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Abstract

Mode I, mode II and mixed mode VI asymptotic crack tip fields have been studied under
contained yielding conditions using plane strain and plane stress boundary layer
formulations. The effect of the non-singular term in the asymplotic elastic expansion
(Williams, 1957) on the plastic zone at the crack tip has been determined. Plane stress
mode I, mode II and mixed mode FII crack tip [ields have also been investigated
analytically. Analytical solutions were developed by assembling constant stress, fan and
elastic sectors. Slip line theory (Hill, 1950) was used to solve constant stress and fan
sectors while the stress fields in elastic sectors were solved using the semi-infinite wedge
solution of Timoshenko and Goodier (1970). Analytical solutions were validated by
numerical results, and represented as slip line fields.
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Chapter 1 Introduction

Engineering structurcs and components may contain cracks or defects which may -

compromise their structural integrity. Fracture mechanics is intended to ensure the earety

of structures such as nuclear installation, aircraft and chemical plant, and thus avoid loss of

life, as well as providing financial savings.

Fracturc mechanics can be used bath in the design and maintenance of structures and
components. Conventional methods bascd on strength, use two variables: the applied load
and the yield strength or ultimate lensile strength of the material. In design based on |
fracture mechanics, three variables are considered: the applied load, the fracturc toughness

and the absolute defect size. Fracture toughness is a material property, which quantifies the -,“

material resistance to fracture. Fracture mechanics atlempts to establish the critical -

combinations of load, fracture toughness and defect size to ensute that an existing defect

does not extend.

¥

>
.t
B

The field of fracture mechanics developed following the failure of the Liberty ships
developed in the United States during the second world war, The Liberty ships were

fabricated by welding instead of using traditional riveted joints. Out of about 2700 Liberty -

ships, fractures occurred in around 400 vessels. Subseguent fracture analysis identified |
three different causes of failure: defects or cracks in welded joints, stress concentration at
square hatch corncrs on the deck and poor fracture toughness of the structural steel. As a

result improved quality control measures were implemented. ‘

Research in the ficld of fracture mechanics can be categorised into materials research and !

structural research. Materials research is intended to give a better understanding of material ~
behaviour. This includes material propertics, process control, defects control and control of £

microstructure to obtain improved material pertormance and reliability. Structural research

is intended to improve the life and design of structures. Thus fracture mechanics research

potentially saves significant costs arising from both matertal and structural {ailures.

A component containing crack-like defects, may be loaded in three distinct modes: mode 1
{opening), mode II (in-planc shear) and mode III {out of planc shear) or any combination
of these modes. In many practical cascs, structures or components are subject to mixed :
mode (111, /111, T/IIT) loadings rather than a single mode. The current work investigates .
the mixed mode VTl crack tip fields in elastic perfectly-plastic material in plane strain and
plane stress, and is intended to provide insight into the structure of the crack tip f1e]d

within the plastic zone, which devclops at the crack tip. :

Following this Introduction, Chapter 2 reviews the basic concepts of stress, strain and |

elastic stress-strain relations, plane stress and plane strain and concludes with a discussion |
on yielding and plasticity. Chapter 3 introduces the fundamental concepts of linear elastic -
fracture mechanics, which are central to this work. Chapter 4 establishes the concepts of
planc strain and plane stress slip line fields and reviews existing solutions of plane strain .
and plane stress mixed mode (I/11) slip bine ficlds. 5

Chapter 5 reviews the literature on cleavage and ductile fracturc under mixed mode (VII) ;|

loading. This leads to the numerical methods employed in the analysis including boundary
fayer formulations, which are discussed in Chapter 6. Chapter 7 presents the results of the




numerical study, which focus on the structure of elastic perfectly-plastic crack tip fields in
mixed mode I/II loading. Here a technique for expressing numerical results as slip line
fields is developed in both plane strain and plane stress. Chapter § develops analytical
solutions of the plane stress problems in mode I and mixed mode U1 loading. Finally,
Chapter 9 discusses the results and the main conclusions of (he work are summarised in
Chapter 10.




Chapter 2 Stress, strain and stress-strain relations

2.1 Stress and strain

2.1.1 Stress

Stress is a fundamental concept in the mechanics of materials, and indicates how a force is
transmitted through a solid body. To illustrate this, consider a small cubic element in
Figure 2.1 subjected to arbitrary forces in an orthogonal Cartesian co-ordinate system x; (i
=1, 2, 3). As the element is small, the forces are assumed (o be uniformly distributed over
the faces of the element. Force is a vector Fj, and A is the area of a face normal to the i
dircction. The stress on the element can be defincd as:

Ii F; 2.1
Ty —*\fl—r’%’A_i (2.1

where i, j = 1, 2, 3. Stress 0y, is a sccond order tensor, in which the first suffix, i refers to
the direction of the normal to the planc on which the stress acts, and the second suffix, j
refers to the dircction of force component. Normal stresses occur when i = j and shear
stresses when i # j. Thus a normal stress @y evolves from the force component on a plane
in the x; direction and where the direction of the normal to the plane is also x. As
illustrated in Figure 2.1, the stress components ©p;, Ogz, Gaz are the normal stress
components on the element in X;, Xz and X3 direction, 02 and O3 arc shear stress
components on the x2x3 face. Similarly 631 and 623 are shear stress components on the x X3
face, and o3 and 03 are the components on the xx; face. Equilibrium of moments
requires that o; = o;; allowing the siress tensor at a point be described by six independent
components Gy, O22, O33, 012, 023 and 0131,

If a body is under static equilibrium, the stress componcnts must satisfy a set of differential
cquations known as the linear equilibrium equations:

00, " Joy, N doy,

+X,=0
aX] aX-‘,_ axS l
aGw _]_ aclz + a613 + Xz = O
ax? axl aXS

oG 1) 00
33+ ?.3+ 31+

X, =0 (2.2
ox, Ox, Ox, ’ (2.2)

wherce, X, X; and X3 are the components of the body force per unit volume in the x|, x»
and x3 directions.

Stresses can be transformed from one co-ordinate system to another system using the stress
transformation equations, Figures 2.2 & 2.3 show the stresses on an element near the crack




tip in Cartesian and polar co-ordinate systems, It the Cartesian stress components arc ¢y,
022 and G, the stress components in a polar co-ordinate system (r,0) are:

G, =G, cos” 0+, sin’ 8+ 20, sinBcosO

Cge = O, sin° 8+ 0G,,co8” 820, sinBcos O

O = (04 ~0,,)8in 0cosO+ 6, (cos* O ~sin® 0) (2.3)

where, o, is the normal stress comiponent in the radial direction, Ggg is the normal stress
component in the circumferential direction, oy I8 the shear stress component and € is the
angle (taken as positive anti-clockwise) which the element makes with the x; axis.

Similarly, stresses in the Cartesian co-ordinate system can be obtained from the polar co-
ordinate system by the reverse transformation:

G, =0, cos’ O+ 0, sin’ 0~ 20, sinOBcosO
0, =0, sin* 0+ 0, cos® 0+ 20, sinOcos B
G, = (0, ~0y)sin0cos 0+ 06 4 (cos® B —sin’ 9) (2.4)

The maximum and the minimum normal stresses in an element are the principal stresses.
The pianes on which principal stresses act are called principal planes, which are not subject
to shear stresses. Using Mohr’s circle in Figures 2.4a & b, the maximum and minimum
normal stresses i.e., the principal stresses on the element are:

2 2

L

2
Gy 70, O, — 0y 2
T, = + +65, (2.5)

The principal planes and the principal stresses are shown in Figure 2.4c, and arc
perpendicular to cach other,

Consideration of the element shown in Figure 2.4, indicates the maximom and minimum
shear stresses 1n the element obtained from Mghi’s circle construction are:

[ 2
T = i\}[a”—;”] 0122 (26)
/

The minimum shear stress is negative with an absolute value equal to the maximum shear
stress. Figure 2.4d shows the maximum and the minimum shear stresses and the planes on
which they occur. The two planes are orthogonal. The normal stresses, &, on the planes of
maximum and minimum shear stresses are identical and can be given as:




_ 0, +0,,
n 2

~

(2.7)

The plane of maximum shear stress makes an angle of 45" with principal plancs.
2.1.2 Strain

Strain is a measure of the distortion ol a body, possibly as the result of an applicd stress. A
body subject to an external force, may undergo deformation as well as a rigid body motion.
In muiti-axial loading, the strain at a peint in the body is specified by the components of
strain in Xi, Xz and x3 directions. Like stress, the strain components are denoted as normal
and shear strains and give the strain values of an infinitesimal element which is initially
parallel to the co-ordinate axes. Normal strains arc denoted by €;; (i = j) and shear strains
by vy (i # J). If the displacement components of a particle in a deformed body in x, xz and

X3 directions are u, v, and w, the nornal and shear strain components are:

_ du e = ie = ow
. —-'_‘_’ 22 — ——— T wr—
toox, OX , 9K,

L du 2.8)

As the six strain componentis are functions of the three displacement components, they can
not vary independently and are related by a set of dilferential equations. The differential
equations are called compatibility equations and can be written as:

0°€, _82822 _ vy
ox3  ox; 9x0x,

aza?{l 62833 _— azq{Z}
ox:  ax?  ox,ox,

2 2 2
97, + 9%, _ 07y,

ax? o ax: o ox,ox,

2 a’e,, - J f Y43 + aY13+a\'12\
0x,0x, OX \ Ox, dx, dx,




2 82822 _ a a‘i’23 _aYB +ayl?.
ox . 0x, dx,dx, odx, o0x,

5 ey _ 2 .?X??t_.+i}ﬁy.1},~§i!l\ (2.9)
dx,9x, Ox,(9x, Ox, O,

‘The strain componcnts must satisfy the compatibility equations.
2.1.3 Elastic stress strain relations

Constder a bar of isotropic lincar-clastic maicrial subjected to uniaxial tensile stress ©,, as
illustrated in Figure 2.5. The corresponding strains are:

o a
822 :__2.?.‘.,8“ -_-833 :..\)._..2..2... (210)

E E
where, €,,€,, and g&,, are slrain components in X, X; and x3 direction respectively, E is
Young’s modulus and v is Poisson’s ratio. Similarly for uniaxial tensile stresses G, and
O, the stress strain relations are:

o )
€y =, €y = €55 =-V—+ and
E E
o )
€y =25, By =8y =oVE (2.11)
E E

By superimposing these equations for the strain components, the stress strain relations for
mutiti-axial loading are:

1

gy =—[0y, =v(0, +05)]
E
1

€, = E[Gzz ~V(G,, +Oy)l

1
€y = E[% ~V{0,; +0y)] (2.12)
The shear strain componcats are oblained from the shear stresses as:

T, O 23 Sy
s Von s Y — 2.13
2 G (L G 3l G ( )

where, G is the shear modulus, which can be written in terms of Young’s modulus and
Poisson’'s ratio:




K
= —— 2.14
© 2(1+v) ( )

2.2 Plane stress and plane strain
2.2.1 Plane stress

Plane stress and plane strain are concepis which are intended to simplify full three
dimensional problems allowing them to become more amenable to analysis. Consider a
thin plate, loaded as in Figure 2.6. The forces are uniformly distributed over the boundary
of the plate, and act parallel to its plane, such that there is no stress component in the
direction perpendicular to the plane of the platc (i.c., in the X3 direction), and other stress
components (x; and x,) do not vary in that direction, This state is defined as plane stress
and can be specified by the stress components 6y, Gy and Gy,.

Plane stress is defined such that tn direction X3,

d0;;
O3 = a3 =03=0 and —-=0 (2.15)
X3

2.2.2 Plane strain

Consider a long cylindrical body loaded as in Figure 2.7, The forces are uniformly
distributed over the surface of the body, and act parallel to the faces of the cylinder. The -
stress components (X, Xz and x3) do not vary along the longitudinal axis (represents the x;
direction) of the cylinder. Moreover, the cylinder is fixed between two rigid plates, such
that it does not displace in the axial direction, Therefore, strain components of the body in
the x5 direction arc zero. This state is defined as plane strain.

Plane strain is defined such that in direction X,
En=Yi3=Yn=0 (2.16)

From Hooke’s law, the strain in the xa direction:

€33 == [0y —V (0}, +0y)] (2.17)

1
E

where v represents Poisson’s ratio and E is modulus of elasticity. Substituling €33 = 0 in
Fguation 2.17, the normal stress in direction x3 is:

G33 =V (01 4+ O) (2.18)

The out of plane stress, ¢33, maintains the plane strain condition. Again, from stress-strain
relations:

1 1 1 .
Yia =6C5|3, Yo 25023 and v, :EGIZ (2.19)




Substituting from Equation 2,16, Equations 2.19 give the condition of plane strain as:
|
€33 =Yi3=Y3=013=0,3=0 and ¥y, =~6-CT,2 (2.20)

2.3 Yielding and plasticity
2.3.1 The Tresca yield criterion

The Tresca yield criterion (Tresca, 1864) suggests that multiaxially loaded material yields
and exhibits irreversible plastic deformation when the maximum shear stress cxceeds a
critical value equal to the yield strength in shear. The maximum shear siress is given by:

[0,-0,| [0, 63| |5,

Tmax = Ty = Cp/2 = Maximum of ‘ ,! 5 |, 5 ‘ (2.21)

where, 0, 0z and o3 are the three principal stresses. The Tresca criterion indicates that the
yield stress in shear is one-half the tensile vield strength.

2.3.2 The von Mises yield criterion

The von Mises yield criterion (von Mises, 1913) indicates that yielding occurs when the
elastic distortional energy per unit volume in a tensile test equals the distortional energy
per unit volume in the component under multi-axial loading. The distortional energy within

a component under multi-axial loading can be characterised by an equivalent stress:

. 1
o :"_1_‘ [(0'1 =0,) +(0, —03)* +(0; -0, )2]5 2.22)

2

where, 1, 62 and O3 are the three principal stresses. Yielding occurs in a multi-axially
loaded component il the equivalent stress, G, equals the uni-axial yield strength, Gg.

The von Mises yield criterion can be expressed in tcrms of non-principal stresses. As
discussed in Section 2.1.1, the principal stresses can be written as:

1
o, +0 (8] o : 2
1 22 11— Y22 2
g, = + +0,,
2 2

. . ‘
+0, = Uay » |7
o, = O T8y (|90 +03, (2.23)
’ 2 2

The principal stress in X3 direction can be given as:

63=0 (2.24)

in plane stress, and




03 = V(0 +02) (2.25)
in plane strain, where v is Poison’s ratio.

Substituting Equations 2.23 in Equation 2.25 gives:

03 = V(011 +022) (2.26)

Substituting Equations 2.23 & 2.24 in Equation 2.22 gives von Mises equation in terms of
non-principal stresses for plane stress:

3 —

2

2
o = L|guz0n) | f0ut0s)
2 2 J

+6sz—‘ (2.27)

pd

Again substituting Equations 2.23 & 2.26 in Equation 2.22 gives the corresponding
equation for plane strain:

1 [« R s PR : /G O * 2 ) 2 .
0. =7 6£_.__m” > 2~J +2L“22?J (1-2v)* +60}, (2.28)

2.3.3 Liquivalent stress and equivalent strain

If yielding is assumed to occur under the von Mises yield criterion, the tendency for further
plastic flow can be quantified by the equivalent stress, @ which can be expressed in terms
of principal stresses, ¢, G2, 53 as:

T = 4/1/2[(6, - 6,)* +(0, - 6,)* + (0, —5,)*] (2.29)

The equivalent stress can also be written in terms of the Cartesian stresses as:

o= JI/ZI'_(G“ _0'22)2 +(0y “633)2 +(0y, "'"Gn)z]

#4306, +436,, + 30,

(2.30)

In uni-axial tension the equivalent stress, @ is equal to the yield or flow strength of the
matcrial. For an clastic-perfectly plastic material during plastic deformation the equivalent
stress rermains constant. However, if the material strain hardens, the cquivalent stress
increases with plastic deformation, due to changes in the dislocation structure of the
material.

Since the equivalent stress depends on plastic strain, it is necessary to quantify strain with a
parameter which corresponds to the equivalent stress, © . The appropriatc parameter is the
equivalent plastic strain, ¥, which can be defined as:

80 = J2/9[(e! —el)? + (e} —eb)’ + (e} —e)’] (2.31)




where, e?, e? and el are principal plastic strains. The equivalent plastic strain in terms of

Cartesian strains can be given as:

& = J2/90(ef, —¢%)? + ek —ch)? + (el —ef)’]
i .1 . 1 \ (2.32)
+'§("i’1z) +'§(723) +§(Y31)

In uni-axial tension the equivalent strain,&” is equal to the axial strain,el for
incompressible deformation. The equivalent plastic strain, €” quantifies the total distocation
activity associated with a shape change. Under uni-axial tension (02 = 63 = 0) an axial
tensile plastic strain, ey = 0,02, gives rise to transverse plastic strains, ¢f = e] = - 0.01,
with no volume change. Although the valumetric shape change (ef + el + ¢}) is zero, the

equivalent plastic strain (g" = ef ) is 0.02.

The equivalent plastic strain can be wrilten in an incremental form as:

d&® =+/2/9(de? -~ deb)? -+ (def —deb)? -+ (de? —def)?] (2.33)

where, dej, de] and de} are the principal plastic strain increments. Using Cartesian
strains the equivalent plastic strain increment is;

& = /2/9[(de?, —de’,)? +(del, ~dek,)? + (de?, —def,)?]
I 1 1 ) (2.34)
+§(d"‘/12) +§(dea) +§(d"r'31)

The total cquivalent plastic strain is then given by summing the equivalent strain
increments over the strain history:

g = jdap (2.35)

Thus a tensile strain of 0.02 (ef = 0.02, e] = e} = - 0.01) followed by a compressive
strain of 0,02 (e} =-0.02, e} = ¢f =+ 0.01) recovers the original shape of the body but
gives a total equivalent plastic strain of 0.04.

The relation belween equivalent stress and equivalent plastic strain is independent of
loading history as wcll as state of siress. Therefore, the equivalent stress-strain relation in

tension is identical to that in bending or torsion.

The plastic stress-strain equations can be written in similar form to the elastic cquations,
thus:

1
& = E[Gll -V(0,, +03;)]
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1

€n ZE[ » — V{0, +033)]
1.

€3 = 510'33 —-Vv(0,, +0,)] (2.36)
aq,, (8 [s)

Yi2 = Clr“ v ¥a3 z_él » Yo = (-;] (2.37)

where, (i is shear modulus and G = E/2(1+4v).
Plastic deformation occurs with no volume change, so that the volumetric strain is:

BY e ey te, =0 (2.38)

Substituting from Equations 2.36, Equation 2.38 gives:

AV 1-2v
vV E

(), +0, +05,)=0 (2.39)

LEquation 2.39 shows that for an incompressible material Poisson’s ratio is Y2, giving the
shear modulus, G = E/3. Substituting into Equations 2.37 gives:

_ 3oy, _ 30,

A

_ 30,
Yiz = E Y E 131"““%—“

(2.40)

To describe nou-finear deformation, the modulus of elasticity, E, can be replaced with the
ratio of equivalent stress to equivalent strain, 5/€, in Equations 2.36 & 2.40 to give a set
ol equations:

e 1 €
En = %‘{Gu "‘E«fzz +033)] Yo = 3"6"012
€ 1 €
€5 :'glozz _E(Gn + 0y Yoa 23;_;09.3
c 1 e
By = g[o‘zs _5(6” +0,) T :3503) (2.41)

These equations describe deformation plasticity, which is applicable to both linear and
non-linear elasticity. A non-linear elastic material can nol be distinguished from a plastic
material unless unloading is allowed, and given this type of loading history (proportional
loading) Equations 2.41 are also applicable to a material under deformation plasticity.

Non-linear elastic and plastically deforming materials can be distinguished if the

deformation history involves unloading as the elastic strains arc recovered on unloading
and plastic strains are permanent. The total plastic strain is the sum of the increments of the
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strain in the deformation history. Replacing strains by plastic strain increments, Equations
2.41 gives the flow rule as;

. 1 _de® de?

def, =[o,, ~= (0 +G3)i— dyp, =3—0,
2 G 4]
1 de? de’

ded, =[o, "5(011 1 Gy )]? dys, = 3?023

=P =P
© ayp =38, (2.42)
[e)

S 1
dE'l33 =[0y _E(Gn + O yp)l

The Equations 2.42 describe incremental plasticity, where the total strain is obtained from
the elastic strain calculated from instantaneous stresses and the total plastic strain obtained
by summing the plastic strain increments:

de,, = dg;’i +def| dy, = (I‘Yflz + (Wra
de,, = dﬁzlz +dey, dyy = dY?s +dyh,
de;, = dE;ls +dej, dyy = d'Y‘; +dys, (2.43)
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Figure 2.1: Stress components referred to Cartesian co-ordinate axes.
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Figure 2.2: Stresses on an element near the crack tip in Cartesian
co-ordinate system.
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Figure 2.3: Stresses on an element near the crack tip in polar
co-ordinate system.
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Figure 2.4: Stresses on element (a) and its corresponding Mohr’s circle (b)
showing the principal stresses (¢) and maximum and minimum
shear stresses (d).




Q
o
(%]

—_—

X

X3

Figure 2.5: Bar subjected to uniaxial tension.
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Figure 2.6: Forces at the boundary of a thin plate.
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Chapter 3 Linear elastic fracture mechanics

3.1 Griffith Criterion

According to the Griffith criterion (1920), crack propagation occurs if the energy available
for crack growth is greater than the energy absorbed by the material. Griffith (1920) used a
thermodynamic principle which states that a system Joses energy when it goes from a non-
equilibrium to an equilibrium state, but if it is already in equilibrium the energy will
remain unchanged. Hence, an existing crack will advance if the total energy in the system
decreasces or reimains constant.

Consider an infinite plate subject to a remote tensile stress ¢ as illustrated in Figure 3.1.
The plate contains a crack of length 2a. Following Griflith (1920), the surfacc energy
associated with the crack will be daty; (the product of the total crack surface area, 4at, and
the specific surface energy, vs). According to an analysis duc Lo Inglis (1913), the decrease
in elastic potential energy of the plate due to introducing a crack of length 2a is
(nczazi)/ E’, where B'=E in planc strcss and E/(l-vz) in plane strain. The change in
potential energy of the plate due to the introduction of a crack can be given as:

nczazt

U-Up=- b +4aty, 3.1)

-7

where, U is the potential energy of the plate with a crack, Upis the potential energy of the
plate without a crack, a is one-half the crack length, t is the thickness of the plate and ys is
the specific surface encrgy.

FEquation 3.1 can be rewritten in the form:

2.2
U = 4aty Nn(sat

3 EI

+ Uy (3.2}

The equilibrium condition is given by the minimum potential energy, U with respect to
crack length

U gy, 202 Lo (3.3)
da P

Equation 3.3 gives the equilibrium condition as:

nG"a
2y, = — 3.4
T =g (3.4)
The second derivative of U in BEquation 3.3 can be written as:
0°U  2ac’t
U __ 20 (3.5)
da E

I3




A negative value of the second derivative indicates unstable equilibrium in which the crack
continues to grow, Equation 3.4 can finally be written in the form, which relates the
fracture stress to the crack length:

o= e (3.6)

Equation 3.6 is valid for ideally brittle materials in which cracks propagatc by breaking the
atomic bonds, such that the energy of the broken bonds per unit area is given by surface
energy per unit area, ¥,. However, in the case of metals and polymers, which undergo
plastic deformation, a major porlion of the fracture energy is contributed by plastic work
(Irwin, 1948, Orowan, 1948), Therefore, plastic work per unit area of surface must be
incloded in surface energy term.

In order to apply Grilfith’s relation to a plastically deforming material, Irwin {1948)
defined the elastic strain energy release rate, G = dU/da , which gives the relation:

oV =VE'G (3.7

Fracture occurs when the strain energy release rate reaches a critical value, G. This critical
strain energy rclcase rate, Ge, is a material property and is independent of geometry.
Substituting G = G; in Equation 3.7 gives relation between failure stress and critical strain
energy release rate as:

o ma = JE'G, (3.8)

For an elastic plastic material strain energy release rale, G = J, a path independent contour
integral surrounding the crack tip (Rice, 1968), which characterises the elastic plastic crack
tip condition, Following Rice {1968), the J integral can be given as:

= j(wdy T, @lds) (3.9)
E Js )

where, I' is an arbitrary contour surrounding the crack tip, w is the strain energy density,
T; are components of traction vector (normal to the contour), u; are the components of
displacement vector and ds is the increment of length along the contour. The strain energy
density, w, can be given as:

y
W = Icr.lideij (3.10)
{l

where, ¢; and g; are the stress and strain teasors. Under lincar clasticity J is identical to
the strain energy release rate, G.

3.2 Stress Intensity Factor (SKF)

A parallel approach to the energetics of the crack advance considers the stress field at the
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crack tip. Using a cylindrical co-ordinate system centred at the crack tip the Williams
(1957) expansion of the asymptotic elastic field can be given as:

o, =A@+ B, @O)r" +C @O)n'* 1 (3.11)

Focusing on the first and second terms that are non-zero at the tip, the stress field can be
wrilten as:

. SIS 01 (.j=1,2) (.12
Uij—m i 0 OJ Lj=1, A2)

where, oy is the stress tensor, f;;(0) is a dimensionless function of 8, K is the stress intensity
factor and T is a uni-axial stress (tensile or compressive) parallel to the crack flanks. The
first term in Equation 3.12 is singular at the crack tip and K describes the amplitude of
singularity. T-stress is independent of radial distance but depends on geometry and [oad.
Focussing on the first term, the asymptotic stress field for mode I loading can be given as:

K|

i -1, (8
UI_] \/% 1}( )

where, K is mode I stress intensity factor, The Stress Intensity Factor (henceforth SIF)
characterises the amplitude of the stress singularity at the tip of a crack in a linear elastic
material. If the SIF is known, all the components of stress, strain and displacement at a
point ncar the crack tip can be detcrmined as a function of distance from the crack tip r and
angle 0. The stress inlensity factor is denoted by X, Ky and Ky depending upon the mode
of loading (i.e., opening, in-plane shear and out-of-plane shear respectively). Figure 3.2
illustrates three different modes of loading. In mode I, the load is applied normal to the
crack plane, and the crack opens symmetrically about the crack plane. Mode [ corresponds
to in-plane shear loading and tends to slide onc crack face with respect to the other. Mode
I corresponds o out of plane shear.

(3.13)

Consider an element located at (r,0) near the crack tip in Figure 3.3, Westcrgaard (1939)
has given the mode I stresses on the element in Cartesian co-ordinates:

K, [a] ‘ (ej . [39)"
o, = cosl —{f 1-simn| — [s1m] —
2nr 240 2 2
G, = K, cm[g\ I+9in(~q]qin[§-q]
o \2) T 2 L2
o, = —E—'—cos[gkin(gjco{ﬁJ (3.14)
© Inr 2 2 2 o

J 2nr J

On the crack plane, 0 = 0, Equations 3.14 can be written as:




Gy =0y =

K
27

On the crack plane the shear stress is zero, so that for mode I loading the crack plane is a
puncipal plane. The normal and shear stresses in the x3 direction:

G33 = V (0] + Oy), in plane strain
o33 = 0, in plane stress and
O3 = 023 = 0, both in plane stress and strain (3.16)

The Cartesian displacements (uy, u;) at (1,8) for mode I can be given as:

K, ) 9[ : ,ej
u, = cos—| K—1+2sin” —~
2(1 21 2 2
!
Kyfr 2. 06 , 0
b, =————| | sin—| K+1-2cos" — 3.17
o 20'(211} ( 2[ ZD &1

where, K = (3—4v) for plane strain and k= (3-v}/(11v) for plane stress, and G is the

shear modulus. Stresses on the element in Figure 3.3 due to mode I loading can be given
as:

G, =— LS sm[g) 2+cos(9~\cos[q J
1 ,—~2m ) 2J
K, . [0] [BJ ’39)
o, = sin| — |cos| — |cos| —
2tr 2 2 L 2
.
G, = —Kicos[?—j[l—sin(equ(w] (3.18)
27r 2 2 2]

Finally Cartesian displacements at (r,8) for mode II loading can be written as:

¢ N 8 ‘\

Lsm-—{x+l+2003"—)!

2/)

8 q 8

— —1--2e11n" —
( cosz[x ]--2s8in QD (3.19)

] -

| —

= 20(%)

b |

K

:ﬁj,(_L)
2G1\ 21

U,
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Linear elastic ficlds can be superimposed to produce a general mixed mode I loading.
The stresses are given by summing Equations 3.14 and 3.18 and displacements by adding
Equations 3.17 and 3.19. The strain energy release rate, G is given as:

9

K}, Kp

G=—L 4
E E

(3.20)

where E"= E for plane stress, and E" = E/(1-v?*) for plane strain.

3.3 Stress intensity factor and specimen geometry

The stress intensity factor for a central through crack in an infinite plate, illustrated in
Figure 3.4 is:

K, = ovma (3.21)

where, o is remotely applied stress, and a is one-halt the crack length. This makes contact
with the Gritfith’s solution shown in Equation 3.6. This can be expresscd as:

K, = /2%, (3.22)

The stress intensity factor must always involve the product of the applied stress and a
chatacteristic distance such as the crack length. However the definition may involve a
dimensioniess constant which depends on geometry.

As an example consider an edge crack in a semi-infinite plate shown in Figure 3.5. The
stress intensity factor given by Brown & Srawley (1966) is:

K, =1.120+na (3.23)

For an edge crack the stress intensity factor is 12% higher than that of a Griffith crack.

An important test geometry is that of an edge cracked bar of height 2h, width b and crack
length a, subjected to a uniform tensile stress, ¢ as shown in Figure 3,6. For the condition
without bending constraint, Brown & Srawley’s (1966) polynomial for siress intensity
factor is:

K
K—' =1.12—0.23 (a/b) + 10.6 (a/b)> — 21.7 (a/b)® -+ 30.4 (a/b)* (3.24)

<

where Kp = o+/ma , the stress intensity factor for Griffith crack. Brown & Srawlcy (1966)
estimate the accuracy of the stress intensity factor calculated (rom this equation o be
within 1% for specimen with h/b 2 1.0, and a/b < 0.6.

For an edge cracked bar (Figure 3.7) of width b and crack length a, subjected to pure
bending, Brown & Srawley’s (1966) polynomial for stress intensity factor is:
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= 1.12 — 1.39 (a/b) + 7.32 (a/b)’ ~ 13.1 (a/b)’ + 14.0 (a/b)* (3.25)
K, = MV (3.26)

M is bending moment per unit thickness, The accuracy of result, obtained from the
polynomial is estimated to be within 1% for a/b < 0.6.

As a further example consider an edge cracked bar of width b and crack length a, subjected
to three point bending as shown is Figure 3.8. P is the applied load per unit thickness and |
is the distance of each support from the line of crack. Brown & Srawley’s (1966) stress
intensity factor polynomials for 1 /b = 2 and 4 are given in Equations 3.27 and 3.28
respectively:

"E"L = 1.11 = 1.55 (a/b) + 7.71 (a/b)* — 13.5 {a/b)’ + 14.2 (a/b)* (3.27)

¢}

K 1002 1.73 (a/b) + 8.20 (a/b)? ~ 14.2 (a/b)? + 14.6 (a/b)’ (3.28)

where K is calculated from Equation 3.26. The bending moment:

M =PI/2 (3.29)

3.4 Estimate of plastic zone radius

Much of the work of fracture involves crack tip plasticity (Irwin, 1948, Orowan, 1948). It
is therefore important to estimate the radius of the plastic zone at the crack tip. The crack

tip plastic zone radius can be estimated by applying the Tresca or von Mises yield criterion
to the Westergaard (1939} equations:

K, [9)' . (e) . (3@)
Oy = cos| — [ 1-sin| — {sin[ —
~ 27r 2J 2) 2

o oSl
1
/

K, 0 30
o, = cos Sitt €Qs| ~— 3.30
== o (2} U (9 (3:30)
The Tresca Equation is:
o, -0
Tum. = _l-o_l (Gl = G2 > 03) (3.3 1)

s
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where, G| is the largest principal stress, and o3 is the smallest principal stress.

The von Mises equation is:

o =L[(61 ~0,)2 4 (0, ~0,)" +(0, —0,)° ] (3.32)

T V2

where, 0;, 02 and o3 are the three principal stresses. UJsing Mohr’s circle &y, ¢; and o3 can
be given as:

b b

B 2
G =fu*%n (Uu “On | L2
L 2 i\ 2 12

Q
)
{
&
+
NQ
Ve
Q
b
NCI
—
+
»—-ql.
~
na|

o3 = @, for plane stress
o3 = Vv (O + 63z), for plane strain (3.33)
where, v is Poison’s ratio.

Substituting Equations 3.30 into Equations 3.33 gives:

o {2l
e (a2

¢, =0, for plane stress

Tﬁﬁ.m[ﬁ], for plane strain (3.34)
270

Following the Tresca criterion, yielding occurs when Tma = 0¢/2. Substituting Equations
3.34 into Equation 3.31 and setting r = ry, the radius of Tresca plastic zone can be given as:

2 N 72
LK OV Lenf B
= {cos(zj(l-f-sm(zJH (3.35)

for plane stress, and the larger of
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2 z
Iy = Koy [g]]il -2v+ sin(-e-):’
2nay, 2 2

and
K 2
I, = L sin” @ {3.36)
2nG,

for plane strain.

Following the von Mises criterion, yielding occurs when the equivalent stress, 6., cquals
the uniaxial yield strength, 6. Substituting Equations 3.34 into Equation 3.32 and setting r
= 1p, the radius of von Mises plastic zonc can be given as:

)

&

r, = K, [H—cosﬁvl-%sinze} (3.37)

2
4ra,

for plane stress

r = ,.Iif_,[a-zv)? {(1+cos0) + 2 sin? 0} (3.38)
0 2 ’
4Ano 2

0

for plane strain. Figures 3.9 & 3.10 show the plastic zone shapes estimated from Tresca
and von Mises yield criteria.

3.5 The effect of thickness on fracture toughness

Fracture toughness varies with the thickness of the specimen (Irwin & Kies, 1954). If the
thickness is small compared the plastic zone size, plane stress conditions occur at the crack
tip. In this case, a high fracture toughness results, because of the energy absorbed by the
large plastic zone.

1f the specimen is thick compared to the plastic zone size, plane strain conditions develop
in the centre of the crack plane. In this case, a limiting lower fracture toughness is
obtained. This plane strain fracture toughness is denoted, Kie, which is a material property
and independent of geometry.

Figure 3.11 shows the effect of thickness on the {racture toughness schematically. A high
K value occurs at small thicknesses. The K¢ value decreases, as thickness increases until

the limiting Ky, the toughness is obtained, which does not change further with thickness.

3.6 LEFM fracture toughness (Kjc) test procedure

In Linear Elastic Fracture Mechanics the plane strain fracture toughness, K¢ is a material
property, which must be measured in a laboratory test. Standard K¢ test methods include
ASTM E 399 (1983) and BS 5447 (1974).

ASTM E 399 allows four possibie specimen configurations for the Ky test: the compact
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tension specimen (CTS), the single edge notched bend (SENB) specimen as well as the
arc-shaped and disk-shaped specimens illustrated in Figure 3.12. A specimen for a Kj test
has three characteristic dimensions, the crack length, a, the thickness, B and the width, W,
Specimens are [atigue pre-cracked under controlled conditions before the test is performed.
The dimensions of the specimens are such that the thickness, B, equal to one half the
width, W, and the crack length to the width ratio, a/W, is kept between 0.45 and 0.55.

To obtain a valid Ky, the dimensions of the specimens must be large compared to the
plastic zone radius. A preliminary validity check is recommended by ASTM E 399 to
determine the specimen dimensions. The required dimensions are:

K

2
] and 0.45 £ a/W <£0.55 (3.39)
Oy

B,azz.s[

where, Oy is the uniaxial yield strength. To determine the specimen dimensions, an
anticipated fracture toughness is estimated using data for similar materials. If data are not
available, a strength-thickness table provided by the ASTM standard can be used.
However, this table is not strongly rccommended as therc is no unique relationship
between K¢ and g, and the data can only be used when better data are not available.

Before fatigue pre-cracking the specimen, the maximum allowable fatigue load is
determined from the estimated K¢ vaiue. During fatigue pre-cracking an optimum load is
selected as pre-cracking would take longer time with low loads, and on the other hand
there is a possibility of excessive crack tip plasticity at high loads. ASTM E 399
recommends that the maximum stress intensity factor, Ky in a cycle should be kept
within 0.8 Kjc during initial stages of pre-cracking, and should be reduced to within 0.6
K¢ during the final stages.

In the test, the specimen is loaded until it fails and the load and displacement are monitored
throughout the loading. From the load-displaccment curve, the critical load, Pq, is
determined. ‘Three different load-displacement curves are possible depending upon the
material behaviour as shown in Figure 3.13. After performing the test the crack length, a, is
measured as the average of three evenly spaced measurements through the thickness. A
provisional fracture toughness, Kq, is then caiculated using the equation:

P
2 f (/W) (3.40)

BYW

where, f (a/W) is a dimensionless function obtained from a polynomial or the table
provided in the ASTM E 399. Upon the fulfilment of the requirements in the standard and
the conditions imposcd by the equations given below, Ky would be the fracture loughness,
Kic of the malerial:

Ky =

2

K

B,a>25 {—Q] , 0.45 < a/W < 0.55 and Py, < 1.10Pg (3.41)
Gy

where, Poa, is the maximum load in the test.




Figure 3.1: Through thickness crack in an infinite plate subjected
to a remote tensile stress.




a) Mode I (Opening)

b) Mode II (In-Plane Shear)

¢) Mode III (Out-of-Plane Shear)

Figure 3.2: Three modes of loading applicable to a crack.
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Figure 3.3: Stresses on an element near the crack tip in a linear
elastic material.
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Figure 3.4: Through crack in an infinite plate.
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Figure 3.5: Edge crack in a semi-infinite plate.
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Figure 3.6: Edge cracked bar in tension.
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Figure 3.7: Edge cracked bar in pure bending.

Figure 3.8: Edge cracked bar in three point bending.
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Figure 3.10: Plastic zone shapes estimated from von Mises yield criterion.
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Figure 3.11: Effect of thickness on the fracture toughness.




a) SENB specimen b) Arc shaped specimen
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c¢) Compact specimen d) Disk shaped specimen

Figure 3.12: Four types of specimens for K test.
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Figure 3.13: Three types of load-displacement curves
in Kjc test.




Chapter 4 Slip line fields

4.1 Plane stirain siip line fields

Two dimensional elastic perfectly-plastic plane strain problems can be expressed in terms
of slip line fields (Hill, 1950). This allows material deformation to be regarded as a planar
shear process in which blocks of material slide over onc another at constant volume.

For plane strain in the out-of-plane direction, X3, @33 is a principal stress which can be
written for incompressible flow as:

Oy =0; =0, = —(0,, +0,) (4.1)

N | =

where, oy, is mean siress. From the yield criterion the principal stresses can be written as:

o, =6_+k
o, =0, —k
o, =0, 4.2)

where, k is the yield stress in shear. The yield stress in shear, k can be expressed in terms
of the yield stress in tension, 6g. k = % using the von Mises yteld criterion and k = 5;-

using the Tresca criterion.

The direction of the maximum shear stress bisects the principal directions. The orthogonal
lines of maximum shear stresses are slip lincs and designated as o and 3. The ¢, {3 lines
represent a new system of curvilinear co-ordinaic axcs, in which an « line makes an angle
of 45° clockwise from the maximum principal direction and a B line is oricnted 45°
anticlockwise from the same principal direction. Thus the maximum principat stress lies in
first and third quadrants of the ¢~ co-ordinate system as shown in Figure 4.1, As the
stress system changes the o and f axes rotate and consequently the ¢, B axes can be curved
but they are always orientated at + 45° from the principal directions.

The equilibrium equations referred to the o, P lincs arc known as the Hencky equations
(Hencky, 1923):

Om=2k0 +Cy onaunaline 4.3)
Om=-2k6+Cp onafline (4.4)
Aoy, = 2kA0 on o line 4.5)
AGq = - 2kAB on [ line 4.6)
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where Cy and Cp are constants on given «, B lines. The Hencky cquations represent the
equilibrium cquations for a material deforming plastically, and allow the change in mcan
slress, Oy, from a point where the stresses are known to a new point to be determined from
the rotation of the slip lines (A8).

Without loss of generality, the asymptotic crack tip stress field can be divided into elastic
and plastic sectors. The angular span over which yield criterion is not satisfied defines the
elastic sector. The von Mises yield criterion can be written in cylindrical co-ordinate
system (r,0) as:

(Gog - Ore)” + 40" = 4K° @7
Rice (1974) has shown that for an incompressible material (v = 1/2) undergoing plastic

deformation, the assumption that the crack tip siresses are fimite plus the plane strain
condition allows the asymptotic cquilibrium cquations to be written as:

0G, 090, _ 0 (4.8)

00 90

where, o, and o are mean and shear stresses. Bquation 4.8 has two simple solutions:

Jo 0o
m=, TR0 4.
a0 a0 (4.9)
and
9G dor
=0, 2ox( 4.10
a0 20 ( )

The first solution given by Equation 4.9 is a plastic sector in which mean stress, o,,, does
not vary with angle, and is known as a constant stress sector. A constant stress sector is
represented by a slip line field with straight « and P lines as shown in Figure 4.2. The
stresses can be written as:

O, =0, = -;(011 +0,,) = “;‘(Gn + Oqo) = conslant (4.11)

The second solution given by Equation 4.10 corresponds to a centred fan in which the
shear stress, O, cquals the yield stress in shear, k, and the mean stress, o, varies linearly
with the angle. This type of slip line field is represented by a set of straight radial lines
focussed at the crack tip and a set of concentric arcs as illustrated in Figure 4.2. The
stresses within the cenired fan can be given as:

Or=0an = 033 = On

co=% Kk (4.12)
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4.1.1 Plane strain mode I crack tip fields

As an cxample of slip line ficld analysis it is appropriate to consider the Prandt! slip line
field (Prandtl, 1920) illustrated in Figure 4.3. The Prandtl field is developed on the
assumption that the plasticity fully surrounds the crack tip. The stresses for this field can be
solved starting from the traction free crack surface, where the stresses are known. The
Cartesian stresses at the crack surface of region I can be given as:

o =2k

O =0

c12=0

O033=C0pn=XK (4.13)

where, k is the yield stress in shear. The Hencky equilibrinm equations indicate that the
Cartcsian stresses are constant throughout the region 1, as the slip lines in this region are
straight and thus region I is called a constant stress scctor. In a cylindrical co-ordinate
system (r,0), the stresses tn the region I can be given as:

Or =k (1 + cos28)

Gog= k (1 - c0s28)

O = On=k

Go= k 8in20 4.14)

where, T 2 0 2 3n/4. The constant stress sector I is followed by a centred fan, denoted by
I The stresscs in this region can be derived from Hencky equations following a B
(negative) line:

On=0ps =0z = Om =K (1 + 31/2 - 29)

o=k (4.15)

where, 31/4 2 0 2 w/4. The centred fan is leading to a diamond shaped constant stress
scctor denoted by IIL Following the same slip line (negative B), the stresses in this region
can be given as:

Op=k {;t+ 1 - cos2B)

oug= Kk (t+ 1+ cos20)

Op=0n=k({l +m

O = K 8in26 (4.10)
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where, W4 > 0 2 -w/4. In Prandtl field the maximum hoop stress, Ggo, occurs directly ahead
of the crack (6 = 0):

o=kt

Cgo= Kk (70 4 2)

O,=0On=kK{l+m)

Crg=0 (4.17)

The hoop stress (2+7)o, / V3 s the greatest possible stress in an elastic perfectly-plastic
material in mode L. IHowever, Du and Hancock {1991) have shown that this stress, and the

Prandti field from which it is derived, only occurs when T > +0.446 op. Here T is the
second term in the Williams (1957) expansion of the asymptotic elastic field

G, = A (O 4B (@) +C (@) 4. (4.18)
Focusing on the terms that are non-zero at the tip, the far elastic ficld can be written as:

K T 0
O = e (0) + .,‘=1,2 4.19

T corresponds to a uni-axial tensile or compiessive stress parallel to the crack flanks. If T
is zero or negative Du and Hancock (1991) have shown that within the plastic zone elastic
wedges appear on the crack flanks as shown in Figure 4.4. As T/0, becomes more negative
(compressive) the stress ahead of crack decreases due to a decrease in the hydrostatic or
mean stress, which O’Dowd and Shih (1991} have called Q. In this case the stresses
directly ahead of the crack (8 = 0) are written as:

Or=knT+Q

o=k @+ 2)+Q

O =On=k{l+m)+0Q

Orp=0 (4.20)

The stress field for incomplete crack tip plasticity (Du & Hancock 1991, Li & Hancock
1999} can be determined by assembling plastic and elastic sectors. The stresscs within an
elastic sector are given by a solution of Timoshenko & Goodier (1970) for a semi-infinite
wedge loaded by constant surface tractious:

O = E,; 3in26 + E; c0s20 + V2 (E30 + Ey)

Geo = -E [ 51n20 - B, c0s20 + ¥4 (E3e + Eq)

O = E( 0820 - Ey5in20 - Ev/4




O =42 (Es8 + Ey) 4.21)

The constants Ej, E;, E; and E4 are determined by the boundary conditions. Using this
solution the elastic-plastic crack tip field has been discussed by Li & Hancock (1999). The
asymptotic crack tip field is developed by assembling centred fan, constant strcss and
clastic sectors subject to conditions of equilibrium at the sector boundary, A particularly
important condition applics to an elastic wedge located on the crack flanks:

Cp=0,=0,0=% 7 “4.22)

Consider an clastic wedge AOB on the upper crack flank in cylindrical co-ordinate system
(r,0) centred at the crack tip as illustrated in Figure 4.5. The angular span of the elastic
wedge is denoted by @. v is measured from the upper crack flank (8 = 1), such that 6 = 1t -
y. II and K denote the hoop and shcar stresses on the elastic-plastic boundary OB.
Following Timoshenko & Goodier (1970) the stresses within the elastic wedge can be
given as:

Oy = -2P (cos2y + 1) — 2Q (2y + sin2y)
Ggp = 2P (cos2y - 1} + 2Q (sin2y - 2v)
O = 2P sin2y - 2Q (cos2y - 1) (4.23)

where, P and Q are constants. At vy = @, 0gg = H and 0,6 = K. Substituting in Equations
4.23, gives constants I and Q as:

_ H{cos 2¢—1) + K(sin 20 — 2¢)
4(1 - cos 2@ — Psin 2¢)

1)

_ Hsin2¢ —K(cos2¢p-1)
4(1 ~cos 2@ — @sin 2¢)

Q (4.24)

The stresses within the plastic sectors can also be soived using the boundary conditions on
the clastic-plastic boundary OB. If the elastic sector 1s followed by a centred fan, the shear
stress on the boundary, K, equals the yield stress in shear, k. Using Hencky equilibrium
equations the stress field within the fan can be given as:

0. =0y =0, =0, =2k(n-0-0)-H
G, =k (4.25)

For a constant stress sector adjoining the centred fan, the stress field can be given as:

G, =k(—cos280-2¢+ 922) -H
3in
Oy = k(cos 20 -2+ —;,—) -H
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o, = ksin 20
3n
G, =0, = k(—z—— 2¢)-H (4.26)

where, /4 < @ < 31/4. Following Du and Hancock (1991), the elastic sector on the crack
flank is followed by a centred fan which leads to a constant stress sector directly ahead of
crack. At any sector boundary involving a fan, o,e = K, and O = Opp = Gz = Ow. Therefore,
at the boundary between elastic secior and fan, G = K =k, and 0= 0gg. Applying these
boundary conditions to Equations 4.23 to solve [or constants P and Q, and then by
Equations 4.24, H and K can be given as:

B = 2¢pkcos2¢ —ksin 2¢
1—cos2¢

K=k (4.27)

Then, for an specific value of ¢ the stresses in the different scetors can be solved and the
scctors arc assembled accordingly.

4.1.2 Plane strain mixed mode crack tip fields

Slip line fields for mixed mode (I/II) loading have been discussed by Shih (1974). The
mixed mode (I/II) slip line field illustrated in Figure 4.6, shows a statically admissible field
in which plasticity fully surrounds the crack tip and assuming full continuity of stresses
through out the slip line field. The sector boundary of makes an angle, o with the upper
crack flank (8 = 1} such that, 6,; = 7 - «. The angular position of sector boundary ce, 8,. =
(31/4 + ), and 3 is the rotation of the constant stress diamond cod from the symmetry axis
due (o applied mode I loading, where ¢, y and 8 are related by: y = - /4 - o, § = -1/2 - ¢,

and /4 < o= 31/8 — V4. The cylindrical stresses in the constant stress scctor aob adjacent
to the lower crack flank can he given as:

= k(1 +¢0s820)
cpe =k (1 - cos20)
Cra= - k sin28 {4.28)

Using the Hencky equilibrium equations (Hencky. 1923) the stresses for the sectors can be
solved consecutively. In the centred fan boc the stresses are:

Oy =Ogy =k (1 + 37/2 +20)
O = - K (4.29)
The stresses in the constant stress diamond coed can be given as:

G K {(1 + 74 28) — sin(n/2 + 26 - 20)]




Ogg =k [{1 + 7 + 28) + sin(n/2 + 28 -~ 20)]

O = k cos(m/2 + 20 - 26) (4.30)
In the centred fan doe the stresses are:

O = on =k (1 +31/2 + 20 - 48)

Cw=k (4.31)
The stresses in the constant stress sector egf can be written as:

Or=k [(1 +48 - 2y) + cos(2y - 20)]

O =k [(1 + 48 - 2y) - cos(Zy - 20)]

Oy = k sin(2y - 20) (4.32)
In the centred fan fog the stresses can be given as:

C;r = 0o =~k (1 +37/2 4 26)

o= -k (4.33)

Finally, the stresses in the constant stress iriangle goh adjacent to the upper crack flank can
be given as:

o= - k(1 +cos20)
Goo = - kK (1 - cos20)
C,9= K §in20 (4.34)

Li and Hancock (1999) have discussed mixed mode (I/Ii) slip line fields in which plasticity
does not fully swround the crack tip, and an elastic wedge appears on the upper crack
flank. Following Shih (1974) the ratio of tension to shear can be expressed in terms of a
mixity. The ratio of tcnsion to shear in the remote elastic field is defined as elastic or far
field mixity, which can be given as:

g, 0=
Mcl =3 g’. tan 1 .:Em.l... = ..g tan - liu‘l GOQ_ET,_ﬂ (4.35)
i i g =g (1,0=0)

The ratio of tcnsion (o shear directly ahead of crack is defined as plastic or near field
mixity where plasticity occurs at the crack tip:

M. =~ tan” {limw} (4.36)

LI 0 g (1,0 =0)




Two mixed mode slip line fields (Li & Hancock, 1999) of different mixities are iflustrated
in Figure 4.7, In type I ficld, the plastic part below the symmetry axis consists of a constant
stress sector, a fun, and a part of a constant stress sector. Type II ficld accurs for a
relatively [ower vulue of mixily, where the same part (below the symmetry axis) consists
of two constant stress sectors, a fan, and a portion of a fan. In the both cases, ¢ is the
angular span of the elastic wedge at the upper crack flank, « is the angular span of the
centred fan Anc in the fully plastic side, and d is the angle which the sector boundary od
makes with the symmetry axis. Then for type I field the plastic mixity can be given as:

M, =2 tan” {COS 2a 1o 20‘} @37
T —sin 20

M, = 2 tan” [sin 28+ 2(m— 5)}(1.~— cos 2¢) — 2¢ + sin 2¢ (4.38)
8 cos 20(1 — cos 2¢)

where, & 2 7t/4 and o - & = /4. For type II field the mixity can be written as:

M, =-Ztan" {E—4oc—l} (4.39)
) 2
M, =3tan”‘ 275_M (4.40)
b8 I—-cos2¢

where, o < /4, and o + 8 = /4. The stresses for the fields can be solved by using the
equilibrium equations for the plastic sectors and the wedge solution for the elastic sector,
and the sectors can be assembled accordingly if the plastic mixities are known,

The mixed mode /I fields discussed by Li and Hancock (1999), shown in Figure 4.7,
consist of five sectors. Starting from the lower crack flank, the sectors can be given as:
constant stress sector, fan, constant stress sector, fan and finally elastic sector on the upper
crack flank. Zhu and Chao (2001) have presented six sector ficlds for mixed mode I/II
loading as the modification of five sector solution, where a constant stress sector has been
included between the fan and the elastic sector on the upper crack flank. A six sector crack
tip field is shown schematically in Figure 4.8, where the sector angles are defined as 0y, 9,,
03, @4 and 0s. In Figure 4.8, 8, = - 3n/4 and 0, = 03 - /2. Three unknown angles 6, 8, and
05 can be determined by solving the equations:

To __cos0-20,)
k sin O,
} -2
4(63—33} LZB __»1} -9 )wae‘,_cos(gs 20,)
4 sin” 0, sin O,
T,
?z(’pe -—1—5)4-91!129 0,(0=0)<k




T
=40, - 0,0 =0)=k (4.41)
<

where, the parameters Ty, and T}, can be given as:
2T, =0, (B=m)~-0o} (8=n)

T, = O (0 =0) - 08, (0 =0) 0,,0=0)<k
3r
T, =0,(0=0)- k[l + ?] Co(0=0)=k (4.42)

where, o (@=7) and G§,(0=0)are the stress components in the Prandtl field and
0,0 =m) and 040 =0)are the stress components given by the mixed made Il finite
c!cmcnt result. Following Zhu and Chao (2001), the stresses for the six sectors can be
given us:

Constant stress sector AOR:

0, =k(1+cos20)

g = k(l—co0s20)

O, =~ —ksin20 (4.43)

Fan sector BOC:

G, =0g = k(1+37m/2128)

G, =~k (4.44)

Constant stress sector COD:

o, =k(1+n/2+20,)+ksin2(6-6,)

Ogy = k(1+7/2+20,)—ksin2(6-0,)

e =kecos2(0-0,) (4.45)

Fan sector DOE:

O, =0g = k(l+7m/2440, —20)

Op =K (4.46)




Constant siress sector BEOF:

o, =k(l+7w/21-48, - 20,) + ksin 2(0-0,)

Oy = k(l+7/2+40, -20,)-ksin2(6-9,)

G, =kcos2(60-9,) (4.47)

Elastic sector FOG:

0, — 20 08
g 90 200 (4 cos20) - k—22%_ 1r0n - ) - sin 260
sinQ; I-cos20,
o = k%0200 | cos20y— k-952% 12— 0) + sin 20)
sint L —cos 20,
k80505 m200) o0 19520 1 cos2e) (4.48)
sinB, }-coxs20,

For the this solution, Zhu and Chao (2001) have defined the plastic mixity, M,, which can
be related to the sector angle 0 as:

M =2 pan-t LE 2 H 20, +5in 20, 0<0; <4
P cos 28,
M, = -%tan" {1 + Zt?: + 493} -1/226;20 (4.49)
n

4.2 Plane stress slip line ficlds

Plane stress crack tip fields for elastic-perfectly plastic materials can be represented in
terms of slip line ficlds using theory introduced by Hill (1950). The slip lines are the
characteristics of the equilibrium equations. Depending upon the combination of the
principal stresses satisfying the plane stress yield criterion, the equilibrium equations can
be hyperbolic, parabolic, or eiliptic. The resulting slip lines may be real and distinet, real
and coincident, or imaginary depending on the nature of the equilibrium equations. For the
hyperbolic equilibrium equations, the slip lines are non-orthagonal, but make equal angles
with one or other of the two principal directions. Thus the principal directions bisect the
angles between two slip lines as illustrated in Figure 4.9. The two non-orthogonal families
ol slip lines are inclined at & (/4 + A/2) to the maximum principal direction, where, sink =
(0’1 + O3) / 3{(c,- 02) and 01> GOy,

Under parabolic conditions, the angle between the two sets of lines becomes zero, leaving
a single set of coincident slip lines (Hill 1952, Hodge 1951) corresponding to the
numerically smaller principal direction.




To discuss crack tip plasticity in plane stress, consider a cylindrical co-ordinate system
(r,0) centred at the crack tip such that the crack lics along 8 = & 7. The von Mises yield
criterion in plane stress can be given as:

2.2 2 r 2
o’ =gl +o5 0,0, +30, =0, (4.50}

Rice (1982} has shown that for an incompressible material undergoing plastic deformation,
the assumption that the crack tip stresses are finite plus the plane stress condition allows
the asymptotic equilibrium equation to be written as:

Ho,, +0,,) )

=0 4.51
d0 i ( )

where, Gy and 09; are the Carstesian siresses and s,; is the radial stress deviator in the
cylindrical co-ordinate system. Equation 4.51 has two simple solutions:

d(c), +06)
a0 i (4.52)
or,
(o, +6,,) _
s =0, ~2L 224 4.53
b 3 “33)

One solution given by Equation 4.52 corresponds (o a constant stress seclor in which the
Cartesian stresses 04, 022 and o3 do not vary with the angle, and consequently the mean
stress, O, 18 constant throughout the sector. This sector consists of two non-orthogonal
families of straight slip lines.

The second solution given by Equation 4.53 corresponds to a curved [an sector in which
the radial stress deviator, s, = 0. The cylindrical stresses for this scctor can be given as:

Ggo = 20y, = £ 2k cos(6 - ¢)

O =t k sin( - §) (4.54)

where, k is the yield stress in shear and ¢ is the angle al which the curved lines are
asymptotic. The curved fan sector consists of a set of radial straight lines and u set of

curves with the equation of the form

r*sin(6 - ¢) = constant (.

At

3)

At 0 = ¢ the equilibrium equations become parabolic and give use to a single set of slip
lincs.

4.2.1 Plane stress mode I crack tip fields

A possible plane stress mode I slip line ficld has been discussed by Hutchinson (1968) on
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the assumption that the plasticity swrrounds the crack tip at all angles. In this case the
equilibrium equations require a discontinuity in radial stress such that the traction free

conditions occur on the crack flanks (8 = £ m) and the yield condition is satisfied at all
angles. The allowable discontinuity in radial stress, (] —o_) across the sector boundary
can be given by applying the yield criterion:

o o, = (4302 ~1203)? (4.56)

The Hutchinson plane stress mode I field is shown in Figure 4.10, The cylindrical stresses
within the constant stress sector AOB can be given as:

_ 3

=- —Kk (1 +cos26
5 (1 + cos26)

Ggp = ~ lgik (1 - cos26)

Oy = -\/j k sin20 (4.57)

OB is the radial line of discontinuity which makes an angle, 6op = 151.4° with the crack
plane. The stresses within the constant stress sector BOC can be written as:

V3

Oy = Tk (- 1 + 3c08260pR) + -?k (1 4- cos280s) €082(0 - Opg)

+ —\gk sin20og sin2(O - Ogp)

5

o = - O + %k (- 1 4 3cos200p)

g = - 3/-1_3—k (1 + cos28pg) sin2(6 - Opg)
£

o+ %_BL k 8in200p c0s2{0 - Opg) (4.58)

re

OC is the sector boundary between the copstant stress sector BOC and curved fan sector
COD, which makes an angle, 8oc = 79.7° with the crack plane. Finally following Hill
(1952), the stresses within the curved fan sector COD can be given as:

o, = kcosd

Oy = 2k cosd
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O, = ksinB (4.59)

Dong & Pan (1990) have discussed a modification of this plane stress mode I slip line field
as shown in Figure 4.11, where plasticity surrounds the crack tip at all angles, but differs
slightly from Tlatchinson (1968) field. This field exhibits a very small constant stress
scctor dircetly ahcad of the crack with a span of 5 22° although no major variation in stress
fields is apparent. The spans of the sectors in this field are very close to that of the
Hutchinson field.

Sham and Hancock (1999) have discussed plane stress mode I slip line field with
incomplete crack tip plasticity where the problem of stress discontinuity has been avoided.
This field consists of a curved fan sector ahead of the crack complemented by elastic
sectors to the crack flanks as shown schematically in Figure 4.12. AOB is the elastic sector
on the upper crack flank. The elastic-plastic boundary OB makes an angie 6op with the
crack plane which is to be determined. Applying traction free boundary conditions on the
upper crack flank to the solution of Timoshenko & Goodier (1970), the stresses in the
elastic sector AOB can be given as:

o, = A(28 —2m +sin 26)+ B(1 + cos 28)

g5 = A(26 — 21 — sin 28)+ B{1—cos 26)

o, = Alcos 20 -1)—Bsin 20 (4.60)

Following ITill {(1952) the stresses within the curved fan sector BOC ahead of the crack can
be given as:

G = k cos®
Ggg = 2k cos
Ow = k sin® (4.61)

Equilibrium equations require continuity of traction across any scctor boundary. Continuity
of all stresses across the sector boundary OB is assumed. Equating Equations 4.60 & 4,61
on the sector boundary OB gives a set of three equations:

A(26 — 27 +5in 20)+ B(1 + cos 20) = k cos 0

A(20 =27 —sin 20)+ B(1—cos 20) = 2k cos 6

Alcos26-1)—Bsin 20 =k sin (4.62)
Solving Equations 4.62 for 8 gives:

(M-0)unB—-2=0 (4.63)

Substituting 6 = 8p in Equation 4.63 gives:

34




(m-0pp)tan Ogp—2=0 (4.04)

where, 1 > Og > 0. The valuc of 8gp obtained from Equation 4.64 is 39.126°. Applying
mode I symmetry condition, the angle of ¢lastic-plastic boundary OC with the crack planc,
Boc = - Bop (- T < - Oor < 0).

The cylindrical stresses within the elastic sector AOB and fan scctor BOC have been given
by Equations 4.60 & 4.61 respectively. The stresses within the elastic sector COD at the
lower crack tlank can be given as:

o, = A(26 + 2n +sin 20) + B(1 + cos 20)
Oep = A(20 + 2m—sin 20)+ B(l - cos 20)
o, = Alcos 20 -1)— Bsin 20 (4.65)

The constants A and B can then be calculated from traction continuily across the sector
boundary OC. Comparison of the analytic and computational solutions supports the form
of field suggested by Sham and Hancock (1999).

4.2.2 Plane stress mixed mode crack tip fields

A statically admissible plane stress near mode I slip line field has been discussed by Shih
(1973). This field consists of five constant stress sectors and two curved fan sectors with
six sector boundaries as shown schematically in Figure 4.13. The field shows
discontinuities in radial stress across the sector boundaries OB and QU. The angular
positions of the six sector boundaries are defined as 9y, 0z, Os, 64, 05 and 65 and two
asymptotic angles ¢, and ¢ associated with the curved fan scctors DOE and FOG
respectively. In solving the field Shih obtained six equations from the (raction free
boundary conditions and traction continuity across the sector boundaries. The additional
equation needed to solve the field satisfactorily was not found. Consequently, Shih varied
the angles O; and ©; corresponding to lines of discontinuity OB and OH respectively,
keeping the angle BOH constant to obtain a family of statically admissible mixed mode
fields. It was observed that with increasing mode I loading discontinuity across line OB
decreases with decreasing 0, and finally vanishes at @) = 125.26%, where discontinuity
across line OH still remains at 0 = -177.22° just below the lower crack flank as shown in
Figure 4.14. With further increasing mode II loading, the discontinuity across OH vanishes
and OH merges with lower crack flank in near mode II. At this stage a curved fan sector
develops at 125.26" as shown by BOC in Figurc 4.14. It can be noted that during the entire
transition from mode I to mode IT the crack line ahead of the crack lics within the curved
fan sector,

Dong & Tan (1990) have discussed a modification of the plane stress mixed mode field
discussed by Shih. In solving the problem Dong & Pan have derived the missing seventh
equation in near mode I and near mode II. They have shown that during the very early
stage of transition from mode I to mode II, the crack line ahead of cruck lies within a
constant stress sector which differs from the Shih field. They also found that in near mode
11 when discontinuity across OB (Figures 4.13, 4.14) vanishes at 0, = 125.26" the




discontinuity across OH exists at O = -175.16°, which also slightly differs from the Shih
field. In this field the discontinuity across OH exists until a pure mode I field is achicved.
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Figure 4.4: Mode I slip line fields with elastic sectors
on the crack flanks.




Figure 4.5: Elastic wedge on the crack flank.




Figure 4.6: Mixed mode slip line field, plane strain.
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Figure 4.7: Mixed mode slip line fields with elastic sectors
on the upper crack flanks.




Figure 4.8: Zhu and Chao (2001) six sector crack tip field.




Figure 4.9: Non-orthogonal slip lines (a, ) for plane stress.
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Figure 4.10: Hutchinson mode I slip line field, plane stress.
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Figure 4.11: Dong & Pan mode I slip line field shown
schematically.

Figure 4.12: Sham & Hancock mode I slip line field shown
schematically.




Figure 4.13: Shih plane stress near mode I slip line field shown
schematically.

Figure 4.14: Shih plane stress near mode II slip line field shown
schematically.




Chapter 5 Crack propagation and toughness in mixed mode loading

5.1 Criteria for crack propagation

Several criteria have been proposed to describe the dircction of crack propagation in brittie
materials under mixed mode I/If loading. The Maximum Hoop Stress (Erdogun and Sih,
1963) and the Maximum Strain I'nergy Release Rate (Hussain et al., 1974) criteria are
most widely accepted. Both criteria are based on LEFM, and predict closely similar
directions of crack propagation. In the Maximum Hoop Stress criterion, the crack is
assumed to propagate in the direction perpendicular to the direction of thc maximum hoop
stress {ogp), or equivalently in the direction of zero shear stress. The Maximum Strain
Encrgy Release Rate criterion suggests that crack propagates in a direction in which the
stain energy release rate is maximum. The direction of maximum strain energy release rale
can be determined in numerical calculations by using an extension of the virtual crack
extension method of Parks (1974). In ductile material plasticity occurs at the crack tip and
the criteria based on LEI'M should be modified to consider crack tip plasticity.

Extensive analytical, numerical and experimental investigations have been undertaken to
examine the behaviour of cracks under mixed mode (J/1I} loading (Shik, 1974, Ghosal et
al, 1994, Maccagno et al., 1991). The experimental work has examined the effect of mixed
mode (I/II) loading on fracture toughness of materials showing brittle (cleavage) and
ductile fracture behaviour. In mixed mode (I/TI) fracture, Maccagno and Knott (1989) have
defined an equivalent crack angle, Beg, Which gives the relative amount of mode [ and
mode II loading as:

Jf K
B, = lan {T(J"J 5.1

i

With this notation, purc mode I and mode II loadings correspond to equivalent crack
angles 90° and 0" respectively. For mixed mode (1) loading, 90%> B > 0°.

5.2 Cleavage (brittle) fracture

During cleavage cracks propagate along low index crystaliographic planes following a
transgranular path. Although cleavage may occur under macroscopically elastic conditions
it is associated with local plasticity and possibly ductile crack extension. Maccagno and
Knott (1991) have mvestigated cleavage fracture behaviour of steel under mixed mode
(1I) loading at ~196° C. The experimental technique used edge-cracked bend bar
specimens with symmetric four-point loading for mode I and anti-symmetric four-point
loading {Gao ct al., 1979) for mixed mode (I/IT) and mode IL. Tests were performed on four
grades of steels: En3B mild steel, 1Cr-1Mo-0.3V structural steel, HY 130 pressure vessel
steel and C-Mn steel submerged arc weld. The directions of crack propagation obtained
from their investigation were consistent with the Maximum Hoop Stress criterion of
Erdoguan and Sih (1963). It was observed that in all cases under pure mode I loading, the
crack propagated along the direction of the original crack, which corresponds to a fracture
angle, 8¢ = 0°. Under mixed mode (I/I) loading, the crack advances in a direction other
than 6y = 00, and with increasing mode II loading, the fracture angle, O, increases. Figure
5.1 illustrates the directions of crack propagation under different mixed mode (I/1I)
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loadings in large grain 1Cr-1Mo-0.3V steel specimens (Maccagno & Knott, 1991). From
the cxperimental data, Maccagno & Knott (1991) compared the fracture angle, 0p, with that
predicted by Maximum Hoop Stress criterion as shown in Figure 5.2. The experimental
results agree well with the theoretical prediction. Gao et al, (1979) and Yokobori ct al,
(1983) also investigated brittle fracture under mixed mode (I/1I) loading using similar
materials. Gao ct al. used 1.3Cr-0.5Mo-0.1V steel specimens with anti-symmetric four-
point bend loading, and Yokobori et al. used 0.04% C mild steel tubes under remotely
applied tension and torsion, and show similar results as illustrated in Figure 5.3,

Manoharan et al. (1989a, 1989b) and Graves (1992) have shown that under mixed mode
(VI1T) loading the fracture toughness of a brittle material increases with increasing mode 111
loading. Using aluminium alloys, Kamat & Hirth (1995a) have shown that mixed mede I/11
and I/IIl have similar effects on fracture toughness. It was observed (Kamat &
Flirth,1995a) that fracture toughness of the aluminium alloy, 2034 Al(1.08 wt% Mn)
corresponding to pure mode I decreases slightly in near mode 1 as the mode II (or mode
IIT) loading applied, subsequently the toughness does wot vary further with increasing
mode IT {(or mode HI} loading as shown in Figure 5.4,

5.3 Ductile fracture

In ductile materials the crack extends due to nucleation, growth and coalescence of micro-
voids, which form at inclusions and second phase particles by interface de-cohesion or
particle cracking. The voids then grow by plastic strain and hydrostatic stress and finally
coalesce with the blunting crack tip. In ductile materials crack initiation and advance in
mixed mode (I/II) can occur in the dircction of maximum shear rather than the direction
normal to the maximum hoop stress (Bhattacharjee and Knott, 1994). Bhattacharjee and
Knott (1993) have shown experimentally that in ductile crack growth under mixed mode
(/II) loading thc shear mode dominates over the opening mode and crack initiation and
advance are due to shear. Figure 5.5 shows two similar specimens tested under similar
mode /I ratios at -100° C (brittle region) and at 20° C (ductile region). Tn the brittle
specimen the crack propagates following the Maximum Hoop Stress criterion, whereas, in
the ductile specimen the crack advances in the original direction following the maximum
shear path.

Experimental studies (Bhattacharjec ct al., 1994, Tohgo et al., 1988) have shown that under
mixed mode (/II) loading in ductile materials part of the crack tip blunts and the other part
sharpens due to a competition between hydrostatic stress and equivalent plastic strain.
Analytical (Shih, 1974) and numerical (Ghosal et al, 1994, 1996) investigations have
shown that the hydrostatic stress directly ahead of the crack in modc I loading decreases as
mode 1l loading applied, and this is accompanicd by an increase in equivalent plastic strain
at the crack tip. Budden (1988) and Saka ct al. (1986) have shown by mixed mode (I/11)
blunting analysis that the crack tip blunts depending upon the initial crack tip profile.
Budden modelled the crack tip with sharp comers, and Saka et al. used a crack with
circular tip. The changes of crack tip profiles shown by Budden and Saka el al. are
illustrated in Figure 5.6. Aoki ct al. (1987) have investigated deformation of a smooth
crack tip under mixed mode (I/II} loading by finite element analysis. They have reported
that crack initiation may occur either from the blunted side or from the sharpened side of
the crack tip depending upen the ratio of mode I & . With mode I/II ratios higher than
0.6, void volume fraction and equivalent plastic strain are higher at the blunted side, which
may result in crack initiation from the blunted side. On the other hand, with mode I/11

38




ratios less than 0.6, the void volume fraction and equivalent plastic strain are higher at the
sharpened side, which may result in crack initiation from the sharpened side following the
direction of maximum shear. Bhattacharjee and Knott (1994) have shown experimentally
that even for mode I/IT ratios much higher than 0.0, i.e., with a mode I/II ratio 3.15, crack
initiation may occur from the sharpened side of the crack tip. Figure 5.7 shows the changes
in notch tip profiles in HY 100 steel specimens (Bhattacharjee and Knott, 1994) at
different load values under mode I/II ratio 1.57.

Under mixed mode (I/II) loading, the fracture toughness for ductile materials decrcases
with increasing mode II loading. Kamat and Hirth (1995a) experimentally have shown the
effects of mixed mode I/IT and I/III on fracture toughness of aluminium alloy 2034 Al
(<0.1 wi% Mn) and found a similar variation of toughness under the two mixcd modes as
shown in Figure 5.8.
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Figure 5.1: Direction of crack propagation under mixed mode (I/11)
loading in large grain 1Cr-1Mo-0.3V steel specimens
(Maccagno & Knott, 1991).
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Figure 5.4: Effect of mixed mode (I/11, I/IIT) loading on fracture
toughness, Jic of the aluminium alloy, 2034 Al (1.08 wt% Mn)
(Kamat & Hirth, 1995).

Figure 5.5: Specimens showing brittle (top) and ductile (bottom)
fracture (Bhattacharjee & Knott, 1993)
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Figure 5.6: Change in crack tip profile due to (a) Budden (1988) and
(b) Saka et al. (1986) (Bhattacharjee & Knott, 1994).

Figure 5.7: Change in notch tip profile with load in HY 100 steel specimens
under mixed mode (Ky/Kj; = 1.57) (Bhattacharjee & Knott, 1994).
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Chapter 6 Numerical methods

6.1 Boundary layer formulations

The concept of a boundary layer formulation was introduced by Rice and Tracey (1973) to
investigate elastic-plastic crack tip ficlds. Interest is focused on the small region close to a
crack tip where plastic deformation takes place. Instead of modelling the complete
structure, a circular region centred on the crack tip is considered. The boundary conditions
for the model are based on the first term (boundary layer formulation) or first and second
terms (modified boundary layer formulation) of the Williams expansion (Williamns, 1957).
Displacements corresponding to the asymptotic clastic field for mode I and mode II
loading and T-stress are applied on the remote boundary of the modcl. The Cartesian
displacements u; and u; arc given by:

o, =u; +ul uf
u, =ukt+ult +ul (6.1)
2 2 :

where, u"and u}' are Cartesian displacements for mode I, uf* and uXvare Curtesian

displacements for mode 1! and ufand u, are displacements for the T-stress. ‘the
displacements [or mode I and Il are given as;

u = [ (COS— K 1+ 2sin® ——D

uh = (J [ K+1 2cos? ——
2G

u =- J [%m K+ 1+ 2cos® —-D
2('}

i =K" ._wbm K 1-2sin® 29 (6.2)
7G 2

where, K und Ky are applied stress intensity factors, r is the distance from the crack tip,

= (3—4v) for planc strain and K= (3-v)/(1+v) for plane stress, v is Paisson’s ratio
und G is the shear modulus. The displacements cotresponding to the T-stress in plane
strain and plane stress can be given as:

b7 = Tyt reoso
C C
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Tv{l+v)rsind

u, = P TR for plane strain (6.3)
and
uF = Treosd
E
Uy = ~M, for plane stress (6.4)

L

where, r is the distance from the crack tip, E is modulus of elasticity, v is Poisson’s ratio.
The displacements were calculated using a spread sheet in Microsoft Excel and pasted into
an ABAQUS (Hibbitt, Karlsson and Sorensen, 1998) input deck.

Plane strain problems have been investigated under mode I, mixed mode I/IT and mode 1T
loadings with K¢/Ky ratios: o<, 2, I, ¥2 and 0, and at three levels of T-stress: 'I' = - (.50, 0
and + 0.50p, where oy is the uni-axial yield strength. Plane siress problems have been
investigated under mode 1, mixed mode /Il and mode T loadings with Ky/Ky ratios: o=, 1,
¥2,0.45, % and 0, and at T = 0. The plane stress mode I problem has also been investigated
at'T' =+ 0.50, to determine the effect of the T-stress on crack tip plastic zone..

The mesh used for numerical analysis is shown in Figure 6.1. The mesh is based on 24
rings of 24 second order iso-parametric hybrid elements highly focused at the crack tip.
The crack tip is modelled by 49 initially coincident but independent nodes, Displacement
boundary conditions are applied on the outer nodes of the mesh. Plasticity was restricted to
a small fraction of the mesh radius to represent contained yielding.

Finite clement analysis was performed using finite element code ABAQUS (Hibbitt,
Karlsson and Sorensen, 1998). The material response is taken to be elastic-perfectly
plastic. The uni-axial stress-strain relations are given by the equations:

c=Eg, e<oy/E
o =05 £20E (6.5)

where, © is the uni-axial stress, Il is modulus of elasticity, € is strain and G is the uni-axial
yield strength. The plastic responsc of the material was modejled as isotropic and almost
incompressible elastic material using a Poisson’s ratio of 0.49. In uni-axial tension plastic
deformation is assumed to occur at a constant stress, Gy, such that there is no strain
hardening, as illustrated schematically in Figure 6.2. This response is known as elastic-
perfectly plastic. Under the near incompressible conditions associated with plastic flow the
usc of reduccd integration hybrid elements, and small departure from perfect
incompressibility help to avoid mesh-locking problems.

To generalise the unt-axial material response to muiti-axial states of stress the von Mises

yield criterion was used with an associated flow rule and incremental plasticity within a
framework of small displacement gradient theory of deformation. A modulus of elasticity

4i




of 2x10'' Pa and a yield strength, 2x10® Pa were used in the analysis, although non-
dimensional results are always presented.

Quiput data were written to an abaqus.pt file using post processing programs fullfan3.go
and fullfanodd3.go given in Appendix T which were used in conjunction with the
ABAQUS post-processor ABAQUS Post (Hibbitt, Karlsson and Sorensen, 1998). The
radial distances and Cartesian stresses at different angles swrrounding the crack tip were
obtained from the abaqus.rpt file. The dala were obtained at 7.5 intervals starting from
crack plane to 180° and —180°. The data were then arranged in matrix form using the
Matlab programs fullfan3.m and fullfanodd3.m given in Appendix II and the stresses were
extrapolated to the crack tip in Cartesian form. The asymptotic stresses arc then
transformed to polar co-ordinate system. The data from output files were plotted as angle
versus stresses using Microsoft Excel.

J-integrals were determined surrounding the crack tip by using the CONTOURS parameter
in *CONTOUR INTEGRAL option in the ABAQUS input file. The cvaluation of the J-
integral is based on a modification of the virtual crack extension method of Parks (1974)
due to Li, Shih & Needleman (1985). In ABAQUS model each ring of clements
surrounding the crack tip is considered as a contour. To evaluate J-integral, ABAQUS
antomatically identifies the elements of each ring from the node set defined by *NSET
option using NSET = TIP parameter in ABAQUS input file. Four J-integral contours were
used at the crack tip to maintain accuracy of result and obtained in ABAQUS data file.

6.2 Determination of slip line fields from numerical resuits

Slip line fields were determined from (he asymptotic stresses in plane strain and plane
stress. The crack tip field is initially divided into elastic and plastic sectors. The angular
span over which yield criterion is not satisfied defines the elastic sector, and the sector over
which the yield criterion is satisfied defines the plastic sector. In planc strain slip line
fields, the crack tip plastic sector can only comprise constant stress and centred fan sectors.
In constant stress sectors, the mean stress, Oy, does not vary with angle. In centred fan
sectors shear stress, Oy, equals the yield stress in shear, k, while the mean stress, o, varies
linearly with the angle. This allows the angulfar span of elastic sectors, constant stress
sectors and cenired fans to be identified from the numerical results to an accuracy, which is
limited by the angular mesh refinement.

In plane stress slip line fields, the crack tip plastic scctor is also divided into constant stress
and curved fan sectors. In constant stress seclors, the mean stress, G, does not vary with
angle. In curved fan sectors, the radial stress deviator, sy is zero, or equivalently, Ggp = 26,
The angle at which shear stress, g = 0, defines the asymptotic angle, ¢. This information
again allows asymptotic slip line fields to be constructed from numerical data in plane
stress.
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Figure 6.2: Stress-strain curve for elastic-perfectly plastic material.




Chapter 7 Results

7.1 Plane strain mixed modec (I/II) crack tip fields in perfect plasticity
7.1.1 Plastic zoncs

In plane strain, the effcct of the T-stress on plastic zone in mode I, mixed mode I/IT and
mode II loading has been investigated at three levels of 1-stress: T=0 and T=+ 0.5, The
plastic zones are shown in Figutres 7.1 to 7.5. In mode I loading a compicssive T-stress
enlarges both wings of the plastic zone and causcs the plastic lobes to swing forward. The
tensile T stress has little effect on the plastic zone size but causes the plastic lobes to swing
backward as shown in Figure 7.1. These results are consistent with those reported by Pu &
Hancock (1991).

Under mixed mode loading (Ki/Kr=2), a compressive T-stress enlarges the forward lobe of
the plastic zone, whereas a positive T-stress increases the trailing lobe causing it to merge
with the crack flank, as shown in Figure 7.2.

Under mixed mode loading (K¢Ky=1), both positive and negative T-stresses increase the
size of the plastic zone as shown in Figure 7.3. In this case a compressive T-stress causes
the part of the plastic zone in the positive quadrant to increase in size and to swing upward
bul decreases the size of the lobe in the negative quadrant. A tensile T-stress decreases the
positive part of the plastic zone and causes it to swing downward, but it enlarges the
positive part,

In the case of KyKp=1/2, both positive und negative T-stresses increase the plastic zone
size, but compressive T-stress cause the plastic zone to meve upward and in contrast
tensile T-stress cause the forward part of the plastic zone Lo swing downward as illustrated
in Figure 7.4.

In pure mode II loading the plastic zone shape shown in Figure 7.5 is symmetric about the
crack plane, as the stress field must be anti-symmetric. A T-styess destroys this symmetry.
A compressive T-stress causes an enlarged lobe to develop in the arca above the symmetry
axis, while a tensile T stress enlarges the lobe in the area below the symmetry axis.

7.1.2 Asymptotic stress lields

The asymptotic stresses have been determined numericalty for mode 1, 1l and mixed mode
I/II loading with and without T-stresses. The angular variation of stresses at the crack tip
are shown in Figures 7.6a to 7.20h. The effect of T-stress on the plastic mixity is shown in
Figure 7.26 and Table 7.1. Elastic and plastic mixities have been discussed in Section
4.1.2. The effect of T-stress on the mode I and mixed mode VI ficlds is essentially to
change the hoop stress (or equivalently the mean stress) directly ahead of the crack. In
mixed mode fields, a tensile T-stress increases the hoop stress ahead of the crack and
increases plastic mixity, whercas a compressive T-siress causes the hoop stress and plastic
mixity to decrease. Under mode I, the shear stress ahead of the crack is defined Lo be zero
and the effect of T-stress is anly to increase or decrease the hoop stress (or equivalently the
mean stress) directly ahead of the crack depending upon tensile or compressive T-stress.
The mode I stress fields (T=-0.50y, 0, +0.50y) are shown in Figures 7.6a to 7.8b, and the
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mixed mode I/IT ficlds arc shown in Figures 7.9a lo 7.17b. Mode II loading gives anti-
symmetric stress field, where the hoop siress ahead of the crack is zero. In this case a
campressive T-stress gives rise to a compressive hoop stress directly ahead of crack, which
results in a negative plastic mixity. On the other hand, a tensile T-stress gives rise to a
tensile hoop stress ahead of crack, which corresponds Lo a positive plastic mixity, The
mode II stress fields are given in Figurcs 7.18a to 7.20b.

The crack tip fields (mode I, II and mixed mode VI, and T=-0.5Gy, 0, +0.50) have been
represented in terms of slip line fields which are shown in Tligures 7.21 1o 7.25. The slip
line fields have been constructed from numerical resulis as discussed in Section 6.2. The
critical angles of the slip line fields are given in Table 7.2. The mode I slip line fields (T=-
0.50p, 0, +0.500) are shown in Figure 7.21. Under mode I, a tensile T-stress gives rise to
the Prandtl field, where plasticity fully surrounds the crack tip. For T=0, field consists of a
constant stress diamond ahead of the crack and two fan sectors, complemented by elastic
sectors (o the crack flanks. A compressive T-stress decreases the angular span ol the tun
scctors, and thus the ungular spans of the elastic wedges on the crack flanks increase. The
mixed mode II slip line fields are shown in Figures 7.22 to 7.24. Under mixed mode /11
loading the constant stress diamond ahead of the crack rotates with increasing mode 11
Joading and plasticity eventually breaks through to the lower crack flank. Compressive T~
stress causes the constant stress diamond to rotate more compared to T=0 field. Tensile T-
stress has little effect on the rotation. Under mode II loading, plasticity surrounds the crack
tip at all angles, where T-stress has very little effect on the slip line field. The mode II slip
line fields (T=-0.500, 0, +0.50¢) ate shown in Figure 7.25.

7.1.3 Loading
The level of loading may be measured in the remote field by the applied stress intensity

factors K and Ky. These can be combined to give a remotely applied strain encrgy release
rate, G, or equivalent I:

’ El

G=1J (7.1)

where E’=E for planc stress, and E’=E/(1-v*) for plane strain. Under conditions of
non-linear or linear elasticity J is expecied o be path independent, so that values of J
measured in the local field near the crack tip correspond to the remotely applied J.
However, under conditions of incremental plasticity, in which limited amounts of local
unloading may occur, the locul and remotely measured J-values may differ (Zywicz &
Parks, 1989). The local value of J was measured by the routine provided by ABAQUS
(Hibbitt, Karlsson and Sorensen, 1998). This is based on a modification of the virtual crack
exiension method of Parks(1974) due to 1.i, Shih & Needleman (1985). The ratio of the
local to remote values of J are given in Table 7.3. The trend of the results is that the
negalive values of T tend to increase the ratio of local to remote J and positive T stresses
to decrease it.

7.2 Plane stress mixed mode (I/X1) crack tip tields in perfect plasticity

Plane stress mode I, mode Il and mixed mode I/IT crack tip fields have been investigated
analytically and numerically, and represented in-terms of slip line fields. Analytical
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solutions were obtained by assembling the constant stress, fan and elastic sectors subject to
boundary conditions and continuity of tractions across the sector boundaries. Slip line
theory (MHill, 1950) was used to solve the plastic seclors (constant stress and fan sectors)
and the solutions for elastic sectors were given by using the scmi-infinite wedge solution of
Timoshenko and Goodier (1970). Numerical solutions were obtained by using boundary
layer formulation introduced by Rice and Tracey (1973).

The asymptotic crack tip stresses for plane stress mode I, I1 and mixed mode FII are shown
in Figures 7.27a to 7.32¢. The data points in the graphs represent the numerical results, and
the solid lines represent the analytical results. The analytical solutions show good
agreement with the numerical results. Under mixed mode VI loading the hoop stress (or
cquivalently the mean stress) ahead of the crack corresponding to mode I [oading decreases
with increasing mode II loading, which results in decreasing plastic mixity. The elastic and
plastic mixities for the different combinations of leading are shown in Figure 7.39 and
Tablc 7.4. Mode I stiesses are shown in Figures 7.27a to 7.27¢c. Mixed mode fields are
shown in Figures 7.28a to 7.31c. Finally mode II loading gives risc to an anti-symmetric
crack tip field, in which the hoop stress (or equivalently the mean stress) ahead of the crack
is defined to be zero, Mode II stresses are shown in Figures 7.32a to 7.32c.

The slip line fields have been determined from numerical data as discussed in Section 6.2.
The slip line ficlds for mode I, Il and mixed mode VI {oading are shown in Figurcs 7.33 to
7.38. The critical angles of the slip line fields are shown in Table 7.5. The mode I slip line
field shown in Figure 7.33, consists of a curved fan sector ahead of the crack, which ranges
from -39.126° to +39.126° and is complemented by elastic sectors to the crack flanks. The
mode I plane stress slip line fiteld has been discussed in detail by Sham and Hancock
(1999). Under mixed mode I/IT loading the curved fan sector ahead of the crack rotates.
Figure 7.34 shows the slip line field under mixed mode, K¢/Ky=1, where the curved fan
sector rotates and the span of the fan increases, while still retaining efastic sectors on the
crack flanks. The corresponding stress fields are shown in Figures 7.28a to 7.28c. With
increasing mode II loading plasticity breaks through to one crack flank and then to the
other. The slip linc field for mixed mode, K¢¥Kp=1/2, is shown in Figure 7.35. Here
plasticity breaks through to the upper crack flank, where a constant stress sector develops.
The stress fields for this loading are shown in Figure 7.29a to 7.29¢. The slip line ficld for
mixed mode, Ky¥K;=0.45 1s shown in Figure 7.36. Heve plasticity breaks through to lower
crack flank, where a constant stress sector develops. The corresponding stress fields are
shown in Figures 7.30a to 7.30c. Under mixed mode, K¢/Ky=1/4, plasticity surrounds the
crack tip at all angles and curved fan sectors emerge at + 125.3° separating two constant
stress regions. The field consists of 4 constant stress sectors and 3 curved fan sectors as
shown in Figure 7.37. The corresponding stress fields are shown in Figures 7.31a to 7.31c.
Finally, mode II slip line field is shown in Figure 7.38, where plasticity surrounds the crack
tip at all angles. Mode II field consists of 4 constant stress sectors and 3 curved fan sectors.

The effect of the T-stress on the crack tip plastic zone under mode | loading has been
investigated at T=0 and T = +0.50y. The plastic zones are shown in Figure 7.40. Both

tensile and compressive T-stresses enlarge the plastic zone. It can be noted that the tensile

T-stress (Figure 7.40¢) does not have much effect on the shape of the plastic zone, where
the compressive T-stress (Figure 7.40a) has. A compressive T-stress rotates the wings of
the plastic zone (owards the crack {lanks.
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Figure 7.1: Effect of T-stress on crack tip plastic zone under
mode I loading, plane strain.
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Figure 7.2: Effect of T-stress on crack tip plastic zone under
mixed mode (K¢/K;=2) loading, plane strain.
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Figure 7.21: Slip line fields under mode I loading, plane strain.
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Figure 7.22: Slip line fields under mixed mode (K/K;=2) loading,
plane strain.




Figure 7.23: Slip line fields under mixed mode (Ky/Ky=1) loading,
plane strain.
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Figure 7.24: Slip line fields under mixed mode (Ky/K;=1/2) loading,
plane strain.




Figure 7.25: Slip line fields under mode II loading, plane strain.
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Figure 7.26: Elastic mixity (M) versus plastic mixity (M,) in plane strain.
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Figure 7.27a: Angular variation of stresses in mode I loading,
plane stress, T=0.
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Figure 7.27b: Angular variation of deviatoric stresses in mode I loading,
plane stress, T=0.
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Figure 7.28a: Angular variation of stresses in mixed mode (K¢/K;=1)
loading, plane stress, T=0.
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Figure 7.28b: Angular variation of deviatoric stresses in mixed mode
(K/Ky=1) loading, plane stress, T=0.
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Figure 7.28c: Angular variation of stresses in mixed mode (K/K;=1)
loading, plane stress, T=0.
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Figure 7.29a: Angular variation of stresses in mixed mode (K/K;=1/2)
loading, plane stress, T=0.
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Figure 7.29b: Angular variation of deviatoric stresses in mixed mode
(K¢Ky=1/2) loading, plane stress, T=0.
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Figure 7.29¢c: Angular variation of stresses in mixed mode (K{/K;=1/2)
loading, plane stress, T=0.
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Figure 7.30a: Angular variation of stresses in mixed mode (K/K;=0.45)
loading, plane stress, T=0.

Figure 7.30b: Angular variation of deviatoric stresses in mixed mode
(K¢/K;=0.45) loading, plane stress, T=0.
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Figure 7.30c: Angular variation of stresses in mixed mode (K¢/K;;=0.45)
loading, plane stress, T=0.




Figure 7.31a: Angular variation of stresses in mixed mode (Ky/K;=1/4)
loading, plane stress, T=0.

4

4

0 (deg)

Figure 7.31b: Angular variation of deviatoric stresses in mixed mode
(K¢/K=1/4) loading, plane stress, T=0.




Figure 7.31c: Angular variation of stresses in mixed mode (Ky/K;=1/4)
loading, plane stress, T=0.
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Figure 7.32a: Angular variation of stresses in mode II loading,
plane stress, T=0.
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Figure 7.32b: Angular variation of deviatoric stresses in mode II loading,
plane stress, T=0.
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Figure 7.32c: Angular variation of stresses in mode II loading,
plane stress, T=0.




0

Figure 7.33: Slip line field at the crack tip under mode I loading,
plane stress, T=0.
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Figure 7.34: Slip line field at the crack tip under mixed mode (K/K;=1)
loading, plane stress, T=0.




Figure 7.35: Slip line field at the crack tip under mixed mode (K/K;=1/2)
loading, plane stress, T=0.




Figure 7.36: Slip line field at the crack tip under mixed mode (K/K=0.45)
loading, plane stress, T=0.
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Figure 7.37: Slip line field at the crack tip under mixed mode
(KyKy=1/4) loading, plane stress, T=0.




Figure 7.38: Slip line field at the crack tip under mode 11 loading,
plane stress, T=0.
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Figure 7.39: Elastic mixity (M) versus plastic mixity (Mp) in
plane stress, T=0.
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Figure 7.40: Effect of T-stress on crack tip plastic zone under
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Loading Elastic mixity Plastic mixity (M)
mode (Me)
:T=—0.500 T=0 T=+0.5ay !

K; 1 1 1 1
KKy =2 0.70 0.75 0.82 0.90
KKy =1 .50 0.60 0.68 0.71
KiKp = 12 0.30 034 049 0.52

K 0 -0.09 0 0.15

Table 7.1: Elastic and plastic mixities, planc strain.




Loading | Mode of Critical angle (anti-clockwise positive) in degree
mode T-stress | @ 9, O3 04 05 O 07 Oy
T<0 90 -45 +45 +90
K, T=0 -120 -43 +45 +120
T=0 -180 -135 -45 +45 +135 | +180Q
T<0 -180 -135 a0 0 +75 +107
KKy =2 T=0 |.180 |-135 |-81 +9 74 | +02
T>0 -180 -135 -67 +23 +90
T<0 ~180 -135 -103 -15 +60 +107
K¢yK) =1 T=0 -180 -135 -09 -9 +60 +91
T>0 -E80 i -135 -99 -9 +60 +76
T<0 -180 -135 -117 W27 +45 +180
K/Ky=1/2 : T=0 -180 -135 -1l 21 +48 +80
i T>0 -180 -135 -111 221 +48 +81
T<0 -180 ~135 -125 -33 +35 +125 (4135 | +180
Ky T=0 -180 -135 -124 <34 +34 +124 | +135 | +180
>0 -180 -135 -123 -33 +39 +129 | +135 | +180

Table 7.2: Critical angles on the slip line fields, plane strain.




Mode of JiocatFremoe | JocatTremote | JrocatTremate

loading (T=-0.500) (T=0) (T=+0.50)
K 0.93 0.92 (.80
KyKp=2 0.99 0.93 0.89
KyKy=1 1.08 0.98 0.89
KyKu=1/2 1.06 0.98 0.98
Ky 1.04 1 1.05

Table 7.3 Jigea/Jremote ratios under mode 1, 11 and mixed mode (I/H)
loading, plane strain.




Loading mode

Elastic mixity
(Nlel)

Plastic mixity
(Mp)

K;
Kr¥Kn= |
K¢Kp=1/2
KiKy=0.45
KyKy= 1/4

Ky

0.58
041
0.38

0.23

Table 7.4: Clastic and plastic mixities in plane stress, T=0.
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Loading Critical angle (anti-clockwise positive) in degree
mode
0, 0, | 0 9 0s 0s 0; 0y
K 239.126 | 39.126
KyKy =1 -69.6 53.34
KyKy=1/2 | -122.87 | 54.7 180
Ky¢Kp=0.45 | -180 -125.3 | 547 180
K¢K;=1/4 [ -180 -125.3 | -97.83 | -51.92 |52.77 | 118.6 125.3 | 180
Ky -180 -125.3 | -109.32 ! -51.21 51.21 | 109.32 | 1253 | 180
| —

Table 7.5: Critical angles on the slip line fields, plane stress, T=0.




Chapter 8 Plane stress analytical solutions

The concepts of plane strain and plane stress slip line (ields and some of plane strain and
plane stress mixed mode (I/I) slip line fields were introduced in Chapter 4. This Chapter
develops the analytical solutions of the plane stress crack tip fields presented in Chapter 7.
The structure of the asymptotic elastic-plastic crack tip fields can be determined by
idealising the material response as elastic perfectly-plastic, which allows the use of slip
line theory (Hill, 1950) both for plane stress and planc strain conditions. As discussed in
Chapter 4 the plane stress asymptotic crack tip fields can be divided into elastic and plastic
sectors. The region over which yicld criterion is not satisfied defines the elastic sector and
the region in which yield criterion is satisfied identifies the plastic sector. Rice (1982) has
shown that under plane stress, with the assumption that the crack tip stresses are finite, plus
the incompressibility condition and the yield criterion, allows the asymptotic equilibrium
equation to provide two possible solutions for the plastic sector. These two solutions
coriespond to constant stress and curved fan sectors. In a constant stress sector mean stress,
o, 18 constant. Within a constant stress sector the slip lines are straight and non-
orthogonal. The angle between the slip lines can be determined by using the stress-strain
relations in conjunction with the stress transformation equations to determine the angle
between the lines of zero extension. In uniaxial tension or compression the slip lines are
symmetrically disposed at +54.7 and +125.3% to the direction of uniaxial stress. In a
curved fan sector the radial stress deviator, s, = 0 and Gg = 20, This sector consists of a
set of straight lines and a set of curves. The cylindrical stresses within a curved fan sector
can be given as:

O =+ kcos(8 - ¢)

oo = * 2k cos(6 - 0)

G0 =t Kk sin(0 - ¢) {8.1)

where, k is yield stress in shear and ¢ is the angle to which the curved lines arc asymptotic.
The stresses within an elastic sector can be given by the semi-infinite wedge solution of
Timoshenko and Goodier (1970), subject to the requirement that the yield criterion is not
violated:

G = A1 51020 + A; cos20 + (A}B + Ay /2

Oge= - Ay sin 20 - Ay cos20 + (A0 + A,) /2

O = A cos20 - A, sin20 — Ay /4 {8.2)

where, Ay, Az, Az and A4 are constants which are to be determined by the boundary
conditions on the sector boundary. In the present work elastic sectors arise on the crack
flanks (0 =t ) where traction [ree conditions give the relations:

Ay =4 Ay

As = 2(A; +21A) (8.3)
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The sectors can be assembled subject to the boundary conditions and continuity of
tractions across the sector boundaries. Continuity of tractions does not in itself require
continuity of stresses. Traction continuity requires Ggg and Oy to be continuous across the
sector boundaries, and an argument presented by Sham and Hancock (1999) shows that 6,
must also be continuous on the boundary between an elastic sector and a centred fan,
eiving full continuity of all stress components. The boundatry conditions require traction
free conditions on the crack flanks and the loading is defiued by ratio of tension to shear
directly ahead of the crack. This is defined in terms of a plastic mixity M, introduced by
Shih (1974):

M =3tan-l[ﬁﬁftj (8.4)

p
n O

Solutions are presented at the values of the plastic mixity listed Table 7.4. A near mode I
field consist of a curved fan complemented by elaslic sectors to the crack flanks. The
method of selution for near mode-I ficlds starts by determining the asymptotic angle ¢ in
the fan directly ahead of the crack for a defined plastic mixity. In the fields presented the
plane directly ahead of the crack always lies in a curved fan sector in accord with the
assumption of Shih (1974), but in contrast to the fields discussed by Dong and Pan (1990).
This allows the relation between the asymptotic fan angle ¢ and the plastic mixity M, to be
written as:

¢ =tan’ [2 cot[n—l\;"-}} (8.5)

Continuity of stresses Oy, Opa and Oy across scctor boundary between fan and elastic sector
on the upper crack flank at 0, allows Equations 8.1 to be combined with Equations 8.2
and 8.3 to give three equations which can be solved simultaneously to define the sector
boundary 6 and the two unknown constants A and A,. An identical argument gives the
corresponding sector boundary ©;between the fan and the elastic sector on the lower
flank. Finally it is necessary to check a posteriori that the stresses postulated in any elastic
sectors do not violate the yield criterion.

The mode T fields shown in Figures 7.33 and 7.27a-c, discussed in detail by Sham and
Hancock (1999), can be regarded as Lhe limiting case of a near mode-I field. The fietd
consists of a curved fan sector directly ahead of the crack in the angular range, 6 =
39.126" complemented by elastic sectors extending to the crack flanks. Under mixed mode
loading, the near mode I ficlds consist of a simple modification to this such that the curved
tan rotates, but remains complemented by asymmetric elastic sectors to the crack flanks.
As an example a mixed mode field corresponding to a remote ratio, K¢yK;;= 1 is shown in
Figure 7.34. The field consists of a curved fan, which extends between 53.34° and - 69.6°,
The slip lines in the fan are asymptotic to the angle, ¢ = - 57.17° while clastic sectors
extend to the crack flanks. The corresponding stress field is shown in Figures 7.28a-c.

A critical transiticnal field arises when the angle of the clastic wedge on the upper crack
flank reaches 54.7% and the asymptotic angle ¢ = - 70.53°, which corresponds to a plastic
mixity, M, = 0.392. The yield criterion is violated in any postulated elastic sector between
the fan and the crack flanks, but the field can be completed by a constant stress sector
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extending from 54.7° (o the upper flank. The stress within this sector is a simple uniaxial
compression parallel to the crack Hlanks:

6, =—3kcos? 0

Gy = —V3 ksin?0
Oy = %ksin 20 (8.6)

where, 54.7° <8 < 180", On the lower flank a constant stress sector emerges in - 125.3°> 9
> - 180" from the fan to the crack flank. The stress within this sector is a simple uniaxial
tension parallel to the crack flanks:

G =\/§kcos'Z &)

Goy = /3 ksin 0

Cq = -i23—ksin 20 (8.7)

The remote loading condition, Ky/Ky=0.5, gives a plastic mixity quite close to this critical
configuration (M, = 0.41, b =- 69.6"), but in the numerical calculations plasticity has just
broken through on the upper flank, and is about to break through on the lower flank, where
the clastic sector ranges from —-122.87° w ~180°. The numerically constructed slip line
field for this loading is shown in Figure 7.35 and the stress field in Figurcs 7.29a-c.

Calculations were also performed at K¢Ky = 0.45, which is very close to the critical
condition (M, = 0.38, ¢ = - 70.53% at which plasticity completes to both upper and the
lower crack flanks. A constant stress sector develops in the angular range - 1253%20 >-
180°. This sector is subject to uniaxial tension parallel to the crack flanks. On the upper
flank a constant stress sector develops between 54.7° < 8 < 180° and is subject to uniaxial
compression parallel to the crack flanks, The slip line field for this loading is shown in
Figure 7.36 and the corresponding stress field in Figures 7.30a-c. Although the transitional
field can be determined from the local plastic mixity, an analytic method to relate the
remote elastic and plastic mixitics has not vet been established.

With increase levels of applied shear a fan emerges at 0= 125.3% and a constant stress
sector at B = - 70.53" which is the asymptotic angle of the fan ahead of the crack. This
gives rise to the near mode II fields. Near mode II fields consist of constant stress scctors
on the upper and lower crack flanks leading to curved fan sectors and two further constant
stress sectors which adjoin a curved [an directly ahcad of the crack. Consider the near
mode 11 slip line field shown in Figure 7.37. The method of solution starts by determining
the angle ¢, for the fan directly ahead of the crack using Equations 8.4 and 8.5. The
constant stress sector angle, 8, = 125.3° and continuity of stresses across this sector
boundary gives the asymptotic fan angle for the fan at 125.3%, 0= 70.53°. The field above
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the crack plane is fixed by the span of the constant stress sector between 85 and 0. The
angle between the slip lines in a constant stress sector gives the relation:

tan{8; - 85) = 2 tan{®, - ¢2) (8.8)
Equating the mean stresses at Os and O gives the relation:
(B5+ Og) = (7L + (i + B2) (8.9)

These equations are solved simultaneously to give numerical values of 8s and 04, A similar
procedure gives the sector boundaries 83 and 64 on the lower flank. Numerical calculations
have been performed at Ky/Ky = 0.25 and M, = 0.23 for the slip line field shown in Figure
7.37. The sector angles are given in Table 7.5, and the stress ficld in Figures 7.31a-c.
Finally in pure shear, KKy =0, the slip line field, shown in Figure 7.38 is constructed and
is identical to that proposed by Shih (1973). The corresponding stress field is given in
Figures 7.32a-c, and the scctor angles in Table 7.5.
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Chapter 9 Discussion

Perfectly plastic fields for plane strain and plane stress which are derived as the limit of the
HRR fields (Hutchinson, 1908, Rice & Rosengren, 1968} as the strain hardening exponent
approaches zero necessarily exhibit plasticity at all angles around the crack tip. For mode |
plane strain conditions this leads to the Prandtl field whose relevance as the limit of the
HRR fields as the strain hardening exponent approaches zcro has been recognised by Rice
(1982). In this field plasticity fully surrounds the crack tip al all angles giving rise to a
unique high constraint crack tip ficld which is fully characterised by J or the crack tip
opening displacement. However this field only occurs when the T-stress is positive
(tensile) which occurs in deeply edge-cracked bend bars in tension and bending (Betegdn
& Hancock, 1991). At very small applied loads in any configuration the T-stress is close to
zero, and an elastic wedge appears on the crack flanks and the stress ahead of the crack
decreases by a hydrostatic term which O’Dowd and Shih (1991a, 1991b) have denoted by
Q. In configurations such as centrc cracked panels negative (compressive) ‘I-stresses
develop. Here the angular span of the elastic wedge on the crack flanks increases further
and the mean stress ahead of the crack further decreases. This family of plane strain mode [
ftelds arises in perfect plasticity because plasticity does not fully surround the crack tip,
and the loss of crack tip constraint is accompanied by an increase in the angular span of the
elastic wedge on the crack flanks, The loss of crack tip constraint gives rise to an increase
in fracture toughness in cleavage (Betegdn & Hancock,1991) and an enhanced resistance
to ductile tearing (Hancock et al., 1993). The mode I fields (T = 0, £0.5¢), discussed in
present work are consistent with the three sector solution prescnted by Li and Hancock
(1999).

Planc strain mixcd mode I/II fields have been discussed by Shih (1974), on the assumption
that plasticity surrounds the crack tip at all angles, This requires the introduction of a
discontinuity in radial stress between frailing sectors. This is permitted by the equilibrium
equations, and has been interpreted as the limit of an angular zone with steep radial stress
gradients in the mixed mode HRR fields. However, the problem of stress discontinuity can
be avoided by allowing the possibility of clastic sector on the crack flank, which allows a
fully continuous distribution for all stress components. Li and Hancock (1999) have
presented five sector solutions for mixed mode /1l fields, where sectors from the lower
crack flanks can be given as: constant stress sector 1, fan 1, constant stress sector 2, fan 2
and an elastic sector on the upper crack flank. Zhu and Chao (2001) have presented six
scctor solutions for mixed mode ficlds as the modification of the five sector solutions,
where a constant stress sector has been included between fan 2 and elastic sector on the
upper crack flank. According to Zhu and Chao (2001}, five sector solution presented by Lj
and Hancock (1999) for mixed mode loading is the special case of six sector solution and
is valid for the field containing an clastic wedge with a span, ¢ > /4. Unlike mixed mode
fields by Li and Hancock (1999), the fields discussed in present work show an incomplete
constant stress sector adjacent to the elastic sector on the upper crack flank, which is
consistent with the six sector solution of Zhu and Chao (2001). A comparison of the
present numerical solution and the six sector analytical solution for mixed mode, KyK ;=2
is shown 1n Figure 9.4, Li and Hancock (1999} mixed mode fields for Ky/K;; = 2 are shown
in Figures 9.1 and 9.2. For this loading (K¢Kn = 2), a comparisan of stress ficlds (rom the
analytical solution of i and Hancock (1999) and carrent numerical solution is shown in
Figure 9.3. Both solutions presented for thc plastic mixity, M, = 0.82, show identical
stresses in the leading sectors and ditfer only slightly in the trailing sectors. The toughness
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predicted by applying local [racture criteria to either field would thus give identical results,
and the minor diffcrence in the trailing sectors does not appear to have any significant
effect on toughness.

Under mode I loading in plane strain, the effect of T-stress is to change the constraint of
the ficld leading to a family of fields parameterised by constraint. [’ plasticity breaks
through to one crack flank in the corresponding mixed mode fields, the effect of the T-
stress is to change the local mixity, but not to create a new family of ficlds. The mixed
mode toughness is thus fully characterised by J at any given local crack tip mixity. It may
however be noted that the T-stress changes the relationship between the local and remote
mixities, so thal the remote ratio of tension to shear (Ki/Ky) does not lead to a unique
toughness measured by J. Using the six sector solutions at Ky/Ky=2 but differing T-stress,
the cffect of T-stress is illustrated in Figures 9.5 and 9.6 and Table 9.1. These Figures
compare the numerical solutions with analytical solutions. The trend is that increasingly
tensile T-stresses decrease the span of the constant stress sector between the fan and the
elastic sector, and change the plastic mixity. The mixed mode ficlds can be unified with
unconstraint mode I fields into a single constraint-mixity locus. This allows mode 1
toughness to be cxiended to mixed mode loading configurations. The effects become
significant when assessing structural integrity on shallow cracked components subjected to
mixed mode loading.

In plane stress, mode I and near mode 1 fields have been discussed by Hutchinson (1968),
Shih (1973) and Dong and Pan (1990) on the assumption that plasticity surrounds the crack
tip at all angles. Statically admissible fields developed on this basis requires a discontinuity
in radial stress which is allowed by the equilibrium equations, However in Lhe present
wark, the problem of a stress discontinuity has been avoided by allowing the possibility of
elastic sectors on the crack flanks. Unlike mode I and near mode 1 fields discussed by
Dong and Pan (1990), in the fields (mode 1 and mixed mode I/I) discussed in present
work, the crack line ahead of crack atways lies in the curved fan throughout the transition
from mode I to mode II. In mode I loading, the maximum hoop stress occurs in the curved
fans, when the stress is uniquely defined. As a result, although the T-stress has an effect on
the shape of the plastic zone, it has no effect on the asymptotic field, which is uniquely
characterised by J. In mode I, the present work recovers the ficld discussed by Sham and
Hancock (1999), however in mode 11 and near mode I1, the fields identified by Shih (1973)
emerge in which plasticity surrounds the tip at all ungles.
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Figure 9.1: Asymptotic crack tip field under mixed mode (Ky/K;=2) loading
in plane strain (Li & Hancock, 1999).

Figure 9.2: Li & Hancock (1999) plane strain mixed mode (Ky/K;=2)
slip line field.
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Figure 9.3: Comparison of plane strain mixed mode (Ky/K;=2) numerical result (data
points) with analytical solution (solid lines) of Li & Hancock (1999).

0 (deg)

Figure 9.4: Comparison of plane strain mixed mode (Ky/K;=2) numerical result
(data points) with six-sector analytical solution (solid lines), T=0.
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Figure 9.5: Comparison of plane strain mixed mode (Ky/K;=2) numerical result
(data points) with six-sector analytical solution (solid lines), T=-0.50,.

Q

0 (deg)

Figure 9.6: Comparison of plane strain mixed mode (K/Kj;=2) numerical result
(data points) with six-sector analytical solution (solid lines), T=+0.50.




Angle T=-0.50¢ =0 , T=+0.500
(degree) | Analytic | Numerical | Analytic { Numerical | Analytic | Numerical
0; -135 -135 -135 -135 -135 -135
0, -92.07 -90 -80.71 -81 -68.96 -67
05 -2.07 0 9.29 9 21.04 23
B4 68.88 75 72.84 74 84.48 90
Bs 113.88 107 92.02 92 08.43 90

Table 9.1: Sector angles of the slip line fields under mixed mode,
Ky/Kjr=2 in planc strain.




Chapter 10 Conclusion

Mode I, mode II and mixed mode VII crack tip fields have been investigated under
contained yielding conditions. The asymptotic crack tip fields for an elastic perfectly-
plastic material response have been determined analytically, and verifted numerically using
boundary layer formulations in plane strain and plane stress conditions. The crack tip fields
have been represented in terms of slip line fields.

The effects of the non-singular T-stress on the plastic zone at the crack tip as well as on the
asymptotic crack tip field have been determined in plane strain. T-stress changes the size
and shape of the plastic zone at the crack tip under mode I and mixed modes I/II. Under
mode I loading, T-stress changes the constraint of the crack tip field leading to a family of
fields, but does not change local mixity. Under mixed mode loading, T-stress changes local
mixity without creating a new family of fields. In plane strain mode I, the numerical results
are consistent with the analylical solutions of Li and Hancock (1999), while in mixed mode
/Il loading, the daia are consistent with the extension to the Li and Hancock fields
proposed by Zhu and Chao (2001). However, this is a minor difference which only slightly
affects the trailing sectors and does not change the form of the leading sectors.

Under mode I loading in planc stress, the effect of T-stress on plastic zone at the crack tip
has been determined. Both positive and negative T-stresses change the size and shape of
the plastic zone, although they do not have noticeable effects on the crack tip field.

Analytical solutions for plane stress mode I and mixed mode VII problems have been
developed by assembling constant stress, fan and elastic sectors. Analytical solutions show
good agreement with the numerical results, and unlike fields presented by Hutchinson
(1968), Shib (1973) and Dong and Pan (1990), the fields exhibit full continuity of stresses,
and feature incomplete plasticity around the crack tip. In mode I, field discussed by Sham
and Hancock (1999) cmerges, and in mode II and near mode I, fields discusscd by Shih
{1973} develop.
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Appendix 1

The computer programs fullfan3.go and fullfanodd3.go are used in conjunction with the
ABAQUS post processor ABAQUS Post (Hibbitt, Karlsson and Sorensen, 1998) to write
radial distances and Cartesian stresscs at 7.5 intervals surrounding the crack lip. The data
are wrilten in a file named abaqus.rpt.

The program fullfan3.go
delete curves, name=all names
detail, elgset = sl

path, absclute, distance, nane=s114180,rodelist, undeformed=on, var=sil,
DI8BO

print c
2114180

path, absolute, distance, name=s11d165, nodelist,undetormed=on,var=g_.1,
D165

print ¢
s11d145

path,absoclute, distance, name=s-1d150,nodelist, undeformed=on,var=sll,
D150

print ¢
s11d4250

path, absolute,distance, name=811d135,20delist, undeformed=on, var=sll,
da135

print «
£11d4135

path, absolute, distance, name=s11d120, nodelist, undeformed=on,var=sil,
D120

print <
s11d120

path, absolute, distance, name=511d105,nodelist, undetormed=on, var=sil,
D105

print c
5114105

path,absolute, distance, namc=511d90, nodelist,undeformed~on, var=sll,
Do9o

print c
s11ad90

path,absolute,distance, name=s11d75, nodelist, undeformed=on,var=sll
D75
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print ¢
211475

path, absolute,distance, name=s11d40,nodelist, undetormed=on,var=sll,
D&ao

print <
$11d60

path, abselute, distance, nare=511d45, nodelist , undeformed-on, var=sll
D45

print <
s11d45

path, absolute,distance, name=s:1d30,nodelist, undeformed=on, var=511
D30

print ¢
511430

path,absolute, distance, nane-s11d15,nodelist, undeiormed=on, var=511
DLS

print c
211diSs

detail, elset = upper

path,absoliite,distance, name=511d00u, nodelist, undeformed=cn, var=sll,
oo

print c
311d00u

detail, elset = batlLom

path, absolute, distance, name=s11d0Cb, nodelist,undefermed=con, var=sll,
nao

print ¢
s11d00b

detail, elsel = gl

path, absolute, dist.ance, name=s11d345,nodelist,undeformed=on, var=sll,
D345

print c
5114345

pach,abhsolute,distance, name=s11d330,nodelist  undeformed=on,var=si’,
nN330

print ¢
s11d330
d315

print c
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s1ic315

path, absclute, distance, name=si11d300, nodelist, undeformed=on,var=sll,
D300

prin: ¢
5114300

path,absclute,distance, name-sl1..d28%, nodelist, undefcrmed=on,var=sll,
D285

print ¢
5114285

path,abksclute,distance, name=511d270,nocdelisc, undeformad=on,var=gl’,
D270

print c
5114279

path, absolute,distance,name=s511d255, nodelist, undeformed=on,var=sll
D255

print ©
s11d255

path, absolute,distance, name=5113240, nodelist, undeformed=on, var=sll,
D240

print ¢
£11d240

path, absolute,distance, name=g11d225, nodelist,undeformed=on, var=sll
D225

print ¢
5114225

path,absclule,distance, name=s11d210,nodelist, undeformed=on, var=sll
0210

print c
5114210

path,absolute,distance,name-s11d195, nodelist, undeformed=on, var=sll
D195

print c
5114195

path, abzolute,distance, name=5114181, noderist,undeformed=on, var-sll
D181

prirnt ¢
5114181

display,all curves

vath,absclute, distance, name=s22d180, nodelist, undeformed=on, var=s22,
D180
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prirnt c
s22d1840

path, absolute,distance,name=s22d4165, nodelist, undeformed=con,var=s22,
D165

print c
8224165

path,absclute,distance, name-s22¢150, nondelist, undeformed=on, var=822,
D150

print «
$22d150

path, absolute, distance, name=s224d135, nodelist, undeforned=on, var-g22,
adllis

print ¢
s22d138

path, absolute,distance, name=822d120, nodelist,undeformed=on, var=s22,
D120

princ c
822d120

path, absolute,digtance, nane=322d4105, nodelist, undeformed=-on, var=s22, i
D105

print c
522d105

path, absolute,distance, name=52243490,nodelist, undeformed=on,var=s22,
DeO

print ¢ -f
s22d350 -4

path, absolule,disl.ance, name=522d75,nodelist, undefoermed=on, var=s22
D75

print o
s22d75

path, absolute, distance,name=s22d60, nodelist, undeformed=on,var=s22,
D60

print c
s22d60

path, absolute,distance, nane=s22d45,nodclist, undeformed=on, var=s2?2
DAS

print c
s22d4:

path, absolute, distance, nane-s22d30, nodelist, undeformed=on, var=g22
230

print <
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s22d30

path,abscolute, digtance, name=s22d15, nodelist, undeformed=on, var=s22
D15

print ¢
522d1b

detail, elset = upper

path, absolute,distance, name=522d00u, nodelist, undeformed=on,var=s22,
Doo

print ¢
22d00u

detail, elset = bottomn

path,absolute, distance, name=s22d00b, nodelist, undeformed=on, var=s22,
D0

print ¢
5224000

detail, elset = sl

pach,absolute, distance, name=s22d345, nodelist, undeformed-on,var=s522,
0345

print c
§22d345

path, absolute, distance, name=s22d330,nodelist, undeformed=on, var=s22,
D330

print c
522d33¢

path, absolute,distance, nane=s22d315, nodelist, undeformed=on, var=s22,
d31i5

print c
$22d315

path,absolute, cistance, nane=s22d300, nodelist, undeformed=cn, var-s22,
D300

print c
$22d300

path, absolule,distance, name=s224285, nodelist, mdaeformec=on, var=s22,
DZ85

print ¢
£22d285

palh,absolute, distance, name=s223270, nodelist, undeformed=on, var=s22,
D270

print c
5224270
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path, absolute, digtance, name=s22d255, nodelist, undeformeds=on, var=s22
D255

nrint ¢
5224255

path, absolute,distance, name=s22d240,nodelist, undeformed=on, var=s22, X
D240 =

print ¢
5224240

path, absglute, distance, nare=s22d225, nodelist, undeformed=cn, var=g22
D225

print c
s224225

path,absolute,distance,name=s22d210,nodelist, undefcrmed=on, var=s22
D210

prinL «
822d210

path, absolute, distance, name=s22d195, nodel igt:, undeformed=on, var-s22
D195

prirt c
522d195

path, absoiute,distance, name=5224181,nadelist, undeformed=on, var=s22
D1B1

print «
£22d181

display.,ail curve

path,absclute, distance, name=s12d18¢, nodelist, undeformed=on, var=sl2,
D180

print c
s12d180

path,absolute, distance,name=s12d165,nodelist, undeformed=on, var=sl2,
D155

print c

s12d165

nath, absolute,distance, nane=s12d150, nodelist, undeformsd=cn,var=sl2,
D150

print c
3:2d150

path, abzolate, distance, nane=s12A4135, nodelist, undeformed=on, var=sl2,
d135

print o
$12d13%
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path,zbsolute,distance, nare=s123120, nodelist, undeformed=on, var=sl2,
D120

print c
$12d120

path, absolute, distance, nane=g12d105, nodelist, undeformed=on, vax=sl2,
D105

print c A
$123105

path,absolute, distance, name=s12d90, nodelist, undeformed=on, var=s12,
D30

print ¢
512490

path,absolute,distance, naine=512d75 ,nodelist, undeformed=on, var=s12
D75

print c
512475

path,absolute, distance, name=s12d60, nodelist, undecformed=on, var=sl2,
D60

print ¢ ,5
512460 8

path, absolute, distance, name=s12d45,nodelist, undeformed=on,var=s12
45

print ¢
s12d45

path, absolulke, distance, name=s12d30,nodelist, undeformed=on,var—=sl2
D30

print c
8124390

path, absolate, distance, name=s12dl5,nodelist, undetormed=on, var=s12
D1S

print c
512415

delLalil, else:c = upper

pata, absolute, discance, nare=s12d00u,nodelist, mdeformed=cn,var=sl2, -
Dao .

print ¢
s1Z¢0du

decail, elsel. ~ bottom

path, absclute, distance, name=s- 2400k, nodelist, undeformed=on,var=sl2,
DCO
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print ¢
$12d00L

detail, elset = sl

path, absolute,distance, name=512d345, nodelist, undetormed=on,var=sl2,

D345

print c
$1.2d345

path,absolute, distance, name=s12d330,nodelist , undeformed=on,var=si2, .

D330

print c
123330

path, absolute,distance, name=s12d315,nodelisc, undeformad-on,var=s12,

d315

print c
512d315

path, absolute,distance, name=s12d300, nodelist, undeformed=on,var=s12,

n3no

print ¢
5124300

L

path, absolute, distance, name~x12d4285, nodelist,undeformed=on, var=512,

D285

print ¢
5124285

path, absolute, distance,name=s512d270,nodel i st,undeformed=on, var=sl2,

D270

print ¢
s12d270

path, absclute, distance, name=s12d255, nodelist, undeformed=on, var=sl?2

D255

print c¢
512d255

path, absolute,cistance,nare=s12d240,nodelist, undeforrad=on,var=sl2, ﬂ

D240

print ¢
£12d240

path,absolute,distance, nane=812d225, nodelist, undeformed=on, var=s12

D225

print <
s12d225

path, absolute,distance, name=512d21C,nodelist, undeformed=on,var-sl2

D210
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print ¢
s12d210

N

path, absolute,distance, name=s12d195, nodelist,undeformed-on, var=sl2
D195

print ¢
x12d195

path,absolute,distance, name=512¢d181,nodelist, undetormed=on,var=sl12
D181

print c
s12d181

display,all curve

detail, elset = s>

path,absolute, distance, name=misdi80,nodelist, undeformed=on, var=miges,
D180

print <
misdl180

path, absolute,distance, name=misdlE>, nodelist, undeforred-on, var=mises, .
D165 o

print c

misdl6s

path, absolute, distance, name=misd150, nodelisl, undeformed=on, var=mises,
D1SC

print c
misdl50

path,absoluts, distanrce, nane=misdl3y5, nodelist, undeformed=on, var=mises,
di13s

print: c

misdl35

path, absclute, distance, name=misdl120, nodelisl., undeformed=or., var=mises,
D120

print ¢
migdl2

path,absolute, distance, name=m:sd105, nodelist, undeformed=on, var=mises,
D195

print ¢
misdl05

path, absolute, distance, rame=misd920, nodelist, undeformed=on, var=mises,
D90

print c
aisd90
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path, apsolute,distance, name=misd75, nodelist, undeformed=on, var~-mises
D75

print ¢
risd?5

path,absclute, distance, nane=misd60, nodelist, undeformed=on, var=m.scs,
DBOD

print c
misd6l

path, absclute, distance, name=misd4s, nodelist, undeformed=on, var=mises
D45

print c
misdas

path, absolute, distance, name=nisd20, nodelist, undeformed=on, var=mises
D30

print ¢
misd30

path, absolute, distance, name=migdi5, nodelist,undeformed=on, var=mises
D15

print ¢
misdl5

detaill, elset = upper

path, absolute, distance, nane=misd00u, nodelist, undeformed-on, var=misesg,
Doo

print c
misddou

detail, elset = bottom

path,absolute, distance, name=misd00b, rodelist,undeformed=on,var=mises,
poo

print ¢
misd00b

detail, elset = gl

path, absolute,distance, nanc=misd3i45, nodelisy, undeformed=on, var=mises,
D345

print ¢
misdl45s

path, absoiute, distance, nanc=nisd330, nodelist, undeformed=on, var=rnises,
N330¢

prirt c
misd330

path,absclute, distarce, name=misd315, nodelist, undeformed=or, var=nises,
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d315

print c
misd31s

path, absolucte,distance, name=misd300, nodelist, undeformed=on, var=mises,
ninn

print c
misd300

path,absolute,distance, name=nisd285, nodelist, undelformaed=cn, var=nises,
N2gs

print o
misd285

path, absolute,distance, name=misd270,nodelisl, undeformed=on, var=mises,
D270

orint ¢
misd270

path, absolute, distance, name=misd255, node  ist, undeformaed=on, var=mises
D25S

print ¢
misdibhsb

path, absclute, distance, name=misd240, nodelist, undeformed=on, var=mises,
DN240

print ¢
misd240

vath,absolute, distance, name=misd225, nodelist,undeformad=on, var=mises
D225

print c
misd225

path,absolute,distance, name=misd210,ncdelist, umndefaormed=on,var=mises
D210

print ¢
misd210

path,absolute,distance, name~-nisdl985, nedelisl, undeformed=0on, var=mises
195

print c
misdlds

path,absolute, distance, name=misdl8i, nodelist, undeformed=on, var=mises
D181

print <
misdl8l

Zisplay,all curves
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delete curves, neme=all names
detail, elset = sl

path,absolute, distance, name=presdl 80, nodelist, undetormed=on, var=press,
D180

print <
presdlgo

path, absolute, distance, name=presdl6s,nodelist, undeformed=0on, var=press,
D165

print c
presdibh

path,an»sclute,distance, name=presdlsC, nodelist , uncdeformad=0n, var=press,
D150

print c
presdl50

path, absolute, distance, name=prcsdils5, nodel ist, andeformed=on, var=cress,
a135

print c©
presdl3s

path, absclute,distance, name=presdl20, nodelist, undeformed=or, var=press,
D120

print ¢
presdli)

path, absolute,distance, nanc=presclids, nodelist, undeformed=on, var-press,
D105

print c
presdl(ob

patli, eabsolute, distance, name=presds0, nodelist, undeformed=on, var=press,
D990

print c
presdso

path, absolute, distance, name=presd75, nodelist, undeformed=-on, var-press
D75

print ¢
presd?b

path,absolute,distance, name=presdsd, nodel ist, undeformed=on, var=press,
D60

print ¢
pradscé

palh, absolute, distance, name=presd4s, nodelist, undeformed=on, var=press
DAS
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print c
presd4ds

path, absolute, distance, name=presd3(d, nodelist,undeformed=on, var=press
N30

print. c
presd3d

path, absolute, distance, name=presdi5,nodel st , undeformed=on, var=press o
D15 A

priantc ¢ .
presdls ﬂ

detail, elset = upper i

path, absolute, digstance, nama=presdiou, nedelist, undeformed=on, var=press,
DOO

print ¢
presdlu

detail, elset - bottom

path, absolute, distance, nanme=presd00b, nodelist, undaformed=on, var=press,
DOG

Print ¢
presdddb

detail, elset = sl

path, absolute, distance, nane=presd345, nodelist, undeformed=on, var=press,
D345

print ¢
presdi4sb

path, absolute,distance,name=presd330,nodelist ., undeformed=cn, var=press, ﬁ
D330

print ¢ &
prasdili

path, absolute, distance, name=pregdil5,nodelist, undeformed=on, var=press, -
d31s =

print <
presdilb

palh, absolute, distance, name=presd300, nodel ist, uncdeforned=cn, varspress,
D300

print c 'ﬁ
presc3Co ~

4
path,absclute, distance, nane-presd285,nodelist, undeformed-on, var=press, j
D285 i

1
print ¢ “
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presd285

path,absoclute, distance, name=presd27Q, nodel ist., undeformed=on, var=prcss,
D270

print ¢
presd?270

path, absolute,distance, name=oresdibb, nodelist, undeformed=on, var=press
D255

print ¢
presd255

path, absolute,distance, name=presd240,nodelist, undeformed=on, var=press,
D240

print
presd240

path, absolute,distance, name=presd225, nodel ist, undeformed=on, var=press
D225

print c
presdz25

path,abscolute, distance,name=presd210,nodelist,undeformed-on, var=press
D210

print ¢
presd2lo

path, absolute, distance,name=presdl95,nodelist, undeformad-on, var=press
D195

print ¢
presdl95

path, absclute, distance, name=pgresdis8l nodelist, undeformed-on, var=press
D181

print c
prescl8l

display,all curves
The program fulifanodd3.go

NSET, NSET=DC0OK, GENERATE
1,481,20

NSET, NSET = D8, GENERATE
2,482,20

KSRT, NSET - D23, GENERATE
4¢,484,2C

kL

NSET, NSET D38, GENERATE

6,486,20

NSET, NSFT = D53, GENERATE
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8,488,220

NSET, NSLET =
10,490,2C

NSET, NSET =
12,492,20

NSET, NSEL =
494,926,18

NSET, NSET =
496,928,18

NSET, NSET -
468,930,118

NSET, NSET =
500,932,18

NSET, NSET =
502,934,18

NSET, NSET =
504,936,18

NSET, NSET =
938,1370,18

NSET, NSET =
940,1372,18

NSET, NSET =
942,1374,18

NSET, NSET =
944,1376,18

NSET, NSET =
946,1378,18

NSET, NSET =
948,1380,18

NSET, NSET =
1282,1766,16

NSET, NSET =
1384,1768,16

NSET, NSET =
1386,1770,16

NSET, NSET =
1388,1772.16

NSET, NSET =
1390,1774,16

NSET, NSET =
1382,177¢,26

168, GENLERATE

D83, GENERATE

D98, GLNERATE

D:113, GEKNERATE

DL28, (GENERATE

D143, CENERATE

D158, GENERATE

D173, CGENERATE

D188, GENERATE

D203, GENERATE

D218, GENERATL

D233, GENERATE

D248, GENERATE

D263, GENERATE

N278, GENERATE

D283, GENERATE

D308, GEZNERATE

D323, GENERATE

D338, GENERATE

D353, GENERATE

71

Srgh b L

s




delete curves, name=zll names
detail, elset = sl

path,absolute,distance, name=s11d173,nedelist, undeZormed=cn,var=sll,
N173

print ¢
s11d173

path, absolute,distance,name=s114158,nodelist,tndeformed=on, var=sll,
D158

print c
s11dl5R

path, absolute,distance, name=s1.d143,nodelist, undeformed=on, var=sil,
D143

print ¢
$11d143

path, absolute,distance, nane=sl26d128, nodelist, undeformed=on, var=sll,
D128

print c
8114128

path, absolute,. distance, nane=s11dll3, nodelist, undeformed=on, var=sl1l,
niil

nprint o
8114113

path, absolute,distance, name=s11d98 . nodelist, undeformed=on, var=sll,
DS8

print c
s11a98

path, absolute,distance, name=s11d83, nodelist, undeformed=on, var=sll,
D83

print c
511483

path,absolute,distance, name=511d458, nodelist, undeformed=on, var-sll
D68

print c
511468

path,absolutre,distance, name=s11d33,nedelist,urdeformec=on,var=sil,
D53

print c
2116535

path,abgolute,distance, name=s11d38, nodelist:, undeformed-on, var—s1l
238

print c
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511438

path, absolute,distance,name=s11dz3,nodalist,undeformed=on, var=sll
D23

print c
s11d23 %

path,absolute,distance, name=s11d8, nodelist,undeformed=on, var=sl1l
D8

print c
51148

detail, elset = upper

path,absolute, distance, name=511400u, nodelist, undeformed=on, var=ysll,
DOOK

print c
511400u

detcall, elset = bottom

path, absolute, distance, name~s11d00b, nodelist, undeformed=on, var=sli,
DOOK

print
s11d00b

detail, elset = st

path, absolute,distance, name=sl1d353,nodelist, undeformed=on, var=sil,
D353

print ¢
s11d353

path,absolute,distance, rame=s511d338, nodelist,undeformed=on, var=sll,
D338

print c
£1.d4338

path.absolute,distance, name=s11d323,nodelist,undeformed=on, var=sll,
D323

print c
s11d323

path, absolute,distance, namne=511d43908, nodeliszst, undeformed-on, var=s11,
D308

prinl
5114308

path,absolute,distance, name=s811d2923, nodelist, undeformed=on, var=sll,
D293

print c
$114293
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path,absolute,distance, name=s11d278, nodelist, undeformed=on,var=sll,
D278

print c
5114278

path, absolinte, distance, nanme=s11d263,nocdelist, undaformed=on, var=sll
n263l

print c
s11d263

path, avsclute,distance, name=s11d248,nodelist, undeformed=on,var=sll,
D248

print ¢
5113248

path,absolute,distance, name=s11d233,nodelist, uidcformed-on,var=sll
D233

print <
9114233

path,absolute,distance, nane=811d218, nodelist, undeformed=on, var=sll
D218

print ¢
5114218

walth, absolute, distance, name=s11d203, nodelist, undeformed=on, var=sll
D203

print. «
31143203

valth, absolute, distance, name=s1.d188, nodelist, undeformed=on, var=sll
D188

prirt c
5114188

display,all curves

path,absolute,distance, name=s22d173,nodelist, undeformed=on, var=s22,
D173

print c
522d173

peth,absolute, distance, name=s22d158, nocelist, undeformed=on, var=s22,
D158

print ¢

5224158

patn,absolute, distance, name=s22d143, nodeiist, undeformed=on,var=s22,
D143

print ¢
s22d143




path, absclute, distance, name=s22d128,nodelist, undeformed-on,var=gs22,
Jd128

print c
5224128

path,absolute,distance,name=s22d113, nodelist, undeformed=on, var=s22,
D113

print ¢
5224113

path, absolute,distance, name=822d98, nodelist, undeformed=on, var=s22,
D98

print c
8223098

path,abosclute,distance, name=s22d83,nodelist, undeformed=cn, ver=g22,
D33

print c
s22d83

path, absclute,distance, name=s22d68,nodelist, undeformed=on, var-si2
D638

print c

£22d68

path, absolute, distance, name=s22d53 ,nodelist,undeformed=on, var=s22,
D53

prine o
s§22d53

path,absolute, distance, name=s22A438, nedelist, undeformed=on, var=s22
D38

print c
522438

patlh, absolute,digtance, name=s22423, nodelist, undeformed=on, var=s22
D23

print c
522d23

path,absolute,distance, name=s22d8, nodelist, undeformed=on, var=s22
D8

print ¢
522d8

detail, elset = upper

path,absolute, disbance, name=5224d00u, nodelist, undeformed=on, var-s22,
DOOK

print ¢
s22d00u




detall, elsel = bottom

path,absolute, distance, name~s22400h, nodelist, undeformed=on,var=s22,
DOOK

print c
522d00b

detail, elget = sl

path, absolute,distance, name=s8224353 ,nodelisgt, undeformed=on, var=s22,
D353

print ¢
5224353

path, absolute, distance, name=s22d338, nodelist, undeformed=on, var=s22,
D338

print ¢
5224338

path,absolute,distance, nane=s22d323, nodelist, undeforned=on, var=s22,
d323

print ¢
s22d323

path, absolute, distance, name=22d230, necdelist, undeformed=on, var=s22,
D308

print ¢
£22d230

palh, abgolute,distance, name=s22d293,nodelist,undeformed=on, var=s22,
0293

print <
s22d293

path,abso’ule,distance, name=522d278, nodelist, undeformed=on, var=s22,
D278

print ¢
s22d278

path,absoliute,distance, name=$22d263,nodelist,undeformed=on, var=s22
D263

print C
5224263

path,absolute,distance, name=s522d248, nodelist,undeformed=on,var=522,
D248

print c
5224248

path, absclute, distance, name=522d233 , nocdelist, undeformed=on,var-s22
D233
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print ¢
522d233

path,absolute,distance, name=s22d2.8, nodelist, undeformad-on, var=s22
D218

print ¢
a22d218

path, abso_ute, distance, name=s22d203, nodelist, undeformed=on, var=s22
D203

Drint ¢
522d203

path,absolute, distance, name=s22d188,nodelist, undeformed=on, var=s522
D188

print c
5224188

display,all curve

path,absolute, distance,name-s1228173,nodelisz, undeforred=on, var=s12,
D173

print c
£123173

path, absclute, distance, name=s12d158,nodelist, undeformed=on,var=s12,
D158

print c
5124158

path, absolute, distance, name=s124243 ,nodelistc, undeformed=on, var=sl2,
D143

print <
5123143

path, absolute.digtance, nane+-s12di28, nodelist, undeformaed=on, var=s12,
dalzs

orint c
3124128

path,absolute, distance, nane=512di13 ,nodelist, undeformed=on, var=sl2,
D113

print ¢
s12d113

path, absolute,distance,name=s12dYy8,nodelist,undeformed=on,var=sl2,
nes

print c
512488

path, absolute,distance, name=s12d83, nodelist,undeformed=on, var=sl2,
D83
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print c
s12d83

path,absolute,distarnce,name=s12c58,nodelist, undetformed=on, var=gl2
DEB

print c
sl2d68

path, absolute, distance, name=g12d53, nocalist, undeformed=on, var=sl2,
D53

print c
212453

path,absolute,distance,name=g12d38,nodelist, undeformed=on,var=sl2
D38

print c
£12d438

path,absclute,distance, nane=512d23 ,nodelist, undeformed=0cn,var=sl2
D23

print c
£12d23

path,absolute,digstance, nane=s12ds8, nodelist, undeformed=on,var=si?
D3

print c
51248

detail, elset = upper

path,abksolute, distance, name=sl2d00u,nodelist,undeformed=on, var=s12,
DOOK

print c
512d00u

detail, elset = bottom

path,absolute, distance,name=s12d00b,nodelist, undeformed=on, var=siz,
DOOK

print ¢
£12d400b

detail, elset = sl

path,absolnute,distance,name=sl12d353 ,nodelist, undeforned=on,var=sl2,
D353

print ¢
512d353

path,aksolute,distance,name=s12d338,nodelist, tndeforned=on,var=sl2,
D338

print ¢
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5224338

path,absclute.distance, nare=512d323,nodelist, undeformedson, var=slZz,

d323

print <
512d323

path,absolute,distance, name=312d230, nodelist, undeformed=cn, var=s12,

D308

print ¢
512d230

vath,absolute,.distance, name=312d293, nodelist, undefermed=cn, var=sl?2,

D293

print ¢
512d293

path,absolute,distance, name=512d278, nodelist,undeformed=on,var=sl2,

D278

print c
$12d4278

path, absclute, distance, name=5124263, nodelist, undeformed=on, var=siz

D263

print ¢
£12d263

path, absolute,distance, name=s12d248, nodelist, undetormed=on, var=s12,

D248

print ¢
s12d4248

path,absoiute,distance, name=512d233,necdelist, undeftorred=on,var-=s12

D233

print ¢
2124233

path,absolute,distance, name-s512d218, nedelist, undeformedson, var=sl2

D218

print c
8124218

path,absolute,distance, name=sl2d203,nodelist, undeformed=on,var=s12

D203

print c
s12¢2¢C3

path,absolute, distance, name=512d188, nodelist, undeZozmed=on, var=sly

D1E8

print c
512d188
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display,all curve
delail, elset = sl

patlh, absolutce, distance, name=misdl73,nodelist, undeformed=on, var=mises,
d173

print c
misdl73

path, absolute, distance, name=nisdls8,nodelisc, undeformedc=on, var=mises,
Aals8

print c
misdlbg

path, absolute, distance, name=misd143, 6 nodelist, undeformed=on, var=mises,
d143

print ¢
misdl43

path, absolute,distance, tame=misd128, nodelist, undeformed=on, var=mises,
di28

print ¢
misdi28

path, absolute,distance, name=misdll3, nodelist, undeforred=on, var-nises,
dil3

print c
misdlll

path, absolute,discance, name=nisd98,nodelist, undetormed=on, var=mises,
d9s8

print ¢
misd98

path, absoiute,distance, nanme=misdB3,nodelist, undeformec=on, var=mises,
dg3

print <
misd83

path, absolute, distance, name~-nisd68, nocelist, undeformed=on, var=mises
de6s

print ¢
misd63

path, absolute, distance, name=mnizsd53, nodelist, undeformed=on, var=mises,
ds3

print ¢
misdsh3

path,aksolute, distance, name=misé38,nodelist, undeformed=on, vaz=mises
d38

print c
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misd38

path, absolute,distance, name=mnisd23, nodelist, undeformed=on, var=rises

d23

print ¢
misd23

path, eabsolute,

a8

print c
misdB

detail, elset

pach, absoclute,

DOOK

print ¢
misd0ou

detail, elseat

path,absolute,

DOOK

print c
misd00b

detail, elset

path,absolute,

d353

print ¢
misd353

path, absolute,

d338

print «
wmisd338

path, absolute,

d323

print c
misd323

path, absclute,

d308

print <
misd30s

path, absolute,

d293

print c
mis283

distance, name~nigsd8, nodeliss, undeforred=on, var=rises

= upgper

distance, name=misc00u,nodelist,undeformed=on, var=mises,

= bottom

disgtance, name=misd00k, nodelist,undeformed=on, var=mises,

= gl

distarce, nane=misd353, nodelist, undeformed=on, var=mises,

distance, name=misd338,nodelist,undeformed=on, var=mises,

distance,name=misd323,nodelisl,undeformed=on, var=miseas,

distance,name=misd308, nodelist, undefecrmed=on, var=wides,

distance,name=mig233, nodelist, undeformed=cn, var=m’sas,
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path,absolute,distance, name=misd278, nodelist, undcformed=on, var=mises,
d278

print c :
misd278 o

path, absolute, distance, name=misd263, nodelist, undeformed=on, var=mizses
dze3

prin: ¢
misd263

path,absolute,distance, nare=misd2418, nodelist, undaformed=on, var=mises,
dz248

print ¢
misd248

path,absoiute,distance, name=misd?233, noda’ ist, undaeformed=on, var=mises
d233 i

print c
misd233

path, absolute, distance, name=misd218, nodelist , undeformed=on, var=misas
dz18

print c
misdzl8

path, absolute, distance, name=misdzZ03,nodelist, undeformed-on, var=mises
dz203

print c
misd203

path, absolute,distance, nane=misdi 88, nodelisc, undeformed=on, var=mises
D188

print c
misdl88

¢isplay,all curves

¢isplay,all curves
detail, elset = sl

path, absolute, distance, name=pres5dl73, nodelist, undefcrmed=on, var=press,
D173

print c
presdli3

path, absolute, distance, name=presdls8, nodeliss, undeformed=on, vazr=press,
D158

print c
presdlS58

path,absolute,distance, name=prescldld, nodelist, undeformed=on, var=press,




D143

print ¢
presdlal <

path, absolute,distance, name=nprasdl28, nodelisc,undeformed=on, var-press,
d128

prigi. ¢
presdl?8

path,absolute, distance, name=presd>1l3,ncdelist,undetformed=on, var=press,
D113

print c
presdl13 @

path,absolute, dizstance, name=presdis8, nedelist, undeformed=on, var=press,
Da8

print c
presdss

path, absolute,distance, name=presd83, nodelist, undeformed=on, var=press,
D83

print c
presd8l

path,absolute,distance, name=presd68,nodelist, undeformed=on, var-press
Dn6ea

print c
praesdés

path,absolute, distance, name=presdbs3,nodelist, undeformed=or., varspress,
D53

print ¢
presdb3

path, absolute, distance, name=presd38,nodelist, undeformed=on, var=press
D38

prinlk ¢
presdig

path,absolute,distance, nane=presd23, nodelist, undeformed=on, var=prescs i
023 M

print c
presd23

pakth,absolute,distance, nare=presd8, nodeliast, undeformed-on, var=press
D8

print c
presdl

detall. elset = upper
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path, absolute, distance, name=presddOn, ncdelist, undeormed=on, var=press,
DOOK

print <
presdiiu

detail, erset = bottom

patn, absolute, distance, nane=presd00b, nodelist, undelormed=on, var=press,
DOOX

prirt c i
presddob &

detall, elsel = gl

palh, abgolule,distance, name=presd353,nodeligt, undeformed=on, var=press, '%
D353 :

print c K
presd3s3 g

path, absolute, distance, neme=presd338,nodelist , undeformed=on, var=press, i
7338 i

print c
presd3’8

path, absolute,distance, name=presdi23,nodeliskt, undefcrmed-on, var=press,
d323

print c
presd3d23

path, absolute,distance, nane-presd308, nodelist, undeformed=on, var=press,
D308

print ¢ g
presd308 +

path,absolute, distance, nare=presd293,10delist, undeformed=on, var=press,
D293

print c
presd?2s83

path, absolute,distance, name=presd278,nodelist, undeformed-on, var-press,
D278

print c
presd2’/g

path, ebsolute,distance, name=presd263,nodclist, undeformed=on, var=pregg
D263

prirt c
presdzesd

patii, absolute, disLance, name=presd248,ncdelist, undeformed=on, var=press,
D248
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print c
presa2id

path,ahsolute, distance, name=presd233,nodelist, undeiormed=on, var=press
D233

print c
presd233

path, absclute,distance, name=presd218,nodelist, andeformed=on, var-press
D218

print c
presd218

path, absolute, d:stance, name=presd203 ,nodelisc, urndeformed-on,var=press
D203

print c
presd203

path, absolute,distance, name-presdli88,nodelist, undeformed=on, var=press
D188

print c
presdlgsg

display.,all curves
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Appendix I1

The programs fulifan3.m and fullfanodd3.m are Mallab programs, which read data (radial dislances
and Cartesian stresses at 7.5° interval surrounding the crack tip) from an abaqus.1pt file and arrange
the data in matrix form. The stress data are then extrapolated to the crack tip in Cartesian form and
finally transformed to polar co-ordinate system. The angle versus cylindrical stresses at the crack tip
are written in an output file named general.out.

The program fullfan3.m

EE TR EEE LR L EE LR R TR R R R A A A AR EE R R AR R R R R ELELEL LR EE LR R R T TR AR LR TR LR R LT
$Thig prograrme reads abagus data stored in a file called abacus.xpt. The [irst
¢part of thc programme strips the text from the file and stores the stresses in
$a matrix b

T Y E R R RN PR TS R E S E E SRR E TR P R R T L LR S L L R R A L LA L LT LT T A
b=[];

f=fopcn('abacus.xpt','r'};

count=0;

foundtext=0;

counti=1;

while 1

line=fgetl (f) ;

if ~isstr(line),break.end;

a=gscanf({line, '%£'};

if size(a,l) > O

LT foundtext == 1, countl = countl + 1;, end;

E{[1l,countl],count+i)=a;

count=count + 1;

foundtext=0;

else

count=0;

foundtexzT=1;

end

end

feclose () ;

T TR T EE TSR I AEL R L LR LR RS E VR E RIS AR SRR TR L PR LT T T TRV T LR TR TR
% This programme reads abagus data stored in a file called abaqus.rpt

$The data is assumed Lo come Lrom & D1f with 26 radial lines of variables

% The date 1s read and reformatted to a matrix b{ij;}

% The first row 1 = 1 contains distances from the tip

% j ~oops around angles from 2 Lo 26 in 15 degree intervals

$directly ahead of the c¢rack there may be a discorntinuity , so this angle is
itreated twice, extrapolating te the nodes cn the crack line from above and
tbhelow the crack, in the abagus post-processing

$sll 18 in row 1 2 thro 27
% =22 is in row 1 28 thro 53
% s12 iz in row 1 G4 thro 79
$mises is in rows 80 thro 105
%press is in rows 106 throl3l !!! not for plane stress !!

%For planc strain this version extrapolates mises and pressure directly instead
%of calculating them from the exctrapolted stresses.For plane stress cannot read
$pressure directly only mises.

¢The strcsses arc cxtrapo-ated to the tip as cartceslian stresses and Lhen
$transformed to cylindrical co-ords. The upper ¢rack Zlank is located along
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Ftheta %= +180 degrees and the lower crack flank aZcng theca - 180 i.e theta
$is measured anti- clockwise!!

$The programme i1g set for both plane gtrain ( nu = ¢,.5 ) and plane strass,
¥with piane strain currently commentad out

EEL LSS SIS ISSITBLLLLIBTLLLBLLLLLLETILDILLLLLALLRBLLLLSITTRLELLLGALLLH5BLL%S

%The data is plotted agairst distance and curve fitted

% the plozing is normally supressed but can be reactivated to check the curve

Ffit.

$Data can be written to an externgal file compatible with excel, and this

%is also currently commented out

SRR AT EETEE L EE T YRR R R L E R R LR TR RS EL TR RS LSRR AR EEEE LR ERES L L E TR R E L1 A
$Firstly sigmall

$figure

for 1 = 2:27
gp.ot (b{l,2:20),b(i,2:20}, 'bd")
$x-abel { *sigmaxx versus distance'}
% hold on
saxis (|0 20 -2e8 3e81)

$curve fit sigmaxx stress

sxx = polyfit(b{l,2:4),b(1.2:4),1});
disti = 0:1:100;
sxxi = polyval (sxx,disti);
$plot{disti, sxxi)

$interpolate to crack tip, stress held as stressxx

$there are 26 sltregsges including zero which is held twice

count = i-1;

stregsxx{count) = sxx(2)/28;

% if the count is greater than 13 kourt is set back one Lo catch the direction
$ahead of the crack twice

if count > 13

kount = count - 1i;
else

kouns = count;
end

%angle is held in degrees, the minus makes it positive anti clockwise
angle(count) = 180~ ({(kount-_)}%*15)};
end

TR R R T R R P R e P TR R R RN R R A R R R L DA LA T A AR L PR E SRR RS R R T LD ET L T
$Now sigmaz?

for 1 = 28:53
% nlot (b(1,2:20),b(i,2:20), 'rd")
$xlabel('sigmayy versus distance')
% hold on
Baxis ({0 20 -2e8 3e8)])
Fend

§ curve fib sigmavy

syy - polyfit{b(l,2:4),b{i,2:4),1};
%disti = 0:1:200;
Esyyi = nolyval (syy,disti),;
%plot{disci, syyi)
Finterpolate to crack tip, stress hald as stressyy
count. = 1-27;

L s erid




stressyy(count) = syy(2)/2e8;
end

B R R R R R R R R N R R AR e R L P R R T T AR R R R R AR R R LR AR E AR XN E L R AR R
INow sigmal2

sfigure

for 1 = 54:79

$plot (o{1,5:20),b(i,5:20),'gd")
$label ('sigmaxy versus distance')
% hold on

$axis ([0 S0 -2e8 3e8])

$Interpolate stress to tip and plo:
$curve fik sigumaxy stress
sxy = pelyfic(b{(l,2:4}),b(1,2:4),1);

gdisti = 0:1:100;

$sxyi = polyval{sxy,disti);
¢plot(disti, axxi)

¥interpolate to c¢rack tip

count = 1 53;

stregsxy{count} = sxy(2)/2e8;

end

LRI AR EEEL TR R T EEL LR R R R LR L L LS PR R R LR SR PR LR E L T E R R R T L P L R T 3R

$ Plot cartesian stresses at tip

figure A
axis({-180 180 -2 5.0])

hold on

grid on

title(' Cartesian stressges for plane stress non hardening solutlon Homogeneous')
3-ittle{' Cartesiar stresses for plane strain non hardening solution Material
mismabeh =1.6 ')

plot{angle{l1:26) ,stressxx(1:26), ‘bd’)

plot(angle(l:ZG),stressyy(l:26),'rd )

plet{angle(1:26) ,stressxy (1:26), 'g

legend {'stressxx', 'stressyy', 'stre s%xy‘)

R TEL TR B RTEREEET LL LT PR EEL AL R TEEEEE R AL EF R AR AL B LR L LR LA PR R EF TR E 2T

5Tt is most accurats Lo read mises and mean from the abaqus file, but the
%$stress components and the mean and nises may not be exactly conistent

$1f you want to use the calculated values of mises and mean comment this
%$section out

PRI R LT TR E R R R P L EE YR L R R R LAV PR R R R LR R R R T T
$Now mises
for 1 - 80:10%
% plot (b{l,2:20) b{i,2:20),'rd"}
$xlabel { 'mises wversus distance’)
% hold on
Faxis ([0 20 -2e8 3eld})
$end

% curve [il mises o
mis = polyvEitib{l,3:6),b(1,3:6),1);
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gdisti = 0:1:100;

$migesi = polyval {(mises,disti);

$gplot(disti,mizesi)
%interpolate to crack tip, stress held as mises

couns = 1-79;
mises{count) = nis(2)/2e8;
end

EE R E R R R R R E R R R R R R R R R R R R R R R A R A R TR R R TR R R R R T 2 2 TR LR LR R
FREE S TR F T R R R R R R R R L R R L PR R R A L T R R R R R LR AL PR PP E B R L T3
FNow mean stress (commment out for plane stress)

%for i = 106:131

% plot (b{1,2:20},b{(1,2:20), 'xd")
$xlakel {'press versus distanne')}
% ho d on

$axis({’0 20 -2c8 3e8])

gend

% curve filL press

tpress = polyfit(bi(l,3:6) ,b(i,3:6),1});
$disti = 0:1:100;
%pressi = polyval (press,disti);
Fplot (disti,press)
%interpolate to crack tip, stress held as press
gcounkt = i1i-105;
$Change pregssurc into mean stress by change of sign
#atressmicount) = -press(l)/2e8;
tend
EEE TR R TR TR EE R E R AR AR TR AR E AT L R R R F R A T R A R R e T XA R R R T L L TR R A

% Transform to polar co-ords

for count = 1:2¢&

¢ The minus sign on the angle makes the sign convention peositrive anti-clockwise
theta = angle{count)*pi/180;

3
L4
i

stresgrr{counlL) = (sLressxx(count) tstressyyl(count))/2 +{(stressxx(count) -
gtressyy(count) ) /2) *cos(2*theta) + stressxy{count)*sin(2*theta);

gtressqgicount) = (stressxx({count) + stressyy(count)}/?2 -{{stressxx(count) -
strassyyl{count))/2)*cog(2*theta) - stressxy(count)*sin(2*theta);
stressrg{count) = -{{dgtressxx{count} - stressyy(court})/2)*sin(z*theta) +

stressxy (count) *cos (2*theta) ;

CEREETEEEELE R R R R AL R R R R FE R LR SRR EE PR LR LR LA SRR FE R R R AT T T L ST L
% mises and mean streéss

%It 1s most accuraze to read mises and mean [row Lhe abagus f£ile, but the
stress componénts and the mean and mises maynot be exactly conistent

$If yvou want o use the directly read values comment thig section out

$vor: mises yield critericn in plane stress
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$mises {count) = sqrt(stressxx{count)”™2 + stressyy(count)”2 - stressxx{count) *
$stressyy{count) +3*stressxy{count)”2};

$von mises vield criterion in plane scrain
$mises (count)=sqrt(0.75% (stressxx(count) -
stresoyy{count} ) "2+3*stressxy{count) "2} ;

%mean strese in plane strain
$stressm{countc) ={stressxx(count}+stressyy(count))/2;

%mean stress in plane stress
stregssm(count ) =(stressxx (count) +stressyy (count)) /3;

%¥stregs deviators

stressqg{count) -stressm{count) ;
stressry (count) -stressm(count) ;

aqge (count)
srr{count)

Cra e Logl 0

end
SRR R AR AR R T L AR AR R R A TR L R A R R R R R R R A R R E R EE SRR R TR P R SRR R R R

% Plot polar stresses at tip

figure

axls ([{-180 180 -2 4.2])

hold on

grid on

gtitlie(' Cylindrical stresses for plane strain non hardening solution Material
migmalbtch =2.6 ')

title{(' Cyiindrical stresses for plane stress non hardening solution
Homogeneous ')

plot{angle{l:26),stressrx(l:26), 'b*")
plot{angle{l:26),stresaqqg(l:26), 'v+')
plot(angle(l:26),stressrg{l:28}, 'gd")
legend('stressrr', 'stressgqg’', 'stressrg')

TELELLLBLLTLEHILILLLRLLTILLLLHTELLDLTDSTILLLELLB2IDLLLLDLLEDTLIBLISBELLLLEETEDLBS
$Plot Deviators at Tip

figure

axis{(:-180 180 -2 4.03)

hold on

grid on

%title(' Cylindrical stresses for plane strain rnon nardening solution, Material
misratch =1.2 ')

title(' Cylindrical stress deviacors for plane stress non hardening solution,
Homogenecus ')

plot{angle(l:26),s8rxr(1:25), 'b*"}
plot{ancle(1:26),39q(1:26), 'r+"')
legend('sx»', 'sqyg')

EEET R L EA R LR LR AR E L E L E RS D EE L R R L E RS R LR E ER LS TR LR SR LR R R R R R R R L R
% Note there iz an option of either calculating mises and mean or using the
$directly read valuesg

figure

axis([-180 180 -2 4.07)

hold on
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grid on

gtitle(' mean anrd mises stress for plane strain non hardening solution Material
mismatch =1.6"'})

title(' mean and mises stress for plane stress non hardening solution
Homogeneaous ')

plot(angle(l:26) ,mises{1:26},'g*")
plot (angle(1:26),stressm(1:26), 'ri ')
logend( 'miges', 'stressm')

HFLECEHLLTLLLETTLLLIBLLLADLILALEHSLBLSBTLLRLLIAFLLRRLLERRLBRLELTIDBLRLBBLLERIL%

§figure

$axis{[~180 180 -2 5.0])

$hold on

%grid on

$title(' mises stress for plane strain non hardening solution ')

$title(’ mises stregs for plane stresg non hardening soluticn ')
$plot{angle(l:26) ,mises{1:26},'k*")

EE AT R R R AR X R E R R R R EEE ST L AL LR L XL T EEETE TR EEEREELEEEEEEETE LR R LR R LR LR

$figure

Yaxis{[(-180 180 -2 5.0])

$hold on

$grid on

$title(' mean stress for plane strain non hardening soluticon ')
¥title(' mean stress Zor plane stress non hardenirg solution *)
gplot{angle(l:26) ,stressm(l:26), ‘r+')

X EXEE RS EEERAR AL R EEXE R Y R R REREER X EERERAREE R R R RE LA R EXEEREL K EREREEATEEELEE R T L4
% write output Lo external files

#fn = 'data.out'
Ffprintf{fn, 'dimensional distance girresds g theta = 0 \n*)

%for 1=4:141
$fprintf{fn, '%20.5£%20.5f\n', b(l,1).,2(39,1))

tend

R X E R R E R R TR EEFE R R L PR EEE L R LAY EE R R R L L E VAR R AR AT VAR AR R E N E X R E R EEE LR T R LT E
% write general output to external file

fn = 'general.out'

fprintf{fn, 'angle stressxx stressyy stresgsxy sltressrr stressqyg stressrqg
sSrr sdgg stressm misesi\n')

for 1 = 1:26

fprintf (£fn,
'%10.5F%10.5£%10.5£%10.5£820.55%10.5£%10.5£%20.5£%1C.5£%10.5£%10.5f\n",
angle({i),stressxx(i),stressyv({i),stressxy (i}, stressrr{i), stressqgqg(i},stressrqg(i)
,8rr{v),sqag(i),stressm{i),mises({i})

end

The program fulifanedd3.m

PP TR TR R LR EEEL FEERE EEEE R R R RS AR IR EEEE RS EEE N LT E R L LTSS TR TR
#+This programme reads abagus data stored in a file callesd abaque.rpt. The fira:
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¢part of the programme strips the text from the file and stores the stresses in
$a matrix b

FETTITIRE T E LR PR EE R RSP EEEE R E TS SR EE R R R R R R R R R R L AR R R R AR S R T
b=1];

f-fopen('eabaqus.rpt', 'x'};

count=0;

foundtext=0;

countl=1;

while 1

line=fyetl{f);

if ~isstr({iine), break,end;

a=sscanf (line, '%f'};

if size(a,1) > 0O

if foundtext == 1, countl = gountl + 1;, end;

b{[1,countl],count+l}=a;

count=count + 1;

foundtext=0;

else

count=0;

foundtext=1;

end

end

felose(f);

ER LR TR SR E LRI R R E L LR L SRR R R R ER TR PR R LSRR R TP EL SRS T RIS E R S LR H LT
%$This programme reads abagqus data stored in a file called abaqus.rpt

%The data is assumed o come from a blf with 26 radial linecs of variables

%Ihe data is read and reformatted to a matrix b(ij}

$The [irst row 1 = 1 contains distances from the Lip

% j loops around angles from 2 to 26 in 15 degree intervals )
%directly ahead of the crack there may be a discontinuity , so this angle is ¢
%$treated twice, extrapolating to the nodes oa the crack line from above and o
g$below the crack, in the akbagus post-processing

$=sll is in  rTow I 2 thro 27
% 822 is in row i 28 thro 53
% gi?2 is in row ¢ 54 thro 79

$mises is in rows 80 thro 105
gpress is in rows 106 throl3li!!irot for plane slress!!!

$For plane strain this version extrapolates mises and pressurc directly insiead
%¥0of calculating them from the extrapolted stresses.For plane stress cannot read
$pressure directly only mises.

%The stresses are extrapolated to the tip as carbtesian stregsses and then
stransformed to cylindrical co-crds. The upper ¢rack flank is located along
$theta %= +180 degrees and the lower crack Flank along theta = 180 i.e theta
%is measured anti- clockwise!!

$The programme is set for both plane strain ( na = 0.5 ) and plane stress,
gwith plane strailn currenlly commented cut

LA XX EE R R R LSRR EE SRR EE R E SRR LA L LR R A TR AL E R R R X R A R AR A E A R SRR R T T R
%The data is plotted against distance and curve fitted
%the ploting is normally supressed Lut can be reactivated to check the curve
sLit,
$Data can be written to an externgal file compatible with excel, and zhis
%1is also currently commented out
A EE R AR R R LR TR LR R R RS TR R R A TR R TR R R R R R R R R R R R R R R R R A R TR T RO T
FFirstly sigmall
$figure
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for 1 = 2:37
gplot (bi(l1,2:20),b{1,2:20), 'bd")
¥xlabel (‘sigmaxx versus distance')
% hold on
%gaxis ([0 20 -2e8 3e8]}

$curve fit sigmaxx skress

SXX = poiyfit{b(l,2:4),b{i,2:4),1);
disti = 0:1:100;
sxxi = polyval(sxx,disti);
Fplot{disti, sxuxi}

fginterpolate to crack tip, stress held ag stressxx

Fthere are 25 stregsces including zero which is held Lwice
count = i-1;

stresaxx(count) = sxx{(2)/2e8;

%The count is set back two to caten the direction ahead of the crack twice

if count < -3
kount = count;

eleseif count > 14

kount = count - 2;
else

kount = 12.5

end

Fangle is held in degrees, the minus wakes it positive anti-clockwise
anglef{count) = 172.5-((kount-1}*15);
end

EER R E R R EEF R PR R ELER EEERR P FHE R E LRV EEEEL EEEE T ER LR L L LT LLE SIS BRI Y
ENow sigma2?2
Zor 1 = 28:53
% plot (2(1,2:20),b(1,2:20), ' 'ra")
¥xlabe ('sigmayy versus distance')

% hold en
$axis{(0 20 -ZeB 3e8))
$end

% curve filt sigmavy

syy = volyfic(b(1l,2:4),b(i,2:4},1);
¥disti = 0:1:100;
¥syyi = polyval (syy,disiti):
Fplot{disti, syyi)
$interpolate to crack tip, stress held as stressyy

countkt = i1-27;
stregsyy{count] = svy{2)/2e8;
end

FEBELBLEBELELLLHBLSEDLLEILDDLLSTLLLLDDILLLL LB L L BLB LB BB AL ELLB 52T ERLRL LSS
ENow siamal?2

%figure

for i = 54:79

$plot (b(L1l,5:20},b(i,5:20}, " 'ga';}
3lakel {'sigmaxy versus distance')
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$hold on
Faxis{[0 50 -2e8 3e8])

gTnterpolate stress to tip and plet

$curve fit sigmaxy stress

sxy = polyfit(p(l,2:4),b(i,2:4),1);
gdisti = 0:L:100;
Bsxyl = polyval(sxy,disti);
$plot{dists, sxxi)

$interpolate to crack tip

count = i-53;
stressxy (count) =« sxyv{2)/2e§;
ard

R R AR EE R TR R R R R R R R R R E R R LR PR RN R R R YR R TR A E RN LA R E RN E AR L EE LT E R T E L LR

% Plot cartesian stresses at tip

figure

axis{[-180 180 -2 5.01)

hold con

grid on

title{' Cartesian stresses for plane stress non hardening solution Homogeneous')

gtitle(' Cartesian stresses for plane strain non hardening solutiecn Material

mismatch =1.6 '}

plot{angie(l:26},stressxx(1:26),'hd")

plot{angile(l:26),stressyy(l:26}, 'rd")

plot{ang e(l:26),strosexy(1:26), 'gd"}

legend ('stressxx', 'stressyy', ‘slressxy')

R PR R A A R L A A A A R R R L R R A A R R R R R A R R R A R AR R RN LR R LR TR R ST T T T T )
% Transform to polar co-ords

for count = 1:26
$ The minus sign on the angle makes the sign convention positrive anti-~clockwise
theta = angle(count) *pi/180;

stressrr {count) = (stressxsa(count}) +stressyy{count))}/2 +((stressxx{count} -
stressyy{count}}/2) *cos(2*theta) + stressxy({count) *sin(Z*theta);

stresscggi{count} = {(stressxx(count) +stressyyv({count))/2 —-{({stressxx({count) -
stressyyf{count}} /2) *cos (2¥theta) - stressxy(count)*sin(2*theta):
stregsrg(ccunt) = ~{{stressxx{count) - stressyyl{count))/2)*sin(2*cLheta) +

stressxy (count) *cos (2*theta) ;

R IR PR EE R R LR LR R R R R R R R R R R R A R R R R R R R R e R R PR R AL R L A A R
& mises and mean stress

% It 1z mozt accurate to read mises and mcan from the abaqus file, buz the
stress components and the mean and mises mayno: he ewxactly conistent

$If you want to use the directly read values comment: this section out
$von mises yield criterion in plane stress

Imises (counrt) = sgrt{stressxxf{count)"2 -« stressyyl{count}”2 - stressxx{couar; *
stressyy(count}) +3*stressxy (count) “2);

% von mises vield criterion in plane strain
Fmiges {count)=sqgrt{0.75* (stressxx (count) ~
stressyy{count) ) *2+3~giressxylcount) 2} %;
gmean sLress in plane strain
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$ulregssmicount)={stressxxiccunt} +stressyy{count})/2;

gmean stresg in plane stress
stressm(count)={stresgxx(count}+stressyy(count) ) /3;

$stress ceviators

sqg{count) = stresscgi{count) -stressm{count) ;
srr{count) = stregssyryr{count)-strossm(count) ;
end

YRR RN R R LR R SRR R T PR R L E R TR R R S R R L P E R AR T R R A LR EE L L EA LR R R T FE LT LS T T
R R L R R e R R R R R TR R R R R AR T TR R R AR AL R R R R R R R R R R S R
% Now mean stress {commwent out for plane stress)

$It i3 mcyt aeccurate to read mises and the mean from the abagus file, but the
$stress comporents and the mean and mises may not be exactly conistent

T you want to use the calculated walues of mises and mean comment this
%section out

for i = 106:131
% plot {b{1,2:20),b{i,2:20}, 'rd"';}
%xlabel('press versus distance')
% hold on
$axis{i0 20 -2e8 3e8l)
tend

$ curve fit press

$precseg = polyfit(b(3,3:6),b(i,3:6),1);
®disti = 0:1:100;
$pressi = polyval (press,disti};
§plot(disti,press)

% interpolatc to crack tip, stress held as press

%count = i-1C5;
$Change pressure into mean siress by change of sign

¢stressm{count) = -press(2)/2e8;
%end

R TR LRI RIF P LR L LA EEEE LA L RS EE R LI R LR LR LR R ERCE ST RS AT L AR E LT R LT L LT T SRR A

%It ig mos: accurate to read mises a f[rom the abaqus file, but the strsss
%$componerts and the mean and mises may not be exactly conistent

$If you want to use the calculated wvalues cf mises and mean comment this
$section out

¢Now mises
for i = 80:105
% piolb (b(1,2:20),b{(i,2:20),'rd")
%xlabel { 'mises versus distance')

% hold on
Baxis ([0 20 -2e8 3e8])
$end

% curve fit mises
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mis = polyfit{b{l,3:6),b(i,3:6},1};
$disti = 0:1:100;
dmisesl = polyval(mises,disti);
Splot{disti,misesi)
%interpolate teo c¢rack tip, stress held as mises

count = 1-79;
mises{count) = mis{2)}/2e8;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%.Q
SHEELRISIVILLBATLLLLLEBYLLLDGLELBLBLLABIVLBLBBBHLRTAVFVLLLHDLISILLDLLBLH98B50%8%L 7
zPlot polar stregses at tip i

figure G
axies([-180 180 -2 4.0}} !
hold on ﬁ
grid on ;
$titlie(’ Cylindrical stresses for plane strain non hardening solution Material
mismaccn 1.6 '} &
title(' Cylindrical stresses for plane stress non hardening sojuticon
Homegeneaous ')

plot{angle{l:26),stregsrr{(L:26),'D*")
plot{angle(1:26),stressgg(i:26), 'r+"')
ploti{angle(i:26),stressrg{l:26), 'gd')
legend('stressrr', 'stressqqy’, 'stressrg')
FEEELEEHEIPRLHEIFLBLILTILLLHVBLYHELLTEFELABLDEBEHEED %%%%%%%%%%%%%%%%%%%%%%i%%%%ﬁ%%

%%%%%%%%%%%%ﬁ%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ﬁ%%%%%%%%%%%%%%*%%%%%%%%?%%%%%%%%2
%Plot beviators at Tip

R
X _'_

Homogeneous ')
title{'Cylindrical siress deviators for plane stress non hardening sciution,
Homogeneous ')

figure N
axis([-180 180 -2 4.01]) o
hold on o
) P
grid on i
gtitle('Cylindrical stresses for plane strain non hardening solution, 2
bl

i\

E]

plot{angle(1:26),scxr{l:26), ‘b*'}
pilot{angle(1:26) .,.syq{Ll:26), 'T+*'}
legend('syxy', 'sgg')
%%%%?%%%%%%%%%%%%%%%%%%%%%%%%%~%%%J%%%%%%%%%%%%%%%%%%?%%%?%%%%%%%%%%%%?%?%%%%?
figure G
axis(|-180 180 -2 4.0))
hold on ;q
grid on :;
$title({'mean and mises stress for plane strain non nardening solution Matella'
$mismatch =31.6") o
titie(' mean and mises stress for plane stress non hardening solution i
Howmogencous ')

plotlangle{l:26) mises{1:26), ‘g*")
pilot{angle(l:26),stresam{l:26), 'r+']

legend{'mises', 'stressm’}

BLEEEHTERETBLBTLLELDELLLIUELRLELRLLLDLHRSEERSNLLLL DA DULBLBLLLUE DL ABIHHRRY
Ffigure

%axis{[-180 180 -2 5.3])
$hold on
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$grid on
$title(' mises stress for plane strain non hardening solution ')
$title(' mises stress for plane stress non hardening solution ')

$plot (angle(1:26) ,mises(1:26), 'k*"')
R R R R R R R R R R R R R R R R R R R 1

$figure

$axis([-180 180 -2 5.0])

$hold on

$grid on

$title(' mean stress for plane strain non hardening solution ')
$title(' mean stress for plane stress non hardening solution ')
$plot(angle(1:26) ,stressm(1:26), 'r+"')

R R R R R R R R R R R R R R R R R L 11
$ write output to external files

$fn = 'data.out'
$fprintf(fn, 'dimensional distance strress gg theta = 0 \n')

$for 1=4:141
$fprintf(fn, '%20.5£%20.5f\n', b(l,1),b(39,1))

$end

R R R R R R e 2
% write general output to external file

fn = 'general.out'

fprintf (fn, 'angle stressxx stressyy stressxy stressrr stressqg stressrg
srr sqg stressm mises\n')

foxr i .= 1226

fprintf (fn,
'$10.5£%10.5€£%10.5€%10.5£%10.5£%10.5€£%10.5€£%10.5£%10.5€£%10.5£%10.5f\n"',
angle(i),stressxx(i),stressyy (i), stressxy(i),stressrr(i),stressqq(i),stressrql
,srr(i),sqqa(i),stressm(i),mises(i)) :
end
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