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Abstract

Distributed sysfems are composed of a collection of cooperating but failure prone system components.
The number of cotuponents in such systems is often large and, despite low probabilities of any particular
componeni, failing, the likelihood that there will be at least a small number of failures within the system
at a given time is high. Therefore, distributed systems must be able to withstand partial failures. By
being resilient to partial failures, a distributed systcm becomes more able to offer a dependable service
and therelore more useful.

Replication is a well known technique used to mask partial failures and increase reliability in distributed
computer systems. However, replication management requires sophisticated distributed control algo-
rithms, and is therefore a labour intensive and error prone task. Furthermore, replication is in most cases
employed due to applications’ non-functional requirements lor reliability, as dependability is generally
an grthogonal issue to the problem domain of the application. If system level support for replication is
provided, the application developer can deveote more effort to spplication specific issues.

Distributed systems are inherently more complex than centralised systems. Encapsulation and abstraction
of components and services can be of paramount importance in managing their complexity. The use of
object oriented techniques and languages, providing supporl. {or encapsulation and abstraction, has made
development ol distributed systems more manageable. In systems where applications are being developed
using object-oriented fechniques, system support mechanisms must recognise this, and provide support for
the object-oriented approach. The architecture presented exploils object-oriented technignes to improve
transparency and to reduce the application programmer involvemenl required to use the replication
mechanisms.

This dissertation describes an approach to implementing system support for object replication, whicle--
is distinct from other approaches such as replicated objects in that objects are not specially designed
for replication. Additionally, object replication, in contrast to data replication, is a function-shipping
approach and deals with the replication of both operations and data.

Object replication is complicated by objects’ encapsulation of local state and the arbitrary interaction
patterns that may exist among objects. Although fully transparent ohject replication has not been
achieved, my thesis is that partial system support for replication of program-level objects is practicable
and assists the development of certain classes of reliable distributed applications. T demonstrate the
uselulness of this approach by describing a prototype implementation and showing how it supports the
development of an example toy application. To increase their flexibility, the system support mechanisms
described are tailorable. The approach adopted in this work is to provide partial support for abject
replication, relying on some assistance from the application developer to supply application dependent
funciionality within particular collators for dealing with processing of results from objecs replicas. Care
is taken to make the programming model as simple and concise as possible.




Acknowledgements

I am in great debt and T am very grateful to a number of people for their encouragement, assistance and
positive attitude during the period of study towards the M.S¢. in Glasgow. In particular I would like to
thank the following:

My first supervisor, Dr. Peter Dickman: Without such a competent supervisor T would surely not
have got this far. His firm and sound guidance through the duration of the project, his help with
proofreading and his offorts to cducate me for research are much appreciated.

My second supervisor, Prof, Malcolm Atkinson: As a secondary supervisor Malcolw. filled the rdle as
controlling instance. He asked the difficult questions which I had not yet considered important and
suggosted corrections on draft documents.

Prof. Derek McAuley and Dr. Lewis McKoenzie: Discussions about networks, distributed system design,
operating systems and a lot of other things.

My Hatmate Vidar Hasfjord: Vidar's most important function during the time we shared in Glasgow,
apart from being an excellent flatimate, was to lot me ‘bounce my ideas’ off him. Sanity checks
are always valuable, and throngh heated and inspired discussions we normally ended up reaching
agreement on principles of object oriented design, objert oriented programming languages and
operating systems.

My Norwegian friends and e-malil associates Karl Martin Lund, Arne Hatlen and (Jyvind Brande: Having
access to clectronic mail was enough to fucilitate numerons and valuable discussions.

Rescarch-pssociates Korim Dejame, Migucl Mira da Silva, Arthur Serrano and Huw Evans: Without the
interesting research environment formed by these people in the department, doing research would
have been much more difficult. I received a lot of input into my understanding of computing in
general, distributed systems and RPC problems. Speeial thanks to Huw for valuable proofreading.

And finally to my parents, my brother and my good friends Sandra Cervino, Trond Olav Ronzenes, Sissel
Rong, Kolbjgrn Helland, Dag Sanstebs, Vidar Reren, Bjern Sundfeer, Carmcla Battibaglia, Dagrun--
Haugen Breirem and Michael Edwards for both being such good friends and for their encouragments
through the months of research.




Contents

Introduction

L1 OVELVIEW . . o o o o e e e i e e e e e e e e e e e e e e
1.2 Motivation . . . . . . . . e e e e e e e e
1.3 Challenfos . . . . . o o v i e e e e e e e e e e e
1.4 Replication in Distributed Systems . . . . . ... . L 0 e
1.5 Problem Statement . - . . o L . oL e e e e e e e e e
1.6 OQutlinc of the Dissertation . . . . . . . . . . . .. . . e e

System Madel

2.1
2.2
2.3
2.4
2.5
2.6
2.7

OVELVICW . o o i e e e e e e e e e e e e e e e
Processing Elements . . . . . . . . . . e e e e e e
NetworKS 0 o o s o e e e e e e e e e e e e e e
ObJects . . v o i e e e e e e e
References . . . . . . o o o e e e e e e e e e e e e e e e
Invocations . . . . . . L L L e e e e e e e e e e e e

Applications . . . . ... . ... ... L L. [P

Computer System Failures

31
3.2
3.3
34

Dependable Computing Systems . . . . . . .. oL Lo L e e
Failure Characteristics . . . . . . . . . o v i e e e e
Avoiding Failures . . . . . o o . . . 0 e e e e e

SUMIBATT . - v v o v o v i e et e e e e e e e e e e e e e e e e e e

Replication Technigues

4.1
4.2
4.3
44

4.5

Background and Motivation . . . . . .. oL L L e o e
Problems with Replication . . . . . .. . .. .. .. .
Replication in Object Systemns . . . . . . o . . 0 o 0 0 e e e e
Strong Consistency Replication Schemes . . . . .. . .. o . o L L.

Weak Cousistency Replication Schemes . . . . o . . 0. oo Lo o

s = B

14
15
15

17
17

18
21
27
23
24

27
27
30
35
306




cA

=

4.6 Concluding Remarks . . . . 0 0 . L e e 51

System Support 52
5.1 Qverview . . . L e e e e 52
5.2 Providing System Support . . . . ... e e e 53
5.3 System Support in Distributed Object Systems . . . . . . .. .. . ... ... ... 55
5.1 System Support for Object Replication. . . . . . . .. .. .. .. ... . ... ...... 57
55 Concluding Remarks . . . . . . o o L e e e e a8
System Architecture 60
6.1 OVEIVIEW . . o o i e e e e e e e e e e e 60
6.2 Main COMPOnEItE . . .« v v v v v e e e e e e e e e e e e e e e e e e e e e 62
6.3 System Functionality . . . . . . . . . . L e e e 68
6.4 Physical Mapping TSSues . . . . . . . o . L e e e e e e e 75
6.5 Limitations and Tuture Work . . . . . . . . . o i e e e 7
6.6 Coneludingremarka . . . . . . L e e e 77
Programming Model 78
Tl Overview . . . . L e e e e e e e e 73
7.2 Application Partitioning Assumptions . . . . . . . ... L. L L L oL 79
7.3 Deflining Replicable Classes . . . . . . . . . . . . .0 . e B0
7.4 TInstantiation of Replicable Classes . . . . . . . . . . . .. . .. ... ... 81
7.5 Method Invocalions . . . . . . . L e e e e e e e e e e 82
7.6 Sharing of Surrogate Objects . . . . . . . . L L e e e 8.’3“_.
7.7 Failure Semantics . . . . . .. . ..., R 86
7.8 Concluding Remarks . . . .. o0 L Lo e e 86
Realising the Architectnre 87
8.3 OVErview . . - o o o e e e e 87
8.2 Implementation Platforin . . . . .« . . . oL o 88
8.3 DProtokype Design . . . . . . L L e e e e e 89
8.4 An Example Application . . . . . . L e e e e 92
8.5 Performance Measurements . . . . . . .. Lo L Lo e e e e e 92
8.6 SHINATY .« . . o L L e e e e e e e e e e e e 93
Related Work 04
9.1 Language Level Support for Replication . . . . . .. .. ... ... ... ... ..., 04
9.2 Replication in Programmning Systemus . . . . . . . . . L e 97
9.3 Replication in Application Components . . . . . . . .. . ... .. 0., 98




10 Conclusions
10.1 Summary of Contributions . . . . . . . . . . . ..,
102 DIBCUSSION . . . o v v v i e e e e e e e e e e e e
0.3 TFubure Work . . . . o o o e e e e e
10.4 Final Remarks . . . . . . o0 e e e

A Designing Collators
Al A Spedialised Cellator . . . . . . . . L e
A2 ADBasicInteger Collator . . . . . . . . . . e

B Probability Formalism
B.1 Probahility . . . . . . e e e
B.2 Availability of Majority Locking Schemes . . . .. . . ... L

107
107
108
109 .
110

111
111
112

115
115
116




Chapter 1

Introduction

Distributed systeins have become an essential part of modern computing practice. They provide a scalable
and adaptable structure on which many useful applications can be built. Applications involving sharing and
manipulation of information among large and geographically dispersed groups of people and large process
control applications are examples of applications that benefit from distributior and distributed systems,

However, distributed systems are inherently more complex than centralised systems, They must cope with
heterogeneity, asynchrony and partial failures, and should also be extendible and scalable. This chapter
provides an intraduction to the diversity of distributed systems and motivations for their use. Also, some
of the aumerous challenges facing their developers are presented. Following that, the problem staternent
underlying this work is given.

1.1 Overview

A distributed systetn is a colleclion of cooperating, yet autonomous, computers {called PEs!) executing
distributed system software, The system software is responsible for low level coordination among the_.
computers and provides a layer upon which distributed applications are built. A component of the
systems software i3 executing on each computer and carries out the task of local conirol and coordination
with other computers in the systern. Much like an operating systen, distributed system software tries
to hide most of the complexity stermming from the underlying system componenis. Figure 1.1 illustrates
this general nodel of distributed systems.

Applications

Distributed system software

[PEHPE PE||PE||PE] |PE||PE||PE

PE !PE [PE PE
LAN LAN LAN i LAN
WAN

Figure 1.3: An abstract model for distributed systerms

1Processing Elements. 'The definition can be found in section 2.2 p. 17.
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The hasis for any distributed system is a communication network that allows the PBs to exchange
moessages. The propertics of the network are significant factors which influence system performance
and the range of suitable applications within the particular system. Hence, the network will also have
consequences for the design of distributed system software.

Small scale distributed systems use relatively simple network configurations. A LAN (Local Area Net-
work), perhaps based on a small number of Ethernet segments, may be sufficient to support the necessary
applications. LANs are well able to support distributed file systems, client-server databases, electronic
mail and CSCW (Computer Supported Cooperative Work) applications for groups of up to several hun-
dred peuple.

For support of larger and more geographically dispersed workgroups, communication services from public
service carrier providers are often used to build WANs (Wide Area Networks). Large workgroups often
contain multiple clusters of smaller groups, so they tend to employ internetworks based on a combination
of LANs and WANS. In the general model depicted in figure 1.1 the distributed system is built up from
a collection of LANs interconnected by a WAN. This hierarchical structuring is commonly used for large
systems.

Distribution of computer systems is often recognised as a natural and elegant extension of centralised
systems, Today, a large proportion of computing systems used for productive work are interconnected
to give their users access fo some kinds of networked applications such as shared file systems, clieui-
server databases etc. These applications are often just ‘networked’ versions of a centralised application.
Networked applications are often an extended version of the centralised version, with support for clients
located in a network issuing requests to the server using sume applicalion specific protocol. A good
example of a networked application is a file server which provides a shared repository lor users’ files,

A distributed system provides a stronger coupling between the computers where several computers co-

operate to achieve some common goal. In contirast to client-server systems where servers are ‘intelligent’

and clients are ‘dwnb’, distributed systems arc composed of cooperating agents, i.e. computers that take

on the role as both clieni and server thereby using services from other machines and concurrently of-

fering services. A clent-server application that employed several coordinated servers would, however,

alsa qualify as a distributed system. As part of this cooperation the computers must maintain global

properties auch as information about configuration and failures within the system. Distributed systems

software is necessary to coordinate all the operation requests and make sure that, for example, transac-_
tional properties like isolation and consistency are maintained during concurrent requests. Examples of

such applications arc distributed databascs, multiuser editors and distributed CAD systems {40, 51].

In retrospect, it should be clear that distributed systcm software is built to coordinate several machines,
with the aim of concealing complexity from the applications, providing an abstract and uniform platform
for application software development [14]. 1t should be noted however, that not all applications running
in a distributed system need to be distributed. Some applications are non-distributed and do not, require
the services offered by dislributed systems software and are instead built using only services from local
software, e.g. uperating system software running ou each computer.

1.2 Motivation

A distributed system allows for controlled sharing of physically dispersed computer resources, thereby
allowing nscrs on networked computers to cooperale ou computerised tasks while still maintaining some
degree of autonomy. As networks have become more commonplace throughout the computing soeciety,
the use of distributed systetus is likely to see a significant increase. However, it is uselul to investigate
the motives and benefits of distributed systems further in order to understand their role in the future.
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1.2.1 1Inherent distribution and information sharing

Most large applications consist of a colleclion of nearly separate and physically separated subsystems.
The subsystems often benefit from, or might even require, a degree of local administration or autonomy.
A distributed system can provide parts of the necessary framework to build such applications.

New applications are made feasible by the availability of geographically distributed interconnected com-
puters. For example, groupware applications, including group discussion databases, task scheduling, and
whiteboarding applications, promote casier and more efficient cooperative working by enabling collabora-

tion among large workgroups. Although the transition to groupware systems is not necessarily bringing .

instant profits to all organisations [160], it seems likely that groupware applications will hecome very
uselul as the computerisation of working praciices progresses. System architectures that support these
classes of applications will hence be valuable. Other classes ol applications, for exarmuple distribnted mul-
timedia applications, distributed databases, electronic mail and distributed information systems can also
benefit from system architectures thal provide support for distributed coordination across the network.
Allocating common functionality in system support layers, available to applicalion developers, reduces
the cost of application development. Principles for building system support layers are discussed in more
detail in chapter 5.

Additionally, a geographically distributed workforce may justify the distribution of the computer system.
By employing a distributed system for coordination between the subsystems, one can obtain a system
configuration that more closely matches the structure of the worklorce. This can help provide better
locality of information, and may increase performance by reduced information access latencies. Further-
more, the physical distribution of computers reduces the probability of all machines failing concurrently.
This, in turn, may make the application more available to the aser.

1.2.2 DPerformance

A distributed system containg a number of computers, each with a certain amount of processing capacity,
memory and optionally secondary storage. The cost of smaller computer systems has decreased favourably
compared to the traditional mainframe and mini computers. A set of relatively fast workstations or
PCs is often a more cost eflective option than buying mainframe or mini computers supporting the

same number of users [151], although the shift towards decentralised computing may incur higher total~

management costs [109] (cf. §1.2.3 p. 8). Also, high performance workstations are better suited to run
interactive applications such as windowing systems, graphical presentation packages, databasc front-ends,
spreasisheets and word-processors [51, 106].

Network lechnology is experiencing a narrowing of the gap between the traditionally fast LAN and
the slower WAN networks. Fibre optical communication with extreinely bigh bandwidths is now being
employed both for LAN and WAN scale networks. Data communication is now passible at rates reaching
gigahits per second, previously only found on specially dosigned parallel computer interconncets [140].
The availability of high caparcity networks has increased the intercst in very large scale applications and
applications that exploit parallelism of multiple and heterogeneous computers {51]. By distributing tasks
among several compnters in the network, large gains in performance can be achieved. For example, Lhe
task of processing elecironic mail within a department might be allocated to a particular workstation,
thereby relicving the other computers in the department of thig job. Also, many scientific applications
require enormous processing capacity, and this demand might be met by, for example, workstations
interconnected by high capacity networks [151, 32]. Paris of Lhe application can then be run in paraliel,
exploiting the processing capacity of mulliple workstations concurrently. In practice, relatively poor
bandwidth and high communication latencies make it difficult to realise such sysiems, at least with the
current communication infrastructures [123]. Ounly for certain classes of non-communication inkensive
applications are the benefits of wide-area parallel computing significant [32]. However, as networkiog
technology evolves, this might become an important platform for demanding applications.

Some applications make copies of the shared data, and allow clients to access a nearby copy. An increase

7




in performance can be gained from the resulting locality, essentially reducing the access cost to starage
and processors. However, the copies of the data must he kept consistent, and this incurs a cost of
increased communication. A tradeoff in consistency can be made to reduce the communication but poses
a challenge for system designers (see §1.3.3 p. 10). If the shared data can be used independently to a
greater extent, the amount of communication necessary is reduced. The tradeofls incurred are discussed
in much more detail in chapter 4.

Also, powerful workstations linked by high bandwidth nelworks have made applications requiring process-
ing and transmission of time based media such as video and audio feasible. However, such stream-based

applications are not considered specifically in this dissertation. The success of these applications appears -

to be more dependent on appropriate operating system behaviour than on system support mechanisms
[51].

1.2.3 Scalability

Dealiug with large problems as a collection of smaller, related subproblems, is a well known paradigm
in both engineering and science. Large computer systems are extremely complex, and the development
of these systems is often simplified (or even made possible} by dividing them into smaller and more
easily manageahle subsystems. Distribution can be regarded as a mechanism for managing the scale of
computer systems. In this respect, distribution deals with both the introduction of multiple management
domains and geographical distribution of physical computing resources.

Cost efficient upgrades, and the ability to dynamically adapt the system to the current demand, are
important motivations for distributed systems. Because the cost of small and relatively powerful com-
puters is low, they can be added on demand (assuming system growth) Lhereby extending the system
in small, yet affordable, steps. Accordingly, t he effort of local system maintenance and management
is reduced. However, building extendible techuology is non-trivial and remains a challenge for system
designers (¢f. §1.3.4 p. 10).

1.2.4 Sharing equipment

In a distributed system, it may be worthwhile to share expensive system resources like printers, scanners

or high-capacity file servers. Tor example, a colour laser printer could be connected to the network
aud used by a large number of users. Expensive equipment can more easily be economically justified
when shared. Such large-grain resource sharing might be the primary motivation for intoreconneeting the
computers. As long as the necessary access structure is present, many resources in the system can be
shared. However, sharing of resources raises important issues such as the enforcement of security and
access policies (cf. §1.3.6 p. 13).

Other, more low-level resomces, like processors and disks may also be shared in the system. However,
while large-grain sharing of, for example, printers can be initiated by the users themselves, Nne-prained
resource sharing requires mechanisms in the system software, e.g. the operating system. Apain, the jssue
of access policies must be addressed. Simultaneously depending ou multiple distributed resources within
the systemn decreases the reliability of the application, although replication mechanisms can partially
alleviate this problem?. Furthermore, fine-grained resource sharing is likely to be more expensive in
terms of scheduling overhead and system software complexily than large-grain sharing.

1.2.5 Reliability

Occasionally, distribution of system components is necessary due to an application’s reliability require-
ments. It is very inconvenient if single failures stop the whole system. For cxample, on-line database

?Replication will be discussed in much more detail ia the resl of this disseriation.
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systems, process contrel systems and telecommunications systems commonly use redundancy to ensure
continuous operation despite failures. Other distributed systems, not designed primarily for fault toler-
ance may also provide suitable environments for the incorporation of redundancy mechanisms to provide
tolerance against failures. Given that copies of important objects can be located and accessed on different
computers, a failure in a subset of them may be circumvented, such that the system can use the non-failed
objects and continue to provide a service (possibly degraded) during the period of recovery. However,
managing replicated components is non-trivial, and poscs some difficult challenges {cf. §1.3.2 p. 10).

1.3 Challenges

Develapsrs of distributed systems face several hard problems, e.g. the increasing complexity of software,
poor system reliability and limited performance. These problems become more prominent as the systems
grow in size, and without careful consideration they will impose severe overheads in terms of cost and
performance on the large scale systerns that are constructed in the future. This scetion elaborates on
these and some other related problems, and discusses possible ways of addressing them.

1.3.1 Mamnaging application complexity

As more of people’s work is being computerised, the demand for more advanced computer systems is
strengthened. Additionally, Lhe inereasing performance of computing equipment drives the development
of applications solving computationally maore demanding tasks [1). Arguably, no limitation exists on the
problems that computer systems are being used to solve. Large problems often have elements of distri-
bution, e.g. due to reasons of reliability, scalability, performance or autonomy. Building reliahle systems
requires careful design and implementation [44], which, in turn, adds to the complexity of developing the
software.

A useful paradigm for managing software complexity is that of compogition [29, 136, 173]. By decomposing
large, complex modules into hierarchies of smaller solvable submodules, very large problems can be
handled, and the software is more easily maintainable if decomposed in such a tree-like fashion [187].
In the object oriented model, this decomposition can be even more fine-grained. A single class might

contain the implementation of the solution to a sub-problem and collections of classes can be combined

into modules which implement solutions to larger grain problems.

A signiticant benefit of the object oriented model is that it allows classes Lo reuse code from other classcs
through inheritance. A single parent class can implement functionality used in a number of child classes
to save coding effort. Inheritance will thus result in (arbitrarily high) class hierarchies.

Good object oriented designs favour high class cohesion® and a low degree of inter-class coupling?, which
essentially means that a class is responsible for only one, well encapsulated task. A good composition also
allows for greater flexibility because a submodule is casily interchangeable, i.e. it can be replaced with
another upgraded version without changing the clients of the submodule. The low degree of coupling
implies that there are only a limited number of dependencies among modules, and this in turn eusures
that the interface of the submodule is moderately sized. The high degree of cohesion ensures that the
implementor of the new submodule can foens on one particular prablem, and this brings benefits to
projects which require collaboration between many development team members.

The object oriented approach is particularly attractive for distribuled systems because it can quite nat-
urally be extended to model objects scattered around the neiwork (cf. 2.5 p. 22). In this model, an
application becomes g collection of encapsulated objects performing o common task by issning operations
on each other. Encapsulation and abstraction help to reduce the cfort needed to understand parts of the
gystem and increage the maintainability of the software,

SHigh {unrtional relatedness {173].

4')’he measure of the strength of association established by a connection from a wnodule Lo another 1209],
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Furthermore, due to strong emphasis on abstractions, the object oriented approach can provide good
support for reuse. Reuse of designs, for example through the use of design patterns [75, 161], can bring
Lenefits in terms of saved development cost and higher quality implementations. A useful approach to
reuse is system support mechanisms that can provide reuse of implemented functionality among many
applications. The system support approach to rense is discussed in more detail in chapter 5.

1.3.2 Preserving system reliability

As computer systems continue to take on many critical tasks in our society, it is important to ensure
that these systems are reliable. Distributed systems, often used by large numbers of people, should be
the subject of particular attention. They are inherently less reliable than non-distributed systems due
to the fact that they depend upon multiple components to work (see chapter 3). Distribution cntails a
new set of failure modes. Due to physical and electrical distribution the system components often fail
independently. This increases the likelihood of a partial failre, but also implies that the probability of
all the computers in the system failing simultaneously is low. Mechanisms for fault tolerance are thus
essential in distributed systems, in particular syslems providing vital services to a large number of users.
A main subject of discussion in this dissertation is the mechanisms needed to make distributed systems
vesilient. to failurcs, for example, chapter 4 is devoted to the techniques uscd ta achieve this,

1.3.3 Distribution transparency

To simplify the task of devaloping distributed programs, system software should conceal as many of the
distribution aspects from the programumer as possible. For example, programmers should not be required
to write two versions of an applicaiion depending on whether it was going to run ou an Ethernet or
Token Ring LAN. Systems software should bridge heterogeneity so that applications could be written
independently of underlying platform characteristics [14]. Similar ideas form the basis for Java, a portable
programining lenguage primarily designed for develaping applications for use on the Internet. [96]. A Java
program is platform neutral, and is compiled into byte-code rather than machiue specific instrinctions. A
portable virtual machine exceutes the byte-code.

Furthermore, there should be uniform methods for accessing system services like file systems, location-
services or mail services. There are valid arguments against complete uniformity, ¢.g. reduced performance
[194] and limited design freedom, but a conceptually simpler system model is usually worth the overheads.

An exception to the general goal of distribution iransparcncy is related to failures. A programmer
will nsually want to know where failures occur so that they can be corrected, or at least reported to
the user., However, this conflicts with the goal of concealing digtribution. Maintaining distribution
transparency while providing efficient access to faiture status information is a challenging task for designers
of distributed system software.

Also related to the challenge of distribution transparency is maintaining consistency. Cormmonly, dis-
tributed systoms contain data replicated at several machines to exploit tocality of the data and thus
gain reduced latency while accessing the data. There is an inherent tradeoll between roaintaining data
consistency and allowing independent updates of the data. Users should be unaware of the fact that the
data is duplicated and should have a consistent view of the data. As replication management is a main
theme throughou! the dissertation, this igsue will be discussed in much more depth in the following text.

1.3.4 Maintaining scalability

A distributed system should be able to scale gracefully, meaning that it should allow for incremental
prowth and still provide reasonable efficiency. If a system architecture is scalable, the same architecture
can be used in system configurations of widely varying sizes, thereby supporting the development of
applications across a wide range of systeins. .
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A scalable system architecure must cope with large variations in capacity requirements, and variations
by several orders of magnitude should be expected. A smull, departmental network might consist of
tens of machines, a corporation wide network cau contain thousands. The system architecture should
thevefore impose small overheads, and use available resources efficiently. Designing system architectures
that are efficient in both scenarios is non-trivial. Any overhead that is reasonable in the small scale
system, might cause overload in the large system. In contrast, an architecture which is efficient for o
large scale system is not necessarily efficient for a small system. For example, a distributed coordination
protocol that requires coneurrent participation from all the computers in the network could be affordable
in a small LAN-bascd system, but would be inappropriate in a large WAN-based network with large
communication latencies.

To be scalable, the architecture must also cope with system extensions. If new cowpounents cannot
casily be integrated into the system, scalability will suffer. For example, poor interoperability between
system components from. different manufacturers will reditce the systemn’s extendibility and hence make
it difficult o scale the system according to the requirements. (cf. paragraph “Managing heterogeneity”
p- 13). Although not all distributed systems should he expected to reach the size of large corporate
networks, it is difficult to predict in advance how large the system will grow, and if scalable technology
is used throughout, incremental growth and efficient usc of available resources is ensuved.

1.3.5 Mainlaining performance

Distributed systems should, like any other computer system, use the available resources efficiently so
as to give good performance. However, achieving this in distributed systems is hard. Motivated by
praspects of reduced application complexity, systems designers have advocated uniformity of mechanism
and concept. However, providing uniformity often involves adding several layers ot software which reduces
system performance, and while processor speeds arce currently doubling every two years, the benefits can
casily be outweighed by layers of sofsware bridging the heterogeneity of the hardware [185]. The challenge
becomes to build well designed software architectures which minimise performance overheads.

Additionally, the communication infrastructure has traditionally been the bottleneck for performance in
distributed systems. However, the arrival of high performance networking technology suitable for both
local and wide area communication, has generated increased confidence in distributed systems as an

attractive platform for many useful applications (14, 32, 108, 164, 170}. o

1.3.6 Othor 1ssues

The previously menlioned problems are the main focus of this dissertation. A number of other impor-
tant related problems are discussed in this seckion. These problems are not directly addressed in this
dissertation; they are outside the scope of this work. However, they arve imporlang issues for distributed
systems designers and will influence the implementation of real systems.

Extensibility

Extensibility is often rather imited in traditional contralised computer systems. There are usually definite
congtraints both as to how new components can be added and which new components can be used. Both
in termng of structure and allowed heterogeneity, there are strict rules confining the process of adapting
the system to changing requircments. These constraings are typically imposed by manufacturers, leading
to additional difficulties when equipment from different manufacturers has to be integrated.

Distributed systems tend to be more extendible than traditional centralised computer systems. An inher-
ently loosely coupled distributed system is able to accommodate additivns of new equipment more easily
than a system based on a mainframe or minicomputer. Furthermore, a large proportion of networked
computers run variations of UNIX. Uniformity of operating system platforms increases the extensibility
of the distributed system.
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Exploiting parallelism

Ideally, a distributed system architecture should give the programmer transparent access (o all availahle
computing resourccs such that applications could be written independently of the number of available
processors. One approach, called the processor pool model, is the basis for several distributed sysiems,
e.g. the Cambridge Distributed Computing System {152} and the Amoeba distributed system [133]. These
systems model processing power as a globally available resource shared between applications. However,
the majority of distributed applications today are partitioned explicitly, and are designed o make use of
a particular nurnber of processors.

Being able to exploit the available resources like processors, memories and disks efficiently, concurrently .
and transparently is not trivial. Problems such as load balancing and process migration are the foeus of
much tesearch interest (see for example [62]). While research into parallel architectures has experienced
significani, progress, both in hardware architeciures and in programming languages and tools (see for
example [L46]), there are however, many problems which still remain unsolved, most imporiantly is the
tight coupling of programs to specific architeclures, essentially rendering efficient parallel programs non-
portable [168]. The end resuls is that applications aimed at exploiting parallelism are often required Lo
make strict assumptions about the systom architecture, and they are usually unable to cope with the
heterogeneity found in traditional distributed systems. Any progress made in this research area is likely
co have a big impact on the kind of applications people will use in distributed systems.

Also, despite the narrowing gaps in offered network capacity between traditional high-speed processor
buses and networks, distributed systems still have to cope with inhereni. propagation delays in long haul
communication links. Additional delays are iinposed by the layers of communication software needed
so bridge different networking and machine architectures. Arguably, the rapid increases in processor
speeds are not, matchad by similar decreases in transmission latencies. This problem js present even in
high perlormance multicomputer networks. Technigques such as caching and batching may amortise the
latency cost aver scveral requests, but for highly interactive and communication demaunding programs
the savings are limited. Consequently, the previously clearly distinet ficlds of parallel computing and
distributed computing arc becoming blurred [70}.

An idealistic goal of distributed systems designers is to hide this heterogeneity and complexity, with the
intention of giving users the illusion of a less complex unipracessor system [51, 183]. Cleatly, this is a
major undertaking, but can produce systems which are easier to use.

Load balancing

Related to the problem of exploiting parallel execution of programs (ef. §1.3.5) and scalability, is the
problem of load balancing or load sharing. In addition to reducing the scalability of the system, improper
allocation of load among the computers will severely reduce performance. For example, it has been
shown that significant amounts of processing capacity is wasted in networks of workstations [62]. In
the extreme, load imbalance can reduce the availability of the system if certain important computers
are overloaded with wark. In addition o reduced avaitability, load imbalance can also reduce the system
reliability, Qverloaded machines are more likely to fail [105, 165], and overloaded networks are more likely
to experience congestion and increased delays and jitter of data transmissions. Ideally, a load balancing
scheme should allocate load evenly and dynamically among available computers. A key problem in load-
balancing is to deline what load is, i.c. the measure of cost. Mauy factors influence system performance,
e.g. application memory requirements and the ratio of /O versus computation. Optimal load balancing
is a hard problem and most approaches to load-balancing assume relatively simple cost measures, e.g.
the number of processes scheduled on a computer.

Further complicating the issue is the fact thai many of the properties that determine efficient load are
dynamie, and can change very rapidly with time. For example, spare capacity on a particular commu-
nication link might be large outside office hours, and relatively limited during office hours. However,
significant variations can occur within much shorter time frames. Load balancing is noi a concern of ap-
plicatious, it is a lask that should be performed by system software. These kinds of problems are outside
the scope of this work (cf. §2.7.1 p. 25). The reader might refer to chapter 15 in [131} and chapter 11 in
[169] for more information.

i2




Managing heterogeneity

Scalable distributed systems are often populated with heterogencous components. It is therefore advan-
tagcous to integrate these components inte a single, uniform framework to reduce the effort needed ta
access the various companents. During extensions of a system, problems of intcroperability often arise.
Difterent components have different interfaces, and it can be a challenging task to provide cooperation
across non-uniform platforms.

Heterogeneity originates at many different levels in the system hierarchy. Different processors can use dif-
terent instruction sets. Different compuiers have various amounts of memory and disk space. There may
be different operating systems installed together with various other kinds of system software like comn-
munication protocols and file systems. Without some kind of bridging software framework, applications
would have to be written specifically for each particular machine.

Despite the heterogeneity, o distributed system must utilise the resources efficiently. This funplies that
knowledge about the properties of the resources must be available to the system, such that the system
can determine a good utilisation strategy for each resource, e.z. processing power, memory and special
hardware. For example, one particular computer may have special capabilities for numerical calenlations,
so a particular class of application that require a large amount of mumerical calculations should he
executed vn that computer. Performing this kind of optimisation requires process migralion mechanisms,
another non-trivial problem (sce ¢.g. [178]).

Data communication frameworks

The variety of hardware and softwarc architectures that must be integrated can be very large. To
achieve interoperability between different architectures, there must be a standard which defines a common
structure for interaction, Traditionally, only relatively low level communication protocols were available.
Among the most widely uscd, TCP/IP hag been implemented on a range of platforms, and is hence
providing interoperability between these platforms. While originally a ‘UNIX only’ protocol, it is now
used on a wide range of computing platforms. Although a communication protocol suite is not, sufficicnt
for application level interoperability, a number of applications, for example World Wide Web browsers,
fite transfer, terminal emulation, and electronic mail are based on this protocol suite.

The OSI° framework reference model, was created in collaboration by ITU® and ISO7 [153]. OSI at-

tempts to provide a more complete framework for application interoperability than TCP/IP. The refer-

ence model is composed of seven layers, where the four lowest layers together provide similar functionality
to a TCP/IP stack (peer to peer reliable data transfer). OSI uses the three upper layers, the session,
presentation, and application layer, to add functionality for application interoperability. For example,
in the application layer, QST defines several ASEs® for direct use by applications. There are ‘low level’
ABIs for remote procedure calls, agsociation management (an association is equivalent with a connection)
and rcliable daia strcams. Additionally, a set of ‘high level’ ASEs for directory services (X.500), mail
services (X.400), file transfer (FTAM) and remote terminal emulation (VL) are specified. While the QSI
model was a2 major undertaking, it has failed to reach wide acceptance in the computing cominunity.
This dissertation will not attempt to provide an answer for this, however, experts within commmications
research have indicated the severe overheads of inband communication as an important factor [122].

System threats

A distribuled systemn is inherently Jess secure than a centralised system hecause the multiple components
are each & potential threat to the sccurity of the system. However, distribution of resources can also
be a benefit because it normally requires more offort to tamper with all the components. If information

5Qpen Sysicms Interconnectiosn.

8The Internativnal Telecommunication Union, formerly GO (International Telephone and Aelegraph Conaultative
Commiliee).

International Organization lor Standardization.

%A pplication Service Elements.

13

RYFany

S




is partitioned among several machines in a network, everything is not necessarily compromised from
one machine. Additionally, heterogeneity among machines and interconnections will make it even more
cumbersome to access all machines.

Tssues such as encryption, aulhentication and identification need to be addressed to provide system wide
security against allacks. However, there are also other, less obvious threats that have to be considered.
For example, flaws in the design of distributed systems might lead to resource overloads and network
congestion. This might severcly reduce access to the system, essentially causing denial of service. It is
therefore important that during the design anid development of such systems, congideration is given not
only to preventing direct attacks, but also to preventing some users maliciously or otherwise, limiting .
other users from accessing the systen.

Correctness

Constructing correct computer systems is a significant challenge for both rescarchers and practitioners.
Ensuring correctuess is a hard problem in sequential systems, in distributed systems it is even harder
due to added complexities such as beterogeneity, failurcs and asynchrony. Glohal coordination and
administration requires access 10 some shared state, a globally valid property. Distributed consensus
algorithms are able to achieve agreement on global properties [66], but they are normally expensive and
complicated” due to failures and large communication latencies. Large distributed systems are often
required to deal with incorrect or incomplete global state because of the high overheads incurred by
traditional consensus algorithms, which further complicates their implementation.

1.4 Replication in Distributed Systems

Distributed systems offer poor availability if they are not designed to withstand partial failures. Repli-
cation is a recognised approach to increasing resilience against partial failures, but requires sophisticated
data management to maintain consistency. With the increasing complexity of software, there is a de-
mand for more system support software to keep application complexity under control. Systemn support
for replication can help developers of distributed applications attain suitable reliability without signifi-
cantly increasing application complexity and therefore also application cost!?. A system support facility
provides generic abstractions that are applicable to a range of applications, and hence relieves the pro=—
grammer from the task of reimplementing replication scheme code in multiple applications. The goal of
this work is to present a nsable approach fo system supported object replication, and a proposal for such
an approach is presented in chapter 6. '

The fundamental issue for all replication schemes is the level of consistency offered. Strong counsistency
replication management schemes attempt to maintain full consistency among the replicas, thus offering a
one-copy model of the replica group. But depending on the kinds of failure in the system, full consistency
is not always attainable.

Weaker consistency replication management schemes achieve better availability, performance and scala-
bility than full consistency schemes and are necessary for large scale distributed applications where full
consistency is not practicable. However, due to the potential for inconsistencies among the replicas, weak
consistency schetmes are not appropriate as part of system support mechanisms as they require applica-
tion specific intervention to sort cout conflicting replicas. Thus, the application would have to include
replication aware eode which contradicts the aim of redneing application complexity.

In contrast, a full consistency scheme can be used without changing the semantics of the application
as most programs are written under the assumption that there exists only a single copy of data items.
Although weak consistency protocols have been used to support semantically simple applications where

YWorse still, consensus has been proven inpossibie in wmany realistic system models [69, 184, 136].

10nany markets are not willing to pay much extra for increased veliability of their applications {Y8]. Increased application
reltability will however be a bonus if added at a small cost.




the rules for conflict resolution are straightforward, they are not very useful at a system snpport level
in object oriented programming systems where reconciliation of objects generally cannot be automated.
Only for some applications which are generally able to cope with inconsistent data due to their self-
correcting characteristics, for example name resolution using a name server or reference databases [81,
134, 137], can weak consistency protocols be used transparently. The application is responsible for
checking if the information is out of date, and if so, the application must be able to detect the error and
guard isell by using a failure masking protocol such as retries.

Consequently, a full consistency replication scheme seems most suitable for system supported replication
and forms the basis for the proposed system architecture.

1.5 Problem Statement

A range of challenges for distributed systems designers have been presented in the previous text, and a
number of others probably exist. The problems discussed require substantial and continuous research,
they are ail iinportant issues. The work described in this dissertation tries to address only a particular
problem within the area of distributed computing; namely that of providing assistance to application
builders developing reliable distributed software systems in an effort to help reduce application complexity
and improve its reliability.

‘The aim of the work presented in this dissertation is to provide partial system support for abject repli-
cation in a distributed system. Due to the inherent tradeofl between cousistency and scalability, the
system support mechanisms arc aimed at supporting relatively small scale applications where high levels
of consistency only incur moderate costs in performance. The small scale justifies the use of remaote
object references for sharing of objects between machines. However, the system support mechanisms
allow the programmer to partially control the synchronisation of the replicas to better suit the particular
application in hand. Through the use of the system support mechanisms it will be demonstrated that
applications can employ replication in a simple and efficient manner.

My thesis, which will be supported by this dissertation, is that partial system support for replication of
program-level objects is practicable and assists the development of reliable distributed object-oriented

applications which requirc full consistency replication. I demonstrate the uscfulness of this approach

by describing a prototype implementation and showing how it supports the development of an example
application.

1.6 Qutline of the Dissertation

The remainder of the dissertation is composed of $ chapters and 2 appendices; the first four {chapters 2-
5) present the problem area, the next three (chapters 6-8) present my proposed architecture for system
supported object replication, chapter 9 is a survey of related worl:, and chapter 10 contains concluding
remarks about the achievements and open problems. Appendix A presents a sample collator which is
part of the programming model, and appendix B prescnts a small amount of probahility theory used
throughout the dissertation. What follows is a more detailed description of each chapter.

Chapter 2: System Model. This dissertation is concerned with partienlar elasses of distributed systems.
The system model defines the characteristics of these systems by describing their siructiure and
behaviour, covering both hardware and sofiware issues.

Chapter 3: Computer System IFailnres. This chapter provides a presentation of some of the any
failurcs that can ocour in compticer systems. Distributed systemns arc particularily vulnerable to
[ailures, and must be designed Lo withstand them if they are to be useful. However, understanding
the characterislics of ihese lallures is necessary when attempting to build systems that should




withstand them. This chapter is to be regarded as an introduction to chapter 4 which covers
techniques to mask these failurcs.

Chapter 4: Replivation Techniques. Replication management schemes can be used to mask failures in
distributed systems and a range of diflerent approachkes to replication do exist, of which a numnber
are presented in this chapter. Additionally, replication in object systems, through the use of object
replication, is distinet from traditional data replication techniques. The particular system model
adopted in this dissertation, and the range of failures considered here, requirves that important
tradeoffs be made consciously when a replication scheme is chosen. Included in this chapter is a
discussion of these tradeofls and special considerations that must be made in an object replication -
scheme.,

Chapter §: System Support. Implementing system support is not trivial, but the availability of system
support can be crucial for the coustruction of corplex software systems. This chapter contains a
discussion of various important issues that must be addressed during the development of system
support mechanisis with an emphasis on those issues related to the provision of system support
in distributed systems.

Chapter 6: System Architecture. My proposed architecture for system supported replication is presented
in this chapter, highlighting its modular and flexible design.

Chapter 7: Programming Model. A main goal ol the architecture described in the previous chapter is to
present the developer with & simple progranuning model. In this chapter I show how my architecture
extends an object oriented programiming language with powerful mechanisms for managing object
replication.

Chapter 8: Realising the Architecture. The architecture has been partially implemented as a proto-
type in Maodula-3. Additionally, a toy application has been built exercising the system support
mechanisms, and demonstrates the simple programming model. The application has also been
instrumented for perforinance measurements. This chapter presents the prototype to illustirate
how the architecture can be realised. A brief discussion of the application and the performance
measurements is also included.

Chapter 3: Related Work. Vast numbers of rescarch and commercial projects employ replication tech-
niques to improve failure-resilience, availability or performance of applications. This chapter 1§~
divided 1o two; the first part focuses on those projects particularity aimed al providing program-
ming level support for replication, such as replicated RPC or process groups. The second part
conbains a broader presentation of distribnted applications that employ replication technigues.

Chapter 10: Conclusions. A range of valuable insights have been gained thronghoutl Lhe course of
the project. The final chapter summariscs these insights in a discussion of the limitalions of the
architecture, open problems and possibilities for future regearch.
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Chapter 2

System Model

The system support mechanisms presented in this dissertation (see chapter 6) are built upon existing tach-
nology to reduce complexity and simplify their development. This chapter presents an abstract mode! of the
distributed systems in which my proposed approach for supporting replication is appropriate. If similar tech-
nology is not available, implementing the replication mechanisms may not be practicable without reworking
the architecture. The assumptions set forth in this chapter shouk) therefore he considered prerequisites for the
proposed architecture.

2.1  Overview

A distributed system is a collection of autonomous wud cooperating computers which communicate via
a network. A network of workstations is a good example ol such a system which conforms to the system
model presented in this chapter. Disfributed software composed of cooperating modules execute within
the network. An object-hased programming maodel is chosen for this work, where objects are distributed
among the computers in the system and interact. by invoking methods on each other. Objects provide a.

simple and unifying concepl used to decompose distributed applications into a collection of interacting

autonomous and maintainable components. Objects are couvenient for the encapsulation of complex
software mechanisms. ILncapsulation and simplicity male objects useful for the construction of large
distribused software systems {135].

In contrast to a centralised system, a distributed system must cope with a range of complicated problems
such as asynchrony and partial failures. Also, distributed systems may often include heterogeneous com-
ponents. The heterogeneity introduces variations in the underlying hardware and software architectures
which must be concealed by distributed systems software. The following sections present the system
model in cletail.

2.2 Processing Elements

A collection of processing elements (PEs) cooperate to execute programs within the distributed systern.
Kach PF has direct access to a limited amount of memory, and optionally, a limited amount of non
volalile storage. Access to local memory is assumed to be fast, access to non volatile storage is assumed
to be orders of magnitude slowert.

'The cost of accessing non-volatile storage, unique in its ability to maintain the integrity of data during P¥ failures, can
be amortised by employing techniques such as caching in combination with specially dusigned, failure resilient write-back
policies. However, it is outside the scope of this dissertation te provide a thovough analysis of cache performance, Lor
example, cache performance is found to be highly dependent on program behaviour patterns, a distinet feld of rosearch
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A leasely coupled system architecture is assumed -~ each PI executes locally stored programs. The local
mermnory, optionally angmented with a virtual memory mechanism, is partitioned into multiple address
spaces. Kach PE supports the conenrrent execntion of multiple, potentially multi-threaded, programs
located in their own virtual address spaces. Due to variations in processing capacity, system resources and
system load, PEs execute programs at variable and unpredictable rates. Bach address space is protected
against uncontrolled access from ather programs by local operating system software. An attemnpt by a
program in one address space to manipulate data within another address space without the appropriate
access privileges will either be denied or cause a crash in the offonding address space.

Potential architectural heterogencity among PEs can cause problems during interaction. Differently sized
address spaces and different rules for byte ordering will undoubtedly canse mishaps if an interconnectivity
policy Is not in place. Ilowever, these issues are assumed (o be solved by existing systems software
implementing inter-PE communication primitives.

A distributed program contains instructions both for local computation and for communication. A P
executing o, communication instruction uses the facilities offered by the network to communicate messages
with other PEs in the system. Fach PE is uniquely identified within the network, and the comnunication
network provides the necessary support for commnnication of messages between any two PEs. Hence,
PEs are assumed not to be concerned with issnes such as PE addressing and network routing. These
issues are dealt with by lower level communication software.

Distributed shared memory (DSM) systems are not considered here. While DSM is a very powertul
abstraction which potentially can simplify application development, current DSM systems tend to offer
poor scalability and elliciency as corupared to distributed memory systems. Because DSM systems do
not support application partitioning {cf. §2.7.1 p. 25), the notion of failures is concealed, and this makes
it difficult to build fault-loferaut systems. As in replication management schemes for distributed memory
systems, maintaining consistency is the difficult issue. However, experiments with DSM systerms can give
valuable input into veplication management strategies in distributed metnory systems [36].

2.2.1 PE failures

Computing machinery is not able to sustain continuous fuilure free operation for arbitrarvily long periods

of time (cf. §3.2 p. 30). A PE may fail during execution of local programs and may trigger failures in..

other PIis. Normally, a failure will only affect the address space hosting the cxcenting process. Iowever,
it the PE failure oceurs during execution of critical code, e.g. operating system code, device driver code,
ete., all activity on the PE may be affected, i.e. all address spaces local to the PE may tail. Also, it is
assumed that o PE does not fail maliciously, i.e. the PE does not behave arbitrarily. Hather, when a
{ailure occurs within the P proper, it crashes and stops all processing permanently?. Some time after
the PE has erashed, the PE may be restarted, most likely initiated by a human operator. Because a PE
fails by crashing, snch a failure can be detected in the time-domain by a timeout mechanism (cf. §3.2.3
p. 32).

2.3 Networks

Computer networks provide the necessary infrastructure for communication among PEs. The networks
provide suppori. for any pair® of PEs to communicate messages. Message passing is by definition not
instantancous. Il is not possible to send data from a source to a destination in zero time. Additional
delays are incurred by unpredictable traffic and congestion patterns throughout the network, leading to
arbitrarily long delays.

120, 56].

?Failures are discussed in more detail in chapter 3,

3Collection of PEs if (he network supports multicast {cf. §2.3.3 p. 20).
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The communication infrastructure is usually the most siguificant factor determining the characteristics of
a distributed system. Most importantly, its structwre, or topology, affects both performance, scalability,
and failure modeg in the system. A connecied nelwork is assumed, i.e. a PE can exchange messages
with any other PE. However, not all PEs are directly connected by a single transmission path. A fully
connected nefwork is not feasible in practice due to the high cost; however, high comectivity? can improve
the reliability of the network, as fault-tolerant routing algorithins can ensure that messages are routed
around fajled links and therefore provide service in the presence of link failures.

Furthermore, bus-based networks, while able to support, eflicient broadcast, do not scale to any significant

sizes®. Accordingly, a network structured as a collection of broadeast subnetwarks (LANs) interconnected .

by point-to-point long-hanl networks (WANSs) is assumed.

2.3.1 The latency problem

Routing, buffering and forwarding of messages in large nelworks incur overheads which are reflected in
relatively long and unpredictable latencies. Additionally, significant latencics arce present in large dis-
tributed systems due to the physical propagation delays in long distance communication links. Electrical
and optical signals are inherently limited by the speed of light, and in many cascs these signals travel at
significantly slower speeds. For example, dne to refraction, propagation speeds decrease to about 60% of
the speed of light in optical fibres. As a result, a coast to coast connection in the continental U.S. can
experience propagation delays of up to 30ms [141]. The problems incurred by physical signal propagation
delays are nacurally amplifiedd by the geographical scale of the distributed system. Techniques such as
caching and buffering can be used to amortise the propagation cost over multiple messages, bui. this does
not. bring much benefit to highly interactive applications which are dependent on rapid transmission of
round-trip messages.

Timeouls

A timeout is a mechanism for dealing with the asynchronous hehaviour of distributed systems. A timeont,
is an approach that introduces synchrony constraints into the communication channel to deal with benign
faitures. If a message is not received within a specified time interval, a timeout expires and the message is

assumed to be lost. Timeouts essentially reduce timing failures to omission failures®, making it possible _

to observe omission failures without arbilrary long delays.

A problem with timecuts is to find a timeout value which is eflicient. Timeout values which are too
small will lead to excessive numbors of timeouts,; whereas overlarge timeout values will make the system
inefficient by wailing oo long before declaring a message as lost. Further complicating this issue is the
greatly varying latencies found in internetworks combining LAN and WAN techuology. The latencies also
vary depending on competition for the channel. This dissertation assumes that the network technology
has appropriate mechanisms for dealing with timeouts across heterogeneous networks sueh that, commu-
nication among inferconnected PEs is performed efficiently. Therefore, with high probability, failures are
detccled much faster within a subnetwork than in a long-haul WAN network.

2.3.2 Network failures

A network should allow PEs to exchange messages reliably. However, several kinds of mishaps are
likely, Network failures are inherently less independent than PE failures. A nelwork connects several
PHa together, and a failuve therefore normally affects multiple other camponents. Depending on the
network’s topology, architecture and population, there are large variations in the number of affected

#T'he connectivity of a network ia the number of links that must be removed to obiain a single-connected network.

3This is due to the need for coilision detection abgorithms which limits the longth of the bus. For exarnple, an Fthernet
segment cannot exceed 2.5km n length [182].

5Cf. §3.2.3 p. 32.
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components, Highly connected networks with multiple alternative trausmission paths can substantially
reduce the effect of failures. Qther networks, e.g. bus-hasced networks may cause disruption for many of
the connected PHs.

T.o8t messages may cause PEs to observe partition failures, i.¢. a group of PEs are not able to communicate
with another group of PEs. Partition failures are extremely hard to deal with because PEs in each group
might conclude that the PEs in the ather group are just faulty. This, in turn, might lead to inconsistent
behavicur within each group. In the proposed archilecture, partition failures are treated pesstmistically,
i.e. only a partition containing a majority of the PEs is allowed to make progress (see §6.3.1 p. 68). Qther
solutions, assuming (optimistically) that conflicts are rare and can be deslt with later, would allow PEs
in multiple partitions to continue [55].

Network failures are often transient and cause bursts of corrupted or lost messages rather than permanent
partitions {cf. §3.2.4 p. 34). To increase the reliability of the network, failure resilient communication
protocols are used to conceal many of these mishaps. For example, the TCP/TP protocol suite provides
a reliable byte stream transport service over a virtual circuit [17]. The TCP/IP protocal guarantees
that no bytes are reordered, duplicated or corrupted. Due to the conneciion oriented semantics and
retransmission of lost data, TCP/IP connections have crash fault semantics and arc failfast and reliable”
{see also §3.2.3 p. 32).

2.3.3 Other network issues

Some network architectures have specific capabilities and strengths that can be of significant benefit in
distributed systems. Among these are support for sessions (e.g. conncctions), broadcast or multicast, ser-
vice guarantees, encryption and authentication. Although these features can be implemented in software,
hardware support is likely to be much faster.

Network support for multicast

Replication involves keeping several copies of an object up to date. 'This can be supported by multicast
network primitives. Mulbticast primitives allows a PE to send an update message to multiple recipients
using a. single network operation. Most bus-baged networks, e.g. the Ethernct, but also ring-based net-
works such as FDDI and Token Ring support. efficient broadcast. Iu these networks, multicast is similarly™"
efficient; because ail messages are seen by all stations, a station can just discard messages thal are not
from & transmitter in the multicast group. Network support for Julticast is of benefit also because it
reduces the amount of traffic on the network by making copies of the message only when strictly nec-
essary. Traditionally, multicast in wide-area networks has been much more expensive, but new networl
architectures, such as ATM [190], and research into multicast on the Internet, such as the MBone [63],
may recduce this problem. However, the proposed architecture does not require such support.

Isuchronous datatransfer

Time critical media like video and audio require transfer of large quantities of data with litile jitter and
delay. Some network architectures, such as ATM [180] provide support for isochronous data transfer.
Work is also being done to improve the performance of FDDI {43] and Kihernet [74] for time-hased
media, However, challenges still remain, Isochronous ISthernet has the scalability problems of Ethernet,
and will be most suitable for small scale installations. FDDI technology also has scale limilaiions,
maximum nefwork length is 200km. Communication latency in ATM networks is still a battleneck for
Lighly interactive applications [108], alchough promising progress has been reported [192]. For iruly high
speed networking, processing overhead in clients seems to be the bottleneck [108], work will he focnsed
on improving device drivers and medium aceess protocels. Latencies below 200us have been achieved in
ATM LANs. Any eflorts resulting in networks with less jitter and delay will be of benefit to the proposed
system architecture.

"The connection is failfast becuuse Eueouts and checksums convert late or corrupted messages to lost messares, and is
reliable hecause it retransmits lost messages [85],
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2.4 Objects

A class implements an abstract data type (ADT) defined in a program, and is purely a programming
langnage concept. A class may be a specialisation of some ather class, in which case it inherits parts of
its definition from the other class, or it may be a top-level (root) class. When a classg is instanliated to
construct an olject, the object will contain all the fields and methods accumulated down the inheritance
hicrarchy, and the object will accept method invocations as declared in the ADT specification.

This dissertation is primarily concerned with the object concept. Issues related to class concepts, e.g.
subtyping and polymorphism are not further considered®. It is assumed, in accordance with the traditional
view of object-orientation, that data abstractions and procedures are first-class objects which can be
manipulated as normal values {34].

An object is a structure that encapsulates a state and a sct of methods (operations) that can be invoked
to manipulate that state. A meihod is a non-instantaneous parameterised transformation of an object’s
current state [119}. Invoking a methad on an object is the only mechanisin available to other objects for
accessing an object’s state?.

Objects exist during run-time in an application’s address space, and the system support mechanisms
described here are primarily concerned with programming language objects, i.e. objects instantiated by a
program generated by a compiler. If used in the context of object-oriented operating systems, the same
deflinition of objects would apply. However, other objects, such as traditional operaling system objects
(files, ports and processes) and hardware objects (displays, keyboards, disks etc.) ate not part of the
architecture.

2.4.1 Semantics of methods

A pure, encapsulated, object model is adopted in this dissertation. Method invocations on objects are
assumed to potentially mutate the state of the object. Hence, the object’s new state 97 is a function
of bath the method m, any parameters p, and the state of the object S before the invocation occurred,
S = (S, m,p). Methods that do cause mutation are called non-idempotent, or non-testable [85]. The
nuruber of times such methods are invoked determines the final state of the object, hence, they must
be executed exactly the number of times specified by the client. For example, invoking a wethod de=
posit(£ £00) on a bank account is non-idempotent, because it does not simply overwrite the object’s
internal state, but rather depends on the previous state tn determine a new value (in this case Lhe cur-
rent balance). It is further assurmed that methods are non-commuiting and mist be executed in the corvect
order. For example, the order of invocation is impuortant for the two method calls eddinterest(10%) and
deposit(.£ 100).

Whether the invocation of a method on an object ounly reads the object's state or if it 13 also modified is
nol: revealed to the holder of the reference to the object. An encapsulated object model means that the
implementor of the object can guarantee that internal state invariants can be maintained. This relieves
ilie client of the object from any obligations to deal with integrity constraints of concern only to the
object ilsell and 1his in turn enhances the scalability of software designs.

Methods may define output paramecters as well as input parameters. Input parametors are used o
parameterise the mmethod invocation, and output parameters return results of the invocation back to the
caller.

Object’s state
An object’s statc may contain any type, variable or procedure definitions allowed by the programming

®In this respect, the object model is object-based (135, 154]. Llowever, the implementation of the architccture benefits
from object-oriented features of the implementation language, which is object-oriented.

9Some ohject oriented languages do not enforce such strong encapsulalion.
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language and hence form arbitrarily complex constrncts. For example, objects may contain dynamic
data-structures such as references to files, monitors and threads [33]. Objects may also hold references
to other, potentially distributed, vbjects'® (cf. §2.5 p. 22).

During execution of a method invocation, the object might, in addition to performing computations on
the local state, invoke methods on some of the referenced objects. Methods might, as input or result
parameters, accept references. These references are just like any other reference, and the holder of the
reference can use it to send invocations to the referenced object.

2.4.2 Concurrency issues

In the disiributed systems counsidered here, multiple objects may concurrently invoke methods on a
shared object and causc non-deterininistic program behaviour. To prevent this problem, invocations
must be serialised, using locks, semaphores or monitors. I is the responsibility of each object to ensure
that multiple executing methods within the object do not cause incorrect state changes. The proposed
architecture acknowledges the need for serialisation nsing built-in synchronisation primitives (see §6.2.4
p. 66). '

The objects considered here are not active, i.e. there is no explicit coupling of objects and threads. A
thread may visit arbitrarily many {local'’) objects and an object may be visited by arbitrarily many
threads. However, an active object madel would also be suitable for the architectire, and would most
likely reduce the complexity of the parallel RI*C mechanism described in §6.2.2 p. 64.

2.5 References

A reference is a handle to a particular object, and is created when the object is instaniiated. Tn a
distributed system, references might span address spaces; the relerence must then unigucly identify any
object in any of the address spaces. Further, mnltiple chjects can hold the reference to a particular
object, facilitating sharing of the object [53].

Uniformity of references

Uniform references, i.e. indistinguishable local and remote references, have been the subject of some debate
[26, L17, 194]. Uniformity is advocated as an approach to reduee application complexity. However, there
is an inherent difference; dereferenciug a remote reference may [ail while this will never occur for a local
reference. Remote references are therelore less reliable than local references. Furthermore, invoking a
method on a remaote object is more costly. If references are truly uniform, the programmer has no choice
but to use local and remote objects in the same manner, thereby sacrificing either efficiency or reliability
of the soliware.

This disscrtation is hased on an object model which makes it possible {or the programmer to handle
remote and local references differently through optional exception handlers for remote invocations. In
case there is no exception handler for remote object invocation failures, the compiler will issie warnings.
The benefit of this approach is that the programmer is only reminded about the additional failure modes
of remote object invocations but is not required to handle these lailures if the application can ignore
them*?,

00Objects are never ‘contained’ within another object, nor are they ‘owned® by another abject; all objects exist indepen-
densly in an universe of uniquely identifiable objects.

UNaturally, remote invocations will be processed by another thread iu the remote address space.

12 Any reliable application should be concerned with such exceptions however, aud should not simply vrash due to a
vemote vbject failure. Not adding exception handling for remote references should therefore be congidered a dangerous
programuning practice.
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Security issues

In a nalve implementation of a distributed object system, any holder of a valid object reference can
invoke methods on that particular object. This opens up the possibility of security threats in the system,
where arhitrary programs can manipulate objects. A solution to this problem is presented by Geihs et.
al. where an anthentication mechanism is inlegrated into object references [78]. The problem with such
an approach is that it is likely to be very expensive, particularly in systems containing large numbers ol
mostly small objects. In such a system, an authentication check for cach method invocation would incur
severe performance overheads.

However, such security measures are neither assumed nor required by the architecture but could be used -

if present. The present version of the architccture assumes sharing of objects among programs residing in
address spaces owned by the same user and protected by underlying system software, althouph extensions
of the architecture might have to consider proteciion of object references.

Reference failures

A remote object reference ia tragile. If the referenced object becomes unreachable, e.g. due to a network
failure, the client will be notified by an ‘object nnavailable’ exception. This is a problem for both ihe
caller and the callee, and the failure of the client to be prepared for such events will most likely cause
the client address space to crash. If the reference is remote, the remote address space might crash as
well due to the execution of arbitrary instructions. Similar failures will also occur if the remote object
is removed without updaling the references that refer to it. Such ‘dangling’ references may cause failure
in objects trying to dereference them (i.e. invoke a method on the referenced object), and potentially
cause the execution of arbitrary instructions in the remote address space leading to remote address space
failure as weil. Dungling references might occur for several reasons, e.g. erroneons object migration or
premature garbage collection {143].

The reference is the only mechanism available to invoke mcthods on another object. In fact, if no
references to an ohject exist, the object is not reachable, and does not logically exist. Such objects are
removed and their storage reclaimed by garbage collection techuology [143].

2.6 Invocations

An object holding a reference to another object can invoke methods on the referenced object. Invoking
methods on a local object is performed through a standard, local procedure call on the indicated object.
The control is transferred to the method in the referenced object and if return parammeters are specified
for the method the caller waits until the method is completed. Tnvoking a method on a remote object
requires fransfer of confrol and data between address spaces. The calling thread is blocked before a
remote thread starts exceuting the call in the remote object. The calling thread resumes execntion when
the call relurns from the remote object. Issues such as locating the remote vbject, argument marshalting
and unmarshalling, communication failurcs and remote object failures are handled by an object-oriented
RIPC mechanism!3.

Traditionally, in non-object based systems, the RPC [23] (remole procedure call) approach has been used
for intraraddress space procedure calls. In object based systems, RPC is quite naturally extended to
remaote invocations. Whereas a remote address space identifier must be supplied with each RPC call
to identify the callee, a remotfe reference is suflicient identification of the callee in an object system
[22, 27, 154]. This increases the uniformity of local and remote invocations.

Invoeation failures
Invoking a method on an object can be regarded as equivalent to sending a message to the object. If the

13 An object-oriented RPC mechanism extends the notion of a reference to include remote references. ¥n contrast to non-
object oricnted RPC mechanisms which require a process identifier as parametler with each remote call, an object-oriented
RPC hides the pracess-id within the object reference.
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method defines return parameters the caller is blocked while waiting for the reply message, otherwise the
caller proceeds. Due to the possibility of network failures, messages cannot be transmitted with complete
reliability. The network may cause arbilrary delay ol messages, due to disconnections or protocol failures.
An invocation on a remote object may therelore block the caller until the timeout set for the return
message expires. If the caller receives a timeout, it cannot accurately verify that the method has been
executed at all. However, there is no exact way of deciding what went wrong; eilher the invocation
message was lost, the remote object’s address space crashed, the remote PE was too busy o respond in
time, or the return message was lost.

Due to this uncertainty, remote invocations can only provide at-most-once semantics in unreliable asyn- .

chronous systems. The caller cannot accurately determine whether the invocation was executed one
or zero times if & reply is not expected or expected but not received. However, if return messages are
expected, at-least-once semantics can be achieved by retrying the invoecation until a reply message is even-
tually received. This causes problems in the adopted system model, as methods may be non-idempotent
and thus require exaclly-once invocations.

The architecture assumes that network failures are rare, and occur mostly as transient failures which are
masked by underlying communication protocels'4. Also, it is assumed that a timeout mechanism. reports
untimely message arrivals. A client will therefore obscrve all invocation failures, in addition to some
failures which are prematurely reported by the timeout mechanism.

2.7 Applications

The development of distributed, object oriented applications can be considerably simplified by the use
of appropriate programming langnages and systems. A number of programining languages and systems
include support for distribution of applications, and often amend traditional object oriented program-
ming languages with persistence technology such as stable storage and transactional functionality [154],
Although the architecture presented might benefit from persistency technology in some respects, such
technology is not assumed. These system support mechanisms are aimed at amending a type-safe object
oriented programuning language with functionality for object replication.

Applications arc composed of collections of interacting objeets. Distributed applications, whose execution

is supported by distributed systems, are composed of objects located in different address spaces, possibly

on separate PEs. The programming language provides the facilitics nccessary to create, invoke and
share objects. Thus, this must also be anticipated by distributed system software. IFurthermore, system
software technology is assumed to be present for the reclamation of non-reachable objects.

The distinction belween so called client-server and peer-lo-peer applicailions iz important for distributed
software. A client-server application s statically decomposed of clieuts requesting sevvices from servers.
While being the common approach to distributed computing today, this approach is limited by the
static réles of clients and servers. However, interaction between two objects is by nature a client-server
relationship whereby one object invokes the method (the client) upon another {the server) to carry out
a piece of work.

To increase the flexibility of distributed software, a model where the client/server réles are dviamically
changing is envisioned as the next step up from client-server computing. By allowing servers to request
services from other servers, a peer-to-peer model is formed which assists collaboration and autonomy
among agents [2, 106]. In a peer-to-peer structured application, ohjects are considered peers and may
invoke methods on cach other, essentially functioning as agents carrying out work on behalf of others.

Some goftware systems at a larger seale are composed of collections of cooperating objects which externally
provide a server function. For example, a nmnber of interacting objects might be cooperating to provide

Wrangparent failure masking is a primary task for most communication protocols running in lesy than perfectly reliuble
networks. TFur example, transport protocoels such as TCP /I and OS1I)"1-4 go to great lengths to recover from occasionak
transient failires [17, 182].




a file service to other components within the system. The particular group of objects providing the file
service functionality will typically be located in the same address space to reduce the number of remote
invocations and thus achicve reasonable performance. The archifectire for system supported replication
which is discussed in this dissertation assumes a client-server computational model where servers are
internally composed of cooperating objects (see §7.2 p. 79). However, extensions cof the architecture
are suggested which can eliminate this restriction and allow a true peer-io-peer computational maodel
(see §10.3.1 p. 109).

Multithreaded applications

A thread is a distinct flow of control within a process, potentially executing concurrently with other
threads within the same process. Threads communicate via shared variables, and the synchronisation
of threads is the responsibility of the application programmer. Multithreading is a useful and powerful
concept for the construction of software because it increases parallelism [68] and consequently can reduce
the performance penalties with synchronous method invocations [25]. Insiead of simply waiting for a long-
running invocation to complete, the application can allocate this task to another thread, and continue
doing something else meanwhile. In this dissertation, it is assumed that an application will consist of
multiple processes, each with potentially multiple threads of control. This, in turn, will occasionally
trigger concurrent execution of methods in shared objects (cf. §2.4.2 p. 22). System support mechanisms
must therefore be prepared to operate correctly despite concurrent invocations. The systemn architecture,
described in chapter 6, supports object sharing. However, due o some inherent, overheads, sharing among
processes will incur reductions in performance.

2.7.1 Application partitioning

The application programmer determines the tasks each object is responsible for and their location among
the collection of PEs within the distributed system. Because objects are relatively low level constructs,
applications are built as a large callection of interacting objects. For the performance of the application
it is important to miniinise the number of interactions across PLE boundaries because these are more
expensive than local interactions. Both performance and scalability can suffer badly from poor locality.
The application is therefore partitioned into groups of objects in such a manner that most object in-
teractions occur within the group. Ideally, object location should be performed dynamically by system..
software that oplimise application performance. However, dynamic load sharing and object migration
are separate hard problems that are not investigated in this dissertation.

b

Static and dynamic partitioning

Applicalion partitioning can be either static or dynamie. Static partitioning is done at compile time,
whercas dynamic pariitioning occurs al run tiwe. The benefit with static partitioning is that object
interaction can be type checked by a compiler to guarantee that only valid methods are invoked on
objects. However, stalic partitloning is unrealistic for large scale distributed applications. Rather, it
must be expecied that these applications will be configured and changed during execution. Dynamic
partitioning nust therefore be supported for large software systems. Dynamic partitioning requires that
type-checking of method invocations are checked at run-time.

Heterogeneity

During its lifetime, a large computer system is often required to interact with another, potentially het-
erogeneous computer system in order to cooperate on common tasks [142]. Beeause large distributed
systems often consist of confederations of antonomously evolving components, problems might occur
when evolution is not coordinated across component boundaries, for example, if a protocol between the
two components is not updated simultaneously in both components, or schemata and datatypes are
changed without prior agreement from both parties [142]. "The problem is intensified due to the de-
mands for increasingly open systems, i.e. systems which are designed to cooperate with other, potentially
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unknown systems. These applications allow dynamic partitioning which requires careful planning of in-
teraction mechanisms and well defined interfaces. Interoperability issues in object systems is g field of
active research, see for example 118, 77} and Part 6 in [138]. Object orientation, with strong emphasis
on ¢ncapsulation and abstraction can be a useful approach to reduce the cost of building interoperable
systems [135], and the pure object model adopted in this dissertation acknowledges these principles.

So-called object request brokers (OR'Bs) have been proposed to alleviate the problem of integrating het-
erogeneous object systems by using repositories of interface contracts which define the interfaces available
to the client of objects within the object store [14]. Network Objects uses the principle of subtyping [34

to allow a certain degree of cvolution in the imnplementation of objects [22]. The implementation of the .

object may be extended (i.c. specialised) without necessitating any changes in the clients of the object.

2.7.2 Application failures

Applications are distributed over independently failing address spaces. Each address space may contain
multiple objects which reference other objects, potentially contained in some remote address space. When
an address space fails, all local objects fail, although this cannot be guaranteed with absolute certainly.

Other application issucs

Software, like hardware, may fail. However, the nature of software is discrete, hence software failures can
be avoided. In contrast o hardware components, a correct software component will never he the cause
of its own failure'®. Many challenges still remain before there can be any realistic hope of constructing
provably correct substantial amounts of software.

It is unclear how the use of object oriented techniques will affect, if at all, software failures. One might
suspect that increased encapsulation and better mechanisms for data abstraction will reduce the number
of software failures, or at least reduce their effect outside the particular ohject. However, software
designers using object criented techniques are likely to build applications that continuzously stretch the
limits for comprehensible complexity, and thereby use up the benefits of better development paradigms.
Failures in object oriented software might also exhibit more complex failure beliaviour, unknown from
procedural software due to polymorphic binding and very flexible interaction patterns among ohjects [16}.

1iCorrect software remains correct over time. However, software mush interact with hardware, and also often with other
software; this will of course imply a probability of failure.
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Chapter 3

Computer System Failures

This chapter examines computer system failures and their characteristics with an emphasis on failures in
distributed systems. Failures are surprisingly common in distributed systems and often cause significant
reductions in a system's usefulness. Generally, any large distributed system is likely to contain a number of
failed components at any given time., Additionally, if other components are depending upon the failed ones even
small numbers of failures can have large consequences throughout the system. Replication is one technique
which has been used for some time to reduce the impact of failures, and this technique will be discussed in
more detail in the next chapter. However, it is important to understand the nature of failures before embarking
on the task of concealing them using replication techniques. One consequence of the asynchronous system
model adopted in this dissertation is that failures cannot be accurately diagnosed, and this makes it harder to
deal with them.

3.1 Dependable Computing Systems

A dependable compuling system is one which allows users to depend on its service, for exainple by being
reliable and available [104]. However, dependability is a metric whieh spans niany aspects of a complete~
system, some of which are more abstract and may therefore be ditlicult 1o measnre. ‘L'his dissertation
is primarily focused on the refiability and availability aspects of dependability as these can be improved
using replication techniques. As such, other factors influencing dependability, for example security and
maintainability, are not addressed.

A computing system which fails frequently is not very useful for any serious tasks; a user cannot depend
on such a system. Even for the casual user such a computer system will soon become more of a nuisance
than an efficient information processing tool. On the other hand, a dependable computer system can be
used for such important tasks as the control of dangerous chemical processes, air traffic control systems,
the runniog of business-critical applications such as a bank’s databases or to ensure safe and continuous
operation in nationwide telephone networks. As computers take over many important tasks in society,
dependable computer systems will become more valuable and, in fact, dependability may be a common
requirement of future users {44].

Dependability requirements are olteu greater for large and distributed systems, and undoubtedly the
combination of large scale and dislribulion poses significant challenges for researchers in the avea [45].
Sophisticated evolving software, complex dependencies among system components and heterogeneons
computing platforms are issues which complicate the construction of dependable systems. However,
large dependahle systems are built recursively from smaller subsystems; to e able to build dependable
computer systems if is necessary to understand why the subcompaonents fail, and how they fail. Thercfore,
one must consider components individually; only then is it possible to construct dependable systems.
After all, dependability is a system issue, all parts of a computing system must be assumed to play a réle
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in the dependability of the overall system [149].

Additionally, efforts to increase the dependability of a system should be focused to give the best eftects for
a given cost. No matter how many resources go into designing a dependable system there will be a non-
zero probability of failure [1]. Consequently, the system’s dependability requirements must be determined,
as must efforts which will give the highest teturn in increased system dependability. Additionally, some
failures are very costly to tolerate, while other failures are significantly cheaper to tolerate. During the
design of a dependable system it must be clarified which failures should be addressed by mechanisms for
failure tolerance, and which failures must be neglected.

3.1.1 Metrics

It is oceasionally necessary to compare, or otherwise communicate, dependability measurements. A set
of metrics is needed fo facilitate this. If the terminology is simple and concise, it will reduce the effort
needed to understand the principles of an area as complex as dependable computing. The literature is
not always concisc in its terminology, however, this section attempts to clarify the central metrics, and
present them as they are used throughout this dissertation. ‘

Reliability

Reliability is “the probability of a system performing its purpose adequately for the period of time
intended under the operating conditions encountered” [150]. Most common is the use of MTTYF {Mean
'I'ime Lo Failure) ratings to measure reliability {85, 104]. The MTTF rating is often determnined through
intensive testing or simulations, and is an indication of the expected failure rate of a component. It is
important to notice however, that MTTF ratings do not indicate distributions of the failure probahility,
and that these measures are slightly lunited.

Failure recovery

After a component has failed, a certain amount of time will be required to restore it to its operational
state. This is called the service interruption or MTTR (Mean Time To Recavery). M1 values are also
estimatey, and can only be used to suggest availability. Depending on the failure mode of a component,
different. actions may be required Lo bring the component back £o an operational state. -

Iu centralised systems a failure is often dramatic, and will normally vause disruption to the whole program,
If & program crashes, it must bhe restarsed and transactions in progress during the crash will need to be
repeated either manually or automatically using transaction logs. A human operator is usually responsible
for restarting the system, for example by restarting a program.

Qccasionally, the crash is caused by permanent hardware faults, and in this case the operator will need to
call an engineer to carry out the repair or replacement of hardware components. Iardware reconfigura-
tions and repairs typically take much longer than simple system reboots. Often, the whole process could
take minutes, or even hours!. In addition to the inconvenience of no access to the computer, individual
users are likely to suffer from the loss of unsaved files and the need to manually redo work.

Availability
The availability A is the probability that the system is able to provide correct service at a given time
{150].

- MITF

T MTTF + MTTR

Phe Lime it takes to repair a computer system is extremely unpredictable. According to [115]), MTTR can sometimes
be in excess of 20 hours on particular computer models, although an average of 4 hours is assumed in {150]. It is not hard
to believe these numbers considering that they ofien include the time it takes engincers Lo arrive at the location with the
corract spare parks.
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Availability defines the percentage of time a service is available, so that an availability of 100% means
that the service is always available. Most computing equipment today is very rcliable, and availability is
usually in the range 99.9-99.999%. Lo increase readability of availability figures, the notion of availability
classes is intraduced in [85]. The availability class is the number of leading nines in the availability figure,
so for example availability class 5 implies 99.999% availability.

3.1.2 Reliability of computing systermns

No computer component is completely reliable. That is; given enough time, they all fail [105]. This is due -
to physical deterioration caused by for example temperature changes, atmospheric radiation or material
weakening. No known technique can be applied to change Lhis process. However, il appropriate design
and manufacturing procedures are adhered to, very low failure rates can be achieved, low enough to give
satisfactory service. Hence, there are huge variations in the expected failure rates from different computer
equipment. Generally, a complex component that is composed of several other components, is more likely
to fail before a less complex component, A large proportion of computer equipment will also be exposed
to ather, even more damaging effects such as occasional power surges, dust particles and vibration. This
further strengthens the point that dependability is a system issue; environmental, operational and even
system maintenance procedures will have effects on dependability.

The reliability of computer and networking cquipment has improved dramatically in recent years due
to better manufacturing and material knowledge. Modern computing equipment, built from highly in-
tegrated circuits is very reliable compared to the machinery available 20 years ago [115]). Some MTTF
valies for common components in distributed systems are given by Gray and Reuter [85]. They indicate
that most computers sold today have MT'TF ratings between 3 and 5 years, MTTF ratings from 3 io 20
years are common for high quality disk drives. However, when the proper operation of a system relics on
multiple components, possibly contralled by complex sofsware, the MTTF rating lor the system decreases
rapidly. For examuple, a typical LAN has a MTTF rating of only 3 weeks. Tikewise, a workstation running
complex system and application software is likely to achieve a 3-4 wesk MTTF rating. Li is therefore
important to realise that if this problem is nol addressed praperly, distributed systems of any signifi-
cant size will provide very poor depeudability. As an cxample, Srivam’s thesis contains an investigation
of reliability of hosts on the Internet, arguably the largest computing infrastructire in the world, and
finds that the expected MTTF is between 11 and 14 days [176]. 'This voincides with the rapid <ecreaseg._.
in reliability as a function of increased number of dependencies among the individual components (see
discussion. on critical path length in §3.2.1 p. 31).

3.1.3 Reliable networks

‘T'he communicarion infrastructure has a great cffect on the dependability of a dissributed system. Unre-
Hability of communication is typically a distinctive feature of distributed systems. However, distributed
systems are buill, on top of a range of different networks, for example public networks, LANs and MANs
which provide varying reliability.

Due to the potentially costly consequences of outages, public networks are designed to be very reliable.
For example, most PSTN? networks are able to cope with failures through redundant, links and specially
designed networking software®. Typically, Western PSIN networks offer availability in the range of 99.7%
with no outages lasting maore than 30 minutes [85]. However, other continental networks do not achicve
similar figures, for example, some African telephone networks are hindered by successlul call-completion
rates as low as 12% [147]. Consequently, building reliable wide-area computer networks becomes difficult

2Public Switched Telephone Network.

31t should he noted that there is an inberent conllict between economic issues here, Por example, the huge bandwidths
ovailable in modern fibre optical links makes i€ possible to multiplex a vast number of commmnication sessions onto a single
fibre, Economically this would be a cheaper option than using 2 number of redundant links, but to ensure good reliability,
this fibre would have to be extremely well presersed.
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in such environments as they must often rely on PATN links to connect the hosts. This is also likely
to be a restriction for the Internet as a communication infrastructure for global applications, the poor
reliability of some continental networks will restrict the dependability of such software.

For smaller scale networks, such as LANs and MANSs, the reliability is nsnally much better. Although
poorly maintained networks naturally give lower reliability, most LANs and MANSs achieve very reasonable
reliability ratings. A probability 0.00001 of message loss has been indicated in LANs under normal
conditions [129]. Additionally, some network protocels have fault-tolerance built into the architecture,
such as the FDBDI networks which use redundant rings to auntomatically toleraie single fibre and host
failures through a specially designed self-healing protocol[182].

These variations in dependability will have eflects on the kind of applications that are run on top of
these networks. In general, a lower dependability of communication will motivate a more loosely-coupled
application architecture, where interaction among the components is only occasionally nccessary. Nat-
urally, added to this argument is the fact that bandwidth is also normally reduced over long-distance
counections. Autonomy is therefore necessary to achieve a reasonable performance. In contrast, LAN or
MAN-based networks can facilitate a more tightly-coupled application architecture.

s

3.2 Failure Characteristics

A failure in a computer system is a deviation from its intended behaviour, and is observed outside the
system. A failure occurs becasise the system is erroneous, i.e. it contains ¢ne or more errors. An error
appears in the information domain, and is caused by a fault in the physical domain. Essentially, an crror
is the manifestation of a fault, and a fajlure i3 the effect of an error. For example, if a bit in a memory
chip is stuck at value Q, this is a physical faull. When a program writes a 1 into it, but the bit remains
0, there is an error in the informalion domain. Later, when the program mishehaves due to this error,
there is a failure which can be observed externally, for example by an operator observing mysterious or
clearly incorrect behavionr [1, 7], A fanlt need not cause errors however, and an orror need not cause a
failure. For example, if the faulty bit in the example above is not part of @ program, or the erroncous
0-value is not. used within the program, a failure will not occur.

The same notation can be applied recursively to subcomponents of the system and the relationship

foult -+ error —+ feilure can be thought of as a chain propagating up through the system component
hicrarchy [104]. For example, a distributed system which coordinates several components, may observe
the failure of some of the components {(e.g. a functional failure in a communication link) caused by internal
faults and errors’.

Failure sources

Failures may arise from several kinds of errors, and correct behaviour from a computer system depends
on both hardware and software. Some basic failure sourees such as material weakening and dust particles
were mentioned in §3.1.2 p. 29. Although these can cause failures at different levels in the system
hierarchy, for example bit errors and PF crashes, there are also other sources of [ailures which nust be
considered,

Table 3.1 summarises findings presented by Laprie et. al. [105] and by Wood [196]. The figurces given by
Laprie ct. al. arc from transaction processing environments whereas Wood’s figures are sampled from a
slightly wider selection of environments including university studies. This dissertation does not attempt
to analyse Lhe dilferent findings other than to identify that the two surveys show only limited similarities.
Laprie finds hardware and soltware/recovery soureed failures to be almost equal in importance, whereas
Wood identifies software/recovery as a siguificantly more prominent source of failure than both hardware
and operational difficulties.

#1'he terin fault-tolerance might thevefore be slightly misleading; fault-tolerance is normally used to denole any system
able fo withstand fanlts, even if they are withstanding the failure of the subcomponents. A Lenin like failure-tolerant wmight
he more informative, but the term fanlt-tolevant is currently used throughout the liverature.
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Source | Hardware | Bnvironment | Softwere & Recovery | Operation | Other
Lapric 40% 5% 30% 20% 5%
Wood | 0% | _ A% nh 1157 0%

Figure 3.1: Iailure sources in computer systems

It can, however, be concluded from these results that both hardware and software play important rdles as
failure sources. Although replication per se can only conceal effects of hardware failures and not software
failures (as shown below), it is important to note that many software faults in distributed systems are
caused by transient bugs in operating systems and other system software which occur in response to
timing and system overload snomalies. It is reasonable Lo assume that some of these failures can be
masked by replication of system components {44], which is the largest failure source reported by Wood.
However, other techniques will probably be more effective at reducing the effects of software failures, such
as improved development methods and tools.

Software failures

Essentially, hardware fails despite being correct, and software fails because either the hardware fails or
the software is incorrect®. A well known approach for hardling software failurcs is n-version programming
[10]. Essentially, it involves replication of multiple, independently designed software components. Due to
the severe cost of multiple development groups, only critical components arc replicated. The usefulness
of n~version programming has been investigated in an object oriented setting [197]. However, it appears
that better results can be achieved using more conventional approaches, ¢.g. allocating more resources to
develop correct software. Not only does the n-version approach suffer from the ‘average IQ® problem [85],
but the approach also requires additional, complex application dependent system software, introducing
the passibility of more failures.

3.2.1 Critical paths

Distributed systems consist of interacting components. Cousider an object A invoking & method on &
remote object B. To complete successtully, this interaction requires correct hehaviour from a number of
components. Not only must 4 and 3 behave correctly, but also so must the communication path between
the PEs hosting A and B. A is dependent on B and the communication path between them. The set of
componcents from which correct behaviour is required is denoted the critical path of the interaction. The
number of components in the critical path is called its length.

Assuming that a component § fails with probability p(¢), and the failure modes of the components are
independent, a service in the system depending on n correct components will have a probability

plno failures) = (1 - p(in)) - -+ - (1 = plinoa)) - (1 = plin)) = [[ 1 = p() (3.)
=1

of providing corrvect service. Improvements in roliability can be achieved by both reducing individual
component failure probability and by reducing the number of components in the critical path. Replication,
introducing redundant compaonents, is esseniially a techuique that provides support for multipls parallel
critical paths where each path has an independent mode of failure (cf. chapier 4).

3 A software component may be vulnerable to other software failures as well if it is buils using secvices from other software
components,

6 All programmers are more likely to make similar mistakes on the hard software problems. Why have n versions of
sofiware which craghes on the same inputs?




3.2.2 Independence of failures

Due to geographical distribution and physical heterogeneity, components in distributed systems often have
independent failure semantics, i.e. the failure of one component dees not affect the probability of failure
of another (independent failure semantics imply that the probability functions are memoryless; see also
appendix B.1). The failure will be limited to those components which cither directly or indirectly depend
on failed components, the number of dependenries determine how the failire propagafes throughout the
system. Increasing the number of dependencies causes an increase in components affected by the failure
propagation.

Not all failures in distributed systems are independent. Often, a failure in a component causes a propaga-
tion of failure to other components {104}, For example, if two workstations use the same power source —
they might share a wall socket - they are both vulnerable to an clectrie power outage at that socket. In a
large building a power outage is likely to cause failures in multiple machines and network components. It
is therefore important, when designing distributed systems, to ensure that an appropriate degree of fail-
ure independence is achieved (for example by installing redundant power supplies, introducing multiple
administrative domains, using different machine architectures and different operating system platforms
[114].). ‘

Independence of failures distinguishes distributed sysierms from centralised systems; when a centralised
system fails, the whole system normally become useless, and the system cannot offer any service until it
has recoveted from the failure. In contrast, the probability of all the components in a distributed system
failing at the same time is extremely low. However, centralised systems ate usually much better protected
against accidents and other mishaps than distributed systems. For example, a centralised system can
often be located in a single room, where access and maintenance can be well controlled.

The PEs (processing elements) in a distributed system are often workstations in peoples’ offices, and they

might be turned off at the end of a day. 'I'he autonarmy of the compaonents makes the distributed system :
vulnerable. For exomple, it would not be a good idea. to use such a workstation as a central mailserver »
in a department. Part of the problem is that enforcement of computer usage policies can become very i
difficult in such environments. Secondly, somce workstations might simply be moved or disconnceted for
some time (the workstation might even be a portable computer). However, it is the independence of
failures which makes it possible to build fault tolerant systems. By ‘masking’ some failures through
redundancy, the system can potentially continue to operate correctly. —

3.2.3 Failure semantics

System components have different failure behaviour or failure semantics. Failure semantics describe how
comnponents are expectad to fail. A clear understanding of failure semantics is important as only expected
failure behaviours are likely to he tolerated by any failure resilient, coraputer system. If an unexpected
failure behaviour occurs, which is not considered by the failure resilient system, then, it is likely that the
system will [ail also.

To simplify the discussion of failure semantics, they arte often classified according to how difficult it is to
tolerate them [89, 163, 184}, or how strong they are [13, 44]. A weak failure semantics implies that few
assumptions are made about the component, it may exhibit a wide variety of different failures. In contrast,
a strong failure semantics assumes that the component fails in only a small number of predefined ways.
Because so foew assumptions are macde aboul the behaviour, a component with weak failure semantics
is more difficult to toleratc. Commonly used failure semantics are listed below in ascending complexity
order, i.e. the former are cagicr to tolerate than the latter. Faulis no more complex than timing faults
are denoted benign failures, other faults are denoted malign failures. An interesting feature of this
classification hierarchy is that all benign failures are detectable in the time domain, whereas malign
failures can only be detected in the data domain.

Benign failures. Benign failures are ‘nice failures’ in the sense that relatively cheap mechanisms can
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be used to tolerate them. Some of thege failures can be tolerated without the use of replication
techniques. For example, omission {ailures are normally tolerated in communication protocols using
techniques such as retransmission and message sequence numbers. However, the [ailures leading
to PE or link halts can only be concealed with redundancy, but the failure masking capability of
replication schemes will be greater if only benign failures are assumed.

Initially-dead failures. The PY does not execute any part of its program [184]. A communication
link does not deliver any messages.

Fail-stop failures. A PL stops processing permanently in a controlled manner. A communication

channel stops delivering messages. Other PEs are notified about the event [13].

Crash failures. A PE stops processing abruptly and Joses its internal state [184]. A communication
link ceases to deliver messages. Qther PEs are not automaticaltly notified about the event.

Omission failures. A PE fails to deliver (receive omission) or send (send omission) some messages.
A link loses a subset of its mnessages,

Timing failures. A PR fails Lo respond within a specified timeframe (also called performance fail-
ures [44]). A link fails to deliver 2 message within a specified timeftame. Note that this failure
mode is only applicable to synchronous systems. Asynchronous sysiems make no assutaptions
about timing of evenls.

Malign failures. Malign failures are ‘hard’ to tolerate because such fatlures can only be observed as
erroneous results from computations. Therefore, redundancy must be used to tolerate them, a
technigque which might add significantly to the cost of constructing the system and also incur over-
heads during operation. Redundancy can be introduced at several levels in the system hierarchy,
for example as redundant data in communication protocols in the form of error-correcting codes
or as server groups. Although this redundancy adds a certain overhead, these techniques are able
to completely conceal many failures from the client. For example, in contrast to a retransmission
technique which adds delays to the service, many replication fechniques do not result in such irreg-
ularitles. A more thorough discussion of the failure-masking capabhilities of replication techniques
is pregented in the next chapter.

Incorrect computation failures. A PE fails to produce correct output despite correct input [13,
44], for example a procedure which returns a list-element not stored within the list or 2
communication link which delivers corrupted messages.

Authenticated Byzantine failures. A PE behaves arbitrarily. However, an authentication meecha-
nism is available so that other PEs can identify the faulty PE.

Byzantine failures. A PE or link behaves in an arbitrary or even malicious manncr. For example a
link that generates random messages or a PE which sends conflicting messages to other PEs.

An algorithm tolerates a failure class if it ensures correctness in #he presence of a failure of that class. An
wlgorithm tolerating a particular failurc class also tolerates weaker failure classes. Clearly, an algorithm
vhat tolerates arbitrary (Bysantine) failures also tolerates fail-stop failures. A fail-stop failure is just a
special case of arbitrary behaviour.

It is often possible to reduce the complexity class of a failure. For example, timing failures are commonly
reduced to vmission failures by the use of timcouts. In asynchronous systems this is a conservalive
approach, because a timeout mechanism cannot correctly distinguish all omission failures from timing
failurcs (the message might appcar just after the timeout cxpired). Omission failures are simpler to
handle than timing failures, and this brings bencfits to the protocol using the channel. Retransmission
of lost messages is a common approach to deal with omission failures.

Timeouls are conservative, a messsge arriving just afler the timeont expired could be perfectly valid.
However, becunse most messages arrive within the timeframe of the timeout, it does catch gennine
omission failures most of the time.

A genuine omission failure is a message lost forever.
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Timeouts provide liveness by sacrificing aceuracy [19]. That. is, failures are reported within a finite time,
but some operational components may be declared failed. The use of timeouts is also a mechanism used
to make synchrony assumptions in asynchronous systems. However, if the timeout value is set sufficiently
high, it is very likely to distinguish timing failures from omission failures. Some statistical information
about the frequency of early timeouts is often used to liprove its efficiency by dynamically adapting the
{irneout value (0 the current mean latency (ef. §2.3.1 p. 19).

Arbitrary failures are very costly to tolerate [69, 186). Expensive consensus protocols, hased on atomic
multicasts and high levels of redundancy are required. For example, t-resilient non-authenticated Byzan-
tine agreement among n PEs requires n > 34 41 in addition to # + 1 rounds of messages with potentially
large message sizes (O(n'™1)). Tu contrast, Byzantine agreement in the authenticated case®, requires
n > ¢, O(t) rounds and O(n + *) messages [13]. The cost of computing the signatures must in this case
be weighted against the added fault-resilience.

Additionally, expecting arbitrary failures may be questionable in many system contexts as not all com-
pouents in a system can be allowed to behave arbitrarily. At some high level in the systern hierarchy, one
component will be the only client of the failure prone subcomponents, it is not reasonable to assume that
all users of & computer system can take on the role of failure detector. It cannot be guaranieed that the
only client component is not exhibiting arbitrary failures itself, as no-one remains to ‘gnard the goards’.

Partition failures

Partitions occur in distributed systems if communication failures prevent a subset of the PEs from
commmunicating with other PEs. If the connectivity of the network is low, partition failures may be
frequent, bul a small increase in the connectivity of the network can reduce the probability of partition
failures significantly. Partition failures can cause severe problems for distributed algorithms because PEs
in different partitions can easily believe that they are the only PEs left in the system, and therefore make
independent. madifications to the global state. If PEs in different partitions are allowed to modily shared
data the copies of the data must be reconciled when the partitions are again re-connecied.

Partition failures are of great importance lov the design of replication management schemes. The main
characteristic of replication schemes, strong or weak consisiency, determines whether or not the scheme
allows independent updates in different partitions or not (see chapter 4). In this dissertation, a network
wodel where partition fajlures are rare is assumed. Partition failires are handled pessimistically; at most
one partition is allowed to make progress (cf. §6.3.2 p. 70). -

3.2.4 Jailure detection

In a distributed system it is occasionally necessary for an object to determine the failure status of other
objects in the system, for example in a replication protocol. Iowever, because the distributed systems
considered in this dissertation have asynchronous behaviour, failures can only be suspected, not reliably
detecled (although they can be detected with arbitrarily high probability}. All asynchronous syshems
are restricted by the impossibility result published by N. Lynch et. al. [69]. Essentially, if there are no
hounds on the delay of messages, no two deterministic objects can reach agrecment on a value in the
presence of failures. For example, the agsynchrony implies that a slow object cannot be distinguished from
a failed object and vice versa. An object which does not receive a response from another object would
theoretically have to wait indefinitely to distinguish between a slow and a failed object. Clearly, this is
not practicable in any real syslem. Therefore, as a measure to gain efficiency for a small loss in aceuracy,
various assumptions which limits the asynchrony are used. Timeouts is a good example here; in case the
object does not respond within a certain time il is assumed to be failed. The consequence of this is that
it becomes difficull to guarantee correctuess.

Fault diagnosis deals with elficient and reliable detection and localisation of faults. Accurate fault diagno-

8 Authenticated mossages are non-forgeable, all corrupted messages are detectad and the message sipnature can be verified
by any PE.
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sis will in many cases significantly simplify the task of building reliable distrilniied systems. For example,
the cost of Byzantine agreement is severely reduced if messages are aushenticated [66, 13]. Because PEs
cannot communicate arbitrary messages without being detected, the protocols for agreement on global
properties require fewer rounds with smaller messages.

Standard comrmunication services used in many distributed systems make it difficult to detect failures
accuraiely. ‘I'he weak failure semantics of the communication primitives requires that application pro-
grammers provide reliable failure defection in the application. For example, the popular RPC paradigm,
widely used in many distributed systems becanse of its simplicity, cannot offer particulaxly strong invo-
cation guarantees [19]. The ouly guarantee available to the programiuer using standard RPC implemen- .
tations is that the method will be executed at mosé once on the remote machine if it is initiated once,
and al least once semantics are possible for RPC calls that are retricd until the caller receives a positive
acknowledgement message.

For non-idempotent operations, e.g. a method inc(n : INTEGER) which increments an object state
variable, fhis becomes a problem. Flowever, a solution Lo the problem has been used in communication
protocols for sowme time, but it requires cooperation from both the caller and the callee. Through the
use of unique sequence numbers for each invocation request, the callee can simply discard messages with
duplicated sequence numbers, but should still send a positive acknowledgement message. The caller can
thus keep on retrying the invocation (using the same sequence number) until a positive acknowledgement
is returned without any danger of the method being invoked more than once. However, cven this protocol
cannot tolerate continuous loss of messapes. The caller would in this case Llock forever without receiving
any acknowledgement.

Transient failures

Some failures are transient, e.g. occasional omission failures, aud might bappen for just short periods
of time. They will not always bhe detected. For example, during a period of congestion in a nctwork, a
switch might temporarily refuse o aceept any more messages into the congested area. A PILL that tries
to send a messspe during this period is likely to observe this refusal of service, while a currently passive
PE does not abgerve it. The usual approach to handling this kind of failure is to use a retry mechanism,
i.e. the PE that observes a refusal of service will try sending the message again at sowme later time. If the
resource is essential for ¢he client so that the client cannot proceed without it, there might be no bhetter
alternative than to just keep trying until the resource is eventually available, possibly producing a warning--
or notification message. A danger of naive retry mechanisms is that they can generate enough messages
Lo Mood the network causing additional congestion and overfull buffers. This is further emphasised if
several PEs are concnrrently repeatedly sending retry messages due to a transient server failure. It is
also important to avoid congestion as this will reduce the risk of denial of service.

A possible sclution to this problem is to monotonically increase the interval between refry events. This
is a well known technique from comrmunications used in several network protocols, e.g. the Ethernet and
in the TCP/IP protocols. However, there is a tradeoff that has to be made between fast recovery and
the amount of wraffic generated.

3.3 Avoiding Failures

Software failures are hard to avoid in distributed systems due to these systems’ complexity, Replication
as such cannot reduce the probability of system component failures, bus iv can increase the munber of
access paths to a resource thereby increasing the probability of finding a functioning path. Additicnally,
even small improvemenis in average component reliability can have a large impact on the total sysiem
reliability. For example, hardware component, reliability can be increased by following manufacturers’
guidelines for operating envirommnents by providing suitable ventilation and maintenance of equipment.
Protection against environmental damage such as electrical power instability, flooding and sabotage will
also reduce the probability of failures.




3.3.1 Effects of software development methods

There are a number of approaches that can be followed Lo reduce the probability of implementing faulty
computer systems, but there is usually a tradeoff that has Lo be made between reliability and cost. The
cost of a failure in the system might justify increased efforts during development®. For example, when
designing critical computer systems, formal methods might be used to specify and verify hardware and
software desigus. Howcver, formal methods are still limited in their usefulness for large scale systems.
'T'hey are most appropriate to model small components.

Additionally, appropriate testing procedures [191] can help locate software faults before the software is put -
to use. However, it is important to note that exhaustive testing is not feasible for any realistic distributed
system, and that ‘black-box’ testing of key components is likely to be more appropriate although not
able to guarantee correctness. Further, software is discrete by nature, and even small changes made
during testing can therefore lead to large effects {45]. A key research area, now and in the future, is the
development of methodologies and tools for producing correct software. At present, all significant pieces
of software must be expected to contain bugs that can lead to lailures.

3.3.2 Effects of overload

Designers and users of computer systems aim for the best possible performance. This requires efficient
utilisation of systern resources such that both overloading and cxcessive idle time can be avoided. Over-
loading of system components in a distributed system can lead to scrious side effects!® in the rest of the
gystem {e.g. deadlocks due to overfull buffers or disks and excessive retransmissions due to slow responses
from overfoaded PEs). Arguably, such failures are only anticipated after they have caused major prob-
lems [46]. Also, it has been indicated in the literature that overloaded system components have a higher
probability of failure [105]. By careful and efficient utilisation of the system resources, the reliability
of the system will increase. The probability of overload can be reduced with the use of load sharing
strategies, however this is in itself a difficult preblem outside the scope of this work.

3.4 Summary

e -

This chapter has focused on examining failures and their effects in distributed systems. As the scale
and importance of distributed systems increases, failures will, if. not managed appropriately, result in
systems with poor dependability. This chapter has defined the failure terminology used throughout the
dissertation and presented important motives for the coustruction of dependable compuling systems.

Understanding the characteristics of failures is necessary for the proper usc of replication techniques.
The vext chapter is concerned with replication techniques which are able to conceal fallures. During
the design of a dependable computing system, its dependabilily requirements must first be determined
to batance the cost of failure resilience techniques with the benefits of increased dependability. Most
imporiant is perhaps the distinction between malign and benign failure semantics. If it can be assumed
that the underlying components iu the system only exhibit henign failures, replication techniques will be
able to tolerate more failures, and it might be possible to avoid using replication altogether; simple error
correcting procedures such as retries and retransinissions might be sufficient.

Additionally, this chapter has identified other important issues for the construction of dependable com-
puting systems which replication technigues are not able to deal with. For example, the use of better
software development, meihods might significantly improve system dependability and thus be an equally
important factor.

9The flight control software for the space shuttle has been estimated to cost $1000 per line of codc (98]

08ee [165] for an example of how overload can spread chaos in a distributed system.
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Chapter 4

Replication Techniques

Chapter 3 identified a large number of independent failuses as a key characteristic of distributed systems.
Without any mechanisms for failure tolerance, most failures incur extra defays or loss of data, thereby weakening
thesc systems’ usefulness.

Replication is an old and weil known approach used to achieve resilience against failures. It dates back at least
40 years [193}, and many techniques are available for this purpase. However, a number of conflicting issues
must be considered to determine which replication strategy is most appropriate in a particular setting, e.g.
system support. This chapter presents a aumber of replication techniques and a discussion of their advantages
and limitations. Among the techniques discussed are object replication and replicated objects, two distinct
approaches to replication in object-oriented systems.

4.1 Background and Motivation

The main focus of this dissertation is on the provision for replication support in object oriented pro-
gramming systems. The goal is to provide generic supporl which can assist developers of fault-tolerang .
software. Replication is a complex issue, and if the problem can be solved by support software the applica-
tion programmer’s task will be simplified. However, as will be discussed throughout this chapter and the
next (chapter 5), some particularly challenging problems arise in this setéing duc to striet encapsulation
and arbitrary object interactions which inevitably require compromises.

Distributed computing systems are becoming an essential platform for maodern computer applications.
However, a high number of failures is a key characteristic of these systems. Failures, normally leading
Lo exira delays or loss of data, can casily lead to critical situations or simply become a nuisance for
users. The problemn with failures becomes more prominent as the size of the distributed systemn increases
and more inter-dependencies among the system components are created. Given that the trend towards
increasing reliance on distributed computing systems continues, the requirernents for dependability are
likely to be heightened [44]. L'herefore, it is worth investigating approaches that make such systems more
cesilient, Lo failures and thereby increase their usefuiness.

Replication has been widely used as an approach to increase a system’s resilience to failures and to
satisfy requircments for reliability and availability!. Replication is almost as old as computing itself;
it was first suggested by John von Neumann in 1952 (and published in 1956) as a countermeasure to
the accumulation of failure probabilities in basic organs when a computing automaton was built from a
large network of such organs [193]. It was suggested that, by the use of a particular ‘majority organ’,
a number of single organ failures could be masked. The majority organ was in fact the first version

1See §3.1.1 p. 28 for definition of terms.
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of a function shipping replication scheme, composed of a number of independently executing machines?
{sec §4.3 p. 42). Replication is also a useful approach to reducing the consequences of sabotage and othex
physically destructive events such as fire and lloods [40].

Traditionally, replication was most commonly used for critical applications like air traffic control systems,
spacecraft systems, telephone networks and a number of military applications. The extra costs incurred
by replication are justified by potentially substantial losses in case of system malfunctions, The danger
of huuman <eaths or injuries have been the primary issue of concern.

Following this, replication hag been employed for less critical applications, e.g. banking systems and
supermarket retailing databases. Due to the increased computerisation in these settings and the large
material values at stake, replication of data is common and reduces the damage caused by occasional
failures. Specially designed software, tailored for each particular application, includes techniques for
managing the replicated data. Although manual backup procedures could alleviate part of Lhis problem,
replication is beneficial due to its speed and the reduced efforts required by human operators.

Replication has been a subject ol research for some considerable time {55, 48, 79], and has led to the
construction of a large number of systems incorporaling some form of replication, of which database and
fle systems are prime examples [40, 158, 181]. Additionally, rescarch into new approaches for replication
techniques continues. Efforts are made to address the demand for availability and performance in object
systems, for example object oriented database systems [111], programming languages [31, 3], and in
persistenl programming systems [113].

However, many replication schemes must he tightly integrated to a particular application, thereby necessi-
tating substantial extra effort from. the application developers and complicating the software construction
process. Arguably, system support for replication can help reduce the incurred overheads in development
cost. Quite recently, commercial database vendors have targeted wider markets with solutions for more
generic support of replication [177}. Concurrently, distributed information storage sysiems with sipport
for replication {128] and software development tools for reliable sysiems, such as the Isis toolkit [19], have
appeared. This might be an indicalion of increasing reliability and availability requirements throughout
a broader compnting community.

In [145] David Powell makes the distinction between two different approaches to fanlt-tolerance; distri-
bution motivated fault tolerance and fault tolerance motivated disiribution. They denote two opposite
views of maintaining reliability, and are each applicable to diflerent application contexts. These are ex-~-
treme views, and intermediates are also possible. For a particular system, a combination of the two vicws
is likely to be the basis for fault-tolerance.

Distribution motivated fault tolerance

Distributed systcins arc more vulnerable to failures than centralised systems or traditional paratiel com-
puters. Large scale systems therefore tend to employ some degree of local administration which rediices
the need for constani access to system wide information, and simplifies system administration. Natu-
rally, local administration implics autonomy which speeds up decisions about local matters [8] (hesce
possibly increasing system scalability). Semi-auionomous clusters can be managed primarily by a local
administrative body, and groups of such clusters can then be parlially managed centrally for enforcement
ol global administration rules. Increasing the value of such arrangements, this often matches traditionat
hierarchical organisational structures.

Multi-cluster systems consist of a large number of system components (cf. §2.3 p. 18), and inter-cluster
interaction tends to he less rcliable than intra-cluster interaction. It is therefore normal to maximise the
use of services local to the cluster, and only occasionally use services available from other clusters [196).

Distribution motivated fault tolerance is ncecessitated by this inherent distribution. Users have varying
degrees of control of their own machine in traditional workstation environmentis. Depending on de-
partmental policies, users might be allowed to do local configurations and management. Users of some

2 Although von Neumann is nsually best known as the creator of the sequential computer, he was also engaged in work
on parallel machines,
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machines like PCs may prefer to switch them off after work, although this might be uncoramon for users
of workstations. Additionally, users often run buggy software on various machines causing occasional
crashes throughout the network.

Systems like these are also likely to grow substantially with time, to keep up with increasing demands
within the organisation. In addition, becanse of their size and complexity, they are also harder to maintain
and change, and one cannot expect the average user to fully comprehend the whole system®. When
failure occurs, it might require substantial effort and time to both locate and correct it. Aund indeed, a
large distributed system will have relatively frequent failures [176]. During the period of repair, a large
number of users might be affected, and the cost incurred by this can be substaniial. Furthermore, system -
maintenance will cause occasional outages, preventing users from accessing shaved resonrces {196]. It is
therefore necessary to support fault tolerant operation through the use of replication techniques.

Fault tolerance motivated distribution

Some computer systems are used for critical applications where human life would be jeopardised or
substantial costs incurred as the result of the system becoming unavailable or operating incorrectly. In
a context like this, distribulion and replication may be the only way to achieve the required system
reliability. Some examples are flight. control systems, process control systems, public telephone services
and banking systems. ‘Lbe approach taken to replication will be more constrained, there will typically be
only a single administraiive body, so there is much less autonomy than in distribution-motivated fault
tolerant systems. Secondly, more attention will be given Lo tuming constraints, as most of these sysiems
are running real-time, or time-critical applications. Because of this, much of the heterogeneity found
in distribution-motivated fault tolerant systems is avoided by simply replicating existing techmolopy ke
database systems and computing platforms. Additionally, the criticality of these applications can justify
the cost of dedicafed redundant network links between the computers which can reduce the jitter normally
found in shared networks.

4.2 Problems with Replication

The key idea of using replication for fault-tolerance is to eliminate single points of failure hy introducing
a number of redundant replicas {or copies) of one or more system components, e.g. communication link§
or computers. If one component fails, the replication scheme automatically makes other replicas take
over. Replication might also be used for other reasons; in some settings, e.g. in large or low-capacily
networks, it is necessary for performance or autonomy reasons to make copies of a dataset to exploit
locality. However, replication introduces other problems.

4.2.1 Maintaining consistency

If the replicated components store data, then there will be consistency requirements fox the copies of that
data. Maintaining full consistency requires careful synchronisation of replicas which might be very costly
in some systems, and might not be feasible for large numbers of replicas. While reduced consistency can
restrict this cost, somo applications cannot accept out-of-date data. Also, it would be beneficial if the
user of a system did not have to be concerned about whether the system used replication or not -~ a
user silting at a workstation should not observe any other difference than increased availability in the
system using replication. Similarly, a programmer developing sofiware for the systcm shonld not have
to deal with replication issues. However, many replication schemes do introduce new complexity for the
programmer, and the ones that don’t depend on techuclogy with lirnited scalability.

Both end-users and application programmers using non-replicated systems norraally assume {ull data
consistency. Consequently, most applications arc writlen under the assumption that the data being

% According to Leslie Lamport, a distributed system is defined as oue in which “A failure in a machine you haven't even
hieard of stops you from getting any wark done.”
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manipitlated is consistent. Central data repositories can implement serialisation on shared data, and
thereby achieve full consistency, but it is more difficult in distributed systems.

Replica consistency is the property that the data stored in the replicas are valid. This means that
operations manipulating the data leaves the data in a correct state, i.e. satisfying any integrity constraints?
[85]. Due to the partitioned nature of the data, inconsistency ran occur among the replicas during updates.
To deal with this problem a protoco! for update propagation must be used. Update propagation protocols,
also called comsistency protocols, are commonly classified as either pessimistic {strong) or optimistic
(weak) depending on whether they guarantee thai inconsistency can ncver occur (pessimistic/strong)
or if they allow temporary inconsistencies that are reconciled later (optimistic/weak), In the case of -
optimistic/wcak consistency, the user might be forced to request a reconciliation procedure after eventual
updatcs to the data are made, and the failures in the other nodes or network links have been correeted.

Also, if the replicas are shared among several clients, operations on the replicas must be serialised by
same isolation mechanism, e.g. locking, to maintain correciness in the presence of concurrent update
requests. A solution is to use the replicas themselves as part of the locking mechanism; mutual exclusion
can be guaranteed for example if some set of the replicas must be exclusively locked before an operation
is allowed o execule. This is the approach taken by the voting and coterie-based replication schemes
described in §4.4.4 p. 47 and §4.4.5 p. 48.

4,2.2 Providing replication transparency

Building a distributed system which appears to users as a ‘powerful centralised machine thal never fails’
is a goal for many distributed system developers [51, 166]. Although it may not be feasible in practice, it
is & useful goal to aim for in distributed system design as such a system could be used without noticing
the complicated technology underneath the surface. Mechanisms which simplify the user’s model of
interaction with the system arc of great value because distributed systems would otherwise require users
to deal with unnecessary issues such as heterogeneity and locality. For example, a distributed file systein
which allows uscrs uniform access to Lheir files, independent of which workgtation is used, makes it
possible for users to easily switch workstation. Shuilarly, a client of a replicated service should observe a
minimum of additional complexity compared to the equivalent non-replicated service.

Application programmers can also be considered clients of distributed systems, although at a lower level.--
It is also important that the programmers’ model of the system be kept as simple as possible, this will
reduce the cost of constructing software for the particular system. The view taken in this dissertation is
that the issues of reliability and availability are orthogonal to most applications and that programumers
should not be burdencd with implementing mechanisms for replication in their applications. Ratler,
system support mechanisms for replication should be avatlable to assist the programmers during software
development, and be as transparent as possible to hide most of the underlying complexity (see chapter 5).
This introduces an immportant tradeoff for replication technicues.

Replication transparency exceptions

Replication transparency implies that the replication protocol, replicas and inconsistent data should be
invisible to the programmer. The system should hide all details about the redundancy, and just provide
the user with ordinary hut failure-resilient system abstractions. However, situations might occor which
malee it impossible to conceal underlying failures from the programmer. For example, if too many failures
oceur at the same time, the system abstraction will become unavailable. In this case it is important to
ensure that the failure is adequately reported so that the programmer can take appropriate action, for
example by retries or restarts.

4Mntual consistency among replicas is however not a sufficient criteria for correctness.
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4.2.3 Maintaining performance

High performance in distributed systems results from asyuchronous operation which allows PEs within
the network to make use of inhorent parallelism [18]. However, replication management schemes may
introduce comnplex and costly synchronisation protocols which contradict this principle by trying to
synchronise replicas on different PEs to maintain mutual consistency. In particular, for high consistency
schemes, the tight synchronisation incurs performance overheads which can result in low scalability.
When high consistency schemes are necessary, it is important to consider factors which can regain some
of the benefits from asynchronons operation. For examnple, network support for multicast can reduce the
cost of synchronisation in the high consistency schemes. Such functionality within the network proper
reduces the amount of neswark traflic when multiple recipients must deliver the same messages. Network
supported mmlticast will also rvelieve PEs from the task of managing multiple connections to replicas.
Multicast is available in many LANSs, but arc uncommon in larger networks which tend to be composed
of point-to-point links and connect Lieterogeneous LANs. Architectural support for multicast is therefore
more difficult to provide in larger scale networks, and is therefore rather uncommon. However, research
efforts such as the MBone have led to improvements and might give rise to more widespread avajlability
of multicast support in future networks i63]. Additionally, many distributed applications may benefit
from internal concurrency, e.g. from the use of concurrent threads or processes to execute various parts of
the application. Weak consistency schemes, requiring less synchronous update protocols, do not impose
the same overheads and are therefore more useful in larger systems,

Several other issucs also influence the performance of a particular replication scheme:

Nunber of replicas. The cost of maintaining consistency increases with an increasing number of replicas.
In high consistency schemes, replicas arc updated synchronously. Processing and network latencies
can therefore potentially severely reduce performance. Optimistic concurrency control policies,
allowing concurrent updates, can reduce this cost, but only if both the number of conflicts and the
cost of resolving them is small (see also §4.5 p. 49).

Replica placement. The location of replicas determines the cost of accessing them. Finding the best
placement for the replicas is an optimisation prablem which is dependent on the access patterns to
the replicas and the cost of accessing replicas at ditferent locations within the system. In distributed
systems with large differences in the cosi of accessing local and remote information the choice of
replica placement should be addregsed carefully. Because load in distributed systems is dynamic,
a good replica placement map cannot be determined statically. Rather, cnsuring effective object
locality will be a continuous process in which objects move about, dynamically adapting to the
caorrent nelwork loads, failure paticrns and object interaction patterns [114]. However, dynamic
replica placement requires object migration suppori [178], and complex algorithms for determining
costs and good location policies dynamically.

Failure paiterns. "The lailure patterns in distributed systems have an important influence on replica
schome performance. For example, in a weighted voting scheme it is a good idea to give more
weight to replicas located on PEs which arc reliable and not, overloaded. Some networl connections
might be known to be more reliable than others, and this knowledge can also be used during replica
placement decisions®.

Natuve of transactions. Some replication schemes arc optimised for certain types of transactions, e.p,.
query-transactions, which do not make modifications in replicas and hence do not incur consistency
problems.

4.2.4 Providing high availability

Awvailability is the probability that a system is able to provide correct service at a given time {§3.1.1
p. 28). The replication protocol determines the number of replicas necessary to perform operations upon

SOvertoaded Plis may also cause communication faitures such as lost messages due to overfull buffers.
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the replicas. A voting-based protocol might require that a client gathers votes [rom n out of i replicas.
1€ less Lhan v replicas respond to the request the client will not be able to perform the request on the
replicas, and must accept unavailable service.

Furthermore, high availability can conflict with performance for tull comsistency schemes. I n is large,
the client must do a lot of work before carrying out the request, even if the scheme can tolerate a large
number of failures (m — n replicas might be crashed).

Optimistic schemes are normally able to allow any operafion to proceed on any set of replicas, even if

the sct only contains a single replica. Additionally, the client has to do mmch less work, for example, )

contacting just a single replica can be enough to carry out a request. However, optimistic schemes
are troubled with the requirement to resolve potential conflicts. Thus, optimistic schemes tend to offer
greator availability than pessimistic schemes by reducing the frequency of lost opportunities af the cost
of resolving conflicts [55]. Optimistic consistency schemes are discussed further in §4.5.

4.2.5 Other problems

Replication managernent schemes entail the added costs of providing the replicated units (e.g. diskspace,
CPU-cupacity and memory). This cost is directly proportional to the number of replicas required, and
can hence be accurately determined.

Replication is essentizlly a technique to eliminate single points of failure. Hawever, for reasons oulside
the realm of the application developer a software system might depend on single components further
down in the system hierarchy. Multiplexing in communication protocols is an example of how a single
point of failure is re-introduced. Even if the application maintains a sel ol replicated vbjects on different
PIis in a LAN, the network may itself be a single point of failure and hence compromise the reliability of
the whole application if it fails. This problemn might be solvable in small systems where the develaper has
more control and could initiate the installation of redundant network cables and iutecfaces. Ilowever, if
the distributed system uses leased PSTN links for T.AN interconnections, the developer has less conbrol
over the allocation of redundant cormumunication channels and must trust the provider of the WAN link
to eusure the required reliability.

Sccurity is a very important issue in distributed systems. Large scale systems are used by & large number

of people, and it is therefore essential to provide support for authentication and access conlrol to data.

In systems employing replication of data it is further important to maintain the same security among all
the replicas. In autonomous distributed systems, maintaining information security may prove to be very
difficult due to potentially non-uniform security policies.

4.3 Replication in Object Systems

Two distinct approaches to replication are recognised within distributed object systems. The daka ship-
ping approach, also called passive replication |£13} or simply data replication [59], regards objects as
passive data-structures which are passed batween 2 replicated ohjeet store and the computer performing
the processing of invacations on the object.

In contrast, the function shipping approach, also known as the state machine approach [162], active
replication [113] or ebject replication [59], deals with replication of both objects and their invocations.
The objects are stationary and they replicate the computation of a method invocation.

Data Shipping

A replication scheme based on data. shipping usually depends on a centval resource for the processing of
invocations on objects. A server, the manager of the replicated object, receives invocations addressed
Lo the object. The server fetches replicas of the object from a reliable (usually persistent) ohject store,
and processes the invocation locally. The data shipping approach is often adopted in systems where
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mechanisms arc already available for the transportation of objects such as in distributed database systems -____5
[3]. For example, the data shipping approach is nsed in the Thor database system developed at MIT, ¥
and a variant of the primary backup scheme® is used to ensure consistency [111].

A data shipping replication scheme has several disadvantages:

1. Complex mechanisms for transportation of objects are required, and there is an inherent conflict
with the encapsulated object oriented system model; rather than viewing objects as passive data
structures, they should be used as servers accepting service requests across a network. For systems
adhering o this system model, a data shipping approach might introduce significant architectural -
mismatches and added complexities, for example if objects are residing in helerogeneous object
ghores.

2. Only the server performs processing — and this removes any benefits of parallelism in the replica
hosts. Additionally, objects execute their methods by both manipulating locat siate and invoking
methads on other referenced objects. Thus, if messages are smaller than the potentially large
number of ohjects thal need to be shipped across the network, the data shipping approach will give
lower performance. '

3. The sexver will easily hecome both a hotspot and a single point of [ailure which reduces the reliability
of the replication scheme?,

Although the data shipping approach is commonly used in database systems, in the form of dient caching,
the disadvantages using this approach for other replication schemes appear to he significant in systems :
where less divect manipulation of object state is appropriate. Data shipping also complicates locking and vl
counsistency protocols {see §9.3.2 p. 100 for a discussion of replication in database systems). 3

Function Shipping

Function shipping, as the name implics, involves sending the function to the dato for remote processing,.
For example, traditional client-scerver relational database systems cmploy function shipping; SQI queries &,
are sent to a server which executes the query on local data [155]. However, as querics to relational .
database systems may construct large result tables, there are inherent tradeoffs between shipping the
query or shipping the data. Oplimisation of distributed query operations is a non-trivial problem [10]. ™

In the context of replication schemes, a function shipping spproach also replicales ihe invocation on
objects. In contrast to data shipping, function shipping is a degirable approach because it is tolerant
of failures during processing of the invocation [39]. The function shipping approach is alse particularly
beneficial in object systems as it may eliminate the disadvantages mentioned for the data shipping ap-
proach, in particular the need for potentially expensive object migration [178]. Ilowever, the problem of
data shipping reoccurs if objects need to be copied as mmethod arguments, and for large scale distributed
systems such copying may be necessary for autonomy reasons [52]. However, in smaller scale systems, as
the ones of interest to this dissertalion, sharing objects by reference is practicable.

Assuming that a remote invocation is smaller than the object which is being invoked, less communication
capacity is required in an object replication scheme?®, although it incurs higher demands on low-latency
communication protocols {192]. However, function shipping comes at a cost of utilising processing ca-
pacity at multiple machines, but this is usually not a big problem as networked machines are commonly
underutilised anyway [62]. Additionally, in a data shipping approach, processing capacity is also required
to fetch objects and transmit thern across the network. Furthermore, function shipping conforms well to

8 The primary backup scheme Is discussed in more detail in §4.4.) p. 46.

7In the case of a primary copy scheme, thiy disadvantage can be ignored.

31f both objects and invocations are smaller than the message size actually transmitted across the natwork, this argument -
can be ignored. However, communication protocols might fill empty space in data link (rames with data from other oF
concitrrent, communication sessions. e
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the philusophy of the ohject maodel, as dala are viewed as units encapsulated by methods and invocations
are seen as messages being sent between objects {sec §5.9.3 in [38).

However, as in all replication schemes, a coordinator is necessary to coordinate the replication of invoca-
tions, and wilt constitute a single point of faiture®.

4.3.1 Object replication

Approaches for replicated objects, e.g. [31], iuvolve designing objects for replication. In contrast, object .
replication deals with the replication of already exisling objecis. Object replication is a funcsion shipping
approach where each membher of the veplica group executes invocations in parallel.

Problems with encapsulation

A particular problem occurs in object systems due to the encapsulation principle (cf. §2.4 p. 21). Whereas
data in a traditional data-oriented system are simple averwritable values, the data inside an object are
protected with methods that define the allowed opcrations upon the data. Operatious for overwriting
data may of course be iniplemenied on such objects, but so can operations that mutate the data inside
the abject (e.g. & method on an objecl which increments & counter variable)!?. Therefore, to maintain
full consistency among a group of object replicas, cach veplica must receive the same sequences of invoca-
tions. This principle incurs some restrictions for replication technigues in object systems. For example,
consistency protocols based on updates of subsets of the replicas, like voting or coterie-basedl schemes
(sce §4.4.4 p. 47), assumc that data are directly exposed and therefore can be directly compared and
overwritlen. Data within replicas belonging to a subset which was not updated in some previous round
will have an earlier timestamp, and are subsequently marked as stale and directly overwrilten with the
most, current values during following rounds of the replication protocol.

Additionally, object replication schemes, while conceprually general and clegant, are rescricted by the
rich behaviour of objects [5%. Objects may reference each other in arbitrary patterns. If an object A is
replicated aud contains a reference to another object B, it can only be determined from the semantics of
the application if invocations from /1 Lo B should be replicated. In case object B is shared among the
replicas ol A, ohject B should receive exactly one invocation from the roplicus. However, to avoid single
points of failure, more than one invocation should be sent from the replicas of 4. This arrangement is--
not transparent, the designer of the object must decide whether calls from an object replica are made to
another shared object or not. As an object’s methods cannct in general be assumed to be idempotent
and commutative, the object might mutate, therefore it is of erucial importance to invoke an object’s
mecthods the correct number of times.

4,4 Strong Consistency Replication Schemes

A strong consistency replication scheme ensures Lhal, replicas are congistent, i.e. mutuslly consistent and
correct, between each operation on them. During the operation, there will be a non-negligible period
of time in which this property is not valid, therefore it is important for a full consistency scheme to
serialise operations to allow only onc operation at a time. If an operation was allowed during Lhe tune
the replicas were being manipulated it might observe incorrect data. From this definition it is clear that
such a replication scheme has three main tasks:

1. A replication scheme’s main task is to climinate single points of failure by introducing redundancy.
The scheme musi be able Lo conceal failures so as to provide continuous service despite such mal-
functions among the replica group. However, il there are many simultancous failures, these might

8 Although some schemes, o.g. process groups, ¢an tolerate tailing coordinators, they ultimately depend on a single client
to make the fail-over decision {28].

18 However, the encapsulation principle is relaxed in some object-oriented database systems [142).

44




have occurred due to a partition failure, in which case it must be ensured that at most one partition
continues manipulating the replica group. Because operations on the replicas must he serialised,
full consistency schemes can penerally mask fewer failures than weak consistency schemes due to
the risk of partition failures.

2. The scheme tnust ensure that clients only observe consistent data, which is the main benefit of full
consistency schemes; the simple data model — namely that all the replicas contain correct data —
means that programs using such schemes will not need to deal with stale or incorrect data and can
be constructed as if they were not using replicated data. owever, if the consistency requircments
are not satisfied, programs expecting it cannot be expected to work correctly either.

3. The acheme must serialise operations on the replicas. The execution of operations on several
replicas is normally not instantaneous, and therefore clients wust not be allowed to observe the
replicas during this period as they would then see inconsistent data, and hence evade (he shnple
data model. Serialisation is typically achieved through some locking mechanism, e.g. by locking a
majority of the replicas before carrying out a client request. Consequently, the need for mutual
exclnsion also limits the failure masking capability of the schieme (cf. item 1 below). Naturally, such
pessimistic locking reduces the performance of the scheme'in case of multiple competing clients,
and may also increase the likelihood of deadlocks [85].

It will be explained how these three tasks arc performed lor each replication scheme presented. Nunierous
full consistency schemes have been discussed in the literature [79, 92, 162, 175, 181]. Arguably, the
simplest way tce achieve these two tasks is taken by the primary copy scheme, where only one replica is
used at a tirme and the other replicas are used only if the first foils (sce §4.4.1 below). Maintaining the
consistency of this single replica is therefore simple, and serialising access to it is trivial. However, there are
some problems with this approach which can arise during particular failure semantics. Another approach
that ensures full consislency is voting protacols which achieves mutual exclusion of client requests by
vote assigninents {see §4.4.4) and relies on timestamps to detoct the most recent copy of the data at the
next operation.

General problems

The requirement that. operations on the replicas are serialised restricts the performance of full consistency
schemes, and generally, performance will not improve significantly by introducing more replicas although
availability might increasce. For applications that require the use of replication simaply for performance or
availabilily reagons, tull consistency schemes are usually a suboptimal choice. Weak consistency schemes
might be more approptriase (see §4.5 p. 49). Furthermore, in some systems, for example large federated
databases, full consistency might not be practicable due to large numbers of partitions and low communi-
cation capacity {142]. Instead, weaker consistency must be tolerated, and optimuistic concurrency control
logether with special conflict repair procedures should be used {see §4.5).

However, the performance of full consistency schemes can be improved by reducing the lock granularity
during serialisation. The probability that two clients want, te update the same ilem concurrently is thereby
reduced, and the likelihood that one operation must wait for another will be lowered. For example, in
the multi-user CES editor (Collaborative Editing Svstem), documeuts are divided into sections, which
are the units of serialisation {86]. While full consistency is ensured, people can edit the same document
as long as they perform updates on different sections. Conflicts become rarer, and performance therefore
increases among concurrently executing clients.

Additionally, full consistency schemes, due to the need to gnarantee serialisation of replica operations,
will incur extra communication overheads because many replicas must be locked to guarantee mutnal
exclusion. There is a chance that this extra load can increase the risk of network congestion and Pid
overload, and hence lower the reliability of the system (see §3.3.2 p. 36).
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4.4.1 The primary copy scheimne

The primary copy scheme, also known as the primary-backup schenie, is used in many existing systems,
for cxample in the Thor database [111] and the Echo file system [181]. In both systems the primary
copy scheme i8 used for replication of servers (object repusitory servers and file servers respectively). A
primary copy scheme is often chosen due to the relatively siinple behaviour and low overheads during
periods of no failures. The scheme is also appropriate for data replication in object systems because it
maintains a single, and thereby consistent, copy of the object graph®!.

The primary copy scheme is based on the idea of ‘hot standby replication’; during fault-free periods, a -

single primary replica receives all the aperation requests and carries them out sequentially. Serialising
access to the replica is therefore a simple question of only allowing a single client at a time to manipulate
the primary, and this can be done by simple locking primitives. A collection of backup replicas are
periodically synchronised with the primary, and if the primary fails, one of the backup replicas takes
over as the new primacy. Although the scheme would work well for benign failures, malicious failures
cannot be masked. If the primary fails maliciously, the client cannot generally determine this failure!.
Additionally, the scheme can behave incorrectly during partition failures where several primaries can be
elected at the same time, thus causing inconsistencies. Some variations of the primary copy scheme use
just a single backup, in the form of process pairs [85]. Although the backup has a simpler job of deciding
whether it is supposed to take over from a failing primary, conflicts are still possible if partition failures
prevent the backup from determining the correct status of the primary. Echo, a fault-tolevant file system,
solves Lhe problem of electing multiple primarics by using a second level of replication; a primary is only
elected if it manages to get a majority of votes from replicated disks [181]. Echo will chus block if a
majority of disks are not responding rather than allocate two or more primaries!?,

The critical factor determining the scheme’s performance is the frequency of synchronisation between the
primary replica and the backups. If few failures are likely, the performance of the scheme improves with
reduced frequency of synchronisation. However, when the primary fails, more work must be done to get.
the clected backup synchronised, and if the primary fails just after an update, buc before it is synchronised
with af least one backup, the scheme cannot provide full replication transparency Lo applicalions. Some
data will have been lost, and the client of the scheme must therefore be prepared for this during interaction
with the current primary. ‘The scheme can be implemented such that the backups are synchronised for
each opcration that updates the primary, but this reduces the performance of the scheme to that of an_
available copies scheme (sce §4.4.4 p. 48). Esseniially, if the frequency of synchronisation is high, very
little work needs to be done to switch to a backup, berause the backup is likely to closely match the
primary, but then the performance drops dramatically [94]. Additionally, as the primary receives all
the requasts, the scheme is nof very scalable. The primary can very easily become a ‘hotspot’ and a
bottleneck to performance.

4.4.2 Replicated RI’C

Full consistency can be achieved in an objecl oriented system by sending the same sequence of invocations
to ecach replica in the group, closely resembling the state machine approach to replication [162]. In
addition to the process of replicating the invocations, procedures are necessary to mask failures and
provide support for serialising access to the replication. However, because all non-failed replicas will
remain mithially consistent, there is no need for potentially expensive replica state transmissions to bring
replicas up to date as is the case for voting schemes. The RPC approach is attractive because it replicates

" Alshough, during synchrenisation and fail-aver the backup copies must be brought up to dale.

2 Naturally, proprietary failure detection mechanisms such as error-deteciion codes can be implemented, but this requires
special design of the replica and is not enforced by the replication scheme.

13T hiy illustrates o common tradeoff in distributed computing; liveness versus consistency (19]. Achieving one of them is
simple, achieving both is hard.
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the invocation and will thus normally avoid complicated object shippingt.

A nseful way ta encapsulale this functionality is within RPC stubs |23} or proxies [1G7], which are
cornmonly used paradigms for encapsulating distributed programming. This approach is very convenient
and is used in a number of systems, e.g. it is known as MultiRPC [159] in the Andrew and Coda File
System [157] and sunply as replicated procedure calls in Circus [48, 49]. It is also the approach chosen
in the proposed architecture. Heplicaling invocations to separate object replicas may trigger nested
invocations however, and this complicates the design of a replicated RPC mechanism. For example, in
[49], invocations are wniquely identified by low-lovel system code if they originate from replicas and a
particular filtering mechanism at the invokee ensures that duplicate messages are ignored. A similar -
approach is followed in {121].

The main benefit of the replicated RPC approach is the simple programming model which is a capy of
the standard RPC {23]. Replicated RPC can also give relatively good performance, even in large scale
systems with a high mimber of replicas [159]. Automaiically generated stubs interface wilh the client
to provide a replication transparent object which can be manipulated much like a normal non-replicated
object. Additionally, full consistency schemes are beneficial in object systems, as they do not counflict
with the encapsulation principle (cf. §4.3.1 p. 44). A more thorough discussion of approaches Lo replicated
RFPC is in §9.1.1 p. 95.

4.4.3 Process groups

A process group is a synchronised collection of processes, where a message sent to one member guarantees
it to be delivered by all or none of the gronp members [18]. Special broadcast protocols cnsure that
different members of the group receive the same sequences of messages by using some form of atomic
broadcast algorithm. Additionally, a set of routines for changing the configuration of the group, group
membership probocols, is defined within the protocol to provide support for reconfigurations such as
new members joining the group. Due to the elaborate protocols for maintaining the atomicity property
process group protocols generally do not scale to groups larger than, say, a few tens of replicas.

The process group approach can be useful as a tool for replication in object systems because it is guar-
anteed that each member of the group (i.e. each replica) receives all the invocations sent to the group.
Process group protocols do not generally supporl nested invocations, rather, the approach makes it dife—-
ficult to provide support for this. If replicated processes musi. invoke other shared processes, specially
designed mechanisms must be used to filter out duplicate invocations. Additionally, a process group is
a relatively low-level mechaniem, and is not sufficienc to implement a replication management scheme
on its own. For example, messages can normally only be sent, among moembers of the group. If another
object, not belonging to the group, wants to send a message to the group, it has to use a special contact
{a representative) for that group. This contact will obviously be a singie point of failure, and the ob-
ject must therclore implement a fail-over mechanism to guard itself from failing contacts {see also §9.4.2
p. 104).

4.4.4 Voting schemes

Voting is a kind of pessimistic concurrency control scheme for data replication, and achieves full consis-
tency by ensuring that all aperations on the data are serialised and that data are timestamped such thas
stale data are updated in subhsequent rounds of the protocol [79, 92]. Serialisation in voting schemes is
based on the principle of overlapping vote sefs, or quorums. Before an operation can be executed on the
replicas, a quorum must be obtained by the replica manager, and because the votes are arranged in such
A way that only concurrent operations will be able to gather quarums simultaneously, strict serialisation
of operations is guaranteed. Consistency is provided by a timestamping mechanism which is able to

1Object shipping is occasionally required if objects are parameters Lo the RIPC and the objects connot be remately
referenced,
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distinguish between up to date and stale replicas. All replicas which are contained within the quorum
are updated with the daba [rom the most emrrent replica, and then the requested operation is appiied to
the quorum. This enforces another requirement from the vote assignment; it must be guaranteed that
cach quorum will contain a replica with the most current data. QOtherwise operations might be misserl
by some replicas. The fact that replicas are brought up to date by copying data from the most current
replica makes voting schemes unsuitable for objeet replication regimes. Additionally, the problem of
nested invocations is present in voting schemes as well.

The main drawback with voting schemes, 1s the high cost and relatively low availability as compared to

weak consistency schemes. TFor each aperation to be applied to the replicas, the appropriatc number of -

votes must be gathered from the roplica set. This can involve multiple rounds of potentially expensive
remote invocations. [owever, the individual numbers of votes may be optitnised to reduce the cost
of certain operations (76, 79, 92}, For example, a replica known to be very reliable might be assigned
a high number of votes so as to achieve better performance!®. Additionally, it is common to exploit
knowledge of read/npdate ratios to favour the most common operation type. If most of the operations
are read] aperations, these operations can be assigned smaller quorums thus increasing the performance of
reads by reducing the performance of updates, Ancther possibility is to exploit more advanced semantic
properties of the data, for example by allowing increased concurrency for particular data types [92).

A widely known variation of the voting approach is the majority voting scheme. In a majority voting
scheme quorums axe simply determined as containing any majority of votes. The scheme does not optimise
for reads or writes, but simply reqnices that 37 votes are collected before on operation can be issued, and
hence does not provide an increase in availability unless n > 2. However, for large n, the scheme offers
good availability (see §B.2 p. 116). A majarity, by definition, can be gathered by only one replica manager
at a {ime, and thus guarautees mutual exclusion. As long as 4 majority of the votes are available, the
schetne can allow for operations o proceed without sacrificing consistency. In its simplest forin, majority
voting assigns a. single vote to each replica, however, dilferent number of votes might be given to replicas
to uptimise the scheme. The weighted voting and the available copics schemes exploit optimisation of

the vote assigtinenis in slightly different ways.

Weighted voting is a specialisation of majority voting where different replicas are given different weights
{or votes) [79]. This approach can be used Lo oplimise the vote assignments, such that particular features
of the distributed system can be exploited. Determnining oplimal assignment of votes can be corputa-

tionally expensive, but less so than coterie assignments. This makes weighted voting more appropriate -

for larger numbers of replicas than coteries (see §4.4.53).

The available copies scheme!® is a variation of the majority voting scheme, although highly optimised for
read operatious [53]. A replica is available as long as a majority is present in the eurrent partition. Read
operations arce performed on the nearest replica (or the replics with the smallest cost of performing the
read). Updates arc performed on all available replicas in the group.

4.4.5 Coterie schemes

A coterie scheme is similar to quornm voting schemes in that serialisation is achieved through the locking
of subsets of replicas. However, in contrast to voting schewmes, coterie-basced schemeos have predefined sets
of overlapping replicas. That is, instead of requiring the gathering of votes, sets of replicas are used to
satisfy the execution of an operation. Replicas are arranged in sets, the cotories, so Lhal {wo potentially
conflicting operations have overlapping raembers [76, 17]. Similarly to the voting scheme, when » coterie
is achieved, and an update operation is performed on the respective replicas, the replicas arc also updatec
with 2 new timestamp which ensures that a following operation accesses the latest updated replica.

Although coterie schemes can give slightly hetter availability than voting schemes for high numbers of

5 tlowever, by directing more load to a replica, its probability of Cailure will increase ag well {«f. §3.3.2 p. 386).

18g0metimes called the accessible copies scheme,
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replicas!”, coteries are more expensive to compute [76]. However, determining the optimal assignment of
coteries is computationally very expensive [17, 70, 175] making this approach most appropriate for smaller
numbers of replicas (¢f. 84.4.4 p. 47). A variation of the coterie scheme is the read-rows write-columnns
approach, where overlapping subsets are ensured throngh organising the coterie groups in a matrix. The
fact that each row will overlap with any column ensures mutual exclusion.

4.5 Weak Consistency Replication Schemes

Strong consistency replication schemes depend on synchronous updates of replicas. In some distributed
systems this synchronisation is too costly due to large numbers of replicas and relatively poor communi-
cation capacity. For example, federated multidatabase systems require, for perforinance and availabilily
reasons, that global scrialisation be relaxed [8, 142]. Other systems, ¢.g. systems where failures oconr
frequently or where replicas must be available during periods of disconnection makes full consistency
unrealistic. Thus, a weakening of the consistency requirements is necessary.

Weak consistency replication schemes allow for asynchronous updates of the replicas. Some weal consis-
tency schemes use epidemic algorithms for update propagation where replicas cooperate to ‘infect’ each
other with the updates [57, 81]. Qthers, such as the optimistic protocol scheme, try to update as many
replicas as possible, but in case of partitions a precedence graph is constructed which detects conflicting
transactions [65]. Due to the asynchrony, an operation updating a replica need not wait for all other
replicas to be updated, rather, the updates are propagated in the background while the client that issued
the update can continue with another task. This means that if some of the replicas are unavailable, due
to failures or disconnection, they can receive the update when they arc once again available. However,
wealk congistency schemes rely on a mechanism to detect inconsistencies in the replicas that have been
independently updated, and this normally requires substantial processing [59].

Weak consistency schemes in general incur lower overheads in the clients than full consistency schemes.
They are therefore better suited for large scale applications using networks of ‘data servers’, for exam-
ple global name and directory services [137, 41, 21], distributed file systems [L57], and large autonomous
information systems [100, 128] where replicas may be located in database servers with relatively high per-
formance. At the cost of potentially stale data, weak consistency replication schemes assist n enhancing

performance and availability. -

IHowever, weak consistency protocols have some limikations. Resolving conflicts can potentially be very
expensive, and this requires more processing to be done in the replica servers. Due to the fact that replicas
might contain stale information, weak consistency schemes must be used with care. Some applications
are able to deal successfully with this problem, e.g. if it is obvinus from the information content that it
is stule the application can use anothor replica or simply retry the operation in the hope that the data
will become valil soon. By reducing the granularity of the replicated item, the probability of conflicting
updates can be reduced significantly. However, this comes at the cost of introducing larger numbers of
items which is not always practicable due to higher overheacls lor a given amount of data.

Reconciliation

Weak consistency replication schemes require that mechanisms are provided to deal with potentially
inconsistent data. Some ronflicts can be reconciled automalically (and corvectly) without loss of repli-
cation transparency. For example, some of the inconsistencies that might occur in replicated distributed
file systems can be reconciled by the system following ziven rules. Consider a file system with the usual
operations for reading and updaling files and directories replicated at two PHEs. Many of these operations
commute, i.e. the order in which they are performed is insignificant and they can therefore be reconciled
automatically by applying the missed operations. For example, the creation of two distinct files or direc-
tories, updating two distinct files, and simultaneously reading the same file are commuting operations.

"For more than five replicas the computation of aptimal coteries can be very expensive, with exponential running times,
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However, if the same file is updated independently in both replicas, knowledge not available 1o the file
systeni is necessary to merge the updates.

When inconsistencies occur that cannot be reconciled automatically, a reconciliation authority is required.
To Lhe case of files in a file system, the content of the two conflicting files must be examined to determine
how the reconciliation should proceed. The examination mighi be possible for a range ol file types,
e.g. structured text documents or source code where ‘direct manipulation tools’ are available [93]. For
example, Lolug Noles arbitrates automatically among conflicting updates, and flags the overridden update
[14]. Lotus Notes programmers are therefore required to construet programs which must tolerate sudden.
overwrites. However, such approaches arc unsuitable in the context of programming-language objects.
Due ta the encapsulation principle, access to the internals of the objects is limited. The key idea behind
encapsulation is thai infegrity constraints are enforced by the object itself, not by external objects.
Besides, tools for investigating the internals of objects are generally not available.

A serious problem with weak consistency replication schemes is that some operations should never be
allowed to happen in a partitioned network because they cannot (realisticly) be veconciled later {40, 58],
for example the firing of a missile or the scheduling of aeroplanes at an airport. There might thus
be a need to enforce different consistency requirements on different dala, which further complicates
the replication scheme. Additionally, the fact that weak consistency is sought, often implics that the
potentially inconsistent data will be used outside the system {42], introdncing covert channels which can
confuse the causalily property of the data.

Other disadvanlages

The main cost of weak consistency schemes is the added overhcad for logging of operations in the dif-
ferent partitions. However, in database systems this overhead might not be very significant as logging
mechanisms are alveady present [55]. Secondly, feconciliation can be costly in systems with many updates
during a partition. While the probability of conflicts can be reduced by reduced granularity of data, long
periods of independent npdates can cause large numbers of rollbacks which require further processing in
the servers.

Variations of weak consistency schemes
A number of approaches to weak consistency replication have been discussed in the literature, but they..-
are mostly based on similar ideas, e.g. epidemic processes depending on randomisation.

Version Vectors is an approach based on keeping track of the number of updates frem cach site holding
a replica by recording pairs of site,v tuples in a vector, and using the notion of vector domination to flag
a couflict. Domination follows from a replica having seen a superset of the updates of another replica.
Because each replica is associated with a vector, a dominating vector implies that this replica has seen
more updates than the other, and can be reconciled automatically. However, if neither vector dominates,
a conflict has occurred and this must be resolved monually [55].

The optimistic protocolis an approach based on designing conflict graphs of transactions, and by analysing
the graph, condlicting transactions are forced to roll back. ‘I'he graph analysis is computationally expensive
however, and implementations ofien depend on heuristics {55).

The anti-entropy approach is based on random selection of parkners for exchange of new data {37
Instead of propagating updates, two partners compare the enfire dataset and resolve their diffevences
after that. This makes the approach very expensive for any significantly sized databases. A variation of
this approach, called timesiamped anti-entropy, has been propescd by Golding et. al. [81). While this
approach is fine for dabta with simple semantics, e.g. a name database where weak ordering is sufficient,
it is expensive for stronger ordering regimes.

In the direct mail scheme, upon receiving an update, a direct mail replication protocol notifies all other
replicas about the update via buffered messages (mail messages) [57]. 'The update is asynchronous, i.e.
the elient does not wait for the messages to be propagated (it is similar to a best-effort multicast). The
disadvantage with this approach is that there is a chance that a receiving replica is crashed or its message




is dropped by the network. The receiving replica will therefore mies the update and become permanently
inconsistent. Due to this limitation, the direct mail scheme is sometimes combined with other, more
fauli-tolerant schemes snch as anti-entropy [165]).

Rumour mongering is an epidemic-style update propagation protocol [57], but in coutrast to anti-entropy
it 18 not completely reliable. This techuique is based on the idea that a new update is a ‘hot rnmousr’
that should be distributed to as many ol the other neighbouring PEs as possible. The rumour gets ‘cold’
after a certain number of attempts to spread the update and there is henee a probability that a PE does
not receive all updates.

4.6 Concluding Remarks

This chapter has shown that replication is a problem area with many conflicting concerns. Building
fault-tolerani. distribuled systems is not cheap, but the added value gained from increased availability
will become increasingly more important as our dependence on dependable computing systcins rises.
Similar to many other problemn areas within computing, the tradeoffs depend on the system in which the
problem must be solved. ‘Lhis dissertation is concerned with system support for ohject replication, and
thus the requirements Lo transparency and a sitnple programming model are of paramount importance;
scalability and availability arc sceondary concerns.

In this chapter strengths and weaknesses of several replication schemes have been presented, and quite
clearly, none of the schewnes stand out as ‘the perfect solution’ to any replication problem. Optimistic
protocols maximise availability at the expense of repairing eventual inconsistencics. If conflicts are rare
and the cost of resolving thern is low, then they will offer benefits in terms of better scalability and
performance. For some applications, resolving conflicts is cheap and the correctness of the conflict
detection mechanism might not be of great importance. In some settings such as replicated namnc servers
where data is only minimally encapsulated, a client will often be able to distinguish between correct and
incorrect datal®. The name server client can take corrcetive action by making repeated requests to the
name gerver in the hope that the name server will eventually be updated. The client could also send its
request to another narne sorver agent.

However, in the eontext of system support for replication of generic objecls - - where any object might be .
replicated — it cannot be assumed that conflicts can be detected so easily, yet alone corrected. Pessimistic
replication schemes do not require corrective action to be taken by clients as these schemes will always
ensure consistent data. These schemes have reduced availability: compared to optimistic schemes, but
they are predictable and offer a simple programming madel; the model the programmer is used to from
writing nou-replicated programs. Additionally, if conflicts are frequent and the cost of repairing them is
high, then pessimistic schemes will offer better performance than optimistic schemes.

To summarise; pessinistic schemes do have significant associated costs. However, so do optimistic
schemes, and in addition they cannot provide the transparency necessary in a sysiem supporl archi-
tecture. Their cost will be unpredictable in systoms where only weak predictions can be made about
the frequency of conflicks. In the context of this work — systom support for replication — maximum
replication transparency is nceessary. Auny other approach would complicate the programming rodel
rather than simplily iv and thus counterfeit the goal which this dissertation was intending to achieve.

Based on thesc observations, a full consistency replicalion scheme based on replicated RPC has been
chosen in the proposed archifccture. Function shipping is a means of replication which corresponds
well with the object-oriented system meodel, and does provide the best vesilience against failures by
aiso replicating the execufion of ohjects’ methods. From a system support view it offers a clean and
transparcnt programming model which will be very useful to build system support mechanisms that can
reduce the application complexity.

% For example, the reference obtained from the name server dees not refer Lo an exisling object any longer.
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Chapter 5

System Support

This chapter presents the concept of system support mechanisms’ and motivates their availability during
distributed software development, Different issues relating to the realisation of system support are discussed; in
particular, those issues related to the provision of system support in distributed object systems are erphasised.

5.1 Overview

The role of system support is to provide abstractions of complex system structures and components to the
application programmer and to increase reuse of common program patterns among multiple applications.
System support is provided to the programmmer in the form of APIs (Application Programmer’s Interface)
as collections of abstract datatypes, procedure libraries or class libraries. APTs can be made available to
programmers through library cade or operating system calls, facilitating reuse by a monber of applications.
System support functionality need only be implemented once, jusiiiying increased effort to ensure high
quality implementations.

System support is of greatess value if the same functionality is needed by many applications and when the. .
{unctionality reyuires complex, error prone and substantial programming effors. Significant savings can
then be achieved. Not only does it reduce the effort of developing each applicalion, it can alsu iucrease the
qualily ol the applications because the system support mechanisms are well tested. System support can
help application developers concentrate on application functionality. Orthogonal issues, such as reliability
and availability, are important for the satisfaction of non-functional requirements, and should as [ar as
possible be delegated to reusable software components.

Furthermore, the demand for increasingly large and powerful applications necessitates reuse to ensurc
efficient realisation. Not only does cfficient reuse lower implementation costs, it can also help increase
interoperability between different applications. The use of standard, low-level system support mechanisms
can provide the interface necessary for integration. This makes system support particularly interesting for
the development of distributed applications [14]. Due 0 the complexity of distributed conérol, resource
management and coordination, system support for these tasks can reduce application complexity and
thus simplify their development [86, 170)].

However, to be useful, a support layer must not introduce overwhelming additional complexity to the
apphication programmer. If application programmers are required to familisrise themselves with many
new and potentially radical concepts, or fundamentally change the way they reason about their programs,
they might choosc simply to implement the functionaslity themsetves!. Also, system support mechanisms
st be generally applicable to aid the construction of a wide range of applications. This might occa-
sionally conflict with the goal of effiviency, as designs optimised for generality or performance may result

The “not invented here” syndvome |72].




in different implementations [156]. To cater for this problem, application programmers should be allowed
access to parts of the internals of systemn support mechanisms in cases when doing so does not jeopardise
other important issues such as system security. Naturally, providing such access can only he realised with
the understanding that system support integrity may be violated.

5.2 Providing System Support

System support mechanisms are mechanisms thal, are available to application developers to reduce the -
effort of developing software. Application developers on common computing platforms already have
access t0 & vast range of software libraries and operating system calls [14]. As the demand for incrcased
programmer productivity continues, the sheer volume of APIs is likely to rise. For the suppliers of these
APIs it is therefore important ko optimise their coherence and brevity so that the programmer is not
inundated and hindered. During design and development of system support functionality, these, and
other issues, nced to be addressed carefully. This section elaborates on issues of importance to builders
of system support software.

Generally, principles for good software cngineering should be adhered to during devclopraent of system
support mechanisms. For example, sound procedures for documentation and testing should be followed.
Additionally, simplicity of design is more likely to increase implementation reliability. The fewer compo-
nents a systemn suppott mechanisin must incorporate, the greater the probability of a relinble mechanism.
Furthermore, simplicity by design often leads fo elegant and more easily maintained implementations.

5.2.1 Procedure and class libraries

With the increasing popularity of ohject oriented development technigques and programming Janguages,
traditional procedure libraries have been partially superseded by class libraries. Class libraries consist of
a collection of class definitions which ¢an be incorporated into an application. For examnple, a supplied
class can be specialised through inheritance with appropriate new methods and data fiekls. Fhis kind
of system support, i.e. language level software, provides a flexible and efficient approach to software
development {75, 161].

However, in conirasl to operating system support, this flexibility can lead to oversized libraries which can
be very hard for the developers Lo cotupletely understand. This is especially important for class libraries
where classes might have complex inter-dependencies, such as libréaries for window systerns like Microsoft.
Windows [30] or X11.

5.2.2 Operating system support

System support mechanisms might occasionally have to be integrated within operating systems due to
requirements tor security and access to low-level devices. However, implementing system support at
this level has a tendency to swarmp the operating system. A goal among operaling system designers is to
provide only the most esseutial services which require protection and access control as kernel functionality,
for example; processes, inber-process commurications and address space administration [107}. Remaining
system services can be implemented oulside the kernel in user level processes. Furtherinore, vperating
systems arve required to support large, existing bases of software through system support mechanismas.
Therefore, operating systems arve forced by the application base to restrict changes in system call interlaces
{o a rminimum.

There is vesearch into object oriented operating systems, promising easier customisation and more texibil-
ity for programmers, e.g. Spring [125] and Spin [158]. Object oriented operafing systems fry to reduce the
traditional tension between generality and specialisation, essentially providing the benefits of language
level support with the added facilities of protection and resource scheduling [95]. However, it is likely
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to take some Lime before such systems come into widespread use, and it is likely that the first ones to
appear will have standard supplied interfaces for popular operating systems, e.g. UNIX,

This familiar operating system, dating back to the 1970’5, provides its support to programmoers in the
{orm of a collection of system calls, 1.e. application callable procedures which arve executed by the kernal.
The amount of software written on this platform would make any radical changes to the system call
interface unthinkable.

5.2.3 Stability of interfaces

System support, closely relates to layering in software engineering, as a collection of system support
mechanisis can be seen as a layer. Implementing system support mechanisms becomes the process of
building such a layer and documenting its interface to the application builder.

As more software is developed for a particular system suppori. layer, it becomes harder to change it. Small
changes in the APT can lead to cascading changes being nocessary in the software written for the APL
It is important to consider this during development of low level software. Low level software interfaces
must be designed for stability and longer life than application level software. However, this does nat
affect the implementation. The implementation of the mechanisms are allowed to change independently
of the interface.

An inherent preblem with system support mechanising is making them applicable to the widest possible
range of applications. Reuse, in practice, is difficult, and often, several iterations of refinernent may be
necessary to end up with good, generic abstractions [75, 170]. ‘There is an inherent conflict between the
stability of the interface and che functionality it implements, however, as the functionality underneath
the interface changes, the interface might not be the optimal interface to this functionality any longer.
Rescarch and experience with reuse, and patterns in particular, will need more time to mature and clearly
demonstrase their benefits [73].

5.2.4 Conflicts and overlaps

Having large numbers of interfaces introduces problems with conflicts and overlapping functionality. Fon_-
example, if two interfaces are used simultaneously by a programmer, slight differences in their conceptual
models might severely increase the effort needed to build reliable code. This mativates strict adherence
to software architectures; not only their concrete representation, bt also their underlying assumptions.
Lack of common understanding of the assumptions made during design of reusable software components
appears 10 be a very significant problem [54]. Design decisions should be clearly documented to reduce
the danger of mismatch botween software components. This is most important for the part of the reusable
software which defines the interface to other software packages. For example, if one software component
assumes that all 1/0 is via pipes or files and the other component assumes RPC calls, then clearly the
effort needed to make the components interact can be substantial.

Additionally, using interfaces frorn multiple suppliers, the programmer might experience namespace con-
flicls. Such conflicts can complicate the development: process. The advice from T. Vayda is to check with
suppliers in advance and use tools for namespace control [189;. ‘I'he same advice is probably well worlh
considering for developers of such interfaces as well. Additionally, organisational naming conventions, for
example using a global naming space strategy as in Java [82], can help reduce this problem.

5.2.5 Visibility ol code

Systern support software cannot be expected to be free of bugs, although due to its importance, it should
undergo very thorough testing. For application programmers it is important to be able to delermine the
source of faults in their software. Ilowever, system support software may make this difficuls due to lack
of access to the source code. It may be based on code precompiled into libraries which are not generally
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open for inspection, or the code might simply be compiled into the operating system iiself, where ii
remains invigible to the application developer. In some circumstances it may therefore be beneficial to
supply not just the precompiled code, but also the source code of the system support software to the
application developer.

Svme system support software is based on preprocessing using automatic code generators. In this case
it should not be assumed that the generated code is always correct, If the generator produces code
which is not accessible io the programuuer, errors in the generated code cannot be corrected by the
programmer. Occasionally, the programmer might want to perform corrections, or at least make sure

that errors in the implementation are not due to the code generator. Any intermediate code, e.g. output .

from stub generators, shoulkl be visible. However, hecause of the automation, any corrections made by
the programmer will be over-ridden by subsequent invocations of the code gencrator. These correctious
can only be undertaken by the supplier of the code generator, but the programmer might have a better
chanee of producing a useful fault-report for the supplicr.

Another problem with generated code is that it might be difficult to read by humans. Automatic code
gencrators cannot always be expected o produce code with intelligent variable names and readable
comments.

5.3 System Support in Distributed Object Systems

Tu addition to adhering to the principles discussed in scction 5.2, system support for distributed object
systems must assist the development of distributed object oriented applications. A model of what distin-
guishes a distributed application from a non-distributed application is therefore necessary?. A particular
featurc of these applications is that they contain concurrently executing objects on physically dispersed
computers. Any object might therefore be invoked by several other objects simultaneously, and hence,
reliable and efficient sharing of objects must be supported.

5.3.1 Object sharing

Sharing of objects is facilitated hy passing references to objects among other objects, and references can...

be passed among objects as invocalion parameters or invacation results. Any object holding a valid
reference can invoke methods upon the referenced object. An application will therefore typically consist
of a collection of objects which invoke methods on each other, and which share objects with other objects.
If correctness ig to be maintained, this sharing of objects requires coordinated access, i.e. concurrency
control [63].

A system support {acility should be safe in the presence of multiple threads, i.e. it should behave eorrectly
independently of the number of concurrent clients. Special care must therefore be taken during the
development of system support mechanisms for these kinds of systems. The programmer should be
ghielded as far as possible from the fact that there are other programs executing in the systom. However,
unnecessarily complications of the programnmer’s model should be avoided and functionality related to
concurrency control should be made as transpareut ag possible.

5.3.2 Concurrency control

This dissertation is concerned with applications written in a distributed programming language using
lightweight concurrency primitives, e.g. threads synchronised using locks [25]. In contrast to distribuied
programming languages, distributed programming systems extend the programming model with support
for persistent objects and more sophisticated concurrency control inherited from database technology,
such as atomic transactions and recovery functions [9, 154]. A distributed application containing several

2The application model adopted in this dissertation is described in §2.7 p. 24.
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jhreads of execution must be designed to avoid dangerous situations such as deadlocks, livelocks, slarva-
tion, and race-condilions occurring due to the concurrency [25, 29]. In distributed programming systems
this is che responsibility of the application developer.

Objects can be considered as a unification of the data and process concepts; each object contains ils own
‘processor’ (the thread) and the data upon which this processor cxecutes (the object’s internal slate).
This model is called an active abjeet model, and is implemented in some programming languages such
as Objective Linda [101]. However, the unification concept is valid even if the actual programming
language does not vestrict threads to execute only within a single vbject®, although more care must be
taken hy the programnmer when building concurrent programs in a passive object model®. Tn fact, in an -
active object model, the system iiself is responsible for synchronising access to the abject’s state. The
benefits of this unification become clearer when concurrency must be controlled, as each object can be
held responsible for maintaining the correctness of its own state. In a passive object model, objects which
require synchronised access are programmed with this in mind, and the other objecis do not need to pay
the performance overheads associated with synchronisation.

Distributed programming systems often include support for transactions and persistent objects [154].
For example, Argus implements transactional semantics on distributed data~objects using the notion
of Guardians (objects) and Actions (atomic invocations) [110}. However, due to the need for stable
commit and abort mechanisms, Guardians are relatively heavyweight, and can easily impose too much
overhead for interactive applications if they are not carvefully designed such ss Lo minimise the use of
guardians for frequently updated data [86]. Similarly, the Arjuna system groups object invocations into
atomic actions using specific programmer declared primitives [171].  Arjuna uses a persistent olsject
store which maintains the state of objects (state servers), and assumes that particular object servers
contain the code for the methods. For each update to an object, the new state of the object must
be forced to disk, and this approach also results in relatively high overheads for fault-tolerant objects
[113]. Transactional support is also necessary for dealing with nesting of invocations; an invoecalion which
trigger the invocation of multiple child-invocations may not need to be abiorted if only a subset of the
child-invocations abort. However, a thorough discussion of transaction models is oulside the scope of this
dissertation (see e.g. [9, 85, 154]).

Care must therefore be taken when providing system support for concurrent programs. In programming
systems, concurrency control is a central part of the system, commonly provided through sowe form of
transaction mechanism. In programming languages, the programmer is normally lefl with more of this—-
responsibility, and the amount of work is dependent on the object model. In an active object model, the
programrning language is responsible for ensuriug; serialisation in the presence of concurrent threads. In
contrast, a passive object model, which is the most commmon model today, requires that the provider of
system support functionality ensures correct operation during concurrent processing.

5.3.3 Other services

Other services arc also important within the framework of system suppart: in distributed object systems.
Applications commonly require system-wide services which cannot easily be implemented by each appli-
cakion, and should rather be accessible through reusable componenis. Examples of such services are name
services, binding services, RPC-facilities, garbage collectors, and load balancers. Although this disserts-
tion is primarily concerned with replication facilities, these will become only services wilhin application
development frameworks [14].

3Which is the case in the passive object model adopted hera.

1Active objects do however intradnce another point of fallure, Because an active object must accept invacations asyn-
chronously, it must cither be augmented with some form of message buffer or create new objects with their own threads
dynamically [154]. The message buifer can potentially overflow, and the pool of threads can grow without bounds, if care is
nof taken to intraduce some furm of flow contrel. In a passive object model, a thread is typically blocked on a lock hefore
entering the ohject and (low control is in this case provided by the mutex itself.




5.4 System Support for Object Replication

As software becomes more distributed, more people will depend on the same application, and its avail-
ability requirements are likely to increase. In §3.1 p. 27 it was indicated that a high level of interaction
among components in a distributed system makes distributed software vulnerable to even single failures.
System support for object replication could be a significant benefit to alleviate this fragility, and could
help to reduce the difficulty of developing more reliable applications. The system support mechanisms
proposed in this dissertation (chapter 6) are suggestesl as a posible, although partial, approach to cbject
replication.

Object replication implies replication of objects not specifically designed for replication (see §4.3.1 p. 44).
Ultimately, it should be possible to replicate any object within a distributed system, and do so transpar-
ently for the application programmer. Many parameters in a distributed system. are very dynamic, and
it would be unrcalistic ta demand that application developers deal with these [114]. Rather than burden
the programuuer with tasks such as replica placement, failure masking and replication protocols, system
services should perform these functions automatically based on sitmple metrics sitch as the desired object
availability.

However, system support for object replication is a challenging problem [59]. While data replication can
be supported in a generic manner, object replication does incur tradeofts for transparency. Successful im-
plementations of such mechanisis can therefore only be provided after making careful judgements of the
inherent tradeoffs. Furthermore, replication management is itself non-trivial, requiring both distributed
coordination, inter-object communication and distributed resonrce maragement. It would be unrealistic
to assume that application programmers would have the resonrces necessary to implement replication
schemes with the appropriale reliability [18, 44]. Ilence, there is a danger that the implementation of the
replication mechanisms themselves cause failures, reducing the benefits of replication. However, system
support mechanisis, due to the benefits of reuse, can justify the cost of higher quality implementations.

5.4.1 Replication transparency

The contlict hetween consisceney, performance and availability is inherent in replication schemes. For a
system support layer, consistency is the factor which determines its usefulness as increased consistency
implies increased replication transparency. Turther conflicts arise in object systems due to complex
interactions among objects in such systers, and the encapsulation principle, rendering voting and coterie-
based replication schemes unusable for object replication (see §4.3.1 p. 44).

The achievable Lransparency in object replication schemces is limited [59]. For example, invocations
from a replicated object A on some other shared object B will result in multiple, potentially unwauted
invocations an B because each replica A, of A holds the reference to 1. However, if the invocation from
a replica A, was {0 a non-shared object, e.g. a temporary object created by 4. itself, there should be no
change in semantics, and all invocations from A, should reach B.

The problem is that the wanted behaviour is application specific; firstly, if B is not shared, no particular
action needs to be taken. In the case that B is shared, maximum fault tolerance is achieved if as many
methods as possible are invoked on £3, and this does pot cause any semantic viclations as long as these
methods are either reads or pure overwrites. Multiple invocations would not change the final state of
the invoked object B (assuming overwrite methods are executed at least once). Ilowever, in the case
where objects mutate, i.e. the methods are non-idempotent, the nunber of iuvocations is significant for
the resulting state in B. According to the object model adopted in his dissertation, any method may
potentially cause a mutation in the invoked object, aud the builder of 4 objects should have to worry
about the internal semantics of B objects.

A mechanism which automatically ‘filtered’ invocations fraom a replicated object could solve part of the
problem, although at the cost of added programmer complexity and filtering even invocations to non-
shared objects [121]. Additionally, muliiple invocations might be what the application semantics dictate.
Consider for example an object which counls the nuinber of replicas which correctly executes the call.

57




Piltering all replicated invocations to shared objects would then prevent the correct behaviour of the
program. Ounly the application builder can determine the correct semantics.

Transparency disadvantages

Even in a system support setting there are valid arguments against full replication transparency. IEs-
sentially, these arguments have much in common with those for and against completely distribution
transpavent systemus [51, 166, 183, 194]. For example, replicating an object changes its failure semantics,
hecause a replicated object cannot conceal all possible combinations of failures. During periods of many

failures, the roplicated object might be unahle to execute any method calls and would in this case have -

to report an error or simply block while waiting for failure recavery. This would never happen using a
local object®. The programnmer might want to know which objects are replicated so that the program
can be built to resume execution despite blocking calls on certain objects.

Worse still, it the replicated objoct fails, rendering the application’s reference to it invalid, the application
might fail too if it didn’t contain code to deal with the exception. A tradeoff between transparency and
application coruplexity therefore seerus inevitable. For example, the approach taken by the system support
mechanisms presented in chapter 6, is to let the application developer decide which objects should be
replicated and to expose the new failure modes.

5.4.2 Applicability

Due to the inherent conflicts helween frangparency and availability in replication schemes there will
undoubtedly be cerlain groups of applications which can be supported more efficiently than others by
a particutar replication scheme. The wide range of application classes developed in distributed systems
makes it difficult to find 2 comwmon substrate of replication functionality useful to the whole range.
Clearly this reduces the usefulness of a system support mechanism as it would be advantageous to
support any class of application with the same support layer. However, if assumptions are clearly stated,
the application developer can make a conscious decision before starting to use a specific support facility.

Applicability also deals with concrete assumptions such as programming language bindings, data models,
existing systemn support functionality, system management interfaces and protocols {14, 54]. It is crucial
that such assumptions are made as explicit as possible. The conformity assertions for the architecture~
proposed in this dissertation are presented in §6.1 p. 60.

5.4.3 Increased availability

System support for replication would not be very useful if it didu’t iucrease application availability by
masking failures. For an application designer it might be important to determine how much more avail-
able the application will be [150], This necessitates that information is available about the particular
replication scheme used, such that reliability predictions can be made accurately. As discussed in chap-
ter 4, iwradeoffs between availability and consistency are inevitable in replication schemes, but for the
strong consistency scheme used in the prosented avchitecture, availability can be reasonable for mnany
applications (cf. §B.2 p. 116},

5.5 Concluding Remarks

This chapter has presented some of the issucs to be considered before embarking on the tagk of construct-
ing system support softwarc. Although there are a number of challenging problems, system support can

%An address space is the faiture domain of an object. A local object resides in the same address space as the caller
(see §2.7.2 p. 28),
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bring large benefits in terms of veducer application complexity and consequently help increase productiv-
ity. System support for object replication will be particnlarly useful as a means of increasing application
dependability. Although some compromises on support transpavency are necessary, the value of increased
fault-tolerance can not be ignored.

This chapter marks the end ol background and motivating discussions in this dissertation; in the next
chapter the proposed system architecture for sysiem supported object replication is presented.
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Chapter 6

System Architecture

This chapter presents the architecture of the proposed system support mechanisms. The presentation covers
a range of aspects; logical partitioning into modules and objects, internal functionality such as performance
and synchronisation issues, failure resilience, and the realisation of the architecture in a real distributed system
including issues such as the physical mapping onto, and requirements which must be met by, the existing
infrastructure. Limitations of the architecture ave also discussed, and enough detall is provided to facilitate
further refinement and exiension. Read in combination with chapter 7, which describes the programming
madei of the architecture, it will give the necessary understanding for using the system support mechanisms.

6.1 Overview

Object replication deals with the replication of objects not specifically designed for fanli-tolerance. That
is, the programmer should be able to define objects as if they were not replicated. Similarly, modifications
should not be necessary in already defined objects if they are to be replicated. Similarly, other objects,
which use replicated objects, should not have to be modified either. Thus, this architecture is distinct
from research efforts such as Adaptable Replicated Objects [31] and the eatlier work on Fragmented™
Objects [117] where the replicated abjects must be cxplicitly implemented with replication in mind.

The architecture partially tulfils these goals in the sense that ouly limited adjustments of application
code are necessary to adapt non-replicated objects for replication. A tradeofl has been made between
cfficiency and generality, For example, the programmer is responsible for indication of classes that should
be replicated, thereby complicating the programming model with the benefit of only incurring extra
costs for a subset of the defined classes. The alternative, making all classes replicated, would be very
incfficient as the dependability requirements for individnal classes are likely to vary and the programmer's
opportunity to optimise the application would be reduced.

The proposed systemn support mechanisins encapsulate replication functionality within particular surro-
gate objects which o the application programmer appear very similar to the equivalent non-replicated
ohjects, This reduces the amount of modifications necessaryv in the clicants of the replicated objects,
Fssues related Lo programming with replicated objects are discussed further in chapter 7. The rest of this
chapier is primarily discussing the internal sttucturing of the replication mechanisms.

Applicability

System structures similar to the one outlined in chapter 2 are assumed to be the platforms on which the
replication mechanisms will be used. Mast tnportantly, programming language objects are the unit of
replication in this system, and a number of distinct computers with independent, fallure modes are able to
support the execution of methods in locally stored replicated objects. Thus, the architecture advocates
proeess distribution by following the usual function-shipping principle in object oriented systems [38, 162].
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Objects are stationary, and method invocations are passed amaong the replicas as messages on the network.

The replication mechanisms, being quite lightweight, are primarily aimed at supporting the development
of distributed applications with high availability requirements without incurring severe overheads. They
will also be useful for adding fault-tolerance to existing applications, for example when they are redesigned
to run in a networked environment. However, as these mechanisms offer relatively low-level services, their
greatest benefit will probably be as a component within a complete distributed computing environment,
such as a middleware framework [14]. Distributed application development requires services not directly
supported in this archilecture, such as authentication services and access control, which could then be
used to provide a more complete application development framework.

The architecturc is designed to support the construction of relatively small scale distributed software
systems such as groupware or other multi-user data-sharing software used in LAN-like networks. It is
assumed that users are most dependent upon servers local to the network, and that. it is the servers them-
selves which are the most common cause of service outages [196]. By replicating server functions within
the systew, significent savings may be achieved. However, larger scale application framewarks could
be built on top of these mechanisms, for example by using more looscly coupled clusters of networks
utilising Lhis architecture internally to provide high local cluster tounsisteney. Communication latency is
the primary performance bottleneck in this architeclure, application developers musf therefore carefully
consider how the latencies of communication in a particular network configuration will influcnce appli-
cation performance. Different network characteristics will inflizence issues such as replica placement and
the number of replicas used in a particular application context.

The lailure-resilience offered by the architecture reduces the frequency of application restarts necessary
due to failures. Due to the consistency constraints enforced by the object model, the mechanisms are not
suitable for large scale systems, where components are geographically widely dispersed and probletns such
as disconnected operation and long communication latencies must be weighted against full consistency
(see §G.2.2 p. 70). Consequently, applications using replication primarily for reasons of autonomy and high
performance arc not adequately supporied by this architecture although performance for asynchronons
invocations on objoects is good (sce §6.3.4 p. 74).

The pessimistic concurrency scheme will be inappropriate for some classes of applications which might
require long-duration transactions {99]; such as soltware enginecring tools and multi-user CAD systems
where direct access to data is most important, and the encapsulated object model adopted here would .
be in the way fov ellicient data manipulation. Also, such applications tend to require more fine-grained
concurrency control, for example by distinguishing between read and update operations on the data.
Majority locking would in this case severely raduce performance of the application. This architecture is
better suited for development of service-functions within a distributed system, for example information
management or system management services such as name services or accounting services |14]. The
architecture is based upon the assumption that object invocations are short-lived and that multiple
clienis avoid long periods of exclusion from the object replicas. Ilowever, investigation of concurrency
schemes allowing more concurrency is an interesting topic for further research (see §10.3.2 p. 109).

Additionally, the system archilecture does enforce some limitations on the structuring of the application.
Primarily, ohject replicas may not invoke non-idempotent methods on other shared objects as this will
result in multiple (possibly harmful) invocations on the shared objects. An extension of the architecture
to remedy this limitation would probably lead to less replication transpareucy for the designer of the
objects to be replicated [59, 121], but support for this should be considered in eventual eontinuations of
the architecture (cf. §10.3.1 p. 109). By partitioning the application into separate object graphs located
in disjoint address spaces this problem is avoided, but naturally complicates the programming model and
restricts the applicability of the architecture. See §6.2.1 p. 63 for a more thorough discussion of thesc
issucs.
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6.2 Main Components

The system support mechanisms are built as a collection of reusable software components which interact
to support the replication of objects. A major feature of this proposal is the separation of generic and
application specific components into distinet entities. Surrogates are generic objects which are antomat-
ically generated from interface definitions, and collators are application specific and used to customise
pracessing of replica result data. Surrogate objects encapsulate the parallel invocations aud the collators,
and appear to the programner as normal, non-replicated objects. Collators allow the programmer Lo
tune the synchronigation and failure-masking requirements as demanded from the application in a simple -
vel flexible manner. Surrogates and collators are described il more detail in the following text.
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Figure 6.1: Overview of the main compuonenis.

Figure 6.1 illustrates the interaction among the main cotponents. The surrogate is invoked by the
client as the normal non-replicated object, and the surrogate manages the parallel RPC module. The
programmer is responsible for ‘slotting in’ collator objects as necessary (cf. §6.2.3 p. 65).

6.2.1 Surrogates

A natural and simple extension of the cbject encapsulation principle is adopted in the system architecture.
Particular surrogate objects hide the detatls of replication from the programmer while acting as a manager
of a collection of object replicas. The surrogates described here are similar in principle to Gaggles [28]
in that they encapsulate multiple other objects using a single object. However, the Gaggle is a more
generic abstraction than the surrogate. Gaggles are not dirvectly designed for object replication because
it is assumed that only one, the rlerk, of the multiple objects should receive an invocation. This is
appropriate within a primary copy scheme, or as the fail-over mechanism required in a process group™
used for active replication. Because both the primary copy and the process group scheme work by fail-
over in casc of failurcs in the currently used primary or contact group member respectively, the Gaggle
is well-suited for this task’. In contrast, the surrogates described here also encapsulate functionality for
failure masking and consistent updates of object replicas and are therefore specialised for veplication.

Programumer interaction

A surrogate defines the same methods as the object veplicas, and the programmer can therefore manipulate
the surrogate much as if it was an ordinary, non-replicated object. Maintaining the illusion of only a
single object increases the transparency of replication. This means that anly small modifications are
necessary in the application code if it is adapted to use objects that have heen replicated. To further
simplify the use of these replication mechanisms, surrogates can be generated automatically by a stub
generator given the interface of the object to he replicaled.

However, surrogates exhibit & somewhat richer behaviour than non-replicated objects due to extra failure
modes in the replicas it manages. More details on how the application developer can use this architecture
are presented in chapter 7,

Other benefits of surrogates
Surrogates, similar to proxics [167], are communonly used in distributed systems because they introduce an

1Gaggles are described in more detait in §9.1.2 p. 96.




extra level of indirection, thereby allowing additional functionality to be added without making modifica-
tions to neither the client or the original object. In addition to hiding complexity such as functionality for
replication, they are also useful for other tasks such as implernenting access control policics and caching
[75]. For example, a surrogate might support only ‘public’ methods on a particular object which would
prohibit the client from calling ‘protected’ methods. The surrogates used in this system could be extended
to support such tasks.

Due to the exira level of indirection, a local surrogate object can act as a forwarder of messages to remote
objects, such that the object it represents can be manipulaied as if it was local [23, 58]. The suxrogates |
discussed here are always local to the client object and they relieve the programmer of some of the
communication aspects of remote method invocations such as argument marshalling and unmarshalling
of method arpuments and results.

New failure modes

Normally, clients uge a surrogate as if it was a normal, local object. Local objects fail?, if and only if, the
address space fails. However, by hiding the distribution aspcets of objects, new failure semantics appear
in the surrogate. For example, the surropgate might be unable to carry out an invocation if too many
of the replicas have failed. For convenience, the surrogate returns exceptions if this happens which the
prograramer can use to detect and possibly correct surrogate failures. The programming model, presented
in chapter 7, discusses how to handie such exceptions in the application {see §7.7 p. 86).

Problems with nested inveocations

Objects can contain multiple references to other objects as part of their internal stale. Additionally,
multiple objects may hold refercnces to the same object, Within a program there might therefore exist
graphs of arbitrarily interconnected objects. This exposes a limitation with object replication as envi-
sioned by this architecture, namely that object replicas which hold common references to another object
will cause multiple invocations in the shared cbject. Maximum fault-tolerance is achieved by transmitting
multiple invocations [rom the replicas, and performing it multiple times in the shared object. As long
as the invocation on the shared object is idempotent, this is the desired behaviour, and this is what
would happen using the proposed architecture. However, if the invocation on the shared object cxecuted
a non-idempotent method, the program would behave incorrectly. -

Solving the problem requires involvement from the programincr. Depending on the semantics of the
application, the programmer could distinguish betwesn calls to shared and non-shared objects. Method
calls to shared objects could then be ‘coordinated’ or “filtered’ such as to only execute a single invocation
on the sharcd abject (¢f §5.4.1 p. 57). Arguably, this reduces the usefulness of the replication schetne
by requiring the implementor of each class to distingunishh between different method invocations. In
fact, the basic idea of making object replication fully transparent seems to be Impracticable due to
this rich bebaviour of objects [59). However, investigating the possibilities of automating the process
of distinguishing roordinated calls from non-coordinated calls might be an interesting topic for further
rescarch within this architecture (cf. §10.3.1 p. 109).

Despite this fundamental limitation in the architecture, it is still believed to be useful. The problem only
occwrs if replicas share another cormmaon abject, and this can be avoided if the application is structured
iuto separate object graphs without inter-graph references (similar to froupes in [48]). There are at least
three benelils stermuning from keeping separate object graphs on distinet PEs.

L. Better locality which increases performance. Compared to local invocations, remuote invocations
are very expensive [40, 84]. Because the objects in such an object graph will be local to the same
PE, fewer method invocations will have to be executed over the network. It is indicated in [4] thas
mest applications are in fact structured Lhis way to maximise local processing.

2. Reduced overheads incurred by the replication protocoel becausce of the small number of surrogates

2Failure here means that she object does not behave according to ils specification.
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needed. If the application is structured as a collection of large separate object graphs, only one
surrogate is required for each set of object graphs,

3. Shared objects, which would canse this problem, introduce singte points of failure and reduce the
reliability of the application, so should be avoided. It is important to maintain replication at all
system levels to increase reliability (cf. §6.4.2 p. 76), and in this respect, shared objects also include
non-object data, such as files,

Structuring applications in such a manner could be appropriate for implementing larger-scale modules
within a system. The modules would then benefit from the three properties mentioned above and form
an efficient, yet manageable unit of replication. However, this restriction is a complication of the pro-
gramming mogel, and does restrict the programmer during construction of the application (see §7.2
p. 789).

6.2.2 Parallel invocations

The system support mechanisms arc based on the assumption that replicas are hosted by individual
I'Es. Method invocations on the replicas can therefore be executed in parallel rather than in sequence,
potentially gaining performance benefits leading to reductions in service time. Although parallel execution
of methods will require processing capacity on all the PEs hosting replicas, studies done elsewhere indicate
that, for example, workstations are commeonly severely underutilised {62). This dissertation assumes that
this is the common case, so PEs in the network have the spare capacity necessary to execute additional
object method invocation.

Parallel invocations are designed as a collection of independently executing threads within a snrrogate,
similar to MulgiRPC within AFS [159]. However, rather than being restricted to always waiting for
all threads to finish, each thread is associated with a shayed collator object which controls the level of
synchrony appropriate for the client (see §6.2.3 p. 65).

Orphan computations
It is assumed that replicated classes implement deterministic methads which eventually will complete, .
and that replicas execute identical methods. However, jobs will be less than optimally shared among
the PEs in the network, leading Lo unpredictable execution speeds and some replies from replicas will
be received long after the collator has returned its result to the client. In particular, if the method call
is exccubed using a wait-for-first collator (see §6.2.3 p. 65), invocations are left running in the replicas

‘ after the client request has returned, and this in furn creates orphan computations, The problem with
such late replies is that the surrogate cannot continuonsly execute new requests from the client as this

‘ might cause concurrent execntion of methods in the slower object replicas. Depending on the client
object(s), the rate of requests to the surrogate can become toc high for the slower replicas to keep up,
and the slowest replica will becomne a bottleneck for performance in the surrogate. This argument favours
smaller grain surrogates which would increase concurrency and reduce the probahility of overloading
single surrogates. The programmer should rccognise this fact, and make careful judgemenls depending
on application characteristics (see also §7.2 p. 79).

It ig immportant that late invocations are not simply abandoned. The probability of late invocations being
delayed due to failures is significant, and even if the client has alveady got its result from the collator,
the swrrogate must still be available to diagnose potential failures in late replicas. In the architecture
this problem is addressed by not allowing the processing of a new client request before the veplicas are
finished processing the previous request. Used in conjunction with a wait-for-first collator, the surrogate
ensures this by waiting for the outstanding invocations before allowing another. Naturally, if some of
the remote invocations crash, the surrogate will wait only until the corresponding timeout expires before
releasing the lock on the replica. In the case that mmltiple surrogates must be coordinated, the majority
locking scheme guarantees that a new request is not carried out. before all replicas are finished processing




the previous request. A mojority of locks will not be available until the previously active surrogate is ;
finished. v

6.2.3 Collators

The system support wechanisms allow the programmoer to control the synchronisation among Lhe replicas
based upon the application’s requirements. Particular collator objects, based on an idea by E. Cooper
{48], are used to process the results returned from the method invocations on replicas, and can be
specialised to support different method result types. For example, collators for the processing of ingegers,
real numbers and strings require different itoplementations. Adhering to sound software engineering
principles, collators are able to reduce the amonnt of application specific knowledge within the support
layer without significantly complicating the programming model.

The collator design described here is an extension of that described by Cooper, such as {0 make them nseful
in an object oriented programming language. Most notably, this collator design covers the generation of
new surrogates containing object reference return types. A collator, ignoring the parallel RPC connected
to it, is also similar to promises and futures [4), but are not automatically generated as in Argus or the
CRONUS System. Rather, the programmer is responsible for defining collator objects.

A collalor has a simple and nnderstandable interface which makes them easy to use. This is achieved by
locating generic and complicaled code in the surrogates themselves which can be automatically generated,
and locating application specific code in the collators. Examples of useful collators which can he easily
implemented are:

1. Return on first result. This collator might be uselul for methods on objects where low latency is
more important than error detection and corvection [48, 64]. Additionally, some object methods
might not return equivalens results despite being correct, e.g. if the value returned is determined
from random nuamber generators or local timestamps. In this case the first result is just as correct
as any other.

2. Wait for all yesults, returning the most common value (i.e. a voting collator). If arbitrary behaviour
is expected from any of the replicas a collator inay implement a voting process on the results.

3. Wall for all results, and return a processed average value. This collator might be useful for methods
where exact answers are less important than statistically sound answers. For example, a process
control application which takes input from 2 number of replicated sensors might want to weight the
sampled values to increase canfidence in the data.

It is worth noting that collators of type 3 and 2 implement resilience against failures in the data domain,
¢ Byzantine failures (of. §3.2.3 p. 32). A vating collator can tolerate ¢ data~domain failures among
2t <= 1 replicas.

Although all correct replicas receive the same sequence of invocations, the collator defines how many
invocations must finish before the method invocation on the surrogate returns. TFor example, if only a
single returu value is needed, the collator waits until just the first invocation finishes and then returns
the answer o the caller (the client). This will alleviate parts of the performance problem normally
found in full consistency replication schemes by allowing the client of the surrogate to continue before all
invocations are completed {64]. The throughput of the surrogace is nol increased; a new invocation on
the surrogale canuot commence until all* the invocations from the previous invocation have returned.

Compuosite return types
The usefulness of che collator design bacomes clearer when methods on replicated objects return more
complicated types. While single types such as integers and real numbers can undergo quite generic

31 replicas crash during an invocation, “all* means al) non-faulty replices.
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processing snuch as weighting and majority voting, types such as strings, records and arrays normally
require more specialised treatment because operations such as weighting and majority are not immediately
obvious {or these types. The correct processing of values of such types could not realistically be automated,
the programimer must therefore be given a simple mechanism 1o handle such results. Collators allow the
programmer to provide such refined processing methods within an encapsulated module (cf. §7.5.2 p. 83).

Object reference return types
Reference types as results give the opporfunity to increase the functionality of collators beyond what

iz possible in Cooper’s system model {48}, which is not based on object-oriented technology. Because

a programmer observes a surrogate as a single local object, reference return parameters woukl create a
semantic mismatch if a set of references, referencing remote replics objects, were visible as individual
values. Furthermore, it would make no sense to perform voting or weighting of references, as they ave
intrinsically unigue. Intuitively, a collection of references reburned from a replicated invocation should
be treated as a new surrogate, thus triggering automatic creation of a ncw surrogate object which would
be returned as the result of the invocation.

For example, if a replicated class defines the interface of a replicated file server, invoking a method
open(name:FileName Type):File* on a surrogate of this class would return a new surrogate acting as
the manager for a set of file objects. The code generator must therefore recursively penevate surrogate
code also for relerence types as return paramcters from methods in classes tagged as replicable. The
programer can then easily consiruct collators which return new surrogates managing the references
returned from the call (¢f. §7.5.2 p. 83). Such collators would most likely be of a iype which waited for
all results from the replicas so as to maintain the availability of the new surrogate. By giving it as many
replicas as possible the maximurn resilience against failures is achieved.

Backdoors
System support can ncver be completely generie, some applicatious might want to implement slighlly
different mechanisms than the ones offerad. Tn light of the end-to-end argument {156], the architecture
allows control over lower level abstractions. Collators may be used more primitively to return sets of
replica results back to the client. This might be necessary for some applications that require more detailed
control over the object replica results (see §7.5.2 p. 83).

6.2.4 Obhbject replicas

Although the replicated objects themselves are not directly pari. of the proposed system architecture, they
are discussed here as the architecture enforces some requirements on them:. Becausc object replication
deals with replication of objects not direcctly designed for replication, all requirements on the object
replicas themselves are reducing the henefit of this approach. The architecture trics to keep the set of
special requirements to a minimum however, and no modifications of existing object functionality should
be necessary. For example, the methods lock and unlock described below can normally be added to the
objects without changing existing code®,

Scrialising object access

Object replicas must be exiended with two addilional methods to support serialisation arnong multiple
surrogates. Assuming that the potential for name conflicts is eliminated, these methods can be added by
automated code generation tools because the semantics of the methods are simple and generic across alk
replicated classes.

4Practically a function named open which accepts a filename as an argoament and returns a result of type File.

5 Assuming methods with the same names do not exist alrcady. Note that tha name of the methads weed oot be lock
and wninck in an implementation of the architeclure. The requirement: is thal two methods implementing this functionality
cau bu uniquely added to every replicated class. Other names, even less lilely to cause naming conflicts conld therefore be
chosen. They are given short names here to simplify presentation.
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A method to lock the object is required to ‘mark’ the object as being currently used for a surrogate
request. The method is specified as:

lock{s:Srytld; #locks:integer; activeSet:fieplicaSet):LockIleply

where LockReply is o record containing result parameters from the lock request. If the object is currently
unlocked then the object is marked as locked by surrogate s and lockGranted is returned. Otherwise, if
the object is currently in use by another surrogate (and therefore locked), lockDenied is returned together
with the name of the locking surrogate, However, due to the potential for competition for the lacks,
a mechanism to arbitrate among competing surrogates is necessary. The parameter #locks is used for
this purpose, and the surrogate which locked the replica with the highest value for #locks wins and can
contimie the attempt at gathering the necessary locks. Now, if the surrogate loses, the call still returns
lockDenied, but also returns giveUp as part of the LockReply parameter. The surrogate then knows that
it should give up all its currently gathered locks, pause, and start over. A competing surrogate, which
does not receive a. ginel/p vesull, will thus be able to make progress.

The paramcter activeSet is used to propagate failure status anhong the replicas, and is also used in
vonjunction with the reconfiguration protocol, aud is described in more detail in §6.3.2 p. 70. Similarly,
the unlock funetion takes the form:

Unlock(s:Svgtld; activeSet:ReplicaSet):LockReply

It rescts the object to an ‘unlocked’ state and returns lockReleased if che object is currently locked by
surrogate 5 or currently unlocked. The method refnrns lockNotReleased if the object is currently locked
by another surrogate. The parameter activeSet is used similarly to the lock method.

Before a surrogate can invoke the obhject replicas a majority of them must be locked using the method
above. This ensures that multiple surrogates cannot jeopardise serialisation of invocations. When the
invocation returns, the replicas must be unlocked by the same surrogate. Problems with unrcleased locks
due to crashing of surrogates can arise during sharing of replicas by multiple surrogates and ave discussed
in £§6.3.3 p. 72.

The serialisation and consistency protocol, executed by the surrogate, is divided into three sequential™
rounds of synchronous invocations. Rounds 1 and 3 guarantee serialisation by mutual exclusion, round 2
cnsures that all von-failed replicas are mutually consistent. During each round, observed failures arc
recorded in the surrogate’s active set. Ta inform other surroganbs, the wcliveSet parameter is used to
record detected failures in other replicas during ronnds 1 and 3 (see also §6.3.1 p. 69).

1. Gather locks from a majority of the replicas to ensure scrialisation of replica requests.
2. Invake the client’s requested method on all replicas.

3. Release lacks granted in round 1.

A benefit of these generated methods is that they are guaranteed to be idempotent, in fact they have
no effect on the objeet’s original internal state at all. If there is contention, achieving a majority of
locks can require several rounds of competition among surrogates. During the process of gathering a
majority of locks on the replicas, each surrogate might therefore retry these methods as many times ag is
found necessary without. any danger of violating the integrity of the object replicas. Additionally, if the
umlerlying communication infrastructure is believed to be unreliable and the surrogate does not receive
the required replics, it can initiate exéra retries of the lock method to check if the veplica is still alive.
This will increase the probability of giving a corvect diagnosis of real replica crashes.

Encapsulated object replicas
Object replicas must have a corupletely encapsulated state, i.e. no parf, of their state must be accessible

67




e EEmg—— Gr— — e———— g

other than through the use of methods defined on the object. I'his restriction is needed .0 avoid replicating
stale in the surrogate and the object replicas themsclves, but does also conform with the object model
advocated in this dissertation (see §2.4 p. 21). If an object replica was to have non-encapsulated state, the
surrogates would have to contain this state to maintain the semantics of the objectd. This, in turn, would
lead to problems when multiple surrogates exist throughout the network. Fssentially, all modifications
to replica ubject state contained in the surrogate would have to be propagated ta all other siyrogates fo
reflect the chauges, incurring a need for another consistency protocol among the surrogates. The data
stored in the surrogates would create another virfual {(covert) communication channel between clients of
surrogates, and this could result in violations of the causality relation {42].

Additionally, allowing parts of an object’s state to reside in its surropgate would also complicate the
underlying remote invocation mechanism, as any method on the cbject which manipulates state residing in
the surrogate wonld have to access this state via another set of (potentially expensive) network messages.

6.3 System Functionality

The components described above interact to implement the replication scheme. Briefly, the surrogate is
the interface used by clients. It receives an invocation (parameterised with a collator ehject in case of
function-type methods), passes it on to the parallel invocaiion module which invokes the methods on the
object replicas, and the collator processes eventual resulis from the invocations (see figure 6.1 p. 62).

Maore details on the programmer interaction aspects are given in chapter 7. The rest of this section
elaborates on the internsl functionality of the mechanisms.

6.3.1 Masking failures

Resilience against failures is achieved if the system can be reconfigured to operate despite failures or if
the system can be brought buck to a state before the failure occurred [104]. This architecture implements
replication which is a technique Lo mask failures by redundancy; failurc recovery requires transactional
support such as logging, state restoration and grouping of actions [85] which is not readily available
in this system model. To mask failures, a surrogale object maintaing as part of its internal state a—-
data structure which contains information about the collection of object replicas being managed. This
structure is called the active set, where each replica is tagged with a failure status. If the surrogate detects
and diagnoses a replica failurc, the replica is tagged as such in the active set, and the surrogale does not
pass any more invocations on to this replica. Note, however, that all initial inembers remain in the set
during the liletime of the smrrogate, only the status flag changes. During reconfiguration the old entry
is reused, reconfigured replicas arc only installed in PEs specified by the programmer at initialisation
(sec §7.4 p. 81). Conscquently, all failures are reduced to crash failures by passivisation [104]. This
achieves mutual consistency among all correct replicas, but it also means that transient failwes can lead
o exclusion.

A tradeoff hetween accuracy and performance musi, be made here, To improve performarnce replicas can be
tagped as failed quite rupidly (snd somewhat pessimistically). Slower, but more accurate error detection
is obtained if the lock-methiod is called wultiple times”. The architccture allows implementations to
optimise the number of retries to fit the network’s failure characteristics and underlying communication
pratocols®.

EThe programmer would expect. to be able tn access this state directly without the use of indivect methods.

TNote that only the lock-method ou the replica can be retriad, the actual method tequested from the client cannot
generally be retried as it might be non-idempotent.

¥Note that many communication protocols are already pertectly able (o mask many transicnt failures. Retrics of the
lock method can only increase the accuracy of this functionaiity,
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TFFailure resilience

The architecture uses a majority voting scheme to ensure mutual exclusion among multiple surrogates.
Hence, in a collection of 7 replicas, | %] — 1 replica crashes cau be tolerated. For example, te mask two
crashes, three correct replicas are required. This might seem. restriciive, but the majority avoids conflicts
during partition failures, and the availability of majority voting schemes is good even for relatively small
numbers of replicas (cf. §B8.2 p. 116). The usc of special collators, e.g. weighting or voting collators can
amend the architecture to also tolerate some malicious (data-domain) failures (see §6.2.3 p. 65), Adding
to the lailure resilience of this architecture is the requirement that clients do not share surrogates between
address spaces. This means that the failure of other client address spaces does not alleel the availability
of a swrrogate.

Detecting failures

The architeeture depends on timeouts and ‘alive’ messages to detect failures®. Alive messages are neces-
sary due to the large variations in running time for different method executions; using timeouts would be
very inefficient. Because timeouts would have to be set large enough to atlow for even the most lengthy
computation, periodie alive messages are used instead to check if the address space hosting the replica
is still responding when the replica is executing a lengthy invocation, thus achieving more cfficicnt and
accurate failure reporting. Alive messages are retried a small number of times to reduce the impact of
trausient failures; the exact number might be determined by a particular implementation of the archi-
tecture, but mighi also be set by lower-level software, such as the remote invocation facility (see §8.2.1
p. 88).

A replica failure is detected by the surrogate, and only as a consequence of erroneous behaviour during
a surrogate’s manipulation of the replica. If a replica is transiently incorrect between two such requests,
the failure cannot be pbserved. However, the archilecturc assumes that such transient failures do not
affect the state of the replica itself, transiently disconnected replicas are rather regarded as a period of
time in which the replica is not responding to requests. All transient failures can therefore he treated as
transicnt network failures, while the replicas themselves behave according to the crash-failure semantics
described in §3.2.3 p. 32. It is [urther assumed that transient network failures will be masked by the
communication facilities.

The serialisation protocol, executed by the surrogate, is divided into three sequential rounds of syn-
chronous invocations. During each round, ohserved failures are recorded in the surrogate’s active set”™’
Consequently, a replica failure can be observed only during one of these rounds. The first round can
naturally fail to observe some replica failures; if the fiest [ 5] 4~ 1 veplicas responds positively to the lock
request, failures inm the remaining replicas will be missed, although scrialisation is still ensured. The
probability of not observing failures in the first round is therefore high. However, failures which are
detected during this round can be more accurately established due to the idempotent behaviour of the
lock primitive on the replicas. Round 2 will ahserve all non-transient failures in the replicas. The last
round may experience additional failures happening after round 2. Clearly, there is no need to attempt
releasing locks on failed replicas.

Decreasing number of replicas

The fundamental difficulty with this approach is that the number of non-failed replicas are monctonically
decreasing. Even if a surrogate observes that a veplica which has been tagged as failed recovers, it cannot
easily be re-integrated into the replica set because ihe surrogate does not record old invocation requests,
and therefore cannot bring the replica up to date through ibs method interface. An approach (o add
new replicas fo the replica set is necessary to solve this problem. This is discussed further in §6.3.2.
If the system snpport mechanisms are used for long-ranning applications, or systems experiencing fre-
quent {ailures, this can lead to rapid complete surrogate failures because no replicas remain failure-free
indefinitely.

For other applications, which only have to run reliably for short periods of time, or applications which

9Similar to the probes descrilbed in [23].
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can be quickly restarted, this problem will be less important. The architecture will significantly reduce
the probability of restarts being necessary due to failures,

Surrogate failures

A surrogate may fail while performing the pavallct invocations on replicas, i.e. round 2 of the consistency
pretocol (p. 69). Only invoking a subset of the replicas may cause inconsistencies, and because messages
are not logged, there is no way of ‘replaying’ the missing invocations. Thus, the architecture cannot
implement the atomicity property, i.e. the “all or nothing” property. Atomicity requires a copy of the
previous replica state which is not available in this system model. The probability of failure during -
execution of the parallel invocation module is unpredictable because it is impossible ta know in advance
how long ecach execution will take. If the duration of round 2 is short, the probability of a surrogate
crashing while executing theun is low. However, the architecture makes sure that subsequent surrogates
observe the potential for inconsistency and let the application programmer decide whether to abandon
the object or continue using it (cf. §6.3.3 p. 72).

6.3.2 Maintaining consistency

A system supporl mechanism should reguire very limited knowledge about the internal structure of
the objects it replicates such as to provide a generic service for a range of objects. TFull consistency
programming models are bencficial because the programumer never observes an out of date object, and can
always regard an object as being non-shared. This also makes replication more transparent. Consistency
is maintained among the replicas by ensuring that all non-faulty replicas receive identical sequences of
invocations (round 2 of the protocol described in §6.2.1 p. 66). A communicalion protocol which prevents
reordering of messages (such as 'TCP/IP, used in Network Objects [22]) is assumed by the architecture,
and ensurcs that objeet replicas receive invocations in the same order as they are issued hy the surrogale.
Additionally, the majority locking scheme ensures that surrogales serialise their access to the replicas.
This guarantces that both the consistency and isolation propertics known from tramsaction processing
are preserved 't

To increage fault tolcrance, a surrogate is always located in the same address space as the client object
referencing the surrogate. This reduces the lenglh of the critical access path to the replicas, thereby
further increasing the reliability of the object. While the surrogate is still a single point of failure, the
system model assumes that a failure within an address space caunses all objects in it to fail (i.e. including
the client).

IIowever, this requirement complicates the architecture somewhat during the sharing of objecl replicas
among surrogates in diflevent address spaces. The scrialisation protocol, through the lock and uniock
methods, requires that failures are recorded through the activeSet parameter. This parameter does
increase the overheads in the conemrrency protocol, but not excessively so, as its size is of order O(V).

Reconfiguration of replicas

During operation, the active sets are monotonically decreasing. For long-tunning applications, a way of
reconfiguring replicas is necessary. The object encapsulation principle and lack ol recoverable obhjects
makes it difficult to reconcile lailed, and potentially stale, replicas into the active set. Reconcilialion
typically requires very application specific knowledge, not available to the system support mechanisms.
Without access to, or knowledge abaut, the local state of the objects, an inconsistent object cannot be
brought back to a consistent state by the system support layer alone. An approach hased on regeneration
of failed replicas is presented in [148]. Bach veplica object must implement a CopyMe method, which
is used to make new copies of an object in case a replica fails. Cooper suggests a similar approach,
relying on automatic marshallivg and nnmarshalling of replicas to implement special get_state procedures
[48]. Tmplementing such methods increases tlie burden upon the application programmer and reduces the

t0The G and T in ACID {85].
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benefits of object replication, but must be added to make the replication scherse useful for long-running
applications. In contrast, Lhe Delta-4 architecture assumes simpler conventions for copying replicas;
when reconfiguration is necessary, single process contexts are copied transparently {145]. However, that
approach is not appropriate in this systein model. Simply making a copy of an address space and
reinstalling it in another PE would most certainly violate a number of bindings with underlying system
componcents such as open files and thread-contexts. Breaking and re-initialising such bindings would have
to be implemented manually as they are application specifie, thereby reducing the approach to the one
proposed in {148).

Some distributed object systems may provide direct support for copying objects, and in this case the
surrogate can simply initiate a copy ol a non-lailed replica to another address space. This can be achieved
by creating a copy of another (failure-free) replica and installing it into the replica set. However, care
must be taken on several accounts.

1. To avoid race-conditions, a new replica must be re-installed within a single indivisible action.
The surrogate must not perform any updates on other replicas during the process of installing a
new replica as this could lead 1o inconsistency. Rather, the surrogate should temporarily halt; its
processing of client requests, install the new replica, update the replica set, and only then resume
accepting method invocation requests from clients.

In the case of mulliple surrogates for the same replica group, this inplies that also the other
surrogates must be blocked during the period of reconfiguration. By first acquiring a lock on the
majority of the replicas, a surrogate prevents interference {rom the other surrogates. These locks are
set with the current number of active replicas fagged as non-failed using the parameter activeSet in
the Inck method. However, after the new replica is added, it is unlncked with the updated version of
the active set, indicating a new member in the replica group. The surrogate’s active set is modified
accordingly. And, because both the newly installed replica, and a majority of the older replicas
are unlocked with this pararneter updated, the next serrogale to attemplt locking the replicas will
uobice that Lhe active set has increased. The surrogate noticing that the active set has increased,
queries the PIis currently marked as failed in its active set for a reference to the new replica objects.

2. Delining the scope of the object-graph to copy into the new replica is a hard problem, and compro-
mises must be made when the decision is taken [52). A shallow-copy approach, i.e. copying only a-—-
single objecl and maintaining the existing references, will result in poor locality and reduced fault-
tolerance due to the number of remote references. It also introduces the problern of increased object
sharing. In contrast, a deep-copy approach may be very expensive and has confusing semantics as
it duplicates objects and thus ruins the notion of object sharing. An intermediate solution is to
require that the programmer defines the rules for making a copy of the object graph, although this
introduces cxtra complications in the programming model.

3. Changes to persistent data. Related to the above problem is the problem which arises if objects
within the copied graph have veferences to persistent objects such as files (as most realistic appli-
cations will). An application specific procedure to make a copy of the object graph could deal with
this problem. The cost of this approach is introduction of extra complications in the programming
model and a reduction of the transparency of the system support functionality.

4. During the creation of a new replica, it does not make much sense to directly try to install it in a
failed PIE. With high probability, the PE is still failed, and the operation will therefore not succeed.
Howevet, the PE must be in the set of originally specified PEs for the replicas by the programmer
to maintain the semantics of the initialisation of the surrogate (see §7.4 p. 81). Thercfore, only
when it has been determined that one of the faulty PEs has recovered can a new replica. be installed
in it. "T'his ig not a prablem however if the reason for the replica failure was a single address space
failure within the PE. A new replica can be installed in another non-failed address space on the
PE.

The problem of reconfiguration is not addressed in any further «depth in this dissertation. It is clearly an
issue requiring further investigation and should be investigated more carelully in the light of real applica-

71




tions (cf. §10.3.3 p. 109). For applications which can be restarted occasionally, dynamic reconfiguration
will, however, be less important.

6.3.3 Supporting objcct sharing

Objects in a distributed system are commonly shared by passing references as arguments in method invo-
cations or registering objects with name services. Object sharing introduces problems with serialisation
of nvocations [53, 99]. Two distinct sharing scenarios are possible, and they are handled differently for
reasons of fault-tolerance:

1. Sharing replicas among multiple clients in the same address spaca.

2. Sharing replicas among multiple clicnts in different, address spaces.

To support, isolation among multiple concurrent clients in the same address space (Lype 1), the surrogates
hold a lock as part of their internal state. The lock is acquired before a client request is executed within
Lhe surrogate, and the lock controls the queue of hlocked outstanding client requesis.

Special care must he taken when ftwo clients residing in separate address spaces need to share a collection
of ohject replicas {type 2}, Consider an object 4 holding a reference to a surrogate B, managing a
collection of replicas B,.. Now, a remote object C' wants to use By, and agks A for a reference to B;. The
naive approach of simply passing to ¢ the reference of B, would result in C’s use of the gronp B, being
dependenl on any faults in A’s address space. The chain of references from C to B, should instead be
kept as short as possible so as to maximise its availability. Most importantly, the failure masking code
which resides in the surrogate, should be located in the same failure domain as the client. The surrogate
will therefore always be available. If this was not cnsured, the failure of the surrogate address space
would render the client’s reference invalid and thus weaken its resilience.

‘Therelore, a new surrogate D! is ereated in C's address space before C starts using B,. After creation, B/,
contains an identical collection of replica references B... This set of refercnces need no special treatment
however, they are ordinary remole references which refer directly to the replicas. The set of replica
object references is determined during the instantiation of the surrogate, and will never extend to other

replicas than those specified by the programmer (see §7.4 p. 81). To ensure that the surrogate has enough

informaiion available to rebind to a reconfigured replica, the active set containg an identifier for the PI
in which the replica previously existed. During reconfiguration the surrogate is thus able to relocate the
new replica on that particulaxr PE (cf. §6.3.2 p. 70). Note that this approach would be meaningless
unless the underlying remote object referencing policy worked similarly.

Another problem appears during synchronisation. Clearly, the lock stored within the surrogate is unable
to synchronise access to the replicas when several surrogates exist. Rather, a shared resource must be
used, and the replicas themselves are used in this architecture by requiring that a majority of them
respoud positively to a lock method invocation'!. The majority ensures that only one surrogate at a time
is able to execute an invocation. A surrogate that fails to acquire a majority of locks must wait until the
currently executing surrogale is fuished (cf. §6.3.1 p. 69).

The problem of unrelcased locks (see §6.2.4 p. 66) becomes apparent when multiple surrogates share
object replicas (type 2). If a surrogate fails after having been granted locks, these locks must be released.
There are at least two possible approaches which can be used {0 solve this problem (without resolvisag to
logst?):

'The lock within the surragate is not strictly necessary, but improves performance in the case of multiple clicnts sharing
a single surrogate because it eliminates the need to cxecute the two-round majority Iocking protocol and simplifies the
construction of surrogates (cf. §6.3.4 p. 74).

1%ith access to logs the approach of extermination can be used. By recording Lhe procceding RPC on disk the client
can release the locl itself alter reboot {183] (chapter 10). The expense of logging cach RPC to disk might be high howewver,
and the approach sssumnes Lhat the client will eventually reboot.
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Expiring locks. By using dedicated timeout mechanisms within the lock methods, a lock could be
designed to automatically expire after a certain time interval. While the use of timeouts is a
probabilistic approach, and may cause havoc if they are released too early, the timeout interval
could be set long envugh to make conflicts very unlikely. However, this approach would be very
inefficient as the duration of a method invocation will have large variations and thus requirc very
long timeouts. A slightly more sophisticated approach is suggested in [183]. Instead of using a single
large timeout value, the callee can be responsible [or periodically renewing a ‘contract’ with the
client. However, this complicates the coustruction of replicas by enforcing particular conventions
for defining mcthods and would reduce the transparency of replication.

Explicit surrogate unlock. Due to the limitation of the above mentioned approach, the architecture i
uses the following slightly more complicated techuigue. A surrogate which fails to lock a majority 1
repeatedly simply suspects another surrogate of having left unreleased locks. The suspecting sur- :
rogate can then check if the suspected surrogate is still alive. If it is, the suspecting surrogate must
wuait, and retry the process of gathering locks later. However, if the suspected surrogate is believed
to be dead (using an appropriate failure detection algorithm), it can be assumed to have left the
locks unreleased duc to a crash. The locks are then explicitly released by calling unlock with the id
of the crashed surrogate, and then set again by the suspecting surrogate'®. Additionally, by using
this approach, a surrogate can suspect that the previous surrogate using the replicas died during
invocation, and report a ‘potential for inconsistency’ exception back to the client as a warning
(see §7.7 p. 86).

Both. approaches have their limitations however, and they are both probabilistic. The asynchronous
system meodcl doos nat allow completely reliable fajlure detection, so the problem ol unreleased locks
cannot be managed with absolute certainty. There is a small chance that locks are released prematurely
which will endanger the consistency of the replicas.

Worth noting is that unreleased locks do not pose a problem unless there are several surrogates sharing
the replica objects. Tf the last surrogate fails, its replicas not be required any longer because no suwrrogate
references themn any longer, and they will be reclaimed automatically by the garbage collector. Another
problem arises if the orphan has acquired locks or has inifiated unrecoverable actions, simply killing it is
not preserving correctness in the system. However, the problem of reclaiming distributed garbage abjects
is not discussed in any further depth in this dissertation (e.g. sce [143]).

Distributing fuilure status

Maintaining wwulsiple surrogates also introduces a new consistendy problem. The replicated surrogates
should have a consistent view ol the replica group status in terms of failurcs. In systems which provide
atomic message delivery, enswing consistent group views can be costly for large numbers of surrogates
[18, 20]. Atomic message delivery was sacrificed in this architecture as it would seriously reduce the
scalability of the system, and as a high number of surrogates is expected for the kind of applications
this architecture is aimed for, it would work against the goal of the architecture. Atomic message
delivery is provided by group communication protocols by closely synchronising all participating processes
with an orthogonal protocol to propagate group view changes, i.e. failures and reconfigurations. This G
synchronisation thus requires that all processes arc able to communicate with all other processes (an -4
O(N?*) overhead). In this architecture, it would imply that all surrogates maintained references to all
other surrogates, and synchronised themselves by gathering locks from each other.

'I'o avoid such overheads, this architecture requires surrogates to detect replica failures rather than relying
on propagation of active sels among the surrogates. The replicas’ fail-stop failure semantics malkes this
possible. Although a surrogate could achieve fuster determination of failures through specific intra-
aurrogate messages, the fact that replicas simply crash means that all surrogates will eventually detect :
replica failurcs. However, the lack of a group membership protocol among the surogates means that U
more cooperation ig required from the replicas during reconfigurations, where replicas are reintroduced
into the system. The reconfiguration protacol described in §6.3.2 p. 70 facilitates this, Ei

13This is possible because # failing fack call returns the id of the currently locking surrogate.
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6.3.4 Maintaining performance

The achieved performance in distributed systems is primarily dependent on the level of asynchrony allowed
among interacting objects. Close synchrony is usually wasting CPU-cycles in both the invoker and the
invokee. Asynchronous collators, i.e. collators returning on the first reply improve the throughput for
casual surrogate invocations. The architecture can therefors give good performance if swrropates are
lightly loaded. Under high loads however, the pessimistic concurrency scheme cannot allow auncther
surrogate request before all the previous replies ave gaihered.

Further, the architeciure is not dependent on significant amouunts of disk I/0, the performance of this -

scheme is primarily dependent on commaunication latencies. While storing objects ou disk is necessary
to support certain kinds of recovery stratcgics, the overheads can he substantial. Further, as the gaps
in specd between the fevels of the memory hicrarchy in compuser systems are likely to increase [12], the
dependence on extensive disk [/0) might become too expensive for some applications.

The ratio of communication latency to object method execution time determines the efficiency of a func-
tion shipping replication approach as used in this architeciure. Maintaining performance also requires
atlention to scalability issues. Although there are many factors:which affect the scalability of this ar~
chitecture, the main factor is communication latency. T'he replication protocol presented requires ouly a
single P'C to each replica in case there is one surrogate in use. When several surrogates are used, and
thus must be serialised, three ronnds of RPCs are necessary, with the first and third round requiring at
least { | + 1 parallel RPC calls to lock and unlock a majority of replicas (cf. §6.2.4 p. 66} and the second
round requiring n parallel RPCs. More RPCs might be necessary in case of competing surrogates.

Communication latency

Communication latencies within high-speed networks are already very low, in many cases lower than
the average access time for disk storage systems. Although comumunication latencies are inherently
limited by physical propagation delays, other factors such as processing overheads and media competition
are curreully rnore gignificant. Rescarch aimed at reducing latencies of popular protecols have shown
promising results with round-trip delays around 200ps (157us for very small TCP messages) in ATM-
based LANs {192]. It appears unlikely that similar latencies are achievable in disk storage systems in the
foreseeable fulure, currently providing mean access times around 10ms (a lactor of 50 higher).

Competition for the communication media incurs non-predictable delays, particularly in long-haul com-

puter networks which must do a lot of buffering due to bursty traffic pasterns [122]. This is easily
ohservable in the Internet, for example, where latencies may vary greatly during the day. If the ar-
chitecture was going fo be used in a wide-area network, such as the Internet, at least with its eurrent
characteristics, would probably be an unsuitable networking infrastructure. Dedicated, perhaps leased
PSTN-based, WAN links should be used instead, to guarantee low latencies for priorily commmunicaiion.
However, the physical propagation dclays become more prominent as well. For an opiical communication
channel of ca. 900 kilometers length, its round-trip propagation delay equals the latency of a disk access4.
Naturally, potentially multiple stacks of communication protocols will increase this latency, but similar
conteniion-dependent processing overheads are also present in disk systems, For both approaches, caching
is a technology that can reduce the number of such actesses and thus give substantial performance gains.
Modern communication tcehnology also provides high bandwidth, al least comparable to that of disk
systems {140, 192].

Replication of ohjects on other PEs on the network may therefore be a good alternative to the storage
of objects on disle for the purpose of survivability, as accessing objects over the network will he faster
than accessing them from disk!®. Fssentially, the architecture implements the durability property by
replication on several independently failing PEs'®, Naturally, this alternative requires more memory

14 Assuming a signal propagation speed of 1.8 + 10% m/s in the fibre {cf. §2.3.1 p. 19).
6 his is & monivating factor behind current state of the arl rescarch within distributed file systems as well [6].
16The D in ACID {85].
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capacity in the PEs, increasing hardware costs of the system. If additional physical memory is not
ingtalied, greater proportions of the PEs’ address space will be stored on disk anyway by virtual memory
mechanisms, thus reducing the advantages of this approach.

6.4 Physical Mapping Issues

Underlying an architecture is a collection of assumptions made about the physical mapping, i.c. allocating

the architecture onto a real distributed system and should be made explicit to reduce integration and

reuse efforts [54). This section elaborates on the physical mapping issues assumed by this particular
architecture.

The architecture is meant to be used within the systern model defined in chapter 2 and is intended to
be used as a sysiem support facility to assist with replication of programming language objects. The
key component in the architecture is the surrogate which slots in between the client and a collection of
object replicas while taking on the rdle of encapsulating replication. Mapping the architecture onto a
real distributed system thercfore involves the locaving of clients, surrogates and object replicas onto he
PEs in the network.

As mentioned in the introduction to this chapter, a surropate is a relatively light-weight construction. If
used by clients residing in the same address space the performance overheads due to sharing are limited by
the implementation of locks in the particular programming language, During sharing of replicas among
clients in dislinct address spaces synchronisation of multiple swrrogates is required which uses locking of
replicas, and this incurs extra communication. overheads.

Of critical importance to the mapping issue is the network failure characteristics. Some networks are
often partitioned, for example large internetworks like the Internet {81]. However, as this architecture is
primarily aimed to assist the development of distributed applications within smaller scale networks, it is
assumed Lhat partition failures are relatively rare, and do not persist for very long periods of time. If the
particular network used does experience frequent partition failurves, fault-tolerant network designs should
be considered as these can reduce this problem significantly [19, 196).

6.4.1 Clients and surrogatcs

In a general distributed object system, any object can invoke methods on another object if it has the
reference to it. Thus, any object may potentially become a client of another referenced object. 1t
is therefore difficult, if not impossible, to predict the localisation and nuinber of clients which abtain
references to surrogates. Some applications might be contained within just a single address space, i.e.
running as a single pracess, and hence only requirve the use of a siugle surrogate. Other applications, for
exatnple groupware systems which support cooperation among several users on different PHs, might be
partitioned into large numbers of processes dispersed throughout the network, each process making use
of the same replica group aud thus requiring distinet surrogates.

This dissertation makes no attempt at classifying 2 clienl's usage pabtern of a particular surrogate.
Program behaviour is difficult to predict, although some programs cxhibit very characteristic behavioural
patterns [195]. Depending on the semantics of the application, a client may usc a surrogate sequentially
in & tight loop, or may use it sporadically or not at all. However, with increasing numbers of clients, it
likely that eventual burstiness of activity i8 smoothed out.

Further, the time nccessary to execute a method call might vary significantly, again depending on appli-
cation semantics. Naturally this will increase the amount of generated load on the PEs hosting replicas,
however, it is assumed that the PEs are normally underutilised and thervefare are not significantly slowed
down by this (scc £6.4.2).

The architecture, due to the strong consistency assumption, performs strict serialisation of client requests
to the surrogate. Therefore, clients of a particular surrogate cannot make valid predictions about the
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service time of ihe surrogate. If the number of concurrent clients is high, relatively long service times
must be expected.

Surrogates are always located in the same address space as the client to increase resilience against failures
{cf. §6.3.2 p. 70). The creation of new surrogates is automated so clients need not be concerned with chig
issue. However, surrogates do naturally introduce extra compitations necessary in the PE.

6.4.2 Replicas

The architecture assinmes replicas arc hosted in separate failure domains, ie. address spaces, and most
likely on separate PEs. Of particular importance for the physical mapping is the placement of replicas
and their number. Although the progratamer is responsible for the actual mapping in this architecture,
the particular choice must be made careluily to achieve good benefits from replication. As indicated
in section B.2 p. 116, even configurations with less than 10 replicas will give substantial availability
improvements, and configurations with 3, 5, or 7 replicas might be sufficient for many applications.
Additionally, the generated load on the PEs hosting replicas will increase as well, and some care should
be taken o avoid overloading these. '

Replica placemeani

Resilience against failures can only be achieved if failures ave independent and partial. Thus, It is
essential that any sharing is minimised among the replicas. This implies that common resources such as
file systems, databases, system services and physical components should be replicated as well. However,
replication at all levels in the system hierarchy might not be practicable and some tradeoffs must be made.
For example, many applications are written to make use of whatever file system is available, and in some
seenarios this will be a shared, distributed file system. If this file system is NI'S for example, which is a
non-replicated file system, the benefits of replication will be lost if the file system server crashes.

Additionally, sharing of resources between replicas introduce problems of nested invocations whereby each
replica will attempt. to perform the same sequence of operations on the same resource. If the operations
on this resource are non-idempotent the application will not behave correctly. Some operations on file
systems, for example, are non-idempotent, such as the creation of directories and files. An approach Lo
avoid this problem is (o tnake use of file services on local disks only, eventually implementing the replicas—
such that they can tolerate this behavionr.

Independence of failures requires that failures are hindered from propagating [104]. In a replication
scheme, it is thus essential thaf the replicas are placed in independently failing address spaces. The
probability that all of a I'E's adddress spaces fail simultaneously cannot be ignored, and this will normally
justify that replicas are located ou separate PEs within the network. Additionally, many network Failures
affect multiple PEs. for example broadcast storms, babbling nodes and routing conflicts [196]. Naturally,
such networlke failures will have a dramatic effect on the availability of the replicas, and consequently
on the availability of the surrogate. Full consisteucy schemes suffer from very low availability in such
circumstances, and even weak consistency schemes would give unavailability unless a replica was stored
lacally on the PE.

However, assuming that siuch network failures are rare, a good placement of replicas will increase the
probability that enough replicas are available for the surrogate to achieve its majority of replica locks.
Depending on the nelwork’s lopology and failure characteristics, the optimal placement of replicas will
vary and might require expensive computations!?, Schemes have been presented to automate the process
of replica placement {114, 124]. However, automated replica placement requires access to sophisticated
support functionality such as replica relocations, faiture statistics calculations, object interdependencies
assessment and dynamic compensalions [or changes in network topology. This architecture assumes that
the programmer is reasonably knowledgeable about the reliability of the PFs within the network and

17 Although near-optimal placement can be performmed much more cheaply for some network topologies (Etlcenet and
fully connected uetworks) f175].
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therefore is able to make the decision on replica placement,

Geunerated load

A PE hosting a replica is responsible {or executing the method call in the replica object graph. The
time required to execute a method call cannot casily be predicted, rather, it is assumed to exhibit large
variations. The proposed architecture relies on programmer directions to locate replicas and thus decide
which PEs are able to support the extra load of replica method executions, Although this is clearly a
task which should be automated in an extension of the architecture, the programmer could relatively
easily develop application functionality which queried a collection of PEs for their load and thereafter
selected those with the best prospecis of giving the fastest execution times. These PEs could then be
used as input to the surrogate creation procedure (cf. §10.3.3 p. 109).

6.5 Limitations and Future Work

The system support mechanisms lack support for coordination of invocations {rom multiple replicas to
shared objects. A giveo implementation of the replica object might therefore trigger multiple, non-
idempotent methods in referenced objects. The semantics of the application must be considered, and
the programmer is responsible for the correct implementation. For example by iirplomenting particalar
filters in shared objects thal filter out redundant invocations.

Further, the serialisatlon protocol has not been formally verified. Although it has undergone informal
reasoning, & formal approach should be taken to provide the necessary guavantecs for correctness if the
architecture wag used in critical settings. These limitations would be interesting directions for future
work, and are also discussed in §10.3.

6.6 Concluding remarks

This chapter has presented the architecture of the proposed system support mechanisms in detail while
focusing on the internal structures and functionality. The strong decomnposition of generic and application--
specific code has lead to a design with good cohesion and extensibility.

Understanding how the architecture works is important in its own right, but the main benefits of the
architecture will only become clear after observing its cffect on application program complexity. In the
next chapter a programiner’s model of the architecture is presented which explains how the architecture
15 used by an applicalion developer.
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Chapter 7

Programming Model

This chapter describes the external interfaces of the system support architecture introduced in chapter 6, and
explains how an application can benefit from the functionality to use failure-resilient objects. The syntax used
in this chapter is Modula-3's to simplify presentation and to give the model a concrete appearance. Small
changes in the notation are therefore likely if the architecture is implemented in other languages.

7.1 Overview y

Aun unfortunate altribuie of distributed applications is their inherent vulnerability to failures in other
system components, and replication can often be used to reduce this problem, The main goal of the
architecture proposed in this dissertation is to provide a simple, yet flexible programming model such
that developers of distributed applications are given access to relatively transparent object replication.
This can help the developer to focus more attention on application specific functionality rather than
availability requircments which are orthoponal to the application. Qbject replication is a beneficial
approach Lo replication because it aims fo use replication as a generic service; using this approach,
objects need not be specifically designed for replication. Lhis is parlicularly bencficial from a systenr—
support point of view as it reduces the involverments required by the developer of the object.

Analher goal for object veplication techniques is to vonceal replication for clients to minimise changes
necessary in objects using a replicated object. In the propased architeture, surrogates are used to
hide details of replication. The surrogales, which are very similar to ordinacy objecls, take on the rdle
of concealing replication functionality. Much like a Gagple [28], a surrogate encapsulates a group of
replica objects. A surrogate provides a new but very similar interface to a collection of object replicas.
Figure 7.1 p. 79 shows how this is realised. In the fisure, the surrogate and replica objects are composed
of an interface part and an implementation part. The surrogate Srgt is referenced by an object Client,
and the surrogate provides a functionally equivalent interface to the client as the replicas.

Additionally, to increase flexibility, the architecture supports the use of special collator objects, which
allow the programmer to define vustomised processing of method return values from replicas. The use of
collators is discussed further in §7.5.2 p. 83.

Declarative object replication

The programming model is based on programmer declared replication. The programmer is responsible for
specifying individual classes of objects that will be replicated and code generation technology produces
replication code for such classes. Tndividual classes, whose tustances are to be replicated, are defined
as normal, but they are tagged with a keyword so thal a code generator is able to recognise which
classes should have extra surrogate code produced. This approach is chosen based on the observation
that the programmer is the only authority with enough knowledge about the application requirements to
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Figure 7.1: A surrogate Srgt managing a set of replicas rl, r2, 13,

determine if the extra overheads for replicated classes can be justified. The only other realistic alternative
would be to replicate all clusses. However, the added costs of using replication should be strictly coutrolled
because most realistic applications must be developed using available resources efficiently, and replicating
all classes would most likely nol be necessary (see also §7.3 p. 80).

Design issues

The architecture is designed as a collection of softwarc modules and auntomatically generated stub code
which provides assistance to the management of object replication. The prototype built to experiment
with the architecture (described in chapter 8) implements the mechanisms as library code included in
the application’s code space. This seemed reasonable in the prototype due to a suficiently compact
implementation. However, other and more complete implementations of the architecture might justify
the usc of c.g. shared libraries to house the mechanisms. Additionally, if implemented on a range of
different, platforms, the architecture contd be included as a service within distribuled sysiem mwiddleware;
distributed application development frameworks supporting interoperability [14]. Further, some operating

systems, for example SPIN [15}, could allow for the architecture to be implemented as extensions to the

operating system (¢f. §5.2 p. 53). However, the prograsuming inodel, as presented here, should not change
significantly as a result of the localisation of the code, although sqme of the procedures used to build the
applications might change slightly {e.g. tuakefiles etc.).

T'he process of developing software with this technology is extended with an extra preprovessing stage,
and after the surrogate code is generated, a compiler is used to produce the executable(s) while ensuring
that type safcty is maintained.

7.2 Application Partitioning Assumptions

A limitation of the architecture is that replicas will cause multiple invocations on shared objects. Let us
consider the problem in more detail. As dealing with replication adds to the complexity of the application
gemantics, the programmer wants to design objects as if they were nol replicated. The objects are thus
implemented as if they were singletons. However, one feature of objects is that they may invoke methods
on other referenced objects. Hence, when an object is replicated, it may trigger multiple invocations an
referenced objects. Naively, the problem can be solved with some programmer interference. Invocations
ta shared objects can be distinguished and sent through a filtering mechanism which makes sure that
only one of the invocations is passed on to the destination object. Similarly, the filtering mechanisin must
make sure that results from the invocotion are passed back to the calling replicas [121] {see also §10.3.1
p. 108). Naturally, this requires that the programmer i made aware of replication, and will result in
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increased application complexity. Without such a mechapism the progravuuer is currently restricted in
the way the application can be partitioned.

The limitation does not have any effects if the application is partitioned into separate ohject graphs as
discussed in §6.2.1 p. 63. As objects within these object grapts do not reference shared objects, the
problem of multiple invocations is avoided. Although distributed applications in peneral are likely to be
partitioned in this way for cfficiency reasons, a small amount of interaction with other, shared objects
may be necessary.

Fuforcing this partitioning restriction on distributied software may not always be feasible. For example,

in a scenario where objects can dynamically take on the rile as agents, and thereby invoke methods on
other arbitrary objects, methods on shared ubjects would be invoked multiple times. Further, for software
structured as layers of libraries, it might be difficult to ensure that objects are not shared among the
object, graphs.

7.3 Defining Replicable Classes

‘Phe architecture assumes that a proprammer defines classes by writing separate class interfaces and class
implementations. Suppoxt for replication of particular classes is achieved by tagging the class with the
keyword <* REPLICATED x>, which is recognised by a stub generator.

For example, in an application controlling the temperature of some process using multiple thermometers,
the user might define the interface for this function as the replicated class Thermometer.T like this:

INTERFACE Thermometer_Replicated;
TYPE
T <* REPLICATED *> <; Public;
Public = OBJECT
temperature : REAL;
METHODS
readTemparature () : REAL;

calibrateTemperature{t : REAL) : BOOLEAN; —

END;
END Thermometer_Replicated.

The generated stub file will contain the new interface code for the type Thermometer. T, which is the type
to be used by the calling application and which is linked into the program. Similar namiug is requived for
the implementation of the class, the tag is recognised by the code generator to add the fock and unlock
methods to the class (see §6.2.4 p. 66):

MUDULE Thermometer Replicated;
IMPORT Sensor;
REVEAL
T <* REPLICATED *> = Public BRANDED OBJECT
theSensor := NEW(Sensor.T).init{);

OVERRIDES
readTemperature := ReadTemperature;
calibrateTemperature := CallbrateTemperature;
END;

<0ther methods on the objectz.>

PROCEDURE ReadTemperature(self : 1) : REAL =
BEGIN
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self.temperature := self.iheSensor.read(); (* Read the actual sensor *)
RETURN self.temperature;
END ReadTemperature;

BEGIN END Thermometer_ Replicated.

On the basis of these two components the code generator produces au interface file Thermometer.i3 and
an implementation file Thexmometer . m3.

‘I'his code uses the Modula-3 facility for encapsulation called partial revelation {33]. The phrase T <:
Public says that T is a subtype of Public. However, this is not the complete specification of T, it
is revealed later (in this example, in the modnle Thermometer using the phrase REVEAL T = . This
encapsulation facility is not required by the replication architecture however.

The choice of using tags and preprocessing is not arbitrary. 4 similar effect could be achieved by
relying on subtyping principles, so that a class could be automatically replicated il il was subtyped
from a ‘replicated root’ or some such. However, some potential implementation languages do not support:
multiple inheritance {e.g. Modula-3 [33]). If a class were to be subtyped from another replicated class,
o.g. the replicated root, it could not inherit from any other class. Thus, relying on subtyping would
mean that donal type-trees would be necessary for all classes which the programmer might want to use
in a replicated fashion. This would further iaply that potentially large amounts of existing code would
have to be adapted for replication, resulting in consistency problems and increased amounts of code to
maintain. By tagging a class explicitly in the interface, the programmer makes very direct choices, which
remain visible in the application code and will assist debugging and maintenance. Also, new keywords
could have been introduced to distinguish replicable classes. However, code containing replicated classes
could then not be processed by unextended compilers.

Most: of the code enclosing the replicas is automatically generated on the basis of the object’s interface.
Naturally, the implementation of the object must adhere to the interface specified. Inconsistencies between
the interface and the implementation will be detected by the compiler.

7.4 Instantiation of Replicable Classes

An instance of the replicated object type ie instantiated by the following example code fragment:
IMPORT Replicated, TextList;

PE-1ist :

= TextLiet.Cong("hostl", PE_list);
PE-list := TextList.Cons("host2", PF_list);
PE-list := TextList.Cons("host3", PE_list);
TRY
myThermometer := NEW(Thermometer.T).rInit(PE_list);
EXCEPT

| Replicated.Fatal =>
(¥ Couldn’t instantiate any replicas %)
END;

Il the statement terminates normally, myThermometer becomes a reference to the local surrogate object
which intercepts the calls to the replicas. After the surrogate is created, the client can invoke methods
on myThermometer much as if it was of the original type. It will not be completely identical because the
generated stubs for the type Thermometer.T require that function-type methods are given collators as
arguments (see 7.5 p. 82).

‘I'he method rInit is defined by the system support layer and prepares the active set within the surrogate
by instantiating replica objects on the PEs specified in PE_ligt and setting up references to these within
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the active set. The number of PEs specified will determine the maximum number of replicas that will be
used for this particular surrogate. During failures, the number of replicas will decrease, and procedures
for automatic reconfiguralions may be initiated by the system software depending on the particular
implementation of the architecture (see §6.3.2 p. 70).

A realistic implemerndation of the architecture would include support for automatically selecting replica
hosts, for example by maintaining a set of hosts able to support objects of the selected type (cf. §10.3.3
p. 109). Such an extension would allow the programming maodel to be simplified by avoiding list of PE
names such as in the code exaraples given.

Rarbage collection

Lxperience has shown that garbage collection is an essential part of distributed programs; managing the
reclamnation of distributed objects is a task to be handled by lower-level system software [58, 143]. This
architecture assumes that appropriate technology exist to handle this problern. Yor example, after an
application process ig finished using a surrogate, its storage should be reclaimed by the garbage collector.
Because surrogates do not normally reference ench other, surrogates can usually be reclaimed dynamically
at process termination, Additionally, when no more references are kept to the vhject replicas themselves,
they are removed.

7.5 Method Invocations

The local surrogate implements the interface of the replicas and wilt hence acrept the invocation of any
methods defined for the replicas. However, function-type methods which return arguments are invoked
with an extra argument, the collator (the use of collators is discussed further in §7.3.2 p. 83). Mathod
invocation is synchronous in the sense that an invocation does not return uuntit either the invecation hag
completed, or too many failures have occurred preveuting a normal invocation return. In the latter case,
the exception Replicated.Failure is thrown during the invocation on the surrogate after a timeout
given hy the underlying RPC mechanism.

If a method is procedure-like, i.e. does not have return arguments, the surrogate returns control to the
client as soon as the parallel RPC component has issued invocations to the required replicas (cf. 6.2.2_
p. 64}, That is, procedures are invoked asynchronously

IMPORT Replicated, RealCollator;

VAR
myTempCollator := NEW(RealCollator.T).init();
BEGIN
TRY
currentTemp := myThermometer.readTemperature{myTempCollator);
myThermometer.calibrateTemperature (currentTemp) ;
EXCEFT
| Replicated.Failure =>
(*

Too many things went wrong al the same time.
Abandon myThermometcr object.
)
| Replicated.Warning =>
(+ There is a potential for inconsistency. Retriss may be ok. *)
END;

END Application.
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Guarding each method invocation on a replicated| ohjeck: with exception handler code clearly adds to the
complexity of writing the program. However, as iu all distributed applicatious, handling partial failures in

a secure manner can significantly increase the reliability of the application, and it might bring henefits in
terms of a more maintainable program. Note also that statements can be grouped within a guarded block,
thus amortising the cost of writing extra exception handling code. 1t is often worth considering what the
application should do to avoid crashing in the cvent of insignificant mishaps and failures. However, use of
exception handlers is not enforced by the system, although the compiler will produce warning messages
when it encounters potentially unhandled exceptions. Tnhandled exceptions lead fo run-time fajlures,
and will therefore halt the application. Reliable applications should therefore include code to handle
exceptions.

7.5.1 Method parameters

Arpgument passing in distributed object systems is limited by several compromises [62]. Many RPC
systems therefore limit the range of types that can be passed as arguments or use non-scalable techniques.
The main difficulties arise with objects as arguments. Two main approaches to parameter passing in
object gysiems are recognised:

Call by value will copy all objects reachable from the argument object between the caller's and the
callee’s address space!. For large object graphs, in which a vast number of ohjects may be reachable
from the argument object, this approach ¢an be very costly, and it also introduces prablems with
duplication of objects which eventually lead to consistency problems.

Call by reference simply passes a remote reference to the object ag the argument. Passing objects
by reference is the natural approach to argument, passing in object systems, and (he architecture
proposed here, constructs new swrrogates for objects passed as reference. Call by reference is
beneficial in terms of efliciency, situplicity and consistency. However, a disadvautage with this
approach is a lower availability than a deep copy approach. As the size of a distributed systein
increases, the number of components which are reqnired to work will increase for a remote object
to be available. Essentially, a remote reference is fragile.

This architecture does not address this problem in any further depth as underlying RPC technology will
largely determine how arguments are passed among invoker and invokee.

a

Exceptions

Exceptions defined for the methods in replicated classes are not handled by the current architeciure. An
extension of the collator design is necessary to do this (see §10.3.4 p. 3110). As exceplions are a special
kind of result parameter from invacations, and because dilferent exceptions should be handled differently
by the programmer, the interface of collators conld he extended with new add methods for each exception
returned by the remote invocation.

7.5.2 Collators

Normally, the surrogate will receive identical results {rom the object replicas. However, there are sit-
uations where this is nof the case, for example during lailures, when replicas might compute different
results. It might also happen that different results are the correct behaviour. The methods executed in
the different replicas could compnte results depending on state local to the hosting address space or Pli
such as random numbers, timestamps or replicated sensors as in the thermometer example above. In
this situation, only the application semantics can determine the correct interpretation of the results. By

{There are variations of the call by copy approach which are determined by the depth of the copy. See [52] for a more
complete digscussion.

&3




using a specially designed collator, the application builder ean casily provide these semantic rules to the
surrogate.

More interestingly, results from the replicas may be references. TFor example, if the replicated service
implements a handle-like coordination model [2] the replica may return a refercnee to anather service
within the system. Consider the code fragment below specifying a manager of service objects. The
manager is responsible for ¢reating and returning handles on temperature sensor service objects.

INTERFACE Service_Manager;
IMPORT Thermometer;
TYPE
T <% REPLICATED *> <: Public;
obtainTemperatureSensor() : Thermometer.l;
END;
END Scrvice_Manager.

The method obtainTemperatureSensor relurns & reference (a handle) to a thermometer, and because
the object Service Manager is replicated, mulliple refoerences are returned to the calling object (the
surrogate for the replicas). They are individually unigue references to distinet objects local to each
service manager, and are essentially a new group of object replicas. To maintain the illusion of surrogates
concealing replication, the returned references are used as replicas for a new surrogate. The new surrogate
must be created in the clieni; address space, constituting a new manager for the objects referenced by the
returned collection of references (cf. §6.2.3 p. 66).

Programming interface
The collator encapsulates a single task; processing method invocation resulis from object replicas. The
programming interface of a collator is presented below (see §A p. 111 for an example implementation):

(¥ Class interface for Collator.T type *)
TYPE
T <: Public;
Public = OBJECT METHODS —
init() : T;
prepare{nfeplicas : INTEGER);
add{e : Elem.T) : BOOLEAN;
addFailure() : BOOLEAN;
getResult () : Elem.T RAISES {Fatall};
END;

As collators are only directly used by the system support mechanisms, they must comply with this exact
set of methods. The type of the result parameter Elem, T must naturally correspond with the type of the
result from o particular method.

All collators must, define the four methods prepare, add, addFailure and getResult, a method named
init is not required but the surrogate requires a correctly initialised collator for each methad invocation.
The four required methods are used as follows by the archicecture:

prepare notifies the collator abont the number of replicas which are currently active.

add is called by each thread to input results for processing to the collator. The method returns TRUE if
this was ihe last result required by the collator and FALSE otherwise. A TRUE response signals the
surrogate that getResult is ready to retrieve a processed result.

addFailure is called by a thread if the replica failed to return a result. The method returns TRUE
il the [ailure of this replica makes normal result processing impossible, for example if a majority
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of replicas is required and this faiture implies a majority of failures. A TRUE response signals the
surrogsate that an exception should be returned to the client.

getResult is called by the surrogate to retrieve the processed result, This method blocks until the result
iy ready. If exception Fatal is raised, the surrogate returns the Replicated.Failure exception to
the client,

The (acl thal the number of PEs specified during initialisation is the maximum numnber of replicas that
will be available must be recognised by the application programmer during construction of specialised
collators. Collators should not be dependent on particular numhers of replicas, but rather use majorities °
or some other relative measures.

The method prepare is used by the surrogate to inform the collator about the enrrent number of replicas
in the active set, and this information should be uscd by the application programmer to define rules for
relative numbers of replies necessary Lo produce valid results (see §7.5.2 p. 83). The programmer should
make few, if any assumptions about the number of replicas in the speeification of the collator objects.

Ags long as this interface definition is adhered to, any processing allowed by the parlicular irnplementation
programming language can be performed within a collator. This allows for very flexible and powerful
collators to be built. Additionally, once a collator is constructed they are simple to reuse. For example, it
is a trivial job to modily a collator for integers to a collator for floating-point numbers. Similarly, it does
not require much effort to modify a standard majority voting collator 1o a collator which also perfarins
weighting of the results.

Backdoors

A collator is an object which is passed in to the surrogate via mebhod invocations that hove return
parameters. JDuring the processing within the surrogate, results are added to the collator as they arrive
in from the parallel RPC module, and the getResult method on the collator is used by the sarrogate
to retrieve the processed result. The getResult method has the same return type as the corresponding
method on the surrogate, and therefore retirns a single value (although it roight be compesite).

However, the programmer might occasianally need (o mauipulate sets of results, rather than the singleton
which is returned from the surrogate via the getResult call. The programmer is free to implement other
methods on the collator which can return other resnlts, although care must be taken to avoid causing
name-conflicts with the required interface of the collator. A backdoor method could for example return
an array containing all the results returned via the add call.

7.6 Sharing of Surrogate Objects

Sharing in an object oriented gystem is achieved by passing references as parameiers in method invocations
{both input and output parameters). For example, object A can initiate sharing of an ohject B by giving
an object C' a reference to B, Both A and € are now able to invoke methods on B.

The architecturce enforecs some particular procedures for sharing of surrogates. Because a surrogate
should always reside in the same address space as the client, a new surrogate is created if a client A
passes a surrogate reference to another object € in a diffcrent address space {ef. §6.3.3 p. 72). However,
this will be performed automatically and is transparent to the programmer. Due to automatic creation of
surragates, two references to smrrogates in different address spaces will generally not be equivalent even
il they manage the same set of replica objects. Sharing of a surrogate among to objects within the same
address space does not require any parkicniar processing.




7.7 Failure Semantics

A replicated object will have different failure sernantics from local or non-replicated remote objects, and
although it will be more available than a normal distributed object, there are failure situations which
cannot: be concealed by the replication mechanisms. To allow applications to handle the new failure
modes, the programming model defines a new exception Replicated.Failure which is raised when the
serialisation scheme fails to gather a response from a majarily of the replicas or a collator fails to receive
results from enough replicas. This exception therefore reports a very critical situation within the system.

Normally, an application will have to abandon such an object and create a new surrogate with new replica .

objccts.

Additionally, during serialisalion of replica operations, the majority locking scheme might detect unve-
leased locks which might be due to a premature surrogate death (cf. §6.3.3 p. 72). The surrogate raises an
exception Replicated.Warning if unreleased locks were detected and had to be explicitly unlocked. If so,
the surrogate does not attempt to invoke the replicas, but leaves the replicas unlocked before returning
the exception. Becausge the replicas may still be mutually consistent (if the locking surrogate crashed
alter ihe invocation was executed), an application may choose towetry the invocation.

7.8 Concluding Remarks

This chapter has described the programming model of the proposed architecture. Evidently, some compli-
cations are necessary in programs using the architecture, in particular because an application might need
a relasively large number of diffcrent collators to suit ¢he different method return arguments. However,
as collators are simple to reuse, in particular for different result data types, the added complexity will
mainly be observed as an increased mimber of objecls in the application.

In summary; most of the underlying complexity is hidden by the architecture. The programmer is
cotnpletely shielded from for example the serialisation protocol and failure masking functions, It is
therefore believed that the complications necessary will be outweipghed by the benefits the application
receives in the form of increased reliability.
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Chapter 8

Realising the Architecture

1

This chapier presents a prototype implementation of the proposed architecture as described in chapter 6. The
prototype is by and large experimental, it is not a complete implementation of the architecture. However, it
does demonstrate the key benelits of the design, such as the simple programiming model which is described
in 7. The application which has been built to exercise the prototype shows that very limited programmer
effart is necessary to use the system support functionality. Additionally, the chapter might be valuabte for
tater implementation efforts, perhaps on other platforms; the chapter describes how existing system support
software influences its functionality and ease of implementation. The performance measurements might be
beneficial for comparative studies of other architectures, but also for later implementation on platforms with
olher system characteristics.

8.1 Overview

The prototype is implemented in Modula-3, a statically typed, type-safe, compiled, object-oriented pro-
gramming language [33]. A range of useful features justified this particular language; for example support..
for remote object invocations, concurrent programming via threads, exception handling, strong emphasis
on the separation of interfaces and implementations, a vast range of libraries and built-in automatic
garbage collection both for local and remote objects |22, 24). Having these facilities available meant
that the construction of the prototype itself could be significantly simplifiecd. However, the implemen-
tation does also expose some limitations in this programming environment. For example, the remote
object facility assumes a quite static partitioning of the objects within the application which somewhat:
complicates the programming model in the prototype (cf. §8.3.2 p. 91).

The prototype is built as a collection of static library code and surrogate code derived from programer
specified classes and the abstractions herein have been derived from previous experiments [67]. Some
collators have been built as well to demonstrate the simplicity of the design. Applications import the
library code and use the derived surrogate code in place of the originally specified classes to gain support
for replication.

A dample application has been built to experiment with the replication support code and to act as
an ingtrumented testbed to allow for performance measurements. Although the application is far from
a realistic application, it confirms the simplicity of the programming model. Applications’ use of the
protolype is further described in §8.4 p, 92,

The rest of this chapter is structured as follows. Section 8.2 describes the environment in which the
prototype has been implemented. Scction 8.3 presents the internal design in detail. Section 8.4 presents
the samplc application cxcrcising the prototype. Scetion 8.5 contains a discussion of the prototype
performance. Finally, section 8.6 contains a summary of the chapter.




8.2 Implementation Platform

The prototype is implemented using DEC SRC’s version of the Modula-3 compiler fox SunOS 4.1.3
cunning on Sun SPARC workstations interconnected via Ethernet networks. Although this compiler is
ported to several other platforms as well, these platforms have not been used in conjunction with the
prototype. However, if porting to other platforms is necessary, it should be a relatively small effort. as
only small parts of the code are bound to the hardware and operating system platform (cf. §8.2.3 p. 89).

Only non-persistent Modila-3 objects have been considered in the inplemenialion, bui extensions ol Lhe
implementation miglt draw sume benefits from Modula-3 persistence technology, for examnple to support
atomic invocations on the replicas, so that in case the surrogate crashed before invoking all the replicas,
the invoked replicas could be rofled back to the previous state. Further, reconfiguration of failed replicas
could be simplified to increase survivability for long-running applications. A big advantage of DEC
SRC's compiler is that it comes with a farge collection of useful Jibrary code which can be rensed in other
applications. Some of these libraries are generic, and their instantiation can thus be parameterised for
a collection of types. This can be a big advantage for the construction of new collators (see also §7.5.2
p- 33).

8.2.1 Existing system software

Some existing system software has been used to build the prototype. Most important is the library
developed for Modula-3 to support distributed objects {Network Objects), but also other features such
as the library for IP (Internet Protocol) functions, threads, generic lists and tables have been used to
speed up the implementation work.

Remote invocations

An RPC facility to invoke methods an remote objects is necessary to implement the architecture. The
prototype is built using Network Objects!, a powerful RPC mechanism developed for Modula-3 [22).
Network Objects extends the notion of invoking methods to include remote ohjects, and supports argu-
ments much like local method invocations do. Relerences are valid both as inpul and output patameters
in mothod invocations, and because Network Objects differentiates betwean local and remote object, refe-
erences, network objects are passed by reference while other objects are passed by copy. Furthermore,
Network Objects ensures that all remole references are direcl references between (wo address spaces by
constructing surrogates in each referencing address space which communicates with the referenced object,
directly. In contrast to forwarders [71}, this mechanism is more resilient to failures, but requires additional
communication to avoid reclamation of non-garbage objects [22, 143]. Further, by always creating local
surrogates with direct references to the remote object, Network Objects directly supports the proposed
approach to objeet sharing (sce §6.3.3 p. 72).

Of crucial importance for a reliable implementation is the manoer in which failures are managed by the
RIPC technology. Network Objects do not support asynchronous calls, and it is therefore able to provide
at-least-once semantics using exceptions to notify the caller if the remote invocation failed. In case an
invocation has no specified return parameters, the client of a remote object blocks until a dummy result?
is returned. All invocations are hence synchronous, i.e. the caller i blocked until the invocation returns
or the runtime reports a failure.

Network Objects amends the fail-stop TCP/IP protocol with mechanisms for simpler faiture detection
and reporting by raising exceptions in the client if the remote address space has died®. However, this

1By convention, Network Objects (capitalised) refers to the Modula-3 RPC mechanism, network objects (uncapitalised)
refars tn phjects which are invoked remortely.

2Gich a fake return parameter is added automatically by the Network Object stub generator {22].

3Peath ts conservatively assumed if the remote address space doesn’t answer ping messages.




exception may be raised due to fransicnt network orrors causing either a remaining erphan objeet method
execulion in the remote address space, or a prematurely collected object in the server.

Prematurc garbage collection in Modula-3 Network Objects might happen. However, the probability of
such cvents is very low. Only if the Network Object runtimue, running on the same machine as the owner
of a remote object, erronecusly decides a client has failed will a remote object be reclaimed too early
[24]. In the current implementation, this check is done using a sequence of TCP/IP ‘ping’ messages®.
Additionally, if the client crieg Lo invoke a prematurely collected object, the Network Object runtime will
raise an exception 1o warn the client.

8.2.2 Nameservice

Location independence in distributed object systems is achieved through the use of nameservers together
with remote object references appearing like local references. A nameserver is esscntially a simple database
which stores (nume,location) tuples. Clients can query the nameserver for the location of named objects,
and indirectly retrieve a reference to the object. However, in a realistic system most objects will not
be registered within the nameserver. Rather, they only exist as anonymous objects, only referenced
from other objects, e.g. the object that created it [58]. Additionally, [41] reports that name lookup
operations have a significant impact on system performance. As a natural consequence, nameservers are
often replicated using weak optimistic consistency schemes {(cl. §4.5 p. 49).

Network Objects provide access to a simple (non-replicated) nameserver which is used by the surrogate
to locate object replicas on PEs specified by the client. Hence, this nameserver must be running on each
I'E in the network which will be used to host replicas for the prototype.

8.2.3 Portability issues

System support mechanisms should, as lar ag possible, be portable, Underlying software and hardware
should be expected to evolve, hence systemn support mechanisms should not make excessive assumptions
about their constancy. However, by nature, system support mechanisins are closely associated with a
certain system model.

Although the prototype has been implemented in Modula-3, olher object orieuted languages should be
possible to use. A very interesting platform for further experiments would be Java from Sun [82].

Implementing the axchitecture requires an object oriented programming language with support for remote
method invocations and a failure reporting mechanism which allows the caller to determine failures. The
prototype makes use of very few platform dependent functions, one of which is the use of some commu-
nication protocol functions (IP) o support the location and naming of PEs in the network. Ifowever,
such functionality is likely to exist in other network environments.

8.3 Prototype Design

The prototype follows the module structuring presented in §6.2 p. 62. The object diagram shown in
figure 8.1, using the notation of Booch [29], illustrates the internal design.,

Iissentially, the client instantiates the surrogate object (much as it would insiantiate the corresponding
non-replicaled object) and passes collators in as » method argument to the surrogate in case the method
requires result procesging. The surrogale mainlaing an active set containing the replicas specified by the
client in the instantialion call. The parallel RPC module updates the failure status of individual replicas
in the active set as failures are detected. 1i also records failures in the active sets stored in the replicas

1A *ping’ is a special message in TCP /1P which checks if the remote connection is still alive by echoing a message in the
remote address space,
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Figure 8.1; Surrogate object diagramn

via the lock and unlock methods. What should be emphasised in the figure is the very simple interface to
the collator; although the code residing within the surrogate and the parallel RPC module is complex,
the collator is manipulated using very simple method calls (cf. §? .2 p. 83). The rest of this section
presents these components in more detail.

8.3.1 Surrogates

Surrogates arc dircctly derived from programmer specified classes. Although they arc hand-crafied in
the prototype, surrogates are relatively generic and could thus be automatically generated by a stub
generator for example. Most of the code within surrogates is invariant over different replica class types,
and this will simplify an eventual code generator.

The issues regarding naming conflicts and implementation platform® must however he considered if such
siub generator technology was to be built. For example, the problem of name conflicts can normally be
solved by generating identifier names which are concatenations of the application identificr names and
a substring specific to the code generator. Naturally, this assumes that the compiler technology allows
identifiers with such length.

Figure 8.2 presents the clags diagram of the central programmer defined clagses, generated classes and
static libravy classes. Nole thal the names used in the prolotype implementation are not consistent with™
the progratnming model speeified in chapier 7 due to the experimental nature of the inplementation. A
client in the prototypc gains access to the surrogate through the name foo_srgl. T rather than foo.T as
would be the case for a realistic inplementation of the architecture.

Class foo.T ig the interface for the class to be replicated and is defined by the programmer, and the class
foo_server. T implements foo.T (the reason for this particular partitioning is explained in §8.3.2 p. 91).
Only the class foo.T forms the basis for the generated code however; both foo_srgt. T and foo_act. T are
genurated (rom foo. T. This is illuskrated by the dotled lines,

The prototype separates some of the generic functionality of the surrogate into the class Replicated. T
which foosrgt. T inherits. The class foo.act. T might seem unnecessary, foosrgt. T could just manipulate a
collection of remote foo. T objects to implement replication. [lowever, to support sharing of replicas among
multiple surrogates, serialisation must be enforced. The class foo_act. T simply amends the interface foo.T
with the methods Jock and unlock to support the majority locking scheme described in §6.2.4 p. 66.

The surrogate uses the built-in Network Objects exceplions Net0Obj.Failure and Thread.Alerted to
detect and mask many failures from the elient. However, in accordance with the programming mode!
(§7.7), the surrogate may retirn the exceplion Replicated.Failure whicl signals that the surrogate
cannot carry oub any client requests, or the excepilion Replicated.Warning if the surrogate had to break
locks in Lhe replicas and thus potentially infringe on consistency.

SDiscussed in §5.2 p. 53.
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8.3.2 Implementing object replicas
The Network Object library enforces restrictions on the implementation of remote objects. However, 1

violations of these restrictions will be reported during compilation. A replica object, due to the fact that
it is remote and consequently must be a subtype of Net0bj.T, can not be justantiated quite as simple
as a local object. A replica object is not maobile, it must be instantiated by a server program running
on the PIt where it will become accessible. Replicas are only available while the server is running. Such ;
replica servers are registered with the name server process, netobjd, running on the PE. The replica
servers must export object names which can be recognised by the surrogate code, and in the prototype #,
this name is foo_act. T.

The programmer is responsible for building and starting replica servers on the PEs which will be user1®. :
In more realistic applications where servers are long-running processes, the systemn might be configured S
to start up the servers during the booting of the machine.

Further, Network Objects are restricted to be pure objects, meaning that interfaces cannot expose part ¢
of the class’ internal state. Ilowever, this reswiction conforms to the object model advocated in this £
| dissertation (cf. §2.4 p. 21) and does not incur problems for the architecture. %

Separation of interface and implementation

Network Objects require that the type T is fully revealed Lo generate stubs for it. Thus, T cannot be
declared as opague in an interface T.i3 and revealed in a module T.m38. As the architecture assumes that
replicable classes are implemented in separate interface and implementation files, the programmer raust
implement type ' in another module, the module called fooserver.T in the diagram. This restriction
is slightly cumbersome, as it increases the complexity of the software. Iowever, other implementation
platforms, such as Java, might not enforce this restriction.

8.3.3 Parallel invocations

Parallel invocations are implemented by a collection of threads managed by the surrogate. In fact,
a separate thread, the thread manager, within the surrogate is responsible for managing the parallel
invocations. Other threads are responsible for synchronising the gathering and releasing of locks with
the parallel RI’C thread manager. This separation of responsibilities within the surrogate lnereases the
performance of the surrogate, for example by allowing the surrogate to return resulis back to the client
before the releasing of locks has started. Additionally, as most of the surrogate contaius boilerplate code,
the added complexity does not affect the application programmer using the surrogate.

Each thread in Modula-3 is a closure, which defines Lhe thread's shared variables and the procedure in
foo_act.T which is called by each thread managed by the thread manager.

“The process of starting servers can of course be automated using, for example, sturtup-scripts.
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8.4 An Example Application

A small application has been built to exercise the prototype implementation, mainly to facilitate the per-
formance measurements, but also to experiment with different collator designs. This testbed application
has the form described below.

MODULE Client EXPORTS Main;
IMPORT I0, Fmt, TextList, IntCollator, RObj_Surr, Replicated;
VAR

myFibCollator ;= NEW(IntCollator.T).init(};

rRef ¢ RObj_Burxr.T;

hostList : TextList.T;

result i INTEGER := 0Q;

objName ¢ TEXT := "RObj_Act.T";
BEGIN

hostList := TextList.Cons("unimak", hostList);
hostList := TextList.Cons(“campbell!, hostList);
hostList := TextList.Cons("agattu", hostList);
TRY
rRef := NEW(RObj_Surr.T).rInit(objName, hostList);
result := rRef.fib(n, myFibCollator.init());
EXCEPT
| Replicated.Error, Replicated.Warning =>
I10.Put{"Fatal srgt error. Exiting.\n");
END;
I0.Put(Fmt.F{"result = " & Pmt.Int{result) & "\n"));
END Client.

The code fragment above shows how an application program can include support for object replication.
As a result, rRef is a more reliable object. It the probahility of failure is 0.01 for each of the workstations
unimak, campbell and agattu, then this application has reduced the probability of failurc due to failures
in RObj_Surr.T to 0.0003, corresponding to an increase in MTLF from 100 days to over 9 years”. -

8.5 Performance Measurements

This section presents a few initial performance measurements which have been sampled from the pro-
totype. The results are generally assuring; the prototype yields a performance similar to what should
be expaected for the given system platform. However, the architecture has not been carefully optimiged,
although the design has focused on efficient and light-weight implementation principles. The samples
were pathered during the night in periods when the workstation and network usage was low. A number
of samples® were taken for each configuration and these were averaged to give the results presented. This
can naturally be only an indication of the performance of a prototype implementation in a given applica-
tion context. The performance measurements on the prototype are, like the prototype itself, initial and
incomplete but do nevertheless give an idea about the efficiency and overheads in the architecture.

It i8 nwot clear from the samples taken what is the most important source of overheads, ov if there is only
one such source. Presumably, large overheads, e.g. round-trip delays, exist in the network communication
subsystem, but it is difficult to say how these vary with increasing numbers of communication channels.
The measurements used a number of similar workstations to avoid extra factors of uncertainty such as
different operating systems, processing power and memory performance.

"Refer to appendix B for caiculations of failure probabilities.

8Bither 100 or 1000 samples for cach configuration.




The table below shows the times in milliseconds for different numbers of replicas, n. During this particular
test he servers invoked empty procedures in the replicas and the majority locking scheme was used in
each sample. The eoloumn “only RPC” is the humber obtained from using a surrogate not containing
aay replication code.

n only RI'C 1 3 5 9
execution time 4.7 15.6 | 24.0 § 41.6 | 119.7

Figure 8.3: Exceution times in milliseconds for different numbers of replicas.

During other, single-sample experiments, replicas were crashed manually to determine the influence of
the failure detection mechanisms in Network Objects. No difierence in the execution times could be
identified which suggests that the failure detection mechanisms are very efficient.

Other performance factors
The measurements were taken on a single user of the surrogate only. A more extensive performance
sampling should include measurements on muitiple clients residing in different address spaces.

In this scenarvio, the generated load on the surrogates is likkely to be rather evenly distributed, and thus
give small performance advantages from the use of wait-for-first collators. Additionally, due to the exira
rounds of network messages necessary for the serialisation protocol, performance will be lower than for
only a single surrogate.

A ‘wait for first’ collator can result in improved performance only in the case that the surrogale is
not constantly loaded with client requests [64]. The performance with different collators is therefore
dependent on application behaviour and on the processing capacily in the PE hosting the surrogate. Iff
clients keep the surrogate busy the surrogate will have to wait for the replicas to be unlocked anyway
to maintain consistency. Other collators, such as weighting collators, will increase the processing time in
the surrogate, but this processing is distributed, and will therefore scale well with even high numbers of
clicnts.

8.6 Summary

This chapter concludes Lhe discussion of the propused architecture. It has demonstrated the usefulness
ol the architecture by describing a prototype implementafion and providing some initial performance
meagurerents. The next chapter focus on how this architecture relates to other work in the area.




Chapter 9

Related Work

Replication is an important approach to increasing availability in distributed systems. A large number of
systems using replication and research efforts investigating various replication management techaiques have
been presented in the literature — a number far too great to allow for individual treatment within the scope
of this work. For that reason, a selection has been made; this chapter covers work of particular relevance to
the architecture described in the dissertation. This includes a discussion of other system software compenents
of particular importance to application builders such as highly available distributed file systems. Some overlap
of material occurs, intentionally. in particular with respect to chapter 4 which makes several references to
the work discussed in this chapter, The discusston here is mare focused, however, on comparisons with the
proposed architecture. The chapter is divided into four sections; the first twe emphasise system support for
application developers, and the last two sections are facused an replication used within application components
such as middleware and databases.

9.1 Language Level Support for Replication

Language level support involves the provision of libraries and aulomaled code-generator Lools to assisT—
developeors with reusable components to be included within the application. Language level supporl, is a
flexible approach to system support, alshough it normally incurs some complications to the programming
maodel.

The encapsulation principle is the foundation for the architecture presemted in this dissertation, but
similar ideas have been investipated before. The remote procedure call (RPC) has been the traditional
mechanism 1o facilitate inleraction among programs in separaie, poteniially geographically distributed,
address spaces (see c.g. [132]). In [48] the remote procedure call abstraction was extended to deal with
both replicated invokers and invokees.

(Object oriented techniques made possible an even more high-level absiraction; that of the remote invaca-
tion. Remote invocations conceptually integrate binding and service handle in the reference mechanism
and provides a uniform mechanism for service invocation [135]. Potentially, an invoker need not observe
any difference between a local method call and a remote method call, although full transparency is not
normally desirable!. The reference cssentially conceals locality and access mechanism. A particularly
beneficial attribute of such uniform references is that they facilitate the construction of proxies [167]
which creates a potential for concealing much of the added complexity with replication.

ISee also §2.5 p., 22,




9.1.1 Replicated procedure calls

A major influence on the mechanisis proposed in this dissertation is the work of Eric C. Cooper on
replicated procedure calls [48, 49]. Cooper’s approach, based on groups of independently executing
-state-machines called troupes, supports botl dynamic reconfiguration and call coordinaiion. Replication
transparency is maintained using a full consistency scheme where each troupe member receives cach client
request. This is necessary due to the mutating nature of the troupe members, which are similar to the
object graphs suggested here (c. §7.2 p. 79). Furthermore, automatically generated stub-code conceals the

notion of multiple server handles within the run-time system, and the name service's interface supports

troupe-handles. Similarly to the proposed architecture, clients of troupes doe not need to be aware of
replication.

‘Iroupe members are assumed to be completely independent program modules behaving like identical
deterministic state machines. However, in contrast to the architecture proposed here, Cooper’s work is
hased upon o transactional system model with persistent troupe members and requirement to network
support for multicast. The persistent troupe members allow for more loosely synchronised serialisation of
concurrent clients. An optimistic scheme for serialisation of client requesss is suggested. This serialisation
scheme allows two transactions to be committed concurrently if they are committed in the same order
in all troupe members. Although it is not completely clear from the presentation how it detects that
two transactions are in conflict, it can be assumed to depend on some inherent global ordering of client
requests?. Similarly to the proposed architecture, Cooper does not require any synchronisation protocol
among the replicas themselves as troupe members are completely unaware of each other. Rather, the
client troupe members are responsible for gathering replies from replicas that are ready to commis.
This is likely to give good scalability properties for high numbers of clients, although it does enforce
extra functionality within the client. Cooper can guarantee atomicity for this optimistic scheme due fo
the use of non-volatile storage and specially designed procedures in the troupe rembers Lo inplemeni,
specific ready_to_commit procedures, thus requiring some interference from the programmer of the troupe
members.

Rather than using light-weight threads allocated to cach replicated call as in this architecture, Cooper
assumes that the network itself is able to multicast messages to the troupe members [49], although
the actual implementation simulates this parallelism with sequentisl messages [48]. The dependence

to network multicasts also complicates Cooper’s architecture in case of heterogeneous networks, where_.

timeouts will need to be individually acdjusted to achieve good performance. The architecture proposed
here does not require network support for multicast, rather a connection is made from the surrogate to
each replica. The added cost of inaiutaining multiple connections is not negligible, but for relatively small
numbers of replicas as envisioned by this architecture (normally less than 10 replicas, see 6.4.2 p. 76),
it will not constitute major overheads. Individual connections can therefore have distinct timeouts,
improving the parformauce in heterogeneous networks. Results gained from evolutions of the RPC2 and
the MultiRPC system [158] used in Coda [158], suggest Lhal using concurrent, threads [or replicaled calls
cal incur significant, overheads lor larger numbers of replicas however, and, naturally, inulticast prirmitives
help reduce nebwork load.

In contrast to this architecture, Cooper addresses the issue of nested invocations; the replicated procedure
call manages both many-to-one and many-to-many calls using a specially designed binding agent (a name
service) for troupes. Duplicated calls are always filtered at the invokee, thus achieving high fault-tolerance
at the expense of generating more network traflic. Call coordination, i.e. filtering of calls from replicated
callers, is achieved by assigning a unique IT) to a set of calls originating from troupe members. A special
ID is reserved for calls from non-replicated troupes. Invokees, normally other troupe members, are
therefore able to detect duplicated calls and can ignore all but the first, which is execcuted normally by
the invokee. The binding agent makes Cooper’s approach more replication transparent for troupe clients;
troupc members can dynamically join the group at run-time by joining a troupe. This is invisible to
clients. In contrast, this architeciure assumes Lhat clients are respousible lor specifying replicas daving
initialisation of the swrrogate. The benefil of this approach is that the programimer can focus on the

The commit protocoi is only sketched out, it is not part of the implemented architecture,




particular needs of the application without being concerned with the replicas., Cooper’s approach pats
this responsibility onto the designer of the troupe members themselves,

Additionally, the concept collator was suggested by Cooper as a mechanisin to allow various levels of
synchrony between the client and the troupe server. Cooper's collators are exploited further in the
mechanisms proposed hore to benefit from object-oriented concepts (cf. §6.2.3 p. 63). If references are
the return argument of function-type methods, new surrogates are created automatically to conceal the
notion of replica refercnces. This extension of Cooper’s architecture follows naturally from the object
oriented systemn model adopted in this dissertation.

Recently, a more direct extension of Cooper’s work has been suggested with the name CopyCat [L02]. In '
contrast to the architecture proposed here, CopyCat is a non-object approach based on the standard RPC
paradigm. ‘Fhe main feature of CopyCat is the flexibility of semantics; the programmer can, depending on
the application, relax the ordering constraints enforced among the invocations. Three ordering types are
supported; cansal, forced and immediate. Causal ensures that replicas deliver messages in the same order
as they are sent from the client, forced cnsures causal ordering among multiple clients, and immediate
guarantees full ordering among all messages from all other clients. The architecture proposed here
provides a more cncapsulated approach than CopyCat, but docs enforce full ordering of all requests.
Assuming that clients of object replicas will be able to optimise the ordering of calls, CopyCat is able to
achieve better performance than the proposed architecture, but this kind of optimisation does introduce
extra coupling between clients and the invoked modules. CopyCat is an example of a replication approach
in which transparency of replication is traded off for higher performance.

9.1.2 Gaggles

Another impaortant influence on this work is the Gaggle, described by Andrew Black and Mark Immel [28].
A Gaggle is a software construct that implements a non-deterministic choice among a collection of clerk
objects. The main idea of Gaggles is that they appear to the client just like a normal, singular object.
The basic assumptions behind this work and the Gaggle are thus very similar; presenting the programmer
with a surrogatc which can conceal the notion of multiple server-objects so as to hide complexity and
provide a layer in which different functionality can be implemented without needing to change the client
of the surrogate.

However, in contrast to the surrogates described here, and the replicated procedure call abstraction
proposed by Cooper [48], a Gaggle is neither primarily concerned with consistency nor serialisation, it
only implements the selection of a new replica if one is discovered to have failed. Issentially, a Gaggle
implements the failure masking functionality necessary for replication, but some form of underlying
replication scheme is assumed to be availahle for the purpose of consisiency and serialisation, for example
ISIS process groups [18]. Thus, a Gaggle must be extended with a replica consistency scheme such as
voting or process groups to be used for replication. The architecture deseribed here combines the idea of
a Gaggle and a consistency mechanism into a single abstraction, while maintaining the transparency of
replication.

9.1.3 Fragmentced objects

‘T'he Fragmented Object (FO} model for replication is a programming paradigm which is an extension of
the proxy principle [60, 116, 117}. This approach suggests that fault-tolerant objects are structured into
fragments which communicate using special connective objects. Fragments are always local {o the invoker,
and the connective objects are responsible for maintaining consistency among the multiple fragments.
The key idea behind the FO-model is that of client transparency; each client is presented with a local
interface, a proxy, to a local fragment [117]. This is in correspondence with the notion of local surrogates
as advocated in the proposed architecture; they provide distribution transparency while increasing the
fault-tolerance of the system.

However, fragments are specifically constructed for cooperation and consistency management. As a
3 % \ &
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consequence, the programmer must design objects espectally for replication, as connective objects must
be used explicitly. The key benefit of these connective objects is they can implement different consistency
schemes, and can be used to optimise the performance of synchronisation between fragmenis. The FO-
model is not an approach that advocates replication transparency for the designer of the objects, and
therefore it is not an object replication strategy. Rather, the FO-model is a pood example of a replicated
objects approach.

While the IFQ-model gives the programmer a great deal of flexibilily, it comes at a cost of increased
efforts necessary for the creator of the fragments. Additionally, the problem of nested invocations must
be addressed by the programmer in the FO-model. If a fragment containg references to other shared -
objects, potentially fragmented objects, it is the responsibility of the invoker to ensure that the shared
object is invoked the correct number of times through the use of appropriate connective ohjects.

Adaptahle Replicated Objects (ARO) [31] has been proposed as an approach to extend the Fragmented
Objects model with technology from the BOAR libraries of support code for replication management such
as consistenncy managers [83]. Instead of having to implement connective objects from scratch, the idea is
that the creator of the fragments can simply use consistency managers from the library and thus reduce
the efforts nceded to constract the fragments. However, the FO-model is maintained; the approach trades
low-level concurrency control efficiency for replication transparency.

9.1.4 Reflective programming

Some object-oriented programming languages support the notion of reflection. Reflection allows a pro-
gram to change its own belaviour by modilying, al run-iime, ils meta-data. For cxample, a reflective
program might dynamically change the way it reacts to method invocations, which can be used to im-
plement serialisation functionality during concurrent access [17Y]. This property has been exploited in
Open-C++ to implement various replication techniques, in particular an object replication scheme [65].
However, solutions to inherent problems with object replication are only briefly mentioned; nested invo-
cations are not addressed in this work.

The approach of reflective programming is not fundamentally different from the approach suggested in
this dissertation. 1t is simaply a more flexible approach to the implementation of replication management.
Rather than depending on code generafors to produce infercepting surrogates, a reflective program can-— -
dynamically produce such surrogatos.

9.2 Replication in Programming Systems

Programining systems encompass more extensive support for development of long-lived and usually con-
current software than do programming languages. In particular, distributed object-based programming
systems normally provide functionality for persistence, transactions and object sharving among multiple
applications [154]. Although the programming systems discussed here are implemented on top of oper-
ating systems, the distinction between programming systems and operating systems is blurred with the
introduction of more flexible object-oriented operating systems such as SPIN and Spring (15, 125]. In the
fulure, programming systems might be fully integrated into the underlying operating system. Similarly,
a clear trend drives the integration of traditional database persistence technology with programming
languages, which further blurs these boundaries [9)].

The support for persistence and Lransactions can have a significant impact on the kinds of veplication
mechanisma that are used. In particular, it can [acililaie the nse of more optimistic replication techniques.




9.2.1 GARF

A system supported approach to object replication has been developed as part of the GARF system [121].
GARF 18 a programming environment which provides run-time support for object-oriented distributed
applications, and also partial support for object replication.

Fault-tolerant objects in GARY are implemented in two layers, normal application objects and a com-
munication layer nsed for managing invocation filtering among replicas. If they necd to be replicated,
application cbjects are associgted with such communication objects. A communication object is a sym-
metric extension of the traditional proxy [167], it exists as a representative on both the invoker’s and -
the invokee’s node. These objects have two responsibilities; pre-filtering of invocations from a group
of invokers, and replicating invocation replies back to the invoking replica group. After the invocation
replies have been filtered, identical copies are passed back to the invokers. Although Cooper’s replicater
procedure call architecture filter duplicates at the invokee [49], GARF appears to be similar in replication
functionality. However, the system model adopted in GARF, based on non-persistent objects, achieves
atomic multicast by being mapped onto ISIS process groups [18).

In contrast to the proposed architecture, GARTF does not support the use of collators. Therefore,
GARF cannal tolerate any replica failures in the data~domain or optimise performance as with the semi-
asynchronous wait-for-first collator suggested hare. GARF can only tolerate fail-stop failures among the
replicas. However, the use of ISIS process groups implies that GARF can provide stronger guarantecs for
consistency, in particular in the presence of client failures.

9.2.2 Arjuna

The Arjuna sysiem [171], developed at Newcastle upon Tyne, is a distributed programniing system that
supports replicated persistent. objects. Cowmpared to the architecture presented here, Arjuna trades high
survivability and transactional correctness for lower performance. Il combines an extensive collection of
tools and building blocks to form a programming system for distributed software development in C4-4-,
and has been tested in a number of applications [170]).

Fault-tolerance in Arjuna is based upon the notion of (nested) atomic actions which are transactions
encapsulating object invocations, and the programmer is responsible for declaring transaction closires—:
using special directives. Essentially, groups of invocations on replicated persistent objects are explicitly
grouped to indicate atomic actions. Replication in the commercial version of Arjuna is based on a
primary-copy scheme, bui support for active replication has been investigated althongh not implemented
[170, 113].

Arjuna does not support collators, i.e. programmer defined processing of replica results. Rather, as in
GARF it is assuined that replicas return identical results and that any result is as good as any other.

9.3 Replication in Application Components

Replication techniques have also been used in application components such as file-systems and databasc
systems. The main difference hetween replication in such settings and generic support functionality of
replication, is that application components exploit knowledge of the semautics of the data being managed.
Additionally, some systems are built on the assumption that inconsistencies are visible outside the system
as faitures, and that clients are able to take corrective actions. This is in contrast to the system model
adopted here, in which replication system support should be generic and not make such assumptions
about data and clients. However, becausce of the assumptions made, some of the application systerns can
use quite suphisticated replication techniques which achieve high availability and performance.




9.3.1 Distributed file systems

Hile systems provide one of the most fundamental system services in any computing environment. Ar-
guably, files are the most common structure used to share and store information among both applications
and users in distributed systems. This critical dependence on file services has led to a number of efforts to
build distributed file services such ag NFS [180], AFS [157], Coda [97, 157], Ilarp [112], Echo [181, 94] and
xF$S [6]. These systems simplify the sharing of files by providing uniform location and naming schemes.
Of the systems menlioned, only the first version of AFS (AFS-1} and NFS do not directly exploit replica-
Lion, allhough they make use of caching at the client side and thus depend on cache coherence protocols
o maintain integrity of data. Distributed file systems are of interest because of their different, and
occadionally extreme, approaches to consistency, availability and performance.

As most applications are written asswning a one-copy update model, distributed file systems astempt
to provide a high degree of data consistency to clients. Echo is an example of a replicated file system
which attempts to provide full replication cousistency to the file system clients and uses o primary copy
scheme to improve availabilify of servers. Clieats of the replicated file servers contain Echo-specific code
within clerks which intercept calls to the file system and perform the fail-over to a new primary if one
fails. Echo employs tedundant, disks to store replicated files, and as an additional level of replication,
primaries compete for election if they manage to claim ownership of a majority of digks. The replication
scheme in Echo is thus fairly transparent to clients. If the filesystem is available to a client, the client
will always ahserve correct and consistent files.

Full consistency is also achieved in the xF'S system [6], a file system which is tailored for high-capacity,
switched LANs such as ATM. The idea is that the high aggregate bandwidth provided by such networks
can exceed the bandwidth of local disks, and thus invalidates the underlying assumptions of for example
the Andrew file system policy of using local disks as caches. The most novel feature of xIFS is its
truly distributed design. By allowing all machines within the file system group to maintain files it can
reduce the problem of server overload found among centralised lile system designs such as Echo, NEFS
and Andrew. xFS assume that thece is a high probability that the creator of a file is also the most
[requent writer on the file. A file is managed by the machine on which the file was created, and later
invalidation and write requests are passed to this machine. In this way xE'S dynamically shares load
among the machines cooperating in the system. However, any number of machines may hold copies of g_
file's data blocks, thus allowing fast access to the data for other machines as well. Heplicas of the file are
kept consistent by only allowing one writer to a particular data block at a time. Other machines must
aquire ownership of the data block via the manager of the corrcsponding file. xF8§ exploits two techniques
to achieve fault tolerance. Firssly, data blocks are striped across multiple disks, and enough redundant
information is stored at each stripe group member to allow for single machine failures within the stripe
proup. Reconstruction of a new stripe group is performed automatically. Secondly, xFS is based on a
transactional, log-based file structure which can be restored using roll-forward techniques in cooperation
with clients.

Some of the systems make compromises with consistency to achicve better scalability and performance.
Fot example, NI'S uses periodic checks of timestamps between clients and the server fo decrease ihe
likelihood of update conflicts. ATS-2 poes a step further, due to Ligher scalability requirements cache
colhierence is only chiecked during open and close calls. Coda takes Lhe mosi extreme approach to avail-
ability; in Coda clients are allowed to operate even if they cannot communicate with any of the servers.
Conceptually, Coda defines two classes of replication; first-class and second-class replicated files, both
optimistic [97]. The result is that there is a non-zero probability that clients which share files will abserve
inconsisteut data. If the client is connected to a server, a first-class replication scheme is used among the
servers to detect potiential conflicts, this requires manual repair of unrecoverable conflicts [158]. If the
client operates while disconnected, an optimistic sceond-class replivaticm scheme exploits client caching
which aiso may lead to conflicts. These conflicts are also repaired manually. The server-replication
scheme used in Coda is a vaviely of the approach used in Ficus where any server can be sent an update
and subsequently attempts to notily other servers about the update [144, 91].

NI'S and AFS-2 assume that the probability of observing inconsistont data is small enough 1o be sacrificed
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for the increased performance, although applications using NFS and AFS-2 should strictly be aware of
the fact that files might be out of date. Coda acknowledges the fact that applications should be prepared
for inconsistent files, and supplies special tools which will assist the user in reconciling conflicts that
are not automatically repairable. Unix files have very simple structure, they are typically interpreted by
convention from application to application. Therefore it is not possible to devise generic conflict resolution
procedures for files. However, directories within file systems have a very limited opceration set, typically
ereatec and delete. This makes auntomated conflict resolution possible for most independently executed
dircctory aperations in the Coda system, although conflicts within files must be reconciled manuatly by
the users.

Similarly to most object-oriented databases (discussed in §9.3.2 p. 100), distributed file systems use
caching at the clients to increase performance. Research has shown that there are a number of distinctive
usage patterns within file systems which naturally lend themselves to caching [51]. For example, most
files are used by ouly a single user, and il a file is shared, it is normally modified by only cue user [6].
This observation reduces the probability of update conflicis, and will normally improve Lthe performance
of caching strategies. Alsu, reud operations are much more common than write operations, which is
the main justificasion for the extensive use of caching in some distributed file systems such as AFS and
Coda. «FS is also based on this assumption, and exploits it also for load sharing. AFS and Coda clients
store large volumes of cached tiles on local disks, and use a cache invalidation pratacol to maintain cache
coherence.

Caching in file systems can be compared with the data-shipping approach to replication in object systems
(see §4.3 p. 42). Tlis makes sense in {ile systems as files are embaodied with little extra structure; clients
access data in a file without going through a closely constrained operation interface. In contrast to
the architecture proposed in this dissertation, distributed file systems exploit semantic knowledge about
appleations and data to optimise veplication strategies. This is not possible here, where very little
is assumed about applications and the data stored within objects. For example, building tools which
would facilitate manunal repair of conflicting objects within a system support layer seems impractical.
Firstly, many objccts will contain data which are not meaninglul without significani; application specific
knowledge; tools which could easily be used to repair them would probably be as costly Lo inplement as
the application ilsell. Secondly, because these objecls are nol, persistent, but rather very rupidly changing
in response to method invocations; the required frequency of repairs mighi be far oo great for manual
intervention.

9.3.2 Database systems

Datahase systems manage persistent data, normally stored on disks; they do not normally consider
operations on non-persistent data such as processes [19]. It is therefore possible for database systems
o exploit other kindsg of replication scliemes than is possible in the proposed architecture. Transactions
maintain integrily congtraints on the data, explicitly separating application programs from data managoers
and assuming an inherent classification of data operations as either reads or replacing writes.

The encupsulation principle is an issue of debate in the object-oriented database community, and it
is reasonable to assumne that strict encapsulation will not normally be enforced [38]. Non-idempatent.
operations need not be too problematic in databasce systems; operations such as deposit and withdrow are
commonly decomposed to reads and overwrites [51]. By exposing the data Lo the databage, the data can
be directly compared snd overwritten, thus making it possible to use voting or coterie-basad replicalion
schemes, for example. Externally, queries and updates can use the encapsulated object interface®.

Distributed databases are motivated by several factors, although the most important justifications arc
increased performnance and support for autonomy 40, 8]. Additional complexitics are introduced when
database systems are built from a collection of existing databases; maintaining interoperability among
potentially heterogeneous components and ensuring dynamic growth, Many distributed databases are

30Object-oriented databases such as Thor maintain the object encapsulation principle at the application leval while
trunsforming object invocations into simple read and writes at the data manager level [111].
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very large — their size is commeonly the reason for distributing them — and hence such systems tend to
employ replication such as to achieve increased performance and autonomy for shared data. Synchronous
replication protocols are therefore unsuitable; the need for antonomy dictates scalable, asynchronous
protocols. Consequently, these systems favour loose synchronisation and weak consistency replication
protocols at the added cost of reduced replication transparency.

Database systems are normally equipped with elaborate support for logging, checkpointing and grouping
actions into atomic transactions. These [acilities are normally not available in programming languages,
and make it possible to use more sophisticated concurrency control for replicated data in database systems.
In contrast to the system model adopted here, where objects can oanly be kept consistent if they receive -
the sime sequence of method invocations, database systems can support the use of optimistic schemes
discussed in §4.5 p. 49 and [55]. Additionally, some object-oriented database systems allow objects to
be explicitly identified as either mutable or immutable depending on whether they can change state or
not [3]. Immutable objects will never change, and access to those docs not have to be serialised. This
fact is exploited in the optimistic concurrency scheme used in Thor [3]. Timestamping combined with
logging allows transactions to roll back upon discovery of conflicting updates. However, with optimistic
concurrency schemes, there is a danger that other transactions have used the data already, perhaps even
having committed. If the other transactions are not already committed they can simply be abosted,
however, i they are already committed the crucial issue is whether or not it is possible to revert its
effects; in many cases it is not. Aborts may appear in cascades, thereby incurring significant extra costs.
However, optimistic schemes will tend to perform well in systems where conflicts are rare [55].

Most. distributed relational database systems are built using a function-shipping approach. Queries and
updates are sent from the client, to a database server which executes the transaction. Later, the results arc
passed bark to the client. The function-shipping paradigm can be exploited for process replication, such
as in the hot standby approach [85]. The primary performs all the processing and a backup receives the
log records from the primary and performing redo-actions continuously on these records thereby making
sure that the recorded transactions are safely logged in case of fail-over.

Traditional client-server relational database systems, such as Sybase, Oracle and IBM’s DB2 are also
recoguising replication as a means to increase performance or satisfying availability constraints {177],
although they follow different routes. Using the log from transactions committed at the primary, Sybase
Systor 10's Replication Server transfers these logs to replicas which have subscribed to the data. Replicas
are ‘hackups’ in the sense that all updates must be performed at the primary, only reads are allowed at the—
replicas. Although this approach might give reasanable performance, it raises the problem of maintaining
cansality relations. If a client reads data at a replica, and later, on the basis of this information, performs
an update on the primary, it requires a very strict synchronisation of prinary and replicas. Naturally,
the primary will attempt to push the updates out to the replicas as fast as possible, but nevertheless,
distributed systems are asynchronous and there will be a gap in time in which the replica is lagging
behind the primary. Sybase addresses this problem by storing che logs in case communication with the
replica fails, and although it is not explicitly stated, the replica will probably be denied permission to
perform updates on the primary if it has pending logs at the primary {177). Oracle’s Symmetric Repli-
cation facilities also supports this push-model by registering, from the primary, asynchronous RP'Cs for
subscribing replicas. Modifications in the primary trigger these RPCs which are executed at the replicas,
following the function-shipping approach. However, Oracle also allows replicas to perform updates. Due
to the potential for conflicts, subscribing clients can implement particular ‘conflict-resolution’ procedures
which are automatically invoked by the Qracle database scrver upon detection of a conflict.

IBM’s Copy Management and Oracle both support a pull-model of synchronisation. Clients are allowed
to request a ‘refresh’ of replicated data (called ‘snapshot’ in Oracle’s system), and the primary passes
any updates on to the replica if necessary,

In contrast to relational databases, most object-oriented dalabases adopl; a data-shipping compusation
model. Objects are shipped across the network and copied into the cache on client workstations where
the objects can be manipulated. In confrast to the architecture proposed here, OQONBs treat objects
as passive (although complex) data structures which are passed between the persistent store at servers
and the clients’ caches. The data-shipping approach might therefore give better scalability as a result of
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leaving more of the processing to clients.

The replication schemes used in OODBs are thercfore not object replication schemes. ‘The rationale for
this approach is that the application normally resides on client workstations, and bringing the data, closer
to where it is processed increascs the performance of the system [35, 3], Most database applications
interact very closely with the data, for example through object-graph navigation and query processing.
Howcver, caching, like replication, requires coherence and synchronisation protocols and introduces the
same problems as replication schemes. Cache consistency can be achieved in several ways; [35] confains
a survey of some common approaches and argues that adaptive callback locking schemes give the best
performance.

9.3.3 Name services

Name services offer a fundamental and important function in distributed systems; they facilitale the
sharing of named objects. A name service is essentially a database which stores (name,reference) tu~
ples, and allows clients to perform both query and update operations on this information. The name
introduces a level of indirection which makes it possihle to assign a meaningful name to an object rather
than a memory address. The name might be a human-readable text-string or any other identifier. Fur-
ther, it has been noted thai the performance of name services is critical to many applications; name
Iockitps may constitufe more than 40% of the system call overheads in UNIX according to [41}. Al
though many objccts within a system will not be registered with a name service?, the name service is
crucial during bootstrapping® and to maintain references to important shared services. The large scale of
some distributed systems motivates system-wide naming serviees which provide uniform access to objects
anywhere within the system, thus forming potentially vast namespaccs. These requirements introduce
significant challenges for distributed name services.

Scveral designs have been propased for reliable and scalable name services, for example Grapevine [21],
The Clearinghouse {137}, The Global Name Scrvice [103], The Infernet Domain Name System (DNS)
[126, 127], the architecture of Cheriton and Mann [41] and CCITT’s X.500 recommendation (although
strictly a directory service®) [39] with suggested extensions for replication [90]. To address the problem of
scale, the namning space is usually hierarchical to allow for autonomous administration and better locality_ .
of data. For example, in DNS, which is the system used for naming hosts in the Internet, the root-level
entries denote top-level domains such as countries and large groups of institutions. The hicrarchy is
divided into zones which are the units of replication, and the names belonging to each zone are replicated
al a minimum of two independent sites. A replication scheme classifies zones into two groups, primary
and secondary servers. Primary servers feich data directly from master files. Secondary servers download
data from primaries, and periodically? query the primary for new updates.

Generally, replication is used extensively in name services to improve their availability and performance.
Because name services have some rather distinctive characteristics, weakly consistent schemes are nor-
mally used. For example, it is normally appropriate to assume that the frequency of updates are much
lower than the frequency of gueries [39, 126]. The DNS architecture exploits this fact by caching the
addresses of recently resolved names [126). Cached data are non-authoritative and associated with time-
outs. Clients may thervefore suspect the cache to be stale if the resolved address is unusable or if the
timeout has expired. Additionally, many name service designs assume that clients are able to tolerate
temporary inconsistencies in the data by dotection {137} and fallure-masking using retries® [165]. The

1L is reasonable W assume that most objects are anonymous, i.e. they are not given explicit names and ace voly shared
among & small nuinber of objects using their direct references [58).

%Name services can be located at well-known PEs within the network [137] at the cost of more complicated reconfiguration,
or clients may issuc broadeasts to find a name service provider at the cost of more measages sent across the network {21].

& A directory sevvice, in contrast 10 & natne service, also contains more gencral information such as pecsonal information
about users.

The frequency is defined using adjustable timeouts,

5I'he use of retries are not always sulficient to tolerate inconsistencies however, for example when the stored informatien
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simple semanlics of the data — names and references are simply read or overwritten —- means that or-
dering constrainis can be relaxed. For example, in [21] it is assumed that clients very rarely communicate
directly with each other, and that clients therefore are more tolerant to different ordering of operations
on the data. However, it is still desirable that replication schemes used in name services are convergent,
so that the data stored will eventually become correct {21]. In consequence, due to their extreme require-
ments for scalability and rather modest consistency requirements, name services will normally exploit
weally consistent schemes with success.

9.4 Replication Support in Middleware

Middleware is commonly defined as a software layer that supports the development of interoperable,
distributed applications [14, 106, 155]). Although this concept is rather vague, the term middleware is
currently used to denote a vast range of software components. Services as diverse as RPC, object re-
quest brokers, transaction monitors, name services, configuration management services, commuticalion
systems aud even distributed database systems have all been classified as middleware [14]. The main
contribution of middleware components is a bridging function which allows programmers to develop dis-
tributed programs without too mnch concern for underlying heterogeneity. Many middleware components
are not concerned with replication and are therefore not discussed. However, two distinct middleware
components are concerned with replication; Lotus Notes and group cemmunication systems. Although
they have inherently different intentions, thege two components are examples of softwarc systems which
can provide significant benefits to the development process of various classes of distributed applications.

CORBA is probably the most significant effort to date which attempts to define a framework for inger-
opersble distributed processing, it does not cwrrently specify any details about, replication services. The
need for replication has been recognised in CORBA, but no architecture for the actual implementation
has yet been made available[50, 106, 198].

9.4.1 Lotus Notes

Lotus Notes is » relatively comprehensive application development environment which supporls the ma-

nipulation, storage and distribution of docwments [128, 14, 80]. It is a scalable system used in both
small LANs and large corporate internetworks with heterogeneous network architectures. Lotus Noles is
based on a client-server structure; servers act as document repositories while clients (personat worksta-
tions) retrieve and manipulate documents using a proprietary interface. Documents are comparable with
text-files, although they may have a composite structure, e.g. containing attachments.

Lotus Notes uses replication extensively to achieve good scalability and for supporlt of disconnected
operation. As the central unit of data within Notes is the document, documents are also the units of
replication. Release 4 of the system allows for replication of so-called fields, which correspond with
the internal structuring of documents into subcomponents. Replication in Lotus Notes is flexible; it is
customary to employ consultants to optitnise the replication strategy for large installations, as it has
a gignificant impact on the overall performance of the system. The flexibility is gained from the uge
ot dedicated replicator processes which allow pairs of servers to exchange updates to the documents
according to specified replication schedules. If either of the two databases has been modified, new and
updated entries are pushed from the newly updated copy to the other. An increase in performance was the
main motivation for reducing the granularity of replication from whole documents in Release 3 to fields
in Release 4. The reduction in replication granularity also reduces the probability of update conflicts,
which are detected automatically by Lotus Notes. Naturally, however, the reduced granulavity increases
the management overheads for each exchange session. Reconciliation is performed by arbitrating among
vonflicting updates, flagging the likely looser, and letting the client decide what action should be taken
[14].

is indirect as may be the case for mailing-lists [134].




In contrast to the architeciure proposed here, Lotus Notes takes an ‘application-aware’ approach to
replication. A client must accept. that shared documents might be updated simuitaneously on another
server. Nalurally, this increases the complexity of the application, but because documents within Lotus
Notes have such a simple structure, inconsistencies will normally be easily observed and eliminated by
users of the systein.

9.4.2 Group communication lacilities

Group communication protocols have gained popularity as an approach to distributed computing because -
they can simplify the task of coordinating activities among a collection of active processes, called a group.
A group communication protocol normally implements some sort of fanlt-tolerant multicast within a group
of processes [89]. This approach to coordination is well suited to applications which consist of a relatively
amall number of cooperating processcs, less than 20 say, where the processes arc located in PEs connected
Loy broadeast networks such as Ethernets or FDDI. The process group approach is also flexible, there is
no requircment for processes to run the same code. Due to this flexibility, a process group system could
be used to coordinate non-replicated activity, such as load-sharing. This is in contrast to the architecture
proposed here, object replicas managed through the surrogate are identical.

Process group protocols ensure that any message delivered to a member is delivered to either all or none of
the processes and therefore provides stronger delivery guaraniees than the replication protocol proposed
here. FExamples of group commnnication protocols are the ISIS toolkit {18, 20] and the later Horns
systom [188] both developed at Cornell University, the Transis system [61] from the Hebrew University
of Jerusalem and the Totem system [129] from the University of Californis at Santa Barbara.

Group commnnication protocols can be useful for the support of replication, although these pratocots
alone do nof include all the facilities necessary to implement replication schemes. Generslly, group
communication protocols de not encapsulate plurality, clients of the group must be aware of the fact that
they are using a group. Indeed, this lack of functionality was a metivation for the Gaggle {28] described
in §9.1.2 p. 96, and process groups are also used as underlying technology in GARF to implement reliable
message delivery among representatives (see §9.2.1 p. 98). For example the ISIS toolkit includes software
tools for failure monitoring, an interface to support automated recovery of failed process group members
and support for group reconfiguration in replication groups. The Transis system includes facilities which
allow the programmer to merge data which have been updated in different partitions, These tools aré™
used by the programmer to implement application specific procedures for replicated data management.

In ISIS, the programmer must design the processes specifically for replication by including statements
for joining a particular group and sending update messages to other group members. This is in contrast
to the architecture proposed here, which is tailored solely for replication and therefore can automate the
use of replication. Furthermore, the proposed architecture can reduce complexities in the programming
model and does nol require any substantial modification Lo classes being replicated other than an extra
stage of preprocessing to generate surrogates.

Clients of a replicated service need not be significantly complicated by the fact that it uses a replicated
service however. Sending a message to the group is suflicient, although it is more cfficient if the sending
process is a group member [18]. Most applications are therefore likely to be structured to include most
processes within the group. Scatability might therefore be a critical issue for these systems, and appli-
cations with a large number of clients, such as a multinser editor or a distributed workgroup scheduler,
might observe high performance overheads regardless of whether the clients are members of the group or
not.

Additionally, process group protocols can guarantee consistency only if s majority of all the process group
menbers are available. A problem of scalability i present in the proposed architecture as well, but by
not. requiring an intra-surrogale protocol, more surrogates can be accommodated, and surrogate fatlures
do not normally reduce the availability of the replicas for non-failed surrogates. Only if surrogates fail
while holding locks in the replicas can they affect availability of the system, and if so, locks are broken
and another surrogate is left the choice of retrying the invocation. Because surrogates are coordinated
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via the replicas only, using the locking protocol discussed in §6.2.4 p. 66, scalability in this architecture
is mainly limnited by replica lock contention and not by process group member fajlures as in ISIS. The
architecture proposed here is thercfore more geared towards efficient shaving among large numbers of
clients, the nunber of clients deoes not influence the overheads of the replication scheme.

Some group communication systems support several message ordering policies to increase performance.
For cxample, the ISIS toolkit implements two types of multicast; CBCAST (Causal Broadcast) and
ABCAST (Causal Atomic Broadcast) [18]. The CBCAST primitive exploits application semantics to
provide asynchronous multicast based on a notion of virtual synchrony. Programmers might use this
primitive if they are sure that causal dependency is the only necessary relation among messages. In
contrast, the ABCAST primitive is simpler, it ensures that all active processes within the group deliver
messages in Jockstep. ABCAST is therefore a potentially much more expensive primitive than CBCAST
as ABCAS'T does not allow any asynchrony within the group. However, the performance is gained by
sacrificing application complexity, as the programmer must show great care when deciding which primitive
to use. Erroneous use of CBCAST could lead to misbehaviour in the program,

Commonly, group communication protocols have been tailored to non-partitioned operation, for example a,
call to a process group in 1ISIS will block if the partition contains less than a majority of the processes in the
group. Recently, some systems have been tailored towards larger systems where partitions are common.
‘Iransis, allows partitioned (disconuected) operation [61]; however, this introduces a danger of conflicting
updates, and Transis requires that programmers implement, procedures for reconciling conflicting updates.

9.5 Summary

This section contains a summary of the various approaches that have been presented in this chapter.
The chapter has shown that replication schemes in different system contexts are itmplemented (o benefit
from particular features of the surrounding system and to adbere to specific requirements set by the
application. The most distinct factor is the tradeofl between consistency, performance and scalability.
Generally, consistency requirements are sacrificed for many large scale systems such as name services and
scalable distributed file systems, although the Echo file systern [181] is a counter-example, providing even_
stronger consistency than NFS [180]. In contrast, system support for application programmers is normally
based on full congistency models, for example Arjuny [171], Lhe work of Cooper [49] and Mazouni et. al.
[121].

Various approaches to programming language level support for replication have been presented. Due to
the different assumptions underlying these, some differences to the approach proposed in this dissertation
are evident. Cooper’s approach, similar Lo the one proposed here, is based on the idea of Luilding
replication functionality into the usual RPC-stubs. The systemn model underlying Cooper’s work is
different, the use of persistent troupe members allows the wse of an optimistic serialisation protocol.
‘The programuner is also required 1o be more involved during the consiruclion ol replicas; modules are
responsible for joining troupes. The application programmer is therefore given legs freedom to specify
the degree of replication compared to the proposed architecture. (GARF implements a subset af the
funetionality described by Cooper; it implements a low-level invocation filtering mechanism which ensures
that replicated objects coordinate invocations to avoid multiple executions of objects’ methods. However,
GARF is based on filtering at the invoker rather than filtering at the invokee asg in Cooper’s work, GART
can therefore map object replicas onlo ISTS process groups and use Lhis as Lhe message delivery module.

The Gaggle is similar to the surrogate in the proposed architecture, but is not specifically designed for
replication, it requires the implementation of additional functionality to achieve this. Fragmented objects
is an approach advocating replicated objects, and is thus distinct from the proposed architecture in that
the creator of the fragment is xesponsible for synchronisation and update propagation. I[Iowever, the
approach based on reflective programming, is similar in goals to the proposed architecture, and can, for
example, be immplemented vsing the reflective features of Open-C---|-.

Replication support in application components is fundamentally different from programming support for
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replication. Whereas file syatems, name services and databases make explicit assumptions about, the data
they manage, such assumptions cannot generally be made about objecls that are replicaled. The most
extreme consequence of this is found in name service designs. Name services have very high availability
requirements, and relatively weak consistency requirements. This, in addition (o the very high read vs.
write ralio, means that optinistic replication schemes can be used with great success.

Although files are manipulated in somewhat more complex patterns than thie name bindings stored
in name scrvers, distributed file systems have demonstrated that, with some assistance from the user
when conflicts occux, optimistic replication schemes can be used to achicve very good scalability and
performance. )

In contrast, database systems rely on their sophisticated support for logging and transactions to em-
ploy oplimislic concurrency schemses with success. Object-oriented database systems, depending more
on caching than traditicnal replicalion technigues, show how importaut appropriate cache iuvalidation
schemes are to achieve good performance.

The two middleware systems discussed, Lotus Notes and process groups, take near opposite directions to
replication; Lotus Notes chooses to let the programmer take control of the consistency of the data. Lotus
Notes will therefore be able to support system configurations of widely differing scale. By adjusting the
scheduling of the replicator processes the propagation of changes in the data can be adapted to fit even
large distributed systems interconnected with low-capacity networks. The process group approach does
not normally sacrifice consistency, although recent systems such as Transis provide functionality to deal
with disconnected operation, and might thercfore be an example of a new trend within process group
computing.




Chapter 10

Conclusions

This chapter concludes the dissertation with a summary of the main contributions and some directions for
further work. The chapter is divided into four main sections; section 10.1 gives a summary of the main insights
and results presented throughout the dissertation, section 10.2 presents the importance and implications of
these contributions. Section 10.3 identifies important directions for further work within this area, and finally,
section 10.4 compares the achievements with the thesis set forth at the start of the dissertation,

10.1  Summary of Contributions

This dissertation has argued thac useful distributed systems must be constructed to withstand partial
failures. One possible approach is to introduce redundant components and apply replication techniques
to manage this redundancy. Chapter 4 presented a range of replication technicques which have been
developed to mask failures and maintain consistency among replicated components. That chapter also
argued that object replication is & technique which is especially benelicial in object systems. In contrast
to other fechniques, such as replicated objects, object replication reduces the effort required of thé™
programmer to gain increased fault-tolerance. Various benefits and disadvantages were identified for
the different techniques, the most findamental tradeoff being that between consistency, transparency
and scalability. Tn the adopted system model, based on program-level, fully encapsulated objects, some
replication techniques were ideutified a8 inappropriate, for example those techniques which are based on
overlapping replica groups and thus violate the encapsulation principle by assuming fully exposed object
gtate.

Furthermore, the problem of increasing application complexity motivates the provision of system support,
i.e. commanly available software components which can be used for several applications. A replication
scheme hased on object replication was identified to be most appropriate in this setting, as it attempts
to minimise the changes needed when objects ave replicated. Chapter 5 identified some of the problems
which must be addressed to successfully realise system support, in particular system support for object
replication where full transparency is not generally achievable.

Based on these observations, I have presented an architecture for system supported object replication.
The architecture provides assistance to software developers constructing fauli-tolerant object oriented
programs, and the simple yet flexible programming model together with built-in support for ebject
sharing adds only small complications for the programmer.

10.1.1 Programming model

The most, distinctive feature of this architecture is the relatively simple programming model. Surrogates,
which replace programmer defined objects, are manipulated very similarly to the original object. The
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main difference is the addition of collators as parameters to methods which return results. Collators
which encapsulate application specific reply processing are easily constructed and therefore add little to
the complexity of using replication in object-oriented software.

Additionally, surrogates define a small set of specitic exceptions which allow the programmer to han-
dle surrogate failures. In summary, little added effort is required to extend an application to use the
replication mechanism.

10.1.2 Object sharing

Ohject sharing is a natural consequence of the object madel adopted; object references may be passed
as arguments in method invocations and thereby allow muitiple objects to share other objects. In pro-
gramming languages the synchronisation problems incurred by object sharing are normally left to the
programmer. However, Lhis architecture directly supports object sharing among multiple concurrent
objects by the inclusion of serialisation functionality.

Additionally, the architecture supports sharing smong objects in multiple address spaces without reduc-
tions in fauli-lolerance. This is achieved by allocating surrogate objects within each address space, thus
increasing the failure resilience of surrogates. For multi-user applications which cousist of many separate
clienls this is a significant benefit.

10.2 Discussion

Replication is only one among several approaches te increase computing system dependability. Other
approaches, such as improved development methods, and n-version programming can also be uscful to
achieve this goal. N-version programming, in contrast to replication, is able to reduce the ill effects
of software failures at the cost of developing several versions of the same software. Thus, n-version
programming can not be used for fransparent system support. The use of system supported replica-
tion is therefore a useful technique for increasing application dependability at a relatively small cost in
application development overheads.

A reduction in application complexity is the main motivation for the proposed architecture, and thig™”
has been achieved using a full consistency programming model based on a strictly serialised concurrency
scheme. Pursuing a full consistency paradigm is costly and has scalability limitations. The architecture
is clearly unsuitable for very large distributed systems where other factors such as autonomy and loose
synchronisation are more important than a simaple prograinming model. The architecture presented here
irades transparency and genericity for performance and scalability.

10.2.1 Architectural limitations

In it8 current form, without support for call coordination, the architecture enforces limitations on ap-
plication partitioning. The scparate ohjoct graphs described in §7.2 introduce new complexities for the
application developer. Clearly, investigations into mechanisms to support call coordiualion are a natural
issue for further work.

A small prabability of inconsistency has been favoured rather than relying on more expensive and less
scalable group communication protocols. Because the replicas themselves are not actively participating
in forwarding requests to other replicas in the group, a surrogate which crashes during the replica update
round might introduce inconsistency. Thus, the protocol dees not implement the atomicity property in
the presence of surrogate failures. However, this is only a problem when replicas are shared, and other
surrogates sharing the replicas are informed about potential inconsistencics.




10.3 Future Work

This dissertation has identified a number of directions for further work withiu the ares of system supported
object replication. The rest of this section discusses these in more detail.

10.3.1 Coordinated calls

A very useful addition to the architecture would be a mechanism tor handling replicated invocations to
shared objects, i.e. many-to-one calls. The limitations on application partitioning could then be reduced
(cf. §7.2 p. 79). However, solving this problem is non-trivial and may incur other limitations on program
behaviour [59]. The problem occurs as a consequence of multiple replicas triggering redundant invocations
on the same shared objects, and would require special method invocation protocols such that multiple
identical invocations can bo detected by the invoked object [48, 121]. When a replicated invocation
is detected, the invocation must be executed only once by the object and the result from the method
invocation should be copied and passed back to all of the invoking replicas.

10.3.2 IExperiments with other transaction models

The proposed architecture is suboptimal for large scale systems, where synchronous updates are im-
practicable. Other, optimistic concurrency schemes could alleviate this problem. More specifically,
long-dhiration lransactions supporting shared locks would probably be more appropriate for applica-
tion classes such as CAD, software engineering tocls and CSCW [99]. However, automation of conflict
resolution should be studied more carefully in such scenarios, as it is essentially the lack of semantic
knowledge within the system support layer which malkes this problematical.

Access to object persistence technology would increase the viability of such experiments. Mosi, iinpor-
tantly, lower-level functionality for storing previously committed objccts are necessary to implement
optimistic concurrency schemes {55).

10.3.3 Higher level abstractions .

A poal in distributed systems is t0 make them at least as reliable as a centralised system. When the
system becomnes large, it would be very Inconvenient if o failure in a single machine implied 2 reduced
level of service in the rest of the system (see page 27).

For an application developer it would be useful if the level of availability could be indicated by the
application, and if a replication support facility was responsible for achieving this by usiig the nccessary
degree of replication and computation of (sub)optimal replica placement [114, 175]. The application
programmer will in many cases be unable to make a good judgement of the placement of replicas, due
o e.g. dynamically changing failure behaviour and object interdependencies [124]. However, making
availability guarasntees is difficult because the achieved level of availability depends on many factors such
as the probabilily of [ailures, system load, external events like power outages and other cnvironmentally
caused failures. A step on the way to achieve this would be to relieve the programmer from having to
indicate PLS names during the initialisation of surrogates {(cf. §7.4 p. 81). Rather, a pool of PEs could
be maintained hy system software which wonld perform the necessary analysis of the reliability of the
PEs to achieve the required availability. A good placement of replicas would also ensure a relatively well
shared load among the PEs in the network.

Reul applications will have different, requirements on the period of reliable operation. While some appli-
cations can safely be restarted occasionally, other applications might require continuous operation thus
necessitating automated replica reconfiguration {cf. §6.3.2 p. 70}. An important factor for such a scheme
is the frequency of attempted reconfigurations. A high number of replicas results in higher survivability,
but over-frequeng reconfigurations might be very costly. This tradeoff should probably he determined by
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the application programmer on the basis of the period of expected operation and the expected failure
rate among the replicas.

10.3.4 Exception processing in collators

The current archifecture does not support. the processing of exceptions from replicas. Solving thig prob-
lein could be done in two ways, both introducing some complexaties to the preseutly simuple collator
programming model:

1. Add exception handling in the collator itself. By restructuring the surrogate, a collator could be
made ‘responsible’ lor triggering remote invocations, and thus be able to handle exceptions from
these invocations directly. However, this approach would significantly complicate the programming
model of the collator as the collator now would have to include code for each remote object, Lype.
Collator reuse would also be complicated.

2. Extend the collator interface with new add methods to notify the collator aboul exceptions. The
main difficulty with this approach is the need to define a naming convention for matching the
new methods with particular programmer defined excoptions. This approach also significantly
complicates reuse, as different objects arve likcly to define independent. exceptions.

10.3.5 Protocol verification

The architecture, and in particular the serialisation protocol, should undergo a formal verification process.
The current protocols have only been subjected to informal reasoning and testing. Designing correct
protocols is extremely complicated as the state-space is very large, and there might be special failure
situations which trigger incorrect behaviour. A formal protocol verification process should be applied on
a realistic implementation of the architecture.

10.14 T'inal Remarks

T'his dissertation has verified the thesis underlying this work; partial system support for object replication
is feasible and such support assists the development of dependable distributed applications. The thesis
was proved by demonstrating Lhe usefulness of a prototype implementation of the proposed architecture.
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Appendix A

Designing Collators

This appendix presents the sample code for implementation of reusable collators as it has been used within
the prototype implemented in Modula-3. The presented code demonstrates the relatively simple pregramming
necessary to construct collators.

A.1 A Specialised Collator

The code below implements the interface for an asynchronous collator for integer types. This particular
collator is a specialisation of an abstract class IntCollator.T which defines template functions for the
methods init, prepare, add, addFailure and getResult. The abstract class is presented in the nexl
gection,

{*
File: IntFirstCollator.id
Documentation:
A specialisation of IntCollator. This one returns on first
result.
*)
INTERFACE IntFirstCellator;
IMPORT IntCellator;

TYPE
T <; Public;
Public = IntCollator.T OBJECT
END;

END IntFirstCollator.

The code below is an implementation of a specialised asyuchronous collator for integer types. Because
the abstract class IntCollator. T implements the necessary {uuctionality for the methods init, add and
getResult, only prepare needs to be implemented here. The class IntCollator. T implements a collator
which waits for all replies and returns a random reply. Therefore, only the munber of wanted replics necds
to be redefined through the prepare method.
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(*
File: ImtFirstCollator.m3
Documentation:
A specialised versiom of the IntCollator. This one
returns on the {irst reply. y
+)

2
2

MODULE IntFirstCollator; K
REVEAL
I = Public BRANDED "IntFirstCollater.T" DBJECT ]
OVERRIDES : |
prepare := Prepare; (= Only this method nesds a new implementation *)
END;

PROCEDURE Prepare(zself : T; nReplicas : INTEGER) =

(*
Documentation:
This method spocialised the method in IntCellacter se
as Lo retarn on the first result.
*)
BEGIN

LDCK self.m DO
self.nReplicas := nReplicas;
solf.nResultsHanted := 1;
END;
END Prepare;

BEGIN END IntFirstCallator.

A.2 A Basic Integer Collator

This section presents the code for a basic integer collator which could form the basis for a number of
different specialised collators, such as IntFirstCollator.T presented in the previous section. %

(*
File: IntCollatoxr.il :

Documentation:
A simple, generic, collator for integers which waits for all
results and raturns the first added.
*}
INTERFACE IntCollator;
IMFORT Thread, IntList;
EXCEPTION TooManyFailures;

TYPE
T <: Public;
Public = QBJECT
wm : MUTEX;
collecting : Thread.Condition;
Tesults : IntList.T;
nReplicas ; INTEGER;

nRaesultsAdded : INTEGER;

uResultsWanted : INTEGER;

nFailures = INTEGLER;
METHODS

init{) : T;

prepare(uReplicas : INTLGER);
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add{e : INTEGER) : BOOLEAN;
addFailure() :@: BOOLEAN;
getResult (O : INTEGER RATSES {TooManyFailures};
END;
END IntCollator.

(*
File: IntCollator.m3

Deocumentation:
Collects, manipulates and presents results fram replicated
invocations, This is a generic int~collator which waits for
all the results and returns the first.
*)
MODULE IntCollator;
IMPORT Inti.ist, Thread;

REVEAL
T = Public BRANDED "IntCollator.T" OBJECT
DVERRIDES
init := Init;
add := Add;
addFailure := AddlFailure;
prepare := Prepare;
getResult := GetResuli;
END;

PROCEDURE, Tuit(self : T) : T =

BEGIN
self.m := NEW{MUTEX);
self.collecting := NEW(Thread,Condition);
self.results := NEW(IntList.T);
self .nReplicas := 0;
self .nResultsAdded := Q3
self.nResultsWanted := O;
self .uvFailures := 0;
HETURN self;

END Init;

PROCEDURE Prepare(self : T; nReplicas : INTEGER) =
(*
Documentation:
Default is to wailt for all the replies.
*)
BEGIN
LOCK self.m DO
self.nReplicas := nReplicas;
gelf . nResnltsWanted := solf.nReplicas;
END;
END} Preparc;

PROCEDURE Add(self : T; e : INTEGER) : BOOLEAN =
(*
Docunentation:
Adds e to the collection of results gathersd from the replicas,
Returns TRUE iff this was the last resnlt needed.
*)
BEGIN
IF self.nReplicas < 1 THEN (% TRUE before prepare is called %)
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I.OCK self.m DO
WHILE self.nReplicas < 1 DD
Thread.Wait (self.m, self.collecting);

END;
END; (* lock %)
END;
IF self._nHesultsiAdded = self.nResultaWanted THEN
RETURN TRUE;
ELSIF (self.nResultshAdded + self.oFailures + 1) >= self.nReplicas THEN
(*
If we can be sure that too many failures have happended
already so that adding another result doesn’t matter.
¥)
RETURN TRUE;
ELSE
self.results := IntList.Cons(e, self.rasults);
TNC{self.nResultsAdded);
RETURN TRUE;
END;
END Add;

PROCEDURE AddFailure(self : T} : BOOLEAN =
(+
Documentation:
The parallel rpc reports failures to the collator. In case
the number of failures is teoo high to allow for normal
result processing, TRUE is returnsd.
*)
BEGIN
INC(self.nFailures);
IF self.nFailures + self.nResultsAdded >= self.nReplicas THEN
RETURN TRUE;
ELSE
RETURN FALSE;
END;
END Addlailure:

PROCEDURE GetRasult(self : T} : INTEGER RAISES {TooManyFailures} =
{%
Documentation:
The prucedure returns the processed result. The exception
TooManyFailures is raised appropriately.
*)
BEGTN
IF self.nResultsWanted > self.nResultsAdded THEN
RAISE TooManylailures;
END;
RETURN IntList.Nth(self.results, 0);
END GetResult;

BEGIN (* Module initialisation #) END IntCollator.
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Appendix B

Probability Formalism

A smalt amount of probability calculation is used throughout this dissertation. This appendix presents the
formalism used and contains a discussion of availability in majority locking schemes,

B.1 Probability

The probability that an event A will occur in a certain period is denoted P(A) where 0 < P(4) < 1. A
value of zero means that the event never occurs, and a value of one means that the event certainly will
oceur. The probability P{—A) that an event A will not oceur is found by: P(—-A) = L — P(A).

If A and B are independent events, i.e. the occurrence of A does nol alfect the probability of B (and
vice versa), then the probability of both events occurring is the prodnct, of their probabilitics:

P(A4 and BB) = P(A) - P(B) (B.1)

The assumption of independent events is in some cases inappropriate (e.g. see §3.2.2 p. 32) and must be

considered i each case.

If the probability P(A) of event 4 per unit of time is much less than one and A is memoryless', then the
mean time to event A is:

1

MT(A) o)

(B.2}
If events A, B, ¢ have mean time MT{(A4), MT(B), MT((") then the mean time to the first one of the
threc events P(I7) is (using cquation B.2):
1
IR W |
MT{AY T MT{E) T MT{CY

MT(F) (B.3)

The MTTF rating for a component is the rmean lime to failure, i.e. the predicted time before the first
failure. Using equation B.3 above; given n components 4, statistically independent and with the same
MTTF rating, MTTF,, the mean time o the first failure event MTT Fypipgy s

MITF,4

MTTF],'”; ~
i

(B.4)

LAn event A is memouyless if the event s just ay likely to occur very shortly as il is Lo oceur in a Jong time, Reliability
madels of computing equipment normally makes this assamption.
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B.2 Availability of Majority Locking Schemes

Although majority locking may appear rather restrictive, it gives rather good availability in some config-
urations. The availability A, of a majority locking scheme can he detexmined as follows. To be available,
the scheme requires cooperation from at least | ] -+1 replicas, or that at most [ 1] - I replicas are failed
(7 faiteq in the formula). If the replicas’ failure modes are independent, the probability P of availability
can be determined using a binomial distribution function. Summing this function over the range of valid

numbers of failures gives the probability that the majority scheme is able to find enough replicas among

the n replicas.
Niailed i
P = ' 3 _ n--i B.5
; (n)P (1-p) (B.5)

The formula assumes that each replica fails with a probability p, and that their failures are independent.

If calculated for a selection of p and n it becomes clear that the scheme does achieve relatively good
avaitability for quite small values of n, even though the availability is poar for n. < 3.

n\p | 0.00 0.05 0.1 0.2 0.3
[ .00 |69 0.9 0.8 0.7
20,9801 0.9025 0.81 0.64 0.49
37 710.999702 | 0.99275 | 0.972 0.806 0.784
4 | 0.999408 | 0.985981 | 0.9477 0.8192 0.6517
5 [0.99999 | 0.9938842 | 0.99144 | 0.91208 | 0.83692
10 |[~1 0.999936 | 0.998365 | 0.967207 | 0.901191
i5 |~ 1 ~ | 0.999966 | 0.99576 | 0.937625
20 | =1 1 0.999993 | (.999769 | 0.959723

Figure B.1: Failure resilience of majority voting scheme, calculated with six digits accuracy.

As an example uf how this would affect the availability of a real systeni, consider the following scenario:

A distributed group scheduling application running on a workstation depends on a non-replicated service—

on another workstatiou to function correctly, for example a mailservice. Assume the workstation running
the tailservice is slightly unreliable, perhaps it is also used for software development or other computing
intensive tasks and is therefore commonly overloaded, and that it usually runs for 10 days before crashing,
This gives an approximate probability of failure on any given day of le- = 0.1 (using eq. B.2).

Such high probability of failure might not be appropriate for such applications. By replicating the
mail-service onto e.g. 5 workstations with the same reliability, and using a replication scheme based
on majority locking for serialisation, the probability of failure (i.e. unavailability) would be reduced to
1 - 0.99144 ~ 0.009. The application could now, again ignoring other failures, achieve an MTTF of
approximately 111 days.
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