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SUMMARY

The optic nerve of adult guinea pigs contains 99,005 ±9,199 (n=3) myelinated axons. 

Earlier studies have shown that axons of different diameters within 0.5pm wide 

numerical bins respond in different ways up to 7 days after traumatic axonal injury (TAI). 

The present study tested the hypothesis that such differential responses may continue 

over 3 weeks after TAI to result in a differential loss of intact or healthy axons. 

Stereological techniques were used to obtain estimates of the total number of intact 

axons, those lacking any morphological evidence of pathology. The number of intact 

axons fell from 99,005 to 74,845 at 1 week, to 66,744 at 2 weeks and to 55,696 at 3 

weeks. However, statistically significant numerical differences and ultrastuctural 

evidence for loss of axons via Wallerian degeneration were obtained only at 3 weeks after 

TAI.

A novel finding was that a few axons possessed intact cytoskeletal components within 

an electron dense axoplasm limited by an intact axolemma at 2 and 3 weeks after TAI. 

This finding was suggestive of a loss of axonal calibre. Estimates of the number of intact 

axons within different sizes of bin showed that the bin size containing the highest number 

of axons fell from a diameter of 1.5-2.0pm in controls to 1.0-1.5pm at 1 and 2 weeks, and 

to 0.5-1.0pm at 3 weeks after TAI.

It is concluded there is both a loss of number and a previously unieported loss of calibre 

of axons after TAI in the CNS. Moreover, morphological evidence for Wallerian 

degeneration occurred only at 3 weeks after injury. As a result, the time course of loss of 

axons after TAI differs markedly from that described either in the PNS or after crush 

injury in the CNS.
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CHAPTER ONE

INTRODUCTION



1. Traumatic Brain Injury (TBI) as a Cause of Disability.

Neurotrauma is a major public health problem. The incidence varies from 67 

to 317 per 100,000 world-wide in different countries. Mortality rates are 

approximately 1% after minor injury, 18% after moderate injury, and 48% after 

severe head injury (Armando et al., 2001).

According to the Center for Disease Control (CDC), Traumatic Brain Injury (TBI) 

is a “silent” epidemic. There are some 2 million cases of TBI per annum in the 

U.S.A., o f which around 500,000 require hospital admission. TBI is the cause of death 

o f 50,000 patients per annum and of non-lethal but significant disabling injuries in a 

further 70,000-90,000 patients each year (Laurer et al., 2000; Thurman et al., 1999; 

CDC 2001). In the European Union, brain injury accounts for one million hospital 

admissions per year. Within the United Kingdom there are 1,000,000 cases a year 

attending Accident and Emergency and 100,000 patients are admitted to hospital. Of 

those, some 10,000 patients a year are transferred to neurosurgical units for specialist 

attention. In the U.K., road traffic accidents (RTA) give rise to 50% of serious head 

injuries, falls 30% and assaults 10% (Andrew et al., 2001).

But TBI is not a problem limited to the developed world. In economically fast 

developing countries, TBI is a growing problem. For example, in India 1.5 to 2 

million persons are injured and 1 million succumb to death every year. Again, road 

traffic accidents are the leading cause (60%) of TBI followed by falls (20-25%) and 

violence (10%), (Gururaj, 2002). In those countries of the world in which increased 

economic development provides improved transport and personal or individual 

mobility the requirement for rehabilitation of brain-injured patients is high and is 

increasing from year to year. Developed and developing countries face major



challenges in prevention, pre-hospital care and rehabilitation in their rapidly changing 

environments to reduce the socio-economic burden of TBIs.

Moreover, evidence is beginning to accumulate that the types of injury currently 

referred to as mild traumatic brain injuries (mTBI) where a patient may not even loose 

consciousness at the time of injury, may result in long term deterioration, a reduced 

performance in the work environment and problems in interpersonal interactions 

(Hellawell et ah, 1991; Hawley, 2003).

Finally, distinction should be made between injuries to patients that either give rise 

to space occupying lesions that may be readily identified using computerised 

tomography (CT) and develop over a short time scale, for example development of 

either extra-cerebral or intra-cerebral haemorrhage. And injuries that do not form 

space-occupying lesions and provide no evidence of injury using CT but are indicated 

by a Glasgow Coma Score of 8 or less. The clinical syndrome o f diffuse axonal injury 

(DAI) is used to refer to such a condition. However, a definitive diagnosis may only 

be made post mortem upon neuropathological examination.

2. Models of Traumatic Brain Injury

2.1. Types and mechanisms

Good experimental design should be directed toward standardization to 

minimize variability and obtain maximal consistency. Within animals, major 

problems may result fi'om variation in the level o f injury, strain, different responses 

related to the gender of a subject and the anaesthetic agents used. Using animal 

models for study of pathology in humans is not without risk and any potential pitfalls 

should always be recognised and care taken to reproduce clinically relevant injury



responses that, as closely as possible, parallel what happens to and in the human brain 

after trauma. Traumatic brain injury (TAI) is now the preferred term used to refer to 

injuries in animal models (Maxwell et al., 1997). TBI is a result of both direct, 

immediate mechanical dismption of brain tissue, the primary injury; and indirect, 

delayed or secondary injury mechanisms. The primary damage occurs at the time of 

injury or mechanical insult and takes the form of surface contusions, lacerations or 

diffuse vascular and/or axonal injury (DAI). The latter is wide spread or diffuse 

mechanical damage to axons in the central white matter of the brain that may result in 

tearing, or in biomechanical terms shearing, of a number of axons scattered widely 

among a larger population o f uninjured, morphologically intact axons. The overall 

incidence of primary injury in humans has been somewhat reduced in recent years by 

the use of preventive measures, such as advances in safety education, use of safety 

equipment (airbags, helmets), and the enforcement of laws enhancing individual and 

public safety.

Secondary mechanisms, on the other hand, have a delayed onset and progi*ess over 

hours to days and months after the initial trauma. Examples include inti'acranial 

haemorrhage, brain swelling, raised intracranial pressure (ICP), hypoxic brain damage 

among other types of pathology (Adams, 1980; Lighthall et al., 1989; Povlishock et 

al., 1994; Germarelli, 1994; Teasdale et al., 1999; Laurer and McIntosh, 1999;

Graham et al., 1993, 2000; Thompson et al., 2005). In addition, due to the time course 

indicated above, secondary injuries are potentially amenable to post-injury therapeutic 

intervention.

The present experimental models of traumatic brain injury may be classified into 

three general groups: mechanical impact to the head, head acceleration and direct 

deformation of the brain. The characteristics of TBI are associated with complex



processes including, but not limited to, static and dynamic loading. Static loading 

occurs when gradual forces are applied to the head, usually through a slow process 

(Gennarelli, 1994). This mechanism of TBI is quite uncommon in the clinical setting, 

but may occur when the head is exposed to a heavy weight (such as the head being 

trapped underneath a wheel of a car). The more common type of mechanical input 

causing TBI, dynamic loading, is associated with a rapid acceleration/deceleration of 

the brain and the duration of this loading has proven to be a significant factor in 

determining the severity of TBI (Stalhammer, 1986; Gennarelli et a l, 1993). Dynamic 

loading can be classified into two types, a) impulsive or b) impact loading. The 

former occurs when the head is set into motion impulsively or when the head is 

brought to a sudden rapid stop without being struck, leading to inertial forces within 

the brain, which produce the injury. Impact injury occurs when a blunt object strikes 

the head (or vice versa) and is usually associated with both contact and inertial forces 

(Smith et a l, 2000). Both types of TBI produce tissue strain (the amount of 

defonnation experienced by the tissue due to the forces applied against it) and the 

amount of this strain is a relevant biomechanical factor that influences outcome 

(Graham et a l, 1995). Peneti'ating TBI is associated with armed combat and/or inner 

city violence and is most commonly caused by gunshots (missile wounds). Injury 

severity in these cases depends on several factors, such as the mass, shape, direction 

of travel through the head and velocity of the missiles as well as the different 

properties of the human skull at the location of impact.

Further to the above, any experimental model designed to reliably reproduce the 

clinical sequelae of TBI should fulfil a number of criteria. These include an ability to 

precisely modify the severity of injury and the response must be quantifiable and 

reproducible between different investigators and laboratories (Povlishock et a l, 1994;



Teasdale et al., 1999) and replicate the type(s) of severity and injury in man. Ideally, 

the damage produced should be part of a continuum, increasing in severity as the 

mechanical forces applied are increased (Lighthall et al., 1989; Povlishock et al.,

1994; Teasdale et al., 1999; Graham et al., 2000).

Most experimental TBI models currently employ standardized experimental 

protocols including the use of sham (uninjured) animals, which undergo identical 

surgical treatment without receiving TBI, and allow for the control of systemic 

variables such as the influence of the anaesthesia, operative procedure, head restraint, 

and physiological parameters. Additionally, most but not all trauma devices designed 

to produce TBI in rodents now employ computer-based measurements o f the applied 

load (pressure gradients, impact or velocity, etc.), which allow the investigator(s) to 

make precise adjustments to the device to achieve a controlled range of severity of 

injury within a particular study. Further, in an attempt to mimic the range of severity 

o f human TBI, injury models must be capable of producing brain trauma over a wide 

spectrum of severity, a task typically accomplished by adjusting the mechanical 

parameters of the injury device (Lighthall et al., 1989). A number of studies have 

revealed a close relationship between severity of injury, posttraumatic responses, 

induction of coma and the rate of recovery of brain-injured animals (Gennarelli, 1994; 

Laurer et al., 1999; Smith et al 2000). As a result, a classification for severity of 

experimental TBI comparable to the clinical categories of mild, moderate, and severe 

human TBI. But the mechanical, physiological and environmental conditions that 

result in human TBI are much more variable than are obtained in laboratory models 

where, generally, the insult is a single one and the conditions under which the insult is 

delivered is carefully controlled. Therefore, different injury models need to be 

employed to reproduce the spectrum of characteristics seen in human TBI, including



focal and/or diffuse damage since no animal model, except, perhaps, the primate head 

acceleration model (Gennarelli et ah, 1982), reproduces the combinations of types of 

injury that oceur in human TBI.

Focal injury due to impact injuries, skull fractures, or following penetrating TBI 

(Graham et al., 1995) has been observed in patients and include extradural 

haematoma, subdural haematoma, intracerebral haematoma, cerebral contusions, and 

coup contrecoup damage. In human TBI focal injuries and/or pathology usually occur 

in the direct vicinity of the mechanical impact to the head and, at relatively mild 

levels of injury involves primarily the cortical mantle. Injuries are surface eontusions 

(when the pia mater remains intact) and lacerations (when the pia is tom). These may 

or may not be accompanied by skull fr acture or development of a haematoma 

(McIntosh et al., 1989; Laurer et al., 1999). At injuries of greater severity damage to 

subcortical structures, for example the underlying white matter, thalamus and basal 

ganglia may result in multi-focal injuries (Laurer et al., 2002).

On the contrary, diffuse axonal injury (DAI) is believed to occur from widespread 

tissue distortion, or shear, resulting from inertial forces acting at the time of injury 

(Gennarelli, 1993; Pettus et al., 1994; Graham et al., 2000). However, DAI is only one 

of four main pathologies induced by the above biomechanical conditions, the other 

tliree being diffuse vascular injury, diffuse hypoxic brain damage, and diffuse brain 

swelling due to an increase in the cerebral blood volume or the water content of the 

tissue of the brain. Diffuse vascular injury has the worst outcome of the four with the 

occurrence of multiple small haemorrhages within the white matter that often result in 

the immediate death of the patient (Tomlinson, 1970; Graham and Gennarelli, 2002). 

DAI often does not result in death in the short term, but wide spread destruction of 

white matter tracts during the post-traumatic episode is an important contributor to the



disabilities that patients who survive DAI experience (Hurley et al., 2004). Traumatic 

axonal injury is identified by morphological change in axons after injury only able to 

be seen by immunolabelling microscopy. There is a progressive occurrence of 

swellings and axonal bulbs over hours to days, and many studies have allowed 

generation of the hypothesis that development of this pathology is an ongoing process 

(Maxwell et al., 1997; Hurley et al., 2004).

It is generally believed that the number of injured axons occurring in DAI/TAI is a 

critical determinant as to whether patients die, remain vegetative, are severely or 

moderately disabled following blunt head-injury (Adams et al,, 1999, 2000, 2001, 

2003; Meythaler et al., 2001; Graham and Gennarelli, 2002). Both experimental and 

clinical studies have shown that initial mechanical forces applied over a short time 

scale may injure axons and lead to a focal impairment of axonal transport over several 

hours. This leads to the formation of axonal swellings, followed over hours or days by 

axonal disconnection (Maxwell et al., 1997; Povlishock, 2000). However, not all 

traumatically injured axons necessarily go on to swell and/or disconnect (Stone et ah, 

1999).



2.2 Use of Stretch-injury to the optic nerve as a model of traumatic axonal injury 

(TAI)

Since the first pathological characterization of TBI in the middle of the last 

century (Strich, 1956; Peerless and Rewcastle, 1967), investigators have attempted to 

establish and characterize clinically relevant laboratory models of TBI using primates, 

dogs, sheep, rabbits, cats, and, in particular, rodents. However, due to the marked 

heterogeneity of human TBI, no one model has yet reproduced the entire spectrum of 

injuries that occur in DAI as originally defined (Adams et ah, 1989). In addition, in 

patients, injuries to the brain are never “identical”. Injuries vary as to their cause, 

location within the brain, and severity. As a result, diagnosis and treatment is difficult. 

Several animal models have been developed, but each only replicate specific distinct 

characteristics of human TBI.

In human head injury where a space occupying lesion does not occur, widespread 

or diffuse damage to nerve fibres in central white matter is often the major type of 

injury and is, for example, diagnostic for diffuse axonal injury (DAI) (Adams et al.,

1989). The optic nerve stretch-injury model was developed in the later 1980’s to 

allow study of the development of pathology after injury in pure white matter where 

axons alone are damaged since the majority of animal models -vide supra include 

mechanical injury to both cortical grey matter and white matter in the medulla.

The optic nerve was selected because it is the only part of the CNS where central, 

myelinated neiwe fibres may be accessed without also injuring overlying grey matter. 

The model was designed to improve understanding of the initial responses of axons in 

central white matter after transient loading such as occurs in acceleration/deceleration 

injuries where impact to the head does not happen, for example DAI. In this model, 

transient (19-21 msec duration) mechanical loading is applied to the mobilized optic



nerve by placing a sling around the globe and applying a load of 200-250g to the 

nerve along the longitudinal axis of the optic canal (Gennarelli et a l, 1989). This 

model was initially developed using guinea pig but has more recently been refined to 

allow use in mice (Saatman et a l, 2003).

At the loadings indicated above, early quantitative analyses demonstrated that only 

17% of the total number of axons within the optic nerve (Gennarelli et a l, 1989) is 

injured. The damaged axons increased in diameter and there was metabolic 

derangement in the soma of retinal ganglion cells (RGC) over the 12-24 hours 

following injury. This model also provided, first, evidence for post-traumatic 

depolarization in the entire optic nerve that extended over 24 hours in more that 60% 

of experimental animals, and up to one week in over 40% of animals (Tomei et a l,

1990). Loss of RGC was later shown to oeeur between 7 and 14 days after injury 

(Maxwell et a l, 1994).

Importantly, however, ultrastructural analysis of the development of pathology 

within injured axons has been key in the development of the concept of secondary 

axotomy (Maxwell et a l, 1993, 1995, 1997; Jafari et al. 1997,1998). Secondary 

axotomy is now accepted as the mechanism whereby injured axons undergo 

disconnection over hours after injury (Blumbergs, 1995), the de-afferentation of these 

neurons (Povlishock, 1992, 2000; Povlishock et al 1983; Povlishock and Christman 

1995)and provides an explanation as to why head-injured patients may only be 

confused or disorientated immediately following injury but descend into coma over 

the following 72-96 hours.

A variety of ultrastmctural techniques has been applied to the stretch-injury model. 

These studies have provided quantitative evidence for structural and functional 

alterations at the axolemma at nodes o f Ranvier and intemodes (Maxwell, 1996;

10



Maxwell et al., 1990, 2003), an abnormal accumulation of free calcium in the 

axoplasm of injured fibres (Maxwell et al., 1995, 1999), and a widespread swelling of 

mitochondria with loss of their cristae (Maxwell et ah, 1995). Within ten to fifteen 

minutes, there was also loss of axonal microtubules (Maxwell and Graham, 1997). 

Later, there was development of foci of an increased packing density of 

neurofilaments (Jafari et al., 1997; 1998; Maxwell et al., 2003), also tenned 

neurofilaments compaction (Pettus and Povlishock, 1996), and a loss of organization 

of the myelin sheath. Finally, foci of dissolution of the axolemma and compaction of 

neurofilaments occurred at the site at which an injured axon had disconnected or 

undergone secondary axotomy (Jafari et al., 1997, 1998; Maxwell et al., 1997, 2003). 

However, perhaps most importantly, together with the fluid percussion model 

(Thompson et al., 2005), the stretch-injury model has provided incontrovertible 

evidence for a time course extending to a minimum of several hours in experimental 

animal models and 12 hours in humans (Christman et al., 1994) before axonal 

disconnection occurs after TAX.

The optic nerve stretch injuiy model is unique because the force applied and the 

time course is precisely measured during injury; is delivered only to central white 

matter and force is applied only along the longitudinal axis of the axons. A major 

advantage is that the model is “clean” in the sense that the only part of a neuron 

injured is the axon. It thereby eliminates complications such as excitotoxic post- 

traumatic insults. Further, the guinea pig optic nerve does not posses a central artery 

so that the influence of toxic components of blood following haemorrhage is 

eliminated. It is hypothesised that the resulting axonal damage is similar to that which 

occurs early in diffuse, central white matter injury in humans but may not be shown 

since the axonal damage happens prior to patient arrival at hospital. Moreover, the
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model offers the possibility of improving our understanding of traumatic damage in 

central nervous system axons as it generates reproducible axonal injury at a well- 

defined anatomical location where the extent and the type of the damage may be 

easily identified. The model thus eliminates many problems associated with studying 

damaged axons within the complex structure of the brain. However, secondary effects 

such as hypoxia still need to be addressed.

2.3 The Organisation of the Mammalian Optic Nerve and the components of the 

Axonal Cytoskeleton in Control/Uninjured Axons.

The optic nerve is formed by the axons of retinal ganglion cells and by glial cells. It 

is enveloped by a connective tissue sheath that is a continuation of the meningeal 

membranes that surround the brain within the cranium and capillaries from the ciliary 

arteries.

The optic nerve has postchiasmatic, chiasmatic and prechiasmatic parts. The 

prechiasmatic segment lies between the posterior of the globe and the chiasm and 

according to it’s location, is subdivided into intra-ocular, intra-orbital and 

intracanalicular parts. In the guinea pig optic nerve the prechismatic portion is about 

12-15mm in length (Gennarelli et al., 1989; Jafari et al., 1997).

The human optic nerve contains about 1 million nerve fibres. The number of axons 

in the optic nerve of horse (Equus equus) is 481,000 (Guo et al., 2001), that of 

buffaloes {Bos buhalis) is 1.5 million (Kassab et al., 2002), that of rabbit {Oryctolagus 

cuniculus) is 294,000 (Robinson et. al., 1987), for cat {Felix domestica) is 112,000 

(Stone and Campion, 1978), for monkey {Macaca papio) is 1.2 million (Sanchez et 

al., 1986) and for the guinea-pig {Cava) about 97,000 (Guy et al., 1989).
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Most CNS axons with a diameter greater than 0.2pm are myelinated (Bunge et al., 

1967). All axons of the guinea-pig optic nerve are myelinated (Guy et al., 1989) and 

surrounded by compact lamellae formed from the plasmalemma of oligodendrocytes 

that is helically wound, tightly around the axons. At the most basic level the stincture 

of the myelinated axon in both central (CNS) and peripheral nervous systems (PNS) is 

similar. The thickness of the myelin sheath increases with the diameter of the axon 

(Guy et al., 1989), and provides optimal insulation to keep current leakage to a 

minimum that allows saltatory conduction of the action potential.

The ratio of the diameter of the axon to the diameter of the myelin sheath is 

expressed as the g ratio. The g ratio for guinea pig optic nerve is 0.81 (Guy et al., 

1989). In the intemode region of fibres in the optic nerve the cross-sectional profile of 

an axon is nearly circular when cut in perpendicular transverse section. The circularity 

of an axon is determined by the parameter 0 .  This is defined as the ratio of the axonal 

area to the area o f the circle having the same circumference as that axon (Arbuthnott 

et al., 1980). When 0  has a maximum value of 1.0 the axon is truly circular and the 

value of 0  decreases as circularity is reduced.

The morphology of individual axons is strongly associated or linked to the stmcture 

of its axonal cytoskeleton that consists principally of neurofilaments, microtubules, 

actin, and fodrin (Bryan et al., 1976; Heidermann et al., 1984; Bretcher et al., 1991; 

Chen et al., 1999; Gallant et al., 2000; Yang et al., 2004). Microtubules and 

neurofilaments are organised into an interacting network that extends from the cell 

body at the axon hillock to the tips of the axon to provide the stmctural fi'amework 

that defines the axon’s three-dimensional shape.

Neurofilameiits are a type of intermediate filament that occurs only within 

neurons. They are lOmn thick, un-branched, and mn longitudinally in the axons and
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form bundles that play a role in the maintenance of the shape and integrity of the axon 

(Griffith and Pollard, 1982; Hoffman et ah, 1984). Neurofilaments are primarily 

composed of three subunits, (NF-H, NF-M and NF-L) and each has a different 

molecular weight (NF-L = 60 kDa, NF-M (100 kDa and NF-H (115-120 kDa) 

(Hisanaga et ah, 1991; Shaw 1991). The above are foimed by complexes of some five 

or six neurofilaments subunits of which six have been sequenced for their amino acid 

content (vimentin, peripherin, a-intemexin, NF-L, NF-M and NF-H) (Shaw, 1991; 

Fliegner at al., 1990). Each filament visible at intenuediate to high magnification in 

thin sections, however, is composed of a complex of NF-L, NF-M and NF-H which 

form a central core 10-12nm in width (Gotow et. al., 1994) possessing an intrinsic 

axial periodicity of 22mn (Brown et al.l997). From the central core project thinner 

filaments, composed of the C-terminal domains o f NF-M and NF-H and termed “side- 

arms”. Side-arms extend regularly and bilaterally from the core and are thought to 

help to maintain a constant spacing between core filaments of between 40 and 60 nm 

by foiming the so-called “cross bridges”. The mechanisms whereby 

intemeurofilament spacing is maintained, however, are still controversial (Kumar et 

al., 2002a, b). In addition, larger myelinated fibres contain a higher number of 

neurofilaments than microtubules and even within the same axon they are not 

uniformly distributed throughout the axoplasm (Reles and Friede, 1991). Maxwell 

(1996) and Jafari et al. (1998) provided specific evidence for nerve fibres of the 

guinea pig optic nerve. The number of neurofilaments in control axons increases more 

rapidly (slope = 117.57; = 0.94) with increasing axonal size than does the number

of microtubules (slope = 29.68; = 0.86) (Fig. 1, page 96).

There are three, current hypotheses for the nature of the interactions between 

neuro filaments: - there is either
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(a) An interaction between side-arms through binding or cross-bridges mediated 

either by the side-arms themselves or by accessory factors

Or

(b) The side-aiins o f neurofilaments are negatively charged. As a result they repel 

one another through direct, colloidal electrostatic forces

Or

(c) The side-arms form a polymer bmsh-like layer around the core of a

neuro filament and repulsion between neighbouring filaments oecurs through 

mutual steric exclusion.

Current thinking centres on a mutual repulsive mechanism that may, in part, be 

related to the intrinsic charge within neuro filament side-anns that are unstructured 

polyelectrolyte chains (Kumar et al., 2002b). These are thought to have a fractional 

charge, the ratio of anionic to cationic residues, of 0.067 in normal axons. The 

fractional charge results from maximal phosphoiylation of the side-arms which 

occurs upon myelination through, at least in part, the direct influence of myelin 

associated glycoprotein (MAG) that is localized at the glial-axolemma interface 

(Trapp et al., 1989; Kumar et al., 2002a). Dephosphorylation o f NF side-arms has 

been promulgated (Povlishock et al., 1997) as a mechanism for NF compaction 

following TBI. Such dephosphorylation may result in a loss of fractional charge by 

individual NFs, a correlated reduction of the repulsive forces between NFs and result 

in reduction in NF spacing. Since NFs are phosphorylated within the intemode (Mata 

et al., 1992) it might be expected that dephosphorylation/NF compaction occurs 

principally within the internode. Stereology provides strong support for that 

hypothesis (Jafari et al., 1997, 1998; Maxwell et al,, 2003). However, the 

controversy about the precise mechanism of the control of spacing between
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neurofilaments in normal, uninjured axons makes detailed consideration of changes 

under conditions of pathology cuiTently unrewarding.

Microtubules (MTs) are another important element of the cytoskeleton that 

provides a system for transport of membrane bound organelles either toward the axon 

terminus (anterogiade) or eell soma (retrograde). Microtubules are composed of 

proteins, a  and |3 tubulins, which form a tube. The protein assemblies resemble strings 

of beads wrapped in a spiral around an invisible core. The tubes are 25 

nanometers(mn) in diameter with a 15nm diameter hollow core. Tubules range in 

length from 200 nm to 25 micrometers. Within axons, MTs are strictly orientated with 

the thyrosinated portion of a tubulin located at the so-called plus end. This is the site 

of microtubule assembly and elongation, through interaction of monomers and 

oligomers of tubulin (Bass et al., 1993; Simon et al., 1998). In axons, the plus end is 

always more distant from the cell body than the so-called negative end at which MTs 

may undergo disassembly. MTs are longitudinally orientated within the axoplasm 

either singly or in groups termed bundles. Early work showed that microtubules in 

neurons and other types of cells differ in their behaviour and physiology being 

subdivided into cold and or drug labile and stable subtypes (Olmsted and Borisy, 

1975; Weisenberg, 1972).

Microtubule associated proteins (MAP) are a group of high molecular weight > 

200 kDa, (Francon et al., 1982) and a lower molecular weight proteins (55-65 kDa in 

CNS, 110 kDa in PNS) (Cleveland et al., 1977; Goedert et al., 1992; Couchie et al., 

1992). A variety o f MAPs (MAPs 1-5 and tau) have been described, the isomers, 

localisation and functions of these proteins are summarised in Table 1.
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Table 1: Microtubule Associated Proteins (MAPs)

Type Isomers and molecular weight Function and/or Location

MAPI MAPIA 350kDa Phosphorylated during neurite outgrowth 
and glia; major component of MT 
sidearms in axons

MAP IB 320kDa Neurons (phosporylated form in axons and 
nnphosporylated in dendrites) (Sato-Yoshitake et 
al. 1989) and glia. Major component of 
MT sidearms in axons

MAPI C/cytoplasmic dynein 
310kDa

retrograde axonal transport

MAP2 MAP2a, MAP2b 280kDa Microtubule assembly and stabilization in 
dendrites

MAP2c 70kDa Present in (developing) axons (Tucker et al 
1988)

Tau 55-62kDa Axons and glia

MAP3 180kDa Microtubule assembly in NF rich axons 
(Huber et al. 1985,1986) and glia during 
development

MAP4 210kDa Astrocytes and oligodendrocytes (Parysek 
et al, 1985)

MAP5 320kDa Microtubule assembly in immature brain

MAP2 is normally restricted to the somatodendritic parts of neurons (reviewed in 

Brandt, 1996) while tau is restricted to axons. Tau is composed of proteins closely 

related to MAP and forms periodic arm like projections from the surface of 

microtubules where it may be a component of the short cross-bridges that link bundles 

of microtubules within axons. It is thought that tau promotes polymerization of 

tubulin, foimation of bundles of mierotubules by cross-bridges, has a role in growing 

and maintaining nerve cell axonal processes in vivo (Hirokawa, 1991; Mandelkow and 

Mandelkow, 2002; Mandelkow et al., 2003) and can regulate the transport of cell 

components by molecular motors along microtubules (Ebneth et al. 1998).
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Experimentally, when levels of tau are increased above normal cellular levels, for 

example by transfection, anterograde transport along microtubules is inliibited while 

retrograde transport is maintained. This results in accumulation of vesicles and 

membranous organelles within the cell soma of a transfected cell (Mandelkow et al., 

2003). Thus, the axonally located MAP tau is intrinsic to the maintenance of 

anterograde axonal transport.

Conventional Actin is a self-assembling 43 kDa protein with a single nucleotide 

binding site and one high affinity divalent metal, usually Mg^^, ion binding site. 

Members o f the actin family have well-characterised cytoskeletal functions but in the 

early 1990’s it was realised that convential actin is a member of a much larger group 

o f actin-related proteins that have roles in actin polymerization, dynein motor 

activity, and remodelling of chi'omatin and/or transcription (Goodson and Hawse,

2002). The present discussion will refer only to the cytoskeletal Actins currently 

recognised in axons of myelinated, mammalian nerve fibres. Actin exists in two 

forms in an equilibrium governed by the interaction of G-and F-actin with profilin and 

gelsolin in most animal cells. All of these have been documented in neurons (Blikstad 

et al., 1980; Nishida et al., 1984; Yin et al., 1981). Actins filaments are essential for 

maintaining the struetural integrity of bundles of MTs since actin can provide bridges 

from one MT to another (Fath et al., 1994; Bearer et al., 1999) and when actin is 

depolymerised movement of organelles decreases (Hasaka et al., 2004).

Actin also contributes to the subaxolemmal cytoskeletal network. It interacts with 

other cytoskeleton proteins to foim the spechin-ankyrin-actin network. This network 

is thought to play an important role in maintaining the integrity of certain specialised 

regions of the axolemma such as nodes of Ranvier, paranodes and juxta-paranodes

18



where the spectrin/fodrin complex participates in anchoring a variety of ion channels 

and membrane pumps (Ichimura et al., 1991).

2.4. The Nomenclature, Spectrum, and Types of DAI/TAI.

Since the first observation of neuropathology in non-impact head injury (Strich, 

1956) several different names have been used to refer to the clinico-pathological 

scenario now referred to as Diffuse Axonal Injury (DAI), (Adams et al., 1989). For 

example, shearing injury (Strich, 1961), diffuse damage to white matter of immediate 

impact type (Adams et al., 1977), and diffuse white matter shearing injury 

(Zimmeiman and Gemiarelli, 1978). However, Adams et al., (1989) used a number of 

criteria to define Diffuse Axonal Injury and that name has received worldwide 

recognition and acceptance. Three grades of DAI have been charaeterised. Grade 1 in 

which there is widespread damage to axons in the white matter of the cerebral 

hemispheres. Grade 2 where, in addition to the above, focal haematogenous lesions 

occur in the splenium of the coipus callosum. And Grade 3 in which, in addition to 

the above, there are haemonhagic lesions in the rostral portion of the brain stem 

(Adams et al., 1989), most firequently in the corticospinal and medial lemniscus tracts.

At the level of individual axons within the central white matter, the severity of such 

trauma varies from the most severe with immediate tearing or fragmentation, or in 

biomechanical teims shearing, of axons, to a mild type in which there is diffuse 

damage but not immediate loss of continuity of axons. However, there is now wide 

acceptance of the hypothesis that those axons enter a pathological cascade of events 

stimulated by the loss of ionic homeostasis. The latter results in the uncontrolled 

influx of Na"̂  and Câ "̂  which allows development of the ensuing pathology to result 

in axonal disconnection over, perhaps, tens of hours following the initial mechanical
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insult. This type o f injury is now accepted to be the commonest pathology in patients 

with brain trauma ranging from mild concussion to DAI (Medana and Esin, 2003). 

However, pure DAI are not encountered very often in patients and is frequently 

associated with coup/contra-coup contusions. In its mildest form, there is no visible 

macroscopic evidence of injury, for example a space- occupying lesion such as an 

intracranial or petechial haematoma, and evidence for axonal injury may only be 

obtained through microscopic examination post-mortem.

Recently, it has been suggested that non-disruptive axonal injury may occur even 

when a patient does not lose consciousness but may only be confused for a short 

period, for example, after a sports injury (Biasca et al., 2005). Under the above 

conditions non-disruptive damage to central white matter axons may be the key, initial 

step in the development of post-fraumatic deterioration resulting in behavioural and 

social problems in survivors of mild TBI (Hawley, 2003; Hellawell et al., 1999).

A widely used, clinical criterion for the classification of severity of head-injury in 

Accident and Emergency Departments is the Glasgow Coma Scale (GCS) (Teasdale 

and Jennett, 1974). However, the GCS is only a measure of whole organ function of 

the brain and does not serve to indicate which type of injury or insult to axons has 

occurred. The GCS requires assessment of a patient’s response to tests for 1) motor 

response 2) verbal response and 3) opening of the eyes. If a patient achieves a GCS 

score of 13-15 without a history of loss of consciousness, a mild head injury has been 

experienced. When a GCS of 9-12 is found the patient has experienced a moderate 

head injury, and with a GCS of 8 or less a severe head injury.
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2.5. Diffuse axonal injury

The concept of diffuse brain damage is not new. It has been recognised since tbe 

early work of Denny-Brown and Russell (1941). Before the application of 

immunocytochemistry, numerous reports of diffuse abnormalities of axons with an 

iiTegular profile were demonstrated using the Palmgren silver staining technique and 

allowed identification of so-called’ retraction balls or bulbs”  in paraffin embedded 

material obtained systematically from the brain (Adams et al., 1989). The clinical 

term diffuse axonal injury (DAI) has been recognized and established since the early 

1990’s (Adams et al., 1989).

More recently, use of immunocytochemical markers for axonal injury -vide infra- 

identifies or labels damaged axons within 35 minutes (Gorrie et al., 2002) and shows 

that damaged axons occur in the internal capsule, parasagittal white matter, eorpus 

callosum, corona radiata, cortical medulla and the brain stem (Gorrie et al., 2002; 

Wilson et al., 2004). But, diagnosis of DAI may only be achieved post-mortem, and in 

vivo is based on exclusion criteria alone where its occurrence is inferred in post- 

traumatie coma patients that have no evidence of a detectable intracranial lesion in 

CAT scans (Niess et al., 2002). It is now accepted that DAI is the most common cause 

of post-traumatic coma in the absence of intracranial mass lesions.

Recently, more sensitive, immunocytochemical techniques have been developed and 

widely accepted for diagnosis. For example, damaged axons are labelled with 

antibodies against light neurofilaments (NF-L/SMI 32) (Grady et al., 1993; Cliristman 

et al., 1994; Saatman et al., 2003), compacted neurofilaments (RMO-14) (Stone et al., 

1999, 2001) or ubiquitin (Gultekin and Smith, 1994). However, the use of antibodies 

labelling beta amyloid precursor protein (|3-APP) seems to have been the most widely 

adopted for diagnostic or clinical puiposes. Moreover, importantly.
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immunocytochemical techniques have demonstrated that damaged axons are probably 

far more widespread and numerous in patients than the use of the Palmgren Silver 

technique ever indicated. When axonal damage was first recognised or accepted as 

being a direct result of trauma to the brain, the understanding was that axotomy 

occurred at the time of injury and the observed pathology occurred in separated 

fragments of nerve fibres following axotomy (Povlishock, 1983). The early finding of 

swollen, terminal axonal profiles in the early or short posttraumatic period, that is to 

say one to several hours after injury, gave the impression that all damage was inflicted 

upon the axon at the time of the biomechanical insult and an immediate loss of axonal 

continuity resulted. Continued axonal transport on either side of the site of 

fragmentation lead to swelling of the adjacent parts of the injured axon and resulted in 

the formation of so-called retraction balls (Adams, 1973) comparable to those 

observed after a penetrating wound injury to the cortex and coipus callosum (Maxwell 

et al., 1990). It must be remembered, however, that the development of these ideas 

was based upon observations of an on-going process seen in static, fixed, embedded 

material.

However, within the last few years, studies of animal models (Maxwell et al., 1997; 

2003) and humans (Gorrie et al., 2002) at very short post-traumatic survivals has 

clarified the picture about what is happening in an injured but contiguous axon after 

traumatic brain injury. These studies have revealed that the pathogenesis of axonal 

damage is more complex than originally thought (Povlishock et al., 1983; Gennarelli 

et al., 1989; Tomei et al., 1990; Grady et al., 1993; Christman et al., 1994; Christman 

and Povlishock, 1997; Maxwell et al., 1988, 1995, 1997, 1999, 2003; Smith and 

Meany, 2000). Among these studies, those conducted using a model in which 

transient, mechanical loading was applied to an isolated central tract of myelinated
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axons, the optic nerve (Gennarelli et al., 1989; Maxwell et ah, 1997) has probably 

given the greatest insight into the pathobiology of an axon after non-disruptive TAI 

where primary axotomy is not the immediate effect of that loading.

2.6. Primary axotomy versus secondary axotomy and the calcium hypothesis.

The phenomenon of delayed or secondary axotomy was first umnasked in 1993 by 

Maxwell et ah Prior to that time, the sequences of pathology in experimental animals 

subjected to mild traumatic brain injury (Povlishock et ah, 1983) where an 

experimental tracer, horseradish peroxidase (HRP) was used to identify damaged 

axons, was thought to reflect fi*agmentation of axons at the time of injury. The 

associated disruption of the integrity o f the axolemma was hypothesised to have 

allowed post-traumatic influx of HRP into the axoplasmic remnants. However, no 

direct evidence was found which supported the idea that primary axotomy has 

occurred in the mild injury model since the axolemma was always intact around foci 

o f intra-axonal HRP.

The only direct, ultrastructural evidence for primary axotomy has been obtained 

from the lateral head acceleration model of DAI in the non-human primate 

(Gennarelli et ah, 1982; Maxwell et al., 1993). In this model, direct evidence for 

fragmentation of the axolemma was obtained at 20 and 35 minutes after injury. At 

such sites (Fig. 2, page 97) complete loss of any recognizable axoplasmic, 

cytoskeletal organelle occurs. Instead, only a flocculent precipitate was present 

between and around membranous organelles like mitochondria (Fig. 2) and is 

interpreted as remnants of the autolysis of the axonal cytoskeleton upon shearing of 

the axolemma (Maxwell et al., 1993). Such ultrastmcture has never been obtained in 

any other model of traumatic axonal injury (TAI).
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At milder levels of mechanical loading foci of abnormal ultrastructure o f the injured 

axon, termed perturbations (Pettus and Povlishock, 1994, 1996), occurred at points 

along the axons (Povlishock et ah, 1983; Maxwell et al., 1995; Pettus and Povlishock, 

1996). Perturbation consists of regions along the length of an axon where the normal, 

linear, longitudinal arrangement of mierotubules and neurofilaments is lost and is 

replaced by a spiral orientation (Fig. 3 a, page 97) or a transverse orientation of 

neuro filaments (Fig. 3b, page 98).

However, careful observation indicates that a spectrum of pathologies may be 

encountered in thin sections: - for example loss of the usual number of mierotubules 

and neurofilaments with the occun*ence of gaps or holes in the axolemma (Fig. 4, 

page 98).

As already indicated, no evidence has been obtained in support of the old hypothesis 

that axonal bulbs develop at the moment of injury as a result of disconnection of 

axons leading to direct escape of axoplasm into the brain parenchyma (Cajal, 1928) to 

generate the so-called reactive swelling obtained in the great majority of animal 

models o f TAI. Instead the traumatic episode triggers a perturbation at foci along the 

length of an axon (Maxwell et al., 1991 ; Pettus et al., 1994) at which an impairment of 

axonal transport has occurred, and led to an accumulation of axonal organelles to 

form axonal swellings (Jafari et al., 1997; Adams et al., 1982; Povlishock, 1983, 

1994). Maxwell et al., (1997) suggested that a distinction should be made between 

zones of increased calibre where the axon is in continuity on both sides - axonal 

swellings - and increases in calibre where axonal disconnection has occurred on one 

side of the enlargement - degeneration bulb -  when axonal disconnection or 

secondary axotomy had occurred. This terminology has since been accepted.
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However, the initial mechanism(s) leading to secondary axotomy has been a topic 

o f debate over the last decade especially with regard to the role of the axolemma. On 

one hand, in the early 1990’s Povlishock and colleagues concentrated upon the direct 

effect of trauma upon the cytoskeleton as being the key factor responsible for the 

sequence of events which leads to secondary axotomy (Povlishock et al., 1983; 

Povlishock, 1992) and this was promulgated in later work from the same group 

(Pettus et ah, 1994; Pettus and Povlishock, 1996; Povlishock et ah, 1997). Povlishock 

and co-workers utilised the phenomenon of a reduction in intemeurofilament spacing 

at foci in injured nerve fibres. These foci are termed zones of neuro filaments 

compaction (Pettus and Povlishock, 1996). The basis of their argument was that 

damage to the axolemma was not crucial to the development of pathology. In a series 

o f experiments, horseradish peroxidase (HRP) was injected into the cerebrospinal 

fluid before axons were injured. However, HRP did not penetrate the axoplasm of all 

axons within which compaction of NFs occurred (Pettus et al., 1994; Pettus and 

Povlishock, 1996). The axolemma therefore remained intact and did not become 

permeable. Rather, the hypothesis that mechanical injury via the fluid percussion 

experimental paradigm caused direct damage to NFs and led to their misaligmuent 

and compaction was developed. Damage to NFs was therefore hypothesised to be the 

initiating event for the development of pathology leading to secondary axotomy 

(Pettus and Povlishock, 1996).

An alternative hypothesis was that the key event was damage to the axolemma 

resulting from mechanical shear injury. This damage compromised the normal 

function of the membrane and led to a rapid influx of calcium (Maxwell et al., 1995; 

Fitzpatrick et al., 1998) down the normal concentration gradient of intact axons where 

the concentration of Câ "̂  is 10,000 greater in the periaxonal space than in the
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axoplasm (Goldman, 1982). Evidence for focal axonal injmy was provided as early as 

5 min post-tranma in the occurrence of so-called nodal blebs at nodes of Ranvier (Fig. 

5, page 99). The associated loss of the characteristic subaxolemmal density or dense 

undercoating (red arrows in Fig. 5) indicated that some degree of damage to the 

structural integrity of the nodal axolemma had occuiTed very early after trauma 

(Maxwell et al., 1991).

Further support for the concept of damage to the axolemma is provided by two 

types of evidence. First, cytochemical evidence for an altered distribution of Na"*" /K’*'- 

ATPase activity (Fig. 6, page 100) and membrane pump Ca^^-ATPase activity (Fig. 7, 

page 100) (Maxwell et al., 1995, 1999). Second, loss of intramembranous particles in 

freeze fracture replicas o f the nodal axolemma (Maxwell, 1996; Maxwell et al., 1999) 

where that loss of particles is thought to represent loss of transmembrane proteins 

such as ion channels and ATP dependent pumps. These changes occur over a period 

o f several hours after stretch-injury to the axons (Maxwell et al., 1995, 1999).

Overall, there is now strong evidence that damage to or perturbation of the axolemma 

as a result o f transient mechanical loading is key to the initiation of pathology 

culminating in secondary axotomy over tens of hours after TBI and this hypothesis is 

now widely accepted (Smith, 2005). According to the hypothesis, damage to the 

axolemma leads to sudden loss of ionic haemostasis inside axons, and the resultant 

calcium influx activates calcium activated neutral proteases (Calpains) which in turn 

leads to loss or collapse of the side-arms of NF and their compaction. At the same 

time, there is loss of mierotubules (Maxwell and Graham, 1997) that depolymerise 

spontaneously at elevated, intra-axoplasmic concentrations of calcium (Weisenberg, 

1972; Gaskin et al., 1975; Olmsted and Borisy, 1975; Nishida and Sakai, 1977; 

Maxwell and Graham, 1997). This latter change leads to impairment of axonal
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transport at the site o f axolemmal damage, and because such axonal transport is still 

functioning elsewhere along the length of the axon, both anterograde and retrograde 

transport continues to deliver material to the site of loss of mierotubules where it 

accumulates to form an axonal swelling. Further evidence that supports the calcium 

hypothesis in TAI is the direct, ultrastructural demonstration of calpain-mediated 

spectrin proteolysis (CMSP) using antibodies targeting CMSP and neuro filaments 

(NF) (Buki et al., 1999). The localisation of spectrin breakdown products first occurs 

at the under surface of the axolemma but then expands toward the centre of the 

axoplasm over a period of about an hour (Buki et al., 1999). Calcium activated 

neurofilament proteases have been hypothesised to result in removal and/or collapse 

of neurofilaments side-arms and result in neurofilament compaction and/or 

degradation (Buki et al., 1999).

Immunocytochemical labelling for low molecular weight neuro filaments (NF-L) or 

beta amyloid precursor protein (p-APP) allows identification of focal enlargements of 

axons as early as 35 minutes to an hour or two after injury. This has been observed in 

both animal models of TAI and human DAI (Grady et al., 1993; Christman et al.,

1994; Blumbergs et al., 1995; McKenzie et al., 1996; Gorrie et al., 2002). It is now 

clear that development of axonal swellings has an extended time-course of a 

minimum of 3-4hours in experimental TAI and 12 hours in human DAI. Further, the 

process may continue over a long period after the initial injury since P-APP labelled 

axonal swellings have been visualised up to 99 days following human, mild head- 

injury (Blumbergs et al., 1994). Overall, the findings described support the hypothesis 

that injured axons demonstrate a continuous and progressive pathology that is initiated 

at the time of an insult and has a time course consisting of a “pathological cascade of 

events” rather than being a single event. As mentioned earlier, disconnection of an
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injured axon occurs at least 2-4 hours in laboratory animals and 12-24 hours in 

humans after the initial insult to the head. Despite the differences in the extent and 

distribution of axonal swellings within the central white matter between patients and 

experimental animals there is now good evidence that the interlinking mechanisms in 

the development of axonal pathology are the same. However, it is also widely 

acknowledged that the time course for axonal responses is shorter in smaller animals 

than in larger ones (Maxwell et al., 1997). At the site of axonal disconnection, an 

early observation made by Povlishock et al. (1983) was the apparent involution of part 

of the axolemma within the swelling and the hypothesised fusion of the axolemmae 

from opposite sides of the swelling to separate the axon into two fragments. 

Ultrastructural analysis, however, has extended that observation by showing that the 

dark centre within an axonal swelling seen by liglit microscopy (Povlishock et al., 

1983) is, in fact, a region of marked compaction o f NFs (Jafari et al., 1997, 1998)

(Fig. 8, page 101). Importantly, the latter studies provided evidence that rather than 

fusion of the axolemmae from opposite sides of the axonal swelling, the membrane is 

destroyed leaving the compacted NFs directly exposed to the extracellular space. 

There is therefore elimination of any barrier to influx of Câ "̂  and the terminal 

proteolysis of NFs results (Fig. 8, page 101).

In summary then, primary axotomy occurs only at very high mechanical loadings 

to axons. It is probable that secondary axotomy occurs much more frequently and in a 

more widespread distribution within the central white matter of the brain of a patient 

exposed to TBI. It may be suggested that primary axotomy probably occurs only in 

patients who either enter coma at the site of an accident or die at the scene. On the 

other hand, labelling of injured axons using, for example using antibodies for p-APP, 

has been documented up to 99 days after mild head injury (Blumbergs et al., 1994)
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where the cause of death was not directly associated with the episode of TBI. Use of 

the P-APP marker has demonstrated that a time course is required for the development 

of abnormal axonal profiles (McKenzie et al., 1996) and profiles both before and 

following axonal disconnection or secondary axotomy may be obtained in the same 

brain area. Further, it has recently been questioned whether all injured axons label 

with p-APP. Use of the marker RM014 appears to label a different population of 

damaged axons (Stone et al., 1999, 2000; Maxwell et al., 2005; Marmarou et al., 

2005). Thus, the hypothesis that at least two markers of injured axons may more 

completely indicate the total number o f injured axons within central white matter after 

TBI has not yet been satisfactorily resolved.

A model of mild TAI has not yet been developed although labelling of damaged 

axons in patients following mild TBI was documented about ten years ago 

(Blumbergs et al., 1994). There is a developing consensus that disrupted axonal 

transport as reflected by labelling with p-APP or RM014 probably oceurs in less 

severe forms of TBI and, even, perhaps, in patients exposed to mild head injury who 

may not be either taken to hospital or admitted. There is good behavioural and 

sociopsychological evidence that at least a proportion of these patients experience 

behavioural or intellectual difficulties over a period of years after an initial insult 

(Hellawell et al., 1999; Hawley, 2002, 2003; Hawley et al., 2003). It is highly likely 

that these patients have experience low levels of secondary axotomy (Biasca et al., 

2005). It may therefore be hypothesised that the incidence of secondary axotomy is 

probably much more common than has been appreciated until the present time and is 

the prineiple fonn of axonal injury or response to injury following TBI.
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2.7. Injured axons demonstrate a spectrum of pathology after traumatic axonal 
injury (TAI).

limmunhistochemical labelling with monoclonal antibodies directed either toward p- 

APP (Sheriff et ah, 1994; Gentleman et ah, 1993; McKenzie et a l, 1996) or different 

subunits of NF (Grady et ah, 1993; Cliristman et ah, 1994) has allowed rapid 

identification of damaged axons for diagnosis. However, perhaps a greater insight into 

the cellular pathology and its time course has been obtained through the application of 

stereology to the study of the changes in the axon and its cytoskeleton (Jafari et ah, 

1997, 1998; Maxwell et ah, 2003). There is now a consensus that loss o f mierotubules 

(MT) (Maxwell and Graham, 1997) and changes in the alignment and packing of 

neurofilaments occur early in traumatic injury and is a direct result of damage to the 

axolemma during transient loading (Maxwell et al., 1997). The resulting disturbance 

in axonal transport leads to the fonnation of axonal swellings between 35 minutes and 

2 hours in both animals and humans, and development of foci of NF compaction 

(Pettus et ah, 1994; Gentleman et ah, 1995; McKenzie et al., 1996; Pettus and 

Povlishock, 1996; Povlishock et ah, 1997; Gorrie et ah, 2002). Moreover, stereology 

has provided incontrovertible evidence that different changes occur in the axonal 

cytoskeletal after TAI. These changes occur both (1) in subgroups of axons of 

different size and (2) between both the earliest and latest experimental time points 

examined; either at 15 min (Maxwell and Graham, 1997), 4 hours (Jafari et ah, 1997, 

1998), or up to 7 days (Maxwell et ah, 2003) after injury.

There is loss of mierotubules (MT) within 15 minutes of stretch-injury. This loss 

occurs at both nodes o f Ranvier and at internodes (Maxwell and Graham, 1997). 

However, it is possible to make a clear distinction of pathology between nodes and 

intemodes upon grounds of morphology. First, nodal ultrastructure differs between
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controls and those in which nodal blebs occur (Fig 5, page 99). Second, in the latter, 

there is loss of MTs from injured nodes at both 15 min and 2 hours after injury, but 

only normal nodes occur at 4 hours after injury (Maxwell and Graham, 1997). 

However, there is no loss of NFs from nodes with nodal blebs.

There are also two subtypes of damage at internodes. At injured intemodes, there is 

loss of MTs up to at least 4 hours after injury (Maxwell and Graham, 1997). There is 

also a significant reduction of the number of both MTs and NFs within the axoplasm 

either within an axonal swelling or at a region of infolding/involution of the 

axolemma (Fig 9, page 102). However, the loss of NFs is greater at sites o f infolding 

of the axolemma - (loss of some 90% of NFs) compared to axonal swellings - a loss of 

50% of control numbers (Maxwell and Graham, 1997). Jafari et al., (1997, 1998) 

extended those findings in a detailed analysis of changes in the axonal cytoskeleton in 

internodes of damaged axons at 4 h after injury. This work provided the first evidence 

that axons of different size in terms of their transverse diameter differed with regard 

to the changes in organisation of the components of the axonal cytoskeleton. In 

summary, injured axons within optic nerve at 4 h after injury showed (a) an increased 

number of NFs in axons up to 1.00pm in diameter, (b) a reduced spacing between or 

compaction (Pettus and Povlishock, 1996) of NFs in axons up to 1.5pm in diameter, 

(c) no change of either number or spacing for MTs in axons up to 1.5pm diameter, (d) 

an increased spacing or “dispersion” o f both NF and MTs in axons with a diameter 

greater than 1.5pm and within which intramyelinic spaces occurred (Fig. 10, page 

102) and (e) compaction of NFs and loss of MTs in larger axons surrounded by an 

enlarged periaxonal space (Fig. 11, page 97) (Jafari et al, 1997).

A novel observation in this study, however, was that in the smallest axons in the 

optic nerve, those with a diameter <1.0 pm, there was an increase in the number of
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neurofilaments at 4 hours after stretch injury compared to the number in control axons 

of the same diameter. Further, in those same fibres there was no change of either 

number or spacing between MTs. There is a dramatic loss of MTs (Maxwell and 

Graham, 1997) with a return to normal values by 4 hours and the development of two 

discrete pathologies in larger axons. This obseiwation stimulated generation of the 

hypothesis that cytoskeletal changes obtained in thin sections in injured axons 

reflected a progression over time and that a greater number of axons may undergo 

pathology with increasing post-traumatic survival.

Increased confidence in this hypothesis was provided in a subsequent analysis at 24 

hours and 7 days after injury (Maxwell et al., 2003) in three segments of the injured 

optic nerve: the juxtaglobal, middle and juxtachiasmatic segments. In summary, there 

was an increase in the number of small axons, less than 0.5 pm diameter, in all tliree 

segments at 4 h but only in the middle segment at 24 h and 7 days. In controls, in the 

middle segment of the nerve, these make up 1.6% of the total number of axons. 

However, at 4 hours after injury they form 6% of the total, at 24 hours 5.8% and at 7 

days 4.3%. There was also loss in the number of axons of 0.5- 1.0pm diameter at 4 h. 

At 24 h and 7 days there was an increased number of the smallest axons (<0.5 pm 

diameter) but no difference fi*om conti'ol values for other sizes of axon; 0.5 -  1.0pm,

1.0 -  1.5pm and 1.5 -  2.0pm. Within the axoplasm of axons of <0.5pm diameter NFs 

were both increased in number and compacted in compaiison to control axons of the 

same size. At 7 days after injury, NFs were still compacted in these small nerve fibres 

(Maxwell et al., 2003).
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3. Axonal transport

3.1 Patterns of Axonal Transport:

At the simplest level axonal transport is composed of two types known as fast and 

slow transport ranging between 0.3-400mm/day and traditionally classified into five 

subgroups of differing speeds (Grafstein and Forman, 1980; Brady and Lasek, 1982; 

Baitinger et ah, 1982). The fast component is formed by Groups I, II and III for 

membrane-bound structures. These are - 1 = 70-400 mm/day, II = 20-70 mm/d, III = 

4-20 mm/d. Slow axonal transport, however, relates to cytoskeletal and other proteins 

and consists of group IV or Scb = l-4mm/day for certain glycolytic enzymes and 

cytoskeletal proteins not included in V, and Group V or SCa = 0.2-1.2mm/day for 

neurofilament proteins and tubulins. Membranous organelles such as mitochondria 

and the axoplasmic reticulum move most rapidly (in Groups I -  III), whereas 

cytoskeletal propolymers and protein neurofilaments (NF) complexes move more 

slowly (in Groups IV and V). But there has, recently, been a major change in the 

interpretation of experimental results obtained over the last fifty years since axonal 

transport was first recognised. Until recently, it had been assumed that the difference 

in rates o f transport of material by fast and slow components indicated that 

membranous and non-membranous components or cargoes were moved in 

anterograde (away from the cell soma) and retrograde (toward the eell soma) 

directions by fundamentally discrete or distinct mechanisms (Allan et al., 1991; 

Nixon, 1991). Within the last five years, however, direct observation of movement of 

organelles in living cells has indicated that all cellular components, membranous and 

non-membranous, may be transported by fast motors and that the major difference 

between fast and slow transport is not the mechanism of movement per se but the 

manner in which the movement is regulated (Brown, 2003).
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3.2 Fast axonal transport

Membranous organelles or membrane limited aliquots of proteins, lipids and 

polysaccharides synaptic vesicles, vesicle-associated proteins such as synapsintin, 

kinesin (Morris et ah, 1993), neurotransmitter receptors trophic factors including 

nerve growth factor (NGF), as well as amyloid precursor protein (Koo et al., 1990; 

Morris et ah, 1995) move rapidly along an axon via fast axonal transport.

Membranous organelles and membrane-limited vesicles may move either in the 

anterograde or retrograde direction but predominantly in the former in the intact axon. 

A summary of infonnation contained in the relevant literature is provided in Table 2 

(page 37) and has led to a marked change in our interpretation and/or understanding 

of mechanisms and rates of axonal transport. In this context, it is also notable that the 

identity of the hypothetical slow motors has remained elusive for the last 25 years 

(Brown, 2003). On the contrary the identity of the anterograde fast motor proteins in 

the kinesin family and the retrograde motor proteins in the dynein family have been 

established since the middle 1980’s (Brady, 1985; Vale et al., 1985; Lye et al., 1987; 

Paschal et al., 1987). So, rather than there being fast and slow mechanisms of axonal 

transport, it is presently thought that all cytoskeletal components and or precursors are 

transported by fast motors but that the relative differences in apparent rates of 

transport arise because the proportion of time that different components move or are 

moved varies. This has given rise to the “duty hypothesis” or duty ratio (Brown,

2003) which is the proportion of time that an entity or cargo actually spends moving. 

For example if  a membranous organelle binds to a fast motor for 50 out of 60 seconds 

it will move a greater distance over a period of direct observation than a NF protein 

that binds to a fast motor for only 10 out o f every 60 seconds. That is to say, items
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that move slowly along an axon spend more time paused than moving when attached 

to a motor.

3.3 Motor molecules:

Fast axonal transport depends upon the integrity of the mierotubules and other 

proteins that work as molecular motors for axonal transport. The motor molecules are 

the kinesin superfamily, the dynein family, dynactin and myosin.

Kinesins (Fig. 12, page 103) are a superfamily of microtubule-based motor proteins 

that perfomi many different funetions in all cells. Examples of the diversity of kinesin 

functions are transport of vesicles, organelles (both membranous and increasingly 

within the literature non-membranous), chromosomes, protein complexes, enzyme 

systems and ribonucleic proteins (Lawrence et al., 2004). In addition, kinesins are 

involved in the regulation of dynamic changes in function and/or activity of MTs 

(Hirokawa et al., 1998). In overview, kinesins are an elongated molecule about 80mn 

in length (Fig. 12, page 103). At one end is a pair of globular heads about lOnm in 

diameter; at the other end is a fan shaped tail (Allan et al., 1991). The pair of globular 

heads contain microtubule activated ATPases. A newly established convention 

classifies the kinesins into 14 families (Lawrence et al., 2004). All family members 

bear the name kinesin and different groups are designated by use of an Arabic 

numeral, thus kinesin-1 denotes conventional kinesin, kinesin-13 denotes M-kinesin 

and kinesin-14 denotes C-kinesin. Earlier, kinesins had been classified using the 

location of their motor domains along the length of the molecule. Tenninal motor N- 

Kinesin or Kinesin-1 has the motor domain close to the N-terminal of the molecule, 

M-Kinesin or Kinesin-13 a middle motor domain and C-Kinesin or Kinesin-14 a C- 

terminal motor domain (Hirokawa and Reiko, 2004; Lawrence et al., 2004). The 

conventional kinesin or kinesin-1, the first member of the kinesin superfamily,
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consists of two heavy chains, each of 120 kDa, and two light chains each of 64kDa 

(Bloom, 1992; Brady, 1993; Muresan, 2000; Weiss et al., 1991). When examined by 

transmission electron microscopy, after low-angle rotary shadowing, it has a rod like 

stem of 80nm length and two globular heads at the amino-temiinal end. The heads 

are the sites of binding to mierotubules and each also contains one ATPase binding 

site. The latter may be inhibited by calmodulin binding to the light chains and thus the 

light chain may have a regulatory role in kinesin function (Matthies et al., 1993). The 

light ehains also possess a fan-like tail that binds to plasma membranes and is the site 

of attacliment for membranous organelles (Hirokawa, 1998). In conelusion, this motor 

system utilizes mierotubules as rails and is involved in transport of a wide variety of 

intracellular cargoes the great majority of which are transported anterogradely and 

include precursors of synaptic vesicles, other vesicles containing amyloid precursor 

protein (APP), or are associated with spectrin/fodrin, mitochondria, lysosomes and 

tubulin oligomers (Table 2, page 37). However, recent, in vitro, evidence has shown 

that both neuro filaments up to 15.8pm long (Wang et al., 2000) and non-filamentous 

neuro filament protein (Prahlad et al., 2000) can move along mierotubules at speeds of 

0.5-1 .Opm/s and that this movement involves kinesin. Thus, perhaps all axonal, 

anterograde transport utilizes fast motors but the period of time over which movement 

occurs varies widely. However, the mechanism controlling or regulating the period 

over which transport occurs is still obscure.
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Table 2: A summary of the Five Groups of Speed of Axonal Transport, the Entities 
transported in each Group, the known Motors operating in each group, the Overall and 
Instantaneous rates and the Direction of Movement.

Cytoplasmic organelle Overall Rate 
(pulse labelling)

Instantaneous rate 
(light microscopy)

Direction

FAST
Golgi-derived vesicles 
(synaptic vesicle proteins, 

kinesin, enzymes for 
neurotransmitter metabolism)

200-400mm/d®
2-5pm/s l-5pm/s ‘‘

Anterograde

Endocytotic vesicles 
(internalised membrane receptors, 

neurotrophins)

100-250 mm/d ® 
1-3 pm/s 1-3 pm/s ®

Retrograde

Lysosomes (active lysosomal 
hydrolases)

100-250 mm/d 
1-3 pm/s

1-3pm/s ® Retrograde

Autophagosomes 100-250 mm/d 
1-3 pm/s

l-3pm/s ® Retrograde

Mitochondria (cytochromes, 
enzymes of oxidative 

phosphorylation)

< 70 mm/d 
(< 0.8pm/s) 0.3-0.7pm/s

Bidirectional

(SCa) neurofilaments 0.3-1 pm/s Bidirectional
Tubulin in CNS 0.3-lpm/s ^ Bidirectional

a-spectrin, actin, calmodulin 0.22 -  3.3pm/s ‘‘ Bidirectional

SLOW
(SCc) MAPI phosph 7-9 mm/d unknown Anterograde
(SCb) Actin, clathrin, 

dynein, dynactin
2-8 mm/d 

(0.02-0.09pm/s) «
Cytololic protein 

complexes (glycolytic enzymes, 
creatin kinase, aldolase, enolase)

2-8 mm/d 
(0.02-0.09pm/s) «

unknown unknown

MAPI dephosp 1 -6 mm/d unknown Anterograde

(SCa) neurofilaments 0.3-3 mm/d 
(0.004-0.04pm/s) « 0.3-lpm/s ^

Bidirectional

Tubulin in CNS 0.3-lpm/s ^ Bidirectional
a-spectrin, actin, calmodulin 0 .2 2 -3 .3 p m /s“ Bidirectional

Spectrin, tau proteins 0.3-3 mm/d 
(0.004-0.04pm/s)

References: * Grafstein and Forman, 1980, ‘’Lorenz and Willard, 1978; ^Morris and 
Hollenbeck, 1993, 1995; Ligon and Stewart, 2000; Breuer et al., 1987; Viancour and 
Kreiter, 1993; Nakata et al., 1998; Kaether et al., 2000; ‘‘ Roy et al., 2000; Prahlad et 
al., 2000; Wang et al., 2000; Wang and Brown, 2001, 2002; ® Brown, 2000; Ma et 
al., 2000; ‘‘Koenig et al., 1985).
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The dynein family (Fig. 13, page 104) is another widespread group of motor 

proteins that is usually subdivided into axonemal and cytoplasmic groups. The 

axonemal group contains 18 members that are motor for the activity of cilia and 

flagella and are not relevant to the present discussion. The nine members of the 

cytoplasmic dynein group are though to contribute to retrograde axonal transport. One 

type o f cytoplasmic dyenin has been isolated from bovine brain, has a microtubule 

activated ATPase and promotes in vitro gliding of mierotubules (Paschal et al., 1987). 

Within axons it is present in two forms, major and minor. Major dynein is a huge 

macromolecular complex of 1000-2000 kDa (Susalka and Pfister, 2000; Vale et al., 

2003) and it is composed of four types of subunits, two identical heavy chains (HC), 

two intermediate chains (IC), two light intermediate chains (LIC) and a small but 

variable number of light chains (LC) (Vallee et al., 1988). The HCs are approximately 

350kDa each consisting of a globular head from which protrudes a slender stalk 10-15 

mn in length. This contains an ATPase activated microtubule binding site that 

generates power for movements along a microtubule (King, 2000; Gee et al., 1997) 

where each dynein motor domain is formed of six subunits arranged in a hexameric 

ring (Gee et al., 1997). Also extending from the head is a long cargo-binding stem 

containing an intermediate chain of 74kDa, a light intermediate chain (Habura et al., 

1999; Tynan et al., 2000a) all of which bind to the heavy chains of the globular head. 

These three subunits (light, light intermediate and intermediate) are involved in cargo 

binding when the descriptor “cargo” is applied to the membranous or non- 

membranous organelle that is to be transported along a track of MTs. However, for 

linkage of dynein to membranous organelles and movement along tubules an 

interaction between dynein and the dynactin complex is necessary (Shah et

al., 2000; Deacon et al., 2003). The latter also allows movement of non-membranous
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organelles, for example neurofilaments, along MTs (Shah et ah, 2000). Dynactin links 

to membranes derived fi-om the Golgi complex via pill-spectrin to establish the 

dynactin-mediated dynein endomembrane binding system (King et a l, 2003). 

However, understanding of the mechanism for linkage of membrane-limited 

organelles to axonal MTs is still incomplete; at least in part, because it seems that 

different types of endomembrane may utilise discrete and specific binding molecules 

(King et ah, 2003) were the amino-acid sequence of the stem varies between dyneins 

and allows binding to different cargoes (Tynan et al., 2000a, b). Further, the linker 

molecule between MTs and non-membranous organelles is, presently, unknown. 

However, it is becoming accepted that the fast motors kinesin and dynein bind both 

membranous and non-membranous organelles and use the same track of microtubules 

but move in opposite directions, kinesin to the plus end away Ifom the cell body in 

axons, dynein to the minus end of MTs. The overall rate of movement, however, 

differs with the proportion of time that an organelle is linked to the motors. Finally, 

biochemical cross-linking experiments and image analysis has revealed that both 

dynein and kinesin compete for tubulin isomers a  and p which form a microtubule 

binding site 80A in length (Mizuno et al., 2004). However, our present understanding 

of these complex interactions is not great enough to allow a simple explanation of 

changes under conditions of axonal pathology.

Myosin is a member of a superfamily of filamentous molecules which interact with 

members of another filamentous protein family, the actins. Within the myosin 

superfamily the present classification is into seventeen classes each o f which is 

denoted by a Roman numeral. Myosins occur in a huge range of types of cells, over 

plants, prokaryotes and eukaryotes. However most classes are restricted to particular
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types of cell, particular gi'oups of organisms or to cells specialized for specific 

functions (Sellers, 2000). Within nervous tissue myosin V and myosin VI have both 

been implicated in transport of vesicles and/or transport of mRNA. Myosin V has 

been recognized recently as an organelle motor in the axoplasm of the giant axon of 

squid (Bearer et al., 1993; Tabb et al., 1998) and homogenates of chicken brain 

(Evans et al., 1998). It is involved in transport of vesicles in both mature (Espreafico 

et al., 1992) and cultured (Evans et ah, 1997) neurons and with release of 

neurotransmitters from rat cerebrocortical synaptosomes (Perkeris and Terrian, 1997) 

and Purkinje cells (Takagishi et ah, 1996; Dekker-Olmo et ah, 1996). Myosin has 

been hypothesised to be a motor molecule for the final delivery of membrane limited 

organelles into parts of the neuronal cytoplasm where tubulin content is low but actin 

content is high; for example, growth cones in the developing nervous system, mature 

dendritic spines and synapses (Tabb et ah, 1998) or the plasma membrane (Gallant, 

2000). An investigation of the role of myosin, and in particular myosin-V, in any 

model of TBI is cunently lacking. However, the association of myosin-V with axonal 

transport of vesicles and its interaction with the actin subaxolemma cytoskeleton may 

be of interest with regard to damage and or repair of cell membranes.

3.3. Slow axonal transport

When axonal transport was first investigated and described two subcomponents were 

described, subcomponent SCa constituting the microtubule-neurofilament 

cytoskeleton and SCb representing the microfilament network (Black and Lasek, 

1980; Brady and Lasek, 1982). But, as discussed earlier (page 32-34) visualization of 

NF movement in real time in living neurons after transfection with green fluorescent 

protein (GFP) -tagged NF subunits in superior cervical ganglion neurons has revealed
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that both NF-M and NF-H move at a rate of 0.3 -1pm /s (Table 2, page 37) (Roy et 

al., 2000; Wang et al., 2000). However, the movement occurs only for short periods 

during any one observation and that movement is not continuous but interrupted by 

prolonged pauses. The result is that most NFs are stationary at any one time. It is 

presently thought that NFs are transported for short periods by the two fast motor 

transport molecules kinesin and dynein-dynactin (Brown, 2003). It may therefore be 

suggested that the concept o f slow axonal transport is outmoded and should be 

discarded.

4. Wallerian Degeneration

4.1 Definition

The phenomenon of the degeneration of the distal segment of a nerve after 

axotomy was described first by Augustus Waller (1850) as he described changes in 

the distal segment of the glossopharyngeal and hypoglossal nerves of frog (Rana) 

after the nerves had been transected. The degenerative changes in the distal part of an 

axon following disconnection from the cell soma are now termed Wallerian 

degeneration after him. However, Wallerian degeneration in senso stricto occurs in 

the distal segment of peripheral nerve fibres.

Similar changes occur in the distal portion of axons in the CNS although the 

supporting or glial cells involved differ, astrocytes and oligodendrocytes rather than 

Schwann cells (Fig. 14, page 104). A basic conclusion, however, is that the time 

course of axonal degeneration and loss in CNS tracts is considerably longer 

(Avellino et ah, 1995; George and Griffin, 1994a, b), particularly in humans (Bung et 

ah, 1993), than in the PNS.
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The events and time course of Wallerian degeneration has been widely investigated 

in the PNS and there is now a very extensive literature (reviewed Griffin et al., 1995). 

The responses by different types of cell may be summarized as follows. In the PNS, 

there is no morphological change in the axon for the first 12 to 24 hours. An active, 

enzymatic proteolysis of the axonal cytoskeleton then occurs between 24 and 48 hours 

after axotomy and progi'esses rapidly throughout the length of the axon that has been 

disconnected from its cell soma (Griffin et ah, 1995; George and Griffin, 1994a). 

There is a correlated opening of the blood-neiwe barrier. However, opening of the 

blood-brain barrier in the CNS may not occur (Griffin et ah, 1995). As a consequence, 

the rapid accumulation of macrophages noted in PNS Wallerian degeneration occurs 

much more slowly in the CNS where reactive cells are derived from intrinsic 

microglia rather than from the circulation (reviewed in Griffin et ah, 1995). 

Consequently, the time course for removal of myelin in the CNS is greatly prolonged 

compared to that in the PNS. In the PNS Schwann cells down regulate the production 

of myelin markers and form the classic “bands of Bügner”. In the CNS, however, 

myelin debris is “walled o ff’ by astrocyte processes (Stoll et ah, 1989) and 

oligodendrocytes have been associated with clearance of myelin (Ludwin, 1990).

4.2. Sequence of events

In TAI, the trigger for degeneration is damage to the axon following different foims 

of and degrees of trauma. In the majority of experimental models of axonal injury 

such as crush in development of a haematoma or transection as in a penetrating injury 

to the head large numbers o f spatially closely related axons are injured (Banon et ah, 

1983) or as the result of an ischaemic insult. However, in TAI models of DAI, injured 

axons are relatively few in number and scattered among a larger population of intact 

or uninjured axons (Povlishock and Christman, 1995; Maxwell et ah, 1997). In
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addition, trauma in most cases of blunt head injury does not result in severance or 

primary axotomy at the time of injury. Rather, there is the initiation of a chain of 

events leading to axonal disconnection or secondary axotomy 3-4 hours later in 

experimental animals and 12 hours in patients. As a result, initiation of Wallerian 

degeneration may only follow TBI once axons have undergone secondary axotomy, 

some 72-96 hours after the initial insult to the head.

4.3. The Neuronal response and the Cytoskeleton

4.3.1. The Distal Segment of an Axon (See schema, Fig. 14, page 104)

The vast majority of the literature documenting responses in axons in Wallerian 

degeneration describes changes after axotomy in the PNS. The highly authorative 

review by Griffin et al., (1995) allows the following summary to be made. First, there 

is little detectable change in the organisation of the components of the axonal 

cytoskeleton over the first 24 hours after axotomy. Then a rapid breakdown of the 

cytoskeleton, ternied granular disintegration (Griffin et al., 1995), occurs over only a 

few hours along the whole length of the distal axonal segment. Correlated with loss of 

the integrity of the distal part of the axon there is stripping of synaptic contacts with 

the postsynaptic cell/tissue (reviewed Mack et al., 2001). Upon loss of the axon, 

responses by the myelin sheath and its associated glial cells are initiated. In the PNS 

there is proliferation of Schwann cells with peak numbers of dividing cells at 4 days 

after axotomy. Over the same time frame, monocytes invade the region of injury, 

differentiate into activated macrophages and removal of remnants of the myelin 

sheath occurs.

After axotomy via transection the axolemma rapidly reseals and “reactive axonal 

swellings” develop. These are characterised by a high content of mitochondria, dense
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or lysosomal bodies, vesicular elements and increased numbers of neurofilaments. In 

the CNS the occun'ence of reactive axonal swellings was first described almost forty 

years ago in dorsal ascending tracts of the spinal cord (Lampert, 1967) and the 

numerous studies in the intervening years have only provided some extra detail but 

not necessitated re-appraisal of the initial observations and conclusions. However, the 

occun'ence and development of axonal swellings filled with large numbers of 

membranous organelles has stimulated the concept that axonal transport continues 

within the distal segment following axotomy even though electrical conductivity is 

lost. Additional evidence is the occurrence of aggregates of membranous organelles at 

nodes or Ranvier and Schmidt-Lanterman incisures (Ballin and Thomas, 1969; 

Maxwell et ah, 2003) which are now recognised by some workers as a marker that an 

axon has undergone axotomy and has entered the early stages of Wallerian 

degeneration.

The next step in Wallerian degeneration is the pivotal, rapid loss o f an organised, 

recognisable axonal cytoskeleton throughout the distal segment of an axon (George 

and Griffin, 1994a). The time course of these changes was documented quantitatively 

following injury to a peripheral nerve, the phrenic nerve, almost thirty years ago 

(Lubinska, 1977) where complete loss of the axoplasm occurs over only a few hours 

between 24 and 30 hours after injury. Different changes have been described in CNS 

axons within the opossum optic nerve after cmsh injury (Narciso et ah, 2001). Here 

axons undergo focal degeneration o f the cytoskeleton but two types o f degeneration 

have been described. Either there is almost complete loss of cytoskeletal elements that 

has been termed “watery degeneration” (Narciso et al., 2001). Or the axoplasm is 

replaced by an amorphous, granular and dark material termed “dark degeneration”
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(Narciso et al., 2001). Both types o f change occur between 24 and 72 hours after 

crush injury.

However, Narciso et al (2001) did not provide any quantitative evidence in support 

of the use of these novel descriptors. A detailed analysis in TAI of optic nerve 

confirmed the hypothesis that microtubules and neurofilaments within injured axons 

respond in different ways. The first post-traumatic time point at which examples 

suggestive of Wallerian degeneration were recognised was 24 hours (Maxwell et al.,

2003) and axons were designated as “degenerating fibres”. Here the axolemma is still 

intact and closely related to the internal aspect of the myelin sheath. Thus, the calibre 

of these axons does not differ from control values. However, the number of 

neurofilaments within the axoplasm is reduced by 60% and of microtubules by 70% 

(Maxwell et al., 2003) with an increase in their spacing. Thus, degeneration of 

components of the axonal cytoskeleton occurs relatively slowly compared with the 

precipitous loss in PNS axons. Indeed, evidence for an incomplete or partial loss of 

neurofilaments and microtubules is obtained at 7 days post-trauma. In addition, 

between the remaining microtubules and neurofilaments an amorphous material, 

suggestive of proteolysis, occurs. Although the changes described above mirror those 

earlier described in nerve fibres after injury in the PNS (George and Griffin, 1994) 

and crush injury to optic nerve (Narciso et al., 2001), the time course for loss of NFs 

and MTs in central axons after TAI is much longer, that is about 160 hours compared 

to 48-72. Finally, there is complete loss of a recognisable cytoskeleton where 

cytoskeletal elements are replaced by an amorphous electron dense deposit inside the 

remnants of the myelin sheath (Fig. 15, page 105). Within these fibers there is also 

dissociation of myelin lamellae, the myelin remnant has an irregular profile and a 

reduced calibre (Fig. 15). Similar ultrastuctural changes has been seen in Wallerian
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degeneration in the PNS, although, again, it is notable that the time course in the PNS 

is shorter than in the optic nerve after TAI.

4.3.2.The Proximal Segment of an Axon

After axotomy, the proximal part o f the axon is the only part that remains comiected 

to the cell soma. Wlien axotomy occurs close to the cell body the effect o f the injuiy 

is more severe and often results in the axon reaction and the death of the neuron 

(Liebennan, 1971 ; BaiTon, 1983). When a considerable proportion of the full length 

of the axon is retained the consensus is that the cell does not die and the axonal 

remnant does not degenerate. Rather, the axonal remnant undergoes a series of 

pathological changes over 8 - 1 0  weeks after axotomy (Barron et al., 1983; Hoffman 

et al., 1984; Kreutzberg, 1995). However, present understanding and interpretation of 

experimental results is complicated by a number of factors. For example, neuronal 

responses to axotomy differ between species with (1) the age of the animal when 

axotomy occurred, (2) the type of injury to the axon (crush, section or avulsion), (3) 

whether contact is retained with the distal stump as for example in incomplete crush, 

(4) the distance between the cell soma and the point of axotomy and (5) the type of 

neuron according to its function within the neiwous system (Kreutzberg, 1995).

In the proximal stump of peripheral nerve after crush injury there is a series of 

changes in calibre of the axon and of the axonal cytoskeleton (Hoffman et al., 1984). 

These are dependent upon continued axonal transport and the possibility of 

reconnection with the periphery. After crush-injury to the sciatic neiwe of adult rats 

(Hoffinan et al., 1984) there is a reduction in the calibre of axons in large motor 

neurons over the next four weeks. This reduction is initiated at the cell soma and 

proceeds toward the degeneration bulb over time. Thus, the reduction in axonal

46



calibre occurs within the proximal part of the L5 motor root of the sciatic nei*ve at two 

weeks, at the middle part of the axonal remnant at three weeks and only occurs at the 

distal part by four weeks after injury. The rate of proximo-distal movement was 

1.7mm/day and considered, at that time, identical to the speed o f axonal transport of 

neurofilaments (Hoffman and Lasek, 1975; Hoffman et al., 1984). However, in the 

light of recent re-appraisal of rates o f axonal transport (Brown, 2003), it would be of 

interest to re-assess rates of transport of axonal components within the proximal 

segment of a peripheral neiwe following injury.

In addition to changes in the calibre o f the proximal stump, a number of other 

morphometric changes are now recognised. First, there is loss of axonal circularity 

(the ratio [0] of axonal cross-sectional area to the area of a circle having the same 

circumference as the axon). In control, guinea pig optic nerves 0  is 0.78 in small 

axons and 0.90 in large axons, hi an injured animal, however, the value for 0  varies 

between 0.25 and 0.90 (Jafari et al., 1997, 1998). Second, there is an increase in the 

thickness of the myelin sheath in intemodes of axons with an altered value for 0 . In 

control animals, the number of myelin lamellae is directly axonal cross-sectional area, 

except in axons with an area of more than 20 pm^ (Hoffinan et al., 1984). After cmsh 

injury to the sciatic nerve the number of myelin lamellae in the myelin sheath do not 

change. But when the calibre of axons is reduced there is an apparent increase in the 

number of lamellae within the associated myelin sheath. Further, with a reduction in 

axonal calibre, the circumference of the myelin sheath is inappropriately large and the 

profile becomes less regular, often convoluted, in shape -  see also Fig. 15, page 105. 

Third, there is a reduction in the number of neurofilaments in axons with a reduced 

calibre. In axons of control rat sciatic neiwe the number of neurofilaments increases 

linearly with the increase in axonal cross-sectional area (Hoffinan et al., 1984) with
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the result that their packing density does not change being 107 neurofilaments/pm^. 

However, the same value for the density of neurofilaments is obtained in axons with a 

reduced calibre 3 weeks after injury. There must, therefore be a loss of circa 60% of 

NFs in axons of reduced calibre. On the contrary, however, within those same axons 

the packing density of micro tubules was increased: 26 microtubules/pm^ in control 

animals compared with 35 micro tubules/pm^ at 3 weeks after injury. Thus, the 

reduction in cross-sectional area of the proximal stump of sciatic nerve axons after 

crush-injury is correlated with a proportionate decrease in the number of 

neurofilaments but not of microtubules (Hoffman et al., 1984) by three weeks after 

injury. At greater survivals when there is recovery of motor ftmction between 4 and 

10 weeks after cmsh injury, however, there is a significant increase in the calibre of 

axons within both proximal and distal levels. Therefore, the mean axonal cross- 

sectional area in nerves that had regenerated was comparable to that in control, 

uninjured animals. Moreover, with recovery of motor function following cmsh injury 

to a sciatic nerve root there was no evidence for loss of axons in that the number in 

control nerves was not different from the number present at either 3 or 10 weeks after 

injury. Overall, Hoffinan et al. (1984), provide good, quantitative evidence that axons 

within the proximal segment of a peripheral nerve do not degenerate following cmsh 

injury distant from the cell soma. Rather, axons undergo a series of responses over 6 

to 8 weeks until end organ recomiection is achieved and there is then recovery of 

normal axonal stmcture as functional recovery is established.

It is not presently possible to make a direct, temporal comparison of responses by 

axons after central TAI because no experimental investigation has yet followed axonal 

responses for a period of greater than 7 days after TBI. There is, however, presently a 

consensus that Wallerian degeneration occurs more slowly in the CNS than in the
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PNS {vide supra). This allows generation of the hypothesis that response(s) in the 

proximal segment of a central axon after secondary axotomy may have a longer time 

course than in the PNS outlined above.

4.3.3. The Neuronal Cell Soma

The great majority of experimental studies of axonal injury and/or Wallerian 

degeneration have investigated neuronal responses to a focal and often relatively 

severe insult such as transection or crush injury to a large proportion of axons within a 

peripheral nerve and close to the cell body. This elicits responses by the neuronal cell 

body of the injured axon to primary axotomy and results in loss of or degeneration of 

motoneurons within a week (Lieberman, 1971; Barron, 1983; Kreutzberg, 1995). The 

neurons enter the so-called “axon reaction” (Lieberman, 1971) characterised by the 

following overview.

The first morphological change is the peripheral displacement of the nucleus toward 

one side of the cell and the loss its normal smooth profile. This results in a scalloped 

profile facing the centre of the cell. A large Nissl body with a high density of free 

ribosomes and polysomes is often located within the cytoplasm of this nuclear 

indentation and there is a reduced number and length of cistemae of the rough 

endoplasmic reticulum. This has been suggested to reflect a change from synthesis of 

extrinsic to intrinsic proteins that are required for replacement of cell components that 

have been lost or proteins necessary for repair. There is good evidence that this 

process is stimulated by the immediate early genes (lEG) and transcription factors 

such as c-fos, c-jun and jun-B  which are known to bind to DNA at sites known to 

regulate gene expression. However, there is also increasing evidence that different 

types of neuron respond differently to axotomy. For example, after peripheral
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axotomy in rat sciatic nerve there is rapid up-regulation of c-jun mRNA in dorsal root 

ganglia neurons within hours and this remains elevated tlu'oughout the chronic phase 

of neurite sprouting (Kenney and Kocsis, 1998). Expression of lEGs in neurons with 

axons in the medial forebrain bundle (Leah et ah, 1993) and mbrospinal tract (Jenkins 

et al., 1993), however, does not achieve maximal levels until 48 hours in the fonner 

and 10 days after injury in the latter. Recent data, (Cavalli et al., 2005), suggests that 

retrograde transport of a complex foimed by activated c-Jun NH2-terminal kinase and 

the scaffolding protein Sunday Driver (syd) interacts with a subunit of kinesin-1 to 

fonu a transport-dependent axonal damage surveillance system. However, there is 

only limited knowledge of such macromolecular interactions and the suggestion that 

that the lEG response in CNS neurons is slower than after PNS injury still has strong 

support.

Changes occur in the organisation of neurofilaments within the proximal segment of 

an axon after axotomy, vide supra. All cytoskeletal components of axons are 

synthesised in the cell soma of a neuron and it may be hypothesised that changes in 

the biosynthesis of cytoskeletal proteins will be altered following axotomy. Good 

evidence for such changes was documented more than a decade ago in both optic 

nerve (Hoffiuan et al., 1993) and sensory neurons (Greenberg and Lasek, 1988). A 

marked decrease to half of control values of the low molecular weight (NF68) and 

intenuediate molecular weight (NF145) neuro filaments between 1 and 5 days after 

transection was reported after use o f radiolabelling techniques (Hoffman et al., 1993). 

Levels of the above neuro filaments were reduced until 10 days after injury, only 

returning to control levels between 20 and 40 days. In parallel, the content of mRNA 

for NF-L (NF68) was decreased in retina (Hoffiuan et ah, 1993) and dorsal root 

ganglia neurons (Moskowitz et ah, 1993) until 14 days after injury.
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But an opposite result was obtained for both actin and tubulin where radiolabelling 

showed that the somal content was one third greater between 1 and 5 days after injury 

with a return to control levels by 10 days. In parallel, the content of beta-tubulin 

mRNAs increased over the same time frame in DRGs (Moskowitz et al., 1993), but, 

notably, not in the retina (Hoffman et ah, 1993).

The enhanced content of RNA necessary for increased protein synthesis requires 

increased numbers of ribosomes. It has been suggested that an increase in glucose 

uptake one day after facial and hypoglossal nerve transection (Kreutzberg, 1995) 

reflects up-regulation of the hexose monophosphate shunt and this allows increased 

synthesis of nucleotides and ribosomes. Other evidence for increased utilization of 

glucose after injury to axons has been documented in neurons from both the 

hypoglossal nucleus (Smith et ah, 1984) and, in a model of TAI, retinal ganglion cells 

o f the guinea pig retina (Gennarelli et ah, 1989).

Only two studies have examined neuronal soma responses with respect specifically 

to TAI. A quantitative analysis of retinal ganglion cell responses over 14 days after 

stretch-injury to the guinea-pig optic nerve (Maxwell et ah, 1994) and a combined 

immunocytochemical and ultrastructural analysis of neuronal responses in the parietal 

and temporal cortices, the thalamus and the hippocampus of rat up to one week after 

central fluid percussion injury (Singleton et ah, 2002). In the fonner study, only a 

third o f retinal ganglion cells demonstrate classic chromotolysis at 3 days after injury. 

There is no increase in the number of chromotolytic or degenerating neurons at either 

7 or 14 days after injury. Within chromolytic neurons there is overt evidence for 

nuclear eccentricity, dispersal and degranulation of Nissl substance, loss of the Golgi 

apparatus, all of which are indicators of neuronal degeneration by 3 days after injury 

(Maxwell et ah, 1994). In the latter study (Singleton et ah, 2002), neuronal somata

51



demonstrate increased APP immunoreactivity at 6 hours after TAI. But evidence for 

dispersal and degranulation of the RER and dispersal of the Golgi apparatus, was not 

obtained until 24 hours after TAI when tubular and vesicular profiles filled with APP 

electron dense reaction product occurred throughout the cytoplasm of the cell soma. 

Importantly, however, in the latter study, evidence for nuclear eccentricity and loss of 

cytoplasmic organelles comparable to that described in the axon reaction (Lieberman, 

1971) and retinal ganglion cells after TAI (Maxwell et al., 1994) was not obtained 

until 7 days after injury (Singleton et al., 2002). Moreover, at 7 days, use of the 

antibody RMO-42 that labels phosphorylated neurofilaments identified some neuronal 

cell bodies in the mediodorsal cortex. On the other hand, in control or intact neurons, 

phosphorylated NFs occur only within axons.

An important conclusion to be drawn ft'om the above is that neurons, after TAI 

compared to primary axotomy, do not show pathological progression to cell death 

when only diffuse white matter injury occurs. Rather, both Maxwell et al. (1994) and 

Singleton et al. (2002) suggest a potential neuronal attempt at reorganization for 

recovery and repair. Early evidence in support of this hypothesis was provided by 

stereological evidence of an increase in size of the nucleolus in regenerating RGC at 7 

and 14 days after axonal injuiy (Maxwell et al., 1994). Further support is provided by 

expression of markers associated with axonal elongation or regeneration, for example 

microtubule-associated protein IB (MAPIB and MAPIB-P), giuwth-associated 

protein (GAP-43) and the polysialylated neural cell-adhesion molecule (PSA- 

NCAM), in the cerebral cortex and hippocampus of rats after lateral fluid-percussion 

injury (Emery et ah, 2000). This, together with the results of Singleton et al. (2002), 

provide evidence that neurons, after TAI in which only relatively small numbers of 

axons are injured, enter a transient state of repair rather than undergoing immediate
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degeneration. It is also now recognised that the concept that central neurons are 

incapable of a regenerative response is incorrect. Rather, the inhibition of this 

response probably arises within the microenvironment in the region where injury has 

occurred. However, the factors involved are still undefined.

4.4. Non-Neuronal Cellular responses in Wallerian degeneration

As indicated earlier (page 43-44), the cells removing myelin debris during Wallerian 

degeneration in the PNS and CNS differ. In the PNS there is opening of the blood- 

neiwe barrier and ingress by numerous monocytes that differentiate into macrophages. 

In the CNS, however, the blood-brain barrier does not open unless there is also 

mechanical damage to blood vessels within the neuropil as might occur, for example, 

in diffuse vascular or a penetrating injury. In TBI, however, opening of the blood- 

brain barrier has not been demonstrated unless petechial haemorrhages occur. Thus, 

except in the latter, only intrinsic microglia, oligodendrocytes and astrocytes may 

respond after TAI.

4.4.1 Macrophages

The source of macrophages after injury to the PNS or CNS differs in particular 

when the blood-brain barrier remains intact. In the PNS, although some macrophages 

are present locally within the endoneurium (Monaco et al., 1992), there is a rapid and 

abundant infiltration by haematogenous monocytes when the blood-nerve barrier is 

opened and these cells quickly differentiate into cluster domain (CD) activated 

macrophages (Griffin et al., 1993; reviewed in Stoll et al., 2004). However, CD 

macrophages have been subdivided in a wide variety of sub-types, for example cluster 

domain CD68, CD34+, CD8+, CD5+, CD4+ that are subtypes of the external domain 

(ED1H-) macrophages. Different cell surface molecules are expressed by monocytes,
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macrophages and activated microglia. The cell surface molecules vary with different 

subtypes of tissue gi'owth factors (TGF-(32 or TGF-pi); the precise role being 

undertaken by the cells within damaged tissue; or the type of insult to the CNS, for 

example activation of cyclooxygenase (COX-1) expression by microglia and COX-2 

by neurons in Alzheimer’s disease (Fiala et al., 2002). Recent evidence, for example, 

has indicated that bone marrow derived cells, for example, CD34+ cells, migrate into 

adult brain and differentiate into both perivascular and ramified microglia (Asheuer et 

al., 2004). A detailed review of the vast literature on this topic is beyond the remit of 

the cuiTcnt thesis. Clearly, however, use of a single type of antibody as a marker for 

these cells in any study will provide only limited information.

There has not yet been an investigation of the involvement of haematogenous 

macrophages (the CD8+, CD5+ and CD4+ cells above) or the intrinsic microglia in 

studies of TBI. However, Jander et al (2001) have compared entry by macrophage 

subtypes the CD8 +, CD4+, and ED1+ variants of these MHC class II- cells into 

either sciatic (PNS) or optic neiwe (CNS) after crush injury. In sciatic nerve there was 

strong expression for EDI, CD4 and CD8 cells at the crush site at 2 days. In the distal 

nerve stump, however, CD4 expression increased continuously up to 14 days and then 

declined. On the other hand, CD8+ cells were limited to the perineurim and declined 

from peak values at 2 days to low numbers between 4 and 7 days. The most marked 

change, however, was the number of CD8+ cell within the degenerating nerve 

parenchyma. Until day 7, their number was low. However, between 7 and 14 days 

there was a massive increase of large, round CD8+ cells which filled the entire 

degenerating nerve parenchyma. Activated macrophages removing myelin debris 

were spread throughout the length of the peripheral/distal part of the degenerating 

nerve with peak numbers occurring at 14 days after the injury followed by a decline
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(Jander et al., 2001). It is noteworthy that in the PNS macrophages are not only 

involved in myelin clearance but also in the stimulation of proliferation of Schwann 

cells (Fernandez-Valle et ah, 1995).

After crush injury to the optic neiwe, however, the timescale and the spatial extent 

of penetration of the damaged tissue by MHC class II cells differed (Jander et ah, 

2001). Infiltration by CD8+ cells occurred at the cmsh site with peak numbers at 4 

rather than 2 days. Thereafter, there was a continuous fall in the number of CD8+ 

cells. Notably, CD8 cells did not enter the region of degenerating nei*ve fibres distal to 

the site of cmsh injury. Rather, unlike in the PNS, the number of CD4+ cells 

increased within the distal stump of degenerating nerve fibres and peak numbers were 

obtained at 2 to 4 weeks after injury. Lawson et ah (1994) also reported a four-fold 

increase in the number of macrophages and microglia in the distal segment of the 

optic nerve and the superior colliculus by 7 days after cmsh injury to mouse optic 

nerve. However, a different marker, the monoclonal anti-mouse macrophage marker 

(F4/80) expressed at all levels of activity by these cells was used (Lawson et ah, 1992) 

and direct comparison of the two different experimental paradigms is therefore not 

possible. Although, the increased number o f macrophages is comparable to that noted 

in the PNS, there is, importantly, a difference in the time scale over which peak 

numbers occur between the PNS and CNS as well as differences in subtypes of these 

cells as indicated by their differential expression of cell surface antigens. Lawson et 

ah, (1994) obtained maximum numbers of macrophages at 3 days in the saphenous 

nerve, 5 days in the sciatic nerve but only at 7 days in the optic neiwe after cmsh- 

injury.

The above discussion illustrates the present lack of understanding of the role and/or 

effect of the presence and/or activity of macrophages within the CNS after injury. It is
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also suggested that in any forthcoming immunocytochemical analysis a spectrum of 

antibodies for substages in the life span or subtypes of monocytes, macrophages and 

microglia will need to be undertaken. It is also clear that those macrophages that do 

enter areas of CNS damage probably differ in their role or function, as indicated by 

the different components of the cluster domain (CD complex) expressed by the cells 

entering a site of injury in the PNS or CNS. In the mature CNS, macrophage-like 

cells are generally absent apart from the presence of perivascular cells (Graeber and 

Streit, 1990; Liu et al., 1994) that may be regarded as an intermediate stage derived 

from CD34+ cells (Asheuer et ah, 2004) and that have a significant turnover 

throughout life (Lawson et ah, 1992). Macrophages may invade the neuropil 

particularly at sites where the blood-brain barrier is opened or in young animals in 

which the blood-brain barrier is not yet established. There is little evidence that large, 

rounded CDS cells derived from haematogenous monocytes enter the CNS, 

particularly in TAI, where evidence for disruption of the blood-brain barrier is lacking 

(Maxwell et al 1988). However, perivascular macrophages can appeal* in the brain in 

cerebrovascular* accidents when these cells are generally limited to the vicinity of a 

lesion and do not enter the neuropil but remain, perhaps for years, within the 

perivascular space (Kida et ah, 1993; Bechmann et ah, 2001).

4.4.2. Microglia

These cells form a network of immunocompetent cells in the CNS that differentiate 

from cluster domain 45 (CD45) and CD34+ bone marrow precursors that colonise the 

foetal brain (Santambrogio et ah, 2001; Asheuer et ah, 2004). CD4, and leukocyte 

common antigens, are expressed by different microglial subpopulations (Streit and 

Graeber, 1993). Microglia are subdivided into two gioups in adult animals (Hickey
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and Kimura, 1988): perivascular microglia and ramified microglia, also teimed resting 

microglia, because the latter have been regarded as quiescent cells possessing only a 

small number of relatively short, branching cell processes. The two subtypes of 

microglia differ, however, immunologically since perivascular microglia express high 

levels o f CD4 (Engel et al., 2000) and CD45 while parenchymal microglia express 

only low levels. Macrophages and perivascular cells express peptide loaded MHC 

class II molecules, for example macrophage-related protein (MRP) 8 and MRP 14. But 

intrinsic microglia do not. Rather the latter express “empty” or peptide-receptive class 

II MHC. Intrinsic microglia express cathepsin S and L but not F. Cathepsin F occurs 

only on resident, mature macrophages, while cathepsin S is expressed by 

undifferentiated or immature cells. One, current view is that intrinsic microglia are 

immature, relatively undifferentiated cells that are well placed to provide a “graded” 

response and are capable of great morphological plasticity under degenerative, 

inflammatory and autoimmune conditions (Santambrogio et al., 2001). Following 

injury to the CNS, the concept of microglia activation involves differentiation from 

ramified microglia to amoeboid macrophages. This process involves a stereotypical 

sequence of steps (Stence et al., 2001). First, in the so-called withdrawl phase, the 

existing ramified processes retract back into and are completely absorbed into the cell 

body. Second, in the motility stage, a new set of active processes, that show cycles of 

rapid extension and retraction, extend from the cell body. Third, in the locomotory 

stage, and only once new motile processes have developed, cells start to relocate 

within the tissue and may be identified by immunocytochemical markers for cell 

surface receptors of which some 60 have been documented (Guillemin and Brew, 

2003). Examples of routinely used labels for microglia are histochemical labelling by 

isolectin-B4 fiom Griffonia simplicifolia, and imiuunocytochemical labelling against

57



a multitude of proteins within the MHC complexes I and II, moreover, expression of 

these change throughout activation and the precise conditions prevailing at the site of 

that activation. For example, complement receptor type 3 (0X42), is the only 

immunocytochemical marker for quiescent microglia. Activated microglia may be 

localised using murine clone (MUG 101 and 102), MHC class I (0X18) within 1 day 

of injury. Between 3 and 7 days, however, reactive microglia may be labelled with 

MHC class II (0X6, MRP8 and MRP 14) and rat macrophage marker EDI . In 

addition, an antibody against complement receptor 3 (CR3/43) has allowed 

identification of microglia in human CNS tissue (Graeber et al., 1988, 1994;

Gehrmann and Kreutzberg, 1991, 1995; Svensson and Aldskogius, 1992; Kato et al., 

1995) or cytoplasmic labelling for the amyloid precursor protein (APP) (Banati et al., 

1993). Indeed, microglia share several antigens with different cell types including 

macrophages (CDl lb, CD68), endothelial cells (VAM-1 = vascular cell adhesion 

molecule 1), lymphocytes (LFA = lymphocyte function-associated antigen, LCA = 

leucocyte common antigen), laminin 1 (LN-1) and oligodendrocytes (GD3)

(Guillemin and Brew, 2003). Furthermore, the expression of surface markers changes 

with, for example, the period that has elapsed from the onset of activation (Kato et al., 

1995, Engel et al., 2000). With expression of the major histcompatabilty complex 

class I and II molecules the activated microglia become the antigen-presenting cells of 

the CNS parenchyma. They are also the primary source of brain macrophages (Streit 

W. et al., 1988; Lawson et al, 1994). In addition, when microglia are activated the 

cells become interconnected by intercellular gap junctions (connexion 43, Cx43) to 

allow for improved communication and possible integi ation of their response to a 

CNS insult (Eugenin et al., 2001). But, perhaps more importantly, over the last couple 

o f decades it has become recognised that microglia respond to tissue insult with a
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complex an*ay of inflammatory cytokines and actions, and that these actions transcend 

the historical view of only phagocytosis and physical support enshrined in the earlier 

concept of “reactive gliosis”. Therefore, the concept of “glial activation” now implies 

a more aggressive role in responding to activating stimuli. When the blood-brain 

barrier is compromised or opened activation of microglia is characterized by major 

changes affecting cell number, cell morphology, and cell surface antigens which act 

on and engender responses in target cells analogous to the responses of activated 

immune cells in the body out with the CNS. In the absence of blood-brain barrier 

breakdown, however, there is a subtler response of the brain’s own immune system 

reflected largely in rapid activation of glial cells (Streit, 2004). Thus the role of brain 

macrophages and microglia after CNS injury is not just to clean up but also to 

reconstruct the site of injuiy involving production of extracellular matrix molecules, 

for example thrombospondin and laminin, which are substrates for growing neurites 

(Rabchevsky et al., 1998). It must therefore be recognised that caution should be 

exercised in drawing conclusions fi'om experimental results h'om the vast literature 

related to macrophages and microglia. There is not a single marker for only microglia, 

or only macrophages or only pericytes in tenus of immunocytochemical cell surface 

antibodies. Perhaps the most specific marker for microglia is labelling by isolectin-B4 

from Griffonia simplicifolia. In summary, different subtypes of macrophages enter an 

injured area of the CNS than in the PNS. Also the rate of penetration of the area of 

injury varies with the subtype of macrophage. However, in general terms, in 

Wallerian degeneration within the CNS, macrophages are derived from intrinsic 

microglia rather than from haematogenous monocyte/macrophage precursors. 

Removal of axonal debris occurs more slowly in CNS tracts than in peripheral nerve. 

However, once removal of axonal and myelin debris has been accomplished the
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microglia/macrophages are themselves removed via apoptosis in patients that survive 

diffuse traumatic axonal injury by 12 months or more (Wilson et al., 2004). However, 

requisite experiments in an animal model have not yet been undertaken.

It is also now clear that no cell type within the CNS operates in isolation either under 

normal or pathological conditions. There is a wide range of chemical messengers 

synthesised and released by or acting upon the gi oups of cells conventionally 

described within the CNS. An attempt to summarise these is provided in Table 3 

(page 63).

4.3.3. Astrocytes After insult to the CNS reactive astrocytosis is by far is the 

commonest finding associated with injury. Astrocytes normally occupy about one 

third of the volume of the cerebral cortex (Norenberg, 1994) and out number neurons 

by ten to one. Astrocytes are organized into a syncytium mediated by gap junctions 

that are vital for intercellular communication and cellular homeostasis (Kettenmami et 

al., 1983; Norenberg, 1994). Astrocytes are involved in activities that are critical to 

brain function such as neuronal migration, neurite outgrowth, maintenance of the 

blood brain barrier and provide protection of the brain from toxicity. However a major 

role is that of regulation of water content via aquaporin-4 channels (APQ4), 

electrolyte balance and re-uptake of excess amino acid neurotransmitter content, 

together with modulation of immune/inflammatory responses (Norenberg, 1994) and 

see Table 3. Astrocytes have also been suggested to play a minor role in phagocytosis 

in Wallerian degeneration where astrocytes “wall o ff’ myelin debris and have been 

suggested to participate in slow breakdown and removal of myelin figures (Stoll et al., 

1989; Narciso et al., 2001).
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Table 3: Secretory products and molecular signals between astrocytes and microglia

Factor or signal Astrocytes Microglia

Cytokines IL-la, IL-lp, IL-3, IL-5, IL-6JL-8 
CSF-1, G & GM-CSF, TNF-a, 
Monocyte Chemoattractant protein 1 
Macrophage Inflammatory protein-la

IL-la, IL-ip, IL-3, IL-5, IL-6,IL~8 
INF-a, TNF-a

Growth factors Nerve Growth factor, Transforming 
Growth factor (3, Basic Fibroblast Growth 
Factor, Ciliaiy Neuronotrophic factor, 
Insulin-like Growth factor, Glial Derived 
Growth Factor, S100j3

Nerve Growth Factor, Transforming 
Growth Factor a and p, Basic 
Fibroblast Growtli Factor, SlOOp

Complement Proteins C3, C4, C6, C7, C8, C9, Factor B, Factor 
I, Membrane Cofactor Protein, CD46, 
CDl lb, CD68, Clusterin, Vitrosectin

C1,C3,C4, CDilb,CD68

Coagulation Factors Tissue Plasminogen & Urokinase Type, 
Plasminogen Activator

Tissue Plasminogen & Urokinase 
Type, Plasminogen Activator

Eicosanoides Prostaglandin D2, Leucotrine C4

Proteases Protease Nexia 1, a-l-Antichymotrypsin, 
a-2

Metalloproteinase Inhib TIMP-1 & 
TIMP-2

Protease Inhibitors Macroglobulin, Cathepsin G Cathepsin S & L

Matrix Proteins Laminin, Fibronectm, Tenascin, Heparan 
sulphate, Chondroitin sulphate, Dermatan 
sulphate Proteoglycans

Transport Proteins Apolipoprotein D, Apoliporotein B

Adhesion Factors VCAM-1, NCAM, ICAM-1, ICAM-2 VAM-1

Reactive Ni 
Intermediaries

Nitric Oxide Nitric Oxide

Reactive O2 

Intermediaries
Superoxide ions

N eurotransmitter 
Receptors

GABA, GABA, purinergic receptors

Communication
molecules

ATP < [Ca]i ATP < [Cali

Early morphological studies (Norenberg, 1994) indicated two phases of response 

by astrocytes after an insult to the brain. First, transient swelling and development of 

electron lucency occurs within hours of injury. This is most notable in perivascular 

astrocyte foot processes where the concentration of ion pumps and receptors is high 

compared to the rest of the plasmalemma of the cells. There is also a higli
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concentration of aquaporin 4 (AQP4) water channels on these foot processes (Rash et 

al., 1998; Wen et al., 1999). Transport of water is important in multiple physiological 

processes of the brain and spinal cord, including secretion and absorption of 

cerebrospinal fluid, movement of fluid across the blood-brain barrier, osmosensation, 

and regulation of renal water conservation. In the brain, precise control of cell volume 

is critical, because the brain is encased within the rigid cranium, and thus, even minor 

changes in water metabolism may result in fatal compressive cerebral edema. 

Aggregates of AQP4 subunits form square aiTays in ffeeze-fracture preparations of 

astrocyte and ependymocyte plasma membranes (Rash et al., 1998). The observation 

o f similar square arrays in renal collecting duct cells predated the discovery of AQPs 

but the hypothesis that AQPs are involved in cellular water transport appears to be 

correct. The co-ordination of the activities of separate AQP4 and potassium leak 

channels may facilitate “ potassium-siphoning” at astrocyte end-feet (Orkand et al., 

1966; Newman, 1986) during osmoregulatory activity that follows both synaptic 

transmission and repetitive nerve firing.

Astrocytes take up excess glutamate after nerve firing. Both glutamate stimulation 

and mechanical stimulation of the astrocyte plasmamembrane can cause a local 

increase of cytoplasmic Câ "*”, depolarize the cells and may initiate oscillating changes 

o f membrane potential. Depolarization passes to neighbouring cells as a Ca^^ wave 

that spreads at a rate o f -  100 pms'^ and results in release of adenosine triphosphate 

(ATP). The ATP signal promotes astrocytes and microglia to release several trophic 

factors (see Table 3), for example basic fibroblast growth factor, ciliary 

neuronotrophic factor and nerve growth factor.

The ionic disequilibrium across the astrocyte cell membrane, together with change in 

the activity of AQP4 channels in the perivascular plasmalemma is suggested to result
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in the observed transient swelling and assumption of a lucent cytoplasm demonstrable 

by 24 hours after TBI in rats, and which reaches a maximum response by 3- 4 days 

and then subsides over the next 2-3 weeks (Amaducci et al., 1981; Maxwell et ah, 

1990b). The situation in trauma is probably exacerbated by the uncontrolled release of 

excess neurotransmitters by injured neurons as almost all neuro transmitters induce 

transient, increased levels of internal [Ca '̂^ji in astrocytes (reviewed in Hansson and 

Romiback, 2003).

Transient swelling is followed by reactive astrocytosis manifested by accumulation 

of glial fibrillary acidic protein intermediate filaments within the cytoplasm of these 

cells. The technique used to detect this response in sections of the CNS is 

immunocytochemical labelling for GFAP. Application to human tissue indicates that 

increased content of GFAP is not evident until 4 days after injury, peaks at 2-3 weeks 

and then regresses over subsequent weeks although GFAP labelling may be 

upregulated in central white matter 5-8 years after severe head injury (Maxwell et al., 

2006). The release of ATP by astrocytes, indicated above, triggers both the release of 

chemical neurotransmitters by neighbouring astrocytes and a delayed [Ca^^ji in 

microglia. However, ATP release by an astrocyte also acts upon neighbouring, 

intercoimected astrocytes to result in a number of responses. ATP acts upon an 

astrocyte through purinergic receptors to (1) increase synthesis of DNA and stimulate 

mitosis, (2) stimulate formation of cell processes and their elongation and (3) 

increased synthesis of glial fibrillary acidic protein (Neary et al., 1999; Hansson and 

Ronnback, 2003). There is only limited evidence at present concerning astrocyte and 

other glial responses in experimental TAI at least, in part, because no study has 

investigated more than 7 days after injury. However, one publication has provided 

ultrastructural evidence of mitosis by astrocytes within the parenchyma o f the stretch-
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injured nerve (Sharpe et al., 1996). However, evidence indicates that there is only a 

very limited response in tracts undergoing Wallerian degeneration where linearly 

organised, spindle shaped cells (isomorphic gliosis) occurs, possibly as a result of loss 

of nerve fibres (Kimelberg and Norenberg, 1994) and the associated reduction in 

volume of white matter,

4.4.4. Oligodendrocytes

The myelinating cells of the central nervous system respond only slowly during 

Wallerian degeneration and their response only follows loss of the axon for which 

they provide segments of the myelin sheath. Thus oligodendrocytes do not proliferate 

but instead undergo apoptosis or programmed cell death. Loss of oligodendrocytes 

occurs during the first week after spinal cord injury in rats and monkeys (Crowe et ah, 

1997) and their number may be reduced by as much as 50% in a white matter tract 

undergoing Wallerian degeneration (Warden et al., 2002). The loss of 

oligodendrocytes is associated with sequential loss of myelin associated proteins 

(MAPs) -  for example myelin basic protein = MBP; myelin oligodendrocyte 

glycoprotein = MOG; NOGO-A an inhibitory molecule originating fi-om 

oligodendrocyte myelin sheath of degenerating axons. These MAPs are differentially 

located at different areas in relation to the myelin sheath. Myelin-associated 

glycoprotein (MAG) occurs at the periaxonal myelin ring, myelin proteolipid protein 

(PLP) in compact myelin and MOG at the outer myelin membrane (Buss and Schwab, 

2003; Buss et al., 2005) while NOGO is widely distributed at both inner and outer 

myelin membranes and in the oligodendrocyte cell body. MAG is lost first, when 

axonal markers are also lost, in human spinal cord at 14 days after an insult (Buss et 

al., 2005) and in rats between 1 and 3 days after dorsal cordotomy (Buss and Schwab, 

2003). Proteins located within compact myelin (PLP) or the outer myelin membrane
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(MOG) may still be detected up to 3 years after injuiy in humans, long after loss of 

the associated axon in degenerating tracts (Buss et ah, 2005). However, the loss of 

myelin is not con-elated with a total loss of oligodendrocytes since NOGO-A labelling 

showed that oligodendrocyte cell bodies were present in degenerated tracts between 

26 and 30 years after injury although their number was reduced to 40-50% of control 

values (Buss et ah, 2005). Another study using correlated terminal de-oxynucleotidyl 

transferase-mediated dUTP nick end labelling (TUNEL) and immunocytochemical 

identification of three types of glial cell and macrophages has identified 

oligodendrocytes as a cell type undergoing apoptosis 28 days after dorsal column 

cordotomy (Warden et ah, 2001). Oligodendrocytes (RIP labelled) are dying through 

apoptosis rather than necrosis at sites distant from the site of injury at 28 days after 

injury to a rat spinal cord. Microglial activity peaks at a week and then rapidly 

declines (Koshinaga and Whittemore, 1995) and no OX-42+ (microglia) or GFAP+ 

(astrocytes) cells were TUNEL positive at 28 days after injury in rat spinal cord 

(Warden et ah, 2001).
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H Y P O T H E S I S

The Hypothesis that will be tested is that there is continuing loss and degeneration of central 

myelinated axons at sm*vivals greater than one week after Traumatic Axonal Injury (TAX) in 

the right optic nerve of adult guinea-pigs.

However, in regard to the current literatuie reviewed in the Introduction, the following 

secondary hypotheses will be tested:

• that the cross-sectional area of the injured optic nerve will fall with increasing post- 

traumatic survival

• or the null hypothesis that there is no change in the cross-sectional area of the injured 

optic nerve with increasing post-traumatic survival

• that the number of intact or normal axons will fall between one, two and three weeks 

following TAI

• the alternative null hypothesis is that the number of intact axons is unchanged with 

increasing post-traumatic survival

• that there is a differential loss of intact axons between axons of different size or cross- 

sectional diameter with increasing post-traumatic survival

• or the null hypothesis that all sizes of axon are lost at the same rate with increasing 

post-traumatic survival

• that pathology comparable to that in the established literature for Wallerian 

degeneration will be obtained

• or the null hypothesis that no evidence of Wallerian degeneration will be obtained

• that there is no response by glial and/or non-neuronal cells following TAI in CNS 

white matter
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C H A P T E R  T W O

M A T E R I A L  A N D  M E T H O D S
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1. Animals

Material was obtained from 12 adult, albino Duncan Hartley guinea pigs (Harlan UK) 

the range of the weights of animals used was 525 - 617 grams, the mean was 571 ± 46 

grams. Three animals were used as controls (sham-operated), and the other nine animals 

were the experimental group. This group of animals was subdivided at random into three 

experimental subgroups for different periods of suivival after injury: one week (n =3), 

two weeks (n=3) and thi’ee weeks (n=3) survival.

Animals were deeply anaesthetised with an intraperitoneal injection of 

Hyponoim/Hypnovel: 2 parts water (6ml kg'^) body weight. The depth of anaesthesia was 

confiimed by the absence of a withdrawl reflex when pressing the operator’s thumbnail 

into the sole just proximal to the origin of the phalanges, or whether a blink reflex 

occurt'cd when the tip of a pair of forceps touched an eyelid squeezed one hind foot. 

Topical application of xylocaine was used to provide additional, local anaesthesia prior to 

canthotomy and to minimise discomfort during the early postoperative period.

2, Operation

All animals were anaesthetized with an intraperitoneal injection of Hypnorm/Hypnovel:

2 parts water (6 mL kg'  ̂) and under experimental conditions the whole body of animals 

was placed on a heated blanket to maintain body temperature at 38.5°C, normal core 

temperature for guinea-pigs (Wegner and Manner, 1976). The rate of respiration was 

carefully monitored thi*oughout the operation to check that the rate did not differ from 

normal values (mean 35 breaths/min ± 4.2) and that there was no change in the colour of 

the pinna, snout, the soles of the feet or the iris from the usual pale pink colour that might
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indicate respiratoiy or circulatory distress. Under Home Office license and with the 

approval of the University of Glasgow Ethical Review Committee, the right palpebral 

fissure was flooded with local anaesthetic (1% xylocaine) before the eyelids were 

retracted using 4/0 silk sutures. Sutures were passed through each eyelid close to its free 

margin and the eyelids retracted to provide full exposure of the area of attachment 

between the conjunctiva and the surface of the globe. Using miniature scissors, the 

conjunctiva was excised through 360” peripheral to the limbus to allow exposure of the 

muscular cone formed by the extraocular muscles and the optic nerve.

A sling fashioned from sterile umbilical tape and moistened with (1% xylocain) was 

placed around the posterior pole of the globe and secured in front of the globe by passing 

sutures through the sling at least 3mm in front of the cornea, in order to avoid damage to 

the latter, and tying it there. A length of at least 30mm of suture thiead was left free from 

the knot used to appose the ends of the sling.

The sutures used to retract the eyelids were removed before animals were placed in a 

custom-built stereotactic frame, and the animal’s head secured by means of ears bars. The 

loose end of the suture attached to the umbilical tape sling was then attached to a pulley 

on a custom-built stretch-injury apparatus (Generalli et al., 1989). (Fig. 16, page 106).

At the beginning of each experiment the output from the force transducer in the sti'etch- 

injury apparatus is calibrated using a 100 g weight and recorded on the pen recorder. The 

head of each anaesthetised, experimental animal is placed in the stereotactic head holder 

and secured by use of ear canal pins. The loose end of the suture tied to the sling was 

threaded through the pulley on the injury apparatus before being tied about 10 mm in 

front of the eye. The pulley is firmly attached to an inertially compensated force
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transducer (Fig. 16, page 106). The head holder has thi'ee degrees of freedom of motion 

and was manoeuvred horizontally and vertically until the pulley, sling and optic nerve 

were aligned along the longitudinal axis of the optic canal. Precise aligmnent is 

necessary to ensure that (a) the line of force applied to the optic nei*ve is exactly axial to 

the optic canal to prevent any risk of bending of the neiwe around the lip of the canal to 

eliminate any risk of undesired, localised injury to the outer margin of the nerve and (b) 

to ensure that all the applied tensile loading was applied to the nei*ve fibres and the 

meningeal sheath of the nerve.

The optic nerve possesses enough inherent, mechanical flexibility or anatomical slack 

to allow for movement of the eyeball within the orbit in vivo. To achieve a standard initial 

state of the neiwe where this anatomical slack has been overcome a pre-load of 30-40 g 

needs to be placed on the nerve (Gennarelli et ah, 1989) This is accomplished by 

advancing a screw thread until the force transducer output begins to change as 

mechanical loading is applied to the nerve. Experimental displacement of the globe is 

achieved by activation of a pulse generator that moves a solenoid piston (Fig. 16). 

Movement of the solenoid piston provides a controlled mechanical force that results in 

elongation of the nerve to about 130% of its original length. This results in injuiy to 17- 

20% of axons in the optic neiwe of a 740-760 gm adult guinea pig (Gennarelli et al.,

1989; Jafari et al., 1997; 1998). The movement of the solenoid piston generates loading 

between 150 and 180 g (plus the pre-load giving a total load of 180-220 g) over periods 

ranging from 19 to 21 ms. (Gennarelli et al., 1989). At this force level, there have been no 

instances of optic nerve avulsion or of traumatic vascular injury, as assessed by noting 

any change in the colour of the retina, which may result from tearing of blood vessels that
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supply the optic nerve or retina (Jafari et ah, 1997, 1998; Maxwell et al., 1991, 1995,

1999, 2003). Throughout the operation the eye was moistened with isotonic saline and 

xylocaine at frequent intervals. Just before injury the pen recorder is switched on with 

trace paper moving at a rate of 30cmsec'\ and then the trigger on the control box (Fig.

13) pressed once. A peimanent record of the profile of the time course of changes in the 

mechanical load applied is obtained using a polygraph pen recorder. An example of 

record obtained from one of the experimental animals is provided in Appendix 1.

The time taken for preparation, placement of the sling around the globe, placement of 

the animal on the apparatus and generation of stretch-injury to the right optic neiwe is 45 

± 3 seconds. In order to minimise post-operative discomfort the sling is rapidly and 

immediately, carefully removed, the eyelids replaced over the globe and zylocaine 

applied. Within 30 seconds of injury the local anaesthetic xylocaine is applied and the 

animal laid within an incubator where the temperature is kept at 37°C. At regular 

intervals regularity of breathing and any variation in skin coloui' is monitored during 

recovery from anaesthesia and the return of animals to their pens. Normal locomotion and 

feeding behaviour resumed within 60 minutes of operation. The Home Office in the UK 

and the Research Ethics Committee of the University of Glasgow approved all animal 

procedures.

The experiments described below and in Chapter 3 -  RESULTS -  utilise analysis of resin 

embedded material using transmission electron microscopy (TEM).
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3. Fixation and Dissection for TEM.

Animals were randomly assigned to one of the three experimental groups indicated 

above. At a selected post-traumatic survival animals were terminally anaesthetised 

with intraperitoneal barbiturate and, once all respiratory movement had ceased, 

animals underwent thoracotomy as quickly as possible followed by transcardiac 

perfusion thi'ough the left ventricle. Blood was flushed from the systemic vasculature 

with a mammalian Ringer lactate solution for about one minute as assessed by the 

change in colour of the liver following opening of the superior vena cava. Clearance 

of blood was followed by perfusion with 2.5% glutaraldehyde in 0.2M PIPES buffer 

(pH 7.6, 360 mOs), (Baur and Stacey, 1977) for 30 min.

Animals were then decapitated, the skull opened, the brain removed and the optic 

nerves identified. The floor of the cranium and the area of the orbits were 

immediately flooded with fixative (2.5 glutaraldehyde in 0.2 M PIPES buffer), the 

optic chiasm was sectioned longitudinally to allow the entire length of the optic nerve 

to be dissected out and both right and left nerves removed with globe still attached. 

This facilitated identification of the retinal end of the nerve. The whole length, from 

chiasm to globe, of each left (control) and right (injured) optic nerve was then re- 

irmnersed and kept in fixative for another 48 hours at 4°C.

4. Tissue processing for TEM

A. Tissue Collection and Post-fixation.

Under a binocular, dissecting microscope each of the optic nerves was cleaned of any 

remnants of attached tissue but leaving the durai sheath intact. Then, using a fresh
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scalpel blade, each nerve was divided into three segments of equal length and each 

segment placed in separate, labelled flasks.

The total length of the optic nerve of the adult guinea pig is 12-15 cm (Jafari et al.,

1997) and each segment was therefore between 4 and 5mm in length. Segment 1 was 

defined as being adjacent to the globe, segment 2 intermediate and segment 3 

adjacent to the optic chiasm. After separation, individual segments were washed in 

2% sucrose in 0.2M PIPES buffer three times every 20 minutes and post-fixed in 1% 

osmium tetroxide in 0.2M PIPES buffer for one hour. They were then quickly rinsed 

three times with 0.2M PIPES.

B. Dehydration and Embedding in Araldite.

Specimens were dehydrated through 50%, 70%, 90%, and three changes of 100% 

ethanol for 30 minutes at each change of solute toward processing for embedding in 

Araldite as follows

Cleared in propylene oxide (2 changes) of 20 minutes each 

Propylene oxide/ Araldite 753 mixtures (2:1) 12 hours

Propylene oxide/ Araldite 753 mixtures (1:2) 12 hours

100% Araldite 753 (2 changes) for a minimum of 12 hours each 

Polymerization in fresh Araldite over 24 hours at 70” C.

The recipe for Araldite resin within every 26 ml of embedding medium used was; 

Araldite (resin) 12.5g

DD S A (hardener) 12.5 g

DMP 30 (accelerator) 0.38g

Dibutyl phthalate (plasticizer) 0.68g
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After embedding and curing of resin to provide the blocks for sectioning, Dr Maxwell 

took all of the blocks away and coded them. I was then given coded groups of blocks to 

cut semi-thin and ultra-thin sections for microscopy. I was ignorant of the code used and 

therefore the precise identity of the animal from which any particular block had been 

obtained. This was done to ensure that all future treatments of blocks and gathering of 

data were without bias. All further processing, sectioning, examination and collection of 

micrographs was done using the coded identifying label.

C. Semi-thin Sections and Staining.

The blocks containing the embedded optic nerve segments were mounted onto cured 

resin stubs with Rapid Araldite. The blocks were trimmed to a suitable size to allow 

semi-thin sectioning from one randomly selected end of a middle segment of each optic 

nerve. Semi-thin sections were cut with glass knives until a complete transverse section 

of the optic neive was obtained for the purpose of orientation of the block. These sections 

were stretched, dried and adhered to glass slides on a hot plate. They were stained with 

Toluidine blue and viewed under the light microscope in order to determine the optimal 

orientation for the cutting of axonal transverse sections for transmission electron 

microscopy. Also these sections were used later to deteimine the total cross sectional area 

of the optic nerve.

D. Transverse Thin Sections and Staining.

Serial ultra-thin sections, ~75nm thick as judged by colour of refracted light (silver- 

gold) from the section, were cut on a Reichert-Jung Ultracut E ultramicrotome using a
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Diatome 45 diamond knife. Sections were stretched with chloroform vapour and 

collected on 300 thin mesh uncoated copper grids (Agar Aids, Berkhamstead, U.K.).

A series of ten, transverse thin sections were cut from the middle segment of the right, 

uninjured, control optic nerves (n=3), and from the middle segment of the right optic 

neive at one (n=3), two (n=3) and three weeks (n=3) survival animals after stretch-injury. 

Each separate section was collected on a separate grid. All thin sections were stained with 

fresh 12.5% methanolic uranyl acetate for 5 minutes, washed in distilled water for 1 

minute and air-dried All sections were then stained with lead citrate (2.5%) for 5 minutes 

(Donaghy et al., 1988). The sections were then washed in distilled water for 1 minute 

before being air dried in a dust free area. In order to achieve a representative but unbiased 

sample of transverse sections of the optic nerves, a random number generator was used to 

choose a number between one and ten from the set of TEM grids obtained from each 

animal and the appropriate numbered section was selected. Each of the ten sections 

obtained from each animal therefore had the same chance of being selected for 

examination in a Philips 300 TEM. This procedure seived to minimise bias during 

examination of all experimental material (Jafari et al., 1997).

E. Calibration o f the Transmission Electron Microscope

For each set of micrographs obtained within a single operating session, a micrograph of 

a calibration plate was included. An indicated X 2800 magnification micrograph of an S 

104-line grating (2160 lines /mm Agar Aids, Berkhamstead, UK) was taken. When all of 

the plates within a cassette had been developed that photomicrograph was used to 

calculate the actual magnification provided by the TEM during that session. The actual 

magnification was X 2400 ± 24.
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6. Sampling Procedure.

In this type of analysis it is essential that a standard and unbiased starting point be 

used for the collection of raw data (Williams and Rakic, 1988; Benes and Lange, 2001; 

Mouton, 2002). In the present analysis the top left hand comer of the thin section was 

chosen (Fig. 17 and 18, page 101). Having found that reference point the first sample was 

taken from the first grid square that was completely covered by the optic nerve. The 

sections were collected on 300 mesh fine, uncoated grids (Agar Aids, Berkhamstead, UK) 

and this resulted in the transverse section of the whole optic nerve covering 25-30 grid 

squares.

The first grid square completely covered by the section was taken as the reference point 

and the starting point for gathering data. After photographing the top, left hand comer at 

an indicated magnification of X 2800, each third successive grid square completely 

covered by the section was photogiaphed, moving horizontally from left to right, then 

right to left until micrographs had been gathered across the whole transverse section of 

the optic neive. This usually resulted in 10 micrographs in each transverse section of each 

optic nerve. All the images collected from the segments of the control and experimental 

groups were used to estimate the total number of intact axons.

7. The Counting Method

The number of intact axons present in each micrograph was counted using an X-ray box. 

Each electron micrograph negative was placed on the illuminated screen of the X-ray box 

to help visualization of axons. Before counting was started a counting reference scale was
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made using a correction factor derived from the calibration grid {vide supra) for each set 

of micrographs.

Use of the above coiTection factor allowed the subdivision of axons into seven 

subgroups by size or bins. Axons were grouped into seven bins, those with an axonal 

diameter between 0.0-0.5|im, 0.51-l,0qm, 1.01-1.5pm, 1.51-2.0pm, 2.01-2.5pm, 2.51- 

3.0pm and those of greater diameter than 3.01pm. During counting of axons within each 

size range or bin -  {vide supra) - a transparent paper was laid over the micrograph and 

each axon counted was marked. This prevented any double counting of axons and gave a 

reference of progress. Any damaged axon -  was excluded. Criteria for exclusion were 

evidence of damage to the myelin sheath where separation of myelin lamellae had 

occuiTed, the presence of myelin intmsions, the presence of an unusually thick or thin 

myelin sheath, and the occurrence of an irregular myelin profile (Jafari et al., 1997,

1998). Thus, only axons that provided no morphological evidence of pathology were 

counted. The criteria for the latter were

• the presence of a smooth, circular transverse profile with a value for 0  greater 

than 0.9,

• a regular and closely packed myelin sheath within which lamellae were visible 

in at least 60% of the circumference,

• the axolemma was closely apposed to the internal aspect of the myelin sheath,

• there was lack of any distorted or lucent mitochondria and

• discrete cytoskeletal components were present.

The numbers obtained were plotted in tables -  see appendix - according to their size 

and the data used to estimate the total number of axons within the section- vide infra.
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8. Estimation o f the cross-sectional area o f the optic nerve.

Two methods were used;-

A. Estimation o f total cross sectional area using a stage micrometer.

The total cross sectional area of each optic neive of control and experimental animals 

was determined using Toludine blue stained semi-thin sections. The cross section of the 

optic nerve is approximately circular. The diameter was measured along two 

perpendicular transverse axes passing though the centre of the axon using a stage 

micrometer (Fig. 17, page 101). The calculated mean was taken as the actual length of the 

diameter; the radius was determined from that value and the cross sectional area 

calculated as that of an equivalent circle (A= n r )̂ with the same radius.

B. Estimation o f total nerve cross sectional area using a modified point counting 
technique.

The semi-thin section was examined under a light microscope at x 40 and a 0.5mm 

graticule (Agar Scientific, Stanstead, U.K.) was placed in the eyepiece of the microscope. 

The cross-sectional area was estimated by placing the grid over the section and the profile 

of the neive drawn onto a prepared giid of 1 cm squares. The number of point 

intersections between adjacent squares overlying the section was counted. This provided 

a value for the number of points overlying the section. The length of the sides of the 

squares on the graticule were then measured on a micrometer at the same magnification 

and provided a value for the distance between points. Multiplication of that value by the 

total number of points and the distances between them then gave the cross-sectional area 

of the nerve in square micrometers.
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9. Estimation o f the total area sampled in thin sections.

A S I04 grating plate with 2160 lines/1mm was used to determine the actual 

magnification on the TEM in each set of micrographs. The true aiea sampled in each 

negative was then calculated. The value obtained was then multiplied by the number of 

negatives contained within each set of images for each animal and this provided the area 

sampled by electron microscopy for that animal.

10. Estimation o f total number o f axons in the area sampled in thin sections:

Using the randomized ultra-thin section (see section 3 above) used for each 

animal/sample a grid was placed in the TEM.

At the indicated magnification of X 2,800, the reference point {see 6) was found and 

the frame on the screen indicating the area covered by photographic negatives in the 

TEM was placed as closely as possible to that comer. This meant that the sample 

obtained was unbiased in that the only criterion for selecting the area for photogiaphy 

was the position of the specimen on the grid. Thus no bias for the occurrence of 

pathology or structural changes in the specimen was involved. The section was then 

systematically photographed. The top left hand comer of every successive third grid 

square completely covered by the section of the optic neive working from left to right and 

in successive rows of grid squares were found and photographed until the entire section 

had been sampled (Fig. 18, page 101). The sampling method resulted in 10 ± 0.5 

negatives for each animal.

These micrographs were examined by placing them on an X ray screen in order to 

enhance visualization of their content for easy counting (see section 6 above). In order to 

determine the number of each subgroup of axons in each nerve (section 6) a circle was
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drawn around each axon on transparent paper as it was counted. Every axon within each 

bin.was counted in turn and the circles on each overlay recorded progress during counts.

Axons were classed or grouped within 0.5pm wide bins (Section 6 above). The 

smallest axons (diameter between 0.0 and 0.5pm) were counted first in all negatives 

across the entire section of the nerve. Counting was then done for the next subgroup 0.51 -

I .0pm axonal diameter, and for succeeding subgroups in the series; 101-1.5pm, 1.51- 

2.0pm, 2.01-2.5pm, 2.51- 3.0pm and 3.01-3.5pm in turn. The total count of axons in 

each axonal bin/subgroup in each complete ti*ansverse section was calculated. Using the 

magnification obtained from calibration of the TEM for that particular session, the area of 

each plate was calculated and multiplied by the number of plates obtained across the 

section. This provided a value for the sampled area (SA) or proportion of the total cross- 

sectional area of the nerve -  for example in Fig. 15 this was 14 x the Mean Area of the 

EM negatives. That sum value was then divided into the total cross-sectional area of the 

neive to provide a result which represented the proportion of the whole nerve that was 

sampled and the count results assembled into tables -  see Appendix, Chapter Seven.

II. Estimation o f the total number o f axons:

After the total cross sectional area of each optic neive had been measured (TA), the 

area of the sample (SA) was calculated, and the total number of axons (N) witliin each 

bin or subgroup in the sampled area estimated. Values were combined in the equation;

X=(TA/SA)xN
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that allowed calculation of the estimated number of axons (X) in an optic neive. This 

provides an estimate of the total number of axons in the optic neive in each animal, and, 

by summation, an estimate of the total number of axons within each and all bins.

12. Estimation o f the cross-sectional area of axons

Late in the collection of the data for the total number of axons, it was observed that 

some axons occurred in relatively low numbers while others occuired in numbers that 

were greater by a factor of 10  ̂or 10 .̂ This stimulated the hypothesis that the loss of the 

axon’s contribution to the total cross-sectional area of myelinated axons may be 

significant in the changes of relationships between groups of axons and the cross- 

sectional area of the entire optic nerve. The median value for the diameter of axons 

within each 0.5pm wide bin was calculated. That value was used to calculate the area of a 

circle of equal diameter. The area of the circle was multiplied by the number of axons 

within each bin at the different experimental time points. Data between experimental 

groups and relative cross-sectional areas were compared using standardised statistical 

tests.

13, Statistical analysis o f raw numerical data.

Only after all counts hom all experimental blocks had been completed did Dr Maxwell 

break the code to reveal the identity of the animals from which the blocks had been taken. 

The data obtained from each of the tliree animals in each experimental group could then 

be combined and the mean values and standard en or of the mean (SEM) calculated. 

Analysis of Variance (ANOVA) was used to deteimine whether the differences in the 

number of axons were statistically significant across all experimental groups for the
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cross-sectional area of the optic neive, the total number of intact axons within optic 

neives, or for the number of intact axons within each of the seven subgroups of 

axons/bins across groups. Comparison of differences in total number of intact axons and 

differences in the number of intact axons within different size groups was carried out by 

comparison of pairs of sets of data. However, since there is only one set of control 

animals, use of the Student’s t test would have been inappropriate. Rather the Bonferoni t 

or the Dunnett t test was used as appropriate.

8 2



CHAPTER THREE

RESULTS
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1. The cross-sectional area of the right and left optic nerves

The cross-sectional area of control right and left optic nerves, the right optic nerve in 

stretch-injured animals and the corresponding left optic nerves were all measured across two 

discrete, perpendicular diameters. After calculation of the radius of each neive, the cross- 

sectional area in pm  ̂was calculated as the area of a circle (A=7iri). The mean cross-sectional 

area in each experimental group (Control, 1 Week, 2 Week and 3 Week) was calculated 

together with the Standard Error of the Mean (SEM) for each group. The raw data is provided 

in the Appendix, Table 7, page 195.

The data for the experimental animals (Week 1, Week 2 and Week 3) were compared with 

the Controls (ANOVA, Dunnett Multiple Comparisons Test). There was no difference 

between controls or any of the injured right optic nerves (p = 0.286). Neither was there any 

difference overall across all control, injured right and left nerves (ANOVA, Bonferoni 

Multiple Comparisons Test) p = 0.4.

The conclusion may thus be drawn that survival up to 3 Weeks after stretch-injiuy to the 

right optic nerve does not result in either any change of size of that nerve or its relationship to 

the left, uninjured nerve.

2. Low magnification transmission electron microscopy;

A total of 120 micrographs were taken for the quantitative analysis described below. A 

small sample of these is provided as reference for the criteria of inclusion of fibres as intact 

and excluded as demonstrating pathology. In controls the transverse profile of axons of all 

sizes was regular and close to circular (Fig. 19, page 108). The myelin sheath of the axons 

was compact with regularly organised myelin lamellae. Both microtubules and neurofilaments 

are present and regularly spaced within the axoplasm as described by Jafari et al (1997, 1998). 

Following injury, damage reflects changes in both the myelin sheath, the relation of the 

myelin to the oligodendrocyte cytoplasm, a reduction in the circularity factor 0  of the axon to 

less than 0.8 and changes in the organisation of the components of the axonal cytoskeleton 

either reflecting lucency as the result of loss of a proportion of their total content of formed
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axoplasmic components or an increased electron density which probably reflects compaction 

of NFs. The micrographs also indicate that there is possibly a time course for the changes. At 

1 week (Fig. 20, page 109) the great majority of axons have a smooth profile and the myelin 

sheath is formed by closely packed myelin lamellae. But it is also apparent that a few axons 

have a reduced content of axoplasmic components, are electron lucent and possess myelin 

intrusions into the axon.

At two weeks, however, most notably the vast majority of neive fibres now have an 

irregular or non-circular profile (Fig. 21, page 110). It may be suggested on looking at one 

picture that the plane of section of the fibres was not transverse. However, the irregular shape 

illustrated occuiTed throughout the optic nerve from one side to the other. Thus the 

organisation of the fibres within the nerves was grossly abnormal. Axoplasmic electron 

lucency is more discrete or marked in a proportion of nerve fibres. Moreover, in the same 

fibres the separation of lamellae within the myelin sheath is increased and the fibre profile is 

less regular or circular (Fig. 22, page 111). Within the same region or area small numbers of 

small diameter axons with an increasingly electron dense axoplasm occur (Fig. 21 and 22). 

Notably, however, the thickness of the myelin sheath in these fibres appears to be increased 

when compared to axons of the same diameter in control animals. Such a form is suggestive 

of a shrinkage or reduction in calibre on the part of the axon. In addition, at 2 weeks, there is 

an increased spacing between nerve fibres and the extra-axonal space contains both lucent and 

dense profiles of astrocytes (Fig 21, page 110).

At 3 weeks after injury there is widespread evidence for axonal loss obtained in that myelin 

figures occur and these frequently lack any evidence of remnants of the axon (Fig. 23, page 

112). But, importantly, at 3 weeks, numbers of myelin sheaths occur which contain only foci 

of electron-dense material lacking any content of recognisable membranous organelles, 

microtubules or neurofilaments. These are thought to be nerve fibres in which the axon has 

degenerated but its remnants not yet removed (Fig 23 and 24, page 112 and 113). Rather the 

remnant remains within a sleeve formed by the myelin sheath and a well-defined periaxonal 

space occurs between the inner aspect of the myelin sheath and the remnants of the axon (A in
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Fig 24). No evidence was obtained for microglia in thin sections so the mechanism or 

mechanisms of removal of axonal and myelin debris is presently obscure. Clearly, however, 

the time course of such changes is greater than three weeks after TAI.

3. The number of axons in control (un injured) animals (n = 3):

The estimate of the total number of axons in the three, control or un-injured animals overall 

was 99,005 ± 9,199.28 (Appendix; Tables 8, 9, 10 and 11, pages 196-199). The percentage 

difference between control animals was ± 9.29% and the variance was p = 0.999 (ANOVA). 

Thus there was no overall difference in the number of axons present in the three control 

animals.

4. The number of intact and injured axons in the right optic nerve following injury 

(n=9):

The estimate for the total number of axons, both intact and injured, was 92,480 ± 944.1 at 

one week after injuiy, 87,202 ± 2904.57 at two weeks and 80,427 ± 3666.62 at 3 weeks 

(Tables 25 and 26, pages 212 and 213). ANOVA showed that the differences between 

groups overall were not quite significant with p = 0.086. However, when comparison of the 

three experimental groups was compared with controls (Dunnett Multiple Comparisons test) 

there was a small but significant loss of axons by three weeks after stretch-injury where 

p<0.05, and q = 2.952 for Controls against 3 Weeks survival. There was no difference 

between Controls and either 1 Week survivors (p>0.05, q = 1.037) or 2 Weeks survivors 

(p>0,05, q = 1.87). The hypothesis was then tested that loss occurred between 2 and 3 weeks 

after injury by comparing the numbers of axons between 1, 2 and 3 Weeks survivors. Use of 

both the Tukey-Kramer and the Dunnett multiple comparison tests confirmed that there was a 

significant reduction of the number of intact and damaged axons at 3 Weeks (Tukey-Kramer 

p<0.05, q = 4.37; Dumiett p<0,05, q = 3,09). But there was not loss at 2 weeks p>0.05, q =

1.91 for Tukey-Kramer, q = 1.35 for Dunnett. Thus despite the fact that ICC techniques 

(McKenzie et al., 1996) suggest that axonal transport is disrupted within minutes or hours

86



after TAI and axons undergo secondary axotomy within several hours (see Introduction, 

sections 2.6 and 2.7) there is not a significant change in the total number of axons until 

between 2 and 3 weeks after injury.

A different result was obtained when only the number of intact axons was considered (Fig. 

26, page 114). The total number of intact axons in the right optic neive at one week after 

stretch-injuiy was 74,734 ± 1,451 Table Tables 12-15, pages 200-203; at two weeks was 

66,774.67 ± 3,563.0 (Tables 16-19, pages 204-207); and at tliree weeks was 55,696.33 ± 

2,496.47 (Tables 20-23, pages 208-211), (Fig. 26, page 114). ANOVA showed that there was 

a loss of intact axons overall (p = 0.0007, Dunnett Multiple Comparisons test). Comparison 

between gi oups demonstrated a difference in the number of intact axons between control and 

one-week survival animals (p < 0.05, q = 3.89; Dumiett). There was also a significant loss of 

the number of intact axons at both 2 weeks (p < 0.01, q = 5.20; Dunnett test) and 3 weeks 

after injuiy (p = 0.01, q = 6.99). However, loss of intact axons between 1 and 2 weeks, and 

between 2 and 3 weeks after injury did not achieve statistical significance.

5, The number of intact axons within 0.5 pm wide bins of control optic nerve 

(n = 3).

The estimated number of axons within bins 0.5 pm wide in control animals (n = 3) 

is shown in Table 4.The raw data for each animal is provided in the Appendix, Tables 8,9 and 

10, pages 196-198. Overall there was significant difference in the number of intact axons 

within the above bin sizes (p<0.0001) (ANOVA, Tukey multiple comparisons test). The great 

majority of axons in the uninjured optic nerve fall between 0.5 and 2.5pm overall diameter. 

The largest group of nerve fibres are between 1.5 and 2.0pm in diameter but these are less 

than one third (27.78%) of the total. On the other hand less than one twentieth of the total 

number of axons is either of greater than 2.5pm or less than 0.5pm diameter (Table 4)
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Table 4. The numbers of axons within 0.5 pm wide bins in control animals (n = 3)

Bin size Mean number SEM % of total

0.00 -  0.5 pm 2118.66 863.5 2.2

0.51 -  1.0 pm 25030.66 4335.28 26.2

1.01 -  1.5 pm 26558.0 1239.57 27.78

1.51 -  2.0 pm 24763.0 290 25.9

2.01 -  2.5 pm 15277.33 3973.23 15.9

2.51 -  3.0 pm 1288.0 662.0 1.35

3.01 -  3.5 pm 502.33 140.47 0.52

6. The number of axons within 0.5pm wide bins after injury (n=9)

At one, two and tliree weeks after the application of transient tensile strain (mean load 235.6 

± 37.2 g, n ^ 9) over a mean period of 19.9 ± 0.35 msecs the number of intact axons, those 

with a circular profile and a regularly organised myelin sheath, provided the mean values (n =

3) in table 5. The raw data for all experimental animals is provided in the Appendix, Tables 

12-23, pages 200-211.

Comparison of differences of the number of intact axons within each bin between all 

experimental groups showed that there was loss of axons with a diameter between 0 and 

0.5pm (ANOVA, p = 0.039, F = 4.5), between 1.01 and 1.5pm (p = 0.038, F -  4.5), of axons 

with a diameter between 1.51 and 2.0pm (p = 0.0005, F = 19.36) and of axons of a diameter 

greater than 3pm (p = 0.012, F = 7.0) over the experimental period. But there was no change 

in the number of axons with a diameter between 0.51 and 1.0pm (p = 0.10, F = 2.81), or 

between 2.01 and 2.5pm (p = 0.32, F = 1.3) or between 2.51 and 3.0|.im (p = 0.67, F = 0.52).

When comparison was carried out between Controls and the experimental groups the 

following results were obtained. For axons with diameter between 0.0 and 0.5pm there was



no difference between control and one week suiwival animals but there was loss of axons at 2 

weeks (p<0.05, q = 3.09) and at 3 weeks (p<0.05, q = 3.26) (Dunnett test). For axons between 

0.51 and l.Ojim, there was no change in their number from control values (p = 0.107, Dunnett 

test) tlu'oughout the whole experimental period. For axons between 1.01 and 1.5 pm there was 

a significant loss of axons only between 2 and 3 weeks after injury (p<0.05, q = 3.56). There 

was loss of axons within the bin size 1.51-2.0pm at 1 week (p<0.05, q = 2.94), 2 weeks 

(p<0.01, q = 4.5) and 3 weeks (p<0.01, q ^  7.45). There was no loss of axons within the bins 

2.01- 2.5pm and 2.51 -  3.0pm. But there is loss of the largest axons occurring in the adult 

guinea pig optic nerve, those with a diameter between 3.01 -  3.5^un with complete loss by 2 

weeks after injuiy (p<0.05, q = 3.9) (ANOVA, Dunnett).

Table 5. The mean number (± SEM) of intact axons in 0.5 pm wide bins at one, two and thi'ee 

weeks after injuiy. A% is the percentage change fi'om control values.

Bin size O.G-0.5
pm

0.51 -  1.0 
pm

1.01 -  
1.5 pm

1.51-2.0
pm

2.01-2.5
pm

2.51-3.0
pm

3.01-3.5
pm

1 Week 754 20858.5 ± 21005.5 20152.0 ± 9296 ± 2508.5 ± 159.5 ±
±114.5 1231.1 ± 1781.2 459.6 3746.3 2100.8 111.0

% 1.0 27.9 28.10 26.96 12.43 3.35 0.21
A% - 64.4 - 16.6 -20.9 - 18.6 - 39.2 ±63.1 -68.27

2 Weeks 208.7 ± 
15.5

16620.3 ± 
805.0

18927± 
2426.4

17723 ± 
2053.2

12841 ± 
1399.7

486.3 ± 
574.1

0 ± 0

% 3.1 24.9 28.3 26.5 19.2 0.7 0
A% -90.1 -33.6 -28.7 -28.4 - 15.9 -62.2 - 100

3 Weeks 105.0 ± 
52.3

16871± 
1180.8

16313.3
±2439.1

13096.6 ± 
614.4

8001.3 ± 
1108.5

1308.3 ± 
366.4

0.0 ±0

% 0.2 30.3 29.3 23.5 14.4 2.3 0
A% -95.0 -32.5 -38.6 -47.1 -47.6 ± 1.6 - 100

The results were also expressed graphically (Fig. 27, page 115)

Examination of Fig. 27, however, reveals that intact axons within different bin sizes are not 

all lost at the same rate; that is the slope of each graph is different. For example, axons with a 

diameter greater than 3pm disappear completely between one and two weeks after injury
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(p<0.0001); axons between 2.5 and 3.0pm diameter increase in number at one week (p<0.05) 

and then fall away; axons between 2.0 and 2.5pm diameter fall in number at week one but 

then increase in number at two weeks (p=0.03) before again falling at 3 weeks. The number 

of axons between 1.5 and 2.0pm (p = 0.003) and between 1.0 and 1.5pm (p = 0.003) both fall 

over the 3 weeks of the experimental period. However, the slope for the former group is 

steeper than for the latter suggesting a faster rate of change (Fig.27, page 115). Finally, the 

number of axons between 0.5 and 1.0pm diameter falls in the first 2 weeks (p = 0.032) after 

injury but then is unchanged at 3 weeks (p ^  0.7). Jafari et al. (1997, 1998) and Maxwell et al. 

(2003) have suggested, in shorter-term survivals, that different sized axons respond in 

different ways or that, possibly, axons change their calibre to the extent that they fall into 

different bin sizes with survival. The results in the present study provide novel evidence in 

support of that hypothesis and, importantly, indicate that although the axon appears 

structurally normal or intact at the low magnifications used in the current study there is an 

ongoing, slow pathology occurring that may not be Wallerian degeneration.

7. Changes in the summated cross-sectional area of axons

The finding that there was a numerical loss of axons suggested testing of the hypothesis that 

the total cross-sectional area of all intact axons changed over the experimental period. The 

median value of axonal diameter within each 0.5pm wide bin was used to calculate the area of 

a circle of that diameter. That value was multiplied by the number of axons within each bin 

and the sum of all bins provided an estimate of the cross-sectional area of axons in the optic 

nerve. A literature search indicated that such an estimate has not been made previously either 

in a peripheral nerve, the optic nerve or any central tract. The sum total of areas of axons 

within all of the bins provided an estimate of the contribution made by the total cross- 

sectional area of the axons to the value obtained for the cross-sectional area of the whole 

nerve. The result was expressed as a percentage of the observed cross-section of the whole 

nei*ve. In control animals, the result demonstrated that the myelinated axons occupied 49.8% 

of the total cross-sectional area of the optic nerve. In terms of numbers of axons, there is a
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loss of 24.40% at 1 week, 32.5% at 2 weeks and 43.74 % by 3 weeks (Fig. 28, page 115). The 

loss in terms of the reduced cross-sectional area of myelinated, intact axons between controls 

and 1 week survivals was -24.5%, by 2 weeks was -30.9% and by 3 weeks survival was -  

46.6%. The reduction in cross-sectional area of all intact myelinated axons is highly 

significant where p=0.0001 (ANOVA). There are also significant differences between 

controls and 1 week (p < 0.01, q = 6.47; Dunnett multiple comparison for differences from 

Control values), 2 weeks (p < 0.01, q = 8.17) and 3 weeks (p < 0.01, q = 12.29) survivals. A 

comparison of changes of cross-sectional area within 0.5pm wide bins provided corroborative 

evidence for loss of axons and for a differential rate of loss between axons of different size 

(Table 28, page 115) but did not add greatly to the conclusion that there is loss of axons over 

at least 3 weeks following TAX. Support for the hypothesis was therefore provided. Because 

myelinated axons contribute less than half of the total cross-sectional area of the uninjured 

nerve, however, their loss ought to result in a reduction in the cross-sectional area of the optic 

nerve by 4.3% at 3 weeks. However, no evidence was obtained in support of that idea. This 

generated the hypothesis that some other eomponent of the optic nerve increases to 

compensate for the loss of axons.

8. Changes in morphology of astrocyte processes

During the procedure of counting axons within electron micrographs it became apparent that 

a variety of changes in the morphology of related astrocyte processes were occurring.

In control/sham animals, at the outer limits of myelinated axons (Fig 19, page 108), small 

regions of cytoplasm occur over about a tenth of the circumference of the myelin sheath. 

These processes represent the juxta-axonal portion of the oligodendrocyte process foiming a 

segment of the myelin sheath. The processes of the oligodendrocytes are characterised by 

their high, relative content of microtubules (Fig. 19). Ai'ound these oligodendi*ocytes 

processes occur apparently empty spaces which in vivo contain cerebrospinal fluid. But, very 

infrequently, there occur thin, cell processes that insinuate between groups of axons and 

contain groups or bundles of fine filaments lOnm in diameter. These are the glial fibrillaiy

91



acid protein (GFAP) inteimediate filaments characteristic of and unique to astrocytes. 

However, their number is low and astrocyte processes are widely separated in control optic 

nerves, although typical gap junctions may be obseiwed between adjacent astrocyte processes 

(Fig. 19, gp). The routinely used marker for astrocytes is immunolabelling for GFAP 

intermediate filaments. But, as discussed in the Introduction, pages 60-64, immunolabelling 

does not identify either quiescent astrocytes or the first stage of an astrocyte reaction after 

injury, that of swelling by astrocytes. Moreover, the identification of changes or responses by 

astrocytes was not the central topic of the current investigation. The comments contained 

within this section therefore refer only to observations obtained in the thin sections used to 

estimate the number of intact axons.

One week after injury (Fig. 20, page 109) astrocyte processes appear swollen or enlarged 

and contain discrete bundles of inteimediate filaments (Fig. 20, f). The impression is gained 

in Fig. 20 that astrocyte processes occupy an increased proportion of the total area illustrated. 

In addition, discrete gap junctions, a characteristic finding in astrocytes, may be obseiwed 

(Fig.20, gj). At two and three weeks astrocyte processes progiess to form more evident or 

discrete septae between groups of neiwe fibres and appear to occupy a larger proportion of the 

cross-sectional area of any field used for counting of axons (Figs. 21 and 23, pages 110, 112). 

This qualitative evidence provides some support for the hypothesis that hypertrophy of 

astrocytes compensates for the loss of axons and maintains the cross-sectional area of the 

optic nerve.
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SUMMARY OF THE RESULTS

The results demonstrate, for the first time, there is a continuous, development of pathology 

in axons over three weeks after stretch-injury (TAI) to the guinea pig optic nerve.

1) There is no measurable change in the cross-sectional area of the entire optic nerve.

2) The total number of intact axons falls from 99,005 T 7511 in sham operated animals 

to 74,845 ± 1194 at 1 week, to 66,774 ± 3563 at 2 weeks and to 55,696 ± 2496 axons 

at 3 weeks after TAI.

3) There is a differential rate of loss between axons of different diameter. There is 

complete loss of the small number of the largest axons by 2 weeks. There is loss of 

64% of the smallest axons by 1 week and 95% by 3 weeks. Axons with a diameter 

between 2.0 and 2.5|im increase in number at 1 week and their number then falls.

4) Morphological evidence for Wallerian degeneration is only obtained at 3 weeks.

5) No evidence is obtained for recruitment of monocytes or macrophages to remove 

cellular debris.

6) Qualitative evidence for hypertrophy of astrocytes is obtained.
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HYPOTHESIS: SUPPORTED OR NOT SUPPORTED BY THE RESULTS

The Hypothesis tested is that there is continuing loss and degeneration of central myelinated 

axons at survivals greater than one week after Traumatic Axonal Injury (TAI) in the right 

optic nerve of adult guinea-pigs. The Results provide support for the above.

However, in regard to the current literature reviewed in the Introduction, the following 

secondary hypotheses will be tested:

• that the cross-sectional area of the injured optie nerve will fall with increasing post- 

traumatic survival. The Results do not provide support for the above.

• or the null hypothesis that there is no change in the cross-sectional area of the injured 

optic nerve with increasing post-traumatic survival. This hypothesis is proven.

•  that the number of intact or nonnal axons will fall between one, two and three weeks 

following TAI. The Results provide strong support for this Hypothesis.

• the alternative null hypothesis is that the number of intact axons is unchanged with 

increasing post-traumatic survival. This hypothesis is unsupported.

• that there is a differential loss of intact axons between axons of different size or cross- 

sectional diameter with increasing post-traumatic survival. This hypothesis is 

supported.

• or the null hypothesis that all sizes of axon are lost at the same rate with increasing 

post-traumatic survival. This hypothesis is not supported.

• that pathology comparable to that in the established literature for Wallerian 

degeneration will be obtained. This hypothesis is supported.

• or the null hypothesis that no evidence of Wallerian degeneration will be obtained. 

This hypothesis is not supported.

• that there is no response by glial and/or non-neuronal cells following TAI in CNS 

white matter. This hypothesis is not supported.
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CHAPTER FOUR 

ILLUSTRATIONS AND FIGURES
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Fig. 1. Relationships of the number of neurofilaments (NF) and microtubules (MT) to the 

diameter o f an axon in control/sham operated guinea pig optic nerve. (After Jafari et a!., 1998, 

J. Neurotrauma 15, pp958)
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Fig. 2. Serial sections from an animal 20 min after lateral head acceleration through a node 
of Ranvier in an axon that has undergone primary axotomy. Holes occur in the axolemma 
(arrowhead). The most marked pathology is the replacement o f the axonal cytoskeleton by a 
flocculent precipitate (red arrow) indicating rapid dissolution of the cytoskeleton. The 
characteristic dense undercoating o f the nodal axolemma is retained (black arrow) (Courtesy 
of Maxwell et al., 1993). Acta Neuropathol. 86: 136-144.

Fig. 3a. A longitudinal section of the intemode of an injured axon at 4hrs after injury. The 
microtubules, one is indicated by the black arrow, o f the cytoskeleton have a spiral rather than 
linear orientation.
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Fig. 3b. A field of axoplasm taken from a longitudinal section of an intemode o f a nerve fibre 
at 4 hours after injury. The orientation of NFs is no longer parallel to the longitudinal axis of  
the fibre. Black arrows indicate two NFs with a transverse orientation. But close examination 
reveals that NFs have a wide variety o f orientations within the axoplasm. (Courtesy of Jafari 
et al., 1997) J. Neurocytol. 26: 207-221.

Fig. 4. A medium power transverse section of an intemode from a nerve fibre 4 hours after 
injury. The axon has an irregular profile and the axolemma is incomplete (arrows) with the 
result that there are holes therein. At foci the discrete organisation of the axonal cytoskeleton 
has been replaced by an amorphous ultrastmcture (dotted circle). (Courtesy o f Maxwell et al., 
1995) J. Neurocytol. 24: 925-942.
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Fig. 5. Longitudinal (upper) and transverse (lower) sections of nodal blebs at 5 mins after 
stretch-injury to the right optic nerve o f guinea pig. Axolemma limited protrusions extend into 
the periaxonal space. Within these there is a flocculent ultrastructure and some aggregates of 
membranous profiles, but MTs (mt/arrow) and NFs (nf/arrowheads) are lacking. The dense 
undercoating characteristic of the nodal axolemma (red arrow) is lacking from the limiting 
membrane of the bleb (right side o f b and in a). (Courtesy o f Maxwell, 1996 and Maxwell et 
al., 1991) J. Neurocytol. 20: 157-164.
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Fig. 6. Thin sections cytochemically treated to demonstrate activity o f p-NPPase (Na/K- 
ATPase). In a control, uninjured node of Ranvier (left) reaction product (black deposit) occurs 
on the axoplasmic face o f the axolemma. At I hour after injury (right) reaction product does 
not occur indicating a loss of activity by the pump. Bar = I pm.

Fig. 7. Longitudinal thin sections of nodes of Ranvier from control (top) and 1 hour after 
injury (bottom) optic nerves processed for localisation of membrane pump Câ  ̂-ATPase 
activity. There is marked loss o f reaction product from the nodal axolemma in the injured 
axon demonstrating inactivation of the membrane pump. (Courtesy Maxwell et al., 1995) J. 
Neurocytol. 24: 925-942.
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Fig. 8. A longitudinal thin section at the point o f  secondary axotomy obtained at 4 
hours after stretch-injury to guinea pig optic nerve. NFs form a focus o f  neurofilament 
compaction (fen) in the middle o f  the image. At the lower limit o f  this region the 
axolemma is fragmented (arrowheads) and below that point a flocculent precipitate 
replaces the linearly packed NFs. Here axonal continuity has been lost and the axon 
has undergone secondary axotomy. Bar = 1 pm).
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Fig. 9. A transverse thin section at 4 h after injury in which there is involution of the 
axolemma to provide an irregular axonal profile. There are very few cytoskeletal components 
present within the axoplasm (arrows = MTs). Bar = 1 pm. (Courtesy of Maxwell and Graham 
J. Neurotrauma 14; 610).
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Fig. 10. A transverse thin section of a larger myelinated fibre at 4 hours after injuiy which has 
lost a high proportion of MTs (arrow on right) and myelin lamellae have separated to form 
“intramyelinic spaces” (red arrows). At higher magnification (right) from the demarcated area 
at low power, loss of MTs and an increased spacing between NFs is visible.
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Fig. 11. A transverse thin section of a nerve fibre in which the periaxonal space (pa) is 
enlarged. The whole fibre with the limiting myelin sheath is shown in Fig a. Fig b is a detail 
of the axon to illustrate the low number o f microtubules and the reduced spacing between or 
compaction of the neurofilaments. This specimen was obtained at 4 hours after TAI.

Fig. 12: Schema for kinesins

M ic r o tu b u le  b in d in g  
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(modified after www.bms.ed.ac.uk)
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Fig. 13. A schema, modified after www.bms.ed.ac.uk, for the organisation of dynein.

M ic r o lu b u le  h in i l in g

H e a d H e a d
circa 5 3 0 k l  )a

“ s t a lk s ’

ca rg o  b in d in g  
d om ain

3 x  i n t e r m e d ia t e  
c h a i n s =  7 4 k D a

I l ig h t  i n t e r m e d ia t e  
e h a i n s  =  5 5 k O a

Total molecular weight = 1.2MDa

Fig. 14. A schema illustrating the major components and cells active during Wallerian 
degeneration in the CNS. After injury, for example partial transection, to the spinal cord the 
astrocytes (orange) and oligodendrocytes (black) are rapidly activated. Macrophages (purple) 
enter the area o f injury from the blood and begin to remove axonal and myelin debris. At the 
same time, reactive astrocytes enlarge and begin to proliferate. Astrocytes become interlinked 
by gap junctions and a glial scar is formed.

4
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Fig. 15. A transverse thin section of two degenerating axons obtained 7 days after injury. The 
profile o f the myelin sheath is irregular with a number o f intramyelinic spaces. The axon has 
been lost and replaced by an amorphous, flocculent precipitate (fp). Bar = 1p.m.
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Fig. 16. Schema to illustrate the components of the custom stretch-injury apparatus designed 
to deliver a reproducible and measurable amount of elongation or tensile strain to the optic 
nerve.

22V Power Supply
Pen-Recorder

CHCH
A B

Trigger

SOL PS

Metol 
bar

X.

(Meanings o f Labels on the schema: FT = force transducer, DT = displacement transducer, 

SOL = solenoid, CHA and CHB recording channels on the pen recorder, PS = sockets for 

power supply input into the “trigger” control box)
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Fig. 17. A transverse, semi-thin section o f a whole optic nerve stained with Toluidine blue to illustrate 
the orientation of the perpendicular axes used to calculate the cross-sectional area of the whole nerve.

Fig. 18. A schema for the sampling method used in the TEM. The black lines represent 
the bars of a 300 fine mesh grid. Sampling starts at the first grid square [1] covered by the 
section from the top left hand comer. The white outlines indicate the area of the photographic 
plate taken in every third grid square across the whole transverse section of the optic nerve. 
Magnification circa x 90.
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Fig. 19. A medium power field o f axons from the right optic nerve o f a sham/control animal. 
The axonal profiles are mostly smooth with a circularity greater than 0.8. The myelin sheaths 
are uniform and homogeneous with no evidence o f intramyelinic spaces or myelin intrusions. 
The axoplasm is of an uniform density with clear spacing between individual components of 
the cytoskeleton. Occasional oligodendrocytes processes (op) occur on the outer edges of the 
myelin sheaths. The few astrocyte processes are joined by characteristic gap junctions (gj).
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Fig. 20. A transverse, thin section of guinea pig right, optic nerve one week after stretch 
injury. The general organisation of the optic nerve is maintained and most fibres exhibiting a 
regular, circular profile in normal small (1), medium (2) and large axons. However, pathology 
is present either as (3) remnants o f degenerated axoplasm, (x) separation of myelin lamellae, 
(y) myelin intrusions into the axoplasm, (arrows) swollen, lucent mitochondria and (4) an 
increase in the area o f the tongue o f oligodendrocyte cytoplasm. A gap junction (^ ) is visible 
between adjacent, swollen astrocyte processes containing bundles of filaments (f).
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Fig. 21.Transmission electron micrograph o f a transverse section of guinea pig optic 
nerve at two weeks after stretch-injury. Numerous axons have an irregular profile and 
the axons are more widely spaced. The intervening, enlarged periaxonal space is 
occupied by hypertrophic astrocyte processes (ap) parts of which contain aggregates 
of intermediate filaments. There is a notable loss of electron density in the axoplasm 
of some fibres (*) while in others the density is increased (white circle).
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Fig. 22.
Details from Fig. 21.
A. This illustrates loss of axoplasmic components to result in a pale axoplasm in fibres 

with myelin intrusions [1]. Other fibres [2] demonstrate foci of lucent axoplasm that 
contain low numbers of MTs and NFs.

B. Small, electron dense axons with compacted NFs in their axoplasm are scattered 
through the plate (white circles).
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Fig. 23. A medium power field of part of a right optic nerve at 3 weeks after injury. Several 
nuclei of astrocytes occur within the field and in two of these a discrete nucleolus is visible 
(*). Many fine processes o f astrocytes (ap) extend between and among groups o f nerve fibres. 
A variety of forms of axonal pathology occur in this field, irregular profiles with separated 
myelin lamellae (single arrow), larger axons surrounded by a highly convoluted myelin sheath 
(double arrow), myelin figures lacking any remnant of an axon (white circle) and electron 
dense axons with an intact myelin sheath (red circles). But many axons also have a normal 
structure.



Fig. 24. A detail taken from Fig. 23 to illustrate a mixture o f intact (0 )  and degenerating (A) 
nerve fibres at 3 weeks following stretch-injury. In the latter the lumen of the remnant of the 
myelin sheath frequently contains an amorphous, electron dense deposit. Between and among 
the nerve fibres extend many electron dense, astrocyte processes.
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Fig. 25. A bar graph of the number of intact and injured axons in the right optic nerve at 1 
week, 2 weeks and 3 weeks after injury, (n = 3 in each experimental group; or n =12 overall). 
There is a difference only at 3 weeks (p<0.05).
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Fig. 26. A line graph of the estimate o f the number of morphologically intact axons in optic 
nerves at 1 Week, 2 Weeks and 3 Weeks survivals after injury (± SEM, p = difference from 
control number). Note that there is loss of intact axons at 2 and 3 weeks after injury.
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Fig. 27. A graphical representation of the changes in number of intact axons within 0.5pm 
bins within Control animals and 1 week, 2 weeks and 3 weeks survival animals (Total value 
for n = 12) after stretch-injury to the right optic nerve.
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Fig. 28. A graphical representation of the changes in cross-sectional area o f all of the intact 
axons within 0.5pm bins for Controls and 1,2 and 3 week survivals (Total value for n = 12) 
after stretch-injury to the right optic nerve.
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Fig. 29. Changes o f the proportions o f Intact axons within bins from Controls (n = 3) and 
animals that survived 1 Week (n = 3), 2 Weeks (n = 3) and 3 Weeks (n = 3) after stretch- 
injury to the right optic nerve of adult guinea pigs.
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1. Changes in cross-sectional area of the optic nerve after TAI:

There is no change in the cross-sectional area of the optic nerve between control animals and 

any of the experimental gi'oups (Table 7, Appendix, page 195). This is unexpected in the light of 

results both for loss of the total number of axons and the reduction in the cross-sectional area of 

the intact axons in each survival group.

(a) Contribution by myelinated fibres to the cross-sectional area of control optic nerve.

In outline, the method of calculation was to take the median value of the diameter of axons in 

each bin, calculate the area of a circle with the same diameter and then multiply that value by the 

number of axons within that bin. The sum total of areas of axons within all of the bins provided 

an estimate of the contribution made by the total cross-sectional area of the axons to the value 

obtained for the cross-sectional area of the whole nerve (Table 26, page 213). The result was 

expressed as a percentage of the observed cross-section of the whole nerve. In control animals, 

the result demonstrated that the myelinated axons occupied 49.8% of the total cross-sectional area 

of the uninjured optic nerve.

As already stated in the Results, pages 89-90, in terms of numbers of axons, there is a loss of 

24.40% at 1 week, 32.5% at 2 weeks and 43.74 % by 3 weeks. The loss in terms of the reduced 

cross-sectional area of myelinated, intact axons between controls and 1 week survivals was 

-24.5%, by 2 weeks was -30.9% and by 3 weeks survival was -46.6%. The reduction in cross- 

sectional area of all intact myelinated axons is highly significant where p=0.0001 (ANOVA). 

After injury myelinated axons formed 37.6% of the total cross-sectional area of the right optic 

nerve at one week, 34.3% at two weeks and 26.6% at three weeks.

Two factors influence or contribute to such a change. First, the cross-sectional area of the 

myelinated axons forms less that half of the cross-sectional area of the whole nerve. Thus, the 

loss of axons theoretically would contribute to a loss of cross-sectional area of only 4.3% at 3 

weeks. However, the variance between control animals was relatively large at ± 7511.18pm^, or 

the equivalent of 2% of the cross-sectional area of the whole nerve. The variance across the three
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animals in each experimental group was similar. It is therefore not surprising that a change of the 

total cross-sectional area of the right optic nerve was not detected. The better approach to address 

this problem would be to take a larger number of animals within each experimental subgi oup, say 

an ‘n ’ of six, in each of the control, 1, 2 and 3 week survival groups. However, if  no significant 

difference is obtained using an ‘n’ of six then there can be confidence that the loss of axons does 

not result in any change in the cross-sectional area of the injured optic nerve. At present, it is 

clear that the experimental paradigms and the stereological teclmiques used in the current study 

were not sensitive enough to detect any change in cross-sectional area of the optic nerve as a 

whole. However, the fact that statistically significant differences for both the number of and the 

cross-sectional area of myelinated, intact axons is obtained with an ‘n’ of three strongly argues 

that loss of axons up to three weeks after injury does not result in a change in cross-sectional area 

of the whole nerve. However, the novel finding in the present study of a continued loss of intact 

axons with increasing post-traumatic survival allows generation of the hypothesis that if there is 

continued loss of axons in survivals for longer post-traumatic intervals than 3 weeks that a change 

in the cross-sectional area of the injured nerve may occur.

Second, there is differential loss of axons fi'om within different bin sizes across the whole 

nerve, p<0.0001 ANOVA. This finding extends and provides support for the hypothesis that 

different sizes of axon respond either with a different time course or as a result of differences in 

interactions, at the molecular level, between neurofilaments (NF) within the axonal cytoskeleton 

(Jafari et a l, 1997, 1998; Maxwell et a l, (2003). There is a loss of the summated axonal cross- 

sectional area in all but three bins at 1 week. There is no loss from the smallest (0-0.5 pm) and 

largest axons (>3pm), and those with a diameter between 0.5 and 1.0pm. The latter group of 

axons, however, is unique in the present study in that there is not a significant loss in their cross- 

sectional area throughout the experimental period. On the contrary, the summated cross-sectional 

area of axons in all but two sizes of bin is significantly reduced in parallel with the loss in number 

of axons. The two exceptions to that latter statement are, first, axons with a diameter between 2.5
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and 3.0pm that increase in number between 1 and 2 weeks (p<0,01, q = 4.5), followed by no 

change at 3 weeks (p>0,05, q = 1.9). Second, axons with a diameter between 2.0 and 2.5pm that 

increase both in number and cross-sectional area between 1 and 2 weeks (p<0.01, q = 4.8) (Figs 

27 and 28, page 115). In only one bin, that with axons of a diameter greater than 3pm, was there a 

complete or total loss of axons (p<0.01, q = 6.92). However, the number of these axons is so 

small that their loss makes little contribution towards any overall loss of axons or the total cross- 

sectional area of myelinated axons.

Although the results above are intriguing, it is clear that application of a different analytical 

technique should be required to investigate changes in the cross-sectional area of the optic nerve. 

In any future analysis, however, the novel finding that although axons suffer irreversible damage 

and/or disappear, their remnants in the form of myelin figures may still occupy space within the 

nerve at 3 weeks survival. An example, where two large myelin figures occur and have a diameter 

greater than that of any of the axons within the same area is seen in Fig 23, page 112). Thus, 

unlike Wallerian degeneration in the PNS (Griffin et al., 1995) or experimental conditions in 

which the blood-brain barrier is disrupted in crush or transection injuries, the removal of myelin 

debris after TAI either does not occur or occurs with a time scale longer than 3 weeks. In the 

current study, little if any evidence for activation of infiinsic microglia as indicated by their 

adoption of an amoeboid form and formation of inclusion vesicles was obtained. Since the 

present study is the only one that has investigated axonal/cellular responses at more than 7 days 

after TAI there is no experimental data with which to compare the results. Investigations of 

responses by astrocytes, oligodendrocytes and immunocompetent cells in long-term survivals are 

limited to studies in patients (Maxwell et a l, 2006). Immunocytochemical studies utilising 

markers for glia and/or activated monocytes/macrophages/microglia in models of white matter 

injury where axons are exposed to non-disruptive, transient tensile strain are entirely lacking.

This lack of information needs to be rapidly addressed. The novel information obtained in the 

cun'ent study that the time course of any cellular responses may be of gi-eater duration that has
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previously been suggested in the literature concerning TAI also requires further investigation at 

least to determine whether axonal loss continues over weeks or months or a plateau is obtained at 

which no further loss of axons occurs, 

b) Evidence for glial activation

A notable change in the same animals was an apparent hypertrophy of astrocytes and astrocyte 

processes between and amongst the remaining axons. There is a vast literature concerning glial 

cells. But almost all of the experimental literature relates to models in which axonal injury is 

severe enough to result in axotomy at the time if injury such as crush or transaction: - see 

Introduction pages 43-45, 53-63.

Astrocytes normally occupy one third of the volume of the cerebral cortex and after trauma 

there is a great deal of published evidence for an increase in their number as demonstrated by an 

increase in astrocyte processes identified tlirough immunocytochemical labelling with GFAP 

(reviewed by Norenberg 1994). However, Norenberg (1994) pointed out that use of GFAP 

antibodies will only identify astrocytes containing a high content of intermediate filaments. The 

expression of increased content of GFAP+ve intermediate filaments is a response manifested 

secondary to swelling of astrocytes which occurs within hours rather than days after injuiy. 

Literature published in the last five years has revealed that the interaction between astrocyes and 

other cells of the CNS is far more complex than had been appreciated (Hansson and Ronnback, 

2003) with evidence for ionic and molecular interactions between astrocytes and all other cell 

types within the CNS. Nucleosides, nucleotides and glutamate are released in cential grey matter 

after trauma and result in activation of both astrocytes and microglia. With an internal ATP 

concentration as high as 3-5 inM, astrocytes can release large amounts of ATP into the 

extracellular environment. This release of ATP is suggested to be a trigger for the initiation and 

maintenance of reactive asti'ogliosis that involves striking changes in the morphology and 

proliferation of astrocytes (Neary et al., 1999). However, in models of TAI, responses by glia 

have been largely ignored, until at least very recently in some studies in patients (Wilson et al.,
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2004; Maxwell et al., 2006). A contributing factor to this has been a lack of investigation of 

cellular responses beyond 7 days after axonal injury in any experimental models of TAI. There is 

reported thickening of astrocytic processes leading to disorganization of nerve fascicles after 

crush injury to opossum optic nerve (Narciso et al., 2001). But the timeframe over which these 

astrocyte responses occur is much shorter than that observed in the current study. For example 

astrocyte process were more prominent with an increased content of intermediate filaments at 48 

hours and resulted in a complete disan*angement of nerve fascicles, with astrocytes forming 

irregular septae among groups of nerve fibres, at 168 hours after cmsh injury (Narciso et al 2001). 

Thus, the response by astrocytes in opossum optic nerve after crush injury occurred within a week 

while they are only become discernable in guinea-pig optic nerve at 3 weeks after stretch-injury. 

There is ultrastmctural evidence for mitosis by astrocytes after stretch-injury to the optic nerve 

(Graham and Maxwell, 1996) and the novel evidence for a slowly developing, 2-3 weeks after 

injury, hypertrophy of astrocytes in an animal model of TAI in the present study warrants further 

investigation of astrocytic responses within central white matter after TAI.

There are also major differences in time course of activation of macrophages and/or microglia 

between the PNS, white matter tracts in the CNS after transection of axons and after TAI. After 

crush injury, there is a four-fold increase in the number of macrophages/microglia in the distal 

segment of the mouse optic nerve at 7 days (Lawson et al 1994) while activation of microglia 

following human TBI has been reported in patients that survived more than 72 hours post injury 

(Engel et al., 2000; Guillemin and Brew, 2003). However, as indicated in the Introduction (page 

52), an increase in the number of macrophages has been hypothesised to be dependent upon 

opening of the blood-brain barrier (Streit et al., 2004). In the stretch-injury model of TAI 

evidence for such opening has not been obtained (Maxwell et al., 1991). However, activation of 

microglia as indicated by labelling for macrophage-related proteins (MRP8 and MRP 14) and 

CD4, has been reported from both contusion and non-contusion regions of brain only when 

patients survive at least 72 hours after injui*y (Engel et al., 2000).
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Despite the fact that analysis of the response by glial cells was not the pmpose of the 

experiments forming the content of the present study, nonetheless, it is posited that, at three 

weeks after trauma, the increase in volume by reactive astrocytes may compensate for any loss, in 

terms of volume, of axons and their related oligodendrocytes that degenerate. Clearly, however, 

testing of that hypothesis would involve a complex stereological analysis involving techniques for 

estimation of changes in cell volumes and/or number. Appropriate techniques are available 

(Mouton, 2000). The current study is valuable in that it has provided the first indication of a 

previously unsuspected astrocyte response in TAI that may occur more slowly within central 

white matter following TBI than has previously been documented after crush injuiy (Narciso et 

al., 2001).

2. Novel information about axonal pathology:

The major features of the development of axonal pathology in this animal model between one 

and thiee weeks after injury may be summarised as follows.

At one week after TAI the general organisation of the optic nerve is maintained although many 

fibres show evidence of pathology (Fig. 20; page 109). For example swelling of mitochondria, 

loss of MTs and NFs resulting in a lucent axoplasm, separation of myelin lamellae to form 

“intramyelinic spaces”, involution of parts of the myelin sheath into the axoplasm and an increase 

in the size of the inner tongue of oligodendrocyte cytoplasm. Such findings have previously been 

documented at 4 and 24 hours after TAI (Jafari et al., 1997,1998; Maxwell et al 2003) and 24 

hours after crush injury (Narciso et al., 2001) in optic nerve. However, evidence of such 

pathology/damage at 1 week after injury is novel. Moreover, the time course of this pathology 

differs markedly from either transection or avulsion models of injury in PNS axons (Bunge et al., 

1993; George and Griffin, 1994; Griffin et a l, 1995; Avellino et a l, 1995) or crush injury to the 

optic nerve (Narciso, 2001) where loss of the formed components of the axon occurs by 48-60 

hours after injury. The current study provides novel evidence that the development of the early
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stages of pathology after TAI in white matter of the CNS is slower and occurs over a much longer 

post-traumatic interval than previously reported.

At two weeks after injury the appearance of the cross-section of the optic nerve is irregular in 

that the nerve has become more oval than circular in profile. Within the nerve there is a widening 

of interaxonal spaces. These spaces are occupied by thickened or more numerous astrocyte 

processes which appear to subdivide groups of axons into fascicles. The astrocyte processes are 

particularly notable in the perivascular space around blood vessels.

Axon profiles are less regular and intramyelinic spaces occur in about 10% of fibres. Frequently 

the axoplasm of these latter nerve fibres is electron lucent with a reduced content of MTs and NFs 

(Figs. 21 and 22: page 110, 111). Mitochondria within these axons are frequently swollen and 

lucent. Scattered among the groups of nerve fibres occur a few, smaller axons which possess an 

electron dense cytoplasm and a thicker than normal myelin sheath (Fig. 22, page 111). However, 

MTs and NFs are discrete within the axoplasm. This ultrastracture is therefore not comparable to 

the dark degeneration described in axons at the point of the rapid autolysis described in distal 

segments of PNS axons undergoing Wallerian degeneration (George and Giiffin, 1994; Griffin et 

al., 1995) where the ultrastructure has a granular or amorphous foim. These latter images are 

suggestive of the axon having undergone shrinkage or a reduction in calibre. These smaller, dark 

axons constitute about 5% of the population of axons.

At three weeks after injury the cross sections of many nerve fibres are grossly distorted from a 

smooth circular form and there is loss of the normal organisation of optic nerve fibres (Fig. 23, 

page 112). A large proportion, some 85% of tire axons, have an irregular, non-circular profile 

(Fig. 23). Nonetheless, their axoplasm retained discrete MTs and NFs that were regularly spaced 

throughout the axoplasm and these axons were regarded as intact despite their irregular profile. 

On the other hand, a wide range of pathological changes are seen, myelin figures, axons with
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intramyelinic spaces in their myelin sheath (about 10%), axons with periaxonal spaces (about 

5%), and involution of the axolemma (about 5%), However, a frequent pathology was 

replacement of recognisable cytoskeletal components by an amoi'phous, electron dense deposit 

that was not limited by an organised plasmamembrane (Figs. 23 and 24, pages 112,113). 

Nonetheless, the myelin sheath was intact with closely apposed lamellae. Such examples formed 

between 12 and 13% of the total number of axonal profiles within transverse sections of segment 

2 of the injured optic nerve. The ultrastructure of these axons was comparable to the dark 

degeneration noted at the granular disintegration phase of Wallerian degeneration in PNS axons 

(George and Griffin, 1994; Griffin et al., 1995) and more recently described by Narciso et al. 

(2001) after crush injury to opossum optic neive. The major difference, however, was the time 

scale over which such pathology occurred after TAI, at 2-3 weeks after injury rather than 48-72 

hours.

3. Numerical distribution of axons in control/sham animals:

In the present study estimation of the total number of the axons in control or un-injured guinea 

pig optic nerves was 99,005 ± 9,1999.28, and estimation of the number of axons within 0.5 pm 

wide bins, demonstrated that tlie smallest (<0.5pm diameter) and largest (>3.0pm) axons are 

relatively few in number. Axons of a greater diameter than 3 pm represent only 0.5% of the total 

within the adult guinea pig optic nerve, and no axons greater than 3.5pm diameter occurred. 

Axons of <0.5pm diameter form just over 2% of the total. This result is in close agreement with 

an earlier study (Guy et al., 1989) which reported a total number of 97,000 ± 9,000 axons.

Results obtained in the present study indicate that the majority of axons in the middle segment 

of the guinea pig optic nerve are between 0.5 land 2.5pm diameters and represent 95.4% of the 

total number of axons within the intact nerve. As already stated, the estimate of the total number 

of axons in the middle segment of the guinea pig optic nerve is 99,005 ± 9,199.28. In comparison.
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this is only 10% of the number of axons in the optic nerve of humans and 33.6% of the number in 

rabbit (Robinson et al., 1987).

4. Changes in the number of intact axons within different sized bins after injury:

Clearly, maximum numbers of intact axons occur in control animals. Control right optic nerves 

contain 99,005 ± 7511 axons. A very large proportion of the nerve fibres occur within the three 

bins between 0.5 and 2.0pm (Fig. 29, page 116 -  dark blue line), and about 15,000 axons are 

between 2.0 and 2.5 pm in diameter.

At one week following injury, however, there is loss from all bins (p < 0.001, ANOVA) (Fig 29, 

page 116” pink line) and expressed as the percentage of control numbers (Table 27, page 213). 

However, different proportions of the control numbers are lost from different bins (Table 27). For 

example, 66% of axons with a diameter greater than 3.0pm are lost (p<0.001, ANOVA).

However, there is an 11% increase in the number of axons between 2.5 and 3.0pm diameter (p = 

0.046, ANOVA). There is loss of 32% of 2.0 and 2.5pm diameter axons (p = 0.038, ANOVA); 

loss of 26% of 1.5 -  2.0pm axons (p = 0.003, ANOVA); 21% of 1.0 -  1.5pm axons (p = 0.003, 

ANOVA); 25% of 0.5 -  1.0pm axons (p = 0.014, ANOVA) and 32% of the smallest axons with a 

diameter less than 0.5pm at one week (p = 0.015, ANOVA).

At two weeks after TBI however, the relationships differ in that there is 100% loss of axons 

larger than 3pm diameter (p = 0.001, ANOVA); and loss of 77.3% of the number of axons with a 

diameter of 2.5 -  3.0pm at 1 week (p = 0.03, ANOVA) (Table 27, page 213), However, there is 

an increase in the number of axons 2.0 - 2.5 pm diameter from 68% to 84% of control values (p = 

0.38, ANOVA). There is loss of 28% of axons 1.5-2.0pm in diameter (p = 0.003, ANOVA); 29% 

of axons of 1.0-1.5pm diameter (p = 0.003, ANOVA); 34% of 0.5-1.0pm axons (p = 0.014, 

ANOVA) and 90% of the smallest axons (p = 0.015, ANOVA). That is to say, there is an increase 

in the number of axons with a diameter between 2.0-2.5 pm following on fi'om a 32% loss at 1 

week -vide supra. However, despite the data give above, ultrastmctural evidence for a
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widespread loss of axons as indicated by the occuirence of dark, degenerated axons and or 

numbers of empty myelin sheaths was lacking at 2 weeks -  see Fig, 21, page 110. Therefore, the 

only other explanation for tlie change in relative proportion of different sizes of axon (Fig. 29, 

page 116) is that some axons have been reduced in calibre and fallen out of the 2.5-3.0pm wide 

bin into the 2.0-2.5pm bin.

Increased confidence for the latter argument is provided by further changes in relationships of 

numbers of axons in 0.5pm wide bins at three weeks (Table 27, page 213). No axons of diameter 

gieater than 3pm occur at 3 weeks. The number of axons between 2.5 and 3.0pm diameter 

increase by 167.2% between 2 and 3 weeks such that there is no change from conPol values (p ^  

0.18). However, there is further or continued loss of 48% of 2.0-2.5pm; 47% of 1.5-2.0pm; 39% 

of 1.0-1.5pm axons; but a small increase of axons between 0.5 and 1.0pm in diameter (p<0.05, q 

= 3.79, Dunnett). There is further loss of the smallest axons to less than 5% of control numbers. 

Thus the second largest size of axon (2.5-3.0pm diameter) increases in number at the same time 

that there is complete loss of their next largest neighbouring group of axons. There is also 

continuing loss of the smallest axons over the entire experimental period (p = 0.015, ANOVA). 

There is an increasing loss of axons with diameters between 1.0 and 2.5pm during the period one 

to three weeks after injury (Fig.27, page 115). However, numbers of 0.5-1.0pm axons remain 

relatively stable (p>0.05, q = 0.77).

In addition, when axons are grouped into 0.5 pm wide bins, the bin with the largest number of 

axons changes over the experimental period of the present study. In conPols, the largest number 

of axons, 27,594 ± 4010 or 27.9% of the total occurs in the bin between 1.5~2.0pm in diameter 

(Fig. 29, page 116 -  dark blue line). At one week, the largest proportion of intact axons in any 

bin is 28.0% (20,999 ± 1,028) but the size range of the bin has fallen to 1.0-1.5pm (Fig. 29, page 

116 -  pink line). That bin still contains the largest proportion of intact axons, 18,927 ±1,981 

(28.3%) at two weeks (Fig. 29, page 116 -  yellow line). However, at three weeks the largest
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proportion of intact axons, 16,872 ± 964 (30.3%) occurs in the bin containing axons only 0.5- 

1.0pm in diameter (Fig. 29 -  turquoise line).

This study has provided good quantitative evidence for changes of number in axons within 

different sizes of bin after TAI in central white matter. Logically, two arguments or explanations 

for such a response may be suggested. Either axons degenerate completely or there is an 

alteration in the size of an injured axon so that it becomes included within the next lower bin size. 

Support for the former hypothesis is lacking in that morphological evidence for loss of axons, for 

example the presence of myelin figures or apparently empty myelin sheaths, is obtained only at 

three weeks after TAI.

Table 6. Percentage of Control Numbers of Intact/Normal Axons within each Bin present at 1, 2 
and 3 Weeks after traumatic axonal injury to guinea pig optic nerve, (the values for p indicate 
whether the loss in number, not the percentage change, was significant -  see data in Table )

Control 1 Week 2 Weeks 3 Weeks

0-0.5 pm 100 36 10 (p<0.05) 5 (p<0.05)

0.5-1.0pm 100 83 66 67

1.01-1.5pm 100 79 71 61 (p<0.05)

1.51-2.0pm 100 81 (p<0.05) 72 (p<0.01) 53 (p<0.01)

2.01-2.5 pm 100 61 84 52

2.51-3.0pm 100 163 38 102

>3.01p 100 44 0 (p<0.05) 0 (p<0.05)

Support for the latter hypothesis is provided by several results obtained in the present study. 

The evidence that the number of axons within some bins increases, and within different bins at
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different survivals is strong evidence that axons are not being lost but are changing their calibre. 

For example, at 1 week there is loss of axons with a diameter greater than 3 pm but an increase in 

the number of axons within the adjacent bin with axons between 2.5 and 3.0pm diameter. This is 

followed at 2 weeks by an increase in the number of axons in the bin with diameter between 2.0 

and 2.5 pm. Furtlier support is provided by evidence that the diameter of the largest number of 

axons within 0.5pm wide bins changes over the experimental period. The bin containing the 

largest proportion of axons in controls is 1.5-2.0pm in diameter, at 1 and 2 weeks is 1.0-1.5pm, 

and at 3 weeks is 0.5-1.0pm. This novel data provides the first evidence that a long term and 

continuing pathology occurs within a group of CNS axons exposed to transient tensile strain 

where the strain is not great enough to result in primary axotomy. However, the purpose of the 

present study was to provide an estimate of the number of intact axons at 1, 2 and 3 weeks after 

TAI. Further, in the micrographs used for estimation of the number of axons only those axons that 

did not exhibit overt pathology were counted. Nonetheless, there is a significant loss of axons at 2 

and 3 weeks after TAI (Fig. 26, page 114). Alternatively, when the number of intact and damaged 

axons is considered there is only a significant difference from control numbers at 3 weeks (Fig.

25, page 114). The following questions arise from the above. What happened to the 3 pm and 

greater diameter axons between 1 and 2 weeks? Why do the numbers within intermediated sized 

bins both rise and fall over the experimental period?

5. Consideration of mechanisms of axonal cytoskeletal responses

Maxwell et al., (2003) suggested that with post-traumatic alterations in the fine structure of the 

axonal cytoskeleton, notably a reduced spacing between or compaction of NFs, an axon’s calibre 

might be reduced and the axon thereby fall into the adjacent smaller bin. In that study, evidence 

in support of the hypothesis was the increased content of NFs in small axons between 4 and 24 

hours after injury where the number of neurofilaments was greater than in axons of the same 

diameter in control animals. However, in larger axons within the injured optic nerve, although the
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number of NFs did not differ from controls, the spacing between adjacent NFs was reduced such 

that NFs formed groups within the central zone of the axoplasm rather than being uniformly 

distributed throughout. A notable point in that paper, however, was that the calibre of the larger 

axons did not appear to be reduced. However, because of the lack of application of suitable 

stereological techniques in that study changes in axonal calibre may have been missed.

The major purpose of the current study was to estimate the total number of intact axons within 

all sizes of bin. A novel technique was applied in order to obtain a representative sample at low 

magnification. As a result, resolution of detailed changes within the axoplasm of most axons was 

not possible. Nonetheless, good quantitative data in support of the hypothesis that the number of 

axons within all bins changes after TAI was obtained. In addition, however, within the Results 

(Chapter 3) some comments about the morphology of axons are included. These ranged fr om a 

reduced content of MTs and/or NFs in some pale or elecfton lucent axons to a number of small 

axons that were more electron dense and appeared to have an unusually thick myelin sheath. It is 

suggested that the latter images are new evidence for changes in the detailed organisation of the 

axonal cytoskeleton and that, when compaction of NFs occurs, the calibre of axons is decreased. 

It has long been accepted that tlie spacing between and the number of NFs in myelinated axons is 

a crucial influence in determining the diameter of an axon (Hoffman et al., 1984; Shaw et al., 

1991; Hisanaga et al., 1991). Although the precise mechanism or mechanisms maintaining the 

regular spacing between NFs is still controversial (Kumar et al., 2003 a, b) the observation that 

spacing is reduced after TAI (Pettus et al., 1994; Pettus and Povlishock, 1996; Jafari et al., 1997, 

1998; Povlishock et a l, 1997; Maxwell et a l, 2003) has gained wide acceptance. It is also now 

well recognised that NFs are interconnected with the plasmalemma through actin and the 

subaxolemma cytoskeleton (Trapp et a l, 1989; Ichimura et a l, 1991; Kumar et a l, 2003a) and 

are strongly influenced by myelin associated glycoprotein (MAG) during myelination (Trapp et 

a l, 1989; Lunn et a l, 2002). So after TAI, when compaction of NFs occurs and their spacing is 

reduced, it is plausible that the axolemma will be retained in close relation to the outer region of
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the core of compacted NFs unless the subaxolemma cytoskeleton is destroyed -  vide infra. Thus, 

the calibre of the axon will fall. MAG is located primarily in lipid rafts that occur on the inner 

aspect of the internal lamina of the myelin sheath foimed by myelinating oligodendrocytes (Trapp 

et al., 1989; Vinson et al., 2003). MAG interacts with a MAG receptor located in lipid rafts in the 

internodal axolemma to link the inner surface of the myelin sheath to the outer surface of the 

axon (Vinson et al., 2003). Hypothetically, the above linkage will maintain myelin-axolemma 

interaction in, at least some, examples of axons with a reduced calibre. However, further 

consideration will require a detailed analysis of axonal cytoskeletal relationships such has been 

completed in shorter-term survival experiments (Jafari et al., 1997, 1998; Maxwell et al., 2003).

Novel evidence obtained in the present study suggests a leftward migration toward the abscissa 

or reduction of axonal diameter between one and tliree weeks (Fig 29, page 116). The evidence 

supports the hypothesis that, over a period of weeks after TAI, there is an ongoing reduction in 

calibre of axons. This results in loss of larger axons over the period of three weeks after TAI. 

However, analysis of electron micrographs shows that large numbers of apparently normal axons 

are present even at tliree weeks after injury and the number of axons showing a documented 

pathology, for example pale and or dark axoplasm, or dissociation of myelin lamellae (Griffin et 

al., 1995; Narciso et al., 2001) is relatively small. It is presently unknown whether axons 

demonstrating post-traumatic compaction are still connected to their cell soma. However, the fact 

that the axon is intact and contains numerous cytoskeletal elements and membranous organelles 

strongly suggests that the compacted or shrunken axon is still connected to its cell soma and has 

therefore not undergone axotomy. Added weight is given to this argument by the observation that 

the myelin sheath is still intimately related to the axon surface in such fibres. This implies that 

intercellular signalling mechanisms between the axon and oligodendrocytes are intact. Wlien 

compaction of NFs was first identified by Pettus et al., (1994) it was suggested that the change 

occurred soon after injury and did not change within a survival of up to six hours (Pettus and 

Povlishock, 1996; Stone et al., 1999, 2001, 2004). However, that research group has done no
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quantitative analysis or any further ultrastmctural analyses. Rather, that research gi*oup has relied 

upon immunocytochemical labelling of damaged axons using antibodies against p-amyloid 

precursor protein and an antibody named RM014 that labels sites at which NFs are compacted 

(Stone et ah, 1999, 2001). The findings of the present study confirm and extend the initial 

suggestion that, having undergone compaction of NFs, such injured axons do not demonstrate any 

further pathology and remain as long as, at least, three weeks after injury. A major novel finding 

in the present study, however, is that numbers of axons demonstrating such pathology increase in 

number with increasing survival. Therefore, the question “What is the outcome of these axons?” 

remains unanswered and will necessitate examination of animals allowed to survive for a longer 

period than three weeks. Furthermore, it is probable that these axons have not undergone 

secondary axotomy. Together, these factors strongly support the hypothesis that axons in which 

post-traumatic compaction of NFs occurs are experiencing a completely different type of 

pathology from those axons that have undergone secondary axotomy. Moreover, such pathology 

may occur in only a proportion of patients and where such changes do occur, for reasons 

presently undefined, the patient may undergo a degree of improvement or recovery. There is 

anecdotal evidence of such improvement but no quantitative data.

6. Evidence of Wallerian degeneration

An aim of this study was to test the hypothesis that the number of intact or uninjured axons 

remains stable over time in an injured CNS white matter tract. The null hypothesis was that the 

number of intact axons was unchanged with increasing post-traumatic survival. The results show 

that neither the first nor the null hypothesis is supported. It is concluded that some axons are lost 

over the three-week post-traumatic survival period. This leads to generation of the hypothesis that 

Wallerian degeneration may be occurring during the experimental paradigm.

The occurrence of secondary axotomy as early as 4h after trauma has been documented 

in the optic nerve stretch-injury (Jafari et al., 1997, 1998) and fluid percussion models
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(Povlishock et al., 1997). However, the latter is not a clean model in the sense that there is direct 

injury to both grey and white matter. In a recent report using the optic nerve model, injury occurs 

purely in white matter and evidence for the early stages of Wallerian degeneration, an increase of 

the length of nodes of Ranvier, was obtained in a very small proportion of injured fibres as early 

as 24 hours (Maxwell et al., 2003). In the same study, evidence for replacement of an axon by a 

dark, amorphous material comparable to that described at the end of granular degeneration 

(Griffin et al., 1995) in PNS Wallerian degeneration was obtained at 1 week.

Although the major aim of this study was not to investigate morphological changes, the present 

study has provided evidence that the cross sectional architecture of the optic nerve was nonnal at 

1 week. Despite the appearance of a wide-range of axonal pathologies, such as intermyelinic 

spaces, or periaxonal spaces due to a reduction in axonal calibre, no direct evidence for Wallerian 

degeneration defined as complete loss of the axon was found until 3 weeks after TAI. In earlier 

work, the presence of the former two changes have been linked to the time course of secondary 

axotomy (Maxwell et al. 1991, 1997, 2003; Jafari et a l, 1997, 1998). In the present study similar 

pathological changes, axonal swelling, separation of lamellae of the myelin sheath, involution of 

the axolemma, development of periaxonal spaces together with degradation of the axonal 

cytoskeleton was a consistent finding in a small proportion, about 15%, of axons at both one and 

two weeks after injury. The present study therefore provides novel evidence that axons may enter 

the pathophysiological cascade to secondary axotomy up to 2 weeks after injury. In addition, 

unequivocal evidence for completion of Wallerian degeneration as defined by the occurrence of 

an amorphous, dark structure within remnants of the myelin sheath was only obtained at 3 weeks 

after TAI. This novel finding allows generation of tlie hypothesis that the process of axonal loss 

or degeneration under conditions that result in TAI does not parallel the time course described for 

Wallerian degeneration after injury to PNS axons (Griffin et a l, 1995) or after crush injury to 

axons in optic nerve (Narciso et a l, 2001). Counts of the total number of intact and injured axons 

at one week post-injury did not differ from sham controls. A significant difference or evidence of
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axonal loss was obtained, however, at three weeks survival. Importantly, it is also notable that in 

the three weeks survival animals a different range of pathologies was present. Swollen, pale 

axons were few in number. Rather myelin figures and myelin sheaths containing amorphous 

deposits occurred. The two latter are directly comparable to changes widely documented in 

analyses of Wallerian degeneration (Griffin et ah, 1995; Kreutzberg, 1995). However, it is 

acknowledged, the time frame over which such changes occuixed was much longer in the present 

study than has been documented in either peripheral nerves (Griffin et al., 1995) or following 

crush injury to optic nerve (Narciso et a l, 2001). In the present study, it was found that greatest 

loss of axons occurred between two and three weeks. The question as to whether this trend is 

ongoing, that the rate of axonal loss has peaked or will continue and/or accelerate over time is 

still unresolved and requires study of long-term survival animals. However, it may be concluded, 

that Wallerian degeneration after TBI does occur within 3-4 days but has a time course extending 

to 2 to 3 weeks after injury.

In the present study, tliere is also evidence of a second, novel, slowly developing pathology. 

Using the technique of counting the number of intact (normal) axons, at different survivals, the 

current study has provided novel evidence that traumatic damage initiated at the time of injury, 

elicits a pathology that may act in a steady, slow manner over at least tliree weeks following 

injury. There is now a consensus that a lesser degree or severity of trauma probably will not 

directly intenupt the continuity of an axon at the time of injury but rather cause it to enter a 

pathological cascade which ends with secondary axotomy. The present study, however, indicates 

that other changes apart from secondary axotomy may also occur in that at 2 and more fiequently 

at 3 weeks after TAI some axons become reduced in calibre and the axoplasm becomes darkened 

or more electron dense. However, the increase in electron density of these axons does not parallel 

the morphology of axons said to be undergoing gi anular degeneration that has been recognised 

for at least 10 years in the Wallerian degeneration literature (Griffin et ah, 1995). The distinction 

is that axoplasmic organelles such as MTs and NFs, together with membranous organelles, are
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present (Fig. 21, 22 pages 110, 111 and Fig. 23, page 112) and the axolemma is intact. Further, 

the myelin sheath appears abnormally wide although well organised since there is no evidence for 

intermyelinic spaces or other forms of pathology. The present study provides the first evidence of 

this type of pathology and, although it is noted, the detail of the relationships between 

components of the axonal cytoskeleton still needs to be investigated before it may be properly 

characterised or described.

7. Hypothetical mechanisms for compaction of neiirofilaments

Despite numerous observations that NFs undergo a reduction in intemeurofilament spacing 

after TAI (Pettus et al., 1994; Pettus and Povlishock, 1996; Jafari et ah, 1997, 1998; Maxwell et 

ah, 2003), the precise mechanisms leading to or resulting in compaction are still obscure. Several 

mechanisms have been suggested in the literature; breakage or collapse of the NF side-arms, 

dephosphorylation of those side-arms or removal of the side-arms tlnough calpaiii mediated 

proteolysis (Maxwell et ah, 1997; Buki et ah, 1999; Stone et ah, 2001; Maimarou et ah, 2005). 

However, this lack of understanding is not helped by the fact that the mechanism whereby NFs 

spacing is controlled in uninjured nerve fibres remains controversial (Kumar et ah, 2002a, b). The 

older literature suggests that if either NF-L, or NF-M or NF-H is expressed at high levels then NF 

spacing is altered, hi transgenic mice with greater than normal expression of either NF-H or NF- 

M, then NF densities are low. But, despite the reduction in density of NFs within a field of 

axoplasm, NFs are clustered at foci within the axoplasm and the spacing between NFs is similar 

to tliat in axons of control or wild type animals (Xu et ah, 1996). The above data does not account 

for the observed changes in NF spacing and or number after TAI, either when compaction of NFs 

has occuned (Pettus et ah, 1994; Pettus and Povlishock, 1996; Jafari et ah, 1997, 1998; 

Povlishock et ah, 1997) or in the early stages of Wallerian degeneration (Maxwell et ah, 2003).

In the former the spacing between adjacent NFs is reduced, in the latter the density of NFs and 

MTs is reduced because the number of both is lowered within the pale axoplasm. The latter may
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be compared with the degeneration termed “watery” following cmsh injury (Narciso et ah, 2001). 

But, unfortunately, the magnification of the published micrographs in the latter report, are too low 

to allow detailed comparison.

In developing, un-injured animals, intemeurofilament spacing increases upon myelination in 

both the PNS (deWaegh et al., 1992; Hsieh et al., 1994; Martini et al., 2001) and the CNS (Nixon 

et al 1994; Sanchez et al., 1996). The myelin-associated glycoprotein (MAG), a sialic acid 

binding immunoglobulin-like lectin generated by Schwann cells (Stemberger et al., 1979;

Martini, 2001; Lunn et al., 2002) has been linked to control of that spacing through 

phosphorylation of the side-arm stracture of both NF-H and NF-M (Julien and Mushynski, 1983; 

Yin et al., 1998; Lunn et a l, 2002). When MAG is not present or expressed, for example in a 

MAG-null mutant mouse (Yin et al 1998), axonal calibre is reduced and both intemeurofilament 

spacing and phosphorylation is reduced. There has also been the recent demonstration of a 

reduced intemeurofilament spacing in both demyelinated and widely spaced myelin axons in 

patients with paraproteinaemic demyelinating peripheral neuropathy (Lunn et a l, 2002) in which 

patients generate antibodies which bind to MAG and prevent its interaction with other proteins 

within the axon.

When MAG does interact, however, NFs are phosphorylated and acquire a negative charge 

(Wong et a l, 1995). Current thinking has integrated the above to provide a mutual repulsive 

mechanism that may, in part, be related to the intrinsic charge within neurofilament side-arms that 

are unstractured polyelectrolyte chains (Kumar et a l, 2002a). There is a NF-NF interaction 

electrical potential generated within each neurofilament and this electrical charge varies with the 

degree of phosphorylation of the NF side-aims. A cuiTent hypothesis is that the ratio of anionic to 

cationic residues, generate a fractional charge, of tlie value 0.067 units in normal axons. Here the 

fractional charge results from maximal phosphorylation of side-arms that occurs upon 

myelination through, at least in part, the direct influence of myelin associated glycoprotein 

(MAG) localized at the glial-axolemma interface (Trapp et a l, 1989; Lunn et a l, 2002; Kumar et
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al., 2002). The neurofilament side-arms occupy a diffuse volume that extends a distance L from 

the filament core or backbone that has a radius Rg. The NF cores do not overlap as a result of the 

NF-NF interaction potential, U(r) where elastrostatic repulsion due to the fractional charge of 

each NF serves to repel one NF from its neighbour(s) and where U(r) = 00 for r<2R .̂ When the 

NFs are far enough apart that there is no overlap between the side-arm layers, or r>2Rc +2L, then 

NFs do not interact electrostatically and U(r) = 0. Direct observation from electron micrographs 

(Kumar et al., 2002) has demonstrated that NFs are regularly spaced; have a Gaussian 

distribution, and are best described as a collection of single-pair NF-NF interactions. Thus a 

model in which either cross-bridges are (1) rigid and bind to the core and/or side-arms of an 

adjacent filament or (2) interact via soft or deformable cross-bridges, the “soft-strut” model, do 

not adequately allow mathematical description of the observed intemeurofilament relationships 

because the predicted distribution of NFs is not Gaussian. Therefore, a third model in which long- 

range, repulsive intemeurofilament potentials act through fractional charges to maintain the 

spacing between pairs of NFs has been tested (Kumar et a l, 2002a, b). Since the fractional charge 

of each side-arm is dependent upon the extent of phosphorylation of that side-aim, the higher the 

degree of phophorylation the larger the fractional charge, the greater the intermolecular repulsion 

(Pincus, 1991) and the greater the repulsive force between pairs of NFs. Hypothetically, the 

cross-linking proteins or the NF side-arms, are cuiTently thought not to drive that organization but 

primarily serve to stabilize the relative positions of adjacent NFs (Herzfeld, 1996). Thus the side- 

arms and the degree of their phosphorylation stabilize the relative position of NFs within the 

axonal cytoskeleton rather than directly determining the spacing between those NFs. Rather, that 

spacing is primarily determined through inteimolecular, electrical repulsion (Kumar et al. 2002a, 

b).

However, importantly, none of the consideration summarized above relates to conditions of 

observed, ultrastmctural pathology after TA I The scenario in which NF spacing is reduced or 

NFs are compacted, or when NF spacing is increased during Wallerian degeneration has not yet
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been investigated at the biophysical level. However, if the hypothesis of interaiolecular, electrical 

repulsion is hue a number of predictions can be made which could be tested experimentally.

First, compaction of NFs would require either dephosphorylation of NFs or a loss of their 

fractional charge. The former has been promulgated by several authors (Pettus and Povlishock, 

1996; Jafari et a l, 1997,1998; Maxwell et a l, 1997). However, direct evidence for NF 

dephosphorylation has only been provided in a model of TAI recently (Saatman et a l, 2003). 

Importantly, Saatman et al. (2003) provided novel evidence that calpain-mediated proteolysis of 

spectrin has a biphasic time course. Use of the antibody Ab38 that recognizes a spectrin fragment 

generated specifically by activated calpain (Roberts-Lewis et a l, 1994) indicated labelling of 

axons between 20min and 2 hours and loss of labelling by 4 hrs after stretch-injury to mouse 

optic nerve. Those findings extended earlier ultrash-uctural data (Buki et a l, 1999) that calpain- 

mediated spectrin proteolysis occuiTed within minutes of TAI in a fluid-percussion model of TAI. 

Moreover, foci of calpain-mediated spectrin proteolysis (CMSP) progressed from the axolemma 

toward the central region of an injured/damaged axon over a short period, about 2 hours, after 

TAI (Buki et a l, 1999). The latter study was important in that it provided the first evidence that 

the axolemma and subaxolemma cytoskeleton are the initial sites of activity of calpain-mediated 

proteolytic function and supports the hypothesis that loss of integrity of the axolemma and its 

subaxolemma cytoskeleton are key in the development of the subsequent pathology. However, 

Saatman et a l, (2003) also provided evidence for a second phase of calpain activity in that SMI32 

labelling of small axonal swellings, bulbs and the occasional thin axonal segment was obtained at 

4 days after injury. Particularly pertinent to the present study, SMI32 labelling occurred at 4 days 

in axonal bulbs, swellings and axonal segments of fairly unifoim calibre and there was 

widespread labelling with SMI32 at 14 days after TAI. In addition, the median percentage of 

damaged or labelled axons increased from 14% at 1 day to 65% at 4 days and to 86% at 14 days 

(Saatman et a l, 2003). Significantly, however, no labelling for calpain-mediated spectrin 

proteolysis, Ab38, occurred at 14 days after injury. The identification of sites of calpain-
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mediated spectiii proteolysis did not therefore spatially or temporally match or co-localise at sites 

at which SMI32 labelling indicated that axonal NFs had been dephosphorylated.

The critical experiment in which co-localisation of SMI32 and RM014 labelling occurs has 

not yet been undertaken. Nonetheless, the present study provides independent evidence for an 

ongoing, slow and long term pathology in a large proportion of axons following TAI. Saatman et 

al. (2003) provided evidence for axonal pathology up to 14 days after TAI. The present study 

extends that data to three weeks after injury. Moreover, both experiments provide novel evidence 

for an increased number of damaged or injured axons with increasing survival. Clearly, longer 

post-traumatic survivals need to be examined to determine the time course of this recently 

recognised pathology. Although direct evidence for the action of calpains upon NF side-arms is 

presently lacking; it may be posited that calpain-mediated proteolysis is a component of the 

process during the early stages of axonal responses to TAI and may, hypothetically, lead to 

secondary axotomy. But the results of the current study, together with those of Saatman et al., 

(2003) allow generation of the hypothesis that a second, previously unsuspected, pathology is 

occurring which leads to a reduction in axonal calibre but does not result in loss of those axons up 

to three weeks after TAI.
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Table 7. Raw data for the total cross sectional area (pm^ ) of optic nerves of control, 1 
week (n=3), 2 weeks (n=3) and three weeks (n=3) suiwival animals. (R. -  right optic 
nerve: L. = left optic nerve).

Survival RON Mean diameter 
fim

Radius
jam

R .,Cross 
sectional 
area jlm^

L., Cross sectional area |lm^

Control
1 725 362.5 412991 412991

2 650 332.5 347462.49 302028

3 700 350 384999.99 306919.64

1 Week 1 700 350 384999.99 386428,57

2 650 332.5 347462.49 385000

3 700 350 384999 348999

2weeks 1 700 350 385000 306919

2 650 325 331964 259776

3 700 350 385000 282857

3 weeks 1 600 300 282857 331964

2 650 325 331964 331964

3 650 325 331964 306919
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TABLES 8 - 11, 12-15, 16-19, 20-23 Raw data for the Number of Intact Axons within 
0.5pm wide bins for Conti'ols (Tables 8-11), 1 week (Tables 11-14), 2 week (Tables 15- 
18) and 3 week (Tables 19-22) survival animals.

Table 8. Sham-control, animal one
Section 0-

0.5pm
0.51-
1pm

1-
1.5pm

1.51-
2pm

2-
2.5pm

2.51- 
3 pm

>3 pm Total

1 8 76 83 98 41 9 3 318

2 6 69 109 114 25 6 0 329

3 18 85 96 103 20 16 3 341

4 15 97 77 96 24 8 2 319

5 2 105 81 101 34 5 0 328

6 11 97 61 97 12 15 5 298

7 14 127 100 112 23 6 2 384

8 12 106 88 108 56 15 3 388

9 6 102 94 97 43 15 3 360

10 11 110 96 114 27 5 0 363

Total, number 
in the sample 103 974 885 1040 305 100 21 3428
% 3.004 28.413 25.816 30.338 8.897 2.917 0.612 3.12

Total
estimated
number

3294 31145 28300 33255 9753 3197 672 109616

Estimated number of axons:
Total number of axons in the sample = 3428

Real magnification 

Size of the area sampled 

Total transverse sectional area 

Estimated number of axons

2400

12915.37pml

41299L06pml

(412991.06 4- 12915.37) x 3428 = 109616 axons
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Table 9. Sham-control, animal two

Section 0-
0.5pm

0.51-
1pm

1-
1.5pm

1.51-
2p

2-
2.5pm

2.51- 
3 pm

>3 pm Total

1 8 57 93 85 72 13 2 330

2 10 90 90 87 77 4 4 362

3 6 93 93 102 46 33 3 376

4 2 61 98 106 77 2 0 346

5 3 91 100 98 59 2 0 353

6 3 93 83 102 66 1 0 348

7 2 100 110 75 52 0 4 343

8 3 80 102 90 61 3 2 341

Total number in 
the sample

37 665 769 745 510 58 15 2799

% 1.3219 23.76 27.47 26.61 18.22 2.07 0.54 2.97

Total estimated 
number

1244 22365 25857 25053 17150 1950 507 94126

Total cross-sectional area 

Total sample size

Total number of axons in the sample 

Total estimated number of axons in

= 347462.495762 \im \

= 10332.3 pm^.

= 2799

= (347462.49-10332.3) X 2799

94126axons
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Table 10. Sham-Control, animal three

micrograph 0-
0.5pm

0.51-
1pm

1.1-
1.5pm

1.51-
2pm

2.1-
2.5pm

2.51-
3pm

>3pm Total

1 8 84 86 79 64 6 0 327

2 9 60 93 86 61 2 3 314

3 7 85 86 76 50 2 0 306

4 7 66 94 65 62 2 0 296

5 3 82 82 90 77 1 0 335

6 6 52 70 73 71 5 1 278

7 3 60 93 86 53 1 4 300

8 6 80 101 89 64 1 2 343

9 5 75 70 88 65 1 1 305

10 7 80 81 89 68 0 0 325

Total number 
in the sample

61 724 856 821 635 21 11 3129

% 1.94 23.138 27.35 26.23 20.29 0.67 0.35 3.35

Total estimated 
number

1818 21582 25517 24473 18929 626 328 93273

Total cross sectional area = 384999 pm^.

Sample size =12915.375pm^.

Total number of axons in the sample =3129

Estimated number of axons in this animal = (384999 -  12915.375) x 3129

= 93273
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Table 11. The mean estimated number(n = 3), total (± SEM) and subgroups of intact axons 
in sham-controls

Sub-group
0-0.5pm 0.51-1.0pm 1.1-1.5pm 1.51-2.0pm 2.1-2.5pm 2.51-3.0pm >3 pm Total

Animal one 3294 31145 28300 33255 9753 3197 672 109616

Animal two 1244 22365 25857 25053 17150 1950 507 94126

Animal three
1818 21582 25517 24473 18929 626 328 93273

Total
Estimated

6356 75092 79674 82781 45832 5773 1507 297015

Mean 
estimated 
number of 
axons

2118±
863.49

25031± 
4335.28

26558± 
1239.57

27594 ± 
4010.16

15277
±3973.23

1924 ± 
1049.76

503 ± 
140.47

99005
±

7511.2

% 2.1392 25.28 26.82 27.87 15.43 1.94 0.5
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Table 12. One week survival, animal one

micrograph 0"0.5pm 0.51-
1.0pm

1.1-
1.5pm

1.51-
2.0pm

2.1- 
2.5 pm

2.51-
3.0pm

>3p
m

Total

1 4 71 84 79 8 11 1 258

2 2 65 58 80 18 8 2 233

3 3 76 60 77 19 12 0 247

4 2 89 69 70 12 11 0 253

5 1 77 75 73 40 23 1 290

6 4 75 86 60 16 13 1 255

7 2 59 79 69 24 21 2 256

8 2 60 78 52 29 16 1 238

9 5 69 87 65 28 10 0 264

10 3 88 71 62 29 9 0 262

Total axon in 
the sample 28 729 747 687 223 134 8 2556

% 1.09 28.52 29.22 26.87 8.72 5.24 0.31 3.35

Total
estimated
number

835 21729 22265 20477 6647 3994 238 76185

Total number of axons in the sample = 2556

Sample size = 12916.66

Cross- sectional area = 385000pm^

Total estimated axons in the area = (385000±12916.66) x 2556

= 76185
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Table 13. One week survival, animal two

Micrograph 0-
0.5pm

0.51-
1pm

1.1-
1.5pm

1.51-
2pm

2.1-
2.5pm

2.51- 
3 pm

>3 pm Total

1 6 68 78 84 40 6 0 282

2 6 78 63 94 61 8 1 311

3 3 64 80 55 44 4 0 250

4 3 57 75 77 41 2 0 255

5 0 74 61 78 44 2 0 259

6 0 85 80 71 43 4 1 284

7 3 70 62 77 53 7 0 272

8 2 82 81 65 28 2 1 261

9 0 88 86 69 50 3 0 296

10 2 77 68 67 40 0 0 254

Total number of 
axons in the 
sample

25 743 734 737 444 38 3 2724

% 0.91 27.27 26.94 27.05 16.29 1.39 0.11 3.72

Total estimated 
axons 673 19988 19746 19827 11945 1023 81 73283

Total number of axons in the sample area = 2724 

Size of the sample area = 12915.375pm^.

Total cross section area = 347462.495 pm^.

Estimated number of axons = (347462.495 -12915.375

= 73283
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Table 14. One week survival, animal three.

micrograph 0-0.5pm 0.51-
1pm

1.1-
1.5pm

1.51- 
2 pm

2.1-
2.5pm

2.51- 
3 pm

>3p
m

Total

1 10 45 70 80 35 5 0 245

2 09 55 65 85 60 9 1 284

3 08 39 73 50 45 2 0 217

4 05 57 68 75 50 3 0 258

5 03 49 55 80 35 4 0 226

6 08 59 83 72 38 6 0 266

7 12 61 63 75 50 5 0 266

8 19 40 75 66 31 4 1 236

9 11 49 80 65 45 3 2 255

10 12 57 72 70 46 6 1 264

Total number 
in the sample

97 511 704 718 435 47 6 2518

% 3.8 20.3 27.9 2&5 17.2 1.86 0.2

Total
estimated
number

2892 15232 20986 21403 12967 1401 179 75060

Total estimated number of axons in the sample = 2518 

Area of the sample =12915.37pm^

Cross section area = 385000pm^

Total estimated number of axons = (835000-12915.37)x 2518 
=75060
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Table 15. One week survival: Mean estimated number (n = 3), total (±SEM) and
subgroups of intact axons

0-0.5pm 0.51-lpm l.l-1.5pm 1.51-2pm 2.1-2.5pm 2.51-3pm >3pm Total

Animal one 835 21729 22265 20477 6647 3994 238 76185

Animal two 673 19988 19746 19827 11945 1023 81 73283

Animal three
2892 15232 20986 21403 12967 1401 179 75060

Total
estimated 4400 56949 85262 52707 31559 6814 501 224528

Mean 
estimated 
number o f  
axons

1466.7±
1010.0

18983± 
2745.93

20999 ± 
1028.4

20569± 
646.67

10522.67
±2771.53

2139 ± 
1320.49

167 ± 
64.75

74845.7 ± 
1194.6

%
1.96 25.36 28.05 27.48 14 2.8 0.22
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Table 16. Two weeks suiwival, animal one

microgi'aph 0-
.5pm

.51-
1pm

1-
1.5pm

1.51-
2pm

2-
2.5pm

2.51- 
3 pm

>3 pm Total no 
of axons

1 2 34 58 63 40 0 0 197

2 0 58 78 50 13 0 0 199

3 0 61 69 51 43 0 0 224

4 0 40 36 35 50 25 0 186

5 3 68 69 44 49 2 0 235

6 0 60 56 49 35 4 0 204

7 0 63 54 86 42 2 0 247

8 2 63 84 70 36 2 0 257

9 0 40 50 55 48 2 0 195

10 0 41 49 34 30 1 0 155

Total number 
in the sample 7 528 603 537 386 38 0 2099

% 0.33 25.15 2&72 25.58 18.38 1.81 0 3.35

Total estimated 
number 209 15739 17970 16008 11506 1133 0 62569

Total number of axons in the sample = 2099 

Sample size = 12915.375pm^.

Total cross section area = 385000pm^ .

Total estimated number of axons = (385000 -12915.375) x 2099

= 62569
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Table 17. Two weeks survival, animal two

Micrograph 0-
0.5pm

0.51-
1pm

1-
1.5pm

1.51-
2pm

2-
2.5pm

2.51- 
3 pm

>3 pm Total

1 0 63 79 76 58 0 0 276

2 2 73 61 85 65 0 0 286

3 0 65 68 61 60 3 0 257

4 2 74 67 73 49 0 0 265

5 0 65 64 73 40 4 0 246

6 2 89 64 61 57 0 0 273

7 0 50 62 46 70 2 0 230

8 0 60 68 60 48 0 0 236

Total number in 
the sample 6 539 533 53 5 447 9 0 2069

% 0.28 26.05 25.76 25.85 21.6 0.43 0 3.11

Total estimated 
number of axons 193 17317 17125 17189 14361 289 0 66474

Total number of axons in the sample = 2069

Sample size 10332.3 pm^ .

Total cross section area =331964 pm .

Total estimated number of axons = (331964 -  10332.3) x 2069

= 66474
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Table 18. Two weeks sumval, animal three

micrograph 0-
0.5pm

0.51-
1pm

1-
1.5pm

1.51-
2pm

2-
2.5pm

2.51- 
3 pm

>3pm Total

1 2 70 105 69 57 0 0 303

2 0 62 58 72 34 0 0 226

3 0 56 70 32 42 0 0 200

4 0 62 46 71 27 0 0 206

5 0 34 52 59 20 0 0 165

6 0 46 68 77 49 0 0 240

7 1 52 78 87 51 1 0 270

8 3 69 105 69 57 0 0 303

Total number in 
the sample 6 451 582 536 337 1 0 1913

% 0.31 23.57 30.42 28.01 17.61 0.05 0 2.68

Total estimated 
number 224 16805 21686 19972 12557 37 0 71281

Total number of axons in the sample =1913 

Size of the sampled area = 10332.3pm^.

Total cross section area = 385000pm^.

Total estimated number of axons = (385000 ± 10332.3) x 1913

= 71281
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Table 19. Two weeks suiwival (n =3): Mean estimated number, total (± SEM) and
subgroups or bins of intact axons

0-0.5pm 0.51-lpm l.l-1.5pm 1.51-2pm 2.1-2.5pm 2.51-3pm >3pm Total

Animal
one

209 15739 17970 16008 11605 1133 0 62569

Animal
two

193 17317 17125 17189 14361 289 0 66474

Animal
three

224 16805 21686 19972 12557 37 0 71281

Total 626 49861 56781 53169 38523 1459 0 200324

Mean
estimated

208.67 ± 
12.65

16620±
657.31

18927± 
1981.17

17723± 
1661.76

12841± 
1142.91

486 ± 
468.69

0 66774 ± 
3563.0

% 0.3 24.88 28.34 26.54 19.23 0.72 0
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Table 20. Three weeks survival, animal one

micrograph 0-
0.5pm

0.51-
1pm

1.1-
1.5pm

1.51-
2pm

2.1- 
2.5 pm

2.51- 
3 pm

>3 pm Total

1 0 93 59 61 30 0 0 243

2 0 73 80 63 42 0 0 258

3 2 75 81 60 28 2 0 248

4 0 80 50 52 33 6 0 221

5 0 82 75 68 61 35 0 321

6 0 32 50 50 40 6 0 178

7 0 75 80 58 52 3 0 268

8 0 86 47 53 41 10 0 237

Total number in 
the sample 2 596 522 465 327 62 0 1974

% 0.1 30.1 26.44 23.55 16.56 3.1 0 3 J8

Total estimated 
number 56 16638 14572 12980 9129 1731 0 55106

Total number of axons in the sample = 1974 

Sample size = 10132.3pm^.

Total cross sectional area = 282857.14pm^.

Total estimated number of axons = (282857.14 ± 10132.3) x 1974

= 55106
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Table 21. Thi*ee weeks survival, animal two

micrograph 0-
0.5pm

0.51-
1pm

1.1-
1.5pm

1.51-
2pm

2.1-
2.5p

2.51- 
3 pm

>3 pm Total

1 0 39 41 69 35 5 0 189

2 0 44 65 33 4 0 0 146

3 0 55 48 49 14 0 0 166

4 2 68 76 50 20 8 0 224

5 0 91 52 35 18 0 0 196

6 1 72 54 60 44 9 0 240

7 0 62 80 78 36 0 0 256

8 0 52 50 46 40 12 0 200

Total
estimated

3 483 466 420 211 34 0 1617

% 0.18 29.87 28.8 25.97 13.04 2.1 0 3.05

Total
estimated
number

99 15824 15267 13761 6913 1113 0 52977

Total number of axons in the sample =1617 

Sample area = 10132.3pm^.

Total cross sectional area = 331964pm^.

Total estimated number of axons =(331964 -10132.3) xl917

= 52977
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Table 22. Three weeks survival, animal three

micrograph 0-
0.5 pm

0.51-
1pm

1.1-
1.5pm

1.51-
2pm

2.1-
2.5pm

2.51-
3pm

>3 pm Total

1 0 83 117 57 35 0 0 292

2 2 73 50 13 11 0 0 149

3 0 64 47 53 22 0 0 186

4 0 61 64 50 30 3 0 208

5 0 60 75 70 50 10 0 265

6 0 58 63 50 35 5 0 211

7 0 61 90 30 30 15 0 226

8 3 94 77 60 30 0 0 264

Total number in 
the sample 5 554 583 383 243 33 0 1801

% 0.27 30.76 32.37 21.26 13.49 1.83 0

Total estimated 
number axons 160 18151 19101 12549 7962 1081 0 59006

Total number of axons in the sample =1801 

Sample size = 10132.3pm^.

Total cross-sectional area =331964pm^.

Total estimated number of axons = (331964 ±10132.3) xl801

= 59006
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Table 23. Thi'ee weeks survival (n = 3): Mean estimated number, total (± SEM)
and subgroups or bins of intact axons

0-.5pm 0.51-lpm l.l-1.5pm 1.51-2pm 2.1-2.5pm 2.51-3pm >3 pm Total

Animal one 56 16638 14572 12980 9129 1731 0 55106

Animal
two

99 15824 15267 13761 6913 1113 0 52977

Animal
three

160 18151 19101 12549 7962 1081 0 59006

Total 315 50613 48940 39290 24004 3925 0 167089

Mean
estimated

105 ± 
42.66

16872± 
964.17

16313.3
±1991.49

13096.6
±501.62

8001.3 ± 
905.1

1308.3±
299.15

0 55696.3
±

2496.5

% 0.18 30.29 29.28 23.51 14.36 2.34 0

Table 24. The mean estimated (n = 3), total and sub-groups in sham-control and one 
week, two weeks, and three weeks suiwivals.

Survival 0-0.5pm 0.51-lpm l.l-1.5pm 1.51-2pm 2,1-2.5pm 2.51-3pm >3 pm Total

Control 2118 25031 26558 27594 15277 1924 503 99005

%

One
week

754 20859 21005 20152 9296 2509 159 74734

% 1.0 27.91 26.96 12.43 3.35 0.21

Two
weeks

208 16620 18927 17723 12841 486 0 66774

% 0.3 24.88 28.34 26.54 19.23 0.72 0

Three
weeks

105 16872 16312 13096 8001 1308 0 55696

% 0.18 30.29 29.28 23.51 14.36 2.34 0
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Table 25. Number of axons (injured and intact) in each sample

Section 1 2 3 4 5 6 7 8 9 10 Total axons in the 
sample

W1 A1 322 303 299 310 293 311 293 330 316 340 3117

A2 344 392 400 394 319 332 390 350 309 438 3289

A3 343 319 299 334 290 298 297 292 284 376 3132

W2 A1 266 304 251 346 259 293 282 319 338 / 2658

A2 307 319 321 363 301 322 361 349 / / 2643

A3 300 320 290 340 305 304 310 332 / / 2480

W3 A1 350 345 355 331 346 325 337 325 / / 2714

A2 400 400 269 300 304 310 300 303 / / 2586

A3 386 260 318 242 345 240 325 350 / / 2466
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Table 26. Total estimated number of axons (normal + injured) (n = 3) at one, two and 
three weeks survivals.

Survival Total in
sample
(N+I)

Sample 
area pm^

Cross- 
sectional 
area pm^

Total
estimated
(Normal+I)

Total
estimated
normal

Total
estimated
injured

W1 A1 3117 12916.66 385000 92906 76185 16721

A2 3289 12915.375 347452.49 91171 73283 17888

A3 3132 12915.37 385000 93363 75060 18303

W2 A1 2658 12915.375 385000 85500 62569 22931

A2 2643 10332.3 331964 84816 66474 18342

A3 2480 10332.3 385000 91291 71281 20010

W3 A1 2715 10132.3 282857.14 75765 55106 20659

A2 2586 10132.3 331964 84724 52977 31747

A3 2466 10132.3 331964 80793 59006 21787

Table 27. Estimated mean cross-sectional area of the number of axons within 0.5pm wide 
bins in each experimental gi'oup. Each value is the total cross-sectional area in pm^

Sub-group 0.0-0.5
pm

0.51- 
1.0 pm

1.01- 
1.5 pm

1.51- 
2.0 pm

2.01- 
2.5 pm

2.51- 
3.0 pm

>3.01 pm Total % of
whole
nerve

Control 149.77 9636.7 35264.6 66396.8 63496.6 11432.1 4046.9 190423.6 49.8

1 Week 103.7 8389.6 27883.2 49493.3 43733.1 12709.6 1343.6 143656.2 37.6

2 Weeks 14.7 7345.3 25131.9 42645.2 53371.7 2887.7 0 131396.6 34.4

3 Weeks 7.4 7456.7 21661.3 31513.1 33256.2 7773.7 0 101668.5 26.6
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