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ABSTRACT

Because of a high level of activity in manned space missions and 
hypersonic transport the ideas on waveriders are currently of great 
interest. Waveriders have been regarded as the best shapes for space planes. 
This derives from their high lift capability which will enable the vehicle 
to slow down at high altitude thus helping it alleviate the kinetic heating 
problem. The present study reports on the advantages of waveriders for their 
application to space plane shapes. The advantages of selecting waveriders as 
lifting shapes is attributed to their flow simplicity by using shapes 
defined inversely from a two dimensional flow as a basis of their 
construction. For these deceptively simple shapes initial estimates of the 
aerodynamic properties can be made through in viscid flow calculations. A 
historical preview of waveriders suggests that viscous effects are very 
important for accurate prediction of flowfield around these shapes. However, 
these effects were not included in the course of development of these 
shapes. In this study along with the classical theory of waveriders 
viscosity effects on the waverider design are highlighted. Also emphasised 
are the important relevant factors in hypersonic flow and the advantages of 
applying computational fluid dynamics (CFD) for simulation of the flowfield 
as compared to analytic and experimentation method.

In the past, work has been reported on the inclusion of viscous effects 
by using the boundary layer for the viscous correction. The present study 
shows that, in the presence of strong viscous-inviscid interaction, viscous 
effects from these applications can only be reliably predicted using 
solutions of the Navier-Stokes equations. Based on this strategy numerical 
solutions of the Navier-Stokes Equations were applied to different waverider 
shapes to highlight the importance of viscous effects. Since the flow on 
typical waverider shapes is near conical, then a locally conical 
approximation was used for two reasons: it simplifies the problem from a 3-D 
to a 2-D one without compromising significantly accuracy ; it reduces the 
requirement of computing resources in terms of processor time and storage.

Application of the Navier Stokes equations in locally conical form 
(LCNS) to simulate the flow around idealised waverider shapes revealed 
interesting off-design flow behaviour for on-design flow conditions.



Sensitive effects on performance due to off-design behaviour are observed 
for caret wings. Results are obtained for 4 cases of caret wings optimised 
for free stream Mach numbers of 1.44, 1.74, 2.51 and 4.93 and 3 cases of a

o o o
cone-wing configuration at Mach 10 with angles of attack of 5, 10 and 15. 
For caret wings results show how viscous effects have significant influence 
even at low Mach numbers. Flow simulation of these cases illustrates the 
advantage of using CFD on these shapes and shows how incorporating the NS 
equations provides a powerful tool to explore in detail waverider 
aerodynamics in on-design and off-design operation. Results also show how 
suitably it can deal with shock-shock, shock-boundary layer and shock vortex 
interactions, simultaneously. Also predicted was the effect on heat transfer 
due to the change in angle of attack of the shape.

As cai*et wing and wing-cone combinations are thought to have limited 
applicability for practical aircraft shape the studies were extended to more 
general shapes. This study is the first to deal simultaneously with general 
shapes derived from both conical and wedge flowfields. General 
conical-derived shapes were constructed through a numerical approach based 
on flow around a cone using the Taylor Maccoll theory. For a general 
wedge-derived shape the base flow was the flow behind wedge induced oblique 
shock waves. Comparisons were made to evaluate the advantages and 
disadvantages of each type of configuration generated. Results were 
discussed in the light of numerical prediction and experimental results 
published in the literature. It was recognized that if volume constraints 
are relaxed, then, there are some considerable advantages in using wedge 
flow as a basis, instead of conical flow. Also it was shown that a change in 
only the leading edge shape can considerably improve the performance 
characteristics of waveriders. Furthermore a wedge-derived waverider 
provides a higher lift than an equivalent cone-derived one and also at 
off-design conditions a wedge-derived shape shows less sensitivity than its 
conical counterpart.
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NOMENCLATURE

A,S =area.
A ,S =planform area.

p p
A ,S, =base area.b b

^coefficient of friction.
C^ ^coefficient of drag.

=coefficient of lift, 
c^ =coefficient of pressure,
e = total internai energy.
D =drag.
e ,e ,e =basis unit vectors in Cartesian co-ordinates.

X y z
e^,eQ,e^ =basis unit vectors in spherical co-ordinates. 
F =flux vector in 0 direction.
G =flux vector in (p direction.
H =source term vector.
Kq =Hypersonic similarity parameter,
k =thermal conductivity.
L =lift.
L/D =lift to drag ratio.
M =Mach number.
N =Normal force,
p -pressure.
Pr -Prandtl number, c^p/k.
q -rate of heat transfer.
R -gas constant.
Re  ̂ -Reynolds number = p_V  r/u .CJÔr >̂00 00 ^00
r -radial coordinate.
s/1 -sem i span to length ratio.
T -temperature,
t -time.
U -conservative vector,
u -velocity,
u ,V -velocity in radial direction.
U0,V0 -velocity in 0 direction. 
u^,V ^ -velocity in (p direction.
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=mean molecular speed, 
-angle of attack.
=shock deflection angle. 
= ref fig(2.3).
-ratio of specific heats = "p/q  =1.4

-increment.
=boundary layer thickness.
-forward and backward difference operator.
-cone angle, coordinate or wedge and body angle (0^). 
=sweep back angle.
-viscosity.
=Mach angle.
-density.
-stress tensor.

=volume parameter (x=V/F), F=S 
-coordinate.
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-viscous interaction parameter-M 

-design value of (p-0).

C P F
where, C
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Subscripts
b
c
e
fs

id
le
max
s
w

Superscript

=values on the body.
-values on cone surface or on compression surface, 
-values outside boundary layer w.r.t. reference condition, 
-stream line value.
-values at (r,0.,(p.).
^leading edge 
^maximum value.
=values at the shock.
-conditions on the wall.
-free stream conditions.
=stagnation value.

-time level.
=value at reference point.
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INTRODUCTION

1.1 Space Planes

With the success of man’s dream towards conquering space and the 
prospect of manned orbital operation by Space Shuttle, the interest in 
developing hypersonic aerospace vehicles has grown and now terms and 
concepts such as AOTV’s (Aeroassisted transfer vehicles), US Space Station,
SDI, Orient Express, ICBM’s, NASP have become accepted because with present 
day technology, achievement of these goals may seems difficult but aie no 
longer impossible. Today it is a matter of time for space scientists to 
overcome these challenges and they are very near to demonstrating their 
ability to reach into orbit or space in a single stage by taking off and 
landing from a conventional runway. Two of the important programs of this 
kind are the US National Aerospace Plane (NASP)[i] and the British 
Horizontal Take Off and Landing Space Shuttle (HOTOL)(fig( 1.1 ))[2]. NASP is

. Î

an ambitious attempt to fly 25 times faster than the speed of sound and to 
demonstrate single-stage-to-orbit operation. |

I
Hypersonic programs in the broadly defined environment can be 

classified into different engineering systems. All these systems can be 
classified under different envelopes of the hypersonic regime from M>5 to 
M=co and are affected by the vehicle scale and angle of attack. This is 
because the angle of attack defines the fundamental relationships between 
the levels of pressure drag and viscous drag forces. Systems designed for 
high lift to drag ratio (L/D), normally operate at lower angle of attack 
where viscous effects are dominant. Whereas, low L/D systems are pressure 
dominant and operate at high angle of attack. Also, a  along with vehicle 
scale determines effect on boundary layer transition.

The angle of attack also impacts on the relative importance of real gas 
effects on both the aerodynamics and material aspects of the configuration.
For an equilibrium flow a significant loss in static pressure and would 
result due to dissociation of molecules (during re-entry Oxygen dissociates 
at M=7 and Nitrogen at M=12). This dissociation could partly be prevented by 
flying at high altitudes where this reaction occurs so slowly that flow is
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effectively frozen. But, partial lift can also be regained by increasing a , 
because for a real gas, plane shocks remain attached at larger incidences 
than for a perfect gas.

Several fundamentally different hypersonic systems operating within 
this environment are categorised as followsp].

Ballistic Systems employed by the Departments of Defense.

These are generally dominated by turbulent flow and high degree of 
interaction between the imposed heating and materials response. Although 
they have generally geometrically simple configurations, three dimensional 
effects are strong.

Manoeuvring re-entry vehicles.

These integrate the features of a ballistic system with the 
manoeuvrability of a lifting body. Manoeuvring is employed for both terminal 
evasion and as a means of improving overall system accuracy.

a. Terminal evasion may be required to enhance penetration against a 
potential adversary system.

b. System accuracy can be improved by performing navigation updates, 
either prior to or during re-entry and their manoeuvring to 
correct for trajectory errors experienced during the earlier 
flight phase.

Low lift to drag lifting systems.

These systems are typified by a small contribution of viscous effects 
on the aerodynamics and aerodynamic heating of the vehicle.

The L/D of a system is directly related to the angle of attack of the 
configuration. For example low L/D shapes operate at high angle of attack. A 
typical example of this is shown in fig(1.2). The Space Shuttle operates at 
40*̂  angle of attack during the majority of the re-entry trajectory. At these 
high incidences, and at velocities of orbital entry, chemical activity



Fig. 1.2 SV5-D, Low lift to drag lifting system. [3?
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within the local flow field is created on the large blunt nose of the 
configuration and sustained by the lower surface of that class of 
configurations. Chemical effects ai*e important in this class.

High lift to drag lifting systems.

High L/D lifting systems operate at lower angles of attack and are 
dominated by viscous contributions to the overall drag equal to or higher 
than the corresponding pressure contributions. As a result, developmental 
wind tunnel testing requires a higher accuracy of flight simulation.

High L/D configurations demand very small blunt nose shapes in order to 
reduce the drag and thus generate the required aerodynamic characteristics. 
The result is that the amount of high energy, chemically active flow 
processed is very small and the degree of chemical activity cannot be 
sustained by the very low angle of attack surfaces of the configuration. 
Fig(1.3) and fig(1.4) indicate designs of hypersonic high L/D vehicles.

Aerodynamic Orbital Transfer Vehicles (AOTV’s)

These operate in a confined velocity range bounded by the orbital 
velocities of the initial state (normally a high energy stationary orbit) 
and a low energy low earth orbit. Examples of this kind are shown in fig 
(1.5) and fig (1.6). These are low L/D configurations with substantial 
chemical activity and that chemical activity consists both of chemical 
dissociation (indicative of orbital entry conditions) and ionization which 
is indicative of higher temperature reactions at velocities in excess of 
those for low earth orbit.

1.2 Importance Of Lift & L/D Ratio in Space Plane Shapes.

Common to all the above space mission concepts it is identified that 
for practical hypersonic flight, although all the subsystems of the vehicle 
e.g., propulsion, structural, flight control and thermal protection system, 
contribute towards its performance, a major part is played by an optimum 
aerodynamic shape to obtain the best aerodynamic results (i.e., a shape 
which could give high lift to drag ratio at high C^). Such a shape can be
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Fig. 1.5 AOTV ( Aero Orbital Transfer Vehicle )[3].
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advantageous in hypersonic flight because it gives long range, good 
manoeuverability, high cross range for re-entry and, most important, 
potentially lower heating.

In general most space planes are designed for high lift and low drag. 
High lift provides a vital advantage to supersonic vehicles because if the 
amount of aerodynamic lift is sufficient to overcome the gravitational force 
then thrust is required only to overcome the drag. Secondly high lift, as 
opposed to high L/D ratio, allows the configuration to decelerate at a 
higher altitude for the same velocity.

1.3 Why Waveriders ?

For Space Plane shapes, besides high lift and low drag, it is also 
desirable to provide some useful volume for payload, fuel and equipment. The 
advantages of achieving high lift are discussed in the previous section. 
Since the late sixties much of the work in the context of hypersonic 
re-entry vehicles in America [4],[5] can be related to the modification of 
the present shape of the Space Shuttle orbiter. In studies in Europe, more 
emphasis has been placed on providing concavity on the lower surface instead 
of convex or flat bottomed space craft. In this context Nonweiler first gave 
the concept of a delta wing whose under surface is not planar but has an 
inverted V or anhedral cross-section of such a form that at the design Mach 
number and incidence the shock waves formed are planet6],[7].

The disadvantage of flat bottomed or convex wings over anhedral wings 
(fig(1.7)) is that for the former case there is a considerable cross flow 
beneath the wing and the streamlines are curved away from the center line 
where pressure is maximum which results in spillage ai'ound the leading 
edges.

Hence if a wing can be made in which diverging flow or spillage can be 
avoided, by having the shock wave attached to its leading edge then at the 
design Mach number it will have an isobaric under-surface. Furthermore the 
prediction of the flow will be simple to handle through shock expansion 
theory. Construction of such a wing in its simplest shape is known as the 
Caret Wing or simple waverider and in this form it can be constructed by

4



Fig. 1.7 Disadvantage o f flat bottom or convex wings over anhedral wings, 
(flow spillage from convex and flat bottomed vehicles.)



defining[6] a shape composed of streamlines put together from known exact 
solutions of in viscid flow equations.

Broadly speaking the term waverider is not restricted to the caret wing 
but can be used for all such optimum shapes derived on the above principles 
whether the basic flow is wedge or cone derived. Also, it is observed that 
the vehicle having recessed lower surfaces can provide, at a given incidence
and Mach number, values of C substantially higher than convex or flat
bottomed surfaces. The explanation for this is that at their design 
conditions they produce a stronger shock attached to the leading edge with 
full containment of flow thus resulting in high lift and less spillage.

As pointed out earlier besides the advantageous requirements of 
achieving high lift, lower drag and high lift-to-drag ratio another
requirement for high speed vehicles is to overcome the problem of heat 
transfer. An important aspect of waverider application is the overall
reduction in heat transfer

a: At the stagnation point, since, at a given wing loading, flight
speed and L/D ratio, deceleration will occur at high altitudes and, 
hence, at given flight speed ambient air density is reduced.

b: On the lower surface since, at given flight speed local flow
velocities will have been reduced by the stronger shock, in
comparison to that on a conventional body, hence, low convective 
heat transfer.

c: Since, heating which is directly proportional to the square root
of density can be minimized by reducing the wing loading (W/A) and 
increasing (as long as the C^increase does not decrease the 
heating at a rate greater than corresponding decrease in density).

1.4 General features of Hypersonic Flow.

Problems for hypersonic flow differ in many aspects from normal flow 
problems due to the flow complexities involved. These complexities are 
caused due to the variation of properties for different paiameters at high 
velocity and at high altitude where the density hence Reynolds Number is 
low, therefore the boundary layers are thick.



One of the basic properties of hypersonic flow is that it is nonlinear,
different from subsonic flow. Some of the basic differences are highlighted
in fig(1.8-1.10). Fig(1.8) shows the contrast between the random energy
(K.E. due to molecular motion of a gas = ima^, since, ^  =a, the mean

1 2molecular speed) and ordered energy ÿ^mV (due to mass flow rate). It reveals
2 2that for subsonic flow random energy (a » V  ) dominates whereas for 

hypersonic speed ordered energy (V^»a^) is higher. The ratio of ’ordered 
energy/random energy’ is obtained from energy equation

C T + — = const.
' 2

which on re-arrangement gives --------  H----= const. The ratio of these two
Y - 1 2

terms is then

y  I _ l_ l  = for Y = 1.4.
a^ 2 D

Also in subsonic flow it is the size of the wake which determines drag 
whereas for hypersonic flow it is the size of stagnation region which 
determines drag (fig(1.9)). And to generate lift for subsonic flow it is the 
upper surface which is important whereas in hypersonic s the high lower 
surface pressure produces the lift and the upper surface is of little 
significance(fig( 1,10)).

To have a good picture of hypersonic flow theory it is useful to 
examine the flow fields qualitatively as they appear in observed flows. The 
distinction between the flow around a blunt body and slender body is shown 
in f ig ( l.l l)  and fig(1.12). Whatever the shape of the body, it has been 
observed that there is a strong fore and aft symmetry in the flow pattern, 
and the flow field is always completely undisturbed upstream of the body to 
within a very short distance of the surface of the body.

The front of the body is enveloped by a shock wave which diverges as it 
extends downstream. The flow in front of this shock is undisturbed and the 
flow field of interest lies entirely behind the shock. The important field 
of interest is the flow field between the shock and tlie body. One thing that 
can be noticed from the figures is that the degree of inclination of 
surfaces in the flow field to the oncoming stream is very significant. The
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Fig. 1.8 Impact theory for subsonic aid hypersonic cases.
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Fig. 1.9 Comparison of aerodynamic drag.

P R E S S U R E  D IS T R IB U T IO N

a. Subsonic (M <  < 1) 

Upper surface produces lift.

P R E S S U R E  D IS T R IB U T IO N

b. Hypersonic (M >  >  1) : 
Lower surface produces the lift.

Fig. 1.10 Aerodynamic lift

Ga



R E C O M P R E S S tO N  S H O C K

BOW SH O C K

e x p a N s i o N  f a N
R EA R  SH O C K

ST A G N A T IO N  P O IN T

I
^  B O D Y  \

T U R B U L E N T  WAKE .

S O N IC  U N E

Fig. 1 .11 Circular cylinder with flat face forward in air at 3

S H O C K  WAVE C L O S E D  TO  T H E  BODY

Fig. 1.12 Flow around slender body at high Mach number M„ =  9.6



enveloping shock lies very close to body surfaces which has a sufficiently 
large positive inclination to the free stream direction. The region between 
the body and the shock is termed the shock layer. No shock lies near body 
surfaces which have an appreciable negative inclination. The pressure on 
such surfaces are much less than those found in the thin shock layer, 
although usually greater than the pressure in the free stream. Far 
downstream of the body the shock wave becomes weak. A wake is observed 
directly downstream of the body. The diverging shaped relatively weak shock 
far downstream is termed the shock tail.

Within the shock layer the pressure and temperature are very much 
greater than in the free stream, with no limit on ratios of these quantities 
across the shock with increase of Mach number. And although the density is 
appreciably greater than in the free stream, the density ratio across the 
shock is limited to finite values with increasing Mach number. If the 
temperature of the freestream is of the order of the body, at high Mach 
numbers, the recovery temperature or enthalpy will be very high resulting in 
a heat transfer from gas to body.

Hypersonic vehicles generally fly at high altitudes where densities and 
hence the Reynolds Number is low, and therefore boundary layers are thick. 
Moreover the boundary layer thickness on slender bodies is approximately 
proportional to M ^, hence the high Mach number further contributes to the 
thickening of the boundary layer. In many cases, the boundary layer 
thickness is of the same magnitude as the shock layer thickness as shown in 
fig(1.13) at M^=36. Here the shock layer is fully viscous, and the shock 
wave shape and surface pressure distribution are affected by such viscous
behaviour this phenomena is also known as viscous interaction. This can
be clearly observed in fig(1.14) where viscous interaction occurs on a flat 
plate. For comparison see fig( 1.14a) which shows no viscous interaction and 
the pressure remains constant over the whole surface of the body. For 
in viscid flow assumptions this may be true but in reality there is a 
boundary layer which deflects the external inviscid flow, creating a 
comparably strong curved shock wave which curves downstream from the leading 
edge (fig(1.14b)). Thus in addition to influencing the aerodynamic force, 
such high pressure increases the aerodynamic heating at the leading edge.

7
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1.5 Hypersonic methodology and CFD.

From the dawn of manned flight, aerodynamic testing played an important 
role in the development of aircraft, missiles and space crafts. The 
significance of aerodynamic testing and acquisition of aerodynamic data for 
design purposes played a key role in further development and modification of 
these shapes.

The history of testing goes back to the Wright Brothers who after 
performing tethered and gliding flights developed wind tunnels and completed 
their wind tunnel program before constructing the prototype. Testing for 
high speed or supersonic flow can be traced to the Germans who during World 
War II used supersonic wind tunnels to design V2 Missiles. But at that time 
these facilities were barely adequate to provide the aerodynamic inputs 
needed to design these missiles. For developing very high speed (hypersonic) 
flight, even until the launch of first Russian Satellite Sputnik in October 
1957 and first Atlas booster by USA in December 1957, wind tunnels working 
in the range of Mach 20 were not available and most of the atmospheric 
re-entry heating data acquisition were dependent on small shock tubes and 
laboratory experiments.

Until the early fifties for hypersonic flow studies, scientist believed 
that there is no essential difference between M = 2 and M = 10, any more 
than there is between subsonic and lower subsonic (e.g., 50 ft/sec and 500 
ft/sec).

Believing the said analogy and following supersonic designs for the 
development of hypersonic cases was probably responsible for some delay in 
the initial progress in this field. And as time progressed it became clear 
that hopes for objectives of high Mach number and hypersonic velocity 
duplication over a wide range of Reynolds number would be impossible to 
achieve. Besides this experimentation in this regime is time consuming and 
expensive, and thus development of several specialized devices was required. 
Moreover it was lately realized that hypersonic behaviour is different from 
subsonic and supersonic flow and more sophistication is required for this 
case as compared to traditional subsonic and supersonic testing. Also more



care is required in the interpretation of this data.

In the 60’s with the start of the race to land a man on Moon (from May 
25, 1961) interest in this field arose. During this decade different series 
of projects such as Mercury, Gemini and Apollo were can led out. The review 
of Gemini and Apollo data indicates that, in some cases, provided the 
measurements are carefully interpreted, hypersonic force and stability data 
(including viscous drag) may be obtained to good accuracy on the basis of 
Reynolds number, Mach number or other appropriate similitude up to a 
particular range. But in most cases all aerodynamic characteristics are 
necessarily susceptible to the particular simulation environment, e.g., the 
production and scaling of real gas phenomenon, such as dissociation and 
ionization in the model flow field including wake, may require duplication 
of actual flight conditions. For heat transfer coefficients, comprising 
convective and radiative components, which are a function of thermodynamic 
equilibrium and temperature, may sti'ongly depend on actual flow enthalpy and 
density. The sensitivity of base pressure to real gas effects under 
thermodynamic equilibrium indicates that, at M = 20, and 80,000 ft altitude, 
base pressure was estimated to be 2.3 times larger than for ideal air flow 
where y=1.4.

Other complex flight phenomena required to be simulated include 
roll-pitch or spin-yaw which demand the duplication of the ablation effect 
and model dynamics at hypersonic speed and calls for high sophistication in 
design of experimentation and instrumentation.

Although ground test facilities are in their evolutionary mode and 
there is a consistent development of wind tunnel facilities, still each type 
of facility carries a number of limitations. Some of the conventional and 
high performance wind tunnels used in this regard are

a: Conventional ( conventional continuous, blow-down wind tunnels, 
nitrogen, arc jet wind tunnels, helium wind tunnels).

b: High performance short duration tunnels (free piston compressor wind 
tunnel, gun tunnels, long-shot tunnels, slow piston compressor tunnels, 
shock tubes etc.)



Of these wind tunnels conventional hypersonic wind tunnels and free 
piston compressor tunnels are developed for relatively long duration 
operation, from continuous down to 0.1 sec and with air at condensation free 
conditions up to about Mach 15. The upper limit of their Mach number, 
Reynolds number and enthalpy or test section velocity performance aie 
governed by factors such as:

(i) The capability of the heating technique to achieve high 
temperature;

(ii) The very large energy level required for long duration 
operation at a high enthalpy and pressure;

(iii) Excessive heat losses sustained over long period of time;
(iv) Difficulty in preventing nozzle throat erosion due to long 

flow duration; and
(v) Structural restraints on the maximum stagnation pressure.

Although it had been claimed that some of these limitations including 
Re-M duplication had been overcome by the development of shock tube and 
similar short duration facilities but still it failed to provide the 
velocity and high Reynolds number experienced in atmospheric re-entry. Also 
during re-entry, velocity characteristics of ballistic and space flight at 
23,000 ft/sec, exhibit significant thermochemical kinetic effects such as 
(non-equilibrium) dissociation and ionization in the flow field, duplication 
of which is very difficult in ground tests.

Development of test facilities to improve its performance brought 
another constraint whereby the inverse relation between performance and test 
duration is expected. So, to resolve the attainment of high Mach numbers and 
Reynolds number, flow velocities and enthalpies meant increases in test flow 
energy flux, test section size, stagnation pressure and temperature. All 
this could only practically be realised through the reduction of test time 
because large test flow power levels could be achieved for only very short 
periods of time through the application of energy storage in thermal, 
chemical, kinetic or electrical form. Therefore the testing time for 
recently built wind tunnels is very small, (of the order of fractions of 
seconds). In all different hotshot, longshot and shock tunnels the operating 
period is from 100 to 1 msec range.
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This high performance at very small testing time intervals poses
another question Is it feasible to compare the data acquired by wind
tunnel to the actual flow ?

Thus in view of above discussion there are difficulties in obtaining 
reliable hypersonic data from ground testing because the accuracy of results 
is related to the large number of similarity parameters which, ideally,
should be satisfied, in simulation. So it appears that wind tunnel 
facilities have limitations for further development, and other techniques 
including free flight options may be required to reach the high velocity and 
low altitude chaiacteristics of hypersonic vehicle trajectories of interest.

One such technique which has potential in making progress in the
understanding of the physics of fluid follows from the advent of modem
computers. This approach is called CFD (i.e., Computational Fluid Dynamics).

CFD can be defined[io] as the numerical solution of a set of partial 
differential equations which describe the fluid motion by applying the laws 
of conservation of mass, momentum and energy to evaluate the flow parameters 
of pressure, density, temperature and velocity vectors etc. These equations 
are non-linear in nature and are difficult to solve analytically. 
Numerically these are solved on a computer at a finite number of discrete 
points in the flow field by defining an arranged computational grid.

Until the start of the 60’s computational methods were rarely used[ii) 
in aerodynamic analysis. The primary design procedure for the development of 
aerodynamic configurations used to be through the use of the wind tunnel 
along with an analytical approach. Shapes were tested and modified in view 
of pressure and force measurements and flow visualization techniques.

During the last two decades revolutionary changes[i2] in the power and 
performance of the computer (fig(1.16)) have been achieved and it is 
beginning to be realized that CFD can be used as a primary instead of a 
secondary source of data acquisition, to achieve accurate simulation of flow 
conditions in flight.
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Flow simulation in wind tunnel is limited, and is especially difficult 
at hypersonic speed (as discussed earlier) due to many factors like exact 
duplication of pressure, velocity, Reynolds number, model size and type of 
atmosphere in the wind tunnel whereas computers have none of these 
limitations. Computationally it is possible to achieve a simultaneous 
solution for air density, flight velocity and vehicle scale all at one time. 
For hypersonic flight, with the fundamental inability of wind tunnels and 
shock tubes to simulate high temperature real gas effects, computers are 
becoming the primary and wind tunnel/shock tubes the secondary provider of 
flow simulations.

Another objective for the application of CFD is to shorten the 
aerospace vehicle design cycle and to improve the potential performance of 
new vehicles. CFD methods can compress the design cycle by avoiding the time 
and expense associated with experimental design methods. To quote a few 
examples, results for a generic Mach 3 transport aircraft were obtained in 
just 2 hrs on a Cray 2 Supercomputer. Comparison of these results with wind 
tunnel data showed an impressive accuracy for lift and drag co-efficient at 
different angles of attack.

Contrary to all wind tunnel limitations, in the past, aerospace vehicle 
design has been considered as an evolutionary process and most progress has 
been based on the prior experience and data available from the wind tunnels. 
But now with the availability and emergence of CFD as a powerful tool, it 
has established its importance in aero design procedure. Therefore now 
analytical and experimentation are not the only tools used for design. 
Rather there are three basic tools[i3] used for any flight vehicle design 
process. These are analytical methods, computational procedures and 
experimentation.

Amongst these, analytical methods give very quick and closed form 
solutions but they have limitations of restrictive assumptions and can deal 
with ideal cases of aerodynamics only. Similarly in the case of 
experimentation, representative or actual configuration can be tested and 
representative or complete aerodynamic data can be produced. But 
experimentation is costly both in terms of model and testing conditions.
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Relative to these, computational procedures require very few 
restrictive assumptions and can be applied to very complicated 
configurations as well. Additional to this, they are beginning to have few 
limitations of Mach number or Reynolds number, so they result in a complete 
surface and exterior flow field definition. Also they are beginning to be 
far more cost effective than wind tunnel testing.

The principal application of computational simulation is towards the 
design of an aircraft. Many activities that take place in an aircraft design 
project can be summed up as being part of a basic process loop in three 
steps.

1. Configuration definition
2. Data acquisition
3. Evaluation.

Computational aerodynamics has affected this process loop by providing
1. A new means of data acquisition.
2. Executing the design loop in an inverse manner 

through proper use of effective computational codes.

1.6 Historical Preview of Waveriders

The V2 rocket started the race to dominate space and with that came the 
need to tackle problems of hypersonic flow. Therefore to orbit the earth and 
to take man into space, different space plane shapes were considered. It was 
during this evolutionary period that a considerable emphasis was made on 
slender wing body combinations to achieve high lift with an optimum L/D 
ratio.

All this was based on a simple principle that in order to achieve a 
high lift the components of an aircraft should be individually and 
collectively arranged to impart the maximum downward and the minimum forward 
momentum to the sunounding air. This can be accomplished simply by 
adding [14] a delta wing to a cone and extending its leading edge forward to 
the shock wave to preserve momentum (fig 1.17). A further increase in lift
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can be achieved by deflecting the wings downward (fig 1.18). The advantage 
of such drooping tips apart from high lift is directional stability and 
control.

The idea of achieving high lift was further refined by Nonweiler. For 
waveriders Nonweiler[6,7j considered first the idea of caret shaped wings 
for lifting bodies and showed that the flow around these can be calculated 
by simple 2-dimensional wedge flow. These delta or caret waverider wings 
whose upper surface is composed of a free stream surface and the lower 
surface has an inverted V or W, have a cross section of such a form that at 
the design Mach number and incidence any shock waves formed are planar (fig 
1.19).

Criticisms were made about these shapes, such as the need for a long 
under carriage due to anhederal, increased wetted area and less volumetric 
efficiency. Flower[i5] later tried to tackle some of these problems and 
extended Nonweiler’s method for designing caret wings giving some 
considerations to defining the upper surface and free stream surfaces. In 
his study he deduced appropriate shapes by constmcting the upper surface 
from a Prandtl Meyer expansion joined with the lower compression surface. 
Different shapes were yielded such as the X-Delta and Y-Delta shapes as 
shown in fig (1.20).

Some further research about this has been caried out by Roe[i6,i7] and 
Squireiis]. The Squire suggestion resulted after comparisons were made of 
the lift of flat delta wings and waveriders at high angles of incidence and 
high Mach number. He supported the case that for the lifting reentry 
situation caret wings have more favourable characteristic for producing high 

than those for flat delta wings with the same ratio of lift to drag. 
Therefore at a given Mach number and wing loading, they can re-enter at 
higher altitudes resulting in a reduction in stagnation point heating rate. 
Also thin shock layer theory was advocated to have produced the exact 
prediction of the aerodynamics of caret wings at design conditions. Squire 
also pointed out some off design behaviour for caret wings.

Some relevant experimental data regarding caret wings can also be found 
in ref[i8] and ref[i9].
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But as all these shapes derived from 2-D flow generally have flat 
surfaces and sharp comers so criticism has become more severe when such 
differing factors as viscous and heating effects are considered. These are 
very influential on vehicle design at hypersonic speed. It was then 
considered that curved surfaces could be designed in a similar fashion to 
those utilized for flat surfaces generated by 2-D wedge flow, by using the 
stream surfaces in conical flow thus revealing features of more usable 
volume and less wetted area. Flow around such cone generated surfaces derive 
from studies by Jones and Wood[20], Jones, Roe and Pike[2i], and L.C. 
Squire[22,23]. Also Rasmussen[24], Kim[25], Bowcutt and Anderson[26] carried 
out research on conical flow waveriders. Experimental data for conical flow 
waverides can be seen in ref[27.28]. Parallel to this work, attempts were 
also made to design these type of lifting configurations by considering 
axisymmetric flow field and power law bodies[29i.

Jones, Moore, Pike and Roe[2i] proposed to build a lifting 
configuration from an axisymmetric flow field by designing it exactly for 
inviscid flow and optimizing it further by replacing the stream surfaces 
with solid boundaries. A generic shape developed as a result of their work 
can be seen in fig (1.21), which was designed to cruise between M=4 to M = 7 
and to produce an L/D of up to 7.7 assuming inviscid flow.

Jones and Wood[46] presented in 1963 a method for designing lifting 
configurations from flow around a non-lifting cone. Two different type of 
shapes were suggested. Where the leading edge extends to the apex of the 
basic conical shock the configuration was designated Type A and where the 
lifting surface apex lay behind the apex of the basic cone they called it 
Type B configuration. The difference between type A and B in their limiting 
form is that in tire former case wing and cone can be seen separately where 
as in the latter the distinction between two is difficult to visualise. This 
designation is used later in the thesis.

An interesting case of optimum wing design is considered by Cole and 
Zien[29] where hypersonic small disturbance theory is used to define these 
shapes derived from axisymmetric flow. Here unlike wedge (planar) or conical 
shocks a power law (r x") shock shape is assumed and results are obtained
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from n = -  to n = 10 at y=L4.2 '

Since the early seventies in the topic of waveriders derived out of 
conical flow, most work can be related to Rasmussen and his 
colleagues[24,25,27,28,30]. They did experimentation and optimization for 
different waverider configurations generated from axisymmetric conical 
flows. Different cases of study include waveriders from circular as well as 
elliptic cones from a zero lifting situation to yawed cones at incidence and 
yaw and with longitudinal curvature. Most of the group’s work is based on 
hypersonic small disturbance theory with inviscid assumptions apart from 
ref[30] where viscous effects are included by means of a laminar boundary 
layer.

Other promising shapes have been reported by Bowcutt, Anderson & 
Capriotti[26] which have emphasised the importance of viscous effects and 
included them in their optimized hypersonic waverider shapes. Viscous 
effects were included by correcting for 2D laminar, transitional and 
turbulent boundary layer displacement thickness along inviscid streamlines. 
The upper surface was carved from the expansion flow and the lower 
compression surface by tracing stream lines in conical flow, A blunt leading 
edge with a certain radius was included to con*espond to an acceptable 
leading edge temperature level.

1.7 Aim and Approach of the present study.

A review of the study so fai' regarding these waverider shapes suggests
that in the process of designing these shapes, major features of 
hypersonic-like viscous effects and high temperatures have not been given 
proper consideration. Practical experience with the Space Shuttle suggest
that viscous and high temperature effects are very critical with regard to
accurately assessing different flow phenomenon such as aerothermal heating, 
shock/boundary layer interaction and separated flow. Only Bowcutt & Anderson 
[26] appear to have included viscous effects in their optimization procedure 
for waverider design.

Hypersonic flow differs fundamentally from subsonic flow due to the
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variation of properties associated with high velocity at high altitude. Such 
factors as entropy layer, viscous interaction, high temperature, low density 
and real gas effects must then be considered when simulating the flow. For 
instance at high velocity the boundary layer becomes thick due to high 
kinetic energy dissipation within the boundary layer causing an increase in 
viscosity and temperature and a decrease in density. This thickening of the 
boundary layer introduces a viscous-inviscid interaction causing problems 
for boundary layer analysis which affects the surface pressure distribution.

1/2
3 " ^ —j ) » l ,  the surfaceFor the viscous interaction parameter (% =

pressure distribution may differ significantly from the inviscid prediction. 
Contrary to this all previous waverider designs are based upon inviscid 
flow, even though % is generally not below a value of 1, Because waverider 
configurations provide the basis for vehicles designed to fly at high 
altitudes where the Reynolds number is low and the Mach number high, hence, 
viscous effects become very important.

Much has been done however for improving viscous corrections [32-37] by 
treating the problem as a coupled one with a boundaiy layer displacement 
thickness correction and a general approximate calculation of the outer 
inviscid flow. But this is still a severe compromise due to the different 
constraints involved. Most viscous flow problems can be treated using 
boundary layer calculations. However, a number of very important viscous 
flow problems cannot be solved by this approach because the accompanying 
assumptions are not valid. An extreme example is that of when the inviscid 
flow is fully merged with the viscous flow, then the two flows cannot be 
solved independently as requhed by boundary layer theory. Boundary layer 
theory also fails when a large vortical flow region forms in the flow field, 
e.g., on the leeward side of the vehicle at a high angle of attack. 
Therefore it becomes necessary that it must be solved by a set of equations 
which are valid in both the inviscid and viscous regions. An obvious set of 
equations which can be used to solve strongly interactive flow fields are 
the Navier-Stokes equations. Based on this strategy numerical solutions of 
the Navier-Stokes Equations were applied to different waverider shapes to 
study viscous effects.
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Recent high interest in space planes and the exploitation of the
advantages of waveriders were the main motives for present study. Based on 
the above discussion the approach for the present study is developed as 
follows.

In this introductory chapter, after describing the different hypersonic 
systems used for space exploration, advantages of having high lift are
reviewed and waveriders have been shown to be favourable shapes for such 
application. In the next few pages general features of hypersonic flow are 
discussed and comments are made on the advantages of CFD to simulate 
hypersonic flow as compared to analytic and experimentation methods. The 
role of each approach to space plane design is also discussed briefly. An 
historical review of waverider shapes is provided, pointing out the
importance of inclusion of factors such as viscous effects in waverider 
design, which are usually not included in the course of development of these 
shapes. To highlight the importance of these forms a basis of this study.

The second chapter is devoted towards the classical theory of
waveriders. The theory is given for both wedge derived and conical derived
waveriders. The critical effects of viscosity and high temperature on
waveriders is also studied in this chapter.

In the next chapter research efforts to simulate the flow around these
shapes by applying the Navier Stokes solution is described. Interesting
physical phenomenon revealed by simulation in this way is discussed. Off 
design behaviour and advantages of applying CFD on these shapes are pointed 
out.

Study of more general shapes is the topic for chapter four. Here more 
general shapes are derived numerically from conical and wedge flow. 
Comparison is made to reveal the advantage of waveriders derived from wedge 
flow with that derived from conical flow.

Finally general conclusions are drawn from the study and suggestions 
are made for future work.
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CLASSICAL THEORY OF WAVERIDERS.

2.1 Introduction.

The considerable research in high speed vehicle design has 
suggested that the best aerodynamic shape is that called the waverider. The 
shapes are so named because under design conditions their lateral edges 
would ride on a captured shock wave. The advantages of this type of 
configuration are that it has

a. lower drag for the same lift
b. higher lift
c. higher lift to drag ratio

than conventional shapes especially in hypersonic flow. Also apart from 
their advantages of having good aerodynamic characteristics they can be 
designed inversely to fit a known flow field. In this way analysis becomes 
easy because in this process it is not the shape that is chosen in advance, 
but rather the flow field, which is usually then a simple one.

As waveriders have favourable characteristics for use as space plane 
shapes therefore

1. One can study systematic families of shapes and draw general 
conclusions as to effects of aspect ratio, payload volume, distribution of 
volume etc. on performance characteristics.

2. One can study more about their performance characteristics which 
could become the basis by which to judge the excellence of design achieved 
by other methods.

3. Although the flow about a waverider in its design condition has a 
deceptive simplicity, the flow in conditions slightly "off design" may 
provide a point of entry for the study of more general and more complex 
flows about wing like shapes.

In the present chapter along with the definition of waverider, a 
simplified theory and analytical method for the prediction of flow field 
around a cai'et and conical waverider shape is given. Also the method to

19



a .

Fig. 2.1 Construction of simple caret wings.

19a



predict the lift and drag co-efficients for any arbitrary shape waverider is 
explained. An historical review of the study of flow around waverider is 
made before pointing out the importance of inclusion of viscous and high 
temperature effects towards finalising waverider design shapes,

2.2 Definition of waveriders.

A waverider can be defined as a supersonic vehicle whose shape is 
composed of streamlines derived from known exact solutions of the inviscid 
flow equations. Nonweilerte] first pointed out that a flow field determined 
by oblique shock relations forms a stream surface which defines the family 
of caret shapes (fig 2.1). In its simplest form Caret shapes can be designed 
by starting with the flow past a two dimensional wedge (fig 2.1a) and then 
drawing a pair of intersecting straight lines lying in the plane of the 
shock, and visualizing the stream surface which stems from them. Further if 
we place a body having exactly the shape of this surface and by introducing 
it carefully, on aligning it exactly with the flow direction the simplest 
cai'et wing (fig 1.19) can be designed. A more detailed discussion has been 
carried out in ref[38]. Interesting features of these wings are that the 
leading edge of these wings ride on the surface of a planar shock wave, 
which account for the term "Waveriders”, Thus a waverider can be defined as

" cut/ cZ&ŝ ned oeAic/e- coAase- ^e/cA (hypersonic or
supersonic) ^  cAete/vmmcAji/'sù omAta/iase' cAu'iaecA

As exact solutions are available for oblique shocks and circular cones 
in supersonic flow, they form the basis for inversely derived waveriders.

Instead of the literal definition stated above a more general 
definition is also commonly used where the characteristics of waveriders are 
applied to other configurations that indirectly exploit their advantageous 
properties.

2.3 Classification of Waveriders.

Depending on the final shape of the waveriders, whether they are caret, 
elliptical, conical or non conical, they can be classified under two main
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groups : shapes which are derived from wedge flow; and waveriders 
constructed from conical flow.

2.3.1 Wedge Derived Waveriders (CARET WINGS)

2.3. l.a  Theory

For the caret wing the flow beneath it can be considered equivalent to 
that on a 2-D wedge and can be predicted by oblique shock wave theory.

In its simplest approach for waveriders, consider a two dimensional 
flow about a wedge. Further assume that flow is parallel to the upper 
surface of the shape and it coincides with the freestream surface. The 
result is that there is no shock or expansion wave on the upper surface and 
the pressure on this surface is p ^ . On the lower surface there is an 
attached oblique shock wave, with a compressive pressure p , which can be 
evaluated by applying the oblique shock theory relationship for a 2-D wedge

(2 .1)

where, p is the shock angle and y is the ratio of specific heats.

The flow in the base region, is confined between two Prandtl Mayer 
expansion waves but these are not considered. Although this is important, 
experiment shows that even at M ^=5 the pressure at the base is closer to 
zero than p ^ . However the value of base pressure is Reynolds number and body 
configuration independent.

Lift and drag relations per unit span for an infinite wedge using shock 
expansion theory are

L = p^^cos9-p^/   (2.2)

D =  (^3)

As, compression length; //cos0, and 
base length; /tan0

with /=  length of the caret wing (fig 2.2)
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So,
PcL = (- l)p /  and D = Ltan0■'̂ oo

and lift and drag coefficients ai'e

L 2 P c
ÜTSÿp..* ^  oo  o o  * oo  ^ o o

C = C tanG  (2.5)
PcBy using relation 2.1, to eliminate —  ,

Now, the dimensionless parameters governing the flow are y  and M ^. The 
wedge angle 0 can be solved in terms of P by using the relation.

0 = tan’^ cotp
sin^p-1

1 + ([(y+ l)/2 ]-sin"P )M ^^
(2.7)

But as eqn(2.7) cannot be solved explicitly for p, therefore an 
approximate equation can be derived, valid for high speed flow, which can 
achieve this purpose by using scaling parameters as follows.

For M ^ » l  for the waveriders, the shock is attached, and for an 
attached shock, if 0 is relatively large when M ^ » l ,  the heat transfer and 
drag become very high. Therefore in order to keep heat transfer and drag 
small at very high speeds 0 must be very small and the body slender. To 
incorporate this a scaling parameter can be introduced as

Kg = M ^sin0   (2.8)

This is known as the Hypersonic Similarity Parameter.

Similarly a scaling parameter appropriate for the shock angle, Kp, can 
also be introduced

Where, Kp= M ^sinp   (2.9)
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Eqn (2.7) can be written in similarity form as

K?
tan0 tanp = ----& (2 .10)

In equation(2.10) for Kq, ----- > of order unity, & 0 ,p -------> 0,  >
therefore, [(Y+l)/2]KpKQ = Kp-1

Making substitution, Kg(^^Çi)=K

2KKp= Kg-1

Kp= K + (K^+1)

or Ko-1 = 2K |^K+(K2+lj/2 (2 ,11)

Therefore by introducing similarity parameter for lift and drag 
co-efficients

1
i +(i +k ’Y

and C = C 0
D L

So, now as y, and 0 are known, we can find lift and drag for caret 
shape waveriders.

i.e.. Lift = L = (p^-p^)Ap = (p-^ -  l)p^x^^^  (2.12)

Drag = D = (p^-p^)A^ = L tan0  (2.13)
Where

A = planform area = tjW  /
P ^

A^ = Base area = /tan0 
and, W = Base width (ref. to fig.(2,2))

Therefore,
coefficients of lift and drag can be derived as
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2L 2L rP

pvlxArea)p^^^ pM^yRTx^W/ yM^
-  1

and,
C = C tanG

D  L

LP< 

(2.15)

(2.14)

Equations (2.14) and (2.15) are same as (2.4) & (2.5) for two dimensional 
wedge flow.

Then the and for a waverider in scaling parameters can also be 
written as[34]

2.3.1.b O ptim ization  o f  D rag  for C aret W ings.

Relations for L/D derived earlier are true for inviscid flow. 
Neglecting also both base and friction drag, the L/D ratio increases without
limit as 0 .........> 0; but at the same time the configuration has no volume in
the limiting case . Therefore to achieve a given volume, the surface area 
will need to be large when 0 is small. Hence the friction drag (for small 0) 
will be lai'ge compared to the pressure drag. Consequently there will be some 
optimum deflection angle for a given skin friction coefficient (c^. This 
optimum angle can be determined by assuming a constant ĉ  for the wetted 
surface of the caret wing (fig 2.3).

On adding friction and pressure drag to inviscid flow, a new 
relationship can be developed as

L _ %
n  "

rA ■>
c tanG +p

w
AT X (2.16)
 ̂ p

Where, A = wetted area
w

A^ = planform area
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and, w
ÿ T

p
= a / l+(sin^P/tan^P^)

where P̂  = leading edge angle of caret wing planform (fig 2.3)

c^tanG + i J l+(sin^p/tan^pj) .ĉ

and, by assumption that for small deflection angles pressure is 
proportional to the flow deflection, therefore

for 0 «  0, then c kG, and tanG G, L/D can be written as
p

L
n kG^+ 2c y  l+(sin^p/tan^p^)

where, k = proportionality constant. 
The angle Ĝ ^̂  for ( 
equating it to zero.

(2.17)

The angle Ĝ ^̂  for optimum L/D can be found by differentiating w.r.t G and

Hence 0 =
o p t

( ^ f ) /  l+(sin^p/tan^pj)
0.5

(2.18)

and the maximum lift to drag ratio can be found from[38]

L
D

1 / 2 k
■ 4 /  b”

m a x  V f

l |Sin^P
2tan P,_

(2.19)

2.3.1.C C om b in ation  o f C aret W ings

In the previous section the simple theory for the caret wing is 
discussed. It suggests that the performance of caret wings can be readily 
evaluated and the effect of various design parameters can also be assessed 
using simple relations. Hence caret wing shapes can be connected together to 
yield many derivative forms which can be analysed easily. Some of the 
examples of these combinations are shown in fig(2.4). In this figure each 
element of the configuration is constructed in accordance with the lailes for 
the construction of the caret wings.

This can be extended in order to provide a control surface as 
illustrated in (fig(2.5)).
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Similaiiy the idea can be used to arrange caret wings to act as 
precompression inlets for air breathing engines to supply known uniform flow 
at its design condition. An example of it is shown in fig(2.6).

2.3.2 Waveriders derived from conical flowfield.

2.3.2.a Theory

The concept of a caret shape waverider to attain high lift can be 
extended to other shapes as long as they exhibit the designed flow pattern. 
For example any stream surface from the supersonic flow over an axisymmetric 
body can be used to generate a waverider with an attached shock wave along 
its complete leading edge. Roe [i6] has derived optimum shapes using the 
same idea. Later, considering an inclined circular and elliptic cone, 
Rasmussen[24,77] and Kim[25,78] used the idea of a more generalised conical 
flow for deriving a waverider configuration. It is useful to provide 
derivation for a conical waverider in its simplest form, as follows.

2.3.2.b Waverider configuration derived from circular & elliptical cones.

Consider the supersonic flow about a circular cone at an angle of 
attack with an attached shock wave as referred to in figs(2.7) and 
(2 .8)[24].

 >This waverider is extracted by truncating the cone and by adding fins.
 >The two fins are oriented at an angle (])̂  relative to the x-axis where
the angle can be less or greater than 90^.
 >The fins are stream surfaces and extended outwards as far as the
conical shock wave. These are used to confine the shock layer to the lower 
part of the body and for simplicity are assumed to be of negligible 
thickness. This approximation is good for optimization when M 9 >0.5.

o o  c

Now an approximate analytical solution for the flow field is developed 
based on the hypersonic small disturbance assumption to find out and
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other local properties.

Refemng to fig(2.8) using a spherical co-ordinate system centered at 
the cone apex the velocity is

A A A
V = ue^+ ve0+ we^

Since the flow is conical V,p,p... are constant along a ray and are 
independent of azimuthal angle ((),

Hence w = 0
and u, V depends only on 0.

Corresponding to this the exact jump conditions across the shock are

P 2 _  Y+1 _______________

u

YKr - ( %

A  = Kpcotp
O O '

V, 2 1+[(Y -1)/2]K 3
i i  =  - — 6  —  »  ■ «

where, Kp = M ^sinp

Another useful approximation, which is reasonably accurate for 
hypersonic flow for this similarity relation for the shock location in terms 
of body angle 0  ̂ is

K r = ( 1 + ^ ^  where K =M sin0P 2 C C CX3 c

or, vice versa in terms of Kg

Now for the different fluid properties in the conical flow shock
laver

D en sity  > increases smoothly from at the shock to its value p^
at the body. For a slender body at hypersonic speeds, the 
magnitude of (p^-p^)/p^ is quite small thus justifying the
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assumption of a constant density shock layer. Also the shock layer 
is homentropic (p-p^).

Ff-Po
P ressure ----- > The change in pressure (—-— ) is more

2
significant than that of density but nevertheless it is 
still small.

Velocity Components  ^Component v at the shock is normal to it
and zero at the body. However the magnitude of v^/a^ is well below 
unity because it is the normal component of the Mach number on the 
downstream side of the shock wave. So as a consequence |v | is 
relatively small tliroughout the shock layer.

Component u is not small on the shock layer or zero on body.
Component w=0 because of the locally conical approximation.

The above statement can be elaborated more if one considers Kp to be of 
the order unity for different pressure, velocity and density relationships,

p2 ?2 ^2 ^2and it can be shown that - —, —  and —  are of the order of unity but —  isp p a • ' a
• o o  OO C O  OO

of the order which is lai'ge compared to unity).

Now to determine a relationship for lift and drag, consider a small 
differential area ds in the base plane of the waverider, which in spherical 
co-ordinate is

ds = r^sin^0 d0d(|) 

where and /=  length (refer fig(2.7))

ds = /d (l)
cos^0

Since flow parameters change slowly along a streamline in the shock
A

layer therefore integrals can be approximated by evaluating p,p,v,e just
A ^

behind the shock where 0=p with given by v.e^

A A
therefore ~ u e +v^en

2  2  r  2  0

The basis vector transformation from cai'tesian to spherical are
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'A ■
e

r
sin0cos(j)

A

®0 COS0COS(j)

A
-sinip cos(j) 0

Therefore taking dot product and putting 0 =p

"A ■
e

X

A
ey

A
e

z-*

A
.e

V^.e^“  u^cosP - v^sinp

V^,e^= u^sinpcos(j) +v^cospcos([)

Using the hypersonic similarity parameter (in terms of Kr, (eqn.(2.19a))
2 ,,1+[(Y -1)/2]KVj.e^= a^cosPIM^sinP - 

■p - ÿ+T'̂ '

P
p}cos(j)

p

k 2 2 _ l+ [ (r l) /2 ]K ^
COS(j)

And, for K^ = (K p-l)X ;^^ on simplification.

A a ^ e o sp  ^
V x

Similarly

^ ----- K^coscj) = V^cotpsin 0^cos(j).

2 „ ! + [ (  Y-1)/2]K

M
PI

(M ^ - - 1)1

~  |M ^ - K^) = V cos^e‘ — C oo cM  ' CO

Now, lift is equal to the momentum behind the shock
hence L = p V fds and 0 = 0

•̂ 2 2j 2 c
V cotPsin^0 xV cos^0----------------  X  oo r- c oo

1 + [(Y -1 ) /2 ]K P
X/  sinp

cos^P . 
.(b

cos^d^

P
d0

which by simplification gives
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2 2 sin^
L = 2yp /^ ïC ta n p ---------------------------------     (2.20)

1+K J1+[(Y +1)/2 ]K ^ }  

where cos0^=l for a slender body.
Similarly drag can be calculated by making use of the relationship for

drag
D = l-(P,-p_)+P,[V _.(\.:^)](V ^.G ;|S^^, --------- (2.21)

Where S = shock layer base area
bsl

and S, = /(tan^p-tan^e )(|) a /(P^-G^)*  (2.22)
Dsi C l  c r

Using again the similaiity relation (eq(2.19a)

= Ÿ&  M l + < ]  -

= 1 + YK

o r  P j - P ^  =  --------------  (2 .2 3 )

putting area Ŝ ^̂  (eq(2.22)) and (p^-p^) in eq(2.21), gives the 
following expression for drag

"  =  (2.24)

and to determine the lift and drag coefficient, the planform area (S ) is 
given by

S^ = /^tanpsin(|)^ = /^psin(|)^ 

then, are

( 1 + [ ( y+ 1 ) / 2 ] k J ) ' ' "
= 4 9 j    —  (2.25)

‘  K ^ + | 1 + [ ( Y + 1 ) / 2 ] K ^ | ‘(^

2K 4),
^ o =  — ^

|1 + [(Y+1)/2]KJ1 r
and L/D ratio for a conical waverider is
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T l + [ ( y + l ) /2 ] K ^  sin(j),
^  = 2 M „ ------------------------------ ^ -------^   (2.27)

K^+(1+[(Y+1)/2]K^)

This shows that, for a fixed value of the ratio L/D will increase for an 
increase in Mach number but will slowly decrease with increase of fin angle

2.3.2.C for an arbitrary shape waverider.

In the last section an ideal conical waverider constructed by means of 
a cone with fins is considered. The same idea can be extended to a few other 
arbitrary shapes derived out of the conical flowfield. To demonstrate this 
consider a uniform, supersonic free stream flow aligned with the z-axis as 
shown in fig (2.9)[78].

Assume for the flow field that 
-o The shock wave is of known shape.
-o The planar surface peipendicular to z intersects the shock wave

along a closed curve.
-0 The streamlines of the known flowfield defined from the shock-free

stream intersection point constitute the compression surface of 
waverider.

Therefore for the waverider upper surface :
-o It is determined by freestream streamlines that pass through the

curve for the leading edge of the body.

The whole waverider then consists of three planes,

-0 The upper surface aligned with the free stream bearing a constant
pressure p^ .

-0 A base plane perpendicular to free stream having an assumed
pressure p^ .

-0 A compression surface, whose pressure need not to be constant.

The shock layer on which the body rides is also defined by three
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surfaces.
 O The first surface is part of the shock wave downstream of the

leading edge and has an area S^. This is taken as the free stream 
side of the shock wave and terminates at the base plane.

 o The second surface is the compression surface of area S^.
 o The third surface is the shock layer base plane with an ai*ea

S ,( i.e., without vehicle base area S ),
bsl b

By applying the laws of conservation of mass and momentum for shock 
layer flow enclosed by these surfaces i.e.

AJ pV.nds = 0   (2.28)
s

J[ pV(V.n)+pn ]ds -  0   (2.29)

Here the integrals are surface integrals over all three areas
A

S = +S^ +S and n = outward unit normal vector
S C bsl

Also, since S is a closed surface area

Itherefore, I nds = 0

Multiplying by p ^  and subtracting from eq(2.29) gives

[ pV(V.n)+(p-p )n ]ds = 0   (2.30)

On the three surfaces the following conditions exist,
A A

On S, , n = e
bsl A A^ A

On S n = n and V.n = 0
C A AC

On n = n and V = V , p=p , p=p

Therefore, equation (2.28) and (2.30) becomes 

L p« .(V ^.n )ds + J  pV .eds =0
s b s l

J  = 0 -  (2.31)
S o s

c  b s l  s
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The integrals ai*e eliminated to give 

J [P (V -V J(V .ê^ )+ (p -p ^ )ê jd s-------------- (2.32)
®bsl

The left hand side of equation (2.32) represents the force on the 
waverider due to excess pressure (p-p^) along the compression surface. Now 
assuming the flow is symmetric about the x-z plane, the sideways forces 
acting in the y direction cancel each other leaving the resultant force 
which can be resolved into lift and drag components.

L = -e^.J (p - p^)nds = |  p (V.e^)(V.e^)ds ----------------(2.33)
®bsl

A A A
and for drag e .e = 1 and V ,e =V , therefore

7. 7, C O  7. o o ’

D = e^.J (p - p^)nds = J [p(V.^-V.ê^)(V.êp - (p-p^)]ds ------(2.34)
® b s l

The lift and drag coefficients in terms of planform area (S^  ̂ can then 
be written as

C = --------------------------------  (2.35)

and,

C = --------------------------------  (2.36)
Y P oo< S ^

2.4 Viscosity and High Tem perature effects on W averider
Design.

Waveriders have been considered as potential aerospace vehicles since 
the advent of Space Shuttle. However critical reviews of research around 
waveriders suggest that, during the theoretical development of these shapes.
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different key factors of high speed flow or hypersonic flow have not been 
given proper consideration. These key factors can affect the designed flow 
characteristics and in turn body shape.

By virtue of its definition, the aerodynamic characteristics and 
performance of waveriders are usually well predicted by inviscid flow theory 
as they are designed in order to fit a known inviscid flow field. However 
for the designed configuration viscosity contributes to different flow 
phenomena such as boundary layer, skin friction, flow separation and heat 
transfer. Therefore factors like entropy layer, viscous interaction, low 
density flows, real gas effects and high temperature effects must be 
considered while designing and simulating the flow around waveriders.

2.4.1 Boundary Layer.

For the low speed flow of air around a body at normal densities the 
process of viscous dissipation and heat conduction are restricted to a 
relatively thin boundary layer near the surface of the body. This boundary 
layer may be considered as an entity distinct from the outer or external 
inviscid flow and hence can be neglected when the boundary layer thickness 
is small as compared to the shock layer thickness. The same is true for 
waveriders in that unless the boundary layer is very thick the displacement 
effect does not strongly influence the performance of waveriders, but under 
certain conditions it can be thick enough to change the effective geometry 
of the configuration. Furthermore flow could separate in the interior comer 
of the caret wing. When such a separated flow region is sufficiently large 
the shock wave pattern will be distorted and the pressure will not be the 
same as predicted by inviscid flow theory.

2.4.2 Skin Friction.

As configurations designed under waverider conditions are expected to 
have large surface area and hence large friction drag, therefore viscous 
effects due to skin friction drag must be accommodated in designing these 
shapes.

For example[4] for a caret wing operating at co=4^ (where co is the
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design value of (p-0)) and W/S=30 lb/^j.2 and h = 130,000 ft, it follows that 
= 10.9 & L/D^= cot 0 = cot(6.8) = 8.4, laminar friction drag on the lower 

surface only reduces this by 0.6 (or 7%) and if laminar flow is assumed for 
the upper surface, L/D remains above 7.5. Although these reductions in L/D 
are significant, they are less so at more conventional wing loadings. It is 
normally suggested that the upper surface drag can frequently be neglected 
while base drag is still a matter of question. If, for example, the base 
drag is included it could give values of L/D 10-15% less than predicted.

2.4.3 Flow Separation.

Consideration of the more significant phenomena of flow separation may 
be unnecessary for waverider considerations since they aie designed to have 
low drag and high L/D ratio under specified conditions. But when the vehicle 
is manoeuvred, then at times the angle of attack may not match with the 
design condition resulting in local flow separation causing recirculating 
flow and which results in local effective changes in vehicle geometry or 
generate vortex formations. However, experimental work by Cole[29] suggest 
that uncertainties of this nature may not appear until twice the design 
incidence is exceeded.

2.4.4 Viscous interaction

Because of the high flow velocity in the hypersonic regime a large 
amount of kinetic energy is dissipated in the boundary layer thus causing an 
increase in temperature and viscosity and decrease in density resulting in 
an increase in boundary layer thickness (8)

where,
8

OO
— oc -------------

y  Re

Due to the increased thickness of the boundary layer a viscous-inviscid 
interaction phenomena takes place which complicates the boundary layer 
analysis and can also cause some first order effects on the surface pressure 
distribution. The relative importance of boundary layer on the outer flow 
can be estimated using the viscous interaction parameter
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X
M l

with

For X > 1, the surface pressure distribution may differ significantly 
from the inviscid prediction. Despite this all previous waverider designs 
are based upon inviscid flow. However it is difficult to achieve % < 1, 
because all waverider configurations cater for vehicles flying at high 
altitude, where R e^ is small. Therefore when the interaction parameter is 
large (% 3) for example, the inviscid method must be abandoned or at
minimum coupled with a boundary layer routine.

Fig(2.10) shows the effect on pressure over the surface of a cone due 
to viscous interaction at a free stream Mach number = 11 and Reynolds number 
= 1.88 X  10  ̂ per foot. It becomes even more clear from fig(2.11), in which 
the induced pressure increment is plotted against the interaction parameter 
X̂  for a sharp cone,

where x , ^ M^y ^
I ^

W  

C

and w = wall conditions,
c = inviscid cone surface conditions.
Re = Reynolds number at a distance x from tip.

Also fig (2.11)[13] reveals that the vaiiation between pressure and 
interaction parameter is linear. Theoretical results on this topic are 
obtained from Probstein’s theory and Talbot’s method. Probstein’s theory[79] 
gives analytical results using a Taylor series expansion in the power of the 
slope of the boundary layer displacement thickness and Talbot’s method[so] 
is an approximate graphical approach coupling the displacement thickness 
slope with the inviscid flow over a cone.

A correlation procedure that reflects the influence of its interaction 
parameter can be defined as 

P
p -  = /0c) = «% + .......
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Here c can be related to interaction parameter as

c = - — -  ( 1 - 1 )
yM OO  

oo

i.e., c -  - — -
" Y M :

C

Since lift and wave drag coefficients can be simply obtained by 
integrating c  ̂ over the body surface, then for the hypersonic case

should conelate with this viscous interaction parameter (V) defined above.

Data collected from the flight of the space shuttle has suggested a

third viscous interaction parameter V where values of C are evaluated at the 
reference enthalpy[39].

 ̂ c  ' (PP)
Hence V = jr-r- where C =

and p , |i are evaluated at a reference temperature within the boundary 
layer, defined as

/  r p

—  = 0.468 + 0.532—  + 0 .1 9 5 ( t i ) M ^
r p  r p   ̂ Z ' ^

Although much has been done in solving viscous interaction by treating 
this as a coupled problem between boundary layer displacement thickness and 
a general approximate calculation of the outer inviscid flow, this is still 
an approximate and less accurate approach due to different constraints 
involved. The difference between inviscid and viscous flow (as modelled by 
the Navier-Stokes equations) predictions clearly demonstrates the 
substantial magnitude of the viscous interaction effect. The full shock 
layer calculations (NS Codes) accurately simulate viscous interaction 
effects and the results thus obtained are expected to be in good agreement 
with experiment.

For waveriders Bowcutt and Anderson[26] are the first to consider the
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detailed viscous effects for waverider design. They considered viscous 
interaction as a coupled problem and solved this by a boundary layer method. 
Their study revealed reasonable results but it is expected that these can be 
improved by applying a Navier-Stokes solution.

2.4.5 Heat Transfer & High Temperature effects.

A vehicle operating at supersonic conditions is heated by the gradient 
of temperature through the boundary layer that surrounds it. This 
temperature gradient is actually produced by the conversion of velocity into 
local gas enthalpy through flow deceleration in the boundary layer, as shown 
in fig(2.12).

For a body, having finite thickness, all three different modes of heat 
transfer occur in hypersonic flight (Fig(2.13)) i.e. conduction, convection 
and radiation. Each could have some influence on the other. Generally heat 
is transmitted first by convection and then conduction through a thin layer 
of gas film adjacent to the surface. Considering fig(2.13) taken as a small 
part of a body in high speed flow, the aerodynamic heating will increase the 
surface temperature of the skin and conduct through the skin with time. The 
high surface temperature will begin to radiate heat back to the atmosphere, 
as the heat pulse travels through the material to radiate the body interior.

Typical applications of waveriders in very high speed vehicles are 
re-entry space planes and missiles. Therefore at supersonic and hypersonic 
speed when the fluid becomes slow behind the shock wave and near the body 
much of kinetic energy is converted into internal energy. Especially during 
its hypersonic part of the trajectory this conversion process or energy 
phenomena can be so severe that chemical interaction of molecules such as 
dissociation and ionization takes place. Therefore factors due to high 
speed, resulting in high temperature must be accounted by considering at 
maximum phenomena such as

ionization
molecular vibration and dissociation 
stagnation point heat transfer 
chemical reaction
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wall catalytic effect
radiation effect due to shock layer temperature, 
variable y.

All these phenomena mentioned above have their own unique importance 
towards proper data correlation and exact flow simulation e.g., stagnation 
point heat transfer can be best related by the Fay and Riddell[8i] method. 
For chemical reaction, flight experience with the Space Shuttle has revealed 
its effect on pitching moment and it is believed that lack of modelling 
chemical reactions has resulted in under prediction of the required body 
flap deflection for trimming and stability.

Similarly it is observed that for the non-equilibrium flow over a body, 
the surface may act as catalyst for the recombination of atom and ions, 
hence increasing the heat transfer to the surface. It is clear that a 
non-catalytic surface such as glass can reduce the stagnation point heating 
by more than 50%.

As said earlier the main application of waveriders is concerned with 
very high speed vehicles, therefore, heat transfer can have an indirect 
effect on the design and performance of these shapes. So one must consider 
while designing, for heat transfer :

effect of leading edge sharpness or small bluntness.
material selection for leading edge.
effect of ablation and its performance on design.

Although for high speed, heating rate is large and has a prime 
importance especially while selecting materials used for the construction of 
space craft, it has also an influence on the flow attached to its leading 
edge. A waverider body requires sharp leading edges which have a high heat 
rate relative to the rest of surface. The overall effect on the heat 
transfer rate is however decreased compaied to a conventional body.

A thorough knowledge of both the inviscid and viscous flow over the 
vehicle is required to evaluate reasonably well the aerodynamic heating. 
Generally for zero angle of attack this problem is not so difficult and can
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fig. 2,15 Sub-dividing technique applied to the Space Shuttle for 
prediction of heat transfer on different parts.
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be solved using simple engineering methods. But as the angle of attack 
increases, pressure gradients are set up about the vehicle, which, in turn, 
cause streamlines to wrap about the vehicle seeking regions of low pressure. 
Boundary layers are therefore thinned in the regions of high pressure 
creating high heating. A skewing of streamline directions through the 
boundary layer is also produced since lower energy air near the surface 
turns more easily.

Fig(2.14) shows qualitative skewing of streamlines through the boundary 
layer, as observed in experiment. Failure to account for boundary layer 
thinning will lead to under prediction of heating. Lack of knowledge 
concerning streamlines and local flow properties along streamlines will lead 
to eiTors in predicting embedded phenomena, such as flow interference 
effects.

Although an accurate prediction of heat rate and simulation around any 
shape needs a full Navier Stokes solution, however, first hand approximation 
can be done through different methods. One such method for complex shapes is 
by considering the body as a combination of different geometrical 
configurations each of which is then evaluated separately. Wind tunnel data 
are then used to "con*ect" these initial estimates for the presence of any 
interaction effects between elements and for the geometrical complexity 
beyond the scope of the methods. In doing so, an important consideration is 
an understanding of the flow field around the body. This includes local flow 
properties of pressure, temperature, velocity and local flow direction in an 
inviscid stream about the body. A good application of this subdividing 
technique used in the development of Space Shuttle is shown in fig (2.15).

To approximate the heat transfer around waveriders or its combination 
with other shapes, a similai' technique can be used. Also in waveriders 
although the heating is relatively reduced over the surface, it is severe on 
the leading edges. Therefore some of techniques used for prediction of heat 
rate on the leading edge of cai*et waveriders are discussed in next section.
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2.5 Heat Transfer Over Caret Wing

In its basic form a caret wing configuration has a pure delta planform 
with a pointed apex and sharp comer along the lower ridge line.

Concerning the swept leading edges, it is suggested that internal 
conduction and surface radiation should allow these edges to be sharp (ie 
radius<3mm), even if the flow is attached to the both upper and lower 
surfaces.

Considering the leading edge temperature at re-entry, Nonweiler [40], 
has given a relation that for a solid metal member of optimized fineness 
ratio, heat from one side but radiating from both, leading edge temperature 
is equal to

leT, = C q’ (k A ) ( e  ct)^‘cos''A,

where constant C ranges from, 1,29 < C < 1.41, for various profiles, and, 
= rate of heat transfer 

a  = Stefans constant
G = sum of surface emissivity (top plus bottom) 

so that 0 <€< 2 and s a  is of the order 10'^^
m "

k = thermal conductivity

A = cross-sectional area of the leading edge 
A = sweep angle

Another relation for dealing with leading edge convective heating can 
be made by assuming the leading edge as a small cylinder lying in swept 
condition in the flow. By calculating the conditions at the stagnation 
point-line on this swept cylinder, the heating is

In
4 = A(p u )

where p = p ~ p V^cos^A
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C T  = H - ^  = — ^  sin^A = cos^Ap S s Z  Z Z e Z e

o  _  Ps -  2y 0 
Ps “  RT” '  ^1*^“

s

= Effective Sweep angle = sin" \  sin A cosa)
= Effective angle of attack = tan‘^ ( ~ ^  )

The heat transfer beneath the caret wing can be considered equivalent 
to heat transfer beneath a flat plate at an angle of attack. For the caret
wing case the strategy can be adopted in which a  can be considered
equivalent to the wedge angle(9). Heat transfer is calculated by extending
classical incompressible relations for skin friction to the compressible
case[41] through the application of a "model" known as the Eckert reference 
(or intermediate) enthalpy method.

Here

q = p*u c  ^
where,

rU^
T  ̂ = recovery temperature = T +

p

r = recovery factor =
and parameters on the wedge can be written as 

P,
T =

c ’$ C
T = reference temperature

= T + 0.5(T -T)+0.22(T-T)
c w c r c

where, T = wall temperature
0 .6 6 4

The incompressible laminar skin friction c = ---------- ( Blasius relation)
'  / w

The viscosity at the reference point can be calculated (by the 
Sutherland relationship),

1 .5 T*^x lO '®

"  T ' . , 2 0
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and, the Reynolds number at the reference value is given as 

m jZ
where, = Mangier transformation, to transform the friction law

from a 2-D to an axisymmetric case.

Another form of the same relation is introduced by Neumannp],

-  ^ [ u ' p  ]

U p .‘‘"rT .1. H -H

where n=0.5 and A=0.332 for Laminar Flow 
and n=0.2 and A=0.0296 for Turbulent Flow

With C = ---------
T*

Another interesting relation for calculating heat transfer is by Tauber 
and co-worker is [84]

q = with = 7.9 m/sec.
where, C ,n  &  m  are given as :

for stagnation point : m=3, n=0.5, C= 1.83xlO'V2(l-g ),
flat plate laminar : m -3.2, n=0.5

9 '̂2 -C^= 2.53x10 (co8(|)) sin(|) X2(l-g^^) 
flat plate turbulent : for V< 3962 m/sec, m=3.37

0 1 . 7 8  1 T
C^= 3.89xl0-*(cosi|)) V W )  (1 - l^ lg ,)

for V > 3962 m/sec, m=3.7

2.08 1 
2.20x10" (costj)) sin(j) ' x^5 (1-1.1 Iĝ )̂

h
where, ĝ  ̂ = and (j) = local body angle relative to free stream.
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FLOW  SIMULATION AROUND WAVERIDER CONFIGURATIONS

3.1 Introduction.

Hypersonic flow is complex because of the inherent non-linearity in its 
modelling equations and due to the presence of shock waves. Although 
simplified methods aie still much used for prediction they generally are 
rudimentary. A simple example of these is the estimation of the pressure 
distribution on a body at different angles of attack. For waveriders, 
different elementary methods can be used to estimate different aerodynamic 
forces but they cannot predict pressure distribution exactly especially when 
separated flows are present. This has prime importance towards accurately 
assessing skin friction and heat transfer coefficients.

The classical result from linearized, inviscid supersonic two 
dimensional theory,

c = ^ ^ (for small angles, 0) -------- (3.1)
p / 2M -1

demonstrates that pressure is dependent on surface inclination. For this 
useful theory results are limited to small angles of attack but nevertheless 
it can give a starting point for more accurate solutions. Other methods in 
this context which produce more accurate results for initial estimation in
hypersonic flow a r e  Newtonian theory, modified Newtonian theory and
Newton- Busemann theory. For the waverider at an angle of attack reasonable 
estimates for pressure distribution can be made in each case by using the 
respective relationships

c  ̂ = 2sin^0 ( Newtonian method)
c = c sin^0 ( modified Newtonian method)

c = 2sin^0.+2
p. 1

p
m ax

d0
3ÿ sin0. COS0 dy (Newton Busemann theory)

A third method can also be extended to consider the pressure at the 
body at point i equal to an equivalent cone or equivalent wedge with the
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Table 3.1 Aerodynamic Prediction Methods [82]

Level Type Limitation
Computer 

Complexity Time

0  Empirical Qualitatively
1 Linear Small oM  = 1
II Inviscid No separation
III Navier Stokes No restriction

Algebraic
Algebraic
Differential
Partial
Differential

Seconds
Minutes
Hour
Hours

Table 3.2 Summary of Aerodynamic Prediction Methods[82]

Level Type
No. of Boundary 

No. of Terms Conditions Restriction

III Navier Stokes

a) Parabolized

b) Boundary layer

77 27

23

None

-  «  1

II Inviscid
a) Euler
b )  Full potential 

Linear

15
9

12
6

p. =  0
Weak shocks

u = U + u
CO

N. S . P . N . S . B . L .

2D  
M  >  1

Full
Potent ial

I n v i s c i d
(Euler)

M O C

Linear



deflection 0.. The equivalent wedge is used for a 2D body and equivalent 
cone for an axisymmetric body equal to a cone with semi angle 0.. Other 
methods include the exact shock method.

The above are inviscid methods and more accuracy and correction for 
viscous effects are sought. Hypersonic similarity methods, hypersonic small 
disturbance theory or thin shock layer theory can be used[42]. For very high 
Mach numbers, Mach number independence can be applied because certain 
non-dimensional aerodynamic quantities like C^, and c  ̂ become relatively 
independent of Mach number above a sufficiently high value of M ^.

For inviscid flow more so-called exact solutions such as the classical 
method of characteristics can be applied. Also, the Euler equations can be 
solved using finite difference or finite element methods. Limitations and 
complexity for each prediction method are summarized in Table 3.1 and Table 
3.2[82] and for any problem the aerodynamic approach towards final solution 
depends upon the accuracy required along with time and facilities available. 
Limitations for application of inviscid phenomena in hypersonic flow for 
waveriders is also briefly discussed in the previous chapter where the 
importance of the entropy layer, viscous interaction, high temperature, low 
density effects and real gas effects are pointed out.

Therefore whereas the simple methods are available for preliminary 
design work, an accurate prediction including viscous effects can only be
obtained by applying the Navier-Stokes equations which provide an
appropriate model for the flow around a body in a continuum flow.

Based on this strategy the Navier-Stokes Equations were applied to 
different waverider shapes to study viscous effects. Since the flow on
typical waverider shapes is near conical, then it is appropriate to use the
locally conical Navier-Stokes (LCNS) equations. The advantage of such an 
application is that it significantly reduces the requirement of computing 
resources both in terms of processor time and storage. So a LCNS solution 
[43],[44] was applied to predict the flow behaviour ai'ound waverider shapes. 
The study in this chapter used shapes which allowed simple grids to be used. 
More general waverider shapes are considered in the next chapter where more 
generalized coordinate transformations would be required.
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The present chapter develops the equations and numerical techniques 
used. Results for the calculations of the flow over a family of caret wings, 
and a cone shape with anhedral wings at selected hypersonic flow conditions 
are presented. The cases aie selected to illustrate the relevance of viscous 
effects in waverider design. The shapes chosen, in particular the choice of 
a 90 caret surface, were also controlled by the need for economic use of 
the computing resources that was necessary for this programme.

Before going into the details of numerical methods and solution schemes 
for the actual cases considered, off-design behaviour for cases which under 
ideal conditions (with inviscid assumptions) are expected to be on-design 
are first discussed.

3.2 Off Design Characteristics,

As discussed earlier at supersonic and hypersonic speed, with the 
presence of non-linearities and viscous effects the mathematical solution 
used to define this flow becomes very complex. In the past attempts were 
made to simplify these by manipulating the solution and simplifying the 
non-linear equation to the linear form. But as discussed these methods are 
not always sufficiently accurate. Although in the past especially in the 
50’s in support of the space race many of the advances were made by using 
this methodology and then improving the configurational design by long term 
wind tunnel testing. Nevertheless at each stage a more comprehensive 
solution which should embrace all the non-linearities is demanded, because 
wind tunnel experimentation has its own limitations as outlined earlier.

3.2.1 Off Design behaviour for Caret Wings.

An important problem at hypersonic speed involves shock boundary layer 
interaction and the problem becomes more complex when the flow around 
different airplane components interact with each other. For re-entry space 
planes, although the shapes like Appollo, Gemini and Mercury evolved, in 
order to contain the flow on the windward side, waverider shapes were 
suggested as an optimum design, for reasons which were discussed earlier.
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Fig. 3.2 On-design curve for a caret wing.
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The idea of caret wings originally conceived by Nonweiler did give a 
boost to interest for lifting bodies and the idea was extended by 
Flower[i5], Townend[4],[5] and Roe[i6],[i7] to consider its practicality for 
space plane shapes. Under ideal design conditions the waverider should 
exhibit the shock for which the streamline body is constructed but it is 
seen that viscous effects cause shock shapes to differ from those originally 
expected. For a given free stream Mach number and shock plane, the caret 
wing can be constructed by finding out the wedge angle (ridge angle) 
responsible for forming the shock on this plane (shock angle). An infinite 
number of Caiet wings can then be constructed out of this flow but the 
definition of aspect ratio limits the shape of the wing (fig 3.1). Therefore 
one can say that M ^, aspect ratio and shock angles are the basic parameters 
that define a caret wing.

A study of off-design behaviour has been carried out by Squire[22],[23] 
and Venn and Flower[45i.

To understand the off-design behaviour for these wings first let us 
assume the on-design behaviour based on the complete inviscid shock wave 
solution. Two approaches can be used to construct the case, first by 
considering the flow for a yawed wedge or a flat plate in yaw and roll at 
some angle of attack. Although the two cases may seem different the concept 
is the same, that, the flow must be treated as for the body at a particular 
angle of attack with the leading edge lying in the shock plane.

For a caret wing the cross section parallel to the symmetric plane is 
equivalent to a 2-D wedge, therefore, one can construct a design curve for 
the flow around a wedge by using inviscid shock wave relationships. Hence 
for a particular wedge angle and shock angle (p), at different angles of 
incidence (a) a design curve can be calculated as shown in fig(3.2). This 
curve can be divided into two halves one for a strong solution and other 
coiTesponding to weak solution. For all normal cases the relevant solution 
is the weak one except when it is very near to the point where the strong 
and weak solutions are very close to each other. The design curve is only 
significant for a positive angle of incidence and has little meaning at 
negative angles when an expansion takes place.
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Similarly a characteristic curve can be drawn by considering the flat 
plate at some angle of attack (a  equivalent to wedge angle) in a roll and 
yawed orientation (where the yaw angle and roll angle together with the 
finite length of flat plate will determine the aspect ratio for the caret 
wing). So a family of design curves can be plotted corresponding to a range 
of possible design angles, where the flow remains attached and also for the 
same angles a curve where the flow is detached. Shock attachment and 
detachment curves touch each other at a critical point, at which the 
solution changes from weak to strong shown in fig(3.3).

For a fixed design angle, the design curve is independent of the aspect 
ratio but the detached flow curve is not. For any particular case the 
attached flow design curve remains fixed but the detached curve flow moves 
closer to it when decreasing the aspect ratio. Also for a decrease in aspect 
ratio the angle of incidence at the critical point is decreased.

Even for early studies in caret wing design, for the on-design case, 
doubts about the shock shapes existed. A few doubts were considered by Venn 
and Flower[45] who suggested that the final shock patterns emerging involved 
single, double and multiple shocks (fig 3.4). This study by Venn and Flower 
was mainly based on the extension of shock shapes emerging from Mach cones 
generated along a leading edge at zero incidence (fig 3.5) and different 
shock patterns are suggested by pointing out the 2D and 3D regions resulting 
from the complex reflection of waves and Mach cones.

These design curves and off-design shock shapes have been further 
elaborated by Squire[22,23] who, with the assumption that for low incidence 
the governing equations for flow at hypersonic speed can be linearized, 
continued attempts to develop the caret wing concept for reason of 
simplicity. Solutions for lifting bodies were proposed by Messiter and Hida 
[46,47] by using a first order correction to Newtonian Busemann theory. The 
resultant integral method was tested numerically, under these assumptions, 
by Squire[48] to calculate the pressure distribution and to derive shock 
shapes for Nonweiler’s caret wings.

A comprehensive study of the off-design characteristics of waveriders 
emphasising the importance of viscous effects can be found in ref[48 and
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49], Off-design performance is discussed in ref[50].

The studies mentioned above so far revealed the off-design behaviour 
resulting from changes in incidence, Mach number or geometry. The final 
shock is a result of an initial multi shock (shock reflection etc.) system 
terminated by a smoothly curved final shock. The suggested theory 
corresponding to this is based on inviscid flow with hidden assumptions. 
Although certain shock patterns can be computed using these theories, in 
practice a further off-design behaviour is introduced due to the presence of 
a boundary layer, which causes the real shock shapes to differ in detail 
from those suggested.

Another important application, where the on design condition is 
sensitive to changing flow conditions in a similar way to the caret wing, is 
in the determination of the performance characteristics of ram jet inlets, 
propulsion unit inlets and supersonic diffusers.

Mohoney [si] has discussed these different possible off-designO
conditions for a ramjet inlet at a  = 0 in different modes where each mode 
is classified for different on, above and below design Mach numbers with 
further sub-critical, critical and super-critical operation of each 
according to the terminal normal shock position. In practical application, 
for a ramjet as well as for a caret wing, to have better performance, the 
concept of applying operational on-design conditions seems favourable and an 
optimum Mach number can be determined or adjusted by using shock wave 
relationships. But at high Mach number, in the presence of viscous effects 
the behaviour may differ significantly from prediction, the flow becoming 
more complex especially when the vehicle is flying at incidence. The 
foregoing study is an attempt to illustrate this off-design behaviour for 
simple shapes caused by the presence of viscous effects.

The present study of the waverider involving solutions of the 
Navier-Stokes equations is different from past studies in that, for final 
off-design shapes, viscous and inviscid effects come as part of the 
solution. Some interesting features of off-design behaviour on caret wings 
and idealized conical waveriders are reported in sect. (3.4.2) and (3.5.2) 
respectively.
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3.3 Numerical Method and Solution Scheme.

Corresponding to three basic equations of fluid dynamics i.e.,
a. Conservation of mass.
b. Equation of momentum.
c. Conservation of energy.

there are two different approaches used for derivation. These are
1. Phenomenological approach;
2. Kinetic theory approach.

In the first approach, certain relations between stress and rate of 
strain, heat flux and temperature gradient are postulated and then the fluid 
dynamic equations are developed from the conservation laws, but the required 
constants of proportionality between stress and rate of strain and heat flux 
and temperature gradient (also called the transport coefficients) must be 
determined experimentally in this approach.

In the second approach computational fluid dynamics equations are 
obtained with the transport coefficients defined in terms of certain 
integral relations which involve the dynamics of colliding particles — then 
knowledge of interparticle forces are required in order to evaluate the 
collision integrals.

The theories by Schlichting[52] ( for the former case ) and 
Hirschfelder et al[83] ( for the latter case ) suggest that the two 
approaches will yield the same fluid dynamic equations if equivalent 
assumptions are made during their derivation. The complete set of these 
equations ai'e known as the Navier-Stokes equations.

The system of Navier-Stokes equations supplemented by empirical laws 
for the dependence of viscosity and thermal conductivity with other flow 
variables and through a constitutive law defining the nature of the fluid, 
completely describe the relevant flow phenomena.

For the present study the Navier-Stokes equations are first written in 
conservation form and are then transformed into spherical form before 
applying the locally conical approximation.
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Navier Stokes Equations in Cartesian Coordinates.

In conservation form  the com plete N avier-Stokes equations in three 

dim ensions without external heat and body forces in Cartesian coordinates 

can be written[53] as

.(3.2)

where, dependent vector U and flux vectors E, F, G are given as

pu
pu
pu.
pe

X

.(3.3)

P"x + P -  ^xx

P^y^x " ^yx 

P^Z^X '  ^zx
( p e + P ) t y t q i x - " x \ x - " y \ x - U z S a

.(3.4)

F =

PUy

P^x^y “ '^xy 

P li; + P - \ y

p^z^y " '^zy
( p e  +  R h y f  qy- UVT^^. U y^ ^ ,. u ^ : ,y

.(32%
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G =

pu.

P V z  -

P“y“ z ■’'yz

+ P - "'zz 
(pe + p)u^+ q^- UT -U Ty yz z zz

..(3.6)

Where shear stress terms are given as follows 

2
=xx -  3  P ( 2

au^ auy au^ 
'  azax ôy

^xy ^yx P ( 

\ z  = \ x =  P (

V  = v =

®"z ®"y 3"x
ay axau au ̂ + yay ax

au auz
ax

au auJ  + zaz d ÿ ~

(3 .7)

)

A perfect gas is assumed with the standard constants for the equation 
of state ,

p = pRT

where, the gas constant for perfect air, the medium of interest, R = 
287 m^/sec^ K and temperature T are related in the form.

T = ( y -1) [e - |V |“/2]/R  (3.8)
for the ratio of specific heats y =1.4.

To express heat transfer, the Fourier’s law of heat transfer by 
conduction is assumed. Therefore heat flux in each direction can be given as

9x = - k

- k

‘lz == - k

a x
dy

a z

 (3.9)
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Viscosity is calculated by the Sutherland formula.

3
6ji = 1.458 ----------------- X 10 kg/m sec  (3.10)

T + 110.4

For a hypersonic space vehicle, the presence of 3 dimensional viscous 
effects require a solution of the complete Navier-Stokes equations for the 
flow over the whole body. Unlike the flow for a low speed vehicle where the 
viscous effects are important only in a localized region, viscous effects in 
high speed flows become significant for the whole body. But as a full 
Navier-Stokes solution may be difficult to apply, to model the flow around 
the full body, therefore, the equivalence principle (or subdividing 
technique (see fig(2.15)) can be used as an alternative provided 
interference and interaction effects aie accounted for in aniving at final 
conclusions. Another way is to reduce the Navier-Stokes equations with 
appropriate assumptions while retaining the viscous terms, such as used in 
the parabolized form of the Navier-Stokes equations or the locally conical 
Navier-Stokes equations.

Locally Conical Navier Stokes Solution

As the flow around the majority of high speed planes and missiles is 
approximately conical in nature, it is a reasonable assumption that for the 
present case study, the numerical method used is based on the locally 
conical Navier-Stokes Equations (LCNS). The method uses the 3-D , unsteady, 
compressible Navier Stokes equations for viscous laminar flow written in a 
weak conservation form in a spherical coordinate system (as shown in 
appendix 3 ) simplified by making use of assumptions that for these vehicle 
shapes the gradients are much smaller in the radial than in the cross flow 
direction. The result is the locally conical Navier-Stokes equations in non 
dimensionalised form as follows

+ + #  + H = 0 .....

where
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u  = sin0
P
P^r
PU0
pu

pe

.(3.12)

F = sin0

p“ 0
pUj.Ug - Xre
p U g  +  p  - X g g
p"cp“e- V
( p e  +  P ) U q +  qg- Uj.Xj.g- U g X g g -  U^^X^^g

..(3.13)

G =

P"(P
P " r V  ^
p“e“(p- 
P"ç+ p

r(p
0(p

(pcp
(pcp

..(3.14)

H=sin0

2pUj,

2 p u /-  PU0^ pu
<P ^ rr+  '^00+ ' ' w

2xr03puj,ug-ctg0(pujp-+p)+ctg0 X q ^ .

3pUj.Ujp+ c t g 0  pugUjp- Ctg0 Xgjp- 2Xj.jp

2Uj.(pe + p) ^r'^rr" V r 0 "  V i ' 9

.(3.15)

where the shear stress terms are given as follows

au
T00 -  2 p /R e ^ ^ ^ (^  + up  +

= 2U^&^=,r(^nüTâqr^ + Ur + %8C0t^% + T r̂
.(3.16)
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Su

\ e  “  ''Or “  ('" e  â W  )

au  1 SUg

''ecp “  ''(pe -  P^®oo,r ( w  ■ "(p + su ie  s < r  ^

1
\ ( p  ~  ''(pr P^^oo,r^sin0 S(p ''(p 

and, heat flux is defined as.

%  = ■ 2R e^ P r I ?   (3.17)
oo,r

a = - aT
ĉp 2sinüRe IPr Ô(p T oo^r ^

V iscosity is calculated by the Sutherland formula.

For the solution o f  the equations a tim e marching M acCormack two step 

im p licit finite difference schem e is em p loyed using the fo llow ing predictor 

and corrector schem e to equation (3.11) :

Predictor :

AU? . = -At(A, F? ./A0 + A o'? ./A<p + H"? .)
1 0  "r  t  , J - r  1 , J 1 ,J

[ I - (At/A0)A I a "  I ][ I- (At/A(p)A, I B" I ] 5 u ÿ T  = AU? .
  "r  1 ,  J  1  ,J

.+ s u ^
U J  1 , J  1 , J

CoiTector :

A U p l  = -At(A F ^ I /A e  + A G ?^ /A 0  + H ^ >
1  ,  J  -  1 , J  -  1 , J  U J

[ I - (A t/A 0 )A _ |A ^ |][  I + (A t/A (p )A JB ^ |]8 U ?+ |=  A U ^ ?

U ?+ | = (1/2)(U'? .+ u f q  + 6 u y | )
 ̂ ) J  ̂ij  ̂ ) J  ̂ ) J

Although shock waves are captured automatically through this procedure, 
oscillations in flow parameters are very prominent near shock wave
discontinuities. Therefore to dampen these oscillations a modified adaptive 
artificial viscosity (AAV) term in conservative form is applied. This term 
is significant to the calculation only near the shock wave. It has very
little effect inside the boundary layer. It has also been observed that for
an accurate viscous solution, the AAV must be switched off near the wall,
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otherwise residues neai* the wall cannot be reduced further after two or 
three orders of reduction have been achieved.

The AAV in the 0 direction used here has the form :

^8ij = ‘̂ ei-i/2j
with

^0i+l/2d =  ^0i+ l/2j ^i+I/2d^^i+lj"
where

^0i+i/2j ^  ko|uQ+cl/A0. 

and the sensor of the shock wave in the 0 direction, Vq- • is
Pm ,I

PiM, + ^Pw+ Pi-iJ

(''ei+i/2o’''ei+io>''eio’''0i-ij^

®0i+./2j = [k,.k,max (0 , k^]

where constants
ko“ 0.1, k^= 0.5, k^=l and k^= 0.1

The artificial viscosity for the (p direction can be described 
similarly.

The numerical solution gives the fluid properties of temperature, 
pressure, the three velocity components, density (p), Mach number(M), pilot 
pressure (po) and heat rate (Q) values in non-dimensionalised form on a 
computational surface at a distance r from the tip. The computation surface 
consist of a 65 X 65 grid stretched in the 0 and (p direction as shown in fig 
3.7 for the caret wings and 65 x 90 as shown in fig 3.16 for conical wave 
riders. In N-S equations values are non-dimensionalised by

* ^ r * _ ^ 0  * _ ^(p
'  V T  “  V T  “ ‘p “  T T T

= _e_ p*= p. = -iL

e = T* = - I -
VL^. To- T

where the nondimensionalised variables are denoted by an asterisk.
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3.4 Caret Waveriders.

3.4.1 Geometry of models and flow conditions.

O
The configurations for the caret wings consist of two 8 wedges

o

intersecting each other at 90 with different sweep angles. To get the 
inviscid flow design condition for simulation for each configuration an 
inverse approach was used. For each case the free stream velocity should be 
such as to exhibit the shock pattern for the particular caret wing case. 
Conditions for caret wing simulations are shown in table (3.3). Here the 
free stream Mach number was calculated using the oblique shock relation for 
the deflection angle in terms of the free stream Mach number and wave angle

0 = j3 - tan-1
sinPcosP M^

where 0 = Wedge angle corresponding to the intersection
P = Shock angle corresponding to the design cai’et wing

conditions,

TABLE : 3.3 

Flow conditions for simulation (Caret wings).

T = 38.73 K
= 6.16076 X 10"̂  Kg/m^

P = 68.48 Pa 
T = 43 K

w

r = distance from nose = 10 cm 
a = velocity of sound = 124.74 m/s 
width or span o of the wedge=0.05 m 
(except for 75 case where s= 0.025 m)

Reynolds number X Mach number wing sweep

CASE S30M144 48841 .013 1.44 30
CASE S45M174 58806 .0216 1.74 45
CASE S60M251 84737 .0542 2.51 60
CASE S75M493 166618 .2926 4.93 75
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Fig. 3.6 Coordinate transformation (Spherical and Cartesian).
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Fig. 3.7 Grid used for caret wings (65x65).

e = 90

Fig. 3.8 Caret wing in spherical coordinate.
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The position for the computed station is located through the Reynolds 
number by

Re
p U r

A perfect gas is assumed for simulation.

For either case the following boundary conditions are used : 
On the wall : Uq = 0 ; and T

at the outer boundaiy : free stream conditions, 
on the symmetric planes : reflection conditions.

T = constant,w

For numerical simulation, in each case with different sweep angles, the 
cai’et model was placed in spherical coordinates as shown in fig 3.8, such

o o
that the comer coincides with the 0 = 90 and (p =0 coordinate extending 
towards the r dii’ection. The nose tip of caret wing is placed at the origin 
of the spherical coordinate system. The incoming flow direction is parallel 
to the upper surface in each case and the wedge angle with respect to 
incoming flow is (3. Velocity vectors for the incoming flow in Cartesian 
co-ordinates can be transformed to those in spherical coordinates through 
the following coordinate transformation (ref fig 3.6).

' e r
®0 —
e,^

.  9  j

sinB C08Ç
COS0 COSÇ

- sincp

s in 0  sincp co s0  

COS0 sincp -s in 0  

coscp 0

' e
X

ey
ez

3.4.2 Results and discussion.

As the theoretical procedure suggests, to generate a waverider flow for 
a fixed caret wing shape, there exists only one combination of and 0, 
which can reveal this pattern and the inviscid flow beneath the caret shapes 
can be calculated such that it is equivalent to a 2-D wedge flow. Therefore 
inviscid shock wave theory was used to provide the initial input values for 
the LCNS equations. Results thus obtained numerically are compared with 
theoretical values to determine the effects of viscous interaction on shock 
wave and flow properties.
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Fig. 3.9 Flow regions on caret wings.
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Fig. 3.10 Likely off-design conditions for caret wings.
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Before further discussion about viscous effects around these shapes, it 
is necessary to review some off-design chai'acteristics of caret wings. 
Fig(3.9) shows a few likely off-design conditions for caret gliders, where 
the flow around a particular type of caret wing can be described within 
certain boundaries. In fig(3.9) these flow regions are illustrated in the 
M -a plane. Here line SQT corresponds to on-design conditions, in which a two 
dimensional shock lies in the plane of the leading edge and the lower 
surface of the caret wing is a stream surface. In the region SQP (or region 
B) the shock wave is slightly curved but still attached to the leading edge. 
To the right of SQT, in region A, the flow takes up the complex shock 
pattern as shown in fig(3.9). Curve PQR in the figure describes the shock 
detachment from the leading edge and beyond this in region D the shock is 
completely detached. The shock pattern under RQT (or region C) is less 
likely to happen but if present it is similar to region D.

In figure(3.10) these regions are shown for each of the cases 
considered. Here the line on the right conesponds to the on-design 
conditions i.e., line SQT in fig(3.9) and the line on the left shows the 
limit of the detached shock wave (line PQR). The symbol a  in figures (3.9 
and 3.10) relates the deflection of the upper surface of the caret wing with 
respect to the free stream flow. Figures 3.10(i) and 3.10(2) illustrate that 
the shock waves are very strong and only a small variation in flow 
parameters may show up as a major change in shock shape. In 3.10(i), for the 
30 sweep-back angle, region B is very small and is shown enlarged. It can beO
seen from the enlarged portion that for a wedge angle of 9.76 at a Mach 
number of 1.44 the shock wave is on-design and at Mach number of 1.42 it 
becomes detached. Fig 3.10(2) shows another case of a strong shock wave at 
an on-design configuration. Here again an on-design shock is more close to 
the detached shock line and influenced by it. However for the other twoO O
cases of sweep-back 60 and 75 shown in fig 3.10(s) and 3.10(4) the 
on-design lines are far away from the detached region, therefore although 
viscous effects may be higher for these cases due to high Mach numbers, the 
weak shock shapes generated are less likely to be affected.

Keeping these regions in mind a similar comparison can be made for the 
numerical results. Fig (3.11 to 3.14) shows the contour plots for different
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TA B LE 3.4

CASE S30M144

Pressure
( Pa )

T em perature
( K)

D ensi ty
( k g / j )

Mach number

T h e o ry 1 15 . 37 4 5 , 1 3 9 . 0 0 8 9 0 5 3 1 . 0 4  2 2

N u m erica l 125 , 2 6 4 7 . 6 1 . 0 0 9  1 6 7 2 0 . 9 6 8 8

CASES45M174

Pressure T em perature D ensity Mach number

T h eo ry 1 0 2 . 4 6 6 4 3 . 5 3 9 . 008 2 1 . 46  5 3

N um erical 1 0 4 . 8 1 4 5 . 0 6 6 . 0 0 8 4 4 1.4 4

CASE S60M251

Pressure T em perature D ensity Mach number

T h eo ry 98 .6 7 4 3 . 0 5 . 0 0 7 9 8 6 2 . 2 7  3 1

N um erical 99 . 7 0 4 3 . 6 8 . 0 0 8 1 5 6 2 .2 4  9

CASES75M493

Pressure T em perature Density Mach number

Th e ory 97 .3 5 4 2 . 4 8 . 0 0 7 9 1 0 4 . 6 3

N um erical 1 04 .5 4 4 . 1 4 3 . 0 0 8 4 2 1 4 . 5 5

p  875 M 493
L- w edge sweep a n g l e

—  d e s i  g n Mach mumber

99e



flow parameters for each shape of the caret wing. For caiet wings the 
results were based on a fixed aspect ratio with different sweep-back and 
corresponding wedge angle. Fig 3.11 illustrates the results for a 30 sweep

o o
angle. The design wedge angle and the shock angle were 9.76 and 60.53 
respectively for this low Mach number case. Table 3.4 shows the theoretical 
and computational values outside the boundary layer for each case. These 
differences in values suggest the effect of viscous interaction e.g., foro
the 30 case the numerical values for pressure, temperature and density are 
higher than the inviscid values which conespond to a smaller Mach number 
than expected. Refemng to fig 3.10 it is seen that the Mach number fell 
short of the on-design Mach number thus pushing the off-design behaviour 
towards region B. Therefore an attached curved shock wave is expected. A 
similar behaviour for the shock can be observed in fig 3.11.

o
The results for the 45 sweep are also summarized in table 3.4. A 

similar observation can be made here for having a higher pressure than
o

theoretical for the design wedge and shock angle values of 8 and
o

43.26 respectively. For this later case, the temperature as well as density 
is high and the corresponding Mach number is low. Contour plots displaying 
all these parameters including viscous effects are given in fig 3.12.

o o
The effect of viscous flow over sweep angles 60 and 75 cases is 

illustrated in figs 3.13 and 3.14. Comparison of the data from table 3.4 for 
these cases seems to reveal the same behaviour. Pressure and other values 
are slightly higher than theoretical e.g., for the 60 case, behind the 
shock wave, theoretical values for pressure, temperature and density are
98.67 Pa, 43.05 K, .007986 kg/m^ as compared to numerical values of 99.7 Pa,
43.68 K, and 0.008156 kg/m^, whereas the Mach number for numerical solution 
( M = 2.249 ) is lower than the theoretical Mach number ( M = 2,2731). AO
similar observation can be made for the 75 swept caret wedge.

It can be seen from fig.3.13 and 3.14 that the shock waves are more 
close to their on-design patterns at high sweep angles and at high Mach 
numbers. This is because in the latter cases, the wedge angles ( 0 = 5,67

o o
for 60 and 0 = 2.944 for 75 ) are small. These correspond to weaker shock 
solutions, resulting in little significant effect on the shock behaviour. 
However due to a higher Mach number then a thicker boundary layer is
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developed near the surface thus differentiating it from the inviscid 
phenomena. Practically speaking, in the presence of the boundary layer, a 
proper theoretical quantitative prediction of supersonic flow is difficult 
because in the presence of the boundaiy layer, the flow becomes complex and 
the best solution can be achieved by solving the full Navier Stokes 
equations. The difference of values for different flow parameters in 
computational and theoretical results for the caret wings suggests that for 
a final design study, viscous effects must be included at all design stages 
and must not be ignored as these effects aie significant even if values of % 
(table 3.3) are very small.

In reality, the presence of boundary layer thickness changes the 
effective geometrical shape of the cai'et wave-rider. Comparison of the 
computational contour plots (figure 3.11 to 3.14) with different curves in

o o
figure 3.10(1-4) shows that: for 30 and 45 sweep angles, off-design 
behaviour due to viscous effects shifts the shock pattern into region B; for

o o
60 the on-design condition is retained; and for 75 region A behaviour is 
shown. Based on these observations it is suggested that for the final design 
of caret wings, to achieve the on-design behaviour including viscous 
effects, the operating Mach number should be adjusted or angle of attack 
changed or these effects included while generating the effective shape of 
the body.
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Fig. 3.16 Grid used for simulation.

61b



3.5 Conical Waveriders.

3.5.1 Geometry of Models and Flow Conditions.

For caret wings the simulated data were compared with theoretical 
values because unfortunately no experimental data appeared available to 
validate the results for the different shapes studied. Also it was 
considered that there was less support for its usage by its critics 
resulting in the cone-delta-wing being considered more advantageous[54],[55] 
and likely to be used than a caret wing. Therefore a cone-delta-wing shown 
in fig(3.15) was chosen. For this configuration, experimental data [56] was 
available to validate simulation.

TABLE ; 3.5 

Flow conditions for simulations (cone-delta wing)

Cone angle = 20 o 
Location of wings = 30 anhodral 
Sweep back angle = A = 75 
T = 64.69 K
T = 293 Kw
To = 500 K
Po = 100 psi = 689.5x10^ N/m^ (Pa) 
P ^  = 537.41 N/m^

= 0.028945 kg/m^
U = 935.08 m/s 
M = Mach number = 5.8

oo o o o
a  = angle of attack = 5 , 10 ,1 5  
X = .6172
Re = Reynolds number = 991179

The model chosen consisted of a 20 cone with wings of negligible
o o

thickness with a sweep angle of 75 located at 60 from the plane of 
symmetry giving 30 wing anhedral. Flow conditions used for simulation are 
shown in table(3.5).
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Fig. 3.17 Pressure distribution on cone surface.
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Fig. 3.18 Pressure distribution on cone surface (wing-cone waverider).
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(Flow simulation around simple cone at a  = 10 ).

Level TEMP
c 0.76
B 0.70
A 0.64
9 0.58
8 0.52
7 0.46
6 0.41
5 0.35
4 0.29
3 0.23
2 0.17
1 0.11

TEMPERATURE

Fig. 3.20a Flowfield contours, a = 1 0 , M  = 5.8 (cone).
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(Flow simulation around a simple cone at a  = 10 ).

Level PRESS
B 0.22
A 0.20
9 0.18
8 0.15
7 0.13
6 0.11
5 0.09
4 0.07
3 0.04
2 0.02
1 0.00

PRESSURE

Fig. 3.20b Flowfield contours, a = 1 0 , M  = 5 . 8  (cone).
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(Flow simulation around a simple cone at a  = 10 ).

MACH NUMBER

Fig. 3.20c Flowfield contours, a  = 10 , M = 5 . 8  (cone).
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Level MACH- ,
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(Flow simulation around a simple cone at a  = 10 ).

DENSITY

Fig. 3.20d Flowfield contours, a  = 10 , M = 5 . 8  (cone).

Level DENSITY
C 3.80
B 3.47
A 3.15
9 2.82
8 2.49
7 2.16
6 1.84
5 1.51
4 1.18
3 0.85
2 0.53
1 0.20
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3 .5 ,2  R esu lts an d  D iscussions.

Results are presented for M = 5.8 and a Reynolds number of 0.991x10^ 
with different angles of attack ( 5 ,10 ,15 ). Contour plots at the station 
considered are also obtained for basic fluid properties e.g., pressure, 
temperature, density, Mach number and velocity to enable detailed insight of 
the fluid behaviour. The program was also run for different Reynolds numbers 
and it was observed that the pressure distribution is essentially 
independent of it. Results obtained are compared with experimental data for 
validation. Pressure results are also obtained for a simple cone at an angle 
of attack (a=10 ) (ref fig. 3.17) to observe the difference without the 
presence of anhedral wing.

Fig(3.18) shows the pressure distribution on the cone surface for the
o o o

wing-cone configuration at a  = 5 ,10 and 15 . The pressure distribution 
demonstrates the advantage of anhedral interference due to the wing. In the 
windward region it remains almost constant on the surface of the cone from

o  o

0 to 60 . On the upper portion of the cone just above the wing a low 
pressure in the vortical region is observed. Further around the cone 
surface, the flow behaves similar to that over a simple cone without 
anhedral wings. Fig(3.19) also reveals the comparison between computationalO
and experimental data at a=10 which shows that the values agree quite well 
around the whole body.

Figures (3.21,3.23 and 3.25) show the contour plots of four flow 
parameters around the configuration at three different angles of attack. 
Each plot gives details of the flow field for the single fluid property. To 
observe the differences and advantages of a wing-cone combination, results 
for a simple cone are also shown in fig(3.20). Importance is given to the 
flow between the compressed surface and the shock wave. To reduce computing 
time results are restricted to a certain computational domain and do not 
cover the full expansion region. To cover the full expansion region 
computational domain may be extended. The general features for these flow 
simulations confirm that high constant pressure is achieved through capture 
of flow on the windwai'd surface due to anhedral which also gives enhanced 
lift to the body.
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(wing-cone waverider).

Level T
c 0.76
B 0.70
A 0.64
9 0.58
8 0.52
7 0.46
6 0.41
5 0.35
4 0.29
3 0.23
2 0.17
1 0.11

TEMPERATURE

Fig. 3.21a Flowfield contours, a  = 5 , M =5.8.
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(wing-cone waverider).

Level P
B 0.22
A 0.20
9 0.18
8 0.15
7 0.13
6 0.11
5 0.09
4 0.07
3 0.04
2 0.02
1 0.00

PRESSURE

Fig. 3.21b Flowfield contours, a  = 5 , M = 5.8.
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(wing-cone waverider).

Level M
c 5.75
B 5.23
A 4.70
9 4.18
8 3.66
7 3.14
6 2.61
5 2.09
4 1.57
3 1.05
2 0.52
1 0.00

MACH NUMBER

Fig. 3.21c Flowfield contours, a  = 5 , M =5.8.
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(wing-cone waverider).

Level RO
C 3.80
B 3.47
A 3.15
9 2.82
8 2.49
7 2.16
6 1.84
5 1.51
4 1.18
3 0.85
2 0.53
1 0.20

DENSITY

Fig. 3.2Id Flowfield contours, a  = 5 , M =5.8.
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Fig. 3.22 Velocity vectors, a  = 5 , M ^= 5.8 (wing-cone waverider).
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The effect of the angle of attack on the fluid behaviour around the 
body is illustrated in figs (3.21 to 3.27). In the foregoing figures, what 
appears to be flow changes in front of the shock wave are purely due to 
changes in grid spacing and difficulties in communicating this highly 
resolved data. There are indeed constant conditions calculated upstream ofO
shock. Figs (3.22,3.24,3.26) show the resultant velocity vector plots at 5 ,

o  o

10 and 15 angles of attack respectively.

O
In fig(3.22) for a~5 , the shock layer due to the cone and wing 

creating the high pressure can be seen very clearly. On the upper surface of 
the wing near the comer the separated flow forms a strong vortex. Generally 
on the windwai'd side a uniformly high pressure can be observed on the cone 
and wing lower surfaces with no particular flow features except for a small 
vortex near the junction which does however create a localized heating on 
reattachment. On the upper surface, apart from the primary vortex, a bow 
shock wave, an expansion wave and two other small secondary vortices also 
appear. Refening to the cross flow velocity vector plots the above regions 
can be marked and identified and heat transfer over the surface can be 
related to this flow picture e.g., the above mentioned small vortex on the 
windward side can be seen separating near the wing-cone junction and 
attaching itself at A^, causing a high local heating. It further separates 
at point S^. It can also be observed that the flow is attached to the lower 
side of the wing near the leading edge at A^. It is interesting to note here 
that the localized heating at A  ̂ (fig 3.27) is as severe as near the leading 
edge. On the upper surface of the wing the primary vortex separates at 
and reattaches to the cone surface at A^. On the wing surface this vortex 
separates at and attaches at A^. The coiTesponding behaviour for these 
reattachments and separations can also be observed in the heat distribution 
where all peaks relate to attachment points and crests to separation points. 
Zero heat transfer rates are shown in fig(3.27) in the vicinity of the wing 
leading edge. These are considered to be in error because the grid sizing at 
the sharp leading edges is insufficiently fine in order to be able to 
capture accurately the flow processes and thus to obtain accurate heat 
transfer information.

Near the leading edge, the effect of the expansion wave on the cone 
shock wave is also shown. It is observed that for a low angle of attack
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(wing-cone waverider).

Level

TEMPERATURE

Fig. 3.23 a Flowfield contours, a = 1 0 , M  =5.8 .
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(wing-cone waverider).

Level

PRESSURE

Fig. 3.23b Flowfield contours, a  = 10 , M = 5.8.
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(wing-cone waverider).

MACH NUMBER

Fig. 3.23c Flowfield contours, a  = 10 , M = 5.8.
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(wing-cone waverider).
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Fig. 3.23d Flowfield contours, a  = 10 , M = 5.8.
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Fig. 3.24 Velocity vectors, a  = 10 , M = 5 . 8  (wing-cone waverider).
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(wing-cone waverider).

Level

TEMPERATURE

Fig. 3.25a Flowfield contours, a  = 15 , M = 5.8.
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(wing-cone waverider).

Level

PRESSURE

Fig. 3.25b Flowfield contours, a = 1 5 , M  = 5.8.
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(wing-cone waverider).
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Fig. 3.25c Flowfield contours, a  = 15 , M = 5.8.
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(wing-cone waverider).

Level RO
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Fig. 3.25d Flowfield contours, a = 1 5 , M  =5.8 .
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Fig. 3.26 Velocity vectors, a  = 15 , M = 5 .8  (wing-cone waverider).
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these effects diminish after a few degrees and furthermore only a cone shock 
can be seen. The local variation and behaviour in any fluid parameter such 
as density, pressure, temperature and Mach number due to the above 
phenomena at each point are illustrated in figs 3.21(a-d).

Fig 3.24 reveals the effect on the fluid due to an increase in a  to 
10 . Here, on the windward side, the cone shock can be seen moving close to 
the cone surface. All the features explained earlier are present with a 
slight change. On the wing-cone under surface a high pressure can be 
detected. Near the wing-cone junction a small vortex due to a cone wing 
boundary layer interaction is present however the intensity of it is reduced 
at attachment , but the local high heat rate remains present. Near the 
leading edge the shock is slightly detached and on the upper portion where 
the expansion wave merges with the primary vortex an embedded shock 
originates. On increasing the angle of attack the pressure increases on the 
windward side but decreases on the leeward side (fig 3.18). At the high 
angle of attack case two secondary vortices are more visible. Referring to 
this discussion, the effect on temperature, pressure, density and Mach

o

number at a= 10 can be deduced from fig 3.23.

Fig 3.26 in conjunction with fig 3.25 illustrates the furtherO
propagation of flow phenomena at 15 angle of attack. At this much higher 
angle the flow still retains its major properties and a constant high 
pressure exists on the wing-cone surface in the windward side behind a 
strong shock. The shock wave can be seen detached from the leading edge. On 
the upper surface the cone shock becomes weak and merges into an expansion 
wave. Other distinct characteristics of the flow such as primary and 
secondary vortices, and the embedded shock are shown clearly in fig 3.25. A 
boundary layer is developed on the cone surface which reattaches around the

o

primary vortex and separates at about 160 from the plane of symmetry. The 
effect of the flow on the surface at reattachment points can be assessed by 
observing the heat transfer distributions in fig 3.27. Care again should be 
taken about the inaccuracies near the wing leading edge noted earlier. 
Individual flow parameters for this case are summarized in fig 3.25.

Fig 3.28 shows the numerical results for and at different angles 
of attacks. Results are obtained by integrating the pressure data over the
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Fig. 3.28 Lift and drag coefficients vs angle of attack.
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surface. Comparison of these results with experimental values are quite 
good. Results are also presented for vs and vs L/D. In fig 3.29 
is the total drag coefficient which, apart from pressure drag, includes 
viscous and base drag. Viscous drag is calculated from skin friction values 
through the Eckert reference enthalpy method and the base drag coefficient

o o
is taken as 0.04 at a  = 0 and zero at a=15 . The calculations are based on 
the result from one station only. Results are reasonably accurate and a 
further improvement in accuracy will arise from by using data resulting from 
the implementation of calculations at different stations. Similarly for a 
better prediction of skin friction drag, which is 15% of original drag at 
a=0 , the more accurate values for shear stress should be used at each 
station. Also, for the base drag which is shown to be 33% of the total drag, 
a complete Navier Stokes solution around the full body is required for 
proper prediction.
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FLOW  AROUND ARBITRARY SHAPE WAVERIDERS.

4.1 Introduction

The last chapter concerned the flow over idealized waveriders 
exemplified by the caret wing and the cone-wing combination. The calculated 
phenomena for these shapes revealed interesting results at zero incidence 
and at different angle of attacks. These calculations have limited 
applicability for practical aircraft shapes, but nevertheless provide some 
initial understanding of the problems concerned with the inclusion of 
viscous effects.

For the construction of more general shapes, the same approach may be 
extended to bodies derived from two dimensional flows with shocks. Such an 
approach was attempted in part by Townend[4,s], Flower[i5] & Pike[57], The 
advantage of this approach is that it opens up a wider choice of body shape 
to the designer of hypersonic vehicles. This will allow different stability 
and volumetric constraints to be removed more easily.

For the waverider concept, there are a multitude of possible 
configurations which produce the same shock shape but a compromise needs to 
be made to produce a high contained pressure, hence high lift, whilst 
retaining favourable volumetric and stability characteristics. Apart from 
developing the configuration from a wedge flow (caret wing), conical flow 
has also been used as a basis to construct waverider shapes. Jones, 
Wood[20,58], Jones, Moore, Pike and Roe[2i] provides examples of the latter. 
In the recent past Rasmussen[24] and Anderson[26,31] and their co-workers 
have extended these ideas to the design of high speed lifting vehicles.

The study presented in this chapter is based on this approach except 
that even more general shapes are constructed using both conical and wedge 
flow fields. A numerical approach has been developed to construct these 
waveriders. Comparisons have been made to evaluate the advantages and 
disadvantages of each type of configuration generated. Results are discussed 
in the light of numerical predictions and from experimental results on 
conical and wedge derived waveriders.
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Fig, 4.1 Cone system in spherical coordinates.
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4.2 Numerical Method and Solution Scheme.

It is appropriate to use conical flow as the basic flow for waveriders, 
since not only do hypersonic vehicles and missiles have a cylindrical shape, 
but also conical flow has been well documented in the literature. The work 
by Taylor and Maccoll[59] is the first such calculation for the flow around 
a cone and is used as a basis in this approach.

When applying the conical flow calculations to a waverider, the Mach
number of the free stream and the cone vertex angle are such that the 
resulting shock wave is attached to the cone vertex and may be represented 
by a right circulai' cone, co-axial with the cone inserted in the flow. The 
flow can be seen to be symmetric around the cone axis.

The configuration is illustrated in fig (4.1). Now since the Z-axis is
the axis of symmetry, for an axisymmetric or quasi 2-Dimensional flow,

a = 0
â ÿ  ( Axisymmetric flow ) ...(4.1)
—  = adr ( Conical flow ) ...(4.2)

and thus, when the flow is independent of ([), provided the semi vertex 
angle is not greater than the shock detachment angle, there will be a 
conical shock wave attached to the apex of the cone.

Therefore, the continuity equation can now be written as 
V.pV = 0

or, in polar co-ordinates,

V.(pV) = \  -  (r 'pV ) + - J —  5 -  (pv„sin0) + - L -  (pV .) = 0
r dr  ̂ rsinG 90 rsinG 50 ^

Evaluating the derivative and applying (4.1) and (4.2)

then V.(pV) = 2pV + (pVqCotG) + p ^ 0  + = o ,..(4.3)
^ 90  ^dQ
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Fig. 4.2 Spherical coordinate system for the shock and the cone.
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For the conical flow shown in fig (4.2), analytic treatment requires 
basic assumptions of existence of continuity, irrotationality and adiabatic 
flow. It is assumed that the velocity vector along any ray from the cone 
vertex, lying between the cone and shock wave is constant. A similar 
assumption is implied for other flow properties such as pressure, density 
and temperature.

For the attached supersonic flow over a cone, the streamline increases 
from 0 just downstream of the shock to 0  ̂ when it comes close to the 
surface far downstream. Since the shock wave surface is conical and of 
uniform strength, the following assumptions can be used :

(1) The increase in entropy across the shock is same for all 
streamlines, thus AS = 0 in the shock layer;

(2) The flow is adiabatic and steady, therefore, AHo = 0 = 
where, is the enthalpy before the shock and is the enthalpy after the 
shock;

(3) For irrotational conical flow, VxV = 0,

therefore, VxV
r^sin0

(rsinG ) e.

S/Sj. 8 / 3 0 = 0. (4.4)

:^ 0 rsin0V ^

On applying axisymmetric (d/d^=0) and conical flow (ô/ôi=0) conditions 
to the above equation, this simplifies to

a v
r  = 0 ...(4.5)^ 0  = Ô0

In order to carry out the analytical treatment of the flow between the 
cone and the shock, the following Taylor Maccoll equation is used

(6U^-l+U^)u' = 2U(1-U^) + (l-U^)Ucote - 7UU^-U’cote ...(4.6)
where, U is the non-dimensional velocity, (V / and primes denote first
and second derivative w.r.t 0.
The derivation of this equation is given in Appendix 4.
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Equation(4.6) is a 2nd order non-linear ordinary differential equation. 
A numerical solution of the equation with appropriate boundary conditions is 
thus normally required to caixy out non-trivial cases.

4.3 Boundary Conditions.

The above non-linear differential equation is only valid between the 
cone body surface (0 = 0^= 0^) and the shock angle (0=0 ). Two boundary 
conditions are required for a solution. These conditions can be provided by 
firstly specifying the upstream Mach number (M ^) and shock angle 0̂ .

The first boundary condition selected is therefore at the body surface 
at 0=0^. Here on the cone surface Vq must vanish, as at the cone surface 
there is no flow in or out of its surface,

HTTand thus, —  = — - = 0 at 0=0 . .....,.(4.7)
d e  d e  ”

The second boundary condition occurs at the shock wave, where shock
angle p is determined by the free stream mach number (M ^) and the cone angle

dV /
(0 ). Hence a relation between 0, V , — - (=V ) at 0 = p is required.

’’ ' ae

The second boundary condition can be found through an analytic approach 
by referring to the shock polar equation using the shock polar diagram 
(fig.4.3). This is

tan0 = - 3 —— at 0 = p .....(4.8)
^ UU

Equation (4.7) and (4.8) are appropriate as boundary conditions for the 
solution of equation (4,6). Their application, however is limited since 
there is no direct method available for accurately determining the shock
angle p for cone flow. For wedge flow, the streamline angle for the flow
behind the shock is equal to 0^, so the computation of p through the shock 
polar is easy. For the flow around the cone, solution is possible in the 
following two ways :
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(1) Assign and p, and determine and Vg at the shock and then
calculate 0  ̂ for which U =0;
or,

(2) Assign along 0  ̂and determine P and hence the Mach number from
equation (4.8).

This can be accomplished by carrying out the successive differentiation 
of equation (4.6) and by obtaining the Taylor series for and Vq 
respectively in the form [85]

and,

where,

and.

V
- r r  = 1 - h^ + a h  ̂ - a h"̂  + a h  ̂ - V,  1 2  3b

- ^  = -2h + 3a,h^ - 4a + 5ah"V . 1 2  3

a = T- cot0 1 5  b

3cot 0 +
b

20V, .

.(4.9)

..(4.10)

cot0.
co fe  + l ^ x  0.03627 + \

b 12  ̂  ̂ ^t2 '1 -V
V  ̂ = Velocity at cone body.

In between 0  ̂ and the shock angle p at any particular value h from the 
body the direction of streamline at that point can be found using the 
relation

V,
0 = 0  + h - tan'

fs b

0
V

....(4.11)

However for the present study, the first approach is used, whereby the 
free stream Mach number and shock angle are supplied. Thus by applying the 
reverse process the corresponding cone angle can be found. This can be 
accomplished by solving equation (4.6) sequentially starting from the shock 
wave and moving towards the body. Once an angle has been reached at which Vq 
is zero, this defines the corresponding cone or body angle.
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Properties just behind the shock wave are calculated using the oblique 
shock wave theory. Since the pressure distribution is required to determine 
lift and drag, thus the pressure is calculated numerically at each point 
along the flow field.

4.4 Basic Configuration Construction.

In the previous chapter two types of waveriders derived using simple 
approaches were discussed. The first was the caret wing derived through a 
wedge flow field and the second was the idealized conical waverider where a 
winglet is attached to the cone to provide an anhedral shape thus containing 
the high pressure on the leeward side.

The results for these idealized waveriders are interesting but these 
configurations however ai*e not practical because if the winglets are 
infinitesimally thin then these will have a sharp ridge on the upper surface 
and they are not actually blended with the main body. Also these idealized 
shapes have increased wetted area which produces additional unwanted viscous 
drag at hypersonic speed. However some practical shapes can be constructed 
from these simple flow fields whereby the bodies thus generated may not have 
conical shapes.

This idea is extended to generate more general shapes. Continuing the 
above discussion, once the cone has been defined for a particular conical 
flow shock angle and Mach number, one can construct a shape of a body out of 
this flow field such that the shock remains attached to the leading edge of 
the body and its lower surface is defined by a stream surface of the flow 
behind the shock.

Given the planform area and volume constraints the top surface is first 
defined. For the cases discussed here the top surface is defined by a plane 
developed by extending the pai'abola in the body base plane 

Y = AXV R,
in the upstream direction. A and R can be adjusted for area and volume 
requirements and are predefined parameters.

Fig.(4.4) shows one such shape placed in the flow field in Cartesian
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Fig 4.4 Construction of waveriders generated from conical flow.
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coordinates. The outer cone represents the conical shock corresponding to 
the flow ai’ound the inner cone at the design Mach number. Plane A shown in 
fig,(4.4) represents the upper surface of this waverider. The upper surface 
becomes a stream surface in the free stream and on extension upstream where 
it cuts the shock cone defines the leading edge of the waverider.

The leading edge is thus merely the intersection of the projection of 
upper free stream surface with the shock cone. Mathematically the shock cone 
for the known shock angle 0̂  in Cartesian coordinates can be defined as

X^+ = t}  tan9
Ŝ

From fig(4.4) the upper surface of the waverider at a distance R from 
the center line, extended in Z plane is

Y = AXV R

which on extending towards the shock cone, cuts the shock cone at some 
point thus defining the leading edge of the waverider. For the lower 
surface, to have the shock remaining attached to the leading edge and 
exhibiting waverider characteristics it must be constructed by a surface 
defined by the streamlines. Thus once the leading edge has been determined, 
the lower surface can be constructed by tracing the streamlines from this 
edge until it reaches the trailing edge. The direction of streamlines at any 
point can be found from equation (4.11), as the velocity vectors along 
different rays between the body and the shock are already known (from the 
Taylor Maccoll solution). It is important to note that the direction of 
streamlines 0̂  ̂ may differ along the body length towards the trailing edge 
but each streamline lies in a plane of constant azimuthal angle (|). For the 
current study along the lower compression surface at each cross-section 
(z-axis) each streamline is defined by

Y = A X \  BX + C

where, A,B and C are calculated numerically.
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4.5  R esu lts and  D iscussion .

The aerodynamic efficiency of waveriders results from a combination of 
favourable features. Comparing the application of a waverider to a 
conventional subsonic and supersonic aircraft their respective missions 
demand a different shape. In contrast to the subsonic airplane, supersonic 
airplanes are designed around a principle of the slender wing. The main idea 
behind this is to maintain a simple well behaved flow around the whole body 
at all flight conditions. A stage by stage analysis of these shapes for 
different Mach number regimes has been developed by Kuchemannpi]. For the 
supersonic case this is achieved by choosing a leading edge sweep such that 
flow remains subsonic along most of the leading edge. When the ( Mach 
number normal to the leading edge ) is subsonic, the flow over the wing is 
shock free except at the trailing edge. This means that the analysis 
is accomplished using subsonic flow assumptions.

The foregoing is applicable for low supersonic cases but for very high 
speed (i.e. hypersonic flow) it is suggestedpi] that the shape of the wing 
be slender(fig(4.5)). Then to achieve a high L/D as well other prominant 
aerodynamic characteristics at low speed one must employ variable geometry 
on the slender wing or use a fixed wing and accept a supersonic flow normal 
to the leading edge.

As mentioned earlier, because of a high level of activity in 
manned-space missions and hypersonic transport the ideas on waveriders are 
currently of great interest. For constructing a wing shape from a system of 
shock waves a number of direct and indirect methods have been developed. 
These start from the simple case of the caiut and idealized cone derived 
waveriders ( discussed in chapter 3) to more general shapes derived out of 
conical flow as well as power law bodies. Different theories have been 
developed to support and to calculate the flow for each case,

4.5 .1  C on ical V S W ed ge derived  W averiders.

The literature on waveriders generally favours shapes developed from 
conical flowfields, since it has been considered that shapes derived from
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wedge flows are impractical. If however volume constraints are relaxed, then 
it is argued in this section that there are some considerable advantages in 
using wedge flow as the starting point.

To start consider the hypersonic flow over a cone and a wedge at zero 
incidence as illustrated in fig(4.6). For a given free stream Mach numberO
of 4 and a shock angle of 15 it can be seen that a sharp wedge of half 
angle equivalent to less than one degree is required as compared to a half 
cone angle of 5 for the same shock flow. Thus in the case of the wedge 
although the surface of the body required for a particular shock is small 
compared to the conical flow counter part, if the volume of the shape is not 
important then the resulting shock is farther from the body. Conversely,O
for a free stream Mach number of 2 acting on a surface angle of 20 for both

o
the wedge and cone, the shock angle for the wedge is higher (i.e. 53.3 ) 
compaied to the cone (37 ).

For wedge flow, more accurate and simple solutions are possible than 
for cone flow therefore the theoretical construction of lifting shapes is 
easier. For the supersonic flow over a wedge, the oblique shock theory is an 
exact solution of the flow field, thus no simplifying assumptions need be 
made. To summarize, attached shock flow over the wedge has the following 
features:

straight shock wave surface from the nose;
uniform flow downstream of the shock, with streamlines parallel to 
wedge surfaces;
uniform pressure distribution behind the oblique shock.

Similarly, the features of the attached shock flow over a cone are:
the direction of the streamline changes and is curved rather than 
straight;
pressure changes along a streamline;
furthermore the shock wave on the cone is weaker than the 
corresponding wedge and the cone surface pressure is less.

There is an infinite number of choices of waverider shapes that can be 
derived from these basic flow fields which requires few assumptions and
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exploit particular properties. Due to the perceived limitations of caret 
waveriders, support has always been in favour of constructing shapes out of 
a conical flow field and the construction of more general shapes out of 
wedge flow appears not to have been tried. In the present study some of the 
advantages of waveriders constructed through wedge flow field are 
highlighted. These advantages are explored theoretically as well through 
inspection of experimental results gathered from the literature.

Fig(4.7) illustrates the reai* view of a conical waverider in which the 
top surface is defined by a free stream surface /(X,Y), which on extending 
towards the conical shock, describes the leading edge of the waverider, 
where it cuts this shock. The top surface can be any function of f(X ,Y )  
extending in the Z direction. The leading edge of the lifting surface can be 
given in spherical coordinates as

e = 0s
= F(r).

The lower surface is defined by the streamlines of the conical flow 
field passing through the leading edge. For any streamline its direction may 
differ in the 0 direction but it does remain in a ray of constant (]). 
Different top surface shapes have been suggested. Following the caret wings 
of Nonweiler derived from wedge flow, the type ’A’ and ’B ’(see below for 
definition) surfaces by Jones and Woods[20] can be seen as the pioneering 
equivalent work in conical flow lifting shapes. The power law bodies of 
Cole[29] and optimum shapes by Bowcutt and Anderson[26] and the parabolic 
shape top surfaces by RasmussenpO] can be considered as an extension of 
the same idea.

The type ’A’ configuration is formed when the leading edge extends to 
the apex of the original cone. In this case distinction can be made between 
the wing and the body i.e., part of the cone which supports the shock 
defines the body whereas streamlines originating from the leading edge 
define the wing. In type ’B ’ configurations for lifting surface, their apex 
lies behind the apex of the original cone and the surface thus does not 
include any part of the circular cone which supports the conical shock, thus 
0 is always greater than 0 .̂ For a type ’B’ surface, distinction between the 
cone and wing cannot be made (fig 4,8).
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Fig 4.9 Type ’A* Configuration (with maximum possible volume),

leading edge cutting 
the same streamline twice.

No constraint

Fig 4.10 Some constraints while defining the upper surface.
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For the inlets of hypersonic scram jets, another kind of waverider can 
be defined where the projection of the leading edge is derived inversely 
such that the shock wave is a straight line and the rear view exhibits a 
straight trailing edge.

Aircraft designers generally consider volume to be more usable when it 
is deployed in the vicinity of the plane of symmetry of the aircraft. 
Furthermore this should be of a cylindrical form. A waverider derived from a 
conical flow field naturally has the feature of the major part of the volume 
centrally placed with little volume away from the plane of symmetry.

The prime advantage of constructing a waverider from conical flow 
rather than a wedge flow has been their more usable volume as compared to 
the thinner waverider derived from wedge flow. Fig(4.9) shows the type ’A ’ 
configuration (after Jones) which provides the maximum volume for a conical 
flow waverider. It can be seen that this volume always remains close to the 
centre. If the requirement is that the volume is to be distributed laterally 
then conical flow waveriders have their limitations. An obvious method of 
achieving this volume distribution, is to provide more curvature to the 
leading edge curve OC as shown in the end view fig(4.10). However now the 
flow becomes more complex because a number of points on the curve OC are 
cutting the same leading edge twice along a particular conical streamline 
thus making it more complex to define. The complexity can be observed in 
many of the shapes suggested in the literature [21,24,26,39] where this 
particular constraint is ignored. This problem is similarly present for the 
more general type ’B ’ or optimized shapes, because, even if the shape is 
defined for a particular Mach number at zero incidence, then if operating 
slightly off-design, the same limitations as shown in fig(4.10) will be 
exhibited. This constraint can be removed by deriving more general shapes 
out of a wedge flow field where the choice of upper surface curvature or 
shape is not limited.

It is evident that waverider shapes generated from wedge flow fields 
provide volume distributed evenly across the span, whereas those generated 
from cone flow fields provide more volume around the plane of symmetry. This 
even distribution is considered generally to be a disadvantage and thus it
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must be weighed against the favourable characteristics of the former which 
involve low Mach number and off-design performance.

The basic characteristics for which waveriders are favoured for 
hypersonic space planes is that the high pressure due to contained flow on 
the lower side can produce higher lift than conventional wings at high 
speed. Fig(4.11) exhibits the exact results for the pressure coefficient on 
a sharp wedge and sharp cone at 15 surface angle to the flow. It can be 
seen that the pressure coefficient for the wedge is higher than that for the 
cone. This difference is very significant at lower Mach numbers. For example 
at M=4, the pressure coefficient over the wedge is 0.24615 as compared 
to 0,16153 for the cone, i.e a difference of 52%. For high Mach numbers this 
difference is reduced, for example at M=16 it gives a 19% higher pressure 
for the wedge = 0,1692) than the corresponding cone 0.1423).

Thus, if these pressures can be achieved by containing the flow, more 
lift will be generated by a waverider of the wedge derived flowfield rather 
than of the conical flowfield.

Another advantage of waveriders constructed through a wedge flowfield 
is the complexity of defining the streamline path for a conical flow 
compared with wedge flow. Hence since the tracing of the streamlines is 
accurate and easy, then the definition of the lower surface is likely to 
lead to better accuracy.

The primary objective then, of the design of waveriders is to design a 
shape with high lift. To achieve this, a shape is required in which the high 
pressure is contained under the lower surface. This is obtained by using a 
known simple supersonic or hypersonic flow field and then choosing a portion 
of a stream surface to construct the basic lifting body. For this basic 
body, lift and drag characteristics can be found by using the knowledge of 
the flowfield and exploiting the above principle that high pressure remains 
contained in the space between the shock wave and the lower surface. For the 
ideal case there is then no spillage from the leading edge.

In practice the term waverider can be applied to any shape designed on 
these principles. The lift for all these shapes is primarily produced by
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(ON-DESIGN)
Waverider configuration shown in conical flow field. 

/

(ON-DESIGN)
W a v e r id e r  c o n f i g u r a t io n  s h o w n  in  w e d g e  f l o w  f i e ld .

(CONICAL FLOW)
Less resistance to spillage. *
Less contribution towards *
lift & earlier stall as 
compared to a similar condition 
of a wedge derived shape.

(WEDGE FLOW)
More resistance to spillage. 
Maintains lift contribution 
still at higher off-design 
(e.g., at higher a  values).

Fig. 4.12 Advantages of using wedge flowfield than conical flowfield for 
deriving waverider shapes (at off-design conditions).
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the high pressure on the under surface of the shock system. Efficient lift 
has been obtained from the use of two dimensional or axisymmetric flow 
fields of known chaiacteristics where the lower surface of the body is a 
stream surface carrying the shock wave system as defined above. This 
favourable condition of contained flow will be achieved at one Mach number 
condition, and the discussion has been earned out neglecting viscous 
effects. An important practical consideration is the behaviour of the 
containment at off-design conditions as produced by operating at different 
Mach numbers and including the viscous effects that are particularly large 
at large Mach numbers.

Fig(4.12) summarises graphically the basic differences between the 
characteristics of conical and wedge derived waveriders at slightly 
off-design condition. For a wedge derived waverider on the under surface, 
streamlines are spaced parallel to each other and to the Z-X plane. On the 
other hand for a conical shape waverider every streamline is placed in a 
constant azimuthal angle (]) and concentration of the flow is more towards the 
leading edge than in the center, hence, the contribution towards lift is 
comparatively limited. Also it can be argued that it is likely that the 
spillage will be less for a wedge shape than a conical shape for a condition 
away from the design case. Hence the loss of containment in off-design 
conditions is likely to be less for a wedge flow than for a conical flow 
derived shape.

4.5.2 Experimentation with waveriders.

Experimental evidence of the production of more lift through caret 
wings than conventional delta wings was obtained [48,60,61,62] in the 
sixties. These studies suggested that a higher value of C can be reachedo L
even for low flow deflection angles (0) (<30 ) and low Mach numbers (M ^ < 
9). The C values achieved for caret wings are greater than 10% than those

L o
for delta w ings. At slightly higher Mach numbers with greater sweep (7 6  ) 
for delta and cai’et w ing, experim ental data was obtained by Rao[63], 

Carr[i9] and Davies[64j. Rao[63] and Carr[i9] tested flat w ings and caret
o o

wings for 4 < CO < 10 (where (O = design angle which equals ((3-0)) with sharp 
leading edges. Their results showed that at co = 9.8 and free stream Mach
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number (M^=12) at the design condition (0=34 ), the caret wing had 10% extra 
lift than the delta wing. Increasing the deflection angle to 40 causes the 
additional lift to nearly double to 20%.

The data of Rao[63] had an interesting feature. Experiments were 
performed for angles of attack of 45 or more for the flow field environment 
at which two dimensional theory predicts a detached shock wave. The flow 
field did exhibit some instability but surprisingly C was still increasingL o
with increasing incidence angle. Furthermore the ratio of C^’s at 60 
incidence was even higher than that measured at lower angles fig (4.13).

Models tested by Davies[64] were of a more practical nature. One of the 
models with a flat bottom delta had a semi-span to length ratio (s/1) of 
0,11 representing the basic shape of the U.S.A.F. NASA Hyper 3 reentry 
vehicle and the second was a modification of the delta wing by constructing 
a recess on the underneath surface with co = 5 (where co = (3-0), thus 
representing an equivalent caret wing. These models were tested at M =12 and

o o ^
incidence 58 and 60 . During the experiment it was observed that the flat 
delta wing failed even to reach the Newtonian value and the obtained was 
0.65. On the other hand apart from some limitations the recessed wing 
revealed an extra 10% as well as a reduction of 5% of heat transfer on 
the under surface of caret wing.

A comparative study by Squirens] predicted the performance 
characteristics of these wings at different angles of attack at high Mach 
numbers at off-design conditions. For slightly lower values of co than 
design, a lower value of C would be obtained. For example if a caret wing

o L Q
o f CO = 13 is designed for M^=15 and y=1.4, at incidence o f  40 , it wou ld  

give —  (caret w ing to flat delta w ing) ratio o f  1.21, where as if  co is
F C  o

reduced to 5 this ratio reduces to 1.1.

Studies by Roe[65] and Squire[66] revealed that the degree of anhedral 
is a very important factor providing two advantages. First it helps to 
retain the lift and also its careful design allows moderate concavity. So by 
careful design the central sections of the under surface can be allowed to 
be filled in thus generating more usable volume. Furthermore such a
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modification may force the shock wave outward in the plane of symmetry at 
some other point along the span by generating extra local lift thus 
improving overall C^. The principal work in this field is attributed to L,C, 
Squiret66], Roe[65.67] and Davies[68],

Squire studied the performance and behaviour of a delta wing to changes 
in aspect ratio and anhedral distribution. The study was carried out at Mach 
numbers ranging from 3.5 and 8 and at angles of attack up to 60 . Fig(4.14 
a) shows some of the resultant anhedral distributed wings designed by Squire 
with aspect ratios of 2/3 to 4/3. Fig(4.14 b,c) compares some of these 
results with a simple delta wing and caret wing. Results confirm that 
significantly higher values of and small improvements in L/D at constant 

can be obtained by changing anhedral. Increases in the aspect ratio 
decrease slightly.

Another advantage of these anhedral surfaces is that modification near 
the plane of symmetry can be made to improve the volume characteristics of 
lifting vehicles. Hence wavy wings were suggested by Squire[66] to improve 
configurations for practical use. Fig(4.15) illustrates a number of wings 
with similar performance at M^=3.5 and demonstrates the advantages of wavy 
wings over the caret version. Although for the Squire shapes[66] (fig 
4.15a,b) at low Mach number, a marginal increase in was quoted for a wavy 
wing, Roe[68] suggests that for very high Mach number at (M ^= oo) a form of 
wavy wing can offer the same L/D^ (D^= pressure induced drag) as a caret 
wing while showing a reduction in concavity but an increase of Y i.e., 
shock distance from the compressed surface (hence shock wave movement) and 
therefore C^(fig.4.15c). For example for y=1.4 and for caret and
wavy wings are 0.72 and 0.71 respectively whereas for a flat delta wing it 
is only 0.58.

Options for designing anhedral shapes, whilst not altering the basic 
flow field, are not restrictive. Many irregular curves theoretically produce 
the same shock shape. Furthermore the slope of this shock plane, according 
to Roe[i7], can be fixed by the required design Mach number and lift 
coefficient mathematically as
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. 2  1 2 C
sin 0 = ------- +-----------

M 2  (Y+l)

Interestingly the resulting shapes derived from this shock plane are 
affine transformations of each other and look similar either from the top or 
front view. However for such shapes derived from these planes a necessary 
relationship between aspect ratio and friction drag has to be satisfied. For 
the case of high aspect ratio, a small anhedral is required and vice versa. 
Also an increase in wetted area means an increase in friction drag. A 
particular difficulty arises if a surface is to be designed from wedge flow 
for low Mach numbers, high and relatively low aspect ratio.

This preliminary study reveals that there exist advantages in designing 
a waverider from a wedge flow field with only a few disadvantages, and that 
a wide choice of shapes is available.

As discussed earlier, to construct more general and realistic shapes 
other flow fields should be considered for waverider shapes using the same 
principle. In this context Jones[69] first extended the idea of using the 
flow over an unyawed cone. The advantages of such waverider shapes were more 
usable volume, less anhedral and less friction drag. Initial experimental 
data for these shapes was limited, so drawing conclusions was difficult, 
however, experimental findings by Houwink and Richards[54] and Reggiori[56] 
did point out that even by adding thin anhedral wings to prevent spillage 
from the cone, a substantially better performance (high and L/D) can be 
obtained even at high angles of attack.

Ideas for deriving these shapes have developed more recently and during 
the 197Q’s and 1980’s most of the general shapes were derived from conical 
flow fields. The use of a simple cone flow as the basic field however, has 
its own disadvantages. In this case the streamlines of the flow are concave 
with a positive pressure gradient along them. Thus any surface constructed 
from this flow field will have, even for a well developed case, the centre 
of pressure and volume far rearwards, which was one of the reasons for which 
caret wings were rejected as practical shapes. An experimental study of the 
applicability of using simple idealized cone waverider configurations with 
varying anhedral angles for a hypersonic transport aerospace plane has been
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made out by Hozumi[70].

The theoretical treatment of cases from more general conical flow 
fields shapes has been carried out quite extensively using a variety of 
different theories and assumptions, in which support has been claimed by 
favourable comparison with experimental results. But the only report where 
wedge (caret wings) and conical (Jones wings) generated shapes are treated 
simultaneously is that by Ganzer et al, ref[7i]. In this case a variety of 
investigations have been made at the Technical University of Berlin around 
simple delta, double delta and waverider configurations with special 
treatment of vortex formation. Special attention was given to the effect of
Mach number, sweep angle, angle of attack and leading edge shape as well as
overall general shape as each parameter in turn affects the location, 
structure and origin of the main leading edge vortices.

Both models used were designed on the basis of a caret wing constructed 
from 2-dimensional wedge flow and a Jones waverider based on conical flow. 
Configurations used were characterized by design Mach number, span to length 
ratio (s/1) and volume parameter ( t = V/F, where F = Ŝ ^̂ ). Both models were 
designed for a free stream Mach number of M^=7.0. Resultant models used for 
experimentation had s/l= 0.3 and t= 0.08 for the caret wing and s/l= 0.28 
and T = 0.0883 for the Jones waverider respectively.

For the caret wing it was observed that if the operating Mach number is 
reduced below the design Mach number the shock wave bulges and then detaches 
from the wing. A similar phenomenon was observed when the angle of attack is 
increased. Flow around the leading edge occurs with separation resulting in
a rolling up of the flow into spiral vortex sheets. A low pressure is
observed on the upper surface below the vortex. These vortices contribute 
additional lift and therefore increase overall lift-to-drag ratio. 
Fig(4.16)[7i] illustrates L/D ratio at different Mach numbers below the 
design value. It was further observed that at subsonic speed for cai'et wing, 
the low pressure due to leading edge vortices provides roughly half of the 
total lift.

Lift and drag are calculated from the measured pressure distribution. A 
strong upstream influence of the base flow is shown to exist on the lower

83



surface of the wing resulting in some uncertainties in the results.

Unlike the caret wing, the Jones waverider was based on a conical flow. 
At the design conditions the shock wave was expected to be conical and 
remain attached to the leading edge. This wing appears more practical due to 
its small dihedral and extra volume but the experiment revealed that the 
flow field at slightly off-design conditions is very complex and is 
basically non-conical in nature. For the pressure distribution over the 
Jones waverider, unlike the caret wing where the pressure distribution is 
almost constant at supersonic conditions, a pressure variation was observed 
on the lower surface due to non-conicity of the body. Overall flow behaviour 
was however close to predictions. A closely predicted flow was also obtained 
by Pike[72] for conical flow waveriders at M -4 derived from cone angles of

o o
11 and 16 . Here the causes of error are mainly attributed to experimental 
environment such as model shape, tunnel calibration etc.

Experimental data for conical constructed waveriders at hypersonic flow 
is limited. The above mentioned experiments were canied out in the low 
supersonic and supersonic range up to a Mach number of 4. Some off-design 
behaviour is also believed to have been caused by viscous effects. As the 
thickness of the boundary layer changes the effective shape of the geometry, 
then a need to revise the body shape due to these effects is required. 
Bowcutt and Anderson[26] have communicated some of these shapes in which 
viscous effects were included in the final optimized shapes.

The models for these final optimized shapes were treated experimentally 
by Jones and Vanhoy[73] at the University of Maiyland at subsonic speeds. 
Two models were constructed. One of a Mach six optimized waverider and the 
other a sharp delta wing with approximately the same length and span. 
Results showed a small primary vortex and a secondary vortex on the upper 
surface originating from the leading edge for both delta and waverider 
shapes, which enhance the final lift. The only difference was found at a 
very high angle of attack when the flow over the waverider tends to separate 
near the nose, contrary to the delta wing which has a fuller planform shape. 
However other characteristics such as lift were the same for both 
configurations, until was achieved.
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WAVERIDERS
( Constructed through Conical Flow field )

Top View

Front View

3-D View

MACH NO = 4.0
R= 0.04
A= 1.0

Upper Surface Eqn
Y=A*X +R

Fig 4.17 Perspective views of a general conical derived waverider 
(with inclusion of cone body at Mach 4.00)
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WAVERIDERS
( Constructed through Conical Flow field )

amender configuration shown in conical flow field.

MACH NO = 4 .0  i

R= tan ( 5 )  !
A= 0.5

U p p er S u r fa c e  Eqnl

Y = A*X +R !

Waverider configuration 3-D
Top View

3-D View shown with computational grid (27 60 17)
Cross sectional view with grid

Fig. 4 .19  Perspective v iew s o f  a general conical derived waverider 
(with exclusion  o f  cone body at Mach 4 .00).
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Ref.t74] describes experiments on these optimised waveriders at M=4 and
o o

6 for a range of incidences between -16 and 14 . Initial results showed 
that the maximum lift-to-drag ratio was 13% lower than predicted for the 
Mach 4 case and 6% lower for the Mach 6 case. The difference between the 
measured and the predicted values was cited to have been caused by the 
slight detachment of the shock due to off-design behaviour at the design 
Mach number and angle of attack.

Experimental results on caret wings at hypersonic speeds can also be 
found in ref[75] and [76].

In the light of the above discussion including theoretical support and 
experimental review it is suggested that where the caret wing has 
disadvantages, conical waveriders also have limitations. Although in the 
past most attention was given to conical derived shapes, it is clear that 
under certain conditions advantages for wedge derived shapes cannot be 
ignored. In the present study more general waverider shapes have been 
derived in a similar fashion from conical as well as wedge flow fields.

Fig(4.17) illustrates a derived inviscid conical flow waverider at a 
free stream Mach number of 4. Here the upper free stream parabolic surface 
is placed at R=0.04 with a constant A=1.0 such that the basic shape includes 
part of the cone ( i.e., Jones "A" type). Keeping other parameters constant 
and increasing the free stream Mach number to 8 demands an increase in the 
half cone radius thus providing extra usable volume. This is shown in 
fig(4.18).

The flow around these type A shapes is more complex. If part of the 
cone is not to be included in the shape, the upper ridge of the waverider 
can be arranged to be limited to R^>Ltan0^, where L=cone chord. In this 
case, the top ridge line always lies beneath the cone body as shown in 
fig(4.19).

4 .5 .3  E ffect o f  th e lead ing  ed ge sh ap e for W averiders.

The general shape of the waverider for conical flow, if the top ridge 
does not coincide with the cone apex, is non-conical and it may exhibit
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complex flow phenomena. As discussed earlier for conical flow derived 
shapes, streamlines lie in the constant azimuthal angle (]) and the usable 
volume advantage can only be achieved if part of the basic cone is included 
in the shape. The advantages of selecting waveriders as lifting shapes is 
attributed to their flow simplicity by using shapes defined inversely from a 
2-dimensional flow (conical or wedge) as a basis of their construction. 
Initial treatment through inviscid assumptions of these shapes has 
demonstrated attractive characteristics and the oblique shock wave relations 
can be used to carry out initial predictions. Treating the wedge derived 
shape is more simple resulting in probable higher accuracy whereas treating 
a curved shock as a plane oblique shock wave, to be used as an approximation 
for cone derived shapes, is reasonable only as long as its radius of 
curvature is large compared to the thickness of the shock layer.

The problem reduces to a 2-dimensional one along the leading edge for 
an attached flow behind the oblique shock wave. As there is no tangential 
force experienced along the wave front and to fulfill the continuity 
condition v̂  = v̂ ,̂ the flow can be reduced to a one dimensional problem, 
with a uniform velocity parallel to the wave front superimposed. In the 
process of flow crossing the discontinuity (shock wave), the normal 
component of the velocity changes suddenly. As there is no change in the 
tangential component and direction of the flow, the flow is compressed and 
turns towards the shock wave. The shock relationships shown in (Appendix I) 
reveal the different changes in the state variables behind and in front of 
the shock wave. All these relationships can be applied simply and they show 
that most of the ratios of these variables are expressed as a simple 
function of the shock angle and free stream velocity. Pressure, density and 
temperature ratios across the shock in terms of and shock angle (P) are 
graphically presented in fig(4.20)[34].

To investigate the influence of leading edge shape consider now the 
flows around waveriders derived from both wedge and cone flowfields. 
Consider a slice with a negligible thickness (i.e in a 2D sense) from each 
flow aligned along their respective streamlines. For the wedge derived 
waverider the slice will lie in the X-Y plane parallel to the free stream 
flow and will resemble the flow over an approximate 2-D wedge. For the slice 
of the cone derived waverider the streamline direction will not align with

86



Fig. 4.21
Conical derived waverider.

Fig. 4.22
Wedge derived waverider.

Top view for two waveriders derived from same free stream surfaces
and flow conditions.
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the free stream flow, but will lie in a constant azimuthal angle (]). However 
it will closely resemble a 2D wedge placed in the flow with a slight roll 
and yaw.

Since both of these general derived waveriders shapes are constructed 
through the same free stream flow conditions (and assuming that the upper 
free stream surface is also the same in each case) then it is useful to 
understand which particular part of the waverider defines the shape of the 
lower streamline flow and resultant shock shape. It is useful to explore 
which of the two general waverider shapes, illustrated in fig(4.21) and 
fig(4.22) and constructed for a particular free stream flow, will produce 
the highest lift.

Wind tunnel tests will give the definitive answer. However an initial 
answer is possible if the leading edge shape is known. Both of these 
waveriders look the same, thus it is not obvious at first glance to say 
which is more efficient. With closer inspection, however if only the leading 
edge shapes can be defined, then an answer can be found, as the shape of the 
leading edge in terms of planform and local wedge angle to the flow is found 
to be the only parameter which influences the lower streamline flow from 
wedge- to conical- derived.

For conical flow, when a free stream surface (e.g.,y-Ax^+R) cuts the 
shock cone (x^+y^=Z^tanp^, 0^=p), the shape of the leading edge curvature 
projected on the X-Z plane (as shown in fig(4.21)) can be shown 
mathematically as

(AxVR)^ + X cot^P .,.(4.12)

For the wedge derived shape where the equation for the shock plane is 
Ycosp - Zsinp, which on intersecting the same free stream surface reveals 
the equation for the leading edge line in the X-Z plane as

(Ax^+ R)cosp - Zsinp = 0 ...(4,13)
or, Z = (Ax^+R)cotp

This is shown in fig (4.22).
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Fig 4 .24  Construction o f  shock polar.
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Fig 4.25 Shock polar with operational range. I86J
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In order to retain the streamline flow along the free stream direction 
and thus to contain the flow to optimise lift, a change in leading edge 
shape may provide extra advantage but the ultimate shape (for extra usable 
volume) is derived simply by increasing the 0 (body deflection angle or 
wedge angle) along the leading edge to the shock detachment value. These 
limits can be defined with the help of the shock polar (fig 4.23).

The shock polars illustrated in figs(4.24) and (4.25) provide the 
different possible flows downstream of an attached shock wave. The important 
flows to be considered in these figures are those pertinent to the line 
lying between point A and B (in fig(4.24)). All flows, physically possible, 
are represented on the closed shock curve. Here the point A is the limiting 
value which represents an infinitesimal disturbance producing the Mach wave 
inclined at ja (fig(4.25)) to free stream. Relevant to waveriders, are points 
on the curve from point F towards A which represents all cases of attached 
flow on the cone. The line connecting OF, which is tangent to the curve, 
corresponds to the maximum deflection of the flow.

The angle, 0 , which defines the maximum limit to have the flow
max

attached to the leading edge, can also be found mathematically by 
differentiating equation(2.7) with respect to p and equating to zero. The 
result found thus is [86]

sin^P 1 ^  M j - l  +  /  ( Y + l ) ( l +  ^  M j +

which substituting in equation (A5.9a) gives 0 . It follows that 0
max max

is theoretically the angle above which the flow is detached. For all points 
to the right of a point G, which is close to F, the downstream flow is 
supersonic (attached) and to the left (detached) subsonic.

Since the flow over a waverider, in its ideal on-design case, is part 
of a wedge flow, the oblique shock polar diagram can be used to explore the 
increase in the local deflection angle to enhance the usable volume of the 
waverider as well to provide an indication of the angle of attack limit for 
operation.



4.6  C ases for M ach  6 .00  & M ach 8 .00 W averiders.

The discussion on oblique shock polars developed in the last few pages 
was applied to the flow over waveriders in order to compare the performance 
of conical and wedge-derived waveriders. Flowfield conditions used for 
simulation are shown in table 4.1. Tables 4.2 and 4.3 show the results 
obtained for two particular free stream flows. To simplify the comparison, 
it is assumed that the flow for the conical-Fow waverider causes a conical 
streamline flow underneath its surface, as it would for an idealized conical 
derived waverider. Correspondingly, for the wedge-derived case, the 
streamline behaviour is equivalent to that obtained from a simple two 
dimensional wedge placed in the flow.

T A B L E  : 4.1  

F low  con d itions for sim u la tion

T = 64.69 K
= 0.028945 kg/m^ 

P = 537.41 N/m^
T = 300 K

W

U = 935.08 m/s
M = 6.00 and 8.00 
Po = 689.5 X 10  ̂ N/m ^  

Tc = 500 K

For both conical and wedge-derived waveriders a parabolic shape upper 
free stream surface given by Y=AX^-i-R, (in which A=0.5 & R=TanO ) was used. 
For both cone and wedge-derived shapes, parameters "A" and "R" for each free 
stream Mach number remain the same. In the procedure, an upper surface 
trailing edge is first specified from which the free stream is extended 
towards the shock plane. Where it intersects the respective shock planes 
defines the leading edge. From the leading edge, the waverider compression 
surface is defined by the streamlines of the shock layer from the leading 
edge envelope to the base plane. The definition for this differs for the
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cone-and wedge-derived flow approximately. For all cone constructed shapes 
only type ’B’waveriders (i.e where the originating cone surface is not part 
of the waverider shape) are considered. For each waverider, it follows that 
the ridge of the under surface lies at R=tan0^.

Viscous effects are included in the study assuming it is only two 
dimensional planar flow. Also it is assumed that the flow is totally laminar 
over the whole body and there is no turbulent or ti'ansitional flow.

For the free stream surface, as it has a constant pressure (p^), 
therefore, the flow on this surface is considered equal to a flat plate 
boundary layer flow. A local skin friction co-efficient (cd is

1 local
calculated at some distance /from  the leading edge by the Blasius formula : 

g ■'w 0 .6 6 4

where,

For the lower surface local skin friction co-efficients are evaluated 
using conditions behind the shock wave.

The results for Mach number 6 and 8 are included in tables 4.2 and 4.3 
which exhibit the change in lift, drag, L/D and wetted ai'ea respectively. It 
can be seen from the table that for the conical waveriders, although a high 
lift can be achieved by these shapes, under similar conditions a general 
wedge constructed waverider provides even higher lift.

Table (4,2) shows the data obtained for two general conical constructed 
shape waveriders for free stream Mach number 6.00 and 8.00 for a shock

o o
angle(p) of 15 . For M=6.00 a basic cone with a half cone angle of 10.73 isO
required to produce this shock angle whereas a 0  ̂ of 12.08 corresponds to 
the Mach 8.00 case. A lift of 49.32 N can be achieved for the Mach 6.00 
general conical derived waverider shape. For the high Mach number the lift 
increases to 64.14 N for which the planform area also reduces to 0.038 
because of the shift of R(top ridge point shift from Y-axis) as a result of
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the increase in cone angle. The friction drag for the Mach number 6.00 case 
is 1.722 N which increases to 2.566 N for a Mach number of 8.00. This 
reduces the overall L/D to 4.55 from 5.394, a reduction of 15.64%.

T A B L E  : 4 .2  

G enera l con ical derived  sh ap e w averider.

L.hdge
Mach NorShockCone Stream Lift 

angleangle  1. angle
Drag

(P  re ssure)
Drag L/D

( P r i e  tion)
S

w

P 0, o„, L D

6.00
8.00

N
15.0° 10.73° 7.18° 49.32 
15.0° 12.08° 9.41° 64.14

N
7.42
11.51

N
1.722
2.566

5.394
4.555

m^
0.1296
0.07575

T A B L E  : 4.3

G enera l w ed ge derived  sh ap e w averider.

L.Fdge
Mach No:ShockCone Stream Lift 

ang leang le  1. angle
Drag

(P  re ssure)
Drag L/D

( F r i o  tion)
S

w

........... ” L  .......... D
N N N m^

6.00 15.0 - 7.18 136.84 17.24 3.78 6.51 0.3476
8.00 15.0 - 9.41 167.20 27.73 5.753 4.99 0.2132

One of the prime objectives of the present study was to explore some of 
the advantages for these general wedge derived shapes over the conically 
derived ones. For the similar freestream conditions as used for the conical
derived flowfield, the general waverider shapes are derived for the wedge.
Data due to these are shown in table 4.3.

Results from the wedge derived shapes reveal that a considerably higher
value of lift and L/D can be obtained compared with conic-derived shapes, 
due to the comparatively high contained pressure on their under surface than 
for the corresponding conically derived waveriders. Fig (4.26) shows the 
pressure distribution underneath both (conical and wedge derived) shapes. 
This shows that for general cone derived shapes the pressure is lower near

91
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CONICAL VS WEDGE DERIVED WAVERIDERS
Effect of change in L,D & L/D.
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Fig(4.27a)

CONICAL vs WEDGE DERIVED WAVERIDERS
Effect of change in L,D & L/D.
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the leading edge and increases gradually to the trailing edge. Even at the 
highest value it is still smaller than the coiTesponding wedge derived 
shape. For the Mach 6.00 case near the leading edge, the contained pressure 
for the conical case, is 1296 N/m^ as compared to 1422 N/m^ for a wedge 
derived shape, an extra 9.7%. Near the trailing edge it is 1407 N/m^ for the 
conical but still less than the wedge constructed shape at 1422 N/m^. This 
difference increases for the high Mach number case, where compared to 2598 
N/m^ (pressure for the wedge- shape), for the conic- derived shape the 
pressure is 2297 N/m^ near the leading edge and 2434 N/m^ near the trailing 
edge.

Table 4.3, shows that a lift of 136,84 N is predicted for the Mach 
number 6 case with a pressure drag of 17.24. The L/D ratio has an increasing 
trend for inviscid flow equal to l/tanO^ but the presence of viscous effects 
reverses the trend reducing it to 6.51 with friction drag equal to 3.78 N. 
For a free stream Mach number of 8.00 lift, pressure drag and friction drag 
increases respectively to 167.2, 27.73 and 5.7537 N. Also a comparatively 
high L/D ratio can be observed (4.99) corresponding to the respective cone 
derived waverider (4.55).

Regarding the criticism against wedge derived waverider shapes of 
having sharp leading edges it is important to note that at the leading edge 
where the waverider rides on the shock plane, the initial streamline angle 
at the leading edge is the same (0^~7.18 for M^=6.00) and (8  ̂=9.41 for 
M^=8.00) for both conical and wedge derived waveriders. For conically 
derived waveriders, a slightly higher volume is achieved at low Mach numbers 
rather than at high Mach numbers due to a higher deflection of local 
streamlines, but this effect diminishes at higher Mach numbers. In contrast, 
for the wedge derived shapes an increase in Mach number will not only 
increase volume but also lift and L/D ratio. Comparison is shown in 
fig(4.27a) and fig(4.27b) for both cases.

The increase in wetted area for wedge constructed shapes makes the 
understanding of the foregoing point difficult. The data in the second row 
of table 4.4, obtained for wedge flowfield waveriders for Mach number 6.00 
with lift equals the corresponding conic waverider, helps clarify this 
point. The result clearly show that for the same free stream conditions and
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CONICAL VS WEDGE DERIVED WAVERIDERS
Effect on other parameters while keeping 

lift constant.
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Fig(4 .27c)
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a similar top surface shape, to produce the same lift, a 23.65% lesser 
planform area than the conical derived shape is required. It can also be 
observed that there is a decrease in pressure drag (D^=6.213 N), An increase 
in friction drag (D^=3.07) is also noted due to the increase in wetted area 
which results in a decrease of the final L/D ratio (fig 4.27c).

T A B L E  : 4 .4  

C om p arison  o f  p erform an ce  

o f  con ica lly  derived  and  w ed ge derived  w averiders

(for lift kept constant)

LTEdge
Mach No:ShockCone Stream Lift Drag Drag L/D S S

angleangle  1 .  angle (P ressu re )  (Fr ic  tion)
M  P 0 B E D
 o o ------------------- 1----------------- c------------------- si-------------------------------------------------------------------------

w p

N N N m^ m^
6.00 15.0° 10.73 7.18° 49.32 7.42 1.722 5.394 0.1296 .073
6.00 15.0° wedge 7.18° 49.32 6.213 3.078 5.32 0.2612 .055

T A B L E  : 4.5  

C om parison  o f  p erform an ce  

o f  genera l con ica lly  derived  and  w edge derived  w averiders

(with conic- lift equals wedge- derived waverider lift and S ) =S )
p conic p wedge

L.Ldge
Mach No:ShockCone Stream Lift 

ang leangle 1. angle
Drag

(P  re ssure)
Drag L/D

(F r ic  t ion)
S S

w p

P 8c- 8 , .....................
L D

N  N  N

6,00 15.0° - 7.18° 49.32 7.42 1.722 5.394 0.1296 .073
5.376 15.0° wedge 7.18° 49.32 6.213 2.812 5.47 0.330 .073

Furthermore interesting results can be observed in table 4.5, where, in 
the second row data is obtained for wedge derived shapes optimized for 
planform area equivalent to the conical derived waverider. The values here 
indicate that to achieve the same lift as that of the conical-derived shape, 
a lesser free stream Mach number (of 5.376 - for wedge) is required (instead
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WAVERIDERS
( Constructed through Wedge Flow field )

Top View waverider configuration 3-D

Front View

MACH NO = 4 ,0

R= 0.0875 
0.5

Upper S urface Eqn 

Y=A*X +R

Fig 4,28 Perspective views of a general wedge derived waverider
(For Mach No:4.00)
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WAVERIDERS
( Constructed through Wedge Flow field )

w av erid e r configu ration  3-D

Top View

À

Front View

I  MACH NO = 8.0 
I R= 0.0875 
I  A= 0.5rU pp er S u r fa c e  Eqn  

Y=A*X +R

F ig  4.29
o f a  general w edge derived  w averider
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WAVERIDERS
( C onstructed through Wedge Flow fie ld  )

Top View
w av erid e r configu ra tion  3-D

Front View

MACH NO =8.0
R= 0.0875 
A= 0.5

lupper S u r fa c e  Eqn  

Y=A*X 4-R
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of 6.00 - for conical derived). Also it results in an increase in L/D ratio 
to 5.47 (fig 4.27d).

An increase in wetted area for wedge constructed shapes may be seen to 
be the cause of a reduction of the total L/D ratio due to a comparative
increase in friction drag. The friction drag included in the study is
calculated with an assumption of weak interaction and it is used merely to 
get the initial estimate of viscous drag. The friction drag is not discussed 
in detail because the program has been developed to provide the basic input 
shape for a full Navier Stokes solution which shall include the detailed 
viscous effects for the final results automatically. An optimum shape can 
thus be generated by keeping a few parameters constant at a time.

Views of derived general wedge shape waveriders at Mach number = 4.00 
and 8.00 are shown in fig(4.28) and fig(4.29) respectively. Changing the top 
free stream surface to a straight plane an ideal caret wing as shown in 
fig(4.30) can be constructed.

In order to treat these shapes using a full solution of the Navier 
Stokes equations, a computational grid is generated. Fig(4.31) and fig(4.32) 
shows a conical and caret wing placed in the computational grid. This will
be useful for further research in the topic.

In the view of above discussion it is appropriate to say that great 
advantage can be achieved through small changes in the leading edge shape 
and secondly the limitation often referred to in wedge derived shapes of 
having little usable volume can also be overcome to a certain extent by 
using a shock angle close to the maximum value before detachment. A shape 
derived from such a shock corresponds to an optimum volume distribution. 
Also, for waveriders, a number of geometrical parameters vary for each 
change in free stream condition, which complicates the drawing of definitive 
conclusions. Thus in order to demonstrate the practicality of any waverider 
an optimization of the shape must be done by studying the relationships 
between these different parameters.
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WAVERIDERS
( Constructed through Conical Flow field )

z

Waverider configuration shown in conical flow field.

Waverider configuration 3-D

Y

MACH NO =  4 .0  !

R= 0.045 I
A =  0.5 i

U p p e r  S u r f a c e  Eqnj

Y =A *X  + R  I

Cross sectional view with grid

3-D View shown with computational grid (27<60x50)

Fig. 4.31 Perspective v iew s o f  a general conical derived waverider 
with computational grid.

(with inclusion of cone body at Mach 4.00).
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WAVERIDERS
( Constructed through Wedge Flow field )

3-D View

Cross sectional view with grid

3-D View shown with computational grid (27x60*17)

MACH NO = 8.0
R= 0.0875 
A= 0.5

Upper Surface Eqn

Y=A*X +R

Fig 4.32 Perspective views of an ideal general wedge derived waverider
in computational Grid. (Caret Wing)-(For Mach No:8.00)
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CONCLUSIONS AND FUTURE WORK

Following the success of the Space Shuttle, a strong enthusiasm has 
been observed for further development of hypersonic vehicles. The existence 
of research vehicle progammes such as X-30, HOPE and HOTOL etc. demonstrates 
that hypersonic vehicle design is an important technology driver for the 
next century, in which the objective is that the cost of placing payloads 
into space will be reduced considerably. As a result of such developments it 
is expected that to place a normal payload in low earth orbit will cost 
considerably less than at present. The Space Shuttle is considered as a 
system of limited flexibility and suffers from excessive downtime between 
missions. It is clearly not efficient in delivering payloads and personnel 
to space stations.

For global flights and space missions in the atmospheric phase of the 
flight, traditional wing-body and slender body configurations have 
aerodynamic limitations since the high Mach numbers involved result in a 
loss in efficiency due to wing leading-edges being forced to be supersonic. 
The waverider type configuration which naturally operates with a supersonic 
leading edge provides an alternative and as a result spaceplane shapes with 
a blend of waverider and traditional concepts have been considered in 
vehicle design.

The waverider has been slow to be accepted, however because to date 
limited resources have been made available to adequately prove the concept. 
Techniques in numerical modelling using computational fluid dynamics (CFD) 
approaches have been limited in computing power for such cases and 
experimental techniques have been expensive and do not always provide 
adequate simulation. For example, since in the past there has not been 
available a sufficient computational capability, studies have been 
concentrated on idealised waverider shapes at design conditions whilst often 
ignoring some important flow physics. One of the objectives of the present 
study was to point out and investigate the effect of removing some of these 
constraints especially those associated with viscous effects and to consider 
the best configurations to operate well in near off-design conditions.

In the literature, some work has indeed been reported on the effect of
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including viscous flows, but this has been generally done by using boundary 
layer corrections to the inviscid computation. At hypersonic speeds, 
especially at high altitudes however viscous interaction with the shock 
layer becomes important (i.e. % »1) and the boundary layer approximation is 
no longer accurate. Furthermore for off-design conditions, the main flow is 
no longer simple since complex viscous dominated vortex flows and shock 
interactions are present and these can contribute substantially to the 
prediction of overall forces.

Viscous effects from these applications can only be reliably predicted 
using solutions of the Navier-Stokes equations, which, with models for 
turbulence and high temperature effects will embrace all of the necessary 
physics envisaged for flight within the atmosphere (when mean free paths of 
molecules are small). Now, with the availability of large computers, and the 
development of efficient computational techniques, Navier-Stokes solvers are 
becoming practical to apply.

Numerical solution of the full 3-d Navier-Stokes equations currently 
require particularly large computer resources. Fortunately, for the flow 
over waverider-type shapes it can be countenanced that a reduced set of 
Navier-Stokes (NS) equations, would be sufficient for modelling the flow 
thus making the computer resource required less substantial. For example, 
thin-layer NS equations which still enable counter-stream separations should 
be sufficient to tackle the majority of on-design and off-design cases. For 
sharp nose shapes with streamwise oriented separated regions such as 
produced by slender wings and bodies, successful efficient solutions should 
be attainable using the parabolised NS equations. It can be speculated that 
for the earlier conceived waverider shapes such as the caret shape and for 
wing-cone combinations in which the flow is nearly conical that the locally 
conical NS (LCNS) should provide adequate modelling.

A computer code solving the LCNS equations was used to predict the flow 
over examples of the latter shapes. The range of numerical studies included 
4 cases of caret wing optimised for flight at Mach numbers of 1.44, 1.74, 
2.51 and 4.93(section 3.4) and 3 cases of a wing cone configuration at Mach 
10 at incidences of 5, 10, and 15 degrees(section 3.5). This computational 
study revealed that :
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* viscous effects have significant influence over the flow field 
even at low Mach number cases and reduce the lift expected from 
in viscid on-design calculations;

* however, even with substantial viscous interaction, enhanced lift 
over their conventional counterparts was achieved through the 
contained flow beneath the waverider shapes tested - this was true 
even for the cone-wing configurations at high incidence;
the good comparison between the computations and experimental 
results demonstrated that modelling these flows over idealised 
waverider shapes using LCNS equations is reasonably adequate - it 
also provided considerable detail of the flow that assisted the
understanding of the aerodynamics of the configurations;

* the presence of viscous regions changes the effective shape of the
body so that the flows are no longer the original simple flow 
fields (i.e. creates off-design flow cases). It is possible
however to restore approximately the desired ideal simple 
flowfield by altering the Mach number or the angle of incidence - 
such changes can arrange for the shock to re-attach to the vehicle 
leading edge.

Existing studies have shown that it is not necessai'y, however to be 
constrained to these caret or cone-wing configurations. It is possible to 
generate more generalised shapes. Most work on generalised waverider shapes 
to date has been done by imaginatively deriving shapes from flows generated 
by cones. A numerical method based on the Taylor-McColl theory was developed 
in this work to assist the generation of such generalised shapes and to help
the analysis of the on-design cases of these shapes. However, also in this
work, it was recognized that configurations derived from flows generated 
from wedges have been much neglected in the literature. Thus a numerical 
method was also developed using oblique shock theory to generate and 
investigate these later configurations.

A comparative study of examples of cone-derived and wedge derived 
generalised waveriders was cairied out in this research. In this study it 
was demonstrated:

* that wedge-derived waveriders provided higher lift than the
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cone-derived counterparts at the same incidence;
^ that wedge derived waveriders were less sensitive to off-design

operation - containment of flow was improved in off-design 
operation over cone derived generalised shapes;

^ the leading edge shape and its lower surface orientation to the
flow for the two equivalent waveriders are different but not easy 
to differentiate without careful examination;

* high payload volume for wedge derived waveriders, which had been
thought only possible with cone-derived shapes, can be achieved by 
using the basic flow field from a wedge at high angles of attack 
up to its shock detachment angle;

^ with the use of the shock polar diagram, further refined optimised
shapes can be achieved by using a variable leading edge geometry.

It has also been observed from the numerical studies that extra lift 
can also be generated by arranging for the upper surface to generate vortex 
lift.

This research has demonstrated that advanced CFD techniques 
incorporating the Navier-Stokes equations provide a powerful tool to explore 
in detail waverider aerodynamics in on-design and off-design operation. Such 
techniques are suitable to deal with the upper surface vortex flows as well 
as the complex shock interactions that may occur. However this demonstration 
was done using only a lower order mathematical model (LCNS) mainly because 
of resource limitations at the time of study. This limited the studies of 
the effect of viscous flows on configurations to caret and wing-cone 
configurations. Becoming available now are improved computing facilities and 
efficient numerical algorithms to tackle higher order reduced, but adequate, 
models such as PNS which include the ability to predict turbulence and high 
temperature effects. Since these computer codes can be run just as easily on 
complex shapes as on simplified ones, such as done in this study, then the 
flow over the generalised waverider shapes derived from wedge or cone flows 
can be tackled. This is further enabled since there exist suitable grid 
generators for Navier-Stokes solvers on such shapes. Future research 
involves a systematic programme using in turn the configuration design 
codes, grid generators and CFD codes to explore more in depth the 
performance of generalised cone- and wedge-derived waverider shapes in 
hypersonic flows with realistic flow physics.
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APPENDIX 1

NORMAL SHOCK WAVE RELATIONSHIPS.

Changes in the flow vaiiables across a shock are obtained by 
considering the conservation of mass, momentum and energy across the shock 
front, which is assumed to be infinitesimal thickness.

By conservation of mass

P .u . = P A
by conservation of momentum

P i+pU^ =
and, by conservation of energy

where i refers to conditions upstream and 2 refers to conditions 
downstream. Entropy S also must increase across the shock

.*. AS = S -S  >02 1

Other relations are as following

Temp ratio

(Y +1)V (Y +1)

Pressure ratio

The density, velocity and dynamic head ratios are

Pi
A .  _  Y+l 

i r - q ;  —
^ as Mj- -> oo
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The Mach number behind shock can be calculated by

M.

'/

2ym;-(y-i) J
Pressure coefficient

% “ T
P 2- P 1
ÿ . U Y+:

as M 1 -> 00

n o t e  I When temperature and pressure ratios across the normal shock 
increases (with M^) the density, the velocity, the dynamic head ratio, Mach 
number behind the shock and the pressure co-efficient reach limiting values 
for large M  ̂ as shown.
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APPENDIX 2

OBLIQUE SHOCK WAVE RELATIONSHIPS.

A requirement for an oblique shock is that the tangential component of 
the velocity is unaltered, where as the normal component obeys the 
relationship for a normal shock.

The change of temperature, pressure and density across an oblique shock 
may be simply obtained from equations (for normal shock waves) by replacing 
M^by M^sinp, where p is shock angle.

Therefore following relationships are obtained again

-(Y -1) (Y-QM^sin^p+Zr2 . 2 , 2 Y(Y-l)M|Sin^p 

(Y+1) '(Y + l)W s in ^ P

P ,  (Y+l)MjSin^P
Y+1

Pi ( Y - l ) M % i n ^ P + 2

The Mach number behind the shock is given by,

( Y - 1 )  M , s i n ^ P + 2  1 1
X-

_2Y M jSin^p-(Y -l). sin^(p-0)

and, pressure co-efficient

by
In addition the velocity component and behind the shock are given

U 2(M s in ^ p -1 )
T T =  1------------   i--

(Y+1)M^
1 2 s in  p 

^ ŸT1-----
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V ,  _  2 ( M ^ s i n ^ P - l ) c o t P s i n z p

A  ( y+ 1 ) M j ^^ÿ+T ~

As in case of a normal shock, the temperature and pressure ratio for an 
oblique shock increases for large Mach numbers, with the square of the Mach 
numbers (more precisely, with M^sin^p) where as the other ratios reach 
limiting values which are independent of Mach number and are function either 
of Y only, or of Y and shock angle p. M^sinp is the normal component, M of 
the incident Mach number M^.
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APPENDIX 3

NAVIER STOKES EQUATIONS (in spherical co-ordinates).

By transforming the Cartesian coordinate into the spherical form, the 
Navier-Stokes equations in spherical form can be written. A simple 
coordinate transformation relationships can be used i.e..

X = r sinG coscp 
y = r sinG sincp 
z = r coscp

r > 0 
0 < G < 71 
0 < cp < 271

and the resulting equations in spherical coordinates ai'e written in 
conservation form as

where

.(A3.1)

U = r^sinQ

P
pUr
PU0
pu
pe

.(A3.2)

E = r sinG

pUj. + p -

p“e“r ■ ''er 
P V r -  \ r
(pe +p)u^.+ q^-u^X^-UQTg^-u Xcp cpr

..(A3.3)

F = r sinG

pUg

r “0 "r0

pug + p  - "'ee 

P V e "  <̂P0
(pe +p)ug+ q g -Vr0- V 0 0 "  V 'P S

..(A3.4)
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G —

p%
P"r"ç- \ ( p
P"0"(p- ''09

P“9+ P - ''<p<p
(pe + p)u^+ q^- Vr<p- "0'( 9 99

„(A3.5)

H = r sinG

-2p - pug^- pUq  ̂ +Xgg+ ïqxp

pU^.Ug-Ctg0 (pU^pVp- X ^ )  - X,.g 
pUj,Ug+ Ctg0 pugu^p-ctg0 Xg^- X̂ ç
G

.(A3.6)

Where shear stress terms are given as follows 
22 P g /  - div Vrr

1 dUp w 2
%G "  ^r + — ) - div V

1 3"%) , *r . "GftsG  ̂ 2,.
— 7 ) -(̂p(p  ̂ rsinG S(p div V

TG “  "Gr

''0(p -  ''<p0

a " 0  I ®"r
Xn.. = P [ %= (—  )+ ,  aU ]dr r̂ 

rsinG a

F W  
u. 1 an G

^   ̂ r âF  ^sinG  ̂ ^ rsinG acp ^

div V

.(A3.7)

\cp  ^(pr ^  ^rsinG acp ^ ^ar ^r

[ §j(Am 0up + |g(rsin0ug) + ~(ru^)]
r^sinG

and heat flux is defined as,

_ V 1 aT 
%  -  - ^ ?  â F

1 aT
^(p " ^  rsinG acp

.(A3.8)
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APPENDIX 4

TAYLOR MACCOLL CONICAL FLOW RELATIONSHIP

For an axisymmetric or quasi 2-Dimensional flow 

d _ Q
( Axisymmetric flow ) ...(A4.1)

^  = 0a r  ( Conical flow ) „.(A4.2)

and thus, when the flow is independent of (|), provided the semi vertex 
angle is not greater than the shock detachment angle, there will be a 
conical shock wave attached to the apex of the cone.

Therefore, the continuity equation can now be written as 
V.pV = 0 

or, in polar co-ordinates,

V.(pV) = i -  -  (r'pV) + —  (pVgsin0) + - J —  ^  (pV.) = 0
r ar rsinG a G rsinG a G ^

Evaluating the derivative and applying (A4.1) and (A4.2)

then V.(pV) = 2pV + (pV„cot0) + p — 0 + = 0 ...(A4.3)
 ̂ a G a G

For the attached supersonic flow over a cone, the streamline increases
from G just downstream of the shock to Ĝ  when it comes close to the
surface far downstream. Since the shock wave surface is conical and of
uniform strength, the following assumptions can be used :

(1) The increase in entropy across the shock is same for all
streamlines, thus AS = 0 in the shock layer;

(2) The flow is adiabatic and steady, therefore, AHo = 0 -  H^-
whiere, is the enthalpy before the shock and is the enthalpy after the 
shock;

(3) For irrotational conical flow, VxV = 0,
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therefore, VxV -  1
r sinO

8/Sj.

®0

aldQ

(rsinO ) e^

= 0. (A4.4)

rsinOV^

On applying axisymmetric (d /d ^ ^ )  and conical flow (5 /a r^ )  conditions 
to the above equation, this simplifies to

v e  = 80
=  0 ...(A4.5)

In order to carry out the analytical treatment of the flow between the 
cone and the shock,

dp = -pVdV

v ;-  Vgwhere, V
and dp = -p(V^dV^ + VgdV^)
also under the isentropic conditions,

or,
dp/dp = ap/ap) = a
dp/p = - L  ( V^dV^ + VgdVg )

a

,,,,(A4,6)

...(A4.7)

For energy conversation, Ho = H + -^ = constant, and we can define a 
reference reference velocity (V ), which is the maximum theoretical

max
velocity obtained from a fixed reservoir condition. When V=V the flow has

max

expanded to zero enthalpy, hence H = 0.

For a perfect gas, Ho = C T + —̂ Constant

and also for an in viscid adiabatic steady flow with no body forces the total 
enthalpy is constant along a given streamline.

i.e Ho
and

= (V^ -V )̂ where, = v V  vA ...(A4.8)
max Z r Ü

2 _2
Constant = RT + ^
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substituting (A4.8) in (A4.7) gives Euler’s form for studying conical flow. 

2 (V ,d V ,+  VgdVg)
dp/p = - (A4.9)

Equations (A4.3), (A4.5) and (A4.9) are three equations with three 
dependent variables p, and Vg. Since these equations describe 
axisymmetric conical flow conditions, there exists only one independent 
variable i.e., 0 and hence they can be written in ordinary differential form
as,

2V + (VqCotG) + — 0 + 1  = 0
^ dO ^dO p

...(A4.10)

and, ^ 0  =
dV

r

dO

dp/dO = 2 p ' " Q )
Y - l  ( V ^  - - V o )
' m a X r o

....(A4.11)

putting (A4.11) into (A4.10)
dV

dV,2V -f (V^cotO) + — 0 + - — 
® d e  Y-i (V^ . V^ - V q)

m a X r v

or, rd (V ^  - V  ̂ -V b(2V +  Vocote + — 8)-Vo(v5!Yr + Vo— O) ...(A4.12) 
Z ' 8 r 8 dO ® 'd6 ®dO

d V
putting value of Vn "  — in the above equation gives,

^ d0

)^2h+ V ^-V ^-

2
d V lr
d0

r dV d^v  
2V + — cote + — ' 

W e  d0

dV dV d^V
— ' ( v l ^ r  + f ') = 0 ...(A4.12a)
dO "d0 dBdO 

eqn(A4,12a) is the conical form of the Taylor Maccoll equation, and can be 
further transformed into non-dimensionalised form as 

,2

1-V'
dV

d0

' ' dV d^V
2 V + — Fot0 + ----- ^
I *■ dO dO
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dV ' dV d^V  
—  (V — r + — ----- 1) = 0
d e  "de de  do^

.,.(A4.12b)

V
where V =

V
and is a function of Mach number

V
- Y

V = f(M) only, so

V =
V

+ 1
(Y-I)M '

equation (A4.12b) can be more simplified by putting Y= ?  and V = — r
d0

and the Taylor Maccoll equation can be expressed in another form as 

(6U^-1+U^)u' = 2U(1-U^) + (l~U^)Ucote - 7UU^-U^cot0 ...(A4.13)

U ,
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APPENDIX 5

The Shock Polar Diagram

A shock polar is the locus of equations satisfied by the components u  ̂
and of the velocity behind the shock. The curve is then the exit vector 
velocity curve uniquely determined by the particular free stream velocity 
and covers all the possible exit flows down stream of an attached shock 
wave.

Along the stream lines for a steady flow the velocity and pressure can 
be expressed as (Bernoulli’s eqn.)

VdV + |E  = 0 ...(A5.1)

P.-PŸ
and, as flow is adiabatic, therefore, introducing p =

PY
1

in above equation it can be written as ,

v ^ -v ^  .V p b  r t i  ï i l
0

or,

+ ...(A5.2)

which shows that for a given mass of gas sum of kinetic and potential 
energy along a stream line remains constant provided = const. By

substituting and simplifying terms of normal and tangential components 
(fig(A5-I)) it results in

v'(6vV6C" -̂V )̂ = V (6v'\ôC*^-V^)
n n t n n t

or, in factored form

c
where primes denotes values behind the shock. And, as (V -V therefore.

(V -V )(6V V -6C*W ^) = 0
 ̂ n n n t
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Fig (5-1) Velocity vector across the shock (shock polar).
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' .2 V?V V = C ^ + 7 ^ )  = 0 ...(A5.3)
n n O

By substituting the following velocity values from rectangular 
coordinates (U,V and U ,V ) in above relationship (ref fig A-I)

V=V^ = Ucosp 
V^= Usinp

and, = UsinP - ^

A general relationship is obtained as follows.

U^in^p - Uv'tanP = C* -̂ U^cos^p. ...(A5.4)

Now if p is to be eliminated, from fig(A5-I), putting

p = tan'^ I ^  ~ V , further simplification reveals that 
L V  J

tan0 = -  , and tanp = = ---------- . ,..(A5.7)

Here y and x are merely the exit radial and tangential velocities
expressed in terms of polar components. The reference or datum line aligns
itself to the free stream velocity direction V^. The resultant shock polar
equation (A5.6) is uniquely determined by free stream Mach number. For any
free stream Mach number there is only one unique shock polar curve. For y=0,

*  1possible solutions are x = M and x = — There is a third possible solution
1 5 * ^when X = —^  ^M , but this has no physical significance because then y

becomes infinity and the line becomes only a vertical asymptote of the
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v\c '^+  I u^-uu') = (U-uV(UU-C* )̂. ...(A5.5)

In non-dimensionalized form if (V/C & U/C ) are considered as 
variables x and y, and the whole equation is divided by C* ,̂ then, the 
equation for the resultant shock polar becomes

y \ l  + I  M*^- M’x) = (M*- xf(M*x - 1). ...(A5.6)
At any arbitrary point

y .  r i r . i A  M*



f  0

Fig (5-II) Construction of shock polar.

D*cr#astn<j ong/j ^

- 8*0

Fig (5-111) Shock polar with operational range.
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5k 1 5 * ^curve. Furthermore this interval M < x < —-4- , is not physically possible

since it implies that the exit flow is greater than the inlet flow. All
these three points for M>1 can be seen in fig(A5-II) where pt A corresponds
to X = and, B and C corresponds to x = -3 -^  for y=0 and x = for y=

M M M ^
oo. From the fig(A5-II) it also appears that the main significant point of
the shock polar is between point A and B. All different physically possible
flows can be represented on the closed shock portion of the curve,

Considering figure (A5-III) point A can be seen as a limiting value for 
an exit flow velocity which conesponds to a free stream subjected to an 
infinitesimal disturbance and which produces the Mach wave inclined at p  to 
the free stream but produces no deflection to the stream and no change to 
the exit velocity.

In the intermediate region, for example at point D, the polar cuts the 
curve at point E, and physically represents the flow through a particular 
oblique shock, the inlet stream of direction and magnitude given by OA being 
deflected through an angle 0 to give a flow of magnitude and direction given 
by vector OD (or od). The ordinates of OD gives normal and tangential exit 
velocity components. Corresponding wave angle P (for weak shock) can be 
shown as

M*-x (O A )-(oa) (aA)
tanp = ---- ------ = ---------------  = ------  ...(A5.8)

y (ad)  ( ad)

A similar approach can be adopted for point B where ordinates 
correspond to normal and tangential components for a strong solution. The 
orientation of p̂  (for the strong solution) suggests that the wave is nearly 
normal to the flow. Thus in this case the velocity drop for the same flow 
deflection (OD) for (OE) is much greater, and is normally subsonic.

To achieve the maximum deflection angle for flow attached to the 
leading edge, differentiation of equation (2.7) reveals [86]

...(A5.9)
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which, substituting in.

results in 0
max

tanp
tan(p-U)

(y+l)M ^ s in^p 

2+(y- l)M ^sin^p
...(A5.9a)

To assist the study of waverider shapes based on wedge flows a 
relationship to find out the optimum value of 0  ̂ to gain maximum pressure 
with an attached shock is sought. It is noticed that a significant number of 
variables along the wave front can be expressed as a product of Msinp. Using 
the general relationship for p, 0  ̂ and M and by introducing the parameter c 
expressed in terms of the above, p can be eliminated. The final result is 
given as

cot0 =
b

6M'

or alternatively

I5M^ ( 5c + )-5
5 p

-  1 tanp ...(A5.10)

3M^c + 5 - 5M^
P L  P

5 + 3M c ĉ - zj tan̂ Ô  ...(A5.11)

The coefficient of pressure, c^ for different Mach numbers given by 
eqn.(A5.11) is plotted in figure (A5-IV). Here the locus of points for any 
Mach number for infinite slope of c^ is determined, which marks the maximum 
value of pressure, which can be obtained for a particular value of M with an 
attached shock wave [85]. Under this condition, the equation reduces to

9m V  - 2(5M^-5 + 7sin^0 M^)c + 4sin^0 (3M^-5) = 0 ...(A5.12)
P P

By putting sin^0^ = K, in order to determine the boundary, locus 
boundary and eliminating M between (A5.11) and (A5.12), we get

4(7c^ -14c +12)K-4c ( 6 c - l i e  +10)K + 3c = 0 ...(A5.13)
p p p p p p

Solving the simple quadratic equation

then K = c ——
p

6c^-llc  + 1 0 -/7 "  /  3c'*-18c^+41c^-44c +20

2(7c -14c +12)
p p

...(A5.14)
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This equation is illustrated in fig(A5-V) which gives the maximum
value of c  ̂ attained for particular M with an attached shock wave.

For designing the optimum wedge derived shapes for a particular value 
of M a useful idea is to plot all these intersection points as Mach numbers 
versus body angle (wedge angle 0^) as shown in fig(A5-V). Now the upper 
coloured portion shows the detached shock condition and the lower half shows 
the attached shock to the leading edge with the values close to the curve 
promising maximum lower surface pressure. An equation for the curve can be 
derived by considering the maximum boundary of p-0 graph i.e., by
considering for M ----- > co in p-0-M relationship (0=0^),

cot0 b̂ 5sin^P
-  1 tanp

and finding the maximum of this curve in equation (A5.10), resulting in

7M^sin'^P+(10-6M^)M^sin^p-(6M^+5) = 0 ...(A5.15)

Because, for our design of waverider, body shape is more important, 
therefore, from (A5.10) and (A5.15) p can be eliminated to get the results 
in terms of 0^, which is the final equation for the curve in fig(A5-V), and 
the resultant equation is as following.

3
^ 25__ _9M^-80M  ̂ -2M ^ -1 7 0 + Æ (3M V4M V20)^

 ̂ 98M  ̂ 9 M V s M^+25
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