caused excessive cell death of SMS-SB 

cell cultures. Although able to tolerate DOTAP, this transfection reagent caused SMS- 

SB cells to form into large clumps, which was unfortunately the predicted effect of the 

transfected CD23. Stable transfection of the cells was also unsuccessful. Although 

some viable cells seemed to be present in the culture after selection, these could not be 

successfully separated from the dead cells in the suspension culture. The SMS-SB cell 

line is therefore not particularly amenable to either transient or stable transfection.

Although 45kDa CD23a expressed on COST monolayers failed to increase the 

incorporation of [^H]-thymidine by LCD SMS-SB cells, it is not possible to state 

unequivocally that this form of CD23 is not stimulatory for SMS-SB cell growth. The 

results of the Northern analysis suggest that the COST cells are affecting the SMS-SB
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cells. Therefore, the signal mediated by the binding of 45kDa CD23 to the SMS-SB 

novel CD23 receptor may be masked by the COST cells in this assay. The mechanism 

of sCD23 growth stimulation is believed to be an anti-apoptotic signal, rather than a 

direct mitogenic signal, which subsequently allows the SMS-SB cells to proliferate 

(White, 1995). If the same signal is generated by 45kDa CD23a, it is possible that in 

the monolayer system used here, CD23a is mediating an anti-apoptotic signal but the 

COST cells are preventing the subsequent growth of the SMS-SB cells, so that no 

effects are seen in the proliferation assay. To investigate this possibility, 45kDa 

CD23a ‘stimulated’ SMS-SB cells could be analysed by two-colour flow cytometry 

using the DNA-binding fluorochromes propidium iodide and Hoechst 33342. This 

technique (detailed by Dive et al., 1992), discriminates and quantifies viable and 

apoptotic cells, and was previously used to directly show that sCD23 prevents the 

apoptosis of low cell density SMS-SB cultures (White, 1995).
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Figure 4.1 Photomicrographs of SMS-SB cells transiently- 

transfected with CD23a.

SMS-SB ceils were transfected with the CD23 expression vector pcDL SRcx 

296CD23a, using the liposome-mediated transfection reagent DOTAP as detailed in 

section 2.2.2a. At 24 hours post transfection, the cells were examined by phase- 

contrast microscopy using a 40X magnification lens. Panel A- untransfected cells. 

Panel B- CD23a-transfected cells, Panel C- cells transfected with an empty 

expression vector (mock-transfected).
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Figure 4.2 Flow cytometric analysis of CD23a-transfected SMS-SB 

cells.

SMS-SB cells were transfected with CD23a as described for Figure 4.1. At 24 hours 

post-transfection 1x10^ cells were removed from culture, washed twice in PBS and 

stained with a FITC-conjugated anti-CD23 antibody for 20 minutes protected from 

the light. After further washing, the cells were analysed by flow cytometry in the 

FITC fluorescence channel only. The histograms illustrate CD23 expression in 

logarithmic fluorescence on the jc-axis, against a linear scale of cell number on the y- 

axis. Panel A- unstained untransfected cells. Panel B antibody stained untransfected 

cells, Panel C- stained mock-transfected. Panel D stained CD23-transfected cells.

The data shown is representative of 3 independent repeats.
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Figure 4.3 Diagramatic representation of the different CD23 forms 

and the oligonucleotide primers designed for their PCR generation.

An illusti’ation of the two membrane (45kDa), and the two soluble (37 and 25kDa), 

forms of CD23 showing the major structual features, namely the leucine zipper and 

lentil lectin homology domains.

: transmembrane spanning domain

Oligonucleotide primers, corresponding to the amino acid sequences indicated by the 

arrows A-^E, were designed using the published cDNA nucleotide sequence (Entrez 

accession number M l4766). These were used for the PCR generation of each CD23 

form as indicated. Details of each oligonucleotide sequence, including the intrinsic 

restriction sites are given.

ATG : transcriptional start codon

GGATCcI BamHl restiiction site

GCGGCCGC : Notl restiiction site
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Figure 4.4 Gel electrophoresis showing the PCR amplification of the 

CD23 forms.

The different forms of CD23 were generated by PCR amplification using the pcDL 

SRa296CD23a plasmid as template DNA, Pjii DNA polymerase, and the primers 

detailed in figure 4.3. For each set of reactions, a negative control (no DNA template) 

was also performed to control for contaminating DNA. Details of reaction mixtures 

and PCR cycle parameters are given in section 2.2.10b. After the reactions were 

complete, the amplification products were separated by gel electrophoresis and 

visualised on a UV transilluminator. Ikb DNA ladder standards were also run for the 

verification of PCR product identity (shown here in panel B as bp fragments).

Panel A- PCR amplification of CD23a, Panel B- CD23b, Panel C CD23 37 and 

25kDa. Lane 1 (a/b)- positive PCR amplification. Lane 2 (a/b)- negative control. 

Each of the amplification products and their molecular sizes are indicated.
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Figure 4.5 Gel electrophoresis showing the CD23 forms excised 

from their cloning vectors.

The CD23 constructs generated by PCR amplification were cloned into plasmid 

vectors. The ‘a’ and ‘b’ isoforms were cloned into pcDNA3.1(+) using the 

intrinsically designed BamHl and Notl restriction sites, whereas CD23 37kDa and 

25kDa were blunt-end cloned into pCR-Script SK(+). Maxi-prep preparations of each 

of the plasmid constructs were subjected to BamHUNotl digestion. The digest was 

then separated by electrophoresis and visualised on a UV transilluminator. Ikb DNA 

ladder standards were also run (shown as bp fragments in panel A).

Panel A restriction digest of the membrane CD23 isoforms. Lane 1- CD23a, Lane 2- 

CD23b. Panel B- digest profile of the soluble CD23 forms. Lane 1- CD23 25kDa, 

Lane 2- CD23 37kDa.
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Figure 4.6 The nucleotide sequence and the deduced amino acids of 
the cloned CD23 constructs.

Each of the cloned forms of CD23 were sequenced using the T7 and T3, or the T7 and 

RP primer binding sites present in pCR-Script SK(+), and pcDNA3.1(+) vectors, 

respectively. The sequence for each one was then compared using GCG pair-wise 

alignment analysis to the published CD23 sequence (Entrez accession number 

M14766).

The nucleotide sequence and the corresponding amino acids are represented in full for 

45kDa CD23a, and for the soluble 37kDa and 25kDa forms. Only the N terminal 

region of CD23b is detailed, as the remaining sequence is identical to the ‘a’ isoform.

transcriptional start codon 

: transcriptional stop codon

: regions of the ‘a’ and ‘b’ isoforms that differ

alterations in the cloned nucleotide sequence compared to the published sequence 

nucleotide 690: A-^^G = GGA (glycine)-> GGG (glycine) 

nucleotide 717: T-^C = CAT (histidine)-^ CAC (histidine)



CD23a isoform - 45kDa
1 ^ ^ G A G G A A G G T G A A T A T T C A G A G A T C G A G G A G C T T C C C A G G A G G C G G T G T T G C A G G C G T  6 0

M E E G Q Y  S E I E B L P R R R C C R R

6 1  G G G A C T C A G A T C G T G C T G C T G G G G C T G G T G A C C G C C G C T C T G T G G G C T G G G C T G C T G A C T  1 2  0
G T Q I V L L G L V T A A L W A G L L T

1 2 1  C T G C T T C T C C T G T G G C A C T G G G A C A C C A C À C A G A G T C T A A A A C A G C T G G A A G A G A G G G C T  1 8  0
L L L L W H W D T T Q S L K Q L E E R A

CD23 - 37kDa
1 8 1  G C C C G G A A C G T G T G T C A A G T T T C C A A Q A A C T T G G A A A G C C A C C A C G G T G A G C A G p W l C G  2 4  0

A R N V S Q V S K N L E S H H G D Q M  A

2 4 1  C A G A A A T G G G A G T G G A G G G A G A T T T G A G A G G A A G T G G A G G A A C T T G G A G G T G A A C A G G A G  3 0 0
Q K S Q S T Q I S Q E L B E L R A E Q Q

3 0 1  A G A T T G A A A T C T C A G G A G T T G G A G C T G T C C T G G A A C C T G A A C G G G C T T C A A G C A G A T C T G  3 6 0
R L K S Q D L E L S W N L N G L Q A D L

3 6 1  A G C A G G T T G A A G T C C C A G G A A T T G A A C G A G A G G A A C G A A G G T T G A G A T T T G C T G G A A A G A  4 2  0
S S F K S Q E L N E R N E A S D I i L E R

CD23 - 25kDa
4 2 1  g t g g g g g a g g a g g t g a g a a a g g t a a g g M ^ a g t t g g a g g t g t g g a g g g g g t t t g t g t g g  4 8 0

L R E E V T K L R M E L Q V S S G F V C

4  8 1  A A C A C G T G G G G T G A A A A G T G G A T G A A T T T G C A A C G G A A G T G G T A G T A C T T C G G G A A G G G C  5 4  0
N T C P E K W I N F Q R K C Y Y F G K G

5 4 1  A G C A A G C A G T G G G T C C A C G C C C G G T A T G G G T G T G A G G A C A T G G A A G G G C A G C T G G T G A G C  6 0 0
T K Q W V H A R Y A G D D M E G Q L V S

6 0 1  A T G G A C A G G G G G G A G G A G C A G G A G T T G G T G A G C A A G G A T G C C A G G G A G A G G G G C T G G T G G  6 6  0
I H S P E E Q D F L T K H A S H T G S W

A-^G T ^ C
6 6 1  A T T G G C GT T G G G A A G T T G G A C C T G A A G G G p j G A G T T T A T C T G G G T G G A T G G G A G C C  A p | 3 T G  7 2 0

I G L R N L D L K G  HE F I  W V D G S H V

7 2 1  GA GTA GA GG AA C TGGG GT G G A G G G Q A G G C G A G G A G C G G G A G G C A G G G G G A G G A C T G C G T G  7 8 0
D Y S N W A P G E P T S R S Q G E D C V

7 8 1  A T G A T G G G G G G C T C G G G T G G C T G G A A C G A C G G G T T C T G C G A G C G T A A G G T G G G C G C C T G G  8 4  0
M M R G S G R W N D A F C D R K L G A W

8 4 1  G T G T G G G A G C G G C T G G C G A G A T G G A C G C C G C C A G G C A G G G A A G G T T C C G C G G A G T C C A T G  9 0 0
V G D R L A T C T P P A S E G S A E S M

9 0 1  G G A C G T G A T T C A A G A C G A GA GG C T G A C GG C C GC GT G C C G A G G G G C T C T G C C C C T G T G C A C  9 6 0
G P D S R P D P D G R L P T P S A P L H

9 6 1  TCTjrlGAI 9 6  6
S *

CD23b isoform - 45kDa
1 ^ W a A T G G T C G  A A G G G  A G G A G A T G  , 

M N P P S Q E I
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Figure 4.7 Analysis of 45kDa CD23a-transfected COS? cells.

Panel A represents the flow cytometric analysis of the cells. CD23a transfected COS? 

and mock-transfected COS? cells were removed from culture using non-enzymatic 

cell dissociation solution and washed twice in PBS. 1x10^ cells were then stained 

with a FITC-conjugated anti-human CD23 antibody and analysed. The solid line 

represents unstained cell autofluorescence, the dotted line is anti-CD23 antibody 

stained cells. Ai- mock-transfected COS? cells, Ail- CD23a-transfected COS? cells 

(CD23aCOS7), Alii- fluorescently sorted CD23aCOS7 cells. The histograms illustrate 

CD23 expression in logarithmic units of fluorescence on the %-axis, against a linear 

scale of cell number on the y-axis. The results are representative of 5 independent 

repeats.

Panel B  represents the Western blot analysis of the fluorescently sorted CD23aCOS7 

cells. CD23aCOS7 and mock-transfected COS? (mCOS?) cells were removed from 

culture as for panel A, and extracts prepared. 30 and 60pg of protein were subjected 

to electrophoresis through a 10% (w/v) acrylamide separating gel. After transfer to 

nitrocellulose, blots were incubated with 0.8pg/ml of rabbit anti-human CD23 

antibody, and then with a 1:1000 dilution of protein-A-HRP. The blot was then 

developed with an ECL detection system. The results are representative of 3 

independent repeats with different cell preparations.
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Figure 4,8 Analysis of 45kDa CD23a expression in transfected COST 

cells by immunocytochemistry.

Mock-transfected COS 7 and sorted CD23aCOS7 cells adhered to coverslips were 

fixed with 4% (w/v) paraformaldehyde/PBS and then washed. After blocking in 

0.5%BSA/10% (v/v) FCS/PBS buffer, the cells were incubated with mouse anti­

human CD23 antibody. In order to visualise primary antibody staining the cells were 

washed and incubated with rabbit anti-mouse IgG FITC-conjugated antibody. The 

coverslips were then mounted onto slides, and the cells examined on a Biorad MRC- 

600 confocal microscope.

Panel A- CD23aCOS7 cells, panel B- mock-transfected C0S7 cells. The data shown 

are representative of 3 independent repeats.
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Figure 4.9 Effect of 45kDa CD23a on [^H]-Thymidine incorporation 

by SMS-SB cells at various densities.

SMS-SB cells grown in serum-supplemented RPMI-1640 medium were seeded at 

5x10^, 1x10^, 5x10"̂ , 1x10"̂ , 5x10^ and 1x10^ cells per ml onto paraformaldehyde- 

fixed ‘feeder’ cells. The graphs represent the incorporation of [^H]-TdR for various 

seeding densities of SMS-SB cells alone, or in the presence of either untransfected 

C0S7 or CD23a-expressing COS7 cells. To correct for the background proliferation 

of the monolayer cells, the [^H]-TdR incorporation value for fixed COS7 or 

CD23aCOS7 cells alone was subtracted from the appropriate incorporation values of 

the SMS-SB cells. The cultures were pulsed with 0.3p,Ci/well [^H]-thymidine for 4-5 

hours prior to harvest, after 24 hours or 48 hours of incubation. All cultures were in 

triplicate and the error bars represent the standard deviation of corrected triplicate 

data.

The experiment is representative of 4 independent repeats.
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Figure 4.10 Northern blot analysis of the expression of c~fos, c-jun 
and c-myc in SMS-SB cells, upon stimulation with CD23a expressed 

on COS7 cells.

SMS-SB cells were grown in the serum-free medium, Optimen, were placed on 

CD23aCOS7 and COS7 cells at a density of 8xl0^/ml for 0, 15, 30, or 60 minutes. 

Total RNA was then isolated from the cells and 20p,g subjected to electrophoresis. 

The RNA was then blotted onto nylon membrane, hybridised with a [^^P]-labelled 

probe for either c-fos, c-jun or c-myc, and visualised by autoradiography. The 

membranes were stripped and re-hybridised with a 7S probe and visualised. The 

positions of the 1.35, 2.37, 4.4, and 7.46 kb RNA markers are indicated to the right of 

each image in panel B.

Panel A- transilluminator image of the separated RNA; panel B -hybridisation of 

membranes with specific probe {c-fos, c-jun or c-myc); panel C -hybridisation of 

membranes with 7S probe. The experiments shown are representative of 3 

independent repeats using different preparations of RNA made from stimulated SMS- 

SB cells.
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CHAPTER 5

RESULTS

STUDIES OF THE NOVEL RECEPTOR FOR CD23 

ON VARIOUS B CELL LINES
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5.1 INTRODUCTION

In addition to IgE, other known ligands/receptors for CD23 are CD21 (Aubry et al, 

1992), CD 11b and C D llc (Lecoanet-Henchoz et al, 1995). The former is also the 

receptor for EBV (Tanner et al, 1987), interferon-a (Delcayre et al, 1991), and C3 

complement proteins (Weis et al, 1984). CD23 and CD21 function as adhesion 

molecules which are important in the B cell/T cell interaction necessary for IgE 

production (Aubry et al, 1992, 1993), and for B cell antigen presentation to T cells 

(Grosjean et al, 1994). The CD23/CD21 interaction is also proposed to be important 

for the development of B cells undergoing selection within the germinal centre. Anti- 

CD21 antibodies have been found, like follicular dendritic cell-derived sCD23 (Liu et 

al, 1991a), to rescue germinal centre B cells from apoptosis (Bonnefoy et al, 1993), 

suggesting that the sumval signal is mediated by CD21. In this regard, CD23 derived 

from bone marrow stromal cells (Fourcade et a l, 1992), may deliver anti-apoptotic 

signals to developing precursor B cells. However, B cells do not express CD21 until 

the late pre-B cell stage, raising the possibility that other receptors for CD23 may 

mediate early B cell development.

CD 11b and C D llc represent the a  chains of the p2 integrin adhesion molecules, 

CDllb-CDlB and CDllc-CD18, that act as CD23 receptors on monocytic cells 

(Lecoanet-Henchoz et al, 1995). Upon binding to monocytes via CDllb/c, CD23 

causes a marked increase in nitric oxide production and the release of 

proinflammatory cytokines. Within the B cell compartment, these adhesion molecules 

are only found on activated cells, whereas the CDlla-CD18 member of this integrin 

family is often expressed on unactivated cells. CD lla however is not a receptor for 

CD23 (Lecoanet-Henchoz et al, 1995).

Studies on the SMS-SB cell line by White, 1995, demonstrated that although these 

cells do not express any of the known receptors for CD23, they can specifically bind 

to full-length (45kDa) CD23 a-containing fluorescent liposomes, an effect that can be 

partially inhibited by sCD23. This suggested that the rescue of LCD SMS-SB cells 

from death by sCD23 was mediated via a novel receptor for CD23 (CD23NR), which 

is able to bind both soluble and membrane forms of CD23. Although preliminary
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results from CD23-affiiiity-columns suggested that the novel receptor has a molecular 

weight of approximately 80-85kDa, antibodies to CD molecules of approximately this 

size could not inhibit liposome binding, thus failing to identify the novel CD23 

receptor (White, 1995).

More recent studies on SMS-SB cells have begun to further characterise CD23NR 

using BIAcore surface plasmon resonance technology. This method allows the 

interactions of macromolecules to be studied and, as binding is measured over time, 

kinetic constants for the interaction can be determined. Initial work has demonstrated 

that the binding of the SMS-SB novel receptor to sCD23 can be studied using this 

technique, and that the interaction seems to be calcium-independent, and of a protein- 

protein nature as it is not inhibited by fucose-1-phosphate. The interactions of CD23 

with CD23NR are therefore very different from those of CD21 or CDllb/c, which 

involve the C-type lectin activity of CD23 (Aubry et al, 1994; Lecoanet-Henchoz et 

al, 1995). In addition, preliminary experiments have recovered biotinylated SMS-SB 

membrane proteins, i.e., CD23NR, from the binding interaction and has been 

visualised by Western blotting as a 80-90kDa protein (Dr. J Matheson -personal 

communication), thus supporting the previous findings by White (1995). This method 

also potentially provides a means of isolating protein(s) for microsequencing analysis, 

to determine the identity of the novel receptor. Using BIAcore technology for isolation 

purposes has a significant advantage over standard biochemical procedures, in that 

CD23NR binding can be monitored throughout the isolation.

As SMS-SB cells express a novel receptor for CD23, it was decided to investigate 

whether this receptor was unique to this pre-B cell line. The results presented in this 

chapter thus describe an investigation into the presence of CD23NR on other human B 

cell lines. The cell lines used for this study were primarily other pre-B ALL lines 

(Blin-1, Nalm-1, Nalm-6 , 697 and 207), but also a mature-B ALL (1E8), and an EBV- 

transformed mature B cell line (EDR). The cells were analysed for the expression of 

CD23 and the known receptors, the ability to bind to CD23a~expressing monolayers, 

and for the interaction with sCD23 as analysed by BIAcore technology.
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5.2 RESULTS

5.2.1 Phenotypic analysis of B cell lines

In order to investigate the presence of the novel receptor(s) for CD23 on other B cell 

lines, the cells firstly had to be analysed for the expression of CD23 and the laiown 

receptors for CD23. In addition to these CD antigens, the cells were also analysed for 

the other (32-integrin, CD lla, and also for the B cell marker CD 19. Each cell line was 

stained with a FITC-conjugated antibody specific for each antigen and analysed by 

flow cytometry. The cells were not tested for CD18 expression as this subunit of the 

integrin receptors is not involved in the binding to CD23 (Lecoanet-Henchoz et al, 

1995).

Figure 5.1 shows the analysis of the cell line Blin-1. The cells are positive for CD19 

expression, but are negative for all the other surface antigens tested as they exhibited 

histogram profiles essentially identical to unstained cells. In comparison, 207 cells 

(figure 5.2), are positive for CD23 and CD21, and weakly positive for C D lla and 

CD19, demonstrated by the increases of FITC fluorescence on the x-axis. Each of the 

other B cell lines were analysed in this manner, the results of which are summarised in 

Table 3, along with the culture phenotype of each line. The results demonstrate that 

like SMS-SB, a number of the other cell lines are negative by flow cytometry for 

surface expression of CD23 and the known CD23 receptors, namely, Blin-1, Nalm- 6  

and 697 (pre-B cell lines), and 1E8 (mature-B cells). Of these lines, only 697 

exhibited a clumping phenotype in culture, which must be mediated by other adhesion 

interactions.

The other cell lines, Nalm-1, 207 (pre-B), and EDR (mature-B), express all, or a 

combination of CD23, CD21 or CD lla, potentially explaining the clumping 

phenotype of these cell lines in culture. Although not a receptor for CD23, the (32- 

integrin C D lla is involved in cell adhesion and as such may contribute to the 

clumping displayed by these cell lines.
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The absence of CD 11b and C D llc from all the cell lines analysed was not surprising 

as these antigens are not normally found on precursor or resting B cells, but act as 

CD23 receptors on monocytic cells (Lecoanet-Henchoz et al, 1995). The antibodies 

against these antigens had previously been tested on known antigen-positive cell lines, 

eliminating concerns that the negative result was due to inefficient antibody binding or 

fluorescence.

5.2.2 Other B cell lines bind to CD23aCOS7 cells

As SMS-SB cells were found to bind to CD23a-expressing monolayer cultures 

(section 4.2.4b), it was decided to assess whether the other B cell lines under 

investigation could also bind to the monolayers. Each cell line, at a density of 

5xl0^/ml, were placed for 60 minutes onto confluent cultures of CD23aCOS7 and 

control COS7 cells. The B cells were then compared to SMS-SB cells for their ability 

to bind to the monolayers.

The results (summarised in Table 3), show some inconsistency between the expected 

results based on cell surface phenotype, and what was observed in the assay. The 

CD21 positive cells, 207 and EDR, bound to both of the monolayers, suggesting that 

binding was not necessarily specific for CD23, whereas the weakly CD21-positive 

Nalm-1 cells did not seem to bind to either monolayer. Of the cells lines that do not 

express any of the know receptors for CD23, 697 cells bound to both monolayers, 

while 1E8 cells did not bind to either. However, the Blin-1 and Nalm- 6  cell lines 

bound to the CD23a-expressing monolayer, with no or only weak binding, 

respectively, to the control C0S7 cells. This suggests that these cell lines, like SMS- 

SB cells, are binding to CD23 on the monolayer cells via a novel receptor for CD23.

Although inconclusive for some of the known CD23 receptor-negative cell lines, this 

basic assay indicated that other cell lines may indeed express the novel receptor for 

CD23 found on SMS-SB cells.

As all subsequent investigations were based on the ability of the novel receptor to bind 

CD23, none of the other CD23 receptors could be present on the cell lines being
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studied. Based on this, and the encouraging results of CD23aCOS7 cell binding assay, 

Blin-1, Nalm- 6  and 1E8 cells were chosen for further investigation.

5.2.3 BIAcore analysis of SMS-SB, Blin-1, Nalm-6 and 1E8 cell lines

In order to directly demonstrate the existence of a novel CD23 binding receptor on 

other B cell lines, cell extracts were analysed by BIAcore technology for interactions 

with sCD23. The basis of BIAcore analysis, surface plasmon resonance (SPR), is an 

optical phenomenon which measures changes in the refractive index close to the 

surface of a sensor chip. The refractive index is changed by the binding of material to 

the surface immobilised ligands on the chip, thus allowing binding interactions to be 

monitored by changes in SPR signal.

Extracts were made of each cell line to be analysed using a buffer based on octyl-p-D- 

glucopyranoside (OOP), a detergent which solubilises membrane-bound proteins in 

their native state and preserves protein-protein interactions. Diluted membrane 

extracts were individually injected in continuous flow over a sCD23 immobilised flow 

cell, and then over a blank flow cell on a sensor chip. SPR measurements, expressed 

in resonance units (RU), were monitored over time to produce sensorgram profiles of 

the interactions between the analytes (the cell extracts) and the sCD23 ligand (details 

of procedure are outlined in section 2.2.13). Previous analysis using monoclonal 

antibodies specific for CD23 had demonstrated that sCD23 was successfully 

immobilised on the chip and so could be used for cell extract analysis (Dr. J Matheson 

-personal communication).

Figure 5.3 shows the BIAcore analysis of SMS-SB cells. The sensorgram illustrates 

the real time binding of cell membrane extracts to sCD23-immobilised and blank flow 

cells of a sensor chip. Four characteristic phases of SPR change can be identified: i- 

represents the initial increase in RU seen immediately after extract injection which 

results from a change in the buffer, ii- is the association of the analyte material to the 

sensor chip surface, iii- decrease in response due to re-introduction of normal flow 

buffer, and iv- the natural dissociation of the analyte from the chip after injection is 

terminated.

136



The amount of analyte bound to each flow cell is represented by the difference in 

resonance (RU) from the pre-injection baseline to that seen after dissociation has 

occurred, and an exact value for this can be determined (presented in table 5). The 

results show that analyte has bound to the sCD23 flow cell, giving a change in 

response of 202 RU (indicated in figure 5.3 as B t i ) .  A response change (78.8 RU), is 

also seen for the blank flow cell (Bt2), demonstrating that non-specific binding to the 

sensor chip was occuring. The specific binding (Bs), of SMS-SB cell extract to sCD23 

is therefore 123.2 RU (Bs = B ti -  Btz), which according to current consensus is a 

significant result. Analysis of the binding kinetics shows that the CD23NR expressed 

on SMS-SB cells and sCD23 has an equilibrium constant ( K d )  of 8.1x10“̂ ° M.

Figure 5.4 shows the results of the BIAcore analysis of Blin-1 (panel A), Nalm- 6  

(panel B), and ÏE8  (panel C). Each set of sensorgram profiles is similar to those 

obtained for SMS-SB cells in figure 5.3. All the extracts showed binding to both the 

sCD23 flow cell and to the blank flow cell. Specific binding of Blin-1, Nalm- 6  and 

1E8 extracts to sCD23 was 62.3, 72.9, and 75.3 RU, respectively (table 5). These data 

demonstrate that like SMS-SB cells, Blin-1, Nalm- 6  and 1E8 cells are able to bind to 

sCD23 in the absence of any of the loiown receptors, suggesting that these cell lines 

express a novel binding receptor for CD23. Kinetic analysis of the novel CD23 

receptors on these cells and sCD23 (table 5), demonstrates that the equilibrium 

constants are within a similar range to that of SMS-SB cells. This suggests that the 

interaction with sCD23 may be mediated by a similar receptor species.

5.3 DISCUSSION

The data presented in this chapter demonstrate that in addition to SMS-SB cells, the 

pre-B cell lines Blin-1 and Nalm-6 , and, the mature B cell line 1E8, do not express 

any of the known receptors for CD23, namely CD21, CD 11b or CD llc, but are able to 

bind to 45kDa CD23a-expressing monolayers, and significantly bind to sCD23 as 

analysed by BIAcore analysis. These results suggest that these cell lines also express a 

novel binding receptor for CD23. CD23NR may therefore not be exclusive to the pre- 

B cell line SMS-SB.
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The CD23NR on SMS-SB cells is able to bind to both full-length 45kDa CD23 and 

sCD23 (White, 1995). Binding to the latter has now been further confirmed using

BIAcore technology. In addition to binding sCD23 on the BIAcore, Blin-1 and Naim- 

6 , but not 1E8 cells, seem to bind to 45kDa CD23a expressing monolayers. However, 

to formally demonstrate that the CD23NR on these cells can bind the full-length form 

of CD23, all these cell lines would have to be analysed for binding to 45kDa CD23a- 

containing liposomes. In addition, antibodies to the Icnown CD23 receptors could be 

tested for their inability to inhibit liposome binding, thereby confirming that these 

receptors are not responsible for CD23 binding by these cells. Although Blin-1, Nalm- 

6  and 1E8 cells do not express CD21, CD l ib  or C D llc as analysed by flow 

cytometry, the possibility exists that the cells may express very low levels of these 

receptors undetectable by this method of analysis. Unfortunately, liposome binding 

analysis was not performed at the time of this study due to the unavailability of

purified 45kDa CD23a to use in liposomes.

Although the BIAcore kinetic data suggest that the interaction between sCD23 and the 

novel binding receptor is similar for SMS-SB, Blin-1, Nalm- 6  and 1E8 cells, it is not 

possible to state unequivocally at this stage whether the same molecular species is 

present on all the cell lines. It is possible that CD23 binding maybe mediated by a 

number of different novel receptors. To investigate this possibility, experiments could 

be performed to characterise the nature of the sCD23/CD23NR interactions for each 

of these cells, as analysis of SMS-SB cells has demonstrated that receptor-ligand 

binding seems to be mediated by protein-protein interactions. In addition, SMS-SB 

sCD23 binding material has been successfully recovered from the BIAcore and 

identified a 80-90kDa protein by Western blotting (Dr. J Matheson- personal 

communication). Although 2-D electrophoresis still needs to be performed to ensure 

that the 80-90kDa species corresponds to a single protein, the potential exists for 

protein microsequencing to be performed. If successful, this procedure could be 

performed with the other B cell lines, allowing their novel receptors for CD23 to be 

directly compared.

As all the B cell lines analysed on the BIAcore were found to bind sCD23, it is 

possible that the result is an artefact of use of the BIAcore instrument itself. This is
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however unlikely, as analyte binding to the sCD23 flow cell was significantly greater 

than that on the blank flow cell. To rule out this possibility, a cell line known not to 

bind to CD23 should also be analysed. Unfortunately the cell line Raji, previously 

found not to bind CD23a-liposomes (White, 1995), was not available at the time of 

this study. Future analysis of this cell line as a negative control is paramount to 

confirm the validity of the BIAcore approach.

In the SMS-SB cell line, sCD23 acts via the novel receptor to inhibit apoptosis 

(White, 1995). It will be of great interest to determine the consequences of stimulating 

CD23NR on Blin-1, Nalm- 6  and 1E8 cells in order to determine the biological 

importance of the novel receptor on these cells. As these, like SMS-SB cells, are B 

cell acute lymphoblastic leukaemia cell lines, it is possible that CD23NR may play a 

role in the transformation or subsequent maintenance of the cells by delivering 

survival signals. It will therefore be important to analyse normal precursor B cells for 

the expression of CD23NR, to determine if it potentially has a role in normal early B 

cell development. The discovery of a novel CD23 binding receptor, although 

potentially not the same species, on the mature B cell line 1E8, suggests that the novel 

receptor may not be restricted to the early stages of B cell development. Normal B 

cells from all developmental stages will therefore have to be screened for the 

expression of CD23NR.

Although cell lines expressing CD23 and the known receptors for CD23 may also 

express the novel receptor, it is not possible to test these cells using the currently 

available assays. Investigations of these cell lines can only be performed when a 

specific monoclonal towards the novel receptor is available.

At present the identity of the novel CD23 receptor on SMS-SB cells remains to be 

fully determined. However, the demonstration that novel binding receptors exist on 

other B cell lines allows these to be studied as alternative models. The function of the 

novel receptor on these cells is also unknown making the study of this receptor(s) very 

interesting.
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Figure 5.1 Flow cytometric analysis of Blin-1 cells.

1x10^ Blin-1 cells were removed from culture, washed twice in PBS and stained with 

a FITC-conjugated antibody (CD19, CD21, CD23, CD lla, CD llb, or CDllc). After 

a 2 0  minute incubation, the cells were washed, then analysed for surface expression of 

each CD antigen. The histograms illustrate CD antigen expression in logarithmic units 

of fluorescence on the x  axis, against a linear scale of cell number on the y-axis.

The results are representative of 3 independent repeats.
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Figure 5.2 Flow cytometric analysis of 207 cells.

1x10^ 207 cells were removed from culture, and analysed for the expression of 

various CD antigens as detailed for figure 5.1. The results are representative of 3 

independent repeats.
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Table 3. Flow cytometric analysis of various B cell lines.

Each of the cell lines under investigation were analysed for the expression of various 

CD antigens as described and illustrated in figures 5.1 and 5.2. Each cell line was then 

classified as either: positive (+ +), weakly positive (+), or negative (-) for cell surface 

expression of each antigen. The culture phenotype of each cell line is also indicated as 

analysed using phase contrast microscopy.
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Table 4. Binding of various B cell lines to 45kDa CD23a expressed 

on COS7 cells.

B cells at 5xl0Vml were placed onto confluent cultures of CD23aCOS7 and 

untransfected (control) C0S7 cells. The cultures were then left without disturbance 

for 60 minutes and then examined by phase contrast microscopy. The B cell lines 

were assessed for binding to the COS7 feeder layers by agitating the flasks, and 

designated as either: binding to the monolayers (+ +), weak binding (+), or no binding 

(-)•
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Figure 5.3 BIAcore analysis of SMS-SB cells.

Membrane extracts of SMS-SB cells were prepared as described in section 2.2.13a. 

Diluted extract (the analyte), was injected over the surface of a BIAcore sensor chip in 

a continuous buffer flow. The overlaid sensorgrams illustrate the real time binding of 

SMS-SB membrane extract, expressed as resonance units (RU), to sCD23- 

immobilised on a CM5 sensor chip flow cell (sCD23-FC), and to a blank flow cell 

(blank-FC).

The four characteristic stages of the analysis are indicated on the sCD23-FC 

sensorgram: i- bulk contribution; ii- association of analyte to chip; Hi bulk 

contribution; iv- dissociation of analyte from chip. A and Y represent the points at 

which analyte injection was started and stopped, respectively. B ti represents the total 

binding of SMS-SB extract to the sCD23-FC; B t2 - total binding to the B-FC; Bg 

specific binding to sCD23.

The sensorgrams are representative of 3 independent repeats of BIAcore analysis 

using different SMS-SB extract preparations and different sensor chips.
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Figure 5,4 BIAcore analysis of Blin-1, Nalm-6 and 1E8 cell lines.

Other B cell lines were analysed by BIAcore technology as described in figure 5.3. 

Panel A- Blin-1 cells; panel B Nalm- 6  cells; panel C- 1E8 cells. Bs represents 

specific binding to sCD23. The sensorgrams are representative of 3 independent 

repeats using different cell extract preparations and different sensor chips.
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Table 5. Binding responses and kinetics of BIAcore interactions.

The total binding (in RU), of each cell extract, to the sCD23-immobilised ( B t i)  and 

the blank flow cell (Bt2 ) was determined by BIAcore analysis. The specific binding to 

the sCD23 was then calculated (B s  = B j i  -  Bj2  )■ The association (ka (M'^s'^)) and 

dissociation (kd (s'^)) kinetics were determined using the BIAevaluation 2.1 analysis 

package. The values presented are those derived from the sensorgrams illustrated in 

figures 5.3 and 5.4.

Equilibrium constant; Kd (M) = kd / ka
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CHAPTER 6

GENERAL DISCUSSION
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6.1 Main conclusions

The main findings of this thesis are that the autocrine factor previously identified in 

culture supernatants of the pre-B cell line SMS-SB (Zack et al, 1987; White, 1995), 

possibly rescues low cell density cultures from apoptosis by maintaining the 

expression of the anti-apoptotic protein Bcl-2 and promoting cell cycle progression. 

During attempts to identify the specific Bcl-2 family members influenced by SB-AF, 

SMS-SB cells were found to express high levels of Bcl-2, which is unusual for cells at 

the pre-B developmental stage. Experiments performed to characterise and isolate the 

autocrine factor suggest that SB-AF maybe a multi-component factor, whose anti- 

apoptotic activity results from the synergistic action of a number of factors. At least 

one, if not all, of the essential components of SB-AF is a protein which is heat stable 

to 90”C.

Although the soluble forms of CD23 have been found to act as paracrine survival 

signals for SMS-SB cells (White, 1995), the results of the current investigation 

suggest that, in comparison, full-length 45kDa CD23a does not seem to elicit the same 

response in SMS-SBs. However, as discussed in chapter 4, it is possible that the COS7 

cell monolayer used to present 45kDa CD23a to SMS-SB cells may be influencing the 

response of the SMS-SB cells to CD23.

The pre-B cell lines Blin-1 and Nalm-6 , and the mature B cell line 1E8, do not express 

the known receptors for CD23, namely CD21, CD llb or CD llc, but are able to bind, 

like SMS-SB cells, to sCD23 as analysed by BIAcore technology. Therefore, in 

addition to SMS-SB cells, other B cells express a novel binding receptor for CD23. At 

present it is not however known whether the same molecular species is present on all 

the cell lines, or what the functional significance of CD23NR is on the Blin-1, Nalm- 6  

or 1E8 cell lines.

6.2 SMS-SB ceil autocrine factor

The constitutive production of an autocrine growth factor by SMS-SB cells, allows the 

cells to grow in vitro in serum-free and protein-free media without the addition of
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exogenous mitogens or stromal cell support. In the patient, the autocrine factor could 

have allowed the leukaemic pre-B cells to survive and actively proliferate in the 

peripheral blood resulting in a very aggressive leukaemia. Although autocrine factors 

are regarded not to be the sole criterion for transformation (Young et al, 1991), and 

can be produced by normal cells (Gordon and Cairns, 1991), the ability to 

independently regulate growth and survival may still significantly contribute to the 

development of malignancies. The constitutive production on an autocrine factor may 

possibly extend normal survival or growth thus allowing other cooperating genetic 

mutations to occur (Levy and Bost, 1996).

There are a number of mechanisms which could result in the constitutive expression 

of the SMS-SB autocrine factor. Firstly, if SB-AF is a factor normally produced by the 

stromal cells to control B cell growth in a paracrine fashion, the aberrant expression of 

SB-AF in SMS-SB cells would render the cells independent of stromal cell regulation, 

and thus achieve autonomous growth. Secondly, SB-AF may represent a normal B cell 

autocrine factor, the effects of which have become deregulated by: i) increased 

production of the factor, ii) inappropriate expression of the receptors for the factor, or 

iii) the loss of action or response to an inhibitory autocrine or paracrine factor.

At present, the identity of the SMS-SB cells autocrine factor remains unknown. None 

of the cytokines tested by White were able to substitute for SB-AF activity (White, 

1995), although the growth promoting effects of IL-10 and IL- 8  have not been tested. 

The results of this current study suggest that SB-AF may be the result of the 

synergistic action of a number of factors, all of which are required for anti-apoptotic 

activity. The discovery that SB-AF potentially mediates its survival effect by 

maintaining the levels of the anti-apoptotic protein Bcl-2, are in line with a previous 

report by Francia di Celle et al, 1996, suggesting that Bcl-2 is a potential target for the 

regulation of cell survival mediated by autocrine growth factors.

In addition to its survival function, Bcl-2 is also able to restrain cell cycle entry 

(O’Reilly et al, 1996; Huang et al, 1997). In this respect, the ability of the autocrine 

factor to promote both survival and cell cycle progression is unusual. It is therefore 

possible that in addition to Bcl-2, the autocrine factor may be influencing the
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expression of other proteins, namely those involved in the regulation of cell 

proliferation. A potential candidate is c-Myc, which, has been found to cooperate with 

deregulated Bcl-2 in the transformation of lymphoid cells (Vaux et al., 1998; Strasser 

et al., 1990). It would therefore be of interest to determine whether SB-AF can 

influence the expression levels of the c-Myc protein.

In addition to the production of autocrine factors, transformed lymphocytes may also 

produce factors which stimulate the production of cytokines by normal cells that may 

further enhance malignant cell growth. In this respect, SMS-SB cells produce 

leukaemia-derived transforming growth factor (LD-TGF), which acts in a paracrine 

manner to activate the growth of fibroblasts (Zack et al, 1987). LD-TGF has also 

been found to stimulate the production of growth inhibitors by macrophage-like cells 

in LTMBC (Prof. B.W Ozanne -personal communication). Thus, a hypothetical role 

for LD-TGF in the bone marrow of patient SB is the activation of stromal cell 

fibroblasts to produce B cell growth factors, and the simultaneous activation of 

macrophages to produce growth inhibitors. This apparent contradictory action of LD- 

TGF may be explained if SMS-SB cells have lost the ability to respond to inhibitory 

cytokines. Thus by producing LD-TGF, the leukaemic cells may have indirectly 

stimulated their own growth, whilst inhibiting the growth of normal B cells, giving 

themselves a further selective advantage.

6.3 Bcl-2 over-expression in SMS-SB cells

The pre-B cell stage of normal progenitor B cell development is characterised by low 

levels of expression of Bcl-2 (Merino et al, 1994), which is consistent with many 

cells at this stage undergoing apoptosis due to non-functional rearrangement (Lu and 

Osmond, 1997). Therefore, the finding that SMS-SB cells, as pre-B ALL cells, have 

high levels of Bcl-2, suggests that this may have contributed to the transformation 

and/or subsequent suivival of these cells in the patient.

Studies of other precursor B cell ALL malignancies have found that Bcl-2 expression 

was not only markedly higher than that of normal progenitor B cells, but generally 

surpassed the levels of expression found in mature resting B lymphocytes (Coustan-
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Smith et al, 1996). The relative levels of the Bcl-2 protein in leukaemic cells have 

also been found to correlate with the duration of their survival when placed into in 

vitro culture, suggesting that leukaemic cells with higher levels of Bcl-2 enjoy a 

selective survival advantage (Hanada et al, 1993; Pontvert-Delucq et al, 1996 ). The 

high levels of Bcl-2 in SMS-SB cells may therefore explain why, once removed from 

the patient, the cells adapted spontaneously to in vitro culture (Smith et al, 1981). 

Recent studies have demonstrated that over-expression of Bcl-2 correlates with a 

decrease in the apoptosis of precursor B cells, namely pre-B, leading to an significant 

increase (from 25 to 60%) in cell number and production rate of these cells in the bone 

marrow of Bcl-2 transgenic mice (Janani et al, 1998). These findings support the 

theory that the over-expression of Bcl-2 at the pre-B cell stage is important to the 

development of precursor B cell leukaemia.

SMS-SB cells have been found to have non-productively re-arranged Ig light chain 

genes (Prof. B.W Ozanne -personal communication). In normal pre-B cells, this 

occurrence prevents any further differentiation of the cell and results in apoptosis. 

However in the presence of high levels of Bcl-2, as in SMS-SB cells, a cell could be 

protected from cell death, thus allowing the continued survival of a malignant cell 

blocked at the pre-B cell stage of development.

Bcl-2 over-expression has been found in a number of B-ALL cases (Campana et al, 

1993; Pontvert-Delucq et al, 1996; Coustan-Smith et al, 1996). Of the cases analysed 

by Pontvert-Deluqu and colleagues, the only ALL to over-express Bcl-2 was a pre-B 

ALL. These cells had no exogenous growth factor requirement, were able to support 

their own survival/growth by the production of an autocrine factor, and did not 

harbour any chromosome 18 translocations (Pontvert-Delucq et al, 1996). These ALL 

cells thus exhibit the same characteristics as SMS-SB cells, demonstrating a 

potentially common mechanism involved in malignancy.

As SMS-SB cells do not harbour any gross chromosomal abnormalities (Smith et al, 

1981), the over-expression of Bcl-2 cannot be the result of the t(14:18) translocation 

commonly associated with this proto-oncogene (Tsujimoto et al, 1984). There are 

however suggestions that high levels of Bcl-2 in malignancy may be due to p53
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inactivation, which in its normal wild-type form down-regulates bcl- 2  expression 

(Miyashita et al, 1994a, 1994b). In addition, wt-p53 has also been found to regulate 

the expression of growth factor and receptor genes, suggesting a role for mutant p53 in 

the gain of autocrine and paracrine growth advantages (reviewed by Asschert et al, 

1998). By acting as a proliferation-suppressor, wt-p53 is important for the 

differentiation of haematopoietic cells during development (Shaulsky et al, 1991a, 

1991b; Soddu et al, 1994). Conversely, transduction of haematopoietic progenitor 

cells with mutant-p53 prevents differentiation but promotes survival and proliferation 

(Shounan et al, 1996). Based on these reports, it would be of great interest to assess 

the status of p53 in SMS-SB cells, as the absence of p53, or the presence of a mutant 

protein, may partly explain the malignant phenotype of SMS-SB cells, with respect to 

the high expression levels of Bcl-2, the constitutive production of an autocrine factor, 

and the enhanced survival and proliferation of this aggressive leukaemia.

6.4 SMS-SB cell CD23NR

In addition to the autocrine factor, SMS-SB cells are rescued from apoptosis by 

sCD23 which, in the absence of any of the known receptors for CD23, mediates its 

effects via a novel CD23 receptor (CD23NR) (White, 1995). Previous in vitro studies 

have reported that when used in conjunction with IL-la, sCD23 is able to rescue 

germinal centre B cells from cell death (Liu et al, 1991a). In addition, the sCD23/IL- 

l a  combination is able to promote the proliferation and maturation of early myeloid 

precursors (Mossalayi et al, 1990a), thus suggesting a role for CD23 in 

haematopoiesis. In line with this theory, CD23 is expressed on the stromal cells of the 

bone marrow (Fourcade et al, 1992). However, CD21, the CD23 receptor believed to 

mediate the anti-apoptotic signals on germinal centre B cells (Bonnefoy et al, 1993), 

is not expressed until the late pre-B stage of development. In this respect, the presence 

of a novel receptor for CD23 on SMS-SB presents the possibility that stromal cell- 

derived CD23 could have influenced the survival, and therefore the transformation, of 

these malignant cells. If normal precursor B cells express CD23NR, CD23, in either 

soluble or membrane associated form, may have a role in normal precursor B cell 

survival and development.
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In comparison to sCD23, full-length 45kDa CD23a, although able to bind to SMS-SB 

cells, does not seem to mediate any anti-apoptotic signals to the cells at low cell 

density. However, as discussed in Chapter 4 the lack of effect may be attributed to the 

COST cells used to generate the CD23a-expressing monolayer, making it possible that 

full length CD23 does mediate the same effects as the soluble forms. It is unfortunate 

that 45kDa CD23a could not be transfected into SMS-SB cells as this would have 

demonstrated whether the presence of this form of CD23 would render the cells 

density-independent for growth by providing a survival signal. However, if 45kDa 

CD23 does not mediate the anti-apoptotic effects of the soluble forms, it is possible 

that the potential effects of CD23 on precursor B cell development are mediated only 

by stromal cell-derived sCD23. However, it is not known whether the anti-apoptotic 

effect of sCD23 represents a true in vivo function of this cytokine. The role of CD23 

in precursor B cell development is thus purely hypothetical at the present time.

In addition to potentially being important for the initial establishment of leukaemic 

SMS-SB cells in the bone marrow, it is possible that CD23NR may have had a role in 

the subsequent suiwival of the cells within the peripheral blood of the patient. 

However, it is not known whether patient SB had elevated levels of sCD23 in her 

serum to support this theory. Soluble CD23 levels are, however, elevated in B cell 

chronic lymphocytic leukaemia (Sarfati et al, 1988), and as such would be an 

interesting model in which to investigate the possible expression and function of the 

novel CD23 receptor.

The anti-apoptotic and differentiation effects mediated by sCD23 are only seen when 

the responder cells are treated with IL-la (Mossalayi et al, 1990a; Liu et al, 1991a). 

In this respect SMS-SB cells are unusual, as sCD23 alone was sufficient to mediate 

the rescue of cells from apoptosis (White, 1995). A potential explanation for this is 

that, as a leukaemic cell line, SMS-SB cells are in a constitutively activated state, 

potentially due the production of the autocrine factor, thus allowing the cells to 

aberrantly respond to sCD23. In addition, CD23NR expression may be a direct 

function of the cells being leukaemic, thus allowing them to respond to survival 

signals which cannot be utilised by normal B cells giving the malignant cells a further 

growth advantage. However, it is presently not known whether CD23NR is expressed
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on normal cells. If this is the case, these cells would possibly have to be activated, 

which would prevent CD23 from having non-directed and inappropriate survival 

effects.

6.5 CD23NR on other B cells

In addition to SMS-SB, the pre-B cell lines Blin-1 and Nalm-6 , and the mature B cell 

line 1E8, also seem to express a novel CD23 binding receptor. As all these B cells 

were acute lymphoblastic leukaemia lines, CD23NR may be a common feature of this 

malignancy allowing the cells to respond aberrantly to sCD23 signals. This hypothesis 

will be tested by investigating the existence of the novel receptor on normal B cells.

The expression of CD23NR on the mature, albeit leukaemic, 1E8 cell line, suggests 

that the novel receptor may possibly mediate sCD23 signals outwith the bone marrow 

environment. Normal mature B cells express CD21 which, in a complex with CD19 

and TAPA-1, is involved in the survival of centrocytes within the germinal centre. In 

this context, B cell CD21 is bound to the complement component C3d, which is 

associated with antigen held on the follicular dendritic cells (FDC). This interaction 

reduces the threshold for B cell activation by the B cell antigen receptor and provides 

a survival signal (reviewed by Fearon and Carter, 1995; Carroll, 1998). Soluble CD23 

has been shown in vitro to provide an anti-apoptotic signal to activated germinal 

centre B cells (Liu et al, 1991a), a function believed to be mediated by B cell CD21 

(Bonnefoy et al, 1993). However, in vivo, CD21 maybe occupied by C3b and is thus 

unavailable to bind sCD23. Therefore, the expression of a distinct receptor for CD23, 

in addition to CD21, would allow the cells to respond to FDC-derived CD23, and thus 

receive further survival signals within the germinal centre. Alternatively, if CD23NR 

expression is purely a function of the cells being leukaemic, it may allow the cells to 

receive survival signals. In the absence of CD21 expression on 1E8 cells, an unusual 

feature for a mature B cell line, the CD23NR pathway of anti-apoptotic signalling may 

be very significant.
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6.6 Identity of the novel receptor for CD23

Preliminary BIAcore studies have found that the interaction between SMS-SB 

CD23NR and sCD23 is calcium-independent and is not inhibited by fructose-1- 

phosphate (Dr. J Matheson -personal communication). These results suggest that the 

interaction between the novel receptor and CD23 is of a protein-protein nature, and 

therefore different from the interactions of CD23 with CD21 or CDllb/c (Aubry et 

al, 1994; Lecoanet-Henchoz et al, 1995). Previous attempts to identify CD23NR on 

SMS-SB cells by antibody inhibition of CD23-liposome binding were not successful 

(White, 1995). It is hoped that the use of the BIAcore recovery procedure will allow 

the amino acid sequence of CD23NR to be determined. Until this information is 

available, there are a number of potential candidate molecules for CD23NR.

One possible candidate is the GDI Id a  chain of the (32 integrin adhesion molecule 

CDlld-CD18. Relatively little information is available at present regarding this 

adhesion molecule, although it is known to be more closely related to CDllb/c than to 

GDI la  (Van der Vieren et al, 1995). As the former but, not the latter, are able to bind 

to GD23 (Lecoanet-Henchoz et al, 1995), this raises the possibility that GDI Id will 

also be able to bind GD23 and thus act as a GD23 receptor. It will therefore be 

interesting to determine whether the B cell lines analysed in this investigation express 

GDlld, and whether an anti-GDI Id antibody could inhibit liposome binding.

A recent study by Hermann and colleagues has identified the vitronectin receptor 

(VnR), av (3 3  integrin, and its associated GD47 molecule, as a novel receptor for 

sCD23 on monocytic cells (Hermann et al, 1999). Anti-GD47 and anti-CD61 ((Ss) 

monoclonal antibodies, and vitronectin were found to significantly suppress sGD23- 

induced proinflammatory cytokines production by monocytes. These antibodies did 

not however inhibit the binding of sGD23 to the cells, in comparison to an anti-GD51 

(av) antibody. To explain this result, the researchers postulate that sGD23 directly 

interacts with the ay component of the vitronectin receptor, but the (Is and GD47 

components are involved in mediating receptor signalling (Hermann et al, 1999).
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If CD23NR on SMS-SB cells is VnR/CD47, this may provide an alternative 

explanation for the apparent failure of 45kDa CD23a expressed on C0S7 cells to 

stimulate SMS-SB cells at low cell density. This experiment was performed using 

SMS-SB cells grown in serum-containing media, and as serum is a source of 

vitronectin, this ECM component may have bound to the receptor thus preventing 

CD23 from binding and mediating its anti-apoptotic effects. However, the cxy sCD23 

binding component of VnR/CD47 is approximately 135kDa (Hermann et al, 1999), 

and so does not correspond to the 80-90kDa size band obtained after Western blot 

analysis of recovered SMS-SB BIAcore material. Although this suggests that 

VnR/CD47 does not represent CD23NR, SMS-SB, and the other B cell lines 

examined, will have to be tested for the expression of this receptor complex, and if 

positive, for the ability of antibodies to inhibit liposome binding.

6.7 Concluding remarks

Although the identity of the SMS-SB cell autocrine factor could not be determined, 

the study revealed that SMS-SB cells express high levels of the anti-apoptotic protein 

Bcl-2. It would be interesting in the future to investigate this potentially significant 

phenomenon further, especially with respect to determining the p53 status of the cells.

In addition to SMS-SB cells, other B ALL cell lines, including a mature B cell line, 

also seem to express a novel binding receptor for CD23. This suggests that, in addition 

to possibly having an role in haematopoiesis, CD23 may influence the survival of cells 

within germinal centres, and therefore, perhaps, throughout their differentiation 

pathway. It will be important to determine whether, i) the novel binding receptor on all 

the B cells examined is the same molecular species, ii) the expression of CD23NR in 

other B cell differentiation stages, and iii) whether CD23NR is expressed on normal B 

cells. Ultimately, the importance of CD23NR outwith the B cell lineage will also need 

to be determined.

The presence of novel CD23 binding receptors on Blin-1, Nalm- 6  and 1E8 cells 

allows these lines to be used as additional/alternative models for studying the
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CD23NR phenomenon. In the light of the numerous problems experienced with the 

SMS-SB cell line during this investigation, this is of great benefit and will perhaps 

allow the investigations into the CD23NR to progress more successfully, whilst 

potentially uncovering as yet unknown features of the novel CD23 receptor.
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SOLUTIONS AND BUFFERS

All solutions were made up with sterile distilled water unless otherwise stated.

lOX PBS STOCK
(pH 7.2)

NaCl

KCl

Na2HP0 4

KH2PO4

1.37M

26.8mM

42mM

14.7mM

HBS Hepes-KOH (pH 7.4) O.OIM

NaCl

EDTA

polysorbate 2 0

0.15M

3mM

0.005% (v/v)

SBF Saponin

BSA

(in IX PBS)

0 .1 % (w/v) 

0.5% (w/v)

TE BUFFER Tris-HCl (pH 8 ) lOmM

EDTA ImM

lOX TBE Tris-HCl (pH 8.3) 0.9M

Boric acid 0.9M

EDTA 0.002M

20X SSC
(pH 7)

NaCl

Nacitrate

3M

0.3M

lOX MOPS
pH 7/nuclease-free water

MOPS 
Na acetate 

EDTA

0.4M

O.IM

O.OIM

ELECTROPHORESIS BUFFER Tris-HCl (pH 8.3)

Glycine

SDS

25mM 

250mM 

0 .1 % (w/v)
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PROTEIN TRANSFER BUFFER Tris

Glycine

SDS

Methanol

48mM 

39mM 

1.3mM 

20% (v/v)

RIPA BUFFER Tris-HCl (pH7.4) 

NP40

Na Deoxycholate

NaCl

EGTA

Na3V0 4

NaF

PMSF

Leupeptin

DTT

50mM

1 % (v/v)

ImM

150mM

ImM

ImM

ImM

ImM

2 ^g/ml

0.5mM

MEMBRANE EXTRACTION BUFFER Hepes-KOH (pH7.4) 50mM

CaCl2

NaCl

OOP

PMSF

Leupeptin

Aprotonin

5mM

140mM

1 % (w/v)

ImM

2 p,g/ml

2 p.g/ml

5X DNA LOADING DYE Bromophenol blue 

Glycerol

0.25% (w/v) 

30% (w/v)

RNA LOADING DYE Picoll

EDTA

Bromophenol blue 

Xylene-cyanol

50% (v/v) 

ImM

0.4% (w/v) 

0.4% (w/v)

4X PROTEIN LOADING DYE Tris-HCl (pH 8 ) 

SDS

Bromophenol blue

200mM 

8 % (w/v) 

0.4% (w/v)
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Glycerol 40% (v/v)

p-mercaptoethanol 2 0 % (v/v)

DNA MINI-PREPARATION SOLUTIONS 
Solution 1 Glucose

Tris-HCl (pH 8 ) 

EDTA 

RNase A

50mM

25mM

lOmM

2 0 0 p,g/ml

Solution 2 NaOH

SDS

0.2M 

1 % (w/v)

Solution 3
(pH to 4.8 with acetic acid)

K acetate 3M

DNA MAXI-PREPARATION SOLUTIONS (QIAGEN SUPPLIED)
PI (resuspension buffer) Tris-HCl (pH8 ) 

EDTA 

RNase A

50mM

lOmM

lOOgg/ml

PH (lysis buffer) NaOH

SDS

200mM 

1 % (w/v)

PHI (neutralisation buffer)
(pH to 4.8 with acetic acid)

K acetate 3M

Column equilibration buffer NaCl

MOPS (pH7) 

Isopropanol 

Triton X-100

750mM 

50mM 

15% (v/v) 

0.15% (v/v)

QC (wash buffer) NaCl

MOPS (pH7) 

Isopropanol

IM 

50mM 

15% (v/v)
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QF (elution buffer) NaCl 1.25mM

Tris-HCl (pH8.5) 50mM

Isopropanol 15% (v/v)

BACTERIAL MEDIA
L-B (IL) Bacto-tryptone lO.Og

(pH 7.5) Yeast extract 5.0g

NaCl lO.Og

L-agar (IL) Bacto-agar 15.0g/L 

in L-broth

SOC (100ml) Bacto-tryptone 2 .0 g
(pH 7) Bacto yeast 0.5g

NaCl

(autoclave)

1ml of IM

MgClz 1ml of IM

MgS0 4 1ml of IM

Glucose 1ml of 2M

(sterile filtered through 0 .2 um filtc

COMPETENT CELL PREPARATION
TFBl K acetate 30mM
(pH to 5.8 with IM acetic acid) CaClz lOmM

MnCl2 50mM

Rubidium chloride lOOmM

Glycerol 15% (v/v)

TFB2 MOPS lOOmM
(pH to 6.5 with IM KOH) CaClz 75mM

Rubidium chloride lOmM

Glycerol 15% (v/v)
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