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Summary

HSV1716 is a mutant herpes simplex virus with a deletion in both copies of the 

RLl gene, that encodes the protein ICP34.5, a specific determinant of virulence.

Section one presents a phase 1 study in which it has been demonstr ated that herpes 

simplex virus 1716 (HSV1716) does not generate toxicity following injection into 

brain adjacent to excised high-grade glioma, in patients who proceeded to receive 

further immunosuppressive radiotherapy or chemotherapy. The survival and 

imaging data, in addition to the lack of toxicity, were encouraging.

Section two investigates the possibility of enhanced cell kill when ionising 

radiation is employed in conjunction with the ICP34.5 null mutant HSV1716 in a 

tissue culture model and the possible mechanisms responsible for enlianced cell 

kill. Using the MTS assay, experiments combining HSV1716 and ionising 

radiation demonstrated additional cell kill in 373 and MOG cells by day six 

compared to either modality in isolation. Isobologram analysis confirmed a 

synergistic relationship between ionising radiation and HSV1716 in 373 cells and 

an additive relationship in the MOG cell line when the cells were irradiated one 

hour prior to inoculation.

Lastly, stable 3T6 cells expressing ICP34.5 were developed with the aim of 

elucidating the mechanism of action of the ICP34.5 in the replication cycle of 

HSV. Functional ICP34.5 and ICP34.5-GFP in the transfected 3T6 cells was 

detected and able to support the replication of HSV 1716. These cells were
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analysed with respect to HSV 1716 infection and were seen to support replication 

with the appearance of characteristic plaque morphology.
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Chapter 1 

Introduction

1 Cancer in the United Kingdom

Each year 200,000 people are diagnosed with cancer in England and Wales.

This equates to one in three people developing cancer during their lifetime. One in 

four people still die from cancer. The survival rates for patients with cancer in the 

United Kingdom, and in particular Scotland, fall below the European average for 

many types of cancer. The govermnent of today has made the development of 

cancer services a priority (The NHS Cancer Plan).

2 Cancer of the Nervous System

Tumours of the nervous system can arise in the peripheral nervous system (PNS) 

or the central nervous system (CNS). Tumours can either be benign or malignant 

and if malignant, they may be primary disease or a manifestation of a metastatic 

process. Clinically, tumours of the nervous system manifest in different ways. The 

treatments available and response, which can influence the prognosis and overall 

survival, are determined by the histological classification of the tumour. 

Consequently, accurate pathological diagnosis is crucial, prior to commencing 

management.

The sub-speciality of Neuro- Oncology has developed over the last decade as 

advances have been made In the accurate diagnosis and treatment of CNS 

tumours. The management of patients with primary malignant tumoui’s of the 

nervous system still provides a huge challenge for the medical and nursing 

professions.



2.1 Classification of Tumours of the Nervous System

In 1993 the World Health Organisation (WHO) developed a classification system 

of brain tumours that is now used internationally. This classifies brain tumours on 

the basis of the cell of origin (Kleihues P et aL, 1993). The WHO classification 

system has now superseded other classification systems such as Kernohan and 

Ringertz (Kernohan JW ei aL, 1949; Ringertz N, 1950). In addition to the WHO 

classification system the St Anne/Mayo grading system, based on four 

histological criteria, has been used in astrocytomas, and has been shown to be 

predictive of survival (Daumas-Duport C et aL, 1988; Kim T et aL, 1991).

2.2 Prevalence. Incidence and Epidemiology of Brain Tumours

Although primary high grade glioma (HGG) is a relatively rare malignant disease 

compared to cancer of the lung, breast and bowel, it is still a significant cause of 

morbidity and mortality in the Western world.

There is an increasing incidence of primary malignant brain tumours, most 

marked in the elderly population (Inskip PD et aL, 1995). The treatment of 

primary malignant brain tumours has however not advanced significantly over the 

past three decades. It is important therefore to try and elucidate the causation, 

distribution and disease pathways that control these tumours.

The difference in health care practices in different countries makes the 

interpretation of primary HGG data difficult. Incidence rates appear to be higher 

in developed countries compared to developing coimtries. This however, may 

represent a discrepancy in the accurate diagnosis and reporting in developing 

countries, rather than any real difference. When compared to the incidence and 

prevalence rates of other tumour types between countries, the variation of 

incidence and prevalence in primary HGG between nations is small (Inskip PD et 

aL, 1995; Sant M gf a/., 1998).



The most recent information available on the incidence of brain tumours is 

available from the GLOBOCAN 2000 database. The prevalence amongst the 

fifteen member states of the European Community in 2000 was 29,133. The 

incidence per 10,000 head of population was calculated for each of the fifteen 

member states using population figures from the United Nations Population 

Division (total population = 375,276,000). The incidence of all CNS tumours per 

10,000 head of population was calculated to be 0.78 (Globocan data base). 

Currently there is no specific data indicating the prevalence or incidence rates of 

primary malignant glioma within the UK or Europe.

Epidemiological studies have only identified a few potential risk factors for the 

development of primary HGG (Surawicz T et aL, 1999). It appears that the 

development of brain tumours may be linked with the inheritance of certain genes. 

One such disorder Li-Fraumeni syndrome, is a autosomal dominant, familial 

condition, associated with a high incidence of germline p53 mutations. The 

disorder is characterised by the early development of HGGs as well as sarcomas, 

breast carcinomas, leukaemias and adrenocortical carcinomas (Inskip PD et aL, 

1995).

Exposure to ionising radiation has been demonstrated as a cause of primary HGG, 

however few people are exposed to large enough doses to lead to an appreciable 

rise in risk. No link has yet been made with doses of radiation used in diagnostic 

imaging. Concern has been raised regarding non-ionising electromagnetic fields 

such as power lines and electrical appliances however this has not been 

confirmed. In recent years the use of mobile phones has risen markedly and 

concern has been expressed as to this being a possible risk factor. Recent studies 

have failed to demonstrate a causal relationship between the development of brain 

tumours and use of mobile phones, however research continues in this area 

(Inskip PD et aL, 2001; Muscat J et aL, 2000).

No link has been made between HGG in humans and exposure to chemicals or 

infectious agents in the environment or in food. In addition, research into 

occupational exposure to chemicals has also failed to highlight any potential 

carcinogen (Wrensch M et a l, 1993, Wrensch M et aL, 2002).



Due to the aggressive nature of HGG and its effect on cognitive function and 

memory, the gathering of accurate information for epidemiological studies 

through recall is a problem. In view of this it is necessary, where possible, that 

information be obtained from patients as soon after diagnosis when they are 

potentially in optimal health.

Modification of the risk factors for HGG is not possible since they have yet to be 

fully identified. Consequently efforts are being channelled into developing new 

diagnostic and management strategies for this devastating and universally fatal 

disease.

2.3 Malignant Tumours of the Central Nervous System

Primary malignant brain tumours can arise from any of the cell types making up 

the CNS. Discussion of all primary brain tumours is beyond the scope of this 

introduction. Importance is therefore given to the most malignant sub-types of 

neuro-epithelial tumouis, in particular those from the oligodendroglial and 

astrocytic cell lineage.

Tumours of Neuro-epithelial origin

Oligodendroglial tumours
Oligodendroglioma

Anaplastic Oligodendroglioma (AO)

Astrocytic tumour

Diffusely infiltrating astrocytoma

Anaplastic Astrocytoma (AA)

Glioblastoma (GB)

Table 2.3; Tumours o f  Neuro-epithelial origin

2.3.1 Oligodendroglial Tumours

Oligodendrogliomas, WHO grade II and III, are relatively uncommon tumours 

accounting for approximately 5-7% of all intracranial gliomas. In the United



States the annual incidence of all oligodendrogliomas is 0.3 per 100,000 

population. Figures for the exact incidence and prevalence of anaplastic 

oligodendrogliomas are difficult to acquire as many studies fail to differentiate 

between the less malignant WHO grade II oligodendroglioma and the grade III 

anaplastic oligodendroglioma. It has been noted by a number of investigators that 

the histological classification of oligodendroglial tumours has a bearing on the 

overall survival. It appears that in a number of cases grade II oligodendroglial 

tumours are wrongly classified, and are in fact the more malignant grade III 

anaplastic astrocytomas. The management of an anaplastic astrocytoma is 

different from that of a less aggressive oligodendreglioma and is associated with a 

worse prognosis (Nijjar T et al., 1993; Celli P et aL, 1994).

2.3.1.1 Anaplastic Oligodendroglioma

This type of malignant tumour has a slight male predominance, with patients 

being slightly older (48,7 years) compared to the age of patients diagnosed with 

WHO grade II oligodendrogliomas (Ludwig C et aL, 1986; Kros J et aL, 1994).

As with the other types of primary HGG there are no specific symptoms 

associated with this specific type of HGG. The site of the tumour often deteimines 

the symptoms experienced by the patient. The clinical history is often short, 

although a longer clinical history may be suggestive of an initial low-grade 

intracranial lesion, that has transformed into an anaplastic oligodendroglioma.

Anaplastic oligodendrogliomas are predominantly located in the frontal lobes, or 

less commonly in the temporal lobes, although they can appear in any part of the 

CNS. Macroscopically anaplastic oligodendrogliomas appear as well defined, 

soft greyish-pink masses. Calcification is frequently present in the periphery of 

the tumour and in the adjacent cortex. Histopathologically these tumouis 

comprise oligodendroglial cells with focal or diffuse features of increased 

cellularity, marked cytological atypia, and high mitotic activity, indicative of a 

more malignant phenotype. Micro vascular proliferation and necrosis may be 

present (Reifenberger G et aL, 2000).



Malignant progression from the less malignant grade II oligodendroglioma is 

thought to be associated with the acquisition of an increasing number of genetic 

abnoimalities. The genetic development of these tumours in highlighted in the 

figure below.

Oligodendrocytes or precursor

LOH Ip  I  EGFR
LOH 19q X p DGF/PDGFR
LOH 4q T  overexpression

Oligodendroglioma WHO grade II

CDKN2A deletion I CDK4, EGFR, MYC
CDKN2C mut./del |  amplification 
LOH 9p and lOq w 'V E G F  overexpression

Anaplastic Oligodendroglioma
WHO grade III

CDKN: cyclin D kinase
EGFR: epidermal growth factor receptor
VEGF: vascular endothelial growth factor
PDGF/R: platelet derived growth factor/receptor
LOH: loss of heterozygosity
MYC: proto-oncogene
(Reifenberger G et al., 2000)

Figure2,3.1.1; Genetic development o f Anaplastic Oligodendroglioma

Deletions on chromosomes Ip and 19q in anaplastic oligodendrogliomas can be a 

positive predictor of response to combination chemotherapy, and is associated 

with prolonged survival post chemotherapy (Cairncross JG et aL, 1998). A 

median survival time from the diagnosis of anaplastic oligodendroglioma of 3.9 

years has been reported, with 5 and 10 year survival rates of 41% and 20% 

respectively (Shaw E et aL, 1992).



2.3.2 Diffusely Infiltrating Astrocytoma

This is the most frequently occuiTing intracranial neoplasm accounting for 

approximately 60% of all primary brain tumours. The incidence is approximately 

5-7 new cases per 100,000 population per year (Cavenee W K gr ah, 2000).

This tumour is most common in adults and most frequently is located in the 

cerebral hemispheres although can occur in any site within the CNS. Irrespective 

of histological grade, astrocytomas diffusely infiltrate the surrounding brain. They 

have a wide range of histopathological features and biological behaviour. 

Diffusely infiltrating astrocytomas have an inherent tendency for malignant 

transformation, with glioblastoma being the most malignant endpoint phenotype.

The most malignant phenotypes within this group are the Anaplastic Astrocytoma 

and Glioblastoma.

WHO St.Anne /Mayo Classification

Grade Designation Designation Histological criteria

III Anaplastic

Astrocytoma

Astrocytoma 

Grade 3

Two criteria; nuclear atypia and 

mitotic activity

IV Glioblastoma
Astrocytoma 

Grade 4

Three criteria; nuclear atypia, 

mitoses, endothelial 

proliferation and/or necrosis

Table 2,3.2; Classification o f  Anaplastic Astrocytoma and Glioblastoma

2.3.2.1 Anaplastic Astrocytoma

Anaplastic Astrocytoma can arise from a low-grade astrocytoma, although in 

some instances there is no prior indication of a less malignant precursor. The 

average age of diagnosis is approximately 41 years with males more frequently



affected than females. Anaplastic astrocytomas have the potential to progress to 

the more malignant and aggressive glioblastoma (Kleihues P et aL, 1999).

Clinical suspicion is often raised by non-specific symptoms of neurological 

deficit, seizures and symptoms of raised intracranial pressure. The symptoms the 

patient experiences as a result of the intracranial lesion largely depend on the site 

of the tumour within the CNS. The presence on imaging of an ill-defined low- 

density mass, located in the cerebral hemispheres supports the clinical suspicion 

of an AA.

It is not possible to confirm an anaplastic astrocytoma on macroscopic analysis 

alone. The histopathological featui’es are similar, but more marked, than those of a 

low-grade astrocytoma. They consist of neoplastic astrocytes with 

hypercellularity, distinct nuclear atypia and increased mitotic activity.

Histological analysis must not reveal any necrosis as this would classify the 

tumour as a grade IV, glioblastoma.

Progression to glioblastoma is a key prognostic factor. The interval between 

diagnosis and progression has a mean length of 2 years with a mean overall 

survival from diagnosis of 3 years (Donahue B et al,, 1997). Prognosis is 

improved in younger age groups with a good preoperative clinical condition and 

in those who undergo gross total tumour resection (Kleihues P et aL, 1999).

23.2.2 Glioblastoma

Glioblastomas account for approximately 15% of all intracranial neoplasms, and 

comprise 50-60% of astrocytic tumours. It is the most prevalent primary 

malignant brain tumour and has the most malignant phenotype. (Kleihues P et aL, 

1999).

Though glioblastoma may occur at any age it is most prevalent in adults, with a 

peak incidence between 45 and 70 years. As with AA there is a higher incidence 

in males than females.



Glioblastomas occur most commonly in the cerebral hemispheres and are most 

often found to be unilateral. The most frequently affected site is the temporal lobe 

followed by the parietal lobe then the frontal lobe and lastly the occipital lobe 

(Kleihues P et aL, 1999). Glioblastomas in other sites within the CNS are rare. 

Multi-focal glioblastomas have been reported, although it has been noted that in 

some cases there were interconnecting strands between what were considered 

discrete lesions.

Glioblastomas can be sub-divided into two groups, primary and secondary on the 

basis of clinical and genetic differences. There is increasing evidence that these 

two groups constitute distinct disease entities arising through different genetic 

pathways that affect patients at different ages (Kleihues P et al .,1999; Watanabe 

K et aL, 1996).

The diagram below indicates the known genetic alterations in the development of 

primary and secondary glioblastoma.

DIFFERENTIATED ASTROCYTES or PRECURSOR CELLS

p53 mutation (>65%)

PDGF-A, PDGFR-a
Overexpression (60%)

LOW GRADE ASTROCYTOMA

\LOH 19q (<50%) 
RB alteration (25%)

ANAPLASTIC ATROCYTOMA

LOH lOq
PTEN mutation (5%)
DCC loss of expression (-50%) 
PDGFR-a amplification (<10%)

EGFR
Amplification (-40%) 
Overexpression(-60%)

MDM2
Amplification (<10%) 
Overexpression(-5 0%)

pl6 deletion (30-40%)

LOH lOp and lOq 
PTEN mutation (-30%) 
RB alteration

Secondary Glioblastoma Primary Glioblastoma
de novo



PDGF-A: platelet derived growth factor 
EGFR: epidermal growth factor receptor 
PDGFR: platelet derived growth factor receptor 
PTEN: phosphatase & tensin homolog 
RB: retinoblastoma
DCC: deleted in colorectal cancer gene 
LOH: loss of heterozygosity
MDM: Mouse double minute 2 (human homolog of p53-binding protein) 
(Kleihues P et al, 1999)

Figure 23.2.2; Genetic development o f  primary and secondary Glioblastoma

Primary glioblastomas account for the majority and occur in older age groups. 

They always, by definition manifest themselves de novo, usually following a short 

clinical history without evidence of a pre-existing, less malignant precursor. 

Secondary glioblastomas arise from a low-grade astrocytic lesion or from the less 

malignant anaplastic astrocytoma. These tumours are prevalent in a younger age 

group, approximately 45 years of age. The time for progression from a low grade 

lesion to a glioblastoma is approximately 4-5 years (Vertosick F et aL, 1991; 

McCormack B et aL, 1992). It remains unclear as to whether there is a survival 

difference between primary de novo glioblastoma and secondary glioblastoma 

(Winger M et aL, 1989; Dropcho E and Soong S, 1996).

In most cases a glioblastoma is depicted on MRI or CT as a peripheral, contrast 

enhancing, ring lesion. The outer enhancing margin of the glioblastoma does not 

represent the outer border of the lesion and tumour cells can be identified 2 or 

more centimetres beyond the perceived edge of the tumour (Burger P ef a/., 1988; 

Nagashima G et aL, 1999).

Macroscopically most glioblastomas aie intraparenchymal with the epicenter in 

the white matter. They often have marked haemorrhage on gross dissection. 

Despite the short duration of symptoms the tumour can be extensive often 

occupying much of the cerebral lobe. Central necrosis may occupy as much as 

80% of the tumour mass. These tumours are notoriously highly invasive and 

extend into surrounding brain. Métastasés are rarely apparent elsewhere in the 

CNS or systemically as the tumour cells seem unable to invade the subarachnoid 

spaces or a vessel lumen. Histopathologically the tumom is composed of highly
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cellular, anaplastic glial cells with marked nuclear atypia and a high mitotic rate. 

Microvascular proliferation and necrosis are prerequisites for the diagnosis of a 

glioblastoma (Kleihues P et aL, 1999).

Despite meta-analysis studies it is still not possible to predict patients with a 

favourable prognosis. Glioblastomas are among the most malignant tumours 

known to occur' in man with a mean length of survival of less than 1 year, despite 

optimal treatment.

2.4 Diagnostic Imaging

To support the clinical suspicion of a lesion within the brain, imaging seeks to 

locate the area of abnormality. Following localisation of the lesion the clinician 

may be able to obtain a histological diagnosis that will influence the subsequent 

management. Computed Tomography (CT) was initially used to image 

intracranial lesions, however with the emergence of Magnetic Resonance Imaging 

(MRI) over the past 20 years it has proven to be more sensitive than CT in the 

detection and evaluation of tumour extent. MRI is now the imaging modality of 

choice.

One weakness of MRI is the lack of specificity. Although a tumour is correctly 

identified, it is not possible to interpret with accuracy the histological type and 

grade. The introduction of the contrast agent gadopentetate dimeglumine 

(gadolinium), has sought to overcome this problem and define the growing active 

areas of the tumour'. As for many tumours the growth of HGG is associated with 

angiogenesis (i.e. the development of abnormal capillaries). This process is 

responsible for exti'avasation of gadolinium, through non-tight junctions, into the 

suiTounding extracellular space identified on MRI as enhancement. Higher-grade 

lesions tend to allow more enhancement than lower grade lesions, though this 

association is not exclusive (Kondziolka D et aL, 1993).

The area of enhancement on MRI acts as a marker of bulk cell division and as a 

locus for the surgeon from which to obtain a diagnostic tissue biopsy or to resect 

the tumour. It is important to note that the outer rim of tumour enhancement does
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not delineate the outer margin of the tumour. This has been noted particularly with 

glioblastomas, where biopsies have indicated tumour extension down white matter 

tracts, which show oedema on T2 weighted images, and were not detected by 

contrast enhanced MRI (Kelly PJ et aL, 1987).

The aim of non-invasively predicting tumour grade has led to the investigation of 

functional imaging. In particular Single Photon Emission Computed Tomography 

(SPECT) using the tracer Thallium-201 has been studied. Thallium-201 decays by 

electron capture to Hg-201 which emits characteristic x-rays in the 60-80KeV 

range. In the late 1980s it was demonstrated with 89% accuracy that there was 

correlation between Thallium-201 uptake and tumour grade (Kim KT et aL,

1990). Although investigation with Thallium-201 SPECT has not replaced MRI, it 

is useful in discriminating between tumour grade and recurrence as opposed to 

necrosis or scarring. In addition Thallium-201 SPECT can differentiate between 

radiation necrosis and tumour recurrence. Unfortunately it cannot yet be used as 

the sole non-invasive diagnostic or prognostic tool (Benard F et aL, 2003).

Positron Emission Tomography (PET) using ^^F-fluorodeoxyglucose (FDG) has 

been shown effective in detecting brain tumours. PET-FDG imaging exploits the 

observation that tumour cells have an increased capacity for glucose transport 

compared to normal cells and therefore demonstrate increased FDG uptake. PET- 

FDG has been shown effective in determining the degree of malignancy and can 

identify malignant change in a low grade glioma. In addition it has proven 

effective in distinguishing tumour growth from radiation necrosis (Benard F et aL, 

2003),

2.5 Treatment of High Grade Glioma

High grade glioma remains a devastating disease and its effective management 

provides the oncologist with a huge hurdle. As yet there is no treatment available 

that can offer the possibility of cure. Any improvement in survival obtained by 

surgery, radiotherapy or chemotherapy is minimal. Compared to the advances 

made in the management of other malignancies over the last few decades, the
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management of brain tumoui’s has not improved to the same degree. Despite on

going research into primary HGGs, the prognosis of patients with primary HGG 

remains dire. Clinicians must optimise the treatments that are available, and strive 

to investigate and develop new treatment strategies for these patients.

2.5.1 Surgery

The primary objective of surgery is to provide a histological diagnosis. More 

extensive surgery may provide symptomatic benefit and could contribute to a 

delay to tumour progression and improve the overall survival time.

A tissue sample obtained from a biopsy of the suspicious lesion will in most cases 

be sufficient to provide the clinician with a histological diagnosis. An intracranial 

biopsy can be performed either as an open procedure or via a buiT hole using 

stereo-tactic localisation. The stereo-tactic biopsy procedure is associated with a 

low morbidity and mortality rate and has a diagnostic yield of 95% (Kreiger M et 

a l, 1998).

Maximal surgical resection of a HGG is the preferred surgical inteiwention where 

possible. When the suspicion of a HGG is strong, some surgeons proceed to 

cytoreductive surgery at the outset. The malignant nature of the lesion is 

confirmed from analysis of a smear prepai*ation intra-operatlvely (Jackson R et 

aL, 2001) There is continual debate concerning the role of cytoreductive surgery 

in the management of patients with primaiy HGG. Cytoreductive surgery may 

seem a logical management plan, however there are no prospective studies that 

have investigated the benefit of this strategy to the patient. Retrospective analysis 

of patients with glioblastoma has shown that the extent of tumour resection and 

amoimt of residual tumour identified on post operative images, has a significant 

bearing on time to tumour* progression (TTP) and overall survival (OS) (Keles G 

et aL, 1999).

The concern regarding such extensive surgery, given the modest improvement in 

overall survival, is the possibility of causing more harm than good. This is not 

supported by the literature. Ciric et al reported that following maximal resection

13



for HGG, 55% of patients demonstrated no deterioration compared to pre

operative neurological function and 41% of patients experienced neurological 

improvement (Ciric I et ah, 1987). With the development of intra-operative 

cortical stimulation mapping techniques and image guided computer assistance, 

extensive tumour resections should be more accurate with a decreased chance of 

compromising patient’s quality of life (Keles G et aL, 1999; Barnett GH, 1999; 

Matz P et aL, 1999).

The benefit of repeat surgery for tumour recurrence following the failure of first 

line therapy remains unclear. For certain patients with symptoms associated with 

raised intracranial pressure repeat surgery may offer symptomatic relief. With 

regard to any possible associated survival advantage from repeat surgery it is 

believed that younger patients, with a good performance status, who have had 

stable disease for longer than 6 months following the initial operation will benefit 

most (Young B et aL, 1981 ; Salcman M et aL, 1982; Barker F et aL, 1998;

Brandes AA et aL, 1999).

Apart from tumour cytoreduction, surgery also has a role to play in the insertion 

of single direction catheters. These catheters drain excess fluid that accumulates in 

the ventricles of the brain that can cause symptoms of increased intracranial 

pressure.

2.5.2 Radiotherapy

The aim of radiotherapy is to deliver a tumouricidal dose of radiation to a defined 

target volume whilst sparing the surrounding normal tissue, thereby achieving an 

optimal therapeutic ratio. Ionising radiation aims to sterilize tumour cells and 

remove their proliferative ability through a series of intracellulai* molecular 

events, the most important of which is double strand breaks of genomic DNA.

Post-operative conventional radiotherapy using x-rays has been proven effective 

in improving overall survival in prospective studies although it is not given with 

curative intent (Walker MD et aL, 1978). Patients who receive post operative 

radiotherapy survive longer than those treated with either supportive care or
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chemotherapy alone (Leibel S et a/., 1994). The optimum regime for patients with 

HGG is the delivery of 60 Gray (Gy) in individual daily fractions of between 1.8 

and 2.0Gy for 5 days per week over the duration of 6 weeks (Leibel and Sheline., 

1987). Less radical regimes, delivering a lower total dose of radiation can be 

given to patients who have a low performance status and would not be able to 

tolerate a 6 week regime of radiotherapy (Bauman G et ah, 1994).

The treatment of HGG by radiotherapy is limited due to the inherent 

radioresistance of this tumour tissue and the radio sensitivity of the surrounding 

normal brain tissue. Partial brain field irradiation is preferred over whole brain 

irradiation due to the risk of long-term side effects associated with irmdiating 

normal brain tissue seen with the latter regime (Levin V et aL, 1995). High grade 

glioma recurs in 80% of cases within 2cm of the perceived outer enhancing edge 

on imaging (Gar den AS et aL, 1991). In view of this observation, standard 

radiotherapy practice delivers radiation to a field that encompasses an additional 

2-3 centimetre margin around the enhancing outer edge of the tumour visualised 

on the pre-surgery imaging (Leibel S et aL, 199\).

Conformational therapy enables the conformation of the radiation beam to the 

tumour alone, with the aim of sparing radiation to normal tissue outside of the 

intended treatment volume. This may allow the possibility of dose escalation. 

Results of ongoing studies using this method are awaited. Radiosensitisers and 

hyperfractionation regimes have been trialed but offer no benefit over 

conventional radiotherapy.

Stereotactic radiosurgery can be used to increase the actual dose of radiation to 

the tumour (Larson D et aL, 1990). This method of delivery ensures that a dose of 

radiation is delivered as a single fi-action to a single intracranial target thereby 

limiting the amount of radiation to the adjacent normal brain. To maintain a steep 

dose gradient at the periphery of the tumour it must be of limited size, ideally less 

than 4 cm in diameter. As a result stereotactic radiosurgery has limited use as the 

main radiotherapy tool in the treatment of malignant glioma as the size of a 

malignant tumour at the time of presentation is often in excess of four centimeters 

(Wilson CB et aL, 1992). The use of a focal radiotherapy boost following surgery
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and conventional radiotherapy has suggested a modest survival advantage in a 

subset of patients below 40 years of age (Shrieve D et aL, 1999). Stereotactic 

radiosurgery is not used routinely in the management of primai'y HGG, the results 

of further investigations are awaited.

Another approach that can deliver a higher dose of radiation to the tumour whilst 

sparing the sunounding brain tissue is interstitial brachytherapy. In most cases 

gamma ray emitting 125-Iodine and 192-Iridium sources have either been inserted 

into the cavity following tumour resection or inserted as temporary catheters into 

a tumour which is later resected (Leibel S et aL, 1989). Initially this method was 

trialed in patients with recurrent HGG who had relapsed following initial surgery 

and radiotherapy. The results from these studies were encouraging, although the 

quality of evidence is now in doubt due to apparent patient selection bias. 

Interstitial brachytherapy as a boost following external beam radiotherapy has 

been trialed in patients with de novo HGG in a randomised trial. A prior study had 

detailed encouraging pathological data indicative of improved tumour control 

(Siddiqi S et aL, 1997) however this has not translated into clinical practice in 

terms of statistically significant improved overall survival (Laperriere N et aL,

1998). The likely reason for the failure to improve overall survival is the 

probability that tumour cells were present out with the volume that received the 

high radiation dose. From these studies it appeal's unlikely that just increasing the 

radiation dose is going to be able to offer greater tumour control.

2.5.3 Chemotherapy

Chemotherapy has a limited role to play in the treatment of HGGs. It can either be 

given in the neo-adjuvant, adjuvant or palliative setting. Several key issues 

complicate the use of chemotherapy in the management of HGG. Firstly HGGs 

are inherently chemo-resistant, secondly the delivery of the agent to the brain is 

hampered by the blood brain barrier and finally the concurrent use of 

anticonvulsants, often required in this group of patients, is known to induce the 

p450 cytochrome that can result in a sub-therapeutic dose of chemotherapy 

reaching the tumour.
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2.5.3(tl Chemoresistance in High Grade Glioma

A number of mechanisms have been identified that induce chemoresistance in 

malignant gliomas. The P glycoprotein (Pgp), a transmembrane efflux pump 

protein, is present on the luminal surface of endothelial cells of the blood brain 

barrier. It acts to maintain the integrity of the CNS environment by actively 

excreting toxic substances (Cordon-Cardo C et aL, 1989). Pgps and other types of 

efflux protein pumps are over expressed on the surface of cancer cells. Another 

mechanism that diminishes the effectiveness of chemotherapy agents is the 

presence in cancer cells of the DNA repair protein 0^-alkylguanine-DNA- 

Akyltransferase. This enzyme removes any potential alkylating sites on tumour 

cell DNA and this could be responsible for the poor clinical response seen with 

alkylating agents such as the Nitrosoureas and Temozolomide, at least in the 

majority (Gerson SL et aL, 1992; D’Atri S et aL, 1995).

2.5.3(iil Blood Brain Barrier

The Blood Brain Barrier (BBB) is a single layer of vascular endothelial cells that 

maintain the integrity of the brain environment by preventing toxic agents 

entering the brain parenchyma. These specialized endothelial cells lack 

fenestrations and pinocytic vesicles, have extended tight junctions and express 

specific transport mediators (Rapoport S and Robinson P, 1986). In the main only 

small lipophilic compounds (< 180 daltons) penetrate the BBB hence many 

chemotherapeutic agents are excluded. In primary HGGs the BBB is disrupted 

and this, in theory, should create an avenue for drug delivery. However the 

disruption appears to be variable. Large sections of the endothelium may possess 

an intact BBB preventing the transfer of chemotherapy to those sections of the 

tumoui'. Furthermore, the BBB of the brain adjacent to tumour, where 80% of 

tumour recurrence is known to occur, is likely to be intact and therefore 

impervious to many chemo-therapeutic agents. As a result, it seems likely that 

tumour cells both in the main mass and those in distant locations, may evade the 

effects of chemotherapy thereby diminishing its effectiveness.
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2.5.4 Role of Chemotherapy in High Grade Glioma

Currently the role of chemotherapy in the adjuvant setting is unclear. A modest 

improvement in median survival was detected in a meta-analysis study in patients 

treated with radiation and adjuvant chemotherapy compared to radiotherapy alone 

(Fine H et aL, 1993). A recent meta-analysis conducted by the Glioma Meta

analysis Trialists group reported that there was clear evidence that patients 

benefited from adjuvant chemotherapy in terms of an increase in overall survival 

of 2 months. However, they concluded that no assessment was made as to the 

tolerability of the treatment and quality of life, which were considered important 

concerns for patients with such a bleak prognosis (Stewart LA, 2002). Within the 

United Kingdom the consensus has been that any benefit offered from adjuvant 

chemotherapy is extremely limited and therefore is not routinely offered to 

patients at present (Thomas D, 1998). Recently however Stupp et al published 

data demonstrating a survival advantage in patients with Glioblastoma who 

received Temozolomide chemotherapy concurrent with IR followed by 6 cycles of 

adjuvant Temozolomide (Stupp R et aL, 2005). This is the first study in this 

patient population that has demonstrated a survival advantage with adjuvant 

chemotherapy and the reported schedule may soon be recommended as the 

standard of caie in the United Kingdom.

Advances in molecular biology have identified that patients with anaplastic 

oligodendroglioma tumours have a more favourable response to chemotherapy in 

the adjuvant setting compared to other malignant gliomas. It had been 

demonstrated that tumours with a Loss of Hetero-zygosity resulting from allele 

deletions on chromosomes Ip and 19q are more chemo-responsive. In light of 

these findings, patients with anaplastic oligodendroglioma now receive 

combination chemotherapy (P.C.V.) following surgery and radiotherapy 

(Cairncross G et aL, 1998; Ino Y et aL, 2001).

Chemotherapy for HGG is given primarily in the palliative setting, following 

tumour regrowth after first line treatment with surgery and radiotherapy. For 

astrocytomas, of any grade, the role of chemotherapy has never been defined by 

randomised controlled trials. Rather its role is based on historical data obtained
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from trials conducted prior to CT imaging, and in some cases from studies when 

chemotherapy was given in the adjuvant setting. A modest improvement in 

median survival has been detected in studies investigating single agent 

(Nitrosourea or Temozolomide) or combination (P.C.V.) chemotherapy (Yung W 

et ah, 2000; Chang C et aL, 1983; Green S et aL, 1983; Shapiro W, 1986).The 

role of chemotherapy in HGG is however at best limited. The response rate to 

chemotherapy in patients with recurrent disease varies between 10 - 40%. Those 

with good prognostic factors after first relapse respond better, albeit temporarily, 

with a disease free survival of only a few months (Burton E and Prados M, 1999).

The following chemotherapeutic agents are used currently in routine clinical 

practice for patients with recurrent malignant glioma in the United Kingdom.

2.5.4(ft Nitrosoureas

• Carmustine - BCNU

• Lomustine -  CCNU

Nitrosoureas are small, highly lipid soluble, non-ionised drugs that rapidly cross 

the blood brain barrier (W aiTcn and Fine, 2002). They are cell cycle non-specific 

agents, that degrade rapidly into two reactive compounds, one with a 

carbamoylation activity, and the other acts as an alkylating agent. Carbamoylation 

of amino groups inhibits DNA repair and disrupts the synthesis of RNA. DNA 

alkylation leads to crosslinking of the DNA and ultimately cellular instability 

(Warren and Fine, 2002). The value of nitrosourea based chemotherapy in patients 

with relapsed malignant glioma has been poorly assessed. Occasionally 

it has a role to play as a single agent in the first line management of anaplastic 

astrocytomas and primary glioblastomas, at the time of first relapse (Stewart LA, 

2002). Current practice however, is to use nitrosoureas in combination with other 

types of chemotherapy in the management of HGGs. Nitrosoureas are relatively 

well tolerated; the main side effects being delayed myelosupression and lung 

fibrosis (Rampling R et aL, 1994).
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2.5.4(iil Combination Chemotherapy

Within the United Kingdom a combination of Procarbazine (Oral), CCNU (oral) 

and Vincristine (intravenous bolus) - P.C.V is given every six weeks. The cycle is 

repeated up to a maximum of six times provided the side effect profile is 

tolerated. Previously, combination chemotherapy was reserved for the 

management of HGG following relapse after treatment with single agent 

Nitrosourea. Combination chemotherapy in now used first line, following 

recurrence after surgery and radiotherapy of anaplastic astrocytoma or 

glioblastoma. It remains that no randomized studies have been done to compare 

single agent chemotherapy and combination chemotherapy in these patients.

Procarbazine

Procarbazine {Natulan) is taken orally for the first ten days of a cycle of 

combination chemotherapy. After absorption it is activated in the liver. The active 

metabolite is then converted by cytochrome p450 into two active metabolites. The 

active metabolites act by inhibiting DNA, RNA and protein synthesis. In addition 

it has weak monoamine oxidase inhibitor (M.A.O.I.) properties (Newton H et aL,

1999). Procarbazine is generally well tolerated with the main side effects being 

nausea, vomiting, fatigue, rash, myelosupression and food intolerance. (Newton H 

et aL, 1990)

Vincristine

Vincristine {Oncovin) is a derivative of the periwinkle plant and is water-soluble. 

It therefore penetrates the BBB poorly. It is administered intravenously and 

undergoes extensive metabolism in the liver (Newton H et aL, 1999). By binding 

to tubulin in S phase, causing metaphase arrest, it disrupts the cell cycle of tumour 

cells. Its use is limited by peripheral neuropathy (Newton H et aL, 1999).

CCNU

As detailed in section 2.5.4(i).
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2.5.4(iif) Temozolomide

Temozolomide is a small molecule that can penetrate the BBB. It has excellent 

oral bioavailability and functions as an alkylating agent. (Galanis E and Bucker J, 

2000; Clark AS et aL, 1995). Alkylating agents bind covalently via alkyl groups 

to DNA. Through cross linking they cause the cell cycle to be arrested in the Gl-S 

transition. This is either followed by DNA repair or apoptosis.

In the United Kingdom, Temozolomide {Temodal) is reserved for second line (or 

third line if a nitrosourea was used as a single agent) chemotherapy treatment for 

patients with relapsed HGG. In a phase II study, 35% of patients had a clinically 

meaningful objective response and 26% had disease stabilisation when 

Temozolomide was used first line in patients with relapsed A A or AO. 

Temozolomide demonstrated a good safety profile, however 10% experienced 

myelosupression (Yung W et aL, 1999). Temozolomide was evaluated in a 

randomised phase II study using Procarbazine as a reference agent, in patients 

with relapsed glioblastoma who had failed conventional first line treatment. The 

primary end point, progression free survival at 6 months, was significantly higher 

in the Temozolomide group than the Procarbazine group. Unfortunately, although 

there was an increase in the overall survival detected with Temozolomide it was 

not statistically significant (Yung W et aL, 2000). The study did however 

demonstrate that patients who received Temozolomide had a better quality of life 

whilst on treatment and experienced fewer side effects (Osoba D et aL, 2000). A 

study is currently under way to compare Temozolomide with PCV in patients with 

recurrent HGG. In England and Wales the National Institute for Clinical 

Excellence (NICE) has sanctioned the use of Temozolomide as second line 

chemotherapy for patients with recurrent malignant glioma 

(www.nice.org.uk/article).

Temozolomide has been investigated in the adjuvant setting in a randomised trial 

involving 573 patients with glioblastoma (Stupp R et aL, 2005). The primary end 

point was overall survival. Patients with histologically proven newly diagnosed 

disease were randomly assigned to receive radiotherapy alone or radiotherapy plus 

concomitant Temozolomide followed by six cycles of adjuvant Temozolomide.
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The data recently published has demonstrated a median survival benefit of 2.5 

months and a 2 year survival rate of 26.5% in patients who received 

Temozolomide and IR compared with a 2 year survival rate 10.4% with 

radiotherapy alone, Temozolomide was well tolerated with only 7% of patients 

experiencing grade 3 or 4 haematological toxic effects.

The clinical trial was designed with the intention of delivering chemotherapy 

early in the course of the disease. It was not intended however to determine the 

benefit of administering Temozolomide concurrently with IR versus adjuvant 

treatment with Temozolomide. A companion translational study suggested that the 

silencing of the 0^-methylguanine-DNA methyltransferase (MGMT) promoter 

may, by méthylation, benefit patients treated with Temozolomide and IR (Hegi M 

et aL, 2005). Méthylation of the MGMT promoter results in loss of MGMT 

expression and consequently diminished DNA repair. MGMT promoter 

méthylation was demonstrated to be an independent favourable prognositic factor 

in patients treated with IR and Temozolomide.

Ionising radiation may induce MGMT, which in turn may result in repair of the 

damaged DNA. Alkylating agents however have been shown to deplete MGMT. 

The concurrent administration of Temozolomide and IR may result in an overall 

reduction in MGMT expression and enhanced tumour cell kill. A synergistic 

relationship between Temozolomide and IR has been demonstrated in vitro and 

this may explain the observed clinical trial data (Wedge SR et aL, 1997; Van Run 

.1 et aL, 2000).

This clinical trial data is beginning to alter current clinical practice. It is expected 

that Temozolomide administered concurrently with IR followed by adjuvant 

Temozolomide will soon be adopted as the standard of care for the majority of 

patients with newly diagnosed glioblastoma.
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2.5.5 Non-Chemotherapeutic Medication 

Corticosteroids

Corticosteroids, in particular Dexamethasone, are routinely used in the 

management of patients with HGG. Peri-tumoural oedema is a cause of elevated 

intracranial pressure that can induce symptoms such as headache, nausea, 

vomiting, confusion and limb weakness. Through mechanisms that remain unclear 

corticosteroids can reduce the build up of peri-tumoural oedema and control these 

disabling symptoms. Due to the side effects associated with corticosteroids the 

lowest dose of steroid that controls the patients symptoms is used (Newton HB, 

1994).

Anticonvulstants

Seizure activity is a common symptom either at the time of presentation, or it can 

be indicative of tumour progression. Anticonvulsants are not prescribed to 

patients unless a seizure has occurred due to the side effect profile associated with 

these drugs (Glatz M et a l, 1996). Monotherapy is the goal in treatment, using 

additional anticonvulsants only when absolutely necessary (Newton HB, 1994).

2.5.6 General Support and Rehabilitation

Patients with a diagnosis of HGG often require physical, emotional and social 

support. This is often best coordinated by a specialist nurse who is dedicated to 

the care of the patients and their families. Due to the relentless debilitating natuie 

of the disease a multidisciplinary approach is often necessary to manage these 

patients effectively. Physiotherapists, occupational therapists and social workers 

all have a role to play in the care of patients with malignant glioma. Towards the 

latter stages of a patient’s illness it is often necessary to involve the palliative care 

team and hospice services.
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3 Cancer Gene-Therapy

In 2003 the human genome was fully described, fifty years after the discovery of 

the double helix DNA structure. There are approximately 30-35,000 genes within 

the human genome that encode the transcription of the proteins that allow the 

human cell to function normally (Collins FS et aL, 2003). Gene mutations may 

cause the encoded protein to be structurally altered or be produced in abnormal 

quantities and consequently it may not function normally. As a result genetic 

disorders may ensue and become clinically manifest.

Normal tissues within the human body are proliferating, differentiating or in a 

state of growth arrest. In addition a process of programmed cell death, apoptosis, 

selectively removes certain mature cells. Cell sui'vival within the human body is 

reliant on the accurate transfer of genetic material from parent cell to daughter 

cells. In addition, DNA needs to be protected from spontaneous and induced 

damage. Through complicated processes, DNA repair and cell cycle progression 

are co-ordinated.

The cell cycle comprises foui* phases (figure 3). DNA synthesis takes place during 

synthesis (S) phase and is followed by a gap period (G2). Following G2 mitosis 

(M) phase occurs after which the cells enter Gi. Non-proliferating cells become 

growth arrested in a phase of the cell cycle between mitosis and DNA synthesis 

referred to as Go. Cells may be stimulated to undergo proliferation in either Go or 

Gi. It appears that between different cell lines the main difference in the rate of 

cell division is in the length of time each cell line is in Gi. All other phases of the 

cell cycle are roughly similar. This is an important concept, as the sensitivity of a 

cell to ionising radiation appeal's dependent on the phase of the cell cycle it is in 

(Tannock and Hill).

24



Mitosis

Gap 2

Go Growth
arrest

Gap 1

DNA 
synthesis

Figure 3; Cell cycle comprising Mitosis (M), Gapl (Gi), DNA synthesis (S), Gap 

2 (G2) and growth arrest (Go).

Controlling the cell cycle are a number of interconnected molecular events 

governed by cyclin dependent kinases (cdks). Cdks regulate the molecular 

pathways and check-points that coordinate the cell cycle. Cyclin D-associated 

kinases are involved in the phosphorylation of the retinoblastoma protein (pRB). 

Phosphorylaytion of pRB is required for the progression of the cell cycle from Gi 

to S phase (Sherr C and McCormick F, 2002). Cdks are positively regulated by 

cyclins and negatively regulated by cdk inhibitors. It has been suggested that cdks, 

cyclins and cdk inhibitors can be genetically altered or influenced by other 

oncogenic events. Disruption of these regulatory pathways can result in the 

progression of tumours.

The RB gene has been identified as a tumour suppressor gene. Mutations in the 

RB gene may predispose the cell to malignant transformation. Dephosphorylated 

RB protein binds to the transcription complex involved in cell cycle regulation, 

E2F, thereby deactivating it. Phosphorylation of the RB gene product prior to S 

phase enables E2F to promote cell cycle progression. Loss of RB gene function.
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noted in glioblastoma development may allow uncontrolled cell cycle progression 

hence uncontrolled cell division and tumour development.

p53 is another well characterised tumour suppressor gene. It is noted that the p53 

gene is mutated in numerous tumours including over 65% of Secondary 

Glioblastomas. p53 plays an important role in the response to cellular DNA 

damage. Following DNA damage p53 is involved in either promoting transient 

cell cycle arrest in Gi to allow DNA repair, or apoptotic cell death. p53 function is 

lost through point mutation or deletion, thus allowing the cell DNA to accumulate 

genetic damage and genetic instability. Functional p53 is thought to have a 

protective effect against tumourigenesis (Cox L, 1997).

The natural history of diseases can be altered by using gene therapy to coiTect the 

defect in the genetic code. There are many ways in which defective genes can be 

manipulated, depending on the genetic problem. In some instances a vector can be 

used to introduce a gene into a tai'get cell to restore the normal transcription of the 

defective gene. Other less common approaches aim to restore the normal function 

of a gene by repairing the abnormality through homologous recombination. 

Malfunctioning genes can be up regulated or down regulated to increase, 

normalise or reduce protein production. In addition, through a process of selective 

reverse mutation an abnormal gene can be repaired to restore its function to 

normal.

The process of gene transfer is fraught with obstacles and potential problems. 

Most diseases that affect humans ai'e multi-factorial and ai’e the result of a number 

of genetic alterations. As a result they are difficult to correct by gene therapy 

alone. DNA that is introduced into a target cell must be stable and may be 

required to function for a prolonged period of time. With this strategy there is a 

risk that the transfer of foreign material into a target cell may be detected by the 

immune system. This could result in toxicity experienced by the patient as well as 

potential damage to the exogenous DNA and/or vector. Methods of delivering the 

genetic material, either viral or non-viral, provide additional problems for 

scientists and clinicians. Available vectors are relatively imprecise and inefficient 

in their ability to tai'get the conect tissue and/or gene locus. In addition they may
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stimulate the immune system resulting in toxicity symptoms experienced by the 

patient. Some viruses used in gene therapy trials may generate additional 

morbidity due to their intrinsic pathological properties and in extreme cases prove 

fatal.

Gene therapy based research was dealt a blow when a patient with ornithine 

transcarbamylase deficiency (OTCD), a non-life threatening in-born error of urea 

synthesis, died from multi-organ failure four days after participating in a gene 

therapy trial. The aim of the phase 1 trial was to correct the single gene and 

restore ornithine transcarbamylase enzyme activity. Adenoviral vector designed to 

mediate human ornithine transcarbamylase cDNA production, was infused via the 

hepatic artery, to the liver (Raper S et al., 2002). The fatality was the result of a 

severe immune response to the adenovirus vector. The study was immediately 

discontinued as a result of concerns over the safety of the adenovirus vector.

Some successes with gene therapy strategies have been reported. In 2000, 

Cavazzano-Calvo ef at reported the correction of the x-linked severe combined 

immunodeficiency (SCID) syndrome in two children. Infusion of ex vivo CD 34^ 

enriched bone marrow cells led to the correction of the T-cell immunodeficiency, 

sufficient to prevent the clinical manifestations of the illness (Cavazzano-Calvo M 

et al., 2000). This strategy successfully corrected the deficiency in three children 

who remain well three and a half years after treatment (Fischer A et al., 2002). 

Unfortunately, towards the end of 2002 it was reported that two other children 

treated in the same way, had developed a monoclonal lymphocytosis consistent 

with acute lymphocytic leukaemia (ALL). This is presumed the result of an 

insertional mutagenesis associated with retroviral mediated gene transfer. The 

retrovirus vector had inserted an intron of the LMO-2 gene, which is associated 

with ALL, into chromosome 11 (Hacein-Bey-Abina, S et al., 2003). As a result 

recruitment into the study has teiminated and retroviral gene therapy has been 

suspended in America. In the United Kingdom, however, similar studies are still 

underway albeit with caution (Gene Therapy Advisory Committee (GTAC)

Report 2001-2002).
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Despite the recent setbacks, the proof of principle of gene therapy has been 

demonstrated. Consequently continued groundbreaking gene therapy research 

could offer the possibility of break-through in the treatment of serious illnesses 

and, in particular', cancer.

Traditionally, pharmaceutical companies have supported the development of 

‘small molecules’ in the treatment of cancer. These are designed to inteiiTipt 

specific targets in the cell cycle. Despite recent success stories such as STI-571 

(Gleevec) in the treatment of chronic myeloid leukaemia (Druker BJ et al., 1996) 

this method of combating cancer has not proven to be particularly effective.

Cancer manifests itself clinically following the mutation of gene(s) involved in 

the normal growth and repair of cells. It therefore seems logical to combat this 

condition through gene therapy techniques. Improved understanding of the human 

genome and cancer biology has identified a number of new potential genetic 

targets amenable to genetic manipulation. Sixty two percent of gene therapy trials 

proposed in America have been directed towards combating cancer. More than 

half of these have involved one of five tissue types: melanoma, prostate, ovary, 

squamous carcinoma of the head and neck and leukaemia (Gottesman M, 2003).

Cancer gene therapy strategies are divided into those that are tai'geted against the 

tumour cells themselves, and those that target the host’s ability to control the 

development and progression of the disease.
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Gene therapy targeting o f tumour cells Gene therapy targeting o f host cells

Tumour suppressor genes Tumour angiogenesis

Dominant-negative genes Chemo/radiotherapy protection

Apoptosis induction Immunomodulation

Oncolytic viruses

Tumour-specific gene expression

Sensitisation to radio/chemotherapy

Table 3; Gene therapy stategies

In addition to developing gene therapy targets, there has been extensive research 

into developing safe and effective viral and non-viral vectors and delivery 

mechanisms.

3.1 Gene Therapy in the Management of High Grade Glioma

The management of malignant gliomas has been a target for gene therapy 

strategies for some time. The relentless progression of the disease coupled with 

the lack of effective treatment options have made clinicians investigate gene 

therapy strategies that may augment available therapies or prove to be 

independently successful. A number of potential gene therapy strategies, 

translatable to different cancer types, have been investigated in malignant glioma.

Gene therapy in the management of malignant glioma is logistically difficult. 

Despite the identification of potential gene targets, the ability to correct the defect 

efficiently remains elusive. Transfection in experimental brain tumours is rarely 

able to transfer genes to more than 5% of the tumour mass due to the lack of 

effective delivery mechanisms or vectors (Lam P and Breakefield X, 2001). As a 

result, the vast majority of the tumom* will not benefit directly fi’om the gene 

therapy strategy. For gene therapy to affect the tumour as a whole there must be 

an additional mechanism by which the transduced cells can exert an indirect effect 

on the non-transduced cells i.e. the ‘bystander effect’. The bystander effect may 

result from either direct contact with transduced dying cells (Frank DK et ah, 

1998), intercellular transfer of toxic products (Moolten F, 1994), inhibition of
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angiogenesis or by harnessing the immune system to attack the tumour as a whole 

(Bouvet M et «/.,1998).

However, even improving the transduction efficiency, in addition to maximising 

the bystander effect, may still be insufficient to control malignant gliomas. The 

cells that comprise this tumour have inherent motility resulting in their 

dissemination down the white matter tracts generating recurrence distal to the site 

of the primary disease.

Gene therapy strategies investigated in malignant glioma aie discussed according 

to their mechanism of action.

3.1.1 Tumour Suppressor Gene / Oncogenes

This type of gene therapy in the management of malignant glioma has mainly 

concentrated on exploiting the mutation or deletion of the p53 tumour suppressor 

gene, which occurs early in the development and progression of anaplastic 

astrocytoma and glioblastoma. The primary aim of this strategy is to restore wild- 

type p53 production to promote growth arrest of the tumour (Gomez-Manzano C 

et ah, 1996; Cirielli C et aL, 1999). In addition restoration of p53 would enhance 

the cytotoxic effect of chemo and radiotherapy via the p53 mediated apoptosis 

pathway (Biroccio A et a/.,1999; Broaddus WC et a/.,1999).

Adenovirus vector mediated gene transfer of p53 in patients with malignant 

glioma resulted in the transduction of tumour cells to a limited distance from the 

site of injection. The patients experienced minimal toxicity and there was 

anecdotal evidence suggestive of efficacy. Further clinical studies using this 

strategy are under development (Lang F et al., 2003).

The p l6  / RB / E2F-1 pathway involved in driving the cell through the Gi check 

point to S phase is also being investigated as a possible gene therapy target. 

Mutations in the RB gene and p i6 gene are frequently seen in anaplastic 

astrocytoma and glioblastoma. Restoration of the RB or p l6  gene to the glioma
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cell results In a cytostatic effect. The E2F-1 protein has a dual action both as an 

oncogene driving cell cycle progression as well as a tumour suppressor gene. In 

the role of tumour suppressor gene, the E2F-1 protein promotes apoptosis in 

glioma cells independent of the RB, p i 6 or p53 status of the cell line (Gomez- 

Manzano C et ah,1999).

3.1.2 Antiangiogenesis

Through the process of angiogenesis a malignant tumour manages to maintain an 

adequate blood supply to support its continued growth (Folkman J, 2003). In 

human malignant glioma the more aggressive pathological phenotypes are 

characterised by increased neovascularisation. Anti-angiogenic gene therapy 

targets the protein mediators of the neovascularisation process. One such protein 

is the vascular endothelial growth factor which is up-regulated in hypoxic 

conditions and high levels are correlated with tumour progression -  a process 

which occurs in malignant glioma (Plate KH et ah, 1992). Transfection of anti

sense VEGF cDNA in mice down-regulates the endogenous VEGF and reduces 

glioma formation. In vivo, adenovirus mediated transfer of antisense VEGF has 

been shovm to reduce subcutaneous glioma growth in mice (Im S et ah, 1999). 

This work proposed a vascular target in the treatment of human malignant glioma 

and research continues in this field.

3.1.3 Immunomodulation

It has been demonstrated that perivascular lymphocyte infiltration of primary 

brain tumours is a favourable prognostic sign (Brooks WH et ah, 1978). This 

observation suggests that harnessing the immune system may be an alternative 

treatment strategy for these malignancies. Several groups have shown prolonged 

survival in animals harbouring intra-cranial malignant glioma xenographs by 

using antigen presenting dendritic cells as a vaccine (Siesjo P et ah, 1996; Liau 

LM et ah, 1999). Phase I studies in humans using autologous dentritic cells, either 

fused with glioma cells or pulsed with peptides eluted from the surface of 

autologous glioma cells, have demonstrated safety with some evidence to support 

the stimulation of the immune system (Kikuchi T a/., 2001; Yu J e/ nr/., 2001).
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Cells or vectors have been injected, subcutaneously or intracranialiy, with the aim 

of stimulating the immune system by either encoding tumour antigens or 

cytokines (IL-2, ÏL-4, IL-12, GM-CSF, TNF~alpha and INF gamma). This 

approach has also been shown to be safe and effective in vitro and in vivo (Yu JS 

et aL, 1993; Sampson JH et ah, 1997; Liu Y et a l, 2002). Clinical trials using 

these methods have demonstrated immune responses but have yet to show 

improvement in survival (Schneider T et aL, 2001).

3.1.4 Pro-drug Activation (Suicide Gene Therapvl

Gene therapy techniques have been used to sensitise tumour cells to toxins or 

chemotherapeutic agents. A ‘suicide gene’ is introduced into tumour cells where it 

can encode a specific enzyme. A clinically inactive pro-drug is then delivered 

which is converted into a clinically active derivative by the expressed transfected 

enzyme. Although, due to the inefficiency of the system not every cell is 

transfected, clinical benefit is enhanced by the ‘bystander effect’. As discussed 

previously this term is used to describe the process by which cells neighbouring 

cells are killed, though they themselves remain not transfected.

Various pro-drug activating systems are under investigation, however the most 

widely studied is the Heipes Simplex Virus type-1 Thymidine Kinase enzyme 

(HSVth) with ganciclovir (GCV) as the pro-drug (Moolten F., 1994). GCV is 

phosphorylated by HSVth, and is then incorporated into replicating DNA resulting 

in cell death (Cheng Y et a l, 1983). The bystander effect occurs as the 

phosphorylated GCV can pass through tumour cell gap junctions (Touraine RL et 

a l, 1998).

Phase I/II clinical trials in patients with glioblastomas investigated intratumoural 

injection o f RSYtk  - retroviral mediated transduced vector producing cells 

followed by GCV. These early studies demonstrated the procedure to be safe, with 

efficacy suggested by a few long-term survivors (Shand N et aL, 1999;

Klatzmann D et aL, 1998).
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These trials led to the largest randomised gene therapy trial in cancer being 

undertaken. In a phase III study involving 248 newly diagnosed patients with 

glioblastoma, retroviral mediated transduced glioblastoma cells were injected into 

the resection cavity wall following surgical resection of the malignant glioma. The 

patients were then treated with GCV. The study failed to demonstrate any 

significant increase in time to tumour progression or overall survival. A poor 

transfection rate, as well as intra-operative technical difficulties, were cited as 

reasons for failure (Rainov NG, 2000). Other systems to deliver HSV-^A:to tumour 

cells with increased efficiency are under investigation.

Another system with an effective bystander effect is Escherichia coli cytosine 

deaminase/5-fluorocytosine (CD/5-FC). 5-FC is non-toxic to mammalian cells as 

they lack the enzyme cytosine deaminase(CD). Certain bacteria, such as E-coli 

and fungi do possess CD and are able to convert 5-FC into 5- Flurouracil (5-FU). 

Introduction of the gene to mammalian cells by transfection or via retroviral 

vectors results in the production of toxic 5-FU, leading to cell death through 

inhibition of DNA and RNA synthesis. A bystander effect is achieved through 

diffusion of 5-FU across cell membranes (Mullen C et ah, 1992).

Cyclophosphamide, which normally cannot cross the blood brain barrier, is 

converted by cytochrome p450 2B1 to active phosphoramide mustard. When 

cytochrome p450 2B1 is locally transfected within the brain tumour, the active 

drug has the potential to kill the brain tumour cells (Wei MX et aL, 1994).

4 Oncolytic Viral Vectors for Gene Therapy

All of the viruses described above are replication incompetent. That is, they can 

infect a cell and express virally encoded proteins but are not capable of going 

through a full replication cycle to release progeny virus particles.

Given the poor transfection rates achieved with replication incompetent viral 

vectors, researchers have tried to improve efficiency by using viruses that can 

replicate in tumour cells, resulting in oncolysis and wider dissemination of gene 

expression (Russell SJ, 1994).
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To be effective in killing tumour cells, the virus must be able to infect the target 

cell, replicate, transcribe any additional therapeutic genes and ultimately destroy 

the tumour cell. Ideally, the virus should be capable of infecting all the cells of the 

tumour, including non-cycling cells, thereby exerting maximum impact on the 

tumour. After several rounds of replication the number of potentially oncolytic 

viral particles may be many logs higher than the input dose.

Oncolytic viruses may kill the tumour cell directly through cell lysis, however 

additional cell kill may be achieved through the delivery of exogenous cytotoxic 

therapeutic genes and as a result of the bystander effect.

The use of replication competent viruses in the treatment of cancer was first 

proposed in the late 1950’s when adenovirus was investigated as a treatment for 

cervical cancer (Southam C.M, 1960). The understanding of virus and cancer cell 

biology has improved greatly, enabling the manipulation of viruses to kill cancer 

cells more effectively. In 1991 Martuza et al engineered a thymidine kinase 

deleted Herpes Simplex Virus -1, (dhpih) capable of replicating only in dividing 

cells. Subsequently there has been extensive pre-clinical and clinical investigation 

into the use of vimses as oncolytic agents (Martuza RL et aL, 1991).

4.1 Adenovirus

Adenoviruses are non-enveloped and contain double stranded DNA. In humans 

wild type virus infection results in non-life-threatening, non-specific, flu-like 

illness. Wild type adenovirus expresses the protein ElB-55kD, which in 

conjunction with other viral proteins, binds to and destroys host cell p53 thereby 

precluding the host cell anti-viral, p53 mediated, apoptosis defence mechanism. 

Consequently, wild type adenovirus creates a cell state conducive to viral 

replication.

The adenovirus mutant, ElB-55kD (<7/1520 or ONYX-015) has a deletion in the 

EIB-55kD locus. It was hypothesised that <7/1520 as a result of this deletion would 

only be able to replicate in cells that did not produce p53 (Biscoff J et aL, 1996).

It is knovm that many cancer cells have limited or no p53 function and therefore it

34



was postulated that <7/1520 would replicate preferentially in tumours with this 

genetic defect. However, it has become apparent, that other viral proteins 

influence p53 function. In addition, the ElB protein exerts additional influences, 

as well as p53 modulation, on the viral replication cycle. From in vitro and in vivo 

data the selectivity and effect of <7/1520 is unclear and seems dependent on the 

cell type.

The adenovirus mutant, <7/1520 was the first replication competent virus to be 

used in a phase I human clinical trial. Twenty-two patients with recurrent 

squamous cell carcinomas of the head and neck, refractory to radio- or 

chemotherapy, received a single intratumoural injection of <7/1520. The results of 

the study failed to demonstrate toxicity other than mild flu-like symptoms up to a 

maximum dose of 1x10^  ̂plaque forming units (p.f.u.). The maximum tolerated 

dose was not achieved. The majority of the 22 patients mounted an immune 

response and there was evidence of viral replication and tumour necrosis in some 

of the injected tumours (Ganly I et aL, 2000). Phase II studies, in patients with 

squamous cell carcinoma of the head and neck demonstrated disappointing 

efficacy with less than 15% demonstrating response to single agent <7/1520 

(Nemunitis J et aL, 2000).

Phase I and I/II clinical trials in tumour types other than head and neck squamous 

carcinoma using various delivery mechanisms, have demonstrated single agent 

<7/1520 to be relatively well tolerated. However, there is scant evidence to suggest 

efficacy when used alone (Nemunaitis J et aL, 2001; Hamid O et aL, 2003).

In vitro and in vivo data have suggested a potentially additive, possibly synergistic 

effect when <7/1520 is combined with Cisplatin-based chemotherapy (Bischoff JR 

et aL, 1996). A controlled clinical trial of patients with squamous cell carcinoma 

of head and neck investigated intratumoural injection of <7/1520 and adjuvant 5- 

FU and Cisplatin chemotherapy. The combination demonstrated improved 

response rates and delayed time to tumour progression when compared to virus or 

chemotherapy in isolation. There was no evidence of an increase in the toxicity 

profile when the treatments were combined (Khuri F et aL, 2000).
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In patients with progressive colorectal hepatic metastasis, partial response and in 

some instances disease stabilisation, were achieved following the infusion of 

<7/1520 via the hepatic artery with adjuvant 5-FIuorouracil and Folinic acid 

chemotherapy. Interestingly these patients had experienced tumour progression 

whilst receiving the same chemotherapy as used in the trial with <7/1520 (Reid T et 

aL, 2002). A synergistic, as opposed to an additive relationship between <7/1520 

and chemotherapy is not confirmed by either of the data sets.

Another adenovirus mutant has been developed by deletion of the El A region of 

the viral genome resulting in the mutant, dl922!9Al. Wild type viral El A protein 

binds to and inactivates the retinoblastoma protein (pRB), a protein involved in 

the regulation of normal cell proliferation. The inactivation of RB by El A, results 

in the cell continuing to replicate, thereby supporting adenoviral replication. 

<7/922/947 has been demonstrated to replicate selectively in human glioma cells 

that have abnormalities of the RB pathway (Fueyo J et aL, 2000).

A method of ensuring selective oncolytic replication of adenoviral infection is to 

have the El A protein expression under a tumour specific promoter. Prostate 

specific antigen, and alpha-fetoprotein promoters have been used to introduce 

tumour specificity and limit viral replication to prostate and hepatocellular 

tumours respectively (Rodriguez R et aL, 1997; Hallenbeck PL et aL, 1999). 

Prostate specific adenovirus, CN706, has undergone phase 1 clinical trial and was 

seen to be safe with evidence of intra-prostatic replication detected. Further 

studies are underway (DeWeese TL et aL, 2001).

4.2 Vaccinia Virus

Vaccinia virus is an enveloped, double-stranded DNA virus capable of lysing 

tumour cells as a result of viral replication in addition to inducing an anti-tumour 

immune response. Wild-type vaccinia virus is relatively safe in humans. It has a 

large genome (200kb) and is able to accommodate the insertion of transgenes into 

the region of the tk gene to make it selective for dividing cells. Phase I clinical 

trials of oncolytic vaccinia vims expressing tumour associated antigens 

interleukin 2 or GM-CSF, which stimulate the immune system, have been well
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tolerated. In patients with malignant melanoma, vaccinia virus expressing GM- 

CSF demonstrated evidence of local anti-tumour effects. Paitial responses were 

noted in a few patients and with one patient experiencing complete remission 

(Conroy RM et aL, 1999; Mukheijee S et aL, 2000; Mastrangelo MJ et aL, 1999).

4.3 Newcastle Disease Virus (NDVl

NDV a paramyxovirus, is a negative stranded RNA virus that in humans may 

generate a mild conjunctivitis. Recently it was demonstrated to inhibit the growth 

of tumour xenographs in mice following intratumoural injection (Phuangsab A et 

aL, 2001). In a recent phase I trial, intravenous injection of NDV (PV701) in 

patients with solid tumouis was well tolerated with clinical and radiological 

reports of response (Pecora AL et aL, 2002).

4.4 Reovirus

Reoviruses are double stranded RNA vimses which are naturally occurring 

oncolytic viruses and therefore do not require any engineering. Their selectivity 

for tumour cells is dependent on activation of the RAS signal-transduction 

pathway that is upregulated in many tumours. Intratumoural injection of reovims 

into tumour xenographs in the flanks of immunodeficient mice has demonstrated 

regression (Coffey M et aL, 1998). Intratumoural and intravenous injection of 

reovirus into colonic, ovarian and glioma cancer cell xenographs has resulted in 

tumour regression and improved survival in immunocompromised mice 

(Hirasawa K et aL, 2002; Wilcox ME et aL, 2001). Phase I clinical trials are 

awaited.
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4.5 Poliovirus

Poliovims is a positive stranded RNA virus that is capable of causing severe 

morbidity and mortality in humans with the clinical condition termed 

poliomyelitis. Through genetic manipulation, the neurotropic sequence has been 

deleted which has eliminated its neuiovirulence. In vitro data have demonstrated 

the ability of the virus to replicate in tumour cells and inhibit tumour growth in 

vivo (Gromeier M et aL, 2000). The mechanism of the resultant cytotoxicity is not 

understood. Phase I clinical trials are awaited.

4.6 Vesicular Stomatitis Virus (VSV)

VSV is a negative-sense RNA vims that is relatively asymptomatic in humans. It 

has been shown to replicate in tumour cells and inhibit the growth of tumour 

xenographs in immunodeficient mice. Although still not understood, the oncolytic 

capability of VSV appears to be enhanced by the presence of interferon (Stojdl 

DF et aL, 2000).

4.7 Herpes Simplex Virus (HSV)

Herpes simplex viral therapy is the most studied oncolytic treatment for brain 

tumours and represents the subject of this thesis. It is described in detail in the 

subsequent chapter.

5 Herpes Simplex Virus

5.1 Classification and Structure

Eight human herpesviruses have been identified, herpes simplex 1 (HSVl), herpes 

simplex 2 (HSV2), varicella-zoster virus (VZV), human cytomegalovirus 

(HCMV), Epstein Barr vims (EBV) and human herpes viruses 6,7 and 8. HSV-1 

has a similar structure to the other human herpes viruses. It is neurotropic and 

establishes a latent infection in the peripheral nervous system, which on 

reactivation causes cutaneous cold sore lesions. Infection of the central nervous
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system results in uncontrolled viral replication leading to potentially fatal 

encephalitis. The HSV-1 particle is approximately 150-200nm in size and 

comprises four key structures; core, capsid, tegument and lipoprotein envelope.

Core -  contains the dsDNA viral genome (approximately 153kb in size). 

Capsid -  approximately lOOnm in size and icosahedral in shape.

Tegument -  an electron dense proteinaceous matrix located between the 

capsid and the envelope. The proteins contained within the tegument 

appear to be involved in the induction of viral gene expression and the 

process of host cell protein synthesis shut off, immediately post infection. 

Envelope -  the outermost structure of the virus that is formed in the most 

part of lipids derived from the host cell membrane as the virus exits the 

cell. It consists of a trilaminar membrane, within which are contained 

approximately 11 virally encoded glycoproteins which enable viral 

invasion into a potential host cell.

E n v e l o p e

T e g u m e n t

C a p s id

D N A c o r e

Figures. 1; Structure o f HSV

5,2 HSV Genome

The 153kb genome is a linear double stranded DNA structure composed of two 

covalently joined segments; the long (L) and short (S) regions. Each region has a 

unique sequence of DNA (U l and Us) flanked by inverted terminal and internal 

repeat regions (TRl, IRl, TRg and IRs). The long and short regions can invert 

relative to one another creating four different isomers. The ‘a’ sequence is present
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as a direct repeat at the genomic termini and as an inverted repeat at the L-S 

junction {Figure 5.2).

t TRl U l IRi

‘a’ sequence

1IRs Us TRs 1

Figure 5.2; Organisation o f the HSV-1 genome

5.3 HSV Lvtic Replication Cycle

The binding of the viral particle to the host cell is mediated by three of the 

glycoproteins, gB, gC and gD, which are located on the surface of the virus 

envelope. The positively charged glycoproteins interact with the negatively 

charged heparin sulphate (HS) moieties on the cell surface proteoglycans. 

Following secure attachment, the virus particle fuses with the cell membrane 

which involves the viral glycoproteins; gB, gD, gH, gL and gK. During the 

process of fusion, the viral membrane is lost and the virion contents enter the 

cytoplasm. The majority of the tegument proteins leave the capsid, which is 

transported with the remaining tegument proteins via microtubules, through the 

host cell cytosol to the nucleus. On virus entry to cells, the viral genes are 

expressed in a regulated, temporal sequence. Viral Protein 16 (VP 16), present in 

the tegument of HSV-1, enters the host cell with the nucleocapsid and 

transactivates promoters that control gene expression and subsequent transcription 

of the immediate early (IE) proteins, ICPO, ICP4, ICP22, ICP27 and ICP47. 

Immediate early protein expression leads to the transcription of early (E) genes, 

which primarily encode enzymes involved in viral DNA replication. HSV DNA 

replication occurs by a rolling circle mechanism producing linear concatamers of 

HSV DNA. Finally late genes are expressed that code for structural components 

of the virion. Late gene expression leads to the assembly in the nucleus of capsids 

containing one genome equivalent. The process by which the viral particle 

acquires its trilaminar membrane is unclear. The capsid containing viral DNA,
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migrates to the nuclear membrane and is expelled with the nuclear membrane 

forming its outer membrane. The virions are transported to the cell membrane via 

the endoplasmic reticulum and egress from the cell into the extracellular matrix. 

The lytic replication cycle results in the destruction of the cell as hundreds of 

mature virions with the potential to infect neighbouring cells are released.

5.4 HSV Latency and Reactivation

Heipes simplex virus is a neurotropic virus, which has evolved to cause a latent 

infection in the peripheral nei*vous system of its human host. Typically HSV-1 

infects the buccal mucosa and travels along the axons of the trigeminal nerves to 

the trigeminal ganglia. Here it exits the replication cycle and enters a latent state 

seeming life long presence within the host. During latency the viral genome 

remains as a stable circulai' episome formed by the joining of the termini 

(Deshmane SL and Fraser N, 1988). The gene expression, present during lytic 

replication, is suppressed during latency. Remaining latency regions within the 

long repeat elements of the viral genome are the only genes expressed and encode 

RNA molecules called latency associated transcripts (LATs) (Branco F and Fraser 

N, 2005; Spivack J and Fraser N, 1987; Stevens JG et aL, 1987). The precise role 

of LATs is unclear however, given that they remain stably expressed during 

latency, it has been proposed that they aie required to establish and maintain 

latency and appear to have a role in preventing apoptosis of the host cell. In 

addition LATs appear to be involved in HSV-1 reactivation from latency (Stevens 

JG et aL, 1989; Roizman B and Sears A, 1996). The latency period can be 

interspersed with periods of viral reactivation following a stress response to a 

stimulus such as, ultraviolet light, hyperthermia, hoimonal fluctuations 

(menstruation) and elevations in cAMP. During reactivation viral proteins are 

made and infectious pailicles are manufactured that can result in clinical 

manifestation. The exact molecular pathways involved in the reactivation process 

are unknown (Roizman B and Sears A, 1996).
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6 Oncolytic Herpes Simplex Viruses

The HSV-1 genome is well characterised with a number of non-essential genes 

identified as being associated with neurovirulence. Due to the diverse range of 

cell types that HSV-1 can infect and its inherent lytic capability, a number of HSV 

mutants lacking certain non-essential virulence associated genes have been 

investigated as potential cancer therapies.

6.1 Thymidine Kinase Mutation

The first oncolytic HSV described has a deletion in the thymidine kinase gene. 

HSV-WZsptk causes a lytic infection in glioma cell tissue culture but is avimlent 

in normal mouse brain. In vivo murine studies demonstrated tumour volume 

reduction in subcutaneous and intracranial glioma xenographs. In some cases 

there was evidence of prolonged suiwival and even reports of complete cure 

(Martuza R et aL, 1991). At high doses however HSV-WZsptk was associated 

with fatal encephalitis. The major concern that halted the progression of HSV- 

W/sptk into clinical studies was the reduced efficacy of anti-herpes medication 

such as Acyclovir or Gancyclovir, which are reliant on thymidine kinase for 

conversion to the active metabolite. Other HSV mutants have been developed that 

are non-neurovirulent but maintain the inbuilt safety mechanism afforded by the 

intact thymidine kinase gene.

6.2 Ribonucleotide Reductase Mutation

The hrR3 virus contains an insertional mutation of the Kcoli lacZ cDNA into the 

ICP6 locus, which results in a ICP6-lacZ fusion protein that has no viral 

ribonucleotide reductase (RR) activity (Goldstein D and Weller S, 1988). It has 

markedly reduced neurovirulence and the lacZ expression allows the tracking of 

the virus in tissue. The RR mutation prevents the virus from replicating in normal 

tissue but in highly replicating tissue such as occurs in a tumour, the elevated
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levels of the host cell ribonucleotide reductase provides the deoxynucleotides 

necessary as substrates for viral DNA synthesis (Yamada Y et aL, 1991). In vivo 

intratumoural inoculation of hrR3 in rats bearing malignant gliosai'comas resulted 

in improved overall survival. The extension to overall survival vŝ as further 

enhanced if adjuvant gancyclovir was given (Boviatis EJ et aL, 1994).

6.3 ICP34.5 Mutation

To date the most neuroattentuated of any HSV mutants ai*e those with deletions of 

the RLl gene encoding ICP34.5, a protein thought to have more than one 

mechanism of action. The RLl gene is located in the long repeat (Rl) region and 

is therefore present in two copies per genome.

It has been shown that the 63 amino acid carboxyl terminal region of ICP34.5 

shares significant homology with two cell cycle regulation proteins (McGeoch DJ 

and Barnett BC, 1991). The proteins are mouse myeloid differentiation protein 

(MyDl 16), expressed following myeloid differentiation (Lord KA et aL, 1990) 

and hamster growth arrest and DNA damage protein (GADD34), expressed 

following grovrth arrest and DNA damage (Fornace AJ Jnr et aL, 1989). Although 

the mechanism of action of each protein is still uncleai*, it has been suggested that 

GADD34 and MyDl 16 may function to prevent cell protein synthesis from 

ceasing following cellular stress (Lieberman DA and Hoffman B, 1998).

It has been shown that one function of ICP34.5 is to overcome the block in host 

cell protein synthesis, which occurs in some cells (for example the neuroblastoma 

cell line SK-N-SH) as a response to viral infection. When these cells are infected 

with HSV-1 there is activation of interferon-inducible double stranded protein 

kinase (PKR). This activation results in the phosphorylation of eukaryotic 

initiation factor (eIF2a) and consequently inhibition of cellular protein synthesis 

(Gale M and Katze M, 1998). Expression of ICP34.5 allows wild type HSV-1 to 

overcome tliis block by interacting with protein phosphatase-1-alpha to 

dephosphorylate eIF2a thereby negating the effects of the antiviral PKR pathway
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(Chou J and Roizman B, 1992; Chou J et a l, 1995; He B and Roizman B, 1997). 

However, although the protein shut-off mechanism has been well characterised it 

does not fully explain the avirulence phenotype of ICP34.5-nuIl HSV.

In an experiment designed to demonstrate that the PKR pathway is the main 

mechanism by which ICP34.5 determines the virulence of HSV, Leib et al 

demonstrated restoration of virulence of an ICP34.5 deletion mutant in PKR 

knockout mice (Leib D et aL, 2000). However, the 17termA mutant they used is 

10,000 fold less attenuated than other ICP34.5-null mutants (Bolovan C et 

a/., 1994) making the claim for the restoration of virulence questionable.

An indication that the PKR pathway mechanism does not determine the 

avirulence of ICP34.5-null mutants comes from the work of Mohr et aL (2001). 

They isolated an ICP34.5-null mutant with a second-site suppressor mutation that 

overcomes the host cell protein synthesis block in SK-N-SH cells. The second-site 

mutation removes the Usl 1 late gene promoter resulting in the transcription of 

Usl 1 being under the control of the immediate early Us 12 promoter. Immediate 

early expression of the Usl 1 protein abrogates the host cell protein shutoff 

phenotype. However, the mutant remains as neui'oattentuated as other ICP34.5- 

null mutants following intracerebral inoculation, indicating that the protein 

synthesis shutoff phenotype is not the main determinant of virulence.

The work of Brown et aL has highlighted a different virulence determining 

function of ICP34.5. They showed that the replication competence of ICP34.5- 

null mutants is cell type and state dependent and that in the vast majority of cell 

lines investigated, ICP34.5-null HSV kills the cells by lytic replication and not by 

host cell protein synthesis shutoff (Brovm SM et aL, 1994a; Brown SM et aL, 

1994b). They have demonstrated that in general actively dividing cells are capable 

of supporting a productive HSV infection in the absence of ICP34.5 but that to 

produce a lytic infection in non-dividing cells HSV must express ÏCP34.5.

Brown et al have demonstrated that ICP34.5 and homologous region of MyDl 16 

complex with the cellular protein proliferating cell nuclear antigen (PCNA) 

(Brown SM et aL, 1997). PCNA is an accessory protein to DNA polymerase delta 

(Prelich G et aL, 1987) and it is postulated that, regulated by interaction with
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other proteins, it acts as a switch between the processes of DNA replication and 

repair (Cox LS, 1997). Brown et al therefore proposed that ICP34.5 interacts with 

PCNA to prime the cellular replication machinery to allow initiation of viral 

replication.

It has been shown that a HSV infection results in host cell DNA acquiring single 

strand breaks (Aranda-Anzaldo A et aL, 1992). It has been proposed that 

following this damage to cellular DNA, PCNA is rapidly recruited to the sites of 

damage within the nucleus to initiate DNA repair (Harland J et aL, 2003).

Immuno-fluorescence studies indicate that ICP34.5 co-localises with PCNA in the 

cell nucleus at early stages following viral infection and that later ICP34.5 

accumulates in the cytoplasm. It has been postulated that ICP34.5 switches the 

function of PCNA from repair to replication mode, which in turn supports viral 

replication. In non-dividing cells PCNA function is modulated by interacting 

proteins to allow only DNA repair processes. Therefore in non-dividing cells HSV 

requires the presence of ICP34.5 to switch the PCNA to DNA replication mode in 

order to initiate its own DNA replication. ICP34.5 is an absolute requirement for 

the replication of HSV in terminally differentiated (non-dividing) cells (Bolovan 

CA et aL, 1994). However in cells that are rapidly dividing, such as in a tumour, 

the quantity of PCNA is elevated and in a state that can support ICP34.5-null 

mutant replication.

6.3.1 Herpes Simplex Virus 1716 (HSY1716I

HSV 1716 is a mutant herpes simplex virus type 1 with a 759 base pair deletion in 

both copies of the RLl gene. The RLl gene is located in the long repeat region of 

the HSV genome and encodes the protein ICP34.5, a specific determinant of 

virulence. HSVl716 was derived from a spontaneous HSV 1714 in which the RLl 

deletion was initially isolated. However, HSV 1714 had mutations in Xba 1 

restriction enzyme sites and was negative. HSV 1716 was generated by 

recombining the region of HSV 1714 containing the RLl deletion into the parent 

strain HSV 17\ thus ensuring that HSVl716 was solely altered in the RLl gene 

(MacLean A et aL, 1991). HSV1716 replicates with the same growth kinetics as 

wild type HSV in most tissue culture cell lines but fails to replicate in central
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nervous tissue and does not cause encephalitis (Brown SM et aL, 1994a). RLl 

deletion mutants are the most neuroattentuated of any of the HSV mutants that 

have been isolated.

Early studies demonstrated that a deletion or mutation in the region of the RLl 

gene resulted in the HSV variants being unable to replicate in the central nervous 

system. Intracranial injection of less than lOp.f.u of wild type HSV 17  ̂caused 

encephalitis in immune competent Balb/C mice. In contrast HSVl716 at a dose of 

10  ̂p.f.u failed to demonstrate evidence of viral replication or encephalitis in the 

same model (MacLean A et aL, 1991). In addition HSVl716 was avirulent 

following ocular or intracranial inoculation in studies using severe combined 

immune deficient (SCID) mice. Wild type HSV17^was noted to be extremely 

virulent in the same model (Valyi-Nagy T et aL, 1994).

In vivo studies have demonstrated efficacy with HSVl716 in addition to safety. 

Melanoma tumour deposits were grown in the brains of immunocompetent C57B 

mice. Intratumoural HSV 1716 inoculation, 5-10 days after melanoma deposits 

were introduced, resulted in prolonged overall survival and in some cases tumour 

eradication. None of the mice experienced signs or symptoms suggestive of 

encephalitis. Immunohistochemical analysis of the tumours indicated that the 

replication of HSVl 716 was limited to the tumour, with no evidence of viral 

replication in the surrounding brain (Randazzo B et aL, 1995). Tumour regression 

was also noted when intracerebral deposits of human embryonal cai'cinoma cells 

(NT2) in nude mice were injected with HSVl716. Once again there was no 

evidence of HSVl 716 out-with the tumour deposit (Kesari S et aL, 1995).

Although HSVl716 is neurotropic, experiments have indicated that it can 

replicate in non-neuronal tissue in vivo. Intraperitoneal mesothelioma deposits in 

SCID mice demonstrated viral replication limited to the tumour. In addition there 

was a survival advantage seen in the mice that had been injected with HSVl 716 

(Kucharczuk J et aL, 1997).

Lasner et al called for caution in the use of ICP34.5 null mutants in severely 

immunocompromised patients after providing evidence of HSV antigen within the
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ependyma and sub-ependyma of nude mice following inti'aveiitriculai' injection of 

high doses of HSV1716. All of the mice injected with high doses of HSV1716 

died prematurely as did many of the mice injected with a slightly reduced dose 

(Lasner TM et aL, 1998). In addition, following injection of HSV 1716 into the 

ventTicular system of immuno-competent mice there was evidence of viral 

replication and destruction of the ependymal lining (Kesari S et aL, 1998).

These reports conflicted with the safety demonstrated in previous in vivo studies 

and although they indicate the need for caution in the use of ICP34.5 null mutants 

the concerns raised were not considered as a reason to halt the therapeutic 

application of HSVl 716. Clinical trials to date have confirmed the safety profile 

of HSVl 716 in humans,

6.3.2 R3616

This is another replication competent HSV mutant that is deleted in the region of 

the ICP34.5 gene. R3616 is derived from the F strain of HSV-1, unlike HSV1716, 

which is derived from the parent wild type HSVl7'*’ (Markert JM et aL, 1993). 

R3616 is capable of replicating in glioma xenographs in nude mice and remains 

avirulent with no evidence of encephalitis. Enhanced tumour cell kill when 

combined with ionising radiation has been demonstrated (discussed in more detail 

later). In vitro analysis of cultured samples of ovarian tumours from patients who 

were resistant to chemotherapy, demonstrated effective oncolysis with R3616 

suggesting that it may have a role in the adjuvant treatment in a number of solid 

tumoui's (Coukos G et aL, 2000).

6.3.3 R7020/NV1020

NV1020 is a multi-mutated, non-selected clonal derivative of the virus R7020. It 

was originally developed as a vaccine against HSV-1 and HSV-2. It has various 

deletions in the HSV joint region. Only one copy of the ICP34.5 gene is deleted 

and it has an intact ICP6 gene that encodes ribonucleotide reductase. In addition 

there is a deletion in the thymidine kinase locus that overlaps the promoter for the 

UL24 gene thereby preventing its expression. The L/S junction has a fragment of
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HSV-2 DNA inserted and an exogenous copy of the thymidine kinase gene under 

the control of the HSVl a4  promoter. These deletions severely attenuate the 

virulence, and has been suggested that it is safer than viruses with only one gene 

deleted. Its development as a vaccine was unsuccessful, however the in vitro and 

in vivo safety data highlighted it as a potential oncolytic viral therapy (Meigner B 

et aL, 1988). In primates known to be sensitive to HSV-1 it proved to be avirulent 

following inoculation in the brain (Meignier B et aL, 1990). Extensive in vitro 

characterisation has demonstrated its lytic replicative ability. In vivo analysis has 

demonstrated safety as well as efficacy in a number of different tumour types by 

various methods of delivery, namely intraperitoneal delivery to gastric cancer, 

intravesical treatment of bladder carcinoma, intratumoural injection into prostate 

cancer, intra tumoural injection of squamous cell carcinoma of head and neck and 

intrapleural delivery to non-small cell lung cancer (Bennet J et al., 2002; Cozzi P 

et al., 2001 ; Cozzi P et al., 2002; Wong R et al., 2001 ; Ebright M et a/.,2002).

In some scenarios NV1020 has proven more effective at lytic replication and 

reducing tumour burden than another HSV mutant G207, which has been 

investigated in clinical trials by the same research group (see below) (Cozzi P et 

al., 2002; Bennet J et aL, 2002). A phase I clinical trial administering NV1020 via 

the hepatic artery in patients with intrahepatic colorectal metastasis is reportedly 

underway (Fong Y et al., 2002).

6.3.4 G207

G207 derived from wild type HSV-1 strain F is deleted in both copies of the 

1CP34.5 gene in addition to the inactivation of the ICP6 gene by insertion of the 

E-coli Lac Z gene. ICP6 encodes the large subunit of the enzyme ribonucleotide 

reductase, required for viral DNA synthesis. This enzyme is particularly important 

to support efficient viral replication in non-dividing cells such as neurones, but 

not in rapidly dividing cells. The double mutation was thought to confer added 

safety by reducing the potential for reversion to the wild type. In addition mutants 

deficient in ICP6 were discovered to be more sensitive to antiherpetic agents such 

as Acyclovir and Gancyclovir (Coen DM et al., 1989).
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G207 has been demonstrated to be safe following intracerebral inoculation of 

nude mice and new world monkeys, up to doses of 1 x 10  ̂pfu. Neuro-attenuation 

and efficacy in terms of reduction in tumour volume and prolonged survival have 

been demonstrated in murine subcutaneous and intracerebral glioma xenograft 

models (Mineta T et aL, 1995). Intracerebral injection of G207 up to a dose of 

1x10^ pfu, up to 6 log units higher than the lethal dose of wild type HSV-1, was 

demonstrated into be safe in non-human primates (Hunter W et al., 1999). In vitro 

and in vivo studies demonstrated efficacy of G207 in other tumour cell types 

(Cozzi P et al., 2001).

In a phase I clinical trial of 21 patients with non-histologically proven recurrent 

malignant glioma, G207 was delivered by intra-tumoural injection. During the 

study the dose of G207 was escalated to a maximum dose of 3 x 10  ̂pfu. The 

maximum tolerated dose was not achieved. None of the patients demonstrated 

evidence of toxicity that could be attributed to G207. Complications that were 

identified amongst this cohort were considered not uncommon for such patients.

In line with the protocol, tumours were volumetrically analysed. In some patients 

a decrease in the amount of tumour enhancement at 1 month post-injection was 

detected. In one patient there was a 25% decrease in the enhancing mass between 

the post procedure scan and 1 month scan.

Five of the 21 patients were seronegative for HSV specific antibody, however 

only one patient seroconverted. Six tumour tissue samples were obtained from 

patients whilst they were still alive. Two of the tumour samples were positive for 

HSV-1 and la cZ h y  PCR, indicative of the presence of G207. Post mortem 

cerebral analysis from five of the patients was unremarkable with no evidence of 

encephalitis.

The clinical trial confirmed G207 to be safe following intratumoural injection into 

human malignant glioma (Markert JM et al., 2000). Further clinical studies are 

reportedly underway.
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6.3.5 JS1/ICP34.5-/ICP47-/GM-CSF (OncovexI

A novel virus strain was derived from a clinical isolate and deleted in both copies 

of the ICP34.5 gene. In addition ICP47 was deleted and the gene for GM-CSF 

inserted into the DNA backbone. The deletion of ICP47 changes the temporal 

expression of US 11 to an immediate early gene, as opposed to its normal 

expression as a late gene, apparently enhancing the mutant’s replication in tumour 

cells. In addition the deletion of the ICP47 gene removes the expressed protein’s 

role of blocking antigen presentation of HSV infected cells to the immune system. 

It is proposed that this, coupled with the insertion of GM-CSF should maximally 

stimulate the immune system following the release of tumour antigens generated 

by lytic viral replication.

In vivo studies have demonstrated the oncolytic properties of Oncovex in addition 

to enhanced, tumour specific immune response following viral intratumoural 

injection. Oncovex also appears to have afforded some protection to the mice 

following re-injection with tumoui" cells (Liu BL et al., 2003).

Liu et al claim that Oncovex is superior to other ICP34.5 deleted oncolytic viruses 

due to the fact that as a recent clinical isolate it has not been serially passaged 

over many years. This claim lacks claiity as elite stocks are always held at the 

lowest possible number of passages, as it is the number of passages undertaken, 

not the period of time over which they were performed that is important in the 

potential introduction of deleterious mutations. The claim that other ICP34.5 null 

mutants cannot infect, replicate and disseminate as well in human tumours as 

Oncovex is yet to be proved. Clinical trials began in 2002 in a number of tumour 

groups and the results are awaited.

7 Clinical trials in humans using HSV1716

In vitro and in vivo studies have demonstrated that HSV 1716 is safe in 

immunocompetent and immuno deficient animal models. The demonstration of 

tumour reduction in addition to evidence of viral replication within the tumours 

supported the move into clinical studies.
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7.1 High Grade Glioma

7.1.11^  ̂Phase I Trial in High Grade Glioma

The strategy of the first phase I study was to demonstrate the safety of HSV1716 

following intratumoural injection of malignant gliomas in humans.

Patients enrolled in the study had confirmation of malignant glioma by 

intratumoural biopsy. They had been treated with surgery and radiotherapy and 

following relapse had received palliative chemotherapy. HSV1716 was injected 

via intratumouial stereotactic injection. The initial input dose for first three 

patients was lO^pfu, the following three patients were injected with lO'^pfu and the 

remaining three patients were injected with the maximum dose, lO^pfu. Patients 

were observed initially in hospital and were then followed up in the outpatient 

clinic. The tumours were regularly monitored using MRI and SPECT to assess 

tumour volume.

The dose of HSV1716 was not escalated to achieve the maximum tolerated dose, 

as is current practice in conventional phase 1 studies with non-biological agents 

such as chemotherapy. Given that HSV1716 is a replication competent virus it is 

proposed that following rounds of replication the final titre within the tumour 

could be several orders of magnitude higher than the inoculated dose. 

Extrapolating in vitro data, it was proposed that an input titre of 10̂  pfu could 

produce 2x10^ pfii within 12 hours. Investigators felt that by using a dose of 

lO^pfu under optimal conditions, a level of cell kill could be achieved that would 

be detected in future efficacy studies. Using a novel agent such as HSV1716, 

which has the potential to produce non-specific and sporadic endpoints, requires a 

shift from phase I clinical trial design where the maximum tolerated dose is 

sought (Arbuck SO, 1996).

The study demonstrated that HSV 1716 could be injected intratumourally in 

immunocompromised patients at a dose of lO^pfu with no evidence of associated 

toxicity. One patient was seronegative for antibodies to HSV-1 prior to injection
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of HSV1716 and did not sero-convert. The other eight seropositive patients did 

not show an elevation in IgG or IgM antibody titre following injection. Post 

inoculation tissue was obtained from five of the patients. Examination of the 

tumour and surrounding brain did not demonstrate encephalitis or evidence of 

ongoing virus replication. There was no evidence by immunohistochemicai 

analysis of viral antigen or PGR evidence of viral DNA.

Although the study was not an efficacy study there have been some interesting 

long-term survivors. The expected survival following primary therapy is 

approximately 5 months, the continued suiwival of a number of the patients 

em’olled in the study is therefore of interest (Rampling R et ah, 2000).

Pt Age Sex Diagnosis
Survival post 

injection (mo)

1 22 M rGB 94*

2 48 M rGB 10

3 62 M rGB 3

4 34 M rGB 26

5 41 M rGB 6

6 63 M rGB 6

7 37 M AA 87*

8 65 F rGB 38

9 56 F rGB 2

Study to October 2005 * patient still alive

M = male rGB = recurrent Glioblastoma

F = female AA = Anaplastic Astrocytoma

Table 7.1.1; Patient details Phase 1 Trial
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7.1.2 2"̂  Phase 1 Trial in High Grade Glioma

The second phase I trial was undertaken as a ‘proof of principle’ study. Twelve 

patients with recurrent and newly diagnosed malignant glioma received a single 

intratumoural injection of HSV1716 at a dose of 10̂  pfu. The lesion was then 

surgically resected between 4-9 days after the injection. Patients were observed 

initially in hospital and were then followed up in the outpatient clinic. The 

tumours were regularly monitored using MRI and SPECT to assess tumour 

volume.

None of the patients enrolled in the study experienced any toxicity following 

intratumoural injection of HSV 1716. Infectious virus particles were detected in 

samples taken from the sites of tumour injection in two patients who were both 

HSV-1 seronegative. In one of the tumour samples more virus was recovered than 

was injected. Both patients subsequently seroconverted.

PGR analysis of tumour tissue detected HSV DNA in tumoui’ around the injection 

site from ten patients. In four of the ten patients HSV DNA was detected in 

tumour tissue distal to the site of injection. Semiquantitative PGR in one tumour 

tissue sample provided evidence that virus replication had taken place. In two 

patients (one seronegative and one seropositive), immunohistochemicai analysis 

of the resected tumour samples detected HSV antigen at the injection site. The 

evidence suggests that the presence of antibodies against HSV within the blood 

stream did not prevent HSV1716 from replicating within tumour tissue.

The conclusions from this study were that HSV1716 could replicate in malignant 

glioma in situ without causing toxicity. The clinical course of the patients enrolled 

in the study was unremarkable. None of the patients enrolled in the study is still 

alive (Papanastassiou V et ah, 2002).
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Pt Age Sex Diagnosis
Survival post injection 

(mo)

1 61 M rGB 9

2 49 F GB 23

3 57 F AA 10

4 40 M rGB 6

5 51 M GB 26

6 40 F GB 18

7 40 M GB 11

8 38 M GB 1

9 54 F GB 13

10 64 F rGB 13

11 51 M rGB 4

12 47 M GB 1

M = male rGB = recurrent Glioblastoma

F=female GB = newly diagnosed Glioblastoma

AA = Anaplastic Astrocytoma 

Table7.1.2; Patient details 2^^ Phase 1 Trial

7.2 Phase I Trial in Melanoma

As melanocytes are derived from the neural crest during foetal development, 

neurotropic HSV 1716 was considered a potential new treatment strategy.

Five patients, with stage 4 metastatic melanoma with peripheral tissue lesions 

were enrolled. In two patients the tumour nodules were injected once with 10̂  

pfu. The nodules in two further patients were injected with lO^pfli on two 

separate occasions. The fifth patient had two separate tumour nodules injected on 

four occasions with lO^pfu.

None of the patients experienced any toxicity associated with the intra-tumoural 

injection of HSVI716. Clinical examination revealed flattening of both tumour 

nodules in the fifth patient who had received four injections of HSV1716 into two
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tumour nodules. There was no evidence of moi*phological change in any of the 

other four tumour nodules from the preceding patients. All of the patients were 

seropositive for HSV prior to the HSV 1716 injection and there was no substantial 

change in their IgG or IgM titres during the trial.

On pathological analysis the tumour nodules of the three patients who received 

more than one injection were noted to have microscopic evidence of tumour 

necrosis. There was no evidence of necrosis in the adjacent normal tissue.

Immunohistochemicai analysis of all the tumour nodules demonstrated positive 

staining for HSV antigen confined to the tumour. There was no staining for HSV 

antigen seen in the surrounding normal tissue. None of the samples demonstrated 

evidence of live virus.

This study demonstrated that HSV 1716 could replicate safely in melanoma cells 

whilst leaving the surrounding normal skin cells unharmed. The extent of the 

immunohistochemicai staining suggested that the flattening of the tumour nodules 

was due to HSV 1716 induced tumour necrosis (Mackie R et ah, 2001).

7.3 Phase I Trial in Head and Neck (Squamous Cell) carcinoma

In a study of twenty patients with oral squamous cell carcinoma, HSV1716 was 

injected directly into the lesion. The tumours of the first five patients were 

injected with IxlO^pfu and resected at 24 houi's. The next five patients tumours 

were injected with 5x10^ pfu and then resected at 24 hours. The remaining ten 

patients all received an intratumoural dose of 5x10^ pfu with five tumours 

resected at 72 hours and the remaining five resected 2 weeks after the initial 

injection.

The procedure was well tolerated and there was no suggestion of toxicity 

associated with the intratumoural injection of HSV1716. Two of the patients were 

seronegative and the other 18 were seropositive. The two seronegative patients
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seroconverted between the 4* and 5* week post intratumoural injection of 5x10^ 

pfu.

PCR analysis detected HSV DNA in 2 tumours at the injection site and in one 

HSV DNA was also detected distal to the site of injection. Tumom samples 

analysed by either immunohistochemistry or in situ hybridisation failed to detect 

any evidence of HSV.

It has been demonstrated that HSV1716 is safe following intratumoural injection 

in patients with oral squamous cell carcinoma. The complete results of the trial are 

awaited (Mace A, personal communication).

8 Ionising Radiation

Ionising radiation has been used in the treatment of cancer for over a century. X 

and y rays constitute part of the electromagnetic spectrum. Quanta of energy are 

known as photons. Ionisation occurs when a photon of radiation has sufficient 

energy to eject one or more orbital electron from the atom or molecule. The 

photon of energy transferred to the molecule or atom may not displace an electron 

but rather excite it to a different energy level in a process called excitation.

X and y rays transfer their energy to the attenuating material and subsequently 

generate biological damage. In direct action the radiation is absorbed by the target 

DNA and disrupted. More firequently the damage is caused by indirect action.

In indirect radiation damage, photon energies used for example in the treatment of 

cancer produced by a cobalt-60 unit or linear accelerator, generate Compton 

scattering. This is where the incident energy is transferred to an electron as kinetic 

energy. The electrons produced are usually from H2O molecules and result in the 

production of radical ions.

H2O --------- ►H20  ̂ + e'
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This charged radical ion is very short lived and decays to an unchai'ged free 

radical.

The incident photon proceeds with reduced energy in an altered direction to 

generate more reactions. The production of large numbers of electrons within the 

absorbed material generates many more free radicals through various different 

reactions. The produetion of free radicals, in partieulai* H2O2 and HO2* generates 

the damage to nuclear DNA (Hall E, 2000).

DNA is the main target of radiation to produce a biological effect (Wallers RL et 

aL, 1997 Warters RL et aL, 1992). A break of only one DNA strand, a single 

strand break (SSB), appeal's to be readily repaired and of little biological 

significance. Less common yet more biologically significant is when both strands 

are broken, a double strand break (DSB). The repair of a DSB is complicated and 

can either occur by homologous recombination or non-homologous 

recombination. The predominant process in mammalian cells is non-homologous 

reeombination, which is prone to erroneous repair. Homologous recombination is 

known to be involved in cell signalling and is also regulated by the cell cycle 

(Valerie K and Povirk L, 2003).

The type of nuclear damage as well as the cellular repair process determines the 

response to ionising radiation. Cell death can occur via necrosis, apoptosis or 

mitotic death. Necrosis is a passive process in contrast to the programmed cascade 

of events identified in apoptotic cell death. Mitotic death occurs, when due to 

damaged chromosomes, mitosis fails to be successful (Cohen-Johnathan E et al, 

1999).

The sensitivity to radiation is influenced by the phase and progression of the cell 

cycle. If the damage exerted by the radiation can be repaired, the cell replication 

cycle will halt until repair is complete and then the cell cycle can continue. 

Ionising radiation can induce arrests in Gi, S and G2 phases of the cyele to enable 

repair process to occur. The Gi check point prevents the replication of damaged
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DNA before entry into S phase. The G2 check point (which is divided into early 

and late G2/M) (Xu B et aL, 2002) prevents the segregation of aberrant 

chromosomes during M phase (Kaufman WK and Paules R, 1996) If the damage 

is beyond repair then the apoptosis pathway machinery will be activated.

Ionising radiation induces the protein kinase activity of the ATM gene, which 

then phosphorylates many down stream targets such as p53, MDM2, CHK2 and 

BRCAl, which are involved in controlling cell cycle progression (Samuel T et aL, 

2002). Through the ATM gene the activation of p53 has been shown to induce 

apoptosis in addition to regulating the cell cycle to enable DNA repair. The 

induction of either pathway by p53 is a complicated matter and appears to be 

related to the quantity of the protein present at the time of DNA damage. If the 

cell is committed to apoptosis, then p53 activates the pro-apoptotic BAX protein. 

BAX protein in turn initiates the release of factors such as cytochrome C from the 

mitochondria. Cytochrome C then activates the caspase cascade, which leads 

ultimately to cell death (Mihara M et a l, 2003).

p53 induced cell cycle arrest is mediated through downstream activators such as 

growth aiTcst and DNA damage (GADD45) and p21, a Cip/Kip family of Cdk 

inhibitors. p21 protein binds to the cyclin-E-CDK2 complex and by 

hypophosphorylating the complex, arrests the cell cycle at the G]/S transition 

(Samuel T et aL, 2002 ). In addition p53 appears to be required to sustain G2/M 

arrest after DNA damage (Bunz F et aL, 1998). The ATM-CHK pathway is 

involved in the initiation of G2 aiTest. These various check points allow repair of 

DNA to occur.

For decades it has been thought that the response to radiation may be related to 

the phase of the cell cycle. Several methods have been used to synchronise cells 

and these studies have identified the phases of the cell cycle that differ in their 

response to radiation. Maximal response to radiation has been identified during 

mitosis and G2, less response during Gi and least response during the later stages 

of S phase. Cells that are in a resting state, Go, are found to be radio-resistant 

(Sinclair W et aL, 1968). It has been considered that using chemotherapeutic 

agents to synchronise cells into sensitive phases of the cell cycle could enhance
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the effect of ionising radiation (Minarik L and Hall EJ, 1994). Although, in vitro 

and in vivo data has been interesting there has been little clinical success 

(Lawrence TS., 2003). Ionising radiation itself causes cells to accumulate in the 

phase of the cell cycle preventing further mitotic division. This accumulation 

in G2 appears to be dose related. In addition, low dose radiation has also been 

shown to induce hypersensitivity in various cell lines (Bartkowiak D et aï., 2001). 

Fractionation of radiation has been shown to synchronise previously 

asynchronous cells into more sensitive phases of the cell cycle resulting in the cell 

population being more at risk (Geldolf AA et ah, 2003). Although the phase of the 

cell cycle clearly plays a role in the cell population response to radiation it appears 

that the different cell lines have different inherent radio-sensitivities 

(Deschavanne PJ and Fertil B., 1996).

Radiotherapy remains the mainstay of clinical management in the majority of 

tumoui’s and in particular has shown to be effective in treating high grade gliomas. 

Consequently we have sought to combine ionising radiation with oncolytic viruses 

in vitro and in vivo.
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9 Combination of Oncolytic Viruses with Conventional Therapy

Despite multi-modality treatment, no combination of surgery, radiotherapy or 

chemotherapy has proven effective for the treatment of HGG. Toxicity to normal 

tissue associated with the delivery of high doses of ionising radiation and 

chemotherapy limits the doses that can be used. Phase I studies using HSV 

mutants have failed to demonstrate any associated toxicity and combining the 

modalities should not, in theory, prove more toxic to the patient. It is noteworthy 

that unlike chemotherapy, which declines over time as the drug is excreted, the 

influence of a single dose of oncolytic virus should, under optimal conditions, 

increase over time as viral replication proceeds and progeny virus are produced.

9.1 Chemotherapy

Toyoizumi et al investigated the interaction between HSV1716 and four different 

chemotherapies in five different lung cancer cell lines. In vitro cytotoxicity assays 

demonstrated that HSV1716 exerted oneolytic activity in all the cell lines. In one 

of the cell lines, a synergistic relationship was detected when HSV1716 was 

combined with the chemotherapeutic agent. Mitomycin C (MMC). An additive 

relationship was demonstrated between HSV1716 and the other three 

chemotherapies. None of the chemotherapies was deleterious to HSV1716.

The synergy demonstrated between MMC and HSV 1716 was investigated in four 

different cell lines. In one cell line there was a synergistic relationship and an 

additive relationship with the other three. An in vivo murine xenograft model 

demonstrated an additive oncolytic effect between HSV1716 and MMC 

(Toyoizumi T et aL, 1999).

G207 has demonstrated enhaneed cell killing of rhabdomyosarcoma cell lines in 

vitro and in vivo when combined with Vincristine chemotherapy. The ability of 

G207 to infect and replicate was not hampered by the presence of Vincristine 

(Cinatl J et aL, 2003).
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The combination of G207 and Cisplatin demonstrated additive cell kill in murine 

xenografts of squamous cell carcinoma cells known to be sensitive to Cisplatin. 

Another squamous cell carcinoma cell line known to be weakly sensitive to 

Cisplatin demonstrated no increased cell kill over G207 alone. This observation 

suggested that G207 and chemotherapy were acting independently. There was no 

additional toxicity when the two modalities were combined prompting the authors 

to propose further research with other combination therapies (Chahlavi A et aL, 

1999).

Recent in vitro studies have demonstrated that HSV1716 is able to undergo lytic 

replication in a number of squamous cell carcinomas cell lines derived from the 

head and neck. In addition, isobologram analysis has shown an additive 

relationship in terms of cell kill between HSV1716 and Cisplatin chemotherapy in 

these cell lines (Mace A, personal comunication).

The obseiwation of additive and on occasion supra-additive cell kill when 

modalities commonly used in the treatment of cancer are combined with oncolytic 

agents is encouraging.

9.2 Ionising Radiation

Radiotherapy is the most effective treatment currently available in the 

management of malignant glioma. HSV null mutants, including HSV 1716, have 

been shown to infect, replicate and lyse malignant glioma cells in vitro and in 

vivo. The combination of the two modalities, killing tumour cells through 

different mechanisms may improve the outlook for patients with this disease 

without additional toxicity. Ideally if the two modalities were to have a synergistic 

relationship with regard to cell kill this would offer the patient the best chance of 

an improvement in overall survival.

The combination of large doses of external beam radiation and R3616 in nude 

mice glioma xenografts demonstrated enhanced tumour kill when compared to 

either modality in isolation. Human U-87 malignant glioma xenografts in mice
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were inoculated with 2x10^ pfu of the HSV mutant R3616, and after 24 or 48 

hours were exposed to ionising radiation. The dose of radiation used was 45Gy, 

delivered over two fractions of 20Gy and then 25 Gy. In another cohort of mice 

xenografts were injected with 2x10^ pfti on three consecutive days. The tumours 

were irradiated four hours after the second and third doses of virus. The doses that 

were used were far in excess of dose fractions used in clinical practice, which are 

in the order of 1.8-2Gy. The authors argued however, that doses of this magnitude 

were currently used in stereotactic radio-surgery. Each day the volume of the 

tumours was measured and was considered to have regressed if there was a 10% 

reduction in volume. Total regression was seen in 22 out of 33 treated mice. The 

results demonstrated a significant interaction between R3616 and ionising 

radiation in terms of tumour regression. It was shown that tumour reduction was 

greater when the HSV mutant and radiation were combined than the sum of either 

treatment in isolation leading the authors to conclude that the observed 

relationship was synergistic. In addition R3616 grew to a higher titre in irradiated 

tumours than in non-irradiated tumours. It was proposed that the enhanced effect 

following the combination was due to increased viral replication and 

dissemination of R3616 within the tumour (Advani SJ et aL, 1998). When the 

mutant R7020 was used the virus yield obtained from irradiated glioma cells was 

significantly higher than obtained with R3616. This is probably a reflection of the 

fact that R3616 is more attenuated than R7020.

Another study using a mouse xenograft model investigated the less attenuated 

HSV mutant R7020. In this study a different radiation schedule was adopted that 

more closely reflects the application of radiation in clinical practice. The 

xenografts were irradiated using 4Gy on Monday, Tuesday, Thursday and Friday 

over two weeks to a total of 32Gy. The first radiation dose was given 6 hours after 

inoculation with 2xl0^pfu of R7020. By using a combination of R7020 and 

ionising radiation the same group demonstrated a tliree fold volume reduction in 

chemo- and radio-resistant human epidermoid cell tumours compared to using 

virus or radiation alone (Advani SJ et aL, 1999).

Bradley et aL combined ionising radiation with R3616 in a hind limb and 

intracranial glioma xenograft model. The hind limbs of the mice were irradiated
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using the same schedule as detailed by Advani et al. (1999) up to a dose of 40Gy. 

The intracranial gliomas were irradiated three times a week for two weeks, to give 

6 fractions of 5 Gy totalling 30Gy. The first radiation dose was delivered 6 hours 

after the virus inoculation. In this series of experiments the authors were again 

able to demonstrate enhanced tumour growth delay with the combination of 

radiation and R3616 compared to either modality given in isolation. Statistical 

analysis of the intra cranial xenograft model indicated that the interaction was 

synergistic. Immunohistochemicai analysis demonstrated R3616 in both irradiated 

and non- irradiated tumours one day following virus inoculation. By three days 

the unirradiated tumours did not stain for R3616. In contrast at 12 days post virus 

injection the irradiated tumours demonstrated the presence of virus antigen 

(Bradley J et al., 1999).

In contrast to the above studies, there was no additive or synergistic enhanced kill 

when G207 (delivered either intratumourally or intravenously) was combined 

with radiation in prostatic carcinoma xenografts in athymic mice. Prostate 

carcinoma xenografts in mice treated with intravenous G207 alone regressed 

slower than when treated with intravenous G207 followed by fractionated 

radiation. By the end of the experimental period there was however no difference 

in the final tumour volumes or recurrence rates demonsti*ated between the virus 

alone, radiation alone and combination cohorts (Jorgensen TJ et al., 2001).

The scheduling of virus and radiation in this study was not identical to the studies 

where synergy had been observed. The authors did not feel however that the 

minor temporal differences between protocols could explain the failure to 

demonstrate a synergistic relationship between G207 and ionising radiation. They 

proposed that the observed differences were explained by differences in the 

tumour biology of different tumour cell types. In this study although radiation did 

not enhance the effects that G207 had on the tumour, it was not demonstrated to 

be deleterious. The authors noted that the xenografts remained sensitive to the 

effects of G207 following irradiation and from this observation they concluded 

that viral oncolytic therapy may best be reserved for clinical use after the failure 

of first line therapy such as radiation (Jorgensen T et al., 2001).
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spear et a l (2000) investigated the interaction with respect to cell kill between 

radiation and the HSV mutant hrR3 or wild type HSV strain KOS, in pancreatic 

carcinoma, glioblastoma and ceiwical carcinoma cell lines using an in vitro 

cytotoxicity assay. Cell survival was assessed using the MTT [3-(4,5- 

dimethylthiazol-2-yl)-2,5-diphenyl tétrazolium bromide] assay. In their in vitro 

experiments the cells were irradiated 2 hours prior to the addition of vims. 

Radiation, of various doses, combined with the various MOI of virus resulted in 

increased eell kill compared to either modality used in isolation. The observed 

relationship was however described as additive and not synergistic. A single cycle 

growth curve demonstrated an increase in viral yield from irradiated pancreatic 

carcinoma cells compared to non-irradiated cells.

These results were in conflict with the in vivo observations made by Advani et aL 

(1999) and Bradley et aL (1999). A number of reasons were proposed to explain 

this dichotomy. In the first instance they suggested that the in vitro experimental 

conditions and the assays used to demonstrate the additive relationship were not 

appropriate to detect a synergistic relationship between a replication competent 

vims and radiation. Secondly, hrR3, unlike R3616, is not dependent on cellular 

mammalian ribonucleotide reductase (mRR) for replication, therefore the induced 

elevation of cellular mRR following irradiation thought to enhance the replication 

and growth of R3616 was not necessary for hrR3 replication. Spear et al also 

proposed that the hrR3 may already have been replicating at full efficiency, thus 

the induction of cellular proteins due to ionising radiation may not have 

influenced the replication of hrR3.

In response to the observed synergistic relationship demonstrated with R3616 and 

ionising radiation Advani et al theorised that ionising radiation resulted in an 

elevated level of the cellular’ protein GADD34. GADD34 is known to complement 

the HSV replication viral protein ICP34.5 and may have supported the growth and 

replication of R3616, which is deficient in ICP34.5. As hrR3 is not mutated in 

ICP34.5, the induction of GADD34 following radiation would probably not 

enhance its lytic replication.
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spear et a l (2000) also suggested that the absence of a synergistic relationship 

between hrR3 and radiation was perhaps due to the inability to translate the 

relationship detected with other HSV mutants from an in vivo model to an in vitro 

model. The nude mice used in these experiments had some residual immune 

funetion. Irradiating the nude mice may have caused additional local immune 

suppression secondary to leukocyte or other effector cell toxicity enough to 

enabled the attenuated virus to replicate more efficiently and cause a more wide 

spread lytic infection. Alternatively the high doses of radiation employed by 

Advani et al, in the 1998 study may have caused the tumour xenografts to be 

sterilised. If there were static tumour volumes amongst the irradiated, non-virus 

infected, xenografts, combination with oncolytic vims might therefore be able to 

demonstrate tumour regression. It is also possible that cellular replication of the 

non-irradiated xenografts outpaced the rate of viral lytic replication thereby 

masking the effect of viral oncolysis when R3616 was administered in isolation.

HSV mutants, G207, R3616 and R7020 demonstrated cell kill of cervical cancer 

cells in vitro. The HSV mutants all generated cell kill through lytic replication. 

G207 was investigated in vivo and generated a significant reduction in tumour 

volume of mouse xenografts, which was further enhanced by additional injections 

of virus (Blank S et al., 2002). Using a cytotoxicity assay, supra-additive eell kill 

was achieved when G207 or R3616 was administered one hour after low dose 

radiation (1.5Gy or 3Gy) in cervical caicinoma cell cultures. An additive 

relationship was demonstrated when the same cell line was iiTadiated with the low 

dose radiation one hour prior to infection with R7020. Ionising radiation was also 

noted to enhance the replication of G207. A single cycle growth experiment with 

G207 in pre-irradiated cells resulted in a 4.45 fold increase in burst size compared 

to non-irradiated cells (Blank S et al., 2002). The data to support this were not 

presented and the authors omitted to indicate in which cell line this had been seen. 

Furthermore the increased burst size was noted after 48 hours, which in fact 

represents multi-cycle gi’owth. In vivo data demonstrated a significant reduction of 

cervical carcinoma xenografts in nude mice following treatment with low dose 

radiation (3 Gy) one horn* prior to G207 inoculation.
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Stanziale et al were the first group to demonstrate a relationship between G207 

and radiation in cell culture using a cytotoxicity assay (Stanziale S et aL, 2002). In 

HOT-8 human colorectal cancer cells the cell kill generated by a eombination of 

ionising radiation and G207 was greater than the calculated additive effect of each 

modality delivered individually. In this study, the tissue culture cells were 

irradiated immediately prior to virus infection. Using the same assay, it was also 

demonstrated that R3616 caused significant cell kill on its own. The authors stated 

that when R3616 and radiation were combined there was additional cell kill 

compared to the virus alone, however they did not specify if there was infra- 

additive, additive or supra-additive cell kill compared to the cell kill produced by 

radiation alone. The cell kill achieved with G207 on its own was significantly less 

than with R3616. When G207 was combined with radiation, the additional cell 

kill was more significant than with R3616 as G207 is clearly more attenuated than 

R3616.

A number of reasons for the increased cytotoxicty from combining ionising 

radiation and viral treatments were proposed. In the first instance a higher titre of 

G207 was achieved from a multicycle growth curve using irradiated HCT-8 cells 

than from un-irradiated HCT-8 cells. In addition the group demonstrated that the 

activity of cellular RR, necessary for G207 DNA synthesis, was demonstrated to 

be elevated 12 hours after exposure to radiation, but returned to pre-radiation 

levels by 24 hours. They also showed that following a radiation dose of 5Gy the 

expression of GADD34 was elevated, even 72 hours later. These results led the 

authors to postulate that the elevated levels of GADD34 induced by the radiation 

may, as a result of its homology with ICP34.5, prevent host cell synthesis shut off, 

thereby ensuring continued production of cellular proteins able to support a G207 

lytic replication (Stanziale S et aL, 2002).

Ionising radiation was seen to enhance the replication of the HSV mutant R7020 

in hepatoma xenografts (Chung S-M et aL, 2002). Tumour bearing flanks were 

injected with 2 x lO^pfu of R7020 and irradiated 6 hours after infection. At 

various intervals the tumours were excised and the viral titres determined. The 

viral titres were higher in the irradiated tumours of two different tumour cell 

types, Hep3B and Huh7 eells, however the difference was only statistically
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significant in the Hep3B cell type. Additionally, only Hep3B cells showed a 

greater reduction in tumour volume with a combination of R7020 and radiation 

than with either in isolation. Enlianced cell kill when the two modalities were 

combined was considered to be cell type and cell state dependent. The authors 

proposed that the lack of response in the Huh7 xenografts was due to the growth 

rate of the cells in this tumour outstripping the rate of viral lysis and lack of 

efficient spread of the virus ft om the injection site (Chung S-M et aL, 2002).

The mechanism of action for the documented synergistic association between 

ionising radiation and various replication competent HSV mutants is unknown. 

Stanziale et al demonstrated a rise in the activity of cellular ribonucleotide 

reductase in cells after exposure to radiation. They also demonstrated that by 

antagonising RR with hydroxyurea, viral production was inhibited (Stanziale S et 

aL, 2002). This adds weight to the proposition by those investigating RR mutants 

that an increase in cellular RR following ionising radiation can complement the 

defect in the virus thereby facilitating viral replication and the production of 

progeny virus to continue the infection further. The premise that radiation induces 

cellular genes encoding proteins that complement the defect in the virus is an 

attractive theory, although it appears that the association may be cell type specific.

At the outset of the research project, towards the end of 2000, no association 

between HSV1716 lytic replication and ionising radiation had been demonstrated. 

It was considered important to investigate this potential interaction, especially as 

HSV1716 was the replication competent HSV mutant in the most advanced 

clinical trials. Furthermore, there was no published data assessing the relationship 

between replication competent vimses and ionising radiation in an in vitro assay. 

The establishment of a reproducible in vitro assay that could determine the 

relationship between the replication competent ICP34.5 null mutant HSV1716 and 

ionising radiation in terms of cell kill formed the basis of the initial portion of the 

laboratory based research project.

The results presented in this thesis are separated into thiee sections detailing the 

three different strands that comprise the research that was undertaken.

67



The aims of this thesis are separated into three sections detailing the three 

different strands that comprise the research that was undertaken.

1. The aim of the first section was to investigate the safety of HSV 1716 

when injected into the brain adjacent to tumour following resection of high 

grade glioma in patients who then proceeded to receive further 

immunosuppressive therapy.

2. The aim of the second body of work was to develop a tissue culture system 

to investigate the possibility of enhanced cell kill when ionising radiation 

is employed in conjunetion with the ICP34.5 null mutant HSV1716 and if 

possible to elucidate the mechanisms responsible for the enhanced cell 

kill.

3. The third section of research was undertaken to investigate the reasons 

behind the selective replication phenotype of HSV 34.5 null mutants in 

different cell types and states. The strategy involved the development of 

stable cell lines expressing ICP34.5 with the aim of elucidating the 

mechanism of action of the ICP34.5 in the replication cycle of HSV.

Each body of work will be discussed individually.
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Chapter 2

Methods and Materials 

10 Clinical Trial Methods

10.1 Recruitment and Selection

The Institute of Neurological Sciences, sited at the Southern General Hospital in 

the South of Glasgow, is a tertiary neurosurgical referral centre serving the West 

of Scotland. The neurosurgical department receives approximately 150 new 

referrals each year of patients with a diagnosis suggestive of intracranial 

malignancy. Further investigation, imaging and surgical intervention, will reveal 

that approximately 75 of these new refen'als will be primary high-grade glioma.

The majority of these patients are referred to the Beatson Oncology Centre in 

Glasgow for consideration of further treatment; radiotherapy or chemotherapy, 

under the care of Professor R. Rampling (Professor of Neuro-Oncology). The 

Beatson Oncology Centre clinicians liase closely with the Neuro-Oncology 

surgeons and in particular Mr. V Papanastassiou. It is from this managed clinical 

network, that the ten of patients were selected.

Two patients were recruited from other national centres either as a result of direct 

clinician to clinician referral or direct patient contact with one of the principal 

investigators.

10.2 Inclusion criteria

1. Patients with histologically confirmed high grade glioma previously 

treated with surgery and radiotherapy and who were scheduled to undergo 

tumour decompression for recurrence.
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2. New patients with a clinical and radiological diagnosis of high grade 

glioma based on an appropriate clinical history, examination and imaging 

consisting of contrast enhanced CT or MRI. These images were 

interpreted by an independent neuroradiologist as showing a solitary 

malignant intracranial lesion suggestive of high-grade glioma.

3. Patients previously treated for low-grade glioma considered to have 

tumour recurrence suggestive of transformation to a high-grade lesion 

based on clinical history, examination and imaging. These patients were 

included in the study as newly diagnosed patients as they had no prior 

diagnosis or treatment for high grade malignancy.

4. Patients suitable for surgical resection.

5. Tumour bed amenable to inj ection with HSV 1716 without risk of 

intraventricular injection.

6 . Supratentorial tumour.

7. Age between 18 and 70 years.

8. Kamofsky status (KS) > 60.

9. Life expectancy > 8 weeks.

10. Able to give informed consent to take part in the research study.

11. Haematology

Hb > 10 gm/dl

WBC > 3 x 1 0 ^  (neutrophils > 1.0 x 10 )̂

Platelets > 100 x 10^/L

12. Renal function:

Creatinine: <1.5 mg/dl

13. Hepatic function:

Bilirubin < 1.5 x upper limit of normal

AST; ALT; <2 x  upper limit of normal

14. Coagulation function

PT/ INR; APTT normal
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10.3 Exclusion Criteria

1. Active acute infection

2. Other severe systemic disease

3. Pregnancy. (All fertile patients were using a reliable method of 

contraception throughout the duration of the trial.)

4. Previous treatment with viral therapy of any kind.

10.4 Pre-operative Investigations

10.4.1 Within Two Weeks of Operation

The following clinical details were compiled within 2 weeks of the proposed 

surgery and injection of HSV 1716:

• Clinical history;

Details of presenting complaint 

Past medical history 

Details of current medication 

General systemic enquiry 

Details of social circumstances

• Clinical examination;

General systemic examination 

Detailed neurological examination

• Laboratory investigations;

Haematology - Hb; WBC and differential; Platelets

Biochemistry - Urea; Creatinine; Na; K; Cl; HCO3

Hepatic function - Bilirubin; AST ; ALT ; Alkaline Phosphatase;

Protein

Clotting function - PT/INR; APTT

Serum antibody to herpes virus - Quantitative serum gamma

globulin levels

Urinalysis

Whole blood phenotype
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• Non-laboratory based investigations; Electrocardiogram

• Non- neurological radiological imaging; Chest x-ray

10.4.2 One Week Prior to Operation

The following investigations were performed within one week of proposed virus 

injection:

Neuro-radiological imaging;

• Magnetic Resonance Imaging (MRI) / Computed Tomographv tCTl 

Contrast enhanced MRI was the preferred imaging modality however 

some patients had a contrast enhanced CT scan as they were not able to 

tolerate the MRI due to noise or feelings of claustrophobia.

• ” "Tc HMPAO SPECT

Each patient underwent a routine **"’Tc'HMPAO SPECT scan. This scan

was used as baseline to allow identification of any areas of hyperperfusion 

in subsequent scans that would suggest herpes simplex encephalitis. Thus, 

in the clinical situation if encephalitis was suspected post HSV1716 

administration a ^^"^Tc'HMPAO SPECT scan was performed. In a wild 

type herpes simplex encephalitis, the characteristic acute appearance is 

temporal and frontal lobe hyperperfusion.

10.4.3 Twenty-four Hours Prior to Operation

The following investigations were performed after admission to the ward within 

24 hours before the procedure:

• Clinical history and examination (as detailed above)

• Laboratory investigations;

Haematology - as detailed above 

Biochemistry - as detailed above 

Hepatie function - as detailed above

Viral shedding assay - blood and buccal mucosa samples detailed 

below
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10.5 Informed Consent

Each patient was reviewed by an independent clinician to ensure that they 

understood the trial folly and were competent to give informed consent. This 

clinician was a neurologist who was not associated with the study in any other 

way. Consent was only obtained from the patient when the independent clinician 

was confident that the patient was competent to folly understand the proposed 

procedure and its potential complications. Initial contact was made between one 

of the principal investigators and the patient. Written information was left with the 

patient and only after a minimum period of 24 hours was written consent 

obtained. Consent was obtained for entry into the study and additional consent 

was obtained for the operative procedure.

10.6 Operative Procedure

On completion of the pre-operative investigations, provided the patient was still 

eligible, he or she was reviewed by an anaesthetist to ensure that they were 

suitable to undergo general anaesthesia. At the time of operation, anaesthesia was 

induced. The head was shaved and a skin flap incision made. A craniotomy was 

performed followed by opening of the dura. The tumour was identified 

maeroscopically. If this was not possible, then the tumour was identified with the 

aid of the Brain Lab Image Guided Surgery System. Access to the tumour was 

obtained by selective cerebrotomy with limited brain retraction. On visualising the 

tumour at operation, a biopsy was sent to neuropathology for intra-operative 

confirmation of high grade glioma by smeai* examination. The tumour was 

decompressed by central evacuation of the tumour core by suction. On removal of 

the central bulk of the lesion, the lining of the tumour cavity was debulked with 

the aid of the operating microscope and a cavitron ultrasonic aspirator. Following 

the removal of the tumour bulk, a resection cavity remained.

Immediately prior to the completion of the tumour resection the vial containing 

the virus was removed from storage and thawed rapidly to room temperature. The 

vial was inverted until the contents were mixed. A total volume of 1ml containing
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1x10^ pfu HSV1716 was drawn into a 1ml Becton and Dickinson Micro-Fine 

insulin syringe. The 1ml aliquot of HSV 1716 was then injected in 0.1- 0.2 ml 

aliquots at a depth of 5-10mm in approximately 8-10 sites around the resection 

cavity wall.

Any evident haemorrhage was controlled prior to closing the crainiotomy wound. 

The anaesthetic was reversed and the patient recovered in theatre recovery area. 

Vital observations and neurological function were recorded at 15-minute intervals 

for the first hour. Once the patient was considered clinically stable they were 

transferred to the neurosurgical ward where they were nursed in relative isolation 

for 7 days.

All operative intervention was undertaken by the principle investigating surgeon, 

Mr Papanastassiou. The aim of this was to ensure that the surgical technique was 

as consistent as possible.

10.7 Post-operative Assessment

The patients were monitored on the ward and recordings of pulse, blood pressure, 

temperature and neurological status were recorded 4 hourly. A general and 

neurological examination was performed twice daily. Blood samples were drawn 

for haematology and biochemistry analysis, a virus shedding assay and IgG and 

IgM quantification to detect any evidence of HSV1716 activity.

MRI, or CT (when MRI was not tolerated by the patient) with and without 

contrast was performed within the first three post-operative days. Thallium-201 

and ®̂ ™Tc’ HMPAO SPECT scans were perfoimed no later than the sixth post

operative day to detect any evidence of virus activity at the site of injection.

Provided that the patient was well and the investigations were satisfactory, he or 

she was discharged on the seventh post-operative day either to home or for further 

respite care.
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10.8 Long Term Follow Up

In line with the protocol, the patients were reviewed weekly for four weeks 

following discharge. In the case of two patients, this was not possible as they lived 

out with an acceptable distance to travel for review. In these cases, the clinical 

condition was sought by telephone directly from the patient and verified with their 

general praetitioner. At each clinic visit, a clinical history and general 

examination including a neurological assessment was performed, as were routine 

laboratory investigations (detailed previously). In addition, blood samples were 

taken to detect HSV DNA, and immunoglobulins as well as to perform a virus 

shedding assay.

Patients with recurrent disease (N=6) were offered chemotherapy. Patients with 

newly diagnosed disease (N=6) received cranial radiotherapy. Patients were 

additionally reviewed during adjuvant treatment in line with local clinical 

guidelines. These clinical assessments were designed to detect any possible 

interaction between the injection of HSV1716 and conventional treatment 

modalities.

After the first four weekly review period patients underwent a comprehensive 

clinieal review, routine laboratory investigations and analysis to assess virus 

activity. This was repeated monthly for a further two months. MRI or CT (with 

and without contrast), Thallium-201 and ^̂ "̂ Tc" HMPAO SPECT scans were 

performed between six weeks and two months following surgical resection and 

HSV1716 injection.

Patients then underwent review every two months for one year, thr ee monthly for 

the next six months and six monthly thereafter. At any time between reviews 

dictated by protocol, patients were reviewed when clinically indicated and 

appropriate investigations were performed. Review with imaging was kept in line 

with protocol until either evidence of progression clinically and/or radiologically, 

or death until February 2003.
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10.9 Toxicity Assessment

This study was primarily a phase I toxicity study. Each patient was assessed for 

evidence of toxicity associated with the administration of HSV1716. Assessment 

for evidence of adverse events commenced immediately following the injection of 

HSV1716. Any adverse event experienced by a patient was recorded.

Each adverse event was categorised by the clinical team to be related to;

• the administration of HSV1716.

• disease process.

• adjuvant therapy (Radiotherapy / Chemotherapy).

• unknown, where no cause could be conclusively identified.

Toxicity was assessed and recorded in relation to the Common Toxicity Criteria 

issued by the National Cancer Institute.

Serious adverse events (SAE), which constituted a toxicity of grade 3 or higher 

according to the NCI Common toxicities criteria, were reported to the Local 

Regional Ethics Committee (LREC) and to Gene Therapy Advisory Committee 

(GTAC).

10.10 Markers of Clinical Performance

At each clinical assessment the patient’s quality of life was assessed. The tests 

were designed to be simple and to generate the minimum amount of 

inconvenience for the patient. Detailed and time consuming tests were thought to 

be inappropriate given the burden of time already imposed on the patient.

As part of the neurological examination a mini mental state examination was 

performed to detect any change in cognitive function (appendix 1). In addition an 

overall level of function was assessed at each visit and scored according to the 

Kamofsky Rating Scale (Kamofsky D et aZ., 1948), which is used extensively in 

the assessment of patients with chronic conditions and malignant disease
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(appendix 2). The Barthel Score was used to assess the patient’s functional 

abilities at each clinical assessment (appendix 3).

10.11 Assessment of Response

Although this was primarily a Phase 1 toxicity assessment it was possible to 

monitor patients for evidence of response. Time to tumour progression and overall 

survival were recorded and compared to expected survival times for such a cohort.

Patients were monitored thi’oughout the study with régulai' imaging. All routine 

imaging was undertaken in the clinical neuroradiological department at the 

Institute of Neurological Sciences. When clinical circumstances dictated, imaging 

was undertaken at other centres. All images taken out-with the Institute of 

Neurological Sciences were reviewed by the neuroradiologist involved in the 

clinical trial.

Imaging involved MRI (or CT if the patient could not tolerate MRI due to 

claustrophobia), Thallium-201 SPECT and ^"’Tc'HMPAO SPECT. The MRI (or

CT) and Thallium-201 SPECT scans were used to detect any evidence of tumour 

recurrence.

10.11.1 MRI / CT

MRI is the prefeired modality to CT for a number of reasons. Firstly it is more 

sensitive in detecting blood brain barrier break down indicative of tumour growth, 

secondly T2-weighted sequences allow better identification of infiltrated brain 

and lastly MRI is not subject to the bone induced artefact which affects CT.

Pre and post gadolinium (Gd) enhanced 3D T1-weighted MRI volume collection 

was made. The volume of the tumour was determined using a slice by slice 

‘Region of Interest’ (ROI) ai'ea measurement technique where;

Volume = (area x slice spacing)
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Tumour edge detection has a crucial influence on the measurement of volume and 

was therefore only defined by an experienced imaging technician. Actual tumour 

edge is difficult to measure, the fluctuating margin associated with neovascularity 

induced by the tumour was taken as the surrogate marker of bulk cell division 

border. Tumour volume included all areas of Gd enhancement within the brain, 

including all separate “islands”.

Each patient underwent imaging pre and post-operatively. Thereafter they 

underwent detailed imaging at two monthly inteiwals for the first year and six 

monthly intervals thereafter. When clinically indicated, patients underwent 

imaging out with protocol guidelines.

The main aim of the imaging was to assess time to progression. Progression was 

confirmed when two INS neuro-radiologists agreed that the MRI or CT films 

unequivocally demonstrated one of the following;

1. 25% increase in the volume of contrast enhancing tumour

2 . a new mass lesion was identified.

10.11.2 Thallmm-201 SPECT

In addition to MRI / CT, patients had Thallium-201 SPECT imaging. Wlien 

progression as determined by MRI / CT was equivocal, Thallium-201 SPECT was 

used to confirm or refute the finding. Thallium-201 SPECT is not affected by non

neoplastic processes and can more specifically identify high-grade tumour 

recurrence.

Thallium-201 SPECT provides a semi-quantitative measurement of tumour 

volume using the same slice by slice ROI area measurement teclmiques used with 

MRI. The tumour edge was defined using a threshold technique as follows;

1. Noimal brain uptake was assessed in the contralateral hemisphere in at 

least thi’ee slices at the same anatomical level as the tumour.

2. All the areas in the brain were outlined when the uptake exceeded the 

threshold level (determined as being 1.7 x normal).
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3. The total ai'ea of the brain above threshold was calculated for each slice 

(excluding areas considered to represent normal uptake e.g. in the choroid 

plexus or the extracerebral soft tissue).

10.11.3 ’’■"Tc'HlVlPAO SPECT

Each patient imderwent a routine ^̂ “’Tc'HMPAO SPECT scan. This scan was used 

to identify any areas of hypeiperfusion that might be associated with herpes 

simplex encephalitis. Thus when encephalitis was suspected post HSV1716 

administration, a ^^"^Tc'HMPAO SPECT scan was performed. In a wild type 

herpes simplex encephalitis, the characteristic appearance is temporal and frontal 

lobe hyperperfusion. Similar patterns were sought on reviewing the images.

10.12 Serum Extraction

The blood samples were spun at 2000 revolutions per minute (rpm) in a bench-top 

Beckman-type centrifuge for five minutes at room temperature. The upper serum 

layer was removed and stored at -70 ^C. The remaining whole blood was stored at 

-20 °C.

10.13 Enzyme Linked Immunosorbent Assay (ELISA)

Serum obtained by the method above was assayed using the Virotech kit ‘Heipes 

simplex virus type-1 ELISA for the detection of human IgG and IgM antibodies’. 

Ten microlitres (pi) of serum was diluted in I ml of dilution buffer. lOOpl aliquots 

of diluted serum were pipetted into antigen coated microtitre wells. The wells 

were incubated at 37^C for 30 minutes to enable immune complex formation. The 

wells were then washed foui* times with washing solution to remove any unbound 

immunoglobulins. lOOpl of either antihuman IgG or antihuman IgM conjugated 

with sheep-horseradish-peroxidase was added to each well and incubated for 30 

minutes at 37^C to allow the conjugate to attach to the complex. The wells were 

then washed four times to remove the unbound conjugate. lOOpl of chromogenic 

substrate solution (3, 3’,5 ,5’-tetramethylbenzidine) was added to each well. The
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wells were incubated in the dark for 30 minutes at 37®C. A substrate reaction 

ensued producing a blue colour which was tenninated by adding 50 pi of acidic 

citrate stopping solution, resulting in the development of a yellow colour. Using a 

photometer the optical density (OD) was measured at 450/63Onm. The results 

were compared to six diluted sera controls provided with the kit [IgG (negative, 

positive and cut-off) and IgM (negative, positive and cut-off)]. A previously 

tested sample from the same patient was mn at the same time to allow 

normalisation of the results.

To calculate the Ig levels (in Virotech Enzyme units) the following formula was 

used;

VE = 10 x (OD (sample) / OD (cut-off control) }

A VE value of < 9.0 indicates a negative result; VE > 11.0 indicates a positive 

result.

10.14 DNA Extraction From Blood

DNA was extracted using the Nucleon Biosciences ST (soft tissue) Genomic 

DNA Extraction Kit (ST kit). Four millilitres (ml) of buffer (lOmM Tris-HCL; 

320mM sucrose; 5mM MgCL; 1% Triton X-100; pH 8.0) was added to 1 ml of 

blood. The tube was then shaken for four minutes at room temperature. This was 

spun in a Beckman bench top centrifuge at 2500 rpm (1300g) for 5 minutes at 

4°C. The supernatant was discarded and the resultant pellet resuspended in 0.5ml 

of reagent B to lyse the cells. This was vortexed briefly to resuspend the pellet. 

The suspension was transferred to a 1.5ml microfuge tube. 150 pi of 5 Molar 

sodium perchlorate was added to the suspension to deproteinise. The tube was 

inverted several times to mix. To extract the DNA, 0.5ml of Chloroform was 

added to the tube which was again inverted several times. To complete the 

extraction, 150pl of Nucleon resin was added to the mix. The resulting suspension 

was spun in a microfuge at 2000 rpm for one minute to pellet the Nucleon resin. 

The upper phase was removed to another 1.5ml microfuge tube to which 2 

volumes of absolute ethanol was added and the DNA precipitated by gently
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inverting the tube several times. The precipitate was centrifuged at 13,000 rpm to 

pellet the DNA and the supernatant was discarded. The DNA pellet was washed 

by adding 1 ml of 70% ethanol and inverting the tube several times. The 

suspension was spun and the supernatant discarded. The pellet was air dried to 

ensure that all the ethanol was removed and then resuspended in 50pl of nuclease 

free water. At this stage the DNA was ready to be used as a template for 

Polymerase Chain Reaction (PCR).

10.15 DNA Extraction From Tissue

DNA was extracted from tissue using a Nucleon Biosciences ST (soft tissue) 

Genomic Extraction Kit. The tissue was homogenised in 2.5ml of reagent A and 

centrifuged at 1500rpm. The supernatant was discarded without disturbing the 

pellet. To extract the DNA from the tissue the same method as indicated above 

was used.

10.16 Polymerase Chain Reaction

The procedure was set up in the ultra violet cabinet to minimize DNA 

contamination. Firstly the primers were made up as a InM/pl stock in sterile 

deionised water. The primers used were HS13 (ACG ACG ACG TCC GAC GGC 

GA) and HS14 (GTG CTG GTG CTG GAC GAC AC). These primers detect the 

UL42 locus of HSV (Puchhammer-Stockl et aL, 1990). The primers were added 

to 1.5pi lOmM dNTPs; 5 pi [lOx] Gibco buffer; 0.5pl Gibco Platinum Pfx 

Polymerase (Invitrogen); Ipl 50mM magnesium sulphate; Ipl 10-fold dilution of 

HS13; Ipl 10-fold dilution of HS14 and Ipl template DNA. This was made up to 

50 pi total volume in sterile, deionised water. When running a PCR reaction the 

template used was one of the following, a positive control (Ipl of 1716 DNA), a 

negative control (Ipl of sterile deionised water) or the sample DNA in which case 

1 pi of neat suspension was required. The PCR was run in a Techne Genius 

machine. The protocol involved running the PCR at 94*̂ C for 2 minutes followed 

by 32 repeat cycles of 94^C for 15 seconds, 72^C for 1 minute then 72®C for a 

further minute. After the 32 cycles the PCR ran for a further 2 minutes at 72®C. It
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was cooled to 4^C and stored. On completion of the PCR, 25 pi of the samples 

were mn on a 1% agarose gel along with size markers. A 278bp band indicative of 

HSV DNA was sought.

Semi-quantitative PCR assay was performed to indicate the number of viral 

genome copies present in the samples assayed. These results were normalized to 

the volume in which the extracted DNA was resuspended for the assay.

After PCR, 20pl of each reaction was electrophoresed on a 1% agarose gel and 

observed for a 278-bp band indicative of HSV. lOObp and 1Kb DNA markers of 

known concentration were run alongside the DNA samples to enable confirmation 

of the fragment size.

10.17 Infectious Virus Assay for Serum Samples

Serum was obtained in the manner indicated above. A suspension of BHK cells 

was plated onto 60mm diameter cultuie dishes at 3 x 10  ̂cells in 5ml of growth 

medium. They were incubated overnight at 37^C in 5% CO2 to give a confluent 

monolayer of cells the following day. The medium was removed and two hundred 

micro-litres of the sei-um samples added and incubated for 1 hour at 37®C to 

enable any vims present to adsorb. The plates were overlayed with 5ml of growth 

medium containing methylcellulose and incubated at 31^C, 5% CO2 for 3 days. 

After 3 days the medium was discarded and the plates were stained by adding 5ml 

of Giemsa. The Giemsa stain was left on for 30 minutes at room temperature and 

then washed off in cold water. Under the microscope the viral plaques were 

counted and a titre obtained.

10.18 Infectious Virus Assay for Swab Samples

Swab samples were obtained fr om buccal mucosa or skin lesions. The swab was 

transferred to the laboratory in a sterile Falcon tube. The swab was added to 5ml 

of ETC 10 and treated in an ulti'asonic bath for 5 minutes. The ECTIO was then 

filtered thi'ough a 0.2pl Acrodise to remove any contaminating micro-organisms. 

BHK cells were plated out at 3 x 10  ̂onto 60mm diameter culture dishes in 5ml of
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medium. They were incubated over-night at 37®C in 5% CO2. The following day 

the plates had a confluent monolayer. The growth-medium was removed and 5ml 

of the filtered solution was plated onto the BHK plates, incubated at 37^C, 5% 

CO2 for 1 hour and then transferred to the 3 l^C 5% incubator for 3 days. The 

plates were then stained with Giemsa and the viral plaques counted.

10.19 Infectious Virus Assay for Biopsv Material

The tissue for analysis was ground up using a glass homogeniser. The 

homogenised tissue was suspended in 1ml of ETC 10. This was treated in an 

ultrasonic bath for 5 minutes to disrupt the cells and release any infectious viral 

particles. After spinning the sonicated cell solution in a Beckman-type bench top 

centrifuge at 2000rpm for 5 minutes to pellet the cell debris, the supernatant 

which potentially contained virus, was decanted to be used to infect BHK cells. 

3x10^ BHK cells were plated out, onto 60mm diameter culture dishes in 5ml of 

medium. They were incubated overnight at 37^C in 5% CO2. The following day 

the plates had a confluent monolayer. The growth medium was removed and 

500pl of the neat supernatant and a 1 in 10 dilution of the neat supernatant was 

added to separate 60mm plates containing BHK monolayers. The plates were 

incubated for 1 hour at 37^C to enable any virus present to adsorb. The plates 

were then overlayed with 4.5ml growth medium containing methylcellulose and 

incubated at 31°C, 5% CO2 for 3 days. After 3 days the medium was discarded 

and the plates were stained with Giemsa. A microscope was used to count viral 

plaques and derive a titre.

10.20 Titration of Paired Vial

Prior to the injection of HSV1716 into a patient an aliquot of vims paired to the 

clinical vial was assayed to obtain an accurate titre. Sixty millimetre plates were 

seeded with 3x10^ BHK cells in 5 ml of ETC 10 and were incubated overnight in 

a 37^C incubator in an atmosphere with 5% CO2. The following day the 

monolayers were confluent. Serial 10-fold dilutions of the paired HSV1716 

aliquot were made in PBS/calf serum. The medium covering the BHK plates was 

discarded and 100pi of the serially diluted virus stocks were plated out onto the
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BHK monolayers. The plates were gently rocked to ensure coverage of the virus 

and were incubated at 37^C, 5%C0z for Ihour to enable virus adsorption. 5ml of 

ETMC 10% was then added to each plate. The plates were transferred to a 31°C, 

5%C02 incubator for 72 hours. Following this period the medium was discarded 

and 2-3ml of Giemsa stain added. The stain was left for 30 minutes and then 

washed off with water. The plaques were counted using a plate microscope.

The number of plaques corresponds to the titre in the following way;

For example;

50 plaques on a 10'  ̂plate = 5 x 10  ̂in the lOOpl innoculmn

As the titre is calculated in pfu/ml then the titre would be - 5 x 10  ̂pfu/ml

10.21 HSV Multicycle Growth Experiments in Tumour Samples

Tumom’ samples taken from all patients at the time of surgery, were dissociated 

using a scalpel and cultured in DMEM with 10% foetal calf serum and antibiotics 

at 37®C and 5% CO2. Depending on the size of the tumour sample, the cells were 

seeded into either one or two T175 flasks. The convention used was that the 

passage number increased by one, every time the cells were dissociated from the 

plastic ware with the trypsin and were re-plated. Cells from two T175 flasks were 

used to set up the virus growth experiments. Therefore in cases where only one 

flask was seeded initially, the cells underwent a 1:2 split (one passage) whereas 

those seeded into two flasks did not require to be passaged prior to seeding onto 

plates for the virus growth experiment.

To set up plates for the virus growth experiment, the tumour cells from two 

confluent T175 flasks were treated with trypsin, re-suspended in growth medium 

and counted. The suspension was diluted to a concentration of 1 x 10  ̂cells per 

millilitre, 2ml plated of the suspension was plated onto 35mm tissue cultui'c 

dishes and the plates incubated overnight at 37°C in 5% CO2. For the growth 

experiment, the assumption was made that on the following day all (2 x 10 )̂ of 

the seeded cells would have settled in the 35mm dish giving a confluent 

monolayer. However, on occasion these primary culture cells did not settle as well
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as established cell lines would be expected to do and consequently the cell 

numbers for the experiment were lower than calculated. The growth medium was 

removed from the plates and the cells infected with 100pi of either HSV 17’*' or 

HSV 1716 at a multiplicity of infection of O.lpfu/cell (assuming 2x10^ cells). The 

virus was adsorbed for 1 hour at 37^C after which the inoculum was washed off 

with 2ml of growth medium and the plates overlaid with a further 2ml. One plate 

was mock infected. The plates were incubated at 37°C and harvested at 0, 6, 24,

48 and 72 hours post infection. The samples were harvested by scraping the cells 

into the growth medium, transferring the whole sample to a plastic bijou bottle 

and freezing at -70^C until titration.

Prior to virus titration, the contents of the bijou bottles were thawed quickly in a 

water bath and then stored on ice. The samples were treated in a soni-bath to 

disrupt any intact cells and release the virus. The samples were serially diluted 

(10-fold) in PBS/5% calf serum, and lOOpl samples plated onto 60mm dishes of 

confluent BHK cells from which the growth medium had been removed. After 

incubating the BHK plates for 1 hour at 37^C they were overlaid with 5ml of 

growth medium containing methylcellulose and transferred to an incubator at 

31^C and 5% CO2. After 3 days, the medium was discarded, the plates treated 

with 2-4ml of Giemsa stain for >30minutes at room temperature and washed 

under cold water to remove the excess stain. The viral plaques were counted on a 

plaque-counting microscope and the titre calculated.

11 Laboratory Project Methods

11.1 Growth of Cells

11.1.1 BHKC12/13

BHK21/C13 were grown in 850 cm^ tissue culture roller bottles or T175 flasks 

containing 125 ml or 70ml respectively of ETC 10 medium at 37^C for 3 days in 

an atmosphere of 95% air and 5%C0 2 - The yield following harvesting from a 

confluent roller bottle is approximately 1x10^ cells and from a T175 flask was 

4 X lO^cells.
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11.1.2 3T6.373. MOG Cells

3T6, 373, MOG and UVW cells were grown in appropriate media at 37^C in an 

atmosphere of 95% air and 5% CO2. Cells were passaged as described in section 

11.2. Cells obtained from a T-175 flask were seeded in a 1 in 10 dilution in 70ml 

of appropriate medium.

11.2 Passaging of Cells

T-175 flasks or Roller bottles with 80-100% confluent monolayers were opened in 

a category 2 hood. Trypsin, stored in 2.5ml aliquots, was thawed from -20°C and 

mixed with 22.5ml Hanks Balanced Salt Solution (HBSS) to yield 10% (v/v) 

trypsin/HBSS solution in 25ml. The medium was decanted. 25ml or 12.5ml of 

Trypsin/Hanks Balanced Salt Solution (HBSS), was poured over each monolayer 

in the roller bottles or T175 flasks (respectively). It was then decanted after 30 

seconds. To encourage the cells to detach the roller bottle or flask was incubated 

at 37^C. The cells were resuspended in 10-20ml of the appropriate growth 

medium and used to seed further flasks or roller bottles.

11.3 Crvopreservation of Cells

Confluent cell monolayers were harvested as described above. The cell 

suspension was pipetted into a 10ml Falcon tube and spun at approximately 

lOOOrpm (Beckman centrifuge) for lOmin at 4®C. The supernatant was discarded 

and the cell pellet resuspended in the appropriate growth medium containing 10% 

DMSO. Aliquots of 1ml were pipetted into 1.5ml cryo-vials. These were packed 

in a well insulated container to ensui'e slow freezing. They were placed in a -70^C 

freezer overnight and were then moved to vapour phase liquid nitrogen for long 

term storage. If the cells were for example, BHKs from a roller bottle (~2 x 10*), 

they were resuspended in lOmls ETC 10% +10% DMSO. One 1ml aliquot of the 

resulting suspension at (2 x 10  ̂cells/ml) was sufficient to seed 1 roller bottle at a 

1:10 split. However, if  the cells were only capable of undergoing a 1:4 split, the 

resuspension volume was adjusted accordingly. In this case the cells from, for 

example a T175 flask, would be resuspended in 4ml of growth medium + 10%
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DMSO, so that upon recovery a 1ml aliquot would be sufficient to seed one T175 

flask.

11.4 Titration of Virus Stocks

Virus stocks were serially diluted 10-fold in ETC 10. lOOpl aliquots were added to 

confluent monolayers of BHK21/C13 cells on 60mm petri dishes, from which the 

medium had been removed. The plates were incubated at 37^C for 1 hour, to allow 

adsorption of the virus onto the cells. The plates were washed twice with PBS, 

before overlaying with 5ml ETMC 10% and incubated at 37^C for 2 days or 31^C 

for 3 days. Monolayers were fixed and stained with Giemsa stain at room 

temperature for >30mins. After washing, plaques were counted on a plaque 

counting microscope and virus titres calculated as p.f.u/ml.

11.5 Multicycle Growth Experiments

35mm plates were seeded with 2x10^ cells/plate in 2ml of growth medium at 

37°C with 5% CO2. The growth medium was then poured off and lOOpl of virus 

was added. The plates were returned to 37°C and 5% CO2 for 1 houi*. The plates 

were then washed with 2ml of growth medium and overlaid with a further 2ml. 

Plates were incubated at 37^C and harvested at the designated time points (0, 6,

24, 48 and 72 hours) by scraping the cell monolayer into the medium and 

transferring the suspension into a sterile bijou bottle. The samples were stored at -  

70^C until the experiment was complete. The samples were then thawed, 

sonicated and titrated.

11.6 MTS Cytotoxicity Assay

In vitro cytotoxicity was determined using a Celltitre 96® Aqueous One Solution 

Cell Proliferation Assay (Promega) in accordance with the manufacturers 

instructions. This solution contains an MTS tétrazolium compound, an analogue 

of MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tétrazolium bromide], which 

is bioreduced by cells into a coloured formazan product that is soluble in tissue 

culture medium. The production of formazan is proportional to the number of
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living cells; therefore the intensity of the produced coloui* indicates the viability of 

the cells.

Cell suspensions were prepared from 80% confluent T-175 flasks as described in 

section 11.2. Cells were seeded in 96-well plates at various cell densities 

depending on the cell type, in lOOpl volumes. The perimeter wells were filled 

with sterile water to aid humidification during the experiments. After overnight 

incubation at 37^C and 5% CO2, the medium was removed from all wells and 

when indicated HSV1716 or HSV 17  ̂of a certain MOI was added in lOOpl 

volumes.

If the experiment involved the investigation of radiation the wells were replaced 

with medium or medium containing virus. To irradiate the cells, the 96 well plates 

were placed on a tray under the head of the Cobalt source and a 0.5mm plastic 

sheet was placed on top in order to aid build-up of the dose to the cell culture at 

the base of the wells. The time of exposure to the ionising radiation was 

calculated from a pre-calculated dose rate. For each experiment a 96 well plate 

containing cells and medium alone acted as a control.

At various time points following incubation at 37^C and 5% CO2, the medium 

from six wells of the plates under investigation was aspirated dry and 100 pi of 

fresh medium added. Six control wells were also prepared with 100 pi of medium 

alone. lOpl of MTS was then added to each well. Optical density readings were 

taken at 480nm after 4 hours incubation at 37®C and 5% CO2.

The average value obtained from six wells with the ‘medium alone’ wells was 

subtracted from the average value obtained from six experimental wells. This 

value was used to calculate the number of viable cells in the experimental wells.

11.7 Restriction Enzyme Digestion

Plasmid DNA was digested using restriction enzymes in experimental conditions 

consistent with the manufacturer’s guidelines. Linearised DNA was separated
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using agarose gel electrophoresis. The DNA was identified under ultraviolet light 

then excised and purified.

11.8 Agarose Gel Electrophoresis

To identify the fragments of DNA obtained following restriction enzyme 

digestion, the linearised DNA was separated by an electrophoresis gel, containing 

Ethidium Bromide. lOpl of x6 blue/orange load dye was added to the elute 

obtained from the above digests and mixed by pipetting. Reservoirs in the gel 

were filled with the elutions obtained from the enzyme digests. In another 

reservoir, a lOObp DNA ladder was added. The gel was run at 60MeV for 90 

minutes. The gel was then viewed under an UV light and sections coiTcsponding 

to the DNA fragment sizes were identified and excised fi-om the gel.

11.9 Purification of DNA from Solution Obtained from Restriction Enzyme 

Digestion

Linearised DNA in solution was purified using the GFX PCR DNA and Gel Band 

Purification Kit (AMERSHAM). 500pl of Captuie buffer was added to a GFX 

column. The DNA solution obtained following the first digest was added to a 

GFX column and mixed by pipetting. The GFX column and collection tube was 

spun in a microcentrifuge for 30 seconds at maximum speed. The flow-through in 

the collection tube was discarded and the GFX column was replaced into the 

collection tube. 500pl of buffer-wash was added to the GFX column and 

centrifuged at maximum speed for 30 seconds. The flow-through was discarded 

and the GFX column was transferred to a new collection tube. 45pi of elution 

buffer (TE) was added to each column and incubated in a 37^C water bath for 1 

minute. The GFX column and collection tube was then spun at maximum speed 

for 1 minute. This last step was repeated. The contents were then tranferred to a 

fresh mirocentrifuge tube.
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11.10 Elution of Restriction Enzyme Fragments from Agarose Gel

Linearised DNA was purified from the gel fragments using the GFX PCR and Gel 

Band Purification Kit. The gel fragments were dissected into small pieces and 

transferred to a microcentrifuge tube that had been weighed. The microcentrifuge 

tube was then reweighed to calculate the exact weight of the gel. lOpl of capture 

buffer for each lOmg of gel was added to the microcentrifuge tube which was then 

vortexed for 2 minutes. The micorcentifuge tube was then incubated in a 60°C 

water bath until the agarose was dissolved. The dissolved gel was transferred into 

a GFX column in a collection tube and rested for 1 minute. It was then spun for 

20seconds at maximum speed. The flow-through was discarded. 500pl of wash 

buffer was added to the GFX column and this was centrifuged for 30seconds at 

maximum speed. The flow-through was discarded. The GFX column was 

transferred to a new collection tube and 20pl of elution buffer was added. This 

was incubated for 1 minute at room temperature. To recover the purified DNA the 

GFX tube was centrifuged at maximum speed for 1 minute.

11.11 Ligation Reactions

Linearised DNA inserts obtained from the purified gel were incorporated into the 

plasmid DNA tlirough ligation reactions. In a 1.5ml microcentrifuge tube 12pi of 

the insert was added to 2pl of plamid DNA, 2pl ligase and 4pl x5 buffer. The 

solution is incubated overnight at 16^C.

11.12 Transformation of Bacterial Cells

E-coli cells are recovered from -70^C. Two hundred micolitres were added to 

lOpl of the ligation reaction mixtures in 1.5ml microcentrifuge tube. The contents 

were put on ice for 20 minutes and then rewarmed at 37^C for SOseconds. The 

tubes were again cooled on ice for a further 2 minutes. Eight hundred microlitres 

of L-broth growth medium was added to each microcentrifuge tube. The contents 

were warmed at 37^C for 45 minutes. The contents were spun in microcentrifuge 

at 6500 rpms for 3 minutes. Nine hundred microlitres of medium was removed. 

The cell pellet was resuspended in the remaining 100pi of medium mixed. The
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cell suspension was plated onto agar plates containing lOOpl of Ampicillin /1ml 

agai*. The plates are left upside down at room temperature for 20 minutes before 

being placed inside a 37^C air bacteria incubator overnight.

11.13 Extraction and Purification of Plasmid from E.coli

Colonies that were able to grow on the ampicillin/agar plates were selected and 

individually transferred to a Falcon tube that contained 3ml of Lb and 0.01% 

Ampicillin. The Falcon tubes were put in a shaker at 37^C overnight. The 

following day the DNA was purified from the 3ml of culture using the GFX 

Micro Plasmid Prep Kit.

One millilitre of culture was transferred to a 1.5ml micro-centrifuge tube and spun 

in a centrifuge at full speed for 30 seconds to pellet the cells. The supernatant was 

carefully removed. This was repeated to give 2-3ml total volume of culture. The 

pellet was resuspended in 300pi of solution I with vigorous vortexing. 300pi of 

solution II was added and mixed by inverting the tube 10-15 times. 600pl of 

solution III was added and mixed by inverting the tube until a flocculent 

precipitate appeared. Inversion was repeated until the precipitate disappeared. The 

micro-centrifuge tube was spun at full speed at room temperature for 5 minutes to 

pellet the cell debris. The supernatant was extracted carefully and added to a GFX 

column within a micro-centrifuge tube and incubated at room temperature for 1 

minute. The micro-centrifuge tube was spun at full speed for 30 seconds. The 

‘flow through’ was discarded. 400pi of wash buffer was added to the GFX 

column and centrifuged at 60 seconds to dry the matrix prior to elution. The GFX 

column was added to a fresh micro-centrifuge tube and lOOpl of TE buffer was 

added. This was incubated at room temperature for 1 minute and centrifuged at 

full speed for 1 minute to obtain the purified DNA.

11.14 Transfection of Tissue Culture Cells

Tissue culture cells were added to the well of a six well plate and incubated at 

37^C and 5% CO2 for 24 houi's to achieve 80% confluence. The medium was then
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removed from all the wells. To two of the wells in the 6 well plate either 10pi,

25 pi or 50pl of plasmid in a total volume of 250pl of serum free medium was 

added. Six microlitres of lipofectamine 2000 (Invitrogen) made up to at total 

volume of 250pl with serum free medium was also added to each well. To each 

well a further 2ml of serum enriched medium is added. The cells were incubated 

for 24 hours at 37^C and 5% CO2. The cells were split in the usual manner and 

50% were transferred to a new 6 well plate. To each well, serum enriched medium 

containing Zeocin at a concentration of 1:10 was added. The cells were incubated 

for a further 24 hours and split once more. This procedure was continued until the 

population of cells in each well grew in the presence of medium containing 

Zeocin.

11.15 Preparation of Infected and Non-Infected Ceil Extracts

35mm plates were seeded with tissue culture cells at a required density and if 

indicated, infected with appropriate virus at vaiious MOI. The cells were 

incubated for either 24 or 48 hours at 37^C and 5% CO2. To harvest the cells the 

medium was removed and 500ml of boiling mix was added. The cells were 

scraped off and stored in a micro-centrifuge tube at -20^C.

11.16 Sodium Dodecyl Sulphate-Polvacrvlamide Gel Electrophoresis

Cell protein extracts were separated using 10% SDS-PAGE (2.5% (w/v) 

crosslinker). Cell suspensions were heated to lOO^C for 2 minutes in a heating 

block prior to loading on a denaturing acrylamide gel. Glass gel forming plates 

were washed and cleaned in ethanol before assembly. The gels were cast 

vertically in a tightly sealed sandwich, consisting of 2 glass plates separated by

1.5 mm thick Perspex spacers. The resolving gel mix was prepared using running 

gel buffer which contained 375mM Tris-HCL, pH 8.9 and 0.1% (w/v) SDS. The 

addition of 0.06% (w/v) ammonium persulphate (APS) and 0.04% (v/v) 

N,N,N,N’,tetramethlyenediamine (TEMED) polymerised the gel. 31.5 ml of 

resolving gel was poured gently between the glass plates, and a 2 ml layer of 

butan-2-ol was poured on top before setting. This excluded air and enabled
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polymerisation of the gel. When the gel had set, butan-2-ol was poured off and 

thoroughly rinsed to remove any residue before the stacking gel was poured 

between the plates. The stacking gel was composed of 5% acrylamide crosslinked 

with the same ratio of N,N’-methylbisacrylamide used in the resolving gel. The 

stacking gel buffer was formed by 0.11 Tris-HCL, pH6.7 and 0.1% (w/v) SDS. 

Ammonium persuphate and TEMED were added to the gel prior to pouring. A 

Teflon comb was positioned to form the wells for the samples. The stacker was 

allowed to set, the comb was removed and the wells rinsed with running buffer. 

The reservoir was connected and filled with running buffer. Each sample was then 

loaded into the wells and separated by electrophoresis for 3-4 hours at 55mA. A 

pre-stained molecular weight marker was included onto each gel for identification 

of protein bands.

11.17 Western Blotting

Following SDS electrophoresis, the gel was analysed by Western blotting to 

identify protein expression. The gel was removed from between the plates and the 

stacking gel discarded. While the gel floated in transfer buffer, the Bio-Rad 

blotting apparatus was assembled using a Hybond Electrogenerated 

Chemiluminescence (ECL) nitrocellulose membrane (Amersham). With 

everything submerged in transfer buffer, a sandwich was assembled: mesh, 

sponge, card, gel, ECL membrane, card, sponge, mesh. The apparatus was 

submerged into the buffer filled transfer tank, with the gel nearest the negative 

electrode and the proteins transferred over 3 hours at 250mA.

Following transfer, the blots were placed in 3% blocking solution composed of 

dried milk in PBS and 0.05% Tween 20 for 2 hours, which reduced non-specific 

binding. Following a gentle wash in distilled H2O, the blot was incubated in the 

primary polyclonal antibody (Ab-137 against ICP 34.5 protein), and incubated 

overnight on a shaker at 4^C. After three 10 minute washes in PBS+10 pi Tween- 

20 (PBS-T), each blot was incubated in secondary antibody (Anti-rabbit IgG 

Horse Radish Peroxidase conjugate) 1:1000 in PBS for 2 hours. After vigorous
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washing in PBS-T, followed by a 10-minute wash in PBS, the blots were then 

developed using ECL detection and exposed to Kodak X-OMAT film.

11.18 PCNA Localisation in Cell Lines

16mm cover-slips were sterilised by dipping them in 100% ethanol, blotting them 

to remove excess alcohol and then flaming dry. Two sterilised cover-slips were 

placed into a well of a 6 well plate. The wells were seeded with 2ml of cells 

suspension (0.5x10^ cells/well) and incubated at 37®C, 5% CO2, and serum rich or 

serum free medium overnight. The medium was poured off and the cell 

monolayers washed twice with PBS. The cells were fixed by removing the 

medium from the dish, washing three times with PBS. To visualise the bound 

PCNA, the cells were also washed in hypotonic solution (lOmM Tris-HCL, 

pH7.4, 2.5mM MgCL, 0.05% Nonidet P-40) for 10 min at 4^C. The cells were 

fixed by transferring the cover-slip to 2ml methanol for 10 minutes at -20^C. The 

methanol was poured off and the cells washed twice with 2ml of PBS. The cover- 

slips were blocked with PBS/1%BSA for Ihour at 4®C and washed thiee times 

with PBS. lOOpl of the primary antibody, monoclonal Ab PCIO, diluted to 1/1000 

in PBS/1%BSA, was added to each cover-slip and incubated at 4^C overnight.

The cover-slips were washed thiee times with PBS before adding the secondary 

antibody -  goat anti-mouse IgG (conjugated to Rhodamine) diluted 1/100 in 

PBS/1 %BSA, for 1 hour at 37®C. Each cover-slip was washed twice with PBS 

before being placed cell side down onto a drop of mounting fluid on a microscope 

slide. The edges of the cover-slips were sealed using nail varnish.

12 Materials

12.1 Cells

Baby hamster kidney: 21 clone 13 (BHK) cells (MacPherson I and Stoker M, 

1962) and mouse embryo fibroblast (3T6) (Todaro GL and Green H, 1963) cells 

were obtained from the European Collection of Cell Cultures (ECACC).

MOG-G-UVW (UVW) human brain astrocytoma, MOG-G-CCM human brain 

astrocytoma (MOG) (Frame M et ah, 1984) and U-373 MG (373) human
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glioblastoma astrocytoma (Ponten J, 1968) were obtained from the department of 

Radiation Oncology, Beatson Institute, Glasgow. All three cell lines are available 

from EC ACC.

12.2 Cell Culture Media

BHK21/C13 cells were grown in BHK-21 medium (Gibco) supplemented with 

10% newborn-calf serum (Gibco); 10% (v/v) tryptose phosphate broth (Busby et 

ah, 1964); 10,000 lU/ml penicillin (Gibco); 10,000 UG/ml streptomycin (Gibco) 

and 250 UG/ml amphotericin B (Gibco).

3T6 cells were grown in Dulbecco’s modified eagles medium (Gibco) 

supplemented with 10% foetal calf serum (Gibco); 10,000 lU/ml penicillin; 

10,000 UG/ml streptomycin and 250 UG/ml amphotericin B.

MOG cells were grown in Minimum Essential Medium (MEM) (Gibco) 

supplemented with 10% new bom serum; 10,000IU penicillin.

373 cells were grown in Minimum Essential Medium (MEM) supplemented by 

10% new born serum; 10,000UG/ml streptomycin 250UG/ml; amphotericin B; 

1% of MEM Sodium Pyruvate lOOmM (Gibco) and 1% MEM Non essential 

amino acids solution xlOO (Gibco).

EMC 10 composed of Eagle’s medium containing 1.5% carboxymethyl cellulose , 

10% new-born calf serum and 10% tryptose phosphate broth, was used during 

viral titrations.
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12.3 Viruses

Wild-type HSV-1 strain 17  ̂ (Brown SM et a l, 1973) and HSV1716 (MacLean A 

et ah, 1991) were used for laboratory studies. HSV1716 GMP grade, was 

prepared by Q1 Biotech, Glasgow and was used in the clinical trial.

12.4 Bacteria

E. coli used for cloning was the strain NM522. Bacteria were grown in L-broth 

(Lb) composed of, 170mM NaCl, lOg/1 Difco bactotryptone and 5g/l yeast extract. 

Bacteria from glycerol stocks were plated out onto L-broth agar (L-broth 

containing 1.5% (w/v) agar).

12.5 Plasmids

pGEM-34.5, (McKie E et aL, 1994), was provided by Dr.E. McKie. pGEM34.5 is 

the pGEM-3Zf(“) plasmid (Promega) into which has been cloned the Alul/Rsal 

HSV-1 fragment (bases 125074-126530) containing the RLl gene, its promoter 

and flanking sequences.

The plasmid pGFP-34.5 was generated by introducing the GFP gene excised from 

the pGEFP-C3 plasmid (Clonetech) cloned in-frame between the RLl promoter 

and the RLl gene in pGEM34.5. This was kindly donated by Dr. P Dunn.

pcDNA4/wyc-His was supplied by Invitrogen.

96



12.6 Enzymes

Restriction endonucleases were obtained from Promega and New England 

Biolabs. Buffers for the appropriate enzymes were supplied with the enzymes.

12.7 Solutions

12.7.1 Agorose Gel Reagents

TAE: 0.04M Tris, 0.14% acetic acid (v/v), 2mM EDTA (pH 8.0)

TBE: 89mM Tris. 89mM boric acid and 2mM EDTA

RE stop; lOOmM EDTA, 10% (w/v) Ficoll 400, 0.25% (w/v) Bromophenol

blue in 5x TBE

12.7.2 Tissue Culture Reagents

Tris-Saline: 140mM NaCl, 30mM KCL, 280mM NazHP04 , 1 mg/ml glucose,

0.0051% (w/v) phenol red, 25mM Tris-HCl (pH7.4), 100 units/ml 

penicillin, 0.1 mg/ml streptomycin 

Trypsin: 0.25% (w/v) Difco trypsin in Tris-Saline

HBSS: Hanks Balanced Salt Solution

12.7.3 SDS PAGE and Western Blot Reagents

Boiling Mix: 151 mM Tris-HCL (pH6.7), 6,28% (w/v) SDS, 0.15% (w/v)

(3-mercaptoethanol, 0.31% (v/v) glycerol, 0.1% (w/v) 

bromophenol blue.

Running Gel Buffer: 375mM Tris-HCl (pH8.9) and 0.1% (w/v) SDS 

Stacking Gel Buffer: O.IM Tris-HCl (pH6.7) and 0.1% (w/v) SDS 

Tank Buffer: 6.32% (w/v) Tris, 4% (w/v) glycine, 1.33% (w/v) SDS

Towbin Buffer: 20% (v/v) MeOH, 25mM Tris-HCl (pH8.3),

192mM glycine
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12.7.4 Cell Fixing Agents

PBS: 170mM NaCl, 3.4mM KCl, lOmMNa2HP04 , 1.8mM

KH2PO4

Hypotonic Solution: lOmM Tris-HCL pH7.4, 2.5mMMgCl2, 0.05% Nonidet

P-40

Fix Solution: 4% (w/v) Paraformaldehyde in 0.1% PBS (pH7.3)

100% Methanol

12.8 Plasmid Preparation

GFX Micro Plasmid Prep Kit -  Amersham Biosciences (UK).

GFX PCR and Gel Band Purification Kit -  Amersham Biosciences (UK).

12.9 Chemicals

All chemicals were of AnalaR grade and were obtained form BDH Chemicals 

Ltd, Poole, Dorset or Sigma Chemicals Ltd, Poole, Dorset.

Exceptions were:

APS and TEMED -  supplied from Bio-Rad laboratories.

Histoclear -  supplied by Fisher Chemicals 

Platinum® Vfx DNA polymerase, MgS0 4 -  Invitrogen

Supersignal® West Pico Chemiluminescent Substrate -  Pierce, Rockford, USA 

Giemsa -  Giemsa stain improved R66 solution ‘Gurr’

12.10 Cytotoxicity Assays

Cell viability was measured using Cell Titer 96 ©AQueous One Solution Cell 

Proliferation Assay (Promega).

Readings were taken using a Dynatech MR5000 96 well plate reader.
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12.11 HSV Antibody Detection Kit

HSV IgM and IgG detection was performed using Elisa Kit, Virotech, 

Russelsheim, Germany.

12.12 Human Blood and Tissue DNA Extraction Kit

DNA was extracted from clinical trial patients’ blood and tissue biopsies using 

Nucleon® genomic DNA extraction kit -  Amersham Biosciences (UK).

12.13 Antibodies

Rabbit polyclonal anti -  ICP34.5 (137) kindly provided by Dr. J. Harland and 

used in dilution of 1/100 to detect ICP34.5 and ICP34.5-GFP by Western blotting.

Mouse monoclonal anti-PCNA antibody (PCIO), obtained from Santa Cruz 

Biotechnology Inc. and used at a dilution of 1/1000. The secondary antibody was 

goat anti-mouse IgG conjugated to Rhodamine, obtained from Vector 

Laboratories and used at a dilution of 1/1000.

12.14 Equipment and Plasticware

Gibco Europe, Life Technologies Ltd, Paisley:

Nunc 1 ml cryotubes

Nunc 6 and 12 well tissue culture plates

Nunc 25 cm^, 75 cm^, 175 cm^ tissue culture flasks

Fisher Scientific UK, Loughborough:

Tissue culture dishes (35mm, 60 mm)

Leicestershire Corning Incorporated:

850 cm^ tissue cultm’e roller bottle
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Greiner Bio-One Ltd, Stonehouse, Gloucestershire^.

Micro-centrifuge tubes 

Universal bottles 

Bijoux bottles 

96 well plates 

Sterile pipettes

Becton and Dickson and Company:

BD Micro-Fine 1ml U-100 Insulin Syringe, 0.33mm (29G) x 12.7mm

12.15 Centrifuges

Volumes <1.5ml, up to 13,000rpm: Micro-centrifuge

Volumes 1.5ml-45ml, up to 13,000rpm: Beckman Centrifuge

12.16 Microscope

Images of cells were captured under a DMLB Fluorescent microscope using a DC 

200 digital camera (Leica) and Leica IM 500 software.

12.17 Film

Autoradiograph X-OMAT film for Western blots was obtained from Kodak. 

Autoradiographs were developed in an X-OGRAOH Compact X2.

12.18 Alcvon II Teletherapv Unit

Alcyon II Teletherapy Unit contains a 222 TBq (6000Ci) Co*̂  ̂source situated at 

the Beatson Institute, Garscube, Glasgow.

100



Chapter 3

13 HSV1716 Injection into the Resection Cavity Rim Following 

Surgical Resection of High Grade Glioma in Patients with 

Recurrent and de novo  Tumours

13.1 Introduction

Despite standard treatment, prognosis remains poor in patients with high-grade 

glioma and new therapies are required. The selectively replication competent 

herpes simplex virus, HSV1716 been shown to be safe and to replicate following 

injection into high-grade glioma (Rampling R et aL, 2000, Papanastassiou V et al 

2002). Safety had not been previously been demonstrated following injection into 

brain rather than tumour. This section presents a phase 1 study of patients with 

such a par adigm.

It is envisaged that HSV1716 will be used in combination with standard therapies. 

One possible application would be in patients who have undergone surgical 

resection but who have residual tumour that cannot be excised. Following 

resection there is tumour regrowth and we reasoned that these actively dividing 

cells could present an ideal environment for replication of HSV1716. In this phase 

one study, virus was delivered into the rim of the resection cavity. The aims of the 

study were to assess the safety of HSVI716 when injected into predominantly 

brain adjacent to tumour, but it also allowed an assessment of a delivery strategy 

in which replicating virus might ‘mop up’ residual tumour unable to be removed 

by surgery. Patients were closely monitored for toxicity associated with 

HSV1716. Although not designed to assess efficacy, longitudinal follow-up has 

allowed assessment of overall survival. Retrospective comparison of survival of 

similar patients not treated with HSVI7I6, as reported in the literature was 

possible.
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The study was performed in patients with newly diagnosed and recuiTent disease. 

The enrolment period of nine months was from April 2001 until December 2001. 

In that period twelve patients were enrolled, ten men and two women. The age 

range was from 33 to 66 with the average age of 48.5 years.

Six patients (patients 1,2,3,4,6,9) had previously received treatment for a proven 

tumour of glial origin. Four of these tumours had previously been categorised as 

WHO grade IV glioblastoma. Patient 4’s tumour was categorised as a WHO grade 

II Astrocytoma and patient 9’s tumour had been categorised as a WHO grade II 

Oligodendroglioma. The demographics of the patients and the treatment they had 

received prior to entering into the study is detailed in table 13.1.

The other six patients (patients 5,7,8,10,11,12) presented with de novo tumours 

thought to be high-grade glioma on imaging alone. Following formal pathological 

analysis of the tumour resected from patient 7, it was noted that the high-grade 

tumour had arisen from a region of low-grade tumour lying adjacent. Patient 10 

had been reviewed with serial imaging over 2 year's following the discovery of a 

low-grade lesion and the high-grade glioma was considered to have arisen from 

the malignant transformation of low-grade tumour. Therefore tumours found in 

Patient 7 and Patient 10 ai'e considered Secondary Glioblastoma.

Formal pathological analyses categorised ten of the tumours as WHO grade IV 

Glioblastoma. Patient 4’s tumour was categorised as a WHO grade III Anaplastic 

Astrocytoma. Patient 9’s tumour was categorised as a WHO grade III Anaplastic 

Oligodendroglioma.

Six of the tumours were located in the left hemisphere, five were located in the 

right hemisphere and one was noted to be a bi-frontal ‘butterfly’ tumoiu with new 

growth detected in the right frontal region.

Of the tumoui's in the left hemisphere two were in the temporal region, two were 

in the parietal region and two were in the parietal-occipital region. Of the tumours 

located in the right hemisphere two were in the frontal region, one was in the
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fronto-temporal region, one was in the temporal region and one was in the parietal 

region.
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The following section gives a detailed account of each patient that was eniolled 

into the phase 1 trial. Information is presented that details the preoperative, 

intraoperative and postoperative period. Laboratory findings for the duration the 

patients were observed are similarly presented. Each patient was followed up 

formally from the period of eni'olment to the time of death or February 2003 

whichever came first.

13.2 Patient 1

Patient 1 was a 61 year old man who experienced sudden onset headache in 

March 2000. He was diagnosed as having suffered a sub-arachnoid haemonhage. 

Over the subsequent two months he became confused with occasional periods of 

unsteady gait. A CT scan indicated a space occupying lesion in the left parieto

occipital region of the cerebral cortex. Pathological analysis of tumour samples 

obtained from stereotactic biopsy confirmed glioblastoma. Within the context of a 

clinical trial he received two cycles of Temozolamide chemotherapy prior to 

commencing a 6 week course of radical radiotherapy (60 Gray (Gy) in 30 

fractions). Less than six months later he developed weakness down his right hand 

side. Neurological imaging confiimed tumour progression.

Preoperative condition and intra-operative procedure

Prior to his operation patient one was steroid dependent. He demonstrated poor 

memory and concentration span. Neurological assessment indicated he had 

reduced power of the right leg and an unsteady small step gait rendering him 

wheel chair bound. Indices of function indicated his clinical condition to be poor 

with a Kamofsky Score (KS) of 60 and a Barthel Score (BS) of 8. His 

preoperative clinical condition fulfilled the minimum eligibility criteria indicated 

in the inclusion criteria. Laboratory investigations and preoperative work up 

investigations were otherwise unremarkable. In April 2001, 9 months following 

formal diagnosis of glioblastoma, he underwent cytoreductive sui’geiy and 

injection of 1 x lO^pfu of HSV1716 into the resection cavity wall [HSV1716, Lot 

No. 9731057, 1 x 10  ̂TCID 50/ml VialNo.23 1ml].
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Post operative clinical course

Post operatively there was no obvious neui'ological deficit or suggestion of 

toxicity associated with the HSV1716 administration. Throughout the first week 

he remained well with no clinical evidence of toxicity. After the initial 7 

postoperative days, he was transferred to the Beatson Oncology Centre for 

convalescence. During the second post-operative week he became progressively 

confused and refused adjuvant chemotherapy. His confusion was thought 

secondary to his steroid medication and this improved as the steroids were 

reduced. He was discharged to his local hospice for some respite care, thi'ee weeks 

following surgery and injection of HSV1716.

During this respite period, eleven weeks following surgery and HSV1716 

injection, he suffered a grand-mal seizure and was admitted to hospital. He 

required endotracheal intubation and ventilation. On neurological imaging there 

was no indication of tumoui’ recurrence. The seizures were controlled with anti

epileptic medication and he was discharged to the hospice. He remained on a 

regular dose of anti-epileptic medication and the steroids were gradually reduced. 

Over subsequent weeks he gradually improved clinically. This is reflected in the 

rise of KS and BS. Laboratory investigations were unremarkable. By the sixth 

post-operative month he was mobilizing independently and remained free from 

seizures.

Dui’ing the post-operative period, in line with protocol, he was due to commence 

systemic chemotherapy. Against medical advice he refused chemotherapy. His 

clinical condition however continued to improve over the subsequent months. His 

mobility improved and he maintained a good quality of life. There was no 

evidence of disease recurrence on routine imaging at February 2003, 22 months 

since surgery and injection of HSV1716 and 29 months following diagnosis.
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Markers of clinical performance

The following graphs present data on clinical performance up to the point when 

he was last reviewed in line with the protocol.

Kamofsky score
100

40 -

20
Months

Figure 13.2(i); Kamofsky Score patient 1

Barttwl

15 -

Months

Figure 13.2(H); Barthel Score Patient 1 

Laboratory Investigations

Paired vial titration

The sample of HSV1716 that was paired to the injected aliquot of HSV1716 had a 

titre of - 2.2 x 10* pfu/ml.
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HSV IgG and IsM bv ELISA
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Figure 13.2(iii); HSV IgG and IgM  Patient 1

According to the ELISA kit (Virotech) used to detect human HSV IgG and IgM 

Patient 1 was IgG and IgM positive for HSV antigen. A positive result is recorded 

if it is 11 VE units or greater. The IgG level before HSV 1716 injection was 

recorded as 11.3. The results show that there was a fall in the IgG titre following 

the injection of HSV 1716.

Polvmerise Chain Reaction (PGR) for evidence of HSV DNA 

Blood -  In line with the trial method indicated previously on each occasion that 

blood was obtained for assessment of HSV IgG and IgM it was also analysed for 

evidence of HSV DNA. On day 83 following HSV1716 injection HSV DNA was 

detected in blood by PCR analysis. This was the only sample received following 

admission to hospital following grand-mal seizures 78 days post surgery. There 

was no accompanying rise in HSV specific IgM or IgG. Due to the limitations of 

the PCR assay, it was not possible to distinguish between wild type HSV and 

HSV1716.

Virus shedding assav

Buccal swabs -  no evidence of live HSV has been detected.

Serum -  no evidence of live HSV has been detected.
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Imaging data

Imaging data from patient 1 is shown in figm*e 13.2(iv) which illustrates T2 and 

T1 weighted post contrast axial MRI of two adjacent sections at four time periods 

with similar thallium-201, SPECT sections. The images taken pre-resection and 

pre-vims injection (a) shows a large enhancing necrotic left parietal glioblastoma 

recurrence, suri'ounded by vasogenic oedema with marked thallium uptake. 

Images taken forty-eight hours after resection and vims injection (b) show a 

resection cavity with a moderate enhancing margin containing a fluid level 

surrounded by vasogenic oedema. No thallium uptake is present on the SPECT 

images. Follow-up at 6 weeks (c) indicates that the resection cavity has reduced in 

size with reduction in mass effect on the adjacent left lateral ventricle. There is 

minimal marginal enhancement and marked reduction in vasogenic oedema. On 

the SPECT images there is no thallium uptake. The imaging at 22 months post 

resection and vims injection (d) shows that the resection cavity is minute, with ex 

vacuo enlargement of the left lateral ventricle and no marginal enhancement. 

Once again there is no abnormal thallium uptake on the SPECT images to suggest 

tumour regrovrth.
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Figure 13.2(iv) a; Preresecîion and HSVl 716 administration

&

Figure 13.2(iv) b; 48 hours after tumour resection and HSVl 716 injection

a
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Figure 13.2(iv) c; Six weeks following tumour resection and HSV 1716 injection

Figure 13.2(iv) d; 22 months following tumour resection and HSV17I6 injection

r
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13.3 Patient 2

The second patient was a male aged 43 years. He was diagnosed with a bi-frontal 

‘butterfly’ glioblastoma in November 1999. At that time he underwent 

cytoreductive surgery followed by a course of radiotherapy (45Gy in 20 

fractions). He remained well until March 2001 when he began to experience 

tingling in his right aim and hand. These seizures were controlled with 

medication. Imaging indicated tumour re-growth in the right frontal region. He 

was emolled in the study in April 2001.

Preoperative clinical condition and operative procedure

On entry into the study his symptoms were controlled with steroid medication. 

Clinical examination revealed mild right papilloedema. Indices of clinical 

function were KS-90 and BS-20. Laboratory investigations and preoperative 

workup were unremarkable. He underwent extensive fi'ontal lobectomy and 

macroscopic excision of tumoui'. HSVl716 was injected into the resection cavity 

wall [HSV-1 1716 Lot No. 9731057 10* TCID 50/ml Vial No.3 1ml].

Post operative clinical course

Post operatively he made a slow recovery. Neurological examination revealed 

some left aim weakness. There were no signs or symptoms suggestive of toxicity 

associated with the virus. A few days following surgery, his wound was swollen 

and inflamed. In addition he was pyrexial and slightly confused. The wound was 

thought to be infected and was treated with appropriate antibiotics. The wound 

healed and he made a full recovery.

One week following discharge he developed a cough associated with rigors. He 

was noted to be pyrexial, tachycardie and tachpnoeic. Chest x-ray findings were 

consistent with an infective process. There was no evidence of an elevated white 

cell count or neutrophilia. He was commenced on appropriate antibiotics and 

given controlled oxygen therapy. He responded to treatment and was soon 

discharged home.
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In line with the protocol he was commenced on CCNU chemotherapy. After the 

second cycle of chemotherapy he experienced headache, vomiting and decreased 

consciousness. A CT scan indicated an increase in the residual tumour in the right 

frontal region. Tumour progression was confirmed 5 months following the 

surgery and HSVl716 injections. Further surgical intervention was not indicated 

and he rapidly deteriorated and died 6 months following the initial procedure.

Markers of clinical performance

The following graphs present data on clinical performance for the duration the 

patient remained in the study assessed using the Kamofsky score and Barthel 

score.
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Figure 13.3 (i); Kamofsky Score Patient 2
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Figure 13.3(H); Barthel Score Patient 2
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Laboratory Investigations

Titration of paired vial

The sample of HSVl 716 that was paired to the injected aliquot of HSV 1716 had a 

titre of - 3 X 10* pfu/ml.

HSV IgG and leM bv ELISA
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Figure 13.3(in); IgG and IgM  Patient 2

Patient 2 was sero-negative to HSV antigen prior to the injection of HSVl 716. He 

failed to mount an immune response. This was possibly a consequence of being 

iatrogenically immunosupressed with oral steroids through-out his follow up.

Polvmerise Chain Reaction (PCR) for evidence of HSV DNA 

Blood -  there was no evidence of HSV DNA detected in the blood.

CSF -  there was no evidence of HSV DNA in the CSF sample taken at the time 

that he had the craniotomy wound infection.

Virus shedding assav

Buccal swabs - no samples had evidence of live HSV.

Serum -  no samples had evidence of live HSV.

CSF -  there was no evidence of live HSV in the CSF sample taken at the time of 

the craniotomy wound infection immediately post surgery.
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13.4 Patient 3

The third patient was a 43 year old man. In June 2000 he began to experience 

headaches. Neuro-imaging indicated a lesion in the left temporal region. He 

underwent tumour debulking surgery followed by a radical course of radiotherapy 

(60Gy in 30 fractions) in July 2000. His symptoms of headache returned in April 

2001. MRI indicated tumour progression. He was entered into the study in June 

2001 .

Preoperative clinical condition and operative procedure

Despite tumour re-growth he was symptom free on a maintenance dose of oral 

steroids. Indices of clinical performance were KS-lOO and BS-20. There was no 

evidence of neurological deficit on clinical examination. Laboratory 

investigations and preoperative work up were unremarkable. He underwent 

further cytoreductive surgery in June 2001. At surgery the tumour was noted to be 

heavily calcified and adherent to dura and cavernous sinus resulting in some 

maeroscopic tumour being unresected. HSVl716 was injected into the resection 

cavity rim [HSV1716 Lot.No. 907.01 Dilution Lot 2 10* pfu/ml, 1ml dose 14.7.99 

Vial 2].

Post operative clinical course

In the immediate post-operative period he remained well with no new 

neurological deficit. There were no signs or symptoms suggestive of toxicity 

associated with the virus. Patient 3 lived out with Glasgow and as a result the first 

four weeks of his follow-up was conducted by telephone. During this time he 

indicated that he was well. At his 6-week hospital review he was noted to be 

lethargic and have reduced mobility. His wound was markedly swollen and 

‘boggy’ on palpation. Neurological examination revealed that he had reduced 

power in his right upper and lower limbs and fundoscopy revealed mild 

papilloedema. Contrary to medical advice he had rapidly reduced his oral 

dexamethasone. MRI indicated a CSF meningocoele but no evidence of tumour 

regrowth. His wound was aspirated and a lumbo-peritoneal shunt was inserted. He
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required three lumbar punctuies to remove excessive CSF. Dexamethasone 

medication was re-instated. Over the course of the next few weeks his lumbar 

spine wound dehisced. The lumbo-peritoneal shunt was replaced by a Ventriculo- 

peritoneal shunt. This procedure was uneventful. Over the course of the next few 

months he continued to reduce his oral steroid dose contrary to medical 

instruction. Consequently his clinical performance would deteriorate and to 

control his symptoms a higher dose of dexamethasone would have to be 

reinstated. He was commenced on CCNU chemotherapy following his surgery in 

line with the protocol.

In December 2001, six months following HSV1716 injection he developed 

expressive dysphasia. Clinical examination revealed new neurological signs, 

papilloedema, right homonymous hemianopia and diplopia on right and left lateral 

gaze. MRI indicated tumour progression. The tumour recurrence was not 

amenable to further surgery. He died 9 months following entry into the study.

Markers of clinical performance

The following graphs present data on clinical performance, assessed by Kamofsky 

score and Barthel score, for the duration the patient was in the study.

Kamofsky score

Months

Figure 13.4(i); Kamofsky Score Patient 3
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Barthel score
20«-#

Figure 13.4(11); Barthel Score Patient 3

Laboratory investigations

Paired vial titration

The sample of HSV 1716 paired to the aliquot of HSVl 716 injected had a titre of

1.1 X 10* pfu/ml

HSV IgG and IgM bv ELISA
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Figure 13.4(Hi); IgG and IgM  Patient 3

Patient 3 was seronegative prior to the injection of HSV 1716. On day 24 analysis 

of blood serum indicated that he had seroconverted.
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Polvmerise Chain Reaction (PCR") for evidence of HSV DNA 

Blood -  HSV DNA was detected in the serum on day 24 following HSV1716 

injection. Patient 3 was seronegative prior to the injection of HSVl 716 and sero

converted at the same time as PCR detected HSV DNA in his blood.

Virus shedding assav

Buccal swabs -  no evidence of live HSV was detected.

Serum -  no evidence of live HSV was detected.

13.5 Patient 4

This 40 year old man’s symptoms date back to 1997 when he began to experience 

auras. These were diagnosed as temporal lobe epilepsy. In 1998, imaging 

indicated a lesion in the right temporal region. He underwent macroscopic 

resection of the lesion and a radical course of radiotherapy (60Gy in 30 fractions). 

Pathological diagnosis confirmed an astrocytoma. In May 2001 he experienced a 

recurrence of auras and developed expressive dysphasia. Neuro-imaging indicated 

tumour recurrence and he entered into the study in June 2001.

Preoperative clinical condition and operative procedure

On entry into the study, patient 4 was clinically stable. Markers of clinical 

performance were KS-90 and BS-20. Neurological examination revealed a left 

upper quadrantic hemianopia. Laboratory investigations and pre-operative 

work-up were unremarkable. He underwent surgical resection following 

pathological confirmation of a high-grade glioma by smear preparation. Although 

the surgery was extensive, insular vessels limited deep resection. HSV1716 was 

injected into the resection cavity wall [HSV1716 Lot. No. 907.01 Dilution Lot 2 

10* pfu/ml, 1ml dose 14.7.99 Vial 3].
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Post-operative clinical course

Post operatively he recovered well with no new neui*ological deficit. There was no 

toxicity related to the HSVl 716 injection. Pathological analysis of the tumour 

identified it as an Anaplastic Astrocytoma. Post-operative laboratory 

investigations indicated a rise in the levels of the liver transaminases, alanine 

transaminase (ALT) and aspartate transaminase (AST). The levels returned to 

within the reference range over time. The rise was probably related to the 

anaesthetic procedure.

In line with protocol he received PCV combination chemotherapy up to the 

maximum of 6 cycles without any complications. He remained free from 

recurrence for 10 months post procedure when tumour recurrence was noted on 

routine MRI. The suspicion of tumour recurrence was supported by increased 

thallium uptake on the Thallium SPECT images. In line with cun’ent clinical 

practice he was offered second line chemotherapy, Temozolamide. He received 3 

cycles of Temozolamide. Due to symptoms associated with continued tumour 

progression, further Temozolomide was not indicated. Patient 4 died 15 months 

following the injection of HSVl 716.

Markers of clinical performance

The following graphs present data on clinical performance, as assessed by 

Karnofsky score and Barthel score, for the duration the patient remained in the 

study.
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Figure 13,5(i); Karnofsky Score Patient 4
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Barthel Score

Month

Figure 13.5(H); Barthel Score Patient 4 

Laboratory Investigations 

Paired vial titration

The sample of HSVl 716 that was paired to the injected aliquot of HSVl 716 had a 

titre of - 1.0 x 10* pfu/ml.

HSV IgG and IgM bv ELISA
I '
I Immunology Patient 4

3 40

Figure 13.5(Hi); IgG and IgM Patient4

Patient 4 was seronegative for HSV antibodies prior to the injection of HSV 1716. 

He mounted an immune response and by day 49 post injection had seroconverted.

120



Polvmerise Chain Reaction (PCR) for evidence of HSV DNA 

Blood -  no evidence of HSV DNA was detected by PCR despite evidence of sero

conversion on day 49 following injection of HSVl 716.

Virus shedding assay

Buccal swabs -  There was no evidence of live HSV.

Serum -  There was no evidence of live HSV.

13.6 Patient 5

This 49-yeai' old gentleman first developed symptoms in April 2001 following a 

fall whilst at work which resulted in the amputation of a finger. A month later he 

developed severe headaches that were not relieved by analgesia. Initially the 

headaches were considered related to the fall. By June 2001 he began to develop 

weakness in his right leg. Following an unexpected collapse he was admitted to 

hospital. A CT scan indicated a lesion in the left parieto-occipital region. He 

underwent a diagnostic biopsy prior to being enrolled in the study. This confirmed 

a Glioblastoma, WHO grade IV. He entered into the study in August 2001.

Preoperative clinical condition and operative procedure

On entry to the study patient 5 was clinically stable. Markers of clinical 

performance were KS-90 and BS-20. The right-sided weakness had resolved as a 

result of oral dexamethasone and he had no new neurological deficit. Laboratory 

investigations and pre operative work-up were unremarkable. Following 

macroscopic tumour resection HSV 1716 was injected into the resection cavity rim 

[HSV1716 Lot.No. 907.01 Dilution Lot 2 10̂  pfu/ml, 1ml dose 14.7.99 Vial 7].

Post operative clinical course

Post operatively he recovered well. There was no clinical evidence of toxicity 

associated with the injection of HSVl 716. Post-operatively he was noted to have 

a right homonymous hemianopia thought to be a consequence of the surgical 

intervention. He received a radical course of radiotherapy (60Gy in 30 fractions)
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in line with standard treatment of de novo Glioblastoma. Three months after virus 

injection and shortly after completing the course of radiotherapy, patient 5 

suffered a complex partial seizure which was medically managed using, 

Carbamazepine. Within one week of the seizures, he was re-admitted with pyrexia 

of unknown origin and a generalised rash. Clinical examination and laboratory 

investigations failed to confirm a diagnosis. There was no evidence of HSV DNA 

by PCR analysis (this test being sensitive at levels equivalent to 10  ̂pfu per ml) in 

blood or cerebrospinal fluid samples. Despite there being no evidence to implicate 

HSV 1716 in this illness, Acyclovir was administered as a precautionary measure 

as he continued to deteriorate clinically despite broad-spectrum intravenous 

antibiotics and supportive treatment. Following the Acyclovir, he remained 

unwell with a spiking temperature. Two weeks following hospital admission, a 

positive ELISA test for Candida antigen, confirmed invasive candidiasis. He was 

treated with intravenous Fluconazole and clinically improved.

Routine imaging four months post surgery and HSVl716 injection suggested 

tumour re-growth although clinically he remained well. Neurological examination 

was unremarkable. As he had just completed a course of radiotherapy and was 

continuing to recover form invasive candidiasis, no new treatment was instituted 

at that time. Over the subsequent few months he developed headaches, which 

were controlled with steroid. Magnetic Resonance Imaging 6 months following 

the procedure showed evidence of marked tumour growth. He was commenced on 

CCNU chemotherapy. He continued to deteriorate following the first cycle of 

chemotherapy and was unfortunately unfit to receive a second dose. He died 8 

months following tumour resection and HSV1716 injection.
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Markers of clinical performance

The following graphs present data on clinical performance as assessed by the 

Kamofsky score and Barthel score, for the duration the patient remained in the 

study.
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Figure 13,6(1); Karnofsky Score Patient 5

Barthel score
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Figure 13,6(ii); Barthel Score Patient 5

As indicted by the KS and BS his clinical condition deteriorated during his 

admission to hospital with ‘pyrexia of unknown origin’ although they did recover.
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Laboratory Investigations

Paired vial titration

The sample of HSVl 716 that was paired to the injected aliquot of HSV 1716 had a 

titre of - 7.5 x 10̂  pfu/ml.

HSV IgG and IgM analysis bv ELISA
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Figure 13,6(iil); IgG and IgM Patient 5

Patient 5 was seropositive prior to the injection of HSV 1716. During the period he 

was hospitalised with ‘pyrexia of unknown origin’, which began on day 78 post 

surgery and HSV 1716 injection, numerous blood samples were analysed for 

evidence of a change in antibody titre in response to HSV in the blood. No change 

in the antibody titre was detected.

Polvmerise Chain Reaction (PCR) for evidence of HSV DNA

Blood -  serum tested positive for evidence of HSV DNA on day 155 following 

HSV 1716 injection. There was no evidence of an immunological response on 

ELISA analysis in the serum.

CSF -  none of the samples analysed demonstrated evidence of HSV DNA.
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Virus shedding assav

Buccal swabs -  there was no evidence of live HSV in any of the samples.

Serum -  there was no evidence of live HSV in any of the samples.

Lip sore -  there was no evidence of live HSV in the sample analysed.

HSV replication assav in tumour samples

Tumour samples taken at the time of surgical resection were dissociated and 

cultured. After 17 days in culture and one passage a multicycle growth experiment 

was carried out.
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Figure 13.6(iv); Multicycle growth curve using tumour sample from  Patient 5

It is shown that the tumour sample from patient 5 was fully permissive for the 

growth of HSVl 716. The growth of HSVl 716 in the tumour cells was as efficient 

as the growth of wild type HSV. The yield of wt HSV and HSVl716 was 

approximately one log less than that of the same viruses in the fully permissive 

BHK cell line. Although the cell suspensions were counted prior to plating this is 

probably a reflection of fewer tumour cells compared to BHK cells. Therefore the 

reduction in virus yield probably reflects the number of cells available for viral 

replication rather than a reduction in permissivity of cells for viral replication. 

3T6 cells are included in this experiment to act as a control. HSV 17  ̂ is known to

125



replicating in 3T6 cells, where as it is recognised that 3T6 is not permissive to 

HSV1716 replication.

13.7 Patient 6

The sixth patient was a 58 years old female. In February 2000 she developed left 

paitial motor seizures. Imaging at that time identified a right parietal lesion, 

thallium scan negative and considered to be of low grade. She was kept under 

surveillance by routine imaging. By November 2000 tumour growth was 

confirmed on imaging. She underwent craniotomy and excision of the lesion. 

Pathological analysis confirmed the tumour to be a glioblastoma. Surgery was 

followed by a radical course of radiotherapy (60Gy in 30 fractions). She remained 

well and independent until August 2001 when she began to experience weakness 

down her left hand side. In addition she had word finding difficulties and loss of 

memory. Imaging confirmed the clinical suspicion of tumour recurrence. Of note 

in her past medical history was a diagnosis of breast cancer in 1994 for which she 

had surgery and radiotherapy.

Preoperative clinical condition and intra-operative procedure

Her pre-operative clinical assessment indicated a mild left sided weakness.

Indices of function indicated that her clinical condition was satisfactory, KS of 90 

and a BS of 19. Laboratory investigations and preoperative work up were 

unremarkable. High-grade glioma was confirmed intra-operatively by smear 

preparation. Following maximal cyto-reductive sui'gery she received HSV1716 

into the cavity rim [HSV1716 lot No.907.01 Dilution Lot 2 10  ̂pfu/ml, 1ml dose 

14.7.99 Vial 8].

Postoperative clinical course

Post operatively, neurological examination confirmed extension of the left sided 

hemiparesis, in addition to a left upper motor neuron seventh nerve palsy and left 

homonymous hemianopia. There were no signs or symptoms of toxicity 

associated with the HSV1716 administration. The neurological changes were
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considered secondary to the cytoreductive surgery. Patient 6 was unable to be 

discharged home due poor clinical performance status and required respite care.

As she had recurrent disease she received a cycle of CCNU chemotherapy, in line 

with protocol. Two months following the operation the left sided weakness 

became more pronounced and imaging indicated further tumour progression. Her 

symptoms progressed rapidly and she did not receive any further chemotherapy. 

She required hospice care in the later stages and died three months following the 

surgery and HSV1716 administration.

Markers of clinical performance

The following graphs present data on clinical performance as assessed by the 

Kamofsky score and Barthel score, for the duration the patient remained in the 

study.
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Figure 13,7(i); Kamofsky Score Patient 6
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Figure 13.7(H); Barthel Score Patient 6

As can be seen by the above graphs soon, after surgery her clinical condition 

deteriorated and this is highlighted in the reduction in the scores of function.
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Laboratory Investigations

Paired vial titration

The sample of HSV1716 that was paired to the injected aliquot of HSV1716 had a 

titre of -  8.3 x 10'* pfu/ml.

HSV IgG and IgM by ELISA
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Figure 13,7(iii); IgG and IgM Patient 6

Patient 6 was sero-positive for HSV IgG and IgM. Subsequent results were 

unremarkable.

PCR evidence of HSVDNA

Blood -  there was no evidence of HSVDNA in any of the samples taken.

Virus Shedding Assay

Buccal mucosa -  there was no evidence of live HSV in any of the swabs 

analysed.

Serum -  there was no evidence of live HSV in any of the samples taken.

HSV replication assav in tumour samples

Tumour samples taken at the time of surgical resection were dissociated and 

cultured. After 87 days in culture and one passage, a multicycle growth 

experiment was carried out.
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It is shown that the tumour sample from patient 6 was fully permissive for the 

growth of HSV1716. The growth of HSV 1716 in the tumour cells was as efficient 

as the growth of wild type HSV. The growth of wild type HSV and HSV 1716 was 

approximately one log less than that of the same viruses in the fully permissive 

BHK cell line. Although the cell suspensions were counted prior to plating this is 

probably a reflection of fewer tumour cells compared to BHK cells. Therefore the 

reduction in virus yield probably reflects the number of cells available for viral 

replication rather than a reduction in permissivity of cells for viral replication. The 

3T6 cell line was used as a control for HSV 17  ̂and HSV1716 growth.

13.8 Patient 7

This 40 year old man presented in July 2001 following the onset of vomiting in 

addition to headaches and left arm weakness. In September he developed a left 

upper motor neurone facial palsy. Neurological imaging demonstrated a lesion in 

the right frontal region. He was enrolled into the study in September 2001.
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Preclinical condition and intra-operative procedure

On entry into the study, he was clinically stable with his symptoms maintained on 

dexamethasone. Indices of clinical performance were KS-90 and BS-20.

Neurological examination revealed a left upper motor seventh cranial nerve partial 

palsy. Laboratory investigations and preoperative work up were unremarkable. At 

surgery the initial biopsy sent for confirmation of a malignant glioma was graded 

as a low-grade astrocytic tumour. The low-grade component of the tumour was |

removed and revealed tumour of a higher-grade beneath. The lesion was !

macroscopically excised and HSV 1716 was injected into the resection cavity rim j

[HSV1716 Lot. No. 907.01 Dilution Lot 2 10® pfu/ml, 1ml dose 14.7.99 Vial 9]. i

Formal pathological analysis of the tumour reclassified it as a WHO grade IV, 

glioblastoma. Postoperatively there was partial resolution of the left upper motor 

seventh nerve palsy and increased power of the left arm.

Postoperative clinical course

He received a radical course of radiotherapy (60Gy in 30 fractions) in line with 

the protocol. Within a few days of completing his radiotherapy he began to 

develop new symptoms attributable to tumour progression. Initially he 

experienced seizures that were controlled with medication. Three months post 

procedure he developed a left homonymous hemianopia, reduction in power of his 

left arm and leg in addition to extension of the left upper motor neurone VII 

cranial nerve palsy. Imaging confirmed the clinical suspicion of tumour re

growth. The tumour' was re-excised and the patient subsequently received CCNU 

chemotherapy. He has remained stable since then 18 months from diagnosis to 

February 2003.

Markers of clinical performance

The following graphs present data on clinical performance as assessed by the 

Kamofsky score and Barthel score, for the duration the patient remained in the 

study.
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Laboratory investigations

Titration of paired vial

The sample of HSV 1716 that was paired to the injected aliquot of HSV1716 had a 

titre of - 1.2 x 10̂  pfu/ml.
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HSV IgG and IgM bv ELISA
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Figure 13.8(iii); IgG and IgM Patient 7

Patient 7 was sero-positive prior to the injection of HSV1716. Immunoglobulin 

levels remained stable for the duration of the study.

Polvmerise Chain Reaction (PCR) for evidence of HSV DNA 

Blood -there was no evidence of HSV DNA in the blood using PCR analysis. 

Biopsy -  at the time of the second tumour resection, biopsy material from areas 

surrounding the tumour and from areas distal to the initial HSV1716 injection 

sites were obtained and assayed for HSV DNA using PCR. There was no evidence 

of HSV DNA in those samples.

Virus shedding assav

Buccal swabs -  no evidence of live HSV was detected.

Serum -  no evidence of live HSV was detected.

Biopsy -  at the time of the second tumour resection, biopsy material from areas 

surrounding the tumour and from areas distal to the initial HSV 1716 injection 

sites were obtained and assayed for evidence of live HSV using the virus shedding 

assay. There was no evidence of live HSV1716 in those samples.
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HSV replication assav in tumour samples

Tumour samples taken at the time of surgical resection were dissociated and 

cultured. After 29 days in culture and no passages a multicycle growth experiment 

was carried out.
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Figure 13.8(iv); Multicycle growth curve using tumour sample from  Patient 7

It is shown that the tumour sample from patient 7 was fully permissive for the 

growth of HSV1716. The growth of HSV1716 in the tumour cells was as efficient 

as the growth of wild type HSV. The 3T6 cell line was used as a control for 

HSV 17  ̂and HSV 1716 growth.

13.9 Patient 8

Patient 8 was a 53 year old man who presented initially with severe headaches. 

Imaging demonstrated a lesion in the left temporal region. He was referred for 

neurosurgical intervention and was enrolled into the study in September 2001.
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Preoperative condition and operative procedure

Prior to the operation he was clinically stable and fulfilled the entry criteria. His 

markers of clinical performance were satisfactory with a KS of 90 and BS of 20. 

Neurological examination revealed papilloedema in the left fundus. Laboratory 

investigations and pre operative work-up were unremarkable. Pathological 

analysis of an intra-operative smear preparation confirmed a high-grade glial 

tumour. He underwent left temporal craniotomy and partial lobectomy to remove 

the tumour. HSV1716 was injected into the resection cavity wall [HSV1716 Lot. 

No. 907.01 Dilution Lot 2 10̂  pfu/ml, 1ml dose 14.7.99 Vial 12]. Post operatively 

he recovered with no new signs of neurological deficit. There were no signs of 

toxicity associated with the HSV1716 injection.

Postoperative clinical course

In line with the protocol he received a course of radical radiotherapy (60Gy in 30 

fi-actions). He had an uneventful period until eight months following surgery and 

HSV1716 injection when he began to experience some mild expressive dysphasia. 

Clinical examination revealed a right seventh upper motor neurone partial palsy. 

CT scan indicated a large mass in the left temporo-parietal region extending into 

the left ffonto-parietal region. He underwent further tumour resection and 

commenced PCV chemotherapy. He died 3 months following the second resection 

and 11 months from the initial surgery and HSV1716 injection.
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Markers of Clinical Performance

The following graphs present data on clinical performance as assessed by the 

Kamofsky score and Barthel score, for the duration the patient remained in the 

study.
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Figure 13.9(H); Barthel Score Patient 8

Laboratory Investigations

Titration of paired vial

The sample of HSV 1716 that was paired to the injected aliquot of HSV 1716 had a 

titre of -  9.4 xlO* pfu/ml.
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Figure 13.9(iii); IgG and IgM Patient 8

Patient 8 was sero-positive prior to the injection of HSV1716. His 

immunoglobulin levels remained relatively stable for the duration of the study.

Polvmerise Chain Reaction (PCR) for evidence of HSV DNA

Blood -  There was no evidence of HSV DNA in blood by PCR analysis.

Cerebral biopsy - Prior to the second, tumour resection biopsy material from the 

resection cavity and from sites distal to the initial HSV1716 injection were 

assayed for HSV DNA using PCR. There was no evidence of HSV DNA in the 

samples.

Virus shedding assav

Buccal swabs -  There was no evidence of live HSV in any of the samples.

Serum -  There was no evidence of live HSV in any of the samples.

Cerebral biopsy - Prior to the second tumour resection, biopsy material from the 

resection cavity and from sites distal to the initial HSV1716 injection was 

analysed for evidence of live virus. There was no evidence of HSV in those 

samples.
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HSV replication assav in tumour samples

Tumour samples taken at the time of surgical resection were dissociated and 

cultured. After 38 days in culture and no passages, a multicycle growth 

experiment was carried out.
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Figure 13,9(iv); Multicycle growth curve using tumour sample from Patient 8

It is shown that the tumour sample from patient 8 was fully permissive for the 

growth of HSV1716. The growth of HSV1716 in the tumour cells was as efficient 

as the growth of wt HSV. The growth of wild type HSV and HSVl 716 was 

approximately one log less than that of the same viruses in the fully permissive 

BHK cell line. Once again this is probably a reflection of fewer cells in the 

tumour samples petri dish compared to those containing BHK cells. The 3T6 cell 

line was used as a control for HSV 17  ̂and HSVl716 growth.

13.10 Patient 9

Patient 9 was a 40 year old man who initially presented in 1995 having suffered a 

grand-mal seizure. Neurological imaging indicted a lesion in the right frontal 

region. The tumour was resected and pathological analysis identified the tumour
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as a WHO grade II, oligodendroglioma. He received no additional treatment at 

that time but was kept under review with serial neuro-imaging. In Febmary 2000 

he presented with worsening headaches. Imaging confirmed tumour progression. 

He underwent further cytoreductive surgery, which was followed by radical 

radiotherapy (60Gy in 30 fractions). In September 2001 he represented with 

increasing seizure activity and imaging indicated an increase in the tumour size. 

He was enrolled into the study in November 2001.

Preoperative condition

On entry to the study, patient 9 was clinically stable on a regular dose of oral 

dexamethasone. Markers of clinical performance were KS-90 and BS-20. 

Neurological examination revealed no deficits. Laboratory investigations and 

pre-operative work-up were um'emarkable. Intra-operative pathological analysis 

of a smear prepar ation diagnosed an anaplastic glial tumour. Cytoreductive 

surgery was carried out and 1ml of 1 x 10̂  pfu/ml was injected into the resection 

cavity rim in line with the protocol [HSV1716 Lot.No. 907.01 Dilution Lot 2 10̂  

pfu/ml, 1ml dose 14.7.99 Vial 14].

Postoperative clinical condition

Post operatively neurological examination revealed a partial left upper motor 

neurone seventh nerve palsy and minimal left hemiparesis. These signs resolved 

in the immediate post-operative period. Initial biochemistry results post 

operatively indicated elevation of the liver transaminases ALT and AST. This 

resolved in the first post operative week and were considered a result of the 

anaesthetic. There was no evidence of toxicity associated with the injection of 

HSVl716. Formal pathological analysis categorised the lesion as an Anaplastic 

Oligodendroglioma. One month following the surgical intervention he was 

admitted with headache and feeling non-specifically unwell. On clinical 

examination he had a raised temperature in addition to a tense and inflamed 

craniotomy wound. Culture of blood and CSF samples failed to reveal any 

bacterial infection. In view of the wound infection he was commenced on broad- 

spectrum antibiotics. He made a good recovery and was discharged home.
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In line with the protocol he was commenced on PCV chemotherapy. Six months 

following entry into the study and after three cycles of PCV chemotherapy clinical 

deterioration was noted. Neurological examination indicated that there was 

extension of the previously noted seventh upper motor neurone palsy and reduced 

power of his left arm and leg. Despite clinical deterioration the imaging indicated 

that his disease was stable. A clinical decision was made to change his 

chemotherapy to second line, Temozolamide. He completed three cycles of 

chemotherapy before clinical deterioration precluded him from receiving further 

cycles. He died 14 months following HSVl716 intervention.

Markers of clinical performance

The following graphs present data on clinical performance as assessed by the 

Kamofsky score and Barthel score, for the duration the patient remained in the 

study.

Kamofsky score

KS

100

80
60
40
20
0

0 1 2 3 4 5 6

Months

Figure 13.10(i); Kamofsky Score Patient 9
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Figure 13,10(11); Barthel Score Patient 9

Laboratory investigations

Paired vial titration

The sample of HSV 1716 that was paired to the injected aliquot of HSV 1716 had a 

titre of -  1.1 X 10̂  pfu/ml.
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Figure 13.10(iii); IgG and IgM  Patient 9

Patient 9 was sero-positive prior to the injection of HSV 1716. There was no 

immunological response detected related to the injection.
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Polvmerise Chain Reaction fPCRj for evidence of HSVDNA

Blood —There was no evidence of HSVDNA in the blood using PCR analysis.

Virus shedding assav

Buccal swabs -  no evidence of live HSV was detected.

Serum -  no evidence of live HSV was detected.

13.11 Patient 10

The tenth patient to be enrolled into the study was a 33 year old female. Her 

symptoms dated back ten yeai's to when she first became aware of intermittent 

weakness of her right arm. In 1999 neurological imaging identified a lesion in the 

left parietal region, which was considered low grade. No intervention was 

required at that stage. She began to experience focal seizures limited to her right 

arm, which were controlled by anti-convulsants. Her symptoms progressed two 

weeks prior to entry into the study when she developed severe headaches.

Imaging confirmed tumour progression. Immediately prior to her surgery there 

was rapid deterioration in her conscious level and clinical condition despite 

supportive medical care. She underwent emergency sui'gery to drain a cyst and her 

symptoms improved. Following this intervention she was clinically stable and 

underwent definitive surgery and received an injection of HSVl 716 injection into 

the cavity rim in November 2001.

Pre clinical condition and intra-operative procedure

Following the emergency sui'gery to drain the cyst that had developed patient 10 

was noted to be slightly drowsy. Neurological examination revealed nystagmus on 

right lateral gaze in addition to a right hemiparesis. Markers of clinical 

performance were influenced by her recent operation and were recorded as KS-70 

and BS-11 at 24 hours pre-operatively. Laboratory and pre-operative work up 

investigations were unremarkable and did not preclude surgery. At surgery it was 

noted that the tumour had undergone anaplastic transformation within the core 

with low-grade tumour surrounding this. Pathological analysis of a smear
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preparation at surgery confirmed a high-grade glioma. HSV 1716 was injected into 

the resection cavity rim [HSVl716 Lot.No. 907.01 Dilution Lot 2 10̂  pfu/ml, 1ml 

dose 14.7.99 Vial 6].

Post-operative clinical condition

Post operatively neurological examination revealed some decrease in right leg 

power. Formal pathological analysis categorised the tumour as a glioblastoma. In 

line with the protocol she underwent a radical course of radiotherapy (60Gy in 30 

fractions). Her long-term follow up has been unremarkable. She remained well 15 

months from surgery and HSVl716 injection with no evidence of tumour re

growth at February 2003.

Markers of clinical performance

The following graphs present data on clinical performance as assessed by the 

Kamofsky score and Barthel score, for the duration the patient remained in the 

study.
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Figure 13.11(11); Barthel Score Patient 10

Immediately following surgical drainage of the cyst and prior to tumour resection 

the markers of clinical performance were low. Subsequently she has made a good 

recovery and has remained clinically stable as indicated by the markers of clinical 

performance.

Laboratory investigations

Paired viral titration

The sample of HSVl 716 that was paired to the injected aliquot of HSVl 716 had a 

titre of -  1.1 X 10* pfu/ml.
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Figure 13.11 (Hi); IgG and IgM Patient 10
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Patient 10 was sero-positive prior to the injection of HSVl 716. There was no 

significant change in the immunoglobulin levels for the duration of the study.

Polvmerise Chain Reaction fPCR) for evidence of HSV DNA 

Blood -  serum tested positive for evidence of HSV DNA on day 108 following 

HSV 1716 injection. There has been no evidence of an immunological response on 

ELISA analysis of sei*um.

Virus shedding assay

Buccal swabs -  there was no evidence of live HSV in any of the samples.

Serum -  there was no evidence of live HSV in any of the samples.

13.12 Patient 11

This 66 year old man presented to hospital following a collapse and loss of 

consciousness. Further enquiry revealed a one month history of headache and 

word finding difficulties. Computed Tomography demonstrated a lesion in the left 

parietal region with surrounding oedema.

Pre-clinical condition and intra-operative procedure

On entry to the study patient 11 was clinically stable with no signs or symptoms 

of disease. His markers of clinical performance were KS of 90 and BS of 20. 

Laboratory and pre-operative investigations were unremarkable. He underwent 

left parietal craniotomy and excision of the tumour following pathological 

identification of a high-grade glioma by smear preparation. HSVl 716 was 

injected into the resection cavity rim. [HSV1716 Lot.No.907.01 Dilution Lot 2 

10* pfu/ml, 1ml dose 14.7.99 Vial 17]. Formal pathological analysis indicated that 

the lesion was a Glioblastoma.

Post-operative clinical course

Post operatively he was well with no new neurological disability or evidence of 

toxicity associated with the injection of HSVl 716. Within three weeks of
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discharge he developed a rash over his legs which was diagnosed as eczema in 

addition to steroid induced acne. The dermatological conditions were controlled 

with medical management.

In line with the protocol he received a radical course of radiotherapy (60Gy in 30 

fractions). He remained well until 10 months post surgery when he developed 

weakness of his right leg. Neuro-imaging demonstrated significant change 

suggestive of tumour recurrence. Following confirmation of tumour progression 

(clinically and radiologically) he was offered Temozolomide chemotherapy. 

Following two cycles of chemotherapy tumour growth was not controlled and he 

died 11 Vi months following the surgery and HSVl716 injection.

Markers of clinical performance

The following graphs present data on clinical performance as assessed by the 

Kamofsky score and Barthel score, for the duration the patient remained in the 

study.
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Laboratory Investigations

Titration of paired vial

The sample of HSVl 716 that was paired to the injected aliquot of HSVl 716 had a 

titre of -  8.9 x 10“* pfu/ml.
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Figure 13.12(iii); IgG and IgM Patient 11

Patient 11 was sero-positive prior to the injection of HSVl716. There was no 

significant change in the immunoglobulin levels for the duration of the study.

Polvmerise Chain Reaction (PCR) for evidence of HSV DNA 

Blood -There was no evidence of HSV DNA in the blood using PCR analysis. 

Cerebral biopsy -  Post mortem tissue was assessed by PCR for evidence of HSV 

DNA. No HSV DNA was detected from ten samples.

Virus shedding assav

Buccal swabs -  no evidence of live HSV was detected.

Serum -  no evidence of live HSV was detected.
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13.13 Patient 12

Patient 12 was a 55 year old man whose symptoms developed following an 

occipital head injury after a fall. In the weeks following the fall he developed 

headache associated with vomiting. Initial imaging suggested an occipital cerebral 

contusion. Further analysis of the imaging discovered a lesion in the right 

temporal region. He was entered into the study in December 2001. He had a past 

medical history of type II diabetes mellitus with secondary vascular disease that 

had resulted in a right below the knee amputation. Of note in his family history 

was that his brother had died of a brain tumour.

Pre-clinical condition and intra-operative procedure

Prior to the operation he was clinically stable. His markers of clinical performance 

were recorded as KS-90 and BS-20. Laboratory investigations revealed an 

elevated blood glucose level that required medical management. Preoperative 

assessment was unremarkable. He underwent a right temporal craniotomy and 

resection of tumour following confirmation of a high-grade malignant glioma on a 

smear preparation, HSVl716 was injected into the resection cavity wall 

[HSV1716 Lot. No. 907.01 Dilution Lot 2 10̂  pfu/ml, Imi dose 14.7.99 Vial 18].

Post-operative clinical condition

Post operatively he recovered well with no new neurological deficit. There was no 

associated toxicity with the injection of HSVl 716. His diabetic control proved 

problematic and eventually to control his blood glucose the oral hypoglycaemic 

medication was substituted by subcutaneous insulin.

At the three week assessment, it was noted that he had a rash over both elbows. 

The rash was vesicular in nature and appeared to be in limited to the fifth and 

sixth cervical dermatomes. This was confirmed as bilateral C5/C6 varicella zoster 

virus (VZV) rash. As there was no associated pain, treatment with Acyclovir was 

not indicated. Swabs and vesicular fluid samples were taken in order to

147



investigate if live HSVl 716 (by virus shedding assay) or HSV DNA (by PCR 

analysis) could be detected. None of the tests gave a positive result.

Furthermore he developed ulceration and cellulitis around his left ankle. In view 

of the vascular risk to his remaining limb he was transferred to a medical ward for 

further assessment and broad-spectrum intravenous antibiotics. The wound healed 

following optimisation of diabetic control. This complication was considered to 

be secondary to his poor diabetic control and not related to HSV 1716.

In line with the protocol he underwent a radical course of radiotherapy (60Gy in 

30 fractions). During routine follow-up he remained well. Imaging at his 8 month 

review demonstrated tumour progression. Despite the lack of clinical symptoms 

or signs it was decided that he had tumour progression and went on to receive 

Temozolamide chemotherapy.

Unexpectedly he died from a presumed myocardial infarction shortly after his 

second cycle of Temozolamide. He survived 11 months following surgery and 

inj ection of HSV1716.

Markers of clinical performance

The following graphs present data on clinical performance as assessed by the 

Kamofsky score and Barthel score, for the duration the patient remained in the 

study.
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Figure 13.13(i); Kamofsky Score Patient 12
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Barthel score

20 ♦ ♦

Figure 13.13(11); Barthel Score Patient 12

Laboratory investigations

Titration of paired sample

The sample of HSV 1716 that was paired to the injected aliquot of HSVl 716 had a 

titre o f -  8 X lO'* pfu/ml.

HSV IgG and IgG bv ELISA

Immunolgy Patient 12

c3 IgG
IgMS 30 -

100 150 200 2500 50 300
Days

Figure 13.13(Hi); IgG and IgM Patient 12

Patient 12 was sero-positive prior to the injection of HSVl716. There was no 

significant change in the immunoglobulins levels for the duration of the study.
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Polvmerise Chain Reaction fPCR) for evidence of HSV DNA

Blood -  There was no evidence of HSV DNA in blood by PCR analysis.

Vesicular fluid -  there was no evidence of HSV DNA in the vesicular fluid 

samples.

Virus shedding assav

Buccal swabs -  there was no evidence of live HSV in any of the samples.

Serum -  there was no evidence of live HSV in any of the samples.

Vesicular fluid -  there was no evidence of live HSV in any of the samples.

13.14 Summary of Results

Between April 2001 and December 2001 twelve patients with high grade glioma 

were enrolled into this phase one clinical trial. Six patients had previously 

received treatment for a proven tumour of glial origin. The remaining six patients 

presented with de novo tumours thought to be high grade on imaging alone. 

Following resection of the tumour HSVl 716 was delivered into the rim of the 

resection cavity. The primary aim of the study was to assess the safety of 

HSVl716 when injected into predominantly brain adjacent to tumour. Although 

not designed to assess efficacy longitudinal follow-up allowed assessment of 

overall survival.

Formal patient review was completed by February 2003. There was no evidence 

of local or systemic toxicity associated with the procedure. At study completion 

ten patients had demonstrated evidence of tumour progression; one (patient 12) 

died from a non-tumour related cause and one (patient 7) was still alive 18 months 

from initial diagnosis and treatment. Patient 1 and 10 were clinically well and free 

of tumour progression at 22 and 15 months respectively following HSV 1716 

administration.

After each appointment at the clinic, patient serum samples were analysed for 

routine biochemistry and haematology. In addition, blood samples were analysed
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in our laboratory for infectious HSV; HSV DNA by PCR and for HSV-1 IgG and 

IgM by ELISA. Patients 2, 3 and 4 were HSV seronegative at the time of 

enrolment. Of these, patients 3 and 4 mounted an immune response and 

seroconverted between the third and fourth weeks post virus injection. Patient 3 

showed evidence of disease progression at 10 months following injection of 

HSV1716 and died at 11 months. Patient 4 also died at 11 months after virus 

injection. The remaining patient (2) did not mount an immune response and died 

six months after injection of virus

Serum samples from four patients have been positive for HSV DNA. Of these, 

Patients 1, 5 and 10 were seropositive, and had a prior clinical history of HSV 

infection (cold sores). They were PCR positive some time after injection of 

HSV1716. Patient 3 was seronegative prior to injection of HSV1716 and 

seroconverted at day 24, the same time at which HSV DNA was detected in his 

serum.
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Chapter 4

14 Investigation of the Interaction Between Ionising Radiation 

and HSV1716 in vitro,

14.1 Introduction

The rational for this research was based on the publication of data indicating a 

potentially synergistic relationship of tumour cell kill between a HSV ICP34.5 

null mutant, R3616 and ionising radiation in vivo (Advani SJ et al,, 1998). No 

data on the in vitro interaction of the two modalities was presented and possible 

reasons of the modes of cell kill being synergistic were unclear. The aim of this 

research was to develop a tissue culture system to investigate, the possibility of 

enhanced cell kill when ionising radiation is employed in conjunction with the 

ICP34.5 null mutant HSV1716 and if possible to elucidate the mechanisms 

responsible for the enhanced cell kill.

It became apparent at an early stage that the initial cell viability assay of choice, 

the clonogenic assay, was not suitable to investigate the combined effects of a 

replication competent virus such as HSV1716 and ionising radiation. The 

clonogenic assay is used effectively to investigate the effects of radiation alone on 

a population of cells. Radiation causes a proportion of a population of cells to be 

sterilised. Those that retain their replicative potential and can produce a 

population of cells numbering more than 50 are termed clonogens. However when 

replication competent virus is added to a population of cells the effect is not finite, 

as is the case for radiation. Each infected cell has the potential to produce 

hundreds of infectious progeny with the potential to kill other cells. Therefore 

viral infection in tissue culture cells tends to be an all or nothing phenomenon. 

When HSV1716 was added to cells in clonogenic assays there was complete lysis 

of all clonogens so that any additional effect exerted by radiation could not be 

detected.
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The relationship between HSV1716 and ionising radiation was investigated using 

the Promega MTS cytotoxicity assay. This assay is a colorimetric method for 

determining the number of viable cells. At the outset there was no available 

published data detailing the use of the MTS assay with an oncolytic virus. Initial 

experiments were performed to determine the reduction in cell viability following 

ionising radiation or HSV 1716 infection in isolation. Following the initial 

characterisation, HSV1716 and radiation were then combined to investigate if any 

possible relationship between the two modalities could be identified in vitro.

Baby Hamster Kidney cell line (BHK) and Mouse fibroblast cell line (3T6) were 

used throughout this research project. Both cell lines are well characterised as 

they have been used over many years in research involving HSV1716. BHK has 

been shown to be fully permissive to HSV infection and supports lytic replication 

of HSV1716 and wild type HSV 17 .̂ In comparison 3T6 cells, although capable of 

infection with HSV 1716 cannot support its replication cycle and therefore the 

cells are not lysed. 3T6 cells support wild type HSV 17  ̂lytic replication (Brown 

SM etal., 1994b).

As the clinical studies involved the use of HSV1716 in human malignant brain 

tumours it was considered necessary to investigate the characteristics of ionising 

radiation and HSV1716 replication in an appropriate human cell line. The human 

high grade glioma MOG and 373 cell lines were selected. Both cell lines grew 

well under optimum conditions and preliminary investigations indicated their 

suitability for investigation in combination experiments with ionising radiation 

and HSV1716. Details of these experiments are presented in this chapter.

14.2 Establishment of MTS Assay Parameters

Cell viability was assessed using the Promega MTS cytotoxicity assay. The Cell 

Titre 96® AQueous Assay uses the novel tétrazolium compound (3-4,5- 

dimethlythiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- 

tetrazolium, inner salt; MTS) and the electron coupling reagent, phenazine 

methosulphate (PMS). MTS is chemically reduced by cells into formazan, which
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is soluble in tissue culture medium. Measurement of the absorbance of the 

formazan can be carried out using 96 well microplates at 492nm. The assay 

measures dehydrogensase enzyme activity found in metabolically active cells. 

Since the production of formazan is proportional to the number of living cells, the 

intensity of the produced colour is a good indication of the viability of the cells.

Promega suggest the addition of 20pl of MTS substrate to lOOpl of medium per 

well of a 96 well plate, the absorbance being recorded after a period of between 1 

and 4 hours. However initial experiments using 20pl of MTS per lOOpl of 

medium failed to provide a discernable difference between cell monolayers that 

were approximately 80% to 100% confluent on microscopic analysis. 20pl of 

MTS substrate produced too intense a colorimetric reading when large numbers of 

viable cells were present.

The cytotoxicity experiments proposed were to be analysed by MTS assay daily 

for up to one week. It was reasoned that the control monolayers and monolayers 

that were exposed to minimal radiation or HSV1716 would probably be 80-100% 

confluent by one week and that 20pl of MTS substrate would not distinguish 

subtle differences at higher monolayer densities. It was therefore thought that a 

smaller volume of substrate might allow such differences to be detected.

lOpl of MTS solution per lOOpl of medium was assessed to ensure that this 

volume provided enough substrate for viable cells to convert over the four hours 

incubation period. Readings taken two and four hours after MTS substrate 

addition were compared.

BHK or 373 cells were seeded at 3x10^ cells and incubated at 37^C and 5% CO2 

for 24 hours.
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BHK cells;

Colorimetric reading obtained with various quantities 

of MTS solution per lOOpl medium

Time between MTS 

addition and plate reading 

(Hours)

lOpl 20pl

2 0.539 0.642

4 0.728 0.863

Table 14,2(i); MTS reading with BHK cells 

373 cells;

Colorimetric reading obtained with vaiious quantities 

of MTS solution per lOOpl medium

Time between MTS 

addition and plate reading 

(Hours)

lOpl 20pl

2 0.597 0.705

4 0.907 1.04

Table 14.2(H); MTS reading with 373 cells

The data demonstrate that after two horns there was still substrate available for 

conversion given the increase in the colorimetric readings after four hours of 

incubation.

The longer time period is required to ensure that the viable cells can convert all 

the available MTS substrate and produce a colorimetric reading that reflects the 

true number of viable cells in the monolayer. Using lOpl of MTS substrate per 

lOOpl of medium enabled the detection of differences in cell viability even when 

the monolayers were more than 80% confluent.

Subsequent cytotoxicity assay experiments were carried out using lOpl of MTS 

substrate and the colorimetric readings were acquired after four hours.
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14.3 MTS Reading With Respect to Number of Viable Cells

Interpretation of the MTS colorimetric reading requires that there is a linear 

relationship between the number of live cells and the MTS colorimetric reading. It 

was therefore necessary to confirm the relationship was linear and intersected the 

zero.

The cell lines used in this experiment were 3T6 and 373. In this experiment 3T6 

cells were investigated as they do not form clumps following trypsinisation of 

monolayers and therefore could be counted accurately using a haemocytometer. 

373 cells were also investigated as this tumour cell line was proposed for use in 

future analyses.

3T6 and 373 cells were seeded in six well columns of a 96 well plate in a range of 

cell numbers - 1000, 2000, 5000, 10000 and 20000 in lOOpl of medium.

The results (figure 14.3a) demonstrate a linear relationship between the number of 

3T6 cells and the MTS reading. Over this range of cell densities it can be seen that 

an MTS reading of 1.2 has double the number of viable cells present than an MTS 

reading of 0.6.

This relationship is the same for the 373 cell line (figure 14.3b).

Subsequent experiments were all conducted at cell densities within this lineai’ 

range.
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Figure 14.3(a); relationship between 3T6 cells and an MTS reading
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Figure 14.3(b); relationship between 373 cells and an MTS reading
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14.4 Assessment of Permissivitv of MOG Cells for Replication of HSV1716

To conduct in vitro studies on the possibility of synergy between cell kill from the 

lytic replication of HSV1716 and cell kill from external beam radiation it is 

necessary to have a suitable cell line. Whilst the cells must be permissive to 

HSV1716 infection, the vims must not kill all of them before the radiation has had 

an effect. The effects of ionising radiation (IR) on cell viability are not manifested 

immediately, so the cell kill afforded by HSV1716 alone should preferably be less 

than 100% after approximately one week, if a synergistic relationship is to be 

detected. In practice this will probably require a low multiplicity of infection 

allowing the possibility of several cycles of virus replication.

To select suitable cell lines, capable of infection but not killed too rapidly, a 

number of human glioma cell lines were tested for their ability to support 

HSV1716 infection i.e. UVW, MOG and 373. For this selection process, cells 

were assayed in multicycle growth experiments for their ability to support 

HSV1716 replication over 72 hours following a low multiplicity of infection 

(MOI-O.lpfu/cell).

Of the cells tested, MOG cells appeared the most suitable for the use in 

cytotoxicity assays to investigate synergy between HSV1716 and ionising 

radiation. They were permissive for HSV1716 replication (figure 14.4) but the 72 

hour yield was approximately one log lower than that for the parental wild type 

strain, HSV 17 .̂ The finding that both HSV1716 and HSV 17  ̂apparently 

replicated less efficiently in MOG cells than in BHK cells could be a true 

reflection of the ability of the cells to support a HSV infection. Alternatively it 

may be due to a cell counting eiTor or the failure of the cells to settle in the well as 

efficiently, resulting in the number of MOG cells infected being lower than the 

number of BHK cells infected. However the difference between the 72 horn yields 

of HSV 17'*' and HSV1716 in the MOG cultures must reflect less efficient 

replication of HSV1716 in these cells. This may indicate that the size of viral 

burst was smaller or that HSV1716 did not infect and lyse as many MOG cells as 

HSV 17"̂ . Whatever the cause of the reduced efficiency of HSV1716 replication it
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is apparent that additional cell kill could be realised if combination with radiation 

has an additive effect.
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Figure 14.4; Multicycle growth experiment o f HSVl 716 and HSVl 7  ̂BHK, 3T6 

and MOG cells.
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14.5 Cell Density for Propagation of Viral Infection

At the outset it was necessary to create conditions in vitro that were similar to 

those of a tumour in vivo. It was necessary that the cells had the ability to replicate 

for the duration of the experiment to ensure that the impact of HSV1716 and 

ionising radiation on the monolayer were similar to when these modalities are 

used in tumours in vivo. It was reasoned that the effect of radiation on a cell 

monolayer would have an impact detectable by the MTS assay by approximately 

one week at low radiation doses and earlier if higher doses were used. The density 

of the cells seeded initially had to allow exponential gro'wth to continue for about 

one week to ensure the level of cell kill exerted by radiation could be detected 

colourimetrically by the MTS assay. If the cell monolayer reached confluence 

earlier than one week, natural cell death might occur prior to the cell kill caused 

by the radiation, making detection of cell death from radiation more difficult.

Initially each experimental well of the 96 well plate was seeded with 1x10^ MOG 

cells in 100pi of medium. The following day, the cells were very sparse and over 

the 72 hour course of the experiment the control plates did not achieve 

confluence. However, no cell kill was detected in the experimental samples 

infected at a MOI of O.lpfii/cell HSVl716 indicating that such sparse monolayers 

were unable to support lytic viral infection.

Following initial viral infection of a cell monolayer, lytic HSV replication results 

in progeny particles being released into the extracellular medium. As a result, 

cells distant to the site of the released virions may become infected and further 

lytic cycles initiated. However, observation of cell monolayers following infection 

with HSVl716 shows that cells adjacent to infected cells are most at risk of 

subsequent infection. As the predominant process propagating HSVl716 infection 

is through cell-to-cell spread it was decided that a greater density of cells in a 

monolayer would be required at the outset of an MTS cytotoxicity assay to give a 

viable infection.
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14.6 Cytotoxicity Assay with 1x10* Cells and Ionizing Radiation

As 1x10^ MOG cells per well of a 96 well plate formed too sparse a monolayer to 

support a low MOI infection of HSV 1716, a higher number of cells (1x10" )̂ was 

seeded at the outset. The cell lines 3T6 and BHK, which are well characterised by 

our laboratory, were analysed at the same time as the malignant glioma, MOG cell 

line. The effect on cell viability of 5Gy or lOGy of external beam radiation was 

compared in the three cell types (figure 14.6).

It appeared that 1x10^ cells seeded at the outset were too great. For the MOG and 

3T6 cells a confluent monolayer was achieved following incubation for 24 hours. 

Therefore there was no period of exponential growth achieved. The cells at this 

density appear to be resistant to the effects of high doses of ionising radiation as 

there is no impact on cell number detected by the MTS cytotoxicity assay.

Figure 14.6 -  MTS cytotoxicity assay of (a) MOG, (b) 3T6 and (c) BHK cells 

following exposure to ionising radiation doses of 5Gy and lOGy. Initial density of 

cells was IxlG* per 100pi in each well of a 96 well plate. Twenty-four hours after 

seeding the cells, time point 0, the cells were irradiated and the first MTS 

recording made.
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14.7 Cytotoxicity Assay with 5 x 10̂  Cells and Ionizing Radiation

As an initial MOG and 3T6 cell density of 1x10^ cells per well of a 96 well plate 

resulted in a confluent monolayer by 24 hours a lower number of cells, 5x10^ cells 

was seeded to allow a longer period of exponential cell replication (figure 14.7).

In the MOG cell line (figure 14.7a) there was an initial period of exponential 

growth with confluence being reached in control and irradiated wells by day 2. 

After day 2 there was a steady reduction in the number of viable cells over the 

subsequent six days in the control and irradiated wells. These results suggest that 

once confluence was reached, a healthy state could not be maintained and cells 

either died due to over confluence or exhaustion of nutrients from the medium. 

This reduction in cell number after reaching confluence was not identified in
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experiment 14.6. It is postulated that as the MOG cells were actively growing for 

2 days, they consumed essential nutrients from the medium and that when 

confluent there was a lack of nutrients to support quiescence. In experiment 14.6 

the high number of cells seeded at the outset meant that no active replication was 

achieved thus ensuring available nutrients to support a period of quiescence.

The 3T6 cells (figure 14.7b) grew exponentially reaching confluence at day 2 

when efficient contact inhibition halted further cellular division. The ability to 

convert the MTS substrate for the six days of the experiment demonstrates that 

3T6 monolayer despite being confluent remained viable. The 3T6 cells appear to 

be relatively radio-resistant with no evidence of a reduction in cell viability 

detected by MTS assay following ionising radiation doses of 5Gy or lOGy.

The BHK cells (figure 14.7c) appear to have been initially seeded with fewer than 

the intended 5x10^ cells as the initial MTS reading when compared to the day 0 

reading with MOG or 3T6 was significantly reduced. In this experiment, where 

the initial cell number was presumably less than 5x10^, the exponential growth 

was maintained for 7 days at which point the cells reached confluence. BHK cells 

seeded at this low density were sensitive to ionising radiation. 5Gy resulted in a 

delay in exponential growth with an apparent surge in growth at day 5 to day 7, 

reaching confluence by day 8. Ten Gray had a marked effect on the cell 

replication and growth with the earliest signs of growth detected by day 7.

5x10^ cells appeared to be too many cells to achieve exponential growth over a 

suitably long time frame such as 7 days. An initial cell density of less than 5x10^ 

appears necessary to provided extended exponential growth over a period of 7 

days for all three cell lines.

163



Figure 14,7; MTS cytotoxicity assay o f (a) MOG, (b) 3T6 and (c) BHK cells 

following ionising radiation at a dose o f 5Gy or lOGy following initial cell density 

o f 5 x l( f cells per 100pi in a 96 well plate. Twenty-four hours after seeding the 

cells, time point 0, the cells were irradiated and the first MTS recording made.
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14.8 Cytotoxicity Assay with 2.5 x 10̂  Ceils and Ionizing Radiation

From the data in experiment 14.7 it appears that 5x10^ cells per lOOpl of a 96 well 

plate is too high a quantity to initially seed if exponential growth is required for 

up to one week. Following the serendipitous seeding of the BHK cells at a density 

less than 5x10^, the results obtained enabled the effects of the radiation to be 

detected by the MTS assay. Therefore the initial number of cells seeded at the 

outset was reduced further to 2.5x10^ per well.

It can be seen that the MOG cells (figure 14.8a) reached confluence by day 3 then 

began to die. Ionising radiation appears to have had little impact on the rate of 

growth or cell kill when compared to the control.

3T6 cells (figure 14.8b) grew exponentially until day 3 when they too reached 

confluence. As with the BHK cells, ionising radiation appears to have had no 

impact on the rate of growth or the number of viable cells by day 6.

BHK cells (figure 14.8c) grew well reaching confluence by day 3 but in contrast 

to the MOG cells, remained as a healthy monolayer over the following 3 days. 

Radiation appears to have had little impact on the rate of cell growth, or impact on 

the number of viable cells by day 6. This is in contrast to the results obtained in 

experiment 14.7. The MTS reading at time point 0 was higher in experiment 14.8 

compared to experiment 14.7 indicating that there were more cells present prior to 

inadiation. In experiment 14.7 there were probably fewer than 2.5x10^ cells 

present at the outset, consequently the doses of radiation had a more significant 

effect in delaying exponential growth until day 5.

2.5x10^ cells per well in a 96 well plate gave a confluent monolayer 3 days after 

seeding. To achieve a longer period of exponential growth a still lower seeding 

density is required.
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Figure 14.8 — MTS cytotoxicity assay with (a) MOG, (b) 3T6 and (c) BHK cells at 

an initial density o f 2 .5xl(f cells in 100/M per well exposed to 5Gy and lOGy 

ionising radiation. Twenty-four hours after seeding the cells, time point 0, the 

cells were irradiated and the first MTS recording made.
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14.9 Cytotoxicity Assay with 2 x 10̂  Ceils and Ionizing Radiation

On the basis of the previous series of experiments it was apparent that the initial 

cell density was crucial. In this experiment 2x10^ cells in lOOpl per well were 

seeded.

It can be seen that the MOG cells (figure 14.9a) grew to form a confluent 

monolayer in the control arm by between 3-5 days. There does not appear to have 

been significant cell kill or delayed growth with 5 Gy. However there appears to 

have been a significant effect on the viability of MOG cells following lOGy of 

radiation with a marked reduction in cell growth seen for the duration of the seven 

days.

The 3T6 cells (figure 14.9b) appear to have grown at a faster rate than the MOG 

or BHK cells reaching a confluent monolayer by 3 days. At this cell density, as 

with the other two cell lines there does appear to have been some effect on the rate 

of exponential growth following a radiation dose of lOGy.

The rate of growth with the BHK cells (figure 14.9c) seeded at this density 

resulted in confluence being achieved again at around 4-5 days. Radiation seems 

to have had an effect with reduced growth rates seen following 5Gy or lOGy.

Therefore a seeding quantity of between 2-3x10^ cells per lOOpl per well seemed 

optimal to allow exponential growth for the duration of 3-5 days and enable the 

cytotoxic effects of radiation to be detected. However given that the HSV 

replication is dependent on the cell density it may be difficult to identify a suitable 

initial cell density that will demonstrate the cytotoxic effects of HSVl 716 and 

ionising radiation when combined.
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Figure 14.9 -  MTS cytotoxicity assay with MOG, 3T6 and BHK cells at an initial 

density o f  2 x l( f cells in IOO/lûper well exposed to 5Gy or lOGy ionising 

radiation. Twenty-four hours after seeding the cells, time point 0, the cells were 

irradiated and the first MTS recording made.
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14.10 Comparison of Ionising Radiation Dose Rate on a Cellular Monolayer 

as Assessed by the MTS Cytotoxicity Assay

The effect of external beam radiation on the cell lines used in the previous 

experiments had demonstrated only a modest reduction in cell viability, leading to 

the presumption that the cell lines under investigation were relatively radio

resistant. It has been proposed that the level of cytotoxicity attributable to ionising 

radiation is related to the rate at which the dose is delivered. With the same dose 

delivered at a lower dose rate there is a reduction in the cell killing because sub- 

lethal damage is repaired during the protracted delivery of the radiation. This 

phenomenon varies between different cell lines and is most marked between 

0.01 Gy and IGy per minute (Hall EJ and Brenner DJ, 1994). The published data 

that indicated an additive or synergistic relationship between ionising radiation 

and replication competent HSV mutants delivered the ionising radiation at much 

faster rates, ranging from 0.75Gy/min to 2.77Gy/min (Spear M et al., 2000).

The Alcyon II teletherapy unit available for use during these experiments 

delivered ionising radiation at a dose rate of 0.3Gy/minute.

In order to ascertain if dose rate was a significant factor in these experiments it 

was necessary to compare the use of the normal dose rate, 0.3 Gy/minute with a 

higher dose rate. By decreasing the distance between the source and the 

experimental cells by half, the dose rate is increased by a factor of foui\ The 

distance between the source and the cells in culture could not be reduced further 

due to the casing surrounding the Alcyon II teletherapy unit, therefore the dose 

rate could not be increased higher than 1.2Gy per minute. For this experiment 

cells were seeded at 1x10^ cells per well of a 96 well plate.

It can be seen in figure 14.10a, that 5Gy had a greater effect on the replicating 

3T6 monolayer than had been seen using 5Gy in previous experiments. lOGy had 

a significant effect on the growth of the 3T6 cells while 20Gy had such a 

profound effect on the growth of the cells that it resulted in sterilisation. When the 

dose rate was increased by a factor of four to 1.2 Gy/min (figure 14.10b) the
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effect of ionising radiation appears to have been the same with no obvious 

decrease in the number of viable cells compared to the results when ionising 

radiation was delivered at our normal rate of 0.3Gy/min.

The results seen in the BHK cell line are similar to those seen with the 3T6 cells.

5 Gy resulted in a slight impairment in cell growth, however a more marked 

reduction in cell growth was detected following doses of lOGy and 20Gy (figure 

14.10c). The higher dose rate did not have a greater impact on the growth of cells 

when compared to ionising radiation delivered at a slower rate (figure 14.10d).

The apparent decrease in the viability of cells irradiated at the standard dose rate 

of 0.3Gy/min in this experiment compared to the radiation resistance seen in 

previous experiments is perhaps due to the low number of cells seeded. The cells 

were seeded at a low density (1x10^ cells/well) to ensure that they could grow 

exponentially over a time scale that would allow the effect of a higher dose rate of 

ionising radiation to be compared with the standard dose rate. The smaller number 

of cells present at the start of the experiment, perhaps by increasing the number of 

cell doublings required to generate a confluent monolayer, had the effect of 

accentuating the effect of the ionising radiation.

Increasing the dose rate by a factor of four to the maximum for the Alcyon II 

teletherapy unit did not result in any additional reduction in cell viability and no 

reduction on the growth rates of either 3T6 or BHK cells.
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Figure 14.10a -  MTS cytotoxicity assay in 3T6 cells exposed to ionising radiation 

o f 5Gy, lOGy and 20Gy at a dose rate o f 0.3Gy/min. Twenty-four hours after 

seeding the cells, time point 0, the cells were irradiated and the first MTS 

recording made.
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Figure 14.10b -  MTS cytotoxicity assay 3T6 cells exposed to ionising radiation o f 

5Gy, lOGy and 20Gy at a dose rate o f  1.2Gy/min.
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Figure 14.10c -  MTS cytotoxicity assay in BHK cells exposed to ionising 

radiation o f 5Gy, lOGy and 20Gy at a dose rate o f 0.3Gy/min.
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Figure 14.10d -  MTS cytotoxicity assay in BHK cells exposed to ionising 

radiation o f  5Gy, lOGy and 20Gy at a dose rate o f I.2Gy/min.

BHK - dose rate x4

O)

0.8
0.6
0.4
0.2

83 5 6 71 2 40

Control
5Gy
10Gy
20Gy

Days

172



14.11 Cytotoxicity Assay and HSV

It was necessary to demonstrate the effect of HSVl 716 alone in the in vitro tissue 

culture MTS assay prior to investigating the relationship between HSV 1716 and 

ionising radiation in combination.

The MTS cytotoxicity assay was used to assess cell kill generated by lytic 

replication of HSV 1716. The subsequent experiments sought to identify a 

multiplicity of infection (MOI) of HSVl 716 that would exert an in vitro reduction 

in cell viability detectable using the MTS assay, without resulting in eradication 

of all cells in the monolayer. In view of the time that it took ionising radiation to 

exert a level of cell kill on a cell monolayer detectable by the MTS assay, it was 

necessary for the experiment to continue for approximately 7 days. Therefore to 

investigate the effect of combining HSV 1716 infection and radiation on cells in 

culture it was necessary to find conditions under which HSVl716 did not lyse all 

of the cells by 7 days.

As indicated earlier it was necessary to identify an initial cell density that would 

allow exponential cell division for at least 3-5 days.

As shown earlier however for HSVl716 to propagate a lytic infection, the cells in 

a monolayer must be of sufficient density. Following initial infection of a cell 

monolayer, lytic replication results in progeny being released into the extracellular 

medium. As a result cells distant to the site of the released virions may become 

infected and a further lytic cycles initiated. Observations of cell monolayers 

following infection with HSV 1716 highlighted that cells adjacent to the virally 

infected cells aie at most risk of subsequent infection. Therefore the predominant 

process that propagates the lytic infection is through cell-to-cell spread between 

neighbouring cells.

When cells are seeded too sparsely the cells may be unable to support HSVl716 

lytic replication as the ability of the virus to infect adjacent cells through cell-to- 

cell spread is diminished. However, if the cells of the monolayer were initially too
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dense, cell division would be diminished due to contact inhibition. A non

dividing, quiescent, monolayer would be less permissive to HSVl716 infection 

and less susceptible to radiation kill.

It was anticipated that the MOI of HSVl 716 would have to be low, in order to 

ensure that there was not rapid cell kill of the exponentially growing monolayer. 

Initial experiments were aimed at identifying an inoculating dose of HSVl 716 

that would independently cause less than 100% kill of the cell monolayer by 6-8 

days. In addition it was necessary that the inoculating dose would be supported by 

an initial cell density of between 2-3 x 10  ̂cells per lOOpl in a 96 well plate 

previously shown to be optimal for the detection of radiation cell kill.

14.12 Cytotoxicity Assay and HSV1716 and HSVl7"̂

Replicating monolayers of 3T6, BHK and MOG were investigated for cell kill 

following infection with HSV1716 and HSV17\ 3T6 cells are known to be fully 

permissive for HSVl7"̂  but not for HSVl716. BHK cells are permissive for 

HSV 17"̂  and HSVl716 as was the MOG cell line (shown in section 14.4).

2.5x10^ cells were seeded and infected the following day with either HSVl 716 or 

wild type HSV 17  ̂at MOI of 0.1,1 or 10. The time of infection was taken as day 

0, and MTS readings were taken over the course of 6 days.

In 3T6 cells HSV1716 did not cause any significant cell kill (figure 14.12a).

HSV 1716 at MOI 10 did slow the rate of initial exponential grovrth but ultimately 

a confluent monolayer was achieved only one day later than the control. This 

probably is indicative of minimal HSV1716 replication in the exponentially 

growing 3T6 cells. It has been shown that HSV1716 replication can be supported 

in replicating 3T6 cells but not in confluent monolayers where contact inhibition 

stops cell division (Brown SM et ah, 1994b).

The density of 3T6 cells replicating prior to virus infection is crucial. Additional 

experiments (not shown) indicated that HSV1716 at an MOI of 10 resulted in
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complete cell kill, preventing the monolayer from replicating. In those 

experiments it was noted that the initial MTS reading was lower indicating fewer 

cells at the outset, possibly explaining the different results.

With HSVl7"̂ , the reduction in the MTS reading indicates that an MOI of 1 

generated cell kill between the third and sixth days post inoculation. No effect 

following an MOI of 0.1 was seen, however an MOI of 10 generated cell kill of 

100%.

BHK cells were more permissive to lower concentrations of HSV 17  ̂and 

HSVl716 as is indicated by the low MTS readings at day 6 for all the 

multiplicities of infection investigated when compared to the control (fîgui*e 

14.12c and 14.12d). With the fully permissive BHK cell line, HSV1716 at a MOI 

of 0.1 allowed some cell replication to occur in contrast to the higher multiplicity 

of infections investigated. Unfortunately in this experiment the seeding density of 

MOG cells appears to have been higher than intended causing the monolayers to 

reach confluence by day 3. However, it is clear that HSVl716 at a MOI of 10 

killed all of the cells early in infection and that a lower MOI would be required if 

added cell kill hom radiation was to be investigated.

In the MOG cell line an HSVl716 MOI of 10 prevented the cell monolayer from 

entering a period of exponential growth (figure 14.12e). The lower multiplicities 

of infection (1 and 0.1 pfu/cell) of HSVl 716 did not cause sufficiently greater kill 

to be detectable by the MTS assay when compared to the control. On reaching 

confluence at day 3 the monolayers once again began to die, as reflected in the 

decreasing MTS readings. When HSV 17  ̂was used to infect MOG cells an MOI 

of 0.1 generated some cell kill by day 3, however after this point the control cell 

cultures began to die and therefore no conclusions can be drawn (figure 14.12f).

From the data from all 3 cell types it seems reasonable, that an MOI of 0.1 when 

inoculating a cell number that can support its replication, will not cause complete 

cell kill very early and will allow any additional kill by radiation to be detected by 

the MTS assay.
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Figure 14.12a; MTS cytotoxicity assay in 3T6 cells at various concentrations o f

HSV1716.
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Figure 14.12b; MTS cytotoxicity assay in 3T6 cells at various concentrations o f  
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Figure 14.12c; MTS cytotoxicity assay in BHK cells at various concentrations o f

HSV1716.
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Figure 14.12d; MTS cytotoxicity assay in BHK cells at various concentrations o f  
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Figure 14.12e; MTS cytotoxicity assay in MOG cells at various concentrations o f

HSV1716.
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14.13 Assessment of Infectious Viral Titre Following Irradiation of

HSV1716 and HSV17+

The response in various cell cultures to ionising radiation and HSV1716 

administered separately had been characterised and demonstrated in the preceding 

sections.

The published data demonstrating enhanced cell kill when an ICP34.5 null mutant 

was combined with ionising radiation had been done exclusively in vivo. In those 

studies, xenografts were irradiated at either 6 or 24 hours after virus inoculation. 

Based on those data, initial experiments were devised with the inoculation of 

replicating cells with HSV1716 six hours prior to irradiation.

As the proposed schedule to combine ionising radiation and HSV1716 in vitro 

was to infect the replicating monolayer 6 hours prior to delivery of radiation it 

raised the question as to whether the ionising radiation could possibly damage the 

viral particles either in an intracellular state or whilst still in the medium prior to 

adsorbing onto the surface of the cell in cultui’e.

To investigate whether irradiating HSV1716 or HSVn"^ in medium affected the 

ability of the virus to infect and lyse cells in culture; samples of the virus in 

solution were irradiated and compared to non-irradiated controls in a virus 

titration assay as detailed in section 11.4.

The results, indicated below, demonstrate that irradiating HSV1716 or HSV17 ^at 

a dose of 5Gy did not decrease the 72 hour yield, indicating that the replicative 

potential of the virus was not impaired by prior radiation treatment.

HSV1716 8.6 X lO^pfu/ml

Irradiated HSV1716 9.8 X 10  ̂pfti/ml

HSV17+ 5.0 X lO^pfu/ml

Irradiated HSV17+ 7.8 X lO^pfu/ml
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14.14 Cytotoxicity Assay in 3T6 and BHK Cells Administering Ionising

Radiation Six Hours After HSV1716 or HSV17^ Infection

In view of the fact that the glioma cell line MOG and BHK cells are fully 

permissive for HSV1716, it is probable that no enhanced kill by radiation would 

be detected in cultures of these cells as the viral lytic infection alone is too 

efficient. Therefore initial experiments also used the non-permissive 3T6 cell line. 

The decision to use 3T6 cells was based on the knowledge that HSV1716 can 

enter 3T6 cells but fails to undergo lytic replication (Brown SM et al., 1994b). 

The idea was to investigate if treatment of these cells with ionising radiation 

would allow HSV1716 to replicate causing cell kill detectable by an MTS assay. 

The fully permissive BHK cells were used as a control.

The cells were seeded at a density of 2x10^ cells per well. Six hours after virus 

infection, experimental plates were irradiated with either, 5 Gy, 7 Gy or 10 Gy 

delivered in one fi'action.

In 3T6 cells the various doses of radiation alone caused a modest degree of 

delayed cell growth (figure 14.14.1a).

An HSV17^ MOI of 0.1 in 3T6 cells generated a lytic infection and caused cell 

kill, which independently virtually killed the whole monolayer by day 7 (figure 

14.14.1b). The delayed cell kill seen over the same seven day period in the 

irradiated 3T6 cells inoculated with the same MOI of HSV17^ can be explained 

by the observation that there is a delay in initial growth of the monolayers 

irradiated with 5 Gy, 7Gy and lOGy. It is proposed that the delayed cell growth in 

the irradiated cells means that they were unable to support the viral replication as 

efficiently as their non-irradiated counterparts.

The 3T6 cells exposed to an MOI of 0.1 of HSV1716 alone grew in a similar 

manner to the control cells. The combination of HSVI716 and radiation did not 

generate any additional reduction in cell viability compared to the 3T6 cells that 

were only irradiated with 5Gy, 7Gy or lOGy (figure 14.14.1c).
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It appears that ionising radiation does not increase the permissivity of the 3T6 

cells to infection with HSV1716, nor increase the replication efficiency of 

HSV1716 in 3T6 cells.

BHK cells were also affected by the radiation with marked reduction in cell 

growth in the irradiated plates (figure 14.14.2a). With both HSV17^ and 

HSV1716 the BHK cells were completely killed and were unable to enter a phase 

of exponential growth (figure 14.14.2b and c). Once again it appears, that due to 

the difficulty in assessing cell numbers in suspensions of BHK cells, the initial 

cell number seeded into each well probably was lower than the intended 2x10^ 

cells, as indicated by the very low initial MTS reading. The BHK cells in the 

control and irradiated plates were able to increase in number. Where virus was 

added to the monolayers there was no indication that the BHK cells replicated. If 

the number of cells is assumed to have been less than the intended 2x10^ then the 

MOI of HSV1716 or HSV17"  ̂added was higher than the intended MOI 0.1. The 

BHK cells were therefore overwhelmed with virus and lysed preventing 

exponential growth from being achieved.
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Figure 14.14.1; MTS analysis o f  3T6 cells following, radiation (IR) alone (a),

HSVl 7  ̂and radiation (b) and HSVl 716 and radiation (c).

3T6 - IR

1.2 -O)

•“  0.6 
(2 0.4
^  0.2

2 3 4 60 5 71
Days

Control

O)c

i
(O

3T6-HSV17+ and IR

17+
17+.5GY
17+.7GY
17+.10GY

(b )

O)c

i
(/)

3T 6-H SV 1716and IR

1716 
1716,5Gy 
1716,7Gy 
1716,10Gy

(c)

182



Figure 14,14,2; MTS analysis o f  BHK cells following radiation alone (a), HSVl 7̂

and radiation(b) and HSV1716 and radiation (c).
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14.15 Multicycle Growth Experiment Using 373 Cell Line

G iven that cells fully perm issive to H S V l716 infection are not suitable for 

studying the possibility  o f  enhanced cell kill because the virus alone kills all o f  the 

cells, and that the non-perm issive cell line 3T6 show ed no m ore cell kill w ith 

H S V l716 infection over radiation alone, it w as necessary to try and find a suitable 

sem i-perm issive cell line in w hich to  study enhanced cell kill.

W ork w ith in  the laboratory suggested that the hum an m alignant gliom a cell line 

373 w as slightly less perm issive to  H S V l716 infection than the M O G  cell line. To 

dem onstrate this, a  m ulticycle grow th experim ent w as perform ed. The results are 

dem onstrated in the figure below  (figure 14.15).
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Figure 14.15; Multicycle growth experiment o f HSVl 716 and HSVl 7̂  in 373, 

BHK and 3T6 cell lines.

The 72 hour yield o f  H S V l 7^ dem onstrates that 373 cells are as perm issive to the 

grow th o f  H S V l 7^ as the fully perm issive BH K cells. The yield o f  H S V l 716 

obtained from  the 373 cells by 72 hours is reduced com pared to the yield obtained

184



from the BHK cells suggesting that the 373 cells are less permissive for the 

growth of HSVl 716 than the known fully permissive cell line BHK. Given that 

the growth of the wild type strain HSVl 7^ was comparable in the 373 and BHK 

cell lines then the reduction in the yield of HSV1716 seen in the 373 is likely to 

be real and not due to a difference in the cell density at the time of HSVl 716 

inoculation. As has been demonstrated previously the 3T6 cells are permissive for 

HSVn'" and not for HSV1716.

It was therefore decided that by using the 373 cell line in an MTS assay it might 

be possible to demonstrate less than 100% cell kill by day 6-7 with HSVl716 

alone. If this was the case then it was possible that the additional kill afforded by 

radiation when combined with HSV1716could be detected using the MTS assay.

14.16 Cytotoxicity Assay in 373 and BHK Cells Administering Ionising 

Radiation Six Hours After HSVl716 and HSVl7̂  Infection

Given that 373 cells appeared less permissive to the growth of HSVl 716 than the 

fully permissive BHK cell line they were used in the following MTS assay when 

HSV1716 and HSVl 7  ̂were combined with ionising radiation.

The 373 cell line appears to be relatively radio-resistant vHth only a minimal 

decrease between day 3 and day 7 in overall viable cell numbers detected by the 

MTS assay, compared to the non-irradiated control (figure 14.16.1a). Under the 

conditions in these experiments (i.e. a MOI of 0.1 and actively replicating cells), 

the 373 cell line was fully permissive to HSVl7  ̂and HSVl716; with both viruses 

causing complete cell kill independent of the radiation (figure 14.16.1b and figure 

14.16.1c).

In replicating BHK cells the effect of radiation was most evident following 

treatment with lOGy, although by the seventh day the irradiated monolayers were 

virtually as confluent as the control (figure 14.16.2a). As with the 373 cells, 

irradiation of BHK cells under these conditions did not provide any additional kill
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when combined with HSVl7̂  or HSVl716 as the viruses alone caused complete 

cell kill (figure 14.16.2b, figure 4.16.2c).

Figure 14.16.1; MTS analysis o f  37 S cells following (a) radiation alone, (b) 

HSVl 7  ̂and radiation and (c) HSVl 716 and radiation.

373 - IR

O)c
*o
(0
2

s
0.4

61 2 3 5 70 4

• Control 

•5Gy 

•7Gy 

•10Gy

Days
(a)

373- IRand HSV17+

1.4 

O) "

<0 0.8 -  

2  0.6 —  

H  0 4  IP

^  0.2 T-

2 3 6 71 4 50

Control

Days
(b)

3 7 3 -IR and HSV1716

Control

10GY

186



Figure 14.16.2; MTS analysis o f  BHK cells following (a) radiation alone, (b)

HSVl 7̂  and radiation and (c) HSVl 716 and radiation.
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14.17 Assessment of Cell Kill when HSV1716 is Delivered 1 Hour After 

Ionising Radiation

The infection of a replicating cellular monolayer with HSVl 716 prior to radiation 

was employed in light of in vivo experiments published prior to commencing the 

project. During the course of investigations into the combination of HSV1716 

followed by ionising radiation, reports were published suggestive of an additive 

and possibly synergistic relationship between other ICP34.5 null HSV mutants 

and ionising radiation detected in vivo and in vitro.

Blank et ah (2002) demonstrated enhanced cervical cancer cell kill with low dose 

(1.5Gy or 3Gy) radiation followed by treatment with ICP34.5 null HSV (G207 or 

R3616), In light of this, cell viability after irradiation with IGy and 5 Gy followed 

one hour later with inoculation was assessed in combination with HSVl 716 (MOI 

0.1) in 373 and MOG cell lines.

As expected from the previous experiments showing the relative radio-resistance 

of 373 cells the growth of 373 cells was not altered by low dose (IGy) radiation.

A dose of 5 Gy caused minimal growth delay in the first few days but the number 

of viable cells was soon similai' to the control (figure 14.17.1 a).

In this experiment (figure 14.17.1 b) unlike in the previous experiment (figure 

14.16.1 c) infection with HSV 1716 did not significantly reduce cell viability until 

day 7 when there did appear to be a decline compared to the control. The apparent 

anomaly is probably, once again, due to a difference in the multiplicity of 

infection as the result of a lai’ger number of cells being present in the latter 

experiment. Under light microscopy it was apparent that over 50% of the cells 

infected with HSVl 716 showed the rounded morphology characteristic of viral 

infection. Therefore, although these cells were still alive and capable of 

converting the MTS substrate it is probable that they were destined to die by viral 

lysis.

The combination of HSVl716 with IGy resulted to a similar level of cell kill to 

HSVl 716 alone. However the combination of HSVl 716 with 5Gy radiation

188



resulted in a further reduction in cell viability than was detected with either virus

or radiation give in isolation.

When the viable 373 cells were expressed as a percentage of the untreated control, 

by day six and seven there appeared to be fewer viable cells when HSV 1716 and 

radiation were combined than the sum of reductions in cell viability generated by 

HSV 1716 or radiation alone (figure 14.17.1 c).

With radiation alone, growth of the MOG cells was not altered by low dose 

radiation (IGy) or radiation of 5Gy when compared to the control (figure 14.17.2

a).

As was observed with the 373 cell line, the combination of HSV 1716 with 

radiation of 5Gy resulted in a greater reduction in MOG cell viability by day 6, 

than was detected with either virus or radiation given in isolation (figure 14.17.2

b).

The viable MOG cells following radiation, vims or a combination of the two were 

expressed as a percentage of the viable cells in the untreated control. When 

HSVl716 and 5Gy were combined there appeared to be a greater percentage 

reduction in viability than with either in isolation (figure 14.17.2 c).

Low dose radiation (IGy) had no impact on the number of viable cells in isolation 

or when combined with vims infection in either cell line. However a number of 

independent experiments demonstrated that in both MOG and 373 cells the 

combination of 5Gy radiation 1 hour prior to infection with 0.1 MOI HSV 1716 

gave more cell kill than either of the treatments in isolation.
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Figure 14.17,1; MTS analysis o f373 cells following (a) radiation alone,

(h) HSVl 716 (MOI 0.1) and radiation, (c) The cell viability expressed as 

percentage o f the viable cells in the control. The error bars represent +/-5D in (a) 

and (b).
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Figure 14,17.2; MTS analysis o f MOG cells following (a) radiation alone, (b) 

HSVl 716 (MOI 0.1) and radiation. Cell viability expressed as percentage o f  the 

viable cells in the control is represented in (c).
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14.18 MTS Cytotoxicity Assay in Cell Monolayers Irradiated 1 Hour Prior 

to HSV1716 Infection

Low dose radiation (IGy) had been investigated in experiment 14.17 and not 

shown to enhance the cell kill when combined with HSV 1716 although doses of 

5Gy appeared to have an additive effect. In vivo experiments using the ICP34.5 

null HSV mutant R3616 suggested a synergistic relationship with higher radiation 

fraction sizes of 20-25Gy (Advani SJ et a l, 1998). The relationship between 

HSV 1716 and radiation dose of 20Gy was investigated in vitro in 373 and MOG 

cells.

Cell viability was assessed in 373 and MOG cells iiTadiated with 20Gy one hour 

prior to infection with HSVl716 at an MOI of 0.1 pfu/cell. Six days later in the 

373 cells there was less cell viability detected when HSV 1716 and radiation were 

combined than when either was used in isolation (figure 14.18.1 a,b,c). The 

percentage reduction in cell viability when HSV 1716 and radiation were 

combined appeared to be greater than the sum of the percentage reduction in cell 

viability following virus and radiation given alone. These results suggest a supra- 

additive effect when HSVl716 at an MOI of 0.1 is combined with radiation of 

20Gy. It is noted however, that 20Gy radiation on its own resulted in very little 

cell kill by day 6 (figure 14.18.1 a). Although it was intended that 3x10^ cells per 

well of a 96 well plate were seeded at the outset the initial MTS reading was 

higher than in the previous experiment and may indicate that the initial cell 

number per well was higher than intended. This increased cell number may have 

impeded normal cell replication and consequently reduced the impact of radiation 

or HSV 1716 lytic infection on the monolayer. This said however, when the two 

modalities were combined the relationship did appear to be supra-additive.

By the sixth day, 20Gy radiation had had a significant effect on the MOG cell 

viability and HSVl 716 had reduced the cell viability by approximately 80% of the 

control. The combination of 20Gy radiation and 0.1 MOI H SV l716 infection 

appeared to cause approximately the same percentage reduction in cell viability as 

the sum of the percentage reductions in viability caused by either radiation or
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virus alone (figure 14.18.2 a, b, c). The effect in this cell line w hen the two 

m odalities are com bined appears to be at best additive.

Figure 14,18.1; MTS analysis o f373 cells following (a) radiation and HSVl 716 

(MOI 0.1) alone and in combination, (b) Cell viability expressed as percentage o f  

the viable cells in the control (c) bar chart depicting the percentage o f viable cells 

compared to the control on day 6 o f  the 

investigation.
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Figure 14.18.2; MTS analysis o f MOG cells following (a) radiation and HSVl 716 

(MOI 0.1) alone and in combination, (b) Cell viability expressed as percentage o f  

the viable cells in the control (c) bar chart depicting the percentage o f viable cells 

compared to the control on day 6 o f the investigation.
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14.19 Cytotoxicity Assay in 373 Cells Combining Single Fraction or

Fractionated Ionising Radiation and HSV1716

On delivering radiation one hour prior to HSV 1716 infection there were results 

suggesting that the effect on cell kill was additive in MOG cells and synergistic in 

373 cells. The doses of radiation used in the preceding experiments were either; 

IGy, 5Gy or 20Gy. These regimes do not reflect the radiation schedules used in 

the treatment of malignant disease. In response to this, a clinically relevant 

fractionated regime of 2 Gy fractions was delivered to replicating monolayers of 

373 cells. The MTS assay was used to compare cell viability following HSV1716 

infection with single dose radiation versus the same total radiation dose delivered 

in a fractionated schedule.

All cells received a total of lOGy either as a single fraction or in the case of the 

fractionated regime, an initial 2Gy dose. One hour after the completion of 

radiation HSVl716 (MOI of 0.1) was added where indicated. The cells due for 

fractionated irradiation received further 2 Gy doses over the subsequent 4 days 

until a total of lOGy over 5 days had been delivered.

By six days the reduction in cell viability detected when radiation and HSV1716 

were combined in the 373 cell line was the same when the radiotherapy was 

fractionated or delivered as single lOGy dose. The reduction in cell viability when 

radiation and virus infection were combined appeared to be greater than the sum 

of the reductions in viability of each treatment in isolation (figure 14.19.1 and 

14.19,2).

The delivery of 2Gy radiation doses over the course of five individual fractions 

showed no significant difference to lOGy given as a single dose (figure 14.19.2),

On a separate occasion the results were analysed at seven days. Once again the 

reduction in cell viability when radiation and virus infection were combined 

appeared to be greater than the sum of the reductions in viability of each treatment 

in isolation (figure 14.19.3 and 14.19.4).
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Figure 14.19,1; MTS analysis o f373 cells following single dose and fractionated

radiation, and HSVl? 16 (MOI 0.1) alone and in combination.
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2 3 4
MTS reading
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Figure 14.19.2; Cell viability expressed as a percentage o f control cell viability 

measured at day 6, when (a) lOGy was delivered as a single fraction and (b) when 

lOGy was delivered over 5 fractions.
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Figure 14.19.3; MTS analysis o f373 cells following single dose and fractionated

radiation, and HSVl? 16 (MOI 0.1) alone and in combination.

373 - Fractionated Vs single Fraction IR
1.2

D)
C

1
%
CO

0.8

2 0.6

{2 0.4
s 0.2

0

I ♦ Control

, 1x1 OGy

- A - 1 7 1 6

; 1716, 1x1 OGy

- A -  5x2Gy

—# — 1716, 5x2Gy

3 4 

Days

Figure 14.19.4 - Cell viability expressed as a percentage o f  control cell viability 

measured at day 7 when (a) lOGy was delivered in a single fraction and (b) when 

lOGy was delivered over 5 fractions.
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14.20 Multi cycle Virus Growth Experiments with Pre-irradiated 373.

MOG and BHK Cells

M any o f  the papers that dem onstrated a synergistic relationship w ith a ICP34.5 

null m utant HSV  and ionising radiation show ed an increase in the viral titre 

obtained from  pre-irradiated cells in a virus grow th experim ent. A n explanation 

proposed by a num ber o f  the investigators (Spear M  et al., 2000; Blank S et al.,

2002) is that ionising radiation induces the up regulation o f  certain proteins, such 

as m am m alian R R  or G A D D 34, that the attenuated virus can utilise to facilitate its 

lytic replication. This experim ent sought to investigate w hether irradiating cells 

prior to the inoculation o f  HSV 1716 w ould result in an increased titre in a 

m ulticycle grow th experim ent. The cell lines used were BHK, in w hich H S V l716 

is fully replication com petent and the hum an gliom a lines 373 and M OG in w hich 

replication o f  HSV 1716 is im paired com pared to the parental w ild type strain 

H S V 1 7 \

BHK

Although at 24 hours the yield o f  H S V l 716 from  irradiated cells w as m arginally 

low er than in control cells the final titre  obtained w ith the pre-irradiated cells was 

the sam e as for the non-irradiated cells.

BHK
100000000.00

10000000.00

1000000.00

100000.00
O)o_l 10000.00

1000.00
BHK IR-1716 ,

100.00 BHK 1716

10.00

1.00
240 48 72

Hours

Figure 14.20(a); Multicycle growth curve BHK cells
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MOG

The replication o f  H SV 1716 w as alm ost identical in irradiated and control M OG 

cells throughout the experim ent and the final titre obtained w ith the pre-irradiated 

cells w as the sam e as for the non-irradiated cells.
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100000.00 

O 10000.00 
1000.00 

100.00 
10.00 

1.00

MOG

MOG IR- 1716 
MOG 1716

24 48 72

Hours

Figure 14.20(b); Multicycle growth curve MOG cells 

373

The replication o f  H SV 1716 w as alm ost identical in irradiated and control 373 

cells throughout the experim ent and the final titre obtained w ith  the pre-irradiated 

cells w as the sam e as for the non-irradiated cells.
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10000.00 
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373 1716

24 48 72
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Figure 14.20(c); Multicycle growth curve 373 cells

Irradiation o f  all three cell lines prior to H SV 1716 failed to result in enhanced 
viral replication and resulted in the sam e viral titre as obtained w ith the non- 
irradiated cells.
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14.21 Isobologram Analysis of Synergy Between HSV1716 and Ionising 

Radiation in 373 Cells

Radiation and HSV1716 infection kill cells through different mechanisms. A 

synergistic relationship it terms of cytotoxicity has been demonstrated between 

HS V mutants and ionising radiation. In these instances however the cytotoxicity 

resulting from a combination of radiation and virus was documented as cell kill 

more than or equal to the sum of the cell kill exerted by each modality 

individually (Blank S et aL, 2002; Stanziale S et aL, 2002). This method of 

assessing if a relationship is synergistic or additive is only acceptable if 

independent dose-response curves of the two agents follow first order kinetics. 

The dose response curves for HSV1716 and radiation do not follow first order 

kinetics and therefore it is inappropriate to analyse data in this way when these 

agents are combined. The isobologram method used to analyse the interaction 

between two entities was first described in relation to radiation and chemotherapy 

interactions with non-linear dose response curves (Steel, GG and Peckham, MJ, 

1979, Plumb J et al., 1994).

To analyse the supra-additive effect on 373 cell kill from ionising radiation 

combined with HSV1716 infection suggested by the previous results, it was 

necessary initially to ascertain the dose-response in terms of cell sui vival to 

various doses of radiation and HSV1716 for this cell type. From these graphs the 

dose required to kill 50% of the cells (ID50) is estimated as the absorbance value 

equal to 50% of that of the control well.

The cell viability of 373 cells was assessed using the MTS assay at 6 days 

following various doses of ionising radiation or HSV1716 at a range of 

multiplicity of infection.
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The cell viability results were graphed and the radiation dose and MOI of 

HSV1716 that generated 50% cell kill (ID50) compared to the control were 

calculated.

Radiation:
373 Control MTS reading = 1.09

50% of the MTS reading = 0.55

The ID50 for radiation in 373 cells = ISGy

373 and Radiation

O)c 0.8
•0(0
£
g
S

0.6

0.4

0.2

100 5 15 20 25 30

Radiation Dose(Gy)

Figure 14.21a; Ionising radiation dose response curve at day 6 in 373 cells 

demonstrating the ID50.
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HSV1716:

373 Control MTS reading = 1.09

50% of the MTS reading = 0.55

The IDso for HSV1716 in 373 cells = MOI 0.25

373 and HSV1716

O)c

1I

1.2
1.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0.0001 0.001 0.01 0.1

MOI HSV1716
10

Figure 14.21b; H SV l716 dose response curve at day 6 in 37S cells demonstrating 

the IDso.
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Based on the information obtained from the ID50 experiments above, combination 

experiments with HSV1716 and radiation were designed. HSV1716 and radiation 

were combined using doses of each modality that caused less than 50% reduction 

in cell viability by day 6 . Each well of a 96 well plate was seeded with 2.5x10^ 

cells in 100p,l.

The experimental plates were irradiated one hour prior to HSVl716 inoculation. 

The combined doses were as follows. The experiment was inin for 6 days.

Plate
Radiation

Dose

MOI of 

HSV1716

1 Control Control

5 5Gy 0.1

6 5Gy 0.05

7 5Gy 0.01

8 9Gy 0.1

9 9Gy 0.05

10 9Gy 0.01

11 13Gy 0.1

12 13Gy 0.05

13 13Gy 0.01

Table 14.21(1); Dose combinations o f  IR and MOI HSVl 716
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Figure 14.21 Cf df C-  MTS assay dose response curve (solid blue, solid red and 

solid green lines) at day 6 when (c) MOI 0.1 HSVl 716 is combined with various 

doses o f  radiation, (d) MOI 0.05 HSVl 716 is combined with various doses o f  

radiation, (e) MOI 0.01 HSVl 716 is combined with various doses o f radiation. 

The dotted pink line represents the MTS reading at day 6 obtained following 

infection o f  the 373 monolayer with HSVl 716 alone at either 0.1, 0.05 or 0.01 

MOI. The solid pink represents the dose response curve o f373 cells obtained at 

day 6 following various doses o f  radiation independently.

MOI 0.1 1 7 1 6 + DXT

0.9 
0.8 

^  n 7

0.5
0.4

0.2

Radiation dose
' (c)
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

Radiation Dose
id)
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MOI 0.01 1 7 1 6 + DXT

g  0.9 

1g) 0.6g
5  0.3 
^  0.2

Radiation dose
(e)

U sing the inform ation from  the graphs in figure 14.21 c, d, and e the M TS reading 

representing a 50%  reduction in cell viability com pared to the control is calculated 

for each o f  the 3 com binations.

Fifty percent o f  the M TS reading for the control in each o f  the three graphs gives 

a value o f  0.55. A  straight line is draw n from  point 0.55 on the>^-axis to the point 

that it intersects w ith the graph. From  this point another straight vertical line is 

draw n dow n to intersect the jc-axis. The point on the %-axis that is intersected 

gives a value o f  radiation that w ill give 50%  cell kill by day 6 in 373 cells i f  

com bined w ith the initial M OI o f  H S V l 716.

The IDso calculated from  figure 14.21 (c)(d)(e) are represented in the follow ing 

table.

HSV1716 MOI Radiation dose required for 50% kill

0.1 3Gy

0.05 3.2Gy

0.01 3.5Gy

Table 14.21(11); IDso values from combination experiments
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Construction of the ID50 isobologram for HSV1716 and radiation

Data from the dose-response curves following HSVl716 and radiation obtained at 

day 6 enables the construction of an isobologram plot. Different regions within 

the plot indicate if the combination of HSVl 716 and ionising radiation is infra

additive, additive or supra-additive. The ID50 isobologram indicates the dose of 

radiation alone, HSVl 716 alone and the various combinations of each that is 

required to cause a 50% reduction in 373 cell viability. To construct the 

isobologram the protocol outlined by Kano et al was followed (Kano Y et al., 

1992; Kano Y et al., 1988). Three different plots Mode I, Mode lia and Mode Ilb 

are derived from the previous experiments that indicate the relationship between 

HSV1716 and ionising radiation.

Mode I  line.

For a given dose of radiation the fraction of cell growth that was inhibited 

compared to the control is Fa (Ai). A dose of (x) is thus required by HSVl716 to 

generate a total reduction in cell viability of 50% when the radiation dose of 

Fa(Al) is given in combination with HSVl716.

For example -

Taking the radiation dose response curve for 373 at day 6, 15Gy results in 50% 

growth inhibition (red arrow - figure 14.21f). 13Gy would result in 39% [Fa(Ai)] 

of the required 50% being killed (turquoise arrow). To reach 50% cell growth 

inhibition 11% additional kill (x) would have to be achieved by HSVl716 (pinlc 

arrow).
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Radiation dose (Gy)

Figure 14.21(f); Dose response curve for IR in 373 cells

A num ber o f  points are calculated in a  sim ilar m anner and are detailed  in the table 

below.

Radiation dose % kill achieved 

[Fa(A,)l

% kill required by 

HSV1716 (x)

13Gy 39 11

l lG y 26 24

lOGy 21 29

8Gy 14 36

5Gy 8 42

2Gy 4 46

Table 14.21(111); Values o f  Fa(Ai) and (x) obtained from IR dose response curve
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Using the dose response curve at day 6 obtained for HSVl716 (figure 14.21b) the 

percentages of HSVl 716 (x) indicated in table 14.21(iii) required to produce a 

50% reduction in cell viability when combined with radiation can be converted 

into an exact MOI of HSVl 716.

For example -

From the radiation dose response curve, 8Gy radiation dose caused 14% [Fa(Ai)] 

inhibition of the cells. Therefore 36% (x) further reduction in cell viability is 

required by HSVl716 to produce a 50% reduction in the cell kill. This is indicated 

in figure 3.24(g) where [Fa(Al)] is represented as a red arrow and (x) is 

represented as a turquoise arrow. The pink arrow is the actual MOI of HSV1716 

that is required to produce the 36% cell kill that when combined with 8Gy will 

cause an overall reduction in cell viability of 50%.

This is taken as B1 = MOI 0.15 which is now a point on the Mode 1 line.

Uic
’■5
I
(O

373
1.2 I - 

1.1 
1

0.9
0.8
0.7
0.6 __
0.5 4-  

0.4 
0.3 
0.2 
0.1 

0 —  
0.0001 0.01 0.1 1 100.001

HSV1716 (MOI)

Figure 14.21(g); Dose response curve o f HSVl 716 in 373 cells

This is repeated for all the points taken from the radiation curve detailed in the 

table 14.21(iii).

210



Mode lia  line:

The doses of HSVl 716 expressed as a percentage in table 14.21(iii), required to 

result in 50% cell kill when added to radiation can be plotted on the HSVl716 

dose response curve in a different way. This iso-effect line is calculated as 

indicated below.

For example;

For 8Gy of radiation the percentage of cell kill Fa(Al) = 14% (brown arrow). The 

amount of cell kill required from HSV 1716 to reach 50% is x = 36% (green 

arrow). The pink arrow below is the dose of virus required to produce 50% 

reduction in cell viability starting from the point on the dose response curve that 

the effect of radiation had ended.

The dose of HSV1716 is B2 = MOI 0.22 and is a point on the Mode II a line.

TJ(0

(O I-
S

373
1.2
1.1

1
0.9
0.8
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0.4
0.3
0.2
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0 ---
0.0001 1 100.01 0.10.001

HSV1716 (MOI)

Figure 14.21(h); Dose response curve ofHSV17l6 in 373 cells
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The Mode I and Mode Ila line, data points B1 and B2 respectively, were 

calculated to give the percentages of HSVl 716 required to produce a 50% 

reduction in cell viability when combined with known doses of radiation as 

indicated in table 14.21 (iii).

Radiation Dose B1 (MOI) B2 (MOI)

13Gy 0.025 0.1

llG y 0.065 0.17

lOGy 0.07 0.195

8Gy 0.15 0.22

5Gy 0.2 0.23

2Gy 0.23 0.235

Table 14.21 (iv); Radiation dose, B1 and B2 calculations

The absolute HSV MOI values detailed in table 14.21(iv) are converted to a 

percentage of the HSV1716 MOI value that generated a reduction in 50% cell 

viability independently, i.e HSV1716 ID50, derived from figure 14.21(b) as 

MOI=0.25.

For example; (0.1 / 0.25) MOI x 100 = 40%.

The radiation doses in table 14.21(iv) are also expressed as a percentage of the 

Radiation ID50 value, derived from figure 14.21(a) as 15Gy.

For example; (13 /15) Gy x 100 = 86.7%.

The calculations for all the values in table 14.2 l(iv) are detailed as percentages in 

table 14.2 l(v) below.
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% Radiation Dose 15Gy B l - % o f M O I  0.25 B 2 - % o f M O I  0.25

86.7 10 40

73.3 26 68

66.7 28 78

53.3. 60 88

33.3 80 92

13.3 92 94

Table 14,21 (v); Values from Table 14.21(iv) as a percentage o f  the IDso 

This is then graphed to give the mode I and mode Ila lines

Isobologram  373
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0 10 20 30 40 50 60 70 80 90 100

% ID50 Radiation

Figure 14.21(j); Mode I and Mode Ila lines as part o f the Isobologram
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Mode lib;

W hen a dose o f  HSV 1716 causes a reduction in cell viability there rem ains an 

increm ent in effect to be produced by radiation to produce a total 50%  reduction 

in cell viability. Points on this iso-effect line are calculated in the m anner 

described below.

For example -  A s indicated in the figure 14.21(k) below , H S V l716 M OI 0.1, 

results in a 30%  cell kill by day 6 (green arrow). Therefore radiation w ould have 

to generate a further reduction o f  20%  cell viability (purple arrow ) to reach ID 50 .

373

0.9 
o> 0.8
5  0.7 
£ 0.6 
to 0.5 
S 0.4 

0.3 
0.2

0.0001 0.001 0.01 0.1 

HSV1716(MOI)

Figure 14.21 (k); Does response curve o f HSVl 716 in 373 cells
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This was repeated using various multiplicity of infection of HSV 1716. The results 

are detailed in table 14.21(vi) below.

MOI HSV1716 % kill from HSV1716 % required from DXT

0.01 3 47

0.04 17 33

0.07 25 25

0.1 30 20

0.2 43 7

Table 14.21(vi); Generation o f  Mode lib points

Using the dose response curve obtained for radiation the above percentages 

required to reach 50% cell viability when combined with HSV 1716 can be 

converted into an absolute dose of radiation (Gy).

For example;

From the HSV 1716 dose response curve an MOI of 0.1 causes a 30% reduction in 

cell viability. Radiation therefore is required to generate a further 20% reduction 

(green arrow) in cell viability to reach an ID50.

373
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g  0.8 
-  0.7 

0.6 
(/) 0.5 

0.4 
0.3 
0.2
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0 1 2 3 4 5 6 7 8  9101112131415161718192021222324252627282930

Radiation dose(Gy)

Figure 14.21(1); Dose response curve o f IR in 373 cells
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The pink arrow represents the dose of radiation required to make up the short fall, 

which in this instance is 3 Gy. This is a point on the mode lib line. This calculation 

was repeated for each of the multiplicities of infection. The absolute value 

measui ed in Gy is calculated as a percentage of the radiation dose that generated 

50% reduction in cell viability, ID50 calculated as 15Gy. The MOI of HSV 1716 is 

also expressed as a percentage of the MOI of HSV1716 required to generate 50% 

reduction in cell viability. The calculations are detailed in table 14.21(vii) below.

MOI HSV1716
Virus dose as 

as % of 11)50

Required 

radiation dose Gy 

to achieve 50% 

kill

Radiation dose 

expressed as % of 

IDso

0.01 4 13.5 90

0.04 16 6 40

0.07 28 4 26.7

0.1 40 3 20

0.2 80 1.5 10

Table 14,21(vii); Mode lib line data

The mode lib line is then plotted on the isobologram together with the Mode I and 

Mode Ila data shown in figure 14.21(j).
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Figure 14,21(m); Isobologram plot with Mode I, lia and Ilb lines plotted

It is worth noting that if radiation followed first order kinetics then the mode Ila 

line would be identical to the mode I line. If HSVl 716 infection and ionising 

radiation both followed first order kinetics then all three iso-effect lines would be 

straight lines between the two 100% points on the graph above.

When the iso-effect curves diverge as above (figure 14.21m) the area between the 

solid blue line and the green line is the envelope of additivity. An experimental 

plot in between the blue and green line would suggest that the combination is non

interactive (additive). An experimental plot above the green line would indicate an 

inffa-additive relationship between HSVl716 and radiation and a plot below the 

blue line indicates a supra-additive relationship.
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The results obtained from the combination experiments, detailed in table 14.21(ii), 

are plotted onto the isobologram graph on figure 14.21(n) as red squares.

to

T-
s;
X

S
Û

Isobologram  373

Mode Ilb 
Mode Ila 
Mode I 
Combination

0 10 20 30 40 50 60 70 80 90 100

% ID50 radiation

Figure 14.21 (n); Isobologram plot with results o f combination experiments

In the case of HSVl 716 infection and radiation in 373 cells at day 6 there appears 

to be a supra-additive relationship. One point does lie on the Mode lib line of the 

envelope of additivity whilst two of the points lie clearly within the region of 

supra-additivity. These suggest that the cell kill from the radiation and HSVl716 

infection is at least additive if not synergistic.
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14.22 Isobologram Analysis of the Relationship Between HSVl716 and 

Ionising Radiation in MOG Ceils

The relationship between ionising radiation and HSVl716 lytic infection with 

respect to cell kill in MOG cells at 6 days was investigated using the isobologram 

analysis. Firstly it was necessary to demonstrate the dose response curves for IR 

and HSV 1716 independently in MOG cells. The cells were seeded at a density of 

2.5x10^ cells in lOOpl of medium per well of a 96 well plate. The six day ionising 

radiation and HSV 1716 dose response curves are detailed below in figures 

14.22(a) and 14.22(b).

MOG and IR

0 » 0.8 - 

I . . :
t-
s 0.4

0.2 —

15 20

Radiation Dose (Gy)
0 10 25 3015

Figure 14.22(a); Dose response curve o f ionising radiation in MOG cells
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MOG and HSV1716
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Figure 14.22(b); Dose response curve o f  HSVl 716 in MOG cells

From these figures the IR and HSV 1716 ID30 values were determined. 1D30 

values were taken because the results of the preliminary experiments where 

HSV 1716 and IR were combined in MOG cells did not achieve a 50% reduction 

in cell survival by day 6 .

The control MTS reading for MOG cells at day 6 was 1.04.

The 30% reduction in the control MTS value is 0.7.

From figure 14.22(a) the value of IR that results in 30% reduction in cell kill 

compared to the control is 8Gy.

From figure 14.22(b) the value of IR that results in 30% reduction in cell kill 

compared to the control is MOI 0.03.

Combination experiments were designed that combined doses of each modality 

that caused less than 30% reduction in cell viability by day 6 . Each well of a 96 

well plate was seeded with 2.5x10^ cells in lOOpl of medium. The cells were 

irradiated and 1 hour later inoculated with HSVl716.
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From these experiments the point of 30% reduction in cell viability is calculated. 

This is demonstrated in figures 14.22 (c) and (d).

Figure 14.22(c) and (d) -  The solid blue line indicates the MOG cell response to 

the various concentrations o f  HSVl 716 and radiation. The turquoise line 

indicates the dose o f radiation when combined with the MOI that generated 30% 

cell kill.

HSV1716MOI 0.005 + IR

.£ °  ® %
CQ
g) 0.6

0.4

0.2

Radiation dose(Gy)

HSV1716 MOI 0.01 + iR

0.8■o
0.6

0.4

0.2

Radiation dose(Gy)

The results are indicated in table 14.22(i) and expressed as a percentage of the 

1D30 calculated for IR (8Gy) from figure 14.22(a) and for HSVl716 (MOI 0.03)
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from figure 14.22(b). These results are converted into a percentage of the 

radiation and HSV 1716 ID30 value calculated from figures 14.22(a) and (b) and 

are presented in table 14.22(i) below.

MOI HSV1716 %ofHSV1716

ID30

Radiation Dose 

required for 30% 

cell kill

% of Radiation 

ID30

0.005 17 5 62.5

0.01 33 4.6 57.5

Table 14.22(i); Results o f combination experiments also expressed as a 

percentage o f  the ID 30

The mode I, Ila and Ilb lines were constructed in the same way as described in 

Experiment 14.21. The isobologram analysis of combination experiments 

combining HSVl716 and ionising radiation is indicated below in figure 14.22(e).

Isobologram  MOG
100

(O

60>(O
X  Mode I

 Mode Ila
 Mode Ilb
■  Combinations

S  40 
I -

0 10 20 30 40 50 60 70 80 90 100

% ID30 Radiation Dose

Figure 14.22(e); Isobologram plot with results o f combination experiments
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The area between the mode Ila and mode Ilb lines indicate the envelope of 

additivity. In the case of HSVl 716 lytic infection and ionising radiation in MOG 

cells at day 6 there appears to be an additive relationship with both plots (red 

squares) from combination experiments lying with in the envelope of additivity.

14.23 Summary of Results

Preliminary experiments using the Promega MTS cytotoxicity assay indicated that 

it was suitable to detect cell kill generated by ionising radiation and HSVl716. It 

is demonstrated that there is a linear relationship between the actual cell number 

and the MTS colorimetric reading. Subsequent experiments used cell densities 

within this linear range.

BHK and 3T6 cells, used extensively in the laboratory, were characterised with 

respect to the lytic replication of HSVl 716. A multicycle growth experiment 

investigating HSVl716 replication in the human high-grade glioma cell line, 

MOG, demonstrated less efficient replication of HSVl 716 compared to wild type 

HSVl7^ under the same experimental conditions. It was proposed that by using 

the MTS cytotoxicity assay additional cell kill could be realised when HSVl716 

was combined with ionising radiation, in MOG cell line cultures.

The density of the cells seeded was crucial to allow exponential cell replication 

over the course of the experiment. Densities were required which enabled the cells 

to grow exponentially for the 6-7 day duration of the experiment, allowing cell 

kill caused by ionising radiation to be detected by the MTS assay.

Initial experiments established that seeding densities of 2-3x10^ cells in lOOpl of 

medium per well of a 96 well plate was optimal to allow cell viability experiments 

following exposure to various doses of ionising radiation. Higher densities, in the 

order of IxIO^ cells in lOOjal per well of a 96 well plate, resulted in BHK and 3T6 

cells becoming confluent and quiescent too early in the course of the experiment 

to allow the demonstration of cell kill generated by ionising radiation. In the case 

of the MOG cells, such high density cultures resulted in a reduction in cell
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viability, attributed to the reduction in essential nutrients within the growth 

medium, which would have masked any cell kill due to ionisation.

Some cytotoxicity was noted following the irradiation of various cell lines in 

culture, though it was minimal. It appeared that the cells in vitro were radio

resistant. Hall and Brenner. (1994) demonstrated that lower dose rates generated 

reduced cell kill due to sub-lethal damage being repaired during protracted 

delivery of the radiation. By reducing the distance between the source and our 

tissue culture cells the dose rate was increased by a factor of four. The maximum 

dose rate possible using the available Alcyon II Teletherapy Unit did not however 

generate a reduction in cell viability when compared to the standard dose rate.

Experimental conditions were required that would enable HSV1716 to exert an in 

vitro reduction in cell viability without eradicating all the cells in the monolayer 

before ionising radiation could exert an influence. Using initial cell densities of 

between 2-3x10^ cells per lOOpl, previously shown to be optimal for detection of 

radiation cell kill at 5-7 days, various MOIs of HSV 1716 and HSV 17  ̂were 

investigated. This cell density ensured that the cells remained in a replicative 

state, and permissive to HSVl716. It was demonstrated that any infection greater 

than an MOI of 0.1 would quickly generate lytic replication, thus preventing 

exponential cell growth. An MOI of 0.1 was adopted for subsequent experiments.

It was necessary to investigate if the treatment of HSVl 716 with ionising 

radiation would diminish its ability to infect cells and undergo lytic replication in 

vitro. Multicycle growth experiments using irradiated HSVl 716 did not show a 

reduction in oncolytic cell kill compared to non-inadiated HSV 1716.

Experiments combining ionising radiation and HSVl716 were then embarked 

upon. Previous experiments had demonstrated that the MOG and BHK cells were 

pennissive to HSVl716 and additional cell kill generated by ionising radiation 

would be difficult to detect. Initial combination experiments sought to investigate 

if ionising radiation would promote cell kill due to HSVl 716 lytic replication in 

non-permissive 3T6 cells. Ionising radiation did generate some delay in
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exponential cell growth but did not appear to increase the permissivity of 

HSVl716 in replicating 3T6 cells and promote viral lytic replication.

Further experimentation demonstrated that the human malignant glioma cell line 

373 was less permissive to HSV1716 infection than MOG cells. This was 

confirmed by a multicycle grovrth experiment where the yield of HSV1716 

obtained from the 373 cells by 72 hours was reduced compared to the yield of 

wild type 17 .̂ By using 373 cells it was hoped that there would be incomplete cell 

kill due to HSV1716 alone by day 6-7, thereby enabling additional cell kill from 

ionising radiation to be detected by the MTS assay. Combination experiments 

delivering ionising radiation 6 hours after virus inoculation failed to demonstrate 

additional cell kill by day 7. HSV 1716 and HSV 17  ̂alone, were capable of 

generating complete cell kill.

In light of the demonstration by Blank et al. (2002) of enhanced cell kill when 

ICP34.5 null HSV was delivered 1 hour after monolayer irradiation a modified 

protocol was adopted. Five Gray radiation 1 hour prior to virus infection (MOI 

0.1), in both 373 and MOG cell lines, resulted in additional cell kill at day 7, when 

compared to either modality given in isolation. This additional cell kill was 

mirrored at day 6 in experiments combining HSVl716 and a higher dose of 

radiation, 20Gy, in MOG and 373 cells at day 6.

Large fraction sizes are rar ely used in clinical radiotherapy practice, and as 

ionising radiation did not appear to compromise the replication and lytic 

capability of HSV 1716, experiments were conducted to investigate any additional 

cell kill when the dose of radiation was fractionated. Ten Gray of radiation was 

either delivered as a single dose or fractionated into 2Gy fractions over 5 days. 

Additional cell kill was achieved by combining the radiation 1 hour prior to virus 

inoculation but there was no difference in the reduction in cell viability when 

1 OGy was delivered as a single fraction or delivered over the course of 5 days in 

2Gy fractions.
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A multicycle growth experiment was performed to investigate if irradiating cells 

prior to infection with HSV1716 would result in an increased titre, which may 

account for the additional cell kill when the two modalities are combined. 

Radiation of the investigated cell lines did not result in enhanced viral replication 

with the same viral titre obtained as with the non-irradiated cells.

Following the detection of additional cell kill of cells in vitro when HSV1716 and 

ionising radiation were combined analysis was performed to show if the increase 

was additive or synergistic. As the dose response curves of these two modalities 

did not follow first order kinetics then it was not possible to state if the observed 

reduction in cell viability when the two modalities were combined was greater 

than the sum of the two modalities used independently. Isobologram analysis was 

used to confirm the relationship between HSV1716 and ionising radiation.

The isobologram of 373 cells demonstrated a region of additive cell kill between 

the Mode I and Mode lib lines. Plots below the Mode lib line indicate a 

synergistic relationship between HSV1716 and ionising radiation. Three MTS 

assay experiments, combining HSV1716 one hour after ionising radiation at doses 

known to generate less than 50% cell kill independently, were then plotted onto 

the isobologram. Two plots from these experiments were seen to lie below the 

Mode lib line, whilst the remaining plot fell exactly on the Mode lib line. This 

would suggest that the cell kill relationsliip between HSV1716 and ionising 

radiation when 373 cells are irradiated 1 hour prior to inoculation with HSV1716 

is synergistic.

The isobologram of MOG cells also demonstrates an envelope of additivity, 

which lies within the Mode Ila and Mode lib line. Two MTS experiments, 

combining HSV1716 one hour after ionising radiation at doses known to generate 

less that 30% cell kill independently were plotted onto the isobologram. Both 

plots lie within the region between the Mode Ila and Mode Ilb lines and hence the 

relationship between HSV1716 and ionising radiation under these conditions is 

additive.
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Chapter 5

15 Generation and Characterisation of Stably Transfected Cell 

Lines Expressing ICP34.5 and ICP34.5-GFP

15.1 Introduction

The reasons for the selective replication phenotype of HSV ICP34.5 null mutants 

in different cell types and cell states are still under investigation. A better 

understanding of the complicated processes involved should allow better use of 

ICP34.5 null mutants in clinical practice. In this section of laboratory research, the 

strategy was to develop stable cell lines expressing ICP34.5 with the aim of 

elucidating the mechanism of action of the ICP34.5 in the replication cycle of 

HSV.

It has been demonstrated (Aranda-Anzaldo et al., 1992) that infection with HSV 

causes single-strand breaks in the host DNA comparable to those produced by 

moderate doses (2-5J/m^) of UV radiation. It has also been shown (Harland et a l,

2003) that following HSV infection there is rapid influx of PCNA to the cell 

nucleus, which the authors postulated is recruited to repair the DNA damage.

They showed that at early times in infection, ICP34.5 and PCNA co-localise at 

discrete sites within the nucleus, and hypothesised that ICP34.5 interacts with the 

recmited PCNA, switching its function fi'om repair to DNA replieation.

In this project the puipose was to engineer cells to express ICP34.5 in order to 

investigate if this would interact with PCNA in the cell nucleus to allow initiation 

of DNA replication. It was proposed to study, in the absence of a viral infection, 

what effect ICP34.5 has on cell cycle regulation. However, in non-dividing cells, 

in the absence of viral infection, there would be no recruitment of PCNA to sites 

of DNA damage, and therefore possibly very little PCNA bound to cellular DNA. 

It was intended therefore to investigate the effect of ionising radiation (IR) on 

these ICP34.5 expressing cells. The hypothesis being that IR would cause DNA
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damage to which PCNA would be recruited and that, in resting cells, the 

expressed ICP34.5 could interact with this PCNA to allow DNA replication. It 

was postulated that any aberrant DNA replication following the IR would be 

manifest as continued cell division when normally cell division ceases until any 

DNA damage had been repaired.

It was proposed to engineer plasmids with a Zeocin resistance gene to introduce 

ICP34.5 with or without a GFP marker and to use these plasmids to transfect cells. 

Transfected cells (expressing ICP34.5 or ICP34.5-GFP) could be selected by 

exposing them to Zeocin. It was intended to study the effect of stable expression 

of ICP34.5 on the phenotype of the cells in different cell cycle states. It was hoped 

that if a stably expressing cell line could be generated it should be possible to 

overcome (complement) the block in replication of HSV1716 in nonnally non- 

permissive 3T6 cells. It was also intended to study co-localisation of PCNA and 

ICP34.5 at different stages in the cell cycle and, if possible, the effect of radiation 

on ICP34.5 expressing cells compared to control cells.

The strategy was to constmct a plasmid containing the Zeocin resistance gene and 

the RLl gene, expressing ICP34.5, under the RLl promoter and a similar plasmid 

with RLl and a reporter gene, to express ICP34.5 fused to the gieen fluorescent 

protein. Using the constructed plasmids, the aim was to generate 3T6 and BHK 

cell lines that were stably transfected and expressing ICP34.5 or ICP34.5-GFP. 

Following the generation of stably transfected 3T6 and BHK cell lines the aim 

was to characterise them and to investigate if the expression of ICP34.5 or 

ICP34.5-GFP in normally non-pennissive 3T6 cells could support a full 

replication cycle of the ICP34.5 null mutant HSV1716. In addition it was 

proposed to investigate whether 3T6 cells expressing ICP34.5 could be put into a 

state of growth aiTest and, in the gi’owth arrested state, determine the distribution 

of PCNA.
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15.2 Construction of Zeocin Resistant Plasmids pc-34.5 and pc-34.5-GFP

The initial aim of this piece of research was to construct plasmids containing a 

Zeocin resistance gene expressing ICP34.5 or ICP34.5-GFP under the control of 

RLl promoter. The reagents used to do this were pGEM34.5 (McKic E et aL, 

1994), pGPF-34.5 (Paul Dunn, Ph.D. Thesis, 2004) and pcDNA4/mji;c-His 

(Invitrogen) illustrated below.

P G E M 3 4 .5

EcoR\

pRLl
Start (ATG) 
( 125859)

Amp
resistance RLl

Stop (TAG) 
( 125111)

X6ol

The plasmid pGEM34.5 (McKic E et al., 1994) consists of the 1.46kb AhiMRsal 

restriction enzyme sub-fragment of HSV-1 BamBl k, (nucleotides 125074 to 

126530; Perry LJ & McGeoch DJ, 1998) which contains the entire RLl ORF, 

cloned into the Smal site of pGEM-3Z(-) (Promcga).
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dGFP-34,5
EcoRX

pRLl Ncol

724bp
GFPGFP-RLl —  

in-frame fusion
BglW

(pGFP-34.5)
(5.3kbp)

Xfeol

The plasmid pGFP-34.5 (PaulDunn Ph.D. thesis 2004) was generated by 

introducing the GFP gene excised from the pGEFP-C3 plasmid (Clonetech) 

cloned in-frame between the RLl promoter and the RLl gene in pGEM34.5 

(McKie E et ah, 1994).

pcDNA4/wvc-His

EcoRI X ba l

Pcmv.

Amp
resistance

(pcDN A4/ mj'c-His) 
(S.lkbp)

Zeocin

The plasmid pcDNA4/mj;c-His was supplied by Invitrogen.

The cloning strategy involved excising the RLl gene encoding ICP34.5 from the 

plasmid pGEM34.5, or GFP-RLl in-frame fusion gene from pGFP-34.5 and 

inserting it into the backbone of plasmid pcDNA4/wyc-His containing a Zeocin 

resistance gene.
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Cloning strategy to generate pc4-34.5:

EcoR\ Xba  1

Pcmv.

: Amp 
resistance

(pcDN A4/ /??>’c-H is)  
(S.lkbp)

Zeocin

EcoRX

pRLl
Start (AT  
(125859)

Amp
resistance RLl

(pGEM 34.5)
(4.6kbp) Stop (TAG) 

(125111)

Xbal

EcoRX

pRLl
Start (ATG) 
(125859)

RLl

(pc4-34.5)
(6.5kbp) Stop (TAG) 

(125111)

‘Zeocin

1. pGEM34.5 digested with EcoRl and Xbal, run on an agarose gel and the 

~1.5kb fragment, containing the RLl gene and promoter sequences, 

purified.

2. pcDNA4/Myc-His digested with EcoRl and Xbal.

3. RLl gene fi-agment ligated into the pcDNA4/Myc-His backbone to yield 

pc4-34.5.
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Cloning strategy to generate pc4-34.5-GFP

EcoR  1 Xba  1

Pcmv.

(pcDNA4/
(S.Ikbp)

Zeocin

EcoRl

pRLl vVcoI

724bp
GFPGFP-RLl —  

in-frame fusion
BglU

(pGFP-34.5)
(5.3kbp)

X bal

EcoR

pRLl Ncol

Amp
resistance

724bp
GFPG FP-R L l _  

in-frame fusion

Zeocin

1. pGFP-34.5 digested with EcoRI and Xbal, mn on an agarose gel and the 

(~2.2kb) fragment, containing the RLl promoter the EGFP and the RLl 

sequences, purified.

2. pcDNA4/Myc-His digested with EcoRI and Xbal.

3. RLl-GFP fusion gene fr agment ligated into the pcDNA/Myc-His 
backbone to yield pc4-34.5-GFP.
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1 5 3  Western Blot Characterisation of Stablv Transfected Cell Lines

Plasmid DNA (pc4-34.5 and pc4-34.5-GFP) was extracted, linearised and used to 

transfect 3T6 and BHK cells. Various quantities of plasmid and lipofectamine 

2000 reagent (Invitrogen) were added to actively dividing cell cultures. The cell 

lines were gi'own and serially split. After the first passage the cells were incubated 

in media containing Zeocin. This allowed only those cells successfully transfected 

with plasmid expressing the Zeocin resistance gene to survive.

Notwithstanding the Zeocin resistance of the transfected cells, it was necessary to 

demonstrate expression of ICP34.5. Published data from other groups (Mao H et 

al,. 2003) suggested that constitutive expression of ICP34.5 may be toxic to 

certain cell lines, favouring the selection of cells with continued Zeocin resistance 

but loss of ICP34.5 expression. Although the levels of protein expression induced 

by the weak RLl promoter are generally considered to be low it was hoped that 

sufficient ICP34.5 might be expressed to allow detection by Western blotting. 

Additionally, it was hoped that in confluent 3T6 cells, which are normally non- 

peimissive for HSV1716 replication, the constitutive expression of ICP34.5 might 

complement the vims mutation. If this could be demonstrated it would show that 

the plasmid expressed ICP34.5 was functionally equivalent to the virally 

expressed protein.

A Western blot to detect ICP34.5 (figure 15.3) was performed with extracts of 

ICP34.5 and ICP34.5-GFP expressing BHK and 3T6 cells compared to extracts 

from noimal 3T6 and BHK cells. Additionally, to allow comparison of plasmid- 

expressed and virally-expressed ICP34.5, extracts of the same cells infected with 

HSV17’*’ and HSV1716 were also included in the blot,

3T6

Extracts of 3T6 cells, following a 16 hour infection with HSV 17  ̂(figure 15.3, 

lane 3), show a typical Western blot pattern with the 137 rabbit polyclonal 

antibody against ICP34.5. This polyclonal serum, in addition to detecting the 

36kD ICP34.5, also consistently binds to a 70kD species, thought to be a virally 

encoded protein and a 21kD protein thought to be the product of the HSV late
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gene, Usl 1 (Harland J et aL 2003). None of these bands are seen in HSV1716 

infected 3T6 cells (lane 4), where lack of ICP34.5 expression results in blockage 

of viral DNA replication and failure to express late proteins. The location of the 

ICP34.5 band in the HSV17^ infected track provides a marker to enable 

identification of ICP34.5 protein expression in the stably transfected cell line 3T6-

34.5 (lane 5). The ÏCP34.5, 70kD and 21kD bands in 3T6-34.5 cells following 

infection with HSV17"  ̂(lane 6) or HSV1716 (lane 7) are also present. The 

TCP34.5 bands due to viral expression (lanes 3 and 6) are much more intense than 

fi'om the stahly transfected cells (lanes 5 and 7). There is clear evidence in lanes 8, 

9 and 10, of ICP34.5-GFP expression from the stably transfected 3T6 cells 

containing the plasmid. The expression of the 70kD protein and the late 21kD 

protein in HSV1716 infected 3T6-34.5 cells (lane 7) and 3T6-34.5-GFP (lane 10) 

but not in normal 3T6 cells (lane 4) indicates that the ICP34.5 expressed by the 

plasmids has overcome the noimal hlock in HSV1716 replication seen in 3T6 

cells.

BHK

There is no evidence that the stably transfected BHK cells were expressing 

ICP34.5 or ICP34.5-GFP. The only BHK samples with ICP34.5 hands were those 

infected with HSV17"  ̂(lanes 12, 15 and 18) and there was no sign of an ICP34.5- 

GFP band in the BHK-34.5-GFP cell extracts (lanes 17,18 and 19). Also, because 

BHK cells are fully permissive for HSV1716 and consequently express the 70kD 

and 21kD proteins, it is not possible to infer expression of ICP34.5 from the 

presence of these proteins in the HSV1716 extracts. Subsequent Western blot 

analysis of the BHK-34.5 or BHK-34.5-GFP cell lines also failed to demonstrate 

expression of ICP34.5 or ICP34.5-GFP.
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15.4 Multicycle Growth Experiment Using the 3T6 and BHK Cells Lines 

Transfected with ICP34.5 and ICP34.5-GFP

Normally, confluent 3T6 cells are unable to support the replication of ICP34.5- 

null HSV such as HSV1716. The Western hlot data indicated that plasmid- 

expressed ICP34.5 and ICP34.5-GFP were capable of overcoming this block to 

ICP34.5-null HSV replication in 3T6 cells. To confirm that this was the case and 

to give an indication of the level of complementation achieved, multicycle growth 

experiments were earned out. Although BHK cells are known to be fully 

peimissive for ICP34.5-null HSV replication , similar growth experiments were 

perfoimed to study the gi'owth of HSV 17  ̂and HSV1716 in non-transfected BHK 

cells.

3T6

The results of a multicycle growth experiment with 3T6, 3T6-34.5 and 3T6-34.5- 

GFP following infection with HSVH’*' and HSV1716 are shown in figure 15.4(a). 

Characteristically for the 3T6 cells, there was very little evidence of HSV1716 

replication (dotted blue line), the 72 hour yield being similar to the input virus 

dose, whereas they are fully permissive for wild type HSV 17^(solid blue line) 

with a 72 hour yield more than four logs greater than the input virus. HSV1716 

replicated more efficiently in the 3T6-34.5 (dotted red line) and the 3T6-34.5-GFP 

(dotted green line) cells than in the non-transfected 3T6 cells. In 3T6-34.5 and 

3T6-34.5-GFP cells the 72-hour yield of HSV1716 was one to two logs higher 

than the yield of HSVI716 from 3T6 cells. The 3T6-34.5 and 3T6-34.5-GFP cell 

lines gave lower yields of HSV17^ (solid red and green lines) than 3T6 cells. The 

3T6-34.5 and 3T6-GFP cell lines gave approximately 1 log lower yields of 

HSV 17  ̂(solid red and green lines) than 3T6 cells. The reason why the 

transformed cells might support wild type HSV infection less well than control 

3T6 cells is unclear but is supported by the western blot data showing lower 

quantities of the late 2 IK viral protein by 16 hours post infection in the 

transfected 3T6 cells compared to control 3T6 cells.
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The demonstration that 3T6-34.5 and 3T6-34.5-GFP can support HSV1716 

replication resulting in elevated virus yields by 24 hours, supports the Western 

blot data indicating that the 3T6 cells expressing the transfected genes were 

producing protein capable of complementing the lack of viral expression of 

ICP34.5. The Western blot data (Figure 15.3) indicating lower levels of ICP34.5 

in the transfected cells correlates with the multicycle gi'Owth curve data showing 

that although the replication of HS V I716 was improved it did not reach wild type 

HSV levels.

BHK

The results of a multicycle gi'owth experiment with BHK, BHK-34.5 and BHK- 

34.5-GFP following infection with HSV17^ and HSV1716 are shown in figure 

15.4(b). BHK cells are fully permissive to HSV1716 and the 72hour yields were 

the same for both transfected and non-transfected BHK cells. Unfortunately, 

neither the Western blot data nor the virus replication experiment gave any 

evidence that the BHK cells have been successfully stably transfected.
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Figure 15,4(a); Multicycle virus growth experiment o f HSVl 7  ̂or HSVl 716 in 

3T6, 3T6-34.5 and 3T6-34.5-GFP cells.
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Figure 15.4(b); Multicycle virus growth experiment o f HSVl 7̂  or HSVl 716 in

BHK, BHK-34.5 and BHK34.5-GFP cells.
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15.5 HSV1716 and HSV17 Infection of Semi-Confluent Replicating 3T6, 3T6-

34.5 and 3T6-34.5-GFP Cells

In experiment 15.4 it was shown that, unlike wild type HSVl7 ,̂ HSVl 716 did not 

replicate in confluent 3T6 cells. It is believed that this is because, when confluent, 

3T6 cell division is very efficiently halted by contact inhibition, requiring ICP34.5 to 

switch the cellular PCNA function to initiate viral DNA replication. When 3T6 cells 

are actively dividing, however, they are able to support a productive HSV infection 

in the absence of ICP34.5. In this experiment, approximately 80% confluent 3T6 

monolayers were infected. At this density a proportion of the cells would be actively 

dividing and hence would be permissive to infection with HSVl716.

It has been demonstrated by Western blot analysis that the transfected 3T6 cell lines 

expressed ICP34.5 and ICP34.5-GFP. The multi-cycle growth curve in experiment 

15.4 demonstrated that 3T6 cells expressing either ICP34.5 or ICP34.5-GFP, support 

the replication of HSV1716 and produce a vims yield higher than that achieved horn 

the non-transfected 3T6 cells.

In this experiment, cell monolayers following infection with either HSVl7’*' or 

HSVl716 were assessed to detect a functional change resulting from the expression 

of ICP34.5 or ICP34.5-GFP. The intention was to show that the expression of 

ICP34.5 or ICP34.5-GFP in 3T6 cells could support a lytic HSV1716 infection. To 

provide a control, untransfected 3T6 monolayers were also investigated following 

infection with HSVl 7 .̂ 3T6 and the transfected 3T6 cell lines should be fully 

permissive to wild type HSV infection.

The results are indicated in figures 15.5.1, 15.5.2 and 15.5.3. Each cell line following 

either HSVl 716 or HSVl 7  ̂infection is discussed in turn.
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3T6 cell line

HSVl?*"

The arrows in figure 15.5.1(i) indicate viral plaques that have fonned as a result of 

lytic replication by 48 hours post vims infection. Figure 15.5.1(ii) shows that the 

viral infection is more advanced by 72 hours following infection. The cells 

sun'ounding the plaques in figure 15.5.1(h), indicated by appear to be infected 

with vims with lysis imminent.

HSV1716

By 48 hours after infection of the semi-confluent 3T6 monolayers with HSV 1716 

there are apparent foci of infection - figure 15.5.1 (hi). These areas are indicated by 

However, possibly as the result of increased contact inliibition of cell division as the 

monolayers become more confluent, by 72 hours figure 15.5.1(iv) these abortive 

plaques have disappeared and the cell monolayer appears completely uninfected.
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3T6-34.5 cell line

HSV17+

Lytic replication was apparent by 48 hours with large plaques indicative of cell lysis demonstrated in 

figure 15.5.2(i). By 72 hours the infection had become more extensive with all the cells showing evidence 

of infection demonstrated in figure 15.5.2(ii).

HSV1716

There was evidence of virally infected cells by 48 hours, indicated by the arrows in figure 15.5.2(iii) 

although there was no obvious plaque morphology demonstrated. By 72 hours there was clear evidence 

that HSVl 716 is replicating in the 3T6-34.5 cells and plaques had begun to develop, indicated by the 

arrows in figure 15.5.2(iv).
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3T6-34.5-GFP cell line

HSV17^

By 48 hours post virus infection there was clear evidence of lytic viral infection with 

obvious plaques shown in figure 15.5.3(i). These plaques were more extensive and 

beginning to coalesce by 72 hours when all of the cells appeared to be infected as 

demonstrated in figure 15.5.3(ii).

HSV1716

By 48 hours following virus infection although there were no plaques, the cells 

showed characteristic signs consistent with HSV infection, indicated by the arrow in 

figure 15.5.3(iii). By 72 hours post infection plaques were present and the majority 

of the cells had an appearance consistent with vims infection.
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The appearance of foci of rounded 3T6 cells seen 48 hours after infection with 

HSV1716 supports the view that a proportion of the cells, possibly because they 

were actively dividing, were capable of supporting a productive infection. However, 

by 72 hours when the cells were fully confluent, there was no further sign of these 

foci or any other evidence of HSVl 716 lytic replication. In contrast, HSVl 716 

underwent full lytic replication in 3T6-34.5 and 3T6-34.5-GFP cells, producing the 

characteristic plaque morphology which progressed between 48 and 72 hours. 

Therefore, it is possible to conclude that the expression of ICP34.5 or ICP34.5-GFP 

enabled HSV1716 to replicate in and lyse the transfected 3T6 cells. The appearance 

of the infected monolayers supported the multicycle growth experiment evidence 

(figure 15.4a) of enhanced viral replication in 3T6 cells expressing ICP34.5.

Because the ICP34.5 plasmids complemented the deleted RLl gene, HSVl 716 was 

capable of replication in the transformed cells, however, it did not replicate as well as 

HSVl 7 .̂ It is hypothesized that the failure of the plasmid-expressed ICP34.5 to 

enable HSV1716 to replicate as well as wild type HSV may result from lower levels 

of ICP34.5 being present; a suggestion supported by the finding in the Western blot 

that the level of ICP34.5 was lower in the expressing cells than in HSV 17  ̂infected 

extracts.
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l5 .6  HSV1716 and HSV17^ Infection of Non-Replicating 3T6. 3T6-34.5 and 

3T6-34.5-GFP Cells

In experiment 15.5, the cell monolayers were 80% confluent and the cells were still 

actively dividing. It is known that HSVl 716 can replicate in dividing 3T6 cells but 

that it will not replicate in non-dividing 3T6 cells. In this experiment HSVl716 and 

HSVl7  ̂were used to infect 3T6, 3T6-34.5 and 3T6-34.5GFP monolayers that were 

100% confluent and had entered a resting, non-replicative state.

The results are indicated in figures 15.6.1, 15.6.2 and 15.6.3. Each cell line following 

infection with HSVl716 and HSVl 7’*' is discussed in turn.
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HSV17'"

By 48 hours plaques had begun to develop in the HSVl7"̂  infected confluent 3T6 

cells demonstrated in figure 15.6.1(i). The HSVl7  ̂infection is more advanced by 

72 hours, indicated by larger plaques shown in figure 15.6.1(ii).

HSV1716

There was no evidence of HSVl 716 replication at 48 or 72 hours post infection 

demonstrated in figure 15.6.1 (iii). There were complete intact monolayers with no 

evidence of plaques at both of the time points demonstrated in figure 15.6.1(iv).
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3T6-34.5 cell line

HSV17^

By 48 hours after infection of 3T6-34.5 cells with HSV17^ there was some evidence 

of vims activity indicated by the aiTow in figure 15.6.2(i) however no plaques had 

developed. There were clear plaques by 72 hours demonstrated in figure 15.6.2(ii).

HSV1716

By 48 hours there was some evidence of HS V I716 infected cells as indicated by the 

arrows in figure 15.6.2(iii). The infected cells were rounded and appeared to be in 

clumps, however there is no evidence of plaques forming. By 72 hour the viral 

infections was more extensive and aggi'egates of vims infected cells were more 

apparent. In this field there is the evidence of small plaques developing, indicated by 

the arrows in figure 15.6.2(iv)
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3T6-34.5-GFP cell line

HSV17'''

By 48 hours after infection of the 3T6-34.5-GFP cells with HSV17^ there was 

evidence of plaque formation and by 72 hours the infection was extensive, with the 

plaques beginning to coalesce demonstrate in figure 15.6.3 (i) and (ii).

HSV1716

By 48 hours after infection with HSV1716 there had been extensive viral infection 

with the vast majority of the cells showing evidence of infection. By 72 hours there 

were fewer cells present, as the lytic replication had progressed, demonstrated in 

figure 15.6.3 (iii) and (iv).

The data from the confluent monolayers supported the data obtained from the semi

confluent monolayers showing that in 3T6 cells, expressing either ICP345, or 

ICP34.5-GFP, HSV1716 is able to replicate to generate a full lytic cycle resulting 

cell death. There is evidence by 48 hours of an HSV1716 infection, that by 72 hours 

had become more extensive in both the 3T6-34.5 and 3T6-34.5-GFP cells. The 

expression of either ICP34.5 or ICP34.5-GFP had changed the phenotype of 3T6 

cells making them pennissive to ICP34.5 null HSV replication.
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15.7 PCNA Localisation in Replicating and Growth Arrested 3T6 cells 

Expressing ICP34.5 or ICP34.5-GFP

The following experiments were conducted to deteimine the localisation of PCNA in 

replicating and growth ainested 3T6 cells expressing ICP34.5 or ICP34.5-GFP.

In quiescent cells PCNA exists as a soluble form, whereas in actively replicating 

cells or those treated with DNA damaging agents, it occurs as a detergent-insoluble 

fonn stably associated with DNA. Therefore, to study the localisation of PCNA 

involved in DNA replication, cells grown on cover-slips in medium with or without 

serum were treated with a hypotonic solution in order to make them more peimeable, 

and a mild detergent to solubilise any PCNA not bound to DNA. The PCNA was 

detected by a monoclonal antibody and visualised by immuno-fluorescence.

The results are indicated in figure 15.7.1, 15.7.2 and 15.7.3.

In actively dividing 3T6, 3T6-34.5 and 3T6-34.5-GFP cells (figure 15.7.1(a), 

15.7.2(a), 15.7.3(a) respectively), the DNA-bound PCNA is clearly identified as 

speckling in the nucleus (a few of the nuclei staining for PCNA are identified by 

yellow arrows). There is no apparent difference in the level of PCNA present in any 

of the thi'ee cell lines. In growth arrested 3T6, 3T6-34.5 and 3T6-34.5-GFP cells 

(figure 15.7.1(b), 15.7.2(b), 15.7.3(b) respectively), there is virtually no PCNA 

immuno-fluorescence. It appears that incubation for 48 hours in semm free medium 

has successfully growth arrested all of the cell lines. The expression of ICP34.5 did 

not prevent the transfected 3T6 cells fi'om entering a state of growth arrest.
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Figure 15.7.1

(a) PCNA immunofluorescence o f actively dividing 3T6 cells.

(b) PCNA imm unofluorescence o f  growth arrested 3T6 cells.
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Figure 15.7.2

(a) PCNA immunofluorescence o f actively dividing 3T6-34.5 cells.

(b) PCNA immunofluorescence o f  growth arrested 3T6-34.5 cells.
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Figure 15.7.3
(a) PCNA immunofluorescence o f actively dividing 3T6-34.5-GFP cells.

(b) PCNA imm unofluorescence o f  growth arrested 3T6-34.5-GFP cells.
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15.8 Summary of Results

Initially plasmids expressing ICP34.5 or ICP34.5-GFP under the control of the RLl 

promoter in addition to a Zeocin resistance gene were constmcted. The plasmids pc4- 

34.5 and pc4-34.5-GFP, were linearised and used to transfect actively dividing 3T6 

and BHK cells. Transfected cells were selected by growth medium containing 

Zeocin.

Confimiation of stable expression by the transfected 3T6 cells was obtained from 

Western blot analysis, using an antiserum against ICP34.5, which showed protein 

bands indicative of ICP34.5 and ICP34.5-GFP. In addition, expression of the 70kD 

and 21kD viral proteins in HSV1716 infected 3T6-34.5 and 3T6-34.5-GFP cells, but 

not in the non transfected 3T6 cells, indicated that expression of ICP34.5 had 

overcome the block in HSV1716 replication noimally seen in 3T6 cells. Further 

evidence of the expression of functional ICP34.5 in the transfected 3T6 cells was 

demonstrated by their ability to support HSV1716 replication giving a higher 72 hour 

yield than the control 3T6 cells.

Western blot analysis demonstrated that there was expression of ICP34.5-GFP in the 

3T6-34.5-GFP cell lines. It was hoped that detection of green fluorescence in the 

transfected cell line would indicate the localisation within the cell of the fused 

ICP34.5. Green fluorescence was unfortunately not detected. This may be due to low 

levels of GFP expression produced by the weak RLl promoter.

The phenotypes of the transfected 3T6 cells were analysed with respect to HSV1716 

infection. It has been shown (Brown SM et a i, 1994a) that HSV1716 can replicate in 

dividing but not in fully confluent, contact inhibited 3T6 cells whereas HSV 17  ̂

replicates in both dividing and non-dividing 3T6 cells. Actively replicating 3T6 cells 

expressing ICP34.5 or ICP34.5-GFP were compared to non-transfected 3T6 cells 

with respect to HSV1716 and HSV17^ infection. As expected HSV17^ replicated 

efficiently in all of the cell lines. In the replicating 3T6 cell lines infected with 

HSV1716 the appearance of ‘abortive plaques’ indicated early viral replication. In 

the ICP34.5 and ICP34.5-GFP expressing 3T6 cell lines there was evidence of
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HSV1716 lytic replication with the appearance of characteristic plaque formation. 

Confluent, non-replicating 3T6 cells infected with HSV1716 failed to show any sign 

of infection, whereas a characteristic HSV plaque morphology was observed in 

HSV1716 infected confluent 3T6 cells expressing either ICP34.5 or ICP34.5-GFP. 

Therefore expression of either ICP34.5 or ICP34.5-GFP successfully changed the 

phenotype of the cell making them permissive to ICP34.5 null HSV replication.

The localisation of PCNA and whether or not it is engaged in cellular DNA 

replication is thought to determine the ability of HSV1716 to replicate. A series of 

immunofluorescence experiments was performed to investigate the localisation of 

PCNA within replicating and growth arrested 3T6 cells. The experiments were 

designed to study the distribution of DNA bound to PCNA in dividing and growth 

arrested 3T6 cells. In semm staiwed, growth arrested 3T6, 3T6-34.5 and 

3T6-34.5-GFP cells, there was no evidence of DNA bound to PCNA. In the growth 

arrested cells the PCNA was presumably present in the cytoplasm in the detergent 

soluble foim. The expression of ICP34.5 did not prevent the transfected 3T6 cells 

fr om entering a state of gi'owth aiTest.
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Chapter 6

Discussion and Conclusions

16 HSV1716 Infection into the Resection Cavity Rim Following 

Surgical Resection of High Grade Glioma in Patients with 

Recurrent and D e N ovo  Tumours

Foimal follow up in this study was completed in February 2003, 22 months after 

initiation and 14 months after enrolment of the last patient. There was no evidence 

of local or systemic toxicity following the injection of HSV1716 into the brain 

adjacent to tumour in any of the twelve patients in this study. At study 

completion, ten patients had shown evidence of tumour progression; one (patient 

12) died from a non-tumour related cause and one (patient 7) was still alive. 

Patient 1 and 10 were progression free and clinically well at study completion.

Patient 12 developed evidence of tumour recurrence at 8 months and received two 

cycle of Temozolomide, but died at 11 months post HSV1716 injection from a 

presumed myocardial infarction.

Patient 7 showed clinical and radiological signs of progression on completion of 

radical radiotherapy, twelve weeks after surgical resection and HSV1716 

treatment. Following further debulking surgery he received six cycles of CCNU 

chemotherapy. His disease then remained stable until the end of the follow up 

period 18 months from surgery and 15 months since re-resection and 

chemotherapy.

Patient 1 showed remarkable improvement over the 22 month follow-up period 

with no clinical or radiological evidence of disease progression. His Karnofsky 

status improved from 60, preoperatively, to 90 in February 2003 and his Barthel 

score from 8/20 to 18/20. His response is of particular note given his poor 

preoperative condition and the fact that he declined any chemotherapy.
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Patient 10 remained progression free and well at 15 months post resection and 

HSV 1716 injection.

As expected in a population such as this, some patients experienced adverse 

events. Although all of these events were thought to be unconnected with 

HSV1716 administration, three somewhat unusual events are discussed in some 

detail.

At 78 days after surgery and HSV 1716 injection, patient 1 suffered a seizure and 

required ventilation and anti-epileptic medication. He had no prior history of 

seizures and was not receiving anticonvulsant medication. The first blood sample 

to be analysed by PCR at that time was taken five days later (83 days post 

injection) and was positive for HSV DNA. The patient recovered well and was 

discharged from hospital on a maintenance dose of Phenytoin and had no 

subsequent serious adverse events. Any connection between this adverse event 

and the HSV1716 treatment remains unproven. Epileptic seizures are by no means 

uncommon in this group of patients and, given that this patient was seropositive 

for HSV when enrolled into this trial, the detection of HSV DNA in his blood 

although of interest it is not conclusive proof of HSV1716 replication. It is 

unfortunate that the PCR assay developed at the time of this trial could not 

distinguish HSV1716 from wild type HSV. Therefore it is not possible to say 

whether the HSV DNA detected in the blood sample was the result of HSV1716 

replication causing a transient viraemia or of a possible reactivation of the 

patient’s latent HSV infection. There was no indication that the patient exhibited 

recrudescence of his latent infection at that time, but this too dose not prove that 

there was not reactivation of latent HSV, controlled by his immune system. 

Therefore, whilst a connection between this adverse event and the HSV1716 

therapy cannot be ruled out, the evidence is inconclusive.

Two months after virus injection and shortly after completing a standard course of 

radiotherapy, patient 5 suffered a complex partial seizure and was commenced on 

Carbamazepine. He was subsequently readmitted to hospital with pyrexia of 

unknown origin and a generalised rash, which did not respond to broad spectrum 

antibiotics. Although no HSV DNA was detected in blood and eerebrospinal fluid
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by PCR analysis (sensitive at levels equivalent to 10  ̂pfu/ml) and whilst there was 

no evidence that HSV1716 was implicated, Acyclovir was nevertheless 

administered as a precautionary measure. Despite the Acyclovir, he remained 

unwell with a spiking temperature. Two weeks following admission, a positive 

monoclonal antibody ELISA test for Candida antigen confirmed invasive 

candidosis for which he was treated successfully with intravenous Fluconazole. In 

this case, it seems highly probable that the adverse event was entirely 

unconnected with the HSV1716 therapy.

Three weeks after surgery and HSV1716 injection, patient 12, a type II, insulin 

dependent diabetic presented with a herpes zoster rash in a C5/6 distribution. 

There was no evidence of HSV obtained by PCR or virus shedding assays on 

numerous serological and vesicular fluid samples and the clinical diagnosis of 

Varicella-Zoster reactivation was considered to be unrelated to the HSV1716 

therapy.

To the present day, October 2005, of the three patients who were still alive at the 

end of study follow up (February 2003) two have since died. Patient 1 

demonstrated evidence of tumour progression on imaging in May 2003. This was 

accompanied by deterioration in his neurological state. Given the apparent 

reduction in residual tumour" demonstrated by imaging following HSV1716 

administration alone, further HSV1716 was injected directly into the recurrent 

tumour on receiving approval for the procedure from the Gene Therapy Advisory 

Committee. In August 2003 there was evidence of recurrent tumour progression 

and this was resected. Further HSV 1716 was injected into the resection cavity 

rim. Patient 1 then went on to receive 3 cycles of combination chemotherapy 

(PCV) at his local hospital. He died in June 2004, 46 months following diagnosis 

and 37 months following the first delivery of HS V I716.

By February 2003 patient 7 had demonstrated evidence of tumour progression, 

which was excised. He then received a course of CCNU chemotherapy. He 

remained well until October 2003 when his clinical condition deteriorated and 

imaging demonstrated tumoui’ regrowth. In November 2003 he undei"went further 

tumoui" resection and insertion of Gliadel wafers into the resection cavity. His
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condition did not improve greatly and he subsequently died in April 2004, 32 

months following diagnosis and administration of HS V I716.

To date (October 2005) patient 10 is still alive, 47 months since diagnosis and 

administration of HS V I716. She was last reviewed in March 2005 and remained 

well with no clinical or radiological evidence of disease progression.

Patient serum samples were analysed in line with the protocol, for routine 

biochemistry and haematology. In addition, blood samples were analysed in oui’ 

laboratory for infectious HSV, HSV DNA by PCR and HSV IgG and IgM by 

ELISA.

Infectious HSV was not detected in any patient’s blood sample. In the case of 

HSV seropositive individuals, the presence of neutralising antibody makes it 

extremely unlikely that infectious HSV would ever be detected by this assay. 

However, given the limitation of detection of the assay, even in HSV seronegative 

subjects it is probable that only an acute viraemia would be detectable.

As stated previously, the PCR assay, developed to detect the presence of HSV 

DNA in the clinical samples, was not specific for HSV1716. Due to the obstacles 

imposed by the high G-C content of the DNA in the long repeat (R l) region of the 

HSV-1 genome, a PCR assay to reliably distinguish HSV1716 DNA had not been 

developed in time for use in analysing the samples in this trial. The probes used, 

hybridised to a highly conseiwed region of the genome and had been shown 

previously to reliably detect diverse HSV-1 wild type isolates. This assay was 

used in a previous phase I trial in which tumour tissue was injected with 

HSV1716 and later resected and analysed for the presence of HSV 

(Papanastassiou V et a l, 2002). In that trial it was assumed that any HSV DNA 

present must be HSV1716, as unattenuated wild type HSV would have caused 

encephalitis. This ai'gument, however, does not apply to blood samples. As HSV- 

1 infection results in lifelong latent infection in the sensory ganglia the detection 

of anti-HSV-1 antibodies in the blood stream indicated the presence of latent virus 

in a host. Therefore particularly in blood samples from HSV seropositive patients.
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it is impossible with this assay to distinguish between HSV1716 DNA and HSV

DNA from the reactivation o f a latent infection.

Using the PCR assay, serum samples from four patients were positive for HSV 

DNA. Of these, patients 1, 5 and 10 were HSV seropositive and had a prior 

history of HSV infection (cold sores). They were positive by PCR assay some 

time after injection of HS V I716 and it cannot be ruled out that the HSV DNA 

detected in these patients was the result of a sub-clinical viraemia associated with 

reactivation of endogenous latent HSV-1. Patient 3 was sero-negative prior to 

injection of HSV1716 and seroconverted at day 24, when HSV DNA was detected 

in his serum. Therefore, although not conclusive, the result in this case is 

indicative of the release of HSV1716 into the bloodstream more than three weeks 

after virus injection.

The ELISA assay quantified the levels of HSV specific immunoglobulins, IgM 

and IgG. The commercially available kit, measured the presence of antibody on a 

colourimetric scale with a designated cut off point above which the result was 

considered positive. The IgG and IgM responses for each patient throughout the 

clinical trial are shovm in the graphs in section 13.2 -  13.13 (Chapter 3). Patients 

2, 3 and 4 were found to be seronegative at the time of enrolment. Of these, 

patients 3 and 4 mounted an immune response and seroconverted between the 

third and fourth weeks post virus injection with no adverse symptoms reported. 

Usually after a naïve individual is exposed to an antigen, the level of IgM 

increases over the course of a few days and then drops after approximately ten 

days when there is a concurrent increase in IgG. The timing of the immune 

response in these patients is, therefore, somewhat slower than might be expected 

if the response was mounted against the initial inoculum, lending some credence 

to the possibility of viral replication in the tumours following injection. However, 

as these patients died at 9 and 15 months respectively of disease progression, any 

viral replication does not appear to have resulted into an obvious survival 

advantage given the expected sui-vival for a cohort such as this. The remaining 

seronegative individual, patient 2, who, unlike the other two, remained on high 

dose steroids, did not mount an immune response and died six months after 

injection of virus.
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and IgG. The commercially available kit, measured the presence of antibody on a 

colourimetric scale with a designated cut off point above which the result was 

considered positive. The IgG and IgM responses for each patient throughout the 

clinical trial are shown in the graphs in section 13.2-13.13 (Chapter 3). Patients 

2, 3 and 4 were found to be seronegative at the time of enrolment. Of these, 

patients 3 and 4 mounted an immune response and seroconverted between the 

third and fourth weeks post virus injection with no adverse symptoms reported. 

Usually after a naïve individual is exposed to an antigen, the level of IgM 

increases over the course of a few days and then drops after approximately ten 

days when there is a concurrent increase in IgG. The timing of the immune 

response in these patients is, therefore, somewhat slower than might be expected 

if the response was mounted against the initial inoculum, lending some credence 

to the possibility of viral replication in the tumours following injection. However, 

as these patients died at 9 and 15 months respectively of disease progression, any 

viral replication does not appear to have resulted into an obvious survival 

advantage given the expected survival for a cohort such as this. The remaining 

seronegative individual, patient 2, who, unlike the other two, remained on high 

dose steroids, did not mount an immune response and died six months after 

injection of virus.
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Patients were monitored throughout the study with regular imaging, primarily to 

detect any evidence of disease recurrence. Imaging involved MRI (or CT if the 

patient could not tolerate MRI due to claustrophobia), Thallium-201 SPECT and 

99mTc'HMPAO SPECT. The MRI (or CT) and Thallium-201 SPECT scans were 

used to detect any evidence of tumour recurrence. The images were later reviewed 

to look for evidence of tumour response following injection of HSV1716.

In the majority of cases, following surgical resection and HSV1716 injection 

followed by standard therapy there was some temporaiy tumour stabilisation, 

most probably as a result of the adjuvant radiotherapy or chemotherapy. In only 

one of the twelve patients (patient 1) was there imaging evidence detected of 

tumour regression that might be associated with the injection of HSV1716. The 

reduction in size of the tumour mass seen on imaging correlated well with his 

clinical improvement, however, a causal relationship between his clinical 

improvement and the procedure cannot be established. In other patients with 

detectable disease following tumour debulking, there was no tumour regression 

detected by imaging. In patients where there was no demonstrable tumour left 

following resection, macroscopic reduction in tumour could not be detected.

Following routine clinical practice, after surgical debulking of tumour, patients in 

the trial proceeded with further immunosuppressive treatments, either 

radiotherapy of chemotherapy. The data from this trial demonstrate 

unequivocally that injection of HSV1716 up to a dose of 10  ̂pfu into the resection 

cavity rim following resection of high grade glioma in immunocompromised 

patients was safe and did not generate toxicity. There were no serious adverse 

events that were thought related to treatment with HSV1716. One patient only 

showed convincing evidence of response to treatment in that the clinical course 

following resection of his glioblastoma followed by cavity rim injection was 

highly atypical for this disease.

In retrospect, however, the injection of HSV1716 into the cavity rim following 

tumour resection was probably not optimal in terms of tumour treatment as the 

sparsely distributed permissive cells in this tissue would almost certainly be 

insufficient to sustain successive rounds of viral replication. In addition only ten
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injection points were selected, into each of which a 0.1ml ( 1 x 1 pfu) aliquot of 

HSV1716 was delivered. Although areas of possible residual tumour were 

carefully sought and injected, the interface between normal tissue and tumour is 

not always distinguishable. In addition, the potential for failing to identify small 

islands of tumour cells is high. It would not be surprising therefore if HSV 1716 

in some instances failed to come into contact with replicating tumour cells and 

generate a productive lytic infection. Also, the nature of the resection cavity, with 

the inevitable inflammation response generated at the time of surgery, was 

probably not the ideal enviromnent into which to inject HSV1716. Virus injection 

several days after surgery, which would have allowed time for the acute 

inflammatoiy response and the reactive oedema to settle, might have been 

preferable. This would, however, have involved two interventions with the 

associated increase in risk fr om anaesthesia, haemorrhage or infection.

Attempts were made to culture tumour samples from all of the patients in vitro, 

however only five samples grew sufficiently to perform multicycle growth 

experiments with HSV1716. In all five HSV1716 replicated efficiently, 

supporting the view that HSV1716 could potentially be efficacious, if delivered 

effectively to an optimum in vivo environment.

HSV1716 is the herpes simplex oncolytic virus currently in the most advanced 

clinical trials. Data from three published phase I clinical trials involving a total of 

33 patients and doses up to 10̂  pfu has been gathered with no evidence of toxicity 

associated with HSV1716. In addition, as an extension to the first study, a further 

12 patients were recruited who received an intratumoural injection of HSV1716 

up to a higher total dose of 10  ̂pfu. In this study there has also been no evidence 

of toxicity associated with HSV1716 (Papanastassiou V, personal 

communication).

In 2000, Markert et al. published data detailing an investigation of the selectively 

replication competent HSV-1 mutant G207 following intratumoural injeetion in 

21 patients with high grade glioma. As G207 is a double mutant, lacking ICP34.5 

and ribonucleotide reductase expression, it is considerably more attenuated than 

HSV 1716 and consequently initiating doses of up to 3x10^ pfu were used. There
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was no evidence of toxicity associated with the treatment but unfortunately the 

investigators were unable to demonstrate evidence of G207 replication in the 

tumours. One reason may lie in the trial design, in that for the first 18 patients, 

G207 in a small volume (0.1-0.3ml) was injected into a single tumour site. The 

investigators sought to minimise reflux up the needle tract by injecting the virus 

over two minutes. However, it is possible that using such small volumes, the 

proportion lost was high and the intended dose was not delivered.

Both HSV 1716 and G207 are selectively replication competent virus and clinical 

studies with these agents generate novel problems of trial design. Conventional 

studies using escalating doses to achieve a toxic endpoint are not appropriate. 

Because the virus has the capacity to replicate, it is possible that after several 

rounds of replication, the virus titre will be orders of magnitude higher than the 

input. Therefore, although it is necessary to have an input dose sufficient to 

initiate viral replication, the nature of the tissue into which the virus is injected is 

possibly of greater importance, meaning that the issue of delivery is paramount.

HSV1716 may be at the forefront of oncolytic viral therapy in high grade gliomas, 

however, the investigators still face the challenge of designing a clinical trial to 

demonstrate efficacy. Before the treatment would be taken up in clinical practice, 

a clinical trial would unequivocally have to demonstrate increases in time to 

tumour progression and overall survival and possibly additional positive quality of 

life data. With the costs of rumiing a phase II clinical trial high, the study design 

will be crucial.

In 2000 Rainov et al. presented data on a large randomised gene therapy trial in 

patients with newly diagnosed glioblastoma. Patients randomised to the treatment 

arm received an injection, of retrovirally transduced glioblastoma cells expressing 

HSVtk, into the resection cavity following tumour resection. The patients were 

treated later with Gancyclovir. Unfortunately the study failed to demonstrate any 

significant increase in the time to tumour progression or overall survival. It is 

probable that the investigators proceeded to a large phase III study with 

incomplete phase II data to support the protocol employed. This highlights the
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necessity for efficacy studies to have cleai* objectives, be properly designed and be 

based on adequate preclinical and early clinical data.

Selection of the appropriate patient population will be important in futui'e clinical 

trails of HSV 1716 in glioblastoma. Investigators need to define clearly the 

clinical scenario in which they envisage HSV 1716 will have clinical application.

In the analysis of the three phase I clinical trials involving HSV1716 no one 

patient cohort has shown to have benefited more than any other. The in vitro data 

presented in this thesis support the view that HSV1716 will replicate more 

efficiently when injected into a replicating tumour mass than when used to mop 

up residual tumour cells in the cavity rim following tumour resection. It is 

ai'guably not ethical, in the absence of efficacy date, for HSV1716 to be used in 

trials in patients with de novo tumour where the current surgical and radiotherapy 

treatments have shown clear, if limited, efficacy. It is probable, therefore, that 

clinical trials to demonstrate efficacy are liable to be conducted in patients with 

tumour recurrence following first line adjuvant treatment. These patients, under 

current treatment guidelines, then receive chemotherapy. It has been shown that, 

despite the resultant immunosuppression, chemotherapy delivered following 

injection of HSV1716 is not associated with any additional toxicity (Harrow S et 

al., 2004). Therefore, in theory the HSV 1716 could be administered in 

conjunction with chemotherapy, although this has obvious repercussions for the 

analysis of data to demonstrate survival benefit. In addition, the recent 

demonstration of efficacy from combining ionising radiation with Temozolomide 

(Stupp R et al., 2005) could complicate the issue of designing trials to assess the 

efficacy of HSV1716 in adjuvant settings.

It is anticipated that in future patients with newly diagnosed glioblastoma will 

undergo surgical tumour resection and then receive Temozolomide concurrently 

with IR. This is followed by a period of adjuvant Temozolomide. The data 

presented by Stupp et al. (2005) suggest that the additional survival seen in 

patients who received Temozolomide is largely due to the concurrent delivery of 

the drug with IR. The authors proposed that this may be because Temozolomide 

depletes levels of the enzyme 0^-methylguanine-DNA methyltransferase (MGMT) 

thereby preventing repair of IR damaged DNA. It is uncleai’ what the effect of
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reduced MGMT levels would have on HSV1716 infection. It would therefore be 

interesting to perform some in vitro analysis to determine if there was any 

additional cell kill from combining HSV1716 and Temozolomide. It is possible 

that the DNA damage induced by HSV1716 infection could be enhanced by the 

reduction in MGMT levels resulting from Temozolomide treatment, to give 

enhanced cell kill. However it is recognised that the mechanism of MGMT is 

repair of méthylation adducts which is not known to be directly caused by HSV 

infection. Alternatively as it appears that HSV1716 relies on the cellular DNA 

repair response to initiate its own replication, depletion in MGMT levels could be 

detrimental to HSV 1716 replication.

The mode of delivery of HSV17I6 is also important when considering the design 

of future clinical trials. In the previous trials, HSV1716 was injected either into a 

small number of sites (up to ten) within the tumour or into the cavity rim 

following tumour resection. It has been shown that following direct injection into 

the tumour there was viral replication within the tumoui' (Papanastassiou V et al., 

2002). However, if the delivery of HSV1716 could be improved to infect more 

tumour cells at a stage within the cell cycle conducive to the selective viral 

replication, subsequent virus replication might allow progeny virus to disseminate 

throughout the whole tumour. Improved delivery could be achieved by better 

targeting of delivery to actively replicating areas of the tumours, possibly by 

taking advantage of advances in functional imaging combined with automated 

stereotactic delivery systems or with convection enlianced drug delivery (CEDD).

CEDD uses a positive pressure infusion mechanism that can deliver a dmg locally 

and bypass the blood brain barrier. CEDD distributes a therapeutic agent, down a 

pressui'e gradient through the brain interstitium, without causing structural or 

functional damage to the tissue. This approach is ideal for targeting areas of 

tumour that are unresectable due to inaccessibility or location in eloquent brain 

tissue. Groothius et al. (1999) demonstrated a 10,000 fold increase in the 

concentration of sucrose in rat brain compared with intravenous 

administration and the pattern of distribution was such that there was a central 

portion resulting from convection and a peripheral component in grey matter 

resulting from diffusion. Laske et al. (1997) reported encouiaging efficacy results
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following the treatment of 15 patients with CRM 107, a conjugate of human 

transferrin and a modified diphtheria toxin delivered by CEDD. There was no 

local or systemic toxicity associated with the delivery of CRM 107 by CEDD. In 

addition, in vivo data has been presented indicating that CEDD can be used to 

deliver gene therapy vectors (Cunningham J et al., 2000). A feasibility study to 

investigate the applicability of this technology to the delivery of HSVI716 is 

therefore indicated. It would be useful to know if HSV1716 particles would 

successfully infiltrate tumours and if  they would, like the small molecules in the 

Groothius et al. study, diffuse further to reach tumour cells which have migrated 

away from the main tumour mass.

Two large, multicentre, open label, randomised phase III clinical trials are 

cuiTently underway using CEDD to deliver the drug under investigation. Both 

studies are investigating the efficacy of the agent in patients with recurrent high 

grade glioma with the primary objective of each trial being overall survival. In the 

first study patients are randomised to receive CRM 107, renamed TransMID™ or 

the preferred chemotherapy regime of the recruitment centre used to treat patients 

with recurrent or unresectable disease. CRM107, is being delivered in a total 

volume of 40ml directly into recuiTcnt or progressive glioblastoma via two 

catheters. The total volume is delivered in a graduated manner up to a maximum 

rate of 0.4ml/hour over 4-7 days. Each patient will receive two infusions of 

TransMID^^ between 4 and 8 weeks apart. The other trial is investigating the 

convection enhanced delivery of IL13-PE38QQR, a recombinant, tumour 

targeted, chimeric cytotoxin composed of amino acids firom human interleukin-13 

(IL-13) and fi'om Pseudomonas Exotoxin A. This study will compare post

resection, peritumoural infusion of IL13-PE38QQR to the use of Gliadel Wafer in 

patients with glioblastoma at time of first recui'rence who are suitable for surgical 

resection. It is intended that there will be between 2 and 4 catheters inserted into 

the tumour. In this trial a flow rate of 3.12-6.25 pL/lir per catheter is proposed to 

deliver a total volume of 72ml over 4 days. The results of these trials will be 

interesting not only to appraise the drug under investigation, but also the novel 

delivery mechanism (Rampling R, personal communication).
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Another dilemma for those involved in future trial design is the need to decide 

what would constitute an acceptable survival advantage. Persuading clinicians to 

adopt a radical new treatment such as oncolytic viral therapy for high grade 

glioma would require the demonstration of a clinically significant survival 

advantage (probably six months or 50% improvement in median survival). 

However, there is no point in designing such a trial if the end points are clinically 

unrealistic. When designing any future trial it will be necessary to select a 

treatment effect that is clinically acceptable, whilst considering the number of 

patients required to provide statistical significance in addition to the expected time 

for recruitment given the rarity of this disease.

Following the in vitro demonstration of additive (or even synergistic) glioma cell 

kill achieved by combining ionising radiation and HSV1716 infection, it is 

interesting to speculate on how this could be applied in practice. Although it is 

probable that extensive animal testing would be required to fully characterise the 

effect in terms of dosing scheduling etc, it is nevertheless worth considering 

possible scenarios in which the combination of ionising radiation and oncolytic 

HSV therapy might be combined in clinical practice.

Because of the long term effects and morbidity associated with radiotherapy of the 

brain, patients with HGG usually receive only one course of external beam 

radiation. Current clinical practice is to deliver this external beam radiotherapy to 

a 2cm margin around the cavity following maximal tumour resection. The 

radiotherapy is most effective when delivered soon after resection and ideally 

should commence as soon after surgery as is possible. As discussed previously, it 

is probable that HSV 1716 therapy is liable to be less effective in the conditions 

existing immediately post surgery. However, as radiotherapy is the most effective 

treatment currently available for the treatment of HGG, it would be unethical to 

change the scheduling of the radiotherapy without very good evidence for the 

potential benefit of changing. Therefore, within the constraints of the current best 

practice, the only way to combine HSV1716 treatment with ionising radiation 

would be to administer the virus immediately before or during the radiotherapy 

course. In this scenario, either the patient would have to undergo two surgical 

procedures, only weeks apart or, if the radiotherapy was administered
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immediately after sui'gery, the virus would have to be injected into the cavity rim 

immediately after resection, with all of the consequent disadvantages previously 

discussed.

Another option may be to follow the conventional treatment schedule with tumoui' 

resection followed by external beam radiotherapy to the tumour cavity. At the 

stage of tumour relapse the tumour could be injected with HSV1716 delivered by 

CEDD with a boost of ionising radiation delivered to the tumour via stereotactic 

radiotherapy. As has been discussed in the introduction stereotactic radiotherapy 

is reserved for the treatment of tumours that are less than 4cm in diameter. In this 

scenario however the radiation is not being delivered to offer tumour control but 

to enhance the replication of HSV1716 and therefore relies on irradiating the 

portion of tumour that is being maximally infused with HSV1716. Although the 

logistics of delivering stereotactic radiotherapy may be difficult, the localised 

nature of the treatment should not generate morbidity for the patient.

In some instances it is acceptable to re-irradiate high grade glioma using 

conformai external beam radiation techniques. The tolerance of glial tissue to re- 

iiTadiation allows a reduced dose, compared to the primary radical dose, to be 

delivered before serious damage of normal glial tissue is observed (Steel G.,

2002). It is therefore conceivable to deliver HSV1716 by CEDD concurrent with 

re-irradiation of the whole tumour and not just a small part of the tumour as would 

be achieved by stereotactic radiotherapy. Earlier in this thesis experimental data 

was presented demonstrating that pre-irradiated tumoui’ cells in vitro did not result 

in enhanced viral replication when compared with non-irradiated cells. Therefore, 

if the mechanism by which synergy was observed in vitro between HSV1716 and 

IR is due to an effect on the cells, such as an alteration in virus entiy or egress, 

then irradiating the tumour as a whole may seem more logical. Pre-clinical animal 

work may be able to explore this.

If a synergistic relationship was to be conveyed in vivo then this might result in 

demonstrable reduction in tumoui' bulk or translate into prolonged progression 

free survival and an increase in overall survival.
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One may argue that the optimum environment in which to deliver HSV1716 

would be prior to any standard treatment. This would only be feasible provided 

tumour debulking surgery was not required to alleviate symptoms of increased 

intracranial pressure. Given that there is scant evidence to suggest a survival 

benefit from tumour debulking without adjuvant Temozolomide, it would be 

interesting to investigate the delivery of HSV1716 by CEDD into the tumour mass 

concurrently with radical radiotherapy prior to tumour debulking surgery. 

Confirmation of a high grade glioma could be obtained intraoperatively from a 

stereotactic biopsy after which HSV1716 delivery could be commenced via 

CEDD. It is possible that a radical course of radiotherapy could be scheduled to 

coincide with the deliveiy of HSV1716. Patients would then be monitored closely 

using imaging for evidence of tumour growth. At the time of tumour growth 

patients would be eligible for tumour debulking surgery if indicated and/or other 

treatment.

An international, multi-centre, phase III clinical trial to assess the efficacy of 

HSV1716 in patients with relapsed glioma will commence recruitment in March 

2006. Since completion of the phase I clinical trial presented in this thesis the 

EMEA has awarded Crusade Laboratories orphan drug status for HSV1716 in the 

treatment of glioma. The EMEA has been able to provide both scientific advice 

and protocol assistance in order to optimise the design of the clinical trial in this 

next crucial step.

It is proposed that 382 patients with recunent glioblastoma at first relapse will be 

randomised into one of two treatment arms: HSV 1716 treatment alone or 

chemotherapy treatment alone. Patients in the HSV1716 treatment arm will 

receive HSV17I6 either by stereotactic multipoint microinjection or by CEDD 

determined by local expertise. A total of 6x10^ pfu will be introduced into the 

tumour by either method. Patients will then be followed up every six weeks at 

wliich time cranial MRI will be acquired. If persistent active tumour is observed 

on MRI then further HSV 1716 treatment will be administered, on up to a 

maximum of four occasions. Patients will be deemed to have failed HSV1716 

therapy and will not receive further HSV 1716 if there is tumour progression 

despite two or more virus administrations. Patients in the chemotherapy arm will
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receive standax'd chemotherapy (Procarbazine, CCNU and Vincristine) at standard 

doses and schedule.

The primaiy objective of the forthcoming trial will be to determine whether 

HSV1716 given by intratumoiiral administration is effective, as measured by 

overall survival. In addition, secondary objectives such as quality of life and 

progression free survival will be assessed. It is proposed that recruitment will be 

complete by 2008.

As this discussion makes clear, the design of trials to test the efficacy of 

HSV1716 in human high grade glioma is extremely complex. Therefore, given 

the constraints of current best practice in the management of high grade glioma, it 

seems improbably that the in vitro demonstration of enhanced cell kill will be 

translated immediately into clinical application. However, if the efficacy of 

HSV1716 or another oncolytic viral therapy is proved, it is to be hoped that the 

possible advantages of combining radiotherapy and viral therapy will be 

readdressed. In addition, further experimentation to elucidate the mechanism 

behind the enhanced cell kill should be pursued as it might help improve our 

understanding of how the virus interacts with tumour cells.
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17 Interaction of Ionising Radiation and HSV1716 in vitro

The aim of the work covered in this section was to investigate, in vitro, the effect 

on tumour cell kill of combining ionising radiation and infection with the ICP34.5 

null mutant HSV1716. When this project was started, data from in vivo 

experiments combining ICP34.5 null HSV infection with ionising radiation 

demonstrating enhanced cell kill had been published (Advani SJ et aL, 1998; 

Bradley J et al., 1999). The purpose of this project was to develop an in vitro 

experimental strategy to corroborate this effect on cell kill, by combining ionising 

radiation with HSV 1716 infection of tissue culture cells. In addition, it was 

intended to quantify any such effect on cell kill due to combining the treatments, 

as being infra-additive, additive or synergistic.

In initial in vitro experiments, clonogenic and spheroid growth delay assays 

proved to be unsuitable for assessing combination therapies involving replication 

competent vims. In these systems the effect of the viral infection was “all or 

nothing”; as soon as the titre of input vims was sufficient to be detectable , the 

infection spread to kill all of the cells. A cytotoxicity assay demonstrated that 

there was a linear relationship between the number of live cells and the MTS 

colorimetric reading. Subsequent experiments used cell densities within this 

linear range.

In addition to BHK and 3T6 cells, which were well characterised with respect to 

lytic replication of HSV1716, a number of cell lines, primarily of human high- 

grade glioma lineage, were assessed for their permissivity to HSV1716 infection 

and their response to ionising radiation. Multicycle growth experiments 

investigating HSV1716 replication in the human high-grade glioma cell lines 

MOG and 373 demonstrated that there was less efficient replication of HSV 1716 

than the parental wild type HSV17\ As HSV1716 infection failed to kill all of 

these cells, under selected conditions, there was the potential for additional cell 

kill due to ionising radiation to be achieved.

276



In vitro experiments were conducted investigating the reduction in cell viability 

when cell monolayers were exposed to various doses of ionising radiation. High 

initial cell densities resulted in cells becoming confluent too early in the course of 

the experiment. When the cultures reached confluence too early, any reduction in 

cell viability as a result of radiation damage could not be detected. In some cases a 

reduction in cell viability was evident in the absence of radiation; probably the 

result of reduced nutrients in the cell growth medium. Lower seeding densities, 

which enabled cell division to continue for 6-7 days allowing the detection of cell 

kill generated by ionising radiation, were determined. It was established that for 

all of the cell lines used in this study, a cell density of 2-3x10^ cells per (96 well 

plate) well allowed cell division to continue for 5-7 days. Separate experiments 

also proved that this density was suitable to support HSV1716 infections over the 

same time span. As HSV1716 only replicates in actively dividing cells, continued 

replication of the cells ensured that cell lysis due to viral replication was also 

optimal, mimicking the conditions in tumour cells where the cell cycle 

checkpoints are disrupted. It was shown that multiplicities of infection (MOI) 

greater that O.lpfu/cell, would quickly cause complete cell kill and prevent further 

cell proliferation. A MOI of O.lpfu/cell was adopted for subsequent experiments.

Interestingly, it was observed that at very low cell densities the ability of 

HSV1716 to replicate was markedly reduced. The observation that cell density 

has a profound effect on the ability of HSV 1716 to kill tissue culture cells is also 

likely to have an impact on its ability to kill high grade glioma in vivo in regions 

where the tumour cells are sparsely distributed. The in vitro data indicate that, 

because of the observed cell-to-cell spread, a much higher MOI may be required 

to kill sparsely distributed cells than densely packed peimissive cells. This would 

indicate that the best strategy for administering a replication competent virus is 

probably to direct it to areas with large numbers of actively dividing cells and not 

to mop up tumour cells following tumour resection.

Although some cytotoxicity was noted following irradiation of the various cell 

lines in culture, it was minimal. It appeared that the cell lines were relatively 

radio-resistant which corroborates the findings of other groups (Acevedo-Duncan 

M et a l, 2001). Published data (Advani SJ et ah, 1998; Bradley J et a l, 1999)
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demonstrating additional cell kill when ionising radiation and oncolytic HSV were 

combined, used an ionising radiation dose rate (typically 1.91Gy/min) faster than 

the dose rate generated by the Alcyon II Teletherapy Co^° source unit 

(0.3Gy/min). Hall and Brenner, (1994) demonstrated that lower dose rates, 

particularly between O.OOlGy/min and IGy/min, generated reduced cell kill due to 

sub-lethal damage being repaired during the protracted delivery of the radiation. 

However, reducing the distance between the Alcyon II Teletherapy Co^  ̂source 

and the tissue culture cells, which increased the dose rate by a factor of four to 

1.2Gy/min, failed to generate any further reduction in cell viability.

Published in vivo data showing enhanced cell kill with a ICP34.5 null HSV 

mutant and ionising radiation had been produced by infecting tumour xenografts 

with the oncolytic virus six hours prior to irradiation (Bradley J et aL, 1999). 

Initially this schedule was mirrored in the in vitro experiments. Therefore, it was 

necessary to ascertain if ionising radiation diminishes the ability of HS V I716 to 

generate a lytic infection in vitro. Multicycle growth experiments using HSV 1716 

irradiated with 5 Gy did not demonstrate any reduction in oncolytic activity 

compared to non-irradiated HSV1716.

After confirming that the dose of ionising radiation of 5Gy did not diminish the 

lytic replication capability of HSV 1716, experiments combining the two 

modalities were devised. It was shown that in BHK cells, which are fully 

permissive to HSV1716 infection, any additional cell kill generated by ionising 

radiation would be impossible to detect as the virus killed all of the cells 

irrespective of the radiation. Therefore further combination experiments sought to 

investigate if ionising radiation would result in cell kill due to HSV 1716 lytic 

replication in 3T6 cells which are normally non-permissive. Ionising radiation did 

result in some delay in exponential cell growth but did not appear to increase the 

permissivity of 3T6 cells to HSV1716 replication.

As multicycle growth experiments in human glioma cell lines had shown that 

HSV1716 replication was impaired in 373 and to a lesser extent in MOG cells, it 

was decided to continue combination experiments with these two cell lines. 

However, in initial experiments miiToring the scheduling used in the published in
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vivo work, where ionising radiation was administered six hours after virus 

inoculation, there was minimal cell kill due to ionising radiation. Under these 

conditions both HSV 17  ̂and HSV1716 caused complete cell kill within 7 days.

During the course of experiments with alternative scheduling of radiation and 

virus treatments to elicit additional cell kill, Blank et aL, published data 

demonstrating enhanced cell kill, in vitro, when ICP34.5 null HSV was delivered 

one hour after irradiation of cells (Blank S et a l, 2002). In light of this data, the 

scheduling of the delivery of ionising radiation and HSV1716 was altered. 

Experiments delivering 5Gy radiation prior to infection with O.lpfu/cell of 

HSV1716, reproducibly demonstrated additional cell kill detected by the MTS 

assay, by day 7 in both the 373 and MOG cell lines. A higher dose of 20Gy 

ionising radiation combined with HSV1716 was investigated under the same 

experimental conditions and additional cell kill in MOG and 373 cells was 

demonstrated by day 6.

Large fraction sizes such as those employed in the above experiments are used in 

stereotactic radiotherapy. However, these doses are larger than those used in the 

normal clinical radiotherapy management of patients with high-grade glioma. 

Experiments were therefore conducted to compare the effect on the level of cell 

kill when the ionising radiation was delivered in a single high dose or following a 

more clinically relevant regime of daily 2Gy fractions. Ten Gray of radiation 

were delivered either as a single dose or in 2Gy fractions over 5 days. In 

combination experiments, additional cell kill was achieved by combining the 

radiation 1 hour* prior to HSV1716 infection but there was no difference in the 

reduction in cell viability when 1 OGy was delivered as a single dose or following 

the fractionated regime.

There was evidence in the published data that enhanced cell kill in combined 

radiation and HSV therapy was due to enhanced viral replication (Advani SJ et 

aL, 1998). Following the demonstration of additional cell kill when monolayers 

were infected with HSV1716 one hour after irradiation, an investigation was 

undertaken to determine if there was an increased viral yield from the irradiated 

cells. There was no evidence of increased virus yield assessed by multicycle
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growth experiments in pre-irradiated compared to control non-irradiated MOG or 

373 cells.

In the studies with HSV 1716 it was noted that if the cells used to seed the 96 well 

plates were dissociated from fully confluent cultures, the cell kill generated by 

radiation and vims was reduced and no additive relationship between ionising 

radiation and HSV1716 could be detected. It has been postulated that ICP34.5 

null HSV mutants rely on active host cell replication to provide the machinery 

required to maintain viral replication. Also when cells are irradiated, if they are 

confluent, contacted inhibited and therefore growth arrested, they are more liable 

to be in a radio-resistant phase of the cell cycle such as Go. Therefore when a cell 

cultur e is actively replicating a significant proportion of the cells is in a phase of 

the cell cycle in which they are more sensitive to the effects of ionising radiation 

and viral replication.

Following the characterisation of experimental conditions under which additional 

cell kill could be demonstrated reproducibly, experiments were performed to 

investigate whether or not the additional cell kill was synergistic. As the dose 

response curves of the two modalities do not follow first order kinetics, it is not 

possible to demonstrate synergy by showing that the observed reduction in cell 

viability when the two modalities are combined, is greater than the sum of the two 

modalities used independently. Therefore, isobologram analysis was used to 

define the relationship between HSV1716 and ionising radiation in cell kill.

The isobologram of the 373 data demonstrated a region of additive cell kill 

between the Mode I and Mode Ilb lines. Plots below the Mode lib line ai'e 

supportive of a synergistic relationship between HSV1716 and ionising radiation. 

Results from three MTS assay experiments, administering HSV716 one hour after 

ionising radiation, each at doses known to generate les than 50% cell kill 

independently, when plotted onto the isobologram fell on or below the Mode lib 

line. These results indicate that there is a synergistic relationship between 

HSV1716 and ionising radiation when 373 cells are irradiated one hour prior to 

infection with O.lpfu/cell HSV1716.
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The isobologram of MOG cell data also demonstrates an envelope of additivity, 

which lies between the Mode Ila and Mode lib line. Two MTS experiments 

combining HSV1716 one hour after ionising radiation were plotted onto the 

isobologram. Each modality was used at a dose which was known to generate less 

than 30% cell kill independently. Both plots lie within the region between the 

Mode Ila and Mode lib lines and hence the relationship between HSV1716 and 

ionising radiation under these conditions is additive.

In 2002, when experimental conditions to demonstrate additive cell kill with 

HSV1716 and radiation were still being developed, Blank et al. published a paper 

including the first data demonstrating additive cell kill in vitro. They described 

experiments to assess the efficacy of foui’ different ICP34.5 mutants of HSV-1 

when combined with low-dose radiation. The mutants, 4009, 7020, 3616 and 

G207 were assessed in the human cervical squamous carcinoma cell lines Mel 80 

and C33a. Their conclusions, were that there had been a greater than additive 

effect when two of the viruses were independently combined with ionising 

radiation and an additive relationship with a third. This warrants further 

discussion as it is the only comparable experimental report in the field.

The conditions that Blank et al. (2002) used to detect cell kill due to viral 

replication and ionising radiation were similar- to the conditions used for 

HSV1716 in MOG and 373 cells. For example, 2x10^ cells were seeded per well 

of a 96 well plate. However, by day 3 in their system, the control cells were 

confluent and further analysis of cell kill discontinued. In the comparable studies, 

MOG and 373 cells did not reach confluence until day 6-7. It appears therefore 

that the human cervical cancer cell lines replicated at a significantly higher rate. 

This high replication rate may account for the high levels of cell kill they reported 

for the oncolytic virus alone.

Blank et al. (2002) used doses of radiation (1.5Gy or 3Gy) which, in pilot studies, 

demonstrated less that five-fold cell kill. Because their cell lines were extremely 

permissive to oncolysis, the dose of virus they used was an order of magnitude 

less than that used with HSV1716 in the glioma cell lines; a MOI of O.Olpfu/cell 

of R3616 killing 50% of Mel 80 cells by day 3. In fact, the C33a cell line proved
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to be too permissive to infection to be of use in combination experiments; each of 

the four mutants at a MOI of O.OOlpfu/cell demonstrating greater than 75% cell 

death by day three (although, interestingly, this did not translate to in vivo 

experiments where the injection of G207 or R3616 demonstrated only modest 

growth delay of tumours in xenograft models).

It was also reported by Blank et al. (2002) that radiation had been demonstrated to 

cause a 3-fold decrease in the replication of HSV1716. This conclusion was 

drawn from data by Lambright et al. (2002) who investigated the use of EJ-6- 

2Bam-6a cells as carriers of HSV 1716, injuected into the peritoneal cavity to 

infect and lyse intraperitoneal disease. However, the growth experiment from 

which this conclusion was derived was extremely flawed. What was described as 

a single cycle growth curve, showed the yields of virus over forty eight hours 

from irradiated and unirradiated EJ-6-2-Bam-6a cells infected with O.Olpfu/cell of 

HSV1716. Not only did this represent multi-cycle virus replication rather than the 

single cycle replication claimed, but there was more than a 2 log difference in the 

titres of the 0 hour samples. In addition, the extrapolation is invalid as Lambright 

et al. treated their cells with 3 OGy in order to sterilise them, making their data in 

no way comparable with the experiments presented in this thesis and in the paper 

by Blank et a/.(2002).

Blank et a/.(2002) assessed the cell kill in Mel 80 cells in*adiated with 1.5Gy or 

3Gy one hour prior to inoculation with the HSV mutants G207, R3616 or R7020. 

The multiplicities of infection ranged from 0.000 Ipfu/cell to O.lpfu/cell. At 48 

hours the cell kill generated by virus, radiation or the combination of the two 

modalities was assessed. The cell kill generated by each of the three viruses alone 

in Mel 80 cells was similar. Interestingly there did not appear to be any 

significant increase in cell killing with increasing MOI. This may be explained by 

the fact that, at 48 hours many cells which have already been infected and are 

destined to die are still alive. It should be noted that in the comparable 

experiments with HSV1716 infected MOG and 373 glioma cells, at 48 hours the 

MTS readings would remain high although the monolayers at the time showed a 

high proportion of rounded, swollen cells indicative of advanced viral infection. 

This observation supported the decision to allow the experiments to run for 6-7
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days to ensure a true reflection o f the toxicity generated by both viral infection 

and ionising radiation. The M el 80 cell line appeared to be radiosensitive with a 

33% reduction in cell viability by 48 hours with 1.5Gy and a 50% reduction with 

3 Gy.

When the oncolytic viruses R3616 and G207 were combined with ionising 

radiation the reduction in cell viability was greater than the sum of the cell 

viability reduction generated individually by either alone. With R3616 this 

observation was only detected when combined with 3Gy and not 1.5Gy. The cell 

kill generated when R7020 and ionising radiation were combined was no better 

than additive. The authors state that, as the cell kill generated by G207 and 

R3616 and ionising radiation was greater than the sum of the cell kill exerted by 

either of the modalities alone, the relationship is “more than additive”. However, 

as these two models of cell kill do not follow first order kinetics and as analysis of 

cell kill at 48 hours was arguably too early to measure the true potential of either 

viral lysis or radiation, the conclusion of a supra-additive or synergistic 

relationship does not appear to be substantiated by their data.

The only other published in vitro study on the interaction between ionising 

radiation and oncolytic HSV, involved the mutant hrR3 (Spear M et aL, 2000). 

hrR3 is not deficient in ICP34.5 but contains an insertional mutation of E.coli 

lacZ cDNA into the ICP6 locus disrupting the expression o f viral ribonucleotide 

reductase. Using an MTT assay, Spear et al. (2000) assessed the cell kill 

generated in tumour cells, in vitro, by the oncolytic virus hrR3 in combination 

with ionising radiation. Their data indicated that hrR3 is much more attenuated 

than HSV 1716 and they therefore required a much higher MOI in their 

experiments; 5pfu/cell compared to the HSV1716 MOI of 0.1 pfu/cell. Cell 

monolayers were irradiated two hours prior to virus inoculation and the MTT 

assay was performed over the course of 72 hours to demonstrate any enhanced 

cell kill. As the duration of the experiment was only three days, it is surprising 

that the cell kill generated by ionising radiation alone was detectable by MTT 

assay. One possible explanation for this is that the dose rate in this experiment 

was 2.77Gy/min, considerably higher than the 0.3Gy/min delivered by the Cobalt 

source used in the experiments with HSV1716. The authors concluded that the
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cell kill generated when ionising radiation and hrR3 were combined was greater 

than either modality on its own and that the relationship was synergistic. Once 

again, as they failed to take into account the non-linear relationships between cell 

death and radiation or lytic replication, their data are inconclusive.

Other research investigating cell kill when ICP34.5 null HSV is combined with 

ionising radiation has been conducted in vivo. In fact the premise behind this 

research project, that ionising radiation may augment the cell kill o f HS V I716, 

was based on the observations of Advani et al. (1998) using R3616. They 

demonstrated a reduction in xenograft growth following injection of the ICP34.5 

null HSV mutant, R3616, alone. However, they observed significant additional 

growth delay and even tumour eradication when R3616 was combined with 

ionising radiation. There was no evidence of tumour eradication using virus alone, 

despite the injection of high doses (up to 2xl0^pfu). It must be noted that the 

ionising radiation doses used, 45Gy in two fractions over two days, is far in 

excess of clinically acceptable doses. It is possible that the ionising radiation at 

this dose resulted in virtual tumour sterilisation reducing the clonogenic potential 

of the tumour to a level where the virus was merely required to ‘mop up’ the small 

proportion o f viable cells remaining. As doses of 20Gy are not clinically 

applicable, it remains to be proven that clinically relevant doses of radiation could 

be useful. The authors stated that preliminary experiments demonstrated that 

smaller radiation doses would also be effective. Unfortunately this data was not 

published. They did not quantify the effect on cell kill o f combining R3616 and 

ionising radiation. They did, however, state that the observed delay in growth 

rates o f the tumours treated with virus and ionising radiation was significantly 

greater than that of viral infection or irradiation alone.

The same group published data the following year, investigating the replication of 

the HSV mutant, R7020 (Advani SJ et ah, 1999). R7020 is a multi-mutated HSV 

vaccine candidate with the HSV-2 genes encoding glycoproteins G, J, D and I 

inserted and one copy of the long repeat region deleted from HSV-1 strain F 

DNA. The deletion removes one copy each of the genes aO, a4 , yi34.5,ORF P 

and ORF O and hence R7020 only encodes one copy o f ICP34.5. Radio and
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chemo-resistant cell line xenografts inoculated in this study were approximately 

four times the size of the xenografts investigated previously using the more 

attenuated ICP34.5 null mutant R3616. The does o f virus was slightly lower, 

2x10^ pfu, and the radiation dose was reduced to 32Gy in 4Gy fractions over the 

course of two weeks. Once again they demonstrated that the growth delay when 

ionising radiation and virus are combined is significantly more than with either 

modality on its own. In their discussion the authors state that the effect on cell 

kill between R3616 and ionising radiation is synergistic. How this conclusion had 

been derived is not stated.

Further in vivo data, published prior to the commencement o f the in vitro research 

with HSV1716, was presented by Bradley J et al. (1999). This group 

demonstrated delayed growth in hind-limb human U-87 malignant glioma 

xenografts when high doses (1x10^ pfu) of ICP 34.5 null mutant, R3616, were 

combined with ionising radiation. None of the xenografts appeared to decrease in 

size, implying that the tumour growth matched or outstripped the rate o f tumour 

destruction by R3616. Mice with intracranial xenografts treated with 1x10^ pfu of 

R3616 and ionising radiation, appeared to show improved survival compared to 

either modality on its own. Using statistical methods described by Machado and 

Bailey. (1985), based on a proportional hazards model, the authors claimed that 

the relationship was synergistic. None of the intracranial tumours were assessed 

to see if  there had, in fact, been a decrease in the tumour burden, accounting for 

the increase in survival.

Since the commencement o f the in vitro study, further data has been published 

investigating the in vivo interaction of various HSV mutants and ionising radiation 

in a range o f different tumour cell lines. As the sensitivity of cells to oncolytic 

virus is a problem for in vitro analysis, further investigation of the interaction 

between HSV1716 and ionising radiation could involve the use of animal models 

and therefore it is pertinent to review this reseai'ch.

Chung SM et al. (2002) investigated the interaction between the multi-mutated 

HSV-1 variant, R7020, and ionising radiation in hepatoma xenografts. In Huh7
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tumour cell line xenografts there was minimal tumour regression. The authors 

suggested that this was, as had been described before, due to the Huh7 tumour 

growth outstripping R7020 viral lysis. In another hepatoma cell line, Hep3B 

cells, the cell kill caused by R7020 was enhanced by ionising radiation. They 

explained the reduced ability of R7020 to delay the growth of Huh7 xenografts as 

a consequence o f a decrease in the ability o f virus to gain entry into the cells.

They believed that progress in understanding the cellular receptors responsible for 

HSV-1 entry into cells, should allow improved targeting to tumoui' cells. To date, 

HSV1716 has not been known to fail to gain entry into any tumoui’ cell type and 

lack of replication, for instance in 3T6 cells, has not resulted from a failure to 

enter cells but rather from an inability to replicate and egress from the cells 

(Brown SM et aL, 1994b).

Jorgensen T et aL (2001) investigated the interaction of the ICP34.5 null mutant, 

G207, in LNCaP prostate xenografts. Although they found that delivering either 

G207 or radiation delayed tumour growth, they were unable to show any 

enhancement by combining the treatments. In these studies, G207 was not 

administered as intratumoural injection as this resulted in such extensive tumour 

lysis that a potential interaction with ionising radiation could not be detected. 

Instead the virus was administered intravenously, which it was argued would 

generate a less robust treatment response. During the in vitro investigations of 

response to radiation and HSV1716, attempts were made to reduce the efficiency 

of the viral infection, by using a cell line not fully permissive to HSV 1716. This 

proved to be difficult because, although cell kill was enhanced when HSV1716 

was combined with ionising radiation, HSV1716 independently was extremely 

effective in lysing the cells in vitro and if left for longer than six days would have 

probably completely eradicated the cell monolayer, independent of radiation.

Although evidence has been presented in this thesis and elsewhere for enhanced 

cell kill when replication competent HSV and ionising radiation aie combined, the 

mechanism remains to be elucidated. As discussed previously, Blank et aL (2002) 

demonstrated in vitro that there was increased viral replication in M el 80 cells 

treated with low dose radiation one hour prior to virus inoculation. The 48 hour
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viral yield from the irradiated cells was 4.45 fold greater than from the non- 

irradiated cells.

The majority of the research to confirm the mechanism behind the observed 

relationship has, however, been performed in vivo. Viral yields from tumoui’ 

xenografts treated with radiation and a variety of HSV mutants have been 

compared with yields from xenografts treated with virus alone. Advani SJ et al. 

(1999) reported that the yield of R3616 and R7020 obtained from inadiated 

xenografts was 2-5 times higher than that recovered from non-irradiated 

xenografts. They suggested that the observed increase in viral yields actually 

underestimated the amount of virus produced following irradiation, as in situ 

hybridisation studies o f irradiated xenografts showed that the distribution of 

infected cells exhibiting viral DNA was greater and more distal to the point of 

injection than in non-irradiated xenografts. However, the elevated viral yield 

obtained from irradiated xenogiafts appears to be short lived. Two days after the 

peak in viral yield, the titre o f vims recovered from irradiated and non-iiTadiated 

cells was identical. Bradley J et al. (1999) demonstrated enhanced viral 

proliferation by immunohistochemical staining of R3616 in irradiated intracranial 

tumours compared to controls. In their study the radiation was delivered as a 

fractionated schedule and they reported a 2-5 fold enhancement in viral 

proliferation. Stanziale S et al. (2002) showed that R7020 viral yields from 

Hep3B xenografts were 2.5 fold higher in the iiTadiated cells six hours after 

inoculation. This was not demonstrated in the less permissive Huh7 inadiated 

xenografts.

If the enhanced cell kill is due to an increase in viral replication and viral yield, by 

what mechanism does ionising radiation enhance the replication o f the vims? 

Stanziale S et al. (2002) showed that R3616, deleted in both copies of ICP34.5, 

demonstrated greater independent cell kill than G207, which also has both copies 

of ICP34.5 deleted but in addition has an insertion of the E.coli lacZ gene 

disrupting expression of the viral ribonucleotide reductase (RR) gene ICP6. 

Radiation increased the cell kill o f both oncolytic vimses but the increase in 

tumouricidal effect was greater in the cells treated with G207. Ionising radiation
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has been shown to increase the levels of cellular RR and it is proposed that the 

enhanced levels of this protein within the irradiated tumour cells could enhance 

viral proliferation and subsequent oncolysis. Hydroxyurea, an inhibitor o f RR, 

was demonstrated by Stanziale et aL to abrogate the enhanced replication of G207 

in irradiated HCT-8 cells. Kuo and Kinsella. (1998) have confirmed an increase 

in cellular RR following irradiation and Blank et aL (2002) also propose that an 

increase in RR following irradiation complements the G207 deletion in ICP 6.

Interestingly, Spear et aL (2002) failed to demonstrate an increase in hiR3 viral 

titre from irradiated pancreatic tumour cells compared to non inadiated cells, 

despite hrR3 being deficient in RR. They argued that possibly ionising radiation 

augments complementation of the small subunit of RR and not the large subunit, 

in which hrR3 is deficient.

Multicycle growth experiments to investigate the replication of HSV1716 in 

irradiated MOG and 373 cells failed to demonstrate an increase in viral yield 

compared to non-irradiated cells. The synergistic relationship between ionising 

radiation and HSV1716 in 373 cells camiot therefore be explained by enhanced 

viral replication. Chung et aL (2002) say that the mechanism by which ionising 

radiation enhanced the replication of R7020 remains unclear, but consider the 

relationship to be cell type dependent. Blank et aL (2002) also could not explain 

the mechanism by which ionising radiation enhanced the cell kill o f the oncolytic 

viruses R3616 and R7020. As neither R3616 nor R7020 is deleted in RR, an 

elevation in cellular RR due to ionising radiation should not be o f importance to 

these mutants. It is therefore probably that other cellular proteins are involved.

Stanziale et aL (2002) investigated, by Northern blot, the levels of GADD34 in 

HCT-8 cells following irradiation. They demonstrated that 2.5Gy increased the 

levels of GADD34 by 48 hours and that the level reduced slightly by 72 hours. 

Following 5Gy irradiation, the level o f GADD34 at 48 hours was twice the level 

detected following 2.5Gy and this was seen to rise further by 72 hour’s. The 

GADD34 gene, encoding one o f a group o f growth arrest and DNA damage 

proteins, has been shown to share homology with the carboxyl domain of the
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ICP34.5 gene RLl (McGeoch DJ and Barnett BC, 1991). Therefore they 

proposed that the upregulated GADD34 may substitute for the lack of viral 

ICP34.5 and create an environment within the cell conducive to ICP34.5 null 

HSV.

It is of interest that, following 5 Gy or radiation, the levels o f GADD34 were 

highest at 72 hours. The fact that many research groups terminated their in vitro 

analyses at 72 hours, means that they could have missed any effect from the 

upregulation of proteins such as GADD34 and failed to take advantage of the 

enhanced intracellular enviromnent created by ionising radiation. Isobologram 

analysis with HSV 1716 and ionising radiation was performed following analysis 

at six days post irradiation, which may account for the detection of synergy.

It is likely that ionising radiation alters the expression of a number o f different 

genes, as yet unidentified. It is conceivable that these changes could enhance 

viral entry, replication, assembly or egress of progeny, explaining the synergistic 

cell kill demonstrated with HSV 1716 and ionising radiation. Irradiation of human 

colon carcinoma cells in vitro has been shown to significantly increase the uptake 

of adenovirus and improve gene transfer (Zhang M et aL, 2003). Since it has been 

shown that ionising radiation can produce cell membrane changes, Zhang et aL 

(2003) proposed that an increase in the number of tumour cell membrane 

receptors may account for the increased adenoviral uptake.

Ionising radiation has been demonstrated to increase the levels of cellular proteins 

that may facilitate the cell kill from oncolytic HSV mutants. In vitro analysis has 

demonstrated that the alterations to the levels o f these proteins are transient 

(Stanziale S et aL, 2002). This phenomenon was also demonstrated in xenografts. 

Two days following the peak in viral yield difference, the viral titre was noted to 

be the same in the irradiated and non-irradiated xenografts. One explanation is 

that the cellular factors induced by the ionising radiation decrease over time and 

therefore cease to maintain high levels of viral replication. This raises the point 

that temporally fractionating the ionising radiation may cause the repeated 

induction of genes resulting in prolonged and accentuated gene expression. There
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was, however, no difference in the yield of HSV1716 following the iiTadiation of 

in vitro cultures with a single 1 OGy dose compared to the same dose fractionated 

equally over five days.

The cell kill generated when HSV1716 was combined with ionising radiation, was 

shown to be additive in one glioma cell line and synergistic in another. Whether 

an additive or synergistic response between these two modalities can be 

demonstrated in vivo, remains to be seen. Further research might involve the 

delivery of HSV1716 and ionising radiation to animal xenografts to determine if 

the observed in vitro relationships are translated to the in vivo situation. The 

majority of the in vivo reseai'ch has involved the use of immunocompromised 

murine models; either athymic of SCID mice. Lambright et al. (2000) 

demonstrated that in immunocompetent mice the survival following injection of 

HSV1716 into intraperitoneal tumours in HSV immunised mice was identical to 

that of HSV naïve mice. It would be of interest to investigate, in 

immunocompetent mice, the relationship between HSV1716 and ionising 

radiation in xenografts. In addition, the radiation could be delivered in clinically 

relevant fraction sizes to help inform the direction of any clinical research.

Given that there is robust clinical data demonstrating that the injection of 

HSV 1716 into the CNS of humans is safe, it may be possible to bypass in vivo 

animal model research. Instead a phase II clinical trial protocol could be 

conceived to test the safety and efficacy of combination therapy, using date from 

in vitro experiments to ensure optimal scheduling of the treatments. The 

demonstration that irradiation with 5Gy did not reduce the titre o f HS V I716, 

indicates that there should be no reduction in efficacy if radiation and virus 

therapies are combined. Any additional advantage as a result o f in'adiating 

tumours prior to, or immediately following, virus injection might be measured as 

reduction in tumour bulk and/or prolonged survival. The ethics and the practical 

problems of designing such a trial are considerable, not least in light of the 

probable changes in accepted practice for chemotherapy in glioblastoma.

The data in this section show that an in vitro assay, using tumour cell lines to 

study the combination of HSV1716 infection and ionising radiation, was
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successfully developed. The effect on cell kill o f combining the treatments was 

assessed using isobologram analysis, which demonstrated an additive relationship 

in the MOG cell line and a synergistic relationship in the 373 cell line by six days. 

The results did not elucidate the mechanism(s) behind these relationships but, as 

irradiation o f the cells did not result in an increase in viral yield, they differed 

from the findings of others demonstrating an increase in viral replication. These 

in vitro results and those of the preceding phase I clinical trial, support the 

development of a clinical trial using HSV1716 in combination with spatially and 

temporally specified doses o f ionising radiation.
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18 Generation and Characterisation of Stably Transfected Cell 

Lines Expressing ICP34.5 and ICP34.5-GFP

This section describes a project to investigate the effect on cell cycle regulation of 

expression of ICP34.5 in the absence of viral infection. The proposal was to 

engineer cells to express ICP34.5 and to investigate if  this plasmid expressed 

protein would interact with PCNA to allow initiation of DNA replication. In non

dividing cells PCNA is predominantly located in the cytoplasm. PCNA in the 

nucleus is regulated by interacting proteins to allow only DNA repair, and not 

replication processes. The working hypothesis was that ICP34.5 interacts with 

replication inactive PCNA switching it to a replication active form. It appears that 

as part of the infection process, HSV needs the cellular replication machinery to 

be active before it can initiate its own replication. In non-dividing cells, as there is 

normally very little PCNA in the nucleus, HSV manages to recruit PCNA to the 

nucleus by inducing DNA damage. The PCNA recruited to repair the DNA 

damage is regulated to stop any DNA replication and the vims therefore requires 

the expression of ICP34.5 to switch the PCNA function to initiate replication.

If time had allowed, the intention for this project was to investigate the effect of 

ionising radiation on 3T6 cells expressing ICP34.5 or ICP34.5-GFP. This would 

have permitted the study of PCNA, recruited to the sites o f DNA damage similar 

to those caused by HSV infection, but without all of the concomitant effects of 

viral infection. It was hoped to demonstrate if  the ICP34.5 expressed in the 

transfected cells interacted with the PCNA recruited to the sites of DNA damage, 

and, if so, what effects the interaction produced.

In this study 3T6 cells were successfully transfected to produce stable expression 

of ICP34.5 or ICP34.5-GFP. Review of the literature failed to show any data 

using ICP34.5 transfected cell lines. Mao et al, (2003) stated that the best 

approach for studying the effects o f different ICP34.5 protein variants on the 

tissue culture behaviour o f HSV-1 would be to develop stable cell lines that 

express the ICP34.5 protein. However, they were unable to establish stably
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transfected cell lines and proposed that the expression of ICP34.5 exerted a toxic 

or growth limiting effect on the cells.

During the generation and maintenance of the stably transfected 3T6 cells there 

was no observed growth limiting or toxic effect attributable to the expression of 

ICP34.5 or ICP34.5-GFP. However, in BHK cells transfected under the same 

conditions with pc4-34.5 or pc4-34.5-GFP there was only transient expression of 

ICP34.5 and ICP34.5-GFP detected by Western blotting (data not shown). 

Subsequent Western blot analysis failed to confirm ICP34.5 or ICP34.5-GFP 

expression although the cells continued to exhibit Zeocin resistance. As the 

Zeocin resistance and the ICP34.5 expressing genes were in the same plasmid, the 

selective pressur e required to favour the survival only those Zeocin resistant cells 

which failed to express ICP34.5, indicates a strong survival disadvantage for 

constitutive expression of ICP34.5 in BHK cells. It is possible therefore that in 

BHK cells expression of ICP34.5 caused toxicity similar to that described by Mao 

et a l (2003).

The demonstration that the expressed ICP34.5 could complement the defect in 

HSV 1716 shows that the expressed protein is functionally active. The ability to 

stably express functionally active ICP34.5 in cells could aid future research in 

elucidating the mechanism of action of ICP34.5 in the replication cycle o f HSV.

The cell cycle is tightly controlled by a complex molecular mechanism, governed 

by a series o f structurally related serine/threonine protein kinases, which consist 

of catalytic subunits, known as cyclin-dependent kinases (Cdks), and regulatory 

subunits, cyclins. Several types of cyclins are made, and their expression and the 

activation of the different cyclin-Cdk complexes at different points of the cell 

cycle are required for cell cycling to occur. Different stages of the cell cycle have 

internal checkpoints and progression is regulated by activating or inhibiting 

phosphorylation of the Cdk subunits (Akashi M et al., 1999).
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An important mechanism in the maintenance of genomic integrity in response to 

DNA damage relies on the ability of a cell to induce cell cycle arrest. Delays in 

progression through the cell cycle allow time for the repair o f damaged DNA, 

thereby preventing the replication and propagation of genetic mutations. When 

cells are exposed to DNA damaging agents, negative regulation of the cell cycle 

occurs; Cdk activities are inhibited and the cell cycle is arrested in either Gi or G2 

phase, thus preventing the cells from entering the next stage of the cell cycle 

before their DNA is repaired. The main cellular factors activated by DNA damage 

which interfere with the cell cycle controls are: p53, delaying the transition 

through the Gi-S boundary; p21 W AF/Cipl, preventing the entrance into S phase 

and; proliferating cell nuclear antigen (PCNA) and the replication protein A 

(RPA), blocking DNA replication (Loher HD, 1996).

DNA repair machinery has evolved to maintain genomic integrity after various 

kinds of DNA damage. Nucleotide excision repair eliminates pyrimidine dimers 

caused by UV light. Base excision repair targets base modifications caused by 

DNA hydrolysis and alkylation. Mismatch repair corrects errors of DNA 

replication. DNA strand breaks are remedied by DNA recombination using 

unbroken alleles as templates (Liu Y and Kulesz-Martin M, 2001).

Single-strand breaks (SSBs) in the backbone of one strand of a DNA duplex can 

be caused by exposuie to many environmental factors including ionising 

radiation. If not repaired, SSBs can be converted into potentially lethal double

strand breaks during cliromosomal replication. In general, two routes for SSB 

repair, distinguished by their DNA polymerase and DNA ligase usage, occur in 

mammalian cells. Polp-XRCCl-Lig3 is thought to conduct both short-patch and 

long-patch repair, with Polô/e-PCNA-Ligl, operating primarily during S phase, 

conducting long-patch (2-7nt gap filling) repair. To avoid DNA replication being 

re-initiated before the SSB in the template strand is removed, replication-coupled 

SSB repair and replication-restart are tightly coordinated through a switching 

mechanism involving PCNA function (Caldecott K, 2001).
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PCNA, a processivity factor for DNA polymerase ô and s, is involved in DNA 

replication as well as being an integral component of the diverse DNA repair 

pathways; nucleotide excision repair, base excision repair and mismatch repair 

(Karmakar P et aL, 2001). In S phase, PCNA forms a toroidal trimer with 

replication factor-C and DNA and enables the loading of DNA polymerase ô and 

s onto the complex. Two forms o f PCNA exist in cells: (i) a detergent-insoluble 

trimeric form stably associated with the replicating forks during S phase and (ii) a 

soluble form in quiescent cells in Gi and G2 phases. Treatment o f quiescent cells 

with DNA damaging agents such as ionizing radiation or HSV infection, triggers 

the redistribution of PCNA from a soluble to an insoluble chromatin-bound 

complex analogous to that found in S phase cells. A rapid assembly of chromatin- 

bound PCNA is observed soon after IR, which disappears from the majority of 

foci by 6 hours after treatment. It is thought that when PCNA is recmited to sites 

of DNA damage it is regulated by interacting proteins to allow only repair 

functions. When the repair is complete the PCNA function may switch back to 

DNA replication (Balajee A et al., 2001).

It has been demonstrated that ICP34.5 complexes with PCNA (Brown SM et al., 

1997). The authors proposed that ICP34.5 interacts with PCNA to activate the 

cellular replication machinery to allow initiation of viral replication. It has also 

been demonstrated through immunofluorescence studies that ICP34.5 co-localises 

with PCNA in the cell nucleus at early stages of HSV infection and that later 

ICP34.5 accumulates in the cytoplasm (Harland J et al., 2003). It was of interest 

to investigate if the ICP34.5 expressed in the transfected cells would influence 

cellular DNA replication. However, as expected the 3T6 cells expressing either 

ICP34.5 or ICP34.5-GFP were growth arrested by serum depletion and did not 

exhibit PCNA bound to the DNA.

Future experiments should investigate the distribution o f PCNA in 3T6 cells 

following IR damage to DNA. In confluent 3T6 cells it would be expected that 

PCNA would be recruited to the sites of DNA damage whilst IR induced DNA 

repair was underway. To test the hypothesis that the presence of ICP34.5 might 

prevent PCNA from switching to a repair only mode, it should be possible to
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investigate the effect o f IR induced DNA damage in ICP34.5 transfected cells. 

This will give insight into the possible mechanisms of interaction between 

ionising radiation and viral damage.
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20 Appendices

1.Mini Mental State
1 Date

2 Address or set of numbers as a test of memory immediate

3 Place

4 Home address

5 Date of birth

6 Date of the First World War

7 Name of present monarch

8 Counting back from 100 by subtracting 7

9 What has been happening in the news

10 Repeat of address or set of numbers given at the beginning

2. Karnofskv Score

1 100 -  Normal; no complaints; no evidence of disease.

2 90 - Able to carry on normal activity, minor signs or symptoms of disease.

3 80 - Normal activity with effort; some signs or symptoms of disease.

4 70 -  Cares for self, unable to carry on normal activity or to do active work.

5 60 -  requires occasional assistance, but is able to care for most of own needs.

6 50 -  Requires considerable assistance and frequent medical care.

7 4 0 -  Disabled, requires special care and assistance.

8 30 -  Severely disabled, hospitalisation indicated although death not imminent.

9 20 -  Very sick; hospitalisation necessary, active, supportive treatment 

necessary.

10 10 -  Moribund, fatal process progressing rapidly.

11 0 -  Dead

(Karnofsky D et ah, 1949)
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3. Barthel Score
1 Bowels 0 incontinent

2 occasional accident

3 continent

4 Bladder 0 incontinent or catheterised and unable to manage

5 occasional accident (maximum Ix 24 hours)

6 continent (for over 7 days)

7 Grooming 0 needs help

8 independent, face / hair / teeth / shaving

9 Toilet use 0 dependent

10 needs some help but can do something

11 independent (on and off, dressing, wiping)

12 Feeding 0 unable

13 needs help cutting, spreading butter etc

14 independent

15 Transfer 0 unable

16 maj or help ( 1 -2 people, physical)

17 minor help (verbal or physical)

18 independent

19 Mobility 0 immobile

20 wheel chair independent including corners etc

21 walks with help of one person (verbal or physical)

22 independent (but may use any aid, e.g. stick)

23 Dressing 0 dependent

24 needs help, but can do about half unaided

25 independent

26 Stairs 0 unable

27 needs help (verbal, physical, carrying aid)

28 independent up and down

29 Bathing 0 dependent

1 independent
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