

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

System Support for Object Replication
in Distributed Systems

Tor Erlend Fægri

September 30, 1998

ProQuest Number: 10390909

All rights reserved

INFORMATION TO ALL USERS
The qua lity of this reproduction is d e p e n d e n t upon the qua lity of the copy subm itted.

In the unlikely e ve n t that the au tho r did not send a co m p le te m anuscrip t
and there are missing pages, these will be no ted . Also, if m ateria l had to be rem oved,

a no te will ind ica te the de le tion .

uest
ProQuest 10390909

Published by ProQuest LLO (2017). C opyrigh t of the Dissertation is held by the Author.

All rights reserved.
This work is protected aga inst unauthorized copying under Title 17, United States C o de

M icroform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 4 81 06 - 1346

(Ÿ O l

° m sg o w

LIB

A b s tra c t

Distributed systems are composed of a collection of cooperating but failure prone system components.
The number of components in such systems is often large and, despite low probabilities of any particular
component failing, the likelihood that there will be at least a small number of failures within the system
at a given time is high. Therefore, distributed systems must be able to withstand partial failures. By
being resilient to partial failures, a distributed system becomes more able to offer a dependable service
and therefore more useful.

Replication is a well known technique used to mask partial failures and increase reliability in distributed
computer systems. However, replication management requires sophisticated distributed control algo
rithms, and is therefore a labour intensive and error prone task. Furthermore, replication is in most cases
employed due to applications’ non-functional requirements for reliability, as dependability is generally
an orthogonal issue to the problem domain of the application. If system level support for replication is
provided, the application developer can devote more effort to application specific issues.

Distributed systems are inherently more complex than centralised systems. Encapsulation and abstraction
of components and services can be of paramount importance in managing their complexity. The use of
object oriented techniques and languages, providing support for encapsulation and abstraction, has made
development of distributed systems more manageable. In systems where applications are being developed
using object-oriented techniques, system support mechanisms must recognise this, and provide support for
the object-oriented approach. The architecture presented exploits object-oriented techniques to improve
transparency and to reduce the application programmer involvement required to use the replication
mechanisms.

This dissertation describes an approach to implementing system support for object replication, whiclr-
is distinct from other approaches such as replicated objects in that objects are not specially designed
for replication. Additionally, object replication, in contrast to data replication, is a function-shipping
approach and deals with the replication of both operations and data.

Object replication is complicated by objects’ encapsulation of local state and the arbitrary interaction
patterns that may exist among objects. Although fully transparent object replication has not been
achieved, my thesis is that partial system support for replication of program-level objects is practicable
and assists the development of certain classes of reliable distributed applications. I demonstrate the
usefulness of this approach by describing a prototype implementation and showing how it supports the
development of an example toy application. To increase their flexibility, the system support mechanisms
described are tailorable. The approach adopted in this work is to provide partial support for object
replication, relying on some assistance from the application developer to supply application dependent
functionality within particular collators for dealing with processing of results from object replicas. Care
is taken to make the programming model as simple and concise as possible.

A cknow ledgem ents

I am in great debt and I am very grateful to a number of people for their encouragement, assistance and
positive attitude during the period of study towards the M.Sc. in Glasgow. In particular I would like to
thank the following:

M y Brst supervisor, Dr. Peter Dickman: Without such a competent supervisor I would surely not
have got this far. His firm and sound guidance through the duration of the project, his help with
proofreading and his efforts to educate me for research are much appreciated.

M y second supervisor, Prof. Malcolm Atkinson: As a secondary supervisor Malcolm filled the rôle as
controlling instance. He asked the difficult questions which I had not yet considered important and
suggested corrections on draft documents.

Prof. Derek M cAuley and Dr. Lewis McKenzie: Discussions about networks, distributed system design,
operating systems and a lot of other things.

M y flatmate Vidar Hasfjord: Vidar’s most important function during the time we shared in Glasgow,
apart from being an excellent flatmate, was to let me ‘bounce my ideas’ off him. Sanity checks
are always valuable, and through heated and inspired discussions we normally ended up reaching
agreement on principles of object oriented design, object oriented programming languages and
operating systems.

M y Norwegian friends and e-mail associates Karl Martin Lund, Arne Hatlen and 0yvind Brande: Having
access to electronic mail was enough to facilitate numerous and valuable discussions.

Research-associates Karim Dejame, Miguel Mira da Silva, Arthur Serrano and Huw Evans: Without the
interesting research environment formed by these people in the department, doing research would
have been much more difficult. I received a lot of input into my understanding of computing in
general, distributed systems and RPC problems. Special thanks to Huw for valuable proofreading.

And finally to my parents, my brother and my good friends Sandra Cervino, Trond Olav Ronœnes, Sissel
Rong, Kolbjprn Helland, Dag Spnstebp, Vidar Rpren, Bjprn Sundfær, Carmela Battibaglia, Dagrun-
Haugen Breirem and Michael Edwards for both being such good friends and for their encouragments
through the months of research.

C ontents

1 In trod u ction 5

1.1 O v e rv ie w .. 5

1.2 Motivation .. 6

1.3 Challenges... 9

1.4 Replication in Distributed S y stem s.. 14

1.5 Problem S ta tem en t... 15

1.6 Outline of the D issertation.. 15

2 S y stem M o d el 17

2.1 O v e rv ie w .. 17

2.2 Processing E le m e n ts .. 17

2.3 Networks .. 18

2.4 O b je c ts .. 21

2.5 References.. 22"

2.6 In v o ca tio n s .. 23

2.7 Applications.. 24

3 C om p u ter S y stem Failures 27

3.1 Dependable Computing S y s te m s ... 27

3.2 Failure C haracteristics.. 30

3.3 Avoiding F ailu res... 35

3.4 S u m m a ry .. 36

4 R ep lica tio n T echniques 37

4.1 Background and M otivation ... 37

4.2 Problems with Replication... 39

4.3 Replication in Object System s... 42

4.4 Strong Consistency Replication Schem es.. 44

4.5 Weak Consistency Replication Schemes .. 49

4.6 Concluding R em ark s .. 51

5 S y stem Support 52

5.1 O v e rv ie w ... 52

5.2 Providing System S u p p o rt.. 53

5.3 System Support in Distributed Object S y s te m s ... 55

5.4 System Support for Object Replication... 57

5.5 Concluding R em ark s .. 58

6 S y stem A rch itectu re 60

6.1 O v e rv ie w ... 60

6.2 Main C o m p o n en ts ... 62

6.3 System Functionality.. 68

6.4 Physical Mapping Is su e s ... 75

6.5 Limitations and Future W o r k .. 77

6.6 Concluding r e m a r k s .. 77

7 P rogram m in g M od el 78

7.1 O v e rv ie w ... 78

7.2 Application Partitioning A ssu m p tio n s .. 79

7.3 Defining Replicable C la s s e s ... 80

7.4 Instantiation of Replicable C la s s e s .. 81

7.5 Method Invocations .. 82

7.6 Sharing of Surrogate O b je c ts .. 85

7.7 Failure Sem antics.. 86

7.8 Concluding R em ark s .. 86

8 R ea lisin g th e A rch itectu re 87

8.1 O v e rv ie w ... 87

8.2 Implementation P la t f o r m .. 88

8.3 Prototype D esign .. 89

8.4 An Example A pplication... 92

8.5 Performance M easurem ents... 92

8.6 S u m m a ry ... 93

9 R e la ted W ork 94

9.1 Language Level Support for R ep lica tio n .. 94

9.2 Replication in Programming System s... 97

9.3 Replication in Application Components .. 98

3

9.4 Replication Support in M iddlew are.. 103

9.5 S u m m a ry ... 105

10 C on clu sion s 107

10.1 Summary of Contributions.. 107

10.2 Discussion... 108

10.3 Future W o r k ...109

10.4 Final R e m a rk s ..110

A D esig n in g C ollators 111

A .l A Specialised C o lla to r ...I l l

A.2 A Basic Integer C o lla to r..112

B P ro b a b ility F orm alism 115

B .l P ro b a b il i ty ..115

B.2 Availability of Majority Locking S c h e m e s ... 116

C hapter 1

Introduction

Distributed system s have becom e an essential part o f modern com puting practice. They provide a scalable
and adaptable structure on which many useful applications can be built. Applications involving sharing and
manipulation o f information am ong large and geographically dispersed groups o f people and large process
control applications are examples of applications that benefit from distribution and distributed system s.

However, distributed system s are inherently more complex than centralised system s. They must cope with
heterogeneity, asynchrony and partial failures, and should also be extendible and scalable. This chapter
provides an introduction to the diversity o f distributed system s and m otivations for their use. Also, som e
o f the numerous challenges facing their developers are presented. Following that, the problem statem ent
underlying this work is given.

1.1 O verview

A distributed system is a collection of cooperating, yet autonomous, computers (called PEs^) executing
distributed system software. The system software is responsible for low level coordination among the_
computers and provides a layer upon which distributed applications are built, A component of the
systems software is executing on each computer and carries out the task of local control and coordination
with other computers in the system. Much like an operating system, distributed system software tries
to hide most of the complexity stemming from the underlying system components. Figure 1.1 illustrates
this general model of distributed systems.

Applications

Distributed system software

PE PE PE

LAN

PE PE PE

LAN

PE PE PE

LAN

PE PE PE

LAN

WAN

Figure 1.1: An abstract model for distributed systems

P rocessing Elements. The definition can be found in section 2.2 p. 17.

The basis for any distributed system is a communication network that allows the PEs to exchange
messages. The properties of the network are significant factors which influence system performance
and the range of suitable applications within the particular system. Hence, the network will also have
consequences for the design of distributed system software.

Small scale distributed systems use relatively simple network configurations. A LAN (Local Area Net
work), perhaps based on a small number of Ethernet segments, may be sufficient to support the necessary
applications. LANs are well able to support distributed file systems, client-server databases, electronic
mail and CSCW (Computer Supported Cooperative Work) applications for groups of up to several hun
dred people.

For support of larger and more geographically dispersed workgroups, communication services from public
service carrier providers are often used to build WANs (Wide Area Networks). Large workgroups often
contain multiple clusters of smaller groups, so they tend to employ internetworks based on a combination
of LANs and WANs. In the general model depicted in figure 1,1 the distributed system is built up from
a collection of LANs interconnected by a WAN. This hierarchical structuring is commonly used for large
systems.

Distribution of computer systems is often recognised as a natural and elegant extension of centralised
systems. Today, a large proportion of computing systems used for productive work are interconnected
to give their users access to some kinds of networked applications such as shared file systems, client-
server databases etc. These applications are often just ‘networked’ versions of a centralised application.
Networked applications are often an extended version of the centralised version, with support for clients
located in a network issuing requests to the server using some application specific protocol. A good
example of a networked application is a file server which provides a shared repository for users’ files.

A distributed system provides a stronger coupling between the computers where several computers co
operate to achieve some common goal. In contrast to client-server systems where servers are ‘intelligent’
and clients are ‘dumb’, distributed systems are composed of cooperating agents, i.e. computers that take
on the role as both client and server thereby using services from other machines and concurrently of
fering services. A client-server application that employed several coordinated servers would, however,
also qualify as a distributed system. As part of this cooperation the computers must maintain global
properties such as information about configuration and failures within the system. Distributed systems
software is necessary to coordinate all the operation requests and make sure that, for example, transac
tional properties like isolation and consistency are maintained during concurrent requests. Examples of
such applications are distributed databases, multiuser editors and distributed CAD systems [40, 51].

In retrospect, it should be clear that distributed system software is built to coordinate several machines,
with the aim of concealing complexity from the applications, providing an abstract and uniform platform
for application software development [14]. It should be noted however, that not all applications running
in a distributed system need to be distributed. Some applications are non-distributed and do not require
the services offered by distributed systems software and are instead built using only services from local
software, e.g. operating system software running on each computer.

1.2 M otivation

A distributed system allows for controlled sharing of physically dispersed computer resources, thereby
allowing users on networked computers to cooperate on computerised tasks while still maintaining some
degree of autonomy. As networks have become more commonplace throughout the computing society,
the use of distributed systems is likely to see a significant increase. However, it is useful to investigate
the motives and benefits of distributed systems further in order to understand their role in the future.

1.2.1 Inherent d istribution and inform ation sharing

Most large applications consist of a collection of nearly separate and physically separated subsystems.
The subsystems often benefit from, or might even require, a degree of local administration or autonomy.
A distributed system can provide parts of the necessary framework to build such applications.

New applications are made feasible by the availability of geographically distributed interconnected com
puters. For example, groupware applications, including group discussion databases, task scheduling, and
whiteboarding applications, promote easier and more efficient cooperative working by enabling collabora
tion among large workgroups. Although the transition to groupware systems is not necessarily bringing .
instant profits to all organisations [160], it seems likely that groupware applications will become very
useful as the computerisation of working practices progresses. System architectures that support these
classes of applications will hence be valuable. Other classes of applications, for example distributed mul
timedia applications, distributed databases, electronic mail apd distributed information systems can also
benefit from system architectures that provide support for distributed coordination across the network.
Allocating common functionality in system support layers, available to application developers, reduces
the cost of application development. Principles for building system support layers are discussed in more
detail in chapter 5.

Additionally, a geographically distributed workforce may justify the distribution of the computer system.
By employing a distributed system for coordination between the subsystems, one can obtain a system
configuration that more closely matches the structure of the workforce. This can help provide better
locality of information, and may increase performance by reduced information access latencies. Further
more, the physical distribution of computers reduces the probability of all machines failing concurrently.
This, in turn, may make the application more available to the user.

1.2.2 Perform ance

A distributed system contains a number of computers, each with a certain amount of processing capacity,
memory and optionally secondary storage. The cost of smaller computer systems has decreased favourably
compared to the traditional mainframe and mini computers. A set of relatively fast workstations or
PCs is often a more cost effective option than buying mainframe or mini computers supporting the
same number of users [151], although the shift towards decentralised computing may incur higher totat~
management costs [109] (cf. §1.2.3 p. 8). Also, high performance workstations are better suited to run
interactive applications such as windowing systems, graphical presentation packages, database front-ends,
spreadsheets and word-processors [51, 106].

Network technology is experiencing a narrowing of the gap between the traditionally fast LAN and
the slower WAN networks. Fibre optical communication with extremely high bandwidths is now being
employed both for LAN and WAN scale networks. Data communication is now possible at rates reaching
gigabits per second, previously only found on specially designed parallel computer interconnects [140].
The availability of high capacity networks has increased the interest in very large scale applications and
applications that exploit parallelism of multiple and heterogeneous computers [51]. By distributing tasks
among several computers in the network, large gains in performance can be achieved. For example, the
task of processing electronic mail within a department might be allocated to a particular workstation,
thereby relieving the other computers in the department of this job. Also, many scientific applications
require enormous processing capacity, and this demand might be met by, for example, workstations
interconnected by high capacity networks [151, 32]. Parts of the application can then be run in parallel,
exploiting the processing capacity of multiple workstations concurrently. In practice, relatively poor
bandwidth and high communication latencies make it difficult to realise such systems, at least with the
current communication infrastructures [123]. Only for certain classes of non-communication intensive
applications are the benefits of wide-area parallel computing significant [32]. However, as networking
technology evolves, this might become an important platform for demanding applications.

Some applications make copies of the shared data, and allow clients to access a nearby copy. An increase

in performance can be gained from the resulting locality, essentially reducing the access cost to storage
and processors. However, the copies of the data must be kept consistent, and this incurs a cost of
increased communication. A tradeoff in consistency can be made to reduce the communication but poses
a challenge for system designers (see §1.3.3 p. 10). If the shared data can be used independently to a
greater extent, the amount of communication necessary is reduced. The tradeoffs incurred are discussed
in much more detail in chapter 4.

Also, powerful workstations linked by high bandwidth networks have made applications requiring process
ing and transmission of time based media such as video and audio feasible. However, such stream-based
applications are not considered specifically in this dissertation. The success of these applications appears
to be more dependent on appropriate operating system behaviour than on system support mechanisms
[51].

1.2.3 Scalability

Dealing with large problems as a collection of smaller, related subproblems, is a well known paradigm
in both engineering and science. Large computer systems are extremely complex, and the development
of these systems is often simplified (or even made possible) by dividing them into smaller and more
easily manageable subsystems. Distribution can be regarded as a mechanism for managing the scale of
computer systems. In this respect, distribution deals with both the introduction of multiple management
domains and geographical distribution of physical computing resources.

Cost efficient upgrades, and the ability to dynamically adapt the system to the current demand, are
important motivations for distributed systems. Because the cost of small and relatively powerful com
puters is low, they can be added on demand (assuming system growth) thereby extending the system
in small, yet affordable, steps. Accordingly, t he effort of local system maintenance and management
is reduced. However, building extendible technology is non-trivial and remains a challenge for system
designers (cf. §1.3.4 p. 10).

1.2.4 Sharing equipm ent

In a distributed system, it may be worthwhile to share expensive system resources like printers, scanners
or high-capacity file servers. For example, a colour laser printer could be connected to the network
and used by a large number of users. Expensive equipment can more easily be economically justified
when shared. Such large-grain resource sharing might be the primary motivation for interconnecting the
computers. As long as the necessary access structure is present, many resources in the system can be
shared. However, sharing of resources raises important issues such as the enforcement of security and
access policies (cf. §1.3.6 p. 13).

Other, more low-level resources, like processors and disks may also be shared in the system. However,
while large-grain sharing of, for example, printers can be initiated by the users themselves, fine-grained
resource sharing requires mechanisms in the system software, e.g. the operating system. Again, the issue
of access policies must be addressed. Simultaneously depending on multiple distributed resources within
the system decreases the reliability of the application, although replication mechanisms can partially
alleviate this problem^. Furthermore, fine-grained resource sharing is likely to be more expensive in
terms of scheduling overhead and system software complexity than large-grain sharing.

1.2.5 R eliability

Occasionally, distribution of system components is necessary due to an application’s reliability require
ments. It is very inconvenient if single failures stop the whole system. For example, on-line database

^Replication will be discussed in much more detail in the rest of this dissertation.

systems, process control systems and telecommunications systems commonly use redundancy to ensure
continuous operation despite failures. Other distributed systems, not designed primarily for fault toler
ance may also provide suitable environments for the incorporation of redundancy mechanisms to provide
tolerance against failures. Given that copies of important objects can be located and accessed on different
computers, a failure in a subset of them may be circumvented, such that the system can use the non-failed
objects and continue to provide a service (possibly degraded) during the period of recovery. However,
managing replicated components is non-trivial, and poses some difficult challenges (cf. §1.3.2 p. 10).

1.3 C hallenges

Developers of distributed systems face several hard problems, e.g. the increasing complexity of software,
poor system reliability and limited performance. These problems become more prominent as the systems
grow in size, and without careful consideration they will impose severe overheads in terms of cost and
performance on the large scale systems that are constructed in the future. This section elaborates on
these and some other related problems, and discusses possible ways of addressing them.

1.3.1 M anaging application com plexity

As more of people’s work is being computerised, the demand for more advanced computer systems is
strengthened. Additionally, the increasing performance of computing equipment drives the development
of applications solving computationally more demanding tasks [1]. Arguably, no limitation exists on the
problems that computer systems are being used to solve. Large problems often have elements of distri
bution, e.g. due to reasons of reliability, scalability, performance or autonomy. Building reliable systems
requires careful design and implementation [44], which, in turn, adds to the complexity of developing the
software.

A useful paradigm for managing software complexity is that of composition [29, 136,173]. By decomposing
large, complex modules into hierarchies of smaller solvable submodules, very large problems can be
handled, and the software is more easily maintainable if decomposed in such a tree-like fashion [187].
In the object oriented model, this decomposition can be even more fine-grained. A single class might
contain the implementation of the solution to a sub-problem and collections of classes can be combined
into modules which implement solutions to larger grain problems.

A significant benefit of the object oriented model is that it allows classes to reuse code from other classes
through inheritance. A single parent class can implement functionality used in a number of child classes
to save coding effort. Inheritance will thus result in (arbitrarily high) class hierarchies.

Good object oriented designs favour high class cohesion^ and a low degree of inter-class coupling'^, which
essentially means that a class is responsible for only one, well encapsulated task. A good composition also
allows for greater flexibility because a submodule is easily interchangeable, i.e. it can be replaced with
another upgraded version without changing the clients of the submodule. The low degree of coupling
implies that there are only a limited number of dependencies among modules, and this in turn ensures
that the interface of the submodule is moderately sized. The high degree of cohesion ensures that the
implementor of the new submodule can focus on one particular problem, and this brings benefits to
projects which require collaboration between many development team members.

The object oriented approach is particularly attractive for distributed systems because it can quite nat
urally be extended to model objects scattered around the network (cf. 2.5 p. 22). In this model, an
application becomes a collection of encapsulated objects performing a common task by issuing operations
on each other. Encapsulation and abstraction help to reduce the effort needed to understand parts of the
system and increase the maintainability of the software.

^High functional relatedness [173].

^The measure of the strength of association established by a connection from a module to another [29].

Furthermore, due to strong emphasis on abstractions, the object oriented approach can provide good
support for reuse. Reuse of designs, for example through the use of design patterns [75, 161], can bring
benefits in terms of saved development cost and higher quality implementations. A useful approach to
reuse is system support mechanisms that can provide reuse of implemented functionality among many
applications. The system support approach to reuse is discussed in more detail in chapter 5.

1.3.2 Preserving system reliability

As computer systems continue to take on many critical tasks in our society, it is important to ensure
that these systems are reliable. Distributed systems, often used by large numbers of people, should be
the subject of particular attention. They are inherently less reliable than non-distributed systems due
to the fact that they depend upon multiple components to work (see chapter 3). Distribution entails a
new set of failure modes. Due to physical and electrical distribution the system components often fail
independently. This increases the likelihood of a partial failure, but also implies that the probability of
all the computers in the system failing simultaneously is low. Mechanisms for fault tolerance are thus
essential in distributed systems, in particular systems providing vital services to a large number of users.
A main subject of discussion in this dissertation is the mechanisms needed to make distributed systems
resilient to failures, for example, chapter 4 is devoted to the techniques used to achieve this.

1.3.3 D istribution transparency

To simplify the task of developing distributed programs, system software should conceal as many of the
distribution aspects from the programmer as possible. For example, programmers should not be required
to write two versions of an application depending on whether it was going to run on an Ethernet or
Token Ring LAN. Systems software should bridge heterogeneity so that applications could be written
independently of underlying platform characteristics [14]. Similar ideas form the basis for Java, a portable
programming language primarily designed for developing applications for use on the Internet [96]. A Java
program is platform neutral, and is compiled into byte-code rather than machine specific instructions. A
portable virtual machine executes the byte-code.

Furthermore, there should be uniform methods for accessing system services like file systems, location-
services or mail services. There are valid arguments against complete uniformity, e.g. reduced performance
[194] and limited design freedom, but a conceptually simpler system model is usually worth the overheads.

An exception to the general goal of distribution transparency is related to failures. A programmer
will usually want to know where failures occur so that they can be corrected, or at least reported to
the user. However, this conflicts with the goal of concealing distribution. Maintaining distribution
transparency while providing efficient access to failure status information is a challenging task for designers
of distributed system software.

Also related to the challenge of distribution transparency is maintaining consistency. Commonly, dis
tributed systems contain data replicated at several machines to exploit locality of the data and thus
gain reduced latency while accessing the data. There is an inherent tradeoff between maintaining data
consistency and allowing independent updates of the data. Users should be unaware of the fact that the
data is duplicated and should have a consistent view of the data. As replication management is a main
theme throughout the dissertation, this issue will be discussed in much more depth in the following text.

1.3.4 M aintaining scalability

A distributed system should be able to scale gracefully, meaning that it should allow for incremental
growth and still provide reasonable efficiency. If a system architecture is scalable, the same architecture
can be used in system configurations of widely varying sizes, thereby supporting the development of
applications across a wide range of systems.

10

A scalable system architecture must cope with large variations in capacity requirements, and variations
by several orders of magnitude should be expected. A small, departmental network might consist of
tens of machines, a corporation wide network can contain thousands. The system architecture should
therefore impose small overheads, and use available resources efficiently. Designing system architectures
that are efficient in both scenarios is non-trivial. Any overhead that is reasonable in the small scale
system, might cause overload in the large system. In contrast, an architecture which is efficient for a
large scale system is not necessarily efficient for a small system. For example, a distributed coordination
protocol that requires concurrent participation from all the computers in the network could be affordable
in a small LAN-based system, but would be inappropriate in a large WAN-based network with large
communication latencies.

To be scalable, the architecture must also cope with system extensions. If new components cannot
easily be integrated into the system, scalability will suffer. For example, poor interoperability between
system components from different manufacturers will reduce the system’s extendibility and hence make
it difficult to scale the system according to the requirements, (cf. paragraph “Managing heterogeneity”
p. 13). Although not all distributed systems should be expected to reach the size of large corporate
networks, it is difficult to predict in advance how large the system will grow, and if scalable technology
is used throughout, incremental growth and efficient use of available resources is ensured.

1.3.5 M aintaining perform ance

Distributed systems should, like any other computer system, use the available resources efficiently so
as to give good performance. However, achieving this in distributed systems is hard. Motivated by
prospects of reduced application complexity, systems designers have advocated uniformity of mechanism
and concept. However, providing uniformity often involves adding several layers of software which reduces
system performance, and while processor speeds are currently doubling every two years, the benefits can
easily be outweighed by layers of software bridging the heterogeneity of the hardware [185]. The challenge
becomes to build well designed software architectures which minimise performance overheads.

Additionally, the communication infrastructure has traditionally been the bottleneck for performance in
distributed systems. However, the arrival of high performance networking technology suitable for both
local and wide area communication, has generated increased confidence in distributed systems as an
attractive platform for many useful applications [14, 32, 108, 164, 170].

1.3.6 O ther issues

The previously mentioned problems are the main focus of this dissertation. A number of other impor
tant related problems are discussed in this section. These problems are not directly addressed in this
dissertation; they are outside the scope of this work. However, they are important issues for distributed
systems designers and will influence the implementation of real systems.

E x ten sib ility
Extensibility is often rather limited in traditional centralised computer systems. There are usually definite
constraints both as to how new components can be added and which new components can be used. Both
in terms of structure and allowed heterogeneity, there are strict rules confining the process of adapting
the system to changing requirements. These constraints are typically imposed by manufacturers, leading
to additional difficulties when equipment from different manufacturers has to be integrated.

Distributed systems tend to be more extendible than traditional centralised computer systems. An inher
ently loosely coupled distributed system is able to accommodate additions of new equipment more easily
than a system based on a mainframe or minicomputer. Furthermore, a large proportion of networked
computers run variations of UNIX. Uniformity of operating system platforms increases the extensibility
of the distributed system.

11

E x p lo itin g p aralle lism
Ideally, a distributed system architecture should give the programmer transparent access to all available
computing resources such that applications could be written independently of the number of available
processors. One approach, called the processor pool model, is the basis for several distributed systems,
e.g. the Cambridge Distributed Computing System [152] and the Amoeba distributed system [133]. These
systems model processing power as a globally available resource shared between applications. However,
the majority of distributed applications today are partitioned explicitly, and are designed to make use of
a particular number of processors.

Being able to exploit the available resources like processors, memories and disks efficiently, concurrently .
and transparently is not trivial. Problems such as load balancing and process migration are the focus of
much research interest (see for example [62]). While research into parallel architectures has experienced
significant progress, both in hardware architectures and in programming languages and tools (see for
example [146]), there are however, many problems which still remain unsolved, most importantly is the
tight coupling of programs to specific architectures, essentially rendering efficient parallel programs non
portable [168]. The end result is that applications aimed at exploiting parallelism are often required to
make strict assumptions about the system architecture, and they are usually unable to cope with the
heterogeneity found in traditional distributed systems. Any progress made in this research area is likely
to have a big impact on the kind of applications people will use in distributed systems.

Also, despite the narrowing gaps in offered network capacity between traditional high-speed processor
buses and networks, distributed systems still have to cope with inherent propagation delays in long haul
communication links. Additional delays are imposed by the layers of communication software needed
to bridge different networking and machine architectures. Arguably, the rapid increases in processor
speeds are not matched by similar decreases in transmission latencies. This problem is present even in
high performance multicomputer networks. Techniques such as caching and batching may amortise the
latency cost over several requests, but for highly interactive and communication demanding programs
the savings are limited. Consequently, the previously clearly distinct fields of parallel computing and
distributed computing are becoming blurred [70].

An idealistic goal of distributed systems designers is to hide this heterogeneity and complexity, with the
intention of giving users the illusion of a less complex uniprocessor system [51, 183]. Clearly, this is a
major undertaking, but can produce systems which are easier to use.

L oad balancing
Related to the problem of exploiting parallel execution of programs (cf. §1.3.5) and scalability, is the
problem of load balancing or load sharing. In addition to reducing the scalability of the system, improper
allocation of load among the computers will severely reduce performance. For example, it has been
shown that significant amounts of processing capacity is wasted in networks of workstations [62]. In
the extreme, load imbalance can reduce the availability of the system if certain important computers
are overloaded with work. In addition to reduced availability, load imbalance can also reduce the system
reliability. Overloaded machines are more likely to fail [105,165], and overloaded networks are more likely
to experience congestion and increased delays and jitter of data transmissions. Ideally, a load balancing
scheme should allocate load evenly and dynamically among available computers. A key problem in load-
balancing is to define what load is, i.e. the measure of cost. Many factors influence system performance,
e.g. application memory requirements and the ratio of I/O versus computation. Optimal load balancing
is a hard problem and most approaches to load-balancing assume relatively simple cost measures, e.g.
the number of processes scheduled on a computer.

Further complicating the issue is the fact that many of the properties that determine efficient load are
dynamic, and can change very rapidly with time. For example, spare capacity on a particular commu
nication link might be large outside office hours, and relatively limited during office hours. However,
significant variations can occur within much shorter time frames. Load balancing is not a concern of ap
plications, it is a task that should be performed by system software. These kinds of problems are outside
the scope of this work (cf. §2.7.1 p. 25). The reader might refer to chapter 15 in [131] and chapter 11 in
[169] for more information.

12

M an agin g h etero g en eity
Scalable distributed systems are often populated with heterogeneous components. It is therefore advan
tageous to integrate these components into a single, uniform framework to reduce the effort needed to
access the various components. During extensions of a system, problems of interoperability often arise.
Different components have different interfaces, and it can be a challenging task to provide cooperation
across non-uniform platforms.

Heterogeneity originates at many different levels in the system hierarchy. Different processors can use dif
ferent instruction sets. Different computers have various amounts of memory and disk space. There may
be different operating systems installed together with various other kinds of system software like com
munication protocols and file systems. Without some kind of bridging software framework, applications
would have to be written specifically for each particular machine.

Despite the heterogeneity, a distributed system must utilise the resources efficiently. This implies that
knowledge about the properties of the resources must be available to the system, such that the system
can determine a good utilisation strategy for each resource, e.g. processing power, memory and special
hardware. For example, one particular computer may have special capabilities for numerical calculations,
so a particular class of application that require a large amount of numerical calculations should be
executed on that computer. Performing this kind of optimisation requires process migration mechanisms,
another non-trivial problem (see e.g. [178]).

D a ta com m u n ication fram ew orks
The variety of hardware and software architectures that must be integrated can be very large. To
achieve interoperability between different architectures, there must be a standard which defines a common
structure for interaction. Traditionally, only relatively low level communication protocols were available.
Among the most widely used, T C P /IP has been implemented on a range of platforms, and is hence
providing interoperability between these platforms. While originally a ‘UNIX only’ protocol, it is now
used on a wide range of computing platforms. Although a communication protocol suite is not sufficient
for application level interoperability, a number of applications, for example World Wide Web browsers,
file transfer, terminal emulation, and electronic mail are based on this protocol suite.

The OSI® framework reference model, was created in collaboration by ITU® and ISO^ [153]. OSI a t
tempts to provide a more complete framework for application interoperability than TCP/IP. The refer
ence model is composed of seven layers, where the four lowest layers together provide similar functionality
to a T C P/IP stack (peer to peer reliable data transfer). OSI uses the three upper layers, the session,
presentation, and application layer, to add functionality for application interoperability. For example,
in the application layer, OSI defines several ASEs® for direct use by applications. There are ‘low level’
ASEs for remote procedure calls, association management (an association is equivalent with a connection)
and reliable data streams. Additionally, a set of ‘high level’ ASEs for directory services (X.500), mail
services (X.400), file transfer (FTAM) and remote terminal emulation (VT) are specified. While the OSI
model was a major undertaking, it has failed to reach wide acceptance in the computing community.
This dissertation will not attem pt to provide an answer for this, however, experts within communications
research have indicated the severe overheads of inband communication as an important factor [122].

S y stem th rea ts
A distributed system is inherently less secure than a centralised system because the multiple components
are each a potential threat to the security of the system. However, distribution of resources can also
be a benefit because it normally requires more effort to tamper with all the components. If information

®Open Systems Interconnection.

®The International Telecommunication Union, formerly CCITT (International Telephone and Telegraph Consultative
Committee).

^International Organization for Standardization.

^Application Service Elements.

13

is partitioned among several machines in a network, everything is not necessarily compromised from
one machine. Additionally, heterogeneity among machines and interconnections will make it even more
cumbersome to access all machines.

Issues such as encryption, authentication and identification need to be addressed to provide system wide
security against attacks. However, there are also other, less obvious threats that have to be considered.
For example, flaws in the design of distributed systems might lead to resource overloads and network
congestion. This might severely reduce access to the system, essentially causing denial of service. It is
therefore important that during the design and development of such systems, consideration is given not
only to preventing direct attacks, but also to preventing some users maliciously or otherwise, limiting -
other users from accessing the system.

C orrectn ess
Constructing correct computer systems is a significant challenge for both researchers and practitioners.
Ensuring correctness is a hard problem in sequential systems, in distributed systems it is even harder
due to added complexities such as heterogeneity, failures and asynchrony. Global coordination and
administration requires access to some shared state, a globally valid property. Distributed consensus
algorithms are able to achieve agreement on global properties [66], but they are normally expensive and
complicated® due to failures and large communication latencies. Large distributed systems are often
required to deal with incorrect or incomplete global state because of the high overheads incurred by
traditional consensus algorithms, which further complicates their implementation.

1.4 R ep lication in D istrib u ted S ystem s

Distributed systems offer poor availability if they are not designed to withstand partial failures. Repli
cation is a recognised approach to increasing resilience against partial failures, but requires sophisticated «
data management to maintain consistency. With the increasing complexity of software, there is a de
mand for more system support software to keep application complexity under control. System support y-
for replication can help developers of distributed applications attain suitable reliability without signifi- |
cantly increasing application complexity and therefore also application cost^®. A system support facility
provides generic abstractions that are applicable to a range of applications, and hence relieves the pro-- '
grammer from the task of reimplementing replication scheme code in multiple applications. The goal of
this work is to present a usable approach to system supported object replication, and a proposal for such
an approach is presented in chapter 6.

The fundamental issue for all replication schemes is the level of consistency offered. Strong consistency
replication management schemes attem pt to maintain full consistency among the replicas, thus offering a
one-copy model of the replica group. But depending on the kinds of failure in the system, full consistency
is not always attainable.

Weaker consistency replication management schemes achieve better availability, performance and scala
bility than full consistency schemes and are necessary for large scale distributed applications where full
consistency is not practicable. However, due to the potential for inconsistencies among the replicas, weak
consistency schemes are not appropriate as part of system support mechanisms as they require applica
tion specific intervention to sort out conflicting replicas. Thus, the application would have to include
replication aware code which contradicts the aim of reducing application complexity.

In contrast, a full consistency scheme can be used without changing the semantics of the application
as most programs are written under the assumption that there exists only a single copy of data items.
Although weak consistency protocols have been used to support semantically simple applications where

^Worse still, consensus has been proven impossible in many realistic system models [69, 184, 186].

Many markets are not willing to pay much extra for increased reliability of their applications [98]. Increased application
reliability will however be a bonus if added at a small cost.

14

the rules for conflict resolution are straightforward, they are not very useful at a system support level
in object oriented programming systems where reconciliation of objects generally cannot be automated.
Only for some applications which are generally able to cope with inconsistent data due to their self-
correcting characteristics, for example name resolution using a name server or reference databases [81,
134, 137], can weak consistency protocols be used transparently. The application is responsible for
checking if the information is out of date, and if so, the application must be able to detect the error and
guard itself by using a failure masking protocol such as retries.

Consequently, a full consistency replication scheme seems most suitable for system supported replication
and forms the basis for the proposed system architecture.

1.5 P rob lem S tatem en t

A range of challenges for distributed systems designers have been presented in the previous text, and a
number of others probably exist. The problems discussed require substantial and continuous research,
they are all important issues. The work described in this dissertation tries to address only a particular
problem within the area of distributed computing; namely that of providing assistance to application
builders developing reliable distributed software systems in an effort to help reduce application complexity
and improve its reliability.

The aim of the work presented in this dissertation is to provide partial system support for object repli
cation in a distributed system. Due to the inherent tradeoff between consistency and scalability, the
system support mechanisms are aimed at supporting relatively small scale applications where high levels
of consistency only incur moderate costs in performance. The small scale justifies the use of remote
object references for sharing of objects between machines. However, the system support mechanisms
allow the programmer to partially control the synchronisation of the replicas to better suit the particular
application in hand. Through the use of the system support mechanisms it will be demonstrated that
applications can employ replication in a simple and efficient manner.

My thesis, which will be supported by this dissertation, is that partial system support for replication of
program-level objects is practicable and assists the development of reliable distributed object-oriented
applications which require full consistency replication. I demonstrate the usefulness of this approach
by describing a prototype implementation and showing how it supports the development of an example
application.

1.6 O utline o f th e D issertation

The remainder of the dissertation is composed of 9 chapters and 2 appendices; the first four (chapters 2-
5) present the problem area, the next three (chapters 6-8) present my proposed architecture for system
supported object replication, chapter 9 is a survey of related work, and chapter 10 contains concluding
remarks about the achievements and open problems. Appendix A presents a sample collator which is
part of the programming model, and appendix B presents a small amount of probability theory used
throughout the dissertation. What follows is a more detailed description of each chapter.

Chapter 2: System Model. This dissertation is concerned with particular classes of distributed systems.
The system model defines the characteristics of these systems by describing their structure and
behaviour, covering both hardware and software issues.

Chapter 3: Computer System Failures. This chapter provides a presentation of some of the many
failures that can occur in computer systems. Distributed systems are particularily vulnerable to
failures, and must be designed to withstand them if they are to be useful. However, understanding
the characteristics of these failures is necessary when attempting to build systems that should

15

w ithstand them. This chapter is to be regarded as an introduction to chapter 4 which covers
techniques to mask these failures.

Chapter 4: Replication Techniques. Replication management schemes can be used to mask failures in
distributed systems and a range of different approaches to replication do exist, of which a number
are presented in this chapter. Additionally, replication in object systems, through the use of object
replication, is distinct from traditional data replication techniques. The particular system model
adopted in this dissertation, and the range of failures considered here, requires that important
tradeoffs be made consciously when a replication scheme is chosen. Included in this chapter is a
discussion of these tradeoffs and special considerations that must be made in an object replication
scheme.

Chapter 5: System Support. Implementing system support is not trivial, but the availability of system
support can be crucial for the construction of complex software systems. This chapter contains a
discussion of various important issues that must be addressed during the development of system
support mechanisms with an emphasis on those issues related to the provision of system support
in distributed systems.

Chapter 6: System Architecture. My proposed architecture for system supported replication is presented
in this chapter, highlighting its modular and flexible design.

Chapter 7: Programming Model. A main goal of the architecture described in the previous chapter is to
present the developer with a simple programming model. In this chapter I show how my architecture
extends an object oriented programming language with powerful mechanisms for managing object
replication.

Chapter 8: Realising the Architecture. The architecture has been partially implemented as a proto
type in Modula-3. Additionally, a toy application has been built exercising the system support
mechanisms, and demonstrates the simple programming model. The application has also been
instrumented for performance measurements. This chapter presents the prototype to illustrate
how the architecture can be realised. A brief discussion of the application and the performance
measurements is also included.

Chapter 9: Related Work. Vast numbers of research and commercial projects employ replication tech
niques to improve failure-resilience, availability or performance of applications. This chapter is"
divided in two; the first part focuses on those projects particularily aimed at providing program
ming level support for replication, such as replicated RPC or process groups. The second part
contains a broader presentation of distributed applications that employ replication techniques.

Chapter 10: Conclusions. A range of valuable insights have been gained throughout the course of
the project. The final chapter summarises these insights in a discussion of the limitations of the
architecture, open problems and possibilities for future research.

16

Chapter 2

System M odel

T he system support mechanisms presented in this dissertation (see chapter 6) are built upon existing tech
nology to reduce complexity and simplify their developm ent. This chapter presents an abstract model of the
distributed system s in which my proposed approach for supporting replication is appropriate. If similar tech
nology is not available, im plementing the replication mechanism s may not be practicable w ithout reworking
the architecture. The assum ptions set forth in this chapter should therefore be considered prerequisites for the
proposed architecture.

2.1 O verview

A distributed system is a collection of autonomous and cooperating computers which communicate via
a network. A network of workstations is a good example of such a system which conforms to the system
model presented in this chapter. Distributed software composed of cooperating modules execute within
the network. An object-based programming model is chosen for this work, where objects are distributed
among the computers in the system and interact by invoking methods on each other. Objects provide a
simple and unifying concept used to decompose distributed applications into a collection of interacting^
autonomous and maintainable components. Objects are convenient for the encapsulation of complex
software mechanisms. Encapsulation and simplicity make objects useful for the construction of large
distributed software systems [135].

In contrast to a centralised system, a distributed system must cope with a range of complicated problems
such as asynchrony and partial failures. Also, distributed systems may often include heterogeneous com
ponents. The heterogeneity introduces variations in the underlying hardware and software architectures
which must be concealed by distributed systems software. The following sections present the system
model in detail.

2.2 P rocessing E lem ents

A collection of processing elements (PEs) cooperate to execute programs within the distributed system.
Each PE has direct access to a limited amount of memory, and optionally, a limited amount of non
volatile storage. Access to local memory is assumed to be fast, access to non volatile storage is assumed
to be orders of magnitude slower^.

^The cost of accessing non-volatile storage, unique in its ability to maintain the integrity of data during PE failures, can
be amortised by employing techniques such as caching in combination with specially designed, failure resilient write-back
policies. However, it is outside the scope of this dissertation to provide a thorough analysis of cache performance. For
example, cache performance is found to be highly dependent on program behaviour patterns, a distinct field of research

17

A loosely coupled system architecture is assumed — each PE executes locally stored programs. The local
memory, optionally augmented with a virtual memory mechanism, is partitioned into multiple address
spaces. Each PE supports the concurrent execution of multiple, potentially multi-threaded, programs
located in their own virtual address spaces. Due to variations in processing capacity, system resources and
system load, PEs execute programs at variable and unpredictable rates. Each address space is protected
against uncontrolled access from other programs by local operating system software. An attem pt by a
program in one address space to manipulate data within another address space without the appropriate
access privileges will either be denied or cause a crash in the offending address space.

Potential architectural heterogeneity among PEs can cause problems during interaction. Differently sized
address spaces and different rules for byte ordering will undoubtedly cause mishaps if an interconnectivity
policy is not in place. However, these issues are assumed to be solved by existing systems software
implementing inter-PE communication primitives.

A distributed program contains instructions both for local computation and for communication. A PE
executing a communication instruction uses the facilities offered by the network to communicate messages
with other PEs in the system. Each PE is uniquely identified within the network, and the communication
network provides the necessary support for communication of messages between any two PEs. Hence,
PEs are assumed not to be concerned with issues such as PE addressing and network routing. These
issues are dealt with by lower level communication software.

Distributed shared memory (DSM) systems are not considered here. While DSM is a very powerful
abstraction which potentially can simplify application development, current DSM systems tend to offer
poor scalability and efficiency as compared to distributed memory systems. Because DSM systems do
not support application partitioning (cf. §2.7.1 p. 25), the notion of failures is concealed, and this makes
it difficult to build fault-tolerant systems. As in replication management schemes for distributed memory
systems, maintaining consistency is the difficult issue. However, experiments with DSM systems can give
valuable input into replication management strategies in distributed memory systems [36].

2.2.1 P E failures

Computing machinery is not able to sustain continuous failure free operation for arbitrarily long periods
of time (cf. §3.2 p. 30). A PE may fail during execution of local programs and may trigger failures in_.
other PEs. Normally, a failure will only affect the address space hosting the executing process. However,
if the PE failure occurs during execution of critical code, e.g. operating system code, device driver code,
etc., all activity on the PE may be affected, i.e. all address spaces local to the PE may fail. Also, it is
assumed that a PE does not fail maliciously, i.e. the PE does not behave arbitrarily. Rather, when a
failure occurs within the PE proper, it crashes and stops all processing permanently^. Some time after
the PE has crashed, the PE may be restarted, most likely initiated by a human operator. Because a PE
fails by crashing, such a failure can be detected in the time-domain by a timeout mechanism (cf. §3.2.3
p. 32).

2.3 N etw orks

Computer networks provide the necessary infrastructure for communication among PEs. The networks
provide support for any pair^ of PEs to communicate messages. Message passing is by definition not
instantaneous. It is not possible to send data from a source to a destination in zero time. Additional
delays are incurred by unpredictable traffic and congestion patterns throughout the network, leading to
arbitrarily long delays.

[120, 56].

^Failures are discussed in more detail in chapter 3.

^Collection of PEs if the network supports multicast (cf. §2.3.3 p. 20).

18

'*The connectivity of a network is the number of links that must be removed to obtain a single-connected network.

^This is due to the need for collision detection algorithms which limits the length of the bus. For example, an Ethernet
segment cannot exceed 2.5km in length [182].

®Cf. §3.2.3 p. 32.

19

The communication infrastructure is usually the most significant factor determining the characteristics of
a distributed system. Most importantly, its structure, or topology, affects both performance, scalability,
and failure modes in the system. A connected network is assumed, i.e. a PE can exchange messages
with any other PE. However, not all PEs are directly connected by a single transmission path. A fully
connected network is not feasible in practice due to the high cost; however, high connectivity^ can improve
the reliability of the network, as fault-tolerant routing algorithms can ensure that messages are routed
around failed links and therefore provide service in the presence of link failures.

Furthermore, bus-based networks, while able to support efficient broadcast, do not scale to any significant
sizes®. Accordingly, a network structured as a collection of broadcast subnetworks (LANs) interconnected •
by point-to-point long-haul networks (WANs) is assumed.

2.3.1 T he latency problem

Routing, buffering and forwarding of messages in large networks incur overheads which are reflected in
relatively long and unpredictable latencies. Additionally, significant latencies are present in large dis
tributed systems due to the physical propagation delays in long distance communication links. Electrical
and optical signals are inherently limited by the speed of light, and in many cases these signals travel at
significantly slower speeds. For example, due to refraction, propagation speeds decrease to about 60% of
the speed of light in optical fibres. As a result, a coast to coast connection in the continental U.S. can
experience propagation delays of up to 30ms [141]. The problems incurred by physical signal propagation
delays are naturally amplified by the geographical scale of the distributed system. Techniques such as
caching and buffering can be used to amortise the propagation cost over multiple messages, but this does
not bring much benefit to highly interactive applications which are dependent on rapid transmission of
round-trip messages.

T im eo u ts
A timeout is a mechanism for dealing with the asynchronous behaviour of distributed systems. A timeout
is an approach that introduces synchrony constraints into the communication channel to deal with benign
failures. If a message is not received within a specified time interval, a timeout expires and the message is
assumed to be lost. Timeouts essentially reduce timing failures to omission failures®, making it possible
to observe omission failures without arbitrary long delays.

A problem with timeouts is to find a timeout value which is efficient. Timeout values which are too
small will lead to excessive numbers of timeouts, whereas overlarge timeout values will make the system
inefficient by waiting too long before declaring a message as lost. Further complicating this issue is the
greatly varying latencies found in internetworks combining LAN and WAN technology. The latencies also
vary depending on competition for the channel. This dissertation assumes that the network technology
has appropriate mechanisms for dealing with timeouts across heterogeneous networks such that commu
nication among interconnected PEs is performed efficiently. Therefore, with high probability, failures are
detected much faster within a subnetwork than in a long-haul WAN network.

2.3.2 N etw ork failures

A network should allow PEs to exchange messages reliably. However, several kinds of mishaps are
likely. Network failures are inherently less independent than PE failures. A network connects several
PEs together, and a failure therefore normally affects multiple other components. Depending on the
network’s topology, architecture and population, there are large variations in the number of affected

components. Highly connected networks with multiple alternative transmission paths can substantially
reduce the effect of failures. Other networks, e.g. bus-based networks may cause disruption for many of
the connected PEs.

Lost messages may cause PEs to observe partition failures, i.e. a group of PEs are not able to communicate
with another group of PEs. Partition failures are extremely hard to deal with because PEs in each group
might conclude that the PEs in the other group are just faulty. This, in turn, might lead to inconsistent
behaviour within each group. In the proposed architecture, partition failures are treated pessimistically,
i.e. only a partition containing a majority of the PEs is allowed to make progress (see §6.3.1 p. 68). Other
solutions, assuming (optimistically) that conflicts are rare and can be dealt with later, would allow PEs
in multiple partitions to continue [55].

Network failures are often transient and cause bursts of corrupted or lost messages rather than permanent
partitions (cf. §3.2.4 p. 34). To increase the reliability of the network, failure resilient communication
protocols are used to conceal many of these mishaps. For example, the T C P/IP protocol suite provides
a reliable byte stream transport service over a virtual circuit [47]. The T C P/IP protocol guarantees
that no bytes are reordered, duplicated or corrupted. Due to the connection oriented semantics and
retransmission of lost data, T C P /IP connections have crash fault semantics and are failfast and reliable^
(see also §3.2.3 p. 32).

2,3.3 O ther network issues

Some network architectures have specific capabilities and strengths that can be of significant benefit in
distributed systems. Among these are support for sessions (e.g. connections), broadcast or multicast, ser
vice guarantees, encryption and authentication. Although these features can be implemented in software,
hardware support is likely to be much faster.

N etw ork su p p ort for m u lticast
Replication involves keeping several copies of an object up to date. This can be supported by multicast
network primitives. Multicast primitives allows a PE to send an update message to multiple recipients
using a single network operation. Most bus-based networks, e.g. the Ethernet, but also ring-based net
works such as FDDI and Token Ring support efficient broadcast. In these networks, multicast is s im ila r ly "
efficient; because all messages are seen by all stations, a station can just discard messages that are not
from a transm itter in the multicast group. Network support for multicast is of benefit also because it
reduces the amount of traffic on the network by making copies of the message only when strictly nec
essary. Traditionally, multicast in wide-area networks has been much more expensive, but new network
architectures, such as ATM [190], and research into multicast on the Internet, such as the MBone [63],
may reduce this problem. However, the proposed architecture does not require such support.

Isoch ron ou s datatransfer
Time critical media like video and audio require transfer of large quantities of data with little jitter and
delay. Some network architectures, such as ATM [190] provide support for isochronous data transfer.
Work is also being done to improve the performance of FDDI [43] and Ethernet [74] for time-based
media. However, challenges still remain. Isochronous Ethernet has the scalability problems of Ethernet
and will be most suitable for small scale installations. FDDI technology also has scale limitations,
maximum network length is 200km. Communication latency in ATM networks is still a bottleneck for
highly interactive applications [108], although promising progress has been reported [192]. For truly high
speed networking, processing overhead in clients seems to be the bottleneck [108], work will be focused
on improving device drivers and medium access protocols. Latencies below 200/us have been achieved in
ATM LANs. Any efforts resulting in networks with less jitter and delay will be of benefit to the proposed
system architecture.

^The connection is failfast because timeouts and checksums convert late or corrupted messages to lost messages, and is
reliable because it retransmits lost messages [85].

20

2.4 O bjects

A class implements an abstract data type (ADT) defined in a program, and is purely a programming
language concept. A class may be a specialisation of some other class, in which case it inherits parts of
its definition from the other class, or it may be a top-level (root) class. When a class is instantiated to
construct an object, the object will contain all the fields and methods accumulated down the inheritance
hierarchy, and the object will accept method invocations as declared in the ADT specification.

This dissertation is primarily concerned with the object concept. Issues related to class concepts, e.g.
sub typing and polymorphism are not further considered®. It is assumed, in accordance with the traditional
view of object-orientation, that data abstractions and procedures are first-class objects which can be
manipulated as normal values [34].

An object is a structure that encapsulates a state and a set of methods (operations) that can be invoked
to manipulate that state. A method is a non-instantaneous parameterised transformation of an object’s
current state [119]. Invoking a method on an object is the only mechanism available to other objects for
accessing an object’s state®.

Objects exist during run-time in an application’s address space, and the system support mechanisms
described here are primarily concerned with programming language objects, i.e. objects instantiated by a
program generated by a compiler. If used in the context of object-oriented operating systems, the same
definition of objects would apply. However, other objects, such as traditional operating system objects
(files, ports and processes) and hardware objects (displays, keyboards, disks etc.) are not part of the
architecture.

2,4.1 Sem antics o f m ethods

A pure, encapsulated, object model is adopted in this dissertation. Method invocations on objects are
assumed to potentially mutate the state of the object. Hence, the object’s new state S' is a function
of both the method m, any parameters p, and the state of the object S before the invocation occurred,
S ' = f {S ,m ,p) . Methods that do cause mutation are called non-idempotent, or non-testable [85]. The
number of times such methods are invoked determines the final state of the object, hence, they must
be executed exactly the number of times specified by the client. For example, invoking a method de~
posit(£ 100) on a bank account is non-idempotent, because it does not simply overwrite the object’s
internal state, but rather depends on the previous state to determine a new value (in this case the cur
rent balance). It is further assumed that methods are non-commuting and must be executed in the correct
order. For example, the order of invocation is important for the two method calls addlnterest(10%) and
deposit(£100).

Whether the invocation of a method on an object only reads the object’s state or if it is also modified is
not revealed to the holder of the reference to the object. An encapsulated object model means that the
implementor of the object can guarantee that internal state invariants can be maintained. This relieves
the client of the object from any obligations to deal with integrity constraints of concern only to the
object itself and this in turn enhances the scalability of software designs.

Methods may define output parameters as well as input parameters. Input parameters are used to
parameterise the method invocation, and output parameters return results of the invocation back to the
caller.

O b je c t’s s ta te
An object’s state may contain any type, variable or procedure definitions allowed by the programming

®In this respect, the object model is object-based [135, 154]. However, the implementation of the architecture benefits
from object-oriented features of the implementation language, which is object-oriented.

^Some object oriented languages do not enforce such strong encapsulation.

21

language and hence form arbitrarily complex constructs. For example, objects may contain dynamic
data-structures such as references to files, monitors and threads [33]. Objects may also hold references
to other, potentially distributed, objects^® (cf. §2.5 p. 22).

During execution of a method invocation, the object might, in addition to performing computations on
the local state, invoke methods on some of the referenced objects. Methods might, as input or result
parameters, accept references. These references are just like any other reference, and the holder of the
reference can use it to send invocations to the referenced object.

2.4.2 C oncurrency issues

In the distributed systems considered here, multiple objects may concurrently invoke methods on a
shared object and cause non-deterministic program behaviour. To prevent this problem, invocations
must be serialised, using locks, semaphores or monitors. It is the responsibility of each object to ensure
that multiple executing methods within the object do not cause incorrect state changes. The proposed
architecture acknowledges the need for serialisation using built-in synchronisation primitives (see §6.2.4
p. 66).

The objects considered here are not active, i.e. there is no explicit coupling of objects and threads. A
thread may visit arbitrarily many (locaF^) objects and an object may be visited by arbitrarily many
threads. However, an active object model would also be suitable for the architecture, and would most
likely reduce the complexity of the parallel RPC mechanism described in §6.2.2 p. 64.

2.5 R eferences

A reference is a handle to a particular object, and is created when the object is instantiated. In a
distributed system, references might span address spaces; the reference must then uniquely identify any
object in any of the address spaces. Further, multiple objects can hold the reference to a particular
object, facilitating sharing of the object [53].

U n iform ity o f referen ces
Uniform references, i.e. indistinguishable local and remote references, have been the subject of some debate
[26, 117, 194]. Uniformity is advocated as an approach to reduce application complexity. However, there
is an inherent difference; dereferencing a remote reference may fail while this will never occur for a local
reference. Remote references are therefore less reliable than local references. Furthermore, invoking a
method on a remote object is more costly. If references are truly uniform, the programmer has no choice
but to use local and remote objects in the same manner, thereby sacrificing either efficiency or reliability
of the software.

This dissertation is based on an object model which makes it possible for the programmer to handle
remote and local references differently through optional exception handlers for remote invocations. In
case there is no exception handler for remote object invocation failures, the compiler will issue warnings.
The benefit of this approach is that the programmer is only reminded about the additional failure modes
of remote object invocations but is not required to handle these failures if the application can ignore
them^^.

Objects are never ‘contained’ within another object, nor are they ‘owned’ by another object; all objects exist indepen
dently in an universe of uniquely identifiable objects.

Naturally, remote invocations will be processed by another thread in the remote address space.

^^Any reliable application should be concerned with such exceptions however, and should not simply crash due to a
remote object failure. Not adding exception handling for remote references should therefore be considered a dangerous
programming practice.

22

S ecu rity issues
In a naïve implementation of a distributed object system, any holder of a valid object reference can
invoke methods on that particular object. This opens up the possibility of security threats in the system,
where arbitrary programs can manipulate objects. A solution to this problem is presented by Geihs et.
al. where an authentication mechanism is integrated into object references [78]. The problem with such
an approach is that it is likely to be very expensive, particularly in systems containing large numbers of
mostly small objects. In such a system, an authentication check for each method invocation would incur
severe performance overheads.

However, such security measures are neither assumed nor required by the architecture but could be used
if present. The present version of the architecture assumes sharing of objects among programs residing in
address spaces owned by the same user and protected by underlying system software, although extensions
of the architecture might have to consider protection of object references.

R eferen ce failures
A remote object reference is fragile. If the referenced object becomes unreachable, e.g. due to a network
failure, the client will be notified by an ‘object unavailable’ exception. This is a problem for both the
caller and the callee, and the failure of the client to be prepared for such events will most likely cause
the client address space to crash. If the reference is remote, the remote address space might crash as
well due to the execution of arbitrary instructions. Similar failures will also occur if the remote object
is removed without updating the references that refer to it. Such ‘dangling’ references may cause failure
in objects trying to dereference them (i.e. invoke a method on the referenced object), and potentially
cause the execution of arbitrary instructions in the remote address space leading to remote address space
failure as well. Dangling references might occur for several reasons, e.g. erroneous object migration or
premature garbage collection [143].

The reference is the only mechanism available to invoke methods on another object. In fact, if no
references to an object exist, the object is not reachable, and does not logically exist. Such objects are
removed and their storage reclaimed by garbage collection technology [143].

2.6 Invocations

An object holding a reference to another object can invoke methods on the referenced object. Invoking
methods on a local object is performed through a standard, local procedure call on the indicated object.
The control is transferred to the method in the referenced object and if return parameters are specified
for the method the caller waits until the method is completed. Invoking a method on a remote object
requires transfer of control and data between address spaces. The calling thread is blocked before a
remote thread starts executing the call in the remote object. The calling thread resumes execution when
the call returns from the remote object. Issues such as locating the remote object, argument marshalling
and unmarshalling, communication failures and remote object failures are handled by an object-oriented
RPC mechanism^®.

Traditionally, in non-object based systems, the RPC [23] (remote procedure call) approach has been used
for intra-address space procedure calls. In object based systems, RPC is quite naturally extended to
remote invocations. Whereas a remote address space identifier must be supplied with each RPC call
to identify the callee, a remote reference is sufficient identification of the callee in an object system
[22, 27, 154]. This increases the uniformity of local and remote invocations.

In vocation failures
Invoking a method on an object can be regarded as equivalent to sending a message to the object. If the

object-oriented RPC mechanism extends the notion of a reference to include remote references. In contrast to non
object oriented RPC mechanisms which require a process identifier as parameter with each remote call, an object-oriented
RPC hides the process-id within the object reference.

23

To increase the flexibility of distributed software, a model where the client/server rôles are dynamically
changing is envisioned as the next step up from client-server computing. By allowing servers to request
services from other servers, a peer-to-peer model is formed which assists collaboration and autonomy
among agents [2, 106]. In a peer-to-peer structured application, objects are considered peers and may
invoke methods on each other, essentially functioning as agents carrying out work on behalf of others.

Some software systems at a larger scale are composed of collections of cooperating objects which externally
provide a server function. For example, a number of interacting objects might be cooperating to provide

'̂‘Transparent failure masking is a primary task for most communication protocols running in less than perfectly reliable
networks. For example, transport protocols such as T C P /IP and OSI T P 1-4 go to great lengths to recover from occasional
transient failures [47, 182].

24

method defines return parameters the caller is blocked while waiting for the reply message, otherwise the
caller proceeds. Due to the possibility of network failures, messages cannot be transmitted with complete
reliability. The network may cause arbitrary delay of messages, due to disconnections or protocol failures.
An invocation on a remote object may therefore block the caller until the timeout set for the return
message expires. If the caller receives a timeout, it cannot accurately verify that the method has been ;
executed at all. However, there is no exact way of deciding what went wrong; either the invocation
message was lost, the remote object’s address space crashed, the remote PE was too busy to respond in
time, or the return message was lost.

Due to this uncertainty, remote invocations can only provide at-most-once semantics in unreliable asyn
chronous systems. The caller cannot accurately determine whether the invocation was executed one
or zero times if a reply is not expected or expected but not received. However, if return messages are
expected, at-least-once semantics can be achieved by retrying the invocation until a reply message is even
tually received. This causes problems in the adopted system model, as methods may be non-idempotent
and thus require exactly-once invocations.

The architecture assumes that network failures are rare, and occur mostly as transient failures which are
masked by underlying communication protocols^'^. Also, it is assumed that a timeout mechanism reports
untimely message arrivals. A client will therefore observe all invocation failures, in addition to some
failures which are prematurely reported by the timeout mechanism.

2.7 A pplications

The development of distributed, object oriented applications can be considerably simplified by the use
of appropriate programming languages and systems. A number of programming languages and systems
include support for distribution of applications, and often amend traditional object oriented program
ming languages with persistence technology such as stable storage and transactional functionality [164].
Although the architecture presented might benefit from persistency technology in some respects, such
technology is not assumed. These system support mechanisms are aimed a t amending a type-safe object
oriented programming language with functionality for object replication.

Applications are composed of collections of interacting objects. Distributed applications, whose execution
is supported by distributed systems, are composed of objects located in different address spaces, possibly
on separate PEs. The programming language provides the facilities necessary to create, invoke and
share objects. Thus, this must also be anticipated by distributed,system software. Furthermore, system
software technology is assumed to be present for the reclamation of non-reachable objects.

The distinction between so called client-server and peer-to-peer applications is important for distributed
software. A client-server application is statically decomposed of clients requesting services from servers.
While being the common approach to distributed computing today, this approach is limited by the
static rôles of clients and servers. However, interaction between two objects is by nature a client-server
relationship whereby one object invokes the method (the client) upon another (the server) to carry out
a piece of work.

a file service to other components within the system. The particular group of objects providing the file 3?
service functionality will typically be located in the same address space to reduce the number of remote
invocations and thus achieve reasonable performance. The architecture for system supported replication
which is discussed in this dissertation assumes a client-server computational model where servers are
internally composed of cooperating objects (see §7.2 p. 79). However, extensions of the architecture
are suggested which can eliminate this restriction and allow a true peer-to-peer computational model w
(see §10.3.1 p. 109). I

2.7.1 A pplication partitioning

M u ltith rea d ed ap p lication s
A thread is a distinct flow of control within a process, potentially executing concurrently with other
threads within the same process. Threads communicate via shared variables, and the synchronisation
of threads is the responsibility of the application programmer. Multithreading is a useful and powerful ft?
concept for the construction of software because it increases parallelism [68] and consequently can reduce f
the performance penalties with synchronous method invocations [25]. Instead of simply waiting for a long-
running invocation to complete, the application can allocate this task to another thread, and continue
doing something else meanwhile. In this dissertation, it is assumed that an application will consist of
multiple processes, each with potentially multiple threads of control. This, in turn, will occasionally ft
trigger concurrent execution of methods in shared objects (cf. §2.4.2 p. 22). System support mechanisms
must therefore be prepared to operate correctly despite concurrent invocations. The system architecture,
described in chapter 6, supports object sharing. However, due to some inherent overheads, sharing among
processes will incur reductions in performance.

vft

-ft

:
The application programmer determines the tasks each object is responsible for and their location among ifi
the collection of PEs within the distributed system. Because objects are relatively low level constructs, ftft
applications are built as a large collection of interacting objects. For the performance of the application
it is important to minimise the number of interactions across PE boundaries because these are more
expensive than local interactions. Both performance and scalability can suffer badly from poor locality. #
The application is therefore partitioned into groups of objects in such a manner that most object in-
teractions occur within the group. Ideally, object location should be performed dynamically by systenr-^ ft
software that optimise application performance. However, dynamic load sharing and object migration
are separate hard problems that are not investigated in this dissertation.

Î

S ta tic and d yn am ic p a rtitio n in g
Application partitioning can be either static or dynamic. Static partitioning is done at compile time,
whereas dynamic partitioning occurs at run time. The benefit with static partitioning is that object
interaction can be type checked by a compiler to guarantee that only valid methods are invoked on
objects. However, static partitioning is unrealistic for large scale distributed applications. Rather, it ;f
must be expected that these applications will be configured and changed during execution. Dynamic ft|
partitioning must therefore be supported for large software systems. Dynamic partitioning requires that 'ft
type-checking of method invocations are checked at run-time.

H etero g en e ity
During its lifetime, a large computer system is often required to interact with another, potentially het
erogeneous computer system in order to cooperate on common tasks [142]. Because large distributed
systems often consist of confederations of autonomously evolving components, problems might occur
when evolution is not coordinated across component boundaries, for example, if a protocol between the
two components is not updated simultaneously in both components, or schemata and datatypes are
changed without prior agreement from both parties [142]. The problem is intensified due to the de
mands for increasingly open systems, i.e. systems which are designed to cooperate with other, potentially

25

unknown systems. These applications allow dynamic partitioning which requires careful planning of in
teraction mechanisms and well defined interfaces. Interoperability issues in object systems is a field of
active research, see for example [118, 77] and Part 6 in [138]. Object orientation, with strong emphasis
on encapsulation and abstraction can be a useful approach to reduce the cost of building interoperable
systems [135], and the pure object model adopted in this dissertation acknowledges these principles.

So-called object request brokers (ORBs) have been proposed to alleviate the problem of integrating het
erogeneous object systems by using repositories of interface contracts which define the interfaces available
to the client of objects within the object store [14]. Network Objects uses the principle of subtyping [34]
to allow a certain degree of evolution in the implementation of objects [22]. The implementation of the
object may be extended (i.e. specialised) without necessitating any changes in the clients of the object.

2.7.2 A pplication failures

Applications are distributed over independently failing address spaces. Each address space may contain
multiple objects which reference other objects, potentially contained in some remote address space. When
an address space fails, all local objects fail, although this cannot be guaranteed with absolute certainty.

O ther ap p lica tion issu es
Software, like hardware, may fail. However, the nature of software is discrete, hence software failures can
be avoided. In contrast to hardware components, a correct software component will never be the cause
of its own failure^^. Many challenges still remain before there can be any realistic hope of constructing
provably correct substantial amounts of software.

It is unclear how the use of object oriented techniques will affect, if at all, software failures. One might
suspect that increased encapsulation and better mechanisms for data abstraction will reduce the number
of software failures, or at least reduce their effect outside the particular object. However, software
designers using object oriented techniques are likely to build applications that continuously stretch the
limits for comprehensible complexity, and thereby use up the benefits of better development paradigms.
Failures in object oriented software might also exhibit more complex failure behaviour, unknown from
procedural software due to polymorphic binding and very flexible interaction patterns among objects [16].

Correct software remains correct over time. However, software must interact with hardware, and also often with other
software; this will of course imply a probability of failure.

26

C hapter 3

Com puter System Failures

This chapter examines computer system failures and their characteristics with an em phasis on failures in
distributed system s. Failures are surprisingly comm on in distributed system s and often cause significant
reductions in a system ’s usefulness. Generally, any large distributed system is likely to contain a number o f
failed com ponents at any given time. Additionally, if other com ponents are depending upon th e failed ones even
small numbers o f failures can have large consequences throughout the system . Replication is one technique
which has been used for som e tim e to reduce the Impact o f failures, and this technique will be discussed in
more detail in the next chapter. However, it is important to understand the nature of failures before embarking
on the task o f concealing them using replication techniques. One consequence o f the asynchronous system
model adopted in this dissertation is that failures cannot be accurately diagnosed, and this makes it harder to
deal with them .

3.1 D ep en dab le C om puting S ystem s

A dependable computing system is one which allows users to depend on its service, for example by being
reliable and available [104]. However, dependability is a metric which spans many aspects of a com plete-’
system, some of which are more abstract and may therefore be difficult to measure. This dissertation
is primarily focused on the reliability and availability aspects of dependability as these can be improved
using replication techniques. As such, other factors influencing dependability, for example security and
maintainability, are not addressed.

A computing system which fails frequently is not very useful for any serious tasks; a user cannot depend
on such a system. Even for the casual user such a computer system will soon become more of a nuisance
than an efficient information processing tool. On the other hand, a dependable computer system can be
used for such important tasks as the control of dangerous chemical processes, air traffic control systems,
the running of business-critical applications such as a bank’s databases or to ensure safe and continuous
operation in nationwide telephone networks. As computers take over many important tasks in society,
dependable computer systems will become more valuable and, in fact, dependability may be a common
requirement of future users [44].

Dependability requirements are often greater for large and distributed systems, and undoubtedly the
combination of large scale and distribution poses significant challenges for researchers in the area [45].
Sophisticated evolving software, complex dependencies among system components and heterogeneous
computing platforms are issues which complicate the construction of dependable systems. However,
large dependable systems are built recursively from smaller subsystems; to be able to build dependable
computer systems it is necessary to understand why the subcomponents fail, and how they fail. Therefore,
one must consider components individually; only then is it possible to construct dependable systems.
After all, dependability is a system issue, all parts of a computing system must be assumed to play a rôle

ft!

27

in the dependability of the overall system [149].

Additionally, efforts to increase the dependability of a system should be focused to give the best effects for
a given cost. No m atter how many resources go into designing a dependable system there will be a non
zero probability of failure [1]. Consequently, the system’s dependability requirements must be determined,
as must efforts which will give the highest return in increased system dependability. Additionally, some
failures are very costly to tolerate, while other failures are significantly cheaper to tolerate. During the
design of a dependable system it must be clarified which failures should be addressed by mechanisms for
failure tolerance, and which failures must be neglected.

3.1.1 M etrics

It is occasionally necessary to compare, or otherwise communicate, dependability measurements. A set
of metrics is needed to facilitate this. If the terminology is simple and concise, it will reduce the effort
needed to understand the principles of an area as complex as dependable computing. The literature is
not always concise in its terminology, however, this section attempts to clarify the central metrics, and
present them as they are used throughout this dissertation.

R elia b ility
Reliability is “the probability of a system performing its purpose adequately for the period of time
intended under the operating conditions encountered” [150]. Most common is the use of M TTF (Mean
Time To Failure) ratings to measure reliability [85, 104]. The MTTF rating is often determined through
intensive testing or simulations, and is an indication of the expected failure rate of a component. It is
important to notice however, that MTTF ratings do not indicate distributions of the failure probability,
and that these measures are slightly limited.

Failure recovery
After a component has failed, a certain amount of time will be required to restore it to its operational
state. This is called the service interruption or M T T R (Mean Time To Recovery). MTTR values are also
estimates, and can only be used to suggest availability. Depending on the failure mode of a component,
different actions may be required to bring the component back to an operational state.

In centralised systems a failure is often dramatic, and will normally cause disruption to the whole program.
If a program crashes, it must be restarted and transactions in progress during the crash will need to be
repeated either manually or automatically using transaction logs. A human operator is usually responsible
for restarting the system, for example by restarting a program.

Occasionally, the crash is caused by permanent hardware faults, and in this case the operator will need to
call an engineer to carry out the repair or replacement of hardware components. Hardware reconfigura
tions and repairs typically take much longer than simple system reboots. Often, the whole process could
take minutes, or even h o u r s I n addition to the inconvenience of no access to the computer, individual
users are likely to suffer from the loss of unsaved files and the need to manually redo work.

A vailab ility
The availability A is the probability that the system is able to provide correct service at a given time
[150].

M T T F
~ M T T F -f- M T T R

^The time it takes to repair a computer system is extremely unpredictable. According to [115], MTTR can sometimes
be in excess of 20 hours on particular computer models, although an average of 4 hours is assumed in [150]. It is not hard
to believe these numbers considering that they often include the time it takes engineers to arrive at the location with the
correct spare parts.

28

Availability defines the percentage of time a service is available, so that an availability of 100% means
that the service is always available. Most computing equipment today is very reliable, and availability is
usually in the range 99.9-99.999%. To increase readability of availability figures, the notion of availability
classes is introduced in [85]. The availability class is the number of leading nines in the availability figure,
so for example availability class 5 implies 99.999% availability.

3.1.2 R eliab ility o f com puting system s

No computer component is completely reliable. That is; given enough time, they all fail [105]. This is due
to physical deterioration caused by for example temperature changes, atmospheric radiation or material
weakening. No known technique can be applied to change this process. However, if appropriate design
and manufacturing procedures are adhered to, very low failure rates can be achieved, low enough to give
satisfactory service. Hence, there are huge variations in the expected failure rates from different computer
equipment. Generally, a complex component that is composed of several other components, is more likely
to fail before a less complex component, A large proportion of computer equipment will also be exposed
to other, even more damaging effects such as occasional power surges, dust particles and vibration. This
further strengthens the point that dependability is a system issue; environmental, operational and even
system maintenance procedures will have effects on dependability.

The reliability of computer and networking equipment has improved dramatically in recent years due
to better manufacturing and material knowledge. Modern computing equipment, built from highly in
tegrated circuits is very reliable compared to the machinery available 20 years ago [115]. Some MTTF
values for common components in distributed systems are given by Gray and Reuter [85]. They indicate
that most computers sold today have M TTF ratings between 3 and 5 years, MTTF ratings from 3 to 20
years are common for high quality disk drives. However, when the proper operation of a system relies on
multiple components, possibly controlled by complex software, the MTTF rating for the system decreases
rapidly. For example, a typical LAN has a MTTF rating of only 3 weeks. Likewise, a workstation running
complex system and application software is likely to achieve a 3-4 week MTTF rating. It is therefore
important to realise that if this problem is not addressed properly, distributed systems of any signifi
cant size will provide very poor dependability. As an example, Sriram’s thesis contains an investigation
of reliability of hosts on the Internet, arguably the largest computing infrastructure in the world, and
finds that the expected M TTF is between 11 and 14 days [176]. This coincides with the rapid decrease^,
in reliability as a function of increased number of dependencies among the individual components (see
discussion on critical path length in §3.2.1 p. 31).

3.1.3 R eliable networks

The communication infrastructure has a great effect on the dependability of a distributed system. Unre
liability of communication is typically a distinctive feature of distributed systems. However, distributed
systems are built on top of a range of different networks, for example public networks, LANs and MANs
which provide varying reliability.

Due to the potentially costly consequences of outages, public networks are designed to be very reliable.
For example, most PSTN^ networks are able to cope with failures through redundant links and specially
designed networking software®. Typically, Western PSTN networks offer availability in the range of 99.7%
with no outages lasting more than 30 minutes [85]. However, other continental networks do not achieve
similar figures, for example, some African telephone networks are hindered by successful call-completion
rates as low as 12% [147]. Consequently, building reliable wide-area computer networks becomes difficult

^Public Switched Telephone Network.

^It should be noted that there is an inherent conflict between economic issues here. For example, the huge bandwidths
available in modern fibre optical links makes it possible to multiplex a vast number of communication sessions onto a single
fibre. Economically this would be a cheaper option than using a number of redundant links, but to ensure good reliability,
this fibre would have to be extremely well preserved.

29

in such environments as they must often rely on PSTN links to connect the hosts. This is also likely
to be a restriction for the Internet as a communication infrastructure for global applications, the poor
reliability of some continental networks will restrict the dependability of such software.

For smaller scale networks, such as LANs and MANs, the reliability is usually much better. Although
poorly maintained networks naturally give lower reliability, most LANs and MANs achieve very reasonable
reliability ratings. A probability 0.00001 of message loss has been indicated in LANs under normal
conditions [129]. Additionally, some network protocols have fault-tolerance built into the architecture,
such as the FDDI networks which use redundant rings to automatically tolerate single fibre and host
failures through a specially designed self-healing protocol[182].

These -variations in dependability will have effects on the kind of applications that are run on top of
these networks. In general, a lower dependability of communication will motivate a more loosely-coupled
application architecture, where interaction among the components is only occasionally necessary. Nat
urally, added to this argument is the fact that bandwidth is also normally reduced over long-distance
connections. Autonomy is therefore necessary to achieve a reasonable performance. In contrast, LAN or
MAN-based networks can facilitate a more tightly-coupled application architecture.

3.2 Failure C haracteristics

A failure in a computer system is a deviation from its intended behaviour, and is observed outside the
system. A failure occurs because the system is erroneous, i.e. it contains one or more errors. An error
appears in the information domain, and is caused by a fault in the physical domain. Essentially, an error
is the manifestation of a fault, and a failure is the effect of an error. For example, if a bit in a memory
chip is stuck at value 0, this is a physical fault. When a program writes a 1 into it, but the bit remains
0, there is an error in the information domain. Later, when the program misbehaves due to this error,
there is a failure which can be observed externally, for example by an operator observing mysterious or
clearly incorrect behaviour [1, 7], A fault need not cause errors however, and an error need not cause a
failure. For example, if the faulty bit in the example above is not part of a program, or the erroneous
0-value is not used within the program, a failure will not occur.

The same notation can be applied recursively to subcomponents of the system and the relationship^
fa u lt -A error fa ilu re can be thought of as a chain propagating up through the system component
hierarchy [104]. For example, a distributed system which coordinates several components, may observe
the failure of some of the components (e.g. a functional failure in a communication link) caused by internal
faults and errors^.

Failure sources
Failures may arise from several kinds of errors, and correct behaviour from a computer system depends
on both hardware and software. Some basic failure sources such as material weakening and dust particles
were mentioned in §3.1.2 p. 29. Although these can cause failures at different levels in the system
hierarchy, for example bit errors and PE crashes, there are also other sources of failures which must be
considered.

Table 3.1 summarises findings presented by Laprie et. al. [105] and by Wood [196]. The figures given by
Laprie et. al. are from transaction processing environments whereas Wood’s figures are sampled from a
slightly wider selection of environments including university studies. This dissertation does not attem pt
to analyse the different findings other than to identify that the two surveys show only limited similarities.
Laprie finds hardware and software/recovery sourced failures to be almost equal in importance, whereas
Wood identifies software/ recovery as a significantly more prominent source of failure than both hardware
and operational difficulties.

'‘The term fault-tolerance might therefore be slightly misleading; fault-tolerance is normally used to denote any system
able to withstand faults, even if they are withstanding the failure of the subcomponents. A term like failure-tolerant might
be more informative, but the term fault-tolerant is currently used throughout the literature.

30

Source Hardware Environment Software & Recovery Operation Other
Laprie 40% 5% 30% 20% 5%
Wood 10% 4% 71% 15% 0%

Figure 3.1: Failure sources in computer systems

It can, however, be concluded from these results that both hardware and software play important rôles as
failure sources. Although replication per se can only conceal effects of hardware failures and not software
failures (as shown below), it is important to note that many software faults in distributed systems are
caused by transient bugs in operating systems and other system software which occur in response to
timing and system overload anomalies. It is reasonable to assume that some of these failures can be
masked by replication of system components [44], which is the largest failure source reported by Wood.
However, other techniques will probably be more effective at reducing the effects of software failures, such
as improved development methods and tools.

Softw are failures
Essentially, hardware fails despite being correct, and software fails because either the hardware fails or
the software is incorrect®. A well known approach for handling software failures is n-version programming
[10]. Essentially, it involves replication of multiple, independently designed software components. Due to
the severe cost of multiple development groups, only critical components are replicated. The usefulness
of n-version programming has been investigated in an object oriented setting [197]. However, it appears
that better results can be achieved using more conventional approaches, e.g. allocating more resources to
develop correct software. Not only does the n-version approach suffer from the ‘average IQ®’ problem [85],
but the approach also requires additional, complex application dependent system software, introducing
the possibility of more failures.

3.2.1 C ritical paths

Distributed systems consist of interacting components. Consider an object A invoking a method on ST
remote object B. To complete successfully, this interaction requires correct behaviour from a number of
components. Not only must A and B behave correctly, but also so must the communication path between
the PEs hosting A and B . A is dependent on B and the communication path between them. The set of
components from which correct behaviour is required is denoted the critical path of the interaction. The
number of components in the critical path is called its length.

Assuming that a component i fails with probability p{i), and the failure modes of the components are
independent, a service in the system depending on n correct components will have a probability

p(no failures) = (1 - p (» i)) (1 ~ P { i n - i)) ■ (l - p (i n)) = R C l - p{i)) (3,1)
i= l

of providing correct service. Improvements in reliability can be achieved by both reducing individual
component failure probability and by reducing the number of components in the critical path. Replication,
introducing redundant components, is essentially a technique that provides support for multiple parallel
critical paths where each path has an independent mode of failure (cf. chapter 4).

software component may be vulnerable to other software failures as well if it is built using services from other software
components.

®A11 programmers are more likely to make similar mistakes on the hard software problems. Why have n versions of
software which crashes on the same inputs?

31

3.2.2 Independence o f failures

Due to geographical distribution and physical heterogeneity, components in distributed systems often have
independent failure semantics, i.e. the failure of one component does not affect the probability of failure
of another (independent failure semantics imply that the probability functions are memoryless; see also
appendix B .l). The failure will be limited to those components which either directly or indirectly depend
on failed components, the number of dependencies determine how the failure propagates throughout the
system. Increasing the number of dependencies causes an increase in components affected by the failure
propagation.

Not all failures in distributed systems are independent. Often, a failure in a component causes a propaga
tion of failure to other components [104]. For example, if two workstations use the same power source —
they might share a wall socket — they are both vulnerable to an electric power outage at that socket. In a
large building a power outage is likely to cause failures in multiple machines and network components. It
is therefore important, when designing distributed systems, to ensure that an appropriate degree of fail
ure independence is achieved (for example by installing redundant power supplies, introducing multiple
administrative domains, using different machine architectures and different operating system platforms
[luqj.
Independence of failures distinguishes distributed systems from centralised systems; when a centralised
system fails, the whole system normally become useless, and the system cannot offer any service until it
has recovered from the failure. In contrast, the probability of all the components in a distributed system
failing at the same time is extremely low. However, centralised systems are usually much better protected
against accidents and other mishaps than distributed systems. For example, a centralised system can
often be located in a single room, where access and maintenance can he well controlled.

The PEs (processing elements) in a distributed system are often workstations in peoples’ offices, and they
might be turned off at the end of a day. The autonomy of the components makes the distributed system
vulnerable. For example, it would not be a good idea to use such a workstation as a central mailserver
in a department. Part of the problem is that enforcement of computer usage policies can become very
difficult in such environments. Secondly, some workstations might simply be moved or disconnected for
some time (the workstation might even be a portable computer). However, it is the independence of
failures which makes it possible to build fault tolerant systems. By ‘masking’ some failures through
redundancy, the system can potentially continue to operate correctly.

3.2.3 Failure sem antics

System components have different failure behaviour or failure semantics. Failure semantics describe how
components are expected to fail. A clear understanding of failure semantics is important as only expected
failure behaviours are likely to be tolerated by any failure resilient computer system. If an unexpected
failure behaviour occurs, which is not considered by the failure resilient system, then, it is likely that the
system will fail also.

To simplify the discussion of failure semantics, they are often classified according to how difficult it is to
tolerate them [89, 163, 184], or how strong they are [13, 44]. A weak failure semantics implies that few
assumptions are made about the component, it may exhibit a wide variety of different failures. In contrast,
a strong failure semantics assumes that the component fails in only a small number of predefined ways.
Because so few assumptions are made about the behaviour, a component with weak failure semantics
is more difficult to tolerate. Commonly used failure semantics are listed below in ascending complexity
order, i.e. the former are easier to tolerate than the latter. Faults no more complex than timing faults
are denoted benign failures, other faults are denoted malign failures. An interesting feature of this
classification hierarchy is that all benign failures are detectable in the time domain, whereas malign
failures can only be detected in the data domain.

B en ign failures. Benign failures are ‘nice failures’ in the sense that relatively cheap mechanisms can

32

be used to tolerate them. Some of these failures can be tolerated without the use of replication
techniques. For example, omission failures are normally tolerated in communication protocols using
techniques such as retransmission and message sequence numbers. However, the failures leading
to PE or link halts can only be concealed with redundancy, but the failure masking capability of
replication schemes will be greater if only benign failures are assumed.

Initially-dead failures. The PE does not execute any part of its program [184]. A communication
link does not deliver any messages.

Fail-stop failures. A PE stops processing permanently in a controlled manner. A communication
channel stops delivering messages. Other PEs are notified about the event [13].

Crash failures. A PE stops processing abruptly and loses its internal state [184]. A communication
link ceases to deliver messages. Other PEs are not automatically notified about the event.

Omission failures. A PE fails to deliver (receive omission) or send (send omission) some messages.
A link loses a subset of its messages.

Timing failures. A PE fails to respond within a specified timeframe (also called performance fail
ures [44]). A link fails to deliver a message within a specified timeframe. Note that this failure
mode is only applicable to synchronous systems. Asynchronous systems make no assumptions
about timing of events.

M align failures. Malign failures are ‘hard’ to tolerate because such failures can only be observed as
erroneous results from computations. Therefore, redundancy must be used to tolerate them, a
technique which might add significantly to the cost of constructing the system and also incur over
heads during operation. Redundancy can be introduced at several levels in the system hierarchy,
for example as redundant data in communication protocols in the form of error-correcting codes
or as server groups. Although this redundancy adds a certain overhead, these techniques are able
to completely conceal many failures from the client. For example, in contrast to a retransmission
technique which adds delays to the service, many replication techniques do not result in such irreg
ularities. A more thorough discussion of the failure-masking capabilities of replication techniques
is presented in the next chapter.

Incorrect computation failures. A PE fails to produce correct output despite correct input [13,
44], for example a procedure which returns a list-element not stored within the list or a_
communication link which delivers corrupted messages.

Authenticated Byzantine failures. A PE behaves arbitrarily. However, an authentication mecha
nism is available so that other PEs can identify the faulty PE.

Byzantine failures. A PE or link behaves in an arbitrary or even malicious manner. For example a
link that generates random messages or a PE which sends conflicting messages to other PEs.

An algorithm tolerates a failure class if it ensures correctness in the presence of a failure of that class. An
algorithm tolerating a particular failure class also tolerates weaker failure classes. Clearly, an algorithm
that tolerates arbitrary (Byzantine) failures also tolerates fail-stop failures. A fail-stop failure is just a
special case of arbitrary behaviour.

It is often possible to reduce the complexity class of a failure. For example, timing failures are commonly
reduced to omission failures by the use of timeouts. In asynchronous systems this is a conservative
approach, because a timeout mechanism cannot correctly distinguish all omission failures from timing
failures (the message might appear just after the timeout expired). Omission failures are simpler to
handle than timing failures, and this brings benefits to the protocol using the channel. Retransmission
of lost messages is a common approach to deal with omission failures.

Timeouts are conservative, a message arriving just after the timeout expired could be perfectly valid.
However, because most messages arrive within the timeframe of the timeout, it does catch genuine
omission failures most of the time^.

genuine omission failure is a message lost forever.

33

® Authenticated messages are non-forgeable, all corrupted messages are detected and the message signature can be verified
by any PE.

34

Timeouts provide liveness by sacrificing accuracy [19]. That is, failures are reported within a finite time,
but some operational components may be declared failed. The use of timeouts is also a mechanism used
to make synchrony assumptions in asynchronous systems. However, if the timeout value is set sufficiently
high, it is very likely to distinguish timing failures from omission failures. Some statistical information
about the frequency of early timeouts is often used to improve its efficiency by dynamically adapting the
timeout value to the current mean latency (cf. §2.3.1 p. 19).

Arbitrary failures are very costly to tolerate [69, 186]. Expensive consensus protocols, based on atomic
multicasts and high levels of redundancy are required. For example, t-resilient non-authenticated Byzan
tine agreement among n PEs requires n > 3i + 1 in addition to t + 1 rounds of messages with potentially
large message sizes (0(n^+^)). In contrast, Byzantine agreement in the authenticated case®, requires
n > t, 0(t) rounds and 0 (n + F) messages [13]. The cost of computing the signatures must in this case
be weighted against the added fault-resilience.

Additionally, expecting arbitrary failures may be questionable in many system contexts as not all com
ponents in a system can be allowed to behave arbitrarily. At some high level in the system hierarchy, one
component will be the only client of the failure prone subcomponents, it is not reasonable to assume that
all users of a computer system can take on the rôle of failure detector. It cannot be guaranteed that the
only client component is not exhibiting arbitrary failures itself, as no-one remains to ‘guard the guards’.

P a rtitio n failures
Partitions occur in distributed systems if communication failures prevent a subset of the PEs from
communicating with other PEs. If the connectivity of the network is low, partition failures may be
frequent, but a small increase in the connectivity of the network can reduce the probability of partition
failures significantly. Partition failures can cause severe problems for distributed algorithms because PEs
in different partitions can easily believe that they are the only PEs left in the system, and therefore make
independent modifications to the global state. If PEs in different partitions are allowed to modify shared
data the copies of the data must be reconciled when the partitions are again re-connected.

Partition failures are of great importance for the design of replication management schemes. The main
characteristic of replication schemes, strong or weak consistency, determines whether or not the scheme
allows independent updates in different partitions or not (see chapter 4). In this dissertation, a network
model where partition failures are rare is assumed. Partition failures are handled pessimistically; at most
one partition is allowed to make progress (cf. §6.3.2 p. 70).

3.2 .4 Failure detection

In a distributed system it is occasionally necessary for an object to determine the failure status of other
objects in the system, for example in a replication protocol. However, because the distributed systems
considered in this dissertation have asynchronous behaviour, failures can only be suspected, not reliably
detected (although they can be detected with arbitrarily high probability). All asynchronous systems
are restricted by the impossibility result published by N. Lynch et. al. [69]. Essentially, if there are no
bounds on the delay of messages, no two deterministic objects can reach agreement on a value in the
presence of failures. For example, the asynchrony implies that a slow object cannot be distinguished from
a failed object and vice versa. An object which does not receive a response from another object would
theoretically have to wait indefinitely to distinguish between a slow and a failed object. Clearly, this is
not practicable in any real system. Therefore, as a measure to gain efficiency for a small loss in accuracy,
various assumptions which limits the asynchrony are used. Timeouts is a good example here; in case the
object does not respond within a certain time it is assumed to be failed. The consequence of this is that
it becomes difficult to guarantee correctness.

Fault diagnosis deals with efficient and reliable detection and localisation of faults. Accurate fault diagno-

sis will in many cases significantly simplify the task of building reliable distributed systems. For example,
the cost of Byzantine agreement is severely reduced if messages are authenticated [66, 13]. Because PEs
cannot communicate arbitrary messages without being detected, the protocols for agreement on global
properties require fewer rounds with smaller messages.

Standard communication services used in many distributed systems make it difficult to detect failures
accurately. The weak failure semantics of the communication primitives requires that application pro
grammers provide reliable failure detection in the application. For example, the popular RPC paradigm,
widely used in many distributed systems because of its simplicity, cannot offer particularly strong invo
cation guarantees [19]. The only guarantee available to the programmer using standard RPC implemen
tations is that the method will be executed at most once on the remote machine if it is initiated once,
and at least once semantics are possible for RPC calls that are retried until the caller receives a positive
acknowledgement message.

For non-idempotent operations, e.g. a method inc(n : INTEGER) which increments an object state
variable, this becomes a problem. However, a solution to the problem has been used in communication
protocols for some time, but it requires cooperation from both the caller and the callee. Through the
use of unique sequence numbers for each invocation request, the callee can simply discard messages with
duplicated sequence numbers, but should still send a positive acknowledgement message. The caller can
thus keep on retrying the invocation (using the same sequence number) until a positive acknowledgement
is returned without any danger of the method being invoked more than once. However, even this protocol
cannot tolerate continuous loss of messages. The caller would in this case block forever without receiving
any acknowledgement.

T ransient failures
Some failures are transient, e.g. occasional omission failures, and might happen for just short periods
of time. They will not always be detected. For example, during a period of congestion in a network, a
switch might temporarily refuse to accept any more messages into the congested area. A PE that tries
to send a message during this period is likely to observe this refusal of service, while a currently passive
PE does not observe it. The usual approach to handling this kind of failure is to use a retry mechanism,
i.e. the PE that observes a refusal of service will try sending the message again at some later time. If the
resource is essential for the client so that the client cannot proceed without it, there might he no better
alternative than to just keep trying until the resource is eventually available, possibly producing a warning-’
or notification message. A danger of naive retry mechanisms is that they can generate enough messages
to flood the network causing additional congestion and overfull buffers. This is further emphasised if
several PEs are concurrently repeatedly sending retry messages due to a transient server failure. It is
also important to avoid congestion as this will reduce the risk of denial of service.

A possible solution to this problem is to monotonically increase the interval between retry events. This
is a well known technique from communications used in several network protocols, e.g. the Ethernet and
in the T C P/IP protocols. However, there is a tradeoff that has to be made between fast recovery and
the amount of traffic generated.

3.3 A void ing Failures

Software failures are hard to avoid in distributed systems due to these systems’ complexity. Replication
as such cannot reduce the probability of system component failures, but it can increase the number of
access paths to a resource thereby increasing the probability of finding a functioning path. Additionally,
even small improvements in average component reliability can have a large impact on the total system
reliability. For example, hardware component reliability can be increased by following manufacturers’
guidelines for operating environments by providing suitable ventilation and maintenance of equipment.
Protection against environmental damage such as electrical power instability, flooding and sabotage will
also reduce the probability of failures.

35

®The flight control software for the space shuttle has been estimated to cost $1000 per line of code [98].

‘®See [165] for an example of how overload can spread chaos in a distributed system.

36

3.3.1 Effects o f software developm ent m ethods

There are a number of approaches that can be followed to reduce the probability of implementing faulty
computer systems, but there is usually a tradeoff that has to be made between reliability and cost. The
cost of a failure in the system might justify increased efforts during development®. For example, when
designing critical computer systems, formal methods might be used to specify and verify hardware and
software designs. However, formal methods are still limited in their usefulness for large scale systems.
They are most appropriate to model small components.

Additionally, appropriate testing procedures [191] can help locate software faults before the software is put
to use. However, it is important to note that exhaustive testing is not feasible for any realistic distributed
system, and that ‘black-box’ testing of key components is likely to be more appropriate although not
able to guarantee correctness. Further, software is discrete by nature, and even small changes made
during testing can therefore lead to large effects [45]. A key research area, now and in the future, is the
development of methodologies and tools for producing correct software. At present, all significant pieces
of software must he expected to contain bugs that can lead to failures.

3.3.2 Effects o f overload

Designers and users of computer systems aim for the best possible performance. This requires efficient
utilisation of system resources such that both overloading and excessive idle time can be avoided. Over
loading of system components in a distributed system can lead to serious side effects^® in the rest of the
system (e.g. deadlocks due to overfull buffers or disks and excessive retransmissions due to slow responses
from overloaded PEs). Arguably, such failures are only anticipated after they have caused major prob
lems [46]. Also, it has been indicated in the literature that overloaded system components have a higher
probability of failure [105]. By careful and efficient utilisation of the system resources, the reliability
of the system will increase. The probability of overload can be reduced with the use of load sharing
strategies, however this is in itself a difficult problem outside the scope of this work.

3.4 Sum m ary

This chapter has focused on examining failures and their effects in distributed systems. As the scale
and importance of distributed systems increases, failures will, if. not managed appropriately, result in
systems with poor dependability. This chapter has defined the failure terminology used throughout the
dissertation and presented important motives for the construction of dependable computing systems.

Understanding the characteristics of failures is necessary for the proper use of replication techniques.
The next chapter is concerned with replication techniques which are able to conceal failures. During
the design of a dependable computing system, its dependability requirements must first be determined
to balance the cost of failure resilience techniques with the benefits of increased dependability. Most
important is perhaps the distinction between malign and benign failure semantics. If it can be assumed
that the underlying components in the system only exhibit benign failures, replication techniques will be
able to tolerate more failures, and it might be possible to avoid using replication altogether; simple error
correcting procedures such as retries and retransmissions might be sufficient.

Additionally, this chapter has identified other important issues for the construction of dependable com
puting systems which replication techniques are not able to deal with. For example, the use of better
software development methods might significantly improve system dependability and thus be an equally
important factor.

' f t l

‘ See §3.1.1 p. 28 for definition of terms.

Chapter 4

R eplication Techniques

Chapter 3 identified a large number o f independent failures as a key characteristic of distributed system s.
W ithout any mechanisms for failure tolerance, m ost failures incur extra delays or loss of data, thereby weakening
these system s’ usefulness.

.
Replication is an old and well known approach used to achieve resilience against failures. It dates back at least
40 years [193], and many techniques are available for this purpose. However, a number o f conflicting issues
m ust be considered to determine which replication strategy is m ost appropriate in a particular setting, e.g .
system support. This chapter presents a number o f replication techniques and a discussion o f their advantages
and limitations. Am ong the techniques discussed are object replication and replicated objects, two distinct
approaches to replication in object-oriented system s.

4.1 Background and M otivation

The main focus of this dissertation is on the provision for replication support in object oriented pro
gramming systems. The goal is to provide generic support which can assist developers of fault-tolerant._.
software. Replication is a complex issue, and if the problem can be solved by support software the applica
tion programmer’s task will be simplified. However, as will be discussed throughout this chapter and the
next (chapter 5), some particularly challenging problems arise in this setting due to strict encapsulation
and arbitrary object interactions which inevitably require compromises.

Distributed computing systems are becoming an essential platform for modern computer applications.
However, a high number of failures is a key characteristic of these systems. Failures, normally leading
to extra delays or loss of data, can easily lead to critical situations or simply become a nuisance for
users. The problem with failures becomes more prominent as the size of the distributed system increases
and more inter-dependencies among the system components are created. Given that the trend towards
increasing reliance on distributed computing systems continues, the requirements for dependability are
likely to be heightened [44]. Therefore, it is worth investigating approaches that make such systems more
resilient to failures and thereby increase their usefulness.

Replication has been widely used as an approach to increase a system’s resilience to failures and to
satisfy requirements for reliahility and availability^. Replication is almost as old as computing itself;
it was first suggested by John von Neumann in 1952 (and published in 1956) as a countermeasure to
the accumulation of failure probabilities in basic organs when a computing automaton was built from a
large network of such organs [193]. It was suggested that, by the use of a particular ‘majority organ’,
a number of single organ failures could be masked. The majority organ was in fact the first version

37

N

of a function shipping replication scheme, composed of a number of independently executing machines®
(see §4.3 p. 42). Replication is also a useful approach to reducing the consequences of sabotage and other
physically destructive events such as fire and floods [40].

Traditionally, replication was most commonly used for critical applications like air traffic control systems,
spacecraft systems, telephone networks and a number of military applications. The extra costs incurred
by replication are justified by potentially substantial losses in case of system malfunctions. The danger
of human deaths or injuries have been the primary issue of concern.

Following this, replication has been employed for less critical applications, e.g. banking systems and
supermarket retailing databases. Due to the increased computerisation in these settings and the large
material values at stake, replication of data is common and reduces the damage caused by occasional
failures. Specially designed software, tailored for each particular application, includes techniques for
managing the replicated data. Although manual backup procedures could alleviate part of this problem,
replication is beneficial due to its speed and the reduced efforts required by human operators.

Replication has been a subject of research for some considerable time [55, 48, 79], and has led to the
construction of a large number of systems incorporating some form of replication, of which database and
file systems are prime examples [40, 158, 181]. Additionally, research into new approaches for replication
techniques continues. Efforts are made to address the demand for availability and performance in object
systems, for example object oriented database systems [111], programming languages [31, 5], and in
persistent programming systems [113].

However, many replication schemes must be tightly integrated to a particular application, thereby necessi
tating substantial extra effort from the application developers and complicating the software construction
process. Arguably, system support for replication can help reduce the incurred overheads in development
cost. Quite recently, commercial database vendors have targeted wider markets with solutions for more
generic support of replication [177]. Concurrently, distributed information storage systems with support
for replication [128] and software development tools for reliable systems, such as the Isis toolkit [19], have
appeared. This might be an indication of increasing reliability and availability requirements throughout
a broader computing community.

In [145] David Powell makes the distinction between two different approaches to fault-tolerance; disti'i-
bution motivated fault tolerance and fault tolerance motivated distribution. They denote two opposite
views of maintaining reliability, and are each applicable to different application contexts. These are ex— -
trerae views, and intermediates are also possible. For a particular system, a combination of the two views
is likely to be the basis for fault-tolerance.

D istr ib u tio n m o tiv a ted fau lt to leran ce
Distributed systems are more vulnerable to failures than centralised systems or traditional parallel com
puters. Large scale systems therefore tend to employ some degree of local administration which reduces
the need for constant access to system wide information, and simplifies system administration. Natu
rally, local administration implies autonomy which speeds up decisions about local matters [8] (hence
possibly increasing system scalability). Semi-autonomous clusters can be managed primarily by a local
administrative body, and groups of such clusters can then be partially managed centrally for enforcement
of global administration rules. Increasing the value of such arrangements, this often matches traditional
hierarchical organisational structures.

Multi-cluster systems consist of a large number of system components (cf. §2.3 p. 18), and inter-cluster
interaction tends to be less reliable than intra-cluster interaction. It is therefore normal to maximise the
use of services local to the cluster, and only occasionally use services available from other clusters [196].

Distribution motivated fault tolerance is necessitated by this inherent distribution. Users have varying
degrees of control of their own machine in traditional workstation environments. Depending on de
partmental policies, users might be allowed to do local configurations and management. Users of some

^Although von Neumann is usually best known as the creator of the sequential computer, he was also engaged in work
on parallel machines.

38

machines like PCs may prefer to switch them off after work, although this might be uncommon for users
of workstations. Additionally, users often run buggy software on various machines causing occasional
crashes throughout the network.

Systems like these are also likely to grow substantially with time, to keep up with increasing demands
within the organisation. In addition, because of their size and complexity, they are also harder to maintain
and change, and one cannot expect the average user to fully comprehend the whole system®. When a
failure occurs, it might require substantial effort and time to both locate and correct it. And indeed, a
large distributed system will have relatively frequent failures [176]. During the period of repair, a large
number of users might be affected, and the cost incurred by this can be substantial. Furthermore, system
maintenance will cause occasional outages, preventing users from accessing shared resources [196]. It is
therefore necessary to support fault tolerant operation through the use of replication techniques.

.Fault to leran ce m otivatedl d istr ib u tio n
Some computer systems are used for critical applications where human life would be jeopardised or
substantial costs incurred as the result of the system becoming unavailable or operating incorrectly. In
a context like this, distribution and replication may be the only way to achieve the required system
reliability. Some examples are flight control systems, process control systems, public telephone services
and banking systems. The approach taken to replication will be more constrained, there will typically be
only a single administrative body, so there is much less autonomy than in distribution-motivated fault
tolerant systems. Secondly, more attention will be given to timing constraints, as most of these systems
are running real-time, or time-critical applications. Because of this, much of the heterogeneity found
in distribution-motivated fault tolerant systems is avoided by simply replicating existing technology like
database systems and computing platforms. Additionally, the criticality of these applications can justify
the cost of dedicated redundant network links between the computers which can reduce the jitter normally
found in shared networks.

4.2 P rob lem s w ith R ep lication

The key idea of using replication for fault-tolerance is to eliminate single points of failure by introducing
a number of redundant replicas (or copies) of one or more system components, e.g. communication links'"
or computers. If one component fails, the replication scheme automatically makes other replicas take
over. Replication might also be used for other reasons; in some settings, e.g. in large or low-capacity
networks, it is necessary for performance or autonomy reasons to make copies of a dataset to exploit
locality. However, replication introduces other problems.

4.2.1 M aintaining consistency

If the replicated components store data, then there will be consistency requirements for the copies of that
data. Maintaining full consistency requires careful synchronisation of replicas which might be very costly
in some systems, and might not be feasible for large numbers of replicas. While reduced consistency can
restrict this cost, some applications cannot accept out-of-date data. Also, it would be beneficial if the
user of a system did not have to be concerned about whether the system used replication or not — a
user sitting at a workstation should not observe any other difference than increased availability in the
system using replication. Similarly, a programmer developing software for the system should not have
to deal with replication issues. However, many replication schemes do introduce new complexity for the
programmer, and the ones that don’t depend on technology with limited scalability.

Both end-users and application programmers using non-replicated systems normally assume full data
consistency. Consequently, most applications are written under the assumption that the data being

^According to Leslie Lamport, a distributed system is defined as one in which “A failure in a machine you haven’t even
heard of stops you from getting any work done.”

39

manipulated is consistent. Central data repositories can implement serialisation on shared data, and
thereby achieve full consistency, but it is more difficult in distributed systems.

Replica consistency is the property th a t the data stored in the replicas are valid. This means that
operations manipulating the data leaves the data in a correct state, i.e. satisfying any integrity constraints'^
[85]. Due to the partitioned nature of the data, inconsistency can occur among the replicas during updates.
To deal with this problem a protocol for update propagation must be used. Update propagation protocols,
also called consistency protocols, are commonly classified as either pessimistic (strong) or optimistic
(weak) depending on whether they guarantee that inconsistency can never occur (pessimistic/strong)
or if they allow temporary inconsistencies that are reconciled later (optimistic/weak). In the case of
optimistic/weak consistency, the user might be forced to request a reconciliation procedure after eventual
updates to the data are made, and the failures in the other nodes or network links have been corrected.

Also, if the replicas are shared among several clients, operations on the replicas must be serialised by
some isolation mechanism, e.g. locking, to maintain correctness in the presence of concurrent update
requests. A solution is to use the replicas themselves as part of the locking mechanism; mutual exclusion
can be guaranteed for example if some set of the replicas must be exclusively locked before an operation
is allowed to execute. This is the approach taken by the voting and coterie-based replication schemes
described in §4.4.4 p. 47 and §4.4.5 p. 48.

4,2.2 Provid ing replication transparency

Building a distributed system which appears to users as a ‘powerful centralised machine that never fails’
is a goal for many distributed system developers [51, 166]. Although it may not be feasible in practice, it
is a useful goal to aim for in distributed system design as such a system could be used without noticing
the complicated technology underneath the surface. Mechanisms which simplify the user’s model of
interaction with the system are of great value because distributed systems would otherwise require users
to deal with unnecessary issues such as heterogeneity and locality. For example, a distributed file system
which allows users uniform access to their files, independent of which workstation is used, makes it
possible for users to easily switch workstation. Similarly, a client of a replicated service should observe a
minimum of additional complexity compared to the equivalent non-replicated service.

Application programmers can also be considered clients of distributed systems, although at a lower levek-
It is also important that the programmers’ model of the system be kept as simple as possible, this will
reduce the cost of constructing software for the particular system. The view taken in this dissertation is
that the issues of reliability and availability are orthogonal to most applications and that programmers
should not be burdened with implementing mechanisms for replication in their applications. Rather,
system support mechanisms for replication should be available to assist the programmers during software
development, and be as transparent as possible to hide most of the underlying complexity (see chapter 5).
This introduces an important tradeoff for replication techniques.

R ep lica tio n tran sp aren cy ex cep tio n s
Replication transparency implies that the replication protocol, replicas and inconsistent data should be
invisible to the programmer. The system should hide all details about the redundancy, and just provide
the user with ordinary but failure-resilient system abstractions. However, situations might occur which
make it impossible to conceal underlying failures from the programmer. For example, if too many failures
occur at the same time, the system abstraction will become unavailable. In this case it is important to
ensure that the failure is adequately reported so that the programmer can take appropriate action, for
example by retries or restarts.

‘Mutual consistency among replicas is however not a sufficient criteria for correctness.

40

4.2.3 M aintaining perform ance

High performance in distributed systems results from asynchronous operation which allows PEs within
the network to make use of inherent parallelism [18]. However, replication management schemes may
introduce complex and costly synchronisation protocols which contradict this principle by trying to
synchronise replicas on different PEs to maintain mutual consistency. In particular, for high consistency
schemes, the tight synchronisation incurs performance overheads which can result in low scalability.
When high consistency schemes are necessary, it is important to consider factors which can regain some
of the benefits from asynchronous operation. For example, network support for multicast can reduce the
cost of synchronisation in the high consistency schemes. Such functionality within the network proper
reduces the amount of network traffic when multiple recipients must deliver the same messages. Network
supported multicast will also relieve PEs from the task of managing multiple connections to replicas.
Multicast is available in many LANs, but are uncommon in larger networks which tend to be composed
of point-to-point links and connect heterogeneous LANs. Architectural support for multicast is therefore
more difficult to provide in larger scale networks, and is therefore rather uncommon. However, research
efforts such as the MBone have led to improvements and might give rise to more widespread availability
of multicast support in future networks [63]. Additionally, many distributed applications may benefit
from internal concurrency, e.g. from the use of concurrent threads or processes to execute various parts of
the application. Weak consistency schemes, requiring less synchronous update protocols, do not impose
the same overheads and are therefore more useful in larger systems.

Several other issues also influence the performance of a particular replication scheme:

Number o f replicas. The cost of maintaining consistency increases with an increasing number of replicas.
In high consistency schemes, replicas are updated synchronously. Processing and network latencies
can therefore potentially severely reduce performance. Optimistic concurrency control policies,
allowing concurrent updates, can reduce this cost, but only if both the number of conflicts and the
cost of resolving them is small (see also §4.5 p. 49).

Replica placement. The location of replicas determines the cost of accessing them. Finding the best
placement for the replicas is an optimisation problem which is dependent on the access patterns to
the replicas and the cost of accessing replicas at different locations within the system. In distributed
systems with large differences in the cost of accessing local and remote information the choice of
replica placement should be addressed carefully. Because load in distributed systems is dynamic,
a good replica placement map cannot be determined statically. Rather, ensuring effective object
locality will be a continuous process in which objects move about, dynamically adapting to the
current network loads, failure patterns and object interaction patterns [114]. However, dynamic
replica placement requires object migration support [178], and complex algorithms for determining
costs and good location policies dynamically.

Failure patterns. The failure patterns in distributed systems have an important influence on replica
scheme performance. For example, in a weighted voting scheme it is a good idea to give more
weight to replicas located on PEs which are reliable and not overloaded. Some network connections
might be known to be more reliable than others, and this knowledge can also be used during replica
placement decisions®.

Nature o f transactions. Some replication schemes are optimised for certain types of transactions, e.g.
query-transactions, which do not make modifications in replicas and hence do not incur consistency
problems.

4.2.4 Providing high availability

Availability is the probability that a system is able to provide correct service at a given time (§3.1.1
p. 28). The replication protocol determines the number of replicas necessary to perform operations upon

® Overloaded PEs may also cause communication failures such as lost messages due to overfull buffers.

41

the replicas. A voting-based protocol might require that a client gathers votes from n out of m replicas.
If less than n replicas respond to the request the client will not be able to perform the request on the
replicas, and must accept unavailable service.

Furthermore, high availability can conflict with performance for full consistency schemes. If n is large,
the client must do a lot of work before carrying out the request, even if the scheme can tolerate a large
number of failures {m — n replicas might be crashed).

Optimistic schemes are normally able to allow any operation to proceed on any set of replicas, even if
the set only contains a single replica. Additionally, the client has to do much less work, for example,
contacting just a single replica can be enough to carry out a request. However, optimistic schemes
are troubled with the requirement to resolve potential conflicts. Thus, optimistic schemes tend to offer
greater availability than pessimistic schemes by reducing the frequency of lost opportunities at the cost
of resolving conflicts [55]. Optimistic consistency schemes are discussed further in §4.5.

4.2.5 O ther problem s

Replication management schemes entail the added costs of providing the replicated units (e.g. diskspace,
CPU-capacity and memory). This cost is directly proportional to the number of replicas required, and
can hence be accurately determined.

Replication is essentially a technique to eliminate single points of failure. However, for reasons outside
the realm of the application developer a software system might depend on single components further
down in the system hierarchy. Multiplexing in communication protocols is an example of how a single
point of failure is re-introduced. Even if the application maintains a set of replicated objects on different
PEs in a LAN, the network may itself be a single point of failure and hence compromise the reliability of
the whole application if it fails. This problem might be solvable in small systems where the developer has
more control and could initiate the installation of redundant network cables and interfaces. However, if
the distributed system uses leased PSTN links for LAN interconnections, the developer has less control
over the allocation of redundant communication channels and must trust the provider of the WAN link
to ensure the required reliability.

Security is a very important issue in distributed systems. Large scale systems are used by a large number
of people, and it is therefore essential to provide support for authentication and access control to data?'
In systems employing replication of data it is further important to maintain the same security among all
the replicas. In autonomous distributed systems, maintaining information security may prove to be very
difficult due to potentially non-uniform security policies.

4.3 R ep lication in O bject S ystem s

Two distinct approaches to replication are recognised within distributed object systems. The data ship
ping approach, also called passive replication [113] or simply data replication [59], regards objects as
passive data-structures which are passed between a replicated object store and the computer performing
the processing of invocations on the object.

In contrast, the function shipping approach, also known as the state machine approach [162], active
replication [113] or object replication [59], deals with replication of both objects and their invocations.
The objects are stationary and they replicate the computation of a method invocation.

D a ta Sh ip p in g
A replication scheme based on data shipping usually depends on a central resource for the processing of
invocations on objects. A server, the manager of the replicated object, receives invocations addressed
to the object. The server fetches replicas of the object from a reliable (usually persistent) object store,
and processes the invocation locally. The data shipping approach is often adopted in systems where

42

mechanisms are already available for the transportation of objects such as in distributed database systems
[3]. For example, the data shipping approach is used in the Thor database system developed at MIT,
and a variant of the primary backup scheme® is used to ensure consistency [111].

A data shipping replication scheme has several disadvantages:

1. Complex mechanisms for transportation of objects are required, and there is an inherent conflict
with the encapsulated object oriented system model; rather than viewing objects as passive data
structures, they should be used as servers accepting service requests across a network. For systems
adhering to this system model, a data shipping approach might introduce significant architectural
mismatches and added complexities, for example if objects are residing in heterogeneous object
stores.

2. Only the server performs processing — and this removes any benefits of parallelism in the replica
hosts. Additionally, objects execute their methods by both manipulating local state and invoking
methods on other referenced objects. Thus, if messages are smaller than the potentially large
number of objects that need to be shipped across the network, the data shipping approach will give
lower performance.

3. The server will easily become both a hotspot and a single point of failure which reduces the reliability
of the replication scheme^.

Although the data shipping approach is commonly used in database systems, in the form of client caching,
the disadvantages using this approach for other replication schemes appear to be significant in systems
where less direct manipulation of object state is appropriate. D ata shipping also complicates locking and
consistency protocols (see §9.3.2 p. 100 for a discussion of replication in database systems).

F u n ction Sh ipp in g
Function shipping, as the name implies, involves sending the function to the data for remote processing.
For example, traditional client-server relational database systems employ function shipping; SQL queries
are sent to a server which executes the query on local data [155]. However, as queries to relational
database systems may construct large result tables, there are inherent tradeoffs between shipping the
query or shipping the data. Optimisation of distributed query operations is a non-trivial problem [40]. “

In the context of replication schemes, a function shipping approach also replicates the invocation on
objects. In contrast to data shipping, function shipping is a desirable approach because it is tolerant
of failures during processing of the invocation [59]. The function shipping approach is also particularly
beneficial in object systems as it may eliminate the disadvantages mentioned for the data shipping ap
proach, in particular the need for potentially expensive object migration [178]. However, the problem of
data shipping reoccurs if objects need to be copied as method arguments, and for large scale distributed
systems such copying may be necessary for autonomy reasons [52]. However, in smaller scale systems, as
the ones of interest to this dissertation, sharing objects by reference is practicable.

Assuming that a remote invocation is smaller than the object which is being invoked, less communication
capacity is required in an object replication scheme®, although it incurs higher demands on low-latency
communication protocols [192]. However, function shipping comes at a cost of utilising processing ca
pacity at multiple machines, but this is usually not a big problem as networked machines are commonly
underutilised anyway [62]. Additionally, in a data shipping approach, processing capacity is also required
to fetch objects and transmit them across the network. Furthermore, function shipping conforms well to

®The primary backup scheme is discussed in more detail in §4.4.1 p. 46.

‘’In the case of a primary copy scheme, this disadvantage can be ignored.

®If both objects and invocations are smaller than the message size actually transmitted across the network, this argument
can be ignored. However, communication protocols might fill empty space in data link frames with data from other
concurrent communication sessions.

43

the philosophy of the object model, as data are viewed as units encapsulated by methods and invocations
are seen as messages being sent between objects (see §5.9.3 in [38]).

However, as in all replication schemes, a coordinator is necessary to coordinate the replication of invoca
tions, and will constitute a single point of failure®.

4.3.1 O bject replication

Approaches for replicated objects, e.g. [31], involve designing objects for replication. In contrast, object
replication deals with the replication of already existing objects. Object replication is a function shipping
approach where each member of the replica group executes invocations in parallel.

P ro b lem s w ith en cap su la tion
A particular problem occurs in object systems due to the encapsulation principle (cf. §2.4 p. 21). Whereas
data in a traditional data-oriented system are simple over writable values, the data inside an object are
protected with methods that define the allowed operations upon the data. Operations for overwriting
data may of course be implemented on such objects, but so can operations that mutate the data inside
the object (e.g. a method on an object which increments a counter variable)^®. Therefore, to maintain
full consistency among a group of object replicas, each replica must receive the same sequences of invoca
tions. This principle incurs some restrictions for replication techniques in object systems. For example,
consistency protocols based on updates of subsets of the replicas, like voting or coterie-based schemes
(see §4.4.4 p. 47), assume that data are directly exposed and therefore can be directly compared and
overwritten. Data within replicas belonging to a subset which was not updated in some previous round
will have an earlier timestamp, and are subsequently marked as stale and directly overwritten with the
most current values during following rounds of the replication protocol.

Additionally, object replication schemes, while conceptually general and elegant, are restricted by the
rich behaviour of objects [59]. Objects may reference each other in arbitrary patterns. If an object A is
replicated and contains a reference to another object B, it can only be determined from the semantics of
the application if invocations from A to B should be replicated. In case object B is shared among the
replicas of A, object B should receive exactly one invocation from the replicas. However, to avoid single
points of failure, more than one invocation should be sent from the replicas of A. This arrangement is-
not transparent, the designer of the object must decide whether calls from an object replica are made to
another shared object or not. As an object’s methods cannot in general be assumed to be idempotent
and commutative, the object might mutate, therefore it is of criicial importance to invoke an object’s
methods the correct number of times.

4.4 Strong C onsisten cy R ep lication Schem es

A strong consistency replication scheme ensures that replicas are consistent, i.e. mutually consistent and
correct, between each operation on them. During the operation, there will be a non-negligible period
of time in which this property is not valid, therefore it is important for a full consistency scheme to
serialise operations to allow only one operation at a time. If an operation was allowed during the time
the replicas were heing manipulated it might observe incorrect data. From this definition it is clear that
such a replication scheme has three main tasks:

1. A replication scheme’s main task is to eliminate single points of failure by introducing redundancy.
The scheme must be able to conceal failures so as to provide continuous service despite such mal
functions among the replica group. However, if there are many simultaneous failures, these might

‘‘Although some schemes, e.g. process groups, can tolerate failing coordinators, they ultimately depend on a single client
to make the fail-over decision [28].

‘“However, the encapsulation principle is relaxed in some object-oriented database systems [142].

44

have occurred due to a partition failure, in which case it must be ensured that at most one partition
continues manipulating the replica group. Because operations on the replicas must be serialised,
full consistency schemes can generally mask fewer failures than weak consistency schemes due to
the risk of partition failures.

2. The scheme must ensure that clients only observe consistent data, which is the main benefit of full
consistency schemes; the simple data model — namely that all the replicas contain correct data —
means that programs using such schemes will not need to deal with stale or incorrect data and can
be constructed as if they were not using replicated data. However, if the consistency requirements
are not satisfied, programs expecting it cannot be expected to work correctly either.

3. The scheme must serialise operations on the replicas. The execution of operations on several
replicas is normally not instantaneous, and therefore clients must not be allowed to observe the
replicas during this period as they would then see inconsistent data, and hence evade the simple
data model. Serialisation is typically achieved through some locking mechanism, e.g. by locking a
majority of the replicas before carrying out a client request. Consequently, the need for mutual
exclusion also limits the failure masking capability of the scheme (cf. item 1 below). Naturally, such
pessimistic locking reduces the performance of the scheme'in case of multiple competing clients,
and may also increase the likelihood of deadlocks [85].

It will be explained how these three tasks are performed for each replication scheme presented. Numerous
full consistency schemes have heen discussed in the literature [79, 92, 162, 175, 181]. Arguably, the
simplest way to achieve these two tasks is taken by the primary copy scheme, where only one replica is
used at a time and the other replicas are used only if the first fails (see §4.4.1 helow). Maintaining the
consistency of this single replica is therefore simple, and serialising access to it is trivial. However, there are
some problems with this approach which can arise during particular failure semantics. Another approach
that ensures full consistency is voting protocols which achieves mutual exclusion of client requests by
vote assignments (see §4.4.4) and relies on timestamps to detect the most recent copy of the data at the
next operation.

G eneral p rob lem s
The requirement that operations on the replicas are serialised restricts the performance of full consistency
schemes, and generally, performance will not improve significantly by introducing more replicas although
availability might increase. For applications that require the use of replication simply for performance or
availability reasons, full consistency schemes are usually a suboptimal choice. Weak consistency schemes
might be more appropriate (see §4.5 p. 49). Furthermore, in some systems, for example large federated
databases, full consistency might not be practicable due to large numbers of partitions and low communi
cation capacity [142]. Instead, weaker consistency must be tolerated, and optimistic concurrency control
together with special conflict repair procedures should be used (see §4.5).

However, the performance of full consistency schemes can be improved by reducing the lock granularity
during serialisation. The probability that two clients want to update the same item concurrently is thereby
reduced, and the likelihood that one operation must wait for another will be lowered. For example, in
the multi-user CES editor (Collaborative Editing System), documents are divided into sections, which
are the units of serialisation [86]. While full consistency is ensured, people can edit the same document
as long as they perform updates on different sections. Conflicts become rarer, and performance therefore
increases among concurrently executing clients.

Additionally, full consistency schemes, due to the need to guarantee serialisation of replica operations,
will incur extra communication overheads because many replicas must be locked to guarantee mutual
exclusion. There is a chance that this extra load can increase the risk of network congestion and PE
overload, and hence lower the reliability of the system (see §3.3.2 p. 36).

r ' l /

45

4.4.1 T he prim ary copy schem e

The primary copy scheme, also known as the primary-backup scheme, is used in many existing systems,
for example in the Thor database [111] and the Echo file system [181]. In both systems the primary
copy scheme is used for replication of servers (object repository servers and file servers respectively). A
primary copy scheme is often chosen due to the relatively simple behaviour and low overheads during
periods of no failures. The scheme is also appropriate for data replication in object systems because it
maintains a single, and thereby consistent, copy of the object graph^^.

The primary copy scheme is based on the idea of ‘hot standby replication’; during fault-free periods, a
single primary replica receives all the operation requests and carries them out sequentially. Serialising
access to the replica is therefore a simple question of only allowing a single client at a time to manipulate
the primary, and this can be done by simple locking primitives. A collection of backup replicas are
periodically synchronised with the primary, and if the primary fails, one of the backup replicas takes
over as the new primary. Although the scheme would work well for benign failures, malicious failures
cannot be masked. If the primary fails maliciously, the client cannot generally determine this failure^
Additionally, the scheme can behave incorrectly during partition failures where several primaries can be
elected at the same time, thus causing inconsistencies. Some variations of the primary copy scheme use
just a single backup, in the form of process pairs [85]. Although the backup has a simpler job of deciding
whether it is supposed to take over from a failing primary, conflicts are still possible if partition failures
prevent the backup from determining the correct status of the primary. Echo, a fault-tolerant file system,
solves the problem of electing multiple primaries by using a second level of replication; a primary is only
elected if it manages to get a majority of votes from replicated disks [181]. Echo will thus block if a
majority of disks are not responding rather than allocate two or more primaries^^.

The critical factor determining the scheme’s performance is the frequency of synchronisation between the
primary replica and the backups. If few failures are likely, the performance of the scheme improves with
reduced frequency of synchronisation. However, when the primary fails, more work must be done to get
the elected backup synchronised, and if the primary fails just after an update, but before it is synchronised
with at least one backup, the scheme cannot provide full replication transparency to applications. Some
data will have been lost, and the client of the scheme must therefore be prepared for this during interaction
with the current primary. The scheme can be implemented such that the backups are synchronised for
each operation that updates the primary, but this reduces the performance of the scheme to that of an^
available copies scheme (see §4.4.4 p. 48). Essentially, if the frequency of synchronisation is high, very
little work needs to be done to switch to a backup, because the backup is likely to closely match the
primary, but then the performance drops dramatically [94]. Additionally, as the primary receives all
the requests, the scheme is not very scalable. The primary can very easily become a ‘hotspot’ and a
bottleneck to performance.

4.4.2 R eplicated R P C

Full consistency can be achieved in an object oriented system by sending the same sequence of invocations
to each replica in the group, closely resembling the state machine approach to replication [162]. In
addition to the process of replicating the invocations, procedures are necessary to mask failures and
provide support for serialising access to the replication. However, because all non-failed replicas will
remain mutually consistent, there is no need for potentially expensive replica state transmissions to bring
replicas up to date as is the case for voting schemes. The RPC approach is attractive because it replicates

Although, during synchronisation and fail-over the backup copies must be brought up to date.

^^Naturally, proprietary failure detection mechanisms such as error-detection codes can be implemented, but this requires
special design of the replica and is not enforced by the replication scheme.

^^This illustrates a common tradeoff in distributed computing; liveness versus consistency [19]. Achieving one of them is
simple, achieving both is hard.

46

^'^Object shipping is occasionally required if objects are parameters to the RPC and the objects cannot be remotely
referenced.

47

i

- I

the invocation and will thus normally avoid complicated object shipping^^.

A useful way to encapsulate this functionality is within RPC stubs [23] or proxies [167], which are
commonly used paradigms for encapsulating distributed programming. This approach is very convenient
and is used in a number of systems, e.g. it is known as MultiRPC [159] in the Andrew and Coda File
System [157] and simply as replicated procedure calls in Circus [48, 49]. It is also the approach chosen
in the proposed architecture. Replicating invocations to separate object replicas may trigger nested
invocations however, and this complicates the design of a replicated RPC mechanism. For example, in
[49], invocations are uniquely identified by low-level system code if they originate from replicas and a
particular filtering mechanism at the invokee ensures that duplicate messages are ignored. A similar
approach is followed in [121].

The main benefit of the replicated RPC approach is the simple programming model which is a copy of
the standard RPC [23]. Replicated RPC can also give relatively good performance, even in large scale
systems with a high number of replicas [159]. Automatically generated stubs interface with the client
to provide a replication transparent object which can be manipulated much like a normal non-replicated
object. Additionally, full consistency schemes are beneficial in object systems, as they do not conflict
with the encapsulation principle (cf. §4.3.1 p. 44). A more thorough discussion of approaches to replicated
RPC is in §9.1.1 p. 95.

4.4.3 Process groups

A process group is a synchronised collection of processes, where a message sent to one member guarantees
it to be delivered by all or none of the group members [18]. Special broadcast protocols ensure that
different members of the group receive the same sequences of messages by using some form of atomic
broadcast algorithm. Additionally, a set of routines for changing the configuration of the group, group
membership protocols, is defined within the protocol to provide support for reconfigurations such as
new members joining the group. Due to the elaborate protocols for maintaining the atomicity property
process group protocols generally do not scale to groups larger than, say, a few tens of replicas.

The process group approach can be useful as a tool for replication in object systems because it is guar
anteed that each member of the group (i.e. each replica) receives all the invocations sent to the group.
Process group protocols do not generally support nested invocations, rather, the approach makes it dif—-
ficult to provide support for this. If replicated processes must invoke other shared processes, specially
designed mechanisms must be used to filter out duplicate invocations. Additionally, a process group is
a relatively low-level mechanism, and is not sufficient to implement a replication management scheme
on its own. For example, messages can normally only be sent among members of the group. If another
object, not belonging to the group, wants to send a message to the group, it has to use a special contact
(a representative) for that group. This contact will obviously be a single point of failure, and the ob
ject must therefore implement a fail-over mechanism to guard itself from failing contacts (see also §9.4.2
p. 104).

4.4 .4 V oting schem es

Voting is a kind of pessimistic concurrency control scheme for data replication, and achieves full consis
tency by ensuring that all operations on the data are serialised and that data are timestamped such that
stale data are updated in subsequent rounds of the protocol [79, 92]. Serialisation in voting schemes is
based on the principle of overlapping vote sets, or quorums. Before an operation can be executed on the
replicas, a quorum must be obtained by the replica manager, and because the votes are arranged in such
a way that only concurrent operations will be able to gather quorums simultaneously, strict serialisation
of operations is guaranteed. Consistency is provided by a timestamping mechanism which is able to

distinguish between up to date and stale replicas. All replicas which are contained within the quorum
are updated with the data from the most current replica, and then the requested operation is applied to
the quorum. This enforces another requirement from the vote assignment; it must be guaranteed that
each quorum will contain a replica with the most current data. Otherwise operations might be missed
by some replicas. The fact that replicas are brought up to date by copying data from the most current
replica makes voting schemes unsuitable for object replication regimes. Additionally, the problem of
nested invocations is present in voting schemes as well.

The main drawback with voting schemes, is the high cost and relatively low availability as compared to
weak consistency schemes. For each operation to be applied to the replicas, the appropriate number of
votes must be gathered from the replica set. This can involve multiple rounds of potentially expensive
remote invocations. However, the individual numbers of votes may be optimised to reduce the cost
of certain operations [76, 79, 92]. For example, a replica known to be very reliable might be assigned
a high number of votes so as to achieve better performance^^. Additionally, it is common to exploit
knowledge of read/update ratios to favour the most common operation type. If most of the operations
are read operations, these operations can be assigned smaller quorums thus increasing the performance of
reads by reducing the performance of updates. Another possibility is to exploit more advanced semantic
properties of the data, for example by allowing increased concurrency for particular data types [92].

A widely known variation of the voting approach is the majority voting scheme. In a majority voting
scheme quorums are simply determined as containing any majority of votes. The scheme does not optimise
for reads or writes, but simply requires that votes are collected before an operation can be issued, and
hence does not provide an increase in availability unless n > 2. However, for large n, the scheme offers
good availability (see §B.2 p. 116). A majority, by definition, can be gathered by only one replica manager
at a time, and thus guarantees mutual exclusion. As long as a majority of the votes are available, the
scheme can allow for operations to proceed without sacrificing consistency. In its simplest form, majority
voting assigns a single vote to each replica, however, different number of votes might be given to replicas
to optimise the scheme. The weighted voting and the available copies schemes exploit optimisation of
the vote assignments in slightly different ways.

Weighted voting is a specialisation of majority voting where different replicas are given different weights
(or votes) [79]. This approach can be used to optimise the vote assignments, such that particular features
of the distributed system can be exploited. Determining optimal assignment of votes can be computa
tionally expensive, but less so than coterie assignments. This makes weighted voting more appropriate-
for larger numbers of replicas than coteries (see §4.4.5).

The available copies scheme^® is a variation of the majority voting scheme, although highly optimised for
read operations [55]. A replica is available as long as a majority is present in the current partition. Read
operations are performed on the nearest replica (or the replica with the smallest cost of performing the
read). Updates are performed on all available replicas in the group.

4.4.5 C oterie schem es

A coterie scheme is similar to quorum voting schemes in that serialisation is achieved through the locking
of subsets of replicas. However, in contrast to voting schemes, coterie-based schemes have predefined sets
of overlapping replicas. That is, instead of requiring the gathering of votes, sets of replicas are used to
satisfy the execution of an operation. Replicas are arranged in sets, the coteries, so that two potentially
conflicting operations have overlapping members [76, 17]. Similarly to the voting scheme, when a coterie
is achieved, and an update operation is performed on the respective replicas, the replicas are also updated
with a new timestamp which ensures that a following operation accesses the latest updated replica.

Although coterie schemes can give slightly better availability than voting schemes for high numbers of

However, by directing more load to a replica, its probability of failure will increase as well (cf. §3.3.2 p. 36).

Sometimes called the accessible copies scheme.

48

replicas^’*', coteries are more expensive to compute [76]. However, determining the optimal assignment of
coteries is computationally very expensive [17, 76, 175] making this approach most appropriate for smaller
numbers of replicas (cf. §4.4.4 p. 47). A variation of the coterie scheme is the read-rows write-columns
approach, where overlapping subsets are ensured through organising the coterie groups in a matrix. The
fact that each row will overlap with any column ensures mutual exclusion.

4.5 W eak C onsisten cy R ep lication Schem es

^^For more than five replicas the computation of optimal coteries can be very expensive, with exponential running times.

Strong consistency replication schemes depend on synchronous updates of replicas. In some distributed
systems this synchronisation is too costly due to large numbers of replicas and relatively poor communi
cation capacity. For example, federated multidatabase systems require, for performance and availability
reasons, that global serialisation be relaxed [8, 142]. Other systems, e.g. systems where failures occur
frequently or where replicas must be available during periods of disconnection makes full consistency
unrealistic. Thus, a weakening of the consistency requirements is necessary.

Weak consistency replication schemes allow for asynchronous updates of the replicas. Some weak consis
tency schemes use epidemic algorithms for update propagation where replicas cooperate to ‘infect’ each
other with the updates [57, 81]. Others, such as the optimistic protocol scheme, try to update as many
replicas as possible, but in case of partitions a precedence graph is constructed which detects conflicting
transactions [55]. Due to the asynchrony, an operation updating a replica need not wait for all other
replicas to be updated, rather, the updates are propagated in the background while the client that issued
the update can continue with another task. This means that if some of the replicas are unavailable, due
to failures or disconnection, they can receive the update when they are once again available. However,
weak consistency schemes rely on a mechanism to detect inconsistencies in the replicas that have been
independently updated, and this normally requires substantial processing [55].

Weak consistency schemes in general incur lower overheads in the clients than full consistency schemes.
They are therefore better suited for large scale applications using networks of ‘data servers’, for exam
ple global name and directory services [137, 41, 21], distributed file systems [157], and large autonomous
information systems [100, 128] where replicas may be located in database servers with relatively high per
formance. At the cost of potentially stale data, weak consistency replication schemes assist in enhancing
performance and availability.

f!

However, weak consistency protocols have some limitations. Resolving conflicts can potentially be very
expensive, and this requires more processing to be done in the replica servers. Due to the fact that replicas
might contain stale information, weak consistency schemes must be used with care. Some applications
are able to deal successfully with this problem, e.g. if it is obvious from the information content that it
is stale the application can use another replica or simply retry the operation in the hope that the data
will become valid soon. By reducing the granularity of the replicated item, the probability of conflicting
updates can be reduced significantly. However, this comes at the cost of introducing larger numbers of
items which is not always practicable due to higher overheads for a given amount of data.

R econ cilia tion
Weak consistency replication schemes require that mechanisms are provided to deal with potentially
inconsistent data. Some conflicts can be reconciled automatically (and correctly) without loss of repli
cation transparency. For example, some of the inconsistencies that might occur in replicated distributed
file systems can be reconciled by the system following given rules. Consider a file system with the usual
operations for reading and updating files and directories replicated at two PEs. Many of these operations
commute, i.e. the order in which they are performed is insignificant and they can therefore be reconciled
automatically by applying the missed operations. For example, the creation of two distinct files or direc
tories, updating two distinct files, and simultaneously reading the same file are commuting operations.

49

However, if the same file is updated independently in both replicas, knowledge not available to the file
system is necessary to merge the updates.

When inconsistencies occur that cannot be reconciled automatically, a reconciliation authority is required.
In the case of files in a file system, the content of the two conflicting files must be examined to determine
how the reconciliation should proceed. The examination might be possible for a range of file types,
e.g. structured text documents or source code where ‘direct manipulation tools’ are available [93]. For
example, Lotus Notes arbitrates automatically among conflicting updates, and flags the overridden update
[14]. Lotus Notes programmers are therefore required to construct programs which must tolerate sudden
overwrites. However, such approaches are unsuitable in the context of programming-language objects.
Due to the encapsulation principle, access to the internals of the objects is limited. The key idea behind
encapsulation is that integrity constraints are enforced by the object itself, not by external objects.
Besides, tools for investigating the internals of objects are generally not available.

A serious problem with weak consistency replication schemes is that some operations should never be
allowed to happen in a partitioned network because they cannot (realisticly) be reconciled later [40, 55],
for example the firing of a missile or the scheduling of aeroplanes at an airport. There might thus
be a need to enforce different consistency requirements on different data, which further complicates
the replication scheme. Additionally, the fact that weak consistency is sought, often implies that the
potentially inconsistent data will be used outside the system [42], introducing covert channels which can
confuse the causality property of the data.

O ther d isad van tages
The main cost of weak consistency schemes is the added overhead for logging of operations in the dif
ferent partitions. However, in database systems this overhead might not be very significant as logging
mechanisms are already present [55]. Secondly, reconciliation can be costly in systems with many updates
during a partition. While the probability of conflicts can be reduced by reduced granularity of data, long
periods of independent updates can cause large numbers of rollbacks which require further processing in
the servers.

V ariations o f w eak co n sisten cy sch em es
A number of approaches to weak consistency replication have been discussed in the literature, but they-
are mostly based on similar ideas, e.g. epidemic processes depending on randomisation.

Version Vectors is an approach based on keeping track of the nurnber of updates from each site holding
a replica by recording pairs of site,v tuples in a vector, and using the notion of vector domination to flag
a conflict. Domination follows from a replica having seen a superset of the updates of another replica.
Because each replica is associated with a vector, a dominating vector implies that this replica has seen
more updates than the other, and can be reconciled automatically. However, if neither vector dominates,
a conflict has occurred and this must be resolved manually [55].

The optimistic protocol is an approach based on designing conflict graphs of transactions, and by analysing
the graph, conflicting transactions are forced to roll back. The graph analysis is computationally expensive
however, and implementations often depend on heuristics [55].

The anti-entropy approach is based on random selection of partners for exchange of new data [57].
Instead of propagating updates, two partners compare the entire dataset and resolve their differences
after that. This makes the approach very expensive for any significantly sized databases. A variation of
this approach, called timestamped anti-entropy, has been proposed by Golding et. al. [81]. While this
approach is fine for data with simple semantics, e.g. a name database where weak ordering is sufficient,
it is expensive for stronger ordering regimes.

In the direct mail scheme, upon receiving an update, a direct mail replication protocol notifies all other
replicas about the update via buffered messages (mail messages) [57]. The update is asynchronous, i.e.
the client does not wait for the messages to be propagated (it is similar to a best-effbrt multicast). The
disadvantage with this approach is that there is a chance that a receiving replica is crashed or its message

50

is dropped by the network. The receiving replica will therefore miss the update and become permanently
inconsistent. Due to this limitation, the direct mail scheme is sometimes combined with other, more
fault-tolerant schemes such as anti-entropy [165]).

Rumour mongering is an epidemic-style update propagation protocol [57], but in contrast to anti-entropy
it is not completely reliable. This technique is based on the idea that a new update is a ‘hot rumour’
that should be distributed to as many of the other neighbouring PEs as possible. The rumour gets ‘cold’
after a certain number of attem pts to spread the update and there is hence a probability that a PE does
not receive all updates.

4.6 C oncluding R em arks

^*For example, the reference obtained from the name server does not refer to an existing object any longer.

51

This chapter has shown that replication is a problem area with many conflicting concerns. Building
fault-tolerant distributed systems is not cheap, but the added value gained from increased availability
will become increasingly more important as our dependence on dependable computing systems rises.
Similar to many other problem areas within computing, the tradeoffs depend on the system in which the
problem must be solved. This dissertation is concerned with system support for object replication, and
thus the requirements to transparency and a simple programming model are of paramount importance;
scalability and availability are secondary concerns.

In this chapter strengths and weaknesses of several replication schemes have been presented, and quite
clearly, none of the schemes stand out as ‘the perfect solution’ to any replication problem. Optimistic
protocols maximise availability at the expense of repairing eventual inconsistencies. If conflicts are rare
and the cost of resolving them is low, then they will offer benefits in terms of better scalability and
performance. For some applications, resolving conflicts is cheap and the correctness of the conflict
detection mechanism might not be of great importance. In some settings such as replicated name servers
where data is only minimally encapsulated, a client will often be able to distinguish between correct and
incorrect data^^. The name server client can take corrective action by making repeated requests to the
name server in the hope that the name server will eventually be updated. The client could also send its
request to another name server agent.

However, in the context of system support for replication of generic objects — where any object might be_.
replicated — it cannot be assumed that conflicts can be detected so easily, yet alone corrected. Pessimistic
replication schemes do not require corrective action to be taken by clients as these schemes will always
ensure consistent data. These schemes have reduced availability compared to optimistic schemes, but
they are predictable and offer a simple programming model; the model the programmer is used to from
writing non-replicated programs. Additionally, if conflicts are frequent and the cost of repairing them is
high, then pessimistic schemes will offer better performance than optimistic schemes.

To summarise; pessimistic schemes do have significant associated costs. However, so do optimistic
schemes, and in addition they cannot provide the transparency necessary in a system support archi
tecture. Their cost will be unpredictable in systems where only weak predictions can be made about
the frequency of conflicts. In the context of this work — system support for replication — maximum
replication transparency is necessary. Any other approach would complicate the programming model
rather than simplify it and thus counterfeit the goal which this dissertation was intending to achieve.

Based on these observations, a full consistency replication scheme based on replicated RPC has been
chosen in the proposed architecture. Function shipping is a means of replication which corresponds
well with the object-oriented system model, and does provide the best resilience against failures by
also replicating the execution of objects’ methods. Fi’om a system support view it offers a clean and
transparent programming model which will be very useful to build system support mechanisms that can
reduce the application complexity.

Chapter 5

System Support

This chapter presents the concept o f system support m echanisms and m otivates their availability during
distributed software developm ent. Different issues relating to the realisation of system support are discussed; in
particular, those issues related to the provision o f system support in distributed object system s are emphasised.

5.1 O verview

The rôle of system support is to provide abstractions of complex system structures and components to the
application programmer and to increase reuse of common program patterns among multiple applications.
System support is provided to the programmer in the form of APIs (Application Programmer’s Interface)
as collections of abstract datatypes, procedure libraries or class libraries. APIs can be made available to
programmers through library code or operating system calls, facilitating reuse by a number of applications.
System support functionality need only be implemented once, justifying increased effort to ensure high
quality implementations.

System support is of greatest value if the same functionality is needed by many applications and when the__.
functionality requires complex, error prone and substantial programming effort. Significant savings can
then be achieved. Not only does it reduce the effort of developing each application, it can also increase the
quality of the applications because the system support mechanisms are well tested. System support can
help application developers concentrate on application functionality. Orthogonal issues, such as reliability
and availability, are important for the satisfaction of non-functional requirements, and should as far as
possible be delegated to reusable software components.

Ihirthermore, the demand for increasingly large and powerful applications necessitates reuse to ensure
efficient realisation. Not only does efficient reuse lower implementation costs, it can also help increase
interoperability between different applications. The use of standard, low-level system support mechanisms
can provide the interface necessary for integration. This makes system support particularly interesting for
the development of distributed applications [14]. Due to the complexity of distributed control, resource
management and coordination, system support for these tasks can reduce application complexity and
thus simplify their development [86, 170],

However, to be useful, a support layer must not introduce overwhelming additional complexity to the
application programmer. If application programmers are required to familiarise themselves with many
new and potentially radical concepts, or fundamentally change the way they reason about their programs,
they might choose simply to implement the functionality themselves^. Also, system support mechanisms
must be generally applicable to aid the construction of a wide range of applications. This might occa
sionally conflict with the goal of efficiency, as designs optimised for generality or performance may result

^The “not invented here” syndrome [72].

52

in different implementations [156]. To cater for this problem, application programmers should be allowed
access to parts of the internals of system support mechanisms in cases when doing so does not jeopardise
other important issues such as system security. Naturally, providing such access can only be realised with
the understanding that system support integrity may be violated.

5.2 P rovid ing S ystem Support

System support mechanisms are mechanisms that are available to application developers to reduce the
effort of developing software. Application developers on common computing platforms already have
access to a vast range of software libraries and operating system calls [14]. As the demand for increased
programmer productivity continues, the sheer volume of APIs is likely to rise. For the suppliers of these
APIs it is therefore important to optimise their coherence and brevity so that the programmer is not
inundated and hindered. During design and development of system support functionality, these, and
other issues, need to be addressed carefully. This section elaborates on issues of importance to builders
of system support software.

Generally, principles for good software engineering should be adhered to during development of system
support mechanisms. For example, sound procedures for documentation and testing should be followed.
Additionally, simplicity of design is more likely to increase implementation reliability. The fewer compo
nents a system support mechanism must incorporate, the greater the probability of a reliable mechanism.
Furthermore, simplicity by design often leads to elegant and more easily maintained implementations.

5.2.1 Procedure and class libraries

With the increasing popularity of object oriented development techniques and programming languages,
traditional procedure libraries have been partially superseded by class libraries. Class libraries consist of
a collection of class definitions which can be incorporated into an application. For example, a supplied
class can be specialised through inheritance with appropriate new methods and data fields. This kind
of system support, i.e. language level software, provides a flexible and efficient approach to software
development [75, 161].

However, in contrast to operating system support, this flexibility can lead to oversized libraries which can
be very hard for the developers to completely understand. This is especially important for class libraries
where classes might have complex inter-dependencies, such as libraries for window systems like Microsoft
Windows [30] or X I1,

5.2.2 O perating system support

System support mechanisms might occasionally have to be integrated within operating systems due to
requirements for security and access to low-level devices. However, implementing system support at
this level has a tendency to swamp the operating system. A goal among operating system designers is to
provide only the most essential services which require protection and access control as kernel functionality,
for example; processes, inter-process communications and address space administration [107]. Remaining
system services can be implemented outside the kernel in user level processes. Furthermore, operating
systems are required to support large, existing bases of software through system support mechanisms.
Therefore, operating systems are forced by the application base to restrict changes in system call interfaces
to a minimum.

There is research into object oriented operating systems, promising easier customisation and more flexibil
ity for programmers, e.g. Spring [125] and Spin [15]. Object oriented operating systems try to reduce the
traditional tension between generality and specialisation, essentially providing the benefits of language
level support with the added facilities of protection and resource scheduling [95]. However, it is likely

53

to take some time before such systems come into widespread use, and it is likely that the first ones to
appear will have standard supplied interfaces for popular operating systems, e.g. UNIX.

This familiar operating system, dating back to the 1970’s, provides its support to programmers in the
form of a collection of system calls, i.e. application callable procedures which are executed by the kernel.
The amount of software written on this platform would make any radical changes to the system call
interface unthinkable.

5.2.3 Stab ility of interfaces

System support closely relates to layering in software engineering, as a collection of system support
mechanisms can be seen as a layer. Implementing system support mechanisms becomes the process of
building such a layer and documenting its interface to the application builder.

As more software is developed for a particular system support layer, it becomes harder to change it. Small
changes in the API can lead to cascading changes being necessary in the software written for the API.
It is important to consider this during development of low level software. Low level software interfaces
must be designed for stability and longer life than application level software. However, this does not
affect the implementation. The implementation of the mechanisms are allowed to change independently
of the interface.

An inherent problem with system support mechanisms is making them applicable to the widest possible
range of applications. Reuse, in practice, is difficult, and often, several iterations of refinement may be
necessary to end up with good, generic abstractions [75, 170]. There is an inherent conflict between the
stability of the interface and the functionality it implements, however, as the functionality underneath
the interface changes, the interface might not be the optimal interface to this functionality any longer.
Research and experience with reuse, and patterns in particular, will need more time to mature and clearly
demonstrate their benefits [73].

5.2.4 Conflicts and overlaps

Having large numbers of interfaces introduces problems with conflicts and overlapping functionality. Fon_
example, if two interfaces are used simultaneously by a programmer, slight differences in their conceptual
models might severely increase the effort needed to build reliable code. This motivates strict adherence
to software architectures; not only their concrete representation, but also their underlying assumptions.
Lack of common understanding of the assumptions made during design of reusable software components
appears to be a very significant problem [54]. Design decisions should be clearly documented to reduce
the danger of mismatch between software components. This is most important for the part of the reusable
software which defines the interface to other software packages. For example, if one software component
assumes that all I/O is via pipes or files and the other component assumes RPC calls, then clearly the
effort needed to make the components interact can be substantial.

:

:t
Additionally, using interfaces from multiple suppliers, the programmer might experience namespace con
flicts. Such conflicts can complicate the development process. The advice from T. Vayda is to check with
suppliers in advance and use tools for namespace control [189]. The same advice is probably well worth
considering for developers of such interfaces as well. Additionally, organisational naming conventions, for
example using a global naming space strategy as in Java [82], can help reduce this problem.

5.2.5 V isib ility o f code

System support software cannot be expected to be free of bugs, although due to its importance, it should
undergo very thorough testing. For application programmers it is important to be able to determine the
source of faults in their software. However, system support software may make this difficult due to lack
of access to the source code. It may be based on code precompiled into libraries which are not generally

54

open for inspection, or the code might simply be compiled into the operating system itself, where it
remains invisible to the application developer. In some circumstances it may therefore be beneficial to
supply not just the precompiled code, but also the source code of the system support software to the
application developer.

Some system support software is based on preprocessing using automatic code generators. In this case
it should not be assumed that the generated code is always correct. If the generator produces code
which is not accessible to the programmer, errors in the generated code cannot be corrected by the
programmer. Occasionally, the programmer might want to perform corrections, or a t least make sure
that errors in the implementation are not due to the code generator. Any intermediate code, e.g. output
from stub generators, should be visible. However, because of the automation, any corrections made by
the programmer will be over-ridden by subsequent invocations of the code generator. These corrections
can only be undertaken by the supplier of the code generator, but the programmer might have a better
chance of producing a useful fault-report for the supplier.

Another problem with generated code is that it might be difficult to read by humans. Automatic code
generators cannot always be expected to produce code with intelligent variable names and readable
comments.

5.3 S ystem Support in D istrib u ted O bject S ystem s

In addition to adhering to the principles discussed in section 5.2, system support for distributed object
systems must assist the development of distributed object oriented applications. A model of what distin
guishes a distributed application from a non-distributed application is therefore necessary^. A particular
feature of these applications is that they contain concurrently executing objects on physically dispersed
computers. Any object might therefore be invoked by several other objects simultaneously, and hence,
reliable and efficient sharing of objects must be supported.

5.3.1 O bject sharing

Sharing of objects is facilitated by passing references to objects among other objects, and references cagu
be passed among objects as invocation parameters or invocation results. Any object holding a valid
reference can invoke methods upon the referenced object. An application will therefore typically consist
of a collection of objects which invoke methods on each other, and which share objects with other objects.
If correctness is to be maintained, this sharing of objects requires coordinated access, i.e. concurrency
control [53].

A system support facility should be safe in the presence of multiple threads, i.e. it should behave correctly
independently of the number of concurrent clients. Special care must therefore be taken during the
development of system support mechanisms for these kinds of systems. The programmer should be
shielded as far as possible from the fact that there are other programs executing in the system. However,
unnecessarily complications of the programmer’s model should be avoided and functionality related to
concurrency control should be made as transparent as possible.

5.3.2 Concurrency control

This dissertation is concerned with applications written in a distributed programming language using-
lightweight concurrency primitives, e.g. threads synchronised using locks [25]. In contrast to distributed
programming languages, distributed programming systems extend the programming model with support
for persistent objects and more sophisticated concurrency control inherited from database technology,
such as atomic transactions and recovery functions [9, 154]. A distributed application containing several

^The application model adopted in this dissertation is described in §2.7 p. 24.

55

%
■I

threads of execution must be designed to avoid dangerous situations such as deadlocks, livelocks, starva
tion, and race-conditions occurring due to the concurrency [25, 29]. In distributed programming systems
this is the responsibility of the application developer.

Objects can be considered as a unification of the data and process concepts; each object contains its own
‘processor’ (the thread) and the data upon which this processor executes (the object’s internal state).
This model is called an active object model, and is implemented in some programming languages such
as Objective Linda [101]. However, the unification concept is valid even if the actual programming
language does not restrict threads to execute only within a single object®, although more care must be
taken by the programmer when building concurrent programs in a passive object modeH. In fact, in an -
active object model, the system itself is responsible for synchronising access to the object’s state. The
benefits of this unification become clearer when concurrency must be controlled, as each object can be
held responsible for maintaining the correctness of its own state. In a passive object model, objects which
require synchronised access are programmed with this in mind, and the other objects do not need to pay
the performance overheads associated with synchronisation.

^Which is the case in the passive object model adopted here.

‘‘Active objects do however introduce another point of failure. Because an active object must accept invocations asyn
chronous!}^ it must either be augmented with some form of message buffer or create new objects with their own threads
dynamically [154]. The message buffer can potentially overflow, and the pool of threads can grow without bounds, if care is
not taken to introduce some form of flow control. In a passive object model, a thread is typically blocked on a lock before
entering the object and flow control is in this case provided by the mutex itself.

56

Distributed programming systems often include support for transactions and persistent objects [154].
For example, Argus implements transactional semantics on distributed data-objects using the notion
of Guardians (objects) and Actions (atomic invocations) [110]. However, due to the need for stable
commit and abort mechanisms. Guardians are relatively heavyweight, and can easily impose too much
overhead for interactive applications if they are not carefully designed such as to minimise the use of
guardians for frequently updated data [86]. Similarly, the Arjuna system groups object invocations into
atomic actions using specific programmer declared primitives [171]. Arjuna uses a persistent object
store which maintains the state of objects (state servers), and assumes that particular object servers
contain the code for the methods. For each update to an object, the new state of the object must
be forced to disk, and this approach also results in relatively high overheads for fault-tolerant objects
[113]. Transactional support is also necessary for dealing with nesting of invocations; an invocation which
trigger the invocation of multiple child-invocations may not need to be aborted if only a subset of the
child-invocations abort. However, a thorough discussion of transaction models is outside the scope of this
dissertation (see e.g. [9, 85, 154]).

Care must therefore be taken when providing system support for concurrent programs. In programming
systems, concurrency control is a central part of the system, commonly provided through some form of
transaction mechanism. In programming languages, the programmer is normally left with more of this--
responsibility, and the amount of work is dependent on the object model. In an active object model, the
programming language is responsible for ensuring serialisation in the presence of concurrent threads. In
contrast, a passive object model, which is the most common model today, requires that the provider of
system support functionality ensures correct operation during concurrent processing.

5.3.3 O ther services

Other services are also important within the framework of system support in distributed object systems.
Applications commonly require system-wide services which cannot easily be implemented by each appli
cation, and should rather be accessible through reusable components. Examples of such services are name
services, binding services, RPC-facilities, garbage collectors, and load balancers. Although this disserta
tion is primarily concerned with replication facilities, these will become only services within application
development frameworks [14].

5.4 S ystem Support for O bject R eplication

As software becomes more distributed, more people will depend on the same application, and its avail
ability requirements are likely to increase. In §3.1 p. 27 it was indicated that a high level of interaction
among components in a distributed system makes distributed software vulnerable to even single failures.
System support for object replication could be a significant benefit to alleviate this fragility, and could
help to reduce the difficulty of developing more reliable applications. The system support mechanisms
proposed in this dissertation (chapter 6) are suggested as a possible, although partial, approach to object
replication.

Object replication implies replication of objects not specifically designed for replication (see §4.3.1 p. 44).
Ultimately, it should be possible to replicate any object within a distributed system, and do so transpar
ently for the application programmer. Many parameters in a distributed system are very dynamic, and
it would be unrealistic to demand that application developers deal with these [114]. Rather than burden
the programmer with tasks such as replica placement, failure masking and replication protocols, system
services should perform these functions automatically based on simple metrics such as the desired object
availability.

However, system support for object replication is a challenging problem [59]. While data replication can
be supported in a generic manner, object replication does incur tradeoffs for transparency. Successful im
plementations of such mechanisms can therefore only be provided after making careful judgements of the
inherent tradeoffs. Furthermore, replication management is itself non-trivial, requiring both distributed
coordination, inter-object communication and distributed resource management. It would be unrealistic
to assume that application programmers would have the resources necessary to implement replication
schemes with the appropriate reliability [18, 44]. Hence, there is a danger that the implementation of the
replication mechanisms themselves cause failures, reducing the benefits of replication. However, system
support mechanisms, due to the benefits of reuse, can justify the cost of higher quality implementations.

5.4.1 R eplication transparency

The conflict between consistency, performance and availability is inherent in replication schemes. For a
system support layer, consistency is the factor which determines its usefulness as increased consistency,
implies increased replication transparency. Further conflicts arise in object systems due to complex
interactions among objects in such systems, and the encapsulation principle, rendering voting and coterie-
based replication schemes unusable for object replication (see §4.3.1 p. 44).

The achievable transparency in object replication schemes is limited [59]. For example, invocations
from a replicated object A on some other shared object B will result in multiple, potentially unwanted
invocations on B because each replica Ar of A holds the reference to B. However, if the invocation from
a replica Ar was to a non-shared object, e.g. a temporary object created by Ar itself, there should be no
change in semantics, and all invocations from Ar should reach B.

The problem is that the wanted behaviour is application specific; firstly, if B is not shared, no particular
action needs to be taken. In the case that B is shared, maximum fault tolerance is achieved if as many
methods as possible are invoked on H, and this does not cause any semantic violations as long as these
methods are either reads or pure overwrites. Multiple invocations would not change the final state of
the invoked object B (assuming overwrite methods are executed at least once). However, in the case
where objects mutate, i.e. the methods are non-idempotent, the number of invocations is significant for
the resulting state in B. According to the object model adopted in this dissertation, any method may
potentially cause a mutation in the invoked object, and the builder of A objects should have to worry
about the internal semantics of B objects.

A mechanism which automatically ‘filtered’ invocations from a replicated object could solve part of the
problem, although at the cost of added programmer complexity and filtering even invocations to non
shared objects [121]. Additionally, multiple invocations might be what the application semantics dictate.
Consider for example an object which counts the number of replicas which correctly executes the call.

57

58

f

Filtering all replicated invocations to shared objects would then prevent the correct behaviour of the
program. Only the application builder can determine the correct semantics.

T ransparency d isad van tages
Even in a system support setting there are valid arguments against full replication transparency. Es
sentially, these arguments have much in common with those for and against completely distribution
transparent systems [51, 166, 183, 194]. For example, replicating an object changes its failure semantics,
because a replicated object cannot conceal all possible combinations of failures. During periods of many
failures, the replicated object might be unable to execute any method calls and would in this case have
to report an error or simply block while waiting for failure recovery. This would never happen using a
local object®. The programmer might want to know which objects are replicated so that the program
can be built to resume execution despite blocking calls on certain objects.

Worse still, if the replicated object fails, rendering the application’s reference to it invalid, the application
might fail too if it didn’t contain code to deal with the exception. A tradeoff between transparency and
application complexity therefore seems inevitable. For example, the approach taken by the system support
mechanisms presented in chapter 6, is to let the application developer decide which objects should be
replicated and to expose the new failure modes.

5.4.2 A pplicab ility

Due to the inherent conflicts between transparency and availability in replication schemes there will
undoubtedly be certain groups of applications which can be supported more efficiently than others by
a particular replication scheme. The wide range of application classes developed in distributed systems
makes it difficult to find a common substrate of replication functionality useful to the whole range.
Clearly this reduces the usefulness of a system support mechanism as it would be advantageous to
support any class of application with the same support layer. However, if assumptions are clearly stated,
the application developer can make a conscious decision before starting to use a specific support facility.

Applicability also deals with concrete assumptions such as programming language bindings, data models,
existing system support functionality, system management interfaces and protocols [14, 54]. It is crucial
that such assumptions are made as explicit as possible. The conformity assertions for the architecture- '
proposed in this dissertation are presented in §6.1 p. 60.

5.4.3 Increased availability

System support for replication would not be very useful if it didn’t increase application availability by
masking failures. For an application designer it might be important to determine how much more avail
able the application will be [150]. This necessitates that information is available about the particular
replication scheme used, such that reliability predictions can be made accurately. As discussed in chap
ter 4, tradeoffs between availability and consistency are inevitable in replication schemes, but for the
strong consistency scheme used in the presented architecture, availability can be reasonable for many
applications (cf. §B.2 p. 116).

5.5 C oncluding R em arks

This chapter has presented some of the issues to be considered before embarking on the task of construct
ing system support software. Although there are a number of challenging problems, system support can

®An address space is the failure domain of an object. A local object resides in the same address space as the caller
(see §2.7.2 p. 26).

3

bring large benefits in terms of reduced application complexity and consequently help increase productiv
ity. System support for object replication will be particularly useful as a means of increasing application
dependability. Although some compromises on support transparency are necessary, the value of increased
fault-tolerance can not be ignored.

This chapter marks the end of background and motivating discussions in this dissertation; in the next
chapter the proposed system architecture for system supported object replication is presented.

59

Chapter 6

System A rchitecture

This chapter presents the architecture o f the proposed system support mechanisms. The presentation covers
a range o f aspects; logical partitioning into modules and objects, internal functionality such as performance
and synchronisation issues, failure resilience, and the realisation of the architecture in a real distributed system
including Issues such as the physical mapping onto, and requirements which must be met by, the existing
infrastructure. Limitations o f the architecture are also discussed, and enough detail is provided to facilitate
further refinement and extension. Read in combination with chapter 7, which describes the programming
model o f the architecture, it will give the necessary understanding for using the system support mechanisms.

I

6.1 O verview

Object replication deals with the replication of objects not specifically designed for fault-tolerance. That
is, the programmer should be able to define objects as if they were not replicated. Similarly, modifications
should not be necessary in already defined objects if they are to be replicated. Similarly, other objects,
which use replicated objects, should not have to be modified either. Thus, this architecture is distinct
from research efforts such as Adaptable Replicated Objects [31] and the earlier work on Fragmented"
Objects [117] where the replicated objects must be explicitly implemented with replication in mind.

The architecture partially fulfils these goals in the sense that only limited adjustments of application
code are necessary to adapt non-replicated objects for replication. A tradeoff has been made between
efficiency and generality. For example, the programmer is responsible for indication of classes that should
be replicated, thereby complicating the programming model with the benefit of only incurring extra
costs for a subset of the defined classes. The alternative, making all classes replicated, would be very
inefficient as the dependability requirements for individual classes are likely to vary and the programmer’s
opportunity to optimise the application would be reduced.

The proposed system support mechanisms encapsulate replication functionality within particular surro
gate objects which to the application programmer appear very similar to the equivalent non-replicated
objects. This reduces the amount of modifications necessary in the clients of the replicated objects.
Issues related to programming with replicated objects are discussed further in chapter 7. The rest of this
chapter is primarily discussing the internal structuring of the replication mechanisms.

A p p licab ility
System structures similar to the one outlined in chapter 2 are assumed to be the platforms on which the
replication mechanisms will be used. Most importantly, programming language objects are the unit of
replication in this system, and a number of distinct computers with independent failure modes are able to
support the execution of methods in locally stored replicated objects. Thus, the architecture advocates
process distribution by following the usual function-shipping principle in object oriented systems [38, 162].

60

Objects are stationary, and method invocations are passed among the replicas as messages on the network.

The replication mechanisms, being quite lightweight, are primarily aimed at supporting the development
of distributed applications with high availability requirements without incurring severe overheads. They
will also be useful for adding fault-tolerance to existing applications, for example when they are redesigned
to run in a networked environment. However, as these mechanisms offer relatively low-level services, their
greatest benefit will probably be as a component within a complete distributed computing environment,
such as a middleware framework [14]. Distributed application development requires services not directly
supported in this architecture, such as authentication services and access control, which could then be
used to provide a more complete application development framework.

The architecture is designed to support the construction of relatively small scale distributed software
systems such as groupware or other multi-user data-sharing software used in LAN-like networks. It is
assumed that users are most dependent upon servers local to the network, and that it is the servers them
selves which are the most common cause of service outages [196]. By replicating server functions within
the system, significant savings may be achieved. However, larger scale application frameworks could
be built on top of these mechanisms, for example by using more loosely coupled clusters of networks
utilising this architecture internally to provide high local cluster consistency. Communication latency is
the primary performance bottleneck in this architecture, application developers must therefore carefully
consider how the latencies of communication in a particular network configuration will influence appli
cation performance. Different network characteristics will influence issues such as replica placement and
the number of replicas used in a particular application context.

The failure-resilience offered by the architecture reduces the frequency of application restarts necessary
due to failures. Due to the consistency constraints enforced by the object model, the mechanisms are not
suitable for large scale systems, where components are geographically widely dispersed and problems such
as disconnected operation and long communication latencies must be weighted against full consistency
(see §6.3.2 p. 70). Consequently, applications using replication primarily for reasons of autonomy and high
performance are not adequately supported by this architecture although performance for asynchronous
invocations on objects is good (see §6.3.4 p. 74).

The pessimistic concurrency scheme will be inappropriate for some classes of applications which might
require long-duration transactions [99], such as software engineering tools and multi-user CAD systems
where direct access to data is most important, and the encapsulated object model adopted here would-
be in the way for efficient data manipulation. Also, such applications tend to require more fine-grained
concurrency control, for example by distinguishing between read and update operations on the data.
Majority locking would in this case severely reduce performance of the application. This architecture is
better suited for development of service-functions within a distributed system, for example information
management or system management services such as name services or accounting services [14]. The
architecture is based upon the assumption that object invocations are short-lived and that multiple
clients avoid long periods of exclusion from the object replicas. However, investigation of concurrency
schemes allowing more concurrency is an interesting topic for further research (see §10.3.2 p. 109).

Additionally, the system architecture does enforce some limitations on the structuring of the application.
Primarily, object replicas may not invoke non-idempotent methods on other shared objects as this will
result in multiple (possibly harmful) invocations on the shared objects. An extension of the architecture
to remedy this limitation would probably lead to less replication transparency for the designer of the
objects to be replicated [59, 121], but support for this should be considered in eventual continuations of
the architecture (cf. §10.3.1 p. 109), By partitioning the application into separate object graphs located
in disjoint address spaces this problem is avoided, but naturally complicates the programming model and
restricts the applicability of the architecture. See §6.2.1 p. 63 for a more thorough discussion of these
issues.

61

6.2 M ain C om ponents

The system support mechanisms are built as a collection of reusable software components which interact
to support the replication of objects. A major feature of this proposal is the separation of generic and
application specific components into distinct entities. Surrogates are generic objects which are autom at
ically generated from interface definitions, and collators are application specific and used to customise
processing of replica result data. Surrogate objects encapsulate the parallel invocations and the collators,
and appear to the programmer as normal, non-replicated objects. Collators allow the programmer to
tune the synchronisation and failure-masking requirements as demanded from the application in a simple
yet flexible manner. Surrogates and collators are described in more detail in the following text.

I
. 1-

. ‘■.S

I

Client
C ollator

S u rro g a te
Interface

Parellel
R eplica

Figure 6.1; Overview of the main components.

Figure 6.1 illustrates the interaction among the main components. The surrogate is invoked by the
client as the normal non-replicated object, and the surrogate manages the parallel RPC module. The
programmer is responsible for ‘slotting in ’ collator objects as necessary (cf. §6.2.3 p. 65),

6.2.1 Surrogates

A natural and simple extension of the object encapsulation principle is adopted in the system architecture.
Particular surrogate objects hide the details of replication from the programmer while acting as a manager
of a collection of object replicas. The surrogates described here are similar in principle to Gaggles [28]
in that they encapsulate multiple other objects using a single object. However, the Gaggle is a more
generic abstraction than the surrogate. Gaggles are not directly designed for object replication because
it is assumed that only one, the clerk, of the multiple objects should receive an invocation. This is
appropriate within a primary copy scheme, or as the fail-over mechanism required in a process grou]^
used for active replication. Because both the primary copy and the process group scheme work by fail
over in case of failures in the currently used primary or contact ^roup member respectively, the Gaggle
is well-suited for this task^. In contrast, the surrogates described here also encapsulate functionality for
failure masking and consistent updates of object replicas and are therefore specialised for replication.

!
::

■I

P rogram m er in teraction
A surrogate defines the same methods as the object replicas, and the programmer can therefore manipulate
the surrogate much as if it was an ordinary, non-replicated object. Maintaining the illusion of only a
single object increases the transparency of replication. This means that only small modifications are
necessary in the application code if it is adapted to use objects that have been replicated. To further
simplify the use of these replication mechanisms, surrogates can be generated automatically by a stub
generator given the interface of the object to be replicated.

However, surrogates exhibit a somewhat richer behaviour than non-replicated objects due to extra failure
modes in the replicas it manages. More details on how the application developer can use this architecture
are presented in chapter 7.

O ther b en efits o f surrogates
Surrogates, similar to proxies [167], are commonly used in distributed systems because they introduce an

^Gaggles are described in more detail in §9.1.2 p. 96.

62

^Failure here means that the object does not behave according to its specification.

63

• t

extra level of indirection, thereby allowing additional functionality to be added without making modifica
tions to neither the client or the original object. In addition to hiding complexity such as functionality for
replication, they are also useful for other tasks such as implementing access control policies and caching
[75]. For example, a surrogate might support only ‘public’ methods on a particular object which would
prohibit the client from calling ‘protected’ methods. The surrogates used in this system could be extended
to support such tasks.

Due to the extra level of indirection, a local surrogate object can act as a forwarder of messages to remote
objects, such that the object it represents can be manipulated as if it was local [23, 58]. The surrogates .
discussed here are always local to the client object and they relieve the programmer of some of the
communication aspects of remote method invocations such as argument marshalling and unmarshalling
of method arguments and results.

N ew failure m o d es
Normally, clients use a surrogate as if it was a normal, local object. Local objects faiP, if and only if, the
address space fails. However, by hiding the distribution aspects of objects, new failure semantics appear
in the surrogate. For example, the surrogate might be unable to carry out an invocation if too many
of the replicas have failed. For convenience, the surrogate returns exceptions if this happens which the
programmer can use to detect and possibly correct surrogate failures. The programming model, presented
in chapter 7, discusses how to handle such exceptions in the application (see §7.7 p. 86).

P ro b lem s w ith n ested in vocation s
Objects can contain multiple references to other objects as part of their internal state. Additionally,
multiple objects may hold references to the same object. Within a program there might therefore exist
graphs of arbitrarily interconnected objects. This exposes a limitation with object replication as envi
sioned by this architecture, namely that object replicas which hold common references to another object
will cause multiple invocations in the shared object. Maximum fault-tolerance is achieved by transmitting
multiple invocations from the replicas, and performing it multiple times in the shared object. As long
as the invocation on the shared object is idempotent, this is the desired behaviour, and this is what
would happen using the proposed architecture. However, if the invocation on the shared object executed
a non-idempotent method, the program would behave incorrectly. —

Solving the problem requires involvement from the programmer. Depending on the semantics of the
application, the programmer could distinguish between calls to shared and non-shared objects. Method
calls to shared objects could then be ‘coordinated’ or ‘filtered’ such as to only execute a single invocation
on the shared object (cf. §5.4.1 p. 57). Arguably, this reduces the usefulness of the replication scheme
by requiring the implementor of each class to distinguish between different method invocations. In
fact, the basic idea of making object replication fully transparent seems to be impracticable due to
this rich behaviour of objects [59]. However, investigating the possibilities of automating the process
of distinguishing coordinated calls from non-coordinated calls might be an interesting topic for further
research within this architecture (cf. §10.3.1 p. 109).

Despite this fundamental limitation in the architecture, it is still believed to be useful. The problem only
occurs if replicas share another common object, and this can be avoided if the application is structured
into separate object graphs without inter-graph references (similar to troupes in [48]). There are at least
three benefits stemming from keeping separate object graphs on distinct PEs.

1. Better locality which increases performance. Compared to local invocations, remote invocations
are very expensive [40, 84]. Because the objects in such an object graph will be local to the same
PE, fewer method invocations will have to be executed over the network. It is indicated in [4] that
most applications are in fact structured this way to maximise local processing.

2. Reduced overheads incurred by the replication protocol because of the small number of surrogates

needed. If the application is structured as a collection of large separate object graphs, only one
surrogate is required for each set of object graphs.

3. Shared objects, which would cause this problem, introduce single points of failure and reduce the
reliability of the application, so should be avoided. It is important to maintain replication at all
system levels to increase reliability (cf. §6.4.2 p. 76), and in this respect, shared objects also include
non-object data, such as files.

Structuring applications in such a manner could be appropriate for implementing larger-scale modules
within a system. The modules would then benefit from the three properties mentioned above and form
an efficient, yet manageable unit of replication. However, this restriction is a complication of the pro
gramming model, and does restrict the programmer during construction of the application (see §7.2
p. 79).

6.2.2 Parallel invocations

The system support mechanisms are based on the assumption that replicas are hosted by individual
PEs. Method invocations on the replicas can therefore be executed in parallel rather than in sequence,
potentially gaining performance benefits leading to reductions in service time. Although parallel execution
of methods will require processing capacity on all the PEs hosting replicas, studies done elsewhere indicate
that, for example, workstations are commonly severely underutilised [62]. This dissertation assumes that
this is the common case, so PEs in the network have the spare capacity necessary to execute additional
object method invocation.

Parallel invocations are designed as a collection of independently executing threads within a surrogate. A:
similar to MultiRPC within AFS [159]. However, rather than being restricted to always waiting for
all threads to finish, each thread is associated with a shared collator object which controls the level of A
synchrony appropriate for the client (see §6.2.3 p. 65).

I;

O rphan com p u ta tio n s
It is assumed that replicated classes implement deterministic methods which eventually will complete^. î
and that replicas execute identical methods. However, jobs will be less than optimally shared among
the PEs in the network, leading to unpredictable execution speeds and some replies from replicas will
be received long after the collator has returned its result to the client. In particular, if the method call
is executed using a wait-for-first collator (see §6.2.3 p. 65), invocations are left running in the replicas
after the client request has returned, and this in turn creates orphan computations. The problem with
such late replies is that the surrogate cannot continuously execute new requests from the client as this
might cause concurrent execution of methods in the slower object replicas. Depending on the client
object(s), the rate of requests to the surrogate can become too high for the slower replicas to keep up,
and the slowest replica will become a bottleneck for performance in the surrogate. This argument favours I
smaller grain surrogates which would increase concurrency and reduce the probability of overloading
single surrogates. The programmer should recognise this fact, and make careful judgements depending
on application characteristics (see also §7.2 p. 79).

It is important that late invocations are not simply abandoned. The probability of late invocations being
delayed due to failures is significant, and even if the client has already got its result from the collator, I
the surrogate must still be available to diagnose potential failures in late replicas. In the architecture
this problem is addressed by not allowing the processing of a new client request before the replicas are
finished processing the previous request. Used in conjunction with a wait-for-first collator, the surrogate i
ensures this by waiting for the outstanding invocations before allowing another. Naturally, if some of Î
the remote invocations crash, the surrogate will wait only until the corresponding timeout expires before
releasing the lock on the replica. In the case that multiple surrogates must be coordinated, the majority
locking scheme guarantees that a new request is not carried out before all replicas are finished processing

64

i:'

^If replicas crash during an invocation, “all” means all non-faulty replicas.

65

the previous request. A majority of locks will not be available until the previously active surrogate is
finished.

6.2.3 Collators

The system support mechanisms allow the programmer to control the synchronisation among the replicas
based upon the application’s requirements. Particular collator objects, based on an idea by E. Cooper
[48], are used to process the results returned from the method invocations on replicas, and can be
specialised to support different method result types. For example, collators for the processing of integers,
real numbers and strings require different implementations. Adhering to sound software engineering
principles, collators are able to reduce the amount of application specific knowledge within the support
layer without significantly complicating the programming model.

The collator design described here is an extension of that described by Cooper, such as to make them useful
in an object oriented programming language. Most notably, this collator design covers the generation of
new surrogates containing object reference return types. A collator, ignoring the parallel RPC connected
to it, is also similar to promises and futures [4], but are not automatically generated as in Argus or the
CRONUS System. Rather, the programmer is responsible for defining collator objects.

A collator has a simple and understandable interface which makes them easy to use. This is achieved by
locating generic and complicated code in the surrogates themselves which can be automatically generated,
and locating application specific code in the collators. Examples of useful collators which can be easily
implemented are:

1. Return on first result. This collator might be useful for methods on objects where low latency is
more important than error detection and correction [48, 64]. Additionally, some object methods
might not return equivalent results despite being correct, e.g. if the value returned is determined
from random number generators or local timestamps. In this case the first result is just as correct
as any other.

2. Wait for all results, returning the most common value (i.e. a voting collator). If arbitrary behaviour
is expected from any of the replicas a collator may implement a voting process on the results.

3. Wait for all results, and return a processed average value. This collator might be useful for methods
where exact answers are less important than statistically sound answers. For example, a process
control application which takes input from a number of replibated sensors might want to weight the
sampled values to increase confidence in the data.

It is worth noting that collators of type 3 and 2 implement resilience against failures in the data domain,
e.g. Byzantine failures (cf. §3.2.3 p. 32). A voting collator can tolerate t data-domain failures among
2t + 1 replicas.

Although all correct replicas receive the same sequence of invocations, the collator defines how many
invocations must finish before the method invocation on the surrogate returns. For example, if only a
single return value is needed, the collator waits until just the first invocation finishes and then returns
the answer to the caller (the client). This will alleviate parts of the performance problem normally
found in full consistency replication schemes by allowing the client of the surrogate to continue before all
invocations are completed [64]. The throughput of the surrogate is not increased; a new invocation on
the surrogate cannot commence until alU the invocations from the previous invocation have returned.

C o m p o site retu rn ty p es
The usefulness of the collator design becomes clearer when methods on replicated objects return more
complicated types. While single types such as integers and real numbers can undergo quite generic

processing such as weighting and majority voting, types such as strings, records and arrays normally
require more specialised treatment because operations such as weighting and majority are not immediately
obvious for these types. The correct processing of values of such types could not realistically be automated,
the programmer must therefore be given a simple mechanism to handle such results. Collators allow the
programmer to provide such refined processing methods within an encapsulated module (cf. §7.5.2 p. 83).

O b ject reference retu rn ty p es
Reference types as results give the opportunity to increase the functionality of collators beyond what
is possible in Cooper’s system model [48], which is not based on object-oriented technology. Because
a programmer observes a surrogate as a single local object, reference return parameters would create a
semantic mismatch if a set of references, referencing remote replica objects, were visible as individual
values. Furthermore, it would make no sense to perform voting or weighting of references, as they are
intrinsically unique. Intuitively, a collection of references returned from a replicated invocation should
be treated as a new surrogate, thus triggering automatic creation of a new surrogate object which would
be returned as the result of the invocation.

For example, if a replicated class defines the interface of a replicated file server, invoking a method
open(name:FileNameType):File^ on a surrogate of this class would return a new surrogate acting as
the manager for a set of file objects. The code generator must therefore recursively generate surrogate
code also for reference types as return parameters from methods in classes tagged as replicable. The
programmer can then easily construct collators which return new surrogates managing the references
returned from the call (cf. §7.5.2 p. 83). Such collators would most likely be of a type which waited for
all results from the replicas so as to maintain the availability of the new surrogate. By giving it as many
replicas as possible the maximum resilience against failures is achieved.

B ackdoors
System support can never be completely generic, some applications might want to implement slightly
different mechanisms than the ones offered. In light of the end-to-end argument [156], the architecture
allows control over lower level abstractions. Collators may be used more primitively to return sets of
replica results back to the client. This might be necessary for some applications that require more detailed
control over the object replica results (see §7.5.2 p. 83). _

6.2.4 O bject replicas

Although the replicated objects themselves are not directly part of the proposed system architecture, they
are discussed here as the architecture enforces some requirements on them. Because object replication
deals with replication of objects not directly designed for replication, all requirements on the object
replicas themselves are reducing the benefit of this approach. The architecture tries to keep the set of
special requirements to a minimum however, and no modifications of existing object functionality should
be necessary. For example, the methods lock and unlock described below can normally be added to the
objects without changing existing code®.

S eria lis in g ob ject access
Object replicas must be extended with two additional methods to support serialisation among multiple
surrogates. Assuming that the potential for name conflicts is eliminated, these methods can be added by
automated code generation tools because the semantics of the methods are simple and generic across all
replicated classes.

■^Practically a function named open which accepts a filename as an argument and returns a result of type File.

® Assuming methods with the same names do not exist already. Note that the name of the methods need not be lock
and unlock in an implementation of the architecture. The requirement is that two methods implementing this functionality
can be uniquely added to every replicated class. Other names, even less likely to cause naming conflicts could therefore be
chosen. They are given short names here to simplify presentation.

66

A method to lock the object is required to ‘mark’ the object as being currently used for a surrogate
request. The method is specified as:

lock(siSrgtld; #locks:integer; activeSet:ReplicaSet):LockReply

where LockReply is a record containing result parameters from the lock request. If the object is currently
unlocked then the object is marked as locked by surrogate s and lockGranted is returned. Otherwise, if
the object is currently in use by another surrogate (and therefore locked), lockDenied is returned together
with the name of the locking surrogate. However, due to the potential for competition for the locks,
a mechanism to arbitrate among competing surrogates is necessary. The parameter #locks is used for
this purpose, and the surrogate which locked the replica with the highest value for #locks wins and can
continue the attem pt at gathering the necessary locks. Now, if the surrogate loses, the call still returns
lockDenied, but also returns giveUp as part of the LockReply parameter. The surrogate then knows that
it should give up all its currently gathered locks, pause, and start over. A competing surrogate, which
does not receive a giveUp result, will thus be able to make progress.

The parameter activeSet is used to propagate failure status among the replicas, and is also used in
conjunction with the reconfiguration protocol, and is described in more detail in §6.3.2 p. 70. Similarly,
the unlock function takes the form:

Unlock(siSrgtld; activeSet:ReplicaSet):LockReply

It resets the object to an ‘unlocked’ state and returns lockReleased if the object is currently locked by
surrogate s or currently unlocked. The method returns lockNotReleased if the object is currently locked
by another surrogate. The parameter activeSet is used similarly to the lock method.

Before a surrogate can invoke the object replicas a majority of them must be locked using the method
above. This ensures that multiple surrogates cannot jeopardise serialisation of invocations. When the
invocation returns, the replicas must be unlocked by the same surrogate. Problems with unreleased locks
due to crashing of surrogates can arise during sharing of replicas by multiple surrogates and are discussed
in §6.3.3 p. 72.

The serialisation and consistency protocol, executed by the surrogate, is divided into three sequentiaT"'
rounds of synchronous invocations. Rounds 1 and 3 guarantee serialisation by mutual exclusion, round 2
ensures that all non-failed replicas are mutually consistent. During each round, observed failures are
recorded in the surrogate’s active set. To inform other surrogates, the activeSet parameter is used to
record detected failures in other replicas during rounds 1 and 3 (see also §6.3.1 p. 69).

1. Gather locks from a majority of the replicas to ensure serialisation of replica requests,

2. Invoke the client’s requested method on all replicas.

3. Release locks granted in round 1.

A benefit of these generated methods is that they are guaranteed to be idempotent, in fact they have
no effect on the object’s original internal state at all. If there is contention, achieving a majority of
locks can require several rounds of competition among surrogates. During the process of gathering a
majority of locks on the replicas, each surrogate might therefore retry these methods as many times as is
found necessary without any danger of violating the integrity of the object replicas. Additionally, if the
underlying communication infrastructure is believed to be unreliable and the surrogate does not receive
the required replies, it can initiate extra retries of the lock method to check if the replica is still alive.
This will increase the probability of giving a correct diagnosis of real replica crashes.

E n cap su la ted ob ject replicas
Object replicas must have a completely encapsulated state, i.e. no part of their state must be accessible

67

other than through the use of methods defined on the object. This restriction is needed to avoid replicating
state in the surrogate and the object replicas themselves, but does also conform with the object model
advocated in this dissertation (see §2.4 p. 21). If an object replica was to have non-encapsulated state, the
surrogates would have to contain this state to maintain the semantics of the object®. This, in turn, would
lead to problems when multiple surrogates exist throughout the network. Essentially, all modifications
to replica object state contained in the surrogate would have to be propagated to all other surrogates to
reflect the changes, incurring a need for another consistency protocol among the surrogates. The data
stored in the surrogates would create another virtual (covert) communication channel between clients of
surrogates, and this could result in violations of the causality relation [42],

Additionally, allowing parts of an object’s state to reside in its surrogate would also complicate the
underlying remote invocation mechanism, as any method on the object which manipulates state residing in
the surrogate would have to access this state via another set of (potentially expensive) network messages.

6.3 S ystem Functionality

The components described above interact to implement the replication scheme. Briefly, the surrogate is
the interface used by clients. It receives an invocation (parameterised with a collator object in case of
function-type methods), passes it on to the parallel invocation module which invokes the methods on the
object replicas, and the collator processes eventual results from the invocations (see figure 6.1 p. 62).

More details on the programmer interaction aspects are given in chapter 7. The rest of this section
elaborates on the internal functionality of the mechanisms.

6.3.1 M asking failures

Resilience against failures is achieved if the system can be reconfigured to operate despite failures or if
the system can be brought back to a state before the failure occurred [104]. This architecture implements
replication which is a technique to mask failures by redundancy; failure recovery requires transactional
support such as logging, state restoration and grouping of actions [85] which is not readily available
in this system model. To mask failures, a surrogate object maintains as part of its internal state ar
data structure which contains information about the collection of object replicas being managed. This
structure is called the active set, where each replica is tagged with a failure status. If the surrogate detects
and diagnoses a replica failure, the replica is tagged as such in the active set, and the surrogate does not
pass any more invocations on to this replica. Note, however, that all initial members remain in the set
during the lifetime of the surrogate, only the status flag changes. During reconfiguration the old entry
is reused, reconfigured replicas are only installed in PEs specified by the programmer at initialisation
(see §7.4 p. 81). Consequently, all failures are reduced to crash failures by passivisation [104]. This
achieves mutual consistency among all correct replicas, but it also means that transient failures can lead
to exclusion.

A tradeoff between accuracy and performance must be made here. To improve performance replicas can be
tagged as failed quite rapidly (and somewhat pessimistically). Slower, but more accurate error detection
is obtained if the lock-method is called multiple times^. The architecture allows implementations to
optimise the number of retries to fit the network’s failure characteristics and underlying communication
protocols®.

®The programmer would expect to be able to access this state directly without the use of indirect methods.

^Note that only the lock-method on the replica can be retried, the actual method requested from the client cannot
generally be retried as it might be non-idempotent.

®Note that many communication protocols are already perfectly able to mask many transient failures. Retries of the
lock method can only increase the accuracy of this functionality.

68

Failure resilien ce
The architecture uses a majority voting scheme to ensure mutual exclusion among multiple surrogates.
Hence, in a collection of n replicas, J — 1 replica crashes can be tolerated. For example, to mask two
crashes, three correct replicas are required. This might seem restrictive, but the majority avoids conflicts
during partition failures, and the availability of majority voting schemes is good even for relatively small
numbers of replicas (cf. §B.2 p. 116). The use of special collators, e.g. weighting or voting collators can
amend the architecture to also tolerate some malicious (data-domain) failures (see §6.2.3 p. 65). Adding
to the failure resilience of this architecture is the requirement that clients do not share surrogates between
address spaces. This means that the failure of other client address spaces does not affect the availability
of a surrogate.

D e te c tin g fa ilures
The architecture depends on timeouts and ‘alive’ messages to detect failures®. Alive messages are neces
sary due to the large variations in running time for different method executions; using timeouts would be
very inefficient. Because timeouts would have to be set large enough to allow for even the most lengthy
computation, periodic alive messages are used instead to check if the address space hosting the replica
is still responding when the replica is executing a lengthy invocation, thus achieving more efficient and
accurate failure reporting. Alive messages are retried a small number of times to reduce the impact of
transient failures; the exact number might be determined by a particular implementation of the archi
tecture, but might also be set by lower-level software, such as the remote invocation facility (see §8.2.1
p. 88).

A replica failure is detected by the surrogate, and only as a consequence of erroneous behaviour during
a surrogate’s manipulation of the replica. If a replica is transiently incorrect between two such requests,
the failure cannot be observed. However, the architecture assumes that such transient failures do not
affect the state of the replica itself, transiently disconnected replicas are rather regarded as a period of
time in which the replica is not responding to requests. All transient failures can therefore be treated as
transient network failures, while the replicas themselves behave according to the crash-failure semantics
described in §3.2.3 p. 32. It is further assumed that transient network failures will be masked by the
communication facilities.

The serialisation protocol, executed by the surrogate, is divided into three sequential rounds of syn
chronous invocations. During each round, observed failures are recorded in the surrogate’s active setT
Consequently, a replica failure can be observed only during one of these rounds. The first round can
naturally fail to observe some replica failures; if the first [|J 4-1 replicas responds positively to the lock
request, failures in the remaining replicas will be missed, although serialisation is still ensured. The
probability of not observing failures in the first round is therefore high. However, failures which are
detected during this round can be more accurately established due to the idempotent behaviour of the
lock primitive on the replicas. Round 2 will observe all non-transient failures in the replicas. The last
round may experience additional failures happening after round 2. Clearly, there is no need to attempt
releasing locks on failed replicas.

D ecreasin g num ber o f rep licas
The fundamental difficulty with this approach is that the number of non-failed replicas are monotonically
decreasing. Even if a surrogate observes that a replica which has been tagged as failed recovers, it cannot
easily be re-integrated into the replica set because the surrogate does not record old invocation requests,
and therefore cannot bring the replica up to date through its method interface. An approach to add
new replicas to the replica set is necessary to solve this problem. This is discussed further in §6.3.2.
If the system support mechanisms are used for long-running applications, or systems experiencing fre
quent failures, this can lead to rapid complete surrogate failures because no replicas remain failure-free
indefinitely.

For other applications, which only have to run reliably for short periods of time, or applications which

^Similar to the probes described in [23].

69

can be quickly restarted, this problem will be less important. The architecture will significantly reduce
the probability of restarts being necessary due to failures.

Su rrogate failures
A surrogate may fail while performing the parallel invocations on replicas, i.e. round 2 of the consistency
protocol (p. 69). Only invoking a subset of the replicas may cause inconsistencies, and because messages
are not logged, there is no way of ‘replaying’ the missing invocations. Thus, the architecture cannot
implement the atomicity property, i.e. the “all or nothing” property. Atomicity requires a copy of the
previous replica state which is not available in this system model. The probability of failure during
execution of the parallel invocation module is unpredictable because it is impossible to know in advance
how long each execution will take. If the duration of round 2 is short, the probability of a surrogate
crashing while executing them is low. However, the architecture makes sure that subsequent surrogates
observe the potential for inconsistency and let the application programmer decide whether to abandon
the object or continue using it (cf. §6.3.3 p. 72).

6.3.2 M aintaining consistency

^®The C and I in ACID [85].

70

A system support mechanism should require very limited knowledge about the internal structure of
the objects it replicates such as to provide a generic service for a range of objects. Pull consistency
programming models are beneficial because the programmer never observes an out of date object, and can
always regard an object as being non-shared. This also makes replication more transparent. Consistency
is maintained among the replicas by ensuring that all non-faulty replicas receive identical sequences of
invocations (round 2 of the protocol described in §6.2.4 p. 66). A communication protocol which prevents
reordering of messages (such as T C P/IP , used in Network Objects [22]) is assumed by the architecture,
and ensures that object replicas receive invocations in the same order as they are issued by the surrogate.
Additionally, the majority locking scheme ensures that surrogates serialise their access to the replicas.
This guarantees that both the consistency and isolation properties known from transaction processing
are preserved^®.

To increase fault tolerance, a surrogate is always located in the same address space as the client object
referencing the surrogate. This reduces the length of the critical access path to the replicas, th ereb y
further increasing the reliability of the object. While the surrogate is still a single point of failure, the
system model assumes that a failure within an address space causes all objects in it to fail (i.e. including
the client).

However, this requirement complicates the architecture somewhat during the sharing of object replicas
among surrogates in different address spaces. The serialisation protocol, through the lock and unlock
methods, requires that failures are recorded through the activeSet parameter. This parameter does
increase the overheads in the concurrency protocol, but not excessively so, as its size is of order 0{N) ,

:iL

R econ figu ration o f replicas
During operation, the active sets are monotonically decreasing. For long-running applications, a way of
reconfiguring replicas is necessary. The object encapsulation principle and lack of recoverable objects
makes it difficult to reconcile failed, and potentially stale, replicas into the active set. Reconciliation
typically requires very application specific knowledge, not available to the system support mechanisms.
Without access to, or knowledge about, the local state of the objects, an inconsistent object cannot be
brought back to a consistent state by the system support layer alone. An approach based on regeneration
of failed replicas is presented in [148]. Each replica object must implement a CopyMe method, which
is used to make new copies of an object in case a replica fails. Cooper suggests a similar approach,
relying on automatic marshalling and unmarshalling of replicas to implement special getstate procedures
[48]. Implementing such methods increases the burden upon the application programmer and reduces the

benefits of object replication, but must be added to make the replication scheme useful for long-running
applications. In contrast, the Delta-4 architecture assumes simpler conventions for copying replicas;
when reconfiguration is necessary, single process contexts are copied transparently [145]. However, that
approach is not appropriate in this system model. Simply making a copy of an address space and
reinstalling it in another PE would most certainly violate a number of bindings with underlying system
components such as open files and thread-contexts. Breaking and re-initialising such bindings would have
to be implemented manually as they are application specific, thereby reducing the approach to the one
proposed in [148].

Some distributed object systems may provide direct support for copying objects, and in this case the
surrogate can simply initiate a copy of a non-failed replica to another address space. This can be achieved
by creating a copy of another (failure-free) replica and installing it into the replica set. However, care
must be taken on several accounts.

.1. To avoid race-conditions, a new replica must be re-installed within a single indivisible action.
The surrogate must not perform any updates on other replicas during the process of installing a
new replica as this could lead to inconsistency. Rather, the surrogate should temporarily halt its
processing of client requests, install the new replica, update the replica set, and only then resume
accepting method invocation requests from clients.
In the case of multiple surrogates for the same replica group, this implies that also the other
surrogates must be blocked during the period of reconfiguration. By first acquiring a lock on the
majority of the replicas, a surrogate prevents interference from the other surrogates. These locks are
set with the current number of active replicas flagged as non-failed using the parameter activeSet in
the lock method. However, after the new replica is added, it is unlocked with the updated version of
the active set, indicating a new member in the replica group. The surrogate’s active set is modified
accordingly. And, because both the newly installed replica, and a majority of the older replicas
are unlocked with this parameter updated, the next surrogate to attem pt locking the replicas will
notice that the active set has increased. The surrogate noticing that the active set has increased,
queries the PEs currently marked as failed in its active set for a reference to the new replica objects.

2. Defining the scope of the object-graph to copy into the new replica is a hard problem, and compro
mises must be made when the decision is taken [52]. A shallow-copy approach, i.e. copying only a-
single object and maintaining the existing references, will result in poor locality and reduced fault-
tolerance due to the number of remote references. It also introduces the problem of increased object
sharing. In contrast, a deep-copy approach may be very expensive and has confusing semantics as
it duplicates objects and thus ruins the notion of object sharing. An intermediate solution is to
require that the programmer defines the rules for making a copy of the object graph, although this
introduces extra complications in the programming model.

3. Changes to persistent data. Related to the above problem is the problem which arises if objects
within the copied graph have references to persistent objects such as files (as most realistic appli
cations will). An application specific procedure to make a copy of the object graph could deal with
this problem. The cost of this approach is introduction of extra complications in the programming
model and a reduction of the transparency of the system support functionality.

4. During the creation of a new replica, it does not make much sense to directly try to install it in a
failed PE. With high probability, the PE is still failed, and the operation will therefore not succeed.
However, the PE must be in the set of originally specified PEs for the replicas by the programmer
to maintain the semantics of the initialisation of the surrogate (see §7.4 p. 81). Therefore, only
when it has been determined th a t one of the faulty PEs has recovered can a new replica be installed
in it. This is not a problem however if the reason for the replica failure was a single address space
failure within the PE. A new replica can be installed in another non-failed address space on the
PE.

The problem of reconfiguration is not addressed in any further depth in this dissertation. It is clearly an
issue requiring further investigation and should be investigated more carefully in the light of real applica

71

tions (cf. §10.3.3 p. 109). For applications which can be restarted occasionally, dynamic reconfiguration
will, however, be less important.

6.3.3 Supporting object sharing

Objects in a distributed system are commonly shared by passing references as arguments in method invo
cations or registering objects with name services. Object sharing introduces problems with serialisation
of invocations [53, 99]. Two distinct sharing scenarios are possible, and they are handled differently for
reasons of fault-tolerance:

1. Sharing replicas among multiple clients in the same address space.

2. Sharing replicas among multiple clients in different address spaces.

To support isolation among multiple concurrent clients in the same address space (type 1), the surrogates
hold a lock as part of their internal state. The lock is acquired before a client request is executed within
the surrogate, and the lock controls the queue of blocked outstanding client requests.

Special care must be taken when two clients residing in separate address spaces need to share a collection
of object replicas (type 2). Consider an object A holding a reference to a surrogate Bg managing a

The problem of unreleased locks (see §6.2.4 p. 66) becomes apparent when multiple surrogates share
object replicas (type 2). If a surrogate fails after having been granted locks, these locks must be released.
There are at least two possible approaches which can be used to solve this problem (without resolving to
logs^^):

^^The lock within the surrogate is not strictly necessary, but improves performance in the case of multiple clients sharing
a single surrogate because it eliminates the need to execute the two-round majority locking protocol and simplifies the
construction of surrogates (cf. §6.3.4 p. 74).

^^With access to logs the approach of extermination can be used. By recording the proceeding RPC on disk the client
can release the lock itself after reboot [183] (chapter 10). The expense of logging each RPC to disk might be high however,
and the approach assumes that the client will eventually reboot.

72

collection of replicas Br- Now, a remote object C wants to use Bg, and asks A for a reference to Bg. The
naive approach of simply passing to C the reference of Bg would result in (7’s use of the group Br being
dependent on any faults in A’s address space. The chain of references from C to Br should instead be
kept as short as possible so as to maximise its availability. Most importantly, the failure masking code
which resides in the surrogate, should be located in the same failure domain as the client. The surrogate
will therefore always be available. If this was not ensured, the failure of the surrogate address space
would render the client’s reference invalid and thus weaken its resilience.

Therefore, a new surrogate B^ is created in C ’s address space before C starts using Br- After creation,
contains an identical collection of replica references Br- This set of references need no special treatment
however, they are ordinary remote references which refer directly to the replicas. The set of replica
object references is determined during the instantiation of the surrogate, and will never extend to other
replicas than those specified by the programmer (see §7.4 p. 81). To ensure that the surrogate has enouglîT
information available to rebind to a reconfigured replica, the active set contains an identifier for the PE
in which the replica previously existed. During reconfiguration the surrogate is thus able to relocate the
new replica on that particular PE (cf. §6.3.2 p. 70). Note that this approach would be meaningless
unless the underlying remote object referencing policy worked similarly.

Another problem appears during synchronisation. Clearly, the lock stored within the surrogate is unable
to synchronise access to the replicas when several surrogates exist. Rather, a shared resource must be
used, and the replicas themselves are used in this architecture by requiring that a majority of them
respond positively to a lock method invocation^^. The majority ensures that only one surrogate at a time
is able to execute an invocation. A surrogate that fails to acquire a majority of locks must wait until the
currently executing surrogate is finished (cf. §6.3.1 p. 69).

Expiring locks. By using dedicated timeout mechanisms within the lock methods, a lock could be
designed to automatically expire after a certain time interval. While the use of timeouts is a
probabilistic approach, and may cause havoc if they are released too early, the timeout interval
could be set long enough to make conflicts very unlikely. However, this approach would be very
inefficient as the duration of a method invocation will have large variations and thus require very
long timeouts. A slightly more sophisticated approach is suggested in [183]. Instead of using a single
large timeout value, the callee can be responsible for periodically renewing a ‘contract’ with the
client. However, this complicates the construction of replicas by enforcing particular conventions
for defining methods and would reduce the transparency of replication.

Explicit surrogate unlock. Due to the limitation of the above mentioned approach, the architecture
uses the following slightly more complicated technique. A surrogate which fails to lock a majority
repeatedly simply suspects another surrogate of having left unreleased locks. The suspecting sur
rogate can then check if the suspected surrogate is still alive. If it is, the suspecting surrogate must
wait, and retry the process of gathering locks later. However, if the suspected surrogate is believed
to be dead (using an appropriate failure detection algorithm), it can be assumed to have left the
locks unreleased due to a crash. The locks are then explicitly released by calling unlock with the id
of the crashed surrogate, and then set again by the suspecting surrogate^^. Additionally, by using
this approach, a surrogate can suspect that the previous surrogate using the replicas died during
invocation, and report a ‘potential for inconsistency’ exception back to the client as a warning
(see §7.7 p. 86).

Both approaches have their limitations however, and they are both probabilistic. The asynchronous
system model does not allow completely reliable failure detection, so the problem of unreleased locks
cannot be managed with absolute certainty. There is a small chance that locks are released prematurely
which will endanger the consistency of the replicas.

Worth noting is that unreleased locks do not pose a problem unless there are several surrogates sharing
the replica objects. If the last surrogate fails, its replicas not be required any longer because no surrogate
references them any longer, and they will be reclaimed automatically by the garbage collector. Another
problem arises if the orphan has acquired locks or has initiated unrecoverable actions, simply killing it is
not preserving correctness in the system. However, the problem of reclaiming distributed garbage objects
is not discussed in any further depth in this dissertation (e.g. see [143]).

D istr ib u tin g failure sta tu s
Maintaining multiple surrogates also introduces a new consistency problem. The replicated surrogates
should have a consistent view of the replica group status in terms of failures. In systems which provide
atomic message delivery, ensuring consistent group views can be costly for large numbers of surrogates
[18, 20]. Atomic message delivery was sacrificed in this architecture as it would seriously reduce the
scalability of the system, and as a high number of surrogates is expected for the kind of applications
this architecture is aimed for, it would work against the goal of the architecture. Atomic message
delivery is provided by group communication protocols by closely synchronising all participating processes
with an orthogonal protocol to propagate group view changes, i.e. failures and reconfigurations. This
synchronisation thus requires th a t all processes are able to communicate with all other processes (an
O(N^) overhead). In this architecture, it would imply that all surrogates maintained references to all
other surrogates, and synchronised themselves by gathering locks from each other.

To avoid such overheads, this architecture requires surrogates to detect replica failures rather than relying
on propagation of active sets among the surrogates. The replicas’ fail-stop failure semantics makes this
possible. Although a surrogate could achieve faster determination of failures through specific intra
surrogate messages, the fact that replicas simply crash means that all surrogates will eventually detect
replica failures. However, the lack of a group membership protocol among the surrogates means that
more cooperation is required from the replicas during reconfigurations, where replicas are reintroduced
into the system. The reconfiguration protocol described in §6.3.2 p. 70 facilitates this.

^^This is possible because a failing lock call returns the id of the currently locking surrogate.

73

6.3.4 M aintaining perform ance

The achieved performance in distributed systems is primarily dependent on the level of asynchrony allowed
among interacting objects. Close synchrony is usually wasting CPU-cycles in both the invoker and the
invokee. Asynchronous collators, i.e. collators returning on the first reply improve the throughput for
casual surrogate invocations. The architecture can therefore give good performance if surrogates are
lightly loaded. Under high loads however, the pessimistic concurrency scheme cannot allow another
surrogate request before all the previous replies are gathered.

Further, the architecture is not dependent on significant amounts of disk I/O , the performance of this
scheme is primarily dependent on communication latencies. While storing objects on disk is necessary
to support certain kinds of recovery strategies, the overheads can be substantial. Further, as the gaps
in speed between the levels of the memory hierarchy in computer systems are likely to increase [12], the
dependence on extensive disk I/O might become too expensive for some applications.

The ratio of communication latency to object method execution time determines the efficiency of a func
tion shipping replication approach as used in this architecture. Maintaining performance also requires
attention to scalability issues. Although there are many factors’which affect the scalability of this ar
chitecture, the main factor is communication latency. The replication protocol presented requires only a
single RPC to each replica in case there is one surrogate in use. When several surrogates are used, and
thus must be serialised, three rounds of RPCs are necessary, with the first and third round requiring at
least 4-1 parallel RPC calls to lock and unlock a majority of replicas (cf. §6.2.4 p. 66) and the second
round requiring n parallel RPCs. More RPCs might be necessary in case of competing surrogates.

C om m u n ica tion la ten cy
Communication latencies within high-speed networks are already very low, in many cases lower than
the average access time for disk storage systems. Although communication latencies are inherently
limited by physical propagation delays, other factors such as processing overheads and media competition
are currently more significant. Research aimed at reducing latencies of popular protocols have shown
promising results with round-trip delays around 200/is {157fj,s for very small TCP messages) in ATM-
based LANs [192]. It appears unlikely that similar latencies are achievable in disk storage systems in the
foreseeable future, currently providing mean access times around 10ms (a factor of 50 higher).

Competition for the communication media incurs non-predictable delays, particularly in long-haul com
puter networks which must do a lot of buffering due to bursty traffic patterns [122]. This is easily
observable in the Internet, for example, where latencies may vary greatly during the day. If the ar
chitecture was going to be used in a wide-area network, such as the Internet, at least with its current
characteristics, would probably be an unsuitable networking infrastructure. Dedicated, perhaps leased
PSTN-based, WAN links should be used instead, to guarantee low latencies for priority communication.
However, the physical propagation delays become more prominent as well. For an optical communication
channel of ca. 900 kilometers length, its round-trip propagation delay equals the latency of a disk access^*.
Naturally, potentially multiple stacks of communication protocols will increase this latency, but similar
contention-dependent processing overheads are also present in disk systems. For both approaches, caching
is a technology that can reduce the number of such accesses and thus give substantial performance gains.
Modern communication technology also provides high bandwidth, at least comparable to that of disk
systems [140, 192].

Replication of objects on other PEs on the network may therefore be a good alternative to the storage
of objects on disk for the purpose of survivability, as accessing objects over the network will be faster
than accessing them from disk^^. Essentially, the architecture implements the durability property by
replication on several independently failing PEs^®. Naturally, this alternative requires more memory

‘̂‘Assuming a signal propagation speed of 1.8 * 10® m /s in the fibre (cf. §2.3.1 p. 19).

^^This is a motivating factor behind current state of the art research within distributed file systems as well [6].

l®The D in ACID [85].

74

capacity in the PEs, increasing hardware costs of the system. If additional physical memory is not
installed, greater proportions of the PEs’ address space will be stored on disk anyway by virtual memory
mechanisms, thus reducing the advantages of this approach.

6.4 P hysica l M apping Issues

Underlying an architecture is a collection of assumptions made about the physical mapping, i.e. allocating
the architecture onto a real distributed system and should be made explicit to reduce integration and
reuse efforts [54]. This section elaborates on the physical mapping issues assumed by this particular
architecture.

The architecture is meant to be used within the system model defined in chapter 2 and is intended to
be used as a system support facility to assist with replication of programming language objects. The
key component in the architecture is the surrogate which slots in between the client and a collection of
object replicas while taking on the rôle of encapsulating replication. Mapping the architecture onto a
real distributed system therefore involves the locating of clients, surrogates and object replicas onto the
PEs in the network.

As mentioned in the introduction to this chapter, a surrogate is a relatively light-weight construction. If
used by clients residing in the same address space the performance overheads due to sharing are limited by
the implementation of locks in the particular programming language. During sharing of replicas among
clients in distinct address spaces synchronisation of multiple surrogates is required which uses locking of
replicas, and this incurs extra communication overheads.

Of critical importance to the mapping issue is the network failure characteristics. Some networks are
often partitioned, for example large internetworks like the Internet [81]. However, as this architecture is
primarily aimed to assist the development of distributed applications within smaller scale networks, it is
assumed that partition failures are relatively rare, and do not persist for very long periods of time. If the
particular network used does experience frequent partition failures, fault-tolerant network designs should
be considered as these can reduce this problem significantly [19, 196].

6.4*1 C lients and surrogates

In a general distributed object system, any object can invoke methods on another object if it has the
reference to it. Thus, any object may potentially become a client of another referenced object. It
is therefore difficult, if not impossible, to predict the localisation and number of clients which obtain
references to surrogates. Some applications might be contained within just a single address space, i.e.
running as a single process, and hence only require the use of a single surrogate. Other applications, for
example groupware systems which support cooperation among several users on different PEs, might be
partitioned into large numbers of processes dispersed throughout the network, each process making use
of the same replica group and thus requiring distinct surrogates.

This dissertation makes no attem pt at classifying a client’s usage pattern of a particular surrogate.
Program behaviour is difficult to predict, although some programs exhibit very characteristic behavioural
patterns [195]. Depending on the semantics of the application, a client may use a surrogate sequentially
in a tight loop, or may use it sporadically or not at all. However, with increasing numbers of clients, it
likely that eventual burstiness of activity is smoothed out.

Further, the time necessary to execute a method call might vary significantly, again depending on appli
cation semantics. Naturally this will increase the amount of generated load on the PEs hosting replicas,
however, it is assumed that the PEs are normally underutilised and therefore are not significantly slowed
down by this (see §6.4,2).

The architecture, due to the strong consistency assumption, performs strict serialisation of client requests
to the surrogate. Therefore, clients of a particular surrogate cannot make valid predictions about the

75

service time of the surrogate. If the number of concurrent clients is high, relatively long service times
must be expected.

Surrogates are always located in the same address space as the client to increase resilience against failures
(cf. §6.3.2 p. 70). The creation of new surrogates is automated so clients need not be concerned with this
issue. However, surrogates do naturally introduce extra computations necessary in the PE.

6.4.2 R eplicas

The architecture assumes replicas are hosted in separate failure domains, i.e. address spaces, and most
likely on separate PEs. Of particular importance for the physical mapping is the placement of replicas
and their number. Although the programmer is responsible for the actual mapping in this architecture,
the particular choice must be made carefully to achieve good benefits from replication. As indicated
in section B.2 p. 116, even configurations with less than 10 replicas will give substantial availability
improvements, and configurations with 3, 5, or 7 replicas might be sufficient for many applications.
Additionally, the generated load on the PEs hosting replicas will increase as well, and some care should
be taken to avoid overloading these.

R ep lica p lacem en t
Resilience against failures can only be achieved if failures are independent and partial. Thus, it is
essential that any sharing is minimised among the replicas. This implies that common resources such as
file systems, databases, system services and physical components should be replicated as well. However,
replication a t all levels in the system hierarchy might not be practicable and some tradeoffs must be made.
For example, many applications are written to make use of whatever file system is available, and in some
scenarios this will be a shared, distributed file system. If this file system is NFS for example, which is a
non-replicated file system, the benefits of replication will be lost if the file system server crashes.

Additionally, sharing of resources between replicas introduce problems of nested invocations whereby each
replica will attem pt to perform the same sequence of operations on the same resource. If the operations
on this resource are non-idempotent the application will not behave correctly. Some operations on file
systems, for example, are non-idempotent, such as the creation of directories and files. An approach to
avoid this problem is to make use of file services on local disks only, eventually implementing the replicas-
such that they can tolerate this behaviour.

Independence of failures requires that failures are hindered from propagating [104]. In a replication
scheme, it is thus essential that the replicas are placed in independently failing address spaces. The
probability that all of a P E ’s address spaces fail simultaneously cannot be ignored, and this will normally
justify that replicas are located on separate PEs within the network. Additionally, many network failures
affect multiple PEs. for example broadcast storms, babbling nodes and routing conflicts [196]. Naturally,
such network failures will have a dramatic effect on the availability of the replicas, and consequently
on the availability of the surrogate. Full consistency schemes suffer from very low availability in such
circumstances, and even weak consistency schemes would give unavailability unless a replica was stored
locally on the PE.

However, assuming that such network failures are rare, a good placement of replicas will increase the
probability that enough replicas are available for the surrogate to achieve its majority of replica locks.
Depending on the network’s topology and failure characteristics, the optimal placement of replicas will
vary and might require expensive computations^^. Schemes have been presented to automate the process
of replica placement [114, 124]. However, automated replica placement requires access to sophisticated
support functionality such as replica relocations, failure statistics calculations, object interdependencies
assessment and dynamic compensations for changes in network topology. This architecture assumes that
the programmer is reasonably knowledgeable about the reliability of the PEs within the network and

^^Although near-optimal placement can be performed much more cheaply for some network topologies (Ethernet and
fully connected networks) [175].

76

therefore is able to make the decision on replica placement.

G en erated load
A PE hosting a replica is responsible for executing the method call in the replica object graph. The
time required to execute a method call cannot easily be predicted, rather, it is assumed to exhibit large
variations. The proposed architecture relies on programmer directions to locate replicas and thus decide
which PEs are able to support the extra load of replica method executions. Although this is clearly a
task which should be automated in an extension of the architecture, the programmer could relatively
easily develop application functionality which queried a collection of PEs for their load and thereafter
selected those with the best prospects of giving the fastest execution times. These PEs could then be
used as input to the surrogate creation procedure (cf. §10.3.3 p. 109).

6.5 L im itations and Future W ork

The system support mechanisms lack support for coordination of invocations from multiple replicas to
shared objects. A given implementation of the replica object might therefore trigger multiple, non-
idempotent methods in referenced objects. The semantics of the application must be considered, and
the programmer is responsible for the correct implementation. For example by implementing particular
filters in shared objects that filter out redundant invocations.

Further, the serialisation protocol has not been formally verified. Although it has undergone informal
reasoning, a formal approach should be taken to provide the necessary guarantees for correctness if the
architecture was used in critical settings. These limitations would be interesting directions for future
work, and are also discussed in §10.3.

6.6 C oncluding remarks

This chapter has presented the architecture of the proposed system support mechanisms in detail while
focusing on the internal structures and functionality. The strong decomposition of generic and application- -
specific code has lead to a design with good cohesion and extensibility.

Understanding how the architecture works is important in its o\yn right, but the main benefits of the
architecture will only become clear after observing its effect on application program complexity. In the
next chapter a programmer’s model of the architecture is presented which explains how the architecture
is used by an application developer.

77

Chapter 7

Program m ing M odel

This chapter describes the external interfaces o f the system support architecture introduced in chapter 6, and
explains how an application can benefit from the functionality to use failure-resilient objects. The syntax used
in this chapter is M odula-3’s to simplify presentation and to give the model a concrete appearance. Small
changes in the notation are therefore likely if the architecture is implemented in other languages.

7.1 O verview

An unfortunate attribute of distributed applications is their inherent vulnerability to failures in other
system components, and replication can often be used to reduce this problem. The main goal of the
architecture proposed in this dissertation is to provide a simple, yet flexible programming model such
that developers of distributed applications are given access to relatively transparent object replication.
This can help the developer to focus more attention on application specific functionality rather than
availability requirements which are orthogonal to the application. Object replication is a beneficial
approach to replication because it aims to use replication as a generic service; using this approach,
objects need not be specifically designed for replication. This is particularly beneficial from a system-
support point of view as it reduces the involvement required by the developer of the object.

Another goal for object replication techniques is to conceal replication for clients to minimise changes
necessary in objects using a replicated object. In the proposed architecture, surrogates are used to
hide details of replication. The surrogates, which are very similar to ordinary objects, take on the rôle
of concealing replication functionality. Much like a Gaggle [28], a surrogate encapsulates a group of
replica objects. A surrogate provides a new but very similar interface to a collection of object replicas.
Figure 7.1 p. 79 shows how this is realised. In the figure, the surrogate and replica objects are composed
of an interface part and an implementation part. The surrogate Srgt is referenced by an object Client,
and the surrogate provides a functionally equivalent interface to the client as the replicas.

Additionally, to increase flexibility, the architecture supports the use of special collator objects, which
allow the programmer to define customised processing of method return values from replicas. The use of
collators is discussed further in §7.5.2 p. 83.

D eclara tive o b ject rep lica tion
The programming model is based on programmer declared replication. The programmer is responsible for
specifying individual classes of objects that will be replicated and code generation technology produces
replication code for such classes. Individual classes, whose instances are to be replicated, are defined
as normal, but they are tagged with a keyword so that a code generator is able to recognise which
classes should have extra surrogate code produced. This approach is chosen based on the observation
that the programmer is the only authority with enough knowledge about the application requirements to

78

I A d d re ss s p a c e _ _

Client Srgt

A d d ress s p a c e

A d d re ss sp a c e
 I

IA d d ress sp a c e

Figure 7.1: A surrogate Srgt managing a set of replicas rl, r2, r3.

determine if the extra overheads for replicated classes can be justified. The only other realistic alternative
would be to replicate all classes. However, the added costs of using replication should be strictly controlled
because most realistic applications must be developed using available resources efficiently, and replicating
all classes would most likely not be necessary (see also §7.3 p. 80).

D esig n issu es
The architecture is designed as a collection of software modules and automatically generated stub code
which provides assistance to the management of object replication. The prototype built to experiment
with the architecture (described in chapter 8) implements the mechanisms as library code included in
the application’s code space. This seemed reasonable in the prototype due to a sufHciently compact
implementation. However, other and more complete implementations of the architecture might justify
the use of e.g. shared libraries to house the mechanisms. Additionally, if implemented on a range of
different platforms, the architecture could be included as a service within distributed system middleware;
distributed application development frameworks supporting interoperability [14], Further, some operating
systems, for example SPIN [15], could allow for the architecture to be implemented as extensions to the“
operating system (cf. §5.2 p. 53). However, the programming model, as presented here, should not change
significantly as a result of the localisation of the code, although spme of the procedures used to build the
applications might change slightly (e.g. makefiles etc.).

The process of developing software with this technology is extended with an extra preprocessing stage,
and after the surrogate code is generated, a compiler is used to produce the executable(s) while ensuring
that type safety is maintained.

7.2 A pplication P artition ing A ssu m p tions

A limitation of the architecture is that replicas will cause multiple invocations on shared objects. Let us
consider the problem in more detail. As dealing with replication adds to the complexity of the application
semantics, the programmer wants to design objects as if they were not replicated. The objects are thus
implemented as if they were singletons. However, one feature of objects is that they may invoke methods
on other referenced objects. Hence, when an object is replicated, it may trigger multiple invocations on
referenced objects. Naïvely, the problem can be solved with some programmer interference. Invocations
to shared objects can be distinguished and sent through a filtering mechanism which makes sure that
only one of the invocations is passed on to the destination object. Similarly, the filtering mechanism must
make sure that results from the invocation are passed back to the calling replicas [121] (see also §10.3.1
p. 109). Naturally, this requires that the programmer is made aware of replication, and will result in

79

increased application complexity. W ithout such a mechanism the programmer is currently restricted in
the way the application can be partitioned.

The limitation does not have any effects if the application is partitioned into separate object graphs as
discussed in §6.2.1 p. 63. As objects within these object graphs do not reference shared objects, the
problem of multiple invocations is avoided. Although distributed applications in general are likely to be
partitioned in this way for efficiency reasons, a small amount of interaction with other, shared objects
may be necessary.

Enforcing this partitioning restriction on distributed software may not always be feasible. For example,
in a scenario where objects can dynamically take on the rôle as agents, and thereby invoke methods on
other arbitrary objects, methods on shared objects would be invoked multiple times. Further, for software
structured as layers of libraries, it might be difficult to ensure that objects are not shared among the
object graphs.

7.3 D efining R ep licable C lasses

The architecture assumes that a programmer defines classes by writing separate class interfaces and class
implementations. Support for replication of particular classes is achieved by tagging the class with the
keyword <* REPLICATED *>, which is recognised by a stub generator.

For example, in an application controlling the temperature of some process using multiple thermometers,
the user might define the interface for this function as the replicated class Thermometer .T like this:

INTERFACE Thermometer_RepIicated;
TYPE

T <* REPLICATED *> <: Public;
Public = OBJECT
temperature : REAL ;

METHODS
readTemperature() : REAL ;
calibrateTemperature(t : REAL) : BOOLEAN; —

END;
END Therraoraeter_Replicated.

The generated stub file will contain the new interface code for the type Thermometer. T, which is the type
to be used by the calling application and which is linked into the program. Similar naming is required for
the implementation of the class, the tag is recognised by the code generator to add the lock and unlock
methods to the class (see §6,2.4 p. 66):

MODULE Thermometer_Replicated;
IMPORT Sensor;
REVEAL
T <* REPLICATED *> = Public BRANDED OBJECT
theSensor := NEW(Sensor.T).init();

OVERRIDES
readTemperature := ReadTemperature;
calibrateTemperature := CalibrateTemperature;

END;

<Other methods on the objects.>

PROCEDURE ReadTemperature(self : T) : REAL =
BEGIN

80

self.temperature := self.theSensor.read();(* Read the actual sensor *)
RETURN self.temperature ;

END ReadTemperature;

BEGIN END Thermometer_Replicated.

On the basis of these two components the code generator produces an interface file Thermometer. 13 and
an implementation file Thermometer .m3.

This code uses the Modula-3 facility for encapsulation called partial revelation [33]. The phrase T <:
P u b lic says that T is a subtype of P ub lic . However, this is not the complete specification of T, it
is revealed later (in this example, in the module Thermometer using the phrase REVEAL T = . This
encapsulation facility is not required by the replication architecture however.

The choice of using tags and preprocessing is not arbitrary. A similar effect could be achieved by
relying on subtyping principles, so that a class could be automatically replicated if it was subtyped
from a ‘replicated root’ or some such. However, some potential implementation languages do not support
multiple inheritance (e.g. Modula-3 [33]). If a class were to be subtyped from another replicated class,
e.g. the replicated root, it could not inherit from any other class. Thus, relying on subtyping would
mean that dual type-trees would be necessary for all classes which the programmer might want to use
in a replicated fashion. This would further imply that potentially large amounts of existing code would
have to be adapted for replication, resulting in consistency problems and increased amounts of code to
maintain. By tagging a class explicitly in the interface, the programmer makes very direct choices, which
remain visible in the application code and will assist debugging and maintenance. Also, new keywords
could have been introduced to distinguish replicable classes. However, code containing replicated classes
could then not be processed by unextended compilers.

Most of the code enclosing the replicas is automatically generated on the basis of the object’s interface.
Naturally, the implementation of the object must adhere to the interface specified. Inconsistencies between
the interface and the implementation will be detected by the compiler.

7.4 Instantiation o f R eplicable C lasses

An instance of the replicated object type is instantiated by the following example code fragment:

IMPORT Replicated, TextList;

FE-lxst := TextList.Cons("hostl" , PE_list);
PE-list := TextList.Cons("host2", PE_list);
PE-list := TextList.Cons("host3", PE„list);
TRY
myThermometer := NEW(Thermometer,T).rInit(PE_list);

EXCEPT
I Replicated.Fatal =>
(* Couldn’t instantiate any replicas *)

END;

If the statement terminates normally, myThermometer becomes a reference to the local surrogate object
which intercepts the calls to the replicas. After the surrogate is created, the client can invoke methods
on myThermometer much as if it was of the original type. It will not be completely identical because the
generated stubs for the type Thermometer .T require that function-type methods are given collators as
arguments (see 7.5 p. 82).

The method r i n i t is defined by the system support layer and prepares the active set within the surrogate
by instantiating replica objects on the PEs specified in P E „list and setting up references to these within

81

the active set. The number of PEs specified will determine the maximum number of replicas that will be
used for this particular surrogate. During failures, the number of replicas will decrease, and procedures
for automatic reconfigurations may be initiated by the system software depending on the particular
implementation of the architecture (see §6.3.2 p. 70).

A realistic implementation of the architecture would include support for automatically selecting replica
hosts, for example by maintaining a set of hosts able to support objects of the selected type (cf. §10.3.3
p. 109). Such an extension would allow the programming model to be simplified by avoiding list of PE
names such as in the code examples given.

G arbage co llectio n
Experience has shown that garbage collection is an essential part of distributed programs; managing the
reclamation of distributed objects is a task to be handled by lower-level system software [58, 143]. This
architecture assumes that appropriate technology exist to handle this problem. For example, after an
application process is finished using a surrogate, its storage should be reclaimed by the garbage collector.
Because surrogates do not normally reference each other, surrogates can usually be reclaimed dynamically
at process termination. Additionally, when no more references are’kept to the object replicas themselves,
they are removed.

7.5 M eth od Invocations

The local surrogate implements the interface of the replicas and will hence accept the invocation of any
methods defined for the replicas. However, function-type methods which return arguments are invoked
with an extra argument, the collator (the use of collators is discussed further in §7.5.2 p. 83). Method
invocation is synchronous in the sense that an invocation does not return until either the invocation has
completed, or too many failures have occurred preventing a normal invocation return. In the latter case,
the exception R e p lic a te d .F a ilu re is thrown during the invocation on the surrogate after a timeout
given by the underlying RPC mechanism.

If a method is procedure-like, i.e. does not have return arguments, the surrogate returns control to the
client as soon as the parallel RPC component has issued invocations to the required replicas (cf. 6.2.g_
p. 64). That is, procedures are invoked asynchronously

IMPORT Replicated, RealCoIIator;
VAR
myTempColIator := NEW(RealCoIIator.T).init();

BEGIN

TRY
currentTemp := myThermometer.readTemperature(myTempColIator);
myThermometer.calibrateTemperature(currentTemp);

EXCEPT
I Replicated.Failure =>

(*
Too many things went wrong at the same time.
Abandon myThermometer object.

*)
I Replicated.Warning =>
(* There is a potential for inconsistency. Retries may be ok. *)

END;

END Application.

82

Guarding each method invocation on a replicated object with exception handler code clearly adds to the
complexity of writing the program. However, as in all distributed applications, handling partial failures in
a secure manner can significantly increase the reliability of the application, and it might bring benefits in
terms of a more maintainable program. Note also that statements can be grouped within a guarded block,
thus amortising the cost of writing extra exception handling code. It is often worth considering what the
application should do to avoid crashing in the event of insignificant mishaps and failures. However, use of
exception handlers is not enforced by the system, although the compiler will produce warning messages
when it encounters potentially unhandled exceptions. Unhandled exceptions lead to run-time failures,
and will therefore halt the application. Reliable applications should therefore include code to handle
exceptions.

7.5.1 M ethod param eters

 ̂There are variations of the call by copy approach which are determined by the depth of the copy. See [52] for a more
complete discussion.

83

Argument passing in distributed object systems is limited by several compromises [52]. Many RPC
systems therefore limit the range of types that can be passed as arguments or use non-scalable techniques.
The main difficulties arise with objects as arguments. Two main approaches to parameter passing in
object systems are recognised:

Call by value will copy all objects reachable from the argument object between the caller’s and the
callee’s address space^. For large object graphs, in which a vast number of objects may be reachable
from the argument object, this approach can be very costly, and it also introduces problems with
duplication of objects which eventually lead to consistency problems.

Call by reference simply passes a remote reference to the object as the argument. Passing objects
by reference is the natural approach to argument passing in object systems, and the architecture
proposed here, constructs new surrogates for objects passed as reference. Call by reference is
beneficial in terms of efficiency, simplicity and consistency. However, a disadvantage with this
approach is a lower availability than a deep copy approach. As the size of a distributed system
increases, the number of components which are required to work will increase for a remote object
to be available. Essentially, a remote reference is fragile.

This architecture does not address this problem in any further depth as underlying RPC technology will
largely determine how arguments are passed among invoker and invokee.

:fe

E x cep tio n s
Exceptions defined for the methods in replicated classes are not handled by the current architecture. An
extension of the collator design is necessary to do this (see §10.3.4 p. 110). As exceptions are a special
kind of result parameter from invocations, and because different exceptions should be handled differently
by the programmer, the interface of collators could be extended with new add methods for each exception
returned by the remote invocation.

7,5.2 Collators

Normally, the surrogate will receive identical results from the object replicas. However, there are sit
uations where this is not the case, for example during failures, when replicas might compute different
results. It might also happen that different results are the correct behaviour. The methods executed in
the different replicas could compute results depending on state local to the hosting address space or PE
such as random numbers, timestamps or replicated sensors as in the thermometer example above. In
this situation, only the application semantics can determine the correct interpretation of the results. By

using a specially designed collator, the application builder can easily provide these semantic rules to the
surrogate.

More interestingly, results from the replicas may be references. For example, if the replicated service
implements a handle-like coordination model [2] the replica may return a reference to another service
within the system. Consider the code fragment below specifying a manager of service objects. The
manager is responsible for creating and returning handles on temperature sensor service objects.

INTERFACE Service_M anager;
IMPORT Thermometer;
TYPE

T <* REPLICATED *> <: P u b lic ;
obtainT em peratureSensor0 : Thermometer.T;

END;
END Service_M anager.

The method obtainT em peratureSensor returns a reference (a handle) to a thermometer, and because
the object Service_Manager is replicated, multiple references are returned to the calling object (the
surrogate for the replicas). They are individually unique references to distinct objects local to each
service manager, and are essentially a new group of object replicas. To maintain the illusion of surrogates
concealing replication, the returned references are used as replicas for a new surrogate. The new surrogate
must be created in the client address space, constituting a new manager for the objects referenced by the
returned collection of references (cf. §6.2.3 p. 66).

P rogram m in g interface
The collator encapsulates a single task; processing method invocation results from object replicas. The
programming interface of a collator is presented below (see §A p. I l l for an example implementation):

(* C lass in te r fa c e fo r C o lla to r .T type *)
TYPE

T <: P u b lic ;
P u b lic = OBJECT METHODS —

i n i t () : T;
p repare (nR epIicas : INTEGER);
add(e : Elem.T) : BOOLEAN;
ad d F ailu reO : BOOLEAN;
g e tR esu ltO : Elem.T RAISES {F a ta l} ;

END;

As collators are only directly used by the system support mechanisms, they must comply with this exact
set of methods. The type of the result parameter Elem.T must naturally correspond with the type of the
result from a particular method.

All collators must define the four methods p repare , add, addF ailu re and g e tR esu lt, a method named
i n i t is not required but the surrogate requires a correctly initialised collator for each method invocation.
The four required methods are used as follows by the architecture:

p rep are notifies the collator about the number of replicas which are currently active.

add is called by each thread to input results for processing to the collator. The method returns TRUE if 4
this was the last result required by the collator and FALSE otherwise. A TRUE response signals the 4
surrogate that g e tR esu lt is ready to retrieve a processed result.

ad d F ailu re is called by a thread if the replica failed to return a result. The method returns TRUE
if the failure of this replica makes normal result processing impossible, for example if a majority 4

84

of replicas is required and this failure implies a majority of failures. A TRUE response signals the
surrogate that an exception should be returned to the client.

g e tR esu lt is called by the surrogate to retrieve the processed result. This method blocks until the result
is ready. If exception F a ta l is raised, the surrogate returns the R e p lic a te d .F a ilu re exception to
the client.

The fact that the number of PEs specified during initialisation is the maximum number of replicas that
will be available must be recognised by the application programmer during construction of specialised
collators. Collators should not be dependent on particular numbers of replicas, but rather use majorities '
or some other relative measures.

As long as this interface definition is adhered to, any processing allowed by the particular implementation

The method prepare is used by the surrogate to inform the collator about the current number of replicas
in the active set, and this information should be used by the application programmer to define rules for
relative numbers of replies necessary to produce valid results (see §7.5.2 p. 83). The programmer should
make few, if any assumptions about the number of replicas in the specification of the collator objects.

v l
programming language can be performed within a collator. This allows for very flexible and powerful .
collators to be built. Additionally, once a collator is constructed they are simple to reuse. For example, it
is a trivial job to modify a collator for integers to a collator for floating-point numbers. Similarly, it does
not require much effort to modify a standard majority voting collator to a collator which also performs
weighting of the results.

■
B ackdoors
A collator is an object which is passed in to the surrogate via method invocations that have return
parameters. During the processing within the surrogate, results are added to the collator as they arrive
in from the parallel RFC module, and the g e tR esu lt method on the collator is used by the surrogate
to retrieve the processed result. The g e tR esu lt method has the same return type as the corresponding
method on the surrogate, and therefore returns a single value (although it might be composite).

However, the programmer might occasionally need to manipulate sets of results, rather than the singleton
which is returned from the surrogate via the g e tR esu lt call. The programmer is free to implement other
methods on the collator which can return other results, although care must be taken to avoid causing"
name-conflicts with the required interface of the collator. A backdoor method could for example return
an array containing all the results returned via the add call.

7.6 Sharing o f Surrogate O bjects

Sharing in an object oriented system is achieved by passing references as parameters in method invocations
(both input and output parameters). For example, object A can initiate sharing of an object B by giving
an object C a reference to B. Both A and C are now able to invoke methods on B.

The architecture enforces some particular procedures for sharing of surrogates. Because a surrogate
should always reside in the same address space as the client, a new surrogate is created if a client A
passes a surrogate reference to another object C in a different address space (cf. §6.3.3 p. 72). However,
this will be performed automatically and is transparent to the programmer. Due to automatic creation of
surrogates, two references to surrogates in different address spaces will generally not be equivalent even
if they manage the same set of replica objects. Sharing of a surrogate among to objects within the same
address space does not require any particular processing.

85

'■-1i

7.7 Failure Sem antics

7.8 C oncluding R em arks

This chapter has described the programming model of the proposed architecture. Evidently, some compli
cations are necessary in programs using the architecture, in particular because an application might need
a relatively large number of different collators to suit the different method return arguments. However,
as collators are simple to reuse, in particular for different result data types, the added complexity will
mainly be observed as an increased number of objects in the application.

In summary; most of the underlying complexity is hidden by the architecture. The programmer is
completely shielded from for example the serialisation protocol and failure masking functions. It is
therefore believed that the complications necessary will be outweighed by the benefits the application
receives in the form of increased reliability.

A replicated object will have different failure semantics from local or non-replicated remote objects, and
although it will be more available than a normal distributed object, there are failure situations which
cannot be concealed by the replication mechanisms. To allow applications to handle the new failure
modes, the programming model defines a new exception Replicated.Failure which is raised when the
serialisation scheme fails to gather a response from a majority of the replicas or a collator fails to receive
results from enough replicas. This exception therefore reports a very critical situation within the system. 4
Normally, an application will have to abandon such an object and create a new surrogate with new replica , (
objects.

Additionally, during serialisation of replica operations, the majority locking scheme might detect unre- !
leased locks which might be due to a premature surrogate death (cf. §6.3.3 p. 72). The surrogate raises an
exception R ep lica ted . Warning if unreleased locks were detected and had to be explicitly unlocked. If so,
the surrogate does not attem pt to invoke the replicas, but leaves the replicas unlocked before returning
the exception. Because the replicas may still be mutually consistent (if the locking surrogate crashed
after the invocation was executed), an application may choose to retry the invocation.

A sample application has been built to experiment with the replication support code and to act as
an instrumented testbed to allow for performance measurements. Although the application is far from
a realistic application, it confirms the simplicity of the programming model. Applications’ use of the
prototype is further described in §8.4 p. 92.

The rest of this chapter is structured as follows. Section 8.2 describes the environment in which the
prototype has been implemented. Section 8.3 presents the internal design in detail. Section 8.4 presents
the sample application exercising the prototype. Section 8.5 contains a discussion of the prototype
performance. Finally, section 8.6 contains a summary of the chapter.

87

C hapter 8

R ealising the A rchitecture

This chapter presents a prototype im plem entation o f the proposed architecture as described in chapter 6. The
prototype is by and large experimental, it is not a com plete im plementation of the architecture. However, it
does dem onstrate the key benefits o f the design, such as the simple programming model which is described
in 7. The application which has been built to exercise the prototype shows that very limited programmer
effort is necessary to use the system support functionality. Additionally, the chapter might be valuable for
later implementation efforts, perhaps on other platforms; the chapter describes how existing system support
software influences its functionality and ease of im plem entation. The performance measurements might be
beneficial for comparative studies of other architectures, but also for later implementation on platforms with
other system characteristics.

8.1 O verview

The prototype is implemented in Modula-3, a statically typed, type-safe, compiled, object-oriented pro
gramming language [33]. A range of useful features justified this particular language; for example supports
for remote object invocations, concurrent programming via threads, exception handling, strong emphasis 4
on the separation of interfaces and implementations, a vast range of libraries and built-in automatic
garbage collection both for local and remote objects [22, 24]. Having these facilities available meant
that the construction of the prototype itself could be significantly simplified. However, the implemen
tation does also expose some limitations in this programming environment. For example, the remote ;
object facility assumes a quite static partitioning of the objects within the application which somewhat
complicates the programming model in the prototype (cf. §8,3.2 p. 91).

The prototype is built as a collection of static library code and surrogate code derived from programmer
specified classes and the abstractions herein have been derived from previous experiments [67]. Some
collators have been built as well to demonstrate the simplicity of the design. Applications import the
library code and use the derived surrogate code in place of the originally specified classes to gain support
for replication. r

8.2 Im plem entation P latform

^By convention, Network Objects (capitalised) refers to the Modula-3 RPC mechanism, network objects (uncapitalised)
refers to objects which are invoked remotely.

^Such a fake return parameter is added automatically by the Network Object stub generator [22].

^Death is conservatively assumed if the remote address space doesn’t answer ping messages.

The prototype is implemented using DEC SRC’s version of the Modula-3 compiler for SunOS 4.1.3
running on Sun SPARC workstations interconnected via Ethernet networks. Although this compiler is
ported to several other platforms as well, these platforms have not been used in conjunction with the
prototype. However, if porting to other platforms is necessary, it should be a relatively small effort, as
only small parts of the code are bound to the hardware and operating system platform (cf. §8.2.3 p. 89).

Only non-persistent Modula-3 objects have been considered in the implementation, but extensions of the
implementation might draw some benefits from Modula-3 persistence technology, for example to support
atomic invocations on the replicas, so that in case the surrogate crashed before invoking all the replicas,
the invoked replicas could be rolled back to the previous state. Further, reconfiguration of failed replicas
could be simplified to increase survivability for long-running applications. A big advantage of DEC
SRC’s compiler is that it comes with a large collection of useful library code which can be reused in other
applications. Some of these libraries are generic, and their instantiation can thus be parameterised for
a collection of types. This can be a big advantage for the construction of new collators (see also §7.5.2 |
p. 83).

8.2.1 E xisting system software

Some existing system software has been used to build the prototype. Most important is the library 4
developed for Modula-3 to support distributed objects (Network Objects), but also other features such |
as the library for IP (Internet Protocol) functions, threads, generic lists and tables have been used to 4
speed up the implementation work.

R em o te in vocation s
An RPC facility to invoke methods on remote objects is necessary to implement the architecture. The
prototype is built using Network Objects^, a powerful RPC mechanism developed for Modula-3 [22]. |
Network Objects extends the notion of invoking methods to include remote objects, and supports argu- |
ments much like local method invocations do. References are valid both as input and output parameters
in method invocations, and because Network Objects differentiates between local and remote object ref
erences, network objects are passed by reference while other objects are passed by copy. Furthermore,
Network Objects ensures that all remote references are direct references between two address spaces by
constructing surrogates in each referencing address space which cohimunicates with the referenced object
directly. In contrast to forwarders [71], this mechanism is more resilient to failures, but requires additional
communication to avoid reclamation of non-garbage objects [22, 143]. Further, by always creating local
surrogates with direct references to the remote object, Network Objects directly supports the proposed
approach to object sharing (see §6.3.3 p. 72).

Of crucial importance for a reliable implementation is the manner in which failures are managed by the
RPC technology. Network Objects do not support asynchronous calls, and it is therefore able to provide
at-least-once semantics using exceptions to notify the caller if the remote invocation failed. In case an 4
invocation has no specified return parameters, the client of a remote object blocks until a dummy result^
is returned. All invocations are hence synchronous, i.e. the caller is blocked until the invocation returns
or the runtime reports a failure.

Network Objects amends the fail-stop T C P /IP protocol with mechanisms for simpler failure detection
and reporting by raising exceptions in the client if the remote address space has died^. However, this

exception may be raised due to transient network errors causing either a remaining orphan object method
execution in the remote address space, or a prematurely collected object in the server.

Premature garbage collection in Modula-3 Network Objects might happen. However, the probability of
such events is very low. Only if the Network Object runtime, running on the same machine as the owner
of a remote object, erroneously decides a client has failed will a remote object be reclaimed too early
[24]. In the current implementation, this check is done using a sequence of T C P/IP ‘ping’ messages'^.
Additionally, if the client tries to invoke a prematurely collected object, the Network Object runtime will
raise an exception to warn the client.

8.2.2 N am eservice

Location independence in distributed object systems is achieved through the use of nameservers together
with remote object references appearing like local references. A nameserver is essentially a simple database
which stores (name,location) tuples. Clients can query the nameserver for the location of named objects,
and indirectly retrieve a reference to the object. However, in a realistic system most objects will not
be registered within the nameserver. Rather, they only exist as anonymous objects, only referenced
from other objects, e.g. the object that created it [58]. Additionally, [41] reports that name lookup
operations have a significant impact on system performance. As a natural consequence, nameservers are
often replicated using weak optimistic consistency schemes (cf. §4.5 p. 49).

Network Objects provide access to a simple (non-replicated) nameserver which is used by the surrogate
to locate object replicas on PEs specified by the client. Hence, this nameserver must be running on each
PE in the network which will be used to host replicas for the prototype.

8.2.3 P ortab ility issues

System support mechanisms should, as far as possible, be portable. Underlying software and hardware
should be expected to evolve, hence system support mechanisms should not make excessive assumptions
about their constancy. However, by nature, system support mechanisms are closely associated with a
certain system model.

Although the prototype has been implemented in Modula-3, other object oriented languages should be
possible to use. A very interesting platform for further experiments would be Java from Sun [82].

Implementing the architecture requires an object oriented programming language with support for remote
method invocations and a failure reporting mechanism which allows the caller to determine failures. The
prototype makes use of very few platform dependent functions, one of which is the use of some commu
nication protocol functions (IP) to support the location and naming of PEs in the network. However,
such functionality is likely to exist in other network environments.

8.3 P ro to typ e D esign

The prototype follows the module structuring presented in §6.2 p. 62. The object diagram shown in
figure 8.1, using the notation of Booch [29], illustrates the internal design.

Essentially, the client instantiates the surrogate object (much as it would instantiate the corresponding
non-replicated object) and passes collators in as a method argument to the surrogate in case the method
requires result processing. The surrogate maintains an active set containing the replicas specified by the
client in the instantiation call. The parallel RPC module updates the failure status of individual replicas
in the active set as failures are detected. It also records failures in the active sets stored in the replicas

'‘A ‘ping’ is a special message in T C P /IP which checks if the remote connection is still alive by echoing a message in the
remote address space.

89

ac tiv eS ets u rro g a te

u p d a teClient
getResult

p a ra lle l-rp c

collator

^Discussed in §5.2 p. 53.

90

Figure 8.1: Surrogate object diagram

via the lock and unlock methods. What should be emphasised in the figure is the very simple interface to
the collator; although the code residing within the surrogate and the parallel RPC module is complex,
the collator is manipulated using very simple method calls (cf. §7.5.2 p. 83). The rest of this section
presents these components in more detail.

8.3.1 Surrogates

Surrogates are directly derived from programmer specified classes. Although they are hand-crafted in ï
the prototype, surrogates are relatively generic and could thus be automatically generated by a stub :
generator for example. Most of the code within surrogates is invariant over different replica class types,
and this will simplify an eventual code generator.

The issues regarding naming conflicts and implementation platform^ must however be considered if such
stub generator technology was to be built. For example, the problem of name conflicts can normally be
solved by generating identifier names which are concatenations of the application identifier names and
a substring specific to the code generator. Naturally, this assumes that the compiler technology allows
identifiers with such length.

Figure 8.2 presents the class diagram of the central programmer defined classes, generated classes and
static library classes. Note that the names used in the prototype implementation are not consistent w itlf
the programming model specified in chapter 7 due to the experimental nature of the implementation. A
client in the prototype gains access to the surrogate through the name foo_srgt.T rather than foo.T as
would be the case for a realistic implementation of the architecture.

Class foo.T is the interface for the class to be replicated and is defined by the programmer, and the class
foo_server.T implements foo.T (the reason for this particular partitioning is explained in §8.3.2 p. 91).
Only the class foo.T forms the basis for the generated code however; both foo_srgt.T and foo_act.T are
generated from foo.T. This is illustrated by the dotted lines.

The prototype separates some of the generic functionality of the surrogate into the class Replicated.T
which foo-srgt.T inherits. The class foo.act.T might seem unnecessary, foo_srgt.T could just manipulate a
collection of remote foo.T objects to implement replication. However, to support sharing of replicas among
multiple surrogates, serialisation must be enforced. The class foo„act.T simply amends the interface foo.T
with the methods lock and unlock to support the majority locking scheme described in §6.2.4 p. 66.

The surrogate uses the built-in Network Objects exceptions NetObj .F a ilu re and Thread. A le rted to i;
detect and mask many failures from the client. However, in accordance with the programming model
(§7.7), the surrogate may return the exception R e p lic a te d .F a ilu re which signals that the surrogate
cannot carry out any client requests, or the exception R ep lica ted . Warning if the surrogate had to break
locks in the replicas and thus potentially infringe on consistency.

R ep lica ted .T)
N e tO bj.T j

I foo .actlo ü ..srg t.T)

(fo o _ se rv a r.T j

L egend:

----- Inherit from

G e n e ra te d from

P red ef in ed c la s s

f ^ G e n e ra te d c la s s

Figure 8.2: Code generation class diagram

8.3.2 Im plem enting object replicas

The Network Object library enforces restrictions on the implementation of remote objects. However,
violations of these restrictions will be reported during compilation. A replica object, due to the fact that
it is remote and consequently must be a subtype of NetObj .T, can not be instantiated quite as simple
as a local object. A replica object is not mobile, it must be instantiated by a server program running
on the PE where it will become accessible. Replicas are only available while the server is running. Such
replica servers are registered with the name server process, ne tob jd , running on the PE. The replica
servers must export object names which can be recognised by the surrogate code, and in the prototype
this name is foo_act.T.

The programmer is responsible for building and starting replica servers on the PEs which will be used®.
In more realistic applications where servers are long-running processes, the system might be configured
to start up the servers during the booting of the machine.

Further, Network Objects are restricted to be pure objects, meaning that interfaces cannot expose part
of the class’ internal state. However, this restriction conforms to the object model advocated in this
dissertation (cf. §2.4 p. 21) and does not incur problems for the architecture.

S ep aration o f in terface and im p lem en ta tio n
Network Objects require that the type T is fully revealed to generate stubs for it. Thus, T cannot be
declared as opaque in an interface T.i3 and revealed in a module T.m3. As the architecture assumes that
replicable classes are implemented in separate interface and implementation files, the programmer must
implement type T in another module, the module called foo_server.T in the diagram. This restriction
is slightly cumbersome, as it increases the complexity of the software. However, other implementation
platforms, such as Java, might not enforce this restriction.

8.3.3 Parallel invocations

Parallel invocations are implemented by a collection of threads managed by the surrogate. In fact,
a separate thread, the thread manager, within the surrogate is responsible for managing the parallel
invocations. Other threads are responsible for synchronising the gathering and releasing of locks with
the parallel RPC thread manager. This separation of responsibilities within the surrogate increases the
performance of the surrogate, for example by allowing the surrogate to return results back to the client
before the releasing of locks has started. Additionally, as most of the surrogate contains boilerplate code,
the added complexity does not affect the application programmer using the surrogate.

Each thread in Modula-3 is a closure, which defines the thread’s shared variables and the procedure in
f oo_act .T which is called by each thread managed by the thread manager.

®Tlie process of starting servers can of course be automated using, for example, startup-scripts.

91

8.4 A n E xam ple A pplication

A small application has been built to exercise the prototype implementation, mainly to facilitate the per
formance measurements, but also to experiment with different collator designs. This testbed application
has the form described below.

MODULE Client EXPORTS Main;
IMPORT 10, Fmt, TextList, IntCollator, RObj„Surr, Replicated;
VAR

= NEW(IntCollator.T).initC);
RObj_Surr.T;
TextList.T;
INTEGER := 0;
TEXT := "RObj_Act.T";

myFibCollator
rRef
hostList
result
objName

BEGIN
hostList := TextList.Cons("unimak", hostList);
hostList := TextList.ConsC'campbell", hostList);
hostList := TextList.Cons("agattu", hostList);
TRY
rRef := NEW(RObj_Surr.T).rInit(objName, hostList);
result := rRef.fib(n, myFibCollator,init());

EXCEPT
I Replicated.Error, Replicated,Warning =>
10.Put("Fatal srgt error. Exiting.\n");

END;
10.Put(Fmt.F("result = " & Fmt.Int(result) & "\n"));

END Client.

The code fragment above shows how an application program can include support for object replication.
As a result, rR ef is a more reliable object. If the probability of failure is 0.01 for each of the workstations
unimak, Campbell and agattu, then this application has reduced the probability of failure due to failures
in RObj _Surr.T to 0.0003, corresponding to an increase in MTTF from 100 days to over 9 years^.

8.5 Perform ance M easurem ents

This section presents a few initial performance measurements which have been sampled from the pro
totype. The results are generally assuring; the prototype yields a performance similar to what should
be expected for the given system platform. However, the architecture has not been carefully optimised,
although the design has focused on efficient and light-weight implementation principles. The samples
were gathered during the night in periods when the workstation and network usage was low. A number
of samples® were taken for each configuration and these were averaged to give the results presented. This
can naturally be only an indication of the performance of a prototype implementation in a given applica
tion context. The performance measurements on the prototype are, like the prototype itself, initial and
incomplete but do nevertheless give an idea about the efficiency and overheads in the architecture.

It is not clear from the samples taken what is the most important source of overheads, or if there is only
one such source. Presumably, large overheads, e.g. round-trip delays, exist in the network communication
subsystem, bu t it is difficult to say how these vary with increasing numbers of communication channels.
The measurements used a number of similar workstations to avoid extra factors of uncertainty such as
different operating systems, processing power and memory performance.

Refer to appendix B for calculations of failure probabilities.

^Either 100 or 1000 samples for each configuration.

92

The table below shows the times in milliseconds for different numbers of replicas, n. During this particular
test he servers invoked empty procedures in the replicas and the majority locking scheme was used in
each sample. The coloumn “only R PC” is the number obtained from using a surrogate not containing
any replication code.

n only RPC 1 3 5 9
execution time 4.7 15.6 24.0 41.6 119.7

Figure 8.3: Execution times in milliseconds for different numbers of replicas.

During other, single-sample experiments, replicas were crashed manually to determine the influence of
the failure detection mechanisms in Network Objects, No difference in the execution times could be
identified which suggests that the failure detection mechanisms are very efficient.

O ther perform ance factors
The measurements were taken on a single user of the surrogate only. A more extensive performance
sampling should include measurements on multiple clients residing in different address spaces.

In this scenario, the generated load on the surrogates is likely to be rather evenly distributed, and thus
give small performance advantages from the use of wait-for-first collators. Additionally, due to the extra
rounds of network messages necessary for the serialisation protocol, performance will be lower than for
only a single surrogate.

A ‘wait for first’ collator can result in improved performance only in the case that the surrogate is
not constantly loaded with client requests [64]. The performance with different collators is therefore
dependent on application behaviour and on the processing capacity in the PE hosting the surrogate. If
clients keep the surrogate busy the surrogate will have to wait for the replicas to be unlocked anyway
to maintain consistency. Other collators, such as weighting collators, will increase the processing time in
the surrogate, but this processing is distributed, and will therefore scale well with even high numbers of
clients.

8.6 Sum m ary

This chapter concludes the discussion of the proposed architecture. It has demonstrated the usefulness
of the architecture by describing a prototype implementation and providing some initial performance
measurements. The next chapter focus on how this architecture relates to other work in the area.

93

C hapter 9

R elated Work

Replication is an important approach to increasing availability in distributed system s. A large number of
system s using replication and research efforts investigating various replication m anagem ent techniques have
been presented in the literature — a number far to o great to allow for individual treatm ent within the scope
of this work. For that reason, a selection has been made; this chapter covers work o f particular relevance to
the architecture described in the dissertation. This includes a discussion of other system software com ponents
of particular importance to application builders such as highly available distributed file system s. Some overlap
of material occurs, intentionally, in particular with respect to chapter 4 which makes several references to
the work discussed in this chapter. The discussion here is more focused, however, on comparisons with the
proposed architecture. The chapter is divided into four sections; the first two em phasise system support for ff
application developers, and the last two sections are focused on replication used within application com ponents
such as middleware and databases.

9.1 Language Level Support for R eplication

^See also §2.5 p. 22.

Language level support involves the provision of libraries and automated code-generator tools to assisC
developers with reusable components to be included within the application. Language level support is a
flexible approach to system support, although it normally incurs some complications to the programming t
model.

The encapsulation principle is the foundation for the architecture presented in this dissertation, but
similar ideas have been investigated before. The remote procedure call (RPC) has been the traditional
mechanism to facilitate interaction among programs in separate, potentially geographically distributed,
address spaces (see e.g. [132]). In [48] the remote procedure call abstraction was extended to deal with
both replicated invokers and invokees.

Object oriented techniques made possible an even more high-level abstraction; that of the remote invoca
tion. Remote invocations conceptually integrate binding and service handle in the reference mechanism
and provides a uniform mechanism for service invocation [135]. Potentially, an invoker need not observe
any difference between a local method call and a remote method call, although full transparency is not
normally desirable^. The reference essentially conceals locality and access mechanism. A particularly
beneficial attribute of such uniform references is that they facilitate the construction of proxies [167]
which creates a potential for concealing much of the added complexity with replication.

94

9.1 .1 R ep lica ted p roced u re calls

A major influence on the mechanisms proposed in this dissertation is the work of Eric C. Cooper on
replicated procedure calls [48, 49]. Cooper’s approach, based on groups of independently executing f
state-machines called troupes, supports both dynamic reconfiguration and call coordination. Replication
transparency is maintained using a full consistency scheme where each troupe member receives each client
request. This is necessary due to the mutating nature of the troupe members, which are similar to the
object graphs suggested here (cf. §7.2 p. 79). Furthermore, automatically generated stub-code conceals the
notion of multiple server handles within the run-time system, and the name service’s interface supports
troupe-handles. Similarly to the proposed architecture, clients of troupes do not need to be aware of
replication.

iTi'oupe members are assumed to be completely independent program modules behaving like identical
deterministic state machines. However, in contrast to the architecture proposed here. Cooper’s work is
based upon a transactional system model with persistent troupe members and requirement to network
support for multicast. The persistent troupe members allow for more loosely synchronised serialisation of
concurrent clients. An optimistic scheme for serialisation of client requests is suggested. This serialisation
scheme allows two transactions to be comm itted concurrently if they are committed in the same order
in all troupe members. Although it is not completely clear from the presentation how it detects that
two transactions are in conflict, it can be assumed to depend on some inherent global ordering of client
requests^. Similarly to the proposed architecture. Cooper does not require any synchronisation protocol
among the replicas themselves as troupe members are completely unaware of each other. Rather, the
client troupe members are responsible for gathering replies from replicas that are ready to commit. y
This is likely to give good scalability properties for high numbers of clients, although it does enforce
extra functionality within the client. Cooper can guarantee atomicity for this optimistic scheme due to
the use of non-volatile storage and specially designed procedures in the troupe members to implement
specific ready-to-commit procedures, thus requiring some interference from the programmer of the troupe -
members.

Rather than using light-weight threads allocated to each replicated call as in this architecture. Cooper
assumes that the network itself is able to multicast messages to the troupe members [49], although
the actual implementation simulates this parallelism with sequential messages [48]. The dependence
to network multicasts also complicates Cooper’s architecture in case of heterogeneous networks, where_. |
timeouts will need to be individually adjusted to achieve good performance. The architecture proposed
here does not require network support for multicast, rather a connection is made from the surrogate to
each replica. The added cost of maintaining multiple connections is not negligible, but for relatively small
numbers of replicas as envisioned by this architecture (normally less than 10 replicas, see 6.4.2 p. 76),
it will not constitute major overheads. Individual connections can therefore have distinct timeouts,
improving the performance in heterogeneous networks. Results gained from evolutions of the RPC2 and
the MultiRPC system [159] used in Coda [158], suggest that using concurrent threads for replicated calls
can incur significant overheads for larger numbers of replicas however, and, naturally, multicast primitives
help reduce network load.

In contrast to this architecture. Cooper addresses the issue of nested invocations; the replicated procedure |
call manages both many-to-one and many-to-many calls using a specially designed binding agent (a name
service) for troupes. Duplicated calls are always filtered at the invokee, thus achieving high fault-tolerance
at the expense of generating more network traffic. Call coordination, i.e. filtering of calls from replicated
callers, is achieved by assigning a unique ID to a set of calls originating from troupe members. A special
ID is reserved for calls from non-replicated troupes. Invokees, normally other troupe members, are
therefore able to detect duplicated calls and can ignore all but the first which is executed normally by
the invokee. The binding agent makes Cooper’s approach more replication transparent for troupe clients;
troupe members can dynamically join the group at run-time by joining a troupe. This is invisible to f
clients. In contrast, this architecture assumes that clients are responsible for specifying replicas during
initialisation of the surrogate. The benefit of this approach is that the programmer can focus on the
_ _

^The commit protocol is only sketched out, it is not part of the implemented architecture,

95

particular needs of the application without being concerned with the replicas. Cooper’s approach puts
this responsibility onto the designer of the troupe members themselves.

Additionally, the concept collator was suggested by Cooper as a mechanism to allow various levels of
synchrony between the client and the troupe server. Cooper’s collators are exploited further in the
mechanisms proposed here to benefit from object-oriented concepts (cf. §6.2.3 p. 65). If references are
the return argument of function-type methods, new surrogates are created automatically to conceal the
notion of replica references. This extension of Cooper’s architecture follows naturally from the object
oriented system model adopted in this dissertation.

Recently, a more direct extension of Cooper’s work has been suggested with the name CopyCat [102]. In
contrast to the architecture proposed here, CopyCat is a non-object approach based on the standard RPC
paradigm. The main feature of CopyCat is the flexibility of semantics; the programmer can, depending on
the application, relax the ordering constraints enforced among the invocations. Three ordering types are
supported; causal, forced and immediate. Causal ensures that replicas deliver messages in the same order
as they are sent from the client, forced ensures causal ordering among multiple clients, and immediate
guarantees full ordering among all messages from all other clients. The architecture proposed here
provides a more encapsulated approach than CopyCat, but does enforce full ordering of all requests.
Assuming that clients of object replicas will be able to optimise the ordering of calls, CopyCat is able to
achieve better performance than the proposed architecture, but this kind of optimisation does introduce
ex tra coupling between clients and the invoked modules. CopyCat is an example of a replication approach
in which transparency of replication is traded off for higher performance.

9.1.2 G aggles

Another important influence on this work is the Gaggle, described by Andrew Black and Mark Immel [28].
A Gaggle is a software construct that implements a non-deterministic choice among a collection of clerk
objects. The main idea of Gaggles is that they appear to the client just like a normal, singular object.
The basic assumptions behind this work and the Gaggle are thus very similar; presenting the programmer
with a surrogate which can conceal the notion of multiple server-objects so as to hide complexity and
provide a layer in which different functionality can be implemented without needing to change the client
of the surrogate.

However, in contrast to the surrogates described here, and the replicated procedure call abstraction
proposed by Cooper [48], a Gaggle is neither primarily concerned with consistency nor serialisation, it
only implements the selection of a new replica if one is discovered to have failed. Essentially, a Gaggle
implements the failure masking functionality necessary for replication, but some form of underlying
replication scheme is assumed to be available for the purpose of consistency and serialisation, for example
ISIS process groups [18]. Thus, a Gaggle must be extended with a replica consistency scheme such as
voting or process groups to be used for replication. The architecture described here combines the idea of
a Gaggle and a consistency mechanism into a single abstraction, while maintaining the transparency of
replication.

9.1.3 Fragm ented objects

The Fragmented Object (FO) model for replication is a programming paradigm which is an extension of
the proxy principle [60, 116, 117]. This approach suggests that fault-tolerant objects are structured into
fragments which communicate using special connective objects. Fragments are always local to the invoker,
and the connective objects are responsible for maintaining consistency among the multiple fragments.
The key idea behind the FO-model is that of client transparency; each client is presented with a local
interface, a proxy, to a local fragment [117]. This is in correspondence with the notion of local surrogates
as advocated in the proposed architecture; they provide distribution transparency while increasing the
fault-tolerance of the system.

However, fragments are specifically constructed for cooperation and consistency management. As a

96

I
■î',

consequence, the programmer must design objects especially for replication, as connective objects must
be used explicitly. The key benefit of these connective objects is they can implement different consistency |
schemes, and can be used to optimise the performance of synchronisation between fragments. The FO-
model is not an approach that advocates replication transparency for the designer of the objects, and
therefore it is not an object replication strategy. Rather, the FO-model is a good example of a replicated
objects approach.

While the FO-model gives the programmer a great deal of flexibility, it comes at a cost of increased
efforts necessary for the creator of the fragments. Additionally, the problem of nested invocations must
be addressed by the programmer in the FO-model. If a fragment contains references to other shared
objects, potentially fragmented objects, it is the responsibility of the invoker to ensure that the shared
object is invoked the correct number of times through the use of appropriate connective objects.

Adaptable Replicated Objects (ARO) [31] has been proposed as an approach to extend the Fragmented
Objects model with technology from the BOAR libraries of support code for replication management such
as consistency managers [83]. Instead of having to implement connective objects from scratch, the idea is
that the creator of the fragments can simply use consistency managers from the library and thus reduce «
the efforts needed to construct the fragments. However, the FO-model is maintained; the approach trades
low-level concurrency control efficiency for replication transparency.

9.1.4 R eflective program m ing

97

Some object-oriented programming languages support the notion of reflection. Reflection allows a pro
gram to change its own behaviour by modifying, at run-time, its meta-data. For example, a reflective
program might dynamically change the way it reacts to method invocations, which can be used to im
plement serialisation functionality during concurrent access [179]. This property has been exploited in
Open-C+4- to implement various replication techniques, in particular an object replication scheme [65].
However, solutions to inherent problems with object replication are only briefly mentioned; nested invo
cations are not addressed in this work.

The approach of reflective programming is not fundamentally different from the approach suggested in
this dissertation. It is simply a more flexible approach to the implementation of replication management.
Rather than depending on code generators to produce intercepting surrogates, a reflective program can- S
dynamically produce such surrogates.

9.2 R ep lication in Program m ing S ystem s

Programming systems encompass more extensive support for development of long-lived and usually con
current software than do programming languages. In particular, distributed object-based programming ï
systems normally provide functionality for persistence, transactions and object sharing among multiple
applications [154]. Although the programming systems discussed here are implemented on top of oper- %
ating systems, the distinction between programming systems and operating systems is blurred with the
introduction of more flexible object-oriented operating systems such as SPIN and Spring [15, 125]. In the
future, programming systems might be fully integrated into the underlying operating system. Similarly,
a clear trend drives the integration of traditional database persistence technology with programming I:
languages, which further blurs these boundaries [9]. t

The support for persistence and transactions can have a significant impact on the kinds of replication ^
mechanisms that are used. In particular, it can facilitate the use of more optimistic replication techniques.

:

9.2.1 G A R F

A system supported approach to object replication has been developed as part of the GARF system [121].
GARF is a programming environment which provides run-time support for object-oriented distributed
applications, and also partial support for object replication.

Fault-tolerant objects in GARF are implemented in two layers, normal application objects and a com
munication layer used for managing invocation filtering among replicas. If they need to be replicated,
application objects are associq,ted with such communication objects. A communication object is a sym
metric extension of the traditional proxy [167], it exists as a representative on both the invoker’s and ‘ S
the invokee’s node. These objects have two responsibilities; pre-filtering of invocations from a group
of invokers, and replicating invocation replies back to the invoking replica group. After the invocation : |
replies have been filtered, identical copies are passed back to the invokers. Although Cooper’s replicated
procedure call architecture filter duplicates at the invokee [49], GARF appears to be similar in replication
functionality. However, the system model adopted in GARF, based on non-persistent objects, achieves
atomic multicast by being mapped onto ISIS process groups [18].

In contrast to the proposed architecture, GARF does not support the use of collators. Therefore,
GARF cannot tolerate any replica failures in the data-domain or optimise performance as with the semi-
asynchronous wait-for-first collator suggested here. GARF can only tolerate fail-stop failures among the
replicas. However, the use of ISIS process groups implies that GARF can provide stronger guarantees for
consistency, in particular in the presence of client failures.

i
9.2.2 Arjuna

The Arjuna system [171], developed at Newcastle upon Tyne, is a distributed programming system that
supports replicated persistent objects. Compared to the architecture presented here, Arjuna trades high
survivability and transactional correctness for lower performance. It combines an extensive collection of î:
tools and building blocks to form a programming system for distributed software development in C-f+,
and has been tested in a number of applications [170].

98

Fault-tolerance in Arjuna is based upon the notion of (nested) atomic actions which are transactions
encapsulating object invocations, and the programmer is responsible for declaring transaction closures- f
using special directives. Essentially, groups of invocations on replicated persistent objects are explicitly ■?;:
grouped to indicate atomic actions. Replication in the commercial version of Arjuna is based on a
primary-copy scheme, but support for active replication has been investigated although not implemented
[170, 113],

Arjuna does not support collators, i.e. programmer defined processing of replica results. Rather, as in
GARF it is assumed that replicas return identical results and that any result is as good as any other.

9.3 R eplication in A pp lication C om ponents

Replication techniques have also been used in application components such as file-systems and database
systems. The main difference between replication in such settings and generic support functionality of ?
replication, is that application components exploit knowledge of the semantics of the data being managed.
Additionally, some systems are built on the assumption that inconsistencies are visible outside the system
as failures, and that clients are able to take corrective actions. This is in contrast to the system model
adopted here, in which replication system support should be generic and not make such assumptions
about data and clients. However, because of the assumptions made, some of the application systems can
use quite sophisticated replication techniques which achieve high availability and performance.

9.3 .1 D istr ib u ted file sy ste m s

File systems provide one of the most fundamental system services in any computing environment. Ar
guably, files are the most common structure used to share and store information among both applications
and users in distributed systems. This critical dependence on file services has led to a number of efforts to
build distributed file services such as NFS [180], AFS [157], Coda [97, 157], Harp [112], Echo [181, 94] and
xFS [6]. These systems simplify the sharing of files by providing uniform location and naming schemes.
Of the systems mentioned, only the first version of AFS (AFS-1) and NFS do not directly exploit replica
tion, although they make use of caching at the client side and thus depend on cache coherence protocols
to maintain integrity of data. Distributed file systems are of interest because of their different, and
occasionally extreme, approaches to consistency, availability and performance.

As most applications are written assuming a one-copy update model, distributed file systems attem p t S
to provide a high degree of data consistency to clients. Echo is an example of a replicated file system
which attempts to provide full replication consistency to the file system clients and uses a primary copy
scheme to improve availability of servers. Clients of the replicated file servers contain Echo-specific code ;s
within clerks which intercept calls to the file system and perform the fail-over to a new primary if one
fails. Echo employs redundant disks to store replicated files, and as an additional level of replication,
primaries compete for election if they manage to claim ownership of a majority of disks. The replication
scheme in Echo is thus fairly transparent to clients. If the filesystem is available to a client, the client
will always observe correct and consistent files. 4

Full consistency is also achieved in the xFS system [6], a file system which is tailored for high-capacity, #
switched LANs such as ATM. The idea is that the high aggregate bandwidth provided by such networks |
can exceed the bandwidth of local disks, and thus invalidates the underlying assumptions of for example
the Andrew file system policy of using local disks as caches. The most novel feature of xFS is its
truly distributed design. By allowing all machines within the file system group to maintain files it can
reduce the problem of server overload found among centralised file system designs such as Echo, NFS |
and Andrew. xFS assume that there is a high probability that the creator of a file is also the most
frequent writer on the file. A file is managed by the machine on which the file was created, and later I
invalidation and write requests are passed to this machine. In this way xFS dynamically shares load %
among the machines cooperating in the system. However, any number of machines may hold copies of
file’s data blocks, thus allowing fast access to the data for other machines as well. Replicas of the file are
kept consistent by only allowing one writer to a particular data block at a time. Other machines must
aquire ownership of the data block via the manager of the corresponding file. xFS exploits two techniques
to achieve fault tolerance. Firstly, data blocks are striped across multiple disks, and enough redundant
information is stored at each stripe group member to allow for single machine failures within the stripe
group. Reconstruction of a new stripe group is performed automatically. Secondly, xFS is based on a ?
transactional, log-based file structure which can be restored using roll-forward techniques in cooperation
with clients. H

Some of the systems make compromises with consistency to achieve better scalability and performance.
For example, NFS uses periodic checks of timestamps between clients and the server to decrease the
likelihood of update conflicts. AFS-2 goes a step further, due to higher scalability requirements cache
coherence is only checked during open and close calls. Coda takes the most extreme approach to avail
ability; in Coda clients are allowed to operate even if they cannot communicate with any of the servers.
Conceptually, Coda defines two classes of replication; first-class and second-class replicated files, both >
optimistic [97]. The result is that there is a non-zero probability that clients which share files will observe |
inconsistent data. If the client is connected to a server, a first-class replication scheme is used among the
servers to detect potential conflicts, this requires manual repair of unrecoverable conflicts [158]. If the 4-
client operates while disconnected, an optimistic second-class replication scheme exploits client caching
which also may lead to conflicts. These conflicts are also repaired manually. The server-replication
scheme used in Coda is a variety of the approach used in Ficus where any server can be sent an update
and subsequently attempts to notify other servers about the update [144, 91].

NFS and AFS-2 assume that the probability of observing inconsistent data is small enough to be sacrificed

99

^Object-oriented databases such as Thor maintain the object encapsulation principle at the application level while
transforming object invocations into simple read and writes at the data manager level [111].

100

for the increased performance, although applications using NFS and AFS-2 should strictly be aware of
the fact that files might be out of date. Coda acknowledges the fact that applications should be prepared
for inconsistent files, and supplies special tools which will assist the user in reconciling conflicts that
are not automatically repairable. Unix files have very simple structure, they are typically interpreted by
convention from application to application. Therefore it is not possible to devise generic conflict resolution
procedures for files. However, directories within file systems have a very limited operation set, typically
create and delete. This makes automated conflict resolution possible for most independently executed
directory operations in the Coda system, although conflicts within files must be reconciled manually by
the users.

Similarly to most object-oriented databases (discussed in §9.3.2 p. 100), distributed file systems use
caching at the clients to increase performance. Research has shown that there are a number of distinctive
usage patterns within file systems which naturally lend themselves to caching [51]. For example, most
files are used by only a single user, and if a file is shared, it is normally modified by only one user [6].
This observation reduces the probability of update conflicts, and will normally improve the performance
of caching strategies. Also, read operations are much more common than write operations, which is
the main justification for the extensive use of caching in some distributed file systems such as AFS and
Coda. xFS is also based on this assumption, and exploits it also for load sharing. AFS and Coda clients
store large volumes of cached files on local disks, and use a cache invalidation protocol to maintain cache
coherence.

Caching in file systems can be compared with the data-shipping approach to replication in object systems
(see §4.3 p. 42). This makes sense in file systems as files are embodied with little extra structure; clients
access data in a file w ithout going through a closely constrained operation interface. In contrast to
the architecture proposed in this dissertation, distributed file systems exploit semantic knowledge about
applications and data to optimise replication strategies. This is not possible here, where very little
is assumed about applications and the data stored within objects. For example, building tools which
would facilitate manual repair of conflicting objects within a system support layer seems impractical.
Firstly, many objects will contain data which are not meaningful without significant application specific
knowledge; tools which could easily be used to repair them would probably be as costly to implement as
the application itself. Secondly, because these objects are not persistent, but rather very rapidly changing
in response to method invocations; the required frequency of repairs might be far too great for manual
intervention.

9.3.2 D atabase system s

Database systems manage persistent data, normally stored on disks; they do not normally consider
operations on non-persistent data such as processes [19]. It is therefore possible for database systems
to exploit other kinds of replication schemes than is possible in the proposed architecture. Transactions
maintain integrity constraints on the data, explicitly separating application programs from data managers
and assuming an inherent classification of data operations as either reads or replacing writes.

The encapsulation principle is an issue of debate in the object-oriented database community, and it
is reasonable to assume that strict encapsulation will not normally be enforced [38]. Non-idempotent
operations need not be too problematic in database systems; operations such as deposit and withdraw are
commonly decomposed to reads and overwrites [51]. By exposing the data to the database, the data can
be directly compared and overwritten, thus making it possible to use voting or coterie-based replication
schemes, for example. Externally, queries and updates can use the encapsulated object interface^.

Distributed databases are motivated by several factors, although the most important justifications are
increased performance and support for autonomy [40, 8]. Additional complexities are introduced when
database systems are built from a collection of existing databases; maintaining interoperability among
potentially heterogeneous components and ensuring dynamic growth. Many distributed databases are

very large — their size is commonly the reason for distributing them — and hence such systems tend to
employ replication such as to achieve increased performance and autonomy for shared data. Synchronous
replication protocols are therefore unsuitable; the need for autonomy dictates scalable, asynchronous
protocols. Consequently, these systems favour loose synchronisation and weak consistency replication
protocols at the added cost of reduced replication transparency.

Database systems are normally equipped with elaborate support for logging, checkpointing and grouping
actions into atomic transactions. These facilities are normally not available in programming languages,
and make it possible to use more sophisticated concurrency control for replicated data in database systems.
In contrast to the system model adopted here, where objects can only be kept consistent if they receive ■
the same sequence of method invocations, database systems can support the use of optimistic schemes
discussed in §4.5 p. 49 and [55]. Additionally, some object-oriented database systems allow objects to
be explicitly identified as either mutable or immutable depending on whether they can change state or
not [3], Immutable objects will never change, and access to those does not have to be serialised. This
fact is exploited in the optimistic concurrency scheme used in Thor [3]. Timestamping combined with
logging allows transactions to roll back upon discovery of conflicting updates. However, with optimistic
concurrency schemes, there is a danger th a t other transactions have used the data already, perhaps even
having committed. If the other transactions are not already committed they can simply be aborted,
however, if they are already committed the crucial issue is whether or not it is possible to revert its
effects; in many cases it is not. Aborts may appear in cascades, thereby incurring significant extra costs.
However, optimistic schemes will tend to perform well in systems where conflicts are rare [55].

Most distributed relational database systems are built using a function-shipping approach. Queries and
updates are sent from the client to a database server which executes the transaction. Later, the results are
passed back to the client. The function-shipping paradigm can be exploited for process replication, such
as in the hot standby approach [85]. The primary performs all the processing and a backup receives the
log records from the primary and performing redo-actions continuously on these records thereby making
sure that the recorded transactions are safely logged in case of fail-over.

Traditional client-server relational database systems, such as Sybase, Oracle and IBM’s DB2 are also
recognising replication as a means to increase performance or satisfying availability constraints [177],
although they follow different routes. Using the log from transactions committed at the primary, Sybase
System lO’s Replication Server transfers these logs to replicas which have subscribed to the data. Replicas
are ‘backups’ in the sense that all updates must be performed at the primary, only reads are allowed at the~
replicas. Although this approach might give reasonable performance, it raises the problem of maintaining
causality relations. If a client reads data at a replica, and later, on the basis of this information, performs
an update on the primary, it requires a very strict synchronisation of primary and replicas. Naturally,
the primary will attem p t to push the updates out to the replicas as fast as possible, but nevertheless,
distributed systems are asynchronous and there will be a gap in time in which the replica is lagging
behind the primary. Sybase addresses this problem by storing the logs in case communication with the
replica fails, and although it is not explicitly stated, the replica will probably be denied permission to
perform updates on the primary if it has pending logs at the primary [177]. Oracle’s Symmetric Repli
cation facilities also supports this push-model by registering, from the primary, asynchronous RPCs for
subscribing replicas. Modifications in the primary trigger these RPCs which are executed at the replicas,
following the function-shipping approach. However, Oracle also allows replicas to perform updates. Due
to the potential for conflicts, subscribing clients can implement particular ‘conflict-resolution’ procedures
which are automatically invoked by the Oracle database server upon detection of a conflict.

IBM’s Copy Management and Oracle both support a pull-model of synchronisation. Clients are allowed
to request a ‘refresh’ of replicated data (called ‘snapshot’ in Oracle’s system), and the primary passes
any updates on to the replica if necessary.

In contrast to relational databases, most object-oriented databases adopt a data-shipping computation
model. Objects are shipped across the network and copied into the cache on client workstations where
the objects can be manipulated. In contrast to the architecture proposed here, OODBs treat objects
as passive (although complex) data structures which are passed between the persistent store at servers
and the clients’ caches. The data-shipping approach might therefore give better scalability as a result of

101

leaving more of the processing to clients.

The replication schemes used in OODBs are therefore not object replication schemes. The rationale for
this approach is that the application normally resides on client workstations, and bringing the data closer
to where it is processed increases the performance of the system [35, 3]. Most database applications
interact very closely with the data, for example through object-graph navigation and query processing.
However, caching, like replication, requires coherence and synchronisation protocols and introduces the
same problems as replication schemes. Cache consistency can be achieved in several ways; [35] contains
a survey of some common approaches and argues that adaptive callback locking schemes give the best
performance.

9.3,3 N am e services

Name services offer a fundamental and important function in distributed systems; they facilitate the
sharing of named objects. A name service is essentially a database which stores (name,reference) tu
ples, and allows clients to perform both query and update operations on this information. The name
introduces a level of indirection which makes it possible to assign a meaningful name to an object rather
than a memory address. The name might be a human-readable text-string or any other identifier. Fur
ther, it has been noted that the performance of name services is critical to many applications; name
lookups may constitute more than 40% of the system call overheads in UNIX according to [41]. Al
though many objects within a system will not be registered with a name service^, the name service is
crucial during bootstrapping^ and to maintain references to important shared services. The large scale of
some distributed systems motivates system-wide naming services which provide uniform access to objects
anywhere within the system, thus forming potentially vast namespaces. These requirements introduce
significant challenges for distributed name services.

Several designs have been proposed for reliable and scalable name services, for example Grapevine [21],
The Clearinghouse [137], The Global Name Service [103], The Internet Domain Name System (DNS)
[126, 127], the architecture of Cheriton and Mann [41] and CCITT’s X.500 recommendation (although
strictly a directory service®) [39] with suggested extensions for replication [90]. To address the problem of
scale, the naming space is usually hierarchical to allow for autonomous administration and better locality .
of data. For example, in DNS, which is the system used for naming hosts in the Internet, the root-level
entries denote top-level domains such as countries and large groups of institutions. The hierarchy is
divided into zones which are the units of replication, and the nameg belonging to each zone are replicated
at a minimum of two independent sites. A replication scheme classifies zones into two groups, primary
and secondary servers. Primary servers fetch data directly from master files. Secondary servers download
data from primaries, and periodically"^ query the primary for new updates.

Generally, replication is used extensively in name services to improve their availability and performance.
Because name services have some rather distinctive characteristics, weakly consistent schemes are nor
mally used. For example, it is normally appropriate to assume that the frequency of updates are much
lower than the frequency of queries [39, 126]. The DNS architecture exploits this fact by caching the
addresses of recently resolved names [126]. Cached data are non-authoritative and associated with time
outs. Clients may therefore suspect the cache to be stale if the resolved address is unusable or if the
timeout has expired. Additionally, many name service designs assume that clients are able to tolerate
temporary inconsistencies in the data by detection [137] and failure-masking using retries® [165]. The

'̂ It is reasonable to assume that most objects are anonymous, i.e. they are not given explicit names and are only shared
among a small number of objects using their direct references [58].

®Name services can be located at well-known PEs within the network [137] at the cost of more complicated reconfiguration,
or clients may issue broadcasts to find a name service provider at the cost of more messages sent across the network [21].

®A directory service, in contrast to a name service, also contains more general information such as personal information
about users.

^The frequency is defined using adjustable timeouts.

®The use of retries are not always sufficient to tolerate inconsistencies however, for example when the stored information

102

9.4 R ep lication Support in M iddlew are

is indirect as may be the case for mailing-lists [134].

103

simple semantics of the data — names and references are simply read or overwritten — means that or
dering constraints can be relaxed. For example, in [21] it is assumed that clients very rarely communicate
directly with each other, and that clients therefore are more tolerant to different ordering of operations
on the data. However, it is still desirable that replication schemes used in name services are convergent,
so that the data stored will eventually become correct [21]. In consequence, due to their extreme require
ments for scalability and rather modest consistency requirements, name services will normally exploit
weakly consistent schemes with success.

Middleware is commonly defined as a software layer that supports the development of interoperable,
distributed applications [14, 106, 155]. Although this concept is rather vague, the term middleware is ÿ
currently used to denote a vast range of software components. Services as diverse as RPC, object re
quest brokers, transaction monitors, name services, configuration management services, communication
systems and even distributed database systems have all been classified as middleware [14]. The main |
contribution of middleware components is a bridging function which allows programmers to develop dis- •
tributed programs without too much concern for underlying heterogeneity. Many middleware components
are not concerned with replication and are therefore not discussed. However, two distinct middleware
components are concerned with replication; Lotus Notes and group communication systems. Although
they have inherently different intentions, these two components are examples of software systems which
can provide significant benefits to the development process of various classes of distributed applications.

CORE A is probably the most significant effort to date which attempts to define a framework for inter
operable distributed processing, it does not currently specify any details about replication services. The
need for replication has been recognised in CORBA, but no architecture for the actual implementation
has yet been made available[50, 106, 198].

9.4.1 Lotus N otes

Lotus Notes is a relatively comprehensive application development environment which supports the ma- r |
nipulation, storage and distribution of documents [128, 14, 80]. It is a scalable system used in both
small LANs and large corporate internetworks with heterogeneous network architectures. Lotus Notes is
based on a client-server structure; servers act as document repositories while clients (personal worksta
tions) retrieve and manipulate documents using a proprietary interface. Documents are comparable with
text-files, although they may have a composite structure, e.g. containing attachments.

Lotus Notes uses replication extensively to achieve good scalability and for support of disconnected
operation. As the central unit of data within Notes is the document, documents are also the units of
replication. Release 4 of the system allows for replication of so-called fields, which correspond with >
the internal structuring of documents into subcomponents. Replication in Lotus Notes is flexible; it is ; n
customary to employ consultants to optimise the replication strategy for large installations, as it has
a significant impact on the overall performance of the system. The flexibility is gained from the use
of dedicated replicator processes which allow pairs of servers to exchange updates to the documents
according to specified replication schedules. If either of the two databases has been modified, new and
updated entries are pushed from the newly updated copy to the other. An increase in performance was the
main motivation for reducing the granularity of replication from whole documents in Release 3 to fields
in Release 4. The reduction in replication granularity also reduces the probability of update conflicts,
which are detected automatically by Lotus Notes. Naturally, however, the reduced granularity increases
the management overheads for each exchange session. Reconciliation is performed by arbitrating among
conflicting updates, flagging the likely looser, and letting the client decide what action should be taken
[14].

In contrast to the architecture proposed here, Lotus Notes takes an ‘application-aware’ approach to
replication. A client must accept th a t shared documents might be updated simultaneously on another
server. Naturally, this increases the complexity of the application, but because documents within Lotus [
Notes have such a simple structure, inconsistencies will normally be easily observed and eliminated by
users of the system.

,

9.4.2 Group com m unication facilities

Group communication protocols have gained popularity as an approach to distributed computing because
they can simplify the task of coordinating activities among a collection of active processes, called a group. v
A group communication protocol normally implements some sort of fault-tolerant multicast within a group
of processes [89]. This approach to coordination is well suited to applications which consist of a relatively
small number of cooperating processes, less than 20 say, where the processes are located in PEs connected
to broadcast networks such as Ethernets or FDDI. The process group approach is also flexible, there is
no requirement for processes to run the same code. Due to this flexibility, a process group system could ^
be used to coordinate non-replicated activity, such as load-sharing. This is in contrast to the architecture
proposed here, object replicas managed through the surrogate are identical.

Process group protocols ensure that any message delivered to a member is delivered to either all or none of
the processes and therefore provides stronger delivery guarantees than the replication protocol proposed |
here. Examples of group communication protocols are the ISIS toolkit [18, 20] and the later Horns Ç
system [188] both developed at Cornell University, the Transis system [61] from the Hebrew University
of Jerusalem and the Totem system [129] from the University of California at Santa Barbara.

Group communication protocols can be useful for the support of replication, although these protocols
alone do not include all the facilities necessary to implement replication schemes. Generally, group
communication protocols do not encapsulate plurality, clients of the group must be aware of the fact that
they are using a group. Indeed, this lack of functionality was a motivation for the Gaggle [28] described
in §9.1.2 p. 96, and process groups are also used as underlying technology in GARF to implement reliable
message delivery among representatives (see §9.2.1 p. 98). For example the ISIS toolkit includes software
tools for failure monitoring, an interface to support automated recovery of failed process group members
and support for group reconfiguration in replication groups. The Transis system includes facilities which |
allow the programmer to merge data which have been updated in different partitions. These tools are“ (
used by the programmer to implement application specific procedures for replicated data management.

In ISIS, the programmer must design the processes specifically for replication by including statements
for joining a particular group and sending update messages to other group members. This is in contrast ^
to the architecture proposed here, which is tailored solely for replication and therefore can automate the
use of replication. Furthermore, the proposed architecture can reduce complexities in the programming i
model and does not require any substantial modification to classes being replicated other than an extra
stage of preprocessing to generate surrogates.

Clients of a replicated service need not be significantly complicated by the fact that it uses a replicated
service however. Sending a message to the group is sufficient, although it is more efficient if the sending
process is a group member [18]. Most applications are therefore likely to be structured to include most I
processes within the group. Scalability might therefore be a critical issue for these systems, and appli
cations with a large number of clients, such as a multiuser editor or a distributed workgroup scheduler, f
might observe high performance overheads regardless of whether the clients are members of the group or
not.

Additionally, process group protocols can guarantee consistency only if a majority of all the process group
members are available. A problem of scalability is present in the proposed architecture as well, but by
not requiring an intra-surrogate protocol, more surrogates can be accommodated, and surrogate failures
do not normally reduce the availability of the replicas for non-failed surrogates. Only if surrogates fail
while holding locks in the replicas can they affect availability of the system, and if so, locks are broken
and another surrogate is left the choice of retrying the invocation. Because surrogates are coordinated

104 ■

9.5 Sum m ary

via the replicas only, using the locking protocol discussed in §6.2.4 p. 66, scalability in this architecture
is mainly limited by replica lock contention and not by process group member failures as in ISIS. The
architecture proposed here is therefore more geared towards efficient sharing among large numbers of
clients, the number of clients does not influence the overheads of the replication scheme.

Some group communication systems support several message ordering policies to increase performance.
For example, the ISIS toolkit implements two types of multicast; CBCAST (Causal Broadcast) and I
ABCAST (Causal Atomic Broadcast) [18]. The CBCAST primitive exploits application semantics to v
provide asynchronous multicast based on a notion of virtual synchrony. Programmers might use this S
primitive if they are sure that causal dependency is the only necessary relation among messages. In q;
contrast, the ABCAST primitive is simpler, it ensures that all active processes within the group deliver
messages in lockstep. ABCAST is therefore a potentially much more expensive primitive than CBCAST [i
as ABCAST does not allow any asynchrony within the group. However, the performance is gained by v
sacrificing application complexity, as the programmer must show great care when deciding which primitive ij
to use. Erroneous use of CBCAST could lead to misbehaviour in the program.

Commonly, group communication protocols have been tailored to non-partitioned operation, for example a
call to a process group in ISIS will block if the partition contains less than a majority of the processes in the
group. Recently, some systems have been tailored towards larger systems where partitions are common.
Transis, allows partitioned (disconnected) operation [61]; however, this introduces a danger of conflicting |
updates, and Transis requires that programmers implement procedures for reconciling conflicting updates.

This section contains a summary of the various approaches that have been presented in this chapter.
The chapter has shown that replication schemes in different system contexts are implemented to benefit
from particular features of the surrounding system and to adhere to specific requirements set by the
application. The most distinct factor is the tradeoff between consistency, performance and scalability.
Generally, consistency requirements are sacrificed for many large scale systems such as name services and
scalable distributed file systems, although the Echo file system [181] is a counter-example, providing even_.
stronger consistency than NFS [180]. In contrast, system support for application programmers is normally
based on full consistency models, for example Arjuna [171], the work of Cooper [49] and Mazouni et. al.
[121].
Various approaches to programming language level support for replication have been presented. Due to
the different assumptions underlying these, some differences to the approach proposed in this dissertation
are evident. Cooper’s approach, similar to the one proposed here, is based on the idea of building
replication functionality into the usual RPC-stubs. The system model underlying Cooper’s work is
different, the use of persistent troupe members allows the use of an optimistic serialisation protocol.
The programmer is also required to be more involved during the construction of replicas; modules are
responsible for joining troupes. The application programmer is therefore given less freedom to specify
the degree of replication compared to the proposed architecture. GARF implements a subset of the
functionality described by Cooper; it implements a low-level invocation filtering mechanism which ensures V
that replicated objects coordinate invocations to avoid multiple executions of objects’ methods. However,
GARF is based on filtering at the invoker rather than filtering at the invokee as in Cooper’s work. GARF
can therefore map object replicas onto ISIS process groups and use this as the message delivery module.

The Gaggle is similar to the surrogate in the proposed architecture, but is not specifically designed for |
replication, it requires the implementation of additional functionality to achieve this. Fragmented objects |
is an approach advocating replicated objects, and is thus distinct from the proposed architecture in that |
the creator of the fragment is responsible for synchronisation and update propagation. However, the
approach based on reflective programming, is similar in goals to the proposed architecture, and can, for
example, be implemented using the reflective features of Open-C ++.

Replication support in application components is fundamentally different from programming support for

105

replication. Whereas file systems, name services and databases make explicit assumptions about the data
they manage, such assumptions cannot generally be made about objects that are replicated. The most
extreme consequence of this is found in name service designs. Name services have very high availability
requirements, and relatively weak consistency requirements. This, in addition to the very high read vs.
write ratio, means that optimistic replication schemes can be used with great success.

Although files are manipulated in somewhat more complex patterns than the name bindings stored
in name servers, distributed file systems have demonstrated that, with some assistance from the user
when conflicts occur, optimistic replication schemes can be used to achieve very good scalability and
performance.

In contrast, database systems rely on their sophisticated support for logging and transactions to em
ploy optimistic concurrency schemes with success. Object-oriented database systems, depending more
on caching than traditional replication techniques, show how important appropriate cache invalidation
schemes are to achieve good performance.

The two middleware systems discussed, Lotus Notes and process groups, take near opposite directions to
replication; Lotus Notes chooses to let the programmer take control of the consistency of the data. Lotus
Notes will therefore be able to support system configurations of widely differing scale. By adjusting the
scheduling of the replicator processes the propagation of changes in the data can be adapted to fit even
large distributed systems interconnected with low-capacity networks. The process group approach does
not normally sacrifice consistency, although recent systems such as Transis provide functionality to deal
with disconnected operation, and might therefore be an example of a new trend within process group
computing.

106

ï
a:

Chapter 10

Conclusions

This chapter concludes the dissertation with a summary of the main contributions and som e directions for |
further work. T he chapter is divided into four main sections; section 10.1 gives a summary o f the main insights j
and results presented throughout the dissertation, section 10.2 presents the im portance and implications o f f
these contributions. Section 10.3 identifies important directions for further work within this area, and finally,
section 10.4 compares the achievem ents with the thesis set forth at the start o f the dissertation.

10.1 Sum m ary o f C ontributions

This dissertation has argued that useful distributed systems must be constructed to withstand partial
failures. One possible approach is to introduce redundant components and apply replication techniques
to manage this redundancy. Chapter 4 presented a range of replication techniques which have been
developed to mask failures and maintain consistency among replicated components. That chapter also
argued that object replication is a technique which is especially beneficial in object systems. In contrast f|
to other techniques, such as replicated objects, object replication reduces the effort required of thé~
programmer to gain increased fault-tolerance. Various benefits and disadvantages were identified for
the different techniques, the most fundamental tradeoff being that between consistency, transparency
and scalability. In the adopted system model, based on program-level, fully encapsulated objects, some
replication techniques were identified as inappropriate, for example those techniques which are based on
overlapping replica groups and thus violate the encapsulation principle by assuming fully exposed object
state.

Furthermore, the problem of increasing application complexity motivates the provision of system support,
i.e. commonly available software components which can be used for several applications. A replication
scheme based on object replication was identified to be most appropriate in this setting, as it attempts
to minimise the changes needed when objects are replicated. Chapter 5 identified some of the problems
which must be addressed to successfully realise system support, in particular system support for object
replication where full transparency is not generally achievable.

Based on these observations, I have presented an architecture for system supported object replication.
The architecture provides assistance to software developers constructing fault-tolerant object oriented •
programs, and the simple yet flexible programming model together with built-in support for object |
sharing adds only small complications for the programmer.

10.1.1 Program m ing m odel

The most distinctive feature of this architecture is the relatively simple programming model. Surrogates,
which replace programmer defined objects, are manipulated very similarly to the original object. The

107

main difference is the addition of collators as parameters to methods which return results. Collators
which encapsulate application specific reply processing are easily constructed and therefore add little to
the complexity of using replication in object-oriented software.

Additionally, surrogates define a small set of specific exceptions which allow the programmer to han
dle surrogate failures. In summary, little added effort is required to extend an application to use the
replication mechanism.

10.1.2 O bject sharing

Object sharing is a natural consequence of the object model adopted; object references may be passed
as arguments in method invocations and thereby allow multiple objects to share other objects. In pro
gramming languages the synchronisation problems incurred by object sharing are normally left to the
programmer. However, this architecture directly supports object sharing among multiple concurrent
objects by the inclusion of serialisation functionality.

Additionally, the architecture supports sharing among objects in multiple address spaces without reduc
tions in fault-tolerance. This is achieved by allocating surrogate objects within each address space, thus
increasing the failure resilience of surrogates. For multi-user applications which consist of many separate
clients this is a significant benefit.

10.2 D iscussion

Replication is only one among several approaches to increase computing system dependability. Other
approaches, such as improved development methods, and n-version programming can also be useful to
achieve this goal. N-version programming, in contrast to replication, is able to reduce the ill effects
of software failures at the cost of developing several versions of the same software. Thus, n-version
programming can not be used for transparent system support. The use of system supported replica
tion is therefore a useful technique for increasing application dependability at a relatively small cost in
application development overheads.

A reduction in application complexity is the main motivation for the proposed architecture, and this"
has been achieved using a full consistency programming model based on a strictly serialised concurrency
scheme. Pursuing a full consistency paradigm is costly and has scalability limitations. The architecture
is clearly unsuitable for very large distributed systems where other factors such as autonomy and loose
synchronisation are more important than a simple programming model. The architecture presented here
trades transparency and genericity for performance and scalability.

10.2.1 A rchitectural lim itation s

In its current form, without support for call coordination, the architecture enforces limitations on ap
plication partitioning. The separate object graphs described in §7.2 introduce new complexities for the
application developer. Clearly, investigations into mechanisms to support call coordination are a natural
issue for further work.

A small probability of inconsistency has been favoured rather than relying on more expensive and less
scalable group communication protocols. Because the replicas themselves are not actively participating
in forwarding requests to other replicas in the group, a surrogate which crashes during the replica update
round might introduce inconsistency. Thus, the protocol does not implement the atomicity property in
the presence of surrogate failures. However, this is only a problem when replicas are shared, and other
surrogates sharing the replicas are informed about potential inconsistencies.

108

10.3 Future W ork

This dissertation has identified a number of directions for further work within the area of system supported
object replication. The rest of this section discusses these in more detail.

10.3.1 C oordinated calls

1

A very useful addition to the architecture would be a mechanism for handling replicated invocations to
shared objects, i.e. many-to-one calls. The limitations on application partitioning could then be reduced
(cf. §7.2 p. 79). However, solving this problem is non-trivial and may incur other limitations on program
behaviour [59]. The problem occurs as a consequence of multiple replicas triggering redundant invocations
on the same shared objects, and would require special method invocation protocols such that multiple
identical invocations can be detected by the invoked object [48, 121]. When a replicated invocation T
is detected, the invocation must be executed only once by the object and the result from the method
invocation should be copied and passed back to all of the invoking replicas.

10.3.2 E xperim ents w ith other transaction m odels
I

The proposed architecture is sub optimal for large scale systems, where synchronous updates are im- [
practicable. O ther, optimistic concurrency schemes could alleviate this problem. More specifically,
long-duration transactions supporting shared locks would probably be more appropriate for applica
tion classes such as CAD, software engineering tools and CSCW [99]. However, automation of confiict
resolution should be studied more carefully in such scenarios, as it is essentially the lack of semantic
knowledge within the system support layer which makes this problematical.

Access to object persistence technology would increase the viability of such experiments. Most impor- |
tantly, lower-level functionality for storing previously committed objects are necessary to implement
optimistic concurrency schemes [55].

10.3.3 H igher level abstractions ^

A goal in distributed systems is to make them at least as reliable as a centralised system. When the
system becomes large, it would be very inconvenient if a failure in a single machine implied a reduced
level of service in the rest of the system (see page 27).

For an application developer it would be useful if the level of availability could be indicated by the
application, and if a replication support facility was responsible for achieving this by using the necessary
degree of replication and computation of (sub)optimal replica placement [114, 175]. The application
programmer will in many cases be unable to make a good judgement of the placement of replicas, due
to e.g. dynamically changing failure behaviour and object interdependencies [124]. However, making
availability guarantees is difficult because the achieved level of availability depends on many factors such
as the probability of failures, system load, external events like power outages and other environmentally
caused failures. A step on the way to achieve this would be to relieve the programmer from having to
indicate PE names during the initialisation of surrogates (cf. §7.4 p. 81). Rather, a pool of PEs could f
be maintained by system software which would perform the necessary analysis of the reliability of the
PEs to achieve the required availability. A good placement of replicas would also ensure a relatively well
shared load among the PEs in the network.

Real applications will have different requirements on the period of reliable operation. While some appli- *
cations can safely be restarted occasionally, other applications might require continuous operation thus
necessitating automated replica reconfiguration (cf. §6.3.2 p. 70). An important factor for such a scheme
is the frequency of attem pted reconfigurations. A high number of replicas results in higher survivability,
but over-frequent reconfigurations might be very costly. This tradeoff should probably be determined by

109

the application programmer on the basis of the period of expected operation and the expected failure
rate among the replicas.

10.3.4 E xception processing in collators

The current architecture does not support the processing of exceptions from replicas. Solving this prob
lem could be done in two ways, both introducing some complexities to the presently simple collator
programming model;

1. Add exception handling in the collator itself. By restructuring the surrogate, a collator could be
made ‘responsible’ for triggering remote invocations, and thus be able to handle exceptions from
these invocations directly. However, this approach would significantly complicate the programming
model of the collator as the collator now would have to include code for each remote object type.
Collator reuse would also be complicated.

2. Extend the collator interface with new add methods to notify the collator about exceptions. The
main difficulty with this approach is the need to define a naming convention for matching the
new methods with particular programmer defined exceptions. This approach also significantly
complicates reuse, as different objects are likely to define independent exceptions.

10.3.5 P rotoco l verification

The architecture, and in particular the serialisation protocol, should undergo a formal verification process.
The current protocols have only been subjected to informal reasoning and testing. Designing correct
protocols is extremely complicated as the state-space is very large, and there might be special failure
situations which trigger incorrect behaviour. A formal protocol verification process should be applied on
a realistic implementation of the architecture.

10.4 F inal R em arks

This dissertation has verified the thesis underlying this work; partial system support for object replication
is feasible and such support assists the development of dependable distributed applications. The thesis
was proved by demonstrating the usefulness of a prototype implementation of the proposed architecture.

110

A ppendix A

D esigning Collators

This appendix presents the sam ple code for im plem entation o f reusable collators as it has been used within
the prototype implemented in M odula-3. T he presented code dem onstrates the relatively simple programming
necessary to construct collators.

A ,1 A Specialised C ollator

The code below implements the interface for an asynchronous collator for integer types. This particular
collator is a specialisation of an abstract class In tC o lla to r .T which defines template functions for the
methods i n i t , p repare, add, ad d F ailu re and g e tR esu lt. The abstract class is presented in the next
section.

(*
File: IntFirstCollator.13
Documentation :

A specialisation of IntCollator. This one returns on first
result. ~

♦)
INTERFACE IntFirstCollator;
IMPORT IntCollator;
TYPE

T <: Public;
Public = IntCollator.T OBJECT
END;

END IntFirstCollator.

The code below is an implementation of a specialised asynchronous collator for integer types. Because
the abstract class In tC o lla to r .T implements the necessary functionality for the methods i n i t , add and
g e tR esu lt, only p repare needs to be implemented here. The class In tC o lla to r .T implements a collator
which waits for all replies and returns a random reply. Therefore, only the number of wanted replies needs
to be redefined through the p rep are method.

I l l

(*
File: IntFirstCollator.m3
Documentation:

A specialised version of the IntCollator. This one
returns on the first reply.

*)
MODULE IntFirstCollator;
REVEAL

T = Public BRANDED "IntFirstCollator.T" OBJECT
OVERRIDES

prepare := Prepare; (* Only this method needs a new implementation *)
END;

PROCEDURE Prepare(self : T ; nReplicas : INTEGER) =
(*
Documentation:

This method specialised the method in IntCollaotor so
as to return on the first result.

*)
BEGIN

LOCK self.m DO
self.nReplicas := nReplicas;
self.nResultsWanted := 1;

END;
END Prepare;

BEGIN END IntFirstCollator.

A .2 A B asic Integer C ollator

This section presents the code for a basic integer collator which could form the basis for a number of
different specialised collators, such as I n tF i r s tC o l la to r .T presented in the previous section.

File: IntCollator.i3

Documentation:
A simple, generic, collator for integers which waits for all
results and returns the first added.

*)
INTERFACE IntCollator;
IMPORT Thread, IntList;
EXCEPTION TooHanyFailures;

TYPE
T <: Public;
Public = OBJECT

ra : MUTEX;
collecting
results
nReplicas
nResultsAdded
nResultsWanted
nFallures

METHODS
initO : T;

Thread.Condition;
IntList.T;
INTEGER;
INTEGER
INTEGER
INTEGER

prepare(nReplicas : INTEGER);

112

add(e : INTEGER) : BOOLEAN;
addFailure0 : BOOLEAN;
getResult() : INTEGER RAISES {TooManyFailures};

END;
END IntCollator.

(*
File: IntCollator.m3

Documentation:
Collects, manipulates and presents results from replicated
invocations. This is a generic int-collator which waits for
all the results and returns the first.

*)
MODULE IntCollator;
IMPORT IntList, Thread;

REVEAL
T = Public BRANDED "IntCollator.T" OBJECT
OVERRIDES

init := Init;
add := Add;
addFailure := AddFailure;
prepare := Prepare ;
getResult := GetResult;

END;

PROCEDURE Init(self : T) : T =
BEGIN

self.m := NEW(MUTEX);
self.collecting := NEW(Thread.Condition);
self,results := NEW(IntList.T);
self.nReplicas ;= 0;
self.nResultsAdded := 0;
self.nResultsWanted := 0;
self.nFailures := 0;
RETURN self;

END Init;

PROCEDURE Prepare(self : T; nReplicas ; INTEGER) =
(*
Documentation:

Default is to wait for all the replies.
*)
BEGIN

LOCK self.m DO
self.nReplicas := nReplicas;
self.nResultsWanted := self.nReplicas;

END;
END Prepare;

PROCEDURE Add(self : T; e : INTEGER) : BOOLEAN =
(*
Documentation:

Adds e to the collection of results gathered from the replicas.
Returns TRUE iff this was the last result needed.

*)
BEGIN

IF self.nReplicas < 1 THEN (* TRUE before prepare is called *)

113

LOCK self.m DO
WHILE self.nReplicas < 1 DO

Thread.Wait(self.m, self.collecting);
END;

END; (* lock +)
END;
IF self.nResultsAdded = self.nResultsWanted THEN

RETURN TRUE;
ELSIF (self.nResultsAdded + self.nFailures + 1) >= self.nReplicas THEN

(*
If we can be sure that too many failures have happended
already so that adding another result doesn’t matter.

*)
RETURN TRUE;

ELSE
self.results := IntList.Cons(e, self.results);
INC(self.nResultsAdded);
RETURN TRUE;

END;
END Add;

PROCEDURE AddFailure(self : T) : BOOLEAN =
(*
Documentation:

The parallel rpc reports failures to the collator. In case
the number of failures is too high to allow for normal
result processing, TRUE is returned.

+)
BEGIN

INC(self.nFailures) ;
IF self.nFailures + self.nResultsAdded >= self.nReplicas THEN

RETURN TRUE ;
ELSE

RETURN FALSE;
END;

END AddFailure;

PROCEDURE GetResult(self : T) : INTEGER RAISES {TooHanyFailures} =
(*
Documentation:

The procedure returns the processed result. The exception
TooHanyFailures is raised appropriately.

*)
BEGIN

IF self.nResultsWanted > self.nResultsAdded THEN
RAISE TooHanyFailures;

END;
RETURN IntList.Nth(self.results, 0);

END GetResult;

BEGIN (* Module initialisation *) END IntCollator.

114

A ppendix B

Probability Form alism

A small amount of probability calculation is used throughout this dissertation. This appendix presents the
formalism used and contains a discussion of availability in majority locking schemes.

B .l P robability

The probability that an event A will occur in a certain period is denoted P (A) where 0 < P(A) < 1. A
value of zero means that the event never occurs, and a value of one means that the event certainly will
occur. The probability P(-^A) that an event A will not occur is found by; P(-<A) — 1 ~ P(A).

If A and B are independent events, i.e. the occurrence of A does not affect the probability of B (and
vice versa), then the probability of both events occurring is the product of their probabilities;

P{A and B) - P{A) • P{B) (B.l)

The assumption of independent events is in some cases inappropriate (e.g. see §3.2.2 p. 32) and must be
considered in each case.

If the probability P{A) of event A per unit of time is much less than one and A is memoryless^, then the
mean time to event A is;

^ T { A) « (B.2)

If events A, B, C have mean time M T{A), M T {B), M T{C) then the mean time to the first one of the
three events P{F) is (using equation B.2);

MT { F) Rj ^ ^ (B.3)
\ M T { A) + MT { B) + MT { C)

The M T T F rating for a component is the mean time to failure, i.e. the predicted time before the first
failure. Using equation B.3 above; given n components A, statistically independent and with the same
MTTF rating, M TTF a ̂ the mean time to the first failure event M T T F first is:

M T T F ,ir .t « (B.4)

r(c))

 ̂An event A is memoryless if the event is just as likely to occur very shortly as it is to occur in a long time. Reliability
models of computing equipment normally makes this assumption.

115

B .2 A vailab ility o f M ajority Locking Schem es

Although majority locking may appear rather restrictive, it gives rather good availability in some config
urations. The availability Am of a majority locking scheme can be determined as follows. To be available,
the scheme requires cooperation from at least [| J + 1 replicas, or that at most — 1 replicas are failed
{nfailed in the formula). If the replicas’ failure modes are independent, the probability P of availability
can be determ ined using a binomial distribution function. Summing this function over the range of valid
numbers of failures gives the probability that the majority scheme is able to find enough replicas among
the n replicas.

‘̂ f a i l e d

E
i=0

p '(i - p) ’ (B.5)

The formula assumes that each replica fails with a probability p, and that their failures are independent.

If calculated for a selection of p and n it becomes clear that the scheme does achieve relatively good
availability for quite small values of n, even though the availability is poor for n < 3.

n \ p 0.01 0.05 0.1 0.2 0.3
1 0.99 0.95 0.9 0.8 0.7
2 0.9801 0.9025 0.81 0.64 0.49
3 0.999702 0.99275 0.972 0.896 0.784
4 0.999408 0.985981 0.9477 0.8192 0.6517
5 0.99999 0.998842 0.99144 0.94208 0.83692
10 % 1 0.999936 0.998365 0.967207 0.901191
15 % 1 % 1 0.999966 0.99576 0.937625
20 % 1 % 1 0,999993 0.999769 0.959723

Figure B.l: Failure resilience of majority voting scheme, calculated with six digits accuracy.

As an example of how this would affect the availability of a real system, consider the following scenario:
A distributed group scheduling application running on a workstation depends on a non-replicated service- ■
on another workstation to function correctly, for example a mailservice. Assume the workstation running
the mailservice is slightly unreliable, perhaps it is also used for software development or other computing
intensive tasks and is therefore commonly overloaded, and that it usually runs for 10 days before crashing.
This gives an approximate probability of failure on any given day of = 0.1 (using eq. B.2).

Such high probability of failure might not be appropriate for such applications. By replicating the
mail-service onto e.g. 5 workstations with the same reliability, and using a replication scheme based
on majority locking for serialisation, the probability of failure (i.e. unavailability) would be reduced to
1 — 0.99144 % 0.009. The application could now, again ignoring other failures, achieve an MTTF of
approximately 111 days.

116

Bibliography

[1

[2

[3

[4

[5

[6

[7

[8

[9

[10

[11

[12

[13

[14

[15

Russell J. Abbott. Resourceful Systems for Fault Tolerance, Reliability and Safety. ACM Computing
Surveys, 22(l):35-68, March 1990.

Richard M. Adler. D istributed Coordination Models for Client/Server Computing. IEEE Computer,
pages 14-22, April 1995.

Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Maheshwari. Efficient Optimistic Concur
rency Control Using Loosely Synchronised Clocks. In SIGMOD95 [172], pages 23-34. SIGMOD
RECORD 24(2).

A. L. Ananda, B. H. Tay, and E. K. Koh. A Survey of Asynchronous Remote Procedure Calls.
ACM Operating Systems Review, 26(2):92-109, April 1992.

Birger Andersen, Carlos Baquero, and Rui Oliveira, editors. Proceedings of ECOOP’95 Workshop
on Mobility and Replication, Aarhus, Denmark, August 1995.

Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson, Drew S. Roselli,
and Randolph Y. Wang. Serverless Network File Systems. In S0SP15 [174], pages 109-126. This
paper also appears in ACM TCoS 14(l):41-79, Feb. 1996.

Anish Arora and Mohamed Gouda. Closure and Convergence: A Foundation of Fault-Tolerant
Computing. IEEE Transactions on Software Engineering, 11:1015-1027, November 1993.

M. Atkinson and A. England. Towards New Architectures for D istributed Autonomous Database
Applications. In Security and Persistence: Proceedings of the International Workshop on Computer
Architectures to Support Security and Persistence of Information, Bremen, West Germany, 1990.

M. Atkinson and R. Morrison. Orthogonal Persistent Object Systems. VLDB Journal, 4(3):319-401,
1995.

A. Avizienis. The N-Version approach to fault-tolerant software. IEEE Transactions on Software
Engineering, 11:1491-1501, December 1985.

Henry G. Baker, editor. Lecture Notes in Computer Science (Vol. 986): Proceedings International
Workshop on Memory Management IW M M 95, Kinross, UK, September 1995. Springer-Verlag,

Henry G. Baker. Preface. In Lecture Notes in Computer Science (Vol. 986): Proceedings Interna
tional Workshop on Memory Management IW M M 95 [11].

Michael Barborak, Miroslaw Malek, and Anton Dahbura. The consensus problem in fault-tolerant
computing. ACM Computing Surveys, 25(2):171-220, June 1993.

Philip A. Bernstein. Middleware: A Model for Distributed System Services. Communications of
the ACM, 39(2):86-98, February 1996.

Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Enim Gun Sirer, Marc E. Fiuczynski, David
Becker, Craig Chambers, and Susan Eggers. Extensibility, Safety and Performance in the SPIN
Operating System. In S0SP15 [174].

117

[16] Robert V. Binder. Software Quality and Object Orientation. IEEE Computer, 28(10);68-69,
October 1995.

[17] Jan C. Bioch and Toshihide Ibaraki. Generating and Approximating Nondominated Coteries. IEEE
Transactions on Parallel and Distributed Systems, 6(9);905-914, September 1995.

[18] Kenneth P. Birman. The Process Group Approach To Reliable D istributed Computing. Commu
nications of the ACM, 36(12):37-53, December 1993.

[19] Kenneth P. Birman and Bradford B. Glade. Reliability Through Consistency. IEEE Software,
pages 28-41, May 1995.

[20] Kenneth P. Birman and Thomas A. Joseph. Reliable Communication in the Presence of Failures.
ACM Transactions on Computer Systems, pages 47-76, February 1987.

[21] A. Birrell, R. Levin, R. Needham, and M. Schroeder. Grapevine: An Exercise in Distributed
Computing. Communications of the ACM, 25:260-274, 1982.

[22] A. Birrell, G. Nelson, S. Owicki, and E. Wobber. Network Objects. SRC Research Report 115,
DEC, February 1994.

[23] A.D. Birrell and B. J. Nelson. Implementing Remote Procedure Calls. ACM Transactions on
Computer Systems, 2(l):39-59, February 1984.

[24] Andrew Birrell, David Evers, Greg Nelson, Susan Owicki, and Edward Wobber. D istributed
Garbage Collection for Network Objects. SRC Research Report 116, DEC, December 1993.

[25] Andrew D. Birrell. An Introduction to Programming with Threads. SRC Research Report 35,
DEC, January 1989.

[26] Andrew P. Black. References; notes from the Store Working Group, Glasgow Research Festival
1995. Unpublished research note. Dept, of Computing Science, University of Glasgow.

[27] Andrew P. Black and Yeshayahu Artsy. Implementing Location Independent Invocation. IEEE
Transactions on Parallel and Distributed Systems, 1(1)-.107-119, January 1990.

[28] Andrew P. Black and Mark P. Immel. Encapsulating Plurality. In Guerraoui et al. [87], pageg” '
57-79.

[29] Grady Booch. Object-Oriented Design with Applications. Benjamin Cummings, 1991.

[30] Borland International, Inc. ObjectWindows for C++ Version 2.0: Reference Guide. Borland
International, Inc., 1993.

[31] Georges Brun-Cottan and Mesaac Makpangou. Adaptable Replicated Objects in Distributed En
vironments. Research Report 2593, Project SOR, INRIA, May 1995.

[32] Clemens H. Cap. Massive Parallelism with Workstation Clusters — Challenge or Nonsense? Tech
nical Report IFI-TR 94.01, Department of Computer Science, University of Zurich, December 1993.

[33] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, and G. Nelson. Modula-3 Report
(revised). SRC Research Report 52, DEC, November 1989.

[34] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, and Polymorphism.
ACM Computing Surveys, 17(4):471-522, 1985.

[35] Michael J. Carey, Michael J. Franklin, and Markos Zaharioudakis. Fine-Grained Sharing in a Page
Server OODBMS. In Proceedings of the 1994 SIGMOD, Minneapolis, MN, May 1994.

■

[36] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Techniques for Reducing Consistency-
Related Communication in Distributed Shared-Memory Systems. ACM Transactions on Computer
Systems, 13(3):205-243, August 1995.

118

[37] Thomas L. Casavant and Mukesh Singhal. Readings in Distributed Computing Systems. IEEE
Computer Society Press, 1994.

[38] Roderic G.G. Cattell. Object Data Management: Object-Oriented and Extended Relational Database
Systems. Addison-Wesley, 1991.

[39] CCITT. Recommendation X.500: The Directory - Overview of Concepts, Models and Service.
International Telecommunications Union, Place des Nations, 1211 Geneva, Switzerland, 1988.

[40] Stefano Ceri and Giuseppe Pelagatti. Distributed Databases. McGraw Hill, 1984.

[41] David R. Cheriton and Timothy P. Mann. Decentralizing a Global Naming Service for Improved
Performance and Fault Tolerance. ACM Transactions on Computer Systems, 7(2): 147-183, May
1989.

[42] David R. Cheriton and Dale Skeen. Understanding the Limitations of Causally and Totally Or
dered Communication. In Proceedings of the Thirteenth ACM Symposium on Operating Systems
Principles, pages 44-57, 1993.

[43] K. G. Chin and Q. Zheng. FDDI-M: A Scheme to Double FDDI’s Ability of Supporting Synchronous
Traffic. IEEE Transactions on Parallel and Distributed Systems, 6(11): 1125-1131, November 1995.

[44] Flavin Christian. Understanding Fault-Tolerant Distributed Systems. Communications of the ACM,
34(2), 1991.

[45] Fan R. K. Chung. Reliable Software and Communication I: An Overview. IEEE Journal on Selected
Areas in Communications, 12(l):23-32, January 1994.

[46] Brian A. Coan and Daniel Hey man. Reliable Software and Communication III: Congestion Control
and Network Reliability. IEEE Journal on Selected Areas in Communications, 12(l):40-45, January
1994.

[47] Douglas E. Comer. Principles, Protocols and Architecture, volume 1 of Internetworking with
TCP/IP. Prentice Hall, 1995.

[48] Eric C. Cooper. Replicated Distributed Programs. In Proceedings of the Tenth ACM Symphosium_.
on Operating Systems Principles, pages 63-78, Orcas Island, Washington, U.S.A., December 1985.
ACM Operating Systems Review 19(5).

[49] Eric C. Cooper. Replicated Procedure Call. ACM Operating Systems Review, 20(l):44-65, January
1986.

[50] Digital Equipment Corporation, Hewlett-Packard Company, HyperDesk Corporation, NCR Cor
poration, Object Design Inc., and Sunsoft Inc. The Common Object Request Broker: Architecture
and Specification, revision 1.1. OMG, 1991.

[51] George Couloris, Jean Dollimore, and Tim Kindberg. Distributed Systems: Concepts and Design.
Morgan Kaufmann Publishers, second edition, 1994.

[52] M. Mira da Silva, M. P. Atkinson, and A. P. Black. Semantics for Parameter Passing in a Type-
Complete Persistent RPC. In Proceedings of the 16th International Conference Distributed Com
puting Systems, Hong Kong, May 1996.

[53] John Daniels and Steve Cook. Strategies for Object Sharing in Distributed Systems. Journal of
Object Oriented Programming, pages 27-36, January 1993.

[54] David Garlan and Robert Allen and John Ockerbloom. Architectural mismatch: Why reuse is so
hard. IEEE Software, pages 17-26, November 1995.

[55] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. Consistency in Partitioned Networks.
ACM Computing Surveys, 17(3):341-370, 1985.

119

[56] Wim De Pauw, Doug Kimelman, and John Vlissides. Modeling Object-Oriented Program Ex
ecution. In Lecture Notes in Computer Science: Proceedings ECOOP’94 (Vol. 821): European
Conference on Object Oriented Programming. Springer-Verlag, 1994.

[57] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Sturgis,
Dan Swinehart, and Doug Terry. Epidemic Algorithms For Replicated Database Maintainance. In
Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing, Van
couver, British Columbia, Canada, August 1987.

[58

[59

[60

[61

[62

[63

[64

[65

[66

[67

[68

[69

[70

[71

Peter Dickman. Distributed Object Management in a Non-Small Graph of Autonomous Networks
with Few Failures. PhD dissertation, Darwin College, University of Cambridge, 1991.

Danny Dolev and Dalia Malki. The Transis Approach to High Availability Cluster Communication.
Communications of the ACM, 39(4):64-70, April 1996.

Peter Dickman. Some Limitations for Operating Systems Support for Object Replication. Unpub
lished research note, Department of Computing Science, University of Glasgow, Glasgow G12 8QQ,
UK, 1994.

Peter Dickman, Mesaac Makpangue, and Marc Shapiro. Contrasting Fragmented Objects with
Uniform Transparent Object References for D istributed Programming. In SIGOPS 1992 European
Workshop, on Models and Paradigms for Distributed Systems Structuring, Project SOR, INRIA
Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France, September 1992. 7

Kemal Efe and Venlcatesh Krishnamoorthy. Optimal Scheduling of Compute-Intensive Tasks on a
Network of Workstations. IEEE Transactions on Parallel and Distributed Systems, 6(6);668~673,
June 1995.

Hans Eriksson. MBONE: The Multicast Backbone. Communications of the ACM, 37(8):54-60,
August 1994.

P.D. Ezhilchelvan, I. Mitrani, and S.K. Shrivastava. An empirical study of the performance of
distributed replicated systems. Technical Report Series 278, Computing Laboratory, University of
Newcastle upon Tyne, January 1989.

Jean-Charles Fabre, Vincent Nicomette, Tanguy Perennou, Robert Stroud, and Zhixue Wu. Imple
menting Fault-Tolerant Applications Using Reflective Object-Oriented Programming. In Predictably
Dependable Computing Systems [149], chapter III, pages 189-208.

Tor E. Fægri. Investigation of distributed consensus algorithms. Senior honours project. Depart
ment of Computing Science, University of Glasgow, June 1994.

.Tor E. Fægri. Limitations for inconsistency in support layers for reliable distributed object systems.
In Andersen et al. [5].

Edward W. Felten and Dylan McNamee. Improving the Performance of Message-Passing Applica
tions by Multithreading. In Proceedings of the Scalable High Performance Computing Conference,
pages 84-89, April 1992.

M. Fisher, N. Lynch, and M. Merritt. Impossibility of Distributed Consensus with One Faulty
Process. Journal of the ACM, 32{2):374-382, April 1985.

Robert Fowler. Architectural Convergence and The Granularity of Objects in Distributed Systems.
In Guerraoui et al. [87], pages 33-46.

Robert J. Fowler. The complexity of using forward addresses for decentralised object finding. In
Proceedings of the 5th Annual ACM Symposium on Principles of Distributed Computing (PODC’5),
pages 108-120, August 1986.

120

[72] William B. Brakes and Christopher J. Fox. Sixteen Questions About Software Reuse. Communica
tions of the ACM^ 38(6):75-87, June 1995.

[73] Steven Fraser. Patterns: From Cult to Culture. In OOP SLA ’95 Proceedings Addendum: Symposia
Summaries^ pages 85-88, 1995.

[74] Jeffrey Fritz. Video Connections. Byte, pages 113-116, May 1995.

[75] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1995.

[76] Hector Garcia-Molina and Daniel Barbara. How to Assign Votes in a Distributed System. Journal
of the Association for Computing Machinery, 32(4);841-860, October 1985.

[77] Kurt Geihs, Birgitte Bar, and Arno Puder. Toward Open Service Environments. In Guerraoui
et al. [88], pages 153-163.

[78] Kurt Geihs, Reinhard Heite, and Ulf H. Hollberg. Protected Object References in Heterogeneous
Distributed Systems. IEEE Transactions on Computers, 42(7):809-815, July 1993.

[79] David K. Gifford. Weighted Voting for Replicated Data. In Proceedings of the Seventh ACM
Symphosium on Operating Systems Principles, pages 150-162, December 1979.

[80] Steve Gillmor. Notes 4.0: Now I t ’s Webware. Bijte, 21(4):133-136, April 1996.

[81] Richard A. Golding and Darrell D. E. Long. The Performance of Weak-Consistency Replication
Protocols. Technical Report UCSC-CRL-92-30, Concurrent Systems Laboratory, Computer and
Information Sciences, University of California, Santa Cruz, July 1992.

[82] James Gosling, Bill Joy, and Guy Steele. Java language specification version 1.0. Available from
the Java WWW server at http://java.sun.com:80/doc/language-specification.html.

[83] Y von Gourhant. An Object-Oriented Approach for Replication Management. In Paris and Garcia-
Molina [139], pages 74-77.

[84] Jim Gray. The cost of messages. In Proceedings of the Seventh Annual ACM Symposium on
Principles of Distributed Computing, pages 1-7, Toronto,Ontario,Canada, August 1988. ACM, ACVT
Press.

[85] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann Publishers, 1993.

[86] Irene Greif, Robert Seliger, and William Weihl. A Case Study of CES: A Distributed Collaborative
Editing System Implemented In Argus. IEEE Transactions on Software Engineering, 18(9):827-839,
September 1992.

[87] Rachid Guerraoui, Oscar Nierstrasz, and Michel Riveill, editors. Lecture Notes in Computer Sci
ence (Vol. 791): Proceedings ECOOP’93 Workshop on Object Based Distributed Programming,
Kaiserslautern, Germany, July 1993. Springer-Verlag.

[88] Rachid Guerraoui, Oscar Nierstrasz, and Michel Riveill, editors. Lecture Notes in Computer Science
(Vol. 938): Proceedings International Workshop on Theory and Practice in Distributed Systems,
Dagstuhl Castle, Germany, September 1994. Springer-Verlag.

[89] Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related problems. In Distributed
Systems [130], chapter 5, pages 97-146.

[90] S. E. Hardcastle-Kille. Replication and Distributed Operations extensions to provide an Internet
Directory using X.500. Network Working Group, Request For Comments; RFC 1276, November
1991.

121

http://java.sun.com:80/doc/language-specification.html

[91] J. S. Heidemann, T. W. Page, R. G. Guy, and G. J. Popek. Primarily Disconnected Operation:
Experiences with Ficus. In Paris and Garcia-Molina [139], pages 2-5.

. f-
[92] Maurice Herlihy. A Quorum-Consensus Replication Method for Abstract Data Types. ACM Trans- ■

actions on Computer Systems, 4(l):32-53, February 1986.

[93] Stefan G. Hild. Disconnected Operation for Wireless Nodes. In Andersen et al. [5].

[94] Andy Hisgen, Andrew Birrell, Charles Jerian, Timothy Mann, and Garret Swart. Some Conse
quences of Excess Load on the Echo Replicated File System. In Paris and Garcia-Molina [139],
pages 92-95.

[95] Jun ichiro Itoh, Yasuhiko Yokote, and Mario Tokoro. SCONE: Using Concurrent Objects for Low-
level Operating System Programming. In Proceedings of the Tenth Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages 385-398, Austin, Texas, USA,
October 1995. Published in ACM SIGPLAN Notices 30(10).

[96] JavaSoft Inc. The java language: An overview. Available from the Java WWW server at
ht tp : / /j ava. sun.com:80/doc/O ver vie ws / j ava /.

[97] J.J.Kistler and M.Satyanarayanan. Disconnected Operation in the Coda File System. ACM Trans
actions on Computer Systems, 10(1), 1992.

[98] Alan Joch. How Software Doesn’t Work. Byte, 20(12):48-58, December 1995.

[99] Gail E. Kaiser, Wenwey Hseush, Steven S. Popovich, and Shyhtsun F. Wu. Multiple Concurrency
Control Policies in an Object-Oriented Programming System. In Research Directions in Concurrent
Object-Oriented Programming, chapter 7, pages 195-210. MIT Press, 1993.

[100] Frank Kappe. A Scalable Architecture for Maintaining Referential Integrity in Distributed Infor- I
mation Systems. Authors email address: fkappe@ iicm.tu-graz.ac.at.

[101] Thilo Kielmann. Object-Oriented Distributed Programming with Objective Linda. In Proceed
ings First International Workshop on High Speed Networks and Open Distributed Platforms, St.
Petersburg, Russia, June 1995. ?

[102] Rivka Ladin, Murray S. Mazer, and Alec Wolman. Replicating the Procedure Call Abstraction. In -4
Paris and Garcia-Molina [139], pages 86-89.

[103] B. W. Lampson. Designing a Global Name Service. In Proceedings of the Fifth ACM Annual
Symposium on Principles of Distributed Computing, pages 1-10, Calgary, Canada, 1986.

[104] Jean-Claude Laprie. Dependability — Its Attributes, Impairments and Means. In Predictably
Dependable Computing Systems [149], chapter I, pages 3-18.

[105] Jean-Claude Laprie and Karama Kanoun. X-Ware Reliability and Availability Modeling. IEEE *
Transactions on Software Engineering, 18(2):130-147, February 1992.

[106] Ted G. Lewis. Where Is Client/Server Software Headed? IEEE Computer, pages 49-55, April 1995.

[107] Jochen Liedke. On /r-Kernel Construction. In S0SP15 [174].

[108] Mengjou Lin, Jenwei Hsieh, David H. C. Du, Joseph P. Thomas, and James A. MacDonald. Dis
tributed Network Computing Over Local ATM Networks. IEEE Journal on Selected Areas in J
Communications, 13(4):733-748, May 1995.

[109] David S. Linthicum. Network Management in the D istributed Enterprise. Open Computing, 12(9),
September 1995.

[110] B. Liskov and R. Scheifler. Guardians and Actions: Linguistic Support for Robust, Distributed
Programs. ACM Transactions on Programming Languages and Sijstems, 5(3):381-404, 1983.

122

mailto:fkappe@iicm.tu-graz.ac.at

111] Barbara Liskov, Mark Day, and Liuba Shrira. Distributed object management in Thor. In M.Tamer
Ozsu, Umeshwar Dayal and Patrick Valduries, editor, Distributed Object Management, pages 79-91.
Morgan Kaufmann, 1994.

112] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, and Liuba Shrira. Efficient
Recovery in Harp. In Paris and Garcia-Molina [139], pages 104-106.

113] Mark C. Little and Santosh K. Shrivastava. Object Replication in Arjuna. BROADCAST Project
Deliverable Report, Vol. 2, October 1994. Available from Department of Computing Science, Uni
versity of Newcastle, Newcastle upon Tyne, NEl 7RU UK.

114] M.C. Little and D.L. McCue. The Replica Management System: a Scheme for Flexible and Dynamic
Replication. In Proceedings of the Second Workshop on Configurable Distributed Systems, Pittsburg,
March 1994.

115] Roy Longbottom. Computer System Reliability. John Wiley & Sons, 1980.

116] Mesaac Makpangou, Yvon Gourhant, Jean-Pierre Narzul Le, and Marc Shapiro. Structuring Dis
tributed Applications as Fragmented Objects. Research Report 1404, INRIA,France, January 1991.

117] Mesaac Makpangou, Yvon Gourhant, Jean-Pierre Le Narzul, and Marc Shapiro. Fragmented Ob
jects for Distributed Abstractions. In Readings in Distributed Computing Systems [37], chapter 4,
pages 170-186.

118] Frank Manola. Interoperability Issues in Large-Scale Distributed Object Systems. ACM Computing
Surveys, 27(2):268-270, June 1995.

119] Bruce E. Martin, Claus H. Pedersen, and James Bedford-Roberts. An Object-Based Taxanomy for
Distributed Computing Systems. In Readings in Distributed Computing Systems [37], chapter 4,
pages 152-169.

120] Margaret Martonosi, Anoop Gupta, and Thomas E. Anderson. Tuning Memory Performance of
Sequential and Parallel Programs. IEEE Computer, 28(4):32-40, April 1995.

121] Karim R. Mazouni, Benoît Garbinato, and Rachid Guerraoui. Filtering Duplicated Invocations
Using Symmetric Proxies. In Proceedings of the International Workshop on Object Orientation
Operating Systems, pages 118-126, Lund, Sweeden, August 1995.

122] Derek McAuley. Private communications. Dept, of Computing Science, University of Glasgow.

123] R. McConnell. The European Meta Computing Utilising Integrated Broadband Communications
(E=MC2) Project. In Bob Hertzberger and Guiseppe Serazzi, editors, Lecture Notes in Computer
Science (Vol. 919): Proceedings International Conference and Exhibition on High-Performance
Computing and Networking, pages 54-59, Milan, Italy, May 1995. Springer-Verlag.

124] D. L. McCue and M. C. Little. Computing Replica Placement in Distributed Systems. In Paris
and Garcia-Molina [139], pages 74-77.

125] James G. Mitchell, Jonathan J. Gibbons, Graham Hamilton, Peter B. Kessler, Yousef A. Khalidi,
Panos Kougiouris, Peter W. Madany, Michael N. Nelson, Michal L. Powell, and Sanjay R. Radia.
An overview of the spring system. Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View Ca
94043. The document is available from the Sun WWW server at http://www .sun.com /.

126] P. Mockapetris. Domain Names — Concepts and Facilities. Network Working Group, Request For
Comments: RFC 1034, November 1987.

127] P. Mockapetris. Domain Names — Implementation and Specification. Network Working Group,
Request For Comments: RFC 1035, November 1987.

128] Kenneth More. The Lotus Notes Storage System. In SIGMOD95 [172], pages 427-428. SIGMOD
RECORD 24(2).

123

http://www.sun.com/

$

s

[129] L. E. Moser, P. M, Melliar-Smith, D. A. AgarwaI, R. K. Budhia, and C. A. Lingley-Papadopoulis. S
Totem: A Fault-Tolerant Multicast Group Communication System. Communications of the ACM,
39(4):54-63, April 1996.

[130

[131

[132

[133

[134

[135

[136

[137

[138

[139

[140

[141

[142

[143

[144

[145

[146

[147

Sape Mullender. Distributed Systems. ACM Press Frontier. Addison-Wesley, second edition, 1993.

Sape Mullender. Kernel Support for Distributed Systems. In Distributed Systems [130], chapter 15,
pages 385-409.

Sape J. Mullender. Interprocess Communication. In Distributed Systems [130], chapter 9, pages S
217-250.

Sape J. Mullender, Guido van Rossum, Andrew S. Tanenbaum, Robbert var Renesse, and Hans
van Staveren. Amoeba: A Distributed Operating System for the 1990s. IEEE Computer, pages
44-53, May 1990.

Roger M. Needham. Names. In Distributed Systems [130], chapter 12, pages 315-327.

John R. Nicol, C. Thomas Wilkes, and Frank A. Manola. Object Orientation in Heterogeneous
D istributed Computing Systems. IEEE Computer, pages 57-67, June 1993. f

Oscar Nierstrasz and Theo Dirk Meijler. Research Directions in Software Composition. ACM
Computing Surveys, 27(2):262-264, June 1995.

'I
Derek C. Oppen and Yogen K. Dalai. The Clearinghouse: A Decentralized Agent for Locating Jj
Named Objects in a Distributed Environment. ACM Transactions on Office Information Systems,
1(3), July 1983.

M.Tamer Ozsu, Umeshwar Dayal, and Patrick Valduries. Distributed Object Management. Morgan
Kaufmann Publishers, 1994.

Jehan-François Paris and Hector Garcia-Molina, editors. Proceedings of the Second Workshop on V
Management of Replicated Data, Monterey, California, November 1992. IEEE Computer Society
Press.

Craig Partridge. Gigabit Networking. Addison-Wesley, 1994.

Michael Perloff and Kurt Reiss. Improvements to TCP Performance in High-Speed ATM Networks.
Communications of the ACM, pages 90-100, February 1995.

Evaggelia Pitoura, Omran Bukhres, and Ahmed Elmagarmid. Object Orientation in Multidatabase
Systems. ACM Computing Surveys, 27{2):141-196, June 1995.

David Plainfossé and Marc Shapiro. A Survey of Distributed Garbage Collection Techniques. In
Baker [11], pages 211-249.

Gerald J. Popek, Richard G. Guy, Thomas W. Page Jr, and John S. Heidemann. Replication in
Ficus Distributed File Systems. In Luis-Felipe Cabrera and Jehan-Fraçois Paris, editors. Proceedings
of the Workshop on Management of Replicated Data, pages 5-10, Houston, November 1990. IEEE
Computer Society Press.

David Powell. Distributed Fault Tolerance: Lessons from Delta-4. IEEE Micro, pages 36-47,
February 1994.

Proceedings of the Fifth ACM SIGPLAN Symposium on Principles & Practice of Parallel Program
ming. ACM Press, August 1995.

Larry Press. Resources for Networks in Less-Industrialized Nations. IEEE Computer, 28(6):66-71,
June 1995.

124

[148] C. Pu, J. Noe, and A. Proudfoot. Regeneration of Replicated Objects: A Technique and its Eden
Implementation. IEEE Transactions on Software Engineering, 14(7);936--945, July 1988.

[149] B. Randell, Jean-Claude Laprie, H. Kopetz, and B. Littlewood. Predictably Dependable Computing
Systems. ESPRIT Basic Research Series. Springer Verlag, 1995.

[150] Andrew L. Reibman and Malathi Veeraraghavan. Reliability Modelling: An Overview for System
Designers. IEEE Computer, pages 49-57, April 1991.

[151] Andy Reinhardt. Your Next Mainframe. Byte, 20(5):48-58, May 1995.

[152] R.M.Needham and A.J.Herbert. The Cambridge Distributed Computing System. Addison-Wesley,
Reading, Mass., 1982.

[153] Marshall T. Rose. The Open Book: A Practical Perspective on OSI. Prentice-Hall, 1990.

[154] R.S.Chin and S.T.Chanson. Distributed, Object-Based Programming Systems. ACM Computing
Surveys, 23(1):91-124, March 1991.

[155] John R. Rymer. The Muddle in the Middle. Byte, 21(4):67-70, April 1996.

[156] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End Arguments in System Design. ACM
Transactions on Computer Systems, 2(4):277-288, November 1984.

[157] Mahadev Satyanarayanan. Scalable, Secure, and Highly Available Distributed File Access. IEEE
Computer, pages 9-21, May 1990.

[158] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki, Ellen H. Siegel, and
David C. Steere. Coda: A Highly Available File System for a Distributed Workstation Environment.
IEEE Transactions on Computers, 39(4):447-459, April 1990.

[159] Mahadev Satyanarayanan and Ellen H. Siegel. Parallel Communication in a Large Distributed
Environment. IEEE Transactions on Computers, 39(3):328-348, March 1990.

[160] Jeremy Schlosberg. Where is the elusive groupware payoff? Open Computing, 12(9), September
1995.

[161] Dough Schmith and Paul Stephenson. Experiences Using Design Patterns to Evolve Communication
Software Across Diverse OS Platforms. In Walter Olthoff, editor, Lecture Notes in Computer Science
(Vol. 952): ECOOP’95 - European Conference on Object Oriented Programming, pages 399-423,
Arhus, Denmark, August 1995. Springer-Verlag.

[162] Fred B. Schneider. Replication Management using the State-Machine Approach. In Distributed
Systems [130], chapter 7, pages 169-197.

[163] Fred B. Schneider. What Good are Models and What Models are Good? In Distributed Systems
[130], chapter 2, pages 17-26.

[164] James A. Schnepf, David H. C. Du, E. Russel Ritenour, and Aaron J. Fahrmann. Building Future
Medical Education Environments Over ATM Networks. Communications of the ACM, pages 55-69,
February 1995.

[165] M. Schroeder, A. Birrell, and R. Needham. Experience with Grapevine: The Growth of a Dis
tributed System. ACM Transactions On Computer Systems, pages 3-23, February 1984.

[166] Michael D. Schroeder. A State-of-the-Art Distributed System: Computing with BOB. In Distributed
Systems [130], chapter 1, pages 1-16.

[167] Marc Shapiro. Structure and Encapsulation in Distributed Systems: The Proxy Principle. In
Proceedings of the 6th International Conference on Distributed Computer Systems, pages 198-204,
1986.

125

168] Oliver Sharp. The Grand Challenges. Byte, 20(2):65-72, February 1995.

169] Mukesh Singhal Niranjan G. Shivarati. Advanced Concepts in Operating Systems: Distributed,
database, and multiprocessor operating systems. McGraw Hill, 1994.

170] Santosh K. Shrivastava. Lessons Learned from Building and Using the Arjuna Distributed Pro
gramming System. In Guerraoui et al. [88], pages 17-32.

171] Santosh K. Shrivastava and Daniel L. McCue. Structuring Fault-Tolerant Object Systems for
Modularity in a Distributed Environment. IEEE Transactions on Parallel and Distributed Systems,
5(4):421-432, April 1994.

172] Proceedings of the 1995 ACM SIGMOD: International Conference on the Management of Data,
San Jose, California, May 1995. ACM SIGMOD. SIGMOD RECORD 24(2).

173] Ian Sommerville. Software Engineering. Addison Wesley, fourth edition, 1992.

174] Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles, Copper Mountain
Resort, Colorado, December 1995. ACM SIGOPS.

175] Mir j ana Spasojevic and Piotr Berman. Voting as the Optimal Static Pessimistic Scheme for Manag
ing Replicated Data. IEEE Transactions on Parallel and Distributed Sijstems, pages 64-73, January
1994.

176] K. B. Sriram. A study of the reliability of hosts on the Internet. M.Sc. thesis, University of
California Santa Cruz, June 1993.

177] Doug Stacey. Replication: DB2, Oracle, or Sybase? SIGMOD RECORD, 24(4):95-101, December
1995.

178] B jar ne Steensgaard and Eric Jul. Object and Native Code Thread Mobility Among Heterogeneous
Computers. In S0SP15 [174].

179] R. J. Stroud and Z. Wu. Using metaobject protocols to implement atomic data types. In Lecture
Notes in Computer Science (Vol. 952): Proceedings ECOOP’95 9th European Conference on Object-
Oriented Programming, Aarhus, Denmark, August 1995. Springer Verlag.

180] Sun Microsystems, ONC Technologies, 2250 Garcia Avenue, Mountain View, CA 94043 USA. NFS:
Network File System Version 3 Protocol Specification, June T993.

181] Garret Swart, Andrew Birrell, Andy Hisgen, and Timothy Mann. Availability in the Echo File
System. Technical Report 112, Digital Systems Research Center, September 1993.

182] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, second edition, 1989.

183] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, 1992.

184] Gerald Tel. Introduction To Distributed Algorithms. Cambridge University Press, 1994.

185] Dave Thomas. Experiences on The Road to Object Utopia. Keynote address, ECOOP’95, August
1995, Aarhus, Denmark.

186] John Turek and Dennis Shasha. The many faces of consensus in distributed systems. IEEE Com
puter, pages 8-17, June 1992.

187] Anneliese van Mayrhauser and A. Marie Vans. Program Comprehension During Software Main-
tainance and Evolution. IEEE Computer, 28(8):44-55, August 1995.

188] Robbert van Renesse, Kenneth P. Birman, and Silvano Maffeis. Horns: A Flexible Group Commu
nication System. Communications of the ACM, 39(4):76-83, April 1996.

126

189

190

191

192

193

194

195

196

197

;
Thomas P. Vayda. Lessons Prom the Battlefîld. In Proceedings of the Tenth Annual Conference on
Object-Oriented Programming Systems, Languages, and Applications, Austin, Texas, USA, October
1995. Published in ACM SIGPLAN Notices 30(10).

Ronald J. Vetter. ATM Concepts, Architectures, and Protocols. Communications of the ACM,
pages 31-38, February 1995.

Jeffrey M. Voas and Keith W. Miller. Software Testability: The New Verification. IEEE Software,
12(3), May 1995.

Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-Net: A User-Level
Network Interface for Parallel and Distributed Computing. In S0SP15 [174].

John von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable
components. In C. E. Shannon and J. McCarthy, editors, Automata Studies. Princeton University
Press, 1956.

Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A note on distributed computing.
Technical Report TR-94-29, Sun Microsystems Laboraties. Inc., 2550 Garcia Avenue, Mountain
View Ca 94043, November 1994. Available from http://www .sun.com /.

Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic Storage Allocation:
A Survey and Critical Review. In Baker [11], pages 1-116.

Alan Wood. Predicting Client/Server Availability. IEEE Computer, 28(4):41-48, April 1995.

J. Xu, B. Randell, C. M. F. Rubira-Calsavara, and R. J. Stroud. Software Fault Tolerance: Towards
an Object-Oriented Approach. Technical Report Series 498, Dept, of Computing Science, University
of Newcastle upon Tyne, Department of Computing Science, University of Newcastle, Newcastle
upon Tyne, NEl 7RU UK, 1994.

[198] Zhonghua Yang and Keith Duddy. CORBA: A Platform for Distributed Object Computing. ACM
Operating Systems Review, 30(2):4-31, April 1996.

127

ij

http://www.sun.com/

