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Abstract

The protozoan parasite Trypanosoma brucei has a complex life cycle with stages in 

mammalian hosts, where it is the causative agent o f sleeping sickness in humans and 

nagana in cattle, and in the tsetse fly vector. In order to evade the host immune system, T. 

brucei undergoes a process called antigenic variation in the mammalian bloodstream. In 

this process, a single Variant Surface Glycoprotein (VSG) is expressed on the cell surface, 

acting as a protective coat. The molecular identity o f the VSG coat is periodically and 

spontaneously changed by a number o f different switching mechanisms. T. brucei is 

known to have conserved DNA repair pathways, including homologous recombination 

(HR) and mismatch repair (MMR). While the central recombination factor RAD51 and its 

paralogue RAD51-3 have been shown to be important, but not essential, in VSG switching, 

a number of other factors, including the MMR proteins MSH2 and M LHl, seem not to be 

involved. Work in this thesis sought to examine several aspects o f MMR function in T. 

brucei, and concentrated on homologues o f the bacterial MutS protein.

The requirements for substrate length and sequence homology in T. brucei HR were 

studied using a DNA transformation assay. It was shown that reduction in either the length 

or the sequence identity o f recombination substrates causes a significant reduction in the 

transformation efficiency o f linear DNA, at least at an interstitial site. Genetic disruption 

o f the MSH2 gene only seemed to affect HR using substrates over 100 bp in length and 

with 5% divergence from the target sequence; shorter sequences and sequences with either 

0% or 11% mismatches apparently remained unaffected. A number o f transformants from 

all classes o f transformation retained an undisturbed copy of the target locus, hypothesised 

to be due to low-level trisomy within the population. In addition, and at a very low rate, 

distinct recombination events, resulting in observable changes in the T brucei 

chromosomes, were obseived. This work reveals some o f the factors which influence the 

pathways of recombination used by T. brucei.

A potential role for T. brucei homologues o f the meiosis-specific MutS homologues MSH4 

and MSH5 was also examined. Sequence comparisons show that these genes are present 

in T. brucei and the related kinetoplastids, T. cruzi and L. major. Like their orthologues in 

other organisms, T. brucei MSH4 and MSH5 lack a detectably functional mismatch 

interaction domain. Although MSH4 and MSH5 would only be expected to be required at 

the epimastigote life cycle stage, expression o f MSH5 can be detected by northern blot in 

procyciic form and bloodstream stage cells. Although creating genetic laiockouts o f these



genes was not successful, attempts were made to force expression o f MSH4 and MSH5 

ORFs from an ectopic locus, though this did not disrupt MMR function, nor reveal other 

obseivable phenotypes.

Finally, potential variation in MMR gene sequence and MMR functions in different T. 

brucei strains and subspecies was investigated. Many bacterial strains, known as mutators, 

have mutations in MMR genes, causing impaired MMR function and therefore increased 

variability in the population. It has recently been reported that this phenomenon is also 

obseiwed in T. cruzi. MSH2 and RAD51 nucleotide and protein sequences were compared 

between nine T. brucei strains, and showed extremely low levels o f polymorphism. 

However, four T. brucei strains were found to vaiy in their tolerance to the DNA damaging 

agents MNNG, H2O2  and MMS; whether this is due to differences in MMR, another DNA  

repair pathway, or drug uptake, is yet to be determined.
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Chapter 1

G e n e r a l  In t r o d u c t i o n



1 General introduction 

1.1 Trypanosoma brucei

The protozoan parasite Trypanosoma brucei is the causative agent o f trypanosomiasis in 

humans (Human African Trypanosomiasis, or sleeping sickness), as well as in cattle 

(nagana) and in a range o f wild animals, which provide a reservoir o f human infection. 

Trypanosomiasis is endemic to 36 countries o f sub-Saharan Africa, with 60 million people 

at risk o f disease; in 1998, 45,000 cases o f sleeping sickness were reported, although the 

World Health Organisation has estimated that the actual prevalence o f the disease could be 

up to ten times higher (www.who.int/mediacentre/factsheets/fs259/en), although more 

recently the numbers have fallen to 70,000 (Barrett, et a i ,  2003). T. brucei is spread by 

the tsetse fly {Glossina spp.), with a chancre or local inflammatoiy reaction visible at the 

site o f the bite, after which parasites pass into the bloodstream and lymphatic tissues. The 

symptoms of early human infection include a general malaise, fever, weakness and weight 

loss, whereas late stage infection, when the parasites have crossed the blood-brain barrier 

into the central nervous system, causes psychiatric, motor and sensoiy disorders and sleep 

disturbances, followed by seizures, somnolence and coma. Sleeping sickness is fatal in 

many cases if  left untreated, with disease severity sometimes depending on host genotype 

(Sternberg, 2004). Two different subspecies o f T. brucei are infective to humans, with 

different disease outcomes: T. b. gambiense, endemic to central and western Africa, causes 

a chronic infection where progression to late stage infection can take years, whereas T. b. 

rhodesiense, found in southern and eastern parts o f the continent, causes an acute form o f  

the disease which can progress to late stage within months (Sternberg, 2004). The few  

drugs available for the treatment o f sleeping sickness are all associated with major 

problems, including unacceptable side effects and an increasing rate o f treatment failure 

(Barrett et al., 2003; Kennedy, 2004). A  third T. brucei subspecies, T. b. brucei, is not 

infective to humans but can still infect cattle and wildlife (Gibson, 2002). The reasons for 

this difference in host range are discussed in section 5.2.1.1.

The T. brucei genome, the near-complete sequence of which has been published (Berriman 

et al., 2005), contains 11 diploid chromosomes, known as megabase chromosomes. These 

range in size from 0.9 to over 6 Mb, with a total haploid genomic content o f 26 Mb, and 

are predicted to contain 9068 genes. In addition (El Sayed et al., 2000), there are several 

intermediate chromosomes o f between 200 and 900 kb, and about 100 minichromosomes 

measuring between 50 and 150 kb. Minichromosomes are composed mainly o f repetitive,

http://www.who.int/mediacentre/factsheets/fs259/en


palindromie sequences (El Sayed et al., 2000; Wickstead et al., 2004) that are present also 

on the intermediate chromosomes. To date, only VSG and expression site-associated genes 

(see section 1.1.4) have been found on these chromosomes (Melville et al., 1998; 

Wickstead et al., 2004). The published T. brucei genome sequence was derived from the 

TREU 927/4 strain; however, genomic content can differ by up to 25% between strains, 

and the sizes o f individual chromosomes can vaiy by a similar amount between the allelic 

copies o f a chromosome in the same strain (Melville et al., 2000; El Sayed et al., 2000). 

Much of this fluctuation is thought to be due to telomeric and subtelomeric rearrangements 

possibly associated with antigenic variation, as described below (Melville et al., 2000).

T. brucei belongs to the family Tiypanosomatidae, o f the protist order Kinetoplastida and 

the order Eugelenozoa. The order Kinetoplastida is defined by the presence o f the 

kinetoplast, a single large mitochondrion made up o f a complex network of circular DNA  

molecules (Liu et al., 2005). One peculiarity o f the Kinetoplastida is the organisation of  

their genes into polycistronic transcription units, as discussed in more detail in section 

4.2.5.1. Phylogenetic analysis o f the eukaryotes based on a number o f protein sequences 

estimated divergence o f this order from the eukaryotic lineage at approximately 1.98 

billion years ago (Hedges et al., 2004; see figure 1.1). The genomes o f two other human- 

infective members o f the Trypanosomatidae family, Trypanosoma cruzi and Leishmania 

major, which cause Chagas disease and leishmaniasis, respectively, have also been 

sequenced (El Sayed et al., 2005; Ivens et al., 2005). Although these three parasites are 

grouped in different branches o f the tiypanosomatid phylogeny (Hughes and Piontkivska, 

2003), there are high levels o f synteny between T. brucei, T. cruzi and L. major (Ghedin et 

al., 2004).

1.1.1 The T. brucei life cycle

T. brucei has a complex life cycle, with stages in both mammalian hosts (including humans 

and cattle) and the tsetse fly Glossina spp (Barry and McCulloch, 2001; see figure 1.2). 

Life cycle stages, all o f  which are extracellular, were identified by virtue o f differences in 

morphology, for example movement o f the kinetoplast, from the posterior end o f the cell in 

the bloodstream stage to a more central location in the procyciic form (Hendriks et al.,

2000). The replicative stages are the long slender bloodstream form, procyciic form, and 

epimastigote form, which undergo constant mitotic division and cause infection in the 

mammalian bloodstream and in the midgut and the salivaiy glands o f the tsetse, 

respectively. Transmission stages, on the other hand, do not undergo mitosis and appear to
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Euglenozoan order, circled in red. Taken from Hedges et a!., 2004.
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Figure 1.2. The 7. brucei life cycle. T. brucei life cycle stages are shown as scanning electron 
micrographs, shown to scale; an erythtrocyte is shown next to the long slender bloodstream stage 
for comparison. The host organism and the name of the life cycle stage are indicated. Circular 
arrows represent replicative stages, whereas straight arrows represent differentiation and 
progression through the life cycle. Taken from Barry and McCulloch, 2001.



be cell cycle arrested. These are the bloodstream short stumpy stage, capable o f  

transmission from the mammalian bloodstream to the tsetse fly, the metacyclic stage, 

capable o f transmission from the tsetse salivary gland to the mammalian host (both as part 

of an infected bloodmeal), and the mesocyclic form, capable o f transmission from the 

tsetse alimentary tract to the salivary gland. Transmission stage parasite forms appear to 

be a dead end in the life cycle if  not passed on to the next host; for example, it has been 

observed that short stumpy cells can only survive for a matter o f days if  not transmitted to 

the tsetse fly (Turner et aL, 1995), Short stumpy form trypanosomes also display partial 

adaptations to survival in the tsetse fly; for example, they display increased resistance to 

acidity and proteolytic stress compared to long slender cells (Nolan et al., 2000). A similar 

pre-adaptation is seen in tsetse metacyclic form cells, which express a VSG coat (see 

below) in preparation for transition into the mammalian bloodstream (Ginger et aL, 2002). 

Differentiation from the long slender to short stumpy bloodstream forms is dependent on 

cell density in the host bloodstream (Reuner et al., 1997), communicated by a compound 

known as “stumpy induction factor”, which triggers cell cycle arrest in Gi/Go phase 

through a cAMP signalling pathway (Vassella et aL, 1997).

Bloodstream stage T. brucei are covered by a protective coat o f Variant Surface 

Glycoprotein (VSG), which shields invariant surface molecules from the host immune 

system, protects the cell against complement-mediated lysis, and undergoes antigenic 

variation (as discussed in section 1.1.5). In contrast, tsetse fly-infective cycle stages are 

covered by procyclin, also known as procyciic acidic repetitive protein (PARP; not to be 

confused with poly(ADP-ribose) polymerase, an enzyme involved in DNA damage 

signalling). Both VSGs and procydins are anchored to the cell surface by 

glycophosphatidylinositol (GPI) anchors (Boothroyd et aL, 1980; Ferguson, 1999; 

Matthews et aL, 2004). Once the short stumpy form has been ingested as part o f a tsetse 

bloodmeal, loss o f VSG and their replacement by procyclin on the surface o f the parasite is 

completed in a matter o f hours (Hendriks et aL, 2000; Matthews et aL, 2004). Different 

procyclins are characterised by different internal repeats: EP forms contain internal Glu- 

Pro repeats, whereas GPEET forms contain the Gly-Pro-Glu-Glu-Thr repeat (Roditi et aL, 

1998). These variants are expressed differentially, In different isoforms, throughout tsetse 

infection (Acosta-Serrano et aL, 2001; Roditi and Liniger, 2002). Some doubt remains as 

to the function of the procyclin coat, but roles have been suggested in protection against 

trypanocidal factors found in the midgut, and detection o f tsetse-specific factors 

stimulating further differentiation (Roditi et aL, 1998).



1.1.2 Antigenic variation is a conserved mechanism for the 

evasion of host immunity

A challenge facing all pathogenic organisms is sm-vival in the face o f host immunity. To 

this end, many pathogens employ a system o f highly mutable “contingency genes” (Moxon 

et al., 1994), which make up only a small subset o f the genome, yet allow a much higher 

rate o f phenotypic variation than would be possible using only spontaneous mutations. In 

fact, contingency genes’ functions are not limited to the avoidance o f host immunity, but 

allow enhanced propagation, including differential tissue binding, cell invasion or 

avoidance o f phagocytosis. This strategy has been obsei-ved in viral, bacterial, fungal and 

protozoal pathogens (Barry et al., 2003), and can be classified either as phase variation or 

antigenic variation, as described below. In most o f these systems the rate o f variation is 

surprisingly similar (about 10'  ̂ to 10"̂  switch/cell/population doubling time), even though 

the considerable diversity in mechanisms used indicates convergent evolution (Deitsch et 

al., 1997).

Many bacterial pathogens undergo phase variation, where expression o f a given factor is 

controlled by a simple “on /off’ switch (Henderson et al., 1999). The most-cited examples 

of phase variation are to be found in Gram-negative bacteria, where changes in surface 

structures lead to differences in observable phenotypes such as cellular aggregation and 

colony morphology. Some mechanisms of phase variation involve recombination- 

mediated genetic rearrangements: either site-specific recombination such as involving the 

fimA gene in Escherichia coli (Kulasekara and Blomfield, 1999), or RecA-dependent 

homologous recombination, such as involving the type IV pilin in Neisseria gonorrhoea 

(Mehr and Seifert, 1998). Alternatively, gene expression can be modulated by slipped- 

strand mispairing, where highly mutable short sequence repeats can be used as a switch 

either by affecting a gene’s promoter or by altering its reading frame; examples o f this are 

seen in a number o f Helicobacter pylori genes (Saunders et al., 1998).

Antigenic variation is distinguished from phase variation by the fact that it is strictly 

concerned with evasion of acquired immunity through the expansion of alternative surface 

molecules. As such, it is more complex, since it involves switches between multiple 

surface antigens, rather than switches between two different states, as is seen in phase 

variation. In intracellular life cycle stages o f Plasmodium falciparum, the apicomplexan 

parasite that is the causative agent o f malaria, highly polymorphic parasite-encoded 

antigens are expressed on the surface o f parasitized erythrocytes. These are encoded by



three families o f genes, the var genes (which encode PfEMPl, or P. falciparum  erythrocyte 

membrane protein 1), the r if  (repetitive interspersed family) genes, and the stevor 

(subtelomeric variant open reading frame) genes, which are expressed one (or a very few) 

at a time (Deitsch and Hviid, 2004). For the var genes, this is controlled by transcriptional 

silencing agents (Deitsch et al., 2001) which mediate changes in chromatin structure 

(Deitsch, 2005); for the other gene families, the method o f control is not known. As well 

as acting in immune evasion, some of these factors also have roles in virulence and 

pathogenesis, as they affect the ability o f the red cells to adhere to vascular endothelium, 

causing accumulation of parasites in certain organs, in particular the brain (Kyes et al.,

2001). Another example o f antigenic variation can be found in the protozoan intestinal 

parasite, Giardia lamblia (Nash, 2002). In this organism, expression o f a single 20-200 aa, 

cysteine-rich Variant-specific Surface Protein (VSP) from a repertoire of approximately 

150 is controlled by transcriptional mechanisms (Mowatt et al., 1991). T. brucei also uses 

antigenic variation in the evasion o f host immunity; this mechanism involves both 

transcriptional and recombinational processes, as outlined below.

1.1.3 T. brucei Variant Surface Glycoproteins

v s  G molecules are the antigens that undergo switching in T. brucei antigenic variation. 

They cover the surface o f bloodstream form cells in a densely-packed monolayer (see 

figure 1.3), shielding necessarily invariant conserved surface molecules (Borst and 

Fairlamb, 1998) from the mammalian immune system (Overath et ah, 1994). This 

protective function causes an immune response to be mounted against the expressed VSG, 

necessitating periodic changing o f the coat as described in section 1.1.5. There are 

approximately 5.5 x 10  ̂ VSG homodimers on the surface o f each T. brucei cell (Cross, 

1975; Auffret and Turner, 1981), and these are endocytosed and recycled at a very high 

rate via the flagellar pocket (Overath and Engstler, 2004).

VSGs are generally between 400 and 500 aa long, and are made up o f two domains: the C- 

terminal domain of 40-80 aa, closest to the plasma membrane of the cell; and the N- 

terminal domain o f 350-400 aa, which extends beyond the invariant surface molecules and 

contains the exposed epitopes (Pays, Salmon, Morrison, Marcello and Barry, in press). 

While only minimal primary sequence consei*vation within these domains can be detected, 

3D crystallographic structures o f both the N-terminal (Blum et ah, 1993) and C-terminal 

(Chattopadhyay et ah, 2005) domains demonstrate that secondary and tertiary structure are 

well conserved. The C-terminal domain has an elongated structure, which is proposed to



Transferrin
lgG2

antibody

VSG Transferrin 
dimer receptor

GPI

mmwMWwmwim

/
Lipid b ilayer

14.5 nm

M m
m w  
\ Hexose transporter

Figure 1.3. A schem atic representation of the ceil surface of bloodstream  form T. brucei. 
VSG dimers (attached to the GPI anchor via the C-terminal domain), a transferrin receptor and an 
hexose transporter are shown associated with the plasma membrane. A transferrin and 
immunoglobulin G (lgG2) molecule are also shown for size comparison. Taken from Borst and 
Fairlamb, 1998

rg

m  

m  

a

ED
□

82

10

34

-A

154

■ A 0

0

250

Figure 1.4. Schem atic representation of the silent VSG repertoire on the m egabase  
ch rom osom es of T. brucei strain TREU 927/4. Chromosomes are represented by horizontal 
lines, with the chromosome number in a grey box to the left of each chromosome. Arrays of VSGs 
are depicted by black blocks; the orientation of sets of VSGs is shown by the position of the box 
above or below the line. The provisional number of VSGs in each array is shown. Breaks in 
contiguation are represented by oblique lines. Taken from Barry et a/., 2005.



allow the exposed N-terminal domain to extend out substantially from the plasma 

membrane (Chattopadhyay et ah, 2005). The N-terminal domain is made up o f a “VSG 

fold” o f two antiparallel alpha helices, which interact with the corresponding helices o f the 

partner VSG of the homodimer creating a coiled-coil structure. Both domains can be 

classified into different groups based on the number and organisation o f cysteine residues 

(Carrington et al., 1991), and although certain combinations o f N  and C domains seem to 

be preferred, all are possible (Carrington et al., 1991; Hutchinson et al., 2003).

The basis o f antigenic variation is that VSGs are expressed one at a time, with a single VSG 

being selected from a large repertoire o f silent VSGs. The original estimate o f the number 

o f VSGs, calculated by probing cosmid libraries at low stringency with 70-bp repeat (see 

section 1.1.4) sequence, was approximately 1,000 (Van der Ploeg et al., 1982), and 

analysis o f the genome sequence has confirmed this figure to be roughly correct: the total 

number of VSGs on the megabase chromosomes has been estimated at 1,600, with 940 

annotated to date (L. Marcello and J.D. Barry, pers. comm.). The total number will, 

however, be higher, as approximately 100-200 VSGs are found at subtelomeric sites within 

the minichromosomes (Wickstead et al., 2004), which have not been sequenced. A 

number of surprising facts about the VSG archive have been uncovered thanks to genomic 

sequence analysis (Bariy et al., 2005). Firstly, silent VSG genes on the megabase 

chromosomes are found overwhelmingly in subtelomeric arrays (see figure 1.4), rather 

than in interstitial arrays as previously thought (Barry and McCulloch, 2001), with only 5 

VSGs being found in interstitial locations (Bariy et al., 2005). This occupation o f  

subtelomeres by genes involved in antigenic variation is also found in other pathogens, 

including P. falciparum  (Scherf et al., 2001). One explanation for why this may be 

advantageous is that it allows for high levels o f ectopic recombination (Barry et al., 2003), 

perhaps facilitating gene diversification with minimal risk to essential chromosome- 

internal genes. Secondly, only 5% o f genes in the VSG archive are fully functional, 

encoding all known features o f known expressed VSGs; o f the remaining genes, 9% are 

classified as atypical and are predicted not to be adequately folded or modified due to 

defective GPI signals and/or cysteine pattern, 62% are pseudogenes with frame shifts 

and/or stop codons, and 19% are gene fragments, in many cases due to ingi insertion 

(Barry e ta l., 2005; L. Marcello, pers.comm.).

The strategy o f placing surface antigen genes in subtelomeric locations is also employed 

by a number o f other organisms (Barry et al., 2003), including the parasites T. cruzi 

(Chiurillo et al., 1999) and P. falciparum  (Scherf et al., 2001), the eubacterium Borrelia 

hermsii (Kitten and Barbour, 1990), and the fungal parasite Pneumocystis carnii (Wada
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and Nakamura, 1996). A  notable exception to this trend is the protist Giardia lamblia, all 

o f whose vsp genes are interstitial (Adam, 2000). The effectively aneuploid nature o f the 

subtelomeres means that they can recombine ectopically with each other rather than being 

limited to homologous chromosomes (Horn and Barry, 2005). In many other organisms 

such as H. sapiens, the subtelomeres is where recombination and expansion o f genomic 

repeat sequences is common (Linardopoulou et aL, 2005).

Metacyclic form trypanosomes encode a relatively specific set o f VSGs, which are 

expressed for a few days after infection of the mammalian host before being replaced by 

bloodstream-specific VSG (Ginger et aL, 2002). The repertoire o f metacyclic VSGs is 

much smaller than that o f bloodstream stage VSGs, calculated by immunological methods 

to contain only 27 genes (Tuiner et aL, 1988), not all o f which are known to be functional. 

However, gradual turnover o f this small repertoire prevents the development o f herd 

immunity (Barry et n/., 1983).

1.1.4 Expression sites

VSGs are expressed from specialised polycistronic transcription units called expression 

sites (see figure 1.5). There are approximately 20 o f these in the T. brucei genome (Becker 

et aL, 2004) that are used in the bloodstream, which are referred to as bloodstream 

expression sites (BESs). In addition, metacyclic VSGs are expressed from metacyclic 

stage-specific expression sites (MESs). BESs and MESs are located exclusively in 

subtelomeric locations, with a single one being expressed at once. BESs vary between -4 0  

and 100 kb in size (Becker et aL, 2004), and have a variable but conserved structure 

(Berriman et aL, 2002). The VSG gene is located closest to the telomere, within 

approximately 5 kb of the telomeric repeats (Horn and Bariy, 2005). Upstream o f the VSG 

is a stretch o f up to 20 kb (McCulloch et aL, 1997) o f short, divergent repeat sequences 

known as the 70-bp repeats (Liu et aL, 1983), shorter stretches o f which are also found 

upstream o f most silent VSG genes in subtelomeric arrays (Bariy et aL, 2005). Between 8 

and 10 expression-site-associated genes {ESAGs) can be found upstream o f the 70-bp 

repeats. Some of their functions are as yet unknown and in many cases they have 

degenerated to pseudogenes. In addition, several are members o f multigene families with 

paralogues in interstitial locations (Pays et aL, 2001; Donelson, 2003). None o f the ESAGs 

have been found to be directly involved in antigenic variation, although some have roles in 

host-parasite interactions. The human serum resistance-associated gene which confers 

human infectivity on certain T. brucei strains (see section 5.2.1.1), is expressed as an 

ESAG (Xong et aL, 1998). ESAG6 and ESAG7, the only ESAGs identified in eveiy BES
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studied, encode the two subunits o f the T. brucei transferrin receptor (Schell et aL, 1991; 

Ligtenberg et aL, 1994), and are presumably essential, as they provide the parasite’s sole 

means o f iron uptake from the host bloodstream (Berriman et aL, 2002). Different alleles 

o f ESAG6 and ESAG7 are found in different BESs, with differing affinities for transferrins 

from different hosts (Bitter et aL, 1998). This led to the theoiy that the use o f different 

BESs helps to establish host specificity, though this has been cast into doubt when it was 

shown recently that differences in binding do not correspond to differences in growth in 

the sera o f different mammalian species (Salmon et aL, 2005). Transcription o f the active 

BES (and of procydin genes) is carried out by RNA polymerase I, usually reserved in 

eukaiyotes for the transcription o f ribosomal RNA (Lee and Van der Ploeg, 1997; Laufer 

et aL, 1999; Gunzl et aL, 2003), although differences between BES and rRNA promoters 

have been identified (Zomerdijk et aL, 1990; Horn and Cross, 1997b). These genes all 

require transcription at very high rates. However, another possible reason for the use o f  

RNA polymerase I is that it allows differential control o f expression, rather than the 

unregulated transcription provided by RNA polymerase II; it is known that these 

polymerases interact with the RNA processing machinery in different ways (Vanhamme et 

aL, 2000). The BES is insulated from the subtelomeric VSG arrays by large aiTays of 

repetitive sequences. Directly upstream of the BES promoter are arrays o f 50-bp repeats 

which can stretch 40-50 kb upstream (Zomerdijk et aL, 1990; Zomerdijk et aL, 1991), 

marking the boundaiy o f BES-specific transcriptional control (Sheader et aL, 2003). 

Upstream of each 50-bp repeat array is an “island” consisting o f tens to hundreds o f kb o f  

repetitive elements, such as the RIME and ingi transposons (Berriman et aL, 2002; 

Bringaud et aL, 2002), further separating the BES from chromo some-internal sequences.

Five MESs for the expression o f metacyclic VSGs (Graham et aL, 1999) have been 

annotated to date. These are also found in subtelomeric locations and transcribed by RNA 

polymerase I (Barry and McCulloch, 2001; Berriman et aL, 2002). However, their 

structure is much simpler than that o f the BESs, consisting simply o f a promoter, a small 

stretch o f 70-bp repeats and a single VSG. In fact, the MESs are the only T. brucei genes 

known to be transcribed monocistronically (Alarcon et aL, 1994; Nagoshi et aL, 1995). It 

is possible that MESs are derived from BESs, as they are flanked upstream by divergent 

ESAG sequence (Bringaud et al., 2001).

A novel nucleotide, known as p-D-Glucosyl-hydroxymethyluracil or J (Gommers-Ampt et 

aL, 1993), has been discovered in T. brucei, and linked by some to the control o f antigenic 

variation. This modified version of uracil is incorporated in place o f a subset o f thymine 

residues, and accounts for 0.2 moI% of nuclear DNA in T. brucei (van Leeuwen et at.,
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1997). The presence o f J at inactive, but not active, BESs (van Leeuwen et aL, 1997) 

suggested a role in antigenic variation. However, J has also been found in other 

kinetoplastids, even those incapable o f antigenic variation (van Leeuwen et aL, 1998). In 

addition, it is not exclusive to telomeric structures but also found in other tandemly 

repeated sequences (van Leeuwen et aL, 2000). J is bound by JBPl (J-binding protein 1), 

which promotes propagation o f this unusual base (Cross et aL, 1999), and by the chromatin 

remodelling protein JBP2 (J-binding protein 2), a member o f the SWI2/SNF2 family 

(Dipaolo et aL, 2005), and has been proposed to be an epigenetic marker o f  

heterochromatin and/or repetitive DNA, rather than controlling antigenic variation (Borst 

and Ulbert, 2001; Pays et aL, 2004). The chromatin structure o f the active BES is more 

open than that o f silent ones (Pays et aL, 1981), and the active BES appears to contain 

increased amounts o f single-stranded DNA, presumably associated with the high levels o f  

transcription (Greaves and Borst, 1987). As for J, whether or not these characteristics are a 

cause rather than a consequence o f BES expression is unclear, however.

1.1.5 VSG switching in T. brucei

Antigenic variation in T. brucei consists o f the parasite periodically changing, or 

“switching”, its VSG coat; reviews are available on this subject (Barry, 1997; Barry and 

McCulloch, 2001). Tiypanosome infection o f the mammalian host follows a pattern o f  

recurring peaks o f parasitaemia, as shown in figure 1.6 (Barry, 1986; Morrison et aL, 

2005), caused by the host’s anti-VS G antibody responses, and by density-dependent 

differentiation o f parasites to the non-dividing short stumpy life cycle stage (Tyler et aL, 

2001). VSG switching is spontaneous and is not triggered by this immune response, and 

can indeed occur in viti'o, in the absence o f antibodies (Doyle et aL, 1980), but allows the 

few cells that have switched their coat to survive immune destruction. A single peak of 

infection can be a mixture o f descendents o f several different VSG switching events (Miller 

and Turner, 1981; Robinson et aL, 1999), and even cells expressing the same VSG within 

an infection peak can arise from separate switching events (Timmers et aL, 1987). The 

genetic factors influencing antigenic variation are discussed in section 1.4.

The rate o f VSG switching has been demonstrated to occur at rates as high as 10'  ̂ to 10"̂  

switch/cell/population doubling time (Turner and Bariy, 1989; Turner, 1997). However, in 

lab-adapted cell lines derived by serial syringe passage through rodents, the switching rate 

is much lower at only 10'  ̂ to 10'  ̂ switch/cell/population doubling time (Lamont et aL, 

1986). Such lab adaptation causes the parasite to grow to high parasitaemia in rodents, and 

to the loss o f the cells’ ability to differentiate from the long slender to the short stumpy
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form and hence to transmit through the tsetse fly. T. brucei strains that undergo this 

differentiation are referred to as “pleomorphic”, whilst strains that have lost the capacity 

are called “monomorphic”. The basis for this deficiency is unknown, as is its potential 

relationship with a reduction in VSG switching rate.

1.1.5.1 Transcriptional “/n s/fu” switching

Two different VSGs can be expressed simultaneously if  they are found in the same BES 

(Munoz-Jordan et aL, 1996), whereas simultaneous, maximal expression from two 

different BESs at once is impossible (Chaves et aL, 1999). Together, this implies that 

control o f VSG expression must be acting at the level o f BES, rather than VSG, selection. 

How is this phenomenon, known as allelic exclusion, regulated? An important 

breakthrough in understanding this was the discovery o f a putative specialised nuclear 

compartment outside the nucleolus, known as the Expression Site Body (Navarro and Gull,

2001). This complex is associated with the active BES, but none o f the silent ones. In 

addition, it is detectable in bloodstream, but not procyclic, stage cells. Apart from RNA  

polymerase I, the components o f this structure are not known. Small amounts o f transcript 

from silent BESs can be detected for ESAGs and BES sequence close to the promoter, 

whereas transcription o f more than one VSG can never be detected (Ansorge et aL, 1999; 

Vanhamme et aL, 2000; Borst and Ulbert, 2001; Amiguet-Vercher et al., 2004), showing 

that it is RNA processing and elongation, rather than differential initiation o f transcription, 

that underlies the control o f BES expression. The elements that underpin this reaction, 

either as DNA sequence or potential factors, are unknown. Telomere position effect could 

also contribute to this process. Telomere position effect was first obsei'ved in 

Saccharomyces cerevisiae (Gottschling et aL, 1990), and is a repression o f transcription in 

telomere-proximal regions o f the genome, dependent on the peripheral position of 

telomeres within the nucleus (Feuerbach et aL, 2002). This reaction has also been 

obseived in H. sapiens (Baur et aL, 2001) and in T. brucei (Horn and Cross, 1995; 

Rudenko et aL, 1995), and it remains possible that it could contribute to the regulation o f  

VSG expression.

One form of VSG switching is known as transcriptional or in situ switching, where 

transcription is simply moved from the promoter o f one BES to another (see fig 1.7). No 

clear examples o f genetic rearrangements have been shown to be involved in this form o f  

switching reaction. Although some sequence alterations are seen in in situ switch reactions 

in one study (Navarro and Cross, 1996), and a significant minority o f cases have been
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described where the active BES is deleted (Cross et aL, 1998), other reactions have been 

identified without observable sequence changes (Horn and Cross, 1997a; Rudenko et aL,

1998). It seems likely, therefore, that in situ switches do not involve recombination of the 

BES sequences. Nevertheless, the mechanistic basis o f the reaction, the factors involved 

and its relationship with BES silencing are not yet known. Recent work has shown that 

derepression o f silent BESs, as well as other Poll transcription units, can be triggered by 

blocking transcription or subjecting the cell’s genome to damage (Sheader et aL, 2004) so 

it is possible that the reaction is linked to DNA repair in as yet unknown ways.

1.1.5.2 Recombinational switching pathways

A number o f VSG switching mechanisms have also been detected that clearly rely on 

rearrangement o f the parasite’s genetic content by homologous recombination (see fig 1 .7 ). 

These recombinational mechanisms mainly involve duplicative transposition by gene 

conversion, i.e. a one-way transfer o f genetic information from a silent locus (or loci) into 

the active BES, deleting the resident VSG locus but leaving the silent copy (or copies) 

intact for activation in subsequent infections. A number o f distinct reactions fall in this 

class.

The first type o f duplicative transposition, named expression-linked copy (EEC) formation, 

involves gene conversion o f a silent VSG gene, from a tandem array in a megabase 

chromosome, a silent BES or the subtelomere o f a mini chromosome, into the active BES, 

with associated loss o f the previously-expressed VSG. The gene conversion tract generally 

extends from the 70-bp repeats upstream (Liu et aL, 1983; Matthews et aL, 1990), and the 

downstream limit in this pathway o f VSG switching is normally at homologies at the 3’ end 

o f the VSG coding sequence (Michels et aL, 1983), although it can also extend beyond the 

ORE (Michels et aL, 1983; Timmers et aL, 1987). In monomorphic lines the situation is 

slightly different: initiation o f recombination can be observed up to 6  kb upstream of the 

VSG (Lee and Van der Ploeg, 1987), and indeed the 70-bp repeats can be deleted from the 

active BES o f a monomorphic cell line without any change in switching frequencies 

(McCulloch et aL, 1997). It has been proposed that a specific endonuclease might create 

double-strand breaks in the 70-bp repeats to initiate recombination (Pays et aL, 1994; 

Robinson et aL, 1999), but none has yet been identified, and breaks could be created by 

other means. The fact that switching events do not share specific endpoints argues against 

a site-specific recombination mechanism for VSG switching, but rather in favour o f  

homologous recombination (Rudenko et aL, 1998; Barry and McCulloch, 2001).
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Figure 1.7. The VSG sw itching m echanism s of T. brucei. A schematic representation of the 
mechanisms of \/SG switching (see  text). Horizontal grey lines represent the expression site or 
VSG array chromosome; vertical grey lines represent the end of a telomere; triangles represent 
expression site promoters; black arrows represent transcription of an expression site; black and 
white striped boxes represent the 70-bp repeats; grey and white striped boxes represent the 177- 
bp repeats found upstream of metacyclic expression sites; coloured squares represent distinct 
VSGs] black lines represent the extent of sequence copied into the active expression site. Taken 
from C. Proudfoot, PhD thesis, University of Glasgow.
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In a second type o f duplicative ti'ansposition, named telomere conversion, the upstream 

limit o f the transferred sequence is also usually the 70-bp repeats (Shah et aL, 1987), but in 

this case transfer continues up to the telomere (de Lange et aL, 1983). It is possible that 

this is the same reaction as duplicative transposition, simply using the telomere tract as 

downstream homology. However, it is also possible that this pathway is distinct, and 

occurs by a break-induced replication mechanism, as described in section 1 .2 .2 .

Another mechanism o f recombination-driven VSG switching is also found, and referred to 

as telomere reciprocal recombination (Rudenko et aL, 1996; Barry, 1997). Unlike gene 

conversion reactions, this involves a simple crossover event between telomeric VSGs, with 

both VSGs remaining intact at telomeric locations. The site o f crossover can either be the 

70-bp repeats (Pays et aL, 1985) or further upstream (Shea et aL, 1986) in the BES. 

Although this has been documented on many occasions (Rudenko et al., 1998), it seems 

likely that It is a minor reaction, being limited only to the telomeric VSG repertoire.

The third form of VSG switching appears also to involve gene conversion, and hence be 

related to duplicative transposition. This is mosaic gene formation (Thon et aL, 1990; 

Barbet and Kamper, 1993), where novel, composite VSGs are created by segmental gene 

conversion using sections o f two or more silent VSGs. This is the only pathway that allows 

the VSG pseudogenes to contribute productively to antigenic variation, and differs from the 

duplicative transposition events described above as it does not rely on flanking homology, 

but instead on short regions o f homology within the VSG ORFs, and it is not clear whether 

the same mechanism is employed for both switching pathways. Mosaic gene formation is 

thought to be employed to prolong infection once the intact VSGs have been recognised by 

the immune system (Barbet and Kamper, 1993). Although it has been suggested that 

mosaic gene formation takes place within the active BES (Pays, 1989), it has also been 

pointed out that any incomplete products formed at this locus would be lethal to the cell 

(Barry and McCulloch, 2001).

1.1.5.3 Importance of different pathways

The above mechanisms o f VSG switching contribute to antigenic variation to different 

extents in pleomoiphic and monomorphic T. brucei. In monomorphic cells, in situ 

switching predominates (Liu et aL, 1983; Aitcheson et aL, 2005), and the 70-bp repeats 

have a less important role in switching (as discussed above), perhaps indicating that 

monomorphic cells have lost the ability to cany out ELC formation (Bariy, 1997). In 

pleomorphic T. brucei, most VSG switching takes place by duplicative transposition
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(Robinson et aL, 1999). The presence o f a veiy high number o f VSG pseudogenes in the T. 

brucei genome suggests that mosaic gene formation must have a greater importance in 

antigenic variation than previously thought, although whether or not it occurs equivalently 

in pleomorphic and monomorphic strains is unclear.

The order o f expression of different VSGs from the archive has often been described as 

“semi-predictable”, i.e. certain VSGs tend to be used at different stages o f infection in a 

hierarchical order o f switching (Miller and Turner, 1981; Robinson et aL, 1999; Aitcheson 

et aL, 2005; Morrison et aL, 2005). The semi-ordered pattern o f expression allows the 

prolongation o f infection within the host, as it allows “new” parts o f the archive to be 

unveiled to the host slowly. Order is determined by a probability o f activation of each 

VSG‘, VSGs with a lower probability o f activation are used later in infection, once VSGs 

with higher probability have already prompted an immune response and so become 

unusable (Morrison et aL, 2005). The locus inhabited by the donor VSG, but not sequence 

homology to the previously expressed VSG, was also found to have an effect on 

determination of the order o f expression (Morrison et aL, 2005); genes from subtelomeric, 

minichromosomal sites tend to be preferentially activated earlier in infection (Robinson et 

aL, 1999).

1.1.6 Meiosis in trypanosomes

Trypanosomes, and other kinetoplastids, undergo genetic exchange in the wild (discussed 

in section 4.1.1). Classical genetic analysis has been the main approach employed so far to 

study meiosis in T. brucei. Research based on laboratory crosses showed that T. brucei 

genetic markers show allelic segregation and independent assortment in the ratios expected 

in a Mendelian system (Macleod et al., 2005). This is consistent with the T. brucei 

pathway of genetic exchange being standard meiotic recombination, probably involving 

the production and fusion of haploid gametes in the salivary gland of the tsetse fly. The 

fact that meiotic crossing over occurs in this Mendelian manner means that it has been 

possible to construct a genetic map (MacLeod et a l ,  2005). This opens up the opportunity 

o f employing a forward genetics approach to identify factors involved in phenotypes such 

as drug resistance. Bioinformatic analysis o f the kinetoplastid genomes has revealed that 

they contain homologues o f a number o f meiosis-specific genes (discussed in section 

4.1.3). In conjunction with the genetic evidence, the presence o f these genes strongly 

points to the existence o f meiosis in T. brucei. This is the basis o f the experiments in 

Chapter 4.
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1.2 DNA d o u b le  s t r a n d  b re ak  repair

The most dangerous form o f DNA damage that a cell can suffer is a double-strand break 

(DSB), which can occur due to ionising and UV radiation or treatment with radiomimetic 

drugs, attack by reactive oxygen species, the collapse o f replication forks (Jackson, 2001), 

as well as being induced for specific purposes. The danger o f DSBs is reflected by the 

fact that a variety o f strategies have evolved to deal with them (see figure 1.8). If left 

unrepaired, DSBs have disastrous consequences including chromosomal fragmentation and 

translocation, which can lead to cancer in multicellular organisms due to inactivation or 

loss o f a tumour suppression gene or ectopic activation o f an oncogene (Khanna and 

Jackson, 2001). Unrepaired DSBs ean also lead to the induction of apoptosis in higher 

eukaryotes (Khanna and Jackson, 2001). Two different pathways for the repair o f DSBs 

have been detailed. Homologous recombination (HR) repairs DSBs using undamaged, 

homologous DNA as a template for error-free repair. In contrast, non-homologous end 

joining (NHEJ) rejoins the broken ends o f a DSB with no homology requirements, which 

can lead to sequence changes. Although both systems are conserved throughout the 

eukaryotes, their relative use varies considerably. In general, it appears that “higher” 

eukaryotes favour NHEJ, whereas HR is the pathway predominantly used in lower 

eukaryotes (Liang et aL, 1998). Beyond this predisposition, a range o f factors can 

determine which pathway is used at a given DSB, These include the cell cycle stage at 

which the damage occurs, with NHEJ predominating at Gi-early S phase but HR being 

favoured at late S-G2 phase in chicken cells (Takata et aL, 1998); the position o f the break 

along the chromosome, with NHEJ being used more frequently to repair telomere-proximal 

DSBs in S. cerevisiae (Ricchetti et aL, 2003); and the nature o f the DNA ends, with HR 

appearing to prefer to act on substrates with long ssDNA ends (Ristic et aL, 2003). In 

addition, homologous recombination has relatively recently been shown to be important in 

the vital ability to bypass replication fork stalling (Michel et aL, 2004). These findings all 

argue against the suggestion that HR and NHEJ compete against each other at each DSB, 

as has been suggested (Van Dyck et al., 1999). As well as dealing with dangerous 

spontaneous DSBs, HR and NHEJ are involved in processes such as V(D)J recombination 

(Xu et aL, 2005) and meiosis (see chapter 4), where DSBs are created as part of specific 

cellular processes by the RAGl and RAG2, and SPO ll proteins, respectively. Here, 

general DNA repair systems are used in specific circumstances to generate diversity.
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Figure 1,8. Pathways of eukaryotic double strand break repair. A schematic representation of 
DSB repair mechanisms in eukaryotic cells. DNA containing a DSB is represented t)y black lines, 
intact duplex DNA by blue lines, newly synthesised DNA by dashed lines, and NHEJ machinery by 
red circles. Taken from J.S. Bell, PhD thesis 2002.
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1.2.1 Homologous recombination

HR allows accurate repair o f a DSB by using homologous sequence as a template. The 

basic stages o f the process, and the factors involved, are conserved from bacteria to 

humans, and the eukaryotic mechanism is described below. Eukaiyotic HR is carried out 

by a group of proteins defined in yeast as the Rad52 epistasis group, which includes 

Rad52, RadSO, Rad51, Rad54, Rad55, Rad57, Rad59, M rell and Xrs2 (Symington, 2002).

The first task performed by the HR machinery upon detection o f a DSB is resection of each 

side o f the break to form invasive 3’ ssDNA overhangs (White and Haber, 1990), which 

can be thousands o f bp long (Sun et aL, 1991). In eukaiyotes, the MRX complex, made up 

o f M rell, Rad50 and Xrs2 (or its functional analogue N bsl in humans, (Carney et aL,

1998)), may be responsible for this reaction (Trujillo et aL, 1998). M rell, the central 

binding partner o f the complex (Usui et aL, 1998) which contains a nuclease activity (Pauli 

and Gellert, 1998; Tsubouchi and Ogawa, 1998) is stabilised by Rad50 (Pauli and Gellert,

1998), and the nuclease reaction is potentiated by Xrs2/Nbsl binding (Pauli and Gellert,

1999). However, the nucleolytic activity required to create 3’ overhangs at DSBs is 5 ’-3’, 

whereas M rell acts in the opposite polarity, leading to the suggestion that M rell is 

important to “clean up” adducts to the ends o f the DSB, allowing other, redundant 

nucleases to create the overhangs (Krogh and Symington, 2004). M rell and Rad50 form 

heterotetramers, with M rell binding next to the Rad50 ATPase domain and probably 

controlled by ATP-dependent conformational changes of this region (Hopfner et aL, 2001). 

The MRX complex also has roles in NHEJ, DNA damage signalling, meiosis and the 

maintenance o f telomeres (Symington, 2002; Assenmacher and Hopfner, 2004).

Following resection o f the DSB ends, the single-stranded tails are bound by Rad51, 

forming a characterisitic nucleoprotein filament (Shinohara et aL, 1992). Rad51 

(Shinohara et aL, 1992) is homologous to the bacterial RecA protein and to RadA in the 

Ai'chaea (Brendel et aL, 1997; Seitz et aL, 1998). The preferred substrate for Rad51 being 

dsDNA with ssDNA tails (Mazin et aL, 2000b). Indeed, the proteins have similar 

structures (Conway et aL, 2004), despite limited sequence similarity (Brendel et aL, 1997), 

illustrating that it is universally consei'ved. Each forms a helical nucleoprotein filament 

with veiy similar structure, though RadSl and RecA filaments have opposite polarities 

(Radding, 1991; Sung and Robberson, 1995; Mcllwraith et aL, 2001). One Rad51 

monomer binds to 3 DNA nucleotides, in an extended conformation within the filament 

(Sung and Robberson, 1995). Although ATP hydrolysis by Rad51 is important for its
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function (Stark et aL, 2002), it is ATP binding rather than hydrolysis that is needed for 

Rad51 filament formation (Chi et aL, 2006).

Repair proteins are grouped into foci, which contain a number of repair factors and, 

apparently, multiple repair events (Lisby et aL, 2003). Rad51 foci are formed as the 

protein is recruited to DSBs following DNA damage (Tarsounas et aL, 2003). This DNA  

damage response is mediated by the Brca2 protein, which binds to a number o f other 

proteins involved in DNA metabolism (Zhang et aL, 1998; Liu and West, 2002). Brca2 

contains a number o f BRC repeats, which bind Rad51 (Davies et aL, 2001; Galkin et aL, 

2005) and sequester it, allowing selective mobilisation upon DNA damage (Yu et aL,

2003) and recruitment to the dsDNA-ssDNA boundaiy at the DSB (Yang et aL, 2005). 

Brca2 can be phosphorylated at its C-terminus by cyclin-dependent kinases, blocking its 

interaction with Rad51 ; DNA damage decreases this phosphorylation, making a sort o f  

molecular switch (Esashi et aL, 2005). However, this appears not to be universal, as Brca2 

is found in mammals, plants, nematodes and the fungus Ustilage maydis, but not in S. 

cerevisiae (Kowalczykowski, 2002).

In S. cerevisiae, ssDNA created by DSB resection is coated by Replication Factor A  

(RPA), a homologue o f the bacterial single-strand binding protein SSB (Sugiyama et aL,

1997). RPA protects the DNA from nucleases and removes secondaiy structures from the 

3 ’ overhangs (Sugiyama et aL, 1997), as well as being needed later in the repair process 

(Wang and Haber, 2004). As has been shown in vitro, Rad51 can bind efficiently to 

ssDNA only in the absence o f RPA (Sung, 1997a), and therefore a number o f proteins are 

needed to mediate the formation o f the Rad51 nucleoprotein filament. Firstly, Rad52 binds 

to DNA ends (Mortensen et aL, 1996) and facilitates removal o f RPA from the ssDNA and 

its replacement by Rad51 in both yeast and humans (Sung, 1997a; Benson et aL, 1998). 

Nevertheless, Rad52 is not present in all organisms, being absent in D. melanogaster, C. 

elegans and T. hrucei. Rad51-related proteins also aid Rad51 function. In S. cerevisiae, 

the Rad51 homologues Rad55 and Rad57 form a heterodimer which also aids 

nucleoprotein filament formation (Sung, 1997b), using a separate mechanism to Rad52 

(Gasior et aL, 1998); however, an absence o f Rad55 or Rad57 can be compensated for in 

vivo by overexpression of either Rad51 (Johnson and Symington, 1995) or Rad52 (Hays et 

aL, 1995). In mammalian cells, the situation is more complex as five Rad51 paralogues, 

Rad51B, Rad51C, Rad51D, Xrcc2 and Xrcc3, as well as Rad52 (Symington, 2002). The 

roles o f the mammalian Rad51 paralogues are not yet clear, though there is evidence that at 

least some seem to act in the same way as Rad55-Rad57 in yeast (Sigurdsson et aL, 2001).
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The mature Rad51 nucleoprotein filament is capable of interacting with intact homologous 

DNA and initiating strand exchange, or synapsis, where the Rad51 filament invades the 

homoduplex, aligning and base-pairing with homologous sequence. Homology searching, 

at least In bacteria, occurs thanks to random collisions with homologous sequence, rather 

than a sliding mechanism along the DNA (Adzuma, 1998). The polarity o f RadSl- 

mediated strand exchange is 5’ to 3 ’ with respect to the complementary strand o f the DNA  

duplex (Sung and Robberson, 1995), in contrast to bacterial RecA (Kahn et a l ,  1981 

PNAS). Strand invasion leads to the formation of a structure called a D-loop, a bubble o f  

unwound DNA where the complementary strand has been displaced from the duplex. 

Rad54 (Emery et a l ,  1991), a member o f the Swi2/Snf2 family o f chromatin remodelling 

proteins (Eisen et a l,  1995), is also important for strand invasion. Rad51 and Rad54 

interact in an equimolar ratio (Mazin et a l ,  2000a), in an interaction which strongly 

stimulates strand invasion (Petukhova et aL, 1998). Rad51 and Rad54 act cooperatively in 

chromatin remodelling (Alexiadis and Kadonaga, 2002), using Rad54 ATP hydrolysis 

function to supercoil and separate the strands of the homologous DNA (Van Komen et aL, 

2000; Sigurdsson et aL, 2002). Rad54 also assists Rad51 binding to ssDNA in an ATP- 

independent fashion (Wolner and Peterson, 2005).

According to the DSB repair model o f HR developed by Szostak et a l  (Pâques and Haber,

1999), following strand invasion and D-loop formation, DNA synthesis is carried out 

within the D-loop to recover any lost sequence, starting from the 3 ’ OH of the invading 

strand and requiring both leading and lagging strand DNA synthesis (Holmes and Haber,

1999). The other 3’ end o f the broken DNA also invades the D-loop, providing another 

primer for DNA synthesis and creating a structure with two Holliday Junctions. This 

process is called gene conversion, with the intact sister chromatid donating the genetic 

information to repair the break. Two putative Holliday Junction resolvases have been 

described in human cells. One is composed o f Mus81-Emel (Boddy et aL, 2001; Chen et 

aL, 2001), an endonuclease capable o f acting on recombination intermediates including 

Holliday Junctions (Smith et aL, 2003) and perhaps for replication fork rescue 

(Constantinou et aL, 2002). The second, the RAD51C-XRCC3 heterodimer, may be 

mammal-specific and is capable o f in vitro Holliday Junction resolution (Liu et aL, 2004). 

In addition, mammalian RAD51B has been shown to bind Holliday Junctions, suggesting a 

possible role in junction resolution or branch migration (Yokoyama et aL, 2003). 

Resolution of each HJ can occur in two orientations, leading to either crossover or non­

crossover outcomes; each o f these would be expected to occur in 50% o f cases (Krogh and 

Symington, 2004). Another model o f HR, called synthesis-dependent strand annealing 

(SDSA; Nassif et aL, 1994; Paques and Haber, 1999), has been proposed to account for the
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fact that the actual amount o f crossovers obsei'ved is much less than the 50% predicted by 

the DSBR model. In the SDSA model, no HJs are formed. Instead, consei-vative 

replication occurs inside a D-loop, which migrates along the intact chromosome until 

second end capture allows the D-loop to be dismantled. This model can also be adapted to 

allow for crossovers, with second end capture annealing and forming a single HJ, resolved 

with or without crossing over (Ferguson and Holloman, 1996).

The reaction described above is the type o f recombination that occurs in meiotic 

recombination (see section 4.1.2): DSBs created by SPO ll (Keeney et a l , 1997) promote 

HR catalysed by RAD51 and its meiosis-specific homologue DM Cl (see section 4.1.2.2).

1.2.2 RadSI-independent homologous recombination

In the absence o f Rad51 protein, HR is reduced but not removed altogether (Rattray and 

Symington, 1994). Two proteins responsible for Rad51-independent recombination are 

Rad52 (Mezard and Nicolas, 1994) and its paralogue Rad59 (Bai and Symington, 1996; 

Bai et a l ,  1999), which is found in some yeast species but not in mammalian genomes 

(Wu et a l ,  2006). Rad59, like Rad51, also has a role in Rad51-dependent recombination, 

which is to help Rad52 form complexes with RPA and Rad51 (Davis and Symington, 

2001; Davis and Symington, 2003). It should be noted that Rad52 has markedly different 

roles in fungal and mammalian cells; mutation o f Rad52 causes a 3000-fold reduction in S. 

cerevisiae recombination, whereas the effect is considerably less pronounced in 

mammalian cells (Rijkers et a l ,  1998; Yamaguchi-Iwai et a l ,  1998a). Two pathways of 

homologous recombination have been described allowing DSBs to be repaired in the 

absence o f Rad51 : single-strand annealing and break-induced replication; in fact, in some 

circumstances one reaction may be followed by the other (Kang and Symington, 2000; 

Malagon and Aguilera, 2001; Ira and Haber, 2002).

Break-induced replication (BIR; McEachem and Haber, 2006) is a one-ended invasion 

process, which can occur by Rad51-dependent or Rad51-independent mechanisms, 

although both are usually masked in wild-type cells by the high amounts o f gene 

conversion that take place (Davis and Symington, 2004). After strand invasion o f a 

homologous chromosome by sequences centromere-proximal to the DSB, a replication 

fork is established and the chromosome is copied for up to 1 0 0  kb, normally up to the 

chromosome end (Maikova et aL, 1996). This feature o f the mechanism makes BIR a 

useful tool in telomere maintenance (McEachern and Haber, 2006). Rad51-independent 

BIR requires Rad52 (Bosco and Haber, 1998), Rad50 and Rad59 (Signon et aL, 2001), and
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is in fact hindered by the presence o f Rad51 (Ira and Haber, 2002). It requires shorter 

lengths o f homologous substrate than RadSl-mediated recombination (Ira and Haber,

2 0 0 2 ), and formation o f the replication fork is promoted by a distant enhancer element 

(Maikova et aL, 2001). RadSl-dependent BIR requires the same co-factors as RadSl- 

mediated gene conversion (Davis and Symington, 2004), and, in fact, is much more 

efficient than its RadS 1-independent equivalent (Maikova et aL, 2005). Regardless o f the 

factors involved, tliree different mechanisms for BIR have been suggested following strand 

invasion, involving either consei-vative or semi-conservative replication o f the large tract o f  

DNA (Kraus et at., 2001; McEachern and Haber, 2006).

Single-strand annealing (SSA) is a RadSl-independent repair pathway acting specifically 

on direct repeat sequences and leading to the loss o f some genetic material is known as 

single strand annealing (Paques and Haber, 1999). Resection o f the DSB ends to 3’ 

overhangs causes exposure o f complementary sequences, which can then anneal to each 

other with no need for a strand invasion step. This reaction does not require RadSl, 

Rad54, RadS5 or RadS7, although Rad52 (Ivanov et aL, 1996) and RadS9 (Sugawara et aL, 

2000) are needed, RadS9 in particular for SSA between shorter direct repeats. Removal o f  

the nonhomologous tails, requiring the Radi-Rad 10 and Msh2-Msh3 heterodimers 

(Sugawara et aL, 2003), and ligation o f the nicks completes the reaction.

1.2.3 NHEJ

NHEJ catalyses the ligation of DSB ends, requiring no homology or as little as 2-4 bp of  

homologous sequence, and often leading to changes in nucleotide sequence at the DSB 

site. The two main components o f the human NHEJ machineiy (Weterings and van Gent,

2004) are DNA-dependent protein kinase (although this protein is not conserved in other 

organisms) and the DNA ligase IV -  XRCC4 complex. Conservation o f these factors is 

retained in bacteria (Della et aL, 2004), demonstrating that this is an ancient process. The 

MRX complex is involved in the early stages o f NHEJ, removing proteins already bound 

to the DNA ends (Connelly and Leach, 2002) and bridging the DNA ends together 

(Stracker et aL, 2004). The DNA-dependent protein kinase holoenzyme is composed o f  

the DNA-PKcs catalytic subunit and the Ku70/80 heterodimer (Walker et aL, 2001). Ku 

binds to DNA ends before translocating along the DNA in an ATP-independent manner, 

stabilising the binding o f DNA-PKcs to broken DNA (Smith and Jackson, 1999) and 

forming a bridge between broken DNA ends (Ramsden and Gellert, 1998). The Ku 

complex also has roles in telomere maintenance (Tsukamoto et aL, 2005). The role o f the 

kinase activity o f DNA-PK, which belongs to the PIKK family that contains the DNA
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damage signalling proteins ATM and ATR, is not clear: though a number of its targets 

have been identified, including p53, Ku, XRCC4 and itself (Smith and Jackson, 1999), the 

relevance o f phosphorylation in the NHEJ mechanism remains unknown. It Is notable that 

DNA-PKcs is absent from yeast, suggesting that such phosphorylation may not be 

essential. The second component o f the NHEJ apparatus is the ATP-dependent DNA  

ligase IV (Wilson et aL, 1997), acting in complex with XRCC4 (Critchlow and Jackson,

1998), which stabilises and activates the ligation activity (Grawunder et aL, 1997). Some 

types o f breaks require processing before end-joining can take place, for example by the 

addition o f phosphate groups (Chappell et aL, 2002) or by DNA re-synthesis by repair 

polymerases (Fan and Wu, 2004).

1.3 M ism atch  repa ir

The mismatch repair (MMR) system has three main roles. Firstly, it monitors replication, 

where errors can lead not only to simple mismatches caused by misincorporation o f a base, 

but also (especially in microsatellite tracts and mononucleotide runs) to small insertion- 

deletion loops created by replication slippage. Secondly, it removes chemical damage to 

DNA, including that caused by alkylating agents sueh as V-methyl-V-nitro-V- 

nitrososguanidine and cisplatin (Jiricny, 2006). Such damage can be perceived as a 

mismatch, but in most cases MMR does not effect repair o f these lesions and can, in fact, 

hinder cell sui*vival (see section 4.2.7.4). Finally, MMR proteins are involved in 

recombination. One component o f this is in the prevention o f homologous recombination 

between similar but non-identical sequences (see section 3.1). In addition, MMR 

components also act in the regulation o f crossover formation during meiotic recombination 

(see section 4.1.2) and can also promote some forms of mitotic recombination. The human 

cancer hereditary nonpolyposis colorectal carcinoma (HNPCC), an autosomal dominant 

cancer predisposition syndrome accounting for approximately 5% o f colorectal cancer, is 

caused by mutations in some MMR genes, especially Msh2 and M lhl (Fishel et aL, 1994; 

Buermeyer et aL, 1999). A  number o f reviews are available on the molecular mechanisms 

underlying this repair pathway (Modrich, 1991; Modrich and Lahue, 1996; Buermeyer et 

aL, 1999; Kolodner and Marsischky, 1999; Harfe and Jinks-Robertson, 2000; Kunkel and 

Erie, 2005; Jiricny, 2006).

2 8



1.3.1 The E. coli MMR paradigm

The MMR system has been best characterised in bacteria (Modrich, 1991), and the 

bacterial system can be thought o f as a basis for understanding the reaction in eukaryotes 

(see figure 1.9), Bacterial MMR is initiated when the first o f the “mutator” proteins, MutS, 

binds a mismatch in heteroduplex DNA (Su and Modrich, 1986), as a homodimer (Allen et 

aL, 1997), with much higher affinity for basepair mismatches and small insertion-deletlon 

loops (IDLs) o f up to 4 nucleotides (Parker and Marinus, 1992) compared with perfectly 

matched DNA (Gradia et aL, 2000). The MutS dimer is then bound by a MutL homodimer 

(Griiley et aL, 1989; Galio et aL, 1999), which catalyses the ATPase activity o f MutS, 

promoting translocation o f the complex along the DNA away from the mismatch, as well 

as downstream events o f the MMR process as described below. MutPI endonuclease 

provides strand specificity to the bacterial post-replicative MMR system (Lu et aL, 1983), 

by creating nicks in DNA at hemimethylated GATC sites on either side o f the mismatch 

(An et aL, 1992). These nicks allow the section o f the newly replicated strand containing 

the mismatch to be excised in a reaction requiring the UvrD helicase (also known as 

MutU) (Dao and Modrich, 1998), which is loaded onto the MutH-induced nick in a MutL- 

dependent manner. The strand containing the mismatch is removed by redundant 

exonucleases (Viswanathan et aL, 2001), resynthesis of the strand is catalysed by DNA  

polymerase III, and the ends o f the repaired section are joined together by DNA ligase 

(Kunkel and Erie, 2005). Eukaiyotic MMR is orthologous to the system described in E. 

coli, although more complex; however, MutS and MutL homologues are central to the 

detection and repair o f mismatches.

1.3.2 MutS family proteins

Eukaryotic genomes contain between five and seven MutS Homologues (MSH proteins), 

all with different functions (see figure 1.9). The MSH proteins will be described here in 

some detail as they are central both to MMR and to the experimental work in this thesis. 

Msh2, Msh3 and Msh6  are involved in MMR of nuelear DNA. Msli2 binds to either Msh3 

or Msh6  to form heterodimers with distinct but overlapping mismatch specificities 

(Achaiya et aL, 1996; Marsischky et aL, 1996; Johnson et aL, 1996b; Bowers et aL, 1999; 

Edelmann et aL, 2000). The Msh2-Msh6 dimer, known as MutSa in mammals and plants, 

binds base-base mismatches and short IDLs, whereas Msh2-Msli3, or MutS(3, binds IDLs 

of various sizes (McCulloch et aL, 2003). Msh3 and Msli6  cannot interact with each other, 

and are not capable o f s e lf  interaction (Acharya et aL, 1996). In plants, an additional
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Msh6 -like MutS homologue, Msh7, has been identified (Culligan and Hays, 2000; Dong et 

aL, 2002; Horwath et al., 2002). Msh7 also forms heterodimers with Msh2 (MutSy), 

although this complex is only capable o f binding base-base mismatches with high affinity. 

This difference in substrate affinity is possibly due to Msh7’s inability to bind non- 

specifically to the DNA backbone (Wu et aL, 2003).

The two partners in an E. coli MutS homo dimer adopt different conformations, leading to 

the formation o f a functional heterodimer and echoing the heterodimeric relationships o f  

the eukaryotic MSH proteins (Lamers et aL, 2000). The MutS or MSH dimer forms two 

channels, one o f which contains the mismatched DNA, kinked by 60° (Junop et aL, 2003). 

In addition, at the interface o f the dimer are two composite ATPase sites (Obmolova et aL, 

2000), which bind ATP and ADP with different affinities (Antony and Hingorani, 2004). 

ATP hydrolysis is essential in the function o f MutS homologues (Kunkel and Erie, 2005). 

The MutS/MSH dimer has been described as a sliding clamp, bound to DNA until binding 

is released by ATP hydrolysis (Gradia et aL, 1997), allowing translocation along the DNA. 

An a-loop of DNA is thus formed, usually containing the mismatch (Allen et aL, 1997). 

Diffusion away from the mismatch is bidirectional and allows the binding o f numerous 

MutS/MSH dimers (Acharya et aL, 2003). At physiological concentrations, MutS also 

forms tetramers, where two dimers join together adopting asymmetrical conformations (Su 

and Modrich, 1986; Biswas et aL, 1999; Bjornson et aL, 2003). Tetramerisation, 

stimulated by ATP and DNA binding (Bjornson et aL, 2003) is dependent on the extreme 

N-terminal o f the protein, which is also essential for MMR function. However, the 

relevance o f this higher order structure needs to be investigated in more detail.

The Msh4 and Msh5 proteins (see figure 1.10), described in more detail in section 4.1.2, 

are not involved in MMR but instead in the regulation of meiotic recombination (Ross- 

Macdonald and Roeder, 1994; Hollingsworth et aL, 1995). Msh4 and Msh5 are not 

required in all meiotic systems, and are not found in all eukaryotic genomes. Another 

MutS homologue with divergent properties is M shl, found in some organisms, including 

yeast and plants. Exceptionally, this eukaryotic MutS homologue acts as a homodimer 

(Nakagawa et aL, 1999) with roles in the repair of mitochondrial DNA, both in post- 

replicative repair and the prevention o f ectopic recombination (Reenan and Kolodner, 

1992; Chi and Kolodner, 1994a; Chi and Kolodner, 1994b; Koprowski et aL, 2002; 

Mookerjee et aL, 2005).
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Figure 1.9. E. coli post-replicative MMR. A diagram summarising the stages of bacteriai MMR, 
as described in the text. Factors needed for each step are named next to the arrow. Newly- 
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from Jiricny, 2006.
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Early analysis o f bacterial MutS showed that the protein’s DNA binding ability requires 

the N-terminal portion o f the protein, whereas dimérisation and interactions with MutL are 

dependent on C-terminal sequences (Wu and Marinus, 1994). The structure o f MutS and 

its eukaryotic homologues has since been analysed in more detail, and four main conserved 

domains have been identified (see figure 1.10). The consei*ved domain nearest to the N- 

terminal is the mismatch interaction domain, containing a six-stranded mixed p-sheet 

surrounded by three a-helices (Lamers et al., 2000). Within this domain, the Phe-39 and 

Glu-41 residues o f the E. coli and T. aquaticus proteins (Maikov et al., 1997; Schofield et 

al., 2 0 0 1 ) are needed for mismatch binding, by aromatic ring stack and hydrogen binding, 

respectively (Obmolova et al., 2000). These residues are conserved in Msh6  but not Msh2 

or Msli3 (Bowers et al., 1999; Drotschmann et al., 2001), despite Msli3 retaining general 

conservation in the mismatch interaction domain (Culligan et al., 2000; Lamers et al.,

2000), implying that the mechanism o f binding to base-base mispairs and to IDEs must be 

different (Kunkel and Erie, 2005). In keeping with their roles in recombination but not 

MMR, this domain is lacking altogether in Msli4 and Msh5 (see section 4.2.3,3). The 

middle consei'ved domain was identified by alignment o f complete protein sequences 

(Culligan et al., 2000), but its role in MMR is not clear. It is found on the surface o f the 

molecule (las Alas et al., 1998), suggesting interactions with other members o f the MMR 

machinery, but does not seem to be needed for dimérisation. One mutation in this domain 

has been shown to have a dominant negative mutator phenotype (Wu and Marinus, 1994), 

but the structural basis for this is not known. Structural integrity o f the middle section o f  

MutS is needed for non-specific binding of the dimer to DNA (Obmolova et al., 2000). 

The C-terminal is the best-consei'ved part o f the protein (Eisen, 1998; Culligan et al.,

2000), and most msh2 mutations causing cancer are situated in this region (las Alas et al.,

1998). It contains an ATPase domain (whose function is described above), containing 

Walker A  and Walker B motifs, that is classified with the ABC ATPase superfamily 

(Obmolova et al., 2000). As mentioned above, a functional ATPase domain is composed 

of parts o f both proteins o f the dimer (Obmolova et al., 2000), with the nucleotide binding 

sites situated at the dimer interface (Lamers et al., 2000). Nearest to the C-terminal o f all 

MutS homologues is a helix-turn-helix domain, mediating dimérisation and essential for 

MMR (Alani et al., 1997; Biswas et al., 2001).
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1.3.3 Downstream factors in MMR

After recognition o f mismatched DNA by MutS homologues, binding o f the MutS-DNA 

complex by MutL homologues occurs. Eukaryotic MutL homologues (MLH proteins) also 

act as heterodimers, some o f which were identified in screens for defects in post-meiotic 

segregation (hence their description as PMS genes). M lhl interacts either with a protein 

known as Pmsl in yeast and PMS2 in human cells, or with Mlh2 or Mlh3 (Wang et al,,

1999), all o f which compete with each other for Mlhl binding (Kondo et aL, 2001). 

Dimérisation occurs via a consei'ved domain at the C-termini o f each protein (Pang et aL, 

1997; Guerrette et aL, 1999; Wang et aL, 1999; Kondo et aL, 2001). In addition, this 

family o f proteins have an ATPase domain o f the GHKL superfamily (Dutta and Inouye,

2000) at their N-termini. Most mutations causing mutator phenotypes and human cancer 

are found in the ATPase domain (Ban and Yang, 1998), which is essential for MMR 

(Spampinato and Modrich, 2000). ATP hydrolysis o f MutL causes changes in this domain 

that can modulate interactions with other MMR proteins (Ban and Yang, 1998), suggesting 

an action as a molecular switch (Ban et aL, 1999). A non-specific DNA binding role 

important in MMR is probably associated with the dimérisation groove (Junop et aL, 2000; 

Kunkel and Erie, 2005). MutL heterodimers interact with MutS heterodimers with 

differing specificities (Kolodner and Marsischky, 1999); M lhl-Pm sl can bind to both 

Mutsa and MutSp (Greene and Jinks-Robertson, 1997; Blackwell et aL, 2001; Bowers et 

aL, 2001), enhancing both mismatch-binding properties (Habraken et aL, 1998) and 

stability of the mismatch-bound complex (Bowers et aL, 2001), whereas Mhl-Mlh3 only 

interacts with MutSa (Flores-Rozas and Kolodner, 1998). The role o f Mlh2 has not been 

studied in detail; however, it is capable of repairing mutational intermediates in vivo (Harfe 

et aL, 2000), and weak tolerance o f Mlh2 mutants to certain drugs implies a role in MMR 

(Durant et aL, 1999).

The eukaryotic MMR machinery lacks a MutH homologue, and so there is some doubt 

surrounding the strand discrimination mechanism for post-replicative MMR. A  methyl- 

CpG-binding endonuclease, M ED l, has been proposed to act in this role (Bellacosa et aL,

1999), but the variable levels o f méthylation in the genomes o f the higher eukaryotes make 

this unlikely (Jiricny, 1998). The essential replication factor PCNA (proliferating cell 

nuclear antigen) is a more likely candidate, providing a link between the replication 

machinei'y and post-replicative MMR (Buermeyer et aL, 1999). This protein has been 

shown to interact with both MutS and MutL homologues (Umar et aL, 1996; Gu et aL, 

1998; Clark et aL, 2000; Flores-Rozas et aL, 2000; Kleczkowska et aL, 2001), and PCNA
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mutants are defective in MMR (Johnson et aL, 1996a; Kokoska et aL, 1999). PCNA is 

required for MMR both at the early stages o f MMR and at the resynthesis step (Gu et aL, 

1998; Flores-Rozas et aL, 2000; Bowers et aL, 2001), and it has been suggested that It acts 

as a scaffold, allowing proteins from different stages o f MMR to be brought together (Lee 

and Alani, 2006). Preferential repair o f the lagging replication strand (Pavlov et aL, 2002; 

Pavlov et aL, 2003) is consistent with the higher concentration of PCNA on this strand.

The exonuclease Exol is also involved in MMR, interacting with Msh2 in a yeast two- 

hybrid screen (Tishkoff et aL, 1997), and in human cells (Schmutte et aL, 1998), and 

forming higher order structures with most known MMR factors (Amin et aL, 2001). Exol 

catalyses excision o f the mismatched strand whether the nick is 5 ’ or 3’ o f the mismatch 

(Genschel et aL, 2002). The 3’-5’ exonuclease activities o f DNA polymerases Polô and 

Pole are also involved in MMR, however (Longley et aL, 1997; Tran et aL, 1999). The 3’- 

5’ exonuclease activity o f M rell, which interacts with M lhl, might also be involved in 

vivo (Vo et aL, 2005).

The factors essential to MMR have been identified in in vitro reconstitutions o f MMR 

activity from human and yeast cell extracts (Dzantiev et al., 2004; Constantin et aL, 2005; 

Zhang et aL, 2005; Jiricny, 2006). In addition to the proteins mentioned above, RPA (Lin 

et aL, 1998; Umezu et aL, 1998) and the non-histone ehromatin component HMBGl (high 

mobility group box 1) and RFC (replieation factor C) were identified. RFC binds to the 5’ 

end of nicked DNA, preventing degradation in the 5’-3’ direction, a function needed when 

the nick is created 5 ’ o f the mismatch. Bidirectional MMR could be reconstituted in vitro 

using only the human factors MSH2, MSH 6 , M LHl, MLH3, RPA, EXOl, PCNA, RFC, 

HMGBl (for optimal efficiency), DNA polymerase 5 and DNA ligase I.

1.3.4 Mismatch repair, genetic variability, and selective pressure

The role o f the MMR system is to reduee the amount o f mutation in populations at the time 

o f damage or miscopying (Modrich and Lahue, 1996; Jiricny, 2006). However, DNA  

repair is not perfect and some variation can be found between individuals o f all species; 

indeed, some diversity is desirable as it provides the raw material permitting evolution. 

Whether a mutation is eventually maintained in a population as a polymorphism, or is lost 

because the organisms that contain it die or fail to produee viable offspring, depends on the 

selective pressure on the region o f the genome containing the mutation. A  mutation in an 

intergenic region is unlikely to be detrimental to the organism harbouring it, whereas in an
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important motif o f an open reading frame or gene control elements, a mutation could well 

cause a reduction in fitness and selective disadvantage.

To take the well-studied human genome as an example, nearly 12 million single nucleotide 

polymorphisms (SNPs) have been reported to the NCBI SNP database, dbSNP 

(www.ncbi.nlm.nih.gov/projects/SNP), o f which almost half are found within genes. In a 

study looking at SNPs across the American population, the majority (96%) o f single 

nucleotide polymorphisms (SNPs) within genes are found in noncoding regions o f the gene 

(reviewed in Crawford, Akey and Nickerson, 2005). A  separate investigation (Zhao et aL,

2003) looking at the different categories o f SNPs in the human genome found that within 

genic regions, less SNPs were situated in exons compared to intronic and untranslated 

regions (5.28, 8.21 and 7.51 SNPs per 10 kb, respectively). In addition, a higher rate of 

SNPs was found in intergenic compared to genic regions (8.44 compared to 8.09 SNPs per 

10 kb). In a third study, it was shown that SNPs resulting in an amino acid change or 

within the consei'ved 5 ’ untranslated region o f genes are less common than tliose in 

intergenic regions (Hughes et a l ,  2003). These are some o f the examples showing that 

selection is acting against the retention o f polymorphism in important genomic regions.

Microsatellites are short, tandemly repeated sequences, found throughout genomes, that are 

highly prone to replication slippage. Clusters o f these therefore constitute highly 

polymorphic regions o f the genome. Disruption o f the MMR system leads to a defect in 

repair following this slippage and therefore to microsatellite instability, and microsatellite 

instability is a hallmark o f HNPCC (reviewed in Oda, Zhao and Maehara, 2005). 

Microsatellites are useful as tools for studying genetic and phylogenetic relationships 

between related organisms.

1.4 DNA repa ir  a n d  an tig e n ic  varia tion  in T. brucei

The DNA repair machinery in T. brucei is especially interesting because o f the genetic 

rearrangements taking place during antigenic variation. A  number of important proteins 

and repair pathways have been identified and studied in some detail in this parasite, as 

summarised in the following section.

The first T. brucei protein shown to be involved in DNA repair was RAD51 (McCulloch 

and Barry, 1999). Dismption of the RAD51 ORF In bloodstream stage and procyclic form 

T. brucei causes a significant increase in population doubling time and increased 

sensitivity to DNA damaging agents, as well as a decrease in, but not complete removal of,
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recombination efficiency (measured by transformation o f linear constructs). RadSl 

mutants also suffer a decreased frequency o f VSG switching, although surprisingly both 

transcriptional and recombinational switching mechanisms are affected, implying that both 

RAD51 - dependent and RAD51-independent mechanisms are involved in all types o f  

switching, at least in the monomorphic cell line used for these experiments. RAD51 is also 

found in the genomes o f Z. major (McKean et aL, 2001) and P. falciparum  (Bhattachaiyya 

and Kumar, 2003; Bhattacharyya et aL, 2004), and in both these protozoans it retains 

ATPase activity and is upregulated in response to DNA damage.

Six RAD51 homologues have been identified in the T. brucei genome. One o f these 

proteins, an orthologue o f DM C l, has no known role in recombination, DNA repair or 

antigenic variation in bloodstream stage cells, perhaps consistent with a more specific role 

in meiotie recombination (Proudfoot and McCulloch, 2006). O f the others, only one 

protein, RAD51-3, has been implicated in antigenic variation (like RAD51, mutation o f  

this paralogue leads to a reduction in all switching pathways), although both R A D51-3 and 

RAD51-5 are involved In HR (Proudfoot and McCuiloeh, 2005). This could be equivalent 

to the situation in mammalian cells, where RAD51D has special roles at the telomere as 

well as in DSB repair (Tarsounas et aL, 2004).

Study o f transformation in RAD51-/- T. brucei has allowed some analysis o f RAD51- 

independent recombination to be conducted (Conway et aL, 2002b). In the absence o f this 

central recombination protein, the rate o f integration o f linear constructs is reduced 

approximately ten-fold, and of the events that are able to take place, only some are faithful 

HR reactions. Others integrate aberrantly into a number of genomic locations, using short 

stretches o f homology and leading to some DNA loss at the integration sites. The factors 

involved in this reaction, and its detailed mechanism in relation to what has been described 

in other eukaryotes, is not yet clear. Nevertheless, this analysis suggests that RAD51- 

independent HR is able to use much shorter substrates than RAD51 -dependent reactions, 

as seen in other organisms (see section 3.1.1).

T. brucei retains both components o f the KU complex (Conway et aL, 2002a), and 

mutation o f either gene shows that it is important for telomere length maintenance (Janzen 

et aL, 2004). The same mutations have no effect on VSG switching, cell growth or on 

sensitivity to DNA damaging agents. Indeed, the lack o f NPIEJ-specific ligases in the T. 

brucei genome suggests that this parasite is lacking a canonical eukaryotic NHEJ system 

(Burton, McBride, Wilkes, Barry and McCulloch, in preparation). If correct, this suggests 

that the integrations described in radSl mutant cells are not NHEJ-catalysed, and may be
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explained by a microhomology-mediated end joining (MMEJ) pathway. Such reactions 

have been seen in other organisms, but the evolutionary conseiwation is unclear due to a 

lack of understanding o f the factors involved; however, a recent study o f the T, brucei 

ligases (J. Wilkes, University o f Glasgow, pers. comm) may shed some light on this.

Genetic inactivation o f T. brucei MREl 1 (Robinson et aL, 2002; Tan et aL, 2002) leads to 

dramatically decreased cell viability reflected by increased population doubling time, 

similar to that seen in radSl mutants. T. brucei m re ll  mutants also accumulate gross 

chromosomal rearrangements, associated with shortening and rearrangement o f the 

megabase chromosomes, but without altering telomere length. In addition, mutant cells are 

defective in HR, and show increased sensitivity to phleomycin though not MMS-induced 

DNA damage. Surprisingly, and similar to the phenotype described for the RAD51 

paralogue RAD51-5, m re ll  mutants show no deficiency in VSG switching.

T. brucei has been shown to possess a functional MMR system, with the genome encoding 

homologues o f MSH2, MSH3, MSH4, MSH5, MSH6  (see figure 1.9), MLHl and PM Sl, 

although not MLH3 or M SHl (Bell et aL, 2004). Genetic disruption o f MLHl or MLH3 

does not lead to changes in growth rate, but does result in increased méthylation tolerance 

(see section 4.2.7.4) and microsatellite instability, both phenotypes associated with MMR 

deficiency in other organisms (Bell et aL, 2004). In addition, it has been demonstrated that 

MSH2 acts to regulate T. brucei recombination between divergent sequences, as described 

in more detail in section 3.1,2 (Bell and McCulloch, 2003). However, the MMR system 

appears to have no effect on antigenic variation, at least in monomorphic cells; genetic 

disruption of MSH2 and M LHl has no effect on the frequency or spectrum o f VSG 

switching events (Bell and McCulloch, 2003).

1.5 A im s o f th is  th e s i s

The work in this thesis has sought to address three main questions surrounding the 

functions provided by the T. brucei MMR system, and by the MutS-related genes in this 

parasite. Each o f these questions will be outlined in more detail in individual introductions 

to each chapter, but are summarised here.

i) What are the sequence requirements for homologous recombination in T. brucei, 

and does MMR regulate recombination using all types o f substrate?
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ii) Do the T, brucei homologues o f MSH4 and MSH5 aet in a way consistent with 

meiosis-specific regulators o f recombination?

iii) Are there differences in the sequence o f MMR genes from different 

ti-ypanosome subspecies, and do any such differences correspond to alterations in MMR 

efficiency, as have been observed in bacteria and in T. cruzil
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2 Materials and Methods

2.1 T ry p a n o so m e  cu ltu re

2.1.1 Trypanosome strains and their growth

2.1.1.1 Bloodstream stage cells

The Trypanosoma brucei MITatl.2a strain used for the bloodstream-stage work in this 

thesis is derived from the monomorphic Lister 427 stock and expresses VSG221. The 427 

stock was derived from many syringe passages through rodents over a number o f years, 

although its exact derivation is uncertain (Melville et aL, 2000). In vitro growth o f T. 

brucei bloodstream forms was carried out using HMI-9 growth medium (Hirumi and 

Hirumi, 1989) at 37 °C in a humidified 5% CO2 incubator. The population doubling time 

of this strain is ~ 8  h (Proudfoot and McCulloch, 2006). To keep a working culture o f T. 

brucei bloodstream-stage cell lines, cells were passaged twice weekly by addition o f - 1 0 0  

pi o f a log-phase culture (at a density o f - 4  x 10  ̂cells.inf') to 1.5 ml HMI-9 medium in a 

24-well plate. Bloodstream-stage T. brucei were grown in petri dishes in volumes o f 25 ml 

to obtain large numbers o f cells for experiments.

2.1.1.2 Procyclic form cells

The procyclic form Trypanosoma brucei strains used in this study are Swiss Tropical 

Institute, Basel (STIB) 247, STIB 386, East African Trypanosomiasis Research 

Organisation (EATRO) 795 and Trypanosomiasis Research, Edinburgh University (TREU) 

927, whose derivations are described in section 5.2.1.1. in vitro growth o f procyclic forms 

was carried out using SDM-79 growth medium (Brun and Schonenberger, 1979) at 27 °C. 

To keep a working culture o f T. brucei proeyclic form cell lines, cells were passaged twice 

weekly by addition o f -500  pi o f a log-phase culture (at a density o f - 8  x 10  ̂ cells.m f') to

3 ml SDM-79 medium in a 25 cm  ̂ tissue culture flask. Procyclic form T  brucei were 

grown in 25 cm  ̂tissue culture flasks in volumes o f up to 25 ml to obtain large numbers of 

cells for experiments.
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2.1.2 Stabilate preparation and retrievai

Stabilates for long-term storage o f T. brucei were prepared by mixing 900 pi o f T. brucei 

culture at a density o f - 2  x 10  ̂ ceHs.mf' (bloodstream stage cells) or -7  x 10  ̂ cells.ml"' 

(procyclic cells) with 100 pi sterile 100% glycerol in cryotubes (Nunc), by inverting the 

tube. Stabilates were initially frozen at -80 °C overnight before being moved to liquid 

nitrogen.

To begin growing parasites, stabilates were taken out o f liquid nitrogen, defrosted at 37 “C 

(bloodstream form cells) or 27 °C (procyclic cells), and placed in 10 ml HMI-9 growth 

medium (bloodstream stage cells) or 3 ml SDM-79 growth medium (procyclic form cells) 

overnight; the cells were then passaged normally as described above.

2.1.3 Transformations of 427 strain bloodstream form T. brucei

2.1.3.1 Transformations of gene knockout/ectopic expression constructs

T. brucei bloodstream stage cultures were grown to a density o f -1 .5  x 10  ̂ cells.m f' and 

centrifuged at room temperature for 10 min at 583 x g. The cells were resuspended in 

Zimmerman post-fusion medium (5 M NaCl, 1 M KCl, 1 M Na2HP0 4 , 1 M KH2HPO4 , 1 

M MgOAc, 0.2 M CaCh) supplemented with 1 M D-glucose (ZMG), at a concentration of 

1x10® cells.m f'. 5 x 1 0 ^  cells per transformation were electroporated in 0.5 ml ZMG at

1.5 kV and 25 pF capacitance using a BioRad Gene Puiser II normally using -5  pg of  

purified plasmid DNA that had been restriction digested, phenol-chloroform extracted and 

ethanol precipitated. After electroporation, cells were placed in 10 ml o f HMI-9 for three 

population doubling times (normally 24 h) before being subjected to antibiotic selection. 

To do this, all recovered cells were centrifuged at room temperature for 10 min at 583 x g 

and resuspended in 50 ml o f HMI-9 containing the appropriate antibiotic at concentrations 

described in the text, typically to a concentration o f 1 x 1 0  ̂ cells.m f'. - 1  ml o f this 

solution was pipetted into each well o f two 24-well plates. Transformants were counted 

after 7-10 days by looking at the plates under a light microscope (Leitz) and counting the 

number o f wells that contained growing cells.

2.1.3.2 Transformation efficiency assay

Transformations to assay recombination efficiency (section 3.2.1) were carried out as 

described above but with a number o f modifications. 2.5 x 10  ̂ cells were used per
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transformation and resuspended in ZMG to a concentration o f 5 x 10  ̂cells.m f'. To select 

for transformants, cells were counted and put on antibiotic selection at specific densities as 

described in the text (section 3.2.1). Approximately 3 pg o f DNA that had been PCR- 

amplified using Hereulase high-fidelity DNA polymerase (see section 2.7; Stratagene) was 

used for each transformation. For each transformation construct, 24 PCR reactions were 

performed, the products pooled, and purified using the Qiagen PCR purification kit 

according to manufacturer’s instructions. Five volumes o f Buffer PB was added to one 

volume o f pooled PCR samples, and mixed. 750 pi o f sample was applied to a QIAquick 

spin column in a 2  ml collection tube, centrifuged in a microcentrifuge at 16 x g for 1 min, 

and the flow-through was discarded. This step was repeated four times; so one QIAquick 

column was used per six PCR reaetions. 750 pi o f Buffer PE was added to the column and 

centrifuged in a microcentrifuge at 16 x g for 1 min, and the flow-through was discarded 

and the column centrifuged in a micro centrifuge at 16 x g for and additional minute. 50 pi 

o f dH2 0  was applied to the column and centrifuged in a microcentrifuge at 16 x g for 1 

min. This elution step was repeated with a second volume of distilled water (dH2 0 ) for 

maximal elution o f DNA from the column. All centrifugation steps were carried out at 

room temperature.

2.2 Iso la tion  o f m ateria l from  t ry p a n o s o m e s

2.2.1 Isolation of genomic DNA

2.2.1.1 Lysis

15 ml o f a bloodstream-stage T. brucei culture grown to a density o f ~4 x 10  ̂ cells.mf' 

were harvested by centrifugation at 1620 x g for 1 0  min at room temperature, and 

resuspended in 500 pi o f buffer (1 mM ethylenediaminetetraacetic acid (EDTA), 100 mM 

NaCl, 50 mM Tris-HCl pH 8 ). To lyse the cells, 50 pi o f 10% sodium dodecyl sulphate 

(SDS) and 2.5 pi o f a 20 pg.pf ' proteinase K solution were added, and the solution 

incubated at 37 °C overnight. DNA was recovered from the lysis reaction by 

phenol/chloroform extraction and ethanol precipitation.

2.2.1.2 Phenol/chloroform extraction and ethanol precipitation of genomic 
DNA

An equal volume o f a 1:1 mixture o f phenol/ehloroform (Sigma) was added to the lysis 

reaction and mixed by inverting the eppendorf tube several times. The phenol and aqueous
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phases were then separated by centrifugation at 16 x g in a microcentrifuge for 1 0  min at 

room temperature, and the upper, aqueous phase containing the DNA was transferred to a 

new eppendorf tube. 2 volumes o f 100% ethanol and 1/10 volume 3 M sodium acetate (pH 

5.2) were added, the solution mixed by inverting the tube several times, and incubated at - 

20 °C for 30 min to overnight. DNA was pelleted by centrifugation at maximum speed in a 

microcentrifuge for 30 min at 4 °C. The 100% ethanol was removed and the nucleic acid 

pellet washed by addition o f 1 ml 70% ethanol, followed by centrifugation at 16 x g in a 

microcentrifuge for 2 min at room temperature. The 70% ethanol was removed by 

aspiration and the pellet air-dried. Genomic DNA was resuspended in a typical volume of  

30 pi o f sterile dHzO or TE (100 mM Tris, 10 mM EDTA, pH 7.4), to a final concentration 

of approximately 1 pg/pl.

2.2.2 Isolation of total RNA

50 ml o f a bloodstream stage T. brucei culture grown to a density o f -4  x 10  ̂cells.m f', or 

20 ml o f a procyclic form T. brucei culture grown to a density o f ~ 8  x  10  ̂ cells.m f', were 

harvested by centrifugation at 1620 x g for 1 0  min at room temperature and removing the 

supernatant. Total RNA was isolated using the RNEasy mini kit (Qiagen) following 

manufacturer’s instructions. 600 pi o f Buffer RET (containing the appropriate amount o f  

2 -mereaptoethanol) was added and pelleted cells were mixed by pipetting, and the sample 

was homogenised by passing the lysate 5 times through a 25 G needle fitted to an RNase- 

free 1-ml syringe. 600 pi o f 70% ethanol was added to the sample and mixed by pipetting. 

700 pi o f this solution was applied to an RNeasy column placed in a 2-ml collection tube, 

and centrifuged for 15 sec at 16 x g in a microentrifuge, and the flow-through was 

discarded. The column was washed by applying 700 pi o f Buffer RW l and centrifuging 

for 15 sec at 16 x g in a microcentrifuge, then by transferring the column to a new 

collection tube, applying 500 pi o f Buffer RPE , centrifuging for 15 sec at 16 x g in a 

microcentrifuge. The flow-through was discarded and a final wash step carried out by 

applying another 500 pi o f Buffer RPE to the column and contrlfuging for 2 min at 16 x g 

in a microcentrifuge. RNA was eluted from the column by placing it in a clean eppendorf 

tube, adding 30 pi o f RNase-free dH^O and centrifuging for 1 min at 16 x g in a 

microcentrifuge. RNA was concentrated when necessary by ethanol precipitation as 

described in section 2 .2 .1 .2 .
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2.2.3 Preparation of genomic agarose plugs

Each agarose plug contained - 4  x  10  ̂bloodstream stage trypanosomes. Cells were grown 

in HMI-9 to a density o f - 2  x 10  ̂ cells.m f', centrifuged at 583 x g for 10 min at room 

temperature, washed by resuspending the pelleted cells in 10 ml PSG (Ix PBS, 1% w/v 

glucose) and centrifuging them as before, then resuspended in PSG at a concentration o f

1.6 X 10  ̂ cells.m f'. The cells were then warmed at 37 °C for 1 min and an equal volume 

o f 1.4% Microsieve low-melt agarose (Flowgen) made with dHiO was added and mixed. 

Disposable plug moulds (BioRad) were filled with -5 0  pi agarose and placed at 4 °C for 

- 4  h to set. The agarose plugs were then removed from the moulds, incubated in NDS  

buffer (0.5 M EDTA, 1 mM Tris base and 34.1 mM lauroyl sarcosine) pH 9.0 containing 

Im g.m f ' proteinase K at 50 °C for -2 4  h, transferred into NDS buffer pH 8.0 containing 

Img.m f ' proteinase K at 50 °C for -2 4  h, and finally transferred into NDS buffer pH8  for 

storage at 4°C.

2.3 E le c tro p h o re s is

2.3.1 DNA electrophoresis

Plasmid and genomic DNA samples were routinely separated by electrophoresis on 0.8% 

agarose gels (Seakem LE agarose, BioWhittaker Molecular Applications) made with 1 x 

TAE buffer (40 mM Tris, 19mM acetic acid, ImM EDTA) and containing 0.2 pg.m f' 

ethidium bromide (Sigma), using apparatus supplied by Gibco BRL. A commercial Ikb 

DNA ladder was used as a size marker (Invitrogen). Typically, PCR products and plasmid 

DNA were electrophoresed in 1 x TAE at -110  V for -1  -  3 h, whereas genomic DNA for 

Southern blotting analysis was electrophoresed in 1 x TAE at -3 0  V overnight.

2.3.2 RNA electrophoresis

RNA molecules were separated by electrophoresis on 1% agarose gels (Seakem LE 

agarose, BioWhittaker Molecular Applications) made with 0.4 x MNE buffer and 

containing 2.46M formaldehyde. Gels were typically run for -1 6  h at 30 V in Ix MNE 

buffer, using a commercial 500 -  9000 b (New England Biolabs) or 281-6583 b (Promega) 

ladder as a size marker. RNA samples (typically 10-20 pg) were added to 20 pi RNA  

loading buffer (7.38 M formaldehyde, 20% v/v formamide, in 1 x MNE buffer) and 1 pi 

ethidium bromide at 0.2 pg.m f', and incubated at 65 °C for 5 min before loading. To
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faciliatate this analysis, MNE buffer was prepared as a 5 x stock (0.12 M MOPS, 25 mM 

sodium acetate, 5 mM EDTA, adjusted to pH 7.0), and diluted in RNAase-free H2 O to the 

appropriate concentration.

DNA and RNA electrophoresis gels were visualised using a trans-UV illuminator and Gel 

Doc software (BioRad).

2.3.3 Pulse field gel electrophoresis

Prior to electrophoretic separation, the pulsed field gel electrophoresis (PFGE) apparatus 

(CHEF-DR III, BioRad) was cleaned by the circulation o f 2 1 o f 0.1% SDS overnight at 20 

°C. The tank was then rinsed twiee by circulating dH2 0  for -1  h at 15 °C, and once by 

circulating the appropriate electrophoresis buffer for ~1 h at 15 °C (1 x TBl/loE (90 mM 

Tris base, 90 mM boric acid, 2 mM EDTA) was used for the separation of megabase 

chromosomes, whereas 0.5 x TBE (45 mM Tris base, 45 mM boric acid, 10 mM EDTA) 

was used for the separation o f mini-chromosomes). Gels were electrophoresed in 2 1 

buffer, which was circulated in the tank for at least 30 min at 15 °C before the gel was run.

All separations were conducted using 1.2% agarose (Seakem LE, BioWhittaker Molecular 

Applications). To do this, agarose was dissolved to the correct concentration in 150 ml o f  

the appropriate electrophoresis buffer, and 140 ml used to prepare a gel using the tray 

provided with the PFGE system; the remainder was kept at 37 °C. After the agarose gel 

had set, the comb was removed, agarose genomic plugs placed into the wells, and the wells 

sealed with the agarose at 37 °C. Agarose genomic plugs had been prepared by dialysis 

overnight in 3 ml o f electrophoresis buffer on a shaking table, followed by three rounds o f  

further dialysis each of 1 h in fresh electrophoresis buffer. Gels were electrophoresed at 15 

°C, either at 2.5 V.cm"' for 144 h with an initial switch time o f 1400 sec and final switch 

time of 700 sec for the separation o f megabase chromosomes, or at 5.8 V.cm"' for 24h with 

initial and final switch times o f 2 0  sec for the separation o f mini-chromosomes. 

Chromosomes were visualised by placing agarose gels in 200 ml electrophoresis buffer 

containing 4 pi ethidium bromide at 10 pg.pf' on a rocking table for -3 0  min. They were 

then destained in dH2 0  for -3 0  min, or until they could be visualised clearly by UV  

illumination.
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2 .4 Blotting

2.4.1 Southern blotting

Agarose gels to be Southern blotted were photographed on a UV transilluminator, 

alongside a ruler to allow calculation o f the sizes o f fragments hybridised by radioactively 

labelled DNA (see section 2.5). The gels were then soaked in 125 mM HCl for 15 min, 

dénaturation solution (0.5 M NaOH, 1.5 M NaCl) for 30 min and neutralisation solution (1 

M Tris base, 1.5 M NaCl, 186 mM HCl) for 30min. DNA was transferred to a nylon 

membrane (Hybond XL, Amersham Bioseiences) by overnight eapillary blotting 

(Sambrook et aL, 1989) using 20 x SSC (3 M NaCl, 300 mM NaOAc) as transfer buffer. 

Following transfer, the DNA was crosslinked to the membrane using the auto-crosslink 

setting on a UV Stratalinker (Stratagene).

Pulse field gels were blotted essentially as described above, though with slightly different 

treatments. After ethidium bromide staining, gels were soaked in 125 mM HCl for two 

periods o f 7 min, transferred to dénaturation solution for two periods o f 15 min and to 

neutralisation solution for 30 min; in addition, they were rinsed with dH%0 between each 

treatment. Finally, the gels were rinsed in 20 x SSC before overnight capillary blotting and 

crosslinking performed as above.

2.4.2 Northern blotting

Agarose gels to be northern blotted were photographed on a UV transilluminator, 

alongside a ruler to allow calculation o f the sizes o f fragments hybridised by radioactively 

labelled DNA (see section 2.5). Gels were soaked in sodium phosphate (10 mM 

Na2HP0 4 ,/NaH2P0 4 ) for 15 min before the transfer o f RNA to a nylon membrane (Hybond 

XL, Amersham Biosciences) by overnight capillaiy blotting (Sambrook et aL, 1989) using 

sodium phosphate as transfer buffer. RNA was crosslinked to the membrane using the 

auto-crosslink setting on a UV Stratalinker (Stratagene).
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2.5 R ad io labelling  a n d  hy brid isa tion  o f  DNA p ro b e s

2.5.1 Probe manufacture by random hexamer labelling of DNA

DNA fragments used for probe manufacture were specific PCR products amplified as 

described in section 2.7, separated on an agarose gel and purified using the Qiagen gel 

extraction kit, following the manufacturer’s protocol. DNA fragments to be purified were 

excised from the agarose gel using a scalpel, and dissolved in 3 volumes o f Buffer QG 

(e.g., a gel fragment weighing 100 mg was dissolved in 300 pi o f buffer) by incubation at 

50 “C for 10 min. 1 gel volume o f isopropanol was added to the solution and mixed, then 

the sample was applied to a QIAquick column in a collection tube, centrifuged at 16 x g for 

1 min in a microcentrifuge, and the flow-thi’ough was discarded. The column was washed 

by addition o f 750 pi o f Buffer PE and centrifugation at 16 x g for 1 min in a 

microcentrifuge. The flow-through was discarded and the column was centrifuged at top 

speed for a further 1 min in a microcentrifuge. The column was placed in a clean 

eppendorf tube and DNA was eluted by applying 30 pi o f sterile dH^O to the column, 

letting it stand for 1 min and centrifuging the column at 16 x g for 1 min in a 

microcentrifuge.

Radiolabelling o f these fragments was carried out using the Prime It II kit (Stratagene). 

-25  ng DNA was mixed with 10 pi random hexameric oligonucleotides at 27 OD units.mf 

' and dlliO in a final reaction volume of 36 pi, and the DNA denatured by incubation at 95 

°C for 5 min. 10 pi o f 5 x dATP or dCTP primer buffer, 2 pi o f a^^P-labelled dATP or 

dCTP (-0 .74 MBq) and 1 pi Klenow DNA polymerase (5 U .m f') were added and the 

reaction incubated at 37 “C for 4-10 min. Probes made in this way were purified from 

unincorporated nucleotides by size exclusion chromatography using Microspin columns 

(Amersham Bioseiences) according to the manufacturer’s protocol, and were denatured at 

95 "C for 5 min before hybridisation.

2.5.2 Hybridisation of radiolabelled DNA probes

Nylon filters blotted with DNA or RNA (section 2.4) were placed in hybridisation tubes 

(Hybaid) with -5 0  ml pre-warmed 0.5 M Church Gilbert solution (342 mM Na2HP0 4 , 158 

mM NaH2P0 4 , 7% SDS, 1 mM EDTA) and pre-hybridised for -1  h -  overnight at 65 °C in 

a rotating hybridisation oven. Denatured, radiolabelled probe was added to the Church 

Gilbert solution in the tube and allowed to hybridise to the blot overnight at 65 °C in a
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rotating hybridisation oven. Filters were then washed in a rotating hybridisation oven with 

50 ml o f 2 X SSC, 0.1% SDS for 30 min at 65 "C and 50 ml o f 0.2 x SSC, 0.1% SDS for 30 

min at 65 °C. Followig washing, filters were sealed in plastic and exposed to a 

phosphorimaging screen (Fuji) at room temperature for 4-72 h (depending on the strength 

of the signal) and visualised using a Typhoon 8600 phosphorimager (Amersham 

Bioseiences).

2.5.3 Stripping of hybridised nylon membranes

To strip nylon membranes o f hybridised probe DNA, membranes were placed in a heat­

proof container, then boiling 0.1% SDS was poured onto them and allowed to cool to room 

temperature. The SDS solution was then poured off and the procedure repeated. Stripping 

was checked by exposure to a phosphorimage screen (Fuji) for -2 4  h and visualisation 

using a Typhoon 8600 (Amersham Biosciences).

2.6 R estric tion  e n z y m e  d ig es t io n  o f DNA

Routinely, restriction digestions were carried out in a final reaction volume of 30pl, 

containing -1 0  pg o f DNA, 3 pi o f restriction enzyme (NEB at 10 or 20 U .p f') and 3 pi of 

10 X buffer (NEB) as recommended by the manufacturer. Digests were incubated at the 

appropriate temperature for the enzyme(s) for -2  h for plasmid DNA, or overnight for 

genomic DNA.

2.7 P o ly m e ra se  ch a in  reac tio n  (PCR)

2.7.1 Standard PCR

PCRs were normally set up in volumes o f 25pi for diagnostic reactions and 50pl for 

reactions intended to amplify DNA fragments for cloning or transformation. The amounts 

of reagents used in 25pi reactions were simply half those used in the 50pl reactions, which 

contained either Ipl o f either Taq (ABGene, at 5U.m f') or Hereulase (Stratagene, at 

5U.m f') DNA polymerase. 5 pi o f the manufacturer’s 10 x reaction buffer, 2  pi o f 10 mM 

dNTPs and 2 pi o f forward and reverse oligonucleotide primers (5 mM). For Taq-based 

PCRs, MgCh was typically added to a final concentration o f 1.5 mM, although this was 

occasionally increased to improve efficiency. For Herculase-based PCRs, the reaction 

buffer provides 2.0 mM Mg"̂ ,̂ although this was also occasionally increased by addition of
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MgCla, up to a maximum concentration o f 6  mM. In both reactions, dH 20 was added to a 

final volume of 50 pi. PCR was conducted either in Robocyeler (Stratagene) or PCRSprint 

(Hybaid) machines. Reaction conditions were 95 °C for 5 min, followed by 30 cycles o f  

95 "C for 1 min, 50-60 °C for 1 min, and 72 °C for 1 min per kb of expected product, and a 

final cycle o f 72 °C for 10 min. PCR products were routinely purified using the Qiagen 

PCR Purification and Gel Extraction kits, following manufacturer’s instructions as 

described in sections 2.1.3.2 and 2.5.1. Appendix 1 contains a list o f oligonucleotides used 

for PCRs, and specific primers are referred to in the text.

The PCRs for amplification o f microsatellites were performed using a cocktail provided by 

Annette MacLeod: PCR reactions were performed in 10/^1 reaction volume in 45 mM 

Tris-HCl pH 8 .8 , 11 mM (NH4)2 S0 4 , 4.5 mM MgCh, 6.7 mM 2-mereaptoethanol, 4.4 pM 

EDTA pH 8.0, 113 pg m f '  BSA, 1 mM each o f the four deoxyribonucleotide 

triphosphates, 1 pM of each oligonucleotide primer, 1 unit o f Taq DNA polymerase 

(ABGene, at SU.mf'). These reactions were carried out in a Robocyeler machine 

(Stratagene) under the following conditions: 96°C for 50 s, 6 6 °C for 50 s and 70°C for 90 

s, for a total o f 32 cycles.

2.7.2 Reverse transcription PCR (RT-PCR)

Total RNA was treated with DNAasel to remove genomic DNA prior to cDNA  

preparation. To do this, 2 pg o f RNA was incubated with 1 pi o f DNAasel (Invitrogen, 

lU .m f') and 1 pi o f 10 x DNAasel buffer in a final reaction volume o f 10 pi. The reaction 

was terminated by the addition o f 1 pi 0.25 mM EDTA pH 8.0 and incubation at 65 °C for 

2 0  min.

cDNA was prepared from DNase-treated RNA using the Superscript First-Strand Synthesis 

System for RT-PCR kit (Invitrogen), according to manufacturer’s instructions. 50 ng o f  

random hexamers and 1 pi o f dNTPs were added to 8  pi o f DNAase-treated RNA and the 

mixture incubated at 65 °C for 5 min and on ice for 1 min. 4 pi o f 25 mM MgCL, 2  pi o f  

0.1 M DTT, 2 pi o f 10 X RT buffer and 1 pi o f RNaseOUT reeombinant ribonuclease 

inhibitor were added, and ineubated for 2 min at 25 °C. 1 pi o f Superscript II reverse 

transcriptase (RT; 200 U.ml"') was then added, and the reaction incubated at 25 °C for 10 

min, followed by 42 °C for 50 min. For each RT reaction, a duplicate reaction was set up 

using the same RNA but water instead o f RT, thereby acting as a control for DNA  

contamination in downstream experiments. Following cDNA generation, RT was heat- 

inactivated at 70 °C for 15 min. Finally, 1 pi RNaseH (3.8 U .m f') was added and the
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reaction incubated at 37 for 20 min. cDNA prepared in this way was used directly in 

PCR reactions, with 1 pi o f undiluted cDNA routinely acting as a substrate in 25 pi 

reaction volumes.

2.8 C loning o f DNA f ra g m e n ts

2.8.1 Cloning using T4 DNA ligase

DNA fragments for cloning were prepared either by PCR-amplification and purification 

(section 2.7), or by restriction digestion (section 2.6). When vectors were restriction 

digested using a single enzyme, self-ligation was prevented by treatment with calf 

intestinal phosphatase (CIP; Roche). To do this, 0.5 pi o f CIP (10 U .m f') was added to the 

restrietion digestion reaction and incubated at 37 °C for 10 min. After CIP treatment, 

vectors were purified by agarose gel extraction following electrophoresis using the Qiagen 

gel extraction kit according to manufacturer’s instructions as described in section 2.5.1. 

Inserts for cloning, either derived by PCR or by plasmid digestion, were also purified by 

gel extraction following agarose gel electrophoresis.

Ligation o f DNA fragments into a plasmid vector were carried out in a 10 pi reaction 

volume, containing 1 pi o f T4 DNA ligase (400 U .m f', N ew  England Biolabs) and 1 pi o f  

ligase buffer (New England Biolabs), and were incubated at room temperature for ~ 6  h or 

16 °C overnight. 1 pi o f the 10 pi ligation reaction was used to transform 60-120 pi of E. 

coli XL-1 blue MRF’ cells (see section 2.9).

2.8.2 Cloning into the TOPO vector

Cloning DNA fragments into the TOPO TA vector (Invitrogen) occurs using the 3 ’ single 

adenosine overhang that is present on all PCR products generated by Taq DNA  

polymerase. Therefore, PCR products generated by Hereulase DNA polymerase were 

treated by the addition o f 1 pi o f Taq DNA polymerase per 50 pi reaction and incubation at 

72 °C for 20 min prior to cloning. For either Taq or Hereulase PCRs, 0.5-4 pi o f PCR 

product was incubated with 1 pi o f salt solution (provided with the vector) and 1 pi TOPO 

TA vector, made up to a final reaction volume of 6  pi with dH%0 and incubated for 5 min 

at room temperature. 2 pi o f this reaction was then used to transform 25 pi TOP 10 F ’ E. 

coli cells (Invitrogen) (see section 2.9).
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2.9 T ran sfo rm atio n  o f E. coli and p lasm id  retrieval

Transformation o f both XL-1 blue MRF’ (Stratagene) and TOP 10 F’ (Invitrogen) E. coli 

cells was carried out using heat shock. Ligations (see section 2.8) and cells were mixed 

and left on ice for 20 min. The cells were then heat-shocked at 42 °C for 45 sec and 

transferred to iee for ~2 min. All plasmids used in this study encode ampicillin resistance; 

to select for transformants, cells were therefore spread on L-agar plates containing 

ampicillin at a final concentration o f 100 pg.mf' (Sigma) and incubated overnight at 37 °C.

Single colonies from bacterial plates were picked and used to inoculate 3-200 ml o f L- 

broth containing ampicillin (Sigma) at a final concentration o f 100 pg.m f' and grown up 

overnight at 37 “C in a shaking incubator. Plasmids were purified from 1.5 ml o f the 

overnight eulture using the Qiagen miniprep kit, following manufacturer’s instructions. 

Cells were pelleted by eentrifugation at 16 x g in a microcentrifuge for 1 min, and the 

supernatant was discarded. Cells were then resuspended in 250 pi o f resuspension buffer 

PI (containing RNase A  added following manufacturer’s instructions) by pipetting, 250 pi 

o f alkaline lysis buffer P2 was added and the solution mixed by inverting the eppendorf 

tube 4-6 times. 350 pi o f high-salt neutralising buffer N3 was added and the solution 

mixed as before, then centrifuged at 16 x g in a mierocentrifuge for 10 min. The 

supernatant was applied to a QIAprep column in a collection tube, centrifuged at top speed 

in a mierocentrifuge for 1 min, and the flow-through was discarded. 750 pi o f Buffer PE 

was added to the column and centrifuged at 16 x g in a mierocentrifuge for 1 min, the 

flow-through discarded, and the column centrifuged for an additional 1 min to remove 

residual buffer. Plasmid DNA was eluted from the column by addition o f 50 pi o f dHiO to 

the column (placed in a clean eppendorf tube) and centrifugation 16 x g in a 

mierocentrifuge for 1 min.

When larger amounts o f DNA were required, plasmids were purified from 200 ml o f the 

overnight eulture using the Sigma maxiprep kit, aecording to manufacturer’s instructions. 

Cells were pelleted by centrifugation at 5000 x g for 10 min, then resuspended in 12 ml of 

Resuspension Solution by pipetting. Cells were then lysed by addition o f 12 ml o f Lysis 

Solution and mixture by inversion o f the tube several times, and neutralised by addition o f  

12 ml o f neutralisation solution. 9 ml o f binding solution was added, the tube o f cells was 

inverted 1 or 2 times, applied to the barrel o f a filter syringe, and left for 5 min. During 

this incubation step, the binding column was prepared: 12 ml o f Column Preparation 

Solution was added to the column, which was then centrifuged at 3000 x g for 2 min. Half
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o f the cleared lysate was expelled through the filter syringe into the binding column, and 

centrifuged at 3000 x g for 2 min; the eluate was discarded, and this step was repeated with 

the other half o f the lysate. The column was washed twice: first by addition o f 12 ml o f  

Wash Solution 1, centrifugation at 3000 x g for 2 min and discarding of the eluate, and 

secondly by addition o f 12 ml o f Wash Solution 2 and centrifugation at 3000 x g for 5 min. 

The binding column was transferred to a clean 50 ml colleetion tube and 3 ml o f Elution 

Solution was added to the column; plasmid DNA was eluted by centrifugation at 3000 x g 

for 5 min.
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Chapter 3

M i s m a t c h  R e p a i r  a n d  t h e  C o n t r o l  o f  
H o m o l o g o u s  R e c o m b i n a t i o n  in  T. b r u c e i



3 Mismatch repair and the control of homologous 

recombination In T. brucei

3.1 in tro duc tion

One o f the roles o f the MMR system is the prevention o f homologous recombination (HR) 

between similar yet divergent (homeologous) sequences. MMR-dependent prevention o f  

recombination between divergent substrates is important in the maintenance o f spéciation 

in bacteria (Zahrt et aL, 1994; Matic et aL, 1995), yeast (Hunter et aL, 1996; Chen and 

Jinks-Robertson, 1999) and mice (te Riele et aL, 1992; Deng and Capecchi, 1992). In 

addition, MMR prevents recombination between divergent repeats in genomes, which can 

lead to gross chromosomal rearrangements (Petit et aL, 1991).

As well as preventing HR as deseribed in more detail below, MMR can promote 

recombination in certain specialised cireumstanees. For example, in S. cerevisiae, once a 

mismatched heteroduplex is formed, MMR can act within it (Priebe et aL, 1994) to 

catalyse gene conversion with more than 85% of mismatches eorrected in favour o f the 

resident, unbroken strand (Leung et aL, 1997). In addition, the Msh2-Msh3 heterodimer is 

involved in binding specifically to (Evans and Alani, 2000; Evans et aL, 2000), and 

catalysing the removal of, nonhomologous single-strand tails ereated during 

recombinational processes, in conjunction with the Radi-Rad 10 heterodimeric 

endonuclease (Saparbaev et aL, 1996; Sugawara et aL, 1997; Colaiacovo et aL, 1999). 

Similarly, the Msh2-Msh3 dimer stimulates the two-end invasion pathway of targeted gene 

replaeement in S. cerevisiae (Langston and Symington, 2005).

3.1.1 The importance of sequence length and homology in 

homologous recombination

HR is exquisitely sensitive to the presenee o f sequence differences between recombining 

substrates. When heterologous sequences undergo strand exchange, divergence between 

them results in base mismatches during strand transfer, and even veiy low levels o f  

divergence can have a striking effeet on recombination efficiency. A single base 

differenee eauses a significant reduction (up to four-fold) in recombination efficiency in 

yeast (Datta et aL, 1997), mice (Lukacsovich and Waldman, 1999) and plants (Opperman 

et aL, 2004). At higher levels o f divergence, the reduction is even stronger (Bailis and
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Rothstein, 1990; Harris et al., 1993; Priebe et al., 1994), with, for example, 83% sequence 

homology (17% divergence) causing a 180-fold reduction in yeast recombination 

compared to perfectly matched substrates (Selva et aL, 1995). There is an exponential 

reduction in recombination efficiency with increasing substrate heterology for substrates o f  

a fixed length in Streptococcus pneumoniae over the range 0.6 to 27% (Majewski et al., 

2000), S. cerevisiae over the range 0-26% (Datta et aL, 1997) and higher eukaiyotes, over 

the range 0.5-9% in A. thaliana (Li et aL, 2006). An exception to this is the specialised 

transformation-associated recombination (TAR) cloning, where sequence length has little 

effect (Kouprina et al 1998 PNAS). In at least one case, at higher levels o f sequence 

divergence, recombination rates plateau: in one experiment in Bacillus subtilis, no 

additional decrease in recombination was observed once divergence rose above 8% 

(Zawadzki et aL, 1995), although whether this can be extrapolated beyond this bacterium is 

not known.

The MMR system contributes to the partial prevention o f homeologous recombination 

described above. Genetic inactivation o f either MutS or MutL in bacterial species E. coli, 

S. pneumoniae and S. typhimurium has been observed to partially alleviate the restraint on 

recombination between DNA sequences in the range 1% to 18% sequence divergence 

(Rayssiguier et aL, 1989; Abdulkarim and Hughes, 1996; Zahrt and Maloy, 1997; 

Westmoreland et aL, 1997; Worth, Jr. et aL, 1998; Majewski et aL, 2000). Mutation of  

MMR factors also improves the rate o f recombination between homeologous substrates in 

eukaryotic organisms, although all components of the machineiy do not have an equal 

effect. Genetic disruption o f MSH2 causes an increase in homeologous recombination in 

the range 0.3-9% in S. cerevisiae (Selva et aL, 1995; Datta et aL, 1997; Negritto et aL, 

1997; Elliott and Jasin, 2001; Li et aL, 2006), in the range 0.5-9% in A. thaliana (Li et aL, 

2006) and for substrates with 1.5% divergence in murine cells (Elliott and Jasin, 2001). In 

the moss Physcomitrella patens, the 22-fold reduction in recombination efficiency caused 

by 3% divergence in the substrates is completely alleviated by genetic disruption o f MSH2 

(Trouiller et aL, 2006). M sh2’s partners Msh3 and Msh6 are partially redundant to each 

other in their roles in recombination surveillance (Spell and Jinks-Robertson, 2003), and 

mshS mutants show increased recombination between substrates containing base-base 

mismatches, even though Msh3 does not recognise this substrate in post-replicative MMR 

(Marsischky et aL, 1996; Earley and Crouse, 1998). The effects o f genetic disruption o f  

both Msh2 and Msli3 are more extreme than genetic disruption of Msh2 alone (Selva et aL, 

1995). Disruption o f MutS homologues has a greater effect on the regulation of  

recombination than removal o f the MutL homologues (Chen and Jinks-Robertson, 1999; 

Nicholson et aL, 2000; W elz-Voegele et aL, 2002). Separation-of-function alleles o f both
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Pmsl (Welz-Voegele et aL, 2002) and bacterial MutS (Calmann et aL, 2005) have been 

isolated, showing that ATPase activity and the extreme C-terminal sections o f these 

proteins, respectively, are needed for their anti-recombination functions, although not 

mismatch recognition function. The absence o f MMR has also been obseiTed in some 

cases to have a stimulatory effect on recombination between perfectly matched substrates: 

a lack of proofreading activity presumably allows the recombination reaction to proceed 

more rapidly (Datta et aL, 1996; Negritto et aL, 1997; Chen and Jinks-Robertson, 1998).

The recombinational machineiy also has MMR-independent roles in the prevention of  

homeologous recombination (Chen and Jinks-Robertson, 1999), although this only comes 

into play at higher levels o f divergence. E. coli RecA is capable o f catalysing branch 

migration in vitro between sequences that are 3% divergent, although at a reduced rate 

compared to homologous sequences; this branch migration is partially prevented by 

addition o f MutS (DasGupta and Radding, 1982; Worth, Jr. et aL, 1994). On the other 

hand, substrates with more than -10%  sequence non-homology (Bazemore et aL, 1997) or 

containing insertions or deletions (Bucka and Stasiak, 2001) cannot undergo RecA- 

catalysed branch migration in vivo', whether this is also true for eukaryotic Rad51 is not 

known, in vivo analysis also indicates that the HR machineiy is sensitive to base 

mismatches in ways that can be independent o f MMR. In E. coli, upregulation o f RecA  

can increase the amount o f recombination at all levels o f sequence divergence, whereas 

elimination o f MutS increases recombination proportionally to divergence (Vulic et aL, 

1997). Similarly, in yeast, recombination between substrates with 23% divergence is 

unaffected by MMR, whereas the reduction in MMR caused by the presence o f 9% 

divergence in the recombination substrates is almost completely removed in MMR- 

deficient cells, with recombination rates approaching those seen in perfectly matched 

substrates (Datta et aL, 1996). In A. thaliana, on the other hand, the increase in 

recombination frequency in inactivation o f MSH2 is consistently roughly 3-fold in the 

range 0.5-9% (Li et aL, 2006). In fact, the relative importance o f the RecA/Rad51- 

mediated and MMR-mediated controls o f homeologous recombination differs between 

species. In bacteria, it has been obsei'ved that MMR is more important in the control o f  

homeologous recombination in Escherichia and Salmonella species than in Bacillus and 

Streptococcus species (Humbert et aL, 1995; Majewski et aL, 2000; Prunier and Leclercq, 

2005), whereas Mycobacteria smegmatis lack a MMR system altogether while still 

maintaining stringent requirements for homology in RecA-mediated HR (Springer et aL, 

2004). In eukaryotic organisms, MMR has been calculated to act more stringently in the 

control o f HR in yeast than in plants (Li et aL, 2006; see section 3.3).

5 8



Yeast RadSl-dependent and Rad59-dependent, Rad51-independent HR (see section 1.2) 

differ both in their requirements for substrate homology and in their interactions with the 

MMR machinery (Spell and Jinks-Robertson, 2003). The RadSl-dependent pathway is 

regulated by Msh2, since mutation causes alleviation o f homeologous recombination 

suppression, whereas mutations o f M lhl have only a limited effect. In contrast, the Rad59- 

dependent pathway, which appears to be more tolerant o f sequence divergence and to act 

on shorter substrates (Ira and Haber, 2002), is regulated equally by Msh2 and M lhl, and 

mutations o f either MMR gene causes a smaller increase in homeologous recombination 

relative to RadSl-dependent recombination. Genetic disruption o f Mlhl nevertheless 

causes a greater increase in homeologous recombination in wild-type cells than in either 

radSl or rad59  mutants, suggesting that the two pathways co-operate in the cell.

Another factor influencing the rate o f HR is the length o f the homologous sequence 

catalysing recombination. Although the exact substrate lengths vaiy between studies, it 

can generally be stated that HR rates reduce with substrate length. Exponential reductions 

in recombination efficiency have been described between 405 bp and 27 bp in E. coli 

(Shen and Huang, 1986) and 960 bp and 80 bp in S. cerevisiae (Jinks-Robertson et aL, 

1993). In a more recent study in E. coli (Lovett et aL, 2002), a linear relationship was only 

observed between 200 bp and 50 bp, with a plateau in recombination efficiency observed 

above this range. In S. cerevisiae, an exponential reduction in recombination efficiency 

was seen between 2 kb and 26 bp (Ahn et aL, 1988). Longer substrates seem to be 

required for efficient mammalian HR, with recombination observed as much less efficient 

with substrates shorter than 163 bp in one assay (Rubnitz and Subramani, 1984), whereas 

in another study, a threshold o f 1.7 kb in another (Hasty et aL, 1991). A plateau in 

mammalian recombination frequency was obseiwed for substrates longer than 14 kb in 

another study (Deng and Capecchi, 1992). However, small but significant amounts of 

recombination have been seen with substrates measuring only 25 bp in bacterial and 

human cells (Ayares et aL, 1986; Lovett et aL, 2002). These reactions are thought to be 

RecA/Rad51-independent: yeast Rad59-dependent recombination is known to require 

shorter substrates than Rad51-dependent reactions (Bai and Symington, 1996; Sugawara et 

aL, 2000), and recombination using the shortest substrates in a bacterial experiment is 

independent o f RecA, with RecA-independent reactions having much less length 

dependence than RecA-dependent ones (Lovett et aL, 2002).

The Minimal Efficient Processing Segment (MEPS), which can be calculated by linear 

regression, is defined as the minimum substrate length permitting efficient recombination, 

below which the rate o f recombination decreases sharply (Shen and Huang, 1986). A
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longer substrate can be considered as a series o f overlapping MEPS units, explaining the 

log-linear relationship between substrate length and recombination efficiency. In 

homeologous substrates, the MEPS can also be thought o f as a mismatch-free block of  

sequence in which the local mismatch concentration is low enough to escape the MMR 

system and initiate recombination: the length o f this block has been calculated as 15 bp in 

MMR-deficient, but 62 bp in wild-type bacteria (Vulic et aL, 1997), and 18 bp in MMR- 

deficient, but 28 bp in wild-type S. cerevisiae cells (Datta et aL, 1997). The location o f  

mismatches within a recombination substrate is important, with branch migration able to 

continue through a small number o f mismatches as long as recombination is initiated 

within a perfectly matched region (Waldman and Liskay, 1988; Majewski and Cohan, 

1999). In addition to this role in the initiation o f recombination, MMR monitors the 

nascent heteroduplex. The heteroduplex rejection model (Rayssiguier et aL, 1989)) 

proposes that MMR enzymes, in conjunction with helicases, can abort recombination 

reactions producing mismatched heteroduplexes; Datta et al (Datta et aL, 1997) calculated 

that 610 bp o f uninterrupted homology is needed for escape o f the MMR system. 

Although the alternative heteroduplex destruction model (Rayssiguier et aL, 1989), 

involving nicking and destruction o f mismatched heteroduplex, is also proposed, the 

heteroduplex rejection model is supported by the fact that many interactions between 

recombination and MMR proteins and helicases o f the RecQ family have been identified 

(Pedrazzi et aL, 2001; Wu and Hickson, 2001; Langland et aL, 2001; Spell and Jinks- 

Robertson, 2004). For this unwinding to occur, the mismatched heteroduplex must be 

recognised immediately at its formation: MMR has no effect on preformed heteroduplexes 

(Worth, Jr. et aL, 1994; Westmoreland etaL , 1997; Worth, Jr. et aL, 1998).

3.1.2 A system to study the effects of sequence divergence on 

recombination efficiency ofiong substrates in T. brucei

Methods for stable transformation o f linear DNA by integration into the genomes o f  

kinetoplastids following electroporation o f cultured cells were developed a number o f  

years ago (Ten Asbroek et aL, 1990; Cruz and Beverley, 1990; Cmz et aL, 1991; Cruz et 

aL, 1993; Cooper et aL, 1993; Hariharan et aL, 1993; Otsu et aL, 1993), and this technique 

is now widely used for genetic manipulation o f these species. Integration of transformed 

DNA into the correct locus occurs in effectively 100% o f cases in wild-type cells (Eid and 

Sollner-Webb, 1987; Cooper et aL, 1993; Otsu et aL, 1993; Conway et aL, 2002b). These 

experiments have yielded some data on transformation efficiency in the kinetoplastids 

using different substrates. It has been observed in T. brucei that linear DNA recombines
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with higher efficiency than circular plasmids and, secondly, that transformation efficiency 

is improved when 5 kb rather than 900 bp substrates are used (Ten Asbroek et aL, 1990). 

In contrast, no effect o f substrate length on transformation efficiency was obseiTed in T. 

brucei in two separate studies: Wickstead et al (Wickstead et aL, 2003) found no 

differences in rates comparing constructs with integration flanks between 80 and 400 bp, 

and Shen et al (Shen et aL, 2001) saw no difference in transformation using targeting 

sequences o f 50 -  90 bp in length. Despite these variations in findings, more broadly the 

substrates needed for transformation in T. brucei and T. cruzi (Hariharan et aL, 1993) seem 

to be shorter than those o f at least 180 bp that appear to be needed by L. major 

(Papadopoulou and Dumas, 1997); perhaps the lower threshold for efficient 

recombinationis different between these organisms. Transformation in procyclic form T. 

brucei was suggested not to be affected by the number of potential target loci present in the 

genome (Wickstead et aL, 2003). This was interpreted as suggesting that it is the 

recombination reaction itself, and not the search for sequence homology, that is rate- 

limiting in r. brucei. This contrasts with the situation in S. cerevisiae, where the amount 

o f transformants obtained is proportional to the number o f targets (Wilson et aL, 1994).

Transformation of any organism is likely to be influenced by a number o f factors, 

including DNA concentration, transformation conditions, and growth of the cells 

undergoing electroporation. Despite these potential problems, an assay, summarised in 

figure 3.1, has been developed to measure the recombination efficiency o f both 

homologous and homeologous DNA sequences in T. brucei, in the presence and absence o f  

a functional MMR system (Bell and McCulloch, 2003). As they will form the basis o f the 

work in this chapter, the original study will be described in detail here. Although 

transformation assays are not an ideal experimental system with which to measure 

recombination, assay systems not involving electroporation such as have been developed in 

S. cerevisiae {e.g. the inverted intron system used in Datta et aL, 1996) are not available in 

T. brucei. Transformation has been used successfully to measure recombination efficiency 

in the absence o f T. brucei RAD51, M R E ll, RAD51-3 and RAD51-5, in addition to the 

results described below, validating this experimental approach.

The first component o f the assay is a series o f cell lines containing unique sites for 

recombination. The hygromycin phosphotransferase ORF (HYG) was integrated into the 

tubulin array (Seebeck et aL, 1983) on chromosome I o f Lister 427 bloodstream stage 

cells, creating a unique site for recombination referred to as the HTUB locus. An 

integrated foreign sequence as a target site for recombination offers a number of  

advantages. Firstly, it provides a defined, single site for recombination from which a
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number o f parameters (sequence length, similarity) can be varied. Secondly, the potential 

for integrations into related sequences elsewhere in the genome when endogenous T. 

brucei targeting flanks are used is reduced. Thirdly, this strategy could be adapted to allow

comparison of recombination in different parts o f the genome, as the HYG target can 

subsequently be integrated into different genomic locations. To examine the effect o f  

MMR in T. brucei recombination, MSH2 knockout cell lines were made in the HTUB 

genetic background by eliminating the MSH2 ORF from the genome using constructs 

AMSH2::BSD and AMSH2::PUR\ the cell lines are referred to as HTUB wt, HTUB 

MSH2+/- and HTUB MSH2-/-. To assay recombination substrate requirements, a series o f  

constructs based on a bleomycin resistance cassette were generated. The ORF encoding 

the bleomycin resistance protein {BLE), surrounded by intergenic regions from the actin 

and calmodulin loci, was flanked by 445 bp and 449 bp iTTG-derived sequences, allowing 

recombination with the HTUB locus following transformation. The constructs differed 

from each other in having increasing numbers o f base mismatches (relative to the 

integrated HYG) that had been generated by PCR mutagenesis. Constructs with 0%, 1%, 

2%, 3%, 5%, 7%, 9% and 11% divergence from the original HYG  sequence were selected 

and named pHYGwt, pHYGOl, pHYG02, pHYG03, pHYGOS, pHYGOl, pHYG09  and 

p H Y G ll, respectively. To assay transformation, each construct was excised from the 

plasmid backbone by restriction digestion, phenol chloroform extracted and ethanol 

precipitated, and a constant amount o f DNA was transformed into HTUB wt, HTUB 

MSH2+/- and HTUB MSH2-/- cell lines by electroporation.

The recombination efficiencies observed from this assay are summarised in figure 3.2. 

The highest recombination efficiency obseiwed (as calculated by dividing the number of  

positive wells counted, by the number o f cells put on selection), after electroporation o f the 

pH YGwt construct, was 14.7 +/- SE 0.573 transformants x 10'  ̂ cells in HTUB MSH2-/- 

cells and 8.8 +/- SB 0.146 transformants x 10'  ̂ cells in HTUB wt cells; this slight increase 

in recombination rate between perfectly matched substrates in MMR-deficient cells has 

been seen in other organisms (see section 3.1.1). A reduction in the level o f sequence 

similarity between the recombination substrates significantly reduced recombination 

efficiency. For instance, in the HTUB w t cell line, the transformation rate o f the pHYGOl 

construct (which has 1% sequence divergence from the genomic HYG  sequence) was 3- 

fold lower than that o f pHYGwt. Moreover, increasing sequence divergence had an 

exponentially detrimental effect on recombination, such that transformation o f the pH Y G ll  

construct (11% divergence) was nearly 100-fold lower than pHYGwt. This constraint on 

recombination between divergent sequences was alleviated, although not altogether
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removed, in the HTUB MSH2-/- cell line, indicating that MMR regulates HR as in other 

organisms. However, even in the absence o f MSH2, recombination became less efficient 

with increasing divergence, indicating that the T. brucei HR machineiy is itself sensitive to 

base mismatches. Overall, the levels o f transformation in the HTUB MSH2-/- cells were 

approximately 6 -12-fold higher than in HTUB wt, in the range 2-11% divergence.

These experiments have demonstrated that the MMR system in T, brucei is functional and 

acts to limit recombination between homeologous substrates. The work in the following 

chapter is based on an extended version o f this assay, which was used to assess the 

requirements for substrate length and sequence homology in HR, and to investigate 

whether different substrates are monitored in different ways by the MMR machinery.

3.2 R esu lts

3.2,1 An assay to study the requirements for substrate length and 

homology levels In MMR+ and MMR- T. brucei

The plasmids pHYGwt, pHYGOS and p H Y G ll  described above (see section 3.1.2) were 

used as substrates for high-fidelity PCR to create a series o f new transformation constructs 

(see figure 3.3), using the primers shown in figure 3.4. These PCR reactions yielded a 

series o f constructs with integration flanks o f approximately 25 bp, 50 bp, 100 bp, 150 bp 

and 200 bp, which were named 0%-25bp, 0%~50bp, etc., as shown in table 3.1. Although 

they will be referred to as 5% and 11% divergent, the targeting flanks amplified from the 

pHYGOS and p H Y G ll  plasmids did not contain precisely 5% and 11% mismatches 

compared to the wild-type HYG locus, depending on the section o f the flank that was 

amplified; the exact number o f mismatches is shown in table 3.1. Linear DNA was 

prepared for these transformations by PCR amplification, rather than restriction digestion 

of constructs from plasmids as previously (Bell and McCulloch, 2003); this change in 

protocol was necessary because non-homologous overhangs at the DNA ends after 

digestion, while insignificant for an integration flank of 450 bp, could have larger effects 

on recombination efficiencies mediated by the shorter substrates. PCR products were 

purified and ethanol precipitated (see figure 3.5), and a constant amount o f DNA (3 pg) 

was transformed into 2.5 x 10  ̂ HTUB wt, HTUB MSH2^/- or HTUB MSH2-/- cells by 

electroporation. Transformants were selected in 24-well plates, using phleomycin at 2.5 

pg.m f \  and the number of transformants counted after 7-10 days. Differing amounts o f  

cells were put on selection, depending on the expected differences in transformation
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pHYGWT
pHYGOS
p H Y G l l

1 AAGGCGCGCCAGCCTGAACTCACCGCGACGTCTGTCGAGAAGTTTCTGATCGAAAAGTTC 
1 AAGGCGCGCCAGCCTGAACTCACCGCGACGTCTGTCGAGAAGTCTCTGATCGAAAAGTTC 
1 AAGGCGCGCCAGCCTGAACTCACCGCGACGTCTGCCGAGAAGTCCCTGATTGAAAAGTCC

pH Y G trr
pHYGOS
p H Y G l l

6 1  GACAGCGTCTCCGACCTGATGCAGCTCTCGGAGGGCGAAGAATCTCGTGCTTTCAGCTTC 
6 1  GACAGCGTCTCCGACCTGGTGCAGCTCTCGGAGGGCGAAGAATCTCGTGCTTTCAGCTTC 
6 1  GGCAGCGTCTCCGACCCGATGCAACTCTCGAAGGGCGGCGAATCTCGTGCTCTCAGCTCC

pHYGWT 1 2 1  CATGTAGGAGGGCGTGGATATGTCCTGCGGGTAAATAGCTGCGCCGATGGTTTCTACAAA
pHYGOS  1 2 1  GATGTAGGAGGGCGTGGATATGTCCTGCGGGTAAATAGCTGCGCCGATGGTTTCTACGAA
p H Y G l l  1 2 1  GATGTAGGGGAGCGTGGGTACGTCCTGCGGGCAAATAGCTGCGCCGATGGTCTCTACAGA

pHYGWT
pHYGOS
p H Y G l l

pHYGWT
pHYGOS
p H Y G l l

pHYGWT
pHYGOS
p H Y G l l

pHYGWT
pHYGOS
p H Y G l l

pHYGHT
pHYGOS
p H Y G l l

pHYGWT
pHYGOS
p H Y G l l

pHYGWT
pHYGOS
p H Y G l l

pHYGHT
pHYGOS
p H Y G l l

pHYGWT
pHYGOS
p H Y G l l

1 8 1  GATCGTTATGTTTATCGGCACTTTGCATCGGCCGCGCTCCCGATTCCGGAAGTGCTTGAC 
1 8 1  GATCGTTATGTTTATCGGCGCTTTGCATCGGCCGCGCTCCCGGTTCCGGAAGTGCCTGAC 
1 8 1  GGTCGTTATGTTTATCGGCACTTTGCACCGGCCGCGCTCCCGATTCCGGAAGTACTTGAC

_________200 hp .V ,
2 4 1  a t t g g g g a a t t c a g c g a g a g c c t g a c c t a t t o c a t c t c c c g c c g t g c a c a g g g t g t c a c g
2 4 1  ATTGGGGAAC TCAGCGAGGGCCTGACCTATTGCATCTCCCGCCGC GCACAGGGTGTCACG 
2 4 1  ATTGGGGAACCCAGCGAGGGCCCGACCTACTGCGTCTCCCGCCGTGCACGGGGTGTCACG

_______ I h|i 5*______. _________
3 0 1  TTGCAAGACCTGCCTGAAACCGAACTGCCCGCTGTTCTGCAGCCGGTCGCGGAGGOCATG 
3 0 1  TTGTAAGACCTGCCTOAAACCGAACTGCCCGCTGC TCTGCAGCCGGTCGCGGGGCœATG 
3 0 1  CTGCAAGACCTGCCTGAGACCGAACTGCCCGCTGC TT TGCAGCCGGC CGCGGAGGCCCTG

100 bp 50 bn 5 ’
3 6 1  g a t g c g a t c g c t g c g g c c g a t c t t a g c c a g a c g a g c g g g t t c g g c c c a t t c g g a c c g c a a

3 6 1  GACGCGGTCGCTGCGGCCGGTCTTAGCTAGACGAGCGGGTTCGGCCCACTCGGACCGCAA 
3 6 1  GATGCGACCGCCGCGGCCGATCTTAGCCAGACGAGCGGGTCCGGCCCATCCGGACCGTAA

25 bp S'
4 2 1  GGAATCGGTCAATACACTACATGGCGTGATTTCAT ATGCGCGATTGCTGATCCCCATGTG 
4 2 1  GGAATCGGCCAATACACTACATGACGTGATTTCAT ATGCGCGATTGCTGGTCCCCATGCG 
4 2 1  GGGATCGGTCGATACACTACATGGCGTGATTCC ATATGCGCGGTTGCTGATCCCTATGTG

25 bp 3 ’

4 8 1  TATCACTGGCAAACTGTGATGGACGACACCGTCAGTGCGTCCGTCGCGCA6GCTCTCGAT 
4 8 1  TATCACTGGCAAACTGTGATGGACAACACCGTCAGTGCGTCCGTCGCGCAGGCTCTCGGT 
4 8 1  c a t c a c t g g c a a a c c g c g a t g g g c g a c a c c g t c a g t g c g c c c g t c g c g c a g g c c c t c g g c

 ̂ 50bi7T ^—
5 4 1  g a g c t g a t g c t t t g g g c c g a g g a c t g c c c c g a a g t c c g g c a c c t c g t g c a c g c g g a t t t c  
5 4 1  g a g c t g a t g c t t t g g g c c g a g g a c t g c c c c g a g g t c c g g c a c c t c g c g c a c g c g g a t c t c

5 4 1  GAGCTGACQCCTTGGGCCGAGGACTGCCCTGAAGTCCGGCACCCCGTGCATGCGGACTCC

 ̂ 150 bp 3 ’100 bp 3'

6 0 1  GGCTCCAACAATGTCCTGACGGACAATGGCCGCATAACAGCGGTCATTGACTGGAGCGAG 
6 0 1  GGCTCCAGCAATGTCCTAACGGACAATGGCCGCATAGCGGCGGTCATTGACTGGAGCGAG 
6 0 1  GGCTCCAGCAACGTCCTGGCGGACAATGGCCACATAGCAGCGGCCGCTGGCTGGGGCGAG

^  200 bp 3

6 6 1  GCGATGTTCGGGGATTCCCAATACGAGGTCGCCAACATCTTCTTCTGGAGGCC6TG6TTG 
6 6 1  GCGATGTTCGGGGATTCCCAACACGAGGTCGCCAACATCTTCTTCCGGAGGCCGTGGTTG 
6 6 1  GCGATGTCCGGGGATCCCCAATACGAGGTCGCCAACATCTCCTTCTGGAGGCCGCGGTTG

pHYGHT  7 2 1  GCTTGTATGGAGCAGCAGACGCGCTACTTCGAGCGGAGGCATCCGGAGCTTGCAGGATCG
pHYGOS  7 2 1  GCTCGTATGGAGCAGCAGACGCGCTACCTCGGGCGGAGGCATCCGGGGCTTGCAGGGTCG
p H Y G l l  7 2 1  GCTTGTGCGGAGCAGCAGACGCGCTACTCCGAGTGGAGGCATCCGGAGCCTGCAGGGCCG

pHYGHT
pHYGOS

7 8 1  CCGCGGCTCCGGGCGTATATGCTCCGCATTGGTCTTGACCAACTCTATCAGAGCTTGGTT 
7 8 1  CCGTGGCTCCGGGCGTACATGCTCCGCATTGGCCTTGACCAACTCTATCAGAGCTTGGCT

6 6



pH YGW T  8 4 1  GACGGCAATTTCAATGATGCAGCTTGGGCGCAGGGTCGATGCGACGCAATCGTCCGATCC
pH Y G O S  8 4 1  GACGGCAATTTCGGTGATACAGCCTGGGCGCAGGGTCGATGCGACGCAATCGTCCGATCC
p H Y G l l  8 4 1  GGCGGCAATTTCGACGGTGCAGCCTGGGCGCAGGGTCGGTACGACGCAATCGTCCGATCC

pH YGW T  9 0 1  GGAGGGCGCGCCAT
pH Y G O S  9 0 1  GGAGGGCGCGCCAT
p H Y G l l  9 0 1  GGAGGGCGCGCCAT

Figure 3.4. An alignm ent of the integration constructs used in this chapter. Multiple 
alignment of the sequences of the pHYGwt, pHYGOd and pHYG11 plasmids, aligned using Multalin 
(http://prodes.toulouse.inra.fr/multalin/multalin.html; Corpet, 1988). Identical residues are shown in 
black, residues differing from the genomic HYG  sequence are shown in red, and the restriction site 
used to insert the bleomycin resistance cassette is shown in blue. Primers are indicated by a 
purple arrow and yellow shading. Adapted from J. Bell, PhD thesis. University of Glasgow
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efficiency o f the different recombination substrates (see table 3.1). This was done in order 

to ensure near-clonal growth o f transformants in the more efficient reactions, while 

detecting the few transformants obtained in the less efficient reactions. Transformations 

for each cell line were typically carried out on three separate occasions, with two different 

selection plates counted from each transformation. The threshold o f transformant detection 

for each plate is 1 transformant x  10"̂  cells. Where no transformants were detected for any 

of the transformations, this frequency can be divided by the total number of plates analysed 

(maximum 6), providing a minimum detectable transformation efficiency o f 0,17 x 10’̂ . 

For clarity, this value was plotted in the analysis below when no transformants were found.

Calculations o f transformation efficiency were first carried out by the method used in 

previous studies by the McCulloch and Barry groups: the number o f positive wells scored 

after 7 - 1 0  days was divided by the number o f cells put on selection. These calculations 

are shown in sections 3.2.1.1-3.2.1.3. However, this simple method has the drawback of  

not taking into account the possibility that more than one transformant could be found in 

each well, leading to an underestimation o f the transformation rates for the more efficient 

reactions. Therefore, more in-depth statistical analysis was carried out in addition to the 

original simple calculations, and the revised transformation efficiencies are described and 

discussed in section 3.2.2.

3.2.1.1 0% divergence

Transformation constructs derived from PCR-amplification o f sections o f the pHYGwt 

construct, and therefore with integration flanks perfectly matched to the genomic HYG  

locus, were transformed into HTUB wt, HTUB MSH2+/- and HTUB MSH2-/- cell lines as 

described above. The transformation efficiencies obtained, along with results previously 

obtained using the pHYGwt full-length sequence (450 bp; Bell and McCulloch, 2003), are 

shown in graphical form in figure 3.6. The presence o f an active MMR system does not 

seem to have any effect on the recombination o f perfectly matched substrates, as striking 

similarities were observed between the results o f the wild-type, MSH2+/- and MSH2-/- cell 

lines. In the original experiments, recombination o f the full-length, 450 bp construct was 

slightly more efficient in the HTUB MSH2-/- cell line compared with the HTUB wt cell 

line (Bell and McCulloch, 2003); this difference was not observed when shorter substrates 

were used. However, the transformation efficiencies obtained using the 200 bp integration 

flanks were highly similar to those obtained using the 450 bp integration flank in HTUB wt 

cells: the 0%-200bp construct generated BLE-resistant clones in the HTUB wt and HTUB 

MSH2-/~ cell lines at average frequencies o f 9.83 +/- SE 0.423 and 9.13 +/- SE 0.754

7 0



a) 100

150 100
Substrate length MSH2+/+

MSH2+/-

MSH2-/-

b)

MSH2+/+ MSH2-/-
Length (bp) Transformants/lO* cells Reduction Transformants/10‘ cells Reduction MMR-/MMR+
200 9.833 9.125 0.928
150 4.667 2.107 4.813 1.896 1.031
100 2.417 4.069 1.854 4.921 0.767
50 0.917 10.727 0.975 9.359 1.064
25 0.033 295 0.088 104.286 2.625

MSH2+/- MSH2-/-
Length (bp) Transformants/10^ cells Reduction T ransforma n ts/10  ̂cells Reduction MMR-/MMR+

200 10.833 9.125 0.842
150 4.875 2.222 4.813 1.896 0.987
100 2.444 4.432 1.854 4.921 0.759
50 0.813 13.333 0.975 9.359 1.2
25 0.025 433.333 0.088 104.286 3.5

Figure 3.6. Recom bination mediated by substrates perfectly m atched to the target 
seq u en ce, a) a log-linear plot of transformation efficiency (in transformations x 10-6 cells) versus 
substrate length (in bp), b) mean transformation efficiencies of wild-type (MSH2+/+; top), MSH2+/- 
(bottom) and MSH2-/- (both) for each substrate length. The column marked Reduction shows the 
fold reduction relative to substrates with 200 bp targeting flanks, whereas the MMR-/MMR+ column 
shows the fold increase in transformation efficiency of MSH2-/- cells relative to MSH2+/+ or 
MSH2+/- cells.
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transformants x 10'  ̂ cells, respectively. This may suggest that T. brucei recombination 

efficiency plateaus at 200 bp, and that increasing the substrate length beyond this does not 

improve recombination. It is also possible, however, that this represents the maximum 

achievable transformation efficiency in these cells, at least with the parameters used here. 

Shortening the integration flanks below 200 bp caused a log-linear decrease in 

recombination efficiency, for all cell lines studied, down to 50 bp substrate length. The 

average transformation rates for the 50 bp construct were 0.912 +/- SE 0.175 and 0.975 +/- 

SE 0.281 transformants x 10'  ̂ cells in HTUB wt and HTUB MSH2-/- cells, respectively, 

corresponding to an approximately 10-fold reduction in efficiency compared to 0%-200bp 

(see figure 3.6 b). At the shortest substrate length o f 25 bp, the reactions were extremely 

inefficient with average transformation rates o f only 0.033 +/- SE 0.037 and 0.088 +/- SE 

0.023 transformants x lO'*̂  cells in HTUB wt and HTUB MSH2-/- cells, respectively. This 

represents a reduction o f 295-fold and 104-fold compared with 0%~200bp, and 28-fold and 

11-fold compared with 0%~50bp, respectively. Together, this appears to indicate a break 

in the log-linear relationship at around 25 bp, perhaps indicating that the recombination 

machinery in T. brucei becomes very inefficient around this substrate length. Comparing 

the transformation efficiencies for all constructs between HTUB w t or HTUB MSH2+A and 

HTUB MSH2-/- cells (figure 3.6 b) shows that impairment o f MMR had no discernible 

effect on recombination when the substrates are sequence matched.

3.2.1.2 5% divergence

Transformation constructs derived from PCR-amplification o f sections o f the pHYGOS 

construct, and therefore with integration flanks -5%  diverged from the genomic HYG 

locus, were next transformed into HTUB wt, HTUB MSH2+/- or HTUB MSH2-/- cell lines 

as before. These results, along with those obtained using the pHYGOS full-length 

sequence, are shown in graphical form in figure 3.7. Two primary conclusions can be 

drawn from these results. Firstly, at all substrate lengths, there is a considerable reduction 

in recombination efficiency compared to substrates perfectly matched to the genomic HYG 

sequence. For example, S%-200bp had a transformation efficiency o f 0.75 x 10'  ̂

compared with 9.8 x  10'  ̂ for 0%-200bp (a 13-fold reduction). The second conclusion is 

that, at this level o f sequence divergence, mutation o f MSH2, and therefore MMR 

impairment, influences recombination. The transformation frequencies obtained in HTUB 

MS7T2+/- cells are perhaps slightly higher than those In HTUB wt cells, but both follow the 

same basic pattern: although large fluctuations were seen, there appeared to be a plateau in 

efficiency with all substrates longer than 100 bp generating transformants at approximately 

the same frequency (between 0.278-1.071 x 10'  ̂ transformants for wild-type, and 0.667-

7 2



1.083 X 10'  ̂ transformants for MS772+/-). Below this threshold length, there was a steep 

drop-off in recombination efficiency, with 5%-50bp and 5%-25bp showing 6.43-fold and 

30-fold reductions in recombination efficiency respectively compared with 5%~200bp in 

HTUB wt cells; in HTUB M SH2+/- cells, 3-fold and 6-fold reductions were observed (see 

figure 3.7 b).

The HTUB MSH2-/- cell line displayed a different pattern o f efficiency, however. Here, 

the results obtained with the full-length pHYGOS construct were similar to those obtained 

with S%-200bp (average recombination frequencies o f 2.63 +/- SE 0.849 and 3.22 +/- SE 

0.425 transformants x 10'  ̂ cells, respectively; see figure 3.7 b). 5% diverged constructs 

with integration flanks between 200 bp and 100 bp showed a gradual decrease in 

recombination efficiency, with reductions o f 2.29-fold and 2.93-fold when the 

recombination efficiencies obtained with S%-lSObp and S%-100bp, respectively, are 

compared with 5%-200bp. With substrates shorter than 100 bp, a more pronounced 

reduction in recombination efficiency was obseiwed, with 10.36-fold and 85.83-fold 

reductions in efficiency when rates obtained with the S%-SObp and S%-2Sbp constructs, 

respectively are compared with S%-200bp. It appears, therefore, that MSH2 mutation 

allows the recombination machineiy to act with increasing efficiency in constructs above 

100 bp, which is not seen in MMR-proficient cells. Below -100  bp, as for wild-type or 

MSH2+A cells, recombination becomes highly inefficient, analogous to the sharp decline 

seen at 50 bp with perfectly matched substrates. Mutation o f MSH2 increases the rate of 

recombination on 5% diverged substrates. This is most obvious above 100 bp, as pHYGOS, 

S%-200bp and S%-lSObp constmcts recombined at 2.6, 3.2 and 1.4 x 10'  ̂ cells 

respectively, representing a 2-5-fold increase relative to HTUB w t or MSH2+/~ cells.
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a) 100

0.01
450 200 150 100 50 25

Substrate length

M SH2+/t 
MSH2+/-1 

MSH2-/- i

b)

MSH2+/+ MSH2-/-
Length (bp) Transformants/lO' cells Reduction Transformants/10  ̂cells Reduction MMR-/MMR+
200 0.750 3.219 4.292
150 0.278 2.7 1.4 2.299 5.04
100 1.071 0.7 1.099 2.930 1.025
50 0.117 6.429 0.311 10.364 2.662
25 0.016 47 0.038 85.833 1.5

MSH2+/- MSH2-/-
Length (bp) Transformants/10^ cells Reduction T ra nsforma n ts/10  ̂cells Reduction MMR-/MMR+
200 1.083 3.219 2.971
150 0.667 1.625 1.4 2.299 2.100
100 0.938 1.156 1.099 2.930 1.172
50 0.343 3.158 0.311 10.364 0.905
25 0.016 67.708 0.038 85.833 2.344

Figure 3.7. Recombination m ediated by substrates 5% divergent from the target seq u en ce.
a) a log-linear plot of transformation efficiency (in transformations x 10-6 cells) versus substrate 
length (in bp), b) mean transformation efficiencies of wild-type (MSH2+/+; top), MSH2+/- (bottom) 
and MSH2-/- (both) for each substrate length. The column marked Reduction shows the fold 
reduction relative to substrates with 200 bp targeting flanks, whereas the MMR-/MMR+ column 
shows the fold increase in transformation efficiency of MSH2-/- cells relative to MSH2+/+ or 
MSH2+/- cells.
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a) 100

0.01
100

length
150
Substrate length

200450

MSH2+/+
MSH2+/-

MSH2-/-

b)

MSH2+/+ MSH2-/-
Length (bp) Transformants/10° cells Reduction Transformants/10* cells Reduction MMR-/MMR+
200 0.056 0.222 4.000
150 0.417 0.133 0.188 1.185 0.450
100 0.017 3 0.217 1.026 12.745
50 0.017 3 0.013 17.778 0.750
25 0.017 3 0.031 7.196 1.817

MSH2+/- MSH2-/-
Length (bp) Transformants/10° cells Reduction Transformants/10° cells Reduction MMR-/MMR+
200 0.583 0.222 0.381
150 0.156 3.733 0.188 1.185 1.200
100 0.100 5.833 0.217 1.026 2.167
50 0.017 34.314 0.013 17.778 0.735
25 0.017 34.314 0.031 7.196 1.817

Figure 3.8. Recom bination m ediated by substrates 11% divergent from the target seq u en ce.
a) a log-linear plot of transformation efficiency (in transformations x 10-6 cells) versus substrate 
length (in bp), b) mean transformation efficiencies of wild-type (MSH2+/+; top), MSH2+/- (bottom) 
and MSH2-/- (both) for each substrate length. The column marked Reduction shows the fold 
reduction relative to substrates with 200 bp targeting flanks, whereas the MMR-/MMR+ column 
shows the fold increase in transformation efficiency of MSH2-/- cells relative to MSH2+/+ or 
MSH2+/- cells.
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3.2.1.3 11% divergence

Transformation constructs derived from PCR-amplification o f sections o f the p H Y G ll  

construct, and therefore with integration flanks -11%  diverged from the genomic HYG 

locus, were transformed into HTUB wt, HTUB MSH2-^/~ and HTUB MSH2-A cell lines as 

described above. The recombination efficiencies obtained, along with results previously 

obtained using the p H Y G ll  full-length sequence (apart from in HTUB wt cells: these data 

were not available), are shown in graphical form in figure 3.8. Recombination at this high 

level o f sequence divergence is uniformly very inefficient, but does not appear to be 

affected by MMR. Even at this high level o f sequence divergence, transformation 

efficiency appears to be dependent on substrate length, although there are large amounts of 

fluctuation between experiments. The maximum transformation efficiencies obtained, 

with the ll% ~200bp  construct, were 0.056 +/- SE 0.056 transformants x 10'  ̂ cells in 

HTUB wt cells, 0.583 +/- SE 0.25 transformants x 10'  ̂ cells in HTUB MSH2+A cells, and 

0.222 +/- SE 0.147 transformants x  10"̂  cells in HTUB MSH2-A cells. A  roughly log- 

linear reduction in transformation efficiency was obseiwed down to 50 bp substrate length; 

with substrates measuring 50 bp and 25 bp, very few transformants were recovered.

3.2.2 Revised transformation efficiency calcuiations

More complex statistical analysis was needed to get a more accurate estimate o f T. brucei 

transformation efficiencies. This was done with the invaluable mathematical help o f Derek 

Pike. In similar cases to this one in the literature (for example, Wickstead et a i ,  2003), the 

Poisson distribution has been used to calculate transformation efficiency. Here, 1, the 

mean number o f positive transformants per well, is calculated with the equation 1 = In [1 -  

(n+/N)], where n+ is the number o f positive wells and N  is the total number of wells. This 

was considered a good measure o f X as long as less than 80% o f wells were positive. This 

concurs with a long known fact in the statistical world that “the Poisson distribution is the 

limiting form of the binomial distribution when there is a large number of trials but only a 

small probability o f success at each o f them” (Bulmer, 1967). Unfortunately, in the 

experiments discussed here, in many o f the more efficient reactions up to 23/24 wells were 

positive, and an alternative strategy was necessary.

The Poisson distribution is appropriate for the study o f rare events in a certain area or time. 

The binomial distribution is similar to the Poisson distribution when the probabilities 

involved are small. It has the advantages o f firstly, being valid over a wider range o f  

values, whether the event is very rare or relatively frequent, and secondly, o f allowing the
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calculation of error based on the probability o f multiple events occurring in the same 

inteival (in this case, multiple ceils being transformed in the same well), as described 

below. Therefore, this is the approach we used to calculate better estimations o f  

transformation efficiencies in this case.

Firstly, we calculated the probability p  o f a cell being successfully transformed. By the 

binomial distribution, the probability q o f no cells in a well being successfully transformed: 

(1-p)'  ̂= 1-q. The probability o f at least one cell in a well being successfully transformed: 

q = 1 -  (l-p)“. The probability o f r out o f 24 wells showing growth: q*̂ (l-q)̂ "̂ '*̂ . From

this, the maximum likelihood estimate o f q is r/24. Therefore, (1-p)" = [l-(r/24)] and so p

The next problem was to calculate the standard error o f the average transformation 

efficiencies calculated in this way. This needs to take into account both the error coming 

from not knowing how many cells were actually transformed in each positive well, but also 

the error caused by variation between repititions o f the experiment. The first part o f the 

total error, the variance o f this estimate o f probabililty, was calculated using a first order 

approximation based on a Taylor Series expansion o f the desired function. Using this 

method, the “within-replicate variance”, variance o f the estimate o f p = ({[l-q]*-̂ ^̂ "̂ " ^̂ }/n)̂  

* Var(q). The second part o f the error, the “data variance” or variation between replicates 

of the experiment, was calculated from the variation between all the transformation 

efficiencies as described above. These two sorts of variation were combined in the 

following way. The “unit variance” is the average o f the within-replicate variances. The 

“replicate variance” = (data variance -  unit variance) / 2. We can add this to the unit 

variance to get a total calculation of variance, and the square root o f this number gives us 

the total standard error.

3.2.2.1 0% divergence

Transformation efficiencies were calculated using data obtained by transformation o f  

constructs derived from the pHYGwt construct, using the binomial distribution as described 

above (shown in graphical form in figure 3.9). These revised transformation efficiencies 

differ from those generated originally by in two ways. The first difference is that the
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1 0 0 0

c 100

m

fi

150 100
Substrate length

•MSH2+/+
'MSH2+/-
MSH2-/-

b)
M SH2+/+

Reduction
MSH2-/-

Length (bp) T tansfonnan ts/lO *  cells Transformants/10® cells Reduction MMR-/MMR+
0.482200 22.205 10.696

150 14.733 1.507 10.275 1.041 0.697
100 3.922 5.661 2.512 4.259 0.640
50 1.138 19.505 0.820 13.039 0.721
25 0.035 637.999 0.090 118.923 2.584

M SH2+/- MSH2-/-
Length (bp) T ransfo rm an ts/10® cells Reduction Transformants/lO® cells Reduction MMR-/MMR+

200 29.347 10.696 0.364
150 33.275 0.882 10.275 1.041 0.309
100 4.184 7.014 2.512 4.259 0.600
50 0.998 29.394 0.820 13.039 0.822
25 0.017 1723.894 0.090 118.923 5.283

Figure 3.9. Recom bination mediated by substrates perfectly m atched to the target 
sequence; transformation effic iencies calculated using the binomial distribution, a) a log- 
linear plot of transformation efficiency (in transformations x 10"® cells) vs substrate length (in bp),
b) mean transformation efficiencies of wild-type (MSH2+/+; top), MSH2+/- (bottom) and MSH2-/- 
(both) for each substrate length. The column marked Reduction shows the fold reduction relative 
to substrates with 200 bp
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standard errors are larger using the second method (espeeially for the results obtained 

using the 0%-150bp construct). This is because the added error due to not knowing the 

number o f transformants in each positive well is now taken into account, as well as the 

error between replicates. The second difference is that the more efficient reactions have 

much higher transformation efficiencies calculated by the new method. For example, 

transformation of the 0%~200bp construct generated BLE-resistant clones at a rate of 

22.203 +/- SE 7.475 transformants x 10"̂  cells in the HTUB wt cell line using the new 

calculation method, as compared to 9.833 +/- SE 0.423 transformants x 10'  ̂ cells using the 

old method. This was to be expected, as again, here the probability o f the wells from these 

very efficient transformations containing multiple transformants is high. This effect is less 

striking for the HTUB MSH2-/- cell line, where the estimate o f transformation efficiency 

for the 0%-200bp construct is only increased to 10.696 +/- SE 4.029 transformants x 10"̂  

cells, as compared to 9.13 +/- SE 0.754 using the old calculation method. In contrast, the 

less efficient reactions (where most o f the wells can be expected to contain a single 

transformed cell) are altered less drastically by the revised calculations: for example, 

transformation o f the 0%-50bp construct generated BLE-resistant clones at a rate o f 1.138 

+/- SE 0.485 transformants x 10'  ̂ cells in the HTUB wt cell line using the new calculation 

method, as compared to 0.912 +/- SE 0.175 transformants x 10'  ̂ cells using the old 

method.

Despite these differences in transformation efficiency, when the values are plotted on a 

log-linear graph, the shape looks similar to the graph plotted from the original calculations. 

There is a steep drop-off in transformation efficiency below a substrate length o f 50 bp for 

all cell-lines, as seen before. In the revised graph, however, the values plateau at 150 bp, 

instead o f 200 bp as with the old calculations. At intermediate substrate lengths the 

transformation efficiencies derived from the HTUB MSH2-/- cell line are perhaps slightly 

lower than those from the HTUB w t and HTUB MSH2+/- cell lines, but the overlapping 

standard error bars show that this is not statistically significant.

It is worth noting that the revised calculations, by increasing the estimates of 

transformation efficiencies o f the more efficient reactions, can lead to more dramatic 

reductions in recombination efficiency when comparing shorter substrates to 0%-200bp. 

For example (see figures 3.6 and 3.9), recombination using the 0%-25bp substrate is 295- 

fold less efficient than using 0%-200bp by the old calculations, and 637.9-fold less 

efficient by the new method.
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3.2.2.2 5% divergence

Transformation efficiencies were calculated using data obtained by transformation of 

constructs derived from the pHYGOS construct, using the binomial distribution as described 

above (shown in graphical form in figure 3.10). The same conclusions can be drawn as 

from the original calculations: firstly, that there is a considerable reduction in 

recombination efficiency compared to substrates perfectly matched to the genomic target 

sequence; and secondly, that MSH2 mutation influences recombination using longer 

substrates.

The reduction in recombination efficiency compared to the perfectly-matched substrates is 

more pronounced when the new calculation method is used. There is now a 23-fold 

reduction in transformation efficiency (a reduction from 22.205 to 0.914 x transformants 

10"̂  cells), as compared to 13-fold when the old method is used. This is because, as 

discussed above, the less efficient reactions using the 5% substrates are less affected by the 

statistical adjustments taking into account the possibility o f multiple transformants in each 

well.

The HTUB MSH2-/- cell line still displays a different pattern of transformation efficiency 

to the HTUB uT cell line. The HTUB MSH2-/- eell line undergoes transformation at a 

higher rate at all substrate lengths, but this is more pronounced when longer substrates are 

used. A 5.726 and 5.911-fold increase in transformation efficiency when HTUB MSH2-/- 

is compared to HTUB w t when 5%-200bp and 5%-150bp are used, is reduced to 1.167- 

fold, 2.886-fold and 1.986-fold reductions for 5%-lOObp, 5%-50bp and 5%-25bp, 

respectively. Therefore, we can still conclude that MSH2 mutation allows the 

recombination machinery to act with greater efficiency for substrates longer than 100 bp in 

length. A reduction in transformation efficiency when substrate lengths are reduced below 

100 bp is seen for all cell lines, as with the original calculation method.

3.2.2.3 11% divergence

Transformation efficiencies were calculated using data obtained by transformation o f  

constructs derived from the pH YG l 1 construct, using the binomial distribution as described 

above (shown in graphical form in figure 3.11). The revised calculations lead to higher 

estimations o f transformation efficiency than the original method for the ll% -5 0 b p  and 

ll% -2 5 b p  constructs in the HTUB-MSH2-/- cell line (0.28 compared to 0.013 

transformants x 10'  ̂cells, and 0.269 compared to 0.031 transformants x 10'  ̂cells,
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1 0 0 0

(0 0.1

0.01
450 200 150 100

Substrate length

50 25

”̂ M S H 2 + /+
MSH2+/
MSH2-/-

b)
M SH 2+/+ MSH2-/-

Length (bp ) T ransform ants/lO ®  cells R eduction T ransform ants/lO ®  cells R eduction MMR-/MMR+
200 0.914 5.232 5.726
150 0.313 2.916 1.852 2.825 5.911
100 1.398 0.653 1.632 3.207 1.167
50 0.127 7.167 0.368 14.220 2.886
25 0.026 35.003 0.052 100.948 1.986

M SH 2+/- M SH2-/-
Length (bp) T ransform ants/lO ®  cells R eduction Tra nsform a n t s / 10* cells R eduction MMR-/MMR+

200 1.290 5.232 4.055
150 0.787 1.638 1.852 2.825 2.352
100 1.239 1.042 1.632 3.207 1.317
50 0.245 5.268 0.368 14.220 1.502
25 0.017 75.889 0.052 100.948 3.049

Figure 3.10. Recom bination m ediated by substrates 5% diverged from the target sequence; 
transformation efficiencies calculated using the binomial distribution, a) a log-linear plot of 
transformation efficiency (in transformations x IC® cells) vs substrate length (in bp), b) mean 
transformation efficiencies of wild-type (MSH2+/+; top), MSH2+/- (bottom) and MSH2-/- (both) for 
each substrate length. The column marked Reduction shows the fold reduction relative to 
substrates with 200 bp
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1 0 0 0

0.01
450 200 150 100

Substrate length
50 25

■MSH2+/+
'MSH2+/-
•MSH2-/-

b)
M SH 2+/+ M SH2-/-

L ength (b p ) T ra n sfo n n an ts /1 0 *  cells R eduction T ran sfo n n an ts /1 0 *  cells Reduction MMRVMMR+
200 0.025 0.266 10.649
150 0.517 0.048 0.676 0.394 1.307
100 0.026 0.979 0.511 0.521 20.023
50 0.017 1.471 0.280 0.950 16.478
25 0.017 1.471 0.269 0.991 15.805

M SH 2+/- M SH2-/-
Length (bp ) T ran s fo rm an ts /10* ceils R eduction T ransfo rm an ts/lO *  cells R eduction MMR:/MMR+

0.730200 0.365 0.266
150 0.545 0.669 0.676 0.394 1.240
100 0.382 0.955 0.511 0.521 1.340
50 0.017 21.444 0.280 0.950 16,478
25 0.017 21.444 0.269 0.991 15.805

Figure 3.11. Recom bination mediated by substrates 11% diverged from the target 
sequence; transformation efficiencies calculated using the binomial distribution, a) a log- 
linear plot of transformation efficiency (in transformations x 10"® cells) vs substrate length (in bp),
b) mean transformation efficiencies of wild-type (MSH2+/+; top), MSH2+/- (bottom) and MSH2-/- 
(both) for each substrate length. The column marked Reduction shows the fold reduction relative 
to substrates with 200 bp

8 2



respectively. This means that although a reduction in transformation efficiency with 

substrate length can still be observed in the MMR-proficient cell lines, this effect is no 

longer really seen in the HTUB MSH2-/- cell line: in this case, recombination does not 

seem to be affected by substrate length. However, analysis o f this is veiy difficult due to 

the low numbers o f transformants recovered.

3.2.3 Characterisation of integration by hygromycin resistance

A difficulty with the above analysis is that it is assumed that all integrations occur by HR 

into the HTUB target. It is possible, however, that other forms o f recombination (see 

section 1.4) could invalidate these results. For example, it is known in T. brucei that 

microhomology-mediated recombination can occur into unexpected locations (Conway et 

al., 2002b). To examine this, the antibiotic resistance o f the transformants was examined. 

Recombination by HR o f the constmcts from this assay into the HTUB locus could lead to 

loss o f hygromycin resistance due to disruption o f the HYG ORF, whereas aberrant 

recombination into other loci should allow the cells to survive in the presence o f this 

antibiotic. Therefore, cloned transformants were tested for hygromycin resistance by 

passage into 1.5 ml o f FIMI-9 medium containing 5 pg.mf* o f hygromycin, and assessing 

growth o f the trypanosomes after 3 days. The proportions o f hygromycin resistant (Hyg'^) 

and hygromycin sensitive (Hyg^) transformants from each class o f transformation are 

recorded in figures 3.9, 3.10 and 3.11. In many cases, a proportion of transformants retain 

hygromycin resistance. In the most efficient transformation reactions (with >100 bp o f  

perfect homology), this was between 4.8-21.8% of transformants. No clear alteration in 

the proportions o f Hyg*  ̂ transformants was apparent in transformations from the whole 

range o f substrate lengths and sequence divergence, and in all three cell lines. Although 

some classes o f transformant were dominated by Hyg*  ̂ cells, the small sample sizes in 

many cases make it difficult to analyse this in more detail.

To attempt to examine this further, the frequency o f recombination leading to Hyg*  ̂

transformants was calculated from the total recombination frequency (calculated using the 

original calculation method) and the proportion of Hyg'  ̂ clones, and is shown in graphical 

form in figures 3.12, 3.13 and 3.14. In all cell lines assayed, the different sized PCR 

products derived from pHYGwt and pHYGOS (with the exception o f the longer 5% 

substrates as mentioned below) displayed a log-linear reduction in recombination
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Figure 3.12. Bar charts show ing hygrom ycin resistance. The proportion of hygromycin 
resistant (HygR; maroon) and sensitive (HygS; light blue) cloned transformants recovered from 
recombination of constructs of varying lengths (shown along the x-axis) with 0%, 5% and 11%  
divergence from the genomic H Y G  sequence into H T U B  w t  cells.
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Figure 3.13. Bar charts show ing hygromycin resistance. The proportion of hygromycin 
resistant (HygR; maroon) and sensitive (HygS; light blue) cloned transformants recovered from 
recombination of constructs of varying lengths (shown along the x-axis) with 0%, 5% and 11% 
divergence from the genomic HYG sequence into HTUB MSH2+/- cells.

8 5



0%

5%

11%

100

75
O)
en

i:
25 bp 50 bp 100 bp 150 bp 200 bp 

Substrate length

100

75
(U

c  50 H
g
- 2 5

100

75
(U
cn

I -
g 25

18 51 65 85

I
25 bp 50 bp 100 bp 150 bp 200 bp 

Substrate length

25 bp 50 bp 100 bp 150 bp 200 bp 

Substrate length

■ ■H ygR  
L— I HygS

Figure 3.14. Bar charts show ing hygrom ycin resistance. The proportion of hygromycin 
resistant (HygR; maroon) and sensitive (HygS; light blue) cloned transformants recovered from 
recombination of constructs of varying lengths (shown along the x-axis) with 0%, 5% and 11% 
divergence from the genomic HYG sequence into HTUB MSH2-/- cells.
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efficiency, ranging from ~1 transformant x  10'  ̂ cells for 200 bp substrates, down to 

undetectable transformation for the shortest substrate. These reactions do not seem to be 

dependent on MMR, as there did not appear to be any significant difference between the 

cell lines assayed, and the 0% and 5% constructs gave veiy similar graphs (see figures 3.12 

and 3.13). An exception to this are the transformations o f constructs containing 5% 

divergence into the HTUB w t cell line; here, Hyg^ transformants were only identified in 

the 100 bp reactions. However, as the HTUB MSH2+/- cell line gave very similar results 

to the HTUB MSH2-/- cell line, this can probably be dismissed as an experimental 

discrepancy due to the low numbers o f cloned transformants available for analysis in many 

cases. Transformation o f constructs derived from p H Y G ll  (see figure 3.14) gave 

extremely few transformants at substrate lengths shorter than 150 bp, but again the small 

sample sizes means this could reflect random fluctuation.

The frequency of recombination leading to Hyg^ transformants was calculated from the 

total recombination frequency (calculated using the new, binomial distribution calculation 

method) and the proportion o f Hyg^ clones, and is shown in graphical form in figures 3.18 

- 3.20. As with the calculations for total transformation efficiency, this gives very similar 

results to the original calculations.

In general, it can be concluded that a proportion o f Hyg^ transformants are generated by 

recombination o f all constructs, regardless o f length or sequence divergence.

3.2.4 Southern analysis of the integrations

A number o f Hyg® and Hyg^ transformants were analysed by Southern blot, using the 

strategy shown in figure 3.15, to look at the integration events in more detail and to attempt 

to define how Hyg^ transformants arose. Genomic DNA from 24 Hyg^ and 24 Hyg^
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Substrate length
MSH2+/+
MSH2+/-
MSH2-/-

MSH2+/+ MSH2-/-
Length (bp) Transformants/10* cells Reduction Transformants/10® cells Reduction MMR-/MMR+

200 0.477 3.19 6.688
150 1.019 0.468 0.572 5.577 0.561
100 0.372 1.282 0.257 12.412 0.691
50 0.306 1.559 0.516 6.182 1.686
25 0.025 19.080 0.025 127.600 1.000

MSH2+/- MSH2-/-
Length (bp) Transformants/10‘ cells Reduction Transformants/10® cells Reduction MMR-/MMR+

200 1.019 3.19 3.131
150 0.622 1.638 0.572 5.577 0.920
100 0.365 2.792 0.257 12.412 0.704
50 0.145 7.028 0.516 6.182 3.559
25 0.025 40.760 0.025 127.600 1.000

Figure 3.15. Frequency of hygrom ycin-resistant transformants resulting from 
recombination mediated by su b strates perfectly matched to the target seq u en ce  (original 
calculations), a) a log-linear plot of transformation efficiency (in transformations x 10-6 cells) 
versus integration flank (in bp), b) mean transformation efficiencies of wild-type (MSH2+/+; top), 
MSH2+/- (bottom) and MSH2-/- (both) for each substrate length. The column marked Reduction 
shows the fold reduction relative to substrates with 200 bp targeting flanks, whereas the MMR- 
/MMR+ column shows the fold increase in transformation efficiency of MSH2-/- cells relative to 
MSH2+/+ or MSH2+/- cells.
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a) 10

1

0.1

0.01
100 50200 150

Substrate length
25

MSH2+/+
MSH2+/-

MSH2-/-

b)

MSH2+/+ MSH2-/-
Length (bp) Transformants/10‘ cells Reduction Transformants/10* cells Reduction MMR./MMR+
200 0.016 1.098 68.625
150 0.016 1.000 0.366 3.000 22.875
100 0.402 0.040 0.28 3.921 0.697
50 0.016 1.000 0.052 21.115 3.250
25 0.016 1.000 0.016 68.625 1.000

MSH2+/- MSH2-/-
Length (bp) Transformants/10‘ cells Reduction Transformants/10‘ cells Reduction MMR./MMR+
200 0.406 1.098 2.704
150 0.666 1.640 0.366 3.000 0.550
100 0.496 0.819 0.28 3.921 0.565
50 0.069 0.170 0.052 21.115 0.754
25 0.016 0.039 0.016 68.625 1.000

Figure 3.16. Frequency of hygrom ycin-resistant transformants resulting from 
recom bination mediated by substrates 5% divergent from the target seq u en ce  (original 
calculations), a) a log-linear plot of transformation efficiency (in transformations x 10-6 cells) 
versus integration flank (in bp), b) mean transformation efficiencies of wild-type (MSH2+/+; top), 
MSH2+/- (bottom) and MSH2-/- (both) for each substrate length. The column marked Reduction 
shows the fold reduction relative to substrates with 200 bp targeting flanks, whereas the MMR- 
/MMR+ column shows the fold increase in transformation efficiency of MSH2-/- cells relative to 
MSH2+/+ or MSH2+/- cells.
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100
Substrate length

•MSH2+/+
■MSH2+/-
•MSH2-/-

b )

M SH 2+/+ M SH2-/-
L e n g th (b p ) T ran s fo rm an ts /10* cells R eduction T ransform ants/10*  cells R eduction MMR-/MMR+

200 0.016 0.222 13.875
150 0.010 1.600 0.023 9.652 2.300
100 0.016 1.000 0.047 4.723 2.938
50 0.016 1.000 0.016 13.875 1.000
25 0.016 1.000 0.016 13.875 1.000

M SH 2+/- M SH2-/-
Length (bp) T ransfo rm an ts/10*  cells R eduction T ransform ants/10*  cells Reduction MMR-/MMR+

200 0.333 0.222 0.667
150 0.458 1.600 0.023 9.652 0.050
100 0.283 0.057 0.047 4.723 0.166
50 0.025 0.640 0.016 13.875 0.640
25 0.025 0.640 0.016 13.875 0.640

Figure 3.17. Frequency of hygrom ycin-resistant transformants resulting from 
recom bination mediated by substrates 11% divergent from the target seq u en ce  (original 
calculations), a) a log-linear plot of transformation efficiency (in transformations x 10-6 cells) 
versus integration flank (in bp), b) mean transformation efficiencies of wild-type (MSH2+/+; top), 
MSH2+/- (bottom) and MSH2-/- (t)oth) for each substrate length. The column marked Reduction 
shows the fold reduction relative to substrates with 200 bp targeting flanks, whereas the MMR- 
/MMR+ column shows the fold increase in transformation efficiency of MSH2-/- cells relative to 
MSH2+/+ or MSH2+/- cells.
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0.1

0.01
25100 50200 150

Substrate length

MSH2+/+
MSH2+/-
MSH2-/-

b)
M S H 2+ /+ M SH2-/-

L ength (b p ) T ran sfo rm an ts/lO *  cells R eduction T ran sfo rm an ts/1 0 *  cells R eduction MMR-/MMR+
200 1.077 3.734 3.467
150 3.218 0.335 1.221 3.059 0.379
100 0.603 1.785 0.348 10.734 0.577
50 0.379 2.841 0.434 8.598 1.146
25 0.017 63.350 0.026 145.314 1.512

M SH 2+/- M SH2-/-
Length (bp ) T ra n sfo n n an ts /lO *  cells R eduction T ran sfo rm an ts/1 0 *  cells R eduction MMR-/MMR+

200 2.765 3.734 1.351
150 4.249 0.651 1.221 3.059 0.287
100 0.625 4.426 0.348 10.734 0.557
50 0.178 15.504 0.434 8.598 2.435
25 0.017 162.391 0.026 145.314 1.509

Figure 3.18. Frequency of hygrom ycin-resistant transformants resulting from 
recombination mediated by substrates perfectly m atched to the target seq u en ce  (original 
calculations), a) a log-linear plot of transformation efficiency (in transformations x 10-6 cells) 
versus integration flank (in bp), b) mean transformation efficiencies of wild-type (MSH2+/+; top), 
MSH2+/- (bottom) and MSH2-/- (both) for each substrate length. The column marked Reduction 
shows the fold reduction relative to substrates with 200 bp targeting flanks, whereas the MMR- 
/MMR+ column shows the fold increase in transformation efficiency of MSH2-/- cells relative to 
MSH2+/+ or MSH2+/- cells.
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0.01
200 150 100

Substrate length
50 25

b )

MSH2+/+
MSH2+/
MSH2-/

M SH 2+/+ MSH2-/-
Length (bp) T ran s fo rm an ts /10* cells R eduction T ransfo im an ts /10*  cells R eduction MMR-/MMR+ 1

200 0.017 1.785 105.009
150 0.017 1.000 0.484 3.686 28.492
100 0.518 0.033 0.416 4.292 0.803
50 0.017 1.000 0.061 29.112 3.607 1
25 0.017 1.000 0.017 105.009 1.000 1

M SH 2+/- M SH2-/-
------------------

Length (bp) T ran s fo rm an ts /10* cells R eduction T ransform ants/10*  cells R eduction MMR-/MMR+ 1
200 0.484 1.785 3.690 ;
150 0.787 0.614 0.484 3.686 0.615
100 0.656 0.738 0.416 4.292 0.634 i
50 0.049 9.877 0.061 29.112 1.252 ’
25 0.017 28.459 0.017 105.009 1.000

Figure 3.19. Frequency of hygrom ycin-resistant transformants resulting from 
recombination mediated by substrates 5% divergent from the target seq u en ce  (revised  
calculations), a) a log-linear plot of transformation efficiency (in transformations x 10-6 cells) 
versus integration flank (in bp), b) mean transformation efficiencies of wild-type (MSH2+/+; top), 
MSH2+/- (bottom) and MSH2-/- (both) for each substrate length. The column marked Reduction 
shows the fold reduction relative to substrates with 200 bp targeting flanks, whereas the MMR- 
/MMR+ column shows the fold increase in transformation efficiency of MSH2-/- cells relative to 
MSH2+/+ or MSH2+/- cells.
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0.01
200 150 100

Substrate length

'MSH2+/+
■MSH2+/-
■MSH2-/-

b)
M SH 2+/+ M SH2-/-

Length (bp )
200

T ransfo rm an ts/10*  cells Reduction T ransfbrm ants/10*  cells R eduction MMR-/MMR+
15.6600.017 0.266

150 0.259 0.066 0.085 3.150 0.327
100 0.017 1.000 0.112 2.380 6.581
50 0.017 1.000 0.017 15.660 1.000
25 0.017 1.000 0.017 15.660 1.000

M SH 2+/- M SH2-/-
Length (bp ) T ransfo rm an ts/10*  cells Reduction T ransfbrm ants/10*  cells R eduction MMR-/MMR+

200 0.365 0.266 0.730
150 0.545 0.066 0.085 3.150 0.155
100 0.017 1.000 0.112 2.380 6.581
50 0.017 1.000 0.017 15.660 1.000
25 0.017 1.000 0.017 15.660 1.000

Figure 3.20. Frequency of hygrom ycin-resistant transformants resulting from 
recom bination mediated by substrates 11% divergent from the target seq u en ce  (revised  
calculations), a) a log-linear plot of transformation efficiency (in transformations x 10-6 cells) 
versus integration flank (in bp), b) mean transformation efficiencies of wild-type (MSH2+/+; top), 
MSH2+/- (bottom) and MSH2-/- (both) for each substrate length. The column marked Reduction 
shows the fold reduction relative to substrates with 200 bp targeting flanks, whereas the MMR- 
/MMR+ column shows the fold increase in transformation efficiency of MSH2-/- cells relative to 
MSH2+/+ or MSH2+/- cells.
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clones from a representative cross-section o f transformations into either HTUB w t or 

HTUB MSH2-/- cells, as well as the untransformed HTUB wt or HTUB MSH2-/- strains, 

was digested with i^mdlll, separated by agarose gel electrophoresis and Southern blotted. 

The entire, 384 bp BLE ORF was amplified from pRM481 construct DNA using primers 

Ble-PstI and Ble-SphI (see appendix 1), and the PCR product used as a probe for the 

Southern blots (figure 3.16). A  HindUl site can be found in eveiy copy o f the p  tubulin 

gene in the repetitive tubulin array, so the expected restriction fragment generated by 

correct integration into the HTUB locus measures 4.3 kb, containing one copy o f p  tubulin 

with its processing flanks, the disrupted HYG, and BLE with its processing flanks. The 

BLE probe annealed to a single fragment o f this size in all the Hyg^ clones studied, from 

both HTUB w t and HTUB MSH2-/- cell lines. This fragment was also seen in almost all 

Hyg^ clones, implying correct integration o f the PCR products into the HYG locus in these 

clones, despite retention o f hygromycin resistance. In four o f the Hyg^ clones, all o f  which 

were derived from transformation into HTUB MSH2-/- cells (using PCR products 0%- 

50bp, 11%-lOObp (twice) and ll% ~200bp), the 4.3 kb restriction fragment was not present, 

but instead single fragments o f different sizes were seen. Most likely, these correspond to 

aberrant integration o f the transformation constructs into other genomic locations, 

presumably employing short regions o f homology to the HYG integration flanks (Conway 

et aL, 2002b).

The Southern blots were then stripped o f radioactive material to allow further analysis. A 

228 bp section of the HYG ORF (upstream of the region of the gene that was the target 

used for integration in these experiments) was amplified from HTUB wt genomic DNA  

using primers H yg5’ and Hygprobe-3’ (see appendix 1) and the PCR product was used to 

re-probe the Southern blots. This probe is expected to anneal to the same 4.3 kb fragment 

described in the previous section if  correct integration into the HYG locus has taken place. 

As for BLE, this single band was again seen in all o f the HYG^ clones, apart from in two 

cases. These cases resulted from transformation of PCR products 0%-50bp and 5%-150bp 

(lanes 10 and 11, HTUB w t Hyg®, figure 3.17) where an additional restriction fragment o f  

~3 kb was seen, perhaps corresponding to the undisturbed HYG locus (as described below). 

These isolated discrepancies between the HYG and BLE probes was not analysed in more 

detail. The expected restriction fragment generated by Hindlll digestion o f the wild-type, 

undisturbed FDTr locus is 3.5 kb, corresponding to one copy o f p  tubulin with its 

processing flanks, and HYG (see figure 3.15). In the four Hyg^ clones with aberrant 

integrations (lanes 3, 12, 13 and 23, HTUB MSH2-/- Hyg* ,̂ figure 3.17), a single 3.5 kb 

restriction fragment corresponding to the intact HTUB locus was seen. However, in the
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BLE
BLE probe
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b) HTUB MSH2 w t HTUB M S H 2-/-
HygS HygR HygS HygR

1 0%-50bp 0%-100bp 0%-50bp 0%-50bp
2 0%-50bp 0%-100bp 0%-50bp 0%-50bp
3 0%-100bp 5%-lOObp 0%-100bp 0%-50bp
4 0%-100bp 5%-lOObp 0%-100bp 0%-100bp
5 0%-200bp 0%-100bp 0%-150bp 0%-100bp
6 0%-200bp 0%-100bp 0%-150bp 0%-150bp
7 0%-200bp 0%-150bp 0%-200bp 0%-150bp
8 5%-50bp 0%-150bp 0%-200bp 0%-200bp
9 5%-lOObp 0%-150bp 5%-50bp 0%-200bp
10 5%-150bp 0%-150bp 5%-50bp 5%150bp
11 0%-50bp 0%-150bp 5%-lOObp 5%-200bp
12 0%-50bp 0%-150bp 5%-lOObp 11%-lOObp
13 0%-100bp 0%-200bp 5%-150bp 11%-lOObp
14 0%-100bp 0%-200bp 5%-200bp ll% -200bp
15 0%-150bp 5%-lOObp 5%-200bp 0%-100bp
16 0%-150bp 5%-lOObp 0%-100bp 0%-150bp
17 0%-150bp 5%-lOObp 0%-100bp 0%-150bp
18 0%-150bp 5%-lOObp 0%-150bp 5%-lOObp
19 0%-200bp 5%-lOObp 0%-150bp 5%-lOObp
20 0%-200bp 5%-lOObp 5%-lOObp 5%-200bp
21 0%-200bp 5%-200bp 5%-lOObp 5%-200bp
22 0%-200bp ll% -150bp 5%-200bp 5%-200bp
23 5%-lOObp ll% -150bp 5%-200bp 11%-lOObp
24 ll% -150bp ll% -150bp 5%-200bp ll% -150bp
HygR 1 
HygR 2 
HygR 3 
HygR 4 
HygR 5 
HygS 1 
HygS 2 
HygS 3

0%-200bp
11%-lOObp
5%-150bp

0%-200bp
5%-lOObp
0%-100bp
0%-150bp
0%-100bp

Figure 3.21. Southern analysis of cloned transform ants, a) a shematic representation of the 
strategy used to analyse cloned transformants. The a and |3 tubulin, HYG and BLE ORFs are 
represented by white, grey, blue and black boxes, respectively, Hind\\\ and Stu\ restriction sites by 
vertical lines, probe fragments by red lines {HYG or BLE) or green lines (tubulin) and expected 
restriction fragment sizes by horizontal arrows of the appropriate colour, b) a summary of the PCR 
products used to generate the transformants analysed in this section.
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rest o f the Hyĝ  ̂ clones, two restriction fragments were seen, one o f 3.5 kb and one o f 4.3 

kb, suggesting duplication o f the HTUB genomic region in these transformants.

In order to confirm the pattern o f integration in the HTUB locus observed by Southern blot, 

a sample o f the transformants were analysed by diagnostic PCR, as summarised in figure 

3.18 a. For genomic DNA samples from the different classes o f transformants (lane 2 

HTUB wt Hyg®; Hyg®; lane 1 HTUB MSH2-/- Hyg'*; Hyg=̂  duplication; lane 12 HTUB 

MSH2-/- Hyg**: Hyg'^ aberrant: see figure 3.18 b), as well as no-DNA and HTUB wt 

controls (figure 3.18 c), three PCR reactions were carried out. Firstly, the HYG locus was 

amplified using primers HYG5’ and HYG3’ (see appendix 1), which amplified the 

complete ORF (861 bp). Secondly, linkage o f the BLE cassette to the tubulin array was 

assessed by PCR using primers patub and Midbleo. Thirdly integrity o f the genomic DNA  

template was assayed by amplification o f a 471 bp central section o f the RNA polymerase 

I ORF using primers PolIS’ and PolI3’ (see appendix 1). In the Hyg^ clone, the HYG locus 

is expected to be disrupted by integration o f the BLE construct and therefore to yield a 

PCR product o f ~2 kb; the BLE ORF is also expected to be linked to the tubulin array 

yielding a PCR product o f 1.3 kb. Hyg^ transformants can be divided into two classes. In 

the Hyg^ cells where the HYG locus is thought to be duplicated {i.e., the majority of 

clones, yielding two restriction fragments annealed by the BLE probe), the above products 

are expected, as well as an 861 bp PCR product corresponding to an undisturbed HYG 

gene. On the other hand, in the Hyg^ clone where bleomycin resistance has been obtained 

by putatively aberrant integration into other genomic locations: therefore, amplification of  

the HYG gene should yield an 861 bp product, whereas linkage o f BLE and tubulin should 

not be possible. Representative PCR pro duets for each class o f transformant are shown in 

figure 3.18, and in all cases products o f the predicted sizes were amplified, confirming the 

interpretations made from the Southern analysis.

The obseiTed duplication o f at least a section of chromosome I could be caused by three 

things. Firstly, in a subset o f the parasite population, trisomy of the marked chromosome I, 

and potentially other chromosomes, could be present, allowing integration o f BLE into one 

copy of the HYG locus, while the other copy remains intact. Secondly, duplication o f the 

HTUB locus could have occurred within the repetitive tubulin array either previous to, or 

during, recombination. Thirdly, a mechanism similar to break-induced replication (BIR; 

see section 1.2.2) could have occurred during BLE integration, causing duplication of a 

large section of the chromosome or even the complete chromosome. To differentiate 

between these mechanisms, a representative set o f transformants were subjected to further 

analysis.
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Figure 3.24. A nalysis of cloned transform ations from the transformation efficiency a ssa y  by 
diagnostic PCR. a) A schematic representation of the PCR reactions carried out. a and (3 tubulin, 
HYG and BLE ORFs are represented by white, grey, blue and purple boxes respectively; primers 
used for the “HYG” PCR reactions are indicated by blue arrows and the expected sizes of the 
products generated in blue text; primers used for the “BLE” PCR reactions are shown by purple 
arrows and the expected sizes of the products generated in purple text, b) Representative PCR 
reactions from each class of transformant: hygromycin sensitive (HygS), hygromycin resistant with 
duplication of the HTUB locus (HygR-duplication), and hygromycin resistant due to aberrant 
integration of the transformation construct (HygR-aberrant). 10 pi of each diagnostic PCR reaction 
was separated on an agarose gel and stained using ethidium bromide, c) Control PCR reactions; 
the sam e reactions as above were performed using HTUB wt genomic DNA and no DNA. In 
addtion, the BLE ORF was amplified from plasmid pRM481.
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3.2.5 Further analysis of transformants

Further analysis was carried out on a new representative selection of HTUB wt 

transformants: four Hyg^ clones with apparent duplication o f a genomic region {H y^  H4)\ 

one Hyg^ clone with aberrant integration o f the BLE construct {H y^  5); and three Hyg^ 

clones {H y^  1-3). In addition, HTUB w t cells were examined as a control (see figure 

3.15). The Southern blot analysis carried out for the previous set o f transformants was 

repeated on these transformants in order to confirm that they were representative o f the 

larger sample o f clones analysed previously (see figure 3.19). Genomic DNA from the 

clones was digested with i/m dlll, separated by agarose gel electrophoresis, Southern 

blotted, and probed with BLE or HYG, giving the results expected based on previous 

analysis (see section 3.2.3). Clones H y ^  1-4 generated a single restriction fragment o f 4.3 

kb when probed with the BLE ORF, and two fragments o f 3.5 kb and 4.3 kb when probed 

with HYG sequence, indicating duplication o f the HYG locus; H y ^  5 showed a fragment 

o f approximately 13 kb when probed with the BLE ORF, indicating a putative aberrant 

integration, and a fragment o f 3.5 kb when probed with HYG sequence corresponding to 

the undisturbed HTUB locus; H y ^  1-3 showed the same 4.3 kb restriction fragment with 

both probes, indicating that the HYG  loci had been targeted without duplication. These 

results corroborated that these integrations were indeed representative.

The karyotype o f the transformants studied in the previous section was next examined by 

pulse field gel electrophoresis (see figure 3.20), in order to identify any duplications o f  

large genomic regions which may be indicative o f BIR. If locus duplication causing 

hygromycin resistance is generated by BIR, linear DNA molecules o f several kb would be 

expected to appear in clones Hyg!  ̂ 1-4, but not in H y ^  5 (thought to result from an 

aberrant integration) or the four Hyg^ clones. Genomic plugs were made from each o f the 

transformants, and whole chromosomes were separated by pulse field gel electrophoresis 

and stained with ethidium bromide. Two different sets o f conditions were used for the 

pulse field gel electrophoresis, allowing clear separation of megabase chromosomes in one 

case, and of the intermediate chromosomes and minichromosomes in the other. In the 

ethidium bromide-stained gel, all the megabase chromosomes appeared unchanged in all 

transformants, either Hyg^ or Hyg^, apart from H y ^  5. In this clone, where hygromycin 

resistance is conferred by aberrant integration o f the construct, an additional band of  

approximately 370 kb could be seen. Slight differences in migration of the intermediate 

chromosomes are probably due to tandem repeat variation within the population o f HTUB 

wt cells.
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Figure 3.25. Southern analysis o f cloned transform ants from the recom bination efficiency  
assay . Genomic DNA was prepared from five hygromycin resistant (HygR 1-5) and three 
hygromycin sensitive (HygS 1-3) clonal cell lines derived from transformation of different constructs 
into HTUB wt cells, and from untransformed HTUB wt cells. 5 pg of genomic DNA was digested 
with H/ndlll and run on a 0.8% agarose gel. The DNA was Southern blotted and probed with a 386 
bp product PCR-amplified from the BLE ORF on the pRM481 plasmid (left), and washed to 0.2x 
SSC, 0.1% SDS at 65 °C. Blots were stripped of radioactivity, and reprobed using a 228 bp section 
of the HYG ORF PCR-amplified from HTUB wt unstransformed genomic DNA (right), and washed 
to 0.2x SSC, 0.1% SDS at 65 °C.
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The pulse field gels were next Southern blotted. The 384 bp BLE ORF was amplified from 

pRM481 plasmid DNA using primers Ble-PstI and Ble-SphI (see appendix 1), and the PCR 

product used as a probe for the Southern blots (figure 3.20). When probed with BLE, large 

DNA species, corresponding to the unseparated larger megabase chromosomes (Melville et 

aL, 2000), can be seen; this is seen in all cases apart from HygR 5, where a DNA molecule 

corresponding to the extra -370  kb band is bound by the BLE probe. The larger, megabase 

chromosome band from HygR 5 does not seem to anneal to this probe, but this is possibly 

due to the presence o f less material in this lane (see ethidium bromide-stained picture). 

The Southern blots were then stripped o f labelled probe fragments, and the whole 861 bp 

HYG ORF was amplified from Lister 427 HTUB w t genomic DNA and the PCR product 

was used to re-probe the stripped Southern blots. Here, annealing to the megabase 

chromosome DNA is repeated for most clones and the -37 0  kb band is hybridised in clone 

HygR 5. The entire HYG ORF was used as a probe in this experiment, and therefore 

hybridisation to the integrated BLE constructs, as well as the genomic HTUB locus, 

occurred.

Finally, the transformants were subjected to further Southern analysis to assess whether 

duplication o f the entire tubulin array had taken place. To do this, the intensity o f p tubulin 

(present on chromosome I) signal was compared to the M R E ll locus (which is located on 

chromosome II). If an extra copy o f the array or the whole chromosome, generated by a 

BIR-like mechanism, is present in the Hyg^ cells, the amount o f tubulin DNA would be 

expected to increase by 50% compared with sequence on another chromosome (in this 

case, M R E ll). Genomic DNA from each clone was digested with Stul, separated by 

agarose gel electrophoresis and Southern blotted (see figure 3.21). A  432 bp section o f the 

M R E ll ORF was amplified from Lister 427 genomic DNA using primers M REllprobe-5’ 

and MREl 1 probe-3' (see appendix), and the PCR product used as a probe for the Southern 

blot. In each case, the probe hybridised to a single fragment o f approximately 11 kb. The 

intensities of these bands were quantified using ImageQuant analysis software (Amersham 

Biosciences) and normalised to the band from HTUB wt DNA (see figure 3.21 b), to 

account for differences in DNA loading. The Southern blot was stripped o f radioactivity; a 

631 bp section o f the jl tubulin gene was amplified from Lister 427 genomic DNA using 

primers ptubulin5’-3’ and ptubulin3’-5’ (see appendix), and the PCR product was used as a 

probe for the stripped Southern blot (see figure 3.21). A Stu\ restriction site is found in 

eveiy copy o f a tubulin within the repetitive tubulin array (see figure 3.15), so the expected 

sizes o f the restriction fragments generated that will be bound by a probe homologous to fl
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HygR 3 51.58 59.90 0.861
HygR 4 47.61 57.85 0.823
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HygS 2 22.03 49.12 0.449
HygS 3 20.32 34.24 0.594

Figure 3.27. Quantitative Southern analysis o f a selection  of cloned transform ants from the 
recom bination efficiency assay , a) Genomic DNA was prepared from five hygromycin resistant 
(HygR 1-5) and three hygromycin sensitive (HygS 1-3) clonal cell lines derived from transformation 
of different constructs into HTUB wt cell lines which were used for pulse field gel analysis, and from 
untransformed HTUB wt cells. 5 pg of genomic DNA was digested with Stu\ and run on a 0.8% 
agarose gel. The DNA was Southern blotted and probed with the 432 bp product PCR-amplified 
from the MRE11 ORF of Lister 427 genomic DNA (top) and washed to 0.2x SSC, 0.1% SDS at 65 
°C. Blots were stripped of radioactivity, and reprobed using a 631 bp section of the P tubulin ORF 
PCR-amplified from Lister 427 genomic DNA (bottom), and washed to 0.2x SSC, 0.1% SDS at 65 
°C. b) Intensities of the bands from the Southern blots in a) were normalised to the band generated 
by HTUB wt DNA (Intensities) and the ratio of MREl 1 to p tubulin was calculated (MREl 1/ptub).
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tubulin are 3.5 kb, corresponding to one copy o f a complete tubulin repeat, 6.2 kb, 

corresponding to the undisturbed HTUB locus plus a complete tubulin repeat, and/or 7 kb, 

corresponding to the HTUB locus with integrated BLE plus a complete tubulin repeat The 

main 3.5 kb band was quantified using ImageQuant (Amersham Biosciences), and again all 

bands were normalised to the band generated from HTUB w t DNA. The normalised 

intensities from both probings o f each lane were then compared, and the ratios are shown 

in figure 3.21 b. If duplication o f the entire tubulin array had taken place, the MREl 1/ptub 

ratio would be expected to be 0.666. This is not what is seen, with the Hyg^ transformants 

generating lower numbers than the Hyg^ ones. Quantification in this case may, however, 

be unreliable due to saturation of the p tubulin signal, as this is present in multiple copies, 

which may reflect the large degree o f divergence seen between clones H y ^  1-4. However, 

it would appear that if  anything, there has been a reduction in the amount o f p tubulin 

DNA present in the Hyg^ clones relative to the Hyg^ and HygR 5 clones. No firm 

conclusions can therefore be drawn from this experiment. However, considering the 

observations from the pulse field gels, no clear evidence has emerged that that BIR 

accompanies BLE integration in the Hyg^ cells that have not undergone aberrant 

integration.

3.3 D isc u ss io n

An assay system based on electroporation of linear DNA homologous to a unique site in 

the T brucei genome (first described in (Bell and McCulloch, 2003) was used to study the 

requirements for substrate length and homology in the presence and absence (caused by 

genetic interruption of the MSH2 locus) o f a functional MMR system. This transformation 

assay has already been validated as a system for studying recombination efficiency, as it 

was useful in the detection o f differences in efficiency between linear constructs o f a 

constant length (Bell and McCulloch, 2003).To the best o f our knowledge, this is the first 

study in any organism where both substrate length and homology have been assayed 

simultaneously in a systematic manner. Substrate length was studied in the range 25-200  

bp, and sequence divergence in the range 0-11%.

Two different methods were used to calculate transformation efficiency from the number 

of positive wells counted following selection of transformed trypanosomes. Firstly, a 

simple calculation was carried out where the number of positive wells was divided by the 

number of cells put on selection. However, this does not take into account the fact that a 

positive well could contain cells derived from one, or from several, successful
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transformations. Therefore, the binomical distribution was used to make a more accurate 

estimate o f the real transformation efficiency. The overall conclusions to be drawn using 

both calculation methods are very similar, but there are small differences between the 

transformations obtained: when the new calculation method is used, the more efficient 

reactions have higher transformation efficiency compared to the original, simple method. 

This is to be expected because in these reactions it is more likely that there will be multiple 

transformants in each well. However, the general conclusions that can be drawn are very 

similar, and the discussion that follows draws on the original calculations.

Transformations o f fifteen constructs into MMR-proficient and MMR-deficient T. brucei 

were carried out. In T. brucei, recombination o f perfectly-matched (0% divergent) 

substrates decreases with substrate length in a log-linear relationship. Transformation 

efficiencies decrease from approximately 10 transformants x 10'  ̂ cells to approximately 

0.9 transformants x 10"̂  cells in the range 200-50 bp, with a plateau above this and a steep 

drop-off below 50 bp. These requirements for substrate length are strikingly similar to 

results from E. coli by Lovett et al (Lovett et al., 2002), and similar to the situation seen in 

S. cerevisiae, where there is a log-linear reduction in recombination frequency when 

substrates between 960 bp and 80 bp are used (Jinks-Robertson et aL, 1993). The presence 

or absence o f MMR in this substrate range had absolutely no effect on recombination 

efficiency, in contrast to previous observations (based on longer substrates) both in T. 

brucei (Bell and McCulloch, 2003) and in S. cerevisiae (Datta et aL, 1996; Negritto et aL, 

1997; Chen and Jinks-Robertson, 1998) where removal o f MMR lead to a slight increase in 

the recombination even o f perfectly-matched substrates. This could mean that the previous 

observation in T. brucei was an experimental artefact, or that MMR only acts to suppress 

recombination on sequence matched substrates when they are o f a significant length, 

perhaps because they are more prone to secondary structure during strand exchange.

Recombination o f substrates with 5% divergence from the genomic target locus yielded 

much lower transformation efficiencies than substi’ates with no divergence, with 200 bp 

substrates recombining approximately ten times less efficiently than their perfectly 

matched counterparts. Substrate length also comes into play at this level o f divergence. 

When substrates above -lOObp are used, inactivation of MMR appears to alleviate this 

reduction somewhat, and the ti’ansfonnation efficiencies for constructs 5%-200bp and 5%~ 

150bp are 4.292 and 5.04-fold higher in HTUB MSH2-/- than in HTUB wt cells. In 

contrast to what has been observed previously (Bell and McCulloch, 2003), a certain 

degree o f haploinsufficiency in these reactions is suggested by the fact that for these same 

constructs, the transformation efficiencies are only 2.971 and 2.1-fold higher in HTUB
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MSH2-/- than in HTUB M SHIW - cells. When recombination substrates below -100  bp in 

length are used, there does not appear to be any significant difference between the three 

cell lines. There is sharp decline in transformation efficiency below this length, similar to 

that seen below 50 bp in the sequence matched substrates. Recombination of substrates 

with 11% divergence from the genomic target locus again yielded lower transformation 

efficiencies. Here, the inactivation o f MMR appears to have no effect on transformation 

efficiencies (when the overall shape o f the graph rather than individual data points is taken 

into account), with a gradual reduction in efficiency with decreasing substrate length 

observed in all cell lines. No or very few transformants were recovered from 

transformations with substrates o f 50 or 25 bp.

The following overall picture o f HR in T. brucei emerges from the data described above. It 

is clear that recombination is dependent on substrate length, at least over the range 25-200 

bp. Recombination dependent on substrates longer than 200 bp does not show increased 

frequency, although it is impossible to tell whether this is due to a true plateau in 

recombination efficiency, or to the limits o f transformation in this assay. Previous 

observations (Bell and McCulloch, 2003) that T. brucei recombination is sensitive to base 

mismatches are confirmed by these results, with large reductions in transformation 

efficiency at all substrate lengths when the amount of divergence is raised to 5 and 11%. 

MMR contributes to the prevention o f homeologous recombination, at least for substrates 

with 5% mismatches that are longer than -100  bp, although the reduction in transformation 

efficiency is not completely alleviated. However, when the amount o f divergence rises to 

11%, disruption o f MMR no longer has an effect on transformation efficiency. In contrast 

to previous data (Bell and McCulloch, 2003), disruption o f MMR does not increase the rate 

of transformation o f perfectly matched substrates, as discussed above. Neither does this 

disruption lead to a decrease in recombination, as is seen in transformation o f linear DNA  

in S. cerevisiae, which is dependent on Msh2-Msh3 as well as Radi-Rad 10 (Langston and 

Symington, 2005). When perfectly matched substrates are used, recombination becomes 

very inefficient at substrate lengths below -5 0  bp. However, the presence o f 5% 

mismatches increases this minimal length for efficient recombination to -100  bp; 

presumably, this reflects the MBPS being lengthened by the presence o f mismatches. The 

T. brucei MBPS value calculated previously was 142 bp (44-210 at 95% confidence 

interval) in M SH2+/+  cells, and 103 bp (62-135 bp at 95% confidence interval) in MSH2- 

/- cells (Bell and McCulloch, 2003). The results shown here demonstrate that 

recombination can in fact take place using shorter substrates than this.
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The analysis o f recombination in 5% mismatched substrates below approximately 100 bp, 

and on 11% mismatched substrates below approximately 200 bp, reveals MMR- 

independent recombination. This may be reminiscent o f the situation in S. cerevisiae 

(Spell and Jinks-Robertson, 2003), where Rad51-dependent and Rad51-independent HR 

are affected in different ways by MMR, and may reveal a RAD51-independent reaction in 

r. brucei. Rad51-independent recombination in S. cerevisiae is dependent on Rad59, and 

has less stringent substrate requirements, and is not regulated by MMR. Although the T. 

brucei genome does not contain a homologue o f Rad59, or indeed Rad52 (El Sayed et al., 

2005), it can be hypothesised that an unidentified factor, or factors, is catalysing these 

reactions. The fact that most integrations by this putative pathway occur by homology into 

the HTUB locus, rather than recombining into aberrant locations, argues that 

microhomology-mediated end-joining is not responsible (discussed further below). The 

maximum transformation efficiency rate for this pathway appears to be approximately ~1 

transformant x 10"̂  cells, with a substrate length-dependent reduction in efficiency below  

-5 0  bp (0% substrates) or -100  bp (5% substrates). The presumption that this pathway is 

RAD51-independent is in accordance with observations that substrates containing 11% 

divergence also appear to be unaffected by MMR and that purified E. coli RecA protein is 

incapable o f catalysing in vitro strand exchange o f substrates with this level o f divergence 

(DasGupta and Radding, 1982) and that S. cerevisiae recombination o f substrates with 

more than 9% divergence is independent o f MMR control (Datta et al., 1996).

Cloned transformants were analysed for hygromycin resistance. While correct integration 

o f the BLE constructs into the HTUB locus should lead to loss o f resistance to this 

antibiotic, aberrant integration into other loci could leave the HYG ORF undisturbed and 

allow survival o f the transformants in the presence o f this antibiotic. Retention o f a linear 

episome in the T. brucei nucleus causing hygromycin resistance is very unlikely 

(Wickstead et al., 2003). Naturally occurring episomes are rare in T. brucei, and no 

examples o f stably maintained bacterial plasmids have been described in T. brucei. 

Surprisingly, in almost all classes o f transformant, some clones retained hygromycin 

resistance. These reactions also appear to retain some length-dependence, suggesting that 

they constitute a roughly constant proportion of the transformants in each class o f  

transformants. Southern analysis showed that in almost all cases, hygromycin resistance 

was not due to aberrant integration of the BLE construct, but instead was apparently due to 

the presence o f two copies o f the HTUB locus.

The possibility that the obseiwed duplication of at least a section o f chromosome I had 

been caused by BIR was investigated. This is especially relevant in T. brucei as this is one
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of the mechanisms proposed to catalyse VSG switching (Bariy and McCulloch, 2003). 

Pulse field gel electrophoresis was carried out using genomic DNA from a selection of  

transformants. If BIR had taken place, then an extra DNA molecule arising from 

duplication of a large chromosomal region would be expected to be obseived by ethidium 

bromide staining. This does not appear to be the case, and the only karyotypic differences 

seen were in fact in the aberrant transformant (as discussed below). Analysis o f the tubulin 

locus by quantitative Southern blot was carried out, and although inconclusive may 

confirm that the retention o f hygromycin resistance obseiwed in some transformants is not 

due to BIR, It is not possible to state at this point whether hygromycin resistance in these 

transformants is caused by duplication o f the HTUB locus during or prior to integration o f  

the BLE constructs, or to trisomy o f chromosome I (and presumably o f other megabase 

chromosomes) within the cultured Lister 427 trypanosome population.

In a small number o f cases, 4/5 o f which were detected in an MSH2-/- genetic background, 

retention of hygromycin resistance was not due to the presence o f two copies o f the HYG 

locus, but instead was caused by aberrant integrations o f the BLE construct. Although the 

integration sites were not analysed, it is probable that these reactions occurred by the same 

RAD51-independent microhomology-mediated end-joining as has previously been 

observed in RAD5U/- cells (Conway et al., 2002b). When the kaiyotype o f one 

transformant that had undergone aberrant integration was analysed by pulse field gel 

electrophoresis, a new DNA molecule o f approximately 370 kb was obsei*ved, seemingly 

containing the BLE and possibly the HYG ORFs, although Southern analysis showed that it 

was not as part o f the HTUB locus. The most likely cause for the appearance o f this DNA  

molecule is a gross chromosomal rearrangement associated with integration of the 

construct at an aberrant location. This de novo appearance o f DNA following 

transformation is similar to observations made in L. major (Beverley and Coburn, 1990), 

where linear DNA molecules o f a similar size, derived from one o f the large chromosomes 

but leaving that chromosome unaltered, were detected in a population following selection 

with the drug methotrexate. Linear amplified DNA molecules have also been identified in 

L. tarentolae cells following transformations to mutate the JBPl ORF (Genest et al.,

2005). These new DNA molecules o f -100  kb in length contain a copy o f JRP7, a copy of 

the neomycin resistance cassette, and other repetitive sequences in a palindromic 

arrangement, and cannot be maintained in the absence o f drug. Formation o f these 

molecules is thought to be associated with the transformation event itself, rather than the 

selective pressure, and is proposed to be mediated by template switch within a replication 

fork. Telomeric sequences had been added to the ends o f the L. major linear DNA
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molecules in both cases; whether this is also true o f the DNA molecule observed here is 

unknown and requires further study.

Despite the importance o f T. brucei HR in antigenic variation (McCulloch and Barry, 

1999), it does not appear to be regulated differently than in other eukaryotes that have been 

studied. The results described in this chapter add to the growing body o f evidence 

(including (Robinson et a i ,  2002; Conway et a i ,  2002b; Bell and McCulloch, 2003)) 

showing overwhelmingly that HR is carried out in a remarkably similar way in T. brucei 

and in other organisms. This conseiwation o f the recombinational mechanism does not 

come as a surprise given the very strong conservation of the structure o f the RecA and 

RadSl proteins, filaments, and strand exchange mechanism (Shinohara et aL, 1992; Sung 

and Robberson, 1995; Brendel et al., 1997; Seitz et al., 1998) throughout the kingdoms of 

life. Previous authors (Shen et al., 2001; Wickstead et al., 2003) have claimed that T. 

brucei recombination efficiency is not affected by substrate length; the results presented 

here are in direct opposition to these findings. This could be due to the fact that the 

transformations described here were carried out in a systematic manner, with 

electroporation o f the different constructs into a single cell population at a defined 

population density, a factor that anecdotally has a very strong effect on T. brucei 

transformation efficiency.

To illustrate the conservation of the HR mechanism, a detailed comparison of data from T. 

brucei and from other organisms (see figure 3.22) was conducted using published data. A 

comparison of HR efficiency, in MMR-proficient and MMR-deficient cells, o f  substrates 

of fixed size (350 bp, 589 bp and 450 bp, respectively) but increasing sequence divergence 

in S. cerevisiae (Datta et al., 1997), A. thaliana (Li et al,, 2006) and T. brucei (Bell and 

McCulloch, 2003) was carried out, as an extension o f previous analysis by Li et al (Li et 

al., 2006). To allow comparison o f different organisms and experimental systems with 

quite different absolute rates o f recombination, all recombination efficiencies were 

normalised to that o f the perfectly matched substrate; the natural logarithm o f this 

recombination ratio was plotted against sequence divergence. In all three organisms, the 

results were remarkably similar, with the natural log o f recombination ratio reducing with 

sequence divergence in a linear fashion, at least above -2%  sequence divergence (the 

reduction in efficiency loses its linearity at the lowest levels o f divergence). Disruption o f  

the MMR system significantly elevates the recombination rate in all three species at al 

levels o f divergence. However, subtle differences may allow us to draw conclusions about 

the differences between these distinct recombinational mechanisms. Firstly, HR in wild- 

type cells from these three organisms shows different sensitivity to mismatches, with yeast
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being the most sensitive, followed by T. brucei, then Arabidopsis. Secondly, the fact that 

genetic interruption o f MMR has a bigger effect in increasing the rate o f homeologous 

recombination in S. cerevisiae than in A. thaliana or T. brucei suggests that the 

recombinational machinery, rather than MMR, has a bigger effect on plant and 

trypanosome recombination compared to yeast.

The experiments described here all studied HR at an interstitial genomic location, 

mimicking the HR required for the repair o f most spontaneous DSBs. However, 

recombination mediating VSG switching events occurs at subtelomeric Bloodstream 

Expression Sites, within specialised Expression Site Bodies (see section 1.1.4), and 

therefore this recombination may well be regulated differently. For instance, 

recombination between divergent sequences such as the 70 bp repeats is an important 

feature o f VSG switching. Differential use o f recombination pathways and/or suppression 

of MMR (Blundell et al., 1996) in VSG switching reactions could allow the use o f such
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substrates. This could be caused by the subtelomeric location of the BBSs; preferential use 

o f different DNA repair pathways, perhaps with different substrate requirements, 

depending on the distance from the telomere has been documented in other systems 

(Ricchetti et al.  ̂ 2003). Alternatively, the ESB could somehow control the access o f DNA  

repair factors to the active BBS. Finally, the use o f RNA polymerase I for VSG 

transcription (Gunzl et al., 2003), as opposed to RNA polymerase II for the rest o f the 

genome could somehow mark out the BBS for differential repair.

A general model for homologous recombination both at interstitial genomic sites and at 

bloodstream expression sites is shown in figure 3.23. At interstitial sites, it is Icnown that 

RAD51 catalyses recombination using longer substrates (Conway et al., 2002b); the MBPS 

for this reaction has been estimated at 142 bp. However, recombination using shorter 

substrates is still possible. This is hypothesised to occur via two RAD51-independent 

DNA repair pathways. Firstly, an unknown factor is thought to carry out a role analogous 

to Rad59 in S. cerevisiae in catalysing reactions using shorter DNA substrates, and perhaps 

with less stringent homology requirements. In addition, a microhomology-mediated end- 

joining pathway (Burton McBride, Wilkes, Barry and McCulloch, in preparation) is able to 

carry out DSB repair reactions using only a few base pairs o f homology (Conway et al., 

2002b). Work in this thesis suggests that at interstitial sites, MMR only monitors RAD51- 

mediated HR. In the specialised situation o f the BBS, however, the situation is much less 

well understood. The fact that mutation o f T. brucei RAD51 (McCulloch and Barry, 1999) 

or RAD51-3 (Proudfoot and McCulloch, 2005) dramatically decreases both 

recombinational and transcriptional pathways o f VSG switching implies that both RAD51- 

dependent and RAD51-independent repair pathways have roles in all switching 

mechanisms. This could be explained by RAD51 having a direct role in the catalysis o f in 

situ switching, or by a co-operative role for RAD51-dependent and RAD51-independent 

recombination pathways in VSG switching, with RAD51 regulating the catalysis being 

earried out by the second mechanism. Microhomology-mediated end-joining may have 

specialised roles in the formation o f mosaic FiS'Gs from VSG pseudogenes late in chronic 

infection. The importance o f a potential BIR pathway is not loiown in either interstitial or 

subtelomeric recombination in tiypanosomes.

A number of follow-up experiments could be carried out to test some o f the predictions 

made by this model. Firstly, RAD51 -independent recombination at interstitial sites could 

be studied by creating RAD51 mutants within the HTUB w t cell line. Recombination in 

these cells would be hypothesised to be less dependent on both the length and homology 

levels o f the recombination substrates. Similarly, the importance o f BIR in T. brucei could
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Figure 3.29. A m odel describing the roles of different DNA repair pathways in T. brucei.
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be studied by looking at M R E ll mutants, as this protein is essential for all forms o f yeast 

BIR (McEachern and Haber, 2006). Secondly, a system analogous to the HTUB assay 

could be established to study HR at the active BES of Lister 427 bloodstream stage cells, 

by integration o f HYG into this locus. Recombination using substrates o f varying lengths 

and homology could be assayed in wild-type cells, and this could be compared to RAD51 

and MSH2 mutants to establish whether these DNA repair proteins act differently at 

interstitial and BES locations. Thirdly, an RNAi screen for genes causing sensitivity to 

DNA damaging agents could allow the identification of factors involved in RA DSl- 

independent recombination and/or MMEJ; a considerable proportion o f the genes in the T, 

brucei genome are annotated as hypothetical ORFs with no obvious homologues in other 

organisms, making database mining only o f limited use in this regard. Work currently 

being carried out in our group on BRCA2 and on the RAD51 paralogues should also add a 

great deal to our understanding of both general HR and o f VSG switching in T. brucei. In 

conclusion, although our understanding of HR in T. brucei is reasonably well 

characterised, a number o f additional experiments are needed before its specialised role in 

VSG switching can be fully understood.
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CHAPTER 4

T. BRUCEI HOMOLOGUES OF M S H 4  AND M S H 5  AND 
THEIR POTENTIAL ROLE IN MEIOTIC RECOMBINATION



4 T. brucei homologues of MSH4 and MSH5 and 

their potential role in meiotic recombination

4.1 In troduc tion

4.1.1 Genetic exchange in the Kinetoplastida

Several groups have found evidence o f genetic exchange in \vild populations o f T. brucei 

(Tait, 1980), T. cruzi (Bogliolo et ah, 1996; Carrasco et al., 1996; Machado and Ayala, 

2001) and L. major (Kelly et al., 1991; Dujardin et al., 1995): using multilocus enzyme 

electrophoresis, molecular karyotyping and random amplification o f polymorphic DNA, 

hybrid phenotypes were seen after coexistence o f two parasite strains in the same 

geographic location. Genetic exchange serves to provide sequence reassortment, and in T. 

brucei it has been proposed that this has the useful function o f creating novel o f variable 

antigen types present in neither parent, thus increasing the repertoire (Turner et al., 1991).

Although genetic exchange has been shown to occur in the trypanosomatids, their 

population structure has also been described as largely clonal (Tibayrenc et al., 1986; 

Machado and Ayala, 2001; Tibayrenc and Ayala, 2002, Njiokou et a l ,  2004). Facultative 

sexual reproduction, where organisms are able to reproduce asexually for long periods in- 

between rounds o f sexual reproduction, is common amongst unicellular eukaryotes (Dacks 

and Roger, 1999). However, others have argued for a panmictic (freely mating) model of 

T. brucei population structure {e.g., Cibulskis 1988). T. brucei population structure seems 

to depend on the subspecies under investigation. T. b. rhodesiense has a clonal population 

structure, whereas T. b. brucei undergoes mating in the wild giving an epidemic population 

structure (MacLeod et a l ,  2000). The geographical location of the population can also 

affect its structure, and even in a single location the population structure can change over 

time (A. MacLeod, pers. comm.). The existence o f hybrid parasites in the wild suggests 

that genetic exchange has at least occuiTed in the past, if not in an ongoing fashion in the 

population. A  species’ ability to carry out genetic exchange in the laboratoiy demonstrates 

an extant capacity for this process.

4.1.1.1 T. brucei hybrids can be formed in the iaboratory

It has been possible to obtain crosses in the laboratory for T. brucei and T. cruzi (as 

described below) but not L. major (Panton et a l,  1991; Victoir and Dujardin, 2002).
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Cotransmission o f two uncloned T. brucei field isolates in a laboratoiy setting, the nearest 

possible approximation to the situation in the wild, has yielded some hybrid cells (Degen et 

al., 1995), T. brucei crosses have been made in the laboratory (Jenni et al., 1986; 

Sternberg et al., 1989; Gibson, 1989; Turner et al., 1990; Gibson and Whittington, 1993; 

MacLeod et al., 2005a) by feeding mixtures o f parasite stocks to tsetse flies, letting the 

cells develop in the fly and then sampling metacyclic cells. Cloned progeny can then be 

analysed for heterozygosity in isoenzyme and restriction fragment length polymorphism 

analyses. In these experiments, genetic exchange appears to take place at a specific stage 

o f  the life cycle: transmission o f  strains marked with drug resistance markers (Gibson and 

Whittington, 1993) or fluorescence (Single et al., 2001) through the tsetse fly indicates that 

genetic exchange probably occurs at the epimastigote stage o f the life cycle. Mating is 

non-obligatoiy, and only a minority o f the clones obtained from laboratory crosses are in 

fact hybrids: metacyclic populations are mixtures of hybrid and parental tiypanosomes. 

The number of hybrids produced could be limited by the relatively short lifespan of the 

tsetse host (Jenni et al., 1986; Turner et al., 1990).

Meiotic genetic exchange following laboratory crosses has allowed to construction o f a 

genetic map in T. brucei. This genetic map (MacLeod et a l ,  2005b) comprised o f 182 

markers in 11 linkage groups corresponding to the 11 megabase chromosomes. 

Comparing this genetic map to the available physical map showed that the average size o f  

a recombination unit is 15.6 kb/cM.

4.1.1.2 Models for the mechanism of T. brucei genetic exchange

A number of models have been put foiward to explain the mechanism of genetic exchange 

in T. brucei. The presence o f a number of hybrid clones containing an increased amount o f  

genetic material, consistent with triploidy (Jenni et a l ,  1986; Gibson et a l ,  1992; Tait et 

a l ,  1996; Hope et a l ,  1999), has suggested a model o f fusion o f diploid parental nuclei 

followed by progressive chromosome loss during vegetative growth, as proposed initially 

by Paindavoine et al (Paindavoine et a l ,  1986). Allelic segregation and reassortment in T. 

brucei have been shown to take place in a Mendelian fashion (Turner et a l ,  1990; 

MacLeod et a l ,  2005a), with the implication that genetic exchange occurs by a meiotic 

mechanism. The metacyclic cells sampled are thought to be the FI progeny following 

meiotic division. However, no haploid (gamete) stages have ever been found (Gibson, 

2001; MacLeod et a l ,  2005a); intial fluorimetric studies (Zampetti-Bosseler et a l ,  1986) 

suggested that the metacyclic life cycle stage was haploid, but this was later shown by 

genetic (Tait et a l ,  1989) and further fluorimetric (Kooy et a l ,  1989) methods not to be the
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case. The demonstration of a Mendelian mechanism o f genetic exchange suggests that the 

triploid cells isolated following genetic exchange could have arisen by chromosome non- 

disjunction during meiosis (Tait et a l ,  1993). Such a process is rather frequent in meiosis, 

and could have increased precedence in T. brucei as strains diverge through asexual 

growth. Two other models remain possible, however. Firstly, a “ciliate/flagellate” model 

has been proposed (Gibson, 1995), whereby diploid parents merge then undergo meiosis 

giving eight haploid nuclei within a single cell, two o f which fuse to give a diploid progeny 

and the rest o f which are lost. The second model is a true meiosis that produces (as yet 

undetected) haploid gametes, which fuse in the salivary gland o f the tsetse. This model 

seems to be preferable for two reasons: firstly, it is the simpler o f  the two to fit the 

observed data, and secondly, the ciliate/flagellate model could not explain the relative 

absence o f self-fertilised progeny isolated from crosses (MacLeod et a l ,  2005a). 

Kinetoplast DNA is inherited from both parents by a poorly understood mechanism 

(Gibson and Garside, 1990; Gibson et a l ,  1997).

4.1.1.3 Genetic exchange in other trypanosmatids

Laboratory crosses by one group (Gaunt et a l ,  2003) yielded hybrid cells after co-passage 

through the life cycle o f T. cruzi cells from different lineages which had been transfected 

with genes conferring resistance to different antibiotics. As in T. brucei, mating is not 

obligatory. Observations from this experiment suggest a model o f fusion of parental 

genomes followed by allele loss during the intracellular stage within the mammalian host. 

This is in contrast with the T, brucei model, which is based on data from a number o f  

experimental crosses; further work is needed to establish whether the different 

observations in these closely related species truly reflect a difference in mechanism rather 

than experimental artefact. Although L. major hybrids have been isolated from wild 

populations, successful laboratory crosses are yet to be reported (Panton et a l ,  1991). As 

the species T. equiperdum and T. evansi do not undergo cyclical transmission in the tsetse 

fly, it is assumed that they do not undergo genetic exchange (Gibson and Stevens, 1999; 

Gibson, 2001). On the other hand, T. vivax does show some degree o f genetic complexity 

in its population structure (Gibson and Stevens, 1999), and has a metacyclic stage in its life 

cycle (Tetley et a l ,  1981), suggesting that genetic exchange could take place in this 

species.
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4.1.2 Meiotic recombination

The mechanism of meiosis has been extensively characterised in model organisms such as 

S. cerevisiae and M  musculus, and in human cells. To consider whether this be applicable 

to the tiypanosomatids, this section provides an overview o f the process.

4.1.2.1 The stages of meiosis

Meiosis is a specialised cell division, consisting o f a single round of replication followed 

by two reductive rounds o f cell division, leading to the formation of haploid gametes. 

Meiosis appears to be eukaryote-specific, and initiates in diploid cells. During meiosis, 

large-scale changes in chromosomal structure occur, and are tightly coordinated with a 

specialised recombination reaction. Whereas in mitotic cells homologous recombination is 

used to repair some forms o f damage to DNA, recombination in meiosis is crucial for the 

pairing and correct segregation o f homologous chromosomes.

The two rounds o f division in meiosis are referred to as Meiosis I and Meiosis II, and both 

follow the same basic stages as mitotic cellular division. Meiosis I (see figure 4.1) begins 

with genome replication at S phase. The cells then undergo a specialised prophase, 

consisting o f four discrete stages, known as leptotene, zygotene, pachytene and diplotene. 

These are differentiated by chromosome morphology as observed under a light microscope 

(Page and Hawley, 2003; Richardson et aL, 2004; Svetlanov and Cohen, 2004). At 

leptotene, sister chromatids (i.e. a chromosome and its newly replicated copy) are paired. 

At zygotene, pairs o f sister chromatids are brought together, leading to pachytene, which is 

characterised by the tight association (synapsis) o f homologous chromosomes in a 

structure called the bivalent, involving the Synaptonemal Complex (SC, see section

4.1.2.2.1). At this stage, the chromosomes are generally compacted and aligned along their 

lengths. Recombination occurs in meiosis to yield visible exchanges o f sequence between 

homologous chromosomes in structures termed chiasma. At diplotene, the SC is partially 

degraded, though the chromosomes remain joined by the chiasma. Prophase is followed 

by diakinesis, when chromosomes condense ready for metaphase. Here, chiasma are 

resolved and homologous chromosomes are separated to opposite poles by microtubules 

attached to kinetochores at the centromeres. Finally, at anaphase I, sister chromatid 

cohesion is broken. During the second round of meiotic division, Meiosis II, sister 

chromatids are separated to make haploid gametes. It is a significant feature o f meiotic 

division that there is no replication between Meiosis I and Meiosis II. Beyond this, sister 

chromatid segregation in Meiosis II appears to be like that found in mitosis.
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4.1.2.2 Differences between meiotic and mitotic recombination

The recombinational processes in meiosis are very similar to mitotic recombination as 

described in section 1.2, but with some important differences, detailed below. As in mitotic 

recombination, repair proteins are often found grouped in foci. The factors involved in 

stages o f meiotic recombination are summarised in figure 4.2.

4.1.2.2.1 Meiotic recombination takes place within the framework of the 
synaptonemal complex

The Synaptonemal Complex (SC) is a “zip-like” proteinaceous structure whose role is to 

hold together the bivalent structure (Page and Hawley, 2003; Page and Hawley, 2004). 

The first stage o f SC formation is tlie appearance o f the axial elements (AEs) in early 

prophase, which hold sister chromatids together. After homologous chromosomes have 

been brought into proximity at leptotene, some AEs are converted to axial associations, 

which will later become the sites o f recombination (chiasma). Other AEs are converted to 

lateral elements (LEs) before pachytene, in a process requiring cohesin and condensin 

proteins. The meiotic cohesin complex contains Smcl and Smc3 like its mitotic 

counterpart, but other proteins differ between the complexes. LEs are joined together by 

transverse filaments, bridges composed o f coiled-coil proteins such as Zipl (in 5". 

cerevisiae) and SCPl (in human cells). Surprisingly, although the SC is required in most 

organisms for successful meiotic division, in a small number o f organisms including A. 

nidulans and S. pombe, the SC is not detectable and meiosis appears to be able to take 

place without it, although a discontinuous linear element can be observed along the aligned 

chromosomes.

4.1.2.2.2 Meiotic recombination is initiated by DSBs created by SP011

Initiation o f meiotic recombination, at leptotene (Padmore et ah, 1991), is caused by the 

deliberate creation o f DSBs catalysed by the transesterase S p o il (Keeney et al., 1997). 

S p oil protein is then removed in a Rad50 and Mrell-dependent, asymmetrical manner, 

creating 3’single-stranded ends at either side o f the DSB (Neale et al., 2005). It is apparent 

that the function o f S p o il is to create DSBs, as the absence o f Spol 1 in some mutants can 

be partially rescued by creation of breaks by other means (Thorne and Byers, 1993; 

Romanienko and Camerini-Otero, 2000; Celerin et al., 2000). In some organisms, 

including fungi and mammals (Romanienko and Camerini-Otero, 2000; Celerin et al., 

2000; Mahadevaiah et a l ,  2001), this Spol 1-mediated creation of DSBs is necessary for
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are then paired in a bivalent structure at the zygotene and pachytene stages. Early recombination 
nodules (small black dots) are visible at early pachytene, whereas late recombination nodules are 
visible at late pachytene. At pachytene, the chromosomes are bound together by the 
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(previous page) Figure 4.2. A generalised  sch em e of the different pathways of meiotic 
recom bination. 1) All pathways are initiated by Spo11-mediated DSB formation. The Hop2- 
Mnd1 dimer binds to chromosomes to promote pairing specificaliy between homoiogous 
chromosomes. S p o il  is removed by RadSO and M rell, in an asymmetrical fashion, revealing 
3’ singie-strand DNA overhangs. These are bound by Rad51 and Dm cl, forming nucleoprotein 
filaments that promote strand invasion. Rad51 and Dmcl are regulated by Brca2, Rad52 and 
RadSI paralogues (as in mitotic recombination). Strand invasion is controlled by Rad54 and its 
meiosis-specific homologue Tidi, and monitored by the mismatch repair system (MMR), which 
prevents recombination between homeologous substrates. 2) In the crossover pathway that 
undergoes interference, Holiiday Junctions are bound and stabilised by the Msh4-Msh5 
heterodimer. Double Holliday Junctions are resolved to yield recombination products, possibly 
directly by RadSI C-Xrcc3. 3) Noncrossover recombination events are repaired by a synthesis- 
dependent strand annealing (SDSA) reaction. 4) in the crossover pathway without interference, 
strand exchange intermediates are cleaved by Mus81-Mms4 before they reach the Double 
Holliday Junction stage. The pathways are used to different extents in different organisms, as 
indicated. Adapted from McCulloch et al., 2006.

the formation o f the SC. In other organisms, including D. melanogaster (McKim and 

Hayashi-Hagihara, 1998) and C. elegans (Dernburg et al., 1998), the presence o f DSBs is 

not necessary for chromosome synapsis or for the early stages o f meiosis (Colaiacovo et 

a l ,  2003).

4.1.2.2.3 Strand invasion during meiotic recombination is catalysed by DMC1 
as well as RAD51

DSBs formed by Spol 1 can be repaired in wild-type cells by one o f three recombinational 

pathways, discussed in more detail below (section 4.1.2.2.4), some o f which involve 

crossing over and exchange o f DNA sequence between homologous chromosomes. All are 

initiated by invasion o f the 3’ single-stranded ends o f the DSB into the corresponding 

region of the intact homologous chromosome (Hunter and Kleckner, 2001). This is 

catalysed by RadSI, which is central to mitotic recombination, (see section 1.2.1). Meiotic 

strand exchange in many organisms is distinguished by the necessity also for D m cl, a 

meiosis-specific paralogue o f RadSI. Dm cl is capable o f performing strand exchange in 

the same way as RadSI (Masson and West, 2001), so why the two related proteins act 

together remains unclear (see figure 4.2).

C. elegans and D. melanogaster appear not to encode DM Cl homologues, indicating that 

its function in meiosis is not universal. Indeed, impaired meiotic recombination in S. 

cerevisiae Dm cl mutants can be rescued by overexpression o f RadSI or Rad54 (Stahl et 

aL, 2004), implying at least partial overlap in the function of RadSI and D m cl.
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4.1.2.2.4 Multiple pathways exist for the repair of SP011-induced DSBs

Three routes for the repair o f DSBs created by S p o il have been described (see figure 4.2). 

Crossing over is defined as reciprocal recombination between nonsister chromatids, 

leading to an exchange o f genetic information. Although typical o f meiotic recombination, 

crossover (CO) does not occur at each DSB to avoid the disruption of favourable linkage 

groups. A synthesis-dependent strand annealing (SDSA) pathway very similar to mitotic 

repair can repair DSBs without creating CDs (noncrossovers; NCOs) (Paques and Haber, 

1999; Allers and Lichten, 2001; Hollingsworth and Brill, 2004); no meiosis-specific 

factors for this have been discovered. In addition, two separate pathways that generate 

COs have been identified, distinguished by the presence or absence o f a phenomenon 

known as CO interference (CGI). In this, COs discourage the formation of other COs 

nearby, leading to less double COs within a given genetic intei*val than would be predicted 

from the frequency o f simple COs (Novak et al., 2001). Stahf s counting model o f COI 

suggests that adjacent COs are separated by a specific number o f NCO events (Novak et 

al., 2001).

Distinct genetic factors are required for the two CO pathways. The COI pathway requires 

a number o f factors including the meiosis-specific MutS homologues Msh4 and Msh5 (see 

section 4.1.2,3), which bind to Holliday Junction (HJ) strand exchange intermediates, 

preventing them from being unwound to NCO intermediates (Moens et al., 2002; Snowden 

et al., 2004). Proteins specifically needed for the CO pathway that does not undergo 

interference include the endonuclease Mus81 (Haber and Heyer, 2001) and its partner, 

known as Mms4 in S. cerevisiae and Em el in S. pombe (Interthal and Heyer, 2000; de los 

Santos et al., 2003). M us81 is related to the nucleotide excision repair endonuclease Radi, 

and is expressed at, but is not exclusive to, meiosis (Boddy et al., 2001). This dimer 

promotes CO by cleaving recombination intermediates in such a way that a CO is formed 

without a HJ intermediate (Heyer et al., 2003; Osman et al., 2003; Hollingsworth and Brill, 

2004). In the absence o f both Msh5 and Mms4 {i.e., both CO pathways described above) 

in S. cerevisiae, a small number o f COs is still detected. However, viability o f these cells 

is severely reduced, implying that inappropriate pairing must be occurring (de los Santos et 

al., 2003; Argueso et al., 2004).

Although NCO repair o f meiotic DSBs appears to be ubiquitously conserved, the different 

CO pathways are used to differing extents in different organisms. In some, such as S. 

pombe and A. nidulans, the Msh4 and Msh5 genes are absent from the genome, and none 

of the COs are subject to interference. In some other organisms, such as C. elegans and D,
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melanogaster, only the COI pathway is used. In still others, including S. cerevisiae and H. 

sapiens, both pathways are used (Hollingsworth and Brill, 2004). Different classes o f  

meiotic recombination events are temporally distinct; organisms that use both Msh4- 

dependent and Mus81-dependent CO pathways, such as S. cerevisiae, undergo two rounds 

o f DSBR during meiosis, first a pre-synaptic round that is not subject to interference, then 

a second round that is subject to interference at pachytene (Stahl et al., 2004).

4.1.2.2.5 Meiotic recombination takes place between nonsister chromatids

It is important that recombination takes place between homologous chromosomes within 

the bivalent structure. The basis for this must lie, at least in part, with the meiosis-specific 

proteins involved. Key to this may be the Hop2-Mndl dimer, which interacts with 

chromosomes before and during synapsis (Leu et al., 1998; Petukhova et al., 2003) and is 

necessary for pairing o f homologous chromosomes at the early stages o f meiosis 

(Petukhova et al., 2003). This heterodimer interacts directly with RadSI and Dm cl to 

stimulate D-loop formation (Petukhova et al., 2005) specifically with the homologous 

chi'omosome (Zierhut et al., 2004). Nevertheless, Hop2 and Mndl appear to be absent 

from the D. melanogaster and C. elegans genomes, as is D m cl, implying that these factors 

cannot be absolutely required for meiotic recombination.

Beyond the recombination process, the SC is an important determinant o f substrate choice 

in recombination. As well as having roles in the mediation o f axial length compaction, the 

SC protein condensin controls homologue pairing (Yu and Koshland, 2003). It mediates 

the correct localisation o f Redl and H opl, whose physical interaction (de los Santos and 

Hollingsworth, 1999; Woltering et al., 2000) is important for correct chromosome pairing 

(Schwacha and Kleckner, 1997). Redl-H opl also acts as a structural restraint on D m cl- 

independent (but still RadS 1 -dependent) strand invasion, and recruits the checkpoint kinase 

M ekl (Wan et al., 2004).

4.1.2.3 Meiosis-specific MutS homoiogues

The meiosis-specific MutS homologues Msh4 and MshS were first discovered in screens 

for meiotic genes in S. cerevisiae (Ross-Macdonald and Roeder, 1994; Hollingsworth et 

al., 1995), and orthologues have since been identified in a number of eukaryotes, including 

H. sapiens (Paquis-Flucklinger et al., 1997; Her and Doggett, 1998; Winand et al., 1998; 

Santucci-Darmanin et al., 1999; Bocker et al., 1999), M  musculus (Her et al., 1999; 

Santucci-Darmanin et al., 2001), A. thaliana (Higgins et al., 2004), and C. elegans (where 

Msh4 has been named him-14, high incidence o f males) (Zalevsky et al., 1999; Kelly et

1 2 6



al., 2000). They are not conserved universally, however, as they are not detected in D. 

melanogaster or S. pombe (Hoffmann and Borts, 2004). Although identifiably MutS 

homologues, both proteins lack both the N-tenninal mismatch interaction domain found in 

other members of the family (Culligan et al., 2000; Obmoiova et al., 2000). The absenee 

o f this domain suggests they do not recognise base mismatches, and have adapted to bind 

other structures, as confirmed by Snowden et al (Snowden et al., 2004). Mutation o f Msh4 

or Msh5 in S. cerevisiae has no effect on the repair o f heteroduplex DNA in mitotic or 

meiotic cells (Ross-Macdonald and Roeder, 1994; Hollingsworth et al., 1995; Zalevsky et 

al., 1999). In addition, mice lacking these proteins show no increase in tumorigenesis 

(Edelmann et al., 1999; de Vries et al., 1999a; Kneitz et al., 2000), a phenotype associated 

with loss o f mismatch repair (see section 1.3). A number o f experiments indicate meiosis- 

specific functions: mshS mutant mice are infertile due to defects in spermatogenesis 

(Nakagawa et al., 1999; de Vries et al., 1999b), and both MSH4 and MSH5 are important 

for chromosome pairing in mice (Kneitz et al., 2000). Biochemical studies show that the 

MSH4-MSH5 dimer binds to the centre o f HJ structures, forming an ATP hydrolysis- 

dependent sliding clamp which stabilises the HJ (Snowden et al., 2004). Finally, the 

MSH4-MSH5 heterodimer has an important role in the regulation o f crossing over during 

meiotic recombination (see section 4.1.2.2.4).

The transcription o f Msh4 and Msh5 is has been shown to be modulated between 

mammalian tissues, and stages o f the yeast life cycle. In S. cei^evisiae, Msh4 and Msh5 

mRNA and protein are detected only in meiotic tissues (Ross-Macdonald and Roeder, 

1994; Pochart et al., 1997). In mammals, the situation is slightly more complex. Northern 

analysis o f human tissues shows that both Msh4 and MshS mRNA can be detected in 

meiotic testis and ovary (Her and Doggett, 1998; Winand et al., 1998; Santucci-Darmanin 

et al., 1999; Bocker et al., 1999; Her et al., 1999; Santucci-Darmanin et al., 2001) and 

Msh4 and Msh5 proteins can be observed colocalised to synapsed chromosomes (Ross- 

Macdonald and Roeder, 1994; Winand et al., 1998; Santucci-Darmanin et al., 1999; 

Bocker et al., 1999). However, MshS mRNA has also been detected in a wide range o f  

other tissues such as lymph nodes and thymus (Winand et al., 1998; Bocker et ah, 1999) 

and Msh5 protein has been detected in B- and T-cell tumour cell lines (Bocker et al., 

1999), whereas Msh4 mRNA cannot be detected in non-meiotic cells (Winand et al., 1998; 

Santucci-Darmanin et al., 2001). RT-PCR of the Msh4 gene product shows that small 

amounts o f transcription occur in non-meiotic tissues, but these are an alternatively spliced 

form that is incapable o f dimérisation with MSH5 (Santucci-Darmanin et al., 1999). In 

general, Msh4 expression levels have been remarked to be lower than Msh5 levels 

(Santucci-Darmanin et al., 1999).
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Msh4 and Msh5 proteins interact with each other, as shown by yeast two-hybrid analysis 

and coimmunoprecipitation (Pochart et al., 1997; Bocker et al., 1999; Her et al., 1999). 

The formation of this dimer appears to be human-specific, since both proteins are 

incapable o f forming homodimers (Winand et al., 1998) or o f interacting with other MMR- 

related MutS homologues (Pochart et al., 1997). Interactions with proteins from other 

families are possible, however: in vivo co-localisation o f Msh4 with the MutL homologues 

M lhl (Santucci-Darmanin et al., 2000) and Mlli3 (Santucci-Darmanin et al., 2002), the SC 

proteins Zipl (Novak et al., 2001) and CoiT (Kneitz et al., 2000), has been observed and 

Msh4 has been observed in Rad51 repair foci (Lipkin et al., 2002; Neyton et al., 2004; 

Svetlanov and Cohen, 2004). Yeast two-hybrid assays have shown interactions o f Msh4 

with Rad51 and Dm cl (Neyton et al., 2004), and V B Pl, which acts in microtubule 

assembly during meiosis and may provide competition with Msli5 (Her et al., 2003), and 

interaction between Msh5 and a central regulator o f DNA repair Mrel 1 (Uetz et al., 2000).

The interaction of MutL homologues with the Msli4/Msh5 heterodimer reveals functions in 

meiotic recombination in addition to their roles in post-replicative MMR (Hoffmann and 

Borts, 2004); separation-of-function mutant alleles o f the MutS homologues have been 

isolated showing a difference between the structural role they play in meiotic 

recombination and the catalytic one they play in post-replicative MMR (Argueso et al., 

2002; Argueso et al., 2003). Sterility is seen in mice lacking the MLH1-MLH3 dimer 

(Lipkin et al., 2000). MLHl and MLH3 are found as a heterodimer in meiotic cells (Wang 

and Kung, 2002), are required for a subset o f COs (Wang et al., 1999) and appear to be 

epistatic to MSH4 in the regulation of CO formation (Abdullah et ah, 2004). These 

observations suggest that this heterodimer could provide an intermediate between the 

MSH4-MSH5 heterodimer and other factors, a role analogous to that o f the MutL 

orthologues in mitotic MMR. Studies looking for interactions between the MLH1-MLH3 

and MSH4-MSH5 heterodimers have not always shown co-localisation (Hoffmann and 

Borts, 2004); this could suggest a transient reaction releasing the MSH4-MSH5 sliding 

clamp from DNA structures as proposed by Snowden et al. (Snowden et a l ,  2004). This 

model is consistent with the observations o f Argueso et al. (Argueso et ah, 2003), that 

some interference is retained in the absence o f M lhl and Mlli3.

4.1.3 Identification of meiotic genes in the ttypanosome genome

Sequencing o f the nuclear genomes o f T. brucei, T. cruzi and L. major (Berriman et ah, 

2005; El Sayed et ah, 2005; Ivens et a l ,  2005) has revealed that a number o f meiotic genes 

are present. BLAST searches and phylogenetic analysis identified putative orthologues
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encoding S p o il, D m cl, M ndl, H opl, Msh4 and Msh5, and possibly Mus81 (see table

4.1). These proteins constitute a “core meiotic machineiy" of proteins common to all or 

most meiotic systems (Villeneuve and Hillers, 2001), a concept explored further below 

(see section 4.3). However, at the outset o f this work the expression and functionality o f  

none o f these genes had been explored in any of the trypanosomatids, nor in any other 

protists. Subsequently, DM Cl has been examined in T. brucei (Proudfoot and McCulloch,

2006). In this chapter, the putative T. brucei orthologues o f Msh4 and Msh5 have been 

chosen for more detailed examination.
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4 .2 R esu lts

4.2.1 Identification of T. brucei homoiogues ofMSH4 and MSHS

Similarity searching o f the TIGR and Sanger T. brucei sequencing databases were 

preformed using BLAST algorithms and the MSH2 polypeptide sequences from H. sapiens 

and S. cerevisiae revealed the T. brucei genes encoding homologues o f MSH2, MSH3 and 

MSH6 identified previously by our group (Bell et al 2004; see section 1.4), as well as two 

other protein sequences. One predicted a 3495 bp ORF (XM _817292) located on 

chromosome 10 encoding a 1165 aa protein (XP_822385), and the second a 2370 bp ORF 

(AAX79333) located on chromosome 3 encoding a 732 aa protein (XP 825491).

The presence o f these genes in the T. brucei genome database strain was confirmed by 

independent sequencing. Primers MSF14-1 to MSIT4-11 and MSH5-1 to MSH5-7, 

homologous to the TREU 927 sequence, shown in appendix 3 and 4, were used to PCR- 

amplify the MSH4 and MSH5 ORFs from Lister 427 genomic DNA. PCR products were 

sequenced by the Molecular Biology Sequencing Unit (MBSU), University o f Glasgow, 

and assembled using ContigExpress (VNTI). The sections o f sequence available were in 

all cases identical in the Lister 427 and TREU 927 genomes, apart from a single 

synonomous difference in MSH5.

in silico translations o f the predicted polypeptides for XM _817292 and AAX79333 were 

next used in BLAST searches o f the NCBI database, and the results are summarised in 

tables 4.2 and 4.3. For X M _817292, the sequences in the database found to have the 

highest similarity were predicted MutS homologues from T. cruzi and L. major. For 

AAX79333, only a T. cruzi predicted gene was identified from the trypanosomatids. 

Beyond these close homologues (see below), XM _817292 revealed similarity to a 

predicted MSH4 from the sea urchin Strongylocentrotus purpuratus and MutS homologues 

from a range o f organisms, whereas AAX79333 revealed MSH5 homologues from a 

variety o f eukaiyotes as well as human G7 protein. These results indicate that each gene 

encodes a MutS homologue distinct from the previously described MSH2, MSH3 and 

MSH6(8) T. brucei genes.
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T. brucei MSH4 XP_822385
XP_822385 mismatch repair protein [Trypanosoma brucei] 0
XP_815283 mismatch repair protein MSH4, putative [Trypanosoma cruzi] 0
CA]04396 mis-match repair protein, putative [Leishmania major] 8.00E-74
XP 780878 simiiar to MutS protein homoiog 4 [Strongyiocentrotus purpuratus] 6.00E-42
EAL92596 DNA mismatch repair protein Msh2, putative [Aspergiilus fumigatus Af293], l.OOE-36
BAB06088 DMA mismatch repair protein (mismatch recognition step) [Baciilus haiodurans] 7.00E-35
ZP 00564383 MutS 1 protein [Methylobadiius flageiiatus tCT] 3.00E-31
NP_816771 DNA mismatch repair protein HexA [Enterococcus faecaiis V583] 5.00E-31
ZP„00315170 Mismatch repair ATPase (MutS family) [Microbuibifer degradans 2-40] 2.00E-30
YP„014020 DNA mismatch repair protein MutS [Listeria monocytogenes str. 4b F2365] 2.00E-30

T. cruzi MSH4 XP_815283
XP_815283 mismatch repair protein MSH4, putative [Trypanosoma cruzi] 0
XP 822385 mismatch repair protein [Trypanosoma brucei] 0
CA]04396 mis-match repair protein, putative [Leishmania major] 4.00E-75
XP 780878 similar to MutS protein homolog 4 [Strongyiocentrotus purpuratus] 2.00E-35
XP_762508 hypothetical protein UM06361.1 [Ustiiago maydis 521] l.OOE-31
BAB06088 DNA mismatch repair protein (mismatch recognition step) [Bacillus haiodurans] l.OOE-31
XP„688406 PREDICTED: simiiar to MutS protein homoiog 4 [Danio rerio] l.OOE-31
AAT7Û180 MSH4 [Arabidopsis thaliana] 2.00E-31
AAK79801 Mismatch repair protein MutS, ATPase [Clostridium acetobutyiicum ATCC 824] 4.00E-31
YP_147159 DNA mismatch repair protein [Geobaciiius kaustophiius HTA426] 7.00E-31

L. major MSH4 CAJ04396
CA304396 mis-match repair protein, putative [Leishmania major] 0
XPJ822385 mismatch repair protein [Trypanosoma brucei] l.OOE-58
XPL815283 mismatch repair protein MSH4, putative [Trypanosoma cruzi] l.OOE-44
013396 DNA mismatch repair protein msh-2 Neurospora crassa LOOE-22
XP_662610 hypothetical protein AN5006_2 [Aspergiilus nidulans FGSC A4] 5.00E-22
EAA74947 MSH2„NEUCR DNA mismatch repair protein MSH2 [Gibbereila zeae PH-1] 9.00E-21
CAJ05982 DNA mismatch repair protein, putative; MSH2 [Leishmania major] 5.00E-20
AAK08648 putative mismatch repair protein MSH2 [Trypanosoma brucei] 6.00E-20
XP..368365 hypothetical protein MG00879.4 [Magnaporthe grisea 70-15] l.OOE-19
XP_819877 DNA mismatch repair protein MSH2, putative [Trypanosoma cruzi] 2.00E-19

Table 4.2. Results o f BLAST searches o f the NCBI database using MSH4 protein sequences  
from  T. b r u c e i ,  T. c r u z i  a n d  L . m a j o r a s  query sequences. Accession numbers of the result 
sequences are shown in the left-hand column, the brief description of each gene product as shown 
in the NCBI database is shown in the middle column, and the E-value of each result (indicating the 
probability that sequences could be that similar by chance) in the right-hand column.
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T. brucei MSH5 XP_825491
XP 825491 mismatch repair protein MSH5 [Trypanosoma brucei] 0
XP_809831 mismatch repair protein MSH5, putative [Trypanosoma cruzi] 0
NP_038628 mutS homoiog 5 [Mus muscuius] 3.00E-52
EAA67360 hypothetical protein FG01367.1 [Gibbereiia zeae PH-1] 5.00E-52
CAB52406 G7 protein [Homo sapiens] 9.00E-52
AAH41031 MSH5 protein [Homo sapiens] l.OOE-51
NP 751897 mutS homoiog 5 isoform b [Homo sapiens] l.OOE-51
XP 532080 PREDICTED: similar to mutS homoiog 5 isoform c isoform 1 [Canis famliiaris] l.OOE-51
CAE83984 mutS homoiog 5 [E. coil] [Rattus norvegicus] l.OOE-51
AAP36674 Homo sapiens mutS homoiog 5 [E. coil) [synthetic construct] l.OOE-51

r. cruzi MSHS XP„809831
XP_809831 mismatch repair protein MSH5, putative [Trypanosoma cruzi] 0
XP_825491 mismatch repair protein MSH5 [Trypanosoma brucei] 0
XP 847837 MutS-iike protein [Leishmania major] l.OOE-68
CAE83984 mutS homoiog 5 [E. coil] [Rattus norvegicus] 2.00E-56
NP 038628 mutS homoiog 5 [Mus muscuius] 3.00E-56
XP_532080 PREDICTED: simiiar to mutS homoiog 5 isoform c isoform 1 [Canis famliiaris] 5.00E-56
AAH41031 MSH5 protein [Homo sapiens] 2.00E-55
NP 751897 mutS homoiog 5 isoform b [Homo sapiens] 2.00E-55
CAB52406 G7 protein [Homo sapiens] 2.00E-55
NP 079535 mutS homoiog 5 isoform a [Homo sapiens] 5.00E-55

XPJ847837 MutS-iike protein [Leishmania major] 0
XP 809831 mismatch repair protein MSH5, putative [Trypanosoma cruzi] 6.00E-36
XP_825491 mismatch repair protein MSH5 [Trypanosoma brucei] 3.00E-32
BAB02831 unnamed protein product [Arabidopsis thaliana] 3.00E-16
EAA67360 hypothetical protein FG01367.1 [Gibbereila zeae PH-1] 2.00E-15
AAS76767 At3g20475 [Arabidopsis thaliana] 5.00E-15
BAD95388 DNA mismatch repair protein [Arabidopsis thaliana] 5.00E-15
AAP97415 mshS [Coprinopsis cinerea] 2.00E-14
XP_475492 unknown protein [Oiyza sativa (japonica cultivar-group]] 4.00E-13
XP 447404 unnamed protein product [Candida giabrata] l.OOE-12

Table 4.3. Results o f BLAST searches o f the NCBI database using MSH5 protein sequences  
from  T. b r u c e i ,  T. c r u z i  and L. m a j o r a s  query sequences. Accession numbers of the result 
sequences are shown in the left-hand column, the brief description of each gene product as shown 
in the NCBI database is shown In the middle column, and the E-vaiue (indicating the probability 
that sequences could be that simiiar by chance) of each result in the right-hand column.
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4.2.2 Identification of putative T. cruzi and L. major homoiogues 

of MSH4 and MSH5

As discussed above, BLAST searching o f NCBI revealed putative orthologues o f T. brucei 

gene XP_822385 in Trypanosoma cruzi and Leishmania major, and a putative orthologues 

o f T. brucei gene AAX79333 in T. cruzi. To examine this frirther, the translated 

polypeptides o f the T. brucei genes were used to search the T. cruzi and L. major genome 

databases, using BLAST searches (see tables 4.2 and 4.3). Two genes were thus identified 

in L. major, a 4712 bp ORF located on chromosome 21 predicted to encode a 1377 aa 

protein (CAJ04396) and orthologous to XP 822385, and a 3287 bp ORF located on 

chromosome 29 predicted to encode a 1096 aa protein (XP_847837) and orthologous to 

XP 825491. Similiarly, two orthologous genes were identified in T. cruzi, though their 

chromosomal locations are unknown. A  3773 bp ORF predicted to encode a 1264 aa 

protein (XP_815283) is orthologous to XP 822385, and a 2750 bp ORF predicted to 

encode a 784 aa protein (XP_809831) is orthologous to XP 825491. Accession numbers 

for all the above sequences are shown in appendix 2.

For the T. cruzi and L. major genes, no PCR confirmation o f their presence in the genome 

was performed. Nevertheless, in silico translations o f these genes were used to search the 

NCBI database, and the results are summarised in tables 4.2 and 4.3. As for the T. brucei 

proteins, the most related sequences in the database were the orthologues from the other 

kinetoplastids. Beyond this, T. cruzi XP_815283 identified predicted MSH4 from the sea 

urchin Strongyiocentrotus purpuratus and other MutS homologues from a range of 

organisms, whereas XP_809831 identified MSH5 homologues from a variety of 

eukaiyotes as well as human G7 protein. For L. major protein CAJ04396 identified MSH2 

sequences from a range o f eukaryotic organisms, including the kinetoplastids, whereas 

XP_847837 identified predicted MSH5 from the fungus Coprinopsis cinerea and a number 

of unannotated hypothetical ORFs from a range o f organisms. This analysis again suggests 

that we have identified two further MutS-like genes in each o f T. cruzi and L. major.

The six MutS-related protein sequences identified above were compared by performing a 

sequence alignment using ClustalX (Thompson et al., 1997), which was visualised using 

Boxshade (http://www.ch.embnet.org/software/BOX_form.html), as shown in figure 4.3. 

This shows that the proteins show significant sequence consei^vation with each other, and 

the middle conserved domain and ATPase/helix-turn-helix domains common to all MutS 

homologues, as defined in Obmolova et al. 2000 (Obmolova et al., 2000) can be identified
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Figure 4.3. Global multiple alignments of putative kinetoplastld homologues of MSH4 and MSH5. 
Multiple sequence alignment of putative T. brucei (Tb), T. cruzi (Tc) and L  major (Lm) MSH4 and 
MSH5 polypeptide sequences. Sequences were aligned using ClustalX (Thompson et al., 1997) 
and shaded using the Boxshade server (http://www.ch.embnet.org/software/BOX_form.html): 
identical residues in 30% of the sequences are shaded in black, and conserved residues in grey. 
The middle conserved domain and ATPase/helix-turn-helix domains, as defined by Obmolova et al. 
(2000), are shown by underlining in blue and orange respectively, and the important motifs of the 
ATPase an helix-turn-helix domain, as described in the text, are shown underlined in red.
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(see figure 1.10). It also shows that gene products XP_822385, XP_815283 and 

CAJ04396 from T. brucei, T. cruzi and L  major are more related to each other, whilst gene 

products XP_825491, XP 809831 and XP_847837 from T. brucei, T. cruzi and L. major 

are orthologues. For instance, each o f the latter three is significantly larger than the former 

three. Within each class, the L. major protein is more diverged than T. brucei and T, cruzi. 

The alignments also reveal inserted sequences without homology in the other kinetoplastid 

proteins. In L. major CAJ04396, there is an insertion of approximately 100 amino acids 

between the middle conseiTed domain and the ATPase domain. In L. major XP 847837, 

there are a number o f insertions: N-terminal and C-terminal extensions o f 73 and 59 amino 

acids respectively (compared to the T. brucei sequence); three small insertions between the 

middle conserved domain and the ATPase domain; and four small insertions within the 

ATPase domain, but between the consei'ved motifs o f this region. In T. cruzi XP 809831, 

there is an N-terminal extension o f 55 amino acids (in relation to T. brucei), homologous to 

a section o f the L. major N-terminal extension. The functional significance, if  any, o f  

these divergences is unknown.

4.2.3 Bioinformatic assignment of the kinetopiastid MutS-reiated 

proteins as MSH4 and MSH5

4.2.3.1 Sequence similarity based on whole-protein pairwise alignments

To attempt to assign functional identities to the MutS homologues from T. brucei, T. cruzi 

and L. major described above, all MutS-related proteins from the kinetoplastids were 

compared by pairwise alignment using ClustalW (VNTI), and the percentage sequence 

identities calculated (see table 4.4). The level o f sequence identity between members o f 

this protein family, both within and between species, was generally low (7.2% - 20.6% 

sequence identity, excluding identities between likely orthologues). The orthologous 

proteins are therefore clearly revealed, as their sequence identities are significantly higher 

(21.9-64.9% identity). The exception to this is the putative L. major MSH4 and MSH5 

proteins, which showed only 21.9-23.4%  and 21.9-23%  identity to the T. brucei and T. 

cruzi putative orthologues, respectively. In general, the L. major MutS-related proteins are 

the most diverged, for reasons that are unclear.

In addition, the MutS homologues from T. brucei were compared to the MutS homologues 

from H. sapiens by pairwise alignment using ClustalW (VNTI), and the percentage 

sequence Identities calculated (see table 4.5). The level o f sequence identity is equivalent 

to that found for the kinetoplastid homologues (8 -  19.9% sequence identity, excluding

1 3 8
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■ TbJlSHFÎ

Sf.MSHS

Ce,M SH5

Lm_MSH5

T b > lS H 5

Ce_MSH.'

Th_MSH4

C"_HSH4

Figure 4.4. A phylogenetic tree of prokaryotic and eukaryotic MutS hom ologues. The whole 
polypeptide sequences of 2 MutS1 , 2 MutS2, 8 MSH2, 7 MSH3, 8 MSH4, 7 MSH5 and 7 
MSH6/MSH8 homologues from Arabidopsis thaliana (At), Caenorhabiditis elegans (Ce), 
Esherischia coli Ec), Haemophilus ducreyi (Hd), Homo sapiens (Hs), Helicobacter pylori (Hp), 
Leishmania major {Lm), Mus muscuius (Mm), Saccharomyces cerevisiae (Sc), Thermus 
thermophilus (It), Trypanosoma brucei (Tb), and Trypanosoma cruzi (Tc) were compared by 
ClustalX (Thompson et a i, 1997). The sequence comparison was then used to generate a 
phylogenetic tree which was visualised using Hypertree
(http://hypergraph.sourceforge.net/hypertree.html). The MutS sequences are shown in biack, 
MSH2 in red, MSH3 In orange, MSH4 in green, MSH5 in blue and MSH6/MSH8 in green. The 
subgrouping of the kinetoplastid orthologues within each branching is circled. The distance 
corresponding to 10 aa changes per 100 residues is indicated.
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identities between likely orthologues). The orthologous proteins are again clearly 

revealed, with significantly higher sequence identities (18.3-30% sequence identity).

4.2.3.2 Construction of a phylogenetic tree

To attempt to assign identities more clearly to the trypanosomatids MutS-related proteins 

relative to a wide range o f such factors, available protein sequences o f all putative MutS 

homologues from the tiypanosomatids, from other eukaiyotes {Arabidopsis thaliana, 

Caenorhabiditis elegans. Homo sapiens, Mus muscuius and Saccharomyces cerevisiae), 

MutSl sequences from Escherischia coli and Thermus thermophilus and MutS2 sequences 

from Haemophilus ducreyi and Hylobacter pylori, were aligned using ClustalX (Thompson 

et al., 1997), and an unrooted phylogenetic tree derived using Hypertree 

(http://hypergraph.sourceforge.net/hypertree.html) (see figure 4.4). In this analysis, 

predicted orthologues o f each MutS family member grouped together, with a subgroup 

made up o f kinetoplastid proteins found within each group o f orthologues, indicating 

strongly that the new MutS-related proteins identified here encode MSH4 and MSH5 

homologues.

4.2.3.3 Protein alignments of conserved domains

Protein sequences o f all MutS homologues from T. brucei, H  sapiens and S. cerevisiae 

were aligned using ClustalX (Thompson et al., 1997) and visualised using Boxshade 

(http://www.ch.embnet.org/software/BOX_form.html). Functional domains as defined by 

Oblomova et al. (Obmolova et al., 2000) were isolated and are shown in figures 4.5 -  4.10. 

As has been reported previously (Bell et al., 2004), T. brucei MSH2, MSH3 and MSH8 

display considerable conseiwation with their yeast and human homologues in the mismatch 

interaction domain. Within this domain, The conserved Phe and Glu residues that bind to 

the mismatched base in Thermus aquaticus MutS (Obmolova et al., 2000) are conserved in 

T. brucei MSH8 (Phe69 and Glu71of this protein), H. sapiens and S. cerevisiae, though not 

in MSH2 or MSH3. Mutations in these residues have been linked to MMR deficiency in 

yeast and HNPCC in humans (Obmolova et al., 2000), indicating an important role in 

protein function. Two other residues identified for T. aquaticus MutS are required for 

DNA recognition and are conserved in T. brucei MSH3 (G ln llS  and Ai*gl36) and MSH8 

(Gin 129 and Argl45), as well as in the human and yeast homologues. As has been 

obseiwed for their homologues in other organisms (Eisen, 1998; Culligan et al., 2000; 

Obmolova et al,, 2000), the T. brucei MSH4 and MSH5 proteins display only limited 

sequence homology in this conseiwed mismatch interaction domain. As for MSH2, none
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of the important conserved residues can be identified. Beyond this, the overall level o f  

homology is lower and all the MSH4 and MSH5 proteins contain significant sequence 

insertions relative to the MMR proteins.

In contrast to the lack o f conseivation o f the mismatch interaction domains, the middle 

conserved domain and the C-terminal ATPase/helix-timi-helix domain are well conserved 

in all the T. brucei MutS family members, including MSH4 and MSH5. The nucleotide- 

binding motifs within the ATPase domain (N-1, N-2, N-3 and N -3’, located at the dimer 

interface o f the folded protein) appear to be intact in each protein: the N-1 and N-3 regions 

correspond to the widespread Walker A and Walker B motifs, whereas the N-2 and N -3’ 

motifs are unique to the ABC ATPase superfamily to which these proteins belong. The 

fimction o f the middle conserved domain is not yet known (see section 1.3.2), meaning that 

crucial residues are not identifiable. Nevertheless, this region o f the MSH5 proteins, 

including T. brucei, displays substantial conservation. The T. brucei MSH4 appears, 

however, to be somewhat more diverged than that in humans and yeast. Taken together, 

the above data appear to confirm that the T. brucei genes are functional, but typically lack 

the N-terminal domains for mismatch interaction.

4.2.3.4 A note on annotation

When putative meiotic genes were being annotated in the trypanosomatids, it was stated 

that L. major lacked an MSH4 homologue (Ivens et a l ,  2005). However, during this 

analysis a gene has been identified that likely encodes MSH4: it groups with the MSH4 

sequences in phylogenetic analysis, aligns well with MSH4 proteins from T. brucei and T. 

cruzi, and has higher sequence identity scores when aligned with MSH4 than with other 

MutS homologues. In addition, the gene is orthologous based on genetic synteny (see 

below) with the tlnee tiypanosomatids. Thus, all three sequenced kinetoplastid genomes 

appear to contain homologues o f MSH2, 3 and 6, suggesting conservation o f the MMR 

system, and o f MSH4 and 5, and therefore conservation of putative meiotic functions.

4.2A Analysis of the genomic environment of IVISH4 and MSH5

4.2.4.1 in silico sequence analysis

The areas o f the T. brucei, T. cruzi and L. major genomes surrounding the MSH4 and 

MSH5 ORFs were analysed for the presence o f ORFs (although unfortunately, the region 

upstream of T. cruzi MSH4 is not yet available; see figures 4.11 and 12). Large regions o f
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Figure 4.11. The genom ic environm ent of the MSH4 ORFs In T. brucei, T. cruzi and L. major.
The genomic environment of the MSH4 ORFs in each organism were analysed for the presence of 
ORFs using Vector NT!, and were then annotated by BLAST searching of the NCBI database. The 
chromosomes are indicated by yellow horizontal lines, and predicted ORFs by blue arrows. In 
addition to MSH4 from each organism, the following ORFs are indicated: asparty;-tRNA synthetase 
(asp-tRNA synthetase), cytochrome oxidase (cyt oxidase), katanin, and several hypothetical 
proteins (hyp prot).

1 5 0



PFRl PFRl PFRl PFRl PFRl MSH5 hyp prot hyp prot r. brucei
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Para rod
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»  »
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Figure 4.12. The genom ic environm ent of the MSH5 ORFs in T. brucei, T. cruzi and L, major.
The genomic environment of the MSH5 ORFs in each organism were analysed for the presence of 
ORFs using Vector NTI, and were then annotated by BLAST searching of the NCBI database. The 
chromosomes are indicated by yellow horizontal lines, and predicted ORFs by blue arrows. In 
addition to MSH5 from each organism, the following ORFs are indicated: Paraflegellar rod protein 1 
(PFRl), paraflagellar rod protein 3 (PARS), thioredoxin, paraflagellar rod protein ID (Para rod 
protein 1D), histone H2A (H2A) and several hypothetical proteins (hyp prot).
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genomic sequence were extracted from geneDB and converted to Vector NTI files for 

annotation. Putative ORFs surrounding MSH4 and MSH5 were identified by using their 

polypeptide sequences as queries for BLAST searches of the NCBI database. As has been 

observed for a significant amount o f the three trypanosomatid genomes, synteny between 

the regions surrounding MSH4 and MSH5 is apparent. The region upstream of the MSH4 

ORFs, at least in T. brucei and L. major, contains a number o f hypothetical ORFs that 

might encode proteins o f unlcnown function. An aspartyl-tRNA synthetase gene is found 

directly downstream o f MSH4 in T. brucei and T. cruzi, although a hypothetical ORF may 

be inserted between these genes in L  major. Downstream of the aspartyl-tRNA synthetase 

ORF is an ORF annotated as a putative cytochrome oxidase in T. brucei, but as 

hypothetical ORFs in T. cruzi and L. major. However, sequence identities calculated from 

pairwise alignments o f the predicted translations o f these ORFs (performed using 

ClustalW, VNTI) were 61.5% between T. brucei and T. cruzi, 30.5% between T. brucei 

and L. major, and 31.5% between T. cruzi and L. major, indicative o f a conserved gene. 

The genomic region surrounding the MSH5 ORFs contains more characterised genes. 

Upstream of the T. brucei gene is an array of four identical copies o f the paraflagellar rod 

component PFRl, presumably the result o f a T. brucei-spQcifio gene amplification. 

Paraflagellar rod proteins are also found upstream o f MSH5 in T. cruzi and L. major, both 

these genomes contain a copy o f PAR3, and in addition, upstream o f this in L. major is a 

gene called paraflagellar rod protein ID (although it should be noted that this gene has no 

homology to PFRl). Downstream o f MSH5 are two hypothetical proteins. Sequence 

identities calculated from pairwise alignments o f the predicted translations o f the ORF 

immediately downstream of MSH5 (performed using ClustalW, VNTI) were 36.2% 

between T. brucei and T. cruzi, 24.1% between T. brucei and L. major, and 26.1% between 

T. cruzi and L. major, suggesting a conseiwed gene. Sequence identities calculated from 

pairwise alignments o f the second ORF (performed using ClustalW, VNTI) were 11% 

between T. brucei and T, cruzi, 48.6% between T. brucei and L. major, and 9% between T. 

cruzi and L  major, suggesting a conserved gene only between T. brucei and L. major.

4.2.4.2 Southern analysis of the T. brucei MSH4 and MSH5 loci

Genomic DNA samples from T. brucei strains Lister 427 and IlTat 1.2 were digested with 

a panel o f restriction enzymes, separated by agarose gel electrophoresis and Southern 

blotted. A 467 bp region o f the MSH4 ORF and a 427 bp region o f the MSH5 ORF were 

amplified from Lister 427 genomic DNA using primers MSH4-4 and MSH4-5 or MSH5-4 

and MSH5-5, and each PCR product used as a probe in separate Southern blots. In each 

case, the probes hybridised to a single restriction fragment, confirming that both genes are
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MSH4 MSHS
Il Tatl.2 IITatl.2 427

Figure 4.13. G enom ic Southern blots probed for T. brucei MSH4 and MSHS g en es . Southern 
blots of Lister 427 and IITat1.2 genomic DNA w as restriction-digested with the enzymes shown, 
separated on a 0.8% agarose gel, probed with a 467 bp PCR product amplified from the T. brucei 
MSH4 gene or a 427 bp product amplified from the T. brucei MSH5 gene and washed to 0.2x SSC, 
0.1% SDS at65°C.
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present in a single copy in the strains tested, as predicted by the genome project (see figure 

4.13). The identical restriction patterns in Lister 427 and IlTat 1.2 strains indicates that the 

genomic environment 0ÎM SH4  and MSH5 in these two strains, are highly related.

4.2,5 Analysis of MSH4 and MSHS expression in procyclic form 

and bloodstream stage T. brucei

In organisms where Msh4 and Msh5 are loiown to have a role in the control o f meiotic 

recombination, the expression o f Msh4 and to a lesser degree Msh5 is limited to meiotic 

tissues or life cycle stages (see section 4.1.2.3). This is in contrast to other MutS 

homologues, which, although they can have meiotic functions, have roles in MMR and are 

therefore expressed ubiquitously. It is already known that this generalised expression of  

MMR genes appears to be conserved in T. brucei, as MSH2 and MSH8 are expressed in 

both procyclic form and bloodstream stage cells (J. Bell, PhD thesis, University o f  

Glasgow). The experiments in this section aim to ascertain whether expression o f T. 

brucei MSH4 and MSH5 mirrors this generalised expression, or if  it is limited to particular 

life cycle stages. Genetic exchange in T. brucei most likely takes place in the epimastigote 

life cycle stage (see section 4.1.1), implying that this is where meiosis-specific genes might 

be predicted to be expressed. Unfortunately, it is difficult to acquire sufficient numbers o f  

such life cycle stage cells for analysis. Expression of MSH4 and MSH5 was examined in 

the culturable procyclic and bloodstream stages: expression in these, presumably non- 

meiotie, life-cycle stages might suggest that the proteins are involved in general MMR and 

not in the same specific, meiosis-specific way as their homologues in other organisms.

4.2.5.1 Analysis of MSH4 and MSHS expression by RT-PCR

The expression o f MSH4 and MSH5 was first analysed, in a non-quantitative manner, by 

reverse transcriptase PCR (RT-PCR). Total RNA was isolated from Lister 427 procyclic 

form, EATRO 795 procyclic form and Lister 427 bloodstream stage cells that had been 

grown to concentrations o f approximately 5 x 10  ̂ (procyclic form) and 1.5 x 10  ̂

(bloodstream stage) cells .ml" \  The total RNA was converted to cDNA, which was then 

used as the template for RT-PCR using primers specific to the MSH4 and MSHS ORFs 

(MSH4-4 and MSH4-5, and MSH5-4 and MSH5-5, see appendix). A single product o f the 

expected size (467 bp for MSH4 and 427 bp for MSHS) was seen in each reaction, showing 

that transcript from both genes is present in all three RNA samples (see figure 4.14).
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Figure 4.14. A nalysis of the exp ression  of T. brucei MSH4 and MSHS by RT-PCR. RT-PCR 
was performed on RNA isolated from Lister 427 procyclic (PCF), EATRO 795 procyclic and Lister 
427 bloodstream form (BSF) cells, using primers complementary to the MSH4 and MSHS ORFs. 
For each RNA and primer pair, RT positive (RT+), RT negative (RT-) and no template (NT) 
reactions were carried out as described in the text.

kb MSH4 MSH5 kb

Lister 
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EATRO 
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427 PCF

EATRO 
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427 BSF

Figure 4.15. A nalysis of the expression  of T. brucei MSH4 and MSHS by sem l-nested  RT- 
PCR. Two rounds of RT-PCR were performed on RNA isolated from Lister 427 procyclic (PCF), 
EATRO 795 procyclic and Lister 427 bloodstream form (BSF) cells. All RT-PCR reactions used the 
sam e 5’ primer complementary to the spliced leader sequence, but nested 3' primers 
complementary to the ORF. For each reaction, RT positive (RT+), RT negative (RT-) and no 
template (NT) reactions were carried out as described in the text.
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Negative eontrol reactions were also performed. Firstly, reactions were carried out by 

generating cDNA using the same total RNA samples as above, but without addition o f  

reverse transcriptase at the appropriate stage. RT-PCR reactions using this substrate did 

not yield any product detectable on an ethidium bromide-stained agarose gel, showing that 

the PCR products do not arise from contamination by genomic DNA in the cDNA samples. 

Secondly, RT-PCR reactions were carried using water instead of cDNA as the PCR 

substrate. Again, no product was detectable from these reactions, showing a lack of  

contamination in the oligonucleotide primers and other reagents used in the reactions.

The above analysis cannot determine if  mature, capped and polyadenylated mRNA is 

generated for MSH4 and MSH5. Transcription in the kinetoplastids is unusual among 

eukaryotes in that genes are arranged in large directional gene clusters, and primary RNA 

transcripts contain coding regions for more than one mRNA (Imboden et a l ,  1987; 

Tschudi and Ullu, 1988). The polycistronic transcript is divided into individual transcripts 

by tram-splicmg, leading to the addition o f a conserved 39-nucleotide splice leader RNA 

sequence to the 5’ end o f each processed transcript. This splice leader sequence has the 

function o f adding a cap to the mRNA; /m«5-splicing is necessaiy also for polyadenylation 

(Ullu et al., 1993). Therefore, RT-PCR reactions that link the splice leader sequence to a 

sequence specific to a particular transcript should show the presence o f mature, processed 

mRNA. Trans-spiicing in T. brucei is thought to oecur most frequently at the first AG 

dinucleotide following a polypyrimidine tract o f 8 to 25 nucleotides upstream o f the start 

codon, giving 5 ’ UTRs o f a median length o f 68 nucleotides (Benz et ah, 2005). Based on 

sequence analysis, appropriate signals for the splice site could be identified 110 bp 

upstream o f the MSH4 start codon, and either 9 bp or 121 bp upstream of the predicted 

MSH5 start codon.

To assess if  these predictions are correct, the presence o f mature MSH4 and MSH5 mRNA 

was measured by semi-nested RT-PCR, performed on RNA isolated from Lister 427 

procyclic, EATRO 795 procyclic and Lister 427 bloodstream stage cells. A first RT-PCR 

reaction was performed using one primer (SL, see appendix 1) complementary to the splice 

leader sequence and one complementaiy to a sequence in the 5’ region o f the MSH4 and 

MSH5 ORFs (MSH4-3 and MSH5-3, see appendix 1). The product from the first reaction 

was then used, undiluted, as the template for a second round o f RT-PCR, using the same 3’ 

primer, but 5’ primers closer to the start o f each ORF (MSH4-2 and MSH5-2, see 

appendix); PCR products were separated on a 0.8% agarose gel, stained by ethidium 

bromide, and visualised using UV light (see figure 4.15). The expected sizes o f PCR 

products for these reactions were therefore 391 bp for MSH4, and either 392 bp or 504 bp

1 5 6



for MSH5. The MSH4 reactions all yielded two products visible on the ethidium bromide- 

stained agarose gel, o f approximately 400 bp and 200 bp. PCR products were incubated 

with Taq polymerase and cloned into the TOPO TA vector, and cloned PCR products were 

sequenced by the MB SU, University o f Glasgow. No full-length sequences definitively 

linking MSH4 sequence to the splice leader sequence were obtained; however, MSH4 

sequence was detected from some of the cloned PCR products from each T. brucei strain. 

From other PCR products, sequence was obtained was shown by BLAST searching o f the 

NCBI database to be homologous to part o f T. brucei chromosome 7, and unannotated 

sequence from other organisms. These results suggest that the larger product visible on the 

ethidium bromide-stained agarose gel is derived from MSH4 cDNA (the size o f this 

product is consistent with the predicted size o f the PCR product) and the smaller one 

corresponds to the unknown sequence. The MSH5 reaction from Lister 427 procyclic form 

RNA yielded a single product o f approximately 450 bp, from EATRO 795 procyclic form 

RNA yielded two products o f approximately 200 bp and 450 bp, and Lister 427 

bloodstream stage RNA yielded two products o f approximately 450 bp and 500 bp. These 

PCR products were also incubated with Taq polymerase, but cloning into the TOPO TA 

vector was unsuccessful; however, it is probable that the 450 bp PCR product was 

amplified from MSH5 cDNA. The same negative controls were performed as for RT-PCR 

using gene-internal primers, and again showed a lack o f contamination from genomic 

DNA.

4.2.5.2 Analysis of MSH4 and MSH5 expression by northern blot

The putative expression o f MSH4 and MSH5 in procyclic form o f T. brucei strains STIB 

247, EATRO 795 and TREU 927, and in bloodstream stage o f T. brucei from the Lister 

427 strain, was analysed by northern blot to see if  RNA was detectable (see figure 4.17). 

The STIB 247 and TREU 927 strains were studied because they are known to be 

competent for genetic exchange, and therefore capable o f meiotic recombination (Tait et 

al., 1993). EATRO 795 and Lister 427 are the laboratoiy-adapted strains used by our 

group and their maintenance in culture is likely to have precluded their capacity for tsetse 

transmission, which may have consequences for meiotic recombination and, indeed, for 

MSH4 and MSH5 expression. Total RNA was extracted from the T. brucei cells at 

approximately 5 x 1 0 ^  (procyclic form) and 1.5 x 10*̂  (bloodstream stage) cells.m l'\ and 

set amounts were run on a denaturing formaldehyde gel and blotted. A 467 bp region of 

the MSH4 ORF and a 427 bp region of the MSH5 ORF were amplified from Lister 427 

genomic DNA using primers MSH4-4 and MSH4-5 or MSH5-4 and MSH5-5, and each 

PCR product used as a probe in separate northern blots. An RNA species o f a
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Figure 4.16. Northern analysis o f T. brucei MSH4 and MSH5 expression  In procyclic form 
and bloodstream  stage  ce lls . Total RNA was extracted from EATRO 795, STIB 247 and TREU 
927 procyclic form and Lister 427 bloodstream stage cells, separated by agarose gel 
electrophoresis and northern blotted and hybridised with MSH4 or MSH5 ORF-specific probe 
(upper panels). Blots were stripped and re-hybridised with probes specific to different ORFs: GPI8 
for the EATRO 795 blots, p tubulin (ptub) for Lister 427 blots, S P 0 1 1A for 247/927 MSH4,
SP 011B  for 247/927 MSH5. The amount of RNA run in each lane (pg) is shown at the bottom of 
each lane. Control Southern blots, with digested genomic DNA probed with the sam e MSH4 ORF- 
specific probe, are shown to the left.
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size potentially consistent with mature mRNA (-2 .5  kb) was detected for MSH5 in all 

cases, whereas no clear signal was detected for MSH4, with the possible exception o f the 

TREU 927 sample. The blots were then stripped of labelled probe fragment, and re-probed 

with PCR products derived from other ORFs to control for RNA loading (probes derived 

from T. brucei GP18, S P O llA  and S P O llB  were gifts from Christopher Proudfoot, 

whereas a probe was derived from the T. brucei fl tubulin gene was made by PCR 

amplification of a central region o f the ORF using the primers ptubulin5’-3’ and 

ptubulin3’-5’ (see appendix 1), giving a PCR product o f 631 bp). In all cases, signals were 

detected, indicating the integrity o f the RNA. As a further positive control, small amounts 

of the PCR product used to make the MSH4 probe was separated on an agarose gel, blotted 

and probed in the same tube as the northern blots. Here again, a specific signal was 

detected, showing that the MSH4 probe fragment was not defective. These experiments 

indicate that MSH5 mRNA is expressed to levels detectable by northern blot in both 

bloodstream and procyclic life cycle stages. In contrast, MSH4 appears not to be 

detectably expressed in at least 3 o f the 4 T. brucei strains examined.

4.2.6 An attempt to generate MSH4 and MSH5 knockout 
bloodstream stage T. brucei

MSH4 and MSH5 genes have been mutated in a number o f eukaryotic organisms (see 

section 4.1.2.3). In these cases, all phenotypes observed were linked to the regulation of  

meiotic recombination; deficiencies in MMR were never seen (Ross-Macdonald and 

Roeder, 1994; Hollingsworth et al., 1995; Zalevsky et al., 1999; Edelmann et al., 1999; de 

Vries et al., 1999a; Kneitz et al., 2000). Given the precedent for the generation o f such 

mutants, this section describes attempts to generate gene “loiockout” MSH4 and MSH5 

cell lines in T. brucei bloodstream stage cells. Although this will not allow a study to be 

made o f meiotic recombination (since this is not thought to take place in these cells and 

this strain is monomorphic and incapable o f transmission to epimastigotes), such an 

approach would allow the elimination of the possibility that these proteins have functions 

in general MMR.

4.2.6.1 Design and generation of MSH4 and MSH5 knockout constructs

Constructs were designed to completely eliminate the MSH4 and MSH5 ORFs from the 

genome (see figure 17) following homologous integration. To do this, targeting flanks 

were cloned, corresponding to sequence immediately upstream and downstream o f the
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Figure 4.17. A strategy for the generation of T.brucei MSH4 and MSH5 knockout mutants.
Two constructs were made to attempt to delete the MSH4 or MSH5 ORFs (dark blue; ORF length 
in bp indicated) and replace them with either the blasticidin S deaminase {BSD) or puromycin N 
acetyltransferase (PUR) gene. To allow processing into mature mRNAs, both antibiotic resistance 
genes are flanked, upstream, by a sequence derived the p and a tubulin intergenic region (Pa) and, 
downstream, by a sequence derived from the actin intergenic region (Act). Integration of the 
constructs was intended to occur by homologous recombination (represented by black crosses) 
using targeting sequences (light blue) derived from genomic sequence just overlapping the start 
and stop codons of the MSH4 or MSH5 ORF, which are located at each end of the constructs. The 
gene knockout constructs were linearised by Xbal and Xbol restriction digests prior to T. brucei 
transformation. S izes of DNA sequences (in bp) are shown in brackets. Locations of restriction 
sites used for diagnosic restriction digests are indicated.

1 6 0



ORFs, were designed to integrate the construct into the genome. Between these flanks 

were inserted either the blasticidin S deaminase (BSD) or puromycin N  acetyltransferase 

{PUR) ORF, flanked by processing signals from the tubulin and actin loci to allow 

production o f a stable, mature mRNA.

The targeting flanks were PCR-amplifled from Lister 427 genomic DNA. Primers MSH4 

5’1 and MSH4 5’2 generated a 300 bp 5 ’ flank for MS'FT4, while MSH4 3’1 and MSH4 3’2 

generated a 377 bp 3’ flank. For MSH5, primers MSH5 5’1 and MSH5 5’2 generated a 

368 bp 5’ flank, and MSH5 3 ’1 and MSH5 3 ’2 generated a 406 bp 3’ flank. For each 

gene, the two targeting flanks were cloned sequentially into the pBluescript II KS cloning 

vector. The BSD and PUR ORFs, plus processing signals, were PCR-amplifled from the 

constructs pCPlOl and pCP121, respectively, using primers pa 5 ’ BamHl and Act 3 ’ 

Bam lil (see appendix 1) and giving products o f 966 bp or 1279 bp. They were then cloned 

into BamHl restriction sites separating the MSH4 or MSH5 flanks to generate the 

AMSH4::BSD, AMSH5::BSD and AMSH5::PUR constructs. Diagnostic restriction digests 

were carried out, and in all cases gave restriction fragments o f the expected sizes (see 

figures 4.18 and 4.19), showing that organisation of the final constructs were as expected. 

In addition, all three constructs were sequenced by the MB SU, University o f Glasgow and 

shown to be correct. For reasons discussed below, the AMSH4::PUR construct was never 

completed.

4.2.6.2 An attempt to generate MSH4 and MSH5 mutant cell lines in T. brucei

Numerous attempts were made to generate MSH4 and MSH5 mutants in Lister 427 

bloodstream form cells by transformation by the constructs described in the previous 

section. The Icnockout constructs were separated from the pBluescript II KS plasmid by 

double digestion with Abal and Xhol (see figure 4.17), purified (see section 2.1.3.2) and 

electroporated using standard conditions (see section 2.1.3.1). A number o f  

transformations were carried out for each construct, and selection for transformants, using 

puromycin dihydrochloride or blasticidin S hydrochloride, was performed at a range o f  

drug concentrations (see table 4.6).

In only one transformation, using AMSH5::BSD and 5 pg.mf^ BSD selection were 

antibiotic resistant clones recovered. These few transformant clones were analysed for 

correct integration of the AMSH5::BSD knockout construct by Southern blotting (see 

figure 4.20). Untransformed Lister 427 genomic DNA and genomic DNA samples from 

the putative transformants were digested with Stul, separated by agarose gel
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Construct Transformations Drug concentrations Total transformants Correct transformants
AMSH4::BSD 2 2.5 pg.ml'^ 0 0
AMSH4::BSD 1 2.5 pg.ml'^ 0 0
AMSH4::BSD 2 5 pg.ml'^ 0 0
AMSH4::BSD 6 0.5/1/2/3/4/5 wg.mr 0 0
AMSH5::BSD 2 2.5 ijg.mi'^ 16 0
AMSH5::BSD 1 5 pg.ml'^ 0 0
AMSH5::PUR 2 1 pg.ml'^ 0 0
AMSH5::PUR 2 2 pg.ml'^ 0 0

Table 4.4.6. A summary of attem pts to delete the T. brucei MSH4 and MSH5 ORFs by 
Integration of the construct AMSH4::BSD, AMSH5::BSD and AMSH5::PUR  following  
electroporation. The number of transformations, drug concentrations used, and number of correct 
transformant clones are shown.

9 10 11 12 13 14 15 16

Skb-

4kb-

Flgure 4.20. Southern analysis o f potential MSH5 heterozygote cell lines. Genomic DNA 
isolated from blasticidin-resistant clones transformed with AMSH5::BSD was digested with Stu\, 
separated on a 0.8% agarose gel. Southern blotted and probed with a 368 bp product 
corresponding to the 5' integration flank from the AMSHSr.PUR construct and washed to 0.2x SSC, 
0.1% SDS at 65°C. The blot was visualised after overnight exposure to a phosphoimager screen.
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electrophoresis, and Southern blotted. The 300 bp 5’ integration flank o f the AMSH5::BSD 

construct was PCR-amplifled from Lister 427 genomic DNA using primers MSH5 5’ 1 and 

MSH5 5 ’2 (see appendix 1), and the PCR product used as a probe for the Southern blot. In 

all cases, only the 4.5 kb fragment corresponding to the undisturbed wild-type genomic 

locus is detected, indicating either that these cells were able to grow due to incomplete 

antibiotic selection, or that the construct had integrated anomalously into a locus other than 

MSH5. At the time that these transformations were being performed, a large number of  

transformation efficiency experiments were being carried out successfully, showing that 

the electroporation apparatus is not faulty.

4.2.7 Generation and analysis of trypanosomas containing 

ectopic copies of MSH4 and MSH5

As it appeared not to be possible to delete either the MSH4 or the MSH5 ORF by reverse 

genetics, an alternative strategy for the disruption o f MSH4 and MSH5 expression was 

developed whereby an attempt was made to increase the expression of each gene by 

integration o f each ORF into the tubulin array o f wild-type Lister 427 bloodstream form 

cells, potentially allowing stable expression of each RNA and protein. It is possible that 

the ectopic expression o f either component o f the MSH4-MSH5 heterodimer in 

bloodstream from cells could have a disruptive effect, for instance by inappropriately 

interacting with the other MutS family members. Alternatively, MSH4 or MSFI5 may be 

able to function in MMR, and overexpression might actually improve the efficiency o f the 

reaction.

4.2.7.1 Design and generation of constructs for ectopic expression of MSH4 

and MSH5

Constructs were designed to integrate the MSH4 and MSH5 ORFs into the tubulin array 

(see figure 4.21). These constructs were designed to allow integration by homologous 

recombination using terminal pa and ap intergenic sequences, thereby replacing an a 

tubulin ORF. As the a tubulin gene is multicopy, it is not expected that this should cause 

an adverse effect on cell growth, a prediction demonstrated experimentally (Bell and 

McCulloch, 2003). Selection for integration o f the MSH4 or MSH5 gene utilised an 

upstream bleomycin resistance gene (BLE) ORF. The organisation of the constructs means 

that processing of BLE occurs using the Pa tubulin intergenic region (Jla) upstream and the 

actin intergenic region (act) downstream; processing o f MSH4 or MSH5 occurs using act
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upstream and the ap tubulin intergenic region {a(J) downstream. In both cases, 

transcription relies on read-through by RNA Pol II rather than introduced promoters.

To make the constructs, the MSH4 and MSH5 ORFs were PCR-amplifled, using high- 

fidelity Herculase polymerase, from Lister 427 genomic DNA, using the primers 

MSH4overexp“5’-Mlu and MSH4overexp-3’-Mlu and MSH5overexp-5’-Mlu and 

MSH5overexp-3’-Mlu, respectively (see appendix 1). Each product was then cloned into 

the vector pRM481 (R. McCulloch, unpublished) using the Mlul site between act and ap  

processing sequences. The constructs were confirmed by restriction digestion, but were 

not sequenced.

4.2.7.2 Generation of cell lines ectopically expressing MSH4 and MSH5 in T. 

brucei

The constructs described above were transformed into wild-type Lister 427 bloodstream 

form T. brucei. Both constructs were linearised using 2ÆaI, purified (see section 2.1.3.2) 

and transformed as described in section 2.1.3.1. Clonal transformants were selected in 24- 

well plates, in HMI-9 containing 2.5 pg.mf^ phleomycin. To determine if  the constructs 

had integrated as expected, genomic DNA from phleomycin-resistant transformants was 

digested with Stul, separated by agarose gel electrophoresis and Southern blotted. A 467 

bp region o f the MSH4 ORF and a 427 bp region o f the MSH5 ORF were amplified from 

Lister 427 genomic DNA using primers MSH4-4 and MSH4-5 or MSH5-4 and MSH5-5, 

and each PCR product used as a probe in separate Southern blots.

Figure 4.21 b shows the results o f Southern analysis for untransformed Lister 427 

trypanosomes, as well as two independent transformants o f the pRM481-MS774 construct 

(cell lines MSH4 4.1 and 5.1) and o f the pRM481-MS'JT5 construct (cell lines MSH5 1.1 

and 2.1). In untransformed cells, an 11 kb restriction fragment was detected, 

corresponding to the wild-type MSH4 locus. This fragment remains undisrupted in the 

putative MSH4 expressor cells, but an additional 7 kb fragment is visible in each clone, 

corresponding to a copy o f MSH4 integrated into the tubulin array. For the MSH5 

experiment, a 4.5 kb restriction fragment was detected in untransformed cells, 

corresponding to the wild-type MSH5 locus. As for MSH4, this fragment remains 

undisrupted following integration o f the pRM481-MS'7/'5 construct, and an additional 5.7 

kb fragment, corresponding to a copy o f MSH5 integrated into the tubulin array, arises.
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To determine whether or not the ectopically introduced gene copies result in changed 

MSH4 and MSH5 mRNA levels, total RNA was isolated from untransformed Lister 427 

cells, and from each o f the transformants for MSH4 and MSH5 described above. RNA in 

each case was prepared for cells grown to approximately 1.5 x  10  ̂ cells.ml"\ 15 pg o f  

RNA was separated on a denaturing formaldehyde gel and northern blotted (see figure 

4.22). A 467 bp region o f the MSH4 ORF and a 427 bp region o f the MSH5 ORF were 

amplified from Lister 427 genomic DNA using primers MSH4-4 and MSH4-5 or MSH5-4 

and MSH5-5, and each PCR product used as a probe in separate Southern blots. As a 

control for the presence o f RNA, the blots were stripped o f labelled probe fragment and re­

probed with a 631 bp PCR product derived from p tubulin using primers ptub 5’ and ptub 

3’ (see appendix 1), showing integrity o f the RNA. As a further control, small amounts o f  

the PCR product used to make the MSH4 probe was run on an agarose gel and blotted. 

These Southern blots were probed in the same tube as the northern blots, and a signal was 

detected, showing that the probing process was not defective. This analysis showed an 

increase in the levels of MSH5 mRNA in the transformed cells: from the quantity o f total 

RNA as visualised by UV, and intensity o f the p tubulin loading control, the amount o f  

MSH5 transcript appears to be present in greater abundance in the MSH5 1.1 and MSH5

2.1 cell lines compared with Lister 427 wild-type cells. In contrast, cell lines MSH4 4.1 

and MSH4 5.1 did not produce detectable amounts o f MSH4 transcript, although loading 

controls and ethidium bromide stain controls showed the samples were intact. Why 

excision o f the MSH4 ORF from its endogenous 5’ and 3’ processing flanks, and 

expression from a known transcribed region o f the T. brucei genome, failed to produce 

visible mRNA is unclear.

4.2.7.3 Growth of trypanosom es containing ectopic copies of MSH4 and 
MSH5 in vitro

The in vitro growth rate o f the T. brucei cells ectopically expressing MSH5, as well as the 

MSH4 cells, which appeared to show no visibly increased expression, was calculated by 

diluting the T. brucei to a concentration o f 2.5 x 10  ̂cells.mf* in HMI-9 and measuring the 

cell density eveiy 24 hours. This was carried out in duplicate on two separate occasions. 

None of the transformant cell lines ectopically expressing MSH4 and MSH5 showed any 

change in growth rate (see figure 4.23); the average population doubling times for 

untransformed wild-type cells were 8.52 +/- SE 0.057 li, compared with 8.40 +/- SE 0.127 

h for cell line MSH4 4.1, 8.32 +/- SE 0.072 h for cell line MSH4 5.1, 8.36 +/- SE 8.52 h for 

MSH5 1,1, and 8.48 +/- SE 0.97 h for MSH5 2.1. It can be concluded that these genomie 

alterations to MSH4 and MSH5 have no noticeably disruptive effect on cell growth.
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Agarose gel Northern blot
kb wt / 4 .1 /5 .1  wt / 4 .1 /5 .1

0.95 -

MSH4
control

^#1, 5*  1

MSH4

kb

6.5-

5 -

3.6-

2.6-

1.9-

1.4-

iii"'y  ' 1 0.95-

0.6 -

0.28-

ptub

Agarose gel Northern blot
wt /  1 .1 /2 .1  wt / 1 .1 /2 .1

MSH5
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MSH4 MSH5

Figure 4.22. Northern analysis o f T. brucei MSH4 and MSH5 expression  In bloodstream  form 
cells containing an ectopic copy of the g en es . Total RNA was extracted from Lister 427 wild- 
type cells, as well as cell lines MSH4 4.1 and MSH4 5.1, and cell lines MSH5 1.1 and MSH5 2.1 
containing ectopic copies of MSH4 and MSH5, respectively (see text). 15 pg of each sample was 
separated by agarose gel electrophoresis, visualised by ethidium bromide staining (shown to the 
left of each section) and northern blotted. Hybridisation with MSH4 or MSH5 ORF-specific probes 
are indicated, as is re-probing of the stripped blots. Blots were stripped and re-hybridised with a 
probe specific to the p tubulin ORF (ptub).
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10000

E 1000

-$— 427 wt 
MSH4 4.1 
MSH4 5.1 
MSH5 1.1 

-4K— MSH5 2.1

24 48

Time in culture (h)

Ave DT (h ) SE (h )
427 wt 8.52 0.057
MSH4 4.1 8.4 0.127
MSH4 4.2 8.32 0.072
MSH5 1.1 8.38 0.153
MSH5 2.1 8.48 0.097

Figure 4.23. Growth in culture of T. brucei ce lls  containing an ectopic copy of MSH4 and 
MSH5. Lister 427 wild-type cells, cell lines MSH4 4.1 and MSH4 5.1 and cell lines MSH5 1.1 and 
MSH5 2.1 containing ectopic copies of MSH4 and MSH5, respectively, were grown in vitro from a 
starting density of 5 x 105 cells.ml-1 and cell concentration measured every 24 h. The log of cell 
concentration is shown against hours in culture.A table showing the average population doubling 
times (Ave DT) and standard errors (SE) calculated from this analysis is included.
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4.2.7.4 Survival of trypanosomes containing ectopic copies of MSH4 and 
MSH5 in the presence of the alkylating agent, N-methyl-Af-nitro-W- 
nitrosoguanidine (MNNG)

Cells containing ectopic copies o f MSH4 and MSH5 were assayed for MMR efficiency by 

measuring their growth in the presence o f the alkylating agent JV-methyl-N'-nitro-N- 

nitrosoguanidine (MNNG). This assay, described in more detail below, is based on the 

fact that cells show increased tolerance to MNNG if the MMR system is defective 

(described below). If the presence o f an ectopic copy o f MSH4 or MSH5 interferes with 

normal MMR function leading to an overall decrease in MMR efficiency, then MNNG  

tolerance should rise; on the other hand, if  MMR efficiency improves, MNNG tolerance 

may be reduced.

N-methyl-TV’-nitro-N-nitrosoguanidine (MNNG) is an alkylating agent that acts on guanine 

residues, adding 0^-methylguanine (0^-meG) residues to genomic DNA. Cells with 

deficiencies in MMR genes are known to have increased resistance to MNNG in a variety 

of prokaiyotic (Jones and Wagner, 1981; Karran and Marinus, 1982; Shi et a l ,  2004) and 

eukaryotic (Goldmacher et al., 1986; De Wind et al., 1995; Ciotta et al., 1998; Humbert et 

al., 1999) organisms, although the exact reasons for this phenomenon (referred to as 

méthylation tolerance) are as yet unclear.

The most widely accepted hypothesis to explain méthylation tolerance is called the futile 

cycle model (see figure 4.24). In eukaryotes, damage caused by MNNG is repaired 

optimally by 0^-methylguanine DNA methyltransferase (MGMT) (Mitra et al., 1982), 

which catalyses in situ méthylation, transferring the methyl group to a cytosine residue 

within its own active site (Karran and Bignami, 1992). However, if  an O'^-meG is present 

at replication, it is paired aberrantly with thymine residues. This mispairing is recognised 

by MSH2-MSH6 heterodimers (Levati et al., 1998; Berardini et al., 2000), setting o ff a 

futile cycle o f repair: the T is excised and the region undergoes repair synthesis (Karran 

and Bignami, 1992; Griffin et al., 1994; Humbert et al., 1999), with incorporation of  

another T. If DSBs caused by this repair cycle are present at S phase, the cell will not be 

able to divide and will die (Griffin et al., 1994). In addition, it has been shown in bacteria 

(Calmann and Marinus, 2005) and yeast (Durant et al., 1999) that methylated DNA is 

perceived as homeologous and prevented from recombining by the MMR system; this 

reduction in HR is also detrimental to the cell’s sui'vival (Cejka et al., 2005). Other models 

have been proposed to explain MNNG tolerance o f MMR-deficient cells, however. These 

include the MMR proteins recognising and binding to the O^-meG -  T mismatches and
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/V-nitrosoguanidine

06-me
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methyltransferase

Replication!
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CELL
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I ■ ■ MMRRecombination

V

Figure 4.24. The futile cycle  m odel to explain the toxicity of methylating agents. Recognition 
and excision of thymine (T) mispaired to 0®-methyl guanine (0®-meG) by the mismatch repair 
system leads to a futile cycle of repair. Presence of a gap opposite the 0^-meG at replication will 
lead to a double strand break (DSB) and probable death of the cell. MMR also prevents 
homologous recombination using substrate containing 06-m eG residues, which it perceives as 
homeologous. Adapted from Aquilina and Bignami, 2001 and Cejka et al., 2005.
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thus preventing access o f MGMT (MeHo et 1996), or an MMR-dependent stalling o f  

replication at these perceived mismatches triggering cell cycle arrest (Moreland et al., 

1999).

The effects o f MNNG on MMR mutants in T. brucei have already been studied (Bell et al., 

2004), by adding the compound to bloodstream stage Lister 427 wild-type, MSH2 or 

M LHl mutant cells and measuring their clonal growth. Mutating either MSH2 or MLHl 

leads to significantly increased tolerance to MNNG, as predicted by obsei-vations in other 

organisms (see above). In this study, an alternative assay, rather than the clonal survival 

assay, was used to measure population growth in the presence o f MNNG. This is based on 

the metabolism o f the compound Resazurin, also Icnown as Alamar Blue, which is a dye 

that is used as an indicator o f cell growth. In the presence o f living cells, blue, non- 

fluorescent resazurin is reduced, probably due to oxygen consumption during metabolism, 

to the pink, fluorescent compound resofurin, with a direct correlation to the amount of 

proliferating cells in culture (O'Brien et al., 2000). This system has been widely used for 

measuring proliferation of bacterial (Collins and Franzblau, 1997; Martin et al., 2005; 

Coban et al., 2005) and mammalian (Ahmed et al., 1994; de Fries and Mitsuhashi, 1995; 

Schreer et al., 2005) cells following drug treatment, and has already been employed 

successfully to measure drug resistance in T. brucei (Raz et al., 1997; Onyango et al., 

2000; Wallace et al., 2002).

T. brucei bloodstream stage cells containing ectopic copies o f MSH4 and MSH5 as well as 

Lister 427 wild-type and MSH2~/~ cells, at a starting density o f 10  ̂ eeHs.ml'^ were grown 

in HMI-9 medium containing doubling dilutions o f MNNG from 200 pM to 0.098 pM, in 

96-well tissue culture plates (200 pi o f cell culture per well). After 48 hours, 20 pi o f  

Alamar Blue was added to each well and fluorescence measured after a further 24 hours of  

growth. Higher fluorescence is an indication of more metabolism of Alamar Blue and 

therefore more proliferating cells. Fluorescence was measured by a luminescence 

spectrometer (LS 55, Perkin Elmer) at an emission wacelength o f 590 nm, and plotted on a 

log-linear graph, forming a sigmoidal curve as seen in the example in figure 4.25. IC50 

values (i.e., drug concentrations causing death o f 50% of the cells) were then calculated 

from the fluorescence cui*ve (calculations performed using Prism (GraphPad)). Each 

experiment was carried out in duplicate three times. MNNG is used as a solution in 

dimethyl sulfoxide (DMSO), and therefore control, duplicate experiments, identical to the 

ones described above except that DMSO at equivalent conentrations to those used in the 

MNNG dilutions, was added to the cell cultures. No significant reduction in cell
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MSH4 4.1 
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log M N N G  conc

Ave IC50 (pM) St Error (pM)
427 wt 3.277 1.258
MSH2-/- 9.683 3.066
MSH4 4.1 1.197 0.125
MSH4 5.1 1.097 0.0163
MSH5 1.1 2.65 1.051
MSHS 2.1 2.162 0.712

Figure 4.25. An alamar blue a ssa y  m easuring the tolerance of cell lines to MNNG when  
carrying an ectopic copy of MSH4 or MSH5. Lister 427 wild-type cells, Lister 427 MSH2-/- cells, 
cell lines MSH4 4.1 and MSH4 5.1 and cell lines MSH5 1.1 and MSH5 2.1 carrying ectopic copies 
of MSH4 and MSH5, respectively were grown in 96-well plates in the presence of doubling dilutions 
of MNNG for 48 h. Alamar blue was added to each well and the cells were grown for a further 24 
h, and fluorescence was measured. A typical graph for this analysis is shown in which 
fluorescence is plotted against log of MNNG concentration. Fluorescence of a control sample in 
which DMSO was added to equivalent concentrations to MNNG is indicated. A table showing the 
average IC50 values (Ave IC50), and standard errors (St Error) calculated is shown for each cell 
line; the values were calculated for 6 repetitions of the data graphed.
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proliferation was observed in this experiment (see figure 4.25), showing that the amounts 

of DMSO used in this assay had no significant effect on T. brucei growth.

Ectopic copies o f MSH4 and MSH5 did not result in increased MNNG tolerance, as seen 

for MSH2-/- mutants. Indeed, no effect was seen apart perhaps from a veiy small 

reduction in sensitivity. Average IC50 values (see figure 4.25) observed were 1.197 +/- SB 

0.125 X 10"̂  joM for cell line MSH4 4.1, 1.097 +/- SB 0.163 x 10'  ̂ pM for cell line MSH4 

5.1, 2.650 +/- SB 1.051 x 10'  ̂ pM for cell line MSH5 1.1, and 2.162 +/- SB 0.712 x  10"̂  

pM for cell line MSH5 2.1, compared with an average IC50 o f 3.277 +/- SB 1.258 x 10'"̂  

pM for wild-type Lister 427 cells, and 9.683 +/- SB 3.066 x 10"'' pM for the MMR- 

deficient MSH2-A cell line. These results indicate that none o f the cell lines display 

impaired MMR, and the possibility that MSH4 or MSH5 marginally improves the 

efficiency seems remote, as there was no evidence that either MSH4 ectopic line has 

generated MSH4 RNA.

4 .3 D isc u ss io n

Homology searching o f the T. brucei, T. cruzi and L. major genome databases, followed by 

confirmatory BLAST searches, has shown that these kinetoplastid parasites appear to have 

conserved a number o f factors specific to meiosis. This chapter demonstrates that this 

meiotic repertoire includes the MutS homologues, MSH4 and MSH5. These proteins, first 

discovered in S. cerevisiae (Ross-Macdonald and Roeder, 1994; Hollingsworth et al., 

1995) but subsequently found to be present in many eukaryotes, are not required for MMR 

but instead have an important role in the regulation of meiotic recombination. Biochemical 

and genetic evidence show that they bind to, and stabilise, recombination intermediates 

(Snowden et al., 2004), promoting the crossover interference pathway for the repair o f  

Spol 1-induced (Moens et al., 2002) DSBs. This difference in function compared to other 

MutS homologues is reflected in a difference in protein structure: MSH4 and MSH5 

contain the consei-ved Middle Conserved and ATPase/Helix-Turn-Helix Domains found in 

all MutS homologues, but lack the N-terminal Mismatch Interaction Domain (Obmolova et 

al., 2000). Protein sequence alignments show that this is also the case for MSH4 and 

MSH5 in T. brucei'. Middle Consei*ved and ATPase/Helix-Turn-Helix Domains could be 

readily identified relative to MSH2, MSH3 and MSH6 (8) proteins for T. brucei, human 

and yeast. In contrast, little clear evidence for a conserved Mismatch Interaction Domain 

was obsei*ved for T. brucei MSH4 and MSH5. The apparent consei*vation o f the rest o f the 

two predicted proteins indicates that, if  expressed, the T. brucei proteins are likely to be
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functional. Further evidence for the identification of the proteins as MSH4 and MSH5 was 

provided by a phylogenetic comparison o f a range o f MutS-related sequences from a 

number o f eukaiyotes, where the parasite genes followed the grouping described in other 

organisms. This also indicated that MSH4 and MSH5 are present in T. cruzi and L. major, 

although detailed sequence comparisons have not been done to verify the functionality o f  

the predicted proteins. Genome sequence comparisons showed that MSH4 and MSH5 are 

in regions o f synteny in the three trypanosomatids, verifying their ortho logy, and Southern 

analysis confirmed that both genes are present in the predicted single copy in the T. brucei 

Lister 427 and IlTat 1.2 genomes.

To understand if T. brucei MSH4 and MSH5 expression was compatible with a putative 

role in meiosis, mRNA levels in bloodstream stage and procyclic form T. brucei was 

analysed by RT-PCR and northern analysis. Amplification o f sequences from central 

sections o f both MSH4 and MSH5 cDNA was possible. In addition, RT-PCR using the 

consei'ved splice leader sequence generated products o f potentially correct sizes; 

sequencing o f the PCR products revealed some spurious products as well as MSH4 

sequence, but was not possible for MSH5. A less sensitive analysis o f MSH4 and MSH5 

expression, allowing an approximate comparison o f expression levels (although a 

quantitative analysis was not undertaken), was carried out by northern blot o f total RNA  

from STIB 247, EATRO 795 and TREU 927 procyclic form cells and from Lister 427 

bloodstream stage cells. This showed that whereas MSH5 mRNA molecules were found to 

be present in all these samples, MSH4 was not expressed sufficiently to be detected.

Meiosis is thought to take place in the epimastigote stage o f the T. brucei life cycle (Bingle 

et a l ,  2001), so it might be predicted that it is at this life cycle stage where MSH4 and 

MSH5 would be expressed. The observation that MSH4 mRNA is not readily detectable 

by northern blot in (presumably) non-meiotic bloodstream stage and procyclic form T. 

brucei, whereas MSH5 mRNA can be detected, is compatible with this conclusion. Indeed, 

this may be comparable to what has been observed in mammalian tissues. Expression of 

both MSH4 and MSH5 is strictly limited to meiotic cells in S. cerevisiae. On the other 

hand, in mammalian tissues, although both transcripts can be detected by RT-PCR in a 

variety o f tissues, expression to a level detectable by northern blot can be seen for MSH4 

only in meiotic cells (i.e., testes and ovaiy) but for MSH5 in a number o f other tissues as 

well (Her and Doggett, 1998; Winand et al., 1998; Santucci-Darmanin et al., 1999; Bocker 

et al., 1999; Her et al., 1999; Santucci-Darmanin et al., 2001). Unfortunately, the 

epimastigote life cycle stage o f T. brucei has not been grown in culture, meaning that 

northern blot analysis o f MSH4 and MSH5 expression in this putative meiotic stage would
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require dissection o f a number o f tsetse flies. Nevertheless, the fact that both genes’ 

expression can be detected by RT-PCR means that a viable approach to look at putative 

stage-specific expression would be real-time RT-PCR on the small amounts o f material 

dissected from the tsetse host. If it is correct that T. brucei MSH4 mRNA is only present in 

epimastigote cells, the basis for this is unknown. Stage-specific degradation, or 

stabilisation, o f mRNAs is well characterised in T. brucei (Clayton, 2002). Nevertheless, it 

is not possible to exclude that the MSH4 mRNA expression is not stage-specific, but that 

the gene expression is constitutively below detection.

The high amounts o f post-transcriptional regulation in T. brucei (Clayton, 2002) might 

mean that the quantity o f mRNA in a cell does not necessarily correspond to the presence 

or absence o f protein. For instance, it is not laiown if the MSH5 mRNA is translated into 

protein in the life-cycle stages analysed, or if  the gene’s expression is genuinely non-stage 

specific. Moreover, it is possible that MSH4 mRNA is efficiently translated to protein. 

Therefore, western blots are needed to analyse the expression of MSH4 and MSH5 

satisfactorily. Anti-peptide antibodies for this purpose have been generated, but 

preliminary analysis has not revealed specific interactions with proteins o f the correct 

sizes; further optimisation may be needed before they can be used (data not shown).

To attempt to exclude the possibility that MSH4 and MSH5 proteins are, in fact, present in 

bloodstream stage T. brucei and perform a function, constructs were made to delete the 

MSH4 and MSH5 ORFs through replacement with the blasticidin S deaminase and 

puromycin N  acetyltransferase drug resistance cassettes in Lister 427 bloodstream stage 

cells. The organisation and sequence o f these constructs was verified by diagnostic 

restriction digests and DNA sequencing, but it was not possible to obtain gene replacement 

transformants for either gene after a number of attempts, carrying out selection at a range 

of antibiotic concentrations. Some cells from one o f the transformations sui'vived 

selection, but when they were analysed by Southern blot it became apparent that growth o f  

the cells was not due to integration o f the construct into the correct genomic location, and 

may have been caused by problems with the antibiotic selection. This inability to mutate 

even one allele o f either MSH4 or MSH5 is surprising. In other organisms, it has been 

possible to knock both genes out with no effect on non-meiotic cells (Ross-Macdonald and 

Roeder, 1994; Hollingsworth et al., 1995; Zalevsky et al., 1999; Edelmann et al., 1999; de 

Vries et al., 1999b), so it is unlikely that the genes are essential in T. brucei. One 

possibility is that both genes are located in polygenetic units with low endogenous levels 

o f transcription, and so expression o f the antibiotic resistance markers, dependent on read- 

through transcription, does not occur at high enough levels to allow selection at the
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concentrations tested. The alternative is that each gene is in a region that is resistant to 

recombination, perhaps by virtue o f condensed chromatin (Polach and Widom, 1995), or 

that the integration has lethal consequences for surrounding genes. One potential approach 

to examine these questions would be to induce the absence o f MSH4 and MSH5 gene 

products by “Icnocking down” their expression by RNAi (Bosher and Labouesse, 2000), or 

by introducing an inducible copy o f each ORF into the genome before attempting 

disruption of the two original copies.

Given the difficulties with mutating MSH4 and MSH5, an alternative strategy for studying 

their function was adopted, where attempts were made to increase their expression levels 

by integration of an extra copy o f each ORF into the tubulin array o f Lister 427 

bloodstream stage cells. Although MSH5 mRNA abundance was shown by to be increased 

by the presence o f this extra copy, MSH4 mRNA remained at levels too low to be detected 

by northern blot. Again, the reasons for this are unclear, but may indicate very strong post- 

transcriptional control o f its expression in bloodstream stage cells. Much of the post- 

transcriptional regulation in T. brucei is thought to reside in modulation o f mRNA 

abundance via  trans-splicing and polyadenylation efficiency, or variation in mRNA 

degradation rates, through signals in the 5 ’ and 3’ untranslated regions (Clayton, 2002). 

Since the ectopic expression strategy adopted here has replaced these presumptive signals 

for MSH4 with intergenic sequences from actin and tubulin, it might be expected that any 

control strategy would be overridden. Why, then, MSH4 mRNA is not generated is 

unclear. It is possible that the ectopic expression construct has a mutation that has not 

been noted. Alternatively, this may indicate that the MSH4 gene contains ORF-specific 

features that prevent stable mRNA production, although what these might be is unclear. 

Finally, perhaps MSH4 mRNA levels are controlled by an ectopic, sequence-specific 

process, such as RNAi, though there is no evidence at present to support this.

Despite these problems, two independent transformant cell lines for MSH4 and MSH5 were 

assayed for defects in growth and MMR. The growth rate o f these cell lines did not differ 

significantly from that o f wild-type bloodstream stage cells, and neither did their 

sensitivity to MNNG (corresponding to MMR efficiency). These findings appear 

consistent with united data from other organisms: overexpression o f wild-type MSH5 in S. 

cerevisiae had no effect on MNNG tolerance (Bawa and Xiao, 2003). A gain-of-function 

mutation in the helix-turn-helix o f the yeast MSH5 protein has, however, been identified 

that causes an increase in MNNG tolerance (Bawa and Xiao, 2003), probably due to 

aberrant pairing with other MutS homologues interfering with their functions. Ectopic 

expression of both MSH4 and MSH5 together may be more likely to ensure an increase in
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the amount o f active heterodimer in the cell. Modification of the existing constructs could 

be used to achieve this, assuming the reason for lack of ectopic MSH4 expression can be 

understood.

The attempted knockouts and ectopic expression experiments described above were 

performed in Lister 427 bloodstream stage cells, which are not thought to be able to 

perform meiosis. Perhaps a more direct approach to understand MSH4 and MSH5 

functions would be to alter the genes’ expression, by mechanisms described above, in 

tsetse fly-transmissible, meiotically competent strains such as TREU 927 and STIB 386, 

and assess the effect o f these changes on, for instance, fly transmission and the rate o f 

genetic exchange. MSH4 and MSH5 knockout cells would be predicted to be able to be 

transmitted through the tsetse, as meiosis is non-obligatoiy in T. brucei, but might undergo 

a reduced rate o f genetic exchange, whereas increased expression o f these proteins would 

be unlikely to affect either process.

The starting point for these experiments was an inventory o f core meiotic genes as outlined 

by Villeneuve and Hillers (Villeneuve and Hillers, 2001), which aimed to identify factors 

that are specifically needed for meiotic, rather than mitotic cell division and recombination. 

The presence o f all or most o f these factors has been interpreted as meaning that an 

organism is at least capable o f carrying out meiosis, even if  it occurs only rarely in vivo. A 

search for meiotic factors as evidence for a sexual cycle has already been carried out in 

other species, including the fungus Candida albicans (Tzung et a l ,  2001). C. albicans is 

closely related to S. cerevisiae, but no sexual cycle had been identified in this organism at 

the time of genome sequencing. Analysis o f its genome revealed that C. albicans 

possesses homologues o f a number o f proteins acting at various stages o f S. cerevisiae 

meiosis, although some essential S. cerevisiae meiotic factors are missing. Molecular 

genotyping techniques such as multi-locus sequence typing subsequently showed that 

sexual reproduction makes a rare but significant contribution to the growth o f this 

organism in the wild if  not in the laboratoiy (Tavanti et al., 2004), thus validating this 

approach as a way of looking for meiotically competent organisms. The genome o f the 

anciently diverged protist parasite, Giardia intestinalis, has also been searched for meiotic 

genes (Ramesh et al., 2005), again demonstrating that a large proportion of meiotic factors 

are present. Notably, Giardia appears not to encode MSH4 or MSH5, indicating an 

absence o f the crossover interference pathway o f meiotic recombination. Nevertheless, the 

presence o f most other “core meiotic factors” in Giardia as well as in other protists 

including Entamoeba, has led to the suggestion that meiosis arose very early in eukaiyotic
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evoluation. Unlike Candida, however, no experimental evidence for genetic exchange has 

been presented for Giardia.

Meiosis-related genes, including MSH4 and MSH5, have been identified in the genomes o f  

the kinetoplastids T. cruzi, L. major and T. brucei. The genomes o f all three kinetoplastids 

contain homologues o f a number of genes needed for synaptonemal complex formation, 

DSB creation, strand exchange and resolution stages o f meiosis (see table 4.1), It should 

be noted that T. brucei, T. cruzi and L. major all lack the MutL homologue MLH3, which 

is known to also have roles in the regulation of crossover interference (Lipkin et al., 2002); 

presumably, other MutL homologues are able to substitute for its function in the 

kinetoplastids. The T. brucei homologue o f D M Cl has been mutated in Lister 427 

bloodstream stage cells (Proudfoot and McCulloch, 2006). The resulting DMCl-/~ cells 

did not suffer from impaired growth or increased MMS sensitivity, indicating that the 

DNA repair pathways o f these cells are intact, and had wild-type rates and profiles o f VSG 

switching. These phenotypes are consistent with this RAD51 homologue having a specific 

role in meiotic recombination at the epimastigote life cycle stage, and no general functions 

in recombination in bloodstream stage cells. However, it remains the case that no 

conclusive evidence links the functions o f these putative meiotic genes to genetic 

exchange, and it theoretically remains possible that they perform other core cellular 

functions that have been co-opted into meiosis only in “higher” eukaryotes. In this regard, 

it is not clear that the form of genetic exchange observed in T. cruzi conforms to a meiotic 

process that would utilise these genes.

Understanding the molecular basis for genetic exchange in protists is o f importance for two 

reasons. Firstly, the presence o f meiotic genes is consistent with classical genetics data in 

T. brucei (MacLeod et al., 2005a), which is the protist in which the best evidence for 

meiosis has been documented. Secondly, the conservation of meiotic factors in these 

anciently diverged eukaryotes (Hedges et al., 2004) is informative with regard to the 

selective pressures for this process. It has been argued that G. intestinalis and the 

kinetoplastids have adopted the strategy o f facultative sex (Dacks and Roger, 1999), 

whereby these organisms can sui*vive for extended periods without undergoing sexual 

exchange, but retain the ability to do so when it becomes advantageous. This is an 

efficient strategy for a single-celled organism like T. brucei, as it allows some genetic 

exchange to take place without the potentially deleterious disruption of obligatory meiotic 

life cycle stages. Presumably, it implies also that punctuated bouts o f meiosis select 

against those cells that have lost this capacity.
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In summary, T. brucei has been shown to contain homologues o f MSH4 and MSH5, and no 

evidence indicates that they act in a way that is inconsistent with a role in meiotic 

recombination. Further work needs to be done, however, if  their roles in crossover 

interference and T. brucei transmission through the tsetse fly vector are to be understood.
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Chapter 5

S e a r c h i n g  f o r  m u t a t o r  s t r a i n s  in T. b r u c e i



5 Searching for mutator strains in T. brucei

5.1 In troduc tion

5.1.1 Bacterial mutator strains

The majority o f spontaneous mutations arising during replication are neutral, deleterious to 

the cell’s survival or even lethal, disrupting crucial parts o f the genome; very few  

mutations are likely to be beneficial to the cell (Taddei et al., 1997). For this reason, it is 

thought that it is generally preferable for survival o f a cell to keep mutation rates as low as 

the high metabolic cost o f genomic repair allows (Drake et aL, 1998). However, it was 

observed as early as the 1950s (Giraud et aL, 2001b) that strains with increased mutation 

rates (known as mutators) are present in natural populations o f a number of bacterial 

species (Shaver et aL, 2002; Denamur and Matic, 2006), including Escherichia coli 

(Denamur et aL, 2002), Salmonella enterica (LeClerc et aL, 1996), and Pseudomonas 

aeruginosa (Oliver et aL, 2000), as well as in cultured laboratory populations (Sniegowski 

et aL, 1997; LeClerc et aL, 1998; Boe et aL, 2000). Any population would be expected to 

contain some constitutive mutator cells due to spontaneous mutation of genes involved in 

DNA repair or the fidelity o f replication; however, it has been shown both by computer 

modelling (Tenaillon et aL, 2001) and in the laboratory (Shaver et aL, 2002) that the 

obseiTed proportion o f mutators is higher than would be predicted by genetic drift. For 

instance, mutators are found among natural isolates o f pathogenic E. coli and S. enterica at 

a frequency o f approximately 1% (LeClerc et aL, 1996), while in Pseudomonas aeruginosa 

chronic infections o f cystic fibrosis patients, the proportion can be as high as 53% (Macia 

et aL, 2005). It is common for mutator strains to be defective in an element o f the MMR 

system, most often MutS or MutL (LeClerc et aL, 1996; Matic et aL, 1997; Oliver et aL, 

2000; Giraud et aL, 2001a; Giraud et aL, 2001b; Richardson et aL, 2002; Prunier and 

Leclercq, 2005; Denamur and Matic, 2006). Depending on the MMR factor mutated, and 

the location o f the mutation within the gene or regulatory regions, the mutation rate can be 

increased up to 1000-fold, by mechanisms described below (Radman et aL, 1995; Miller et 

o f, 2002).

Rather than being selected as advantageous in their own right {e.g. due to a decreased 

metabolic load), mutator alleles spread through populations thanks to the increased levels 

o f sequence divergence, and therefore evolution, generated in mutator cells, allowing 

improved adaptation to hostile environments (Giraud et aL, 2001a). The mechanism by
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which mutator alleles become fixed in bacterial populations is known as second-order 

selection. As bacteria are primarily asexual, an advantageous mutation remains linked to 

its mutator genetic background, which spreads through the population by “hitchhiking” 

with the beneficial mutations (Sniegowski et aL, 1997; Tenaillon et aL, 2001 ; Giraud et aL, 

2001b; Chat et aL, 2006). A commonly found advantageous adaptation that allows 

mutator alleles to spread through a population is antibiotic resistance (Oliver et aL, 2000; 

Chopra et aL, 2003; Macia et aL, 2005; Baquero et aL, 2005; Denamur et aL, 2005; Ciofu 

et aL, 2005). Computer simulations show that if  a mutator allele is separated from an 

associated advantageous mutation, its fixation in the population is prevented, showing that 

spread o f mutator alleles is due to second-order selection (Tenaillon et aL, 2000). Fixation 

o f a mutator allele in a population is dependent on the generation o f advantageous 

mutations. If cells within the mutator subpopulation (rather than the wider nonmutator 

population) generate advantageous mutations that will increase the fitness o f mutator cells, 

the mutator phenotype will become fixed in the population. Therefore, the larger the 

mutator subpopulation, the more likely it is to reach fixation as it becomes successively 

larger and accumulates more and more adaptive mutations (Tenaillon et aL, 1999; 

Tenaillon et al,, 2001; Giraud et aL, 2001a; Tanaka et aL, 2003). On the other hand, if  

nonmutator cells far outnumber the mutators, advantageous mutations will be more likely 

to arise in this population first despite their lower mutation rate (Giraud et aL, 2001a). 

Successive rounds o f strong selection have been shown to lead to veiy rapid fixation o f a 

mutator allele in an in vitro population, with 100% mutator cells after three successive 

rounds o f selection (Mao et aL, 1997). While mutator strains with a strong mutator 

phenotype are more likely to generate advantageous mutations, they are also at higher risk 

o f accumulating deleterious mutations before the allele reaches fixation, leading to a 

reduction in fitness and therefore a reduction in the number o f mutators (Taddei et aL, 

1997; Tenaillon et aL, 1999; Denamur et aL, 2002). Therefore, the most successful 

mutator strains tend to have intermediate mutation rates; in one study o f clinical E. coli 

clinical isolates, 23% o f strains were weakly hypermutable (rifampicin reversion rates o f 4 

X 10"*® < / <  4 X 10" )̂ whereas 0.7% were strong mutators (Baquero et aL, 2004).

As selection for mutator phenotypes is stronger in environments with more stringent 

selection, mutators are often found in bacterial populations inhabiting stressful 

environments. A well-documented example of this is the high levels of mutator cells in 

chronic infections o f the bacterium Pseudomonas aeruginosa in the lungs o f cystic fibrosis 

patients (Oliver et aL, 2000; Macia et aL, 2005; Hogardt et aL, 2006), which are subject to 

oxidative stress (Ciofu et aL, 2005) as well as repeated drug selection and a 

compartmentalised environment (Oliver et aL, 2000). Similarly, mutator bacteria are at a
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selective advantage in the challenging environment o f a late-stage urinary infection, and in 

growth in urine in vitro, but not in nutrient-rich LB broth (Labat et aL, 2005). The 

frequency of mutator strains is higher in pathogenic than commensal E. coli (Matic et aL, 

1997). However, a mutator phenotype in itself does not lead to increased virulence: 

inactivation o f MutS does not increase the virulence o f Salmonella typhimurium in mouse 

infections (Zahrt et aL, 1999), and a mutator strain is in fact at a disadvantage compared to 

a nonmutator strain with the same virulence determinants (Picard et aL, 2001).

Although mutators are at an advantage when faced with novel or stressful environments, 

this short-term adaptation is associated in the long term with a loss o f fitness in other 

environments (Giraud et aL, 2001a; Nilsson et aL, 2004). This may be due to a build-up o f  

mutations that are neutral in one environment but detrimental in a second. Alternatively, it 

may be due to a phenomenon known as antagonistic pleiotropy (Cooper and Lenski, 2000), 

whereby the advantageous mutations associated with the fixation of the mutator allele are 

themselves detrimental to the organism’s sui*vival in other environments. The fixation of  

deleterious mutations by genetic drift is known as Muller’s ratchet (Felsenstein, 1974), and 

this can be extremely powerful. For example, after 1000 generations o f repeated colony 

isolations, 4% o f E. coli mutator lineages had died out and 70% had defects in at least one 

sugar or catabolic pathway, whereas after the same period, only 3% of nonmutator strains 

showed alteration in any of the phenotypes tested (Funchain et aL, 2000).

Even in bacterial isolates without constitutively elevated mutation rates, in some 

circumstances the rate o f genetic variation can be temporarily increased without genomic 

alteration of MMR genes (Rosenberg, 2001). This allows a short-term increase in the rate 

o f evolution without the long-term detrimental effects o f a constitutive mutator phenotype. 

The SOS response (Matic et aL, 1995; Bridges, 2001; ; He et aL, 2006Schlacher et aL, 

2006) is a stress-triggered cellular response caused by DNA damage or interference in 

replication, for example in ageing E, coli colonies on an agar plate (Taddei et aL, 1997). 

The SOS response is controlled by RecA and by the LexA repressor, activated by binding 

o f RecA to single-stranded DNA. The SOS response causes upregulation of at least 40 

genes (Courcelle et aL, 2001). These include RecA itself, other factors promoting 

recombination (allowing an upregulation firstly o f DNA repair and secondly o f  

conjugation and transduction, permitting transfer o f potentially advantageous genes), and 

several low-fidelity DNA polymerases, which are capable o f bypassing lesions in the 

genomic DNA template while creating increased genetic variability. The SOS response 

has the twin advantages o f allowing adaptation to increased levels o f genomic damage 

allowing survival in these stressful situations, and of increasing the amount o f ectopic
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recombination and so potentially allowing adaptation to the stressful environment. 

Another response causing an increase in the mutation rate in stationary phase bacteria 

(Harris et aL, 1999) is a decrease in the amount o f MutS, and to a lesser extent, MutH 

protein (Feng et aL, 1996). This phenomenon is seen in most natural E. coli isolates 

(Bjedov et aL, 2003), although it varies between strains: for example, the reduction in 

MutS levels is 26-fold greater in the pathogenic strain 0157:H7 compared to the laboratoiy 

strain K-12 (Li et aL, 2003). Adaptive mutation has also been reported in a few yeast 

assay systems, thought to be caused by error-prone polymerases (Heidenreich and 

Wintersberger, 2001).

Back mutation to restore low mutation rates to constitutive mutators is very unlikely, and if  

a section of the gene has been deleted, impossible. However, a reduction in MMR 

efficiency also leads to an increase in recombination between divergent sequences (see 

section 3.1.1), allowing horizontal gene transfer o f intact MMR genes from other species. 

Maximal levels o f exchange are reached when the SOS response is activated in the absence 

of MMR (Matic et aL, 1995; Matic et aL, 2000). MMR genes from different E. coli 

lineages show a high level o f mosaicism and phylogenetic discordance compared to other 

genes, suggesting frequent transfer o f these genes over evolutionary time (Denamur et aL, 

2000; Brown et aL, 2001). Rapid genomic divergence in mutator cells followed by 

restoration o f MMR function can cause spéciation in bacteria (Vulic et aL, 1999).

The loss o f MMR function in HNPCC cancer cells leading to an increased rate o f  

generation of cancer-causing mutations can be thought o f as analogous to the generation o f  

advantageous mutations in bacterial mutator strains (Venkatesan et aL, 2006). It has even 

been suggested that adaptive mutation in bacteria is a good model to study the multiple 

mutational origins o f human cancer (Hall, 1995). Environmentally induced increase in the 

mutation rate has also been reported in multicellular eukaiyotes, and could be mediated by 

error-prone translesion polymerases (Rosenberg, 2001).

5.1.2 Trypanosome mutator strains

The genome o f the kinetoplastid T. cruzi contains the same repertoire o f MutS homologues 

(see section 1.4) and indeed all MMR as seen in T. brucei (El Sayed et aL, 2005). In 

addition, the MSH2 gene has been cloned and characterised (Augusto-Pinto et aL, 2001). 

An 829-bp section o f the TcMSHl gene containing the essential ATPase domain (see 

section 4.2.3.3) was PCR-amplified from 13 different T. cruzi strains and sequenced, 

revealing 21 single-nucleotide polymorphisms (SNPs) in this region, five o f which cause
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amino acid substitutions (Augusto-Pinto et aL, 2003). These polymorphisms allow the 

division of the strains into three haplogroups corresponding to the three T. cruzi clades 

(Gaunt and Miles, 2000; Robello et aL, 2000; Machado and Ayala, 2001; Buscaglia and Di 

Noia, 2003; de Freitas et aL, 2006), with all strains from each haplogroup encoding the 

same isoform o f the MSH2 protein. Representative strains from two clades (perhaps 

significantly, the ones which cause the most severe human infections (Di Noia et aL, 

2002)) showed hydrogen peroxide-induced microsatellite instability and increased cisplatin 

resistance; both these phenotypes suggest that the observed differences in MSH2 sequence 

may correspond to differences in MMR efficiency, at least under conditions o f genotoxic 

stress. Preliminary analysis shows increased genetic variability in multi-copy gene 

families encoding surface antigens in the strains hypothesised to have less efficient MMR 

(Machado et aL, 2006). These phenotypes bear the hallmarks o f mutator strains, and, if  

correct, would represent the first time that mutator strains have been observed in a 

eukaryotic pathogen. However, the mutations are yet to be linked directly to a difference 

in MMR efficiency.

The work in the following chapter follows on from these novel obsei'vations in T. cruzi to 

assess, firstly, whether polymorphisms are present also in the DNA and/or protein 

sequence o f T. brucei MSH2, Secondly, the chapter assesses whether or not differences in 

MMR efficiency are found between T. brucei strains and subspecies.

5.2 R esu lts

5.2.1 DNA sequence analysis

5.2.1.1 Trypanosoma brucei strains selected for analysis

The species T. brucei is divided into three morphologically indistinguishable subspecies; T. 

b. brucei, T. b. rhodesiense, and T. b. gambiense (Gibson, 2002). T. b. rhodesiense and T. 

b. gambiense are able to infect humans and some other primates (Pays et aL, 2006), while 

T. b. brucei is not. Tiypanolytic activity is associated with the HDL fraction of human 

serum (Hager et aL, 1994), specifically the protein Apolipoprotein L-1 (APOLl) 

(Vanhamme et aL, 2003). APOLl lyses trypanosomes by forming ionic pores in the cell 

membranes (Perez-Morga et al., 2005), possibly in synergy with another high-density 

lipoprotein known as HPR (Shiflett et aL, 2005). T. b. rhodesiense neutralises APOLl 

activity via a serum-resistance associated {SRA) protein, which is necessary and sufficient 

for growth in human serum and confers human serum resistance on T, b. brucei
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S tra in S ubspecies Location H ost
B3200 r h o d e s ie n s e Uganda Human

222 r h o d e s ie n s e Zambia Human
208 r h o d e s ie n s e Zambia Human
984 b r u c e i Kenya Tsetse
S14 b r u c e i Uganda Cow
427 b r u c e i monomor ohic strain
927 b r u c e i Kenya Tsetse

Ellane g a m b ie n s e Ivory Coast Human
386 g a m b ie n s e Ivory Coast Human

Table 5.1. T. brucei strains used In this seq u en cin g  study. The 9 T. brucei strains selected for 
use in this experiment are shown, along with their subspecies (T. b. rhodesiense, Rhodesiense; T. 
b. brucei, Brucei; or T. b. gambiense, Gambiense), the country from which the sample was 
isolated, and the host organism from which It w as collected.

1 8 8



I A4  M
#01 |~  Kfmrv¥ntf «Mftx

WsHiK&ina inconslans 
BtsstoalOiKtis gsnlcola 
Lffpiomonaa pe^iyotli 
CtitrudurasaciMHU 

a y r ~  LaaHnittnm doymni
t» « h m a n «  guyaAMsis 
EnckMrypttnijm monfarog»! 
L0»hmaniii am/aon»ns>s 

| I — Laitnmania fm«rrtoiw 
67'—̂ Xeithmi»nm ma/ojl 

^ T ^panaorna w vaT  

Trypanosonra oquigeidum 

'ptamaoma a ü cS ^  
Trypanoaoma evanai 
Ttyp œngolens kMi 
Tiypanosonra aariiae 
Trypanosoma godtreyt 
Harpelomonaa cl roiUnani
cnihJôia oneopalt 
BiatfQcrtffiKtm cuJiçii 
Both MheM 
Bodo désigna 
Rhynchomooas nasuUt 
Dunaatigeëa mimosa 
DimasUgeSa bypanitorm 
Bodo uncmalus 
Bodo cautlalus 
Pmabodo nrfrapfn/us 

Cryptoaa heStM 
Bodo saoktn
environmental ixxJomdATt 3 

Cryphbia taâoch 
Trypnnoptasim botnSi 

rYpk>t>a satnoaibca

_ f —̂#r W*"WW M

d etmmm 11 r ##fcn»y*

Figure 5.1. Phylogenetic tree of the Trypanosom atidae and Bodonidae fam ilies of the order 
Kinetoplastidae, based  on IBS rRNA seq u en ces . Species studied in the experiments in this 
chapter are circled in pink. Adapted from Piontkivska and Hughes 2005.

1 8 9



(Xoiig et aL, 1998). SRA, which is expressed as an ESAG (De Greef et al., 1989), is 

related in sequence to VSG (De Greef and Hamers, 1994) and interacts with APOLl in the 

lysosomes by contact between a-helical domains (Vanhamme et aL, 2003). On the other 

hand, despite its constitutive resistance to human serum (De Greef and Hamers, 1994), T. 

b. gambiense does not encode SRA (Gibson, 2002), implying its mode o f resistance must 

be different; a gene similar to SRA has been identified in this subspecies, but on its own it 

is not sufficient to confer resistance on T. b. brucei (Berberof et aL, 2001). T. b. 

gambiense strains can be divided into two groups (Gibson, 1986): group 1 strains are 

avirulent, stably express serum resistance, and are homogeneous in marker analysis (Hide 

et aL, 1990; True and Tibayrenc, 1993); group 2 strains are more virulent, but lose serum 

resistance following serial passage in rodents (Pays et aL, 2006). T. b. gambiense can 

easily be differentiated from T. b. brucei and T. b. rhodesiense by molecular 

characterisation of polymorphic isozymes (True and Tibayrenc, 1993; Mathieu-Daude et 

aL, 1994). The latter two subspecies are more related to each other, and T. b. rhodesiense 

is thought to have evolved from a T. b. brucei clone that gained the ability to resist lysis by 

human serum (Mathieu-Daude et a l ,  1994).

To examine the sequences o f MSH2, nine T. brucei isolates were selected for analysis 

(genomic DNA provided by A. Macleod) as representative o f the T. brucei species as a 

whole. These included four T. b. brucei Isolates (two wild isolates from Kenya and one 

from Uganda, as well as the lab-adpated Lister 427 strain), three T. b. rhodesiense isolates 

(two from Uganda and one from Zambia), and two T. b. gambiense isolates from the Ivory 

Coast (one type 1 isolate (Ellane) and one type 2 isolate (STIB 386)). The names o f these 

strains, the geographic location o f their origins, and the host organism from which they 

were taken, are shown in table 5.1. Sequences from the genome projects o f related 

kinetoplastids L. major and T. vivax were also included in the analysis, as well as MSH2 

sequence from the T. b. brucei strain ILTat 1.2, from which EATRO 795 is derived, 

obtained by J. Bell (PhD thesis. University o f Glasgow). T. vivax was chosen for 

comparison rather than T. cruzi as it Is more closely related to T. brucei (Piontkivska and 

Hughes, 2005; see figure 5.1). L  major is more diverged from T. brucei than either T. 

vivax or T. cruzi, and therefore provides a distant comparison.

5.2.1.2 Analysis of MSH2 sequence from T. brucei Isolates

To look for potential genetic changes indicative of mutators, the MSH2 ATPase domain 

was selected for initial sequence analysis. MSH2 is central to the eukaiyotic MMR 

system, and it is Icnown that a large proportion of bacterial mutator strains contain
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mutations in its homologue, MutS (see section 5.1.1). The ATPase domain (see figure 4.7; 

section 4.2.3.3) was chosen specifically for two reasons. Firstly, it is veiy well conseiTed, 

as ATPase function is essential for the function of the protein (see section 1.3.2). The 

majority o f spontaneous mutations identified causing inactivation of the S. cerevisiae 

protein or HNPCC are found in the ATPase domain (Obmolova et aL, 2000). Secondly, 

studying the region of the gene that had previously been analysed in T. cruzi (Augusto- 

Pinto et aL, 2003) allows the most direct comparison o f the levels o f divergence in the two 

kinetoplastids.

The primers MSH2_ATPase_5 and MSH2_ATPase_3 (see appendix 1) were designed 

based on MSH2 DNA sequence from the TREU 927 strain from the genome database. 

These primers amplify a 579-bp section o f MSH2, containing most o f the ATPase domain 

as well as a small section upstream o f this conserved domain, which could be expected to 

be less well conserved (see figure 5.2). PCR was carried out using Flerculase, a high- 

fidelity DNA polymerase, to amplify this fragment from genomic DNA of the nine strains 

described in the previous section. The same primers were also used to attempt to PCR- 

amplify the equivalent region o f MSH2 from T, vivax genomic DNA. In addition, a control 

PCR reaction was carried out using water instead o f genomic DNA substrate. A small 

amount o f each reaction was run on a 0.8% agarose gel, showing amplification of a single 

product o f the correct size in all cases, apart from the reactions using T. vivax genomic 

DNA as substrate, which were unsuccessful, and the no-DNA control reaction. The lack of  

PCR-amplified product in the latter demonstrates that any product for the T. brucei strains 

did not result from contamination in the oligonucleotide primers, or other PCR reagents 

(figure 5.3; the PCR for TREU 927 is not shown in this figure). The lack o f PCR product 

from T. vivax most likely reflects divergence in the MSH2 sequence. No attempts to 

modify conditions to allow PCR amplification were performed.

The MSH2 PCR products were next incubated with Taq DNA polymerase prior to cloning 

into the TOPO TA vector (Invitrogen). This step had the role o f adding A residues to the 

ends o f each PCR product; these single-base overhangs are present at the end of all Taq- 

generated but not Herculase-generated PCR products, and are essential for cloning o f DNA  

fragments into the TOPO TA vector. At least two cloned PCR products from each strain 

were sequenced by the MB SU (University o f Glasgow). These DNA sequences, as well as 

sequence from the T. vivax and L  major genome databases and from the T. b. brucei ILTat

1.2 strain obtained by J. Bell (PhD thesis, University o f Glasgow), were compared by 

performing a sequence alignment using ClustalX (Thompson et aL, 1997), and visualised 

using Boxshade (http://ch.embnet.org/software/BOX_form.htm) as shown in figure 5.6.
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m s d d r d p a w  qafngaggdd tsclrlfsra sagcfilgsw aslvareyvk stavlknwsg

vdavavndsi trevirdcll rrgvsveqyd rqtsggryvc m r r g s p g h i a  d f e a m l f a f e

d a e i q l m a i g  s v v i d d k a n r  v n g p g g q h v r  v g y a a l n t t l  r t l t y a e y h d  t p q l t n l d v l

m a q c n l k q l l  y s n t d f s m n n  t g e k a a d s d e  s r e q s d l l r a  I k q l c e r a n i  t l q e r g q s n l

p h g k q k s r a t  k r n s t g p n g e  l l s t l e g i l r  v p e d r h g l n s  f p l a s r a l e s  l l e s a i d p f d
MSH2middle-l

s t n q h t f y l k  h v i p s t f m k m  daaaiealhi ihrkpeargs mptsiyswln rcttgnigsrl

mqqwllqplr siedinqrls Ivqimvespi Irdalitqvl rrctdmdrln r k l q r r t v a l

k d l q s i l v f a  n t v p l a v d v l  r t y h g g h d s s  l l l k g y v t p l  e d i s e h l s n l  r t l i n a t v d l
MSH2midd[p-3

s d e n t v r i n p  e f d d d l s f l e ^ r q r q n l v ^ i  e k e n h r v l k q  c g w te k q m k c  e y h a s y g y v f
MSH2middle-2

r v p r k d d h q v  r t s k e f i t v s  t a k d g v r f v s  g q l s s l s e q y  k g i t e d y k t r  q q v l k k k l v d

t v a t y l p v l d  d a k e l l a a l d  v f a a w a l v v k  d s s r p m v r p t  v r a t q s e e v k  g n v d n n s d g a
MSH2 ATPase^S

i l t i v n ajrhp I v e l r q p a f t  p n t v q l t n e a  naliitgpnm ggkstfmrsi gvcvalaqag
MSH2middle-4 N-1cfvpadsadi wrdaimcrv gatdhlaqgv stfmvemles aamlnsatqq tlaivdelgr

N-2 N-3
gtstydgfgl awaiaqevav naksallfst hfhemtqlaa rhtnvrnvhf gadvdtaart

N-3'
Irfsyqlqpg pcgrsyglyv aqlahipddv Idfarqkave l e d f g q d e t k  n r a q v l f s t a  

MSH2 TPase 3
t p e v v q r v t e  y a l ^ i ' ^ ë f e s ^ ^ g ë g d g d s r e a  a r r r l c s e i k  e d a l l s s l v e  v

Figure 5.2. Primers used  for sequencing  of T. brucei MSH2. MSH2 protein sequence Is shown 
In black text, with the mismatch Interaction domain In green, middle conserved domain In blue, and 
ATPase/hellx-turn-hellx domain In orange. Conserved elements of the ATPase domain are 
underlined In red. Important conserved residues Indicated by red stars, and the locations of the 
primers are represented by pink arrows.
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M S H 2 m id d le l  a n d  M S H 2 m id d le 2

O 00 fN
o  o  rsi
<N rsj r\im

^  T rs <u00 ^  (N fSI c
cn in  TT (Ti m

R h o d e s ie n s e B r u c e i G a m b ie n s e

M S H 2 m id d le 3  a n d  M S H 2 m id d le 4

8:5:

R h o d e s ie n s e B r u c e i G a m b ie n s e

M S H 2 A T P a s e  5  a n d  M S H 2 A T P a s e  3

R h o d e s ie n s e  B r u c e i G a m b ie n s e

Figure 5.3. PCR amplification of three sec tio n s  of T. brucei MSH2. PCR was performed on 
genomic DNA from 8 or 9 T brucei strains from three different subspecies (indicated below the 
strain names) using three sets of primers. The reaction was also attempted on T. vivax. A no-DNA 
control was included. PCR products were separated on a 0.8% agarose gel.

1 9 3



3 2 0 0
2 0 8
222
984
S14
4 2 7
927
e l i a n e
3 8 6
I L T a t l .:  
T _ v i v a x  
L m a j o r
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GAAAGTTGCAACGCCGCACAGTGGCTCTCAAGGACCTGCAATCTATTCTTGTGTTCGCT 
GAAAGTTGCAACGCCGCACAGTGGrTGTCAAGGAGGTGGAA'rrTATTGTTGTCTTCGG 
GAAAGTTGCAACGCCGCACAGTGGGTGTf 'AAGGAGGTG' 'AATGTA I' I'GT'l'GTt "I' I't 'GOT 
GAAAGTTGGAAGGGGGGAGAGTGGt" l'GT( "AA'A :At 'GTt H 'AATt ' I'A rTGTT>".T' 'T l'i 'GC' 
GAAAGTTGCAAGGGGGGACAGTGGGTGTGAAGGAGGTGGAATGTA I'TGTT'TI ' 'TTCGC 
GAAAGTTGCAACGGGGGAGAGTGGG I't TGAAGGAGt 'TGAAATr-'I'A I' I'' I I ' IT' 'T I GGC 
GAAAGTTGCAACGCGGCAGAGTGGGTGTGAAGGAGGTGGAA'I'GI'ATTGTTGTGTTCGC 
GAAAGTTGCAACGCCGCACAGTGGCTCTCAAGGACCTGCAATC rATTCTl'GTCTTCGC i

m
e iüiTMTG
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Figure 5.4. Multiple alignm ent of DNA seq u en ce  obtained by PCR amplification using  
primers MSH2middle-1 and MSH2middle-2 from 9 T. brucei strains, from the ILTat 1.2 MSH2 
gen e seq u en ced  by J. Bell, and from the T. vivax and L. major genome projects. Sequences 
were aligned using ClustalX (Thompson et al 1997) and shaded using the Boxshade server 
(http://ch.embnet.org/software/BOX_form.html): identical residues in 50% of the sequences are 
shaded in black, and conserved residues (purine or pyrimidine) in grey. Sites of SNPs are 
numbered in pink.
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iCGGCGTGGGCACTCGTAGTGAAGGATTCGTGGGGGGGGATGGTGCGTr 
CGGGGTGGGCAGTGGTAGTGAAGGATTCGTri ;GGGi 'GGATGGTGGGTC 
CGGCGTGGGCAGTCGTA'- iTGAAi X lATT' •-'■T' F 'G'F. "' FTATGr'.TiA IGTT 
CGGGGTGGGl :AGT( "GTAi :TGAA( F ;ATT' F G ' .  F F f f ;  f  f  F :ATG' ITGTFFTi 
CCGi FFTGGGCAi "TGGTAGTGAAGilATTi F ,T( F. F 'F.'F F A  F :ATGi ITGi 'GT'. 
CGGGGTGGGGAi 'TCF ITAGTGAAi F lATTi F GF F'F F F F F f :AT( FFTGCGTi 

' CGGCGTGGGCAGTcnTAi :TGAAGGATTi TGFFFFF F F F  '.ATG' GFF F GF 
CGGIFITGGGCAGTGGTAGTGAAGGATT IT' FF, F F F. F F lATiA G'' F F  :T' 
CGGCGTGGGCACTGnTAGTGAAGnATTi F ITi F  F F F F. TGATCF :T( F F IT.

: CGGCGTGGGCACTCGTAGTGAAGGATT' 'FTGGGGGGGiFATGGTGl :GT<
g ' CATG B g S i g  B TGAAGGATT ^  A B'G’CGATGGTGCGTC 

' G 'B ’ GGG H^TCGIG TGAAGGAT iS ff l i  GC g ' g / TGGTGC g.

:CCACCGTGAG
FF :a (':c g t c :ag

Ti'A 'FF  G'GAG
F F :Ai ■' F ITGAG 
F F 'A' F F ITGAG 
F'F'ACFFITGAG 
FF'AClFJTGAG 
F ' F  'Al F f ; ; T i  ;ag  
F F A G I  :GTGAG 
F'F'ACCGTGAG
TCA B T

CAACA

CAACA
CAACA

CAACA
CAACA
CAACA

GAGTGAGGAGGTG
GAGTGAGGAGGTG
GAGTGAGGAGGTG
GAGTGAGGAGGTG

GGAAACGTTGAGAACAAC■ 
GGAAACGTTGACAACAAC' 

■ GGA A ACGTTG Al lAAlAAC  
'GGAAACGTTGACAACAAC

GAGTGAGGAGGTG •AGGAAACGTTGACAACAACA

I
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.'■CCATTGTGAACGrcrn g '  CCCCCTTGTTGAACTGCG 
■F CCATTGTGAACGCCCGACAcrrrrTTC.TTGAAi'Tt ;CG 

CCATTGT' IAACGCGCGAGACCCCGTTGTTGAAi TGCG
c c a t t g t g a a c g c c c g a c a c c c c c t t g t t g a a c t g c g
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Figure 5.5. Multiple alignm ent of DNA seq u en ce  obtained by PCR amplification using  
primers MSH2middle-3 and MSH2middle-4 from 9 T. brucei strains, from the ILTat 1.2 MSH2 
gen e seq u en ced  by J. Bell, and from the T. vivax and L. major genom e projects. Sequences  
were aligned using ClustalX (Thompson et al 1997) and shaded using the Boxshade server 
(http://ch.embnet.org/software/BOX_form.html): identical residues in 50% of the sequences are 
shaded in black, and conserved (purine or pyrimidine) residues in grey. Sites of SNPs are 
numbered in pink.
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•ACCCrrTTGTTGAACTGCGGGAGCrCGCCTTCACArCGAATArTGTArAArTTACCAAC 
ACCGGCTTGTTGAArTGGGGCAGGGGnrr'TTrAi ArrnAATAGTGTACAAGTTAGi AAC 
AGCGCCTTGTTGAAi 'TGGGGCAGGr, ff:': 'TT' 'A' 'A'T F lAATA' 'TGTA.'AAi TT AGG AAC 
A( F  F  F  T.TTGTTGAAi ' T '  ICF F F "AGI F ' F  'GGi ' T I F  :AGA' F  f  ;AATA< TGTAGAA' 'TTA' F ’AA 
ACCCCCTTGTTGAACTGCGGGAGCCCGCCTTCACACCGAATAGTGTAGAACTTACGAAC

GGCA 
GGGA 
GGGA 
GGGA 
GAG A

ag a a g t t a g g a
A ’AAGTTAGGA 
A AA' TTAGi 'A
AGAAGTTAGGA 
GCAAGTTAGC- i
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AGGGCAATGCGCTTATAATAAGTGGGCCAAATATGGGAGGTAAGTGAAGTTTGATGAG 
AGGGGAATGGGGTTATAATAAGTGGGG'. 'AAATATGGGAGGTAAGTGAAGTTTGATGAG 
AGGGGAATGGGGTTATAATAA' ‘Tf F F F F 'AAATATi F IGAGGTAA' ITi "AA 'TTT' ’AT( lAG 
AGGCCAATGCCCTTATAATAAGIF F'F F F 'AAATATGG' lAGGTAAGT' AA' 'TTT! ATGAG 
AGGCCAATGCCCTTATAATAAGTGGGGGAAATATGGGAGGTAAGTCAACTTTCATGAG

AGGGCAATGCCCTTATAATAACTGGGCGAAATATGGGAGGTAAGTCAAGTTTCATGAG 
AGGCCAATGGGGTTATAATAAGTGGGGGAAATATGGGAGGTAAGTGAAGTTT ATGAG 
AGGCGAATGCGGTTATAATAAGTGG, F 'GAAATATGG'FAGGTAAGTCAAGTTT' 'ATGAG 
AGGCCAATGCCCTTATAATAAGTGGGCi ;AAATATG,(]GAGGTAAGTGAAGTTTCAT' ;agg

CA' S  Bg :a a t B' '0g b  . B B t g g  B g B a t c g a  Bi = B- t "
C B C ^A B clG A B G C H cB cB c^ ^ B cM C ^ ^ B cB c^ ^ B cB G B A i^ B cB C
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.GCATTGGTGTTTGTGTGGGACTCGCCCAAGGTGGGTGGTTTGTTCCCGCGGATTCAGC 
GCATTGGTGTTTGTGTCGGAGTGGGCGAAGGTGGGTGGTTTi :TTGGGGGGGATTGAGC
GCATTGGTGTTTGTGTCGGAGTGGG(F'AAG'''TGCFFTGGrTTGTTGrCFF(:-GGATTCAGC 
GCATTGGTGTTTGTGTCGCAGTGGGGGAAGGTGGGTGGTTTGTTGi FFGGGGATT' 'AGCG 
.GCATTGGTGTTTGTGTCGCACTCGCCCAAGCTGGGTGCTTTGTTCCCGCGGATTCAGC

GGATTGGTGTTTGTGTGGGAGTGGGGGAAGGTGGGTGGTTTGTTGGGGGGGATTrAGC 
GCATTGGTGTTTGTGTGGGAi 'TGGGFF 'AAGt 'TGGGTGGTTTGTTGGGG' FIGATTGAGC 
GCATTGGTGTTTGTl ITGGGAi 'TGGGG' 'AAGGTGGl ITGGTTT' :TTG' '' FFGGGATTGAGC 
GCATTGGTGTTTGTGTCGCACTGGCF'GAAGGTGGGTGGTTTGTTGGGGCGGATTCAGC 
GCATTG gA I g  I GTG i g  g  CTCGCGGAAGGTG B t GCTTTGT0C g  B AG '

G iB  G T G r ^ H iG if f l . i i i s c iB  E aag  E B î g c t t t g t S  ■ -ffl 'R a i H g g
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GATATTGTTGTCCGTGACGGGATCATGTGCCGTGTTGGCGCGACAGAGCACGTTGCGC ■ •
( ATATTGTTGTCCGTGAGGCGATGATGTGGGGTGTTGGGGGGAGAGACGACGTTGGGG '

ATATTGTTGTCCGTGAGGCGATGAT' :TGG(FlTGTTGGGGGGACAGAGGAi F:'TTG(FFC ' 
. ATATTGTTGTCCGTGACGGGATGATGTGGGCTGTTiFFFFGGACAi^AG'-AGGTTGGGG
g a t a t t g t t g t c c g t g a c g c g a t c a t g t g c c g t g t t g g c g c g a c a g a c c a c c t t g c g c  ■

ATATTGTTGTGGGTGAGGGGATGATGTGCCGTGTTGGGGGGAGAGAGGACGTTGGGCA
ATATTGTTGTCCGTGAGGCGATGATGTGGGGTGTTGGGGGGArAGAGGACCTTGGGC
ATATTGTTGTGCGTGACGGGATGATGTi ICGG-TGTTGIFFFGGACAGA'F'AGGTTGGGCA 
ATATTGTTGTCCGTGACGCGATCATG.TGGCGTGTTGGGGGGACAGAGCACCTTGCGC 
ATATTGTTG 1 g  GTGACG g- TCATGTGCCGTG, 0  GCGCA g c  - B g  i g  g  

I rSES. : 1 R: ■ B AGG ■RèTCATGTGCC B' GH GCGCGA m  aR ACClR A A
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iGAGTTTCTACCTTrATGGTGGAAATGrTrGAnTr’CnCnnrTATGrTrAACTrcncrAC  
GAGTTTCTACCTTGATGGTGGAAATG' 'TT'GAG.TGf F F IGGGTAT'-.GTr’AA'•TGGGiTAG 
GAGTTTGTAGGTTGATGGTGGAAATGi 'T' :AGT' 'GG' '• F li 'TATGG 1', 'AA' 'TG' '-'.JGGA'' 
GAGTTTCTACCTTGATGGTGGAAATG' " l ' G (  ' . A G T G G ' G i  IGTATG' 'T' 'AAi'TCCGG' 'AC 
GAGTTTCTACCTTCATGGTGGAAATG.CTCGAGTCCGCGi'ICTATGi-’TGAACTCGGCCAC

AGGATGGA 
AGGATCriA 
A' ’( :ATGGA 
A''GATGGA 
A' •( :A
a g c ; a

A( "' :A 
A'"G,A 
A': '' :A 
A' GA 
ACi.
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GTCTTGCCTGGGCCATTGCACAGGAGGTGGCAGTGAAGGGAAAGTGTGCAGTTGTGTTt 
GTCTTGCCTGGGCCATTGCACAGGAGGT'GGGAGT' 'AACGGAAAGTCTGGA' 'TTGTGTTT 
GTCTT' :GGTGGGCCATTG' 'AGAGGAG'rrGG, "AGTCAAGGGAAAGTGTGF 'A' 'TT' 'T "TT ' 
GTCTTGCCTGGGCCATTGC 'A' 'A' :GA' F '-T' :G( "Al :T' 'AA' '( 'AAAGT' 'T. F :AGTT' TGTT ' 
GTCTTGCGTGF F F T 'ATTGGAGAGGA( F ;TGGGA' :T' "AAi '' F'AAA' FT’i 'T' F 'A' 'TT' 'TGTT ' 
GTCTTGCCTGGGCGATTGGA' 'AGGAGGT' FH 'A' FI'GAACGGAAA' TGTG' 'AGTT'"TGTT : 
GTCTTGGGTGGGCCATTGGA' 'AGGAGGT' F l ,  'AGTGAAGGGAAA' :T' 'T' ',''AGTT' 'T 'TT ' 
GTCTTGCCTGGGCGATTGGAGAGGAi :GT Fl''AGTGAAGGGAAA* ,T' 'T* F 'A' 'TT' :TCTTT 
GTCTTGCCTGGGGGATTGCAGAGGAt F ;TGG( 'A( :TCAAGGCAAA' :T' TCF 'AGTT' TGTT 
GTCTTGCCTGGGCGATTGGAGAl F'-AGGTGGGAGTCAACGCAAA';TGTGCACTTCTCTT^ 
GTCTTGC0TGGGCCATTGCGCA%AGGTAG g  EcGBAg^AGTCTÂ g  TTCTCT 

I ' g R i g  c S i G G G  EaTTG S  -A S  TGGCAG I B i ï ï  Ba 1  ' i B ’ B i  '
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TCAACTCATTTCCACGAAATGACACAACTTGCGGrrCGACATACAAACGTGCGGAACGTTj 
rCAACTCATTTCCACGAAATGACACAAGTTGGGG' '' ’GGA' 'ATAf:AAAGGTGCGGAACGT 
I CAAGTCATTTCCACGAAAT'lAGACAACTTGCGGGi :('< :A' 'ATAGAAA' '( ITGCG','.AAGGT i' 
TCAACTGATTTGCAGGAAATGACAGAA' ' T T (  F  'GG* '( 'GGACATA' 'AAAGGTGGGGAACGT ' 
TCAAi 'TGATTTCGACGAAATGACAGAA' 'TTGGG'K 'GGA' ATAGAAA* 'GTGGGGAACGTT 
I CAAGTCATTTGGACGAAATGA'"ACAA'.'TT( F T F  F '* '' 'GAGATACAAA' '* i’T'GGG'lAAGGT :
I CAAi:TGATTTCCAGGAAATGAGAGAA< 'TTGF 'Gil, F"G( lA' 'ATA' 'AAA' '* '.TGGGGAACGT 
I CAAGTGATTTCCAG'IAAATGAGAGAA' 'TTGt 'GG' 'G' 'GAGATAGAAAGCIT'l' TFIAAGGT :
I CAAGTGATTTCCAGGAAATGAGACAA' 'TTGG( FIG''CGAGATACAAAGC'.TGCGGAAGGTT 
TCAACTGATTTCCACGAAATGACACAAi 'TTGCGGCCGGAGATAGAAACGTGCGGAACGT F 
TCAA g  ■■glTCC/'g G TGACACGG g  CG.^ CAGC g  B  F .B TGCGG g  g  i' 
T 'H ; -  ' B  ATTtB ACGGSS iGA G AGC B  A B S i S A f f l i S S  1G A AACAF
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CGGGCnCA 
GGGGGGGA 
GGGGC F'A 
GGGGGGGA

ACGGA
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Figure 5.6. Multiple alignm ent of DNA seq u en ce  obtained by PCR amplification using  
primers MSH2_ATPase_5 and MSH2_ATPase_3 from 9 T. brucei strains, from the ILTat 1.2 
MSH2 gen e seq u en ced  by J. Bell, and from the T. vivax and L. major genom e projects.
Sequences were aligned using ClustalX (Thompson et al 1997) and shaded using the Boxshade 
server (http://ch.embnet.org/software/BOX_form.html): identical residues in 50% of the sequences 
are shaded in black, and conserved residues (purine or pyrimidine) in grey. Sites of SNPs are 
numbered in pink.
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The consensus sequence from all the successful sequencing reactions is shown. Good 

quality sequence was not obtained from the Lister 427 DNA sample for 308 bp o f  

upstream sequence o f the PCR product, and this was omitted from the analysis. The 

alignment revealed that the sequences from all the T. brucei strains show remarkably high 

levels o f sequence conservation: only a single polymorphism was seen at the DNA level, in 

the T, rhodesiense 208 strain (SNP 9). As this site is conserved in all the other T. brucei 

strains and in T. vivax and L  major, this suggests a potential PCR error in the 208 strain. 

In general, the T. vivax and L. major sequences, included for comparison, are recognisably 

homologous to the T. brucei sequence, although as would be expected the levels o f  

homology between the distant species are much lower than between isolates o f the T. 

brucei subspecies.

In order to assess whether this lack of sequence divergence is seen throughout the MSH2 

ORF, or whether it is specific to the ATPase domain, two pairs o f primers (MSH2middlel 

and MSH2middle2, and MSH2middIe3 and MSH2middle4, see appendix 1) were designed 

based on MSH2 DNA sequence from the TREU 927 strain from the genome database. 

These primers should PCR-amplify 476 bp and 522 bp sections, respectively, o f the MSH2 

ORF upstream o f the ATPase domain, covering half o f the middle consei-ved domain as 

well as the poorly consei'ved region in-between the middle conserved and ATPase domains 

(see figure 5.2). The section of the gene PCR-amplified by primers MSH2middle3 and 

MSH2middle4 overlaps with those PCR-amplified by primers MSH2middlel and 

MSH2middle2 and by primers MSH2_ATPase_5 and MSH2_ATPase_3, allowing 

assembly o f a single, contiguous sequence. PCR was again carried out using Herculase on 

genomic DNA of the nine strains described in the previous section (section 5.2.1.1). The 

same primers were used to attempt to PCR-amplify the equivalent region o f T. vivax 

genomic DNA. Finally, control PCR reactions were carried out using water instead of  

genomic DNA substrate. A small amount o f each reaction was run on a 0.8% agarose gel, 

showing amplification o f a single product o f the expected size in all cases, apart from the 

reaction using T, vivax genomic DNA as substrate, which were unsuccessful, and the no- 

DNA control reactions (figure 5.3). As before, the PCR products were next incubated with 

Taq DNA polymerase prior to cloning into the TOPO TA vector (Invitrogen), and at least 

two cloned PCR products from each strain were sequenced by the MB SU (University o f  

Glasgow). These DNA sequences, as well as sequence from the T. vivax and L  major 

genome databases and sequence from the ILTat 1.2 strain obtained by J. Bell (PhD thesis, 

University o f Glasgow), were compared by performing a sequence alignment using 

ClustalX (Thompson et aL, 1997), visualised using Boxshade 

(http://ch.embnet.org/software/BOX_form.htm) as shown in figure 5.4. The consensus
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sequence from all successful sequencing reactions is shown. As for the sequences 

generated by primers MSH2_ATPase5’ and MSH2_ATPase3’, if  sequencing did not yield 

readable sequence for specific clones, it was omitted.

The levels o f polymorphism between the strains were also extremely low when these 

sequences were compared. Only one polymorphism (SNP 1) was seen in the section 

amplified by primers MSH2middlel and MSH2middle2. 5 T. brucei isolates contained a C 

and 5 T. brucei strains (as well as T. vivax) contain a T residue, whereas L  major 

contained an A residue. In this case, data were not available for the beginning of the 

sequence derived from STIB 386 genomic DNA. The region amplified with primers 

MSH2middle3 and MSH2middle4, was more polymorphic, containing 7 SNPs. At SNP 2, 

4 T. brucei isolates (as well as T. vivax and L. major), contain a C residue, and 6 T, brucei 

isolates contain a T residue. At SNP 3, 2 T. brucei isolates (and T. vivax and L  major) 

contain a C residue and 8 T. brucei isolates contain a T residue. At SNP 4, 4 T. brucei 

isolates contain an A  residue and 6 T. brucei isolates (and T. vivax and L. major) contain a 

G residue. At SNP 5, 4 T. brucei isolates contain a C residue and 6 T. brucei isolates 

contain an A residue, whereas T. vivax and L  major contain a G residue. At SNP 6, o f the 

sequences available, 4 T. brucei isolates (and L  major) contain a G residue and 3 T. brucei 

strains (and T. vivax) contain an A  residue. At SNP 7 and 8, a single isolate differed from 

all the other T. brucei strains available, potentially suggesting PCR errors. The sequences 

for this PCR reaction from four strains (S14, 927, 427 and Eliane) are incomplete, 

however.

The three sections o f MSH2 sequence were next assembled into a single contiguous 

sequence and the predicted translated polypeptide sequences compared by performing a 

sequence alignment using ClustalX (Thompson et aL, 1997) and visualised using 

Boxshade (http://ch.embnet.org/software/BOX_form.htm) as shown in figure 5.7. Where 

DNA sequence was incomplete, data from another strain o f the same subspecies was 

substituted in order to make up contiguous sequence in each case, and these instances have 

been highlighted. In total five polymorphic sites were identified at the protein level. At 

polymorphism a (corresponding to SNP 2), 4 T. brucei isolates encode pro line, and 6 

encode threonine, whereas T. vivax and L. major encode valine and alanine, respectively. 

At polymorphism b (corresponding to SNP 6), o f the sequences available 3 T. brucei 

isolates encode asparagine, and 5 encode aspartate, whereas T. vivax and L. major encode 

glutamate and alanine, respectively. At polymorphism c (corresponding to SNP 7), a 

single T. brucei strain (STIB 386) encodes a valine and L  major encodes a leucine, 

whereas all the other T. brucei strains, as well as T. vivax encode an alanine.
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a
: . VLKKKLVPTVATYLPVT.DDAKELTAAT.nVFAAWALVVKDSSRPMVPPTVRAT. 
. QVl.KKKLiVDTVATYLPVMiriAKEI.I.AAI.DVEAAWAI.VVKDSS.lG’MVPPTVnAT, 
. QVr.KKKL.VDTVATY I ,PVI TMFAKFI ■ I ,AA I ,I 'VI'A AW AI ,WK I'S: IPPMVH I'TVR g , 

VLKKKI.VnTVATYI.PVI,l)l'AKKi.|.AAI.G'.'l-'AAWAI.'/VKI'SSPPMVPP'I'VR S 
, QVLKKK PVDTVATY1 ,PV PI )PAKE I ■ I .AA I I 'V|' AAWAI'YPI'.'IPP I 'MVP I 'PVR g ,  
. OVLKKKI .VDTVATY PPVPI'I 'APE I, I .AA 1.1 'VI'AAWA I .V'4:l : '.."I-' I MVPPTVPAT , 
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Figure 5.7. Multiple alignm ent of MSH2 polypeptide seq u en ce  obtained by translation of the 
DNA seq u en ces  show n in figures 4-6. Where it was necessary to infer sequence from other 
strains to give a full-length, contiguous sequence, as described in the main text, sequence is 
shown in light blue. Sequences were aligned using ClustalX (Thompson et al 1997) and shaded 
using the Boxshade server (http://ch.embnet.org/software/BOX_form.html): identical residues in 
50% of the sequences are shaded in black, and conserved residues in grey. Sites of protein 
sequence polymorphism are labelled using pink letters.
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Polymorphism d (corresponding to SNP 8) is found only in the overlap between the PCR 

products amplified with primer sets MSH2middle3 and MSH2middle4 and 

MSH2_ATPase_5 and MSH2_ATPase_3. As this polymorphism only appeared in one 

isolate, and was in the sequence amplified by the former pair o f primers, whereas with the 

latter primer pair no change was seen, suggesting this polymorphism is due to a PCR or 

sequencing error, although it is also possible that it is due to the presence o f another MSH2 

allele in the genome of this strain. At polymorphism e (corresponding to SNP 9), a single 

T. brucei isolate (208) encodes proline, whereas all the other T. brucei isolates, as well as 

T. vivax and Z. major, encode leucine.

Assuming that all peptide polymorphisms are genuine (and for some, notably SNP d, and 

perhaps SNP e, this may be incorrect), it is apparent that most are likely not to affect 

function. SNPs a-d are found in the less conserved region between the middle conserved 

and ATPase domains, and SNPs a, b, and c are in residues that are variable in the L. major 

and T. vivax sequences. SNP e is a non-conservative change and does fall within an 

important conserved motif (the N-3 motif o f the ATPase domain, a nucleotide-binding 

motif located at the dimer interface (Obmolova et aL, 2000; see section 4.2.3.3 and figure 

4.7). In fact, the residue putatively altered, Leu772, is conserved in MSH2, MSH3 and 

MSH6(8) for T. brucei, H. sapiens and S. cerevisiae. This strong conseiwation o f a residue 

in a conserved motif o f the ATPase domain suggests that its mutation could have a 

detrimental effect on MMR efficiency. This change, if  genuine, is specific to T. b. 

rhodesiense isolate 208, however, and is not common to the other examples o f this 

subspecies. Overall, it is apparent that MSH2 from the different T. brucei subspecies and 

strains/isolates, in contrast to those from T. cruzi, are very well conserved. Furthermore, in 

only one case was a mutation found that might be predicted to cause a functional 

impairment.

5.2.1.3 Analysis of RAD51 sequence from T. brucei Isolates

In order to assess whether the low levels o f polymorphism observed above in MSH2 are 

due to a specific conservation of this protein, or to a generic high level o f sequence 

conseiwation in all T. brucei coding regions, the sequence o f the central recombination 

factor RAD51 was also studied. Primers RAD51-BamHI and RAD51-U3 (see appendix 1) 

were designed based on RAD51 DNA sequence from the TREU 927 strain from the 

genome database (see figure 5.8). These primers should amplify a 715-bp section of  

RAD51, containing all four conseiwed domains of the protein: a helix-hairpin motif, a 

putative polymerisation motif, and Walker A and Walker B box nucleotide binding motifs
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RADSl-BamHI
m n t r t k n k k r t k e v i e d e v h d i d d t a f d d a a v d a v n d n t q em q q q vgcîaa g g p s f r v l q i

m e n y g v a s a d i k k l m e c g f 1 t v e s v a y a p k k s i l a v k g i s e a k a e k i m a e c c k l t p m g f t

r a t v f q e q r k e t i m v t t g s r e v d k l l g g g i e v g s i t e l f g e f r t g & t q l c h t I c v t c q l p

I s q g g g e g m a l y i ^ t ^ g t f r p e r l v a v a e r y s l d p e a v l e n v a c a r a y n t d h q q q l l l q a

s a t m a e h r v a i i w d l ' a t a l y r t d y n g r g e l a a r q m h l g k f I r s l r n l a n e y n v a v v v t n

q v v a n v d g a a p t f q a d s k k p i g g h i m a h a s
RAD51-U3

t t r l s l r k g r g e q r i i k v y d s p c l a e s e a i

f g i y e n g v g d v r d

Figure 5.8. Primers used  for seq u en cin g  of T. brucei RAD51. RAD51 protein sequence is 
shown in black text, with a helix-hairpin-heiix motif in orange, a putative polymerisation domain in 
purple, a Walker A box in purple, and a Walker B box in green. Important conserved residues are 
indicated by red asterisks, and the locations of the primers are represented by pink arrows.

Rhodesiense Brucei Gambiense

Figure 5.9. PCR amplification of a 719 bp fragment of T. brucei RAD51. PCR was performed 
on genomic DNA from 9 T. brucei strains from three different subspecies (indicated below the 
strain names). The reaction was also attempted on T. vivax genomic DNA. A no-DNA control was 
included. PCR products were separated on a 0.8% agarose gel.
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Figure 5.10. Multiple alignm ent of RAD51 seq u en ce  obtained by PCR amplification using  
primers RAD51-BamHI and RAD51-U3 from 8 T. brucei strains and from the T. cruzi and L. 
mayor genom e projects. Sequences were aligned using ClustalX (Thompson et al., 1997) and 
shaded using the Boxshade server (http://ch.embnet.org/software/BOX_form.html): identical 
residues in 50% of the sequences are shaded in black, and conserved residues in grey. SNPs are 
numbered in blue.
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Figure 5.11, Multiple alignm ent of translations of the RAD51 seq u en ces  show n in figure 
5.10. Sequences were aligned using ClustalX (Thompson et al 1997) and shaded using the 
Boxshade server (http://ch.embnet.org/software/BOX_form.html): identical residues in 50% of the 
sequences are shaded in black, and conserved residues in grey. Protein sequence polymorphism 
is labelled with a blue letter.
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(Proudfoot and McCulloch, 2005). As for MSH2, PCR was carried out using Herculase, a 

high-fidelity DNA polymerase, to amplify this fragment from genomic DNA o f the nine 

isolates described in the previous section. The same primers were used to attempt to PCR- 

amplify the equivalent regions o f T. vivax genomic DNA; in addition, a control PCR 

reaction was carried out using water instead o f genomic DNA substrate. A small amount 

of each reaction was mn on a 0.8% agarose gel, showing amplification of a single product 

of the expected size in all cases, apart from reaction using T. vivax genomic DNA as 

substrate, which was unsuccessful, and the no-DNA control reaction (figure 5.9). The 

PCR reaction using T. b. gambiense Eliane genomic DNA as a substrate was also 

unsuccessfril, and therefore data from this strain is lacking in the following analysis. It is 

assumed that failure to amplify this section o f the T. vivax gene reflects sequence 

divergence in the primer sequences, whereas failure to amplify this section o f the T. b. 

gambiense gene is more likely simply due to mistakes setting up the reaction. These 

reactions were not repeated. All PCR products were incubated with Taq DNA polymerase 

prior to cloning into the TOPO TA vector (Invitrogen). At least two cloned PCR products 

from each stiain were sequenced by the MBSU (University o f Glasgow). These DNA  

sequences, as well as sequence from the T. vivax and L. major genome databases were 

compared by performing a sequence alignment using ClustalX (Thompson et aL, 1997), 

visualised using Boxshade (http://ch.embnet.org/software/BOX form.htm) as shown in 

figure 5.10. The consensus sequence from all the success fid sequencing reactions is 

shown.

Like the MSH2 sequence, the amount o f sequence divergence OÏRAD5Î is extremely low: 

polymorphism was only seen at three sites at the DNA level. At SNP 10, a single T. brucei 

isolate (STIB 386) contains a C residue, whereas all the other T. brucei isolates, as well as 

T. vivax and L. major, contain a T residue. At SNP 11, two T. brucei isolates contain a T 

residue, whereas all the other T. brucei isolates contain a G residue and L. major contains a 

C residue. At SNP 12, 4 T. brucei isolates (as well as L. major) contain a G residue, and 

five T. brucei isolates (as well as T. vivax) contain an A residue. Translations o f each 

sequence were performed and the resultant polypeptides aligned as described previously 

for MSH2 (see figure 5.11). The only SNP that corresponded to a polymorphism at the 

protein level was SNP 10, with STIB 386 encoding an alanine whereas all the other T. 

brucei isolates (and T. vivax and L. major) encode valine. Although this falls in a region 

that is conserved with T. vivax and L. major, it does not affect any of the known fimctional 

domains o f RAD51, and is not a residue conserved in RAD51 protein from other 

organisms (McCulloch and Bariy, 1999). These results suggest that the lack of
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Figure 5.12. Amplification of the PLC and JS2 m icrosatellites. Microsatellites PLC and JS2
were amplified from 9 T. brucei strains as described in the text; the PCR products were then 
separated on an ethidium bromide-stained 3% Nusieve agarose gel.
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polymorphism is not specific to the MSH2 gene, but extends at least to RAD51 also, and 

may be a general feature o f coding sequences in the T. brucei genome.

5.2.1.4 Microsateilite analysis

To ensure that the lack o f substantial sequence variation described above could not have 

arisen by cross-contamination of the genomic DNA samples, their purity was examined by 

the amplification o f two microsatellites, named PLC and JS2 (see figure 5.12). These 

repetitive sequences composed o f T-A and G-T dinucleotide repeats, respectively (Hope et 

aL, 1999) are located on chromosomes 2 and 5 respectively, and were PCR-amplified from 

genomic DNA using the primer pairs PLC-G and PLC-H3 and JS2-A and JS2-B, giving 

products between 100 bp and 300 bp. PCR was performed from all the T. brucei genomic 

DNA samples used in the previous analysis, using Taq DNA polymerase and a 

commercially made mixture o f PCR reagents provided by A. MacLeod (see section 2.7.1). 

For the larger microsatellite, PLC, variation between the isolates is apparent, but difficult 

to resolve on this gel analysis. In contrast, for JS2, for most samples the different alleles 

were distinguishable, and size differences in one or both were discernible between the 

samples.

5.2.2 Study of a potential mutator phenotype in different strains 

and subspecies

The observed lack o f differences in at least eight o f the MSH2 sequences analysed does not 

necessarily imply that MMR efficiency is equivalent in all strains, since only -44%  o f the 

MSH2 sequence has been examined, and potentially important mutations could have been 

missed in the N-terminal regions (Obmolova et aL, 2000). In addition, the other MMR 

genes have not been similarly analysed, and mutations in other factors are known to affect 

MMR (Bell et al., 2004). For this reason, four strains for which procyclic form life cycle 

stage cells had been established in culture were assayed for MNNG, FIzOz and methyl 

methane sulfonate (MMS) sensitivity. The strains used were the T. b. gambiense strain 

STIB 386, and the T. b. brucei strains Lister 427, EATRO 795 and STIB 927. Although 

MSH2 sequence in the EATRO 795 strain was not studied in the previous section, 

sequence horn the ILTat 1.2 strain, derived from EATRO 795, was included in the 

analysis. Unfortunately, T. b. rhodesiense strain 208, for which an MSH2 mutation was 

putatively identified, was not available in the procyclic form. It was decided not to attempt 

this analysis using bloodstream stage cells, as the only strain available that can be grown 

readily in culture in the bloodstream form is Lister 427.
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Figure 5.13. Growth in culture of different 7. brucei strains. Procyclic 7. brucei of strains STIB 
386, Lister 427, EATRO 795 and STIB 927 were grown in vitro from a starting density of 5 x 105 
cells.ml-1 and cell concentration measured every 24 h. The log of cell concentration is shown 
against hours in culture.
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5.2.2.1 Growth of different T. brucei strains and subspecies In culture

Before any drug sensitivity assays were carried out, the in vitro growth rate o f procyclic 

form cells o f strains STIB 386, Lister 427, EATRO 795 and TREU 927 was compared. 

Cells were diluted to a concentration of 5 x 10  ̂ cells.ml"^ in SDM-79 and the cell density 

was measured eveiy 24 h. This was carried out in duplicate on two separate occasions. It 

is apparent from a log-linear plot o f the cell concentrations (for averages and standard 

errors see figure 5.13) that although strains STIB 386, Lister 427 and EATRO 795 grew at 

approximately the same rate, population growth of TREU 927 was somewhat faster. The 

average population doubling times o f the four strains in this analysis were 15.38 +/- SE 

0.57 h for STIB 386, 14.535 +/- SE 0.187 h for Lister 427, 16.20 +/- SE 0.997 h for 

EATRO 795, and 12.23 +/- SE 0.056 h for TREU 927.

5.2.2.2 Tolerance of T. brucei strains and subspecies to MNNG

As described in section 4.2.7.4, tolerance to the alkylating agent MNNG is increased in 

cells with deficient MMR, including T. brucei and a range o f prokaryotic and eukaryotic 

organisms. To assay the MNNG sensitivity o f T. brucei strains STIB 386, Lister 427, 

EATRO 795 and TREU 927, procyclic form cells at a starting density o f 5 x 10  ̂ cells.m l'\ 

were grown in SDM-79 medium containing doubling dilutions o f MNNG from 400 |liM to 

12.207 nM, in 96-well tissue culture plates (200 pi o f cell culture per well). After 48 h, 20 

pi o f Alamar Blue (Resazurin; see section 4.2.7.4) was added to each well and 

fluorescence measured, using an LS55 luminescence spectrophotometer (Perkin Elmer) at 

an emission wavelength o f 590 nm after a further 24 h o f growth. Higher fluorescence is 

an indication of more metabolism of Alamar Blue and therefore more proliferating cells 

(see section 4.2.7.4). The fluorescence readings were plotted on a log-linear graph in 

relation to MNNG concentrations, and formed a sigmoidal curve as the drug impaired 

growth. An example o f such a curve is shown in figure 5.14 a. This experiment was 

performed in duplicate four times for each strain, and IC50 values {i.e., drug 

concentrations causing death o f 50% of the cells) were then calculated from the 

fluorescence cui'ves using Prism (GraphPad). These averages and standard errors are 

summarised in figure 5.14. In addition, data from section 4.2.7.4 on the tolerance o f Lister 

427 wild-type and MSH2-/- bloodstream stage cells were added to the analysis.

The four procyclic forms showed differences in their MNNG sensitivity. Average IC50 

values (see figure 5.14 b) obtained were 3.959 +/- SE 1.4 pM for strain STIB 386, 4.998 

+/- SE 1.767 pM for strain Lister 427, 10.703 +/- SE 3.784 pM for strain EATRO 795, and
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Figure 5.14. An alamar blue a ssa y  m easuring the MNNG tolerance of different T. brucei 
strains, a) Procyclic T. brucei of strains STIB 386, Lister 427, EATRO 795 and STIB 927 were 
grown in 96-well plates in the presence of doubling dilutions of MNNG for 48 h. Alamar blue was 
added to each well and the cells were grown for a further 24 h before fluorescence was measured. 
A typical graph for this analysis is shown, in which fluorescence is plotted against the log of MNNG 
concentration, b) A table showing the average IC50 value for the four procyclic strains as well as 
wild-type and MSH2-/- bloodstream form cells, and standard errors calculated from 8 repetitions, 
c) a bar chart showing the average IC50 values from b).
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14.921 +/- SE 5.276 fiM for strain TREU 927, indicating that the latter two strains have 

2.14-3.77-fold greater tolerance to MNNG in these conditions compared to the former two 

strains. This level o f tolerance is, in fact, very similar to that seen when Lister 427 MSH2- 

/ “ bloodstream form cells (studied previously; see section 4.2.7.4), with an IC50 o f 9.683 

+/- SE 3.066 p,M, are compared to wild-type Lister 427 bloodstream form cells (IC50 o f  

3.277 +/- SE 1.258 p.M). Indeed, the level o f sensitivity in STIB 386 and Lister 427 

procyclic forms compare closely with the Lister 427 bloodstream stage cells, and the 

EATRO 795 and TREU 927 procyclic form cells are comparable to Lister 427 bloodstream 

stage MSH2-/- mutants. A  one-way nonparametric analysis o f variance test using Prism 

(GraphPad) o f the mean IC50 values for procyclic form STIB 386 and Lister 427 and 

bloodstream stage Lister 427 wild-type cells gave a P value o f 0.2944, and the same 

analysis for procyclic form EATRO 795 and TREU 927 and Lister 427 MSH2-/- 

bloodstream stage cells gave a P value o f 0.0687. This means that the three strains in each 

group are not significantly different from each other in a 95% confidence inteiwal. On the 

other hand, the same analysis comparing all six strains gave a P value o f less than 0.0001, 

implying that all together, the strains are very significantly different from each other.

5.2.2.3 Tolerance of T. brucei strains and subspecies to H2 O2

The most common lesion caused, both within DNA and in the cellular dNTP pool, by the 

alkylating agent H2O2 (and by naturally occurring oxidative damage in cells) is 7,8- 

dihydro-8 -oxoguanine, commonly abbreviated to 8 -0 x 0 G (Wiseman and Halliwell, 1996; 

Slupphaug et al.  ̂ 2003). In DNA, this base is highly mutagenic as it pairs equally 

efficiently with A or C, causing GC -> TA transversions (Thomas et aL, 1997). Three 

specialised mechanisms exist in bacteria to deal with this damage (Slupphaug et aL, 2003; 

Fowler et aL, 2003; Barnes and Lindahl, 2004). In one strategy, the MutT enzyme 

prevents incorporation of 8 -oxoGTP from the dNTP pool into DNA by converting it to 

GMP (Maki and Sekiguchi, 1992). The two other strategies involve two different 

glycosylases o f the base excision repair (BER) machineiy, triggering removal o f a base 

from contaminated DNA: MutY initiates repair o f A residues incorporated opposite 8 - 

oxoG (Au et aL, 1989), whereas MutM initiates repair o f 8 -oxoG paired with C (Chung et 

aL, 1991). Mammalian genomes contain homologues o f MutT, MutY and MutM, whereas 

S. cerevisiae has only a functional homologue o f MutM, known as 8 -oxoG glycosylase or 

OGG-1 (Fortini et aL, 2003). Kinetoplastid genomes also contain a homologue of  

MutM/OGG-1, the function of which has been verified in T. cruzi (Farez-Vidal et aL, 

2001; Pena-Diaz et aL, 2004), and two MutY homologues are identifiable amongst the
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factors involved in BER (El Sayed et aL, 2005), though they appear to lack a homologue o f  

MutT. Together, this appears to indicate that all 8-oxoG in kinetoplastids is dealt with 

following its incorporation into DNA.

MMR has also been implicated in the repair o f these lesions; 8-oxoG paired with A or C is 

recognised as a mismatch (Ni et aL, 1999; Mazurek et aL, 2002a), with the A  or the 8- 

oxoG respectively being removed (Wyrzykowski and Volkert, 2003). Furthermore, 

incorporation of 8-oxoG from the dNTP pool causes genetic instability in MMR-deficient 

human cells (Russo et aL, 2004), and this mutator phenotype can be reduced when the pool 

is “sanitised” by overexpression o f the MutT homologue MTHl (Colussi et aL, 2002). 

Similarly, the mutator phenotype caused by mutation of MTHl is partially alleviated by 

the MMR system (Egashira et aL, 2002). Both MSH2 and MLHl are involved in MMR- 

mediated removal o f 8-oxoG from mouse DNA, both before and after H2 O2 treatment 

(Colussi et aL, 2002). Although some work (Colussi et aL, 2002) suggests that OGGI and 

MMR functions are independent o f each other, other observations point to a link between 

these pathways, with the MutY homologue MYH interacting with PCNA (which could act 

as a coordinator between the pathways; (Hayashi et aL, 2002)), and the MSH6 component 

of the MSH2-MSH6 heterodimer interacting with, and stimulating, the DNA binding and 

glycosylase activities of, MYH (Gu et aL, 2002; Mazurek et aL, 2002b). MSH3, on the 

other hand, does not seem to be involved in the repair o f this oxidative damage (Gu et aL, 

2002; Mazurek et aL, 2002a).

In T. brucei, it is known that mutation o f MSH2 causes increased sensitivity to H2 O2 

treatment, although preliminary results suggest that disruption o f M LHl has no effect (A. 

da Silva Machado, pers. comm.). This appears to be compatible with the findings 

described in mammals, suggesting that MSH2 (possibly in partnership with MSH6) has a 

role in the repair o f this damage, perhaps in signalling to the BER machinery. This could 

be especially important due to the putative lack of a MutT homologue in kinetoplastid 

genomes. To examine if  the four T. brucei strains tested for MNNG sensitivity also 

displayed differential tolerance to H2 O2 , the percentage survival in the presence o f 

increasing amounts o f the alkylating agent was assayed (assay optimised by A. da Silva 

Machado, pers. comm.), in a comparable way to studies on mammalian cells (DeWeese et 

aL, 1998). Growth o f procyclic form T, brucei from strains STIB 386, Lister 427, EATRO 

795 and STIB 927 in the presence o f a range o f concentrations o f H2 O2 was measured by 

diluting the parasites from a culture in the log phase o f growth (~5 x 10  ̂ cells.ml'^) to 5 x  

10  ̂ cells.mF^ in SDM-79 medium containing 0, 5, 10, 20 or 50 pM of H2 O2 . The cell 

density was then measured eveiy 24 h. This was carried out in duplicate on three separate
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Figure 5.15. Growth In culture of different T. brucei strains In the presence of H2 O2 .
Procyclic T. brucei of strains STIB 386, Lister 427, EATRO 795 and STIB 927 were grown in vitro 
in the presence of different concentrations of H202, from a starting density of 5 x 105 cells.ml-1 
and cell concentration measured every 24 h. Log of percentage survival compared to the no-H202 
control are shown against the H2O2 concentration (in pM) for 24 h, 48 h and 72 h.
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occasions. The percentage siii-vival for each drug concentration was calculated by 

comparing cell density in the presence o f H2 O2 to the control sample which had not been 

treated at each timepoint, and the average sui'vival rate is shown in a log-linear plot in 

figure 5.15.

In all cases, cell viability was impaired by H2O2 treatment, since even after 24 h at the 

lowest H2 O2  concentration (5 pM), the cell numbers had decreased in comparison to the 

control culture. However, differences in H2 O2 sensitivity between the strains were 

obsei'ved. When viewed on a log-linear scale, the strains STIB 386 and Lister 427 had 

detectably higher sui’vival rates than EATRO 795 and STIB 927 after 24 h at the highest 

concentration of H2 O2 (50 pM), and after 48 or 72 h treatment with 20 and 50 pM H2 O2 . 

These differences follow the same strain groupings as were seen assaying MNNG  

sensitivity, indicating potentially a common source for both phenotypes. Two-tailed 

nonparametric t-tests were performed on the data from the highest H2 O2 coneentration (50 

pM) at the three timepoints. The P values from comparisons o f STIB 386 and Lister 427 

strains were 0.9372, 0.4875 and 1, respectively for 24 h, 48h and 72 h, and P values from 

comparisons o f EATRO 795 and TREU 927 were 0.1797, 0.5556 and 1, respectively. This 

means that the two strains in each group are not significantly different from each other in a 

95% confidence interval. One-way nonparametric analysis o f variance was also carried 

out on all four strains, giving P values o f 0.0147, 0.0117 and 0.00343, respectively for the 

three timepoints, implying that all together, the strains are significantly different from each 

other. Due to the fact that different concentrations o f H2O2 gave separation o f the wild- 

type and MSH2-A Lister 427 bloodstream stage cells, a direct comparison with these data 

is not possible.

5.2.2.4 Tolerance of T. brucei subspecies and strains to MMS

Methyl methane sulfonate (MMS) is an alkylating agent like MNNG; however, this DNA  

damaging agent creates predominantly N-methylated bases, leading to blocks in replication 

(Nowosielska et aL, 2006). Homologous recombination is needed to bypass these stalling 

events and avoid replication fork collapse, creating DSBs. Defects in HR enzymes, 

including T. brucei RAD51 (McCulloch and Bany, 1999), two of the four RAD51 

paralogues (Proudfoot and McCulloch, 2005) and BRCA2 (C. Hartley, pers. comm.), are 

laiown to cause an increase in MMS sensitivity. Inactivation o f MMR is known to result 

in increased tolerance to alkylating agents such as MNNG and to the compound cisplatin, 

but to have no reproducible effect on the sensitivity o f m lhl mutant mammalian cells to 

other DNA damaging agents, such as ionising radiation, cross-linking agents, or
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Figure 5.16. An alamar blue a ssa y  m easuring the MMS tolerance of different 7. brucei 
strains, a) Procyclic T. brucei of strains STIB 386, Lister 427, EATRO 795 and STIB 927 were 
grown in 96-well plates in the presence of doubling dilutions of MNNG for 48 h. Alamar blue was 
added to each well and the cells were grown for a further 24 h before fluorescence was measured. 
A typical graph for this analysis is shown, in which fluorescence is plotted against the log of MNNG 
concentration, b) A table showing the average IC50 value for the four procyclic strains, and 
standard errors calculated from 8 repetitions, c) a bar chart showing the average IC50 values from 
b).
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topoisomerase inhibitors (Cejka et aL, 2005). Little has been studied on the effect that 

MMS has on MMR-deficient cells, but one report indicates that mutation o f M LHl, MSH6 

or MSH2 causes increased resistance/tolerance to MMS, indicating that MMS cytotoxicity 

is influenced by MMR (Glaab et aL, 1998; Glaab et aL, 1999).

T. brucei strains STIB 386, Lister 427, EATRO 795 and TREU 927 were assayed for 

MMS tolerance. Procyclic stage cells o f these four strains, at a starting density o f 5 x 10  ̂

cells.mf% were grown in SDM-79 medium containing doubling dilutions o f MMS from 

0.005% to 0.00000244%, in 96-well tissue culture plates (200 pi cell culture per well). 

After 48 h, 20 pi o f Alamar Blue was added to each well and fluorescence measured after a 

further 24 h o f growth, as in section 4.2.7.4. This experiment was performed in duplicate 

twice. An example o f a sigmoidal curve with IC50 values plotted against MMS 

concentrations is shown in figure 5.16 a.

The four strains showed differences in MMS sensitivity. Average IC50 values (see figure 

5.16 b) obtained were 0.000455 +/- SE 0.0000662 % for strain STIB 386 and 0.0005633 

+/- SE 0.0000296 % for strain Lister 427, compared with 0.001703 +/- SE 0.000299 % for 

strain EATRO 795, and 0.000995 +/- SE 0.0000185 % for strain TREU 927. The STIB 

386 and Lister 427 cells therefore display 2-3-fold greater sensitivity to MMS than TREU 

927 and EATRO 795, respectively. Allow this follows broadly the groupings described for 

the MNNG and H2O2  assays, in this analysis EATRO 795 appears more tolerant than 

TREU 927 to MMS, which contrasts somewhat with previous results as no difference was 

observed between the two strains in H2O2 sensitivity, and TREU 927 was, if  anything, 

more tolerant to MNNG than EATRO 795 (see figure 5.16). That the EATRO 795 strain 

displays an intermediate phenotype is confirmed by statistical analysis. A two-tailed 

nonparametric t-test was performed on strains STIB 386 and Lister 427, giving a P value of  

0.4857. This means that the two strains in each group are not significantly different from 

each other in a 95% confidence interval. However, the same analysis for strains EATRO 

795 and TREU 927 gave a P value o f 0.0286. One-way nonparametric analysis o f variance 

of all four samples gave a P value o f 0.0009, and for strains STIB 386, Lister 427 and 

EATRO 795 gave a P value o f 0.021 implying that all together, the strains are significantly 

different from each other.
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5.3 D isc u ss io n

1533 bp o f DNA, corresponding to the ATPase domain, part o f the middle conseiwed 

domain and the region o f the gene in-between these conserved structural features, was 

PCR-amplified and sequenced in three segments from the MSH2 gene o f nine different T. 

brucei strains taken from the three subspecies, T. b. rhodesiense, T, b. brucei and T. b. 

rhodesiense. Multiple alignments o f these sequences reveal remarkably low levels o f  

sequence divergence between these strains, with only 9 putative SNPs at the DNA level 

(summarised in table 5.2), corresponding to 5 putative polymorphisms at the protein level. 

In fact, this may be an overestimate, as in 3 o f these 5 cases the protein sequence o f only a 

single strain was different from the rest, pointing to potential sequencing or PCR errors. 

Only one of the polymorphisms at the protein level was located within a conserved 

structural motif (the N-3 nucleotide binding domain o f the ATPase domain), although this 

polymorphism was found in a single strain and requires confirmation from an independent 

PCR reaction. Irrespective o f the validity o f these polymorphisms, the level o f variation is 

in contrast to the situation in T. cruzi, where analysis o f only 829 bp of sequence from 

different isolates revealed 21 SNPs in the ATPase domain alone, 5 o f which cause amino 

acid changes (Augusto-Pinto et aL, 2003). A  715 bp section o f the T. brucei RAD51 ORF 

was also PCR-amplified, and was shown to contain similarly low levels of polymorphism, 

with only 3 SNPs and a single amino acid change, again in a single strain. This sequence 

similarity was not due to contamination o f the reagents or primers or o f the genomic DNA  

samples, and appears to indicate that the T. brucei subspecies and strains are more closely 

related than those o f T. cruzi.

Literature searches do not reveal any other examples o f coding sequence having being 

compared in different T. brucei strains; previous work has centred on microsatellites and 

other polymorphic features o f the genome to establish genomic relationships {e.g., True 

and Tibayrenc, 1993). On the other hand, in T. cruzi a number o f coding sequences have 

been studied. For example, 46 polymorphic loci are found in 290 bp of sequence from the 

cytochrome B ORF (de Freitas et aL, 2006), and a 1030 bp section o f the genome 

containing the tcp l 1 and tcpgp2 genes contains 83 variable nucleotide positions (Robello 

et aL, 2000). Part o f the RAD51 ORF has also been studied in T. cruzi, revealing only 3 

SNPs in 359 bp o f DNA sequence (Carlos Renato Machado, pers. comm.). Taken 

together, it seems likely that the levels o f polymorphism in the T. cruzi MSH2 ORF are 

representative o f polymorphism across the genome, whereas the lower levels o f divergence 

in RAD51 reflect greater functional constraints on this enzyme. T. cruzi is a highly
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MSH2-1 MSH2-2 MSH2-3 MSH2-4 MSH2-5 MSH2-6 MSH2-7 MSH2-8 MSH2-9 RAD51-10
A 4 6 3
C 5 4 2 4 5 5 1 1
G 6 6 4 1
T 5 8 1 9 9

Table 5.2. A  table sum m arising the SNPs found in the sections o f the M S H 2  and R A D 5 1  
ORFs that were sequenced in 10 T. b r u c e i  strains. The num ber of strains w ith each 
nucleotide at that position is shown.
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divergent speeies, and the genetic distance between subdivisions of the species has been 

estimated as 4-fold greater than between human and chimpanzee (Tibayrenc, 1995); in 

fact, there is some debate as to whether it should be classified as a single species at all 

(Buscaglia and Di Noia, 2003). N o such work has allowed an estimate o f divergence 

between T. brucei subspecies to be made. Both MSH2 and RAD51 contain a number o f  

well-conserved domains, and future sequence analysis o f further genes would be needed to 

provide a picture o f divergence between ORFs in general in T. brucei.

The comparison o f MSH2 sequences between T. brucei subspecies and strains did not 

reveal strong evidence for the selection o f MMR mutants, in contrast to the findings in T. 

cruzi. In only one case (polymorphism e, in T. b. gambiense strain 208) was a single 

mutation identified that fell within a conseiwed domain, whilst all other polymorphisms 

were in non-conserved residues. Further work would be required to assess whether the 

single changed MSH2 affects MMR. However, despite this lack of clearly selected 

mutants, differences in drug sensitivity were revealed that may be consistent with 

alterations in MMR.

MMR efficiency was assayed indirectly in four T. brucei strains: STIB 386, Lister 427, 

EATRO 795 and TREU 927. Tolerance to MNNG has been shown to be increased in T. 

brucei cell lines deficient in either MSH2 or MLHl (Bell et aL, 2004), as has been seen in 

other organisms (see section 4.2.7.4). Although the original analysis o f MNNG tolerance 

used a plating assay and bloodstream stage cells, characterisation o f MSH2-/- cells using 

the Alamar Blue assay, as described in section 4.2.7.4, confirms the finding, and 

demonstrates that this approach can be used to examine the sensitivity o f T. brucei to drugs 

such as this. Strains STIB 386 and Lister 427 displayed approximately a 3-fold lower 

tolerance for MNNG than strains EATRO 795 and TREU 927, and the IC50 values for the 

former strains (roughly 4 pM) are similar to the values for wild-type bloodstream-stage 

Lister 427 cells, whereas the IC50 values for the latter (9 pM or higher) are similar to 

mismatch repair-deficient bloodstream stage MSH2 mutants. This appears to indicate that 

drug uptake in bloodstream stage and procyclic form Lister 427 cells is veiy similar, as is 

the metabolism of Alamar Blue, which has been used as a measure o f cell viability 

(Wallace et a l ,  2002). The differences in MNNG tolerance in the different T. brucei 

strains are not simple to reconcile with differences in cellular proliferation, since TREU 

927 appeared to divide more rapidly than the other strains, whereas EATRO 795 was very 

similar to STIB 386 and Lister 427.
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The same subdivision o f the four strains was also seen when assaying H2 O2 sensitivity. 

Whereas mutation in any element o f the MMR machineiy can lead to MNNG tolerance 

(Bell et al., 2004), H2 O2 tolerance is hypothesised to be dependent on MSH2 and MSH6 

(see section 5.2.2.3) (but not MSH3; Ni et al., 1999; Berardini et al., 2000) detecting 

integration o f 8-oxoG into DNA. Whatever the exact mechanism o f MMR involvement, it 

is known that H2 O2 tolerance Is decreased in bloodstream-stage T. brucei in Lister 427 

MSH2-/- relative to wild-type cells, and that preliminaiy results suggest that tolerance 

remains unchanged in Lister 427 M LH l-/- cells (A. Machado da Silva and R. McCulloch, 

pers. comm.). The higher survival rates o f strains STIB 386 and Lister 427 may indicate 

greater activity or levels o f MutS homologues in these strains relative to EATRO 795 and 

TREU 927. However, H2 O2 metabolism is also carried out by the mitochondria, a cellular 

function that could also vary between strains. This cellular activity can be measured using 

the compound 3[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), a 

water-soluble tétrazolium salt that is cleaved to formazan by the succinate dehydrogenase 

system o f active mitochondria, causing a colour change from yellow to purple that can be 

measured by a spectrophotometer (Dreiem et al., 2005). Although some degradation of 

H2 O2 is also carried out by other, cytosolic factors (Jezek and Hlavata, 2005), an MTT 

assay would be valuable to determine how much o f this reactive oxygen species is 

degraded, and therefore how much remains in the cell to cause DNA damage requiring 

repair by the MMR and BER systems.

Finally, tolerance of the four T. brucei strains to the alkylating agent MMS was also 

measured, and the same differential effects in EATRO 795 and TREU 927 relative to STIB 

386 and Lister 427 were found. T. brucei cell lines defective in RAD51 (McCulloch and 

Bany, 1999), two o f its four paralogues (Proudfoot and McCulloch, 2005) and BRCA2 (C. 

Hartley, pers. comm.) suffer from increased MMS sensitivity. In contrast, some work has 

reported that defects in MMR in human cells result in increased MMS tolerance. The 

MMS tolerance o f T. brucei EATRO 795 is approximately 4-fold greater than STIB 386 

and Lister 427, whereas the MMS tolerance o f TREU 927 is approximately 2-fold greater. 

MMS tolerance in bloodstream stage Lister 427 MSH2-/- and M LH l-/- T. brucei has not 

yet been measured, but this experiment would be vital for the full interpretation o f these 

results. As measurement o f MMS sensitivity in other cell lines was carried out by a plating 

assay, direct comparisons are not possible. The extremely low levels o f polymorphism in 

the RAD51 gene make it unlikely that the difference in sensitivity is due to differential 

enzymatic activity in this protein, though variation in other DSB repair genes cannot be 

excluded. Nevertheless, the increased resistance to MMS in two o f the strains, as for the 

effect seen with MNNG and H2 O2 , may indicate MMR deficiency. Though in human cells
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this phenotype appears to be a direct consequence o f MMR mutation (Cejka et al., 2005), it 

is also possibly that the differences in tolerance could result from secondary mutations as a 

consequence o f MMR impairment.

These experiments have shown that T. brucei strains show clear separation in their 

tolerance to the three alkylating agents MNNG, H2 O2 and MMS, with EATRO 795 and 

TREU 927 showing statistically significantly different tolerance to EATRO 386 and Lister 

427 (with the exception o f MMS, where EATRO 795 had an intermediate phenotype). 

This grouping is compatible with a mutator phenotype in strains EATRO 795 and TREU 

927 compared to STIB 386 and Lister 427 (see table 5.2). This potential MMR deficiency 

is unlikely to be caused by mutations in the MSH2 ORF, as a significant proportion o f the 

gene, containing the well-conserved ATPase domain, contain very low levels o f sequence 

polymorphism. The only polymorphism identified that could be predicted to affect MSH2 

protein function was only found in T. b. rhodesiense strain 208 (which is not available in 

culturable form), but not ILTat 1.2 (which is derived from EATRO 795) or TREU 927. A  

mutator phenotype could be caused by divergence in the sequence o f another MMR 

protein. H2 O2 sensitivity has been reported in S. cerevisiae to be affected by MSH6, but 

not MSH3 (Gu et al., 2002; Mazurek et al., 2002a), making MSH6 a more likely candidate 

to have been mutated in this cases. Similarly, in S. cerevisiae, mutation o f MMR factor 

EXOl has no effect on MNNG tolerance (Cejka et al., 2005), making this an unlikely that 

this gene has been mutated. It is also possible that a mutation in the regulatoiy regions, 

such as the sequences responsible for trans splicing and polyadenylation o f the nascent 

transcript, o f MSH2 or another MMR gene could disrupt expression (Clayton, 2002). 

Dozens o f genes, involved in a range o f replication and DNA repair processes, have been 

identified in E. call as causing mutator phenotype when mutated (Horst et al., 1999). 

However, the effects o f mutations in factors unrelated to MMR on tolerance to these 

alkylating agents could not be predicted.

Although the data recorded here are consistent with certain strains having a mutator 

phenotype, this is not the only possible explanation. Differential uptake for all three 

compounds could lead to different amounts o f damage being caused by a constant amount 

o f drug. Although H2 O2 is a small, uncharged particle with poor reactivity that can pass 

through membranes easily (Jezek and Hlavata, 2005), MNNG and MMS are bulkier and 

may require specific uptake into the cell. This is another cellular function that could vary 

between T. brucei subspecies and strains (especially in a mutator strain). However, how 

this could be studied further without knowledge o f the exact mechanism o f uptake is hard 

to imagine. Treatment with alkylating agents such as MNNG also leads to MMR-

2 3 1



dependent cell cycle arrest at G2 phase (O'Brien and Brown, 2006), in a signalling cascade 

dependent on ATR (Stojic et al., 2004a; Stojic et al., 2004b). A disruption in this pathway 

could also lead to differences in the suiwival o f different strains.

The question whether this truly represents a mutator phenotype could be answered in three 

further ways. Firstly, the tolerance o f the same T. brucei strains to drugs such as 

phleomycin, or ionising radiation, could be measured in order to assess whether this is a 

generalised phenomenon, or limited to the allcylating agents studied so far. Secondly, 

microsatellite instability o f the different strains could be compared. Microsatellite 

instability is a phenotype associated with MMR deficiency; their repetitive nature leads to 

slippage o f DNA polymerase during replication, leading to the formation of insertion- 

deletion loops (Sia et al., 1997) that are usually repaired by the MMR system (Buermeyer 

et al., 1999). It is known that deficiencies o f either MSH2 or M LHl causes an increase in 

this mutator phenotype in cloned T. brucei bloodstream stage cells (Bell et al., 2004). 

Thirdly, adaptation of the different strains to stressful conditions, for example sublethal 

drug pressure, could be studied. This may allow any selective advantage conferred by a 

potential mutator phenotype to become apparent.

A number o f different approaches could be taken to further understand the processes 

causing the obseiwed differences in drug tolerance. The sequencing o f a wider range o f  

MMR and other DNA repair genes would be possible, if  time-consuming, as over 15 

spontaneous mutator genes have been identified in bacteria (Miller and Michaels, 1996) 

and the number in eukaryotic cells is likely to be much higher. However, other 

experimental approaches could be more effective in narrowing down the factors involved. 

Northern and/or quantitative RT-PCR analysis could be carried out on all MMR factors, as 

well as other important DNA repair factors such as RAD51 or M R E ll, and would identify 

any changes in expression that could affect DNA repair. Decrease or even increase (Yang 

et al., 2004) in the expression levels o f MMR genes can cause mutator phenotypes. 

Indeed, modulation o f expression levels is adopted as a strategy for a temporal^ increase in 

mutation rate in stationary-phase bacteria (see section 5.1.1). Genetic mapping could also 

be undertaken to understand the basis o f these traits. Hybrid cloned trypanosomes and 

genetic maps are available from crosses o f the STIB 247 strain with STIB 386 and TREU 

927 (MacLeod et al., 2005b). If it could be established that STIB 247 follows the trend of  

discrete “sensitive” or “tolerant” phenotypes in response to MNNG or MMS, it should be 

possible to perform mapping of the phenotype to one or several chromosomal region(s), 

potentially identifying the cause o f the difference (if it has a discrete genetic basis). If this 

mapping approach, or indeed expression analysis, points to candidate factors for
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differential tolerance to the drugs, then sequencing, genetic inactivation and/or 

complementation analysis would be necessaiy to confirm this finding.

If the results described in this chapter do reveal that 2/4 T. brucei strains do in fact have 

deficient MMR function, what are the implications for the biology o f this parasite? 

Although the sample size is extremely small, the proportion o f putative mutators is 

extremely high compared to the situation in bacteria; this corresponds to the highest 

proportion o f mutator isolates reported from Pseudomonas infections o f cystic fibrosis 

patients (Macia et aL, 2005). The groupings observed for the putative mutator phenotype 

do not depend on the subspecies o f the isolate studied: the T. b. gambiense strain STIB 386 

and the T. b. brucei strain Lister 427 had essentially identical phenotypes. This is in 

contrast to the situation in T. cruzi, where all strains can be grouped into clades according 

to MSH2 sequence polymorphisms (Augusto-Pinto et ah, 2003). The advantages to these 

kinetoplastid parasites that would be afforded by a mutator phenotype are not clear. STIB 

386 is a strain o f the virulent type 2 T. b. gambiense subgroup, and yet appears not to have 

a mutator phenotype, arguing against a direct link to virulence. It is possible that a mutator 

phenotype could aid T. brucei cells suiwlve in the very different mammalian and tsetse 

hosts, or facilitate the recombination between divergent sequences that is necessaiy for 

antigenic variation. It is not known whether other systems vaty in a similar way between 

T. brucei strains. The mechanism of fixation of these mutator phenotypes is equally 

mysterious; an allelic genetic difference causing a defect in MMR function would have to 

be spread to the other allele by loss o f heterozygosity (in the case o f a recessive mutation) 

before it could spread through a population by second-order selection. However, the 

population bottlenecks implicit in the antigenic variation system could aid in the fixation of 

mutations accidentally, reducing the requirement for second-order selection.

To summarise, this work demonstrated extremely low levels o f sequence divergence in the 

T. brucei MSH2 and RAD5Î ORFs, in contrast to the related kinetoplastid T. cruzi, where 

polymorphisms in the MSH2 ATPase domain are found, and may correlate to differences 

in MMR efficiency (Augusto-Pinto et aL, 2003). In spite o f this conseiwation, differences 

in tolerance to the alkylating agents MNNG, H2 O2 and MMS can be seen in different T. 

brucei strains. This could have a number o f causes, including polymorphisms in MMR or 

other repair factors, differential expression of DNA repair proteins, or differential uptake 

of the DNA damaging agents into the cell. Further work will be needed to resolve these 

questions.
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6 P e r s p e c t i v e s

Prior to this PhD thesis, it had already been shown that the protozoan parasite T. brucei 

possesses a fully functional, standard eukaiyotic MMR system (Bell et aL, 2004), which, 

although competent in the regulation o f homologous recombination (HR), has no effect on 

antigenic variation, at least in monomorphic Lister 427 cells (Bell and McCulloch, 2003). 

The experiments described in this thesis looked at three further roles o f T. brucei MMR 

factors in DNA metabolism.

Firstly, the requirements for substrate length and sequence homology in T. brucei HR were 

studied using an assay based on the transformation of linear constructs homologous to a 

unique site in the T. brucei genome. Recombination efficiency was examined over the 

range 25 bp to 200 bp. This work showed that both substrate length and homology 

influenced transformation efficiency both in MMR-competent and MMR-deficient cell 

lines. However, the MMR system only appeared to regulate recombination between 

moderately (5%) mismatched substrates, with recombination catalysed by perfectly 

matched and 11% divergent substrates remaining unaffected. The data in this chapter add 

to previous work by Conway et al. (Conway et aL, 2002b), and suggest that the presence of  

two RAD51-independent DNA repair pathways in T. brucei. The first is thought to 

catalyse homologous recombination using shorter stretches o f homology than the RAD51- 

dependent pathway and becomes extremely inefficient below 50 bp, while the 

microhomology-mediated end-joining (MMEJ) pathway of DSB repair uses only a few  

base pairs o f homology, in the range 5 -  10 bp. Further experiments will be required to 

test this hypothesis.

The T. brucei genome does not contain a Rad52 homologue (El Sayed et aL, 2005). In 

other organisms, this protein binds to Rad51 via its N-terminus (Milne and Weaver, 1993), 

acting as a multimeric ring structure (Singleton et aL, 2002), and has roles in facilitating 

the formation o f the Rad51 nucleoprotein filament (Sung, 1997a; Benson et aL, 1998). 

Although Rad52 is found in many eukaiyotes (Wu et aL, 2006), it has differing importance 

in HR depending on the organism. In S. cerevisiae, Rad52 is extremely important for all 

pathways o f HR, and mutation leads to a 3000-fold reduction in recombination, but it has 

much less impact on recombination in mammalian cells, and disrupting it has a much 

smaller effect (Rijkers et aL, 1998; Yamaguchi-Iwai et aL, 1998b). Fungal species 

including S. cerevisiae (Bai and Symington, 1996) and Kluyveromyces lactis (van den et 

aL, 2001) also contain a Rad52 paralogue laiown as Rad59, which is required for Rad51 -
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independent recombination and anneals to Rad52 in vivo (Davis and Symington, 2001). It 

is possible that Rad52 is more important in yeast than in mammals because o f the relative 

lack of Rad51 paralogues in these species. S. cerevisiae only has two Rad51 paralogues, 

Rad55 and Rad57, which facilitate nuclear filament formation (Sung, 1997b). Similarly, 

the fungus Ustilago maydis has two RadSl paralogues (Symington, 2002). On the other 

hand, mammalian cells contain five RadSl paralogues (Thompson and Schild, 2001), 

which appear to have taken on a range o f roles in HR (Symington, 2002). In T. brucei, in 

addition to a DM Cl homologue (Proudfoot and McCulloch, 2006), four RAD51 

paralogues have been identified. It could be postulated that some of these RadSl 

paralogues have taken on the roles o f Rad52, causing its relative lack of importance in 

mammalian cells and rendering it unnecessary in tiypanosomatids, where it has been 

discarded. Only two o f the T. brucei RAD51 paralogues that have been studied so far, and 

both appear to act in conjunction with RAD51 (Proudfoot and McCulloch, 2005), although 

this does not rule out them catalysing other classes o f DSB repair as well. The remaining 

two RAD51 paralogues are being studied at present and this will allow us to have a more 

complete picture o f their role in general DSB repair, and in VSG switching.

The genome o f T. brucei, as well as those o f T. cruzi and L. major, contains orthologues of  

the meiosis-specific MutS homologues MSH4 and MSH5. Sequence analysis shows that 

the T. brucei genes lack a detectable mismatch interaction domain, in common with those 

from other organisms. Analysis o f MSH4 and MSH5 expression showed that transcription 

of both genes is not restricted to the epimastigote stage where T. brucei meiosis is thought 

to take place (Gibson and Whittington, 1993; Gibson and Bailey, 2003); MSH5, though not 

MSH4, RNA was detectable by northern blot in pro eye lie form and bloodstream stage 

cells. Attempts to make genetic knockouts o f these genes in bloodstream stage cells were 

not successful, in contrast to other organisms (Ross-Macdonald and Roeder, 1994; 

Hollingsworth et al., 1995; Zalevsky et al., 1999; Edelmann et al., 1999; de Vries et al., 

1999b). Integration o f an ectopic copy of the MSH4 or MSH5 into the repetitive tubulin 

array o f Lister 427 bloodstream stage cells lead to an increase in MSH5 mRNA, but MSH4 

RNA remained undetectable, suggesting strong post-transcriptional control for MSH4 in 

this life cycle stage. This introduction o f the ORFs into an ectopic locus had no effect on 

MMR, measured indirectly by MNNG sensitivity, or population doubling time.

MSH4 and MSH5 are suggested to be part o f a functional meiotic machinery in T. brucei. 

The genomes o f the three sequenced kinetoplastids have retained a number of factors 

involved in different stages o f meiosis (see table 4.1). An inventory o f meiotic genes 

(Villeneuve and Hillers, 2001) in the yeast Candida albicans (Tzung et al., 2001) validated
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this bioinformatic approach when evidence of meiotic recombination was found in this 

organism (which had previously been thought not to have a sexual cycle; (Tavanti et aL, 

2004). The retention of meiotic genes in the kinetoplastids and in the protist pathogen 

Giardia intestinalis (Ramesh et aL, 2005) points to an ancient origin for the meiotic 

process. G. intestinalis is thought to have adopted the strategy o f facultative sex (Dacks 

and Roger, 1999), with long periods o f asexual reproduction punctuated by sexual 

exchange. Whether or not the same strategy is used in the kinetoplastids is unclear. 

However, conseiwation o f meiotic factors in all three kinetoplastids may argue against a 

non-meiotic mechanism o f genetic exchangein T. cruzi, as suggested by Gaunt et al. 

(Gaunt et aL, 2003), and raises the question o f whether or not L. major is capable o f  

meiosis.

MSH4 and MSH5 are two of many possible meiotic factors found in the T. brucei genome. 

The only other one to have been characterised is the RAD51 homologue DM C l, which can 

be found in T. brucei, T. cruzi and L. major (Proudfoot and McCulloch, 2006). Like 

MSH5, T. brucei D M C l expression can be detected in bloodstream stage tiypanosomes by 

northern analysis (see figure 4.17). This is in contradiction to observations in other 

organisms, where expression o f D M C l is limited to meiotic cells and tissues, although it is 

not known whether the presence o f RNA corresponds to the presence o f mature protein in 

either case. However, disruption o f the D M C l ORF had no effect on MMS sensitivity, 

transformation efficiency or VSG switching (Proudfoot and McCulloch, 2006). While 

these findings cannot conclusively show meiotic function, this analysis also does not 

disprove the hypothesis o f meiotic recombination in T. brucei. Further analysis looking at 

the putative meiotic life cycle stage o f T. brucei is necessaiy to understand the importance 

of the individual meiotic factors discussed above. Disruption o f these genes followed by 

analysis o f genetic exchange in the tsetse fly using drug resistance and fluorescence 

markers as described by the Gibson group (Single et aL, 2001; Gibson and Bailey, 2003) 

would perhaps provide a clearer picture, although the non-essential nature o f T. brucei 

genetic exchange would complicate analysis.

All three kinetoplastids appear to encode two copies o f SPO IL  Although most organisms 

have a single copy o f this gene (Grelon et aL, 2001), this situation is not unprecedented; in 

A. thaliana there are three SPOl 1 orthologues (Grelon et aL, 2001). These are as different 

to each other as to SP O ll in other organisms (Hartung and Puchta, 2000), implying that 

they did not arise from a recent duplication. Both SPOl 1-1 and SPOl 1-2 are expressed in 

somatic tissues (SPOl 1-1 in an unusually high number of isoforms; (Hartung and Puchta, 

2000). Deletion o f SPO l 1-1 leads to a large reduction in meiotic recombination (Grelon et
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al., 2001), meaning that the three proteins are not redundant with each other; SPOl 1-2 and 

SPOl 1-3 have been suggested to be involved in recombination in non-meiotic organs 

(Grelon et al., 2001). In the kinetoplastids, it is tempting to speculate that the presence o f  

two S P O ll  copies could have allowed similar functional diversification. For example, 

could one o f the SPOll  proteins be involved in the creation of DSBs at the initiation stages 

of VSG switching? Although its presence in T. cruzi and L. major argue against this, 

experimental analysis is needed to address this question.

The sequence o f MSH2 and RAD51 from different T. brucei strains and subspecies was 

studied, and veiy low levels o f divergence were found. This is in contrast to T, cruzi, 

where five polymorphisms were found at the amino acid level in the ATPase domain 

alone; these polymorphisms have been proposed to modulate MMR function in the same 

way as bacterial mutator strains (Augusto-Pinto et al., 2003). Despite this, differences 

were found between strains to the drugs MNNG, H2 O2 and MMS. This could be due to 

differences in MMR, another DNA repair pathway, or drug uptake. MMR proteins have 

been linked to the ATR kinase pathway and apoptotic response to allcylation damage of  

mammalian DNA (Li, 1999; Yoshioka et al., 2006). MMR proteins are thought to act 

upstream o f the ATR kinase (Wang and Qin, 2003), leading to activation o f a number of  

downstream targets. Both MutS and MutL homologues are required for apoptosis 

induction following MNNG treatment in human cells (Stojic et al., 2004b). The roles o f T. 

brucei MMR proteins in damage sensing and cell cycle control (Stojic et al., 2004a) need 

to be examined in more detail in order to understand their wider roles in cellular 

metabolism, in addition to the more classical MMR functions that have been the subject o f  

this thesis.
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A p p e n d i c e s

A ppend ix  1. O ligu nuc leo tide  p rim er s e q u e n c e s  u s e d  fo r  

PCR.

MSH4-7 ccactgtgataaagtgcg
MSH4-8 tattttattgaggcgcgccaccc
MSH4-9 gcgtcgcaaatattgttcgg
MSH4-10 ttgctgacaaggtagttgcgg
MSH4-11 aataggggttgaacacgc
MSH4-3T cccccggatccttgagaggtatcgtcgaggg
MSH4-3'2 cccccctcgagcctctccaaacaaaagtgcc
MSH4-5'1 ccccctctagatctg c±ttta gcttcttccc
MSH4-5'2 cccccggatcccatctgcggttgcaaaaggg
MSH5-1 tgtgtggtttgtaaaggggc
MSH5-2 ctctcttcacattagccc
MSH5-3 aatgcaacaaaagcgctgcg
MSH5-4 actaatcttcgacgctccc
MSH5-5 acgcacaaagtagtgtaccc
MSH5-6 a_tggg.agtggaaaatcgg
MSH5-7 aaatgttcgcagagaagcc
MSH5-8 aagcgaacgacatgaatcgg
MSH5-9 acttcgagagcattttgccc
MSH5-10 aacaccgattttccactccc
MSH5-3'! cccccggatccgtgagtgtgtttgaataccg
MSH5-3'2 cccccctcgaggatgtcgttatgcatcaccc
MSH5-5'! ccccctctagatcggaaacaacactgcaccg
MSH5-5'2 cccccggatccaaccttcgtccataaagccc
MSH2 ATPase 5 cacccccttgttgaactgcggcagcc
MSH2_ATPase_3 cgccacgtacaatccgtagctgcg
MSH2mlddle-l cgctgtactacgggtatggg
MSH2middle-2 ccttcacaagattctgacgc
MSH2middIe-3 cgtcagaatcttgtgaaggc
MSH2mlddie-4 ctgccgcagttcaacaaggg
MSH4overexp3'Miu ccccccacgcgttcactcagtagaggaaccg
MSH4overexp5'Mlu ccccccacgcgtatgcgcaacaatttcccg
MSH5overexp3'Mlu cccccacgcgttcaaacacactcactgg
MSHSoverexpS'Mlu ccccacgcgtatggacgaaggtttggatg
PoII-3 catgcgcctgtggttcagcatagc
PolI-5 caggaggatcgttcggcaccttggc
PLC-G caacgacgttggaagagtgtgaac
PLC-H3 ccactgacctttcatttgatcgctttc
RadSlBamHI ccggatccatgcagcagcaagttggtga
Rad51-U3 tttccaagatgcatctgccg
SL gtttctgtactatattg
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20bp-5'-0% ggtcaatacactacatggcg
2 0 b p -5 '-ll% ggtcgatacactacatggcg
20bp-3'-0% tgatacacatggggatcagc
2 0 b p -3 '-ll% tgatgcacatagggatcagc
50bp-5'-0% cccattcggaccgcaagg
50bp"5’- l l % cccatccggaccgtaagg
50bp-3'-0% gtcgtccatcacagtttgcc
50bp-3'“l l % gtcgcccatcgcggtttgcc
100bp-5'-0% aggccatggatgcgatcgc
10 0 b p -5 '-ll% aggccctggatgcgaccgc
100bp-3'-0% cccaaagcatcagctcatcg
1 0 0 b p -3 '-ll% cccaaggcgtcagctcgccg
150bp-5'-0% gcaagacctgcctgaaaccg
1 5 0 b p -5 '-ll% gcaagacctgcctgagaccg
150bp-3'-0% ttgttggagccgaaatccgc
1 5 0 b p -3 '-ll% ttgctggagccggagtccgc
200bp-5'-0% gcgagagcctgacctattgc
200bp“5'“l l % gcgagggcccgacctactgc
200bp-3'-0% ctcgctccagtcaatgaccg
20 0 b p -5 '-ll% ctcgccccagccagcggccg
Act 3' BamHI ccggatcctattttatggcagcaacgagacc
pa 5' BamHI ccggatcctgggtcccattgtttgcctc
patubulin5'-3' gccccgacaacttcatctttgga
patubuiin3'-5' tttcgcatcgaacatctgctgcg
Ble-PstI ccctgcagaattcatggccaagttgaccagtgcc
Ble-SphI cccgtacgatatctcagtcctgctcctcggcc
Hyg3' ctattcctttgccctcggac
Hygs- atgaaaaagcctgaactcacc
Hygprobe-3' tcaagcacttccggaatcgg
JS2-A gattggcgcaacaactttcacatacg
JS2-B ctttcttccttggccattgttttactat
MIdbleo tccagaactcgaccgc
M R E ll probe-5' ccctcgatagggtgaagggatgtg
MREllprobe-3' gccgttaagacagatcaagatgag
MSH4-1 atgcgcaacaatttcccg
MSH4-2 ctggtaaaagtttgcgcgc
MSH4-3 aatgcaatcaccacaccc
MSH4-4 tacatggaagtgtcaaggc
MSH4-5 actgcatcgatacaacgc
MSH4-6 ggaagaaatatgcgcgg
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A p pen d ix  2. A c c e s s io n  n u m b e rs  o f g e n e s  an d  p ro te in s  

u s e d  du ring  h o m o io g y  a n d  p h y io g en e tic  a n a iy s is .

P rote in Species Accession n u m b er
MutSl E s c h e r ic h ia  c o ii AAL33627
MutSl T h e rm u s  a q u a tic u s QS6215
MutS2 H a e m o p h ilu s  d u c r e y i AAP6731
MutS2 H e iic o b a c te r  p y io r i 024338
MSH2 A r a b id o p s is  th a iia n a AAB81282
MSH2 C a e n o r h a b id itis  e ie g a n s AAC78226
MSH2 H o m o  s a p ie n s NP 000242
MSH2 L e ish m a n ia  m a jo r CA305982
MSH2 M u s m u s c u iu s NP 032654
MSH2 S a c c h a r o m y c e s  c e r e v is ia e CAA99102
MSH2 T r y p a n o s o m a  b r u c e i AAK08648
MSH2 T r y p a n o s o m a  c r u z i AAM1471
MSH3 A r a b id o p s is  th a iia n a NP 194284
MSH3 C a e n o r h a b id itis  e ie g a n s AAA80443
MSH3 H o m o  s a p ie n s AAB47281
MSH3 L e is h m a n ia  m a jo r CAJ03372
MSH3 M u s m u s c u iu s AAH40784
MSH3 S a c c h a r o m y c e s  c e r e v is ia e CAA42247
MSH3 T r y p a n o s o m a  b r u c e i CAJ03372
MSH3 T r y p a n o s o m a  c r u z i XP 820278
MSH4 A r a b id o p s is  th a iia n a NP 193469
Him-14 C a e n o r h a b id itis  e ie g a n s Q23405
MSH4 H o m o  s a p ie n s AAB72039
MSH4 L e ish m a n ia  m a jo r CA304376
MSH4 M u s m u s c u iu s NP_114076
MSH4 S a c c h a r o m y c e s  c e r e v is ia e NP„116652
MSH4 T r y p a n o s o m a  b r u c e i XP„822385
MSH4 T r y p a n o s o m a  c r u z i XP 815283
MSH5 C a e n o r h a b id itis  e ie g a n s Q19272
MSH5 H o m o  s a p ie n s BAB63375
MSH5 L e ish m a n ia  m a jo r XP 847837
MSH5 M u s m u s c u iu s AAL14462
MSH5 S a c c h a r o m y c e s  c e r e v is ia e CAA66337
MSH5 T r y p a n o s o m a  b r u c e i XP 825491
MSH5 T r y p a n o s o m a  c r u z i XP„809831
MSH6-1 A r a b id o p s is  th a iia n a 004716
MSH6 C a e n o r h a b id itis  e ie g a n s AAK95890
MSH6 H o m o  s a p ie n s AAK21215
MSH8 L e ish m a n ia  m a jo r CAJ09151
MSH6 M u s m u s c u iu s AAB88445
MSH6 S a c c h a r o m y c e s  c e r e v is ia e NP 010382
MSH8 T r y p a n o s o m a  b r u c e i XP 822883
MSH6 T r y p a n o s o m a  c r u z i XP 821503
MSH6-2 A r a b id o p s is  th a iia n a AAM13399
G ene Species Accession n u m b e r
MSH4 T r y p a n o s o m a  b r u c e i XM 817292
MSH5 T r y p a n o s o m a  b r u c e i AAX79333
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A ppend ix  3. The g e n e  s e q u e n c e  for MSH4. P r im ers  u s e d  

for s e q u e n c in g  an d  am plification  o f ta rg e tin g  fiank s  a re  

sh o w n  in pink.

.10  .2 0  .  30 .40  .50  .60  .30  .6 0  .0 0  .1 0 0  .110
c l t c t t c c g l o t c a t c a t t t a c t t l t t t g t t t c c c g t g c g c t c t t o c t a c a c a g c c c c t t c t a c c o a c t a g c a t a c t c a a g c c g g c c g o c c a g a a g t g a a c t g a t g a g a o
g a a g a a g g c a t a g t a g t a a a t g a a a a a a c a a a g g g c a c g c g a g a a t g a t g t g t c g g g g a a g a t g g t t g a t c g l a t g a g t t c g g c c g g c l g g t c t t c a c t t g a c l a c t c t i

.120  .1 3 0  .140  .150  .160  .170  .180  . '9 0  M S H 4 - 5 T .2 O 0  .210  .220
g t t t g g g g c g g a a c t a a l a g a a a a a g t a a a g a a t g g a a a a a t t g a l c a a l g t t a l a t a t g a a c a l g a g t l a a a a g a a g a c g a a a a V c q a a g a a g g g t a a q g c t  c t g  t g a c  
c a a a c c c c g c c t t g a t t a l c t t t t t c a t l t c t t a c c t l t t t a a c l a g t l a c a a l a t a t a c l t g t a c t c a a t t t c c i  l l c l g c t t l t a g c l t e t t c c q a  t t c c g a g a c a c l g

.230  .2 4 0  .250  .260  .270  .280 .290  .  300 .  310 .  320 .  330
I t g c g c a a a t g l t g t t c c c a g a c c c c t t a a c g a c g t t c g t g c t t t c a t c c c t t g a c c g c a t a t a c c c l l c t t c a a t a a c a a a t a c c c t a c a t a c g a c g c c g c t g a c a a g c  
a a c g c g t t l a c a a c a a g g g t c t g g g g a a l t g c t g c a a g c a c g a a a g l a g g g a a c t g g c g t a t a t g g g a a g a a g t l a t t g M t a t g g g a l g t a l g c t g c g g c g a c t g t t c g

.340  .  350 .  360 .370  .380  .390 .400 .  410 .4 2 0  . 430 .440
g g c a t t g g t c a a g c a l g g l t a c a a a g c a a a g g g a a g a a c a a a a a a a t a a g c c t g l g g c g t c a a t c t g t t t a t a t c g c a t a a g c g c g c g c g c a c a a a a g t t g t t t c t t c t c
c c g t a a c c a g t t c g t a c c a a t g t t t c g l t t c c c t t c t t g t l t t t t t a l l c g g a c a c c g c a g t t a g a o a a a t a t a g c g t a l t c g c g c g c g c g t g t t l t c a a c a a a g a a g a g

.450  .460 470 M S H 4 - 5 ' 2 4 gp  .400  .500  M S H 4 - 1  .510 .520  .5 3 0  .5 4 9  .550
c g g c c l c g c t  t l I c g c g c l t c t g g i d g g q a a a a c q l t q q c g l c t a c B t c  t e g  t c c c a c c c t a c a c a l t a t l a a a a a a c t a a a a o a a c a t c a t g l t c g a a c c t c a c g c g a l  
g c c g g a g c g a a a a g c g c g a a g a c c a g c c c l t l t g c a a c c g c a g a l g c a g a g c a g g g  I q a ijA TG C G C A A C A A TTTC C C fjA TTCCCTTG CA G TA CA A G CTTG G A G TG CO CTA

( l ) M R N N r P  I P L  O Y K L G V R  Y

.560  .570  .580  .590  .600 .810 .620 . 630 .640  . 650 .  660
g a g g c a g g g g t a g l g a a g l l a c l g a c t g c t g l c g l c c g l t l a c a a g l c a c g g t l g c c a c g c a t a g g l t g g t t a c t c c t g c a c a g a c g a g a t a g l t a c g g a a a c c l t c t g g
c t c c g t c c c c a t c a c t t c a a t g a c t g a c g a c a g c a g g c a a a t g t t c a g t g c c a a c g g t g c g t a t c c a a c c a a t g a g g a c g t g t c t g c t c t a t c a a t g c c t t t g g a a g a c c

S V ' P ' I  T S  M T D D S  R O M F ' S ' A ' N  G ' A  Y ' P  T N E ' D  V S ' A ' L ' S  M P  L ' E  CI '

.670 .680  .600  .  700 .710  .720  .  730 . 740 .  750 .  760 . 770
g c g t g a g c l c c c c g l t g a a g a a g t g t c t a c g c a g a c g c g g t c g a c g c c g g t t g g a g a a a t l a c a c a a c t g t g g t t g t c g c g t c g t c t g t g t t g c a a a c g c c c c g c a c c c a  
CGCACTCGAGGGGCAACTTCTTCACAGATGCGTCTGCGCCAGCTGCGGCCAACCTCTTTAATGTGTTGACACCAACAGCGCAGCAGACACAACGTTTGCGGGGCGTGGGT 
P H S  R G N F F ' T  O A S  A P  A A A N L F N V L T P  T A O O  T Q R L R G  V G '

760 M S H 4 - 2  70(1_____________ .800  .810  .820 .830 .840 .  850  860 M S H 4 - 3  M p .680
g c g c c l a g g l l c g c g c g t t t g a a a a t g g t ^ t t g t c g l c g g c c g t g a a a t t g a q a g a q t t q t c g c t c t q c a t q q c c g t g c t c a g t  c | c c c a c a c c a c t a a c g t a a | t  a c c g  t g a  
C G C G G A TC C A G CG CG CA A A CTTTTA CCA G A A CA G CA G CCG G CA CTTTA A CTCTCTCA A CA G CG A G A CG TA CCG G CA CG A G TCA G G G G TG TG G TG A tT6cA TTA TG G CA CT 

R G S  S  A Q  T F T R T A A G  T L T L S  T A R R T G T S  Q  G  C G  D C  I M A L

.890  .900  .910  .920 .930  .940  .950  . 960 .9 7 0  .  980 .990
t t a g c l g t t g g c a c g g c c g c t c c a a c c c c g a c g c t a a a c g g t t a a c g g g a g t g a c t g g t a a t a g t a g t g c g t c a t a c c g c t g t c g c a c t g c a t g c g c t t l t g c a a c a g g a  
A A TC G A C A ACCGTGCCGGCGAGGTTGGGGCTGCGATTTGCCAATTGCCCTCACTGACCATTATCATCACGCAGTATGGCGACAGCGTGACGTACGCGAAAACGTTGTCCT 

I D N R A G  E V G A A I C  Q  L P  S  L T I I I T O  Y G D S  V T Y A K T L S

.1000  .1010  .1020  .1030  .1040  .1050 .1060 .1070  .1080  .1090  .1100
a g t a g a a a a g a g c a c c a g g g c g g c l c g a c g a a c a g g g a c t c t g c c a a c a a c c t t c g t t a a a a c a i g i c l g l g a a g a c t c c g l a a a g n g c i g l g t t g t t a g t g c c c g c a c  
TC A TC TTTTC TC G TG G TC C C G C C G A G C TG CTTG TCCCTG A G A CG G TTG TTG G A A G CA A TTTTG TA CA G A CA CTTCTG A G G CA TTTCA A CG A CA CA A CA A TCA CG G G CG TG  
F I F S R G P A E L  L V P ' E T V V G ' S N F V ' O T L L R H F N D T T ' I T G ' V '

.1110  .1120  .1130 .1140  .1150  .1160  .1170  .1180 .1190 .1200 .1210
g t c g c c g c g a g c a a a c t a c t c c g c g t t c c t c g g g t a g c c g a c a a c c t t g a g l a c a g a t g c c t a c t c c g c c g g g a g c t c c a c t c g l t a t g g c l g g c g a t g g a g a c g g a a c g  
C A G CGGCGCTCXSTTTGATGAGGCGCAAGGAGCCCATCGGCTGTTGGAACTCATGTCTACGGATGAGGCGGCCCTCGAGGTGAGCAATACCGACCGCTACCTCTGCCTTGC 

Q  R R S  F O E A Q  G  A H R  L L E L M S  T D E A A L E V S  N T D R Y L O L A

.1220  .1230  .1240 .1250  .1260  .1270  .1280  .1290 .1300 .1310  M S H 4 - 4 .1 3 2 0
g c g g c g g t l g c g t g a g c a a c t c a a g a a c c t t t a c t g l a t g t t g a t g t g g g a c g a a g g a g t g t g c c a c g c a c a c t t c a t g a a c c g a g a c c l c i t  q a t g t a c c t  I c a c a q I  I 
CGCCGCCAACGCACTCGTTGA G TTCTTG G A A A TG A CA TA CA A CTA CA CCCTG CTTCCTCA CA CG G TG CG TG TG A A G TA CTTG G CTCTG G A G A A CtTACATGGAAGTGTCAA 

A A N A L V E F L E M T Y N Y T L L P  H T V R V K Y L A L E N Y 7/ E V S

.1330  .1340  .1350  .1380  .1370  .1380  .1390 .1400  .1413 .1420  .1430
c c q a a a o l c g c g c c c g c g a t t t g t a g t a a c g t l g a c c t  t g g c I g g t a g a a c g g l c c a a g g g g t l g g t c t t c a a t c t g t l c c t c t g t l g a c t t c l c t c a c a g t t c t g g c c a  
G GCTCTCAGCGCGGGCGCTAAACATCATTGCAACTGGAACCGACCATCTTGCCAGGTTCCCCAACCAGAAGTTAGACAAGGAGACAACTGAAGAGAGTGTCAAGACCGGT 
R L S  A R A L N I I A T G T D H L A R F P  N Q  K L D K E T T E E S  V K T G '

.1440  .1450  .1460 .1470  .1480  .1490  .1500  .1510  .1520 .1530  .1540
I t g t c t t t c g g t g g c c a c g c g t t l t g t  g a g a a g g c a a g c a g t g c a c  t c a a c  1 1 1 1 1 1  c l g c g  I g a g a a a c a  t g g I g a a c g t  t g a c g a c a a l t g a l g l g l t a t l g c c g a c a  
A A CA G A A A G CCA CCG G TG CG CA A A A CACTCTTCCGTTCGTCACGTGAGTTGAAAAAAGACGCACTCTTTGTACCACTTGCAACTGCTGTTAACTACACAATAACC3GCTGT 

N R K P  P  V R K T L F R S ' S  R E L K K D A L F V P  L A T A ' V  N Y T I T A V

.1550  .1560  .1570 .1580 .1590 .1800  .1610 .1620  .1630 .1640 .1650
a c c g g c g g c a a a I g a g g c g a g g I g c c a t g a c g I I g g l a a c g c a c t a g g g t g c t c g t a g c t c a a c g c g a l a c t a c g c c a c c t c a c c g a g a c g t c t c t g t l g c l I c g g g a g c  
TGGCCGCCX3TTTACTCCGCTCCACGGTACTGCAACCATTGCGTGATCCCACGAGCATCGAGTTGCGCTATGATGCGGTGGAGTGGCTCTGCAGAGACAACGAAGCCCTCX3 

G  R R L L R S  T V L Q  P  L R O P  T S  l E L R Y D A V E W L C  R D N E A L

.1660  .1670  .1680 .1690 .1700  .1710  .1720  .1730 .1740 .1750   J.760
g g c g g t a t g c l g c g a g l g a c g c c a a t g a c l g g c c a c t a c t a a a c c l c g c g c a g t a l a g t l t a a a a a g l g t g t g t g g a t t c a a t c g t l g a g a g l t t i g t  t a c g t l c q c a a c a  
CCGCCATACGACGCTCACTGCX3GTTACTGACCGGTGATGATTTGGAGCGCGTCATATCAAATTTTTCACACACACCTAAGTTAGCAACTCTCAAAACAATGCAGCGTTGT 
A A I R R S  L R L ' L  T G  D D ' L  E R V I S  N F S  M T P  K L A T L K T M Q  R C '

M S H 4 - 5  ,T7Q .1780  .1790  .1800 .1610  .1620  .1830  .1840  .1850 .I8 6 0  .1870
F i g c T i c g T c i b c a c  t g c g a c a c c g  1 1 a a a g a a g c a c g g I g t l g g g t l g a t g a c a l g t g c a a c g c g c c c a a c g a g t c a t l t c c g c c l t g c c c g t t a c g l q g t c t l t c o c l  
A T c GATGc X C T c g t g a c g c t g t g g c a a t t t c t t c g t g c c a c a a c c c a a c t a c t g t a c a c g t t g c g c g g g t t g c t c a g t a a a g g c g g a a c g g g c a a t g c a c c a g a a a g c g a

I D A V V T L VO Q  F L R A T T Q  L L Y T L R G  L L S  K G  G  T G  N A P  E S  E

.1880  .1890  .1900 .1910 .1920  .1930  .1940  .1950  .1980 .1970  .1960
c c l c a c a c l g c t g c a c c c c c t g g l g a g a t t a g a g l c g a g a c l g c c a c a a c l g a c g t c g a t a c t l t c g g t t c a c c t t g a g g l g c t t t c c c t l c c c c a c t a c c M t t t c l l t  
g g a g t g t g a c g a c g t g g g g g a c c a c t c t a a t c t c a g c t c t g a c g g t g t t g a c t g c a g c t a t g a a a g c c a a g t g g a a c t c c a c g a a a g g g a a g g g g t g a t g g a a a a a g a a a  

E C D D V G  D H S  N L S  S D ' G  V D C S  Y E S  Q V E L H E  R E G V V  E K E

.1990  .2000  .2010 . 2020 .2030  .2040  .2050 .2060 . 2070 .2080  .2090
l a a a a g t g a c c g g g c a a g g c g g t g c t i c g a g g a a I a c g ( c a  t g g a g g c l c c c a g t g g c a t t l g g a g g g t a c a a c a a c g c a t l t g a t g a g g t c l g a g a c l g a t g t a c a g t g  
a t t t t c a c t g g c c c g t t c c g c c a c g a a g c t c c t t a t g c a g t a c c t c c g a g g g t c a c c g t a a a c c t c c c a t g t t g t t g c g t a a a c t a c t c x a g a c t c t g a c t a c a t g t c a c
N F H 1 A  P  V P  P  R S  S  L C  S  T S  E G  H R K P  P  M L L R K L L Q T L T T C H

.2100  M S H 4  - 6  .2110  .2120 . 2130 .2140  .2150 .2160 .2170  . 2180 .2190  .2200
I a c c l l c l t l a t a c q c q c c l c t a g c g g g t g a l a g a g c l a c t t l c a c a a c a a g l a c a a t g t c c a c c c c t g c c a c g c t c g c a t c c c g c c g c c g g t g c t g c g t g a c c a c c a c g  
ATt3GAAGAAATATGCGCX5GAG A TCG CCCA CTA TCTCGATGAAAGTGTTGTTCATGTTACAGGTGGGGACGGTGCGAGCGTAGGGCGGCGGCCACGACGCACTGGTGGTGC 

N» E E I C  A E I A H Y L D E S  V V H V T G G D G A S  V G  R  R P  R R T G  G  A

.2210  .2220  .2230 . 2240 .2250  .2260  .2270  .2280  . 2290 .2300  .2310
c c a c a a t g t t c a g g t t g t t a c g a a g c g c c a t t t t a g t t t a l a g t t g c c g t g a g a a c l a c g g c g g g c l g t g g t t a l g t c a g l t l g g t a a c l c a g c l a c a a a c g a g t g c g a c
g g t g t t a c a a g t c c a a c a a t g c t t c g c g g t a a a a t c a a a t a t c a a c g g c a c t c t t g a t g c c g c c c g a c a c c a a t a c a g t c a a a c c a t t g a g t c g a t g t t t g c t c a g g c t g

V ' L  Q  V Q  Q  C F A V K S  N ' I  N G  T L D A A R H Q  Y S  Q  T I E S 7/ F A H A

2 4 2



.2320 .2330 .2340 ,2350 . 2360 .2370 . 2380 .2390 , 2400 .  2410 .2420
t t t c a a a c t l c g t c g t c a l g c c c c a a c c c a g c g a a g c g c a g c a c a t g c t g c c g c a a g c a c c c a t g g t a a a c a c a a t g c t g a g c g c c g l a c t c g c a l l a c g t g g g c t a a g t  
AA A G TTTG A A G CAGCAGTACGGGGTTGGGTCGCTTCGCGTCGTGTACGACGGCGTTCGTGGGTACCATTTGTGTTACGACTCGCGGCATGAGCGTAATGCACCCGATTCA 
E S  L K Q  Q Y G V ' G  S  L R V V Y D G  V R G Y H L C  Y D S  R  H E R N A P  D S ’

.2430 .2440 .2450___________ 2480 M S H 4 -7  .2480 .2480 .2500 . 2510 .2520 .2530
l a g a a g g a l g l c l t t a t a a g a c c a c c g t t  t a  I q a  ll o c a  I a a a a  I a o  I a  t c a c  d a q c  I e g g  I a c  1 a c c  I a c a a c  i q c a q c c c c c a t  I a q a a g  I a c c a c  I q a g a q  t I g t c g l  

a t c t t c c t a c a g a a a t a t t c t g g t g g c a a a c a c t a c g c a c t t t a t c a c a g t g g t c g a g c c a t g a t g g a t g t t g a c g t c g g g g g t g a t c t t c a t g g t g a c t c t c a a c a g c a
I F L O K Y S  G  G  K H Y A ' L ' Y  H S  G  R A M M D V D V G  G  D ' L  H G  D S  O  Q  Q

.2540 .2550 .2560 . 2570 .2580 .2590 .2800 .2810 . 2820 .  2830 .2840
c  I c  t g g c g g t a a g a  t g c c g a g g a g c c a g a a t g l a c a a c  t i t g t g g c c t c g g t a a c t  t g  t g a c g g c g a g I c g c g c g a c g c c a c I g g I t t g l g g t t c a c g c c c c l t c t g c t c  
GAGACCGCCATTCTACGGCTCCTGGGTCTTACATGTTGAAACACCGGAGCCATTGAACACTGCCGCTCAGCGGGCTGCGGTGACCAAACACCAAGTGCGGGGAAGACGAG 

R P  P  F Y G  S  S  V L H V E T ' P  E P  L N T A A Q R A A V T K ' H  Q V R G  R R

.2650 .2660 . 2870 . 2880 . 2690 .2700 .2710 .2720 . 2730 .  2740 .2750
a a l g t a c g l g t t g t l t t c t c t a c g a a g a l g a c g c g g c a c c a c g a c t a c t a c a a c a g c g a c t c t a a g a g g t a t g c g t t t t g c c c c a a c a c g t g g c g g a g t a a c l c a t g g a a  
TTACATGCACAACAAAAGA G A TG CTTCTA CTG CG CCG TG G TG CTG A TG A TG TTG TCG CTG A G A TTCTCCA TA CG CA A A A CG G G G TTG TG CA CCG CCTCA TTG A G TA CCTT 
V ‘ T ‘ C T T " K ’ E M ' L  L ' L  R R G ‘ A D D ' V ' V  A ’ E I L ' H  T ‘ Q N ‘ G  V V ‘ H ' R  L I E ' Y  L '

.2760 .2770 .2760 . 2790 .2800 .2810 .2820 .2830 . 2840 .2850 .2860
g c t g t c g c g g a a c c c t t c a a c g t c c g c c a a a c a c l a c c c c a g c g a l a c a a c c  t a g a a g a  t t a g c g a a a a c g g l g c a t a a g c g c a g a c i I a c g g a c a c a c g c c g g I I g t c a  
C G A C A G C G C C TTG G G A A G TTG CA G G CG G TTTG TG A TG G G G TCG CTA TG TTG G A TCTTCTA A TCG CTTTTG CCA CG TA TTCG CG TCTG A A TG CCTG TG TG CG G CCA A CA G T 

R Q R L G  K L Q  A V C D G  V A M L D L L I A F A T Y S  R L N A C V R P  T V

.2870 .2880 .2890 . 2900 M S H 4 -8  . 2910 .2920 .2930 .2940 . 2950 .2980 .2970
t g a c g c t g t t c c c t g a a g a a a g t  t q t e a  1 c a c c a t q a a t a a a a 1 a a c 1 c c a c q c o a t q q q a c c a c c t g a g a a g t g t c g g t t a l g g c a l g l t a c c t c a c t g g c c t g t t t a c  
ACTGCGACAAGGGACT TC T T  TCAACAGTAGTGGTACd T A T  T TTA T TG A G G CG CG CCA CCCrGGTGGACTCTTCACAGCCAATACCGTACAATGGAGTGACCGGACAAATG 

L R O  G T S  F N S  S  G  T Y F I E A R H P  G  G  L F T A N T V Q VA S  D R T N

.2980 .2990 .3000 . 3010 . 3020 .3030 . 3040 .3050 . 3080 .3070 .3080
a c g a c g a t g a c t g c c c g g g g t  t a c g  t a g g c c I  1 1 I I g a t g c a a c a a c t c c g t c c a a c c c g t c a a c t a a c g a g a a c g c g l c l c g c c g a c g a a a c a g g g c c g t g c c c t I  e g g
t g c t g c t a c t g a c g g g c c c c a a t g c a t c c g g a a a a a c t a c g t t g t t g a g g c a g g t t g g g c a g t t g a t t g c t c t t g c g c a g a g c g g c t g c t t t g t c c c g g c a c g g g a a g c c
V L L L T G P  N A S  G K T T L L R Q  V G  Q  L I A L A Q ' S  G C F V P  A R E A

.3090 . 3100 .3110 . 3120 . 3130 .3140 .3150 .3160 . 3170 .  3180 . 3190
c g g t a g g t t g g c a c a c t g g c t l a a t a t c g t g t a l a c g a g a c a c l a c t a a a c c t c c t g c g t c g g t g c a g c a g c a a a c g t t c c c t c t a c g c c c t t g a c a g c a t a g a a a c g t a  
GCCATCCAACCGTGTGACCGAATTATAGCACATATG CTCTG TG A TG A TTTG G A G G A CG CA G CCA CG TCG TCG TTTG CA A G G G A G A TG CG G G A A CTG TCG TA TCTTTG CA T 

A I Q  P  C  D R I I A H M L C D D L E D A A T S S  F A R E M R ' E  L S  Y L C  M

.3200 .3210 . 3220 . 3230 . 3240 .3250 . 3260 .3270 . 3280 . 3290 .3300
c I t g c g g I g 1 1 c c c 1 1  I c a c a t c a t g a g c a c c l a c l t g a c c c c g c g g c a t g t c g c c g c g c a c l t c c g l a c c g g t a a c g c a c c c g c t g l c a a c l c a a a g a t c a c c t c t t c g  
GAACGCCACAAGGGAAAGTGTAGTACTCGTGGATGAACTGGGGCGCCX3TACAGCGGCGCGTGAAGGCATGGCCATTGCGTGGGCGACAGTTGAGTTTCTAGTGGAGAAGC 

N A T R E S ' V  V L V D E L G ' R  R T A A R E G  M A I A YV A T V E F L V E K

-3310 M S H 4 -9  . 3320 .3330 . 3340 .3350 .3360 .3370 .3380 . 3390 .  3400 .3410
c a a d g g c  t t g t  i a  t a a a c g c  t g T g lt g a  l a t c g g c c a a c t g c g c g g a a c t t c t c c c g t g a c g a c c a c g c c a l t t c t t a c a c g t g a a a c a c c a c c g a c a g c l t c t g c c g c g g
g t t g c c g a a c a a t a t t t g c g a c g c a c t a t a g c c x s g t t g a c g c g c c t t g a a g a g g g c a c t g c t g g t g c g g t a a a g a a t g t g c a c t t t g t g g t g g c t g t g g a a g a c g g c g c c
R C R T l F A T H Y S  R L T R L E E G  T A G  A V K N V H F V V A V E D G A

.3420 . 3430 . 3440 . 3450 . 3460 .3470 . 3480 .3490 . 3500 .3510 .3520
c c a c c a t c g l a g g g g c a t c c c c t a c t g c c t t a c c a c c a c g a c c a c c c g c c t t g a c g a g g a g a a t g a l t a c a a c t t l c g c c t a g l t t c g g t c g t t c g t l c t t c a g c a c g t g
g g t g g t a g c a t c c c c g t a g g g g a t g a c g g a a t g g t g g t g c t g g t g g g c g g a a c t g c t c c t c t t a c t a a t g t t g a a a g c g g a t c a a a g c c a g c a a g c a a g a a g t c g t g c a c

G G S  I P  V G  D D G M V V L V G G  T A P  L T N V E S  G  S  K P  A S  K K S  C  T

.3530 .3540 .3550 . 3580 .  3570 .3580 . 3590 .3600 . 3610 .3620 .3630
a g a g g c a a a g c l l a t g g c a g a c g t  t g g g c c a g g a a g c g t a c a c c t a a c g a t g e e  I a a c g c c g a a c g g a g g g c g c a a c c g a a g a t g c g a g g a c g c g a g I t c a a c c g c a c c c  
TCTCCG TTTCG A A TA CCG TCTG CA A CCCG G TCCTTCG CA TG TG G A TTG C TA C G G A TTG C G G C TTG C C TC C C G C G TTG G C TTC TA C G C TC C TG C G C TC A A G TTG G C G TG G G  

L R F E Y R  L Q  P  G  P  S  H V D C  Y G  L R L A S  R V G  F Y A P  A L K L A 1 A

.3640 .3650 .3860 .3870 .3680 .3690 .3700 .3710 .3720 .3730 .3740
I t g a c a a I g g g g a g  t a a c c c c c  t t c c c t t c c g c c a t c c t c a g t a c t t c c a c g t c c a c t g c t c c g c c a t c g t c g c t g a t a a c t a c l l l c g c t M a t t l t I c a a a g g  l a  t e g  
AACTGTTACCCCTCATTGGGGGAAGGGAAGGCGGTAGGAGTCATGAAGGTGCAGGTGACGAGGCGGTAGCAGCGACTATTGATGAAAGCGAAATAAAAAGTTTCCATAGC 
E L L P  L I G G R  E G  G  R S  H E G  A G D E A V A A T I D E S  E I K S  F H S

.3750 . 3780 .3770 M SH 4-1& 3780 . 3790 .3800 .3810 .3620 . 3830 .  3840 .3650
c g a c c 1 1 c g g g l a c a a c a c a a o c a c a a c q a c l q l l c c a l c a a c q c c t a c a c c q q t i l l c g g g g g g a c a a c a a a g a g g 1 1 c a I g c a c g I I g l I I c l c c t c g a t  t c a l a c i a  
GCTG G A A G C C C A TG TTG TG TTC G TdTTG C T G A C A A G G T A G T T G C G dA TG TG G CCA A A A GCCCCCCTGTTGTTTCTCCAAGTACGTGCAACAAAGAGGAGCTAAGTATGAT 

A G S  P  C C V R V A D K V V A D V A K S  P  P  V V S  P  S  T C  N K E E L S  M I

.3860 .3870 .3880 . 3890 .  3600 .3910 .3920 .3930 . 3940 . 3950 .3980
t c c g c c t t t g t c t t a a t c a c c a t t g g t g t c g c t c c l a t a t t c g c a a c g a a g c t t g a g a g c a a c g g a t g c a g t a t g a a c a g a g c t c c c l c c t c g t c a c c t a a a c a g t t t t t  
A G G CG G A A A CA G A A TTA G TG GTAACCACAGCGAGGATATAAGCGTTGCTTCGAACTCTCGTTGCCTACGTCATACTTGTCTCGAGGGAGGAGCAGTGGATTTGTCAAAAA 

G G N R I S  G  N H S  E D I S  V A S  N S R C  L R H T C L E  G G A V D L S  K

.3970 . 3980 .3990 .4000 .4010M SH 4'3 '% 4020 .4030 .4040 . 4050 .40ffiJ__________ .i '7 0
a e a a c q i c q a c a q t q q I a c q c c a a q q a q a t q a c  t c a c t q a q l a a c q a a c t c l c c a t a q c a q c l c c c a c o a a a q q a a a a a a a a a a a a a c c a a c a a t a a a c a i i c q c a c a a a t l  
TG TTG CA G C TG TC A C C A TG C G G TTC C TC TA C TG A G TG A c l e a l  l q « l  I g a q a g q  I a  I c g  I c q a g q q i l q c  l l l c c l l l l l l l l l l l l l g g l l g l l a l l l g l l g c g l g l i c a  
K7 L O  L S  P  C  G  S  S  T E  *

M S H 4 -1 1  .4060 . 4090 .4100 .4110 .4 120  .4130  .4U 0 .4150 .4160 .4170 .4180
t g g g g a I a a k q l a a a c a a a c a c a a I l a a a g c l g a a l a c c l a g l l a c g a l l c t g c l c a c c t l t g l a a l g g l g l g c g a a l g g l a a a c a a a a a a a a a t g c l l a a a g a c g c a g i  
a c c c c l a l l g c a l l t g l l l g l g l l a a l l l c g a c l l a l g g a l c a a l g c l a a g a c g a g l g g a a a c a l l a c c a c a c g c l l a c c a l l l g l l l l l l l l l a c g a a l l l c l g c g t c a

.4190 .4200 .4210 .4220 .4230 .4240 .4250 .4260 .4:70 .4280 .4260
c a l c a c g g l c g c a a a a a l a a t a g l g a a g a a a a c a g g g g t a a g g g l a l l g g c c l t l g a l a a a g a l a a c l a c c c l g l g a c g g g c c c g c t l c a c c a g a l a a a a a a g g a a a a c a  
g l a g l g c c a g c g t l l l l a l t a l c a c l t c l l t l g l c c c c a l l c c c a l a a c c g g a a a c l a l l l c t a l l g a l g g g a c a c l g c c c g g g c g a a g l g g l c l a t l l l l l c c l l t l g l

.4300 .4310 .4320___________ 4 3 3 0 ^ S H 4 -3 '2 , ,^ Q  .4350 .4360 .4370 .4380 .4390 .4400
a a c a q g q i a l q a a q a a a a a l a a a a q a a c q a c c d c c g l g a a a a c a a a c c l c l c c l a c g l a c a c l c a a c a g g a a l c c l c g a g l a l c q c c c i I a a a c g I c g a I a g c a a c g g g I  a  
I t g l c c c a l a c l l c l l l l t a t t t t c l t g c l g g c g g c a c l i t t g l l l g g a g a g g t g c a l g l g a g I t g l c c l t a g g a g c l c a t a g c g g g a a t l l g c a g c l a l c g l l g c c c a l

.4410 .4420 .4430 .4440 .4450 .4460 .4470 .4480 . 4490 .4500 .4510
g g g a g l g a l t g c a a c g l a g g c c l c t l c a a l t g a c g l a g c g c g a c g l c l t c c a c g g c c c c a g l c a c a a c c c c c c c t t t l t l l l l c a g l l l a c a l a g c a a a g  
c c c l c a c l a a c g l  I g c a I c c g g a g a a g t l a a c I g c a I c g c g c I g c a g a a g g I g c c g g g g I c a g I  g I I g g g g g g g a a a a a a a a a g  I c a a a l g l a l c g l I I c

2 4 3



A ppend ix  4. The g e n e  s e q u e n c e  for MSH5, P rim ers  u s e d  

for s e q u e n c in g  a n d  am plification  of ta rg e tin g  f lanks  a re  

sh o w n  in pink.

t c c a c g a a t g t g c g g c g t c g t  t c l a c c a c c l c a t g g c g a g c g t g g a c l g c t  I c g t c c t c c t c c a c t  I c l a a c g g c g g c t  t g c g c t c c t  I l a g  I I c l c c c g c g c g a a t g a c  
a g g t g c l l a c a c g c c g c a g c a a g a l g g l g g a g l a c c g c l c g c a c c l g a c g a a g c a g g a g g a g g l g a a g a l l g c c g c c g a a c g c g a g g a a a l c a a g a g g g c g c g c l l a c l g

.120 .130 .140 .150 M S H 5 -5 T .I6 0  .u o  .100  .190 .200 .210  .=
g c g l c g a g a c c a c g g c c a c c g c l c g l c c a a a c o l a Q c c l i l a l l a l a a c a l o a c c Q l Q c o o a a c l l a l c a c a c c g g c g l l a a l a a l a c a l c l a a a a a a a c a a a c a t c l a c  
c g c a g c l c l g g l g c c g g l g g c g a g c a g g  I c c q c  a l t c  o a a a a  c a a c a c  i Q c a c c q h c a c a c c l c g a a l a g l g l g g c c g c a a l  l a l l a l g i a g a l l t l l l l g l l l g l a g a t g

.230 .240 .250 .250 .270 .200 .  200 .300 .310 . 320 .330
a a a a a a a g a a l a c l l g g l l g g g l a a g a a g a l c l l c a a a a c a g l a l c a a a a a l g a a a a a c l c a a l c a c l a g a a a c g c l c l a a c a a l g a a c a c c c a c c a g c a c g a c a a a c i a  
l l l l l l l c l l a l g a a c c a a c c c a t l c l l c l a g a a g l l l l g l c a l a g l l l l l a c l l l l l g a g l l a g l g a l c l l l g c g a g a t l g l l a c l l g l g g g l g g l c g l g c l g l l l g a l

.340 .  350 300 . 370 .  300 .390 .400 .410 .4 :0  . 430 .440
c c I t c a c a l c l I  I l a c g a a g a a c a a g I g a a g a a a g a c l a c a l a a a a a l c c a c l a l  l a g a g g l g a a a a a a g a c a a l l a c c a a a c c c a a l a c g a a a a a l a c a a a a a a a g a a a  
g g a a g l g t a g a a a a l g c l l c l l g t l c a c l l c l l l c l g a l g l a l l l t l a g g t g a l a a l c l c c a c t l l t l l c l g l l a a l g g t l l g g g l t a l g c l l l l l a t g l l l t t l l c l t l

.450 . 460 .470 .400 MSHS'l .490 ____________ 500 MSH5-57 5 in  .520 .530 . 540 .550
a a a t g a a c l a a c a l a a a a a a a l a a a a l a a g a a a a a a a a c a c a c c a a a c a t t t d c c c a a a a l a c c t o c i I c c a a b c c  t a c l a l a a c o a c i l l l a c l a c a l c a c c a a c l g c a  
l l l a c c l g a c t g t a l l c c l l l a l t l c a l l t l l l l l l  < t a l a l o a H  I a  t a a a a o a a c l l I IATO G A CG A A G G TTTG O A TG A TA TTG CTG A A A A TO A TG TA G TG G TTG A CG T

(1)' M O E G L D D I A E N D V V V D V

.560 .570 .500 . 500 .500 .610 . 620 .530 .640 .  650 .650
a c a c l c a a a c l a a c g c g l a g l l c c c g c g c a a c c a g a a c g a a g a a l a l c g l c g c c a g a a a c a c a a c a c g l g a c a a g l c l c a g c a a a c g c a g l l c c a a a c l a c c g c l a c a a g  
TG T G A G T T T G A T T G C G C A T C A A G G G C G C G TTG G TC TTG C TTC TTA TA G C A G C G G TC TTTG TG TTG TG C A C TG TTC A G A G TC G TTTG C G TC A A G G TTTG A TG G C G A TG TTC  

■ V ' S ' L ' I  A ‘ H ' Q ' G ' R ‘ V ' G ‘ L ' A ’ S ' Y ' S ‘ S ' G  L ' C ' V ' V ' H ‘ C ‘ S ' E ‘ S ' F ‘ A S ' R ’ F ' D ' G  D ' V ‘

.670 .660 .690 .  700 .  710 .720 .  730 .740 .  750 .  750 .  770
g l l a a l l g a g l l g l l a c c l a c a c g g a c c a c l c g a a g a g a c c a a c a a l g t l a l g a a c l g l l a l a c a l l l g g l a g l a g a c a a a a c c a c g g l c g g c g a c c c a g c g l c c a c l a l  
CA A TTA A CTCA A CA A TG G A TG TG CCTG G TG A O CTTCTCTG G TTG TTA C A A TA C TTG A C A A TA TG TA A A C C A TC A TC TG TTTTG G TG C C A G C C G C TG G G TC G C A G G TG A TA  
P I N S ' T  M D V P  G E L ' L  W L L ' Q  Y ' L  T I C K P  S S V L V P  A A G ' S  Q  V I

47.3 MSH5-2 MO
a a c c t a l a a c g a g c c a a c a c g l c g g a g l l g c a l c a l a a a c g a g g l g g g t c a c l g a a g c l a l c g c g g l c c a a c a c c c l a l a g g a g c g g g i  I g a  g  alc T c  g a  l i a  c a c  I I c I c 
TTG G A TA TTG C TC G G TTG TG C A G C C TC A A C G TA G TA TTTG C TCCA CCCA G TG A CTTCG A TA G CG CCA G G TTG TG G G A TA TCCTCG CCCA A CTCTG G G CTA A tG Y G A A G A <b 

L D I A R L C S  L N V V F A P  P  S D F D S  A R L V9 D I L A Q  L W A N V K R

 , .890 . 900 .910 .920 . 930  940 M S H 5 - 3  a a  .900 .970 . 960 .990
I c p g c I l a c c a c g c g l g c a l a l a c a c a a g l a l l l g l a c a l I a c g a a I a c  t o I q J q c g  U g c g a a a a c a a c g I a a b  I g t c g l g a g c g c g g l g g g g c a a c g a c l g c a a c g g c  
A G CCG A A TG G TG CG CA CG TA TA TG TG TTCA TA A A C A TG TA A TG C TTA TG A C A C TC G C A G C G C TTTTG TTG C A TTTA C A G C A C TC G C G C C A C C C C G TTG C TG A C G TTG C C G  

A E V3 C A R I C V H K H V M L M T L A A L L L H L Q ' H  S R H P  V A D V A '

.1000 .1010 .1020 .1330 .1040 .1050 .1050 .1070 .1060 .1090 .110
I c c a c g g a g g c c g g c c a c a a a a c a l a c a a c l a c g c c l g l g l g a c a g a l c a a a l g l l l a l l a g g c g l g c c l c c g c g l g g g a l a c c l g a l a g l l c c g l a a c c l g l c a g l l l c  
A G G TG C C TC C G G C CG G TG TTTTG TA TG TTG A TG CG G A CA CA CTG TCTA G TTTA CA A A TA A TCCG CA CG G A G G CG CA CCCTA TG G A CTA TCA A G G CA TTG G A CA G TCA A A G  
E V P P A G V L Y V 0  A D T L S S  L Q I I R T E A H P M D Y Q G I G Q S  K '

.1110 .1120 .1130 .1140 .1150 .1160 .1170 .1100 .1190 .1200 .121
c i c c c g g a g a g g g a a a a c l c a c a c c a c c l g l c c l g g l c g c c g g g g g a a c c l c c c c g a a a c a a c g c c g l l a c c a a g c g c g a g g g g a a c g l c l l g c l c l c c c l l a a l g l c g l  
G AG G G CCTCTCCCT T T IG A G T G T G G TG G A CA G G A CCA G CG G CCCCCTTG G A G G G G CTTTG TTG CG G CA A TG G TTCG CG CT C C C C T TGCAGAACGAGAGGGAATTACAGCA

e ' g ' l ' s ' l ’ l ’ s ’ v ' v d r ' t ’ s ’ g p l ' g ' g ' a ' l ' l ' r ' q ' w ' f ' a ’ l ' p ’ l ’ q n ' e ' r ' e ’ l q ' q

.1220 .1230 .1240 .1250 .1250 .1270 M S H 5  4  .1290 .1290 .1300 .1310 .132
c g c c a l g l c g c a a c a a c l g a a a a a g l g l l l a l c c c l a l l g g l g l c g l a l l a c l a a t l a a a a a c l a c a a a a q a c l l l g c c g a c l c c g l l g g c c c g l c a l a g a a g l g l l t c l  
G C G G TA C A G C G TTG TTG A C TTTTTCA CA A A TA G G G A TA A CCA CA G CA TA A Td A C T A A T C T T C G A C G C T C C dTGAAACGGCTGAGGCAACCGGGCAGTATCTTCACAAAGA 

R Y S ' V  V D F ' F  T N R n  N H R I M T N I R R R I K R ' l  P  O  P '  G S I F T K
.1220 .1230 .1240 .1250 .1250 .1270 .1260 .1290 .1300 .1310 .132

c g c c a l g l c g c a a c a a c l g a a a a a g l g l I l a l c c c l a l I g g I  g  I c g I  a  I l a c l g a l  I a g a a g c I g c g a g g g a c I  I I g c c g a c l c c g l I g g c c c g I c a I a g a a g I  g I I I c i  
GCGGTACAGCGTTG TTG A CTTTTTCA CA A A TA G G G A TA A CCA CA G CA TA A TG A CTA A TCTTCG A CG CTCCCTG A A A CG G CTG A G G CA A CCG G G CA G TA TCTTCA CA A A G A  

R Y S  V V D F F T N R D N H S I M T N I  R R S I  K R L R Q P G S  I F T K

.1330 .1340 .1350 .1360 .1370 .1360 .1390 .1400 .1410 .1420 .143
a c g c a c g a a g g l t c g l g l g l l g a c c a c l a a l g c l a a g g g a l a a c g c a a g g l g g g a a c c l g a g a a c g l l l a a c g g a g c g a g g a g a g a l g c c l c c g g g l g t c c a a a g g a a a l  
T G C G T G C T T C C A A G C A C A C A A C TG G TG A TTA C G A TTC C C TA TTG C G TTC C A C C C TTG G A C TC TTG C A A A TTG C C TC G C TC C TC TC TA C G G A G G C C C A C A G G TTTC C TTTA  
M R A S K H T T G D Y D S  L L R S  T L G L L Q I A S  L L S T E A H R F ' P  L '

.1440 .1450 .1460 .1470 .14*0 .1490 .1500 .1510 .1520 .1530 .154
a a g l a c g c g t a g c a g c g c l c a a c g g l l c g g c g c g l c a a c c l c c l c l a c l c g c l a l a l l a g l g g l c l a g l l a l a g a a a l l g g g c l c t c g g a g c g c l g l g c g a a c c g l l c l g  
TTCATGCGCATCGTCGCGAGTTGCCAAGCCGCGCAGTTGGAG G A G A TG A G CG A TA TA A TCA CCA G A TCA A TA TCTTTA A CCCG A G A G CCTCG CG A CA CG CTTG G CA A G A C 

F M R I V A S C Q A A O L E E M S D I I T R S I S  L T R E P R D T L G K I

.1550 .15*0 .1570 .1560 .1590 M S H 5 -9  . ’500 .1610 .1620 .1630 .1640 .165
I a  I g c a g g c I l a a g c g g g g c c g a c a c l g g g c c i I g a c c l a c l l o a a o c l c l c g t a a a a c g g g l g o a a c l a c l l g a c g a c l g c g c g c a c c g a c l c c l c c l t l l t g l c c c a g  
A TA CG TCCG AATTCGCCCCGGCTGTGACCCGGAACTGGATGAtA C T T C G A G A G C A T T T T G C C IjACCTTGATGAACTGCTGACGCGCGTGGCTGAGGAGGAAAAACAGGGTC 

Y V R ' I R ' P  G ' C ' D ' P ' E ' l ' D '  F T H f  i T ~ H  I  D E ' I  I T R V A F F E K O ' Q '

.1660 1673 M S H S - S . i t a o ____________ ,.1090 .1700 .1710 .1720 .1730 .1740 .1750 . '7 6
a a g g l g g c g t g a c c g c I g d c c c a l g l g a l g a a a c a c g  c H a  a c g a g g c g l l a c c c c a g l a c a l l a a c a c g a a g g a g l a a c a g g l g g l l g c g a c g a c c l l l g a c l c a a l g g i  
TTCCA CCG CA CTG G CG A CCG G G TA CA CTA CTTTG TG Ô G TTTG C TC C G C A A TG G G G TC A TG TA A TTG TG C TTC C TC A TTG TC C A C C A A C G C TG C TG G A A A C TG A G TTA C C A  
L P  P H W R P  G  T L L C A F A P  Q  W G H V I V L P H C P  P T L L E T E L P '

.1770 .1760 .1790 .1600 .1610 .1020 .1630 .1640 .1650 .1660 .167
g c c c l g a c c c l c a a l c a c g a c g l c l g c c t a c t a c c c g g a a a g a a a l l c t g c a g a g a l l g l g c c t c c g a c c l a c l c c l c c a c c c a c l a a a c g c g a g l c g g l a l g a c c l a g c  
CGGGACTGGGAGTTAGTGCTG CA G A CG G A TG A TG G G CCTTTCTTTA A G A CG TCTCTA A CA CG G A G G CTG G A TG A G G A G G TG G G TG A TTTG CG CTCA G CCA TA CTG G A TCG  

R D VV E L ' V  L Q T D D G P  F F K T S  L T R R L D E E V G D L R S  A I L D R

.I860 .1690 .1900 .19-0 .1920 .1930 .1940 .1950 .I960 .1670 .19*
c c l l c c a c l l c a c g l l g c a g c c c a l c l a g l g g c l a a c g a a c l l a a c a g c g g l c g c g a a l a a g g g a a c g l a g a g a c a c g c c l l a a c c l g a c g g a l l a l c c a a a a c g l g a c a  
G G A A G G TG A A G TG CA A CG TCG G G TA G A TCA CCG A TTG CTTG A A TTG TC G C C A G C G C TTA TTC C C TTG C A TC TC TG TG C G G A A TTG G A C TG C C TA A TA G G TTTTG C A C TG T 

E G E V Q R R V D H R L L E L S P  A L I P  L H L C A E L D C ' L  I G F A L

.1990 .2000 .2010 .2020 .  2030 .2040 .  2050 .2060 .2070 .2060 .209
c g c g t a a c c l c c c c g l c a c c l c a g c a g g a c l l l a a c a l g g a c l a c g c c c g c a l g a a c l l l a a a g a g c l c g c c a c g l g g g a l a l a a c c g a g c t l a c a g l g l t g g c c a c c a a  
GCGCATTGGAGGGGCAGTGGAGTCGTCCTGAAAT TG TA C C TG A TG C G G G C G TA C TTG A A A TTTCTCG A G CG G TG CA CCCTA TA TTG G CTCG A A TG TCA CA A CCG G TG G TT 
C A L E G Q  W S  R P  E I ' V  P D A G V L E I S R A V H P I L A R M S Q P  V V '

.2100 .2110 .2120 .2130 .2140 M R H R -6 2150   2160 M S H 5 - 1 0 .2 170 .2160 .  2160 .220
g g c a c g a g g a a c l g l l a g g c l g c g l c a c g l c l g g c a c a c a c a c a c c a g l g a c c c c g t  f l a l c c c l c a c c l l  I I a o c c a c a a j g l a l l g l l g c l a l c g g g l g l g a c a g a a a g a  
c c g t g c t c c t t g a c a a t c c g a c g c a g t g c a g a c c g t g t g t g t g t g g t c a c t g g g g c . a / ( a 'T G G C T C T G 5 A A A A T C (^ GT' t c a t a a c a a c g a t a g c c c a c a c t g t c t t t c t

P  C S ' L  T I R R S  A D R V C V V T G A N " G  ' S ' '  6  " k "  S ' "  V " F I  T T I A H ' T ' V  F L

.2210 .2220 .2230 .2240 .2250 .2260 .  2:70 .2280 . 2290 .  2300 .231
g c g a g l a l a a c c g a g c a l g c a l g g c a c a c g c g l a c g g c g g l a g c c a a a t l a l c t a l g l a a g c a a c g c g a l g l a l g a g g a a g g c g g a c a l c c c c a l l g c l t c t a a a l l g g a  
CG C TC A TA TTG G C TC G TA C G TA C C O TG TG C G C A TG C C G C C A TC G G TTTA A TA G A TA C A TTC G TTG C G C TA C A TA C TC C TTC C G C C TG TA G G G G TA A C G A A G A rTTA A C C T 

A H I G S Y V P C A H A A I G L I D T F V A L H T P  S  A C R G  N E D L T

2 4 4



.2320 .2330 .2340 .2350 .2300 .2370 .2300 .2390 .2400 .2410 .24 :
a a c g c c a t I t c c l c g a c g t a a g g l c a a a a c c a l t g c t c g a a c g t a g a l a c t c g g c g t a c g a t g l t g c g a c a c c g t c g g c g a c g t c t c t c t c g c t a c i t c c c c g c c g g g c c  
TTGCGGTAAAGGAGCTGCAT TCCAGTTTTG G TA A CG A G CTTG CA TCTA TG A G CCG CA TG CTA CA A CG CTG TG G CA G CCG CTG CA G A G A G A G CG A TG A A G G G G CG G CCCG G
f  a ’ v ' k e‘ l ' h ' s ’ s  f ' g ' n ‘ e ' l ' a  s ' m ‘ s ' r  m ' l ' q ' r ' c ' g ' s ’ r ’ c  r  e ' s  d ' e ’ g ‘ a ' a  r ‘

.2430 .2440 .2450 .2460 .2470 .2480 .2490 M S H 5 - 7  .2510 .2520 .253
t a c g a a g a t c a c t a a c l a c l t a a a c c t t t t c c t t g c g a a a g c c a c c l a c c l c g g c g t  a a c g a c c g | c c g a a g a g a c g c t t g l a a a | t a a a g c  t a c c c l t t g g t c g c g g g c a a  
A TG CTTCTA G TG A TTG A TG A A TTTG G A A A A G G A A C G C TTTC G G TG G A TG G A G C C G C A TTG C TG G C U U C I I C I C I Ü Ù G A A U A I I 1a t t t c g a t g g g a a a c c a g c g c c c g t t  

M L L V I D E F G  K G T L S  V D G  A A I  L A A S L R T F I S M G N O R P  L

.2540 .2550 2560 .2570 . 2560 .2590 .  2600 .2*10 .2620 .2630 .264
t c a c g a t a a t c g c t g t g t a a t a t a c c t t c g a c a a g t t g g t t t g l a a c a c g g g t c c c c c c t t t a a t a a g a c l a g c t l l a c a a c t g c l g t g a g g a c c t c t c a l c g g c a t t t t  
A G TG C TA TTA G C G A C A C A TTA TA TG G A A G C TG TTCA A CCA A A CA TTG TG CCCA G G G G G G A A A TTA TTCTG A TCG A A A TQ TTG A CG A CA CTCCTG G A G A G TA G CCG TA A A A  

V L L A T M  Y M E A V Q P N I V P  R G  E I I L I E M L T T L ' L  E S  S R K

.2650 .2660 .2670 .2680 .2690 .2700 .2710 .2720 .  2730 .  2740 .275
c t g g a g c a c l g c c c c a l t c c c g c g t g a a c c c l c g c c t a l c a l g t c t a a a g c a a c c a c c g t c g a t a c t l g a a c a c g g g a g a a t g t t a c g c c a a g g t c a c g c l t t a c a a c c a  
G A CCTCG TG A CG G G G TA A G G G CG CA CTTG G G A G CG G A TA G TA CA G A TTTCG TTG G TG G C A G C TA TG A A C TTG TG C C C TC TTA C A A TG C G G TTC C A G TG C G A A A TG TTG G T 
R P R D G V R A H I  G A D S  T D F ' V ' G  G S Y E L V P  S  Y N A V P  V R N V G '

.2760 .2770 .2780 .2790 .2800 .2810 .2620 .2830 .2840 .2850 . 286
c t c c l g c c t t t c g a t g g c c t a c t a c t l c a a a g g a g a g c c c g l g a c g t g a a g c g a a a a g t c g l g a g a c a c g g a c l l c a c g a a g a a g c t l c l c g g a c c t c g c a c t a c t g g t c  
G A G G A CG G A A A G CTA CCG G A TG A TG A A G TTTC C TC TC G G G C A C TG C A C TTC G C TTTTC A G C A C TC TG TG C C TG A A G TG C TTC TTC G A A G A G C C TG G A G C G TG A TG A C C A G  

E D G K L ' P  D D E V S S R A L H F A ' F  Q H S V P E V ' L  L R R A VO S V M T S

M S H 5 - 3 T . 2 8 7 0  .  2680 .2890  .2000  .  2910 .2920  . 2030 M S H 5 - 8  _:94Q_____________2950 .  2960 .297
a e l c a c a c a a a e l l a l o a c a e c a a g g a q q a c a c a q Q a a t q c a o a c a  l a g g a a a g t c a l g a g g a l g c g a c  l | g g c t a a q l a c a g c a a g e g a a | l t t g g c a a g a a a g a a a a a i g  

iTG A G TG TG TTTG A A TA C C G lT G G T T C C T C C T G T G T C C T C A C G T C T G C A T C C T T T C A G T A C T C C T A C G C T G A S gG A T T S A T G tC G T T & G & T T A A A C C G T T C T T T C T T T T T A C

.2980 .2990 .3000 .3010 .  3020 .3030 .XI4C .3050 .3060 .  3070 .306
c a a a a l l c a l g a t a a a a c a a c a a c a a c t c c a c a c a a c c a c a a c l g t g g a a a t g t a c g t g a a g a a a a g a a a c g a a g t t g a a c a a a g t g a a g g a a t g a a g g c a a t a g c l g i c  
G T T T T A A G T A C T A T T T T G T T G T T G T T G A G G T G T G T T G G T G T T G A C A C C T T T A C A T G C A C T T C T T T T C T T T G C T T C A A C T T g I M c a c t l c c t l a c t l c c g t t a l c g a c a g

.3090 .3100 .3110 .3120 .3130 .3140 .3150 .3160 .3170 .3 ’80 .319
t a c g a c c a a a g c a a l a a a c a a a t c a a l g a a a c a a g c a t t a a a a a g a g t l a c l a l g a a l c a t l a c c c a a a c a c g g t g g c c a l t g l a g a g a g a g a a c c a a a l c t t t c l t g a a
a l g c l g g l l t c g l l a l t l g l l l a g l l a c t l l g l l c g l a a l t t l t c l c a a l g a l a c l l a g t a a l g g g l t l g l g c c a c c g g l a a c a t c t c l c l c l l g g t l t a g a a a g a a c l t

.3200 .3210 .3220 .3230 .3240 _______ .^ « 1  , . . « ' I  .K 8 0  .3290 . 3 *
c a a l a g g g c c c a t  t a a c a a a a t  t t t c c a c c a c a a c a a l c t  t c c a l a a a g t  I g a g i ^ c o c a o t a c g l a t  I g o  I g  I d g g g c c  t g a l a a a o t a g g c a g a l a g g g t a a a t a a c a a  
g I I a  t c c  c g g g I a a I  I g I t t l a a a a g g t g g t g t  t g l I a g a a g g I  a  I I I c a a c I c I g g g t g a t g c a l a a c g a c a l c c c g g a c l a l t l g a l c c g t c l a l c c c a t l l a l l g l l

.3310 .  3320 .3330 .  3340 .3350 .3360 .  3370 .3380 . 3390 .  3400 .341
l a a c a g l a a t g g c a a a a g a a a a a a a a a a g a c g a a l a g g a a a c a g a l a a c l g a c g a l a a a a l l I  I I I g g g c g g l c a l c a c g g g c a a c g l l e a l a a c I g a c g  
a  I I g I c a I l a c c g t I  I I c I  I I I I I I I I I c l g c l I  a  I c c I  I I g  I c I  a  I I g a c l g c t a l I  I l a a a a a a c c c g c c a g l a g l g c c c g l I g c a a g I  a  I I g a c l g c

2 4 5
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