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SUMMARY

AMcan trypanosomiasis is caused by Trypanosoma brucei and is a disease of 

considerable importance causing infection iu both humans and livestock. There is a 

degree o f protection from the antibody response produced by the host but it is ineffective 

and infections are chronic and debihtating. This chronicity is due to antigenic variation 

by the trypanosomes and to immunosuppression of the host.

Antigenic variation is a classic, and well studied, B-cell evasion mechanism in a 

number o f infections and can be observed at a highly sophisticated level dming African 

trypanosome infections. As yet, it has been httle studied as a possible T-cell evasion 

mechanism and this is the subject of my thesis.

Initially, a reliable in vitro assay system was devised in order to examine the 

proliferative T-cell responses of mononuclear splenocyte populations as T-ceU 

proliferation had not been detected dming trypanosome infections in previous studies. 

Responses against trypanosome lysates, paraformaldehyde-frxed and live trypariosomes 

were examined with paraformaldehyde-fixed trypanosomes being the prefened choice of 

antigenic stimuli. The optimal conditions for this assay wer e also determined as far as 

mitogen concentration, concentration of trypanosome antigen and incubation time were 

concerned.

Using this rehable proliferation assay system I examined a number of trypanosome 

infection and immunisation regimes. Most of these analyses were conducted using 

splenocytes taken from mice at fir st peak of parasitaemia employing parasite lines hi each 

of which 99% of the trypanosomes present express the same variant antigen type (VAT) 

dming the fir st parasitaemic wave. The mononuclear splenocytes fr om infected mice 

produced a high level of proliferation in response to mitogen stimulation but also 

produced trypanosome antigen-driven proliferation. This antigen-driven proliferative 

response was mainly against the homologous VATs but there was also a degree of 

heterologous antigen-driven proliferation in response to some VATs but not against 

others. Concomitant with these proliferative responses, increased numbers of T-cells per 

spleen were detected, comprising both CD4 and CDS populations. Increased numbers of

Ü



activated (CD25 expressing) CD4 and CDS cells were also observed. There was 

mitogen-driven and antigen-driven hiterTeron-y (IFNy) production, no detectable 

Literieukiir-4 (IL-4), DL-5 or IL-6 and very low levels of IL-2 at the peak of 

parasitaemia. Mitogen-driven IL-2 production was observed to be maximal 24 hours 

post-infection. Immunisation with paraformaldehyde-fixed trypanosomes resulted in 

proliferative responses similar to those seen by the infected mice but there was detectable 

IFNy production only in response to mitogen, not after antigenic stimulation. Fmther 

experiments were carried out using paraformaldehyde-fixed ILTat 1.3 or GUTat 7.1 

trypanosomes for immunisation followed by homologous or heterologous infection.

There was a degree of protection towards challenge with homologous VAT in both cases 

but also some cross-protection against heterologous VAT. Strong prohferative and 

IFNy responses mhiored these results following stimulation with mitogen, homologous 

and heterologous VATs.

Analyses of the amino acid sequences for several different variant smface 

glycoproteins (VSGs) (the proteins that determine VATs) were carTied out using a 

computer software package, ‘TSites”. This highlighted potential T-cell epitopes on the 

VS G sequences using fbm algorithms separately. Using a set of self-determined 

guidelines, predicted T-ceU epitopes for each of the sequences were mapped onto the 

MITat 1.2 tertiary VSG strnctme.

Four peptides, two fr om the alpha hehces and two fi om loop regions of the ILTat 1.3 

and ILTat 1.61 sequences, were synthesised using the data supplied fiom sequence 

analyses and epitope mapping. Tliese peptides, conjugated to carrier proteins, were used 

for a number of immunisation and infection regimes. Proliferative responses and 

cytokine production were examined foUowiirg immunisation and then infection with 

FLTat 1.3 or ILTat 1.61 tryp ano somes.

Immunosuppression is considered to be a major contributing factor in continuation of 

an infection by dampening down any efifective immune response during African 

trypanosomiasis. Immrmo suppression is noticeable after the first peak of parasitaemia 

and involves a number of components with 'suppressor' macr ophages appearing to play a 

key role. I therefore investigated the role of nitric oxide (NO), a major product of
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activated macrophages, in the regulation of T-cell responses dming chronic 

Trypanosoma brucei infection. Using transgenic mice deficient in inducible nitric oxide 

synthase (iNOS), the prohferative and cytokine responses were examined. Daily 

parasitaemias were deteimined, nitrate levels calculated and antibody isotyping examined 

using infected and munfected mice homozygous and heterozygous for the iNOS loci.

This work higlihghted the key role of NO in the regulation of T-cell responses dming 

trypanosome infections: in the absence of INOS activity there was an upregulation in 

proliferation, fFNy production and BL-2 receptor expression causing improved clearance 

of tiyp ano somes fi om the systemic chculation.

hi conclusion, this body of work has successfully designed an in vitro assay system to 

examine T-cell proliferation to trypanosome VATs and, using this assay, I have 

successfiiUy detected tiyp ano some antigen-diiven T-ceU proliferation dming acute 

infections. This proliferation was obseived using mononuclear splenocyte populations 

fi om infected and immunised mice and was found to be homologous antigen-diiven and 

of T-helper 1 type. There was however heterologous antigen-driven T-cell proliferation 

against some tiypanosome VATs but a lack of proliferation against others. A pivotal 

role for NO in causing immuno suppression dming chi onic T. brucei infections was 

deteimined and this immunosuppression influenced the cytokine production and T-ceU 

prohferative responses but did not appear to affect the antibody production. These data 

suggest that VAT-specific T-ceU responses are an important component of the immune 

response to Tbrucei.
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CHAPTER 1

GENERAL INTRODUCTION

1.1. TRYPANOSOMA YA R A S m S

The genus Trypanosoma covers a large range of parasitic protozoa found throughout the 

world in a variety of different hosts. A few of these species are pathogenic whereas the 

majority do not produce disease. The pathogenic species are responsible for a range of 

diseases known collectively as trypanosomiases and it is the tsetse-transmitted tiypanosomes 

of sub-Saharan Africa and the reduviid-transmitted trypanosomes of South America that 

create most concern for man. hi Central and South America, at least 20 million people are 

infected by Trypanosoma cruzi, the causative agent of Chagas' disease, per yeai*. The annual 

human infection rate by tiypanosomes in Africa is far lower with an estimated 25 thousand 

new cases of sleeping sickness reported each year (WHO, 1986) but this almost certainly a 

gross underestimate (Pepin, 1997). Human sleeping sickness is caused by either 

Trypanosoma brucei gambiense or Trypanosoma brucei rhodesiense and both are fatal if 

untreated, hi Africa the problems posed by trypanosomiasis are difficult to resolve 

(reviewed by Kuzoe,1993). Tiypanosomiasis can have a dhect effect on humans, whereby 

they cause disease in humans, and an hidhect effect, where the parasites infect hvestock.

The indirect effect is caused by trypanosome infections of domestic hvestock by 

Trypanosoma congolense^ Trypanosoma vivax or Trypanosoma brucei brucei. These 

diseases of hvestock are cohectively teimed "nagana". The infected animals can cause 

economic problems for farmers due to the loss of production, infertihty, increased abortions 

and wasting. Aieas of South America and Southern Asia have tryp ano some-infected 

animals, arising mainly from Tevansi, although this is not due to the tsetse fly but rather to 

non-cychcal, contaminative transmission by tabanid flies or by carnivores eating infected 

carcasses.



Tills project involves tsetse-transmitted trypanosomes from the T. brucei species of sub- 

Saharan Africa. T.b.brucei, T.b.gambiense and T.b.rhodesiense are the three subspecies of 

this gi'oup. T.b.brucei is not human infective, due to a substance present in human seium 

which is lytic to these parasites, whereas T.b.gambiense causes the more chronic infection in 

West Africa, and T.b.rhodesiense, causes the more acute infection in Eastern Africa 

(Bentivogho et al,\99A). Tlie tliree subspecies are however moiphologically 

indistinguishable from each other. Nevertheless, T.b.gambiense could be considered a 

separate species due to its differences in ribosomal RNA genes and isoenzymes (Gibson et 

al, 1980; Tait et al, 1984) compared with the close phylogenetic relationships of T.b.brucei 

and T. b. rhodesiense with each other.

1.2. THE LIFE CYCLE OF T.BRUCEI

T. brucei trypanosomes have a common life cycle which involves a mammahan host and 

transmission via an insect vector into another host. The life cycle alternates between 

dividing forms, which cause estabhsliment of infection in a tsetse or mammahan host, and 

non-dividing stages, which are associated with the transmission of the infection between 

mammals and vectors (Vickeiman, 1985). Duiing the life cycle, the trypanosomes alter then 

morphology, energy metabohsm and biochemistry as a pre-adaptation mechanism to allow 

survival in then cunent envnonment (Opperdoes,1985).

The transmission of tiypanosomes is by the tsetse fly {Glossina species) insect vector 

with the tsetse fly inhabitmg 11 milhon kilometres .̂ The palpahs gioup transmits 

T.b.gambiense whereas the morsitans group is responsible for the transmission of 

T. b.rhodesiense. Non-dividing matme metacychc trypanosomes enter the mammahan host 

in the tsetse fly saliva when the infected fly has a blood meal. The metacychcs differentiate 

rapidly to slender foims that divide by binary fission and estabhsh the infection in a new host. 

These long slender forms estabhsh systemic infections in the mammal and the infection 

continues through evasion of the host immune response by the process of antigenic variation

2



(Vickennan,1985). Tlie basis for antigenic variation is a surface coat of variant surface 

glycoprotein (VSG). Slender forms give rise to short stumpy foims that differ from them in 

that they are non-dividing and have a finite life span unless they are taken into a tsetse 

midgut with a blood meal where they can transform to dividing procycHc trypanosomes. 

Slender forms are not able to infect tsetse flies. On enteihig the fly, the trypanosomes 

replace then VSG surface coat with a surface coat of procyclin. The procychc 

tiypanosomes become non-dividing proventricular forms which migrate fiom midgut to 

sahvaiy glands where they change to dividing ephnastigotes, attached to the endothelium in 

the sahvaiy gland. When the ephnastigotes transform into non-dividhig metacychcs, the 

procychn becomes stripped and new VSG is synthesised on the metacychc forms in 

preparation for life in the mammahan host (Vickerman,1985; Cross, 1990).

Changes in the trypanosomes’ envnonment during the hfe cycle results in changes m then 

energy metabohsm The slender forms obtain energy by glycolysis, absorbing glucose from 

the host bloodstream to generate ATP and releasing pyruvate as a waste product, and not 

via the Kr eb's Cycle as they do not have a functioning electron transport chain 

(Vickeiman, 1985). These bloodstream forms cany out then glycolysis hr glycosomes which 

house the glycolytic enzymes of the trypanosome. However this is not the case for the 

stumpy forms which have a partiahy activated electron transport chain. When they enter the 

tsetse fly midgut they encounter an envnonment that is rich in proline but lacks glucose, 

therefore the procychc trypanosomes utihse this energy source by way of the electron 

transport chain in the large mitochondrion (Vickeiman, 1985).

1.3. AFRICAN SLEEPING SICKNESS

1.3.1. The Disease

The T.b.gambiense and T.b.rhodesiense metacychc tiypanosomes enter the blood via the 

lymphatics then multiply and migr ate to a wide variety of tissues and or gans (Reviewed by
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PoItera,1985). The widespread, invasion by the trypanosomes thi'oughout the host makes it 

difficult to treat the disease as some parts of the body are more inaccessible to a number of 

drugs than others (Gutteridge, 1985). After several months to a year the trypanosomes can 

cross the blood-brain barrier and be detected in the cerebrospinal fluid. This entry into the 

brain can result in a diverse variety of symptoms ranging fi’om a headache to a coma v/ith 

death eventually following (Bentivoglio et a/,1994).

1.3.2. Drug Treatment

The use of tiypanocidal dmgs to treat infected people is the most widely used method of 

controlling human tiypanosomiasis. Only four* drugs are used routinely in Africa to treat the 

disease; Suramin, Melarsoprol, Pentamidine and DFMO.

When the central nervous system is not infected with trypanosomes, Suramin is the drug 

of choice for treatment. It is effective against T.b.bnicei, T.b.rhodesieme and 

T.b.gambiense but is ineffective against T.congoleme and T.vivax (Hawking, 1963).

Suramin can distribute to most tissues but cannot cross the blood-brain banier (Voogd et 

a/, 1993). This may explain relapse infections if tiypanosomes can survive in organs or 

tissues which are not accessible by drugs. Suramin has a serum half life of 50 days and can 

act synergisticaUy with DFMO (Clarkson et a/,1984).

Melarsoprol is a melaminophenyl arsenical which, despite its toxicity causing death in 5- 

10% of treated patients, is the most widely used dmg in treatment of sleepmg sickness 

because it can cross the blood-brain bamer and is this effective against both acute and 

chr onic infections. Melarsoprol has a semm half life of 35 hours and levels of the drug in 

the cerebrospinal fluid are 50-fold lower than that of the serum such that levels in the 

cerebrospinal fluid may be insufficient to cause lysis of some trypanosome strains (Burri et 

a/,1993).



Pentamidine is a drug which is easier to administer compared to the others. It has in the 

past been used for large-scale prophylaxis and has limited side effects (Dukes, 1984). 

Pentamidine cannot cross the blood-brain banier.

DFMO is the only new drug to be developed for trypanosomiasis in the last 50 years. It 

blocks polyamine biosynthesis irreversibly thereby inhibiting trypanosome replication and 

enabhng trypanosomes to be destroyed by trypanosome-specific antibodies (Metcalf gf 

a/, 1978). DFMO treatment is expensive and large quantities of the ding must be 

administered which can result in physical limitations but there are only mild side effects. It is 

effective only against T.b.gambieme.

1.4. ANTIGENIC VARIATION IN TRYPANOSOMA BRUCEI

Antigenic variation is a classic evasion mechanism and can be seen in a number of 

pathogens including Plasmodium falciparum^ Neisseria gonorrhoeae^ Candida albicans and 

Tr)panosoma brucei to escape humoral immune responses (Borst,1991a). hi tiypanosomes, 

antigenic variation is a specific mechanism by which the parasites, by changing then smface 

coat, evade the host immune response in order to prolong their infection. This process 

increases the probability of transmission to another mammalian host. The surface coat 

consists of a monolayer of a single molecular species of glycoprotein, the VSG, that 

physically protects the plasma membrane of the tiypanosome fiom non-specific immune 

attack. Each VSG is antigenically distinct and deteimines the variable antigen type (VAT) 

of that parasite. An individual trypanosome thus expresses only one antigen on its surface 

but cells have the capacity to switch from expression of one VSG to that of another in the 

process of antigenic variation such that the population of trypanosomes which constitutes an 

infection contains many VATs.

The fluctuating parasitaemia is a classical characteristic of trypanosome infections. In the 

traditional view of an mfection (see for example Vickerman, 1985), a particular antigen type, 

called the 'homotype', forms the major part of the population at any one time and 99% of the
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trypanosomes express the same VAT on their surface whereas the remaining 'heterotype' 

trypanosomes express different surface VATs. The host has the ability to clear the 

homotypic tiypanosomes from the circulation with specific immune responses, but the 

remaining heterotypic trypanosomes continue to multiply and eventually one of these will 

become the homotypic population m the next parasitaemic wave until they are in turn 

destroyed leaving the way clear for subsequent heterotypic parasites and so on until death or 

cure (Borst & Gieaves, 1987). It has become clear in recent years that the traditional view is 

inconect when dealing with fry-transmitted as opposed to syringe-passaged infections.

Whilst some VATs are always more common than others at a particular time point in an 

infection, the concept of a homo type appears to be a laboratoiy artefact and populations 

routinely consist of several VATs at the same time (Bariy & Turner, 1991 ; Turner, 1992; 

Barry, 1997).

Within the VAT repeitoh e there appears to be a semi-predictable hierarchy of VAT 

expression. During infections there are several 'predominant' VATs that generally appear 

early in the mfection and others that are expressed late in a sequence of expression wliich is 

partially predictable (Van Meivenne et a/,1975; Hajduck & Vickerman, 1981; Miller & 

Turner, 1981).

Reversible expression can occur in the trypanosome population and is an important 

featuie distinguishing antigenic variation sensu stricto fr om antigenic diversity in the more 

general sense. This reversibility is usually detected by transfeiring tiypanosomes from an 

existing chronic infection into a naive animal thereby "resetting" the VAT hierarchy of 

expression (Gray, 1965; Van Meiivenne et a/,1975). These VATs are not always in exactly 

the same order as they were seen in the original animal. Two VATs may be switched m 

order or a VAT may be missed out altogether but the overall sequence is very similar.

It has been suggested that early in infection VATs with a high giowth rate and a high 

switching fr equency will be expressed and those with lower switching frequencies and/or 

giowth rates will be seen later in infection (Capbem et a/,1977; Myler et a/,1985). The 

former will reach an undefined threshold to elicit an immune response which will lead to the
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trypanosome destruction whereas the slower growing trypanosomes wül not be at a 

sufficient level to induce an immune response and will therefore continue multiplying until 

they also reach a sufficient level An increase in growth rate could be due to the hfe span of 

the stumpy forms decreasing, or by a decreased differentiation rate, or by an increase in 

replication rate of slender forms (Turner et a/, 1995). It should be noted tliat the evidence 

suggesting differences in growth rates between populations expressing different VATs 

(Diffiey et a/, 1987) is weak (Aslam & Turner, 1992) and it may be switching rate differences 

alone that are important m this context (Turner & Barry, 1989).

The antigenic variation switching rate for a particular VAT may rely on either tlie 

'switching on' rate or the 'switching off rate or both (Turner & Barry, 1989) with the success 

of antigenic variation depending on the VATs appearing in succession of each other instead 

of all at once (Bany & Turner, 1991). It is not yet clear as to what stage in the cell cycle 

that switching occurs but it is cell cycle linked (Turner & Bairy, 1989). It has been shown 

that there is a large variation in switching rates, with low rate values of approximately 10-̂  

switches/cell/generation reported in syringe-passaged infections (Lamont et a/,1986) but 

much higher switching rate of approximately lO-̂  switches/celhgeneration observed in fly- 

transmitted tiypanosomes. The switching process is not induced by the host immune 

response but the rate of switching may be under selective pressur e (Tmner & Barry, 1989).

All metacychc VATs are also expressed during the initial early blood stage before 

switching to blood stage VATs although the control mechanisms for VAT expression in 

tsetse flies and mammals are independent of each other (Tinner et a/,1986). The metacychc 

VATs are therefore a subset of the bloodstream VATs.

The VSG smface coat protects the parasites from the hosts non-specific immunity but is 

itself immunogenic and can therefore induce an immune response. Metacychc trypanosomes 

and bloodstream, both slender and stumpy, trypanosomes are encapsulated by a VSG coat 

(Vickerman, 1985). The VSG molecules are hnked to the plasma membrane by glycosyl- 

phosphatidylinositol anchors (Cardoso de Almeida & Turner, 1983; Ferguson et a/,1988) 

with approximately 10'̂  VSG molecules contributing to the bloodstream trypanosome coat
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(Jackson et al, 1985). Estimates of tlie quantity of VSG per trypanosome show reasonable 

agreement; 7.4mg VSG per 10̂  ̂trypanosomes (McGuire et a/,1980), 7.6mg per lÔ o 

organisms (Cross, 1975) and 11.4mg per lÔ o trypanosomes (Cardoso de Almeida &

Turner, 1983). Each VSG molecule consists of a variable and a constant domain defined by 

a trypsin cleavage site. The constant domain is towards the carboxyl terminus and 

contributes to approximately one third of the VSG whereas the remainder is the variable 

domain towards the amino terminus (Rice-Ficht et al, 1981 ; Metcalf et a/,1987; Carrington 

et al, 1991). Only a fiaction of the amino terminus is exposed to the host and therefore the 

host immiuie system, on live tryjianosomes (Miller et a/,1984; Gomes et a/,1986). There 

are, very roughly, one thousand different VSGs (Van de Ploeg et a/,1982) and each one 

generates a variable antigen type.

Wlien a new VSG gene is switched on and the old VSG gene is switched off the old VSG 

smface coat is still expressed because it takes time before the old coat is completely 

removed and therefore there is a period when both old and new VSG are expressed 

together. These trypanosomes are called double expressors (Esser & Shoenbechler, 1985). 

The VSG switching occms giaduaUy either by shedding of the VSG or by intracellular 

degr adation. A liigh fi equency of VSG uptake via the flagellar pocket and a relatively high 

amount of recycling was shown for the cytoplasmic pool of VSG but the degr adation rate of 

VSG was low; only 2.2% of the VSG is shed per hour (Seyfang et al, 1990).

T.bmcei species vary in the number of 50-150kb mini cluomosomes that they have. 

T.b.gambiense have approximately 10 mini chromosomes whereas T.b.rhodesiense and 

T.b.brucei have about 100 (Vickerman et a/,1993). T.congolense has two but T.vivax and 

T.eqiiiperdum have no mini chromosomes. The size and number of the intermediate sized 

chromosomes vary also in the range one to ten. It has been suggested that the smaller 

chr omosomes are associated with antigenic variation due to the differences in intermediate 

and mini chr omosome numbers between stocks and species and that the larger chr omosomes 

represent the 'core' genome (Vickerman et a/,1993; Erstfeld & Gull, 1997). All 

chromosomes have VSG genes and they have two locations: at the telomeres or



intrachromosomal. The intrachromosomal loci are clustered into three arrays in the large 

cliromosomes. Approximately 10% of the Trypanosoma brucei genome encodes VSG 

genes and VSG gene expression sites with a separate structural gene for each VSG and 10% 

of the trypanosomes biosynthesis is for production of VSG (Seyfang et al, 1990).

1.5. VACCINE DEVELOPMENT

In the case of African trypanosomiasis, vaccine development is extremely difficult. A 

cocktail of metacychc VATs has been proposed as a vaccine for mammals but this could be 

unsuccessfrd for a number of reasons (Seed, 1972): in some cases the serodemes are higli in 

number, there are different serodemes depending on the geographical locahty, and the 

metacychc-VATs within a serodeme alter over a period of time. Apart from the VSG 

molecules, the procychc surface molecules, transferrin receptors (Borst, 199 lb) and the 

flagellar pocket receptors (Olenick et a/, 1988; Shapho,1994) have aroused interest as 

potential vaccine targets but as yet there have been no reports of successful, repeatable 

immmiisation of animals based on these targets.

1.6. THE IMMUNE RESPONSE

1.6.1. The Humoral Response To African Trypanosomes

During African trypanosomiasis, chronicaUy infected mammals have fluctuating 

parasitaemias, with successive parasitaemic waves, containing trypanosomes expressing 

different VATs, being successfiilly controUed each in turn by the humoral hnmune response. 

Seed & Sechelski (1987) compared normal intact mice with immunosuppressed mice and 

showed that the immunosuppressed mice showed a dramatic decrease in survival time and 

did not show a drop hr parasitaemia whereas the mtact control mice survived longer, 

produced a drop in parasitaemia and a second parasitaemic peak. Mice previously
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immunised with irradiated T.b.rhodesiense can sm̂ vive an infection with tiypanosomes of 

homologous VAT, which would otheiwise be deadly, but were killed if infected with 

trypanosomes of heterologous VAT. This resistance could not be transferred by T-cells but 

could be transferred by B-cells or serum to syngeneic recipients (Seed, 1963; Campbell & 

Philhps, 1976). The serum could transfer immunity for twice as long after the immunisation 

as the splenocytes. Taken together, these data show that VAT-specific humoral responses 

are protective but, due to antigenic variation, complete protection cannot be produced.

It is unclear whether the antibody responses generated in trypanosome infections are 

polyclonal or VAT-specific. There appears to be some degree of polyclonal B-cell 

activation in humans and domestic animals. The evidence for this is mdhect and based on 

polyclonal hyp erg ammaglobinemia shown by infected individuals. Diffley (1983) obsei*ved 

polyclonal activation of B-cells in tiypanosome-infected mice leading to the depletion of 

antigen-reactive lymphocytes. Some polyclonal lymphocyte responses, wliich are associated 

with acute tiypanosomiasis, were also observed when purified VSG was intravenously 

injected into mice (Difidey,1983). These observations could be associated with low affinity 

IgM binding non-specifically to antigens. Other authors however, have considered hmnoral 

responses against tiypanosomes are almost entftely mediated by VAT-specific antibodies 

within the infected hosts and that mammals infected with a particular trypanosome VAT 

elicit a rapid humoral response against that VAT but not against trypanosomes of 

succeeding VATs (Van Meh*venne e/a/, 1975; Musoke e/a/,1981 ). Musoke et al {\9%\) 

detected VAT-specific antibodies at the first antibody activity peak during T. brucei 

infections and also at the second peak of antibody response. This group failed to detect any 

non-specific antibodies at either of the peaks investigated.

The extant hterature shows that both T-dependent and T-independent antibodies are 

detected during African tiypanosome infections. Trypanosome-infected nude mice exhibit a 

decrease in then parasitaemia and this is due to the T-independent IgM antibody responses 

alone (Campbell et a/,1978). These mice also showed an increase in then survival time 

compared to their heterozygous httermates. However, these infected nude mice did not
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produce IgG antibodies, whereas the heterozygous mice did, suggesting that T-cells are 

required for antibody class switching. Another group found that T. ôn/cez-infected nude 

mice exhibited lower B-cell responses in the absence of T-cells compared to 

immunocompetent mice (Clayton et a/, 1979). Others have shown that this humoral 

response is in the form of T-ceU dependent IgM wliich is VAT-specific and that these 

responses control the fluctuating parasitaemia and result in the elimination of the 

trypanosomes that express that particular VAT (Van Meirvenne et a/, 1975; Musoke et 

a/,1981; Black et a/,1986).

As a generahsation, humoral responses agamst trypanosomes are characterised by having 

enhanced and prolonged IgM levels (Vickeiman & Barry, 1982). This contrasts with the 

typical textbook primary immune response of mammals where IgM production occurs 

transiently and is then replaced by IgG antibodies which have higher aflSnities and increased 

specificity compared with IgM antibodies. The IgM response fluctuates with the successive 

waves of parasitaemia and durhig parasite remission the IgM levels drop temporarily 

(Luckins,1976; Musoke et a/,1981; Masake et a/,1983) but this may be due to the antibodies 

being absorbed onto the smface of the trypanosomes and therefore being undetected during 

analyses of sera.

Increased serum IgM levels are found in trypanosome-infected humans, laboratory 

animals, cattle and sheep (Luckins,1976; Bouteille et a/,1988). These increases can also be 

seen in animals hrfected with T.congolense or T.vivax (Luckins, 1976). Masake et al (1981) 

revealed that during human sleeping sickness IgA and IgG levels remained the same as those 

fi om uninfected individuals whereas IgM levels were increased with a shght rise in IgE levels 

also. In mice, IgM, IgGi, IgĜ a and IgG?b isotypes were all produced in the humoral 

immune response but immunisation with m’adiated trypanosomes was reported to stimulate 

an IgG response in preference to an IgM response (Diggs et a/,1980; Sendashonga &

Black, 1982).

VAT-specific IgG production has been shown in T.bmcei-wÎQcXQà cattle but has limited 

efficacy although specific IgG can be induced by immunisations (Musoke et a/,1981).
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Musoke a/ (1981) have shown that tiypano some-specific IgM and IgG are produced in 

cattle during T.bmcei infections which contrasts with the production of non-specific 

antibodies during murine infections. Cattle expeihnentally infected T.congolense or T.vivax 

showed both IgGj and IgG  ̂levels changed dming the mfection with a 1-2 fold increase in 

both isotypes seen (Luckins, 1976; Nielsen et a/,1978; Bouteille et al, 1988). In another 

study 0 Ï  T.congolense cattle infections, there were high levels of IgM, IgG, and IgG  ̂

antibodies produced against the infecting VATs and agamst successive VATs (Masake et 

al, 1983). The IgG antibodies were detected seven days after the IgM response in cattle. 

Masake et al ( 1983) also noticed recuirent specific antibodies agamst VSGs and this could 

suggest that some VATs have similar surface coats or that there is a reappearance of ceitam 

VATs dming the course of infection.

Antibodies have a role in the effector responses during tiypanosomiasis. During cattle 

infections with T.bmcei, the IgM produced at the fiist peak of antibody activity had 

increased efficiency for tiypanosome neutrahsation compared with IgG, antibodies but at the 

second antibody activity peak the opposite was found to be tme, with aU detectable 

antibodies bemg specific (Musoke et al, 1981; Masake et al, 1983). Macrophages were 

found not to phagocytose opsonised tiypanosomes except in the presence of VAT-specific 

antibodies (Lumsden & Herbert, 1967; BaiTy & Vickeiman, 1977). It is likely that the 

macrophage receptor for complement components mediates opsonisation in vivo as 

macrophages do not have Fc receptors for IgM. Destmction is due to VSG-specific 

antibodies and complement which leads to trypanosome lysis and phagocytosis by 

macrophages. Increased phagocytosis was also observed in the infected mice. There was an 

increase in hepatic clearance of tiypanosomes in mice which were passively immunised with 

senun, irradiated trypanosomes or dmg cured then reinfected (MacAskill e/a/, 1980; 

MacAskill et al, 1981) and this was due to the large number of kupfer cells present in the 

fiver.

Most studies of responses to tiypanosomes have focused on the bloodstream where most 

parasites are found, but, at least in human infections, most of the pathology is generated by
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trypanosomes in extravascular sites. In this context it is important to note that IgM 

antibodies have been detected in cerebrospinal fluid and this detection is diagnostic for 

human sleeping sickness (Mattem,1962). Goodwin & Guy (1973) also detected 

trypano some-specific antibodies in 716n/cez-hifected rabbit tissue fluid two days later than in 

serum and at reduced titres.

Immunity can be transfen ed to young mice fi om mothers if the yoimg mice suckle fi om 

bhth. This immunity was transfen ed in the mothers colostmm/milk if the mother was 

infected with T.bmcei or if the mother had been drug-cured before giving bhth (Whitelaw & 

Urquhart, 1985). This immunity was not transplacental, as yoimg mice bom fiom infected 

mothers were not immune to trypanosome infections if they suckled on normal uninfected 

mothers fiom bhth. These data are therefore suggestive of a protective IgA response. 

Takayanagi et al (1978) showed that neonatal rats could also be protected fiom 

T.b.gambieme infections if they suckled fiom the mother which gave bhth to them. In rats 

however, if the neonates received colostmm by suckling fiom noimal mothers then they 

were found to be susceptible to trypanosome infections which suggested an in utero 

component was essential for transfening immunity fiom mothers to neonates. These authors 

concluded that the IgA present hi the mothers colostmm was not effective at protecting the 

young against trypanosome infections compared with the IgG obtained via the placenta.

1.6.2. The Complement System During African Trypanosomiasis

Diuhig Afiican trypanosome infections, the parasitaemic waves are followed by lysis of 

parasites on a large scale due to the production of VSG-speciQc antibodies and the 

complement cascade (Balber et a/,1979). It is not clear however wliich complement 

pathway is involved in trypanosome lysis. It has been suggested that the classical pathway 

can be activated by VSG interactions with specific antibodies and that the alternative 

pathway can be initiated by an antibody-related distortion of the VSG thereby exposing the



plasma membrane (Ferrante & Allison, 1983). This infers that if the trypanosome VSG 

remains intact then the alternative pathway wiU not be activated.

Ethylenediamine tetraacetic acid (EDTA), by blocking the classical pathway, inhibits lysis 

0 Ï T.bmcei and T.congolense whereas ethyleneglycol-bis-(b-amino-ethyl ether) N',N'- 

tetraacetic acid (EGTA) did not (Balber et a/,1979; Ferrante & AUison,1983) and these data, 

together with the requhement for specific antibodies, suggests that it is likely that the 

classical pathway is of gi’eater importance. There is contrasting evidence for involvement of 

the alternative pathway: in the presence of EGTA or in C4 deficient semm T.b.rhodesiense 

is lysed (Flemming & Diggs, 1978). Flemming & Diggs (1978) suggested that the alternative 

complement pathway is responsible for antibody-dependent cytotoxicity agamst 

T.b.rhodesiense due to the dependence on magnesium ions and there is no need for calcium 

ions. EDTA prevented immune cytotoxicity for tiypanosomes and EGTA had very httle 

effect on anti-trypanosome cytotoxic reactions implying that the alternative pathway was 

responsible for lysis. Cl activation may be inhibited by calcium ion chelation by EGTA 

which, when restored, could reinstate the lytic function but not the cytotoxic fimction 

(Flemming & Diggs, 1978; Fen ante & Allison, 1983).

VAT-specific antibodies are important in the opsonisation and lysis, in the presence of 

complement, of tiypanosomes with stumpy forms being more resistant to lysis than slender 

T. brucei fonns expressing the same VAT (BaiTy & Vickennan,1977). Tenante & Alhson 

(1983) have stated that specific murine IgM does not fix mouse complement and therefore 

fails to activate the alternative pathway. This may contribute to the high susceptibihty of 

murine Afiican trypanosomiasis as IgM appears to be the first line of the hosts defence 

agamst tliis parasite. In contrast, however, Diggs et al (1980) claim that IgM, IgG,, IgĜ ,̂  

and IgG ,̂, mouse antibodies against T.b.rhodesiense are aU capable of causing tiypanosome 

lysis by activating the alternative pathway.
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1.6.3. African Trypanosomiasis And Cell Mediated Immunity

There is an increase in the activity and size of germinal centres in the spleen and lymph 

nodes o f Boran cattle infected with T.vivax as well as an increase in the number of large 

proliferating lymphocytes and plasma cells (Masake & Morrison, 1981). These authors 

stated that the increase in spleen size was due to the white pulp areas expanding and taking 

over the areas which were previously red pulp areas whereas in the lymph nodes it is the 

medullaiy region which increases. Dming tiypanosome infections in cattle the spleen 

reaches a maximum weight and then returns to a normal size later on in the infection and this 

reduction is associated with a decrease m the number of red pulp plasma cells and a 

reduction in the white pulp size and activity. The increase in the lymph node size occurs 

several days after that of the spleen and it is predominantly the responsibihty of the 

lymphocytes, especially large proliferating lymphocytes (Masake & Monison, 1981). This is 

only to be expected as trypanosomes are parasites of the blood such that it seems reasonable 

to assume that tliis would be the primary site of the immime response. It would only be 

when the tryjianosomes enter the lymph fluid the increase in lymph node size occurs, shghtly 

later in the infection. Masake & Monison (1981) showed no significant proliferative 

differences between white blood cells of control and r.vzvax-mfected cattle to mitogens 

which were used in vitro. Dming mmine tiypanosome infections the lymphoid cells, 

macrophages and null cells proliferate in the lymphoid organs which in turn increase in size 

(Askonas & Bancroft, 1984). Splenomegaly is also a prominent feature during tiypanosome 

infections in mice (Murray, 1979; Mimay & Monison, 1979; Jenkins & Facer, 1984). The 

spleens of T.rhodesiense'^mÏQcXQà mice were seen to become heavily infiltrated with 

macrophages and plasma cells during infection.

There are T-ceU independent and T-ceU dependent VSG-specific responses during 

trypanosome infections (Mansfield, 1994) and these responses depend on the way in which 

the VSG coat is recognised by the host immune system. When the VSG is on the 

trypanosome, it is a repetitive 3-dimensional structure with epitopes which can be easily
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recognised by antibodies. Antibodies recognise tertiary protein structures and this response 

is classed as T-ceU independent. When the VSG is shed or broken down it forms monomers 

that may loose their structural integrity and do not have repetitive epitopes. These 

monomers can be more easily presented to Tg cells which wiU lead to a T-ceU dependent 

response. The evidence for a T-ceU dependent response is highly variable in character in 

that trypano some-infected nude mice have decreased B-ceU responses compared with fully 

competent mice (Clayton et a/,1979) and these infected nude mice cannot mount an IgG 

response without T-ceUs present (CampbeU et a/,1978). Also, irradiation and reconstitution 

of chimeric mice during trypanosome studies (DeGee & Mansfield, 1984) and lack of 

relationship of longevity of infected mice with a quality antibody response (Sendashonga & 

Black, 1982; BouteiUe et a/,1988) suggests an important role for T-ceUs during trypanosome 

infections.

Schleifer et al (1993) did not detect proliferation of T-ceUs hi any of the lymphoid tissues 

when they stimulated with purified VSG or with whole ceU extracts using mice which had 

been trypano some-infected for two weeks. At this time point there was some response to 

Concanavalin A (Con A) in the lymph nodes but no response from the peritoneal cells or 

spleen ceUs. This lack of, or veiy limited response to. Con A is probably due to the 

immuno suppression induced by two weeks of mfection. This group also demonstrated that 

there were different cytokine responses in different compartments of the host. They 

identified VSG-specific T-ceUs in the peritoneal cavity and although these ceUs did not 

proliferate they did produce cytokines when stimulated with VSG in vitro. Substantial 

amounts of IL-2 and IFNy were produced by peritoneal lymphocytes which is typical of a 

Tjjl-type response. However T^l and T^2 cells, which are VSG-specific, are produced 

after immunising with VSG. These authors also state that a population of VSG-specific T- 

cells which produce IFNy were "sometimes" found in the spleens of infected mice but they 

do not elaborate finther about when during the infection that these cells secrete IFNy. The 

lack of a proliferative response could suggest that there is a lack o f costimulation between 

the T-cells and macrophages which prevents proliferation. It has been suggested that
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macrophage activation during trypanosome infections is not due to the phagocytosis of 

bloodstream trypanosomes and that the mechanism, as yet, remains unknown (Rossi et 

a/, 1987). Primed T-ceUs have the ability to increase the macrophage response even in the 

absence of trypanosomes but the response can be further increased in the presence of 

trypanosomes. These results therefore suggest that T-cells may be important in the 

regulation of macrophage function during trypanosomiasis.

Complement, Fc and mannose receptors on the smface of peritoneal macrophages 

decrease during T.b.brucei murine infections which therefore affects the phagocytosis and 

degradation of trypanosomes by the macrophages. During mfection, resident spleen and 

peritoneal macrophages, as well as recruited macrophages, alter in appearance (Askonas & 

Bancroft, 1984). Macrophages also have the ability to suppress or enhance antibody 

responses in vivo which are T-ceU dependent. Immune complexes, formed by the 

trypanosomes, antibody and/or complement, can have different fates depending on the size 

of the complexes and these can be phagocytosed by macrophages or they can induce 

immuno suppression.

Splenic mononuclear ceUs and peripheral blood mononuclear ceUs from T.congolense 

infected cattle proliferated in vitro to homologous and heterologous tiypanosome chaUenge 

although this was not the case in the lymph node tissues (Flynn et al, 1992). In vitro T-ceU 

proliferation was not shown in the lymph nodes but occmi'ed in the peripheral blood and the 

spleen although the tiypanosome suiface coat did not hiduce this proliferation.

One group has focused on CDS ceUs in trypanosome infections rather than CD4 ceUs. 

Bakhiet et al (1993a) claim that T.b.brucei parasites, dming infections of rats and mice, 

release a 'lymphocyte-triggeiing factor' which binds to and activates CD8  ̂lymphocytes and 

that CD4+ ceUs are not activated. This activation results in the production of IFNy and 

Transformiag Growth Factor-13 (TGF(3), which induces immunosuppression. In T.b.brucei- 

infected rats, IFNy production was greatly reduced when the CDS T-ceUs were depleted in 

vivo and this resulted in an increased survival time of the rats (Bakhiet et a/,1990). No 

clinical signs of disease were seen m the infected rats which were CDS depleted until four
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weeks after they had been infected and at this point the blood parasitaemia increased but 

these treated rats out-lived the control rats by three weeks. Mononuclear cells firom mice 

lacking CD8 expression did not produce IFNy when stimulated with the 'lymphocyte- 

triggering factof in vitro but did produce IFNy when stimulated with Con A and the 

parasitaemias of CD8+ mice were found to be approximately 10-fold higher than those in 

CD8 knockout mice (Olsson et a/, 1993). Olsson et al ( 1991) claim that CD8 lymphocytes 

have to be activated in order to achieve IFNy production during trypanosome infections but 

parallel studies of T^l CD4 T-ceU or NIC ceU involvement demonstrating that they do not 

produce IFNy have not been made by this group.

1,7. IMMUNOSUPPRESSION IN TRYPANOSOME INFECTIONS

Different African tiypanosome strains differ in virulence and growth rate within different 

mammahan hosts therefore differing in the degrees of immunosuppression that they generate 

(Sacks et al, 1980). Mammahan hosts infected with African trypanosomes are in a state of 

generaUsed immuno suppression (Flynn & SUeghem,1991; Murray et a/,1974) which has 

some serious repercussions for the host, including increased susceptibihty to secondary 

infections and a continuous high parasite load. Host antibody and T-ceU responses to 

infecting trypanosomes, other invading pathogens and to mitogenic stimulus can be 

immunosuppressed during tiypanosomiasis although in some cases it is only the prohferative 

responses which appear to be affected (Dempsy & Mansfield, 1993; Gasbaire et a/,1981; 

Vickerman & Barry, 1982).

1.7.1. Depression Of Humoral Responses

r. ôn/cei-infected laboratory animals have hnpahed antibody responses to sheep red 

blood ceUs (RBCs) with immuno suppressed antibody responses also occurring hr cattle and 

humans (Goodwin, 1970). The IgG responses are suppressed more quickly than the IgM
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responses and to a greater extent (Hudson et a/,1976). The suppressed host response to 

sheep RBCs is somewhat irrelevant, in my opinion, as the chances of these blood cells 

causing considerable harm or death to the host are negligible and therefore the hosts 

response is unimportant.

What is more important is the depression of trypanosome-specific responses. Both IgM 

and IgG antibody responses are decreased, compared with uniofected controls, at the first 

peak of parasitaemia during acute T.bmcei mfections and during chronic infections (Masake 

et a/,1983). There is also decrease hr IgM and IgG responses at each parasitaemic peak in 

contrast witli the previous peak, but with sufficient amounts of IgM still available to control 

the infection. Tire trypanosomes can suppress IgM and IgG responses to both the 

tiypanosomes and umelated antigens (Sacks & Askonas, 1980) although others (Hudson et 

a/,1976) have suggested that IgM levels appear to be tiypano some-specific and remain at 

high levels when other responses are immunosuppressed. The level of parasitaemia 

coirelates with the degi ee of IgM suppression (Sacks et a/,1980).

1.7.2. Cell Mediated Immunodépression

There is general agreement that a pronounced depression of immune responses to 

bystander antigens accompanies tiypanosome infections (reviewed in Askonas, 1985) and 

this suggestion extends to T-ceU proliferative responses against trypanosome antigens 

(Gasbaire et al, 1980). It should be noted however that one author, Freeman et al ( 1974), 

could not detect any suppression of ceU mediated immunity.

A number of mechanisms of immuno suppression have been proposed for trypanosome 

infected hosts, but with a consensus that macrophages are strong effectors at inducing 

suppression (Askonas, 1985; Borowy et al, 1990; Flynn & SUeghein,1991) with splenic and 

peritoneal macrophages found in increased numbers during trypanosome infections due to 

the recruitment of ceUs into these areas (Askonas, 1985).
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splenic immunosuppression occurs several weeks before that of the lymph nodes with the 

spleen being the organ most affected during trypanosome infections (Kar et a/,1981; 

Wellhausen & Mansfield, 1980). Spleen cells from trypano some-infected mice can decrease 

the proliferation of uninfected mice splenocytes when they are cultured together in vitro 

(Borowy et a/,1990).

The evidence imphcating macrophages in immunosuppression is very strong. A mixed 

culture of macrophages fiom uninfected and infected mice resulted in the proliferation of T- 

cells with no significant suppression of responses but if there were no macrophages from the 

uninfected mice then T-cell proliferation to the tiypanosomes did not occur (Gasbaire et 

a/,1981; Borowy et al, 1990). If infected mice were drug cured then their cells were able to 

respond as those of normal uninfected mice with a normal level of responsiveness three 

weeks after dmg cme (Gasbaire e/a/, 1981).

Macrophage activation appeals to be important in immimosuppression due to the release 

of mediators, cytokines and the alteration of cell surface markers when the opsonised 

trypanosomes are phagocytosed. EFNa, IFNp, IFNy, IL-1, IL-2, prostaglandin Ej, 

prostaglandin Ê  and prostaglandin F̂  are produced by activated macrophages but they have 

no dhect effect on the tiypanosomes (Vickerman et a/,1993) with macrophages fiom 

infected mice producing far more prostaglandin E2  than postacyclin and vice versa in control 

mice (Askonas, 1985). Dming trypanosomiasis, NO is released fr om macrophages due to 

the synergistic effect of IFNy and TNFa (tumom* necrosis factor a) whereas EL-4, IL-10 and 

TGpp downregulate IFNy production and thereby prevent nitric oxide (NO) production by 

the activated macrophages (Vincendeau et a/,1992). In mice, the macrophage signalling 

network must be complete to allow trypanosome infections to smvive. Mice with natmaliy 

occurring immunodeficiences in the macrophage population caused a decrease in 

trypanosome survival time by 50% whereas deficiencies in complement levels or NK cell 

activity did not affect trypanosome survival (Jones & Hancock, 1983). These experiments 

showed that Beige mice (lacking NK cells) actually lived longer than control mice.
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In cattle, when macrophages were depleted from the lymph node populations of 

T.congoleme-'mÎQcXQà Boran cattle the immunosuppression effect was also removed (Flynn 

& Sileghem, 1991). In contrast to the prevailing view that macrophages essentially mediate 

suppression, Jayawardenna et al (1978) have argued that it is the T-ceUs which induced 

suppression of both the macrophages and the antibody response. Whether macrophages or 

T-cells initiate suppression could be a circular argument because the macrophages require 

IFNy to function but the T-cells are being prevented from producing the IFNy by the 

macrophages either directly or indirectly. This argument ignores the potential role of NK 

cells that can produce large amoimts of IFNy which would potentially stimulate 

macrophages. It is possible that the factor which prevents the macrophages from 

functioning also affects the NK cells or alternatively that IFNy is not critical to the cell 

mediated response against African tiypanosomes. Another explanation might be that IFNy is 

hnpoitant but during infection is produced m such high amoimts that a state of general 

immuno suppression is induced and therefore the T-cells and macrophages cannot function.

It has been shown by Scldeifer et al (1993) that IFNy-activated macrophages fr om infected 

mice can produce prostaglandins and NO which in tmn can interfere with T-cell proliferation 

which suggests that macrophages may control the cellular immune response.

Macrophages from infected mice can inhibit lymphocyte responses which are linked with 

IL-2 receptor expression and IL-2 release (Kierszenbaun et a/,1991; Sileghem et a/, 1986; 

Sileghem et a/,1989). Peripheral blood mononuclear cells show decreased IL-2 receptor 

expression with levels of IL-2 unaffected dming T.b.rhodesieme infection (Kierzenbaun et 

a/,1991). This was only the case when hve trypanosomes were used, that is, there was no 

decrease in IL-2 receptor expression when the parasites were gluteraldehyde-fixed. EL-2 

receptor expression levels could be restored in lymph node cells of r.ôn/ce/-infected mice by 

administering anti-IFNy antibodies but this was not the case with the splenic population 

(Daqi et a/,1993). In the lymph node population of T.binicei-voÎQcX.Qà mice, the IL-2 levels 

were decreased and this was due to macrophages inhibiting its production in a 

prostaglandin-dependent mechanism (Daqi et a/,1993; Sileghem et a/,1989; Sileghem et al,
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1991). IL-2 receptor expression was also inhibited in a prostaglandin-independent manner 

and was affected on CD4+ and CD8^ cells alike. Using Con A as a stimulant of lymph node 

lymphocytes from a murine T.bmcei infection there appeared to be an inhibition of IL-2 

production and this inhibition was not related to a lack of accessory cells or functioning 

accessory cells (Sileghem et a/,1986). Exogenous IL-2 restored the activity of the lymph 

node cells which were stimulated with Con A (Sileghem et a/,1986). This inlubition may be 

related to the control of immimo suppression by inducing anergy if these cells exhibit IL-2 

receptors on then smface dming trypanosomiasis. Schleifer et al (1993) however produced 

evidence that substantial amounts of IL-2 and IFNy were produced by peritoneal 

lymphocytes which is indicative of a Tjj 1-type response.

The general consensus is that cell-mediated immunosuppression does occur during 

African tiypanosome infections with both the CD4+ and CD8+ T-cell populations suppressed 

and a lack of IL-2 production. Macrophages are the major effector cells which have an 

important pivitol role in inducing this suppression thereby allowing the parasite to continue 

infection.

1.7.3. Effects Of Nitric Oxide During African Trypanosome Infections

NO is a major product of activated macrophages with cytostatic and cytotoxic properties 

and thus merits particular attention in the context of a trypanosome infection. NO can 

directly inhibit trypanosome proliferation in vitro (Sternberg et a/,1994; Vincendeau et 

a/,1992). Since S-nitroso-acetyl-penicillamine (SNAP), a NO donor, inhibits tiypanosome 

proliferation but N^-nitro-L-arginine methyl ester (L-NAME) restores this proliferative 

fimction it suggests that NO has a cytostatic, rather than a cytotoxic, effect on trypanosome 

growth in vitro (Sternberg et al, 1994). Oxyhaemoglobin is a NO scavenger so it is therefore 

unlikely that NO will have any direct effects on trypanosomes in the bloodstream of the host 

(Mabbott et a/,1994). Nevertheless, prolonged survival and lower parasitaemias were
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observed in mice which were infected with NO-treated parasites compared to control 

parasites suggesting that NO may have an indirect affect (Vincendeau et al,1992).

The NO produced by infected mice peritoneal and splenic macrophages is important in 

the specific immunity of the host, hi general, suppression and inhibition of splenic T cell 

proliferation is due to the release of reactive nitrogen intermediates (RNI) J&om the NO 

synthase pathway (Mills, 1991). This link between suppression and NO has been observed in 

mice infected with T.bmcei (Borowy et a/,1990; Mills, 1991; Sternberg & McGuigan,1992). 

N‘̂ -monomethyl-L-arghiine (L-NMMA), a specific inhibitor of the inducible NO synthase 

pathway, substantially reduced the accumulation of nitrite in cell cultures and could prevent 

the cytostatic activity that the activated macrophages induce, strongly suggesting that the 

RNI were produced via the L-arginine dependent pathway of NO synthase (Mills, 1991; 

Sternberg & McGuigan,1992; Vincendeau et a/,1992). The amounts of NO produced fî om 

cells of T.b.rhodesiense infected mice increased after stimulation with specific parasite 

antigens or T-cell mitogens and the suppression induced by macrophages fiom infected mice 

could be prevented if NO and prostaglandins were iohibited together (Schleifer &

Mansfield, 1993).

hi conclusion, immuno suppression during Afiican trypanosomiasis could be due to 

several mechanisms induced by the tiypanosomes to inhibit the host T-cells fiom providing 

help for the B-cells. The inhibition of T-cell fimctions, perhaps by NO, could be a way of 

preventing the host firom producing a more specific and more potent IgG response which 

would have a higher affinity than the IgM response. The IgM response is not substantially 

affected by the immunosuppression whereas the IgG response, which strongly depends on 

T-cell help, can be suppressed during infection.

1.8. AIMS OF THE PROJECT

The aims of my project were to investigate the possibility of antigenic variation as a
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T-cell evasion mechanism during Trypanosoma brucei infections and, if this was found to be 

the case, determine whether these T-cells could drive this antigenic variation. Clearly, it was 

also important to establish if T-cells played any significant role in determining the course of 

infection and the mechanism(s) by which T-cell responses might be regulated. More 

specifically, this study involved:

1. Designing a reliable in vitro assay system to examine T-ceU prohferative responses 

towards a number of different trypanosome VATs;

2. Examining a number of different trypanosome infection and immunisation regimes;

3. Predicting potential T-cell epitopes in the VSG trypanosome coat and investigating their 

abihty to provide protection;

4. Investigating the role of NO in the control of T-cell responses.
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CHAPTER 2

MATERIALS AND METHODS

2.1. ANIMALS

Young adult female CFLP (25-30g) mice were intraperitoneaHy (i.p.) inoculated for 

growth of trypanosomes to provide parasite materials for use in other experiments.

When the infection was the subject of study in itself, young adult female BALB/c (20- 

25g) mice were used by i.p. inoculating lO'̂  trypano somes/mouse fiom the infected 

CFLP blood. When immunising mice with parasites, Balb/c mice were i.p. injected with 

10̂  parafoimaldehyde-fixed trypano somes/mouse in Phosphate Buffered Saline (PBS), 

pH 7.4. The mice were left for 2 weeks before killing or carrying out further procedures.

Outbred adult female MFl (25-30g) mice were used for experiments hr Chapter 7. 

Mice homozygous and lacking a functional inducible nitric oxide synthase (iNOS) gene 

locus (Wei et a/,1996) were i.p. injected with lfi‘ trypano somes/mouse fiom infected 

CFLP blood. MFl mice heterozygous for the INOS gene were used as controls. These 

mice were a kind gift fi om Prof F.Y. Liew, Department of Immunology, University of 

Glasgow.

Female WISTAR rats (200-250g) were used for growing larger numbers of 

tiypanosomes requhed for absorption assays. 1ml of tiypanosome-infected blood, 

exsanginated blood fiom infected CFLPs, were injected via an i.p. route into each rat.

2.2. TRYPANOSOMES

Stabüates, fiom a hquid nitrogen store, were thawed and taken up into a syringe of 

0.5ml Carter's balanced salt solution (CBSS) containing lOOU/ml Heparin for injection 

into mice. The monomorphic T. brucei clones, which each stably express a single VAT at 

the fir st wave of parasitaemia, were ILTat (Inteinational Laboratoiy for Research on 

Animal Diseases, Trypanozoon antigen type) 1.3, ILTat 1.61, GUTat (Glasgow
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University Trypanozoon antigen type) 7 .1, GUTat 7.2 and ANTat (Antweip 

Trypanozoon antigen type) 1.8 [Figure 2. la-d]. For the chronic infections, a GUTat 7.2 

pleomorphic trypanosome line was used [Figine 2. le.]. ANTat 1.8 (GUP 3265 and 

GUP 4284) is a subclone expressing a single VAT from the cloned stock EATRO 1125. 

All VATs used in this project are serologically distinct from each other (Van Meirvenne 

et al, 1975 ; Turner, unpublished results). Tliese six Hues of trypanosomes were used 

throughout this study in infections, in a parafoimaldehyde-fixed state for immunisations 

and as an antigen source in assays.

2.3. TRYPANOSOME PURIFICATION

Two methods were used. For small scale preparation of tiypanosomes, a differential 

centiffugation method similar to that of Ghiotto et al (1979) was employed. Blood was 

removed from anaesthetised mice by cardiac punctme into a syihige contahiing 0.2mls of 

CBS S/Heparin. The blood sample was transfeired into a 15ml centiifuge tube and mixed 

with 2 volumes of PBS pH 7.4. The tube was centiifrxged for 7 minutes at 200xg. The 

top straw coloiued layer was removed to a fr esh tube and spun at 2600xg for 5 minutes. 

This pelleted the tiypanosomes which were resuspended in 1ml o f PBS pH 7.4, counted 

using an Improved Neubauer haemocytometer and resuspended at the requhed density.

When the blood was removed fr om the infected rats it was exsanguinated into a 

syiinge containing 1ml CBS S/Hep aiin, then mixed with Percoll (Pharmicia, Sweden) 

containing 8.55g sucrose (BDH), 2g glucose (Sigma) and the pH adjusted to 7.4 with 

solid HEPES (Sigma) as described by Grab & Bwayo (1982) and RPMI 1640 (Dutch 

modification) medium (Gibco) at a ratio of 1:5:2, respectively. The samples were 

centiifiiged at 4°C for 20 minutes at 38000xg. The layer of tiypanosomes was removed 

to a fr esh tube for counting.

Populations were checked for VAT homogeneity by immunofluorescence on air-dried 

smears fixed m 70% ethanol.
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2.4. IMMUNOFLUORESCENCE ANTIBODY TECHNIQUE

The tiypanosome smears were prepared, ah dried and fixed in 70% ethanol for 1 hour 

at room temperature 4°C. They were then used immediately or stored at -20°C in the 

presence of silica gel. After return to room temperatm e if requhed, the reaction zones 

were drawn onto the slides using plastic ink (Texpen, Mark-Tex Corporation, 

Englewood, New Jersey). Once the ink had dried, the shdes were rehydiated in 10%

FCS in PBS for 30 minutes in a humid chamber. The shdes were then washed twice in 

0.1% Polyoxyethylene-sorbitan Monolaurate (Tween 20)/PBS (v/v). An appropriately 

diluted first antibody preparation [Tables 2. la-d.], hi PBS/Tween 20, was applied to the 

reaction zones and shdes were incubated in a humid chamber for 30 minutes at room 

temperature. Ah VAT-specific antibodies were provided by C.M.K Turner. After 

incubation, the shdes were tapped on the bench to remove most antibody solution and 

the shdes were washed for 5 minutes twice by submerging in Coplin jars fiUed with 

PBS/Tween wash buffer. Excess PBS was removed firom outside the reaction zones 

using a tissue. Care was taken to ensure reaction zones did not diy out. The 

appropriately diluted conjugated secondaiy antibody [Table 2. la-d ] was then applied to 

the reaction zones. AU secondaiy antibody preparations were diluted in PBS/Tween 20 

with 4’,6-Diamidino-2-phenylindole (DAPI) being used as a counterstain for DNA 

material (O.Olmg/ml), prepared by a 1 in 50 dilution of a stock solution stored for up to 

3 months at 4°C. The shdes were incubated in a humid chamber for 15 minutes at room 

temperature. AU secondary antibodies were titrated for optimal fluorescence activity 

before use. Tlie shdes were washed briefly in PBS/Tween 20 twice before mounting the 

covershp with Citifluor antifadent (Citifluor Ltd). The trypanosomes were then 

examined by immunofluorescence microscopy to ensure a homogeneous population was 

present.

Immunofluorescence was also earned out on hve trypanosomes pmified as previously 

described (Section 2.3.). 10̂  trypanosomes/100pi PBS pH 7.4 were ahquoted on ice, 

Tlie staining process was the same as for the fixed trypanosomes, with the exception of 

the washes which were with PBS pH 7.4, as were the antibodies and their dUutions
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[Table 2. la-d.]. Mouse monoclonal 23.2, for a subsurface epitope of ILTat 1.3, and 

mouse monoclonal 17.2, a subsurface antibody for GUTat 7.1, were used as neat 

hybiidoma cultuie supernatants with the live trypanosomes with 50pl/aHquot and 

appropriate controls. The trypanosomes were examined by immunofluorescence 

microscopy.

2.5. PARAFORMALDEHYDE FIXATION OF TRYPANOSOMES AND SHEEP 

RED BLOOD CELLS

Trypanosomes expressing a single antigen tyjie were pmified fiom infected mouse 

blood as described previously (Section 2.3.). Populations were checked for antigenic 

homogeneity by immunofluorescence (Section 2.4.). Pmified tiypanosomes, 

resuspended in 1ml of PBS pH 7.4, were incubated at room temperatme for 20 minutes 

with 1ml of 4% paraformaldehyde in 0. IM PBS. The tiypanosomes were then washed 3 

times in PSG (PBS containing 1% glucose). The tiypanosomes were, after the final 5 

minute centiiftigation at 2600xg, left overnight at 4°C in 0. IM ammonium chloride in 

0. IM PBS to neutralise any residual NH  ̂groups. The tiypanosomes were centiifiiged, 

as before, and resuspended in PBS pH 7.4 at a concentration of 10̂  tiypano somes/ml. 

Immunofluorescence was also peifonned on smears of these fixed parasites to check that 

the antigenic identity had been preseived after the fixing process (Section 2.4.).

Sheep RBCs (SAPU, Scotland) were also paraformaldehyde-fixed as described above 

for the tiypanosomes. The sheep RBCs were isolated fiom blood by centiifiigation, 

counted and resuspended in RPMI 1640 supplemented medium containing 2mM L- 

Glutamine (Sigma), 0.75% sodium bicarbonate (BDH), 2% gentamycin (Sigma) and 

10% FCS (Gibco) at lOVml and dispensed at 5xlOVweU.

2.6. ISOLATION OF MONONUCLEAR SPLENOCYTES

All reagents and equipment were sterilised before use. The medium used was RPMI 

1640. Spleens were removed from mice, mashed thiough metal mesh (Tea strainers,
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Woolworths) into lOmls of supplemented RPMI 1640 medium, in the case of uninfected 

spleens, and into 3Omis when the spleens were from infected or immunised mice. The 

cells were passed tluougli monofilament nylon filter cloth (KCadisch & Sons,

London), 100 pm, to obtain a single cell suspension. Cymelarsan (Rlione Merieux, 

France) was added to each suspension at 50pg/ml to kill tiypanosomes and suspensions 

were monitored by microscopy until lysis of trypanosomes was observed (usually 10-30 

minutes). The splenocytes were centrifuged at 200xg for 7 minutes, the supernatant 

decanted and the loose pellet resuspended in 5mis if fiom uninfected mice, or 20mls for 

suspensions fi-om infected mice, of supplemented RPMI 1640 medium. Tlie suspensions 

were layered onto 3 ml ensilions of Nycoprep (Nycomed UK Ltd, Birmingham) and 

centrifuged for 15 minutes at 700xg. The interface layer was removed, centiifiiged for 7 

minutes at 200xg and the pellet was resuspended in 2mls medium. The phase bright cells 

were counted using an Improved Neubauer haemocytometer and resuspended at the 

coiTect density. Preliminary experiments using Trypan Blue exclusion revealed greater 

than 95% viability when purif^g these cells.

2.7. PERITONEAL CELL EXTRACTION

Balb/c mice were euthanised, swabbed with 70% ethanol and a ventral mid-line 

incision made in the skin over the peritoneum. 5mis of RPMI 1640 medium was i.p, 

injected with a 21G needle above the liver. The abdomen was massaged to dislodge 

adherent cells and the skin was peeled back. The needle was reinserted below the splenic 

pocket, cells removed and transferted to a 50ml falcon tube. Cymelarsan was added to 

lyse the trypanosomes present and the cells were separated as before (Section 2.6.).

When the cells were separated, smears were made for Giemsa staining to count the 

number s of lymphocytes and macrophages present.
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2.8. PROLIFERATION ASSAYS

The isolated cells were plated out at 2x10^ cells/well in sterile flat bottomed 96-well 

microtitre plates (Greiner). Concanavalin A (C-5275, Sigma), at 8pg/ml, was tire 

positive control with medium alone as the negative control. The fixed trypanosome 

VATs were used as the antigen source at 2x lO^trypariosomes/ml. All weUs were made 

up to the same volume using supplemented RPMI 1640. The cells were incubated at 

37°C with 5% CO2  in a humidified incirbator. After 48 hours the cells were radiolabelled 

with 1 pChwell of Thymidine (Amersham International) and harvested 16 hours later 

onto fibreglass filtermats and read on a Betaplate coimter (Bectori Dickinson). The 

proliferative responses were deternhned by Thymidine incorporation and results are 

expressed as the mean counts per minute of four wells ± 2 SE.

2.9. CYTOKINE ASSAYS

The mononuclear splenocytes were dispensed into sterile flat bottomed 24-well plates 

(Greiner) at 4x10^ cells/well and the peritoneal cells were plated at 1x10^ cells/well. 

Medium alone was used as a negative control with Concanavahn A (Con A) as the 

positive control at 8^g/ml. Fixed trypanosomes expressing specified VATs were used as 

the antigen soruce at a concentration of 2x10^ trypanosomes/ml. In total each well was 

made up to a final volume of 1.25mls with medium. The plates were incubated under the 

same conditions as the proliferation assays and the supernatants were harvested at 24 and 

72 hoirrs. Tire supernatants were pulsed in a microfuge at lOOOOxg to pellet the cells 

and the cell-fi'ee supernatants were transferred to fi'esh tubes and stored frozen until 

analysed by ELISA (Enzyme Linked Immuno sorb ant Assays).

The harvested supernatants fi'om the cytokine assays were exarnined for IL-2, IL-4, 

DL-5, EL-6 and EFNy using commercial capture and detection antibodies (Pharmingen, 

Cambridge Bio science). The capture antibodies were diluted in 0. IM sodium hydrogen 

carbonate buffer pH 8.2 and added to wells of Immulon 4 96-well high aflSnity binding 

plates (Dynatech). The plates were incubated at 4°C overnight. The plates were washed
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twice with 0.0 IM PBS/Tween 20 (0.05% v/v) and blocked with 10% FCS/PBS (v/v) for 

1 hour at 37°C. The plates were washed twice with PBS/Tween 20 and the relevant 

standards (Pharmingen) and samples added in triplicate. Each plate assayed contained a 

standard curve. The plates were incubated for 3 hours at 37°C, washed 4 times and the 

detection antibodies, diluted in 10% FCS/PBS, added. The plates were further incubated 

at 37°C for 1 hour then washed 6 times before adding the extravadm peroxidase 

(SAPU), diluted at 2pg/ml in 10% FCS/PBS. After the final 1 hour incubation and 8 

washes, lOOpFweU of the TMB MicroweU peroxidase substrate (Kirkegaard & Perry, 

Dynatech) was added and the colour allowed to develop (5-10 minutes) at room 

temper atm e. Plates were all read immediately at 630nm, with a reference filter of 405nm 

as instmcted using Biolinx software (Dynatech). The results are ex%)ressed as the mean 

of triplicate wells minus the mean background levels, that is the readings obtamed fi om 

the wells without any sample.

2.10. FLOW CYTOMETRY ANALYSES

The cells were separated as previously described (Section 2.6.). Aliquots of lO*" cells 

were made and resuspended in 50j.il of 5% FCS/PBS/0.05% azide wash buffer. The cells 

were incubated with 3pFaliquot of antibody and incubated on ice for 1 hour.

Commercial antibodies (Phaimingen, Cambridge Bio science) were used to detect CD3, 

CD4, CD8, CD 19, surface Ig, NK 1.1 and CD25 (to measure IL-2 receptor expression). 

The cells were washed twice in FCS/PBS and the secondaiy antibodies added, if 

required, and the cells incubated for a fiuther hour. The cells were washed twice then 

resuspended in 200p.1 0.15M Tris ammonimn chloride pH 7.3 for 10 minutes to remove 

any contaminating RBCs. The cells were microfuged briefly at top speed (lOOOOxg) and 

resuspended in PBS pH 7.0 before analysis on the FAC Scan flow cytometer (Becton 

Dickinson). The lymphocyte population was gated and 5000 cells counted. Some 

experiments resulted m fixing the cells with 1% paraformaldehyde in PBS, pH 7.0, and 

analysing 24 hours after staining. Tliere appeared to be no difference in the results when 

compairng the staining of the fixed cells with those resulting fi-om unfixed cells. All the
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results presented in tlus thesis are from unfixed preparations. Early experiments used 

biotinylated anti-CD3 and biotinylated anti-NK 1.1 antibodies and then a secondary 

antibody of Streptavadin-FITC (Fluorescein isothiocyanate). Later expeirments used a 

directly conjugated pliycoerythrin (PE) anti-CD3 antibody. All other antibodies were 

directly conjugated: PE anti-CD4; PE anti-CD8; FITC anti-CD8; FITC anti-CD 19 and 

FITC anti-CD25 a chain.

2.11. PLASMA COLLECTION METHOD

The blood was removed as described in Section 2.3. The blood was transfeired to 

eppendorfs and pulsed at lOOOOxg in a microfuge for 30 seconds. The top straw- 

colomed plasma layer was removed and stored at -70°C for further analyses.

2.12. VAT-SPECHIC ANTIBODY LYTIC TITRES

Tiypanosomes were extracted and pmified as before (Section 2,3.) and were 

resuspended at 2x10*̂  parasites/ml in PSG. Antibody-dependent complement-mediated 

lysis reactions were conducted essentially as described by McLintock et al (1993). 

Doubling dilutions of plasma and guinea pig serum (Seralab) as a source of complement 

were carried out in round-bottomed microtitre plates. 10 pi of trypanosomes were added 

to each well and the plates were incubated for 1 hour at 37°C. Samples fiom each well 

were taken for examination by microscopy. The lytic titre is the reciprocal value of the 

highest antibody dilution which caused 50% lysis.

2.13. ANTIBODY ISOTYPING

Radioimmimodifiusion kits (The Binding Site, Birmingham) were used to quantify the 

amount of IgGj, IgĜ ,̂ IgĜ ;, and IgM present in the plasma of each mouse, according to 

the manufacturers instructions. 5pl/well of each sample was added, with the exception 

of the IgĜ i, plate where lOpFweU was requned, at the recommended dilutions. A set of
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3 standards for each antibody isotype was used as supplied with the kits. Tlie IgGj 

plates were incubated m a hiunid chamber at room temperature for 72 horns with the 

remaining plates incubated for a fiuther 24 hours before the rings of precipitation were 

measured and the isotyjre amounts calculated.

2.14. ANTIBODY ABSORPTION STUDIES

Trypanosome VSG surface epitope-specific antibody isotype/subclass levels were 

detennined as follows: Tiypanosomes expressing defined VATs were purified fiom rats 

over PercoU gradients as described in Section 2.3. These parasites were tlien used to 

absorb suiTace-epitope specific antibodies fiom plasma samples using a method based on 

that of Magnus et al (1982). The tiypanosome layer was removed and washed twice in 

ice cold PSG by pulsing at lOOOOxg in a microfiige for 30 seconds. A pellet of live 

tiyjianosomes of approximately 100|.l1 volume was mixed with 3 00pi of heat-inactivated 

(56°C for 30 minutes) plasma. The suspension was incubated on ice for 90 mmutes, then 

microfiiged as before. 15 pi of plasma was removed and stored frozen for isotyjiing and 

the remahider of the plasma mixed with a second pellet which was then incubated for a 

further 90 minutes. After tliis incubation, the parasites were pelleted and the plasma 

removed and stored for isotyping as described in Section 2.13. Pr eliminary exjreriments 

showed that absorption was complete after 2 rounds.

2.15. GIEMSA STAINING

The smears fiom the peritoneal population were fixed in methanol for 5 minutes then 

an dried. They were submerged in PBS/H^O at 50:50 (v/v), incubated at room 

temperature for 10 minutes and tlren placed directly into Giemsa staining solution of 20% 

Giemsa buffer (3g/L di-sodium hydrogen orthophosphate, BDH; 0.6g/L potassium di

hydrogen orthophosphate, BDH, and H,0), 70% water and 10% Giemsa stain (BDH). 

After a 15 minute incubation the shdes were washed 3 times in tap water and allowed to 

air dry before examination by microscopy.



2.16. DRUG CURE OF TRYPANOSOME-INFECTED MICE

Cymelarsan was dissolved immediately prior to use in dIfyO. A concentration of 

0.5mg/ml was used and 0.4mls/mouse was i.p. injected giving a curative dose of 

lOmg/kg. The blood was monitored 24 hours later to ensm e that all the trypanosomes 

had been killed.

2.17. PARASITAEMIA DETERMINATION

During acute monomorpliic infections, the parasitaemias were monitored daily by the 

'rapid matching' method of Herbert & Lumsden (1976). To determine parasitaemias 

accurately in chr onic infections, mice were monitored by venesection of the tip of the tad 

and removal of 2 pi of blood dady. The blood was dduted to an appropriate 

concentration m 0. IM ammonium chloride and the trypanosomes counted with an 

Improved Neubauer haemocytometer.

2.18. PREPARATION OF TRYPANOSOME LYSATES

The trypanosomes were extracted and purified as previously described (Section 2.3.). 

The trypanosomes were counted and resuspended at 10 /̂ml in PBS pH 7.4. 1ml ahquots 

were made which were subjected to 3 cycles of freeze-thawing in hquid nitrogen and 

water at 60°C. The lysates were microfiiged for 30 seconds at lOOOOxg to remove 

insoluble material. The trypanosome lysates were then used in the proliferation assays.

2.19. SELECTION OF POTENTIAL T-CELL EPITOPES IN VSG 

MOLECULES

The amino acid sequences of five T.brucei VSGs, ILTat 1.22, ILTat 1.24, DLTat 1.3, 

ILTat 1.61 and MITat 1.2 (Molteno Institute Trypanozoon antigen type 1.2) (Rice-Ficht 

et a/,1981; Carrington et a/,1991; Caiiington, personal communication) were analysed.
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The sequences for ILTat 1.24 and MITat 1.2 were used because the tertiary structure for 

these is already known and ILTat 1.22, ILTat 1.3 and ILTat 1.61 were used because 

they are readily available in our laboratory. The potential epitopes were selected on the 

primary amino acid sequences using a computer program, "TSites" (Feller & La 

Cruz, 1991), and mapped onto ribbon drawings of the tertiary structures of MITat 1.2 

(Freymann et a/, 1990) and ILTat 1.24 (Blum et a/,1993). This programme compares the 

predicted T-cell epitopes on proteins using four separate algorithms.

The "AMPHI" motif, "A", identifies amphipathic hehces (Margalit et a/, 1987) witliin 

the VSG and this search is based on the theory that T-ceU epitopes are predominantly 

amphipathic hehces (Dehsi & Berzofsky, 1995).

The "R" motif identifies two peptide configurations of four' and five amino acids each. 

Tlie fir st sequence consists of a charged/glycine-hydrophobic-hydrophobic-polar/glycine 

motif and the second consists of a charged/glycine-hydrophobic-hydrophobrc- 

hydrophobic/prohne-polar/glycine motif (Rothbard & Taylor, 1988). Both these 

algorithms identify helper and cytotoxic T-cell epitopes.

The I-A  ̂and I-E  ̂motifs, "D" and "d" respectively, predict peptide sequences likely 

to bmd to major liistocompatibihty complex (MHC) Class II molecules. These motifs 

can be recognised independently on the primary protein sequence (Sette et a/,1989).

A computer program, "Rasmol", generated the tertiary VSG structure in ribbon form 

and the potential T-ceU epitopes were mapped onto this. These potential peptides could 

therefore be identified to specific regions of the VSG tertiary structure.

2.20. CONJUGATION OF PEPTIDES TO KEYHOLE LIMPET 

HAEMOCYANIN CARRIER

Fom* individual peptides predicted to correspond to T-cell epitopes on VSG 

molecules were synthesised (Genosys Biotechnologies Ltd, Cambridge, UK) each 

consisting of 14 amino acids followed by a cysteine residue for C-terrmnal amidation.

The peptides were added in excess to the Keyhole Limpet Haemocyanin (KLH) (Pierce). 

To do tliis, 2mgs of each peptide was disolved ia 500|tl of a solution of PBS pH 8.0

35



containing a mininiuni concentration (no more than 30%) of Dimethyl Sulfoxide, v/v, 

(Sigma) required to solubüise the peptide. Vials containing 2mgs of KLH were 

reconstituted in 200pl of dĤ O thus activatmg the KLH. Each peptide solution was then 

immediately combined witli an individual vial of KLH and mixed for 2 hours on a shaker 

at room temperature.

To remove any EDTA from this activated KLH, the conjugates were passed through 

D-Salt Extracellulose Plastic Desalting columns (Pierce). For each peptide, a column 

was equihbrated with 5 column volumes of PBS pH 8.0, conjugate added, columns 

eluted with PBS pH 8.0, 1ml aliquots collected and their absorbance read at a 

wavelength of 280nm by spectrophotometiy. Aliquots containing protein were pooled 

and used for immunisation of mice.

2.21. IMMUNISATION PROCEDURE

The peptide conjugates in PBS pH 8.0 were mixed at a 1:1 ratio with Complete 

Freund's adjuvant (Sigma) to allow initial immunisations of 40|.ig/mouse m 0.2ml 

volumes. Tire solutions were mixed using an Ultra-Tunax Drive microprobe (Jankle & 

Kunkel, IKA-Laborkchnik) at a speed of 24000 ipm to combine completely the adjuvant 

with the conjugated peptides. The same procediue was used for secondaiy 

immimisations but using Incomplete Freund's adjuvant 2 weeks later. The mice were 

killed 2 weeks after secondaiy immunisation.
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Figure 2.1. The pedigree diagrams describing the life liistories of the trypanosome

stocks for monomorphic hues ILTat 1.3 (a), ILTat 1.61 (b), GUTat 7.1 (c),

GUTat 7.2 (d) and pleomorphic line GUTat 7.2 (e) used throughout this study are 

shown. They are drawn according to the conventions of Lumsden et al (1973). 

Cryopreserved stabilate numbers appear in boxes, with primary isolates being designated 

by the source, date and place of isolation. Solid lines represent passage in animals, 

where (M) represents mice, and broken lines indicate cloning of trypanosomes. Double 

lined airows represent cycHcal transmission by tsetse Hies. Stabdates containing VAT 

reference populations are designated by cartouches. Neutralisation reactions in vitro are 

also shown (N) and the antiserum preparation used are stated.
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Figure 2.1a. Derivation of cloned monomorphic line DLTat 1.3,
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Figure 2.1b. Derivation of cloned monomorphic line ILTat 1.61.
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Figure 2.1 c. Derivation of cloned monomorphic line GUTat 7.1.
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Figure 2.1d. Derivation of cloned monomorphic line GUTat 7.2.
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Figure 2.1e. Derivation of cloned pleomorphic line GUTat 7.2.
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CHAPTER 3

DEVELOPMENT OF AN IN VITRO MODEL SYSTEM FOR 

INVESTIGATING PROLIFERATIVE T-CELL RESPONSES TO 

TRYPANOSOME INFECTIONS

3.1. INTRODUCTION

Tliere has been no efficient way to examine antigen-specific T-cell proliferative 

responses to African trypanosomes in an in vitro envnonment as yet. A number of 

different approaches have been described but the extent to which most of these bear 

comparison with the in vivo situation is debatable.

Several studies have opted for the straightfoiward option of investigating the T-cell 

prohferative responses using cells from various murine infected lymphoid organs by 

stimulating with the mitogens Con A or Pokeweed Mitogen (PWM) and compaiing these 

responses with those of uninfected mice (Gasbarre et a/,1980; Kar et a/,1981; Sileghem 

et a/,1986; Borowy et a/,1990; Flynn & Sileghem, 1991; Sternberg & McGuigan,1992; 

Mabbott et a/,1995).

A few investigations have examined responses to non-tiypanosome antigens.

Sileghem et al (1986) looked at T-cell proliferation in response to antigen- and 

Con A-induced IL-2 production compaiing umnfected and trypanosome-infected mice. 

The only antigenic stimulus used in these experiments was Ovalbumin, rather than 

trypanosome antigens and therefore the specificity of response for trypanosomes 

remained unexplored. Sztein & Kierszenbaum (1991) examined the response of
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peripheral blood mononuclear cells (PBMCs) when they were mcubated in the presence 

of Phytoheamaggluttanin (PHA) and supernatants, from T.b.rhodesiense cultures, 

compared with PBMCs which were incubated with PHA alone. These experiments were 

used to see if the supernatants contained a secreted product which prevented T-cell 

prohferation by inducing immunosuppression. Other groups have mixed the lymphoid 

cells of tiypanosome-infected mice with sheep RBCs and measured the T-cell 

proliferative response (Clayton et al, 1979; Wellhausen & Mansfield, 1980).

Live trypanosomes have also been used in in vitro assay systems to examine the 

proliferation of T-cells in response to tiypanosomes (Gasban’e et a/,1980; Kierszenbaum 

et al, 1991 ; Sileghem et al, 1991). GasbaiTe et al (1980) claimed that live trypanosomes 

were necessary for priming in vivo and for activation in vitro and therefore stimidated 

their T-cells in viti'o with five tiypanosomes. However, Clayton et al (1979) used 

uTadiated tiypanosomes, which are non-rephcating, to mimic the effect of the live 

parasites to successfiiUy stimulate T-cell proliferation. This system seems to be the 

nearest to an in vivo situation with the exception of using live tiypanosomes. 

Lymphocyte stimulation, rather than T-cell proliferation, has been examined with respect 

to the induction of murine macrophages procoagulant activity duiing T. brucei infections 

(Rossi et a/,1987). Medium alone. Con A or five tiypanosomes were used as the in vitro 

stimuh.

Many other groups have used tiypanosome fia étions but the rationale for choice of 

fr actions made is sometimes less than obvious in that it is difficult to envisage what the 

T-cell responses, if any, wdl correlate to in situ. Olsson et al (1993) used a T.b.brucei- 

released 'lymphocyte triggering factor' as an antigenic stimulus in comparison with 

medium and Con A. They appear not to have determined however whether this 

triggering factor is present and the same in all tiypanosome infections. They also did not
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use a parasite surface antigen as a comparison in their proliferation assays. One reason 

for this may be that it has proved surprismgly difficult to induce proliferation of T-cell 

responses using trypanosome VSG despite the fact that it is surface located in the 

parasites and the most abundant protein. Soluble monomeric VSG purified fiom viable 

bloodstream tiypanosomes, at concentrations vaiying fiom 0. i pg/ml to lOOpg/ml of 

V SG , has been used as antigenic stimulus by Schleifer et al (1993). They also used a 

tiypanosome lysate as an additional stimulus and compared these to Con A-induced T- 

ceU proliferation. The mice used had been infected for two weeks before being used in 

the proliferation assays and stimulated with either Con A, monomeric VSG or the lysate 

and their results showed that there was no proliferation. The T-cell responses of 

tiypanotolerant and tiypanosusceptible cattle infected with T.congolense have been 

examined (Flynn et a/,1992). As an antigenic stimulus, whole tiypanosome lysates were 

fi’actionated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS- 

PAGE) and the major bands were isolated and used directly in the proliferation assays. 

Flynn et al (1992) showed that then VSG fr action did not induce T-cell proliferation 

despite the presence of serum antibodies to the VAT used. The VSG band induced very 

little or no proliferation in both the tiypanotolerant or tiypanosusceptible cattle.

Tliere is therefore a necessity to develop an in vitro proliferation assay system the 

results o f which would be more readily extrapolated to in vivo situations and yet avoids 

the need to use live tiypanosomes. An ideal system would allow analyses of the T-cell 

proliferative responses against the areas of the tiypanosome wliich are dhectly seen by 

the host, that is the VSG surface coat which forms a physical barrier between the parasite 

plasma membrane and the host thus protecting the parasite from non-specific immime 

attack. In this way, it would be possible to investigate the apparent paradox of an 

abundant, smTace located protein failing to induce proliferation of T-cells.
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The assay should be as close as possible to in vivo situations which therefore rules out 

the use of lysates and VSG fractions because most antigenic challenge in an hifection can 

reasonably be assumed to come from hve parasites rather than solubilised remains of 

dead ones. Intact parasites would be best but for pragmatic reasons (the need to avoid 

glowing trypanosomes in mice to the correct parasitaemia, pmify them fr om blood and 

check VAT expression in the same day as prepaiing mononuclear cells for prohferation 

analyses) I was keen to avoid using live parasites routinely. Also, the optimal media for 

growth of tiypanosomes and splenocytes are veiy different in that tiyqianosome media 

are piimaiily Minimum Essential Medium based (Baltz et a/,1985), with a range of 

additional supplements, whereas splenocyte culture media are usually RPMI based. I 

therefore attempted to develop a system that allows tiypanosome VAT-specific 

responses to be compared in an easy, efficient and inexpensive manner using intact 

parasites which are non-infective and non-rep Heating , that is they are dead but still intact 

and with the integrity of the antigenic epitopes still preseived as far as possible. The 

T-cell prohferative response to each tiypanosome VAT could then be compared with 

each other and with response to a mitogenic stimulus.

Because African tiypanosomes are extracellular parasites in the bloodstream, the 

spleen is the most obvious lymphoid organ to examine. A decision was made to 

investigate proliferative responses in mononuclear splenocyte preparations rather than to 

pmify T-cells to a homogeneous population. This type of prohferation assay relates to 

T-cells only and is readily associated with accessoiy ceUs (Askonas & Bancroft, 1984). 

This approach has been used widely (and successfuUy) hi a variety of immunological 

models: Mycobacterium tuberculosis (Vordenneier et al, 1993); Leishmania major (Wei 

et a/,1996); Brugiapahangi (Osborne et a/, 1996); Cryptosporidium mtiris (Davami et 

a/,1997); Ttypanosoma brucei (Black et a/,1989; Bakhiet et a/, 1993b).
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3.2. RESULTS

A number of variables that could reasonably be ex]3ected to affect the perfoimance of 

an antigen-driven proliferative assay were investigated.

3.2.1. Incubation Time

Tlie opthnal incubation time before harvesting for the proliferation assays was foimd 

to be 72 horns with the cells being pulsed 16 hours prior to harvesting [Figure 3.1.].

This timepoint was chosen as the negative control, medium, showed very little 

proliferation whereas Con A, the positive control, showed high levels of prohferation. 

The other time points were disregarded because after 24 hours the medium control 

coimts were above 20,000 cpm, a probable result of the trauma of being removed and 

pruifed, and although tliis factor wained, at 48 hours it stiU remained at 5,000 cpm. 72 

hour s was the minimum time that gave a rehable negative control and produced a high 

response to Con A.

3.2.2. Concanavalin A Concentration

The optimal Con A concentration was 8mg/ml when used with the optimal incubation 

time, 72 hours [Figure 3.2.], Concentrations of Con A lower than 8|ig/ml generated
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very little proliferative response of the mononuclear splenocyte populations and levels of 

response using 12- lôpg/ml were similar to those obseived using Spg/ml.

3.2.3. Trypanosome Antigenic Stimuli

Mononuclear splenocytes harvested fr om GUTat 7.2-infected mice were stimulated 

with medium alone and with three different preparations of tiypanosome antigen [Figure 

3.3a.]. The stimulation vrith medium resulted in background levels of proliferation 

whereas the live and parafoimaldehyde-fixed trypanosomes produced a proliferative 

response several fold higher than that of the medium control. The trypanosome lysate 

created the greatest degree of proliferation of the tlrree preparations.

Using a tiypanosome lysate hr the T-ceU proliferation assay resulted hr immense levels 

of proliferation [Figure 3.3a.], presumably due to the simultaneous assault on the 

splenocytes by a large number of tiypanosome antigens. Paraformaldehyde-fixed 

trypanosomes coidd stimulated the splenocytes to proliferate to a degree similar to that 

of the other preparations and were therefore used as the antigenic stimidi during all 

subsequent experiments. These paraformaldehyde-fixed tiypanosome preparations can 

be stored in PBS pH 7.4 at 4°C for up to four weeks thus making it possible to prepare 

the antigenic stimuli before the day of experiment.

Tire opthnal concentration of antigen for proliferation assays using 

parafomialdehyde-fixed GUTat 7.2 (monomorphic) trypanosomes was determined. As 

Figme 3.3b. shows, a concentration of fixed trypanosomes at 2xlOVml resulted in the 

highest proliferation of these splenocytes with concentrations 4x 10 /̂ml and lOVml 

producing several fold lower levels of proliferation.
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Tlie epitopes on the VSG appear to remain intact during the parafomialdehyde 

fixation process. The evidence for this comes from immunofluorescence comparison of 

live, ethanol-fixed and paraformaldehyde-fixed tiypanosomes [Table 3.1.]. ILTat 1.3 

and GUTat 7.1 tiypanosomes were examined using rabbit antibodies for each, as a 

positive control, and mouse monoclonal antibodies which identify subsurface epitopes for 

each antigen type. VSG-specific subsurface epitopes were available for only these two 

^^Ts. Tlie ILTat 1.3 rabbit antibodies recogmsed the ILTat 1.3 trypanosomes in each 

of the thi'ee states but did not recogmse GUTat 7.1 trypanosomes and vice versa for the 

rabbit antibodies to GUTat 7.1. The ILTat 1.3 monoclonal anti-23.2 antibody 

recogmsed regions on the ILTat 1.3 ethanol-fixed smears but not on the five or 

paraformaldehyde-fixed tiypanosomes and did not recognise any regions on any foims of 

the GUTat 7.1 tiypanosomes. The same was tme for the GUTat 7.1 monoclonal anti-

17.2 antibody which recogmsed the GUTat 7.1 ethanol-fixed tiypanosomes but not the 

other forms and did not recogmsed any of the ILTat 1.3 foims. These data suggest that 

the epitope stmcture and organisation on the tiypanosome VSG have been maintahied by 

the paraformaldehyde fixation process.

Taken together, these data suggest that paraformaldehyde-fixed tiypanosomes can 

generate prohferative responses and should be capable of doing so in a VAT-specific 

manner. They do not mle out the formal possibflity however, that parafoimaldehyde 

fixation modifies any cell such that it will drive proliferation. To investigate this 

possibhity, I examined the proliferative responses driven by paraformaldehyde-fixed cells 

that were antigenicaUy distinct from tiypanosome - sheep RBCs.
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3.2.4. Paraformaldehyde-Induced Proliferation By Sheep RBCs

The unfixed sheep RBCs induced the same amomit of T-cell proliferation as the 

paraformaldehyde-fixed RBCs [Figure 3.4.]. When a stimulation index was used to 

examine these figures, Con A produced an index of 4.9 whereas the sheep RBCs 

produced an index of 1.0 and the fixed RBCs resulted in an index of 0.9. Tliese data 

theiefoie suggest that the fixation and washing processes involved in preparing these 

cells, and by mfereuce the tiypanosomes, as antigenic stimuli for the proliferation assays 

do not cause the cells to proliferate non-specifically.

In summaiy, optimal incubation tune and concentration of Con A (for use as a 

positive control) have been deteimined and I have estabhished that parafoimaldehyde- 

fixed trypanosomes were capable of generating a proliferative response wliich was 

attributable to the antigen itself rather than the antigen fixation process. These 

piehminary data have provided a basis for investigating whether trypano some-specific 

prohferative reponses could be detected in splenocytes fiom infected mice and the degree 

to which they may be VAT-specific.

3.2.5. T-cell Proliferation Assay System Using Mononuclear Splenocytes From 

Uninfected And Infected Mice

The lymphocytes in the mononuclear splenocyte suspensions fiom DLTat 1.3-infected 

mice piolifeiated to a different degree with each of the two antigen types used as an in 

vitfo stimuh. Using the splenocytes from the uninfected mice, there was minimal 

pioliferation when the cells were stimulated with medium alone and high levels of 

proliferation when stimulated with Con A, >14,000 cpm. There were differing, but low
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level, degrees of proliferative responses when stimulated with the ti-ypanosome VATs 

[Figure 3.5a.]. When the cells were stimulated in vitro with ELTat 1.3 there was a 

response of 7,000 cpm whereas with ELTat 1.61 the response was 5,000 cpm.

When the mononuclear splenocytes were purified fi'om mice infected with 

ELTat 1.3 trypanosomes at the peak of parasitaemia and stimulated in vitro with medium 

alone. Con A, ILTat 1.3 or ELTat 1.61 fixed trypanosomes different responses were 

observed when compared with those of the uninfected mice [Figure 3.5b.]. There 

appeared to be far gi’eater proliferation with the cells stimulated with medium alone than 

with lymphocytes fi'om uninfected mice. This I attribute to the fact that the cells were 

highly pi-imed, due to the high parasite yield in the host, and the probable caiTy-over of 

processed antigen into the in vitro envhonment. The responses to Con A were also 

higlily elevated rising fi om <20,000 cpm in uninfected mice to >200,000 cpm in infected 

mice. There was a dominant homologous antigen-driven response to the ELTat 1.3 

parafor'maldehyde-fixed trypanosomes and a lack of a T-cell proliferative response to the 

heterologous ELTat 1.61 trypanosomes.

These data suggest that ti'ypanosome VAT-specific proliferative responses are 

detectable in mononuclear splenocytes fiom tiypanosome-infected mice using the assay 

system developed. The use of this assay system to investigate variant antigen specificity 

and mechanisms of T-cell responses will be addressed in Chapters 4, 6 and 7.

3.3. DISCUSSION

Although a number of groups have examined T-cell proliferative responses during 

T.brucei infections, surprisingly little work has been conducted on antigen-driven
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proliferative responses. This is possibly because there is a lack of a reliable in viti'o assay 

system which can compare mitogen-driven responses as well as trypanosome antigen- 

driven responses. The in vitro system described here can be used reliably to investigate 

T-cell responses which are VAT-specific during Afiican trypanosome mfections. It does 

not rely on comparing mitogen responses of hifected and iminfected mice but uses intact 

VSG which is still expressed on the trypanosome surface. Immunofluorescence 

microscopy analysis has suggested that the VSG coat on the trypanosomes appears to 

maintain elements of its native integrity. The Irost cells should therefore be able to 

process the antigerric VSG into peptides and present those which fit into the MHC 

groove to induce an immune response in a maimer similar to that which would occur in 

an infection.

Using sheep RBCs to examine the T-cell response during Afiican trypanosomisis 

seems completely hrelevant as it explains nothing about the T-ceH response to 

trypanosomes or to trypanosome antigens (Clayton et a/, 1979; Wellhausen &

Mansfield, 1980). It wiU only serve as indicator of depression or increased 

responsiveness of the T-cells fiom mice which have been subjected to a trypanosome 

infection.

Live trypanosomes would provide a closer comparison to in vivo situations than 

parafoiTQaldehyde-fixed cells but the live trypjmosomes might potentially induce 

suppression of the cells thereby inhibiting the immune responses. Also, if several VATs 

are to be compared in an experiment then it becomes more difficult to obtahi all the 

required trypanosome lines at the same time due to the differences in growth rates. The 

optimal cell culture media for splenocytes would provide an inadequate envirorrment for 

live trypanosomes and this would inevitably result hr the tryparrosomes lysing and
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releasing large amounts of internal antigens which would not uoimally be seen. Tliis 

would obviously effect the proliferation and cytokine results.

IiTadiated trypanosomes could be of use if the VSG surface coat is left intact after the 

irradiatioir process. It would have to be known how long these irradiated tryparrosomes 

could be kept for or if they have to be used immediately after they are irradiated. It is 

also a more difScult and more time consuming process compared to mild chemical 

fixation.

Tire assay system described here has been showrr to produce proliferative T-cell 

responses which are antigen-driven by using mononuclear splenocytes and stimulating in 

vitj'o with medium alone, mitogen, or two different VATs, each expressing different 

antigen types. Tliese responses were detected by using mononuclear splenocytes fiom 

trypanosome-mfected mice at the first peak of parasitaemia, before immimo suppression 

begins and before more than one antigen type is preseirt as the homotypic population in 

the bloodstream.

It is not surprising that Schleifer et al (1993) found no T-cell proliferation in then 

ex[reriments when they stimulated with purified VSG or tryfranosome lysates as the 

murine cells wiU have been immunosuppressed in vivo due to the mice being infected for 

two weeks before analysis and would rrot have had time to recover fiom the suppression 

in in vitro culture. It would therefore be expected that httle or no T-ceU proliferation, no 

matter what the antigenic stimuli, would be produced under these conditiorrs because of 

the remarkable degree of suppression that a trypanosome infection can cause (Corsini et 

<2 /, 1977; Jayawardena et a/,1978; Grosskinsky et a/,1983; Sileghem et a/,1986; Sclrleifer 

& Mansfield, 1993).

A trypanosome lysate would in any case represent an urnealistic method of antigen 

presentation because of the large amounts of internal antigens present in the parasites
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and their sudden disclosure to the host cells. These internal antigens are not usually seen 

by the immune system until phagocytosed by macrophages or internalised by antigen 

presenting cells (APCs) for presentation to T-cells and this potential difference in method 

of presentation could thus influence the response. Also, tire earliest reported detection of 

internal trypanosome components was at day seven post-hifectioii but was routinely 

several days after this, usually day 10 (Pearson et al, 1986). Tlie first peak of 

parastiamaemia in the trypanosome lines used in Chapters 4 and 6 are always before day 

seven so a lysate would be less reahstic than fixed parasites. It would be very difficult to 

discriminate between the proliferation wlrich is caused by the internal antigens and that 

which is VAT-specific due to epitopes on the VSG. Macrophages will be the principal 

APCs involved with processing and presenting trypanosomes dming infection as they 

actively phagocytose large particles like parasites and bacteria whereas specific B-cells 

will present antigen in vivo if the antigen is at a low concentration (Abbas et al, 1991) 

but low antigen concentration is rrot the case during T. brucei infections. Macrophages 

play an active role in hnmuosuppression during trypanosome infections whereas there is 

no evidence for such a role by B-cells therefore a pathway involving macrophages is the 

prefered choice (SUeghem et a/,1991; Sternberg & McGuigan, 1992; Darji et a/,1993; 

Sclrleifer & Mansfield, 1993; Mabbott et a/,1995).

To the best of my knowledge there has been no better in vitj-o proliferation system 

developed for examhiing T-cell proliferative respoirses to Afiican trypanosomes. 

finmrurodepression can however be investigated by comparing the Con A responses but 

this approach is severely constrained in generating rmderstandhig of protective immune 

responses of the host and VAT-specific T-cell proliferation. It allows the response to an 

individual tryjranosome VAT to be analysed rather than using only an irrelevant antigen 

like the sheep RBCs or a complex of antigens as present in lysates.
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Figure 3.1. Optimum in vitro incubation time of mononuclear splenocytes for a 

proliferation assay.
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PioHfeiation of niouoiiuclear splenocytes from GUTat 7.2-infected mice 3 days post

infection. The lymphocytes were dispensed at 5x 10̂  cells/well and were stimulated with 

cultm-e medium alone or Con A (8pg/ml) for either 24, 48 or 72 hours. Thymidine 

incoip0 1  ation deteimined T-cell proliferation in each case. Results are expressed as the 

means of quadiuplicate wells ± 2 SE.
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Figure 3.2. Optimum concentration of Concanavalin A for proliferation of 

mononuclear splenocytes.

Medium 2pg/ml 4pg/ml 8pg/ml 12pg/ml 16pg/ml

The concentration of Con A to be used continuously in this proliferation assay system 

was determined by incubating mononuclear splenocytes, 5x10^ cells/well, from 

uninfected mice for 72 hours, stimulating with culture medium alone and vaiing 

concentrations, 2-16|Lig/ml, of Con A. The results are expressed as the means of 

quadruplicate wells ± 2 SE.

58



Figure 3.3. Mononuclear splenocytes were harvested from GUTat 7.2-infected mice 

and dispensed at 5x10^ cells/well. To determine the best form of preparation in which 

the tiyqianosome antigens would be used, the splenocytes were stimulated with live 

homologous trypanosomes (2xl0^/ml), a trypanosome lysate of GUTat 7.2 

tiypanosomes (made from 2xlOVml) and 2xI0^/ml paraformaldehyde-fixed GUTat 7.2 

tiyjianosomes (a). When the decision to use paraformaldehyde-fixed parasites was 

made, the optimal numbers of trypanosomes to use was determined by stimulating the 

mononuclear splenocytes with three different concentrations of paraformadehyde-fixed 

parasites (b). The results are expressed as the means of quadruplicate wells ± 2 SE.
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Figure 3.3a. Comparison of ti'ypanosome antigen preparations for stimulating 

proliferation of mononuclear splenocytes.
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Table 3.1. Immunofluorescence comparison of live, ethanol-fixed and 

paraformaldehyde-fixed trypanosomes expressing defined antigen types.

VAT Antibody Live Ethanol Fixed Formaldehyde
Fixed

ILTat 1.3 Rabbit anti-1.3 +++ +++ +++
MAb 23.2 - +++ -

ILTat 1.3 Rabbit anti-7.1 - - -

MAb 17.2 - - -

GUTat 7.1 Rabbit anti-7.1 +++ +++ +++
MAb 17.2 - +++ -

GUTat 7.1 Rabbit anti-1.3 - -

MAb 23.2 - - -

The immunofluorescence antibody technique was used to investigate whether the 

parafoimaldehyde fixation process dismpts the tiypanosome surface coat and exposes 

subsurface epitopes o f the VSGs. ILTat 1.3 and GUTat 7.1 trypanosomes were used 

live or ethanol-fixed on smears and compared with smears of these two VATs using 

parafoimaldehyde-fixed trypanosomes. Rabbit anti-ILTat 1.3, for ILTat 1.3, and rabbit 

anti-GUTat 7.1, for GUTat 7.1, were used as positive controls, monoclonal antibody

23.2 is a VSG-specific subsurface antibody for ELTat 1.3 and monoclonal antibody 17.2 

is a VSG-specific subsurface antibody for GUTat 7.1.
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Figure 3.4. Paraformaldehdye-induced proliferation by RBCs.

o

35 —
5

30 —

tr 20 —
S
;
1  10 -

n __

Medium Con A Fixed RBCsRBCs

Mononuclear splenocytes were liai'vested from GUTat 7.2 infected mice after 2 days of 

infection and stimulated in vitro. The cells were stimulated with medium alone, Con A 

(Spg/ml) or sheep RBCs. The RBCs were used at 2xl0^/ml as were the 

parafonnaldehyde-fixed RBCs. The fixation process was the same as that used to fix the 

tiypanosome VATs. The results are expressed as the means ± 2 SE.
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Figure 3.5. Proliferative responses of mononuclear splenocytes fiom mice uninfected 

(a) or infected with tiypanosomes expressing ILTat 1.3 (b) and harvested at first peak of 

parasitaemia (day 4 of infection). Splenocytes were cultured in vitro for 72 hours and 

proliferative responses determined by ^H-Thymidine incorporation in response to 

medimn alone. Con A (Spg/ml) or paraformaldehyde-fixed trypanosomes (2xl0^/ml) 

expresshig ILTat 1.3 or ILTat 1.61. Assays were conducted in quadruplicate and data 

are ex^Dressed as mean ± 2 SE.
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Figure 3.5a. Proliferation of mononuclear splenocytes from uninfected mice.
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Figure 3.5b. Proliferation of mononuclear splenocytes from ELTat 1.3-infected 
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CHAPTER 4

CHARACTERISATION OF THE IMMUNE RESPONSE TO 

ACUTE-PHASE TRYPANOSOME INFECTIONS AND 

COMPARISON OF RESPONSES TO DIFFERENT INFECTION 

AND IMMUNISATION REGIAIES

4.1. INTRODUCTION

Afiican tryiDanosomes evade the immune response by antigenic variation thereby 

changing thefi highly immunogenic VSG coat to express a différent antigen tyjm (Borst 

& Cross, 1982; Turner & Baiiy, 1989; Borst, 199 la). They also invoke a profoimd 

depression of immune responsiveness, both in cattle (Nantulya et al, 1982; Sileghem & 

Flynn, 1992) and, paiticulaiiy, in mice (Dempsy & Mansfield, 1983; Sileghem et a/, 1986; 

Darji et al, 1993 ; Sternberg et a/, 1994; Mabbott et al,1995). In combination, these 

processes make it extremely difficult to investigate trypanosome VAT-specific immune 

responses.

Most studies of effector immune responses to trypanosomes to date have focused on 

humoral mechanisms (reviewed by Vickerman,1985) but it is still questionable as to 

whether antibody production is primarily polyclonal in origin (Difflley,1983) or VAT- 

specific (Musoke et a/,1981). Almost all studies of antigenic variation have considered it 

exclusively as a mechanism for evading these humoral responses (see for example Van 

Merrverme et a/,1975).

A few investigations have indicated that T-cell responses are likely to exist (Campbell 

et a/,1978; Gasbarre et a/,1980; Bakhiet e/a/,1993; Schleifer et a/,1993) and it has 

recently been suggested that this component of the immune response is likely to be T- 

helper 1 ty%re in character, but only in the peritoneum (Schleifer et a/,1993). The major 

impediment to understanding T-cell biology in the context of a systemic tiypanosome 

infection has, in my view, been the failme to detect antigen-driven proliferative responses 

fiom splenocytes, but this shortcoming has now been overcome (Chapter 3). The
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principle objective of the work described m tliis chapter was to provide a basic 

description of the VAT-specific immune response, both humoral and cell-mediated, in 

tiypanosome-hifected mice, at the first peak of parasitaemia when proliferative responses 

are detectable. Tlie data generated also provided the basic groundwork required to 

address the question as to whether antigenic variation is a T-cell, as well as an antibody, 

evasion mechanism.

Immunisation studies using defined antigens have rarely been conducted in Afiican 

tiypanosome research. However, immunisation with UTadiated parasites has been shown 

to engender protective immiuiity (Wellde et a/,1975; Finder et a/, 1986) and VAT- 

specific passive immunisation achieved using VAT-specific monoclonal antibodies 

(Crowe et a/,1984). Non-variant antigens induce detectable antibody responses witliin 

ten days in tiypanosome-infected mice (Pearson et a/,1986) and in one report, 

immunisation with non-variant flagellar pocket antigens provided partial protection 

(Olenick et a/,1988). A more recent and careful study has failed to repeat this 

obsei-vation however (Shapii’o, 1994), There is a larger hterature on inomunisation 

employing infection/cure regimes but with antigenicaUy undefined, often tsetse- 

transmitted, infections (see for example Finder et a/,1986). With the benefit of hindsight 

and in light of our knowledge of the scale of the variant repertoire (Borst & Cross, 1982; 

Barry & Turner, 1991; Turner a/,1988) and the instability of the metacycfic VAT 

repertohe (Baixy et a/,1983; Tmner et a/,1988), these obsei'vations are almost 

impossible to interpret. A secondary objective of the work described in this chapter 

therefore has been to compare VAT-specific immune responses in mice either Infected or 

immunised with antigenicaUy defined tiypanosome populations.

4.2. RESULTS

4.2.1. Analyses Of Antibody Responses

Antibody-dependent complement-mediated lysis assays were used to deteimine the 

lytic titres of the antibodies present in the plasma of individual mice. These samples were
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assayed with live trypanosomes expressing a VAT homologous to that of the initial 

infection or immunisation, and with a heterologous antigen type. Tliis assay thus 

provides an index of VAT-specific antibody effector function All the samples taken fi'om 

infected mice were unable to cause lysis of heterologous antigen types but were however 

able to lyse homologous trypanosomes [Table 4. la.]. Plasma fiom uninfected mice 

could not lyse any of the trypanosomes showing that mouse plasma cannot in itself lyse 

tiyianosomes under these conditions. Tlie lytic titres of the plasma samples fi om the 

infected mice were the same witliin each group, resulting in standard eiTors of zero for 

each gi'oiip. When reciprocal titres were compared between groups they differed 

however and ranged fi om 4 to 128. Tliis range was not suiprising due to the ever 

expanding ti'ypanosome populations within each infection towards the first peak of 

parasitaemia.

The samples fiom the mice hifected and dmg cured produced VAT-specific lytic 

titres consistant with a typical IgM response [Table 4. lb.] in that the titres fiom the peak 

of parasitaemia were lower, 4, at the first parasitaemic peak and increased to 128 one 

week after diug cure but decreased to 16 two weeks after dmg cure.

Two weeks after a single immunisation with parafonnaldehyde-fixed tiypanosomes 

the plasma was assayed. Each VAT used for immunisation produced a significant lytic 

titre towards the homologous antigen types with each being over 128, the highest level 

of detection in the assay [Table 4.1 c.]. All four groups of immunised mice were unable 

to cause lysis of the ti-ypanosomes they were assayed against.

These antibody-dependent complement-mediated lysis assays were earned out at least 

three times.

To investigate the effects of infection on antibody subclass/isotype levels, and the 

VAT-specificity of these responses, I employed a combination of radioimmunodiffiision 

and absorption assays. IgM, IgGj, IgĜ  ̂and IgĜ ,̂ levels in plasma samples from 

individual mice were measured and found to be identical in all mice within a group. 

Plasma samples were therefore pooled, reassayed and subjected to repeated rounds of 

absolution with five trypanosomes of defined VATs before being assayed once more.
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Tlie difference in titres between assays before and after absorption represents the VAT 

surface epitope-specific titre.

Pieliminaiy experiments were conducted to ensure that absorption was being 

conducted to completion and was VAT-specific. Plasma fiom GUTat 7.2 and ILTat 1.3- 

infected mice each revealed that two rounds of absoi'ption was sufficient to determine 

VSG surface epitope-specific antibodies as there was no reduction in the levels of 

isotypes after the tliird and fourth incubation [Table 4.2.]. Control expeiiments showed 

that this absoi'ption was VAT-specific; plasma fiom uninfected mice was mixed with 

GUTat 7.2 five trypanosome pellets and there was no absoi'ption [Table 4.2.]. Also, 

when the plasma fi om ILTat 1.61-infected mice was incubated with GUTat 7.2 

ti-ypanosomes there was no absorption [Table 4.2.]. Therefore two rounds of absorption 

was sufficient to detei'mine the VSG surface epitope-specific isotypes present in the 

plasma of infected mice.

Dui'ing infections with each of the four VATs there were increases in the total levels 

of IgM, IgĜ  and IgĜ  ̂when compared with the total immunoglobulin isotyiies fi om the 

uninfected mice but there was no detectable IgĜ j, in the samples taken at the peak of 

parasitaemia [Table 4.3.]. The plasma samples taken fiom GUTat 7.2-infected mice two 

days after the peak of parasitaemia showed an increase in the total level o f IgM which 

was far greater than the levels of IgM at the peak of parasitaemia. The total level of 

IgGi was paradoxically reduced and there was no detectable IgĜ  ̂or IgĜ ,̂.

The results from the antibody-dependent complement-mediated lysis assays suggest 

that these increases in levels of isotypes are hkely to have been caused by the 

development of VAT-specific antibodies and dhect evidence in support of this notion 

was obtained fiom absorption assays. Specific IgM antibodies were present at the peak 

of each infection with highest levels of specific IgM present in the plasma fi om the mice 

showing a decline in parasitaemia [Figure 4.1.]. Specific IgĜ  ̂antibodies were detected 

in the samples fiom the ELTat 1.3 and GUTat 7.2-infected mice but not in the other 

gi'oups. No specific IgG2 t̂ antibodies were detected in any of the samples. The most 

notable findings were veiy liigh levels of IgĜ  antibodies produced in each infection
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altlioiigli the levels were not as high at the decline of parasitaemia compared with those 

at the peak.

Because plasma samples were analysed from each individual mouse and the antibody- 

dependent complement-mediated lysis and antibody isotypes showed no difference 

between the samples withhi each group, it was considered acceptable for the splenocytes 

to be pooled for all mouse groups for use in flow cytometry, proliferation and cytokine 

assays.

4.2.2. Antigen-driven T-cell Pi oliferative Responses

Tlie proliferative responses of mononuclear splenocytes at first peak of parasitaemia 

fi om mice hifected with each of four different VATs are shown in Figures 4.2b-e, in 

comparison to results fiom uninfected mice [Figure 4.2a.]. fii all these cases, 

proliferative responses fi om splenocytes of hifected mice were raised in the absence of 

any added stimulant and I attribute these responses to cany-over of antigen partially 

processed in antigen presenting cells fr om mice into culture. Despite these raised 

backgroimd levels, enhanced proliferation was clearly seen hi response to mitogen (5-10 

fold higher than medium controls) and homologous antigen (2.5-4 fold higher). 

Interestingly, some degree of proliferation driven by heterologous VATs was also seen, 

fii splenocytes fiom ILTat 1.3-infected mice some heterologous antigen-driven 

proliferation with GUTat 7.1 and GUTat 7.2 was obsei-ved, less with ANTat 1.8 and 

very little with ILTat 1.61 [Figure 4.2b.]. Some degree of reciprocity in driving of 

proliferative responses with heterologous VATs was apparent. Strong heterologous 

responses between ELTat 1.3 and GUTat 7.1 [Figure 4.2d.] were observed and 

GUTat 7.2 also generated strong responses from splenocytes of mice hifected with these 

VATs. In contrast, ELTat 1.61 generated only poor responses fr om splenocytes of 

ELTat 1.3-infected mice [Figure 4.2b.] and vice versa [Figure 4.2c.]. The splenocytes 

fr om the ELTat 1.61-infected mice also proliferated to some degr ee with GUTat 7.1 and 

GUTat 7.2.
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When the mononuclear splenocytes were examined during the decline from the first 

parasitaemic peak [Figure 4.2f ] the pattern of proliferation in response to mitogen and 

antigenic stimulation was extremely similar to that produced by the GUTat 7.2-infected 

mice at peak parasitaemia [Figure 4.2e,]. The proliferative response against homologous 

and heterologous antigens was only slightly less than responses fiom mice at the peak of 

parasitaemia but the response to Con A was approximately 50% less.

Mice infected with ILTat 1.3 were allowed to reach peak parasitaemia before being 

dmg cured and their spleens removed either one week or two weeks after cure. The 

mononuclear splenocytes one week after cure [Figure 4.3a.] proliferated in response to 

medium, mitogen and the five VATs used m the assay. Tlie general pattern of response, 

albeit producmg lower Thymidine incorporation results, was veiy similar to that of 

the data fiom the first peak of infection [Figure 4.2b.] in that there was a strong 

homologous proliferative response as well as strong heterologous proliferation induced 

by GUTat 7.1 and GUTat 7.2. The response to stimulation with ILTat 1.61 and 

ANTat 1.8 was less. Tlie response to medium and Con A was also reduced compared 

with the data fiom infected mice although the mitogen response was still several fold 

greater than the medium and tiypanosome antigen induced responses. Two weeks after 

cure, there was only background levels of proliferation when the cells were stimulated 

with culture medium alone, varying degr ees of heterologous proliferation and a mitogen- 

induced response which was still several fold greater than the tiypanosome induced 

response [Figure 4.3b.]. Tlie homologous driven prohferation remained the strongest 

response of the antigen-driven responses even though it was 2-fold lower than that 

produced one week after cure [Figme 4.3a.] and 5-fold lower than at the first peak of 

parasitaemia [Figme 4.2b,].

The proliferative responses of mice immunised with parafoimaldehyde-fixed 

tiypanosomes was also investigated. The mononuclear splenocytes were haivested two 

weeks after immunisation with homogeneous trypanosome suspensions. In general, the 

proliferative responses were several fold lower than those produced by tlie infections but 

the responses to stimulation with Con A continued to remain several fold greater than 

those of the medium controls [Figures 4.4a-d.]. Homologous antigen-diiven
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proliferation was always the strongest of the antigen-driven responses in each of the four 

immunisations with varying degrees of heterologous driven prohferative responses.

The proliferation of peritoneal populations fiom tryiiano some-infected mice were also 

examined at the first peak of parasitaemia. The lymphocytes were comited and 

dispensed at the same concentration as the assays fiom the splenocytes, that is 5x10^ 

cells/well. Tliis was earned out for all four infections but produced no proliferation in 

response to medium alone, mitogen or any of the five VATs (data not shown).

4.2.3, Flow Cytometry Analyses

The mononuclear splenocyte populations were examined for all the groups by flow 

cytometry following cell staining for a number of different cell populations. Using the 

splenocytes at the first peak of a GUTat 7.1 infection as an example, histogiams and dot 

plots were used to deteimhie the number of cells within each population. These analyses 

showed that there was no autofluorescence [Figure 4.5a.] and that distinct populations of 

B-cell, CD3, CD4, CDS, CD25 and NK cells could be determined [Figure 4.5b-g].

Wlien comparing the cell numbers/spleen of each of four gr oups of mice at first 

parasitaemic peak of a T.brucei hifection, alterations in the abundances and proportions 

of mononuclear splenocytes were observed when compared with splenocytes fi om 

uninfected mice [Figure 4.6a. & Table 4.4a.]. The numbers of B-cells increased several 

fold dming infection as would be expected given the prominent antibody response during 

trypanosome mfections. The numbers of T-ceUs per spleen also increased markedly and 

this increase was seen in both the CD4 and the CDS cell populations despite decreases in 

the percentages of CD3 and CD4 cells and only neghgible increases in the proportions of 

CDS cells. Numbers of NK cells decreased at first peak of parasitaemia both in 

abundance and relative proportion. The ratio of B:T cells increased during infection but 

the ratio of CD4:CD8 cells decreased resulting fi’om a greater increase, in relative terms, 

of the CDS compared with the CD4 population [Table 4.4a.]. The ratios of activated 

cells (using CD25 as a marker of activation) also altered indicating an increase in the 

proportions of both activated CD4 and activated CDS cells dming infection.
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The cell abundances of mononuclear splenocytes from the four groups of immunised 

mice differed between each group [Figure 4.6b.]. As shown in the infected mice, the 

numbers of B and T-cells per spleen increased several fold as did the numbers for both 

the CD4 and CD8 populations. Nevertheless, the percentage of B-cells did not alter 

significantly when compared with the miinfected control mice [Table 4.5b.]. Tlie 

percentage of T-cells from the ILTat 1.61 and GUTat 7.2 immunised mice decreased, 

resulting in an increase in the B:T cell ratio, compared with the other 2 groups of 

immiuiised mice [Table 4.5b.]. Tlie CD4;CD8 ratios of the immunised mice were more 

similar to the ratios shown fr om the infected mice than those of the uninfected mice but 

the numbers of activated CD4 or CD8 cells present in the immunised mice were lower 

than hi the hifected mice.

Wlien comparing the cell numbers per spleen it was noticeable that there were more 

T-ceUs present in each of the spleens fr om the immunised mice compared to the numbers 

present in the hifected mice [Figures 4.6a-b.] and this was obseived, with the exception 

of the ELTat 1.3 CD8 cells, in both the CD4 and CDS populations.

4.2.4. Cytokine Production.

High levels of IFNy (more than 1500U/ml) were detected in the cytokine assay 

supernatants fr om mononuclear splenocytes of ELTat 1.3 infected mice, at the first peak 

of parasitaemia, when stimulated in vitro with Con A [Figure 4.7a.]. This was the case 

when supernatants were harvested at both 24 and 72 hours. EFNy was also detected in 

those supernatants which were stimulated with parafoimaldehyde-fixed tiyianosomes of 

the homologous and the four heterologous VATs. Similar results were obseived using 

splenocytes from ELTat 1.61 [Figure 4.7b.], GUTat 7.1 [Figure 4.7c.] and 

GUTat 7.2 [Figure 4.7d.] infected mice in that high levels of IFNy were produced in 

response to Con A and there was a marked response to stimulation with the homologous 

VAT and with some of the heterologous VATs.

Tlie levels of detectable IFNy differed after the first parasitaemic peak; compare 

Figure 4.7d. with Figure 4.8. The response after stimulation with Con A was several
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fold lower two days after peak than that at peak with levels less than 240U/ml compared 

with greater than 1500U/ml. IFNy was produced in response to homologous and 

heterologous VATs but the levels produced by stimulation with medium alone in the 72 

hours supernatant were Iiigh compared with the IFNy production from the antigen 

stimulated wells.

There was no homologous or heterologous antigen-driven EFNy production from the 

mice infected and killed one week or two weeks after drug cure. There was however 

production of EFNy when the mononuclear splenocytes were stimulated with Con A.

Both gi’oups of mice produced more than 1500U/ml, where 1500U/ml was the top 

standard of the assay, after 24 and 72 hours of stimulation in vitro (data not shown).

In immunised mice there was no detectable IFNy after in vitro stimulation of 

mononuclear splenocytes with homologous or heterologous fixed trypanosomes from 

any of the four gi oups of immimised mice. EFNy was produced after mitogen stimulation 

of the splenocytes fiom each of the four groups [Figure 4.9.] although these levels were 

extremely low compared to the levels produced by splenocytes fiom infected mice after 

Con A stimulation.

No significant levels of IL-4 (<0.5U/ml), IL-5 (<lU/ml) or EL-6 (<lU/ml) were 

produced dming stimulation of mononuclear splenocytes fiom ELTat 1.3, ILTat 1.61, 

GUTat 7.1 and GUTat 7.2 infected mice, at the first peak of parasitaemia or two days 

after peak, in response to mitogen or fixed parasites expressing homologous or 

heterologous tiypanosome VATs. The levels of EL-4, EL-5 and EL-6, were also 

investigated dming a time course experiment and there were no detectable levels of any 

of these cytokine above lU/ml at any of the time points exammed (data not shown).

In combination, these observations of a prohferative response with production of 

EFNy but no EL-4, EL-5 or IL-6 are indicative of a T-helper 1 type response and there 

was therefore a reasonable expectation to observe a substantive IL-2 response.

However, only low levels of EL-2 were detected using splenocytes fi om mice at the first 

peak of parasitaemia compared to splenocytes from miinfected mice when stimulated 

with Con A [Figure 4 .10a.] and there was no trypanosome-driven EL-2 production (data 

not shown). This was obseived in four different infections. At the decline from the first
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peak of parasitaemia there was significantly lower EL-2 levels even than those detected at 

the peak of infection. A separate set of experiments was therefore conducted to 

investigate the time course of potential EL-2 production which revealed that there was a 

substantive production of EL-2 but it occurred very early during infection and had almost 

waned by the time of first parasitaemic peak of infection - 96 hours [Figure 4 .10b.]. This 

was observed in infections of both ILTat 1.3 and GUTat 7.1.

These was no detectable EL-2 produced fiom mice either one week or two weeks 

after dmg cure of infection when stimulated with homologous or heterologous VATs 

and only very small amounts of IL-2 production after Con A stimulation [Figure 4.1 la.] - 

no more than 8U/ml for the one week samples and no more than 12U/ml fiom the 

splenocytes pmified two weeks after cure. Con A stimulation resulted in low levels 

(<I8U/ml) of IL-2 production with the mononuclear splenocytes fi om each of the four 

groups of immunised mice [Figme 4.1 lb.] but there was no detectable EL-2 produced 

when stimulated with parafoimaldehyde-fixed tiy[ianosomes.

Cytokine ELIS As for EL-2, EL-4, IL-5, EL-6 and EFNy were also conducted using 

peritoneal cell populations fiom the four gioups of mice at the first peak of parasitaemia. 

No cytokine production was detectable in any samples tested either at the 24 hour or 72 

hom haivest.

4.3. DISCUSSION

The antibodies tested dming my experiments were able to specifically kill the 

infecting tiypanosome VAT but were unable to cause lysis of heterologous VATs. The 

antibodies produced were therefore VAT-specific and produced m response to the 

particular invading antigenic type as has been previously shown (Musoke et a/,1981; 

Sendashonga & Black, 1982). These data conflict with the suggestion that the B-cells in 

tiypanosome-infected mice are non-specifically activated and that some of the antibodies 

are not specific for the trypanosome VAT (Gasbane et a/,1981; DiBQey,1983).
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At the first peak of hifection, the plasma samples showed an increase in levels of IgM, 

IgG| and IgĜ  ̂but I failed to detect any IgĜ ,,. Of these immunoglobulin isotypes, I 

detected vaiying amounts of VSG surface epitope-specific IgM, IgG, and IgĜ ,̂ in some 

cases, which contrasts with other studies. These other studies have claimed that during 

infections with monomorpliic lines of trypanosomes, such as those employed here, there 

is no B-cell activation and therefore no antibody production, which in turn relates to 

these mice being unable to control the first peak of parasitaemia (Sendashonga &

Black, 1982; Black et a/,1986; Sendashonga & Black, 1986). High levels of specific IgM. 

IgGj and IgG  ̂were detected in tryiianosome-infected cattle but the IgG antibodies were 

detected one week after the IgM (Masake et a/,1983). In another study bovine IgM and 

IgGj antibodies were detected which were VAT-specific but they failed to detect any 

IgGj (Musoke e/ a/,1981). In a previous study in mice IgM, IgG ,̂ IgĜ  ̂and IgĜ ,̂ 

responses have ah been detected (Sendashonga & Black, 1982)

VAT-specific splenic T-ceh responses do occur dui'ing acute T.brucei infections and 

these responses are in the foim of T-ceh proliferation, using the assay system developed 

in Chapter 3, and IFNy production. Although there was no antibody response detected 

to heterologous VATs there was a degree of heterologous antigen-driven proliferation in 

some cases but not in others. These observations suggest that the highly sophisticated 

antigenic variation process shown by the ti'ypanosomes may possibly be a mechanism to 

evade the host T-ceh response as weh as the classic evasion of the B-ceh response. If 

evasion of the T-ceh response is successfiil duiing infection then there would be a lack a 

T-ceh help for the B-ceh response wliich may result in a less efficient antibody response 

and fahure to eliminate the invading trypanosomes thus promoting continuation of the 

infection. In contrast, Schleifer et al ( 1993) found no T-ceh proliferation of splenocytes, 

peritoneal or lymph node cehs when stimulated with pm'ified VSG or with whole ceh 

extracts in vitro using cehs fiom mice which had been infected for two weeks. This is 

possibly due to the use of different mouse or tiypanosome strains and the duration of the 

infection or perhaps because soluble VSG is reported to be less immunogenic than 

membrane-bound VSG (Diffiey, 1985).

T-cells and NK cehs are probably responsible for the production of high levels of
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EFNy although the numbers of NK cells decreased at the fost parasitaemic peak. In 

another study, depletion of CDS cells from trypanosome-infected rats abrogated the 

production of EENy which m turn increased survival time (Bakhiet et al, 1990). This 

result may however be caused indirectly by inhibiting immunosuppression; lowering 

IFNy levels would reduce numbers of macrophages activated wliich will lead to 

improved T-cell competence and killing of more parasites resulting hi increased survival 

time. The highly increased amounts of EFNy produced during hifection may boost the 

macrophage activity by iipregulating surface receptors and therefore increasing 

phagocytic activity, which is important for removmg the tiyianosomes from the 

circulation (Askonas, 1985). IFNy, in synergy with IL-2, can enhance the synthesis of 

Hght chahis of hnmunoglobuhns (Romagnani et a/,1986) and may aid the host hi fighthig 

the pathogens by way of the humoral response, hi addition, the activity of the cytotoxic 

T-ceUs can be increased due to the upregulation of class I MHC molecules on the ceh 

smface which are induced by IFNy. These findings may result in the host producing a 

more effective immime response to the parasites. I would suggest that EFNy is the major, 

or at least one of the major, immimoregulatoiy molecules and it can result in both 

positive and negative effect for the host hi that, duiing T.brucei infectious some IFNy is 

necessaiy to stimulate the T-helper I response but too much IFNy can induce 

humunodepression of the host hnmime response, at least in the muiine model system. In 

cattle however, the depletion of CD8 cehs in vivo had no effect on the parasitaemia 

(Sheghem & Naessens,1995).

Wlien T-cells are stimulated by Con A or antigens then they produce IL-6. This IL-6 

can act on B-cehs to induce differentiation and immunoglobulin production. In my 

system there was no detectable IL-6 when the cehs were stimulated with Con A or with 

antigen but some EL-6 production might reasonably be expected due to the importance of 

the antibody response. Time course experiments revealed that even before the first peak 

of parasitaemia there was no detectable IL-4, or IL-5 or IL-6, above lU/ml at any of the 

time points exammed. Duiing the acute infections, the lack of detectable IL-4,

IL-5 or EL-6 is probably due to the inhibition of this response caused by IFNy therefore 

resulting in a T-helper 1 type response.
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I, like many others, failed to detect much IL-2 at the first peak of parasitaemia 

(Sileghem er a/, 1989; Sileghem a/,1991; SUeghem & Flynn, 1992; Daiji et a/,1993; 

Scltleifer & Mansfield, 1993). IL-2 production was only detected after mitogen 

stimulation with Con A and even these levels were far lower than those of the uninfected 

controls [Figure 4 .10b.]. Tliis seemed confiising given the high levels of proliferation 

exliibited and the greatly elevated EFNy response. On closer examination, by way of a 

time course experiment, large amounts of IL-2 were detected but only early in infection 

and these had dissipated towards the first peak of parasitaemia. These low levels of IL-2 

at the fii'st parasitaemic peak could be a result of an increase in EL-2 receptor expression, 

as shown on both the CD4 and CDS cells fiom trypanosome-mfected mice, wliich 

allowed more EL-2 to bind and therefore not be detected fiee hi the supernatant. After 

the initial activation, a different cytokine, like EL-12, may be continuing the stimulation 

of the cells and replacing the IL-2 role. Tlie cells have to be activated in order to 

respond to IL-12, which will be the case during a T.brucei infection, and only extremely 

small amounts are required. My data are consistent therefore with a classic Tyl tyjie 

response in acute-phase trypanosomiasis and are thus at some degree of variance with 

these reported by Schleifer et al (1993) who detected IFNy produced by splenocytes 

fi'om infected mice but no IL-2 or EL-4. Similarly no EL-2 or IL-4 was produced by 

lymph node cells stimulated by pm'ified VSG but the peritoneal population produced 

EFNy and EL-2, but not EL-4, in a VSG-specific manner even though there was no 

proliferative response. An impairment of EL-2 production by splenocytes has been 

shown during T.cruzi (Tarleton et a/,1984) and L.donovani (Reiner et a/,1983) infections 

stimulated with Con A.

The spleens fiom infected mice were clearly mcreased in size 2-3 times compared to 

the spleens fiom uninfected mice by visual inspection dui'ing dissection to prepare 

mononuclear cell populations. These obsei'vations was also described by Masake & 

Monison (1980) who obseived that the spleen retmued to noimal size in the later stages 

of infection. An increase in size is expected due to the nature of the hifection but what 

cell types were increasing was unknown. Tlie increase could have been due to B-cells 

which were non-specifically activated (GasbaiTe et a/,1981). Although the number of B-
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cells increased dramatically in the infected spleens, the number of T-cells also increased 

several fold and this increase could be seen in both the CD4 and CDS populations. The 

increase in T-cells could be in the context of B-cell help but more likely as an effective 

aim of the host immune response which will clear the infection. Tlie proportion of 

CD4;CD8 T-cells also changed suggesting an important role for T-cells in a tiyqianosome 

infection. The increase in CDS T-cells to 25% of the splenic T-cell population may be of 

significant importance and could be the cause of the high levels of EFNy production. Tlie 

increase in the proportions of activated CD4 and CDS cells will be beneficial to the host 

in fighting infection but this contrasts with the claim of Bakhiet et al ( 1993) that the CDS 

cells are activated but the CD4 cells are not during T. bnicei infections.

The numbers of B-cells and T-cells increased several fold in the splenocyte 

populations fiom the immunised mice compared to those of the splenocytes fiom the 

uninfected control mice but, the percentages of these cell types remained relatively 

constant indicating that tiypanosomes do not only stimulate B-cells but CD4 and CDS 

T-cells too. Moreover, the CD4:CD8 ratio was lower hi the immunised mice compared 

to the control therefore showing that there was an increase in CDS cells during mfection 

as well as hnmunisation. Together these data suggest the importance of the T-cells in 

relation to immune response to Afiican tiypanosomes. The general pattern of 

proliferation between the immunised mice and then infected coimtei-paits was extremely 

similar when each was compared but the IFNy production differed a gr eat deal.

In conclusion, dining acute T.brucei infections there are VSG-specific T-ceU 

proliferative responses and production of large amoimts of IFNy. There is, however, a 

lack of IT-2 and no detectable IL-4, IL-5 or IL-6 production at the first peak of 

parasitaemia. These data suggest that the T.bmcei tiypanosomes benefit more than 

initially thought fi-om undergoing antigenic variation. Not only do they evade the B-cell 

responses but they also perhaps escape fi om or reduce the competence of T-ceU 

responses. Therefore antigenic variation may also be a T-ceU evasion mechanism as well 

as the classic B-cell evasion mechanism. Whether this T-ceU response dhectly affects the 

coiu'se of a trypanosome infection or fimctions indhectiy by way of generating a more 

efficient and effective B-ceU response has yet to be investigated.
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Table 4.1. Antibody-dependent complement-mediated lysis assays were used to 

determine the lytic titres of plasma samples from mice infected or immunised with 

tiyqranosome populations expressing defined VATs. These samples were obtained at the 

first peak of parasitaemia from infected mice (a), from mice drug cured at first 

parasitaemic peak with samples taken either one or two weeks later (b) and from mice 

immimised with 10̂  paraformaldehyde-fixed trypanosomes (c). Mice were individually 

assayed in gr oups of five for each experiment. Titres were identical in all mice within 

each group in every case, 'Mono' refers to a monomorphic trypanosome line whereas 

'pleo' refers to a pleomorphic line. Samples taken at 'decline' were taken two days after 

the first parastiaemic peak.
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Table 4.1a. Complement-mediated lysis assay: reciprocal titres of plasma samples 

from trypanosome-infected mice.

INFECTION TRYPANOSOMES RECIPROCAL LYTIC 
TITRE

Uninfected Control ILTat 1.3 0
GUTat 7.2 0

ILTat 1.3 ILTat 1.3 4
GUTat 7.1 0

ILTat 1,61 DLTat 1.61 128
GUTat 7.1 0

GUT at 7.1 GUTat 7.1 32
DLTat 1.3 r 0

GUTat 7.2 (mono) GUTat 7.2 64
DLTat 1.61 0

GUTat 7.2 (pleo) Decline GUTat 7.2 128
DLTat 1.61 0

Table 4.1b. Lytic titres of DLTat 1.3 drug cured mice.

SAMPLE TRYPANOSOMES RECIPROCAL LYTIC 
TITRE

Drug cure 1 week DLTat 1.3 128
DLTat 1.61 0

Drug cure 2 weeks ILTat 1.3 16
DLTat 1.61 0

Table 4.1c. Lytic titres from the plasma of immunised mice.

SAMPLE TRYPANOSOMES RECIPROCAL LYTIC 
TITRE

DLTat 1.3 Immunisation DLTat 1.3 >128
GUTat 7.1 0

DLTat 1.61 Immunisation DLTat 1.61 >128
GUTat 7.1 0

GUTat 7.1 Immunisation GUTat 7.1 >128
DLTat 1.3 0

GUTat 7.2 Immunisation GUTat 7.2 >128
DLTat 1.61 0
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Table 4.3. Antibody isotype levels of trypanosome-infected mice at the first peak of 

parasitaemia.

INFECTION IgM IgGi Jg^2a
Control 95 472 0 0
ILTat 1.3 230 810 923 0
DLTat 1.61 112 1420 837 0
GUTat 7.1 139 634 592 0
GUTat 7.2 (mono) 158 551 1480 0
GUTat 7.2(decline) 361 323 0 0

Figure 4.1. VSG surface epitope-specific isotype levels in plasma samples from 
trypanosome-infected mice at first peak of parastiaemia, except where indicated 
two days after first peak.
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Infection

Total antibody isotype levels of the plasma samples from trypanosome-infected mice 

were determined by radioimmunodifrusion. The plasma samples were then subjected to 

two rounds of homologous VAT-specific absorption and assayed. The difference in 

value in each case between the first and second assay provided VSG surface epitope- 

specific isotype levels. 'Mono' refers to a monomorphic trypanosome line whereas 

'decline' is two days after the fir'st peak of parasitaemia of a pleomorphic line.
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Figure 4.2. Proliferative responses of mononuclear splenocytes from trypanosome- 

infected mice and from uninfected mice. The splenocytes were cultured in the presence 

of culture medium alone. Con A or paraformaldehyde-fixed trypanosomes expressing 

one of five different VATs. Splenocytes were harvested from uninfected mice (a), from 

mice infected with ILTat 1.3 (b), DLTat 1.61 (c), GUTat 7.1 (d), GUTat 7.2 (e), at the 

first peak of parasitaemia. and from GUTat 7.2-infected mice two days after peak 

parasitaemia (f)- Results are expressed as the geometric means ± 2 SE, n = 4.

Facing page 80



Figure 4.2a. Proliferation of mononuclear splenocytes from uninfected mice.
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Figure 4.2b. Mononuclear splenocyte proliferation using ELTat 1.3-infected mice.
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Figure 4.2c. Mononuclear splenocyte proliferation using ILTat I.61-infected mice.

170o
X 160

150
30o

25c

3u 20

a

00

Figure 4.2d. Proliferation of mononuclear splenocytes from GUTat 7.1-infected 

mice.
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Figure 4,2e. Mononuclear splenocyte proliferation from GUTat 7.2-infected mice 

at the first peak of parasitaemia.
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Figure 4.2f. Proliferation of mononuclear splenocytes at the decline of a 

GUTat 7,2 infection.
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Figure 4.3. Proliferative responses of mononuclear splenocytes from mice infected with 

ILTat 1.3, drug cured with Cymelarsan at the first peak of parasitaemia and killed either 

one week (a) or two weeks (b) later. The cells were stimulated hi vitro with culture 

medium. Con A (8p.g/ml) or paraformaldehyde-fixed trypanosomes expressing one of 

five of different antigen types. The means of quadruplicate wells are expressed ± 2 SE, 

n = 4.
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Figure 4.3a. iMononuclear splenocyte proliferation one week after drug cure.
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Figure 4.3b. Mononuclear splenocyte proliferation two weeks after drug cure.
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Figure 4.4. Mice were immunised with 10̂  paraformaidehyde-fixed trypanosomes, 

killed two weeks later and the proliferative responses of the mononuclear splenocytes 

towards medium alone. Con A or paraformaldehyde-fixed trypanosomes expressing one 

of five different VATs were determined. Splenocytes were harvested from mice 

immunised with ILTat 1,3 (a), ILTat 1.61 (b), GUTat 7.1 (c) or GUTat 7.2 (d). Results 

are expressed as the geometric means ± 2 SE, n = 4.
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Figure 4.4a. Mononuclear splenocyte proliferation after ILTat 1.3 immunisation.
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Figure 4.4b. Mononuclear splenocyte proliferation after ELTat 1.61 immunisation.
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Figure 4.4c. Proliferation of mononuclear splenocytes after GUTat 7.1

immunisation.

T

Figure 4.4d. Mononuclear splenocyte proliferation after GUTat 7.2 immunisation.
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Figure 4.5. Mononuclear splenocytes were harvested from GUTat 7.1-infected mice 

and analysed by flow cytometry. Cell populations which were incubated with a single 

antibody were shown as histograms whereas those populations which were double 

labelled were expressed as dot-plots. The lymphocyte population was gated (a) then 

examined for autofluorescence (b). The numbers of B-cells (c), T-cells (d), CD4 and 

CDS cells (e), NK cells (f), activated CD4 cells (g) and activated CDS cells (h) were 

determined by expressing the positively stained cells as histograms and dot plots.
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Figure 4.5. Doc-plots and histograms of cel] populations using the mononuclear

splenocytes from GUTat 7.1-infected mice.
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Figure 4.6. The lymphocyte population was gated in the mononuclear splenocyte 

suspensions from infection and from immunisation with trypanosomes expressing one of 

four different VATs and compared with mononuclear splenocytes from uninfected 

control mice. The trypanosome-infected spleens were harvested at the first peaks of 

parasitaemia for each of the four VATs shown (a) and the spleens from the mice 

immunised with 10̂  paraformaldehyde-fixed trypanosomes were killed two weeks after 

immunisation (b). 5,000 cells were counted for each sample and results are expressed as 

number of cells per spleen.
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Figure 4.6a. Flow cytometry analyses on mononuclear splenocytes from

trypanosome-infected mice.
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Figure 4.6b. Flow cytometry analyses of mononuclear splenocytes after 

immunisation.
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Table 4.4a. Flow cytometry analyses of mononuclear splenocytes from

trypanosome infected mice.

Cell Type Control ELTat 1.3 1 ELTat 1.61 GUTat 7.1 GUTat 7.2
B 49 58 60 68 61
T 41 26 39 30 32
CD4 34 18 30 22 24
CDS 7 8 9 8 8
NK 9 1 I 1 1
B:T Ratio 1.2:1 2.3:1 1.5:1 2.3:1 1.9:1
CD4:CD8 Ratio 5:1 2.3:1 2.8:1 2.8:1 2.9:1
CD4-.CD25 Ratio 17:1 4.5:1 10:1 7.3:1 8,5:1
CD8:CD25 Ratio 0 8:1 9:1 8:1 9:1

The relative proportions, expressed as percentages, and ratios of splenocytes from mice 

infected with four different VATs, each at first peak of parasitaemia and mononuclear 

splenocytes from an uninfected control for comparison.

Table 4,4b. Analyses by flow cytometry of mononuclear splenocytes from 

immunised mice.

Cell Type Control DLTat 1.3 ELTat 1.61 GUTat 7.1 GUTat 7.2
B 49 45 54 45 49
T 41 42 31 42 35
CD4 34 31 22 29 25
CDS 7 11 9 13 10
B:T Ratio 9 1.1:1 1.7:1 1.1:1 1.4:1
CD4;CD8 Ratio 1.2:1 2.9:1 2.4:1 2.2:1 2.5:1
CD4:CD25 Ratio 5:1 33:1 33:1 33:1 33:1
CD4:CD25 Ratio 17:1 49:1 0 50:1 100:1

Mononuclear splenocytes were purified from four groups of mice which were immunised 

with paraformaldehyde fixed trypanosomes expressing different VATs two weeks after 

immunisation. The results are expressed as a percentage of the total mononuclear 

population except where a ratio is stated.



Figure 4.7. Mice were inoculated with one of four trypanosome VATs: ELTat 1.3 (a), 

DLTat 1.61 (b), GUTat 7.1 (c) and GUTat 7.2 (d). At the first peaks of parasitaemia the 

splenocytes were harvested and cultured in vitro in the presence of medium alone. Con A 

or paraformaldhyde-fixed trypanosomes expressing one of five VATs. IFNy production 

was determined by cytokine ELIS As from supernatants harvested at 24 (black) and 72 

(white) hours. The results are expressed as the mean of three wells minus the 

background levels, that is the levels given by the wells which did not contain any of the 

samples. 1500U/ml was the highest level of IFNy detected in this assay.
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Figure 4.7a. IFNy production of mononuclear splenocytes from ILTat 1.3-infected

mice.
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Figure 4.7b. IFNy production from mononuclear splenocytes of ELTat 1.61- 

infected mice.

1500

c
U
co

I

i

89



Figure 4.7c. LFNy production from mononuclear splenocytes of GUTat 7.1-

infected mice.
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Figure 4.7d. IFNy production of mononuclear splenocytes from GUTat 7.2- 

infected mice.
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Figure 4.8. iVlice were infected with GUTat 7.2 trypanosomes and killed two days after 

the peak of parasitaemia. The mononuclear splenocyte populations were harvested and 

cultured in vitro in the presence of medium alone. Con A or paraformaldehyde-fixed 

trypanosomes expressing one of five VATs. EFNy production was determined from 

supernatants harvested at 24 (black) and 72 (white) hours. Results are shown as the 

means of triplicate wells with background levels, that is the reading from the wells which 

did not contain any sample, subtracted.

Figure 4.9. Mice were immunised with paraformaldehyde-fixed trypanosomes 

expressing one of four different VATs. The mononuclear splenocyte populations were 

harvested two weeks later and EFNy production was determined by cytokine ELISAs. 

The mononuclear splenocyte populations were stimulated /> 2  vit?'o with Con A (8|ug/ml) 

and supernatants were harvested at 24 (black) and 72 (white) hours. The means of 

triplicate wells are shown minus background levels, that-is the levels given by the wells 

which did not contain any sample.
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Figure 4.8. EFNy production of mononuclear splenocytes from GUTat 7.2-infected

mice at the decline of parasitaemia.
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Figure 4.9. EFNy production from mononuclear splenocytes of immunised mice.
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Figure 4.10a. Mononuclear splénocytes from uninfected spleens, infected spleens from 

the first peak of parasitaemia and from spleens two days after the first peak were 

harvested. The cells were cultured in vitro in the presence of Con A, 8 ug/ml, and the 

supernatants harvested at 24 (black) and 72 (white) hours. Cytokine ELIS As were used 

to determined IL-2 production from each sample. The results are expressed as the mean 

of three wells minus the background readings, that is the reading from the wells which 

did not receive any of the samples.

Figure 4.10b. A time course of IL-2 production by mononuclear spienocytes from mice 

inoculated with ILTat 1.3, GUT at 7.1 or given a sham injection of PBS, in response to 

stimulation in vitJ'o with Con A (8|j.g/ml). The first peak of parasitaemia was at 96 hours 

in both infections. Spienocytes were harvested from the mice at a number of time points 

and the supernatants were harvested after 24 hours in each case. 500U/ml was the top 

standard in this assay. The results are expressed as the mean of triplicate wells minus the 

background readings, that is the levels from the wells which did not contain any of the 

samples.
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Figure 4.10a. Concanavalin A stimulation of DL-2 production from spienocytes

from uninfected and infected mice.
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Figure 4.10b. Time course of EL-2 production in the acute-phase of trypanosome 

infection, before the fh st peak of parasitaemia.
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Figure 4.11. Mice were either infected with ILTat 1.3 trypanosomes, drug cured at the 

peak of parastiaemia and killed one or two weeks later (a) or immunised with one of four 

different paraformaldehyde-fixed trypanosome VATs and killed two weeks later (b).

The mononuclear splenocyte populations were purified and stimulated in vitro with 

Con A (8ug/ml). The supernatants assayed for fL-2 production at 24 (black) and 72 

(white) hours after dispensing. Results are expressed as the mean of triplicate wells with 

the background levels, that is the readings produced in the wells without the addition of 

sample, subtracted.
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Figure 4.11a. Production of IL-2 from mice infected, drug cured and spienocytes 

removed one or two weeks later.

I week 2 weeks

Time (post-cure)
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CHAPTER 5

IDENTIFICATION OF POTENTIAL T-CELL EPITOPES ON 

VARIANT SURFACE GLYCOPROTEINS OF TRYPANOSOMES: 

A THEORETICAL APPROACH

5.1. INTRODUCTION

The surface coat encapsulates an individual T.brucei parasite with the function of 

protecting the trypanosome from attack by the non-specific immune responses. The coat 

is highly immunogenic and readily generates adaptive immune responses but by 

imdergoing antigenic variation, the tiyqranosomes can change then siuface coat as a 

means of evading consequences of immunity (Borst & Cross, 1982; Esser & 

Schoenbechler,1985; Tmner & Bany, 1989; Borst, 1991). The surface coat consists of a 

monolayer of a single molecular species in high copy number, >10? copies per cell; the 

VSG. Antigenic variation is enacted by switching fr om expression of one VS G to that of 

another. Although there are several hiuidred VSGs that can be expressed by each cell 

they ah, as far as has been analysed to date, have several conseived features that they 

show. VSGs consist of a carboxy terminus, which is relatively constant hi its amino acid 

sequence and contributes to one third of the VSG, the remaining two thh ds being the 

highly variable amino terminus, which contains large hypeivariable regions. The 

carboxyl teiminal is linked to the parasite membrane via a glycophosphatidyl inositol 

(GPI) anchor. The primary sequences of the VSGs differ substantially but the VSG 

homo dimers have highly conseived teitiaiy structures and two of these tertiary stmctures
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have been determined by x-ray crystallography (Blum et a/, 1993). Tliese structures 

consist of internal cc-helices, and extensive inter- and intramolecular disulpliide linkages 

which provide a rigid column-shaped structure on the plasma membrane (Freymann et 

r//, 1990). The VSG molecules are tightly packed on the smTace membrane of the 

tiypanosome such that large molecules, such as immunoglobulin and C5b, are physically 

prevented from gaining access to the membrane itself. On live parasites antibodies only 

recognise a small portion of the VSG molecule in the amino terminal domain, distal to 

the plasma membrane (Magnus et a/, 1982; Sendashonga & Black, 1982; Masake et 

al, 1983; Black, 1986). There is no reasonable explanation as yet as to why 

hypeivariabihty in amino acid sequence should be foiuid not only hi these regions of the 

molecule, wliich are subject to effector antibody responses, but also in most other 

(subsurface) areas of the amino terminal domain. One possible explanation is to evade 

T-cell responses.

Antibodies can distinguish between teitiaiy protein stmctures extremely well unlike 

T-cells which only recognise processed antigen and cannot therefore discrimhiate 

between native and denatmed proteins. The T-cells can therefore come hito contact 

with the hypeivariable regions bmied witliin the teitiaiy VSG stmcture when the VSG is 

processed and cleaved into peptides. Antibodies capable of effective killing of live 

parasites can only be generated against exposed regions of the intact teitiaiy stmcture. 

Once a parasite has been killed, antibodies can be generated against subsurface regions 

of VSGs and internal invariant antigens but these antibodies will be ineffective in killing 

tiypanosomes (Pearson et <2 /, 1986; Shapho,1994).

The expeiimental hterature on T-cell responses in tiypanosome infections is confused. 

Athymic nu/nu mice can sufficiently control trypanosome infections by IgM and immune 

lysis (Campbell et <3 /, 1978). Irradiated thymectomised adult mice smvive T.hrucei better
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than fully immunocompetent mice (Askonas et <2 /, 1979). Together, these studies suggest 

that the antibody response is T-mdependent. In contrast, irradiation and reconstitution 

of chimeric mice (DeGee & Mansfield, 1984) and lack of con elation of longevity of 

infected mice with quahty of antibody response (Sendashonga & Black, 1988) both 

suggested the involvement of T-cells in control of infection. Tlie later direct observation 

of VSG-specific T-cells in the peritoneal T-cell population of infected mice confirmed 

the involvement of T-cells (Schleifer et a/, 1993). Uiese VSG-specific T-cells produced 

cytokines of the T-helper I subset but did not proliferate in response to the VSG.

To conduct a prelimaiy study as to whether VSGs might drive T cell responses and to 

investigate whether these responses were likely to be restricted to particular VSGs, I 

analysed VSG sequences using computer algorithms predictive of T cell epitopes. A 

computer program package, "TSites", was used. This program (Feller and De La 

Cmz, 1991) uses foin independent algorithms to identify potential antigenic deteminants 

for T-cells on amino acid sequences. The basis for each of these four algorithms is as 

foUows;

1.) An amphipathic structure is one which has hydrophihc and hydrophobic smfaces at 

opposite faces and the amphipathic helix model (Margaht et <2 /, 1987) is based on the 

theoiy by Dehsi and Berzofsky (1985) that T-ceh epitopes are predominantly 

amphipathic a-hehces. Tliis algorithm was shown by the original authors to be 75% 

successful and was highly significant (p<0.001) in identifying a batteiy of known T cell 

epitopes. Tliis algorithm has identified known helper and cytotoxic T-cell epitopes in 

other studies (Margaht et a/,1987; Reyes et a/,1990; Vordenneier et a/,1993).

2.) The Rothbard motif (Rothbard and Taylor, 1988) is based on findings that either one 

of two possible amino acid sequences are identified and recognised by MHC Class I and
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II for presentation. This motif has also been used successfully to identify CD4"̂  and 

CD8^ T-cell epitopes (Reyes et a/, 1990; Ashbridge et a/,1992 Vordeimeier et a/, 1993).

3.) & 4.) Sette et al (1989) showed a 75% success rate in identifying T-cell epitopes 

with each of the I-A"" and I-E‘‘ algorithms. These motifs are based on the likelihood of a 

segment of protem binding to the I-A"̂  or the I-E'* molecule, respectively, of the murine 

MHC H-2 haplotype. Known T-cell epitopes were used with all of these algorithms as a 

comparison in the method of identifying T-cell epitopes with regards to efficiency and 

sensitivity (Reyes et a/,1990).

These T-cell prediction algorithms have been employed in the present study to 

investigate which regions of VSGs are potential T-cell epitopes and to deteimine 

whether any of these epitopes are relatively conseived between the primary sequences if 

different VSGs or if they vary considerably between molecules. Because the teitiaiy 

structures of the VSGs are highly conseived (Blum et. a/,1993) and other infoimation 

suggests that such conseivation extends to many, if not all, VSGs (Blum cr a/,1993), 

including some of those used in expeiimental studies in the previous chapter, it has been 

possible to suggest how predicted T-ceh epitopes map onto the teitiaiy structure of the 

VSG molecule.

5.2. RESULTS

T-ceh epitopes predicted by "TSites" were identified in five VSG sequences. These 

five sequences were chosen for analysis because for two of them (ILTat 1.24 and MITat 

1.2) the tertiary stmctures have been resolved and the other thr ee VSGs (ILTat 1.3, 

ILTat 1.61 and ILTat 1.22) were used in experimental studies in Chapter 4. The
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sequences of four of the VSGs were published before the start of the project (Rice-Ficht 

et a/, 1981 ; Canhigton et al, 1991) and ILTat 1.61 was kindly sequenced by Dr. Mark 

Canington, University of Cambridge at our request. Tire sequence of this new VSG is 

given m Figure 5. le. ILTat 1.61 is an atyjiical Class A VSG with respect to its amino 

domam sequence and is such it is extremely difficult to ahgn its sequence to that of other 

VSGs (Cairington & Turner, unpubhshed results).

For all the sequences analysed, "TSites" predicted a number of potential epitopes 

widely distributed throughout the sequence [Figure 5. la-e.]. No algoritlim is 100% 

accurate in its predictions but use of four algorithms in combination should have 

hicreased the confidence with which predictions can be made. A few epitopes are 

highlighted as particular strong candidate epitopes.

Guidelines were adopted when selecting these epitopes so as to only select the most 

likely candidate T-cell epitopes within the sequences. The AMPHI motif was never used 

on its own as an indicator of T-ceh epitopes because the VSG tertiary stmctines consist 

of two large amphipatliic helices mnning vertically tlnough the molecule which may be 

identified instead of potential T-ceh epitopes. Another reason for not solely relying on 

this motif is that if a region is identified as amphipathic then it wih not necessarily be 

antigenic but the converse situation may weh apply: if the identified region is antigenic 

then there is a high probabhity that it whl be amphipathic (Dehsi & Berzofsky, 1985). 

Fmtheimore, I decided that at least two motifs must recognise the potential epitopes 

before the epitope is selected. This does not necessarily mean that those regions 

identified by only one motif are not likely T-ceh epitopes, only that there is an increased 

probabhity of successfid identification if there are two or more motifs recognising a 

particular region of the amino acid sequence.
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A minumum of four amino acids, which are recognised by two or more motifs as part 

of a potential epitope, are higldighted. The potential CD4 epitopes are shown in bold 

whereas the potential CD4/8 epitopes are in bold and imderlined. The residues 

suiTounding these liigliliglited amino acids will contribute to the remainder of the 

epitope. If the key residues for the MHC binding groove or the T-cell receptor are 

within these four amino acids then they may fonn part of a T-cell epitope. Many other 

potential T-cell epitopes have been identified on these primary sequence but have not 

been highhghted.

Hie ahgnment of these sequences shows interesting comparative distributions of 

epitopes [Figure 5.2.]. Hie variabihty in distribution of identified epitopes between 

sequences is dramatic and perhaps best illustrated by focussing on regions of the 

sequence that define conserved features of the tertiary structure. Such features are, for 

example, Cysteine 15 or Glycine 247, as defined by Bhun et al (1993).

To address the question as to whether some of these epitopes are exposed on the 

surface of the VSG molecule on intact cells, where they are potentially available to 

antibodies, or buried within the VSG coat, where any variation between epitopes can 

definitively not be attributed to evasion of functionally important effector antibody 

responses, I mapped some epitopes onto the resolved 3-D tertiary stmctures [Figure 

5.3.]. The predicted best candidate epitopes for the MITat 1.2, ELTat 1.3, ILTat 1.61 

and ILTat 1.22 sequences were used, mapped onto the stmcture of MITat 1.2. Analysis 

of this figure reveals that although some epitopes are located on the surface area of the 

VSG there are a number of epitopes which are subsurface, that is within the VSG coat, 

which could not come into contact with antibodies. These data suggest that some 

epitopes are T-cell epitopes and that variation in the VSG sequences maybe driven (in an 

evolutionary sense) by evasion of T-cell, rather than antibody, responses.
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5.3. DISCUSSION

Potential T-cell epitopes have been identified on the amino acid sequences of 

MITat 1.2, ELTat 1.24, ELTat 1.3, ELTat 1.61 and ILTat 1.22. This last antigen type is 

an iso VAT of GUTat 7.1 and the two have identical amino acid sequence (Carrington & 

Turner, unpublished result). MITat 1.2 and ILTat 1.24 were used in this study because 

their teitiaiy stmctures have already been deteimined (Metcalfe/ a/,1987; Freymann et 

a/, 1990) and the other tluee are routinely used in experimental studies in the lab.

Regions recognised by more than one motif were selected as potential candidate 

epitopes. Because the VSG teitiaiy stmctures have been shown to be highly conserved 

between antigen types (Blum et a/,1993) by x-ray crystallography studies, the possible 

epitopes were mapped onto the 3-D tertiary strucmre of MITat 1.2. Some identified 

epitopes are exposed on the tertiary structure to the host immune response but some are 

subsurface and on five trypanosomes will not come into contact with protective host 

antibody responses. It may therefore be possible that these regions are subsurface and 

extremely variable between VSGs to evade T-cell responses in the hostile immune 

environment. However, there are also some identified epitopes which are similar in 

locahty between the tertiary VSG strucmres of the different antigen types investigated.

Individually, each of the fbm algorithms has a very good success rate in identifying T- 

cell epitopes (Margaht et a/,1987; Reyes et a/,1990; Rothbard & Taylor, 1988; Sette et. 

a/, 1989) but these algorithms in combination with one another should increase this 

success rate further. Therefore a region within the primary VSG sequence recognised by 

one algorithm has a good probabhity of being a T-cell epitope but if more than one of 

these algorithms recognises the same region then there should be a very high probabhity 

indeed that the region whl be identified as a T-ceh epitope.
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Tlie AMPffl motif is not a good indicator, on its own at least, of potential T-cell 

epitopes of VSGs. Tliis is due to the fact that there are two very large amphipathic 

helices through the centre of each VSG and these are likely to be primarily of structural 

rather than antigenic significance. The recognised regions however could be possible T- 

celi epitopes but it would not be conclusive unless other motifs were used in conjunction 

with the AMPHI motif or unless experimental studies were conducted. Tlie regions of 

the VSG recognised by the Rothbard motif are good indicators of possible CD4 and 

CD8 T-cell epitopes. The regions recognised by either I-A‘» or I-E" motif are most likely 

to be MHC Class II regions and therefore potential CD4 T-cell epitopes. Hie greatest 

probability for a potential T-cell epitope is a region of the VSG which is recognised by 

the AMPHI, Rothbard and I-A  ̂motifs aU at one site on the VSG or recognised by the 

AMPHI, Rothbard and I-Ê  motifs at one site.

The possible T-cell epitopes identified on the amino acid sequence of the VSG have 

been mapped to the teitiaiy VSG stmctures to identify those epitopes that are likely to 

be exposed to the host immune system on the smface of the teitiaiy stmcture and those 

epitopes wlilch are subsiuface in the teitiaiy stmcture and could be recognised only by 

T-cells when the VSG is processed and presented by APCs or by antibodies that would 

be incapable of generating a fimctional effector response.

The confoi-matiou of the antigenic peptides has not been considered because linear 

detemnnants are recognised by both helper and cytotoxic T-ceUs and if the sequences 

have coiTesponding features then these wih be obvious in the primary protein stmcmre 

(Rothbard & Taylor, 1988). It is important to note that none of the fbui algoritlims takes 

into consideration additional stmctures of peptides that are required for presentation to 

T-ceUs (Reyes et a/, 1990). To be antigenic, peptides must have an anchor, or anchors, 

depending on whether the peptide gi oove is of the Class I or H MHC, within the
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sequence to allow the peptide to fit coirectly into the peptide groove for presentation. It 

must also have some residues orientated towards the T-cell receptor to allow recognition 

of the peptide. However, these algorithms have a high success rate in identifying known 

T-cell epitopes without considering detailed positional information of residues contained 

within peptides. The potential importance of such information is well illustrated by a 

study of a CD4 T-cell deteiminant of gpl 60 on the human immunodeficiency vhns 

(HIV) (Boehncke et a/, 1993). By substituting different amino acids into different 

positions within peptides these workers obtained evidence that in Class I MHC 

molecules there are a veiy limited number of key peptide residues that are essential for 

effective binding to allele-specific class I products. Then data also showed that to 

maintain an epitopic stmcture wliich induces a T-cell response is the res îonsibifity of 

only a few specific amino acids.

Ashbridge et al (1992) have successfully used the AMPHI motif, Rothbard motif and 

the I-A‘‘ motif to identify peptides on a 19kDa protein îtom Mycobacterium tuberculosis. 

These peptides were synthesised and were found to induce T-cell proliferation in vitro. 

Other smdies have been less successfid in using T-ceh prediction algorithms however. 

Synthetic peptides were made fiom tetanus toxin epitopes (Panina-Bordignon et a/, 1989) 

and although some generated a T-ceh response others did not.

If synthetic peptides are produced fiom these potential T-ceh epitope regions 

recognised on the VSGs, they would not be predicted to ah result in the same degr ee of 

T-ceh response. An ihustration of this point comes fiom a study by Vordeimeier et al 

(1993) who found that of 14 M. tuberculosis peptides, 12 were immunogenic but to 

differing degrees. Hie T-ceh proliferation of lymph node and spleen cells were examined 

and some of the peptides resulted in a very strong T-ceh response whereas others 

induced a weak response.

1 0 2



Despite the flaws in experimental design, the data and results created by the 

"TSites" program do show several potential T-cell deteiminants on the VSG amino acid 

sequences analysed. Due to the high degree of polymorphism that exists within MHC 

molecules it is not possible to generate peptides which wih bind to ah alleles although 

they may bind to several aheles. Tliis however gives a basis for further in vitro and in 

vivo investigation into the role or involvement of T-cehs in African tiypanosome 

infections and suggests that if several of the most common epitope regions between 

several VSGs were synthesised into peptides then this may be the basis of a potential 

vaccine, or alternatively that T-ceh responses, as weh as antibodies, are effective in 

driving of antigenic variation.
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Figure 5.1. Primary VSG sequence analyses to determine potential T-cell epitopes were 

carried out using 4 different T-cell prediction algorithms; the 'AiVlPHI' motif (A); the 

'Rothbard & Taylor' motif (R); the 'I-Â ' motif (D) and the motif (d). The 

sequences examined were ILTat 1.24 (a), IVIITat 1.2 (b), ILTat 1.3 (c), ILTat 1.22 (d) 

and ILTat 1.61 (e). The four algorithms make rather different predictions but areas 

where there is overlap between two or more algorithms are considered reasonable 

candidate epitopes. These potential CD4 epitopes are highlighted in bold whereas the 

potential CD4/8 epitopes are highlighted in bold and underlined.

Facing page 104



Figui’e 5,1a. The primary sequence of ILTat 1.24 with predicted CD4 and CD8 epitopes

T-cell identified.

5 10  15  2 0  2 5  3 0  3 5  4 0  4 5  5 0  55  6 0  6 5  7 0  75
THFGVKYELWQPECELTAELRKTAGVAKMKVNSDLNSFKTLELTKMKLLTFAAKFPESKEALTLRALEAALNTDL
......................................................AAAAAAA......................... AAAAAAA..................... AAA...............................................................
................... RRRR . . . RRRRR . . RRRRRRR RRRRRRR . R R R R......................... R RR R . RRRRRRRR . . .
................................................ DDDDDD........................................................................................................... DDDDDDDDD................

8 0  8 5  90  9 5  1 0 0  1 0 5  1 1 0  1 1 5  1 2 0  1 2 5  1 3 0  1 3 5  1 4 0  1 4 5  1 5 0
RALRDNIANGIDRAVRATAYASEAAGALFSGIOTLHDATDQTTYCLSASGQGSNGMAAMASQGCKPLALPELLTE
. . .AAAAAAAAAAAAA......... AAAAAAAAAAAAA......................... AAAAAA. .AAA
RRRR....... RRRR......RRRRRRRR..... RRRR.............................. RRRRR
............... DDDDDD......................................................

1 5 5  1 6 0  1 6 5  1 7 0  1 7 5  1 8 0  1 8 5  1 9 0  1 9 5  2 0 0  2 0 5  2 1 0  2 1 5  2 2 0  2 2 5
DSYNTDVISDKGFPKISPLTNAQGQGKSGECGLFQAASGAQATNTGVQFSGGSRINLGLGAIVASAAQQPTRPDL
........... AAAAAAAA.................. AAA..................... AAA...AA.....
 RRRR......................RRRR.........................................
.................................... DDDDDD................ DDDDDDDDD.......

2 3 0  2 3 5  2 4 0  2 4 5  2 5 0  2 5 5  2 6 0  2 6 5  2 7 0  2 7 5  2 8 0  2 8 5  2 9 0  2 9 5  3 0 0
SDFSGTARMOADTLYGKAHAglTELLQLAOGPKPGOTEVETMKLLAOKTAALDSIKFQLAASTGKKTSDYKEDEN
. . AAAAA........ AAAAAAAAAAAAAAAAA................ AA............AAAAA.....
.... RRRR . . . RRRRR...... RRRR............RRRRRRRR............................
................ DDDDDD.....................................................

3 0 5  3 1 0  3 1 5  3 2 0  3 2 5  3 3 0  3 3 5  3 4 0  3 4 5  3 5 0  3 5 5  3 6 0  3 6 5  3 7 0  3 7 5
L K TEY FG K TESN IEALWNKVKEEKVKGADPEDPSKESKISDLNTEEOLORVLDYYAVATMLKLAKOAED IA K LET
.................. AAAA.AAAAAA......................... AAAAAAAAAAAA. .AAAAAAAAAAAAAAAAAAAAAAAAAA7V1AAAA. .
. . . R R R R ...............R RR R R ..........................................................................................R R R R  RRRR . . . RRRR . . .
...................................................................................................................................................................... DDDDDD..................................
....................................................................... d d d d d d ...................................................................................................................................................................................

3 8 0  3 8 5  3 9 0  3 9 5  4 0 0  4 0 5  4 1 0  4 1 5  4 2 0  4 2 5  4 3 0  4 3 5  4 4 0  4 4 5  4 5 0
EIADORGKSPEAECNK IT E EPKCSEBKICSWHKEVKAGEKNCOFNSTKASKSGVPVTOTOTAGADTTAEKCKGKG
....................................AAAAAAAA......................... AAAAAAAA...........................................................................................................
R R R R ..............................R R R R ....................................................................................................................................RRRRR................
.......................................................................................................................................DDDDDD. . .DDDDDD........................................
............................................................................................................................................................................................................................................................d d d d d .

4 5 5  4 6 0  4 6 5  4 7 0
EKDCKSPDCKWEGGTCKD 
.A A A .......................................
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Figure 5.1b. The amiuo acid sequence of MITat 1.2 with the predicted T-ceh epitopes

identified.

5 10  15  2 0  2 5  3 0  3 5  4 0  4 5  5 0  5 5  6 0  6 5  7 0  75
AAE KG FKQAFWQ PLCQVS E ELDDQ PKGALFTLQAAASKIQKMRDAALRASIYAEINHGTNRAKAAVIVANHYAMK
...... AAAAAAAAAAAAAAAAA...........AAAAAAA.................................
..........................RRRRR............RRRRR...................... RRRRR
............................... DDDDDD...... DDDDDD...........DDDDDDDD.....
...................................................................................................................................... d d d d d d ....................................................................................................................

8 0  85  9 0  95  1 0 0  1 0 5  1 1 0  1 1 5  1 2 0  1 2 5  1 3 0  1 3 5  1 4 0  1 4 5  1 5 0
ADSGLEALKOTLSSOEVTATATASYLKGRIDBYLNLLLOTKESGTSGCMMDTSGTNTVTKAGGTIGGVPCKLOLS
. .AAAAAAAA........ AAAA AA.AAAA..................AAAAAAAAAAA..........
 RRRR..... RRRRR...........RRRR........................... RRRR........
...... DDDDDD. . .DDDDDDDDDDDD...............................................

1 5 5  1 6 0  1 6 5  1 7 0  1 7 5  1 8 0  1 8 5  1 9 0  1 9 5  2 0 0  2 0 5  2 1 0  2 1 5  2 2 0  2 2 5  
P IQ  P KR PAAT YLGKAG YVGLTRQADAMN FHDNDAE CRLASGHNTNGLGKSGQLS AAVTIVLAAGYVTVANSQTAVT
..................AAAA......................AAAAAAAAAAAA...............................AAAAAAATIAAA...............................................................
..................................RRRRRRR . . R R R R ................................. R RR R .............................................................R RR R .........................
.......................................................................................................................................................... DDDDDDDDDDDDD..................ODD

2 3 0  2 3 5  2 4 0  2 4 5  2 5 0  2 5 5  2 6 0  2 6 5  2 7 0  2 7 5  2 8 0  2 8 5  2 9 0  2 9 5  3 0 0  
VQALDALQEASGAAHQPWIDAWKAKKALTGAETAEFRNETAGIAGKTGVTKLVEEALLKKKDSEASEIOTELKKY
.AAAAAAAAAAA. . .AAAAA........................... AAA .......................................... AAAAAAA........................................ AAAAAA
. . . .  RRRR . . . RRRR . . . .  RRRR . . RRRRR . RRRR . . . RRRRRRR . . RRRRRRRRRRRR........................................RR
DDD.....................................................................DDDDDD...........................................................................................DDDDDD............

3 0 5  3 1 0  3 1 5  3 2 0  3 2 5  3 3 0  3 3 5  3 4 0  3 4 5  3 5 0  3 5 5  3 6 0  3 6 5  3 7 0  3 7 5
FSGHENEQWTAIEKLISEQPVAQNLVGDNQPTKLGELEGNAKLTTILAYYRMETAGKFEVLTQKHKPAESQQQAA
A A .................. AAAAAAA........................................AAAAA.AAA................AAAAA. A A A . AAA................................AAA. . .
R R ..............................R R R R ...................................................................... R R R R ....................RRRR . . RRRRR..................................
.................................................................................................................... DDDDDDDD..............................................................................

3 8 0  3 8 5  3 9 0  3 9 5  4 0 0  4 0 5  4 1 0  4 1 5  4 2 0  4 2 5  4 3 0  4 3 5
ETEGSCNKKDQNECKSPCKWHNDAENKKCTLDKEEAKKVADETAKDGKTGNTNTTGSS
..........................................AAAAAA..................................... AAAAAAAAAAAAAA............................
........................................................................................................... RRRRRRRR.....................................
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Figure 5.1c. ILTat 1.3 amino acid sequence with predicted CD4 and CD8 epitopes

identified.

5 10  15  2 0  2 5  3 0  3 5  4 0  4 5  5 0  5 5  6 0  65  7 0  75
TAKAPLKHSVATGFCSFSKAAKQAANKLAQTLDAVKATLNQNRKAHLQNLLVAVKRPTEQIAALILGQYANTQAA

.AAAAA. . AAAAAAAAAAAAAAAA AAAA. . . .AAAA.AAAAA. . . .AAAAA

.................................................... RRRR. . . .R R R R ...R RR R R RR R ......................................................................................................
 DDDDDDDDDDD..........................................DDDDDD...............................................................................................................
........................................................................................................................................................ d d d d .........................................................................................................

8 0  85  9 0  9 5  1 0 0  1 0 5  1 1 0  1 1 5  1 2 0  1 2 5  1 3 0  1 3 5  1 4 0  1 4 5  1 5 0
SGLSDLGKWAPDETKTIGOALYTSGRLDG FIDV LD GHRSENSGONMCIAMDGDGTTKAFDFDALCGPTEVAKAGN
AAAAAAAA...............A A A .A A ................ AAAAAAAAAAA........................................... AAA. . .AAAA. .AAAAAAAAAAA
..........RRRRR . . R R R R ......................................RRRRRRR.................................................. RRRRRRR....................... RRR R . . .

1 5 5  1 6 0  1 6 5  1 7 0  1 7 5  1 8 0  1 8 5  1 9 0  1 9 5  2 0 0  2 0 5  2 1 0  2 1 5  2 2 0  2 2 5
EPQDLKSSDRNGFWWHRRAAASGGNNHCVIFDDLNTAYSTKTAATDFLAGLIKVHQTTGLTAftTAIAAQKSTNKI
AAAAAA........................... AAAA...... AAAAAAAAAAAAAAAAAAA........AAAA
...........RRRRR . RRRRR..................RRRRRRRRRRRRR.................... RR
................................. DDDDDDDDDDDD......DDDDDDDDDDDDDDDDD......

2 3 0  2 3 5  2 4 0  2 4 5  2 5 0  2 5 5  2 6 0  2 6 5  2 7 0  2 7 5  2 8 0  2 8 5  2 9 0  2 9 5  3 0 0
LKDIDANWPKVOOAYTTAAGRSPTTBOEYKDLLKDESSRQKLRAAAOTVMNWKPADKPANMDDYLKOVFKIDANV
AAAAAA. . .AAAA. . . .A A A ..................... AAAAAAA............................AAAAAAAAAAAAAAAAAAAAAAA...................
R R ................................................................................ R R R R ...................... R RRRR...........................................R R R R .........................
...........................DDDDDDDDD....................................................................................................................................................................
..........................................................................................................................................d d d d d ....................................................................................................................

3 0 5  3 1 0  3 1 5  3 2 0  3 2 5  3 3 0  3 3 5  3 4 0  3 4 5  3 5 0  3 5 5
NSAYVTAMKEISMDVPTKDGETQKKELFEMSEEDLEAALAVEIRRLSSENAK
. . . .A A A A ...............................................................................................................................
........................................................................R R R R ..................................................................
.................................................................................................. DDDDDD. .DDDDDD. . . .
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Figure S.ld. Identified potential T-cell epitopes on the primary sequence of 

ILTat 1.22.

5 10  15  2 0  2 5  3 0  3 5  4 0  4 5  5 0  5 5  6 0  6 5  7 0  75
TKNKASQAVSDPCSEIHFDEQLANYFENEVSAATTQLDENQNFERSWKLLQYLQMDHQKSKGAAALAAYASTINI
..... AAAAAAAAA.... AAAAAAAAAA..............AAAAAAAAA.............AAA.....
................................................RRRR........................
. . . .DDDDDDDDDD.............. DDDDDD........................ DDDDDDDDDDDDDDDD
............................................................................................................................................................................................................ d d d d d ..................................................

8 0  8 5  9 0  9 5  1 0 0  1 0 5  1 1 0  1 1 5  1 2 0  1 2 5  1 3 0  1 3 5  1 4 0  1 4 5  1 5 0
RTAANVKAASGELLTAASLLRQRAANVSAAFQLQGQGVIKLGTPDIDNGAKSITHADAGCNYAAISKTVPTQRCT
.................................. AAAAA..... AAAAAAAAA.......... AA.......
RRRRR . RRRR . RRRR...... RRRR..........RRRR.......................... RRRRR ....
DDD . . DDDDDD . DDDDDDDDDDDDDDDDDD................................ DDDDDD . DDDDDD

1 5 5  1 6 0  1 6 5  1 7 0  1 7 5  1 8 0  1 8 5  1 9 0  1 9 5  2 0 0  2 0 5  2 1 0  2 1 5  2 2 0  2 2 5
PPQQQADTITAADMQPDKLDELQLITEAYTTTITIT^SAYSKGTPATGHTVYTYGNCQSTGGSASAQLGDTHALG
. . . .A A A ...........................AAAAAAAA.AAAA............................................................... AAAAAAA  AAAAAAAA. . .
............... R R R R .............................................. RRR R R ................................................ R RR R R .....................................................RRRR
 DDDDDD....................................DDDDDDDDDDDDDDDDD...................................................................................................

2 3 0  2 3 5  2 4 0  2 4 5  2 5 0  2 5 5  2 6 0  2 6 5  2 7 0  2 7 5  2 8 0  2 8 5  2 9 0  2 9 5  3 0 0
IH VK TIGTK AV TEK TTLOPSSSNKCPDEGTTAELTPIKRLARAICLARKASLAKPKALSRLOYSDLOTDTDFKRI
............................................................................................... AAAAAAAAA..................................AAAAAAA................................AAA
. . . RRRR . RRRRRRRRRR........................... R RR R R  R RR R.....................................R R R R ..............................................
..................................................................................................................... DDDDDD. . .DDDDDD..........................................................

3 0 5  3 1 0  3 1 5  3 2 0  3 2 5  3 3 0  3 3 5  3 4 0  3 4 5  3 5 0  3 5 5  3 6 0  3 6 5  3 7 0  3 7 5
AAIFLSRNGKQLDPEKDSQEINELIKETYGPNEEHFHKSYVEALDNKKW EFKIKESKIEGTVNALANGVDAGLAT
A A ......................AAAAA. .AAAAAAAAA............................... AAAAA................................................... AAAAAAAAAA.............
...............................................................RRRRRRRR...............................R RR R ........................................ RRR R....................... RRRR
..............................................................................................................................................................................................................DDDDD

3 8 0  3 8 5  3 9 0  3 9 5  4 0 0  4 0 5  4 1 0  4 1 5  4 2 0  4 2 5  4 3 0  4 3 5  4 4 0  4 4 5
AYYASKRQSTCGOAAAPTPIVSSDVEKCKGKTODDCRTADECEiyiRDGECNAKVAKTAEPDSKTNTTGISI
................................................................................................AAAAAAAAA................................. AAAA............................
.........................................................................................................R RR R .............................. RRRRRRR............................
DDDD...................................................................................................................................... DDDDDD.................................
............................................................................................. d d d d d .......................................................................................................................................
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Figure 5.1e. Algorithms identifying predicted T-cell epitopes on the ILTat 1.61 amino acid

sequence.

5 1 0  15  2 0  2 5  3 0  3 5  4 0  4 5  5 0  5 5  6 0  6 5  7 0  75
MDLSGRRHCLLAVCLCFCLNFAAANVNEDDNKEAAAALCG IL E LGAGRAKITPSTGLOTATYDEIODLNLSLADA
...........................................................................................................AAAAAAA...........................................AAAAAAA.........................
.................................................................................................................R RR R ................ RRR R R ........................................................RR
........................................................................................................................................... DDDDDDDDDDD....................... DDDDDDDD

8 0  8 5  9 0  9 5  1 0 0  1 0 5  1 1 0  1 1 5  1 2 0  1 2 5  1 3 0  1 3 5  1 4 0  1 4 5  1 5 0
AWRSLFRDPSNQDNFRGFPTEEFGESTDWKDKWEEWKNSATRLKEEAVLKDKLKAAGLEGASPSAMRHAOE IIA E
AAAAAAAA. . AAAAA. AAAAA. AAAAA. . .AAAAAA........................................................................... AAAAAAAAAAAAA
R R R ............................................................................................................................RRRRR . . . R R R R .................................... RRRRR

d d d d d ,

1 5 5  1 6 0  1 6 5  1 7 0  1 7 5  1 8 0  1 8 5  1 9 0  1 9 5  2 0 0  2 0 5  2 1 0  2 1 5  2 2 0  2 2 5
lA EA A AHLRRTTEEATKGKIIDOOAVOQKIDEAIYGEKIADEKAFGRAKVFNNAGGSROANGBGNIGENKASTTL
AAAAAAAAAAAAAA....................................A A A A A .............................................................................................................................
RRRRRRR . . RRRRRRRR . R R R R ......................... RRRRR . RRRR . RRRR . . R R R R ..................................................................
 DDDDDD.............................................................................................................................................................................DDDDD

2 3 0  2 3 5  2 4 0  2 4 5  2 5 0  2 5 5  2 6 0  2 6 5  2 7 0  2 7 5  2 8 0  2 8 5  2 9 0  2 9 5  3 0 0
ATLICLCAADNNGQTGSEHKACSGQTAVTQQWSGAAAPEQTTVTEMIQLCDTKDSHQITATALQTRLEAVARQLR
..............................................................................AAAAAAAAA...................AAAAAA AAAA. AAAA
................................................................................................................................R RR R  RRRRR . . R

DDDDDD........................................................................................................................................... DDDDDDDDDDD............. DDDDD

3 0 5  3 1 0  3 1 5  3 2 0  3 2 5  3 3 0  3 3 5  3 4 0  3 4 5  3 5 0  3 5 5  3 6 0  3 6 5  3 7 0  3 7 5
IINGAAYYGKFV^NCNGEQGGGLCVKYTDINNNAGKGFNSIPWVDKLRQLREQLEEHERAATKIEQTNTALNRA
AAAA............... AAAA AAAAAA. . AAAAAAAAAAAAAAAAAAAAA......................AA. . . .
R R R ...............RRR R R .................................. R R R R .................................................................................... RRRRR ...............................
D ..............................................................................................................................................................................................

3 8 0  3 8 5  3 9 0  3 9 5  4 0 0  4 0 5  4 1 0  4 1 5  4 2 0  4 2 5  4 3 0
AAATKAIGRRAQLREAAGSNAAEPVATQKSAKSEGKQKECNAAGDDPKKCKDL
.......................................... AAAAAAA......................A A ......................... AAAAAAA.............
. . . .  R R R R ...............R R R R ......................................................................................................
DDDDDDDDDDD.......................................DDDDDD...............................................................
...........................................................................................................................................................................d d d d . .
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Figure 5.3. Mapping of possible T-cell epitopes onto a tertiary VSG homodimer.

a
b C

The potential T-cell epitopes highlighted in Figure 5.1. for the four amino acid 

sequences of MITat 1.2 (a), ILTat 1.22 (b), ILTat 1.3 (c) and ILTat 1.61 (d) were 

mapped onto a tertiary VSG homodimer using a computer package, “Rasmol”. The 

potential CD4 epitopes are highlighted in red and the possible CD4/CD8 epitopes in 

blue.



CHAPTER 6

ANTIGENIC SPECIFICITY OF IMMUNE RESPONSES AFTER 

EVIMUNISATION

6.1. INTRODUCTION

Results from Chapter 4 suggested that a homologous antigen-driven T-helper 1 

response was generated in a tiypanosome infection and that tliis response was also 

partially cross-specific to some heterologous antigen types. Similar responses could be 

generated by immunisation with parafoimaldehyde-fixed tiypanosomes. Given these 

results, there are two potentially important outcomes that might arise fiom hnmunisation. 

Firstly, that priming of a T-cell response might prevent, or at least reduce, the 

consequences of infection with homologous antigen type and secondly, that improved 

cross-specific responses to heterologous antigen types might be generated, also leading 

to amehoration of the course of infection.

There is remarkably little hterature on immunisation agamst tiypanosome infections 

but there is evidence that VAT-specific protective immune responses can be generated. 

Immunisation with VAT-specific monoclonal antibodies provides protection against 

challenge with homologous trypanosomes but not against heterologous VATs (Crowe et 

al, 1984). Pi’otection against homologous VATs can also be achieved by immunisation 

with irradiated trypanosomes (Wehde et a/,1975; Finder et a/,1986).

My objective in this chapter was to investigate variant antigen-specific responses to 

immunisation and I have focused on two questions in particular: firstly, does generation
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of a T-cell response to a heterologous VAT lead to a protective response against that 

VAT? Secondly, does immunisation with a VSG-specific peptide generate T-cell 

responses to the homologous VAT and to a heterologous VAT?

To address the first question, I immunised mice using paraformaldehyde-fixed 

tiypanosomes of defined VAT as described in Chapter 4, infected them with 

tiypanosomes of either the same or a different VAT and then monitored the fates of the 

infections and aspects of the T-ceh response to infection. To conduct these studies I 

used the VATs ELTat 1.3, GUTat 7.1 and ELTat 1.61 because there was a considerable, 

reciprocal heterologous antigen-driven response between the first two VATs but veiy 

httle heterologous proHferative response between these and ELTat 1.61.

To address the second question, I made use of the theoretical considerations outlined 

in Chapter 5. These results indicated that it might be possible to select individual 

peptides, based on VSG sequences, that would generate T-cell responses against 

tiypanosome infections. Four peptides were selected, two fiom the ELTat 1.3 sequence 

and two fi om the ELTat 1.61 sequence that were predicted by the "TSites" program to 

contain possible T-cell epitopes. All four peptides consisted of 14 amino acids with a 

15th residue in each case being a cysteine residue by wliich they could be readily 

conjugated to Keyhole Limpet Haemocyanin (KTH). Amidation of the C-terminus was 

done for each peptide to protect the thiol gioup of each and prevent degradation of the 

peptides. Peptide 1, LAQTLDAVKATLNQC, and Peptide 4, GPTEVAKAGKEPGDC, 

were from the ELTat 1.3 amino acid sequence_with Peptide 2, GELELGAGRAKITPC, 

and Peptide 3, AEAAAHLRRTTEEAC, fiom the ELTat 1.61 sequence. Peptides 1 and 

3 were mapped to the a-helical core of the VSG homo dimers whereas Peptides 2 and 4 

were mapped to external loops of the VSG molecules. ELTat 1.3 and ELTat 1.61 were

1 1 2



the VATs selected as the basis for tiiis study due to the lack of reciprocity in stimulating 

antigen-driven proliferation in the infection and immmiisation regimes.

6.2. RESULTS

6.2.1. Immunisation With Paraformaldehyde-fixed Trypanosomas

6.2.1.1. Comparison Of Parasitaemias

The parasitaemia of an ELTat 1.3 infection increased steadily and peaked at day four 

with a parasitaemia of 1.3x lÔ /ml [Figme 6. la.]. Immmiisations with ILTat 1.3 

paraformaldehyde-fixed tiypanosomes altered the course of an ILTat 1.3 infection, the 

delay in the onset of parasitaemia was five days with this group of mice being killed on 

day eight at 1.6x 10 /̂ml. fir the case of a GUTat 7.1 infection after immunisation against 

ILTat 1.3, there was a delay in the onset of parasitaemia for two days and the rate of 

increase towards the peak of parasitaemia was more gradual, compared to that of the 

ILTat 1.3 infection, and peak occuiTed on day eight, five days after the ILTat 1.3 

infection, at 1.3x 10 /̂ml [Figure 6. la.]. At the peak of parasitaemia, >99.9% of the 

tiypanosomes present were expressing ILTat 1.3 in the ILTat 1.3 infection, but 

substantially less expressed ILTat 1.3 if they were immunised with ILTat 1.3 before 

infection and there was also a decrease in VAT homogeneity observed with GUTat 7.1 

tiypanosomes infection in the ILTat 1.3-immunised mice [Table 6.1.].

The GUTat 7.1 infection reached a peak at 1.3x lOVml at day four of the infection 

[Figure 6. lb.]. Immmiisation with GUTat 7.1 paraformaldehyde-fixed tiypanosomes
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followed by infection with GUTat 7.1 produced a delay in the detection of parasitaemia 

in the blood of these mice [Figure 6. lb.]. Parasites were not detected until day five. The 

course of the ILTat 1.3 infection after immunisation with GUTat 7.1 also resulted in a 

delay in detection of parasites m the bloodstream imtil day four and by day seven showed 

a peak parasitaemia of 1.3x lOVml. The number of tiyiianosomes present expressing 

GUTat 7.1 at the fir st peak of parasitaemia were >99.9% after the GUTat 7.1 infection 

whereas after GUTat 7 .1 immimisation followed by infection with GUTat 7.1 showed a 

decrease in the number of tiyqranosomes ex^nessing that VAT, as was the case with the 

tiypanosomes expressing ILTat 1.3 following the ILTat 1.3 infection m GUTat 7.1- 

rmmimised mice [Table 6.1].

file parasitaemia of an ILTat 1.61 infection reached peak parasitaemia, 2.5x lOVml, 

on day four of infection. Immunisation with parafoimaldehyde-fixed ILTat 1.61 

tiypanosomes followed by homologous infection did delay the onset of parasitaemia but 

only slightly and these mice were killed on day four at 1.6x lOVml [Figure 6. Ic.]. 

However, the mice immunised with ILTat 1.61 then infected with ILTat 1.3 did not 

result in any protection against this heterologous VAT as shown by the high 

parasitaemia, 1.3xlOVml, [Figure 6. Ic.] and by the homogeneity of the tiypanosome 

population at the peak of parasitaemia [Table 6.1].

6.2.1.2. Proliferative Responses Of Mononuclear Splenocytes

After immunisation with ILTat 1.3, then infection with ILTat 1.3 there was a high 

level o f proliferation in the absence of stimulant, >10,000cpm, but afl;er Con A 

stimulation the proliferative response was several fold gi'eater at >130,000cpm [Figme 

6.2a.]. There was also a high level of antigen-driven proliferation with ILTat 1.3,
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GUTat 7.1 and GUTat 7.2. Heterologous antigen-driven proliferation was obsei*ved 

with ANTat 1.8 stimulation albeit at a lower level and a lack of heterologous 

proliferation with ELTat 1.61 [Figure 6.2a.]. ELTat 1.3 immunisation, with 

parafoimaldehyde-fixed trypanosomes, followed by infection with a heterologous VAT, 

GUTat 7.1, resulted in similar results with an extremely high proliferative response to 

Con A, a substantial antigen-dirven proliferative response to GUTat 7.1, ELTat 1.3 and 

GUTat 7.2, slightly lower level of response to ANTat 1.8 and a lack of antigen-driven 

proliferation when stimulated with ILTat 1.61 [Figure 6.2b.].

GUTat 7.1 immunisation followed by GUTat 7.1 challenge infection resulted in an 

extremely high proliferative response despite the low level of parasitaemia. The Con A 

response was >200,000cpm and there was a high degree of proliferation in response to 

GUTat 7.1 and ELTat 1.3 paraformaldehyde-fixed tiypanosomes [Figure 6.2c.]. A 

heterologous antigen-driven proliferative response was produced with GUTat 7.2 

stimulation, less with ILTat 1.61 and ANTat 1.8 stimulation. The proliferation generated 

after infection with ELTat 1.3 tiypanosomes produced >100,OOOcpm with mitogenic 

stimulation, antigen-driven proliferation of >50,OOOcpm with ELTat 1.3 and >45,000cpm 

with GUTat 7.1 [Figure 6.2d.]. A similar degree of antigen-driven proliferation was 

observed with trypanosomes VATs expressing GUTat 7.2 and with ANTat 1.8 but a lack 

of proliferation with ELTat 1.61. These data are similar to those shown in Chapter 4 and 

indicate an association between the presence of a cross-reactive antigen-driven 

proliferative response and the cross-reactive protective response to infection.

6.2.1.3. Flow Cytometr y Analyses
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There was an extremely high increase in the cell numbers/spleen following 

immmiisation with parafonnaldehyde-fixed tryjianosomes followed by infection [Figure 

6.3]. Numbers of splenocytes in mice immunised but not infected were very similar to 

values from miinfected mice [Table 4.4b.] (data not shown). Tlie number of B-cells 

reached a slightly higher level in the mice which were infected with VATs heterologous 

to the trypanosomes used in the immunisations [Figure 6.3.]. This also appeared to be 

the case for the T-cells and CD4 cells but not CDS cells. Tliese differences between 

homologous and heterologous infection, after immimisation, may be the result of the 

higher levels of parasitaemia exliibited by the heterologo usly challenged mice. However, 

the percentages of B-ceUs, T-ceUs, CD4 and CDS cells were relatively constant when 

comparing these mononuclear splenocyte populations [Table 6.2.]. The ratio of 

CD4:CD8 cells was greater in the ILTat 1.3 immunised mice infected with ELTat 1.3 

compared with those of the other three groups. The ratios of activated CDS cells were 

detected as the same in each of the fom* cell populations examined but the ratios of 

activated CD4 cells differed showhig that the GUTat 7.1 immmiised mice infected with 

ELTat 1.3 having more activated CD4 cells than the equivalent mice infected with 

GUTat 7.1. Again, these data may be related to the higher parasitaemias detected in the 

mice infected with tiypanosomes expressmg heterologous VATs.

6.2.I.4. Cytokine Responses

Immunisation followed by infection with homologous VAT resulted in low levels of 

IFNy production with antigen stimulation. Both the ELTat 1.3 immunisation followed by 

ELTat 1.3 infection [Figure 6.4a.] and the GUTat 7.1 immunisation followed by
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GUTat 7.1 infection [Figure 6.4c.] showed that no IFNy was detected when the 

mononuclear splenocytes were stimulated with medium alone but mitogen-driven IFNy 

production was above 1500U/ml after 24 and 72 hours in both cases. Antigen-driven 

IFNy production varied between VATs but did not exceed more than 40U/ral. When 

immunisation was followed by infection with the heterologous VAT, there was some 

IFNy production when stimulating with medium alone and >1500U/ml with Con A 

stimulation [Figure 6.4b & d.]. Antigen-driven IFNy production was detected from these 

mononuclear splenocytes and the levels varied between each VAT but with ELTat 1.61 

production consistantly less than that of the other VATs.

In any of these four immimisation/infection regimes there was no detectable IL-5 or 

IL-6 production when the mononuclear splenocytes were stimulated with medium. Con 

A or any of the five VATs. Small amoimts of IL-2 were detected after Con A 

stimulation but the levels were <10U/ml m each case and there was no detectable EL-2 

production on antigenic stimulation.

6.2.2. Immunisation With Peptides

6.2.2.I. Comparison Of Parasitaemias

The four gr oups of mice immunised with the different peptide conjugates in adjuvant 

were infected with ELTat 1.3 and had different.parasitaemias at the time of killing. This 

was also the case for those groups infected with ILTat 1.61. All groups were killed at 

the same time when the first gr oup(s) reached peak parasitaemia, in order to compare 

theft splenocyte responses at identical time points. ELTat 1.3-infected mice immunised 

with peptide 1 were killed at 1.6x lOVml, immunised with peptide 2 at 8x lOVml, with
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peptide 3 at 1.3x lOVml and with peptide 4 at 3.2x lOVml. Tliose groups Immunised 

prior to ELTat 1.61 infection were killed at 3.2x lOVml for peptide 1, at 3.2x lOVml for 

peptide 2, at 6.3xI0Vml for peptide 3 and at 1.3xlOVml for peptide 4.

6.2.2.2. Proliferative Responses Of Mononuclear Splenocytes

Tire proliferative responses were investigated using populations ftom four groups of 

ILTat 1.61-infected mice with each having been immimised with one of four peptide 

conjugates before infection. Tire mononuclear splenocytes were stimulated with medium 

alone, the homologous antigen type, ELTat 1.61, and with two heterologous VATs. The 

homologous VAT was the positive control in these experiments. The cells fiom the 

peptide 1 immunised mice proliferated in response to homologous and one heterologous 

VAT, ELTat 1.3, but to a markedly lower degree with GUTat 7.1 [Figure 6.5a.].

Splenocytes fiom the peptide 2 immunised mice resulted in a higher level of 

proliferation after stimulation with medium alone, ILTat 1.61 and the heterologous 

VATs [Figure 6.5b.]. Tliese cells produced a homologous antigen-driven proliferative 

response and a heterologous antigen-driven response with both ILTat 1.3 and 

GUTat 7 .1.

Very high proliferative responses were detected when the cells from mice immunise 

with peptide 3 were stimulated with ELTat 1.61 [Figme 6.5c.]. These levels of 

Tliymidine incorporation were similar between all three groups.

The highest levels of ̂ H-Thymidine incorporation were displayed by those cells 

harvested fi’om the mice previously immunised with peptide 4 [Figme 6.5d.]. The 

cultme medimn alone produced a proliferative response >50,OOOcpm but there was also 

homologous antigen-driven and heterologous antigen-driven proliferation. Using peptide
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4 for immunisations produced a superior proliferative response with ILTat 1.3 and 

GUTat 7.1 paraformaldehyde-fixed trypanosomes compared to the response generated 

with ILTat 1.61.

Taken together, these data show that immunisation with any of the four peptides 

generated an antigen-driven proliferative response but there was Httle, if any, antigenic 

specificity to this response, despite the peptides being chosen jfirom unique sequence of 

VSGs for which the VATs generate antigen-specific responses.

6.2.2.3. Flow Cytometry Analyses

The numbers of particular cell types/spleen were determined and compared between 

those fi'om mice immunised with the peptide conjugates, those immunised with the 

peptides and infected with ILTat 1.3 and those immunised and then infected with 

ELTat 1.61. hr the case of peptide 1, there was an increase in the number of B-cells fiom 

mice infected with ELTat 1.3 but an even greater increase fiom those infected with 

ELTat 1.61 [Figm e 6.6a.]. The number of T-cells increased following infection with 

either ELTat 1.3 or ELTat 1.61 compared with immunisation alone and this increase was 

seen by both the CD4 cells and CD8 cells. With peptide 2, there was an increase in the 

B-cell, T-cell, CD4 and CDS cell populations as a residt of infection with either VAT 

[Figme 6.6b.]. There was a several fold increase in the number of B-ceUs present in the 

spleens of mice immimised with peptide 3 and infected with ELTat 1.3 or ELTat 1.61 

[Figme 6.6c.]. The numbers of T-cells also increased following trypanosome infection 

and this was in both the CD4 and CDS populations with the greater increase in 

ELTat 1.3-infected mice than in ELTat 1.61-infected mice. With peptide 4 there was an 

increase in B-cell number in the ELTat 1.3-infected mice but a greater increase in the
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mice infected with ELTat 1.61 tiypanosomes [Figure 6.6d.]. Surprisingly perhaps, there 

did not appear to be any increase in the number of T-cells fi om the infected mice.

The proportions and ratios of cells witliin the mononuclear splenocyte population 

fi'om four groups of mice immunised each with a different peptide conjugate without 

trypanosome infection were determined [Table 6.3a.]. Tlie percentages of B-cells, T- 

cells, CD4 and CDS cells did not differ too greatly between the mononuclear splenocyte 

populations fiom each gi’oup. Tlie ratio of B:T-cells was greater in the mice immunised 

with peptides 1 or 2 than those immunised with peptides 3 or 4. The ratios of CD4:CD8 

cells were consistent between peptides as was the proportion of activated CD4 cells 

within the four groups.

The main effects of infection were seen with both VATs and all four peptides. There 

was a decrease in the proportion of T-cells, mainly hr the CD4 compartment, and this 

was reflected in higher B:T ratios but lower CD4.CD8 ratios.

The proportions of B-cells, T-cells, CD4 and CDS cells, did not differ to a great 

extent between each group immunised with a different peptide conjugate and then 

infected with ELTat 1.3 [Table 6.3b.]. The various cell ratios were also very similar 

when comparing the fom' groups.

ELTat 1.61 infection, following immunisation with peptide conjugates, resulted hr 

differing proportions and ratios of cells in the four different splenocyte populations 

[Table 6.3c.]. The ratio of B:T cells was similar between each of the four" groups even 

though there was variabihty in the percentage of B-cells. The percentages of CD4 and 

CD8 cells were srmilar for each cell population when comparing the four mouse groups 

but the ratios of CD4;8 cells were variable. There appeared to be more activated CD4 

cells present in the mice which were immunised with either peptides 3 or 4 than those 

immimised with either peptides 1 or 2.
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6.2.2.4. Cytokine Responses

The mononuclear splenocyte populations harvested from the mice immunised with the 

peptide conjugates and then infected with either ELTat 1.3 [Figure 6.7.] or ELTat 1.61 

[Figme 6.8] produced IFNy after m vitro stimulation with Con A or with antigen. As 

had previously been seen with the proliferation data, there was no apparent antigenic 

specificity to the response however.

The splenocytes fi om the groups of mice immunised with the peptide conjugates and 

then infected with ELTat 1.3 tiypanosomes produced diffeiing amounts of EL-2 when 

stimulated with Con A [Figure 6.9a.]. The splenocytes fr om mice immunised with 

peptide 3 produced shghtly higher levels of EL-2 than the other tlu ee. Tliis could be 

attributed however to the higher parasitamia detected hi this group of mice. There was 

no detectable EL-2 when these cells fr om the fom' immunised groups were stimulated in 

vitro either with cidtme medium or with the tliree VATs used. There was no detectable 

IL-5 production by these mononuclear splenocytes when stimulating with medium alone. 

Con A or ELTat 1.3, ELTat 1.61 or GUTat 7.1 parafoimaldehyde-fixed ti'ypanosomes.

El general, the EL-2 production fiom the immunised mice infected with ELTat 1.61 

tiypanosomes was liigher than those fr om the ELTat 1.3-infected mice [Figure 6.9b.]. As 

also found in the ELTat 1.3-infected mice, there was no detectable EL-2 production when 

these mononuclear splenocytes were in vitro stimulated with medium or any of the three 

VATs. The splenocytes from these four groups of mice faded to produced any 

detectable IL-5 following either medium, mitogen or trypanosome antigen stimulation.
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6.3. DISCUSSION

It was possible to partially immunise mice using paraformaldehyde-fixed 

tiypanosomes expressing a single VAT. Tliese mice were substantially protected against 

homologous challenge and there was also a degree of cross-protection towards 

heterologous challenge. This was reflected by monitoring parasitaemias and in 

immunofluorescence studies which showed that a higli percentage of the tiypanosomes 

detected at the first peak of parasitaemia did not express the VSG surface coat of those 

tiypanosomes used for the original inoculum. In contrast, the mice immunised with 

peptides and adjuvant provided only a slight degr ee of protection as indicated by the 

different parasitaemias of each group. Hindsight suggests that twice as many mice 

should have been immimisated with each peptide with half of these mice being allowed to 

reach the first parasitaemic peak, however long it took, and then exarnming the 

proliferative and cytokine responses, rather than killing ah mice when one group reached 

parasitaemic peak. This would have allowed comparison of responses when ah groups 

involved were at the fir st peak of parasitaemia as well as data regarding the degi ee of 

protection against chahenge with homologous and heterologous VATs. The experiments 

conducted, suggest that there was gi’eater protection against homologous and 

heterologous tiypanosomes when prior immunisation was with parafoi'maldehyde-fixed 

tiypanosomes than with peptide conjugates with adjuvant. These data may reflect that 

these selected peptides are not very immunogenic and that others shoidd have been 

selected, that more than two immunisations should have been given or that mice of a 

different genetic background might usefiilly have been explored. The key to successful 

immimisation may be to have the ti’ypanosomes as intact as possible before the
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immunisation and the degree of protection may be increased further if the trypanosomes 

were immunised with adjuvant.

Perhaps the most significant finding fi om tliis section of my work was that a measure 

of cross-protection was engendered by immunisation with one VAT against a second 

VAT. This cross-protection was associated with a heterologous antigen-driven 

proliferative Tjjl response but there was no cross-protection against another VAT for 

which there was very little evidence of a heterologous antigen-driven T-cell response.

The imphcation fiom tliis finding is that immunisation to generate T-cell responses that 

are not VAT-specific is possible and could potentially overcome, at least in part, the 

VAT-specificity of antibody responses. Unfortunately, there has been little other work 

conducted on immimisation against tiypanosomiasis with which this result can be 

compared.

Irradiated tiypanosomes have been used in a number of studies to provide protection 

against trypanosome infections. Rats immunised with irradiated tiypanosomes provided 

protection following challenge with homologous trypanosomes but there was no 

protection against heterologous challenge (Wellde et al, 1975). This was also observed 

hi mice, but doses lower than 10̂  tiypanosomes/mouse resulted in less protection against 

homologous infection (Campbell & Philhps, 1976). Athymic mice and then heterozygous 

htteimates, immunised with hradiated tiypanosomes, siuvived for >25 days longer than 

non-immunised mice following homologous challenge (Campbell et a/,1978). Although 

irradiation has proved successful in the past as a method of immunisation, it is far easier 

to use paraformaldehyde-fixed tiypanosomes than 60,000 rads to achieve essentially the 

same result. A significant degree of protection was shown when mice were 

intravenously immunised with foimaldehyde-treated infected blood yet subcutaneous 

immunisation did not provide protection (Herbert & Lumsden,1968). Herbert &

123



Lumsden ( 1968) could not achieve cross-protection when they immunised with one VAT 

but when a cocktail of four different VATs, using formaldehyde-fixed infected blood, 

was used for rmmumsation then the mice were protected against challenge with each of 

the four* tiypanosome VATs. This study involved immunisation with four VATs to 

protect against these four VATs whereas I could achieve a degree of protection agamst 

at least two VATs with an immunisation of a single VAT. Puiified VSG, dissolved in 

saline, also provided protection against homologous but not heterologous infections 

when as little as 3|u,g of VSG was used for immunisation puiposes but even 10 times this 

amount did not protect against heterologous challenge (Baltz et a l,1911). Piotection 

against T. brucei has also been transfeired with immune sera, produced either by dmg 

cm*e or rmmumsation, and also by adoptive transfer of splenocytes fiom immunised mice 

but the VAT specificity of response was not investigated (Takayanagi & Emiquez, 1973 ; 

Campbell & Philhps, 1976).

The majority of investigations involving immunisations against trypanosome 

infections have involved monitoring parasitaemias and/or taking semm samples at 

timepoints throughout the immunisation and infection regimes. Very little work has 

examined the proliferatwe T-cell responses or the cytokine production. I have shown a 

strong proliferative and IFNy response was achieved following immunisations with 

parafoimaldehyde-fixed tiypanosomes and then challenge with homologous 

tiypanosomes and a degree of cross-protection against heterologous challenge 

suggesting that there are common epitopes between those VATs. In the view of the 

absence of specific antibodies detected against the heterologous VATs examined 

following rmmumsation with parafoimaldehyde-fixed trypanosomes (Chapter 4), this 

strongly suggests a role for T-cells in the protection against Afiican trypanosome 

infections.
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Isolating common epitopes between VSG sequences using the "TSites" program, as 

previously described (Chapter 5), proved difficult even though the algorithms used in this 

progiam have been successfully used before. Incomplete Freimd's adjuvant and peptides 

20 amino acids in length &om MJuberculosis for example successfidly induced T-cell 

proliferation in vitro (Ashbridge et a l,1992). The immunogenicity of the peptides would 

have had an influence on the immune response as previously shown (Panina-Bordignan et 

a/,1989; Vordeimeier et a/,1993) as well as the detailed amino acid composition of the 

peptides as shown by FttV (Boelmcke et a/,1993) and Hepatitis B (Beitoletti et a/,1994) 

research. Interaction with the peptide, T-ceU receptor and MHC complex may occur but 

the lack of costimulation will prevent an effective immune response being generated.

The peptide selected therefore should be one which will bind with MHC molecules and 

have T-cells which will recognise it and respond effectively. Although proliferative and 

cytokine responses were generated following peptide immunisations and then infection, it 

may have been possible to delay the onset of parasitaemia and generate a more effective 

proliferative and IFNy response if ftiither immunisations had been given or if different 

peptides were seleeted. It would also have been beneficial if a mitogen-driven 

proliferative response was included as an extra positive control in addition to the 

homologous antigen control.

Based on the idea of identification of a peptide that generated responses protective 

against multiple VATs, a further development can be envisaged, beyond the scope of this 

project to mvestigate: DNA vaccination. This type of vaccination would introduce a 

partial VSG gene sequence resulting in peptide production with the peptides being 

recognised as foreign by the host immune system. If the DNA is supercoiled then it can 

be mjected into the skin or muscle of the host with the skin cells being the better choice 

as there is a reduced risk of disrupting the hosts noimal gene fimctions due to the quick
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turnover of skin cells (Simmonds et a/,1997). DNA vaccines have proven successM in 

malaria infections using the sequence for the chcumsporizoite protein; in tuberculosis 

using the gene for a heat-shock protein; and in the SV40 tiunoui’ model using the SV40 

large tumour antigen (reviewed by Simmonds et a/,1997).

Li conclusion, I have shown that it is possible to achieve protection against T. brucei 

infections by one immunisation procedure and responses indicative of protection with a 

second. Not only was it possible to protect against homologous challenge but more 

importantly it was possible to achieve partial cross-protection against a heterologous 

VAT. Although this was a usefiil step foiward more work will be requhed to determine 

how many VATs can be protected against by an immunisation containing a single VAT.
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Figure 6.1a. Parasitaemias of ELTat 1.3 and GUTat 7.1 infections after

immunisation of mice with paraformaidehyde-fîxed ELTat 1.3 trypanosomes.
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Figure 6.1b. Parasitaemias of GUTat 7.1 and ILTat 1.3 infections after 

immunisation of mice with paraformaldehyde-ilxed GUTat 7.1 trypanosomes.
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Figure 6,1c. Parasitaemias of ILTat 1.61 and ILTat 1.3 infections after

immunisation of mice with paraformaldehyde-fixed ILTat 1.61 trypanosomes.
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Figure 6.1. Parasitaemias were determined daily by the 'rapid matching' method from 

gi’oups of infected mice (controls) and from groups which were immunised with 10̂  

parafoimaidehyde-frxed trypanosomes expressing either ILTat 1.3 (a), GUTat 7.1 (b) or 

ILTat 1.61 (c). Two weeks after immunisation, groups of mice were infected with 

homologous antigen type or infected with the heterologous VAT using lO'* 

trypanosomes/mouse.
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Table 6.1. Percentage homogeneity of trypanosome population at the first peak of 

parasitaemia in mice immunised then infected.

Immunising VAT VAT used for infection Percentage homogeneity 
of population

None ELTat 1.3 >99.9
ELTat 1.3 ELTat 1,3 20
ELTat 1,3 GUTat 7.1 70

None GUTat 7.1 >99.9
GUTat 7.1 ^U T at 7.1 35
GUTat 7.1 ELTat 1.3 75

1
None ELTat 1.61 >99.9
ILTat 1.61 ILTat 1.61 54
ELTat 1.61 ILTat 1.3 1 >99.9

wasPercentage homogeneity of the trypanosome population for VAT expression 

determined at the time of killing for each group using the immunofluorescence antibody 

technique on blood smears. These groups of mice were first immunised with 10® 

paraformaldehyde-fixed trypanosomes expressing ILTat 1.3. GUTat 7.1 or ELTat 1.61 

and then infected two weeks later with 10̂  trypanosomes/mouse of either homologous 

heterologous VAT.
or
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Figure 6,2. Proliferative responses of mononuclear splenocytes were examined after 

immunisation with 10*̂  paraformaldehyde-fixed trypanosomes/mouse expressing 

ILTat 1.3 then infected with lO'̂  trypanosomes/mouse using lines expressing ILTat 1.3 

(a) or GUTat 7.1 (b) trypanosomes. The reciprocal immunisation/infection regime was 

also examined with mice being immunised against GUTat 7.1 and then infected with 

GUTat 7.1 (c) or ILTat 1.3 (d). The cells were stimulated in vitro with medium alone. 

Con A (Spg/ml) or one of five different VATs. The results are expressed as the 

geometric means ± 2 SE.
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Figure 6.2a. Proliferative responses of mononuclear splenocytes after CLTat 1.3

immunisation followed by ELTat 1.3 infection.
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Figure 6.2b. Mononuclear splenocyte proliferative responses from mice immunised 

with ELTat 1.3 then infected with GUTat 7.1 ti'ypanosomes.
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Figure 6.2c. Proliferative responses of the mononuclear splenocyte population

after GUTat 7,1 immunisation and GUTat 7.1 infection.
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Figure 6.2d. Mononuclear splenocyte proliferation after GUTat 7.1 immunisation 

then infection with ILTat 1.3.
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Figm e 6.3. Flow cytometry analyses of mononuclear splenocytes following
immunisation of mice with fixed trypanosomes then infection with trypanosomes.
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Mononuclear splenocytes were puiified and labelled for CD 19 (B-ceUs), CD3 (T-ceUs), 
or double labeUed for CD4 and CDS and the ceU number/spleen for each population 
deteimined by FACS analysis. The mean of 5 mice/group are shown with 5000 ceUs 
counted for each sample. In the key box, the VAT used for immunisation is indicated 
fii'st, foUowed by the VAT used for infection, for each group of mice.

Table 6.2. Percentages and ratios of cell populations of mononuclear splenocytes 
following immunisation and infection regimes.

Cell Type ELTat 1.3 / 
ILTat 1.3

ELTat 1.3 / 
GUTat 7.1

GUTat 7.1 / 
GUTat 7.1

GUTat 7.1 / 
ELTat 1.3

B 59 57 55 60
T 20 21 22 23
CD4 14 16 16 17
CDS 6 5 6 6
B;T ratio 3:1 2.6:1 2.5:1 2.6:1
CD4:8 ratio 2.3:1 3.2:1 2.7:1 2.8:1
CD4:25 ratio 25:1 25:1 33:1 20:1
CD8:25 ratio 100:1 100:1 100:1 100:1

Percentages and ratios were deteiToined fiom FACS analyses of the ceU populations fiom 
groups of five immunised then infected mice. CD25 was used as a marker of activation, 
hi the header for each column, the VAT used for immunisation is shown fir st, foUowed 
by the VAT used for infection.
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Figure 6.4. IFNy production was measured from the mononuclear splenocyte 

populations after immunisation with ILTat 1.3 followed by infection with either 

ILTat 1.3 (a) GUTat 7.1 (b) and also after immunisation with GUTat 7.1 followed by 

infection with either GUTat 7.1 (c) or ELTat 1.3 (d). The cells were either stimulated 

with medium alone. Con A (Spg/ml) or one of five different antigen types and the 

samples were analysed either 24 hours (white) or 72 hours (black) later. The results are 

expressed as the means of triplicate wells minus the background readings, that is the 

readings obtained from the wells without any sample.
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Figure 6.4a. IFNy production from mononuclear splenocytes after ELTat 1.3

immunisation and infection.
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Figure 6.4b. IFNy production from mononuclear splenocytes after ELTat 1.3 

immunisation then GUTat 7.1 infection.
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Figure 6.4c. IFNy production from mononuclear splenocytes after GUTat 7.1

immunisation then infection.
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Figure 6.4d. Production of IFNy by mononuclear splenocytes following GUTat 7.1 

immunisation then infection with ELTat 1.3 tiypanosomes.
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Figure 6.5. Tlie proliferative responses of the mononuclear splenocyte populations was 

examined using mice immunised with peptides conjugated to adjuvant and then infected 

with ILTat 1.61 ti'ypanosomes. Each of the four groups of mice were either immunised 

with peptide 1 (a), peptide 2 (b), peptide 3 (c) or peptide 4 (d) and all mice were kiUed 

when peak parasitaemia (1.3x10^ trypanosomes/ml) was reached by at least one of the 

groups. Stimulation in vitro was with medium alone or with one of three different 

parafoimaldehyde-fixed trypanosome VATs. The results are expressed as the mean 

values of quadiuphcate wells ± 2 SE. The sequence for peptide 1 was derived fi'om the 

a helix ('A region) of ILTat 1.3 VSG; the sequence for peptide 2 fiom the 'g' loop of 

ILTat 1.61 VSG; the sequence for peptide 3 fiom the a  helix ('If region) of ILTat 1.61 

VSG and the sequence for peptide 4 fiom the 'i' loop of the ELTat 1.3 VSG.
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Figure 6.5a. Proliferative responses of mononuclear spleuocytes from mice

immunised with peptide 1 and infected with BLTat 1.61.
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Figure 6.5b. Proliferation of mononuclear splenocyte populations following 

immunisation with peptide 2 and BLTat 1.61 infection.
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Figure 6.5c. Proliferation of mononuclear splénocytes following immunisation with

peptide 3 and ELTat 1.61 infection.
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Figure 6.5d. Proliferative responses of mononuclear splenocyte populations after 

immunisation with peptide 4 and infection with DLTat 1.61.

o
X
?au
CowczL.o
oV
a
ua

B2

220
200
180
160
140
120
100
80
60
40
20

0

Medium ILTat 1.61 ELTat 1.3 GUTat 7.1

135



Figure 6.6. Tlie cell munbers/spleen were determined for a number of populations by 

flow cytometry and compared between those from mice immunised with peptides, those 

which were immunised and then infected with ILTat 1.3 and those immunised and 

infected with ILTat 1.61 trypanosomes. The groups were immunised with either peptide 

1 (a), peptide 2 (b), peptide 3 (c) or with peptide 4 (d) conjugated to a KLH carrier and 

injected with adjuvant. The populations were counted for B-cell, T-cells, CD4 cells and 

CDS cells with 5000 cells counted in each sample analysed.
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Figure 6.6a. FACS analyses of mononuclear spleuocytes after immunisation with

peptide 1 and infection with different trypanosome lines.
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Figure 6.6b. FACS analyses of mononuclear spleuocytes after immunisation with 

peptide 2 and infection with different trypanosome lines.
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Figure 6.6c. Flow cytometry examination of mononuclear splenocyte populations

following immunisation with peptide 3 and infection with trypanosomes.
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Figure 6.6d. FACS analyses of mononuclear spleuocytes after immunisation with 

peptide 4 and infection with different trypanosome lines.
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Table 6.3. The percentages and ratios of cell populations were determined by FACS 

analyses of mononuclear splenocyte populations using groups of mice in different 

immunisation and infection regimes. These analyses were on populations immunised 

with the four peptides (a), on populations immunised with the peptides then infected 

with ILTat 1.3 tiypanosomes (b) and on cells from immunised mice which were then 

infected with ELTat 1.61 (c). The values are expressed as percentages except where 

otheiwise stated. CD25 was used as a marker of activation and 5000 cells were counted 

from each sample.

ND = no stained cells detected.
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Table 6.3a. Percentages and ratios of mononuclear spleuocytes following

immunisation with peptide conjugates.

Cell Type Peptide 1 Peptide 2 Peptide 3 Peptide 4
B 56 54 48 52
T 36 31 39 36
CD4 26 22 28 26
CD8 10 9 11 10
B;T ratio 1.6:1 1.7:1 1.2:1 1.4:1
CD4:8 ratio 2.6:1 2.4:1 2.5:1 2.6:1
CD4:25 ratio 50:1 50:1 50:1 50:1
CD8:25 ratio ND ND ND ND

Table 6.3b. Flow cytometry examination to determine proportions of mononuclear 

splenocyte populations after immunisation with peptides and DLTat 1.3 infection.

Cell Type Peptide 1 Peptide 2 Peptide 3 Peptide 4
B 51 56 54 55
T 26 28 29 26
CD4 16 18 19 17
CD8 10 10 10 9
B:T ratio 2:1 2:1 1.9:1 2.1:1
CD4:8 ratio 1.6:1 1.8:1 1.9:1 1.9:1
CD4:2S ratio 25:1 25:1 20:1 25:1
CD8:25 ratio 100:1 100:1 100:1 100:1

Table 6.3c. FACS analyses of mononuclear spleuocytes to determine cell 

proportions following immunisation with peptides then ELTat 1.61 infection.

Cell Type Peptide 1 Peptide 2 Peptide 3 Peptide 4
B 67 52 60 62
T 24 21 23 24
CD4 15 12 16 16
CD8 9 9 7 8
B:T ratio 2.8:1 2.5:1 2.6:1 2.6:1
CD4:8 ratio 1.7:1 1.3:1 2.3:1 2:1
CD4:25 ratio 33:1 33:1 25:1 25:1
CD8:25 ratio 100:1 100:1 100:1 100:1
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Figure 6.7. The production of IFNy from mononuclear splenocyte populations after 

immimisation, with one of four peptides then infection with ILTat 1.3 trypanosomes, was 

measured. The cells were purified from mice that had been immunised with either 

peptide 1 (a), peptide 2 (b), peptide 3 (c) or peptide 4 (d). The supernatants were 

liaivested 24 (white) and 72 (black) hours after in vitro stimulation with medium. Con A 

(8j.tg/ml) and three different trypanosome VATs. The results are expressed as the means 

of triplicate wells minus the background, that is the readings obtained from the wells 

without any sample.
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Figure 6.7a. Pi'oduction of IFNy from mononuclear spleuocytes after

immunisations with peptide 1 and infection with ELTat 1.3.
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Figui e 6.7b. IFNy production following immunisation with peptide 2 and infection 

with ELTat 1.3 trypanosomes.
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Figure 6.7c. IFNy production following in vitro stimulation of mononuclear

spleuocytes from mice immunised with peptide 3 then infected with DLTat 1.3.
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Figure 6.7d. Production of IFNy by mononuclear spleuocytes from mice 

immunised with peptide 4 and infected with DLTat 1.3 brypanosomes.
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Figure 6.8. IFNy production was measured from mononuclear spleuocytes populations 

haivested from four groups of mice immunised then infected. The mice were either 

immunised with peptide 1 (a), peptide 2 (b), peptide 3 (c) or with peptide 4 (d) then 

infected with ELTat 1.61 trypanosomes. The culture supernatants were harvested 24 

(white) and 72 (black) hours after in vitro stimulation with medium alone, Con A (8p 

g/ml) and three paraformaldehyde-fixed trypanosome VATs. The results are expressed 

as the mean values of triphcate wells mdnus background levels, that is the levels obtained 

fi'om wells without any sample.
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Figure 6.8a. Production of IFNy by mononuclear spleuocytes from mice

immunised with peptide 1 and infected with ELTat 1.61 trypanosomes.
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Figur e 6.8b. IFNy production following immunisation with peptide 2 and infection 

with ELTat 1.61.
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Figure 6.8c. Production of IFNy from mononuclear spleuocytes after

immunisations with peptide 3 and infection with ELTat 1.61.
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Figure 6.8d. IFNy production following in vitro stimulation of mononuclear 

spleuocytes from mice immunised with peptide 4 then infected with ELTat 1.61.
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Figure 6.9. The levels of EL-2 production from mitogen-stimulated mononuclear 

splenocyte populations from mice immimised with one of four peptides, then infected 

with either BLTat 1.3 (a) or ILTat 1.61 (b) trypanosomes. The supernatants were 

examined after 24 (white) and 72 (black) hours and the results are expressed as the 

geometric means of triphcate wells minus the background levels, that is the levels 

obtained from the wells which do not contam any sample.
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Figure 6.9a. EL-2 production from mitogen-stimulated mononuclear spleuocytes

using mice immunised with peptides and then infected with ILTat 1.3.
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Figure 6.9b. IL-2 production after mitogen stimulation of mononuclear 

spleuocytes following immunisations with peptides and infection with BLTat 1.61.
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CHAPTER 7

REGULATION OF T-CELL RESPONSES DURING CHRONIC

INFECTIONS IN MICE LACKING INDUCIBLE NITRIC 

OXIDE SYNTHASE

7.1. INTRODUCTION

I have presented data in previous chapters which suggests that T. brucei parasites can 

stimulate ex vivo T-helper I type responses. The question then arises as to how these 

responses may be regulated. This chapter addresses one potential aspect of this 

regulation; the role of NO in control of T-cell responses. Two lines of argument 

suggest, in combination, that NO synthesis may affect T-cell responses and thus the 

course of a trypanosome infection. A rapid and profound depression of T-cell responses 

is one of the characteristic featm'es of a trypanosome infection after the fist peak of 

parasitaemia (Corsini et a/,1977; Jayawardena et a/,1978; Sileghem et a/,1986). 

Macrophages activated during trypanosome infections produce NO and prostaglandins 

and these macrophages can suppress IL-2 production and EL-2 receptor expression 

which can in turn affect the T-cell responses (Sileghem et a/,1989 Sileghem &

Flynn, 1992; Schleifer & Mansfield, 1993). Indomethacin prevents prostaglandin 

synthesis and indomethacin treatment showed that IL-2 production can be restored after 

this treatment whereas EL-2 receptor expression cannot (Sileghem et a/,1989; Sileghem 

et a/,1991 ; Daiji et a/, 1993). The inference from these data is that reduced EL-2 receptor 

expression is influenced by NO. IFNy appears to play an important role in this putative
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regulatoiy pathway as anti-IFNy antibodies reduced the level of suppression and restored 

IL-2 receptor expression (Daiji et a/, 1993), at least in some populations.

The second hne of argument comes from observation of increased NO synthesis in 

splenic and peritoneal macrophages fr om trypanosome-infected mice (Sternberg & 

McGuigaii, 1992; Sclileifer & Mansfield, 1993; Mabbott et al, 1995). NO has no 

trypanocidal activity however (Vincendeau et a/,1992; Mabbott et a/,1994).

Bloodstream trypanosomes are not susceptible to NO-mediated killing in vivo as the 

oxyhaemoglobiu present in the RBCs acts as a scavenger for NO (Mabbott et a/, 1994). 

However, inliibition of NO leads to reduced parasitaemia at the first peak of infection 

(Mabbott et a/,1994; Steinberg et a/,1994) and this may be a result of T-cell fimctions 

being at least partially restored.

These arguments can be clearly seen by a summary diagram [Figiu'e 7.1.] which 

predicts a possible mechanism by which the macrophages induce immunosuppression 

during T.briicei infections; macrophages become activated dming infection, produce NO 

and prostaglandins wliich in turn depress IL-2 receptor expression and IL-2 production 

respectively. Both events result in a depressed T-cell response thereby allowing an 

increase in parasitaemia.

According to this line of reasoning, NO inhibition reduces trypanosome parasitaemias 

by releasing the T-cells from their depressed state, which is mediated by the 

dowm egulation of IL-2 receptor expression, and thereby restoring T-cell competence. 

The prediction would be therefore that abrogation of iNOS activity to prevent a rise in 

NO levels in infections should lead to upregulation of indicators of T-cell activity and 

improved control of parasitaemia. I therefore investigated the possibility that NO 

synthesis may affect the course of a trypanosome infection via control of T-cell responses 

using mice lacking INOS (Wei et a/,1996).
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7.2. RESULTS

7.2.1. Comparison Of Parasitaemia In iNOS-deficient And Contr ol Mice

During infection with the pleomorphic GUTat 7.2 trypanosomes, the parasitaemias in 

iNOS-deficient and control mice progressed at similar rates towards the first peak of 

parasitaemia [Figure 7.2.]. Both groups reached first peak of parasitaemia at the same 

day post-infection and essentially the same levels of parasitaemia before parasitaemias 

declined with the onset of effector immune responses. In the iNOS-deficient group, the 

parasitaemias decreased at a quicker rate during the chronic phase of the infection when 

compared to then heterozygous counterparts in which parasitaemias remained at a higher 

level for a longer period of time before declining. From days 8-11 of infection, there was 

an approximate order of magnitude difference in levels of parasitaemia between iNOS- 

deficient and control mice.

Interestingly, the INOS-deficient mice appeared clinically more distressed by infection 

than the control mice. They were more sluggish, had badly piled coats, Ihnp tails, dull 

eyes and their breathing was more shallow even though these mice had fewer parasites in 

their bloodstream than the control mice. Because of these changes in clinical 

presentation the mice had to be killed on day 11 of infection.

7.2.2. Immunoglobulin Isotyping Of Plasma Samples

Immimoglobulin isotype levels were determined for the uninfected and infected 

iNOS-deficient mice and their heterozygous counterparts [Figure 7.3.]. Comparing the
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isotyîie levels of the uninfected groups with each other and of the infected groups with 

each other, the levels were fairly similar in aU instances. These data suggest that the 

B-cells in the homozygous and heterozygous mice, as indexed by immimoglobulin titre, 

are not affected if inducible nitric oxide synthase is lacking. In the control trypanosome- 

infected mice, where iNOS production was intact, the B-cells showed no indication of 

being immunodepressed as far as their immmioglobulin production was concerned for the 

isotypes examined.

At day 11 post-infection, it was shown that the level of IgM had increased several 

fold compared to the IgM levels of the uninfected mice. The levels of IgĜ a mcreased by 

approximately 200mg/litre in the infected groups with the IgĜ b isotype levels also 

increasing slightly above those of the uninfected mice. However, the levels of the IgGi 

immunoglobuhns decreased by approximately 200mg/litre for both infected homozygous 

and heterozygous mice.

7.2.3. Proliferative T-cell Responses

When the ability of the T-cells to respond, in a proliferative marmer, to medium or 

Con A was examined it could be clearly showrr that the degree of response differed 

between the trypanosome-infected controls and the infected iNOS-deficient mice [Figure

7.4.]. The proliferative T-cell response, after Con A stimulation, hr the iNOS-deficierrt 

mice was approximated double that of the heterozygous infected mice.

When the mononuclear spleuocytes from infected groups of mice were in vitro 

stimulated with medium alone, the cells from the iNOS-deficient mice responded with 

liigh ^H-Thymidine incorporation values compared with the heterozygous counterparts. 

The liigh levels of proliferation hi both groups stimulated with medium is probably due to
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the cells being highly primed hi vivo, due to the trypanosomes, and therefore when 

transferred to the in vitro environment the cells will carxy over with them partially 

processed antigen. These Irigh values have also been observed in irrfected Balb/c mice 

(Chapters 3 & 4). The higher levels of proliferation in iNOS-deficient compared with 

control mice may result because the homozygous mice are not under iNOS-induced 

immunodépression, they therefore produce a greater T-cell proliferative response than 

the control mice with regards to in vitro stimulation both with Con A and with medium 

alone.

When the values, provided by ^H-Tliymidine incorporation, were examined to provide 

a stimulation index for each Con A response, the responses differed between 

experiments, hi Figure 7.4., the stimulation index for the homozygous mice was 4.5 

whereas it was 2.9 for the heterozygous mice. However, in a repeat experiment (results 

not shown) the stimulation indices were almost identical with the homozygous mice 

producing a stimulation index of 3.3 and the heterozygous controls producing an index 

of3.2.

7.2.4. Cytokine Production In Control And iNOS-deficient Infected Mice

Spleuocytes fi'om chronically infected mice were different hr then capacity to produce 

IFNy when compared between the control and iNOS-deficient mice [Figure 7.5.]. The 

GUTat 7.2, ILTat 1.3 and ILTat 1.61 paraformaldehyde-fixed trypanosomes, which were 

used for in vitro stimulation, are aU expressed at some point dming the GUTat 7.2 

chronic infection with GUTat 7.2 being the homotype' at the first parasitaemic peak. 

Mononuclear spleuocytes fi'om the control mice produced very little IFNy when 

stimulated with any one of the three paraformaldehyde-fixed VATs and very low
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amounts was detected even when stimulated with. Con A. However, IFNy production 

with the mononuclear spleuocytes from the iNOS-deficient mice was very different.

Very little IFNy was detected in the samples stimulated with medium alone, as with the 

control mice, and only slightly more than this with the ELTat 1.61-stimulated cells. The 

ILTat 1.3-stimulated cells produced several fold more IFNy than the BLTat 1.61- 

stimulated cells but not nearly as much as those cells stimulated with GUTat 7.2 

trypanosomes. Tire cells stimulated with Con A produced the liighest IFNy response.

The EFNy production was 2-fold greater than the GUTat 7.2 response and above 

lOOOU/ml.

The levels of EL-5 and EL-2 production was also ascertained, fir both the control and 

iNOS-deficient infected groups, there was no EL-5 production above lU/ml when 

stimulated with medium. Con A or one of the three fixed VATs (data not shown). When 

the levels of EL-2 were measmed, the only detectable IL-2 production was fr om the cells 

stimulated with Con A. These levels, m both gr oups of mice, were less than lOU/ml 24 

hours after stimulation in vitro (data not shown).

7.2.5. FACS Analyses Of Mononuclear Spleuocytes

When the numbers of CD4 and CDS T-cells were coimted for each spleen, the mean 

values for the uninfected mice showed that there were approximately the same numbers 

of both CD4+ and CDS'*" cells present in tire spleens from the control group compared 

with the iNOS-deficient group [Figure 7.6.]. By day 11 of infection, the CD4 population 

fr om the iNOS-deficient mice had increased dramatically compared with its rminfected 

counterpart whereas there was no significant increase in numbers in the heterozygous 

mice. In the case of the CDS T-ceh populations, there was a very shght decrease in the
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number of CD8  ̂cells/spleen in the infected mice when compared to the uninfected 

groups both for iNOS-deficient and control mice.

Tlie percentages of CD4 and CDS T-cells in the mononuclear splenocyte populations 

were calculated as well as the CD4:8 ratio and the ratios of activated T-cell sub

populations [Table 7 .1.]. The percentage abundances of CD4 and CDS cells in 

uninfected mice were lower in heterozygous than in homozygous mice implying that, 

since the numbers of each cell type/spleen were similar, the spleens in iNOS-deficient 

mice might be of a different architecture compared with control mice. The percentage of 

CD4 cells increased in the infected iNOS-deficient mice whereas they decreased in the 

control gr oup. However the percentage of CDS cells decreased in both the control and 

iNOS-deficient mice when chr onically infected compared with then uninfected 

counterparts. Despite these different changes in percentages of CD4 and CDS cells with 

infection, the CD4;CD8 ratios of the uninfected groups was almost identical and when 

the infected groups were compared, the 8; 1 ratio of the iNOS-deficient group did not 

differ dramatically from the heterozygous group, which had a ratio of 7.3:1.

The ratios of activated CD4 cells examined using CD25 as a marker of activation 

were informative [Table 7.1.]. There were 3-fold more activated CD4 cells present in 

the spleens fiom iNOS-deficient infected mice compared with those of spleen fi om 

infected controls. There were no detectable activated CDS cells in the mononuclear 

splenocyte populations fiom the uninfected control and INOS-deficient mice or fiom the 

infected control mice but a small number were present in the infected iNOS-deficient 

mice.

7.2.6. Splenic Architecture
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The Haematoxylin and Eosiu stained spleen sections were examined at low 

magnification, x 10, from the uninfected heterozygous [Figure 7.7a.] and homozygous 

[Figure 7.7c.] mice. The splemc architecture appears intact and highly structured in the 

uninfected control and iNOS-deficient mice with distinct red and wliite pulp areas and 

lymphoid follicles in both mice. Examination of the spleen sections fiom the 

tiypanosome-infected control [Figme 7.7b.] and iNOS-deficient [Figure 7.7d.] mice 

showed a lack of splenic stiuctuie with no distinction between red pulp and wliite pulp 

areas in the spleens fi om either of these mice. These observations can be explained by 

the trypanosome infection causing an influx of cells into the spleen which invades the 

stromal areas resulting in a loss of architecture. There was no apparent differences 

between those spleens fiom the homozyogus and heterozygous mice. At a liigher 

magnification, x40, the section fr om the uninfected control mouse showed a lymphoid 

foUicle smrounded by a marginal zone with the cells of a uuifoim size [Figure 7.7e.] but 

when compared with the cells fr om an infected control mouse, at the same magnification, 

it was shown that there was no structured follicle, the cells were larger in size and there 

was no noticeable stromal region 

[Figure 7.7f ].

7.2.7. Plasma Nitrate

Using the Greiss Reaction to measiue the nitrate levels in plasma samples, the 

background levels of nitrate production were 20-3 OpM concentration in both control and 

iNOS-deficient mice unirrfected mice [Figme 7.8.]. In the infected control mice there 

was a significant increase in plasma nitrate levels, above 160pM, and, shghtly
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suiprisingly, an increase was also obsei*ved in the nitrate levels in the iNOS-deficient 

mice which increased more than 2-foId in chiomcally infected mice.

7.3. DISCUSSION

The possibility that NO synthesis may affect the course of a try])anosome infection via 

control of T-cell responses was investigated using iNOS-deficient mice. Daily 

monitoring of infections showed that the parasitaemia increased at the same rate towards 

the first peak of parasitaemia in both the iNOS-deficient and control mice and that the 

peak parasitaemia levels were the same in both groups. However, the control mice 

maintained a higher parasitaemia in the chr onic phase of an infection than the lNOS- 

deficient mice due to a decrease in the rate of clearance of parasites. These data contrast 

with the results of Sternberg et al (1994) where mice were shown to have 50% reduced 

peak parasitaemias when given L-NAME in then drinking water but a few days after this 

there was no significant difference in the parasitaemia of these mice compared with the 

mice given water or D-NAME, a substrate analog inhibitor of NOS which is biologically 

inactive (Sternberg et al, 1994). It is difficult to offer an explanation as to why 

parasitaemias in iNOS-deficient and L-NAME treated mice should be so different but it 

may be worth noting that in a separate study Houston & Turner (unpubhshed results) 

were unable to replicate the results of Sternberg et al (1994). Alternatively, it is possible 

that the difference lies simply in the use of different strains of both trypanosomes and 

mice in the two studies. T.bnicei trypanosome growth was prevented in vitro when 

exposed to activated macrophages but this inhibition was removed when L-NMMA 

(Vincendeau et al, 1992) was added, indicating that NO was having a direct cytostatic 

effect in the parasites. However, dilutions of whole blood (Mabbott et al, 1994) also
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removed growth inhibition, presumably by quenclung of NO by oxyhaemaglobin and 

suggesting that bloodstream trypanosomes in vivo will not be directly susceptible to 

killing or cytostasis by NO. Further support for this notion comes from the observation 

that SNAP, a NO donor, reduced trypanosome proliferation in vih'o by 75% (Sternberg 

et al, 1994) but this effect was removed by the addition of whole mouse blood.

Therefore the action of NO is likely to be indirect by modifying effector immune 

responses.

Tire infected control mice looked healthier for a longer period of time compared to 

the iNOS-deficient mice. One explanation for this result may be an immense decrease in 

the numbers of trypanosomes present in the iNOS-deficient mice, due to the greater 

hnmunocompetence of the immune system, leading to an increase in the amount of 

parasite antigen released and immune complex foimation. Immune complex foimation is 

thought to underlie much of tiypanosome-induced pathology (Jenkins & Facer, 1984). 

The foimation of immune complexes and release of soluble parasite antigens may be 

more gradual occrming over a longer period of time due to the depression inflicted on 

the host cells.

Titres of immunoglobulin isotypes were similar between the two infected groups and 

also similar between the uninfected groups, suggesting that the reduction in iNOS does 

not dramatically affect the amoimt of immunoglobulin produced by the B-cells. It also 

indicates that although the infected control mice were knmunosuppressed, tliis 

suppression did not detectably suppress the B-cells in their ability to produced 

immunoglobulins. Suppressed antibody responses have however been detected in other 

studies. Complete suppression of IgM and IgG responses to sheep RBCs was observed 

dming acute and sub-acute trypanosome infections in mice (Sacks et a/,1980). In 

chronic infections however, the IgG response was completely suppressed but the IgM
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response only partially suppressed. Tlie important resei-vation with this study is that 

suppression was against non-parasite antigens rather than suppression of the response 

against the trypansomes themselves. Trypanosome specific antibody responses have 

been shown to be suppressed during infection by Sacks & Askonas (1980). Normal 

mice, immunised with irradiated trypanosomes, had far greater total immimoglobiilin 

levels to the iiTadiated trypanosomes than the chronically or acutely infected mice wlfich 

were immunised with in adiated try[3anosomes, of a difierent antigen type, with the 

acutely infected mice having the lowest antibody titres of the three groups (Sacks & 

Askonas, 1980). During the chronic infection, the IgG and IgM titres to homologous 

trypanosomes decreased with each successive wave of parasitaemia with the IgG titres 

declining more rapidly than the IgM (Sacks & Askonas, 1980). Tire sera were taken fiom 

the mice 10 days after a parasitaemic peak and the specific IgM and IgG titres 

determined but it could be that these specific isotypes produced a good specific response 

which was complete and had disipated by day 10 when the samples were taken. It may 

be possible that my mice were still too early in their chronic phase of infection to show a 

suppression in immunoglobuhn isotypes.

The T-cell proliferative responses were greater in the mice where iNOS was lacking 

compared with the control mice and this was seen in vitro both with Con A and hi the 

absence of any. Duiing chronic infectious, the immune system is continually fighting the 

infection and this may result hi clonal exhaustion and therefore a decreased proliferative 

response. Tlie presence of NO may contribute to depresshig this response. Mabbott et 

al (1995) have shown that when the NO synthesis fiom macrophages was hihibited, 

either in vivo or in vitro^ the suppression of proliferation was partly revoked. They 

showed suppression of splenocyte proliferation, stimulating with Con A, when 

macrophages fiom infected mice were introduced to cultures fiom naive mice. Tlie
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addition of L-NAME or L-NMMA partially abrogated tliis suppression and this was 

observed both in viii‘o and in vivo (Sternberg & McGiiigan,1992; Schleifer &

Mansfield, 1993; Sternberg et o/, 1994; Mabbott et a/, 1995) suggesting the involvement 

of both NO and another mediator of suppression, probably prostaglandins. Tlie fact that 

the lack of the proliferative response can be overcome suggests that clonal exhaustion 

may be the cause of the lack of T-ceU proliferation observed in the infected control mice.

Tlie prostaglandin levels which accumulated in cultures were not significantly 

altered by blocking NO production with L-NMMA but prostaglandin Ê  production was 

blocked by indomethacin treatment (Schleifer & Mansfield, 1993 ). However iiiliibiting 

prostaglandin synthesis alone did not reverse the suppressed T-ceU proliferation. Levels 

of proliferative T-ceU responses were completely restored in co-cultures of cells, fi om 

infected and uninfected mice, when L-NMMA and indomethacin were added 

simultaneously (Schleifer & Mansfield, 1993). This evidence that abrogation of NO leads 

to, at least partial, recoveiy of responses suggests that suppression is related to clonal 

exhaustion in the classic sense in that the cells have not been clonahy deleted but have 

reversible inability to respond to an antigen. Prostaglandins therefore play a role, albeit a 

small role compared to that played by NO, in the suppression of the hnmune response in 

trypanosome-infected mice.

In vitro experiments showed that the addition of splenocytes, up to 10% of the total, 

fi om infected mice to cutures of splenocytes from naive mice resulted in up to 50% 

suppression of the T-cell proliferative response when stimulated with Con A whereas 

100% splenoctyes from trypanosome-infected mice resulted in more than 90% 

suppression with mitogen stimulation (Steinberg & McGuigan,1992). However L- 

NAME could partially remove this suppression. Sheghem et al (1989) revealed that a T- 

cell emiched fr action of cells fr om infected mice was not suppressive. They examined

155



the responsiveness of lymph node cells and showed that the cells responsible for the 

suppression during trypanosome infections were those wliich reduced IL-2 receptor 

expression. The cells which are responsible were purified in the macrophage fraction of 

cells, were nylon wool adherent, plastic adherent, fibronectin R+, Mac-1+ and Thy- L. It 

was also shown that cells wliich fail to express Mac-1, that is cells which are not 

macrophages, cannot suppress the responsiveness of lymph node cells from uninfected 

mice (SÜeghem et a/,1989).

It could have been that there was a degree of depletion of T-cells in infected control 

mice which led to the reduced proliferative and cytokhie responses. However analyses, 

by flow cytometry, have shown that although the percentage of CD4 and CDS T-cells 

decreased in the infected control mice the CD4 cell numbers/spleen increased. 

Unfortimately, it is not obvious as to which is the more important criterion, the number 

of CD4 cells/spleen or the relative proportions of cell types. I have shown that the 

number of activated cells was significantly reduced in the control mice compared to the 

iNOS-deficient mice and this could be seen in both the CD4 and CDS T-cell populations 

(particularly the former) and although flL-2 has a central role in T-cell activation and 

proliferation there was no detectable IL-2 when the samples from the infected control 

and iNOS-deficient mice were examined by ELISA. It has been shown previously that 

during chronic minine infections it is not the depletion of T-cells or the absence of 

functional accessory cells which causes the impaned T-ceU proliferative responses in the 

lymph nodes but the lack o f or suppression of IL-2 production (SUeghem et a/,1986).

Tlie addition of recombinant flL-2 to cells from infected and uninfected mice revealed 

that the cells fr om the infected mice requh ed a longer exposm e to the EL-2 in order to 

reach their optimum proliferative potential compared with the cells from the uninfected 

mice (Sileghem et a/,1986). This could possibly be explained by the downregulation of
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IL-2 receptor expression. Tlie resulting recoveiy of T-cell proliferation, by an 

exogenous source of IL-2, suggests that these cells from trypanosome-infected mice are 

anergic. Both DL-2 and IL-2 receptor expression are suppressed by macrophages fi'om 

infected mice (Sileghem et al, 1991). A prostaglandin-dependent mechanism is 

responsible for the suppression of IL-2 whereas IL-2 receptor expression is suppressed 

by a prostaglandin-independent mechanism as shown by indomethacin treatment which 

allows IL-2 secretion to occur but does not restore EL-2 receptor expression (Sileghem 

et a/, 1991). This suggests that there are two mediators of suppression acting, that is 

prostaglandins, suppressing EL-2 production, and NO, suppressing EL-2 receptor 

ex|iressioii.

Very low levels of EFNy were produced by the mononuclear splenocyte populations 

from the control mice which contrasts with the high levels of EFNy production by the 

isolated cells fr om the iNOS-deficient mice. It could be suggested that EFNy is an 

important factor in the immune response towards the first parasitaemic peak but in the 

chronic phase of infection the EFNy which has been produced stimulates the host 

macrophages resulting in immunosuppression. Therefore in the infected control mice 

there is a veiy depressed EFNy response. EFNy may be a 'double-edged sword' in that it 

benefits the host, by stimulating a Tĵ l type response, duiIng the acute phase of infections 

but during the clnonic phase it aids the parasite by assisting in the immmiosuppressive 

effects caused by the activated macrophages. An increase in EFNy production was 

observed when L-NMMA was included in cell cultures (Schleifer & Mansfield, 1993) 

which concurs with my data in that the INOS-deficient mice have significantly higher 

levels of EFNy compared with the infected control mice. It was recently revealed that a 

NOS-activating factor is present in bloodstream T.bnicei parasites (Sternberg & 

Mabbott, 1996) and in the presence of EFNy becomes active. It was previously reported
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that lymph node cells from /-infected mice could produce IFNy even thougli IL-2

production was suppressed (Sileghem et al, 1986) which contrasted with what I observed 

using mononuclear splenocytes from infected mice.

Daiji et at ( 1993) highlighted the importance of EFNy m the suppression of the host 

immune response during trypanosome infections. Anti-EFNy antibodies were added to 

co-cultures of lymph node cells from infected and uninfected mice and the level of EL-2 

receptor expression was restored and the degi ee of suppression reduced resulting in the 

proliferation of these cultures to noimal levels (Daiji et al, 1993). This group showed 

that anti-EFNy antibody treatment decreased parasitaemia by 50% during first peak but 

after this period the parasitaemia was the same as the untreated mice and no difference in 

suivival times between the groups was obseived. Daiji et al ( 1993) also showed that 

anti-EFNy antibody treatment six days post-infection restored Con A-induced 

proliferative responses in the lymph node cells of infected mice but the spleen cells were 

unaffected by this treatment suggesting lymph node cells but not spleen cells need EFNy 

to induce unresponsiveness in vivo. The biological relevance of data that pertains only to 

lymph node cells for a bloodstream hifection must remain questionable. Anti-IFNy 

monoclonal antibodies removed the increased NO production in spleen cell cultures 

stimulated with mitogen or antigen and also reduced the basal levels of NO present 

(Schleifer & Mansfield, 1993). Daiji et al (1993) proposed that as well as the hnpoitant 

pivotal role in activating macrophages, thereby generating immimosuppressive 

consequences, EFNy is directly involved in the suppression of T-cell proliferation and 

depressed EL-2 receptor expression in the lymph nodes. Again, this contrasts with my 

data for the spleen which shows that high levels of EFNy are produced by the iNOS- 

deficient mice, and although EL-2 was not detected, there were still greater levels of EL-2 

receptor expression on the CD4 and CDS cells compared with the levels in the control

158



mice. Instead, it appears more likely that the anti-EFNy antibodies iieutrahse the EFNy 

wliich means less macrophage activation and therefore less NO production allowing 

mcreased proliferation and EL-2 receptor expression.

Plasma nitrate levels were several fold greater in the infected control mice compared 

to the uninfected mice showing backgromid levels as would be expected from previous 

observations (Schleifer & Mansfield, 1993; Kantor et a/, 1996; Sternberg &

Mabbott, 1996; Taylor et a/,1996). There was, however, an increase in the nitrate levels 

in the infected iNOS-deficient mice compared with uninfected mice. Tlfis may be 

because the iNOS-deficient mice are sliglitly 'leaky' or because another enzyme can 

upregulate its synthesis of NO production to compensate for the lack of iNOS activity. 

Residual endothehal NOS activity has previously been detected m neuronal NOS 

knockout mice and endothelial NOS can compensate for the loss of neuronal NOS to 

allow fimctions to continue (Kantor et a/,1996). After nemonal injury or toxic insults to 

cells, the cells hicrease their NOS protein levels (Samdani et a/,1997). It is therefore 

conceivable that dming trypanosome infections, the large amount of anitgen and 

alterations in splenic architecture results in cell injury and vascular disruption producing 

an increase in NO production fiom the other distinct NOS genes.

At the present time it is not possible to distinguish categorically the individual 

components of the immune response and the importance each possesses, either as a 

positive or a negative regulator in the immimosuppression dming African trypanosome 

infections due to the complex immune network of the host. It is clear however that 

macrophages are the crucial cell tyjre involved in causing immimosuppression during 

these infections by way of NO and prostaglandin production. I would suggest that when 

the trypanosomes infect then host, they stimulate an EFNy response which will activate 

the macrophages. These activated macrophages vrill in tmu produce NO and
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prostaglandins to induce suppression of the immune response. The NO acts by 

downregulating DL-2 receptor expression whereas the prostaglandins suppress IL-2 

production. These changes in turn cause depression of T-cell but not B-celL responses 

resulting indirectly in an increase in parasitaemia. By removing NO. dramatic differences 

were observed in parasitaemia, T-cell proliferation, cytokine production and IL-2 

receptor expression.
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Figure 7.2. Parasitaemia of GUTat 7.2.
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Tlie parasitaemia of iNOS-deficient (O ) and control ( • )  mice was deteimined daily by 

the removal of blood samples fiom each mouse, diluted in appropriate concentrations of 

ammonium cliloride and counted on an Improved Neubauer haemocytometer. Results 

are expressed as geometric means ± 2 SE, n=4.
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Figure 7.3. Immunoglobulin isotyping for control and iNOS-deficient mice.
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Immunoglobulin isotypes were measured by radioimmunodiffiision using the plasma 

samples fiom individual mice infected with GUTat 7.2 tiypanosomes on day 11 of 

infection and uninfected control mice. Mice were either homozygous and deficient 

(-/-) for the iNOS locus or heterozygous (+/-) for that locus. The results are exjiressed 

as the geometric mean ± 2 SE, n-4. Some sample groups do not display enor bars and 

tlfis is because they had standard errors of zero.
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Figure 7.4. Proliferative responses of mononuclear splenocytes from mice on day

11 of infection with GUTat 7.2 trypanosomes.
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Medium alone and Con A were used to stimulate cells and proliferative responses 

assayed by ^H-Tliymidine incoi*poration. Responses were compared in cells liom mice 

lacking iNOS (white bars) and heterozygous control (hatched bars) mice. The results are 

expressed as the geometric mean ± 2 SE, n=4.
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Figure 7.5. IFNy production by mononuclear splenocytes from mice chronically

infected with GUTat 7.2.
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Cells from infected control (+/-) and iNOS-deficient (-/-) mice were stimulated zV? viti^o 

with medium alone, Con A or paraforaialdehyde-fixed tiypanosomes expressing one of 

three VATs. Cultme supernatants were examined by sandwich ELISA and the mean 

level of IFNy produced determined fi'om triphcate assays.
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Table 7.1. The effects of trypanosome infection on percentages of CD4 and CD8 

cells, together with ratios of CD4;8 and of activated CD4 and CD8 cells in 

mononuclear splenocytes of mice either homozygous and lacking (-/-) the iNOS 

locus or in heterozygous (+/-) controls.

Cell Type -/- Control +/- Control “/“ Infected +/- Infected
CD4 T-cells 24.3 ±2.0 17.0 ± 1.4 34.0 ±8.9 12.7 ± 1.5
CD8 T-cells 11.3 ±1.5 7.5 ±0.7 4.3 ±1.1 1.7 ±0.6
CD4:CD8 ratio 2:1 2.3:1 8:1 7.3:1
CD4:CD25 ratio 100:1 96:1 47:1 157:1
CD8:CD25 ratio ND ND 229:1 ND

Percentages and ratios were deteimined from FACS analyses of cells fr om invividual 

mice, results pooled fr om fom* mice and expressed as mean values ± 2 SE, n=5000.

Mice were either iminfected or on day 11 of a GUTat 7.2 trypanosome infection. CD25 

was employed as the activation marker.

ND = activated CDS cells were not detectable.
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Figure 7.6. Numbers of CD4 and CDS cell per spleen in iNOS-deficient (-/-) and 

control (+/-) mice, either uninfected or on day 11 of infection with GUTat 7.2 

trypanosomes.
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Numbers of mononuclear splenocytes/spleen were deteimined by the tritiuation, 

centiifugation on 'Nycoprep' gradients and diiect enumeration. Double labelling for CD4 

and CDS cells in the mononuclear splenocyte populations was then undertaken and 

proporations of each cell type deteimhied by FACS analysis. The mean of 4 mice/group 

are shown ± 2 SE with 5000 cells counted by FACS for each sample.
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Figure 7.7. Splenic architecture of control and iNOS-deficient mice either

uninfected or on day 11 of infection with GUTat 7.2 trypanosomes.
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Sections of spleens from the control and iNOS-deficient mice were cut and stained with 

Haematoxylin and Eosin. The sections from control mice, uninfected (a) or chronically- 

infected (b) were examined at low magnification (x 10). The splenic architecture of the 

iNOS-deficient mice was also examined at low magnification in uninfected (c) or 

chronically-infected (d) mice. The architecture of the spleens uninfected (e) and from 

chronically-infected (f) mice were also compared at high magnification (x40). The 

sections were kindly cut and stained by Kate Orr, Division of Environmental and 

Evolutionary Biology, I.B.L.S., University of Glasgow.



Figure 7.8. Niti ate concentrations in plasma samples from conti'ol (+/-) and iNOS 

deficient (-/-) mice either uninfected or on day 11 of infection with GUTat 7.2 

trypanosomes.
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Plasma nitrate levels were deteimined by the Greiss Reaction using the samples taken 

from individual mice. Results are expressed as the geometric mean ± 2 SE. This work 

was earned out by Dr. Jen*y Sternberg, Department of Zoology, University of Aberdeen.
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CHAPTERS 

GENERAL DISCUSSION

Tlie main aims of my thesis were to investigate the possibility of a theoretical and 

expeiimental basis for antigenic variation as a mechanism for evading T-cell responses as 

well as a theoretical and experimental foundation for identifying T-ceU epitopes common 

to several VSGs. This work involved devising a rehable in vitro assay system to examine 

T-cell prohferative responses against trypanosome VATs; investigating a number of 

different immunisation and infection regimes; predicting potential T-cell epitopes within 

VSG sequences and mapping these onto the tertiary VSG stmcture. As 

immuno suppression is the noim during trypanosome infections, I also investigated the 

regulation of T-cell responses with regards to NO during chr onic infections.

There were two main difficulties in analysing T-cell responses during trypanosome 

infections. Fhstly, Nude mice can control and suivive infection suggesting that the 

antibody response is T-ceU independent (Campbell et al, 1978) and secondly, the more 

recent hterature characterising the type of T-cell response generated is confused: in one 

study VSG-specific T-helper 1 cells were identified, but only in the peritoneum and 

without proliferative ability (Schleifer et a/,1993) whereas another group have identified 

CD8+ cells as behig cmcial for IFNy production and regulation of infection (Bakhiet et 

a/,1993). My approach to addressing these difficulties was relatively straightfoiward. 

Harvesting the spleens at the first peak of parasitaemia allowed proliferative responses to 

be examined before the cells became umesponsive due to profoimd immunosuppression, 

and allowed examination of VAT-specific responses in infections.

The results in this thesis have identified a T-helper 1 type immune response during 

T.bnicei infections. Not only was there IFNy and EL-2 production but also mitogen- 

driven and trypanosome antigen-driven T-cell proliferation which has previously gone 

undetected. With the help of the "TSites" package, in predictmg possible T-ceU epitopes 

on the VSG sequences, and mapping of these selected epitopes onto tertiary structures, a 

number of these epitopes were found to be subsmface and highly variable. Because of
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the tight packhig of the VSG molecules on the surface of live trypanosomes, antibodies 

cannot come into contact with these regions within the individual VSG molecules (Blum 

et a/,1993).

Following the first peak of parasitaemia there will be a large amount o f shed VSG and 

other trypanosome antigens in the host (Diffley & Jayawardena, 1982). It is possible that 

this large amount of antigen and the continual exposure to it will result in the mammahan 

host becoming anergic. I have obtained supporting evidence for the development of 

anergy in that it was possible to detect trypanosome antigen-driven proliferative 

responses at the first peak of parasitaemia (Chapter 4) but the proliferative response 

wained as infection continued and became more chronic (Chapter 7) as did the levels of 

EL-2 production (Chapter 4). It is reasonable to assume that if antigen-specific ceUs are 

present at the first peak of parasitaemia then they will be present as the infection 

continues. My data suggests therefore, that these cells have not been clonally deleted as 

the flow cytometry analyses hr Chapter 7, examining chronic infections, showed the 

presence of these cell types in chr onic-phase infections. Tire inabihty of these cells to 

produce IL-2 is also consistant with anergy as is the fact that the addition of exogenous 

EL-2 can restore lymphocyte responsiveness (Sileghem et a/,1996). Clonal exhaustion 

rather than clonal deletion appears to be best explanation of the observed anergy during 

trypanosome infections. Soluble VSG is less immrmogeiric than membrane-bouird VSG 

(Diffley, 1985) and may be processed and presented to the T-cells in a different mamier 

resulting in a lack of costimulation and therefore an insufficient response. Nothhrg is 

kirown about costimulation of responses to trypanosome infectious. The way hr which 

trypanosome antigens are presented after the first parasitaemic peak may determine the 

class of T-cells and cytokines, if any, that are produced, in turn leading to an ineffective 

response.

I have shown that NO has a major role hr regulating the T-cell response during 

T.bnicei infections in the murine model. This NO, from activated macrophages, 

influences the proliferative response as well as cytokine production in infected mice by 

reducing the responses compared with infected mice lacking iNOS. The mechanism as 

to how this NO acts is not yet known. NO has been shown to inactivate non-dep endent
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enzymes in cells resulting in dismption of replication, respiration and energy production 

(Green & Nacy, 1993). Others have shown that NO causes a disruption m iron 

homeostasis which corresponds with decreased protein synthesis but not necessarily cell 

death (Liew & Cox, 1991 ). I would therefore suggest that duiing T.bnicei infections, 

iron homeostasis is disrupted which in turn decreases protein synthesis and produces a 

1 educed piohfeiative response to stimulation. Tliis could be investigated in a number of 

small expeiiments. Groups of uninfected mice and mice in the chronic phase of 

parasitaemia could be used. Adding Desferrioxamine, in a range of concentrations, as an 

iron chelatoi that binds non veiy tightly, to culture media would allow an in vitro 

comparison of proliferation, deteimined by Thymidine incoip oration, between 

mononuclear splenocytes from uninfected mice and chr onically infected mice and a 

comparison with cultures which were not treated with DesfeiToxamine. Examination of 

the proliferation by the addition of exogenous iron in the form of transfenin or from n on 

mtillotriacetate, an iron donor, should then be investigated to see if the addition of iron 

in vitro restores proliferation. If there is some restoration of the response then it would 

also be worthwhile satmating cultur*es of cells derived fr om chr onically-infected mice 

with iron to see if it is possible to reverse some of the suppression by overloading with

non.

A coimection between non and NO could be fruther investigated by radiolabelling 

transferrin with and saturating cultures of cells from infected and uninfected mice 

for a few days. Following these incubations, fresh media, minus non, would need to be 

added to the cells and the cultines incubated for several horns with different 

concentrations of SNAP or sodium nitropiiisside as NO donors. Samples would then be 

removed at different time points and the amount of radio labelled iron released into the 

cultme supernatants fr om the cells and m the cell pellets could be determined. By using 

these data in conjunction with the proliferation data it will be possible to see if the lack of 

response is due to cytostasis. It may be that trypanosomes do not require as much iron 

as the host for cell fimctions and therefore targetmg iron-dep endent enzymes will be of 

benefit to the parasites.
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Macrophages are the main source of TNFa and it is possible that TNFa acts as a 

physiological regulator of iron metabohsm and it is only when large amoimts are 

produced that abnormal iron retention occurs (Alvarez-Hernandez et a/, 1989). This 

could be the case during T.bnicei infections whereby trypanosomes induce a large 

production of IFNy and TNFa. Tliese two cytokines then act on the macrophages which 

produced NO and together the NO and TNFa affect the levels of iron present.

As previously stated, antigenic variation is a mechanism to evade immune responses. 

One possibility which appears to have been Uttie explored is that VATs or, more 

specifically, peptides within VATs, may differ in their immmiogenicity. It may be that 

the sophisticated switchhig process is to prevent an hnmune response against one VAT 

which is more immunogenic than that against another. The switch might replace highly 

immunogenic peptides with peptides which induce a less effective response thereby 

escaping immune detection and continuing the infection. The trypanosomes may alter 

one of the key residues in a peptide which is essential for inducing an effective immune 

response. Altering the amino acid sequence in a VSG peptide could be adventageous to 

the pathogen as the MHC, processed peptide and T-ceU receptor interaction may still 

occur but without the necessary costimulatoiy signals. The lymphocyte response can be 

inhibited duiing Hepatitis B infections, for instance, as the vhiis has the ability to alter 

epitopes which result in a lack of response to wild type vhal epitopes (Beitoletti et 

a/,1994). An extremely strong immune response against Hepatitis B antigens was 

observed in chr onically hifected patients but there was a failure to clear these infections 

which could be due to a number of consequences of the altered peptides, like the 

inhibition of IFNy production which was not obseived with the wild type peptides.

In the context of ti-ypanosome infections, a great deal of knowledge would be gained 

by a series of immunisations of mice usmg overlapping peptides from the VSG sequences 

hi combination with conjugate and adjuvant, then infecting groups of mice with different 

trypanosome VATs. This would identify conclusively which peptides were most 

immunogenic and which provide cross-protection against two or more VATs. Closer 

examination of the peptides which provided protection agamst infection could follow by 

substituting amino acids one by one to identify the essential residues requhed to provide
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an effective immune response against the trypanosomes. Tliis approach would be very 

time consuming and expensive but well worthwhile in the long term as regards a 

potential peptide vaccine against a number of VATs. A reasonable end goal of such a 

project would be to lower parasitaemia thus amehorating the virulence of hifection. 

Whilst such a result would be insufficient in humans it might be quite acceptable in cattle.

In conclusion, I have successflilly developed an in vitro assay system which allowed 

me to examine T-cell proliferative responses during T.bnicei infections. I was therefore 

able to examine tiypanosome antigen-driven proliferation and cytokine responses in a 

number of infection and immunisation regimes, using paraformaldehyde-fixed 

tiyqianosomes or peptide conjugates for immunisation procedures, and thus define a role 

for T-cells during these infections. At the first peak of parasitaemia, a fy j  response was 

generated and this was partially variant-specific. Following the first peak of 

parasitaemia, during the chronic phase of the disease when immunodépression occured, I 

deteimined a key role for NO hi the regulation of T-ceU responses duiing trypanosome 

infections with the NO appearing to have an important role with regards to parasite 

kiUing in vivo and in depressing the proliferative T-cell responses as weU as 

IFNy production in viti'o. The multiple changes in immune fimction observed duiing 

tiyiianosomiasis cannot be assigned to a single event but reflect a number of host- 

parasite interactions and changes in host-derived mediators. It is not a single component 

of the host or of the parasite which is responsible for the continuation of infection, 

causing morbidity and moitahty, but a combination of components. However, it is my 

ophiion that the understanding of the mechanism by wliich NO operates and what it 

targets would be a substantial benefit to understanding immuno suppression diirhig 

trypanosomiasis.
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