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Abstract

Rabl 1-FIP4 is a member of the Rabl 1-Family of Interacting Proteins (FIPs) and 

is also Icnown as arfophilin 2. It has previously been shown to bind members of two 

families of small GTPases, namely Rabl 1 from the Rab family and ARF5 from the 

ADP-Ribosylation Factor (ARF) family. Rabl 1-FIP4 has also been shown to have a 

partially overlapping localisation with the Rabl 1 recycling endosome. Its function 

remains undeteiTuined.

Here, three aspects of Rabl 1-FIP4 are investigated. Firstly, a binding study 

confirms that FIP4 binds to Rabl 1 and ARF5 and identifies ARF6 and Rab5 as 

additional binding pai'tners. It also shows that Rabl 1-FIP4 can simultaneously bind a 

Rab and ARF family member. Secondly, the localisation of Rabl 1-FIP4 and its co

localisation with its binding partners is examined in interphase cells and also in cells at 

various stages of cell division. This shows that Rabl 1-FIP4 and its binding partners 

show various degrees of overlap in interphase endosomes and particularly that they all 

show striking and similar localisations tlii'oughout mitosis and cytokinesis.

The third pail of this study examines the possible functional roles which Rabl 1- 

FIP4, Rabl 1 and ARF5 may play in cytokinesis. Although a functional role for Rabl 1- 

FIP4 is not established, it is shown that both Rabl 1 and ARF5 play an important role in 

cytokinesis.
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Chapter 1

Introduction



Chapter 1 - Introduction

1.1.1 Cytokinesis

Cell division comprises of two processes, namely mitosis and cytokinesis.

Mitosis is the division of the cell’s chromosomes into spatially distinct areas of the cell. 

This is generally followed by cytokinesis, which is the process by which the mother cell 

divides itself into two daughter cells. Although these can be described as two distinct 

processes, it is clear that several aspects of mitosis overlap with cytokinesis. For 

example, it is well documented that the mitotic spindle, an an ay of microtubules, is 

required for both mitosis and cytokinesis. Below is a brief description of cell division 

described using the traditional terminology for the various stages of this process. The 

distinctions between mitosis and cytokinesis are highlighted.

Prophase

This is the first stage of cell division, where the chromosomes start to condense 

and the nuclear envelope is deconstructed. At this stage the centrosome also divides into 

two and the two new centrosomes move to opposing side of the nucleus. The mitotic 

spindle, an airay of microtubules radiating from each of the centrosomes has begun to be 

constructed.

Metaphase

At this stage, the chromosomes are aligned along the centre of the cell, 

equidistant from each of the centrosomes and the plus ends of microtubules attach 

themselves to the kinetochores of the chromosomes.



Anaphase

At this stage the chromosomes are pulled apart due to shortening of the 

microtubules, probably from both the plus and minus ends. Also, cytokinesis begins as 

actin starts to be recruited to an area just below the plasma membrane at the midpoint 

between the two mitotic spindles. This will be the site of the cleavage furrow. This actin 

recruitment is likely dependant on a previous accumulation of myosin II at this point. 

The actin polymerises into increasing numbers of filaments and, together with the 

myosin II forms the actomyosin contractile ring, the structure that will provide the force 

to physically constrict the mother cell at its centre.

Telophase

The chi'omosomes have now separated to their opposite poles of the cell and a 

nuclear envelope begins to form around the two daughter nuclei. Therefore, mitosis is 

complete at this stage Cytokinesis, however, starts to have its first effects. The 

actomyosin ring constricts and squeezes the cell into a “dumbbell” shape, until just a 

narrow bridge of cytoplasm remains connecting the two daughter cells. This stmcture is 

often refen*ed to as the “midbody”. The contractile ring is thought to have now 

completed its function and in some cases the midbody can persist for several hours 

before the final event of “abscission”, that is the cleaving and sealing of the midbody to 

form two separate cells occurs. This final step is thought to depend upon delivery of 

membrane to the abscission site.

This is a highly simplified version of the events that take place in cell division 

and serves only as a reference for further discussions. It is also important to point out 

that cell division can vary widely between species and that the events I have described 

above are only a “consensus” as far as current information will allow. To give just one



example, the actomyosin contractile ring can take different forms between species. In 

Dictostelium, for example, it can be clearly visualised as a tight ring stmcture. In 

mammalian cells, however, it tends to merely a concentration of actin and myosin in the 

area of the cleavage fumow.

Some of the major conclusions to have come from the cytokinesis field are that it 

is undoubtedly a very complexly integrated process, with many stages relying upon the 

successful completion of the previous stages, and that, as it is such a vital process to an 

organism’s well-being there is much redundancy within the system. Indeed, even in the 

case of some major defects within the cytokinesis machinery, the cell often manages to 

complete divisions successfully, if at a slower rate. This “robustness” was summed up 

by Ray Rappaport during his keynote address at the ASCB Summer meeting on 

Cytokinesis (2004); “when I began working on cytokinesis, I thought I was tinkering 

with a beautifully made Swiss watch, but what I was really working on was an old 

Maine fishing boat engine: overbuilt, inefficient, never-failed, and repaired by simple 

measures.” This robustness, however, often makes the identification of proteins involved 

in this process, and at which points their functions are required, difficult to determine.

1.1.2 Positioning of the Cleavage Furrow

The first stage at which cytokinesis can be observed to have its effects is during 

anaphase when the actomyosin ring is assembled, half way between the two sets of astral 

microtubules emanating from around the centrosomes, and subsequently starts to 

constrict, squeezing the cell into a dumbbell shape. It is essential that this fuiTowing 

process is tightly regulated in both time and space to ensure that DNA, organelles and 

the cytosol are equally divided between the two daughter cells. However, the events 

leading up to the placement and assembly of the actomyosin ring and hence the future 

cleavage furrow are undoubtedly complex, seem to vary to some extent between



organisms and at the moment are not fully understood. This section provides a brief 

description of the various current theories behind the positioning of the cleavage furrow.

The search for the initial signal that leads to the correct placement of the 

cleavage funow has long be on and the illusive factor required for this process has often 

been dubbed “stimulin”. In Sachromyces pombe, fission yeast, this factor may have been 

identified as the protein Midlp. A study by Wu et al., 2003, showed that Mid Ip was the 

first known factor to amve at the site of the cleavage furrow. Midlp is secreted from the 

yeast nucleus prior to cytokinesis and has been shown to be essential for the positioning 

of the cleavage funow. However, anillin, the closest homologue of Midlp in higher 

eukaryotes, does not seem to play such a decisive role in the positioning of the furrow. It 

can interact with septins, actin and myosin, other proteins which need to be recruited to 

the cleavage fun'ow, but it arrives at either the same time as, or later than, other furrow 

components and is either non-essential or only essential for a much later events in 

cytokinesis.

Rather than a single protein being responsible for cleavage furrow positioning, 

there are now three main schools of thought on how the cleavage fun*ow is positioned in 

higher eukaryotes. The first two of these are based on the obseiwation that astral 

microtubules are essential and indeed sufficient for the positioning of the cleavage 

furrow in sand dollar and sea urchin eggs (Rappaport, 1961; Hamaguchi, 1975; 

Rappaport, 1985). These results lead to the proposal of two models known as the “astral 

stimulation” and “astral relaxation” models. They oppose each other, in that they focus 

on different areas of the astral microtubules as being the important for the positioning of 

the cleavage furrow. However, they do agree that astral microtubules are essential for 

this process and in fact do not necessarily negate each other, with a combination of both 

models being plausible.



The third model is known as “central spindle induction”. The cential spindle 

(also known as the spindle midzone) is a group of tightly bundled microtubules that 

forms directly between the two centrosomes during anaphase. Its molecular components 

are described in section 1.1.4 below. The central spindle induction model states that 

signals deriving from this structure are what position the actomyosin ring and hence the 

cleavage furrow. This model derives from studies in several different organisms. Strong 

evidence comes from experiments performed in Drosophila^ where cells that fail to form 

a central spindle, yet still have apparently normal astral microtubules, do not furrow 

(Adams et al., 1998; Somma et al., 2002). In addition, Drosophila cells lacking astral 

microtubules, but retaining their central spindle, do go on to furrow successfully 

(Bonaccorsi et al., 1998). Further experiments in both rat and grasshopper cells support a 

role for the central spindle in the positioning of the cleavage furrow (Cao and Wang, 

1996; Alsop and Zhang, 2003).

However, there is evidence that in Caenorhabditis elegans the central spindle is 

not required for cleavage funnw positioning, although is instead required at a slightly 

later stage, for the cleavage furrow to maintain ingression and for the successful 

completion of cytokinesis (Powers et al., 1998; Raich, 1998; Jantsch-Plunger et al., 

2000). However, it has since been shown that perturbation of the central spindle does 

actually cause a slight delay in fuiTow formation in C.elegans and that, in some 

circumstances, the central spindle does become essential for furrow positioning 

(Dechant and Glotzer,2003). Therefore it seems that the central spindle plays a major, if 

not always absolutely essential, role in positioning of the cleavage furrow.

Overall, it seems clear that the contribution of each of the three models 

described to the positioning of the cleavage furrow varies in different cell types, 

although the “consensus” process may actually include elements of all three of the 

proposed models.



1.1.3 RhoA- regulating the contractile ring

The Rho family of small GTPases, consisting of Rho, Rac and cdc42 in human 

cells are well established regulators of the actin cytoskeleton. In cytokinesis it is Rlio 

that has been shown to be particularly important, playing a major part in regulating the 

contraction of the actomyosin ring, although the other family members are likely to also 

play roles in cytokinesis.

Rho is thought to act via at least two downstream kinases, Rho kinase (or 

ROCK) and citron kinase. ROCK has been shown play an important role at the cleavage 

fuiTow ingi'ession stage as it localises to the cleavage furrow and can phosphorylate the 

light chain of myosin II, a central constituent of the actomyosin ring (Kosako et ah, 

2000), and also inhibits myosin II light chain phosphatase (Kimura et ah, 1996). It 

therefore activates myosin II, stimulating the actomyosin ring to contract. Rok (the 

Drosophila ROCK) RNAi induces the fonnation of bi-nucleate cells (Hickson et ah, 

reported at American Society for Cell Biology summer meeting on cytokinesis, 2004). 

Rho also activates citron kinase, although this kinase is thought to play a much later role 

in cytokinesis, with RNAi knockdown of this kinase leading to destabilisation of the 

midbody and ultimately bi-nucleate cells in Drosophila (Echard et ah, 2004).

Rlio itself is tightly regulated by a number of processes during cytokinesis, the 

most important of which are outlined in sections 1.1.4 and 1.1.14 below).

1.1.4 Central Spindle

The central spindle is the central bundle of anti-parallel microtubules that forms 

directly between the two cell poles during anaphase (Saxton and McIntosh, 1987). 

Numerous studies have shown that its constituents are essential for cytokinesis and now 

that many of these components have been identified a complex picture of interactions



and regulations that are necessary for the regulation and progression of cytokinesis is 

giadually being revealed.

Many of the key proteins that have thus far been identified fall into two groups, 

one of which is the “passenger proteins”. “Passenger proteins” are proteins which reside 

on the kinetochores of chromosomes at metaphase. Then, upon initiation of anaphase, 

when the chromosomes segregate, the passenger proteins transfer to the central spindle. 

The key passenger proteins studied thus far are Auroa-B-kinase, inner centromere 

protein (INCEMP) and Survivin. These three proteins foiin a complex that is required 

for metaphase cliromosome alignment, chromosome segi’egation and cytokinesis 

(Adams et ah, 2000, 2001; Katina et ah, 2000 and Wheatly et ah, 2001). INCEMP is a 

large coiled-coil, scaffold-type protein, whilst Survivin is so named as it contains an 

“inhibitor of apoptosis” motif, although this does not seem to play a function in 

cytokinesis. Rather, the function of both INCEMP and Survivin is the regulation and 

targeting of Auroa-B-Kinase, who’s phosphorylating activities are essential for both 

mitotic clrromosomal processes and organisation of the central spindle during 

cytokinesis (Giet and Glover, 2001; Kallio et ah, 2002; Kaitna et ah, 2002; Murata-Hori 

et ah, 2002; Murata-Hori and Wang, 2002).

A fourth member of the passenger proteins family is Polo-like-kinase 1 (PLKl). 

This is the human homologue of the Drosophila Polo protein and, like the other 

passenger proteins above, has been shown to be required for a nomial metaphase spindle 

and the successful completion of cytokinesis.

Another important group of proteins that reside on the central spindle are MKlpl 

(or CHOI), CYK4 and ECT2. In human cells, it has been shown that MKlpl binds to 

CYK4 (Mishima et ah, 2002), whilst m Drosophila Pebble (the ECT2 homologue) and 

RacGAPSOC (the CYK-4 homologue) may interact (Somers et ah, 2003). Therefore it is 

possible that all tliree of these proteins are in a complex. Each of these proteins is well

7



studied and their interactions with each other as well as other proteins and the 

cytoskeleton quite complex. Briefly, MKlpl has been shown to organise microtubule 

bundles of the central spindle (Nislow et ah, 1992; Adams et ah, 1998; Powers et ah, 

1998; Raich et ah, 1998), whilst CHOI, a splice variant of MKlpl, contains an actin 

binding motif and may interact with the ingressing cleavage furrow although at present 

is thought to play a role in the very final stages of cytokinesis (Kuriyama et ah, 2002). 

MKlpl is discussed in further detail in section 1.1.5 below. ECT2 (Pebble) and CYK4 

(RacGAPSOC) play complimentary roles in the regulation of the RlioGTPase required 

for cleavage furrow ingression, RhoA. ECT2 is a Rho GEF (Prokopenko et ah, 1999; 

Tatsumoto et ah, 1999), whilst CYK4 is a Rho GAP (Jantsch-Plunger et ah, 2000). 

Therefore, together, these proteins can bind microtubules, bind actin and regulate the 

Rho GTPase required for cytokinesis. They therefore play a major role in regulation of 

cleavage furrow ingression.

A final protein which should not be omitted from even a short introduction to the 

central spindle is PRCl. This protein has been shown to be essential for the formation 

and maintenance of the central spindle due to its microtubule bundling activity 

(Mollinari et ah). It is thought to be regulated, at least in part, by cdkl-cyclin B mitotic 

kinase (Jiang et ah, 1998).

1.1.5 MKlpl and other Kinesins involved in cytokinesis

Mitotic-Kinesin-like-protein 1 (MKlpl) is a member of the kinesin super family 

and undoubtedly plays a major role in cytokinesis. Both human MKlpl, its splice-variant 

CHOI and it’s Drosophila homologue, Pavarotti, are well studied. Indeed in a family- 

wide study of kinesins in Drosophila, Pavarotti was the only one which was shown to be 

essential for cytokinesis as when Imocked down by RNAi in S2 cells, double-nucleated 

cells resulted (Goshima and Vale, 2003). From this study it was clear that Pavarotti is



required for fomiation and maintenance of the central spindle during cytokinesis as 

when it was knocked down by RNAi the central spindle did not form, resulting in an 

anaphase to cytokinesis airest.

Although this study showed that in Drosophila S2 cells, Pavarotti was the only 

one of the 25 Drosophila kinesins required for cytokinesis, nine others were identified as 

being required for the earlier event of mitosis. Of these, 4 were involved in bipolar 

spindle assembly, 4 were involved in metaphase spindle alignment and Dynein was 

found to play a role in the metaphase to anaphase transition.

In human cells a second member of the MKlpl family, MKlp2 (previously 

known as Rab kineisin-6 or Rab6 KIFL) has also been shown to be required for 

cytokinesis. This in discussed in the next section.

1.1.6 Rab6A and Rab6-KIFL/MKIp2: Roles in Cytokinesis?

Rab6A is a member of the small GTPase family of Rab proteins which resides 

primarily in the medial/trans Golgi cistemae in interphase cells (Antony et ah, 1992; 

Martinez et ah, 1994). Over-expression of Rab6A results in the complete redistribution 

of Golgi markers into the Endoplasmic Reticulum (ER) (Martinez et ah, 1997; Echard et 

ah, 2000) and it is therefore thought that Rab6A is involved in anterograde traffic from 

the Golgi to the ER. This movement is thought to be microtubule dependent (Martinez et 

ah, 1997, White et ah, 1999).

Rab6-KIFL (also termed Rabkinesinb, MKlp2, KIF20A) was identified as a 

Rab6A effector through its interaction with a GTP-locked mutant of Rab6A in a Yeast- 

2-Hybrid screen (Echard et ah, 1998). Rab6-KIFL is a member of the kinesin family of 

proteins, which share a conserved motor domain which is able to bind to microtubules 

and, through hydrolysis of ATP, able to generate force which results in the movement of 

kinesins along microtubules. During inteiphase, Rabô-KIFL is thought to be an effector



of Rab6A and has shown to be involved in the same processes of anterograde membrane 

traffic through the Golgi and to the ER and is thought to act by providing motility to 

membrane vesicles (Echard et ah, 1998, Allan and Schroer, 1999).

It has since been shown that Rab6-KIFL also plays a role in cytokinesis. In 2000, 

Hill et al. showed that Rab6-KIFL accumulates in mitotic cells, localises to the central 

spindle in anaphase and later the midbody during telophase. They also showed that HeLa 

cells microinjected with Rab6-KIFL specific antibodies showed a cytokinesis defect, 

resulting in a large proportion of cells becoming bi-nucleate after one cell cycle (Hill et 

ah, 2000). More recently, this data was backed up by siRNA studies which showed that 

specific knockdown of Rab6-KIFL also resulted in the formation of large numbers of bi- 

nucleate cells compared to control siRNAs (Neef et ah, 2003). In addition, studies on the 

cell-cycle expression of Rab6-KIFL have shown that its expression is up-regulated at 

both the mRNA and protein level during cell division, with the Rab6-KIFL gene 

promoter showing maximal activity and mRNA and protein levels peaking during cell 

division (Fontijn et ah, 2001). This expression pattern was confirmed by 

immunofluorescence studies showing that ten times higher Rab6-KIFL-speciflc 

fluorescence occuned in prophase nuclei than in interphase Golgi (Fontijn et ah, 2001). 

Due to all of this data suggesting that Rab6-KIFL plays a role in cytokinesis and the fact 

that this kinesin shows some homology to the mitotic kinesin, MKlpl, Barr and co

workers suggested the re-classification of Rab6-KIFL to a mitotic kinesin and therefore 

re-named Rab6-KIFL MKlp2 (mitotic kinesin like protein 2) (Neef et ah, 2003). This 

group have further investigated the role that MKlp2/ Rab6-KIFL plays in cytokinesis 

and have found that it interacts with components of the central spindle. Firstly, they 

found that MKlp2 is phosphorylated by and binds to Polo-like kinase (PLKl, see section 

1.1.4), with this phosphorylation and binding essential for the correct localisation of both 

of these proteins to the central spindle (Neef et ah, 2003). Secondly, they have found

10



that MKlp2 can interact directly and indirectly with the passenger protein Aurora B (see 

section 1.1.4) and that these interactions are essential for the relocation of Aurora B from 

the centromeres onto the central spindle at the metaphase to anaphase transition 

(Gruneberg et ah, 2004).

All of the above evidence, then suggests that Rab6-KJFL/MKlp2, originally 

identified as a Rab6A binding partner, is required for cytokinesis. However, it remains 

undocumented whether or not Rab6A itself is required for cytokinesis. The specific roles 

identified for Rab6-KIFL/MKlp2 at the central spindle outlined above are unlikely to 

require membrane events and therefore Rab6A is unlikely to be required for these 

processes. Also, it has been shown that the high levels of Rab6“KIFL/MKlp2 which are 

newly expressed during cell division do not co-localise with Rab6A (Fontijn et ah,

2001). However, these pieces of evidence do not rule out the possibility that Rab6A may 

be required at some stage in cytokinesis, whether in conjunction with Rab6- 

KIFL/MKlp2 or not. Indeed, as discussed in sections 1.1.7-1.1.8 it is now well 

established that membrane trafficking, possibly from the Golgi, is required for 

cytokinesis. Therefore, Rab6A/ Rab6-KIFL/MKlp2 complex, or Rab6A alone, may be 

required for membrane delivery to either the cleavage furrow for fuiTO w  ingression 

and/or the midbody for abscission (see sections 1.1.8 and 1.1.15). In fact, a recent study 

of mitotic kinesins in human cells has suggested that Rab6-KIFL/MKlp2 may play a role 

in the final abscission stage of mitosis (Zhu et ah, 2005), at which time the likely 

requirement for membrane delivery/fusion would also favour the involvement of a Rab 

protein.

In summary, the Rab6A binding kinesin, Rab6-KIFL/MKlp2 has been shown to 

be required, possibly at multiple stages, for cytokinesis. However, the potential role of 

Rab6A itself in cytokinesis has not been studied. Therefore investigations detennining 

the localisation, interactions and possible functional effects of Rab6A in cell
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division/cytokinesis need to be carried out to determine if this Rab family member is 

involved in this process.

1.1.7 Membrane trafficking in cytokinesis

It is clear from studies in several different organisms that membrane trafficking 

is required for successful cytokinesis (for recent reviews see Bednarek and Falbel, 2002; 

Finger and White, 2002; Xu et ah, 2002; Strickland and Burgess, 2004; Schweitzer and 

D'Souza-Schorey, 2004).

Perhaps the most striking example of this is in plant cells. These completely lack 

an actomyosin ring and cytokinesis proceeds by delivery of membrane vesicles along 

microtubules to the centre of the cell where they accumulate and fuse, forming the 

“phragmoplast”. Continued addition of vesicles eventually leads to the fusion of the 

plrragmoplast with the mother cell membrane, hence dividing the cell into two (reviewed 

Bednarek and Falebl, 2002).

Of course, in all animal cells currently known, an actomyosin ring is present 

which physically constricts the cells until the two daughter cells are only connected by a 

nanow intracellular bridge. However, membrane dynamics are still required at at least 

two stages of cytokinesis. Firstly, membrane delivery to the surface of the cell is 

required during cleavage furrow ingression in order to provide the increased surface area 

necessary to form two new daughter cells. This process will be discussed in section 1.1.8 

below. Secondly, once the cleavage furrow has completed its ingression and the cells 

remain connected by a narrow intracellular bridge, membrane dynamics must take place 

in order to finally separate the mother cell into two separate daughter cells and to seal 

the two newly formed cells. This second process will be discussed in section 1.1.15 

below.
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1.1.8 Membrane trafficking to the cleavage furrow

As mentioned above, extra membrane is needed at the cell surface as the cell 

divides into two in order to provide the increased surface area necessary for the 

formation of two new daughter cells. It has been shown in both sea urchin embryos and 

Xenopus eggs that this membrane addition does not happen at random across the cell 

surface but is delivered specifically to the cleavage furrow. (Shuster and Burgess, 2002; 

Danilchik et ah, 2003) This directed delivery may indicate that, in addition to a simple 

increase in sur face area, the membrane being added to the cleavage furrow contains 

lipids and proteins that are required at the site of furrow invagination.

The internal source of this membrane remains somewhat controversial and may 

vary between organisms. However, there are two membrane compartments that are 

certainly important for cytokinesis in at least some organisms. These are the Golgi, and 

secretory vesicles deriving fr om it, and the recycling endosome.

1.1.9 The Golgi in cytokinesis

In some cell types the Golgi and vesicles derived from it do seem to be required 

for cytokinesis. For example, in both C.elegans (Skop et ah, 2001) mià Drosophila cells 

(Sisson et ah, 2000), disruption of anterograde Golgi trafficking by addition of the ARFl 

inactivator Brefeldin A (BFA) leads to a disrarption in cytokinesis. However, in sea 

urchin embryos and mammalian cells, the addition of BFA seemingly has no effect on 

cytokinesis (Shuster and Burgess, 2002; Axelsson and Wanen, 2004; Pecot and 

Malhotra, 2004).

Further support for the involvement of the Golgi in cytokinesis comes from the 

fact that several Golgi-resident proteins have been shown to be required for cytokinesis. 

For example, in Drosophila, Strabismus is an integral membrane protein which has been 

shown to be primarily localised to the Golgi. In embryos made mutant for Strabismus
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membrane addition at the cleavage fhnow is impaired, suggesting a requirement for 

Golgi-derived embryo for this process. (Lee et ah, 2003). Lava lamp, another 

Drosophila Golgi protein has also been sho^vn to be required for cellularisation in 

Drosophila (Sisson et ah, 2000).

What has not yet been deteimined is whether vesicles are derived directly from 

the Golgi or they are first sorted thi'ough the recycling endosome. Indeed, the state of the 

Golgi during cell division is the subject of a long rumiing debate which is too large and 

complex a topic to discuss here (for a recent review, see Barr, 2004). Briefly it centres 

around two models; one suggesting that the Golgi is absorbed into the Endoplasmic 

reticulum during cell division, whilst the other suggests the Golgi fragments into smaller 

parts but remains separate from the ER. Interestingly, two recent reports suggest that 

rather than the Golgi being required to provide membrane for cytokinesis, it is actually 

the dispersal of the Golgi that is important for mitosis/cytokinesis (Altan-Bonnet et al., 

2003; Sutterlin et al., 2002). Altan-Bonnet et al. argue that proteins that are resident in 

the Golgi during inteiphase are required elsewhere to carry out their functions in 

cytokinesis. Therefore in order to carry out their functions in cytokinesis the Golgi must 

first disassemble. These reports suggest that ultimately the Golgi is required for 

cytokinesis as a source of certain protein components, so that actually at the time of 

cytokinesis it is rather the lack of a normal interphase-type Golgi that is important for 

cell division.

1.1.10 The Recycling Endosome in Cytokinesis

The recycling endosome is the second important compartment from which 

membrane vesicles are thought to be required for cytokinesis.

Cunently, the best evidence for this comes from two studies in Drosophila. 

Pelissier et al. have shown that functional endocytosis is required prior to cellularisation
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in the Drosophila embryo, therefore implicating recycled endosomes as a source of 

membrane required for cellularisation (Pelissier et ah, 2003). Further to this, they 

showed that knocking down Rabl 1 activity before cellularisation results in defects in 

membrane addition at the cleavage furrow. As Rabl 1 is the small GTPase that is 

resident in the recycling endosome and is required for the budding of vesicles from this 

compartment (Ullrich et ah, 1996) they conclude that trafficking through the Rabl 1 

compartment is required for cellularisation.

The second Drosophila study implicates the recycling endosome as being 

required for cellularisation even more strongly. Riggs et ah have studied the role of 

Rabl 1 and Nuf in both vesicle trafficking to and actin remodelling at the fuiTow. As 

later described in section 1.2.13, Nuf is the Drosophila homologue of mammalian 

Rabll-FIP4/arfophilin2 and Rabl lFIP3/arfophilinl, is a known binding partner of 

Rab 11 and has previously been shown to play a role in both membrane delivery to the 

furrow and in recruitment of actin to the contractile ring (Rothwell et ah, 1999; Rothwell 

et ah, 1998). In their latest paper, Riggs et al. show that Nuf and Rabl 1 co-localise and 

physically associate with each other at the recycling endosome, that they are each 

dependent on each other for this localisation and that there are similar defects in both 

membrane delivery to and actin remodelling at the cleavage funrow when either of them 

are genetically knocked down (Riggs et ah, 2003). They propose two similar models 

which explain their findings (see figure 1.1). Both of these suggest that Rabl 1 and Nuf 

are required for delivery of membrane to the cleavage furrow. The first model proposes 

that actin filaments are incorporated into the membrane vesicles being delivered to the 

fuiTow and that therefore both actin and membrane are delivered to the site at which they 

are required. The second model suggests that rather than actin itself being included in 

the vesicles, it is actually an actin remodelling factor that is co-delivered with the
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Figure 1.1 Riggs et al’s models for recycling endosome/Rabl 1/Nuf involvement in 
Drosophila cellularisation:-

“Model 1 : Nuf localization to the RE during prophase may stimulate vesicle delivery to 
sites of metaphase furrow formation. Previous reports demonstrated these vesicles are 
often associated with actin particles, thus membrane and actin are delivered as a unit to the 
furrows (Rothwell et al., 1999). Model 2: vesicles delivered to the furrow site include 
potent actin-remodeling factors. This model is based on reports demonstrating that Rad is 
delivered to the membrane through vesicles (Radhakrishna et al., 1999).”

Figure and text taken from Riggs et al, 2003
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membrane which then has its effects on the actin cytoskeleton once it has been delivered 

to the cleavage furrow.

In either case, this work suggests that membrane delivery to and actin 

remodelling at the cleavage furrow are linked processes and that the compartment 

providing the driving force for both of these processes is the recycling endosome.

1.1.11 The final stages of cytokinesis

Once the actomyosin ring has contracted and the cleavage fuiTow has fully 

ingressed, the two daughter cells remain connected by a narrow intracellular bridge, 

known as the midbody. The final stages of cytokinesis result in the resolution of this 

bridge into two separate, sealed daughter cells and can be described as three separate 

events, outlined in sections 1.1.13-1.1.15 below. Failure of this process leads to several 

possible phenotypes. The most common of these are bi-nucleate or multinucleated cells 

due to a regression of the cleavage furrow after the completion of mitosis or cells 

remaining connected by an intracellular bridge long after normal cells have completed 

division. Before describing the final three events which lead to the completion of 

cytokinesis, the midbody itself is first reviewed.

1.1.12 The Midbody

The midbody is the term given to the naiTow band of cytoplasm that links the 

two daughter cells after cleavage furrow ingi'ession. One of its main components is 

tightly packed, anti-parallel microtubules derived fi'om the midzone microtubules that 

have been squeezed into a dense bundle. Where these microtubules overlap is the 

electron dense central “Flemming body”. Surrounding the Flemming Body (or possibly 

the outer, non-microtubule part of this structure) is a little-described ring-like structure
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which contains, amongst other proteins, MKlpl and which here will be refen*ed to as the 

“midbody ring”.

It is known that many proteins reside in the midbody and that these play a 

number of roles in the final stages of cytokinesis. For example, Skop et al.’s recent 

functional proteomic approach to identify proteins in the midbody and also what their 

corresponding functions may be found 172 proteins present in the mammalian midbody, 

of which 100 homologous proteins showed cytokinesis defects when they were knocked 

down by RNAi in C.elegans. The proteins present at the midbody carry out a variety of 

functions, which Schweitzer and D'Souza-Schorey divide into tliree groups in their 

recent review on the final stages of cytokinesis (Schweitzer and D'Souza-Schorey,

2004). These functional groups are midbody formation and stabilisation, actin ring 

disassembly and membrane events leading to abscission.

1.1.13 Stabilisation of the Midbodv

For the first of these stages, many proteins which are present on the central 

spindle, which I have already described, are required. For example, in addition to MKlpl 

having been shown to be required for furrow formation and ingression, it has also been 

shown to be required during the completion of cytokinesis. Specifically, Matuline and 

Kurigama show that MKlpl is required for stable midbody fonnation. This is perhaps 

not surprising as the midbody microtubules are derived from the central spindle where, 

as previously described, MKlpl canies out a microtubule bundling role. Nevertheless, 

the foimation of a stable midbody is essential for the progression tlnough to abscission 

as in cells failing to foim a stable midbody, the cleavage furrow often regresses, leading 

to bi-nucleated cells.

Echard et al. have also shown that midbody stabilisation is a key step to 

successful cytokinesis. In their RNAi screen for proteins involved in the final stages of
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cytokinesis in Drosophila they identify both anilin and citron kinase as being required 

for the stabilisation of the intracellular bridge. When these proteins were knocked down, 

cytokinesis failed in a significant proportion of cells (Echard et ah, 2004).

1.1.14 Actomyosin ring disassembly

For the second stage of this process, actin ring disassembly, at least two distinct 

events are required. The first of these is a membrane lipid event, the externalisation of 

phosphatidylethanolamine (PE) at the cleavage furrow. Emoto et al. have observed that 

PE, which nonnally resides in the inner leaflet of the plasma membrane, is exposed on 

the cell surface just before midbody formation (Emoto et ah, 1996). If PE is trapped on 

the outer leaflet, then a stable midbody fonns but then remains indefinitely as the 

actomyosin ring fails to disassemble (Emoto and Umeda, 2000). Little is known as to the 

mechanism of this process, but it is thought that the flipping of PE from the inner to the 

outer leaflet must provide a signal which leads to actomyosin ring disassembly.

The second event required for actomyosin ring disassembly is Rho down- 

regulation. This is a logical event as RJio activation was the most important signal for 

actomyosin ring assembly at the beginning of cytokinesis. As for its activation, Rho 

down-regulation is likely to be a complex event, with several different pathways leading 

to independent means of inactivating Rho, yet another example of the “belt and braces” 

theme of cytokinesis. For example, the previously mentioned Rlio GAP, CYK-4 

(MgcRacGAP, RacGAPSOC) is likely to be actively down-regulating Rho at this stage in 

cytokinesis by driving most of the RIio into a GDP-bound state (Minoshima et ah, 2003). 

Another pathway to ensure inactive Rho involves Nir2, a member of the Nir/retinal 

degeneration protein B family. This contains a Rid (Rho-inliibitory domain) which has 

been shown to bind preferentially to Rlio-GDP over Rho-GTP (Tian et ah, 2000). Nir2
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co-localises with Rho at the midbody and is likely to bind the inactive form of Rho and 

maintain Rho in this state, allowing actomyosin ring disassembly (Litvak et ah, 2002).

Cofilin is another protein which may play a key role in actin ring disassembly. It 

is known to promote actin filament disassembly, is up-regulated by dephosphorylation at 

a late stage of cytokinesis (Kaji et ah, 2003) and when its mutant gene is expressed or its 

expression is knocked down by RNAi or in Drosophila, large actin structures 

accumulate at the cleavage furrow during telophase and then persist into late cytokinesis, 

resulting in an inhibition of the completion of cytokinesis (Gunsalus et ah, 1995;

Somma, 2002).

1.1.14 Membrane events leading to abscission

Sections 1.1.7-1.1.10 have already commented quite extensively on membrane 

delivery in cytokinesis. However this was mostly eoncemed with membrane that was 

required for the ingressing cleavage fuiTow which is required in dividing cells, above 

anything else, to simply provide the cells with extra plasma membrane to accommodate 

the increase in surface area that occurs as the cleavage furrow Ingres ses. However, as 

was mentioned in section 1.1.7, membrane events must also be required for the very 

final stage of cytokinesis, abscission. The cells are now connected by the midbody, the 

actomyosin ring has disassembled and can therefore constrict the cell no further. It must 

be membrane events that ultimately divide one cell into two and ensure that these two 

new cells are sealed. It is not yet clear as to exactly how this event occurs, although two 

major models can be envisaged. Firstly, division may occur at the centre of the midbody 

in a process similar to plant cell division i.e. membrane vesicles are delivered along 

microtubules to the centre of the midbody where they accumulate and fuse with each 

other and eventually the plasma membrane, thus dividing the cell into two. The second
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model is one of endocytosis at the midbody, with endocytosed membrane leading to the 

division of the cell in to two.

The first, vesicle delivery and fusion model seems to be feasible as microtubules 

are already in place, teiTninating in the centre of the midbody. Here they overlap, which 

would provide an ideal situation for vesicles travelling from opposite sides of the 

midbody to meet and fuse. In addition, several parts of the membrane fusion machinery 

have been found to localise to the centre of the midbody and play important roles in 

cytokinesis. For example, Low et al. have shown that two members of the SNARE 

membrane fusion machinery, syntaxin 2 and endobrevin/VAMP 8 localise to the 

midbody and that when mutant forms of these proteins are expressed, bi-nucleate cells 

result. By using time-lapse microscopy they show that this failure in cytokinesis occurs 

specifically at the final abscission stage, as cleavage funow ingression and all other parts 

of cytokinesis proceed normally up until this stage. Thereby they also confinn that 

membrane events for abscission are indeed distinct to earlier, cleavage furrow ingression 

events (Low et ah, 2003). Also Gromley et ah have been studying a novel, centrosomal 

protein, centriolin, which they have shown to be required for the final stage of 

cytokinesis (Gromley et ah, 2003). More recently, they have reported that this protein 

binds to both seel 5, a member of the exocyst complex (a complex which has been 

shown to be essential for cytokinesis) and to the SNARE protein snapin. Knocking these 

two proteins down by RNAi produces abscission defects, as for centriolin. They have 

also shown that these, and other, SNARE and exoeyst components co-localise in the 

“midbody ring” structure which was intioduced in section 1.1.12 above. Further to this 

they have also observed membrane vesicle trafficking into the midbody during 

cytokinesis. They conclude horn all of these observations that membrane is delivered to 

the “midbody ring” structure at the centre of the midbody where the membrane fusion
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and exocytic proteins identified above carry out their functions, leading to abscission of 

the midbody (Gromley et ah, 2004).

The other model is one of endocytosis at the midbody, with endocytosed 

membrane somehow leading to the division of the cell in to two. Endocytosis has 

certainly been shown to occur earlier in cytokinesis, during cleavage furrow ingression, 

in Zebrafish (Feng et ah, 2002). It has also shown to be essential for successful 

cytokinesis in C.elegans (Thompson et ah, 2002). However, there are some hints which 

suggest it may be important at a later stage of eytokinesis in mammalian cells. For 

example dynamin, which is a key endocytic protein, has been shown to localise to the 

central spindle and later the midbody in both C.elegans and mammalian cells. In 

addition, depletion of dynamin in C.elegans has been shown to cause both early and late, 

possibly abscission, cytokinesis defects (Thompson et ah, 2002). It has also been shown 

that the small GTPase ARF6 plays a role in mammalian cytokinesis (Schweitzer and 

D'Souza-Schorey, 2002). Wild type ARF6 was seen to accumulate at the cleavage 

furrow during cytokinesis, whilst a constitutively active mutant of ARF6, ARF6Q67L 

localises to the midbody late during eytokinesis and when expressed at high levels 

causes various defects in cytokinesis (Schweitzer and D'Souza-Schorey, 2002). More 

recently they have suggested that the function that ARF6 is carrying out in the late 

stages of cytokinesis may be endocytosis, although this has yet to be confirmed 

(Schweitzer and D'Souza-Schorey, 2004).

1.2.1 ARFs, Rabs and FIPs

Rab 11 Family Interacting protein 4 (Rabll-FIP4), originally described as 

arfophilin 2, is a dual Rab/ADP-Ribosylation Factor (ARF) binding protein (Flickson et 

ah, 2003). Therefore the ARF and Rab families are described below before an 

introduction to the Rabl 1-FIP proteins.
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1.2.2 ADP"Ribosvlation Factors

ADP-ribosylation factors (ARFs) are a family of small guanine-nucleotide 

binding proteins and are members of the Ras super-family (Welsh et ah, 1994a). ARFs 

were originally identified by their ability to activate the cholera-toxin catalyzed ADP- 

ribosylation of Gs alpha (Kahn and Gilman, 1984; Kahn and Gilman, 1986), resulting in 

the permanent activation of adenyl cyclase. ARFs play key roles in membrane 

trafficking and organelle structure (Donaldson et ah, 1995). There are six mammalian 

ARFs, these being grouped into three classes. Class I contains ARFs 1, 2 and 3, Class II, 

ARFs 4 and 5 and Class III ARF6 (Welsh et ah, 1994b). There are also ARF 

homologues in both yeast and Drosophila melanogater. Sacchromyces cerevisiae 

contains three ARF proteins, ARFs 1,2 and 3. Either H/ZF1 or 2 is essential for viability, 

whilst ARF 3 is not essential for growth. Drosophila melanogater has at least one 

orthologue of each of the three mammalian classes of ARFs (Lee et ah, 1994).

Like other members of the Ras super-family, ARFs function as molecular 

switches, cycling between a GTP-bound active and a GDP-inactive form. The exchange 

of GDP for GTP on ARFs allows them to associate with membranes, where they carry 

out their functions. Under physiological conditions, this cycling between the GDP and 

GTP-bound foims occurs very slowly. In vivo, this cycle is massively accelerated by the 

presence of two families of ARF regulators, the guanine-nucleotide exchange factors 

(GEFs) and the GTPase activating proteins (GAPs). The GEFs function by catalyzing 

the exchange of GDP for GTP, therefore activating the ARFs (Jackson and Casanova,

2000). The GAPs (Moss and Vaughan, 1998; Chavrier and Goud, 1999) catalyse the 

intrinsic GTPase activity of the ARFs to return the GTP-bound from back to the inactive 

GDP bound form. There is also recent evidence to show that ARF GAPs can interact 

with a number proteins involved in cytoskeletal remodelling as well as the ARFs. These 

findings will be discussed in the "ARF GAP signalling" section.
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Of the mammalian ARFs, class I ARFs were the first to be extensively studied. 

These act in the Golgi where, in their activated GTP- bound form, they bind to ARF 

receptors in the Golgi membranes (Liang and Komfeld, 1997). Here they act to recruit 

coat protein I (COPI), which in turn forms non-clathrin coated vesicles by membrane 

budding (Lippincott-Schwartz et ah, 1998). More recently, a role of the class I ARFs, 

particularly ARFl, in the regulation of the actin cytoskeleton has been discovered. In 

1998, Noiman et al. showed that ARFl mediates the recruitment of paxillin to focal 

adhesions, in a Rlio-dependent mamier (Nonnan et ah, 1998). It has since been shown 

that this may occur via the ARF-GAPs, as discussed in section 1.1.4 below.

1.2.3 ARF6

ARF6 is the sole member of the class III ARFs and yet is has a staggeringly wide 

range of interactors and functions. It is highly conserved through vertebrates, 

invertebrates and yeast, although an ARF6 homologue does not occur in plants 

(Donaldson, 2003). Initially it may seem very similar to the other ARFs as its effector 

domains, Switch regions I and II, are very similar to the other ARFs. However, there are 

two fairly subtle differences which are thought to be responsible for the unique actions 

of ARF6. Firstly all of the ARF6 homologues contain a Gln-Ser motif adjacent to the 

Switch I region which is thought to be important for ARF6’s specificity and is required 

for the actin-re-arrangement properties of ARF6 (Al-Awar et ah, 2000). Secondly, all of 

the ARF6 homologues throughout evolution have a basic pi of 8.5-9.5, whilst other 

members of the ARF family have pis of 6.0-7.0 (Donaldson, 2003). This positive charge, 

in addition to ARF6’s myi istilation (as for all ARFs) is thought to maintain ARF6’s 

association with membranes, (Cavenagh et al. 1996; Song et al. 1998) even, to a large
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extent in the GDP bound form, although the cytosolic GDP bound fonn may exist 

(Gaschet and Hsu, 1999).

ARF6 seems to have a diverse range of roles in membrane trafficking, including 

playing a part in recycling endosomal vesicles (Chavrier and Goud, 1999), receptor- 

mediated endocytosis (Altschuler et ah, 1999; Mostov et ah, 2000), GLUT 4 

translocation (Millar et ah, 1999) and exocytosis (Caumont et ah, 1998). Interestingly, 

like ARFl, it has also been shown to be involved in the organization and remodelling of 

the cytoskeleton underlying the plasma membrane. For example, it has been shown to be 

essential for adherens junction turnover and cell migration in MDCK cells (Palacios et 

ah, 2001). Also, several studies also suggest a link to Rac 1 (D'Souza-Schorey, 1997; 

Franco et ah, 1999; Radhakrishna et ah, 1999) a member of the Rho family of small Ras- 

related GTP-binding proteins, which regulates membrane ruffling and lamellipodia 

formation.

More recently it has also been suggested to play a role in cytokinesis. Schweitzer 

and D'Souza-Schorey localized ARF6 to the cleavage furrow of dividing cells and 

showed that expressing a constitutively active fonn of ARF6, ARF6-Q67L, caused 

defects in cytokinesis (Schweitzer and D'Souza-Schorey, 2002). However, the function 

that ARF6 is playing in cytokinesis has yet to be deteimined, with both membrane 

recycling (endocytosis/exocytosis) and actin rean angement events, or both of these 

possibilities being important.

Current models of ARF6 action suggest that ARF6 cycles between a plasma 

membrane pool and an intracellular pool, that can be referred to as the ARF6 endosome. 

From this endosome, a proportion of ARF6 returns directly to the surface whilst the 

remainder merges with the sorting endosome from where it is trafficked back to the 

surface by a route which has not yet been fully determined (Radhakrishna and 

Donaldson, 1997; Donaldson, 2002). This could be directly from the sorting endosome
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to the cell surface or, as some reports suggest, it may firstly cycle tlu'ough the recycling 

endosome and then return to the cell surface. (Chavrier and Goud, 1999) (see figure 1.2). 

In this way it may exert its effects on both the vesicle trafficking/recycling system and 

the actin cytoskeleton underlying the plasma membrane.

1.2.4 Class II ARFs

The class II ARFs, ARFs 4 and 5, have been least studied. They have been 

shown to have and a similar localisation to, and share at least some functions with, class 

I ARFs. As they are typically present in cells at 3 to 10 times lower levels than class I 

ARFs it was originally thought they may only play a supplementary role to the class I 

ARFs. However, in 1999 a class II specific GEF was reported, (Claude et ah, 1999), 

suggesting that this class of ARFs must have its own, unique functions. These functions 

have the potential to be both membrane trafficking and cytoskeletaly related, like the 

class I and III ARFs. This indeed may be the case for ARF5 as this has been shown to 

localize to regions where membrane trafficking takes place, for example the Golgi, as 

well as being able to interact with regulatory proteins involved in cytoskeletal 

regulation, such as a group of GAPs able to bind paxillin (Turner et ah, 2001), as 

discussed in section 1.2.5 below.

Also, both our group and Shin et ah have performed yeast-2-hybrid screens 

using GTP-bound ARF5 as the bait and in this manner arfophilin (Shin et ah, 1999) and 

arfophilin 2 (Hickson et ah, 2003), were identified as class II ARF effector proteins. 

These will be discussed further in section 1.2.9 below.
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Clathrin-coated pit

Plasma membrane

S >  ARF6
V endosome?

RabS
Recycling
endosome Sorting endosome Rab4

Rabl I

ARF6TON
Late endosome

ARF5

Golgi

Lysosome
Nucleus

Figure 1.2 Diagram showing probable locations of Rabs 4, 5 and 11 and ARFs 5 
and 6. ARF6 has been shown to cycle from the cell surface to a little characterised 
endosome, via non-clathrin coated endocytosis. This endosome is marked as the 
“ARF6 endosome” here. From here some ARF6 moves directly back to the surface, 
whilst a proportion of it traffics to the sorting endosome. From here it is not clear 
which route it takes to re-join the surface, although either direct trafficking or 
movement via the recycling endosome are possible, as indicated by the ARF6 
symbols followed by question marks.
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1.2.5 ARF GAP signalling

As mentioned above, it has recently come to light that a number of ARF GTPase 

activating proteins (ARF GAPs) not only regulate ARFs, but also interact with a number 

of proteins involved in the regulation of the cytoskeleton. This supports the evidence for 

the role of ARFs in these functions. The first direct piece of evidence that ARF GAPs 

were able to interact with cytoskeletal proteins came from the identification of paxillin 

kinase linker protein (PKL). This is an ARF GAP which contains two paxillin-binding 

sub-domains, PBSl and PBS2 (Turner et ah, 1999). It is also binds the PIX (PAK- 

interacting exchange factor)/COOL (cloned out of library) family of Rac GEFs and the 

p21-activated serine-threonine kinase (PAR) family. These are both involved in Rho 

signalling pathways, the role of which in regulating the actin cytoskeleton is well 

established (Hall, 1998). Since then a number of other GAPs able to bind paxillin, 

PIX/COOL and PAKs have also been found, including p95-APPl, the GIT (G-protein- 

coupled receptor kinase interacting protein) family of GAPs and PAG3 (Di Cesare et al., 

2000; Premont et ah, 2000; Mazaki et ah, 2001; Rondo et ah 2000; Turner et ah, 2001).

The interactions of these groups of GAPs confinn the convergence between the 

ARF and Rho family GTPase signalling pathways as suggested by the ARFl and ARF6 

studies mentioned earlier (see Norman et ah, 1998 and Takai et ah, 2001) and shows the 

dual (most probably linked) role of ARFs in both membrane trafficking and cytoskeletal 

re-aiTangements).

It is also interesting to note that all of this family of GAPs posses GTPase 

activating activity for all tliree classes of ARFs (Turner et ah, 2001). Therefore, although 

the interactions have not been shown in vivo, it is quite possible that the class II ARFs 

also play a dual role in signalling, as has been shown for the class I and III ARFs.
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1.2.6 Rab Proteins

Rabs are another, and in fact the largest, family of monomeric small GTPases. 

The size of the family (11 Rabs in Sacchromyces cerevisiae (Lazar et al., 1997) and up 

to 63 family members in humans ( Pereira-Leal and Seabra, 2001; Zerial and McBride,

2001) is indicative of the large range of functions that these molecules regulate. 

Numerous studies have identified Rabs as regulators of vesicle transport between 

distinct intracellular membrane bound organelles (reviewed, Novick and Zerial, 1997). It 

is now clear that this family of proteins regulate at least thi*ee stages in vesicle 

trafficking events, these being membrane tethering/docking/fusion, (e.g. Cao et al.,

1998; Allan et al., 2000), vesicle budding (e.g. Nuoffer et al., 1994; Riederer et al.,

1994) and vesicle movement along cytoskeletal filaments (Echard et al., 1998; Nielsen et 

al., 1999).

1.2.7 The Rab cycle

Like the ARFs, Rab activity is dependent on their bound nucleotide and they 

cycle between the GTP-bound active and the GDP-bound inactive form. The regulation 

of this cycle is slightly more complex than that of the ARE cycle, with four groups of 

proteins being implicated as regulators. Firstly, in their inactive GDP-bound form, Rabs 

locate to the cytosol where they are bound by GDP dissociation inhibitors (GDIs). These 

proteins prevent indiscriminate membrane binding by the Rabs (Novick and Zerial, 

1997). Then, as the Rabs bind to their donor membrane, the GDIs are replaced by GDI- 

displacement factors or GDFs (Dirac-Svejstmp et al., 1997). The Rab is then activated 

by a guanine nucleotide exchange factor (GEF) which catalyses the exchange of bound 

GDP for GTP (Martinez and Goud, 1998). The Rab, now in its active form can interact 

with its effector. Once this has occurred, GTPase-activating proteins then act on the 

Rabs to catalyze the hydrolysis of the bound GTP to GDP, thereby rendering the protein
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inactive (Takai et al., 1996). The GDI protein can now again bind the Rab, removing it 

from the acceptor membrane into the cytosol, thereby allowing the cycle to start again.

1.2.8 YIPs are GDFs

As described above, GDFs (GDI dissociation factors) are thought to be required 

to catalyse the release of GDP-bound Rabs from the GDIs, hence allowing the Rabs to 

associate with membranes. A family of proteins recently identified as GDFs are the Yips 

(Ypt-interacting proteins). Yipl was identified in yeast as being able to bind to yeast 

Rabs. A human Yip family, containing 16 proteins has now been identified. Of these, 

Yip3 (also known as prenylated rab-acceptor 1, PRAl) has been most extensively 

studied. It has been shown that it can act as a GDF as small quantities of Yip3 can 

dissociate pure, stable Rab9/GDI complexes. Also, perturbing YIP3 alters the membrane 

associations of Rab9.

If there are only 16 mammalian Yips, yet more than 60 Rabs, can Yips convey 

the specificity required to deliver Rabs back to their correct membranes compartments? 

It is thought that, by a combination of factors that this may be possible. Firstly, although 

Yips can bind more than one of the Rabs, they typically only bind to a subset of the Rab 

family. For example, Yip3 seems to be specific for endosomal Rabs, being able to bind 

Rab9 but not being able to bind Rabl either in vivo or in vitro. Secondly, the Yips have 

distinct membrane localisations which will therefore aid the delivery of Rabs back to 

their correct compartments. For example, Yip3 is present on the late Golgi and 

endosomal membranes, whereas Yip6a (PRA2) is found on the Endoplasmic Reticulum 

and Yipl is localised to the ER/Golgi interface. In addition, there is also evidence that 

the Yips can hetero-dimerise. This could allow for another level of complexity, further 

aiding the specificity of interactions available for each of the Rabs to bind to their 

coiTect membranes.
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1.2.9 Rab Targeting

Whether Yips are the “target” for Rabs to be delivered to their specific 

membranes or not, it is still not totally clear which regions on the Rab proteins 

themselves are responsible for their targeting. Early studies suggested that the C- 

terminal hypeiwariable domain may be the section of the Rabs responsible for targeting 

(Chavrier et al., 1991; Stenmark et al, 1994). However, recent studies by Seabra and co

workers suggest that the C-temiinal domain is not a general targeting detenuinant and 

have identified alternative sequences within the Rabs which are responsible for their 

correct targeting (Ali et al, 2004). However, the regions identified show only partial 

overlap between Rab different members of the Rab family, suggesting that targeting may 

be complex and at least partially species specific.

In summary, although the hypeiwariable domain may play a role in targeting in 

some cases (most likely the endosomal Rabs), in general it does not. It is other, more N- 

terminal regions, which are possibly species specific, which lead to the coiTect targeting 

of Rabs to their specific membranes.

1.2.10 Early and Recycling Endosomal Rabs

Rabs 4, 5 and 11 have been identified as the most important Rabs for the 

internalisation of vesicles and their recycling back to the plasma membrane. In elegant 

experiments Zerial and co-workers showed that these 3 Rabs occupied partially 

overlapping, yet subsequent endocyctic domains along the vesicle recycling pathway 

(Sonnichsen et a l, 2000): Rab5 was present on primary endosomes and the sorting 

endosome, Rab4 was present at the sorting endosome and partly on the recycling 

endosome and Rab 11 was predominantly localised to the pericentriolar recycling 

endosome (see figure 1.2).
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These localisations reflect their known functions: Rab5, and one of it’s principle 

effectors, EEAl (early endosome antigen 1), have been shown to regulate the fusion of 

primary endosomes with the sorting endosome; Rab4 has been shown to be important 

for trafficking out of the sorting endosome, whilst Rabl 1 has been shown to be required 

for the exit of membrane traffic from the recycling endosome, from where vesicles then 

typically travel back to the cell surface.

1.2.11 R abll Subfamily

There are three closely related proteins in the Rab 11 subfamily, Rabl la, Rabl lb 

and Rab25 (Pereira-Leal and Seabra, 2001). Rabl la  and b are highly homologous, 

ubiquitously expressed and as of yet, any functional differences remain unclear. 

Therefore, in this work, as in many other pieces, the term “Rabl 1” will be used to 

include both Rabl la  and Rabl lb. Rab25 is expressed exclusively in epithelial cells and 

it is therefore thought that it may play a role in membrane trafficking events specific to 

these cells (Goldenring et al., 1993 and 2003).

1.2.12 Recently Identified Rab effectors

With the large size of the Rab family and the diverse functions these proteins are 

able to regulate it would be expected that there would be a large number of distinct Rab 

effectors. Indeed, since the first Rab effector, rabphillin3 was identified in 1993 (Kishida 

et al., 1993), a great number of effectors have been found. For example, over 20 proteins 

were identified that bind specifically to the active GTP foiTn of Rab5 in 1999, suggesting 

a great complexity of interactions downstream of this Rab (Christo fori dis et al., 1999).

One of the most recent groups of Rab effectors to have been identified are the 

Rabl 1 Family Interacting Proteins (Rabl 1-FlP family). These are a number of proteins, 

which, as a family interact with Rabl la  and, as has been recently revealed, Rabl lb
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(Junutula et al., 2004). Some members of the Rabl 1-FIP family may also interact with 

other Rabs, for example Rab4 or Rab25 (Hales Henderson et al., 2001; Prekeris et al., 

2001; Lindsay et al., 2002)(see figure 1.3). The binding of members of this family to 

Rabl 1 seems to be through a conserved domain at the C-terminus of the proteins which 

has been shown to be an amphiphatic alpha-helix region (Prekeris et al., 2001; Hales et 

al, 2001).

As mentioned in section 1.2.10 the primary role of Rabl 1 seems to be in vesicle 

recycling through the pericentriolar recycling endosome, where it partially co-localises 

with the transferrin receptor and is responsible for the membrane trafficking out of this 

compartment (Ullrich et al, 1996; Green et a l, 1997). It is also involved in the 

translocation of secretory vesicles in gastric parietal cells and glands (Calhoun et al, 

1998; Duman et al, 1999), the recycling of the IgA receptor in Madin-Darby canine 

kidney (MDCK) cells (Wang et a l, 2000) and in phagocytosis in macrophages (Cox et 

al, 2000).

Interestingly, Drosophila Rabl 1 has also been shown to play an important role in 

cellularisation of the Drosophila syncytium, a process analogous to mammalian 

cytokinesis. This is discussed further in section 1.2.8.

At present, it is not clear in which of these processes members of Rabl 1-FIP 

family play a role. What has been discovered is that several members of this family of 

Rabl 1 effectors co-localise with R abll in plasma membrane recycling systems in both 

non-polarised HeLa cells and polarised MDCK cells (Hales et a l, 2001).

It happens that two of the Rabl 1-FIP family members, Rabl 1-FIP 3 (previously 

named Eferin, EF-hands-containing Rab 11-interacting protein)(Prekeris et al, 2001) and 

Rabl 1-FIP4 are identical to arfophilin and arfophilin 2, respectively (see figure 1.3), 

which as described above were originally described as ARF5 effectors (Shin et al, 1999;
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Arfophilins Rabl 1-FIPs Rab binding ARF binding

Arfophilin 1 Rabll-FIP3 11 5 and 6

Arfophilin 2 | Rabll-FIP4 11 (and 5?) 5 (and 6?)

Rabll-FIPl 11 ?

Rabll-FIP2 11 ?

R ip lla 11 No

RCP 11 (and 4?) ?

Figure 1.3 Table showing relation of arfophilins to the Rabl 1-FIPs 
and the Rab and ARF binding interactions of these proteins. NE. It 
has been shown for several of the arfophilns/Rab-1 IFIPs that they 
can bind all members of the Rabl 1 subfamily, i.e. Rabl la, Rabl lb 
and Rab25 (Prekeris et al, 2001; Junutula et al, 2004). This is likely 
to be the case for all the arfophilins/Rabl 1-FIPs as their Rabl 1 
Binding Domains show a high degree of homology. Therefore,
Rabll in the above table refers to the Rabl 1 subfamily. (Data 
collated from shin et al, 1999; Shin et al, 2001; Prekeris et al, 2001; 
Meyers and Prekeris, 2002; Hickson et al, 2003; Junutula et al, 2004).
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Hickson et al, 2003). The next section summarizes what is cunently known about these 

two proteins.

1.2.13 R abll Family of Interacting Proteins (FIPs) 3 and 4/ The Arfophilins

As previously discussed, both arfophilin (Rabll-FIP3) and arfophilin 2 (Rab 11- 

FIP4) were originally identified as class II specific ARF effectors. Using the GTP - 

locked form of ARF5, Shin et al. performed a yeast-2 hybrid screen and identified 

arfophilin as an 82.4kDa novel ARF5-binding protein (Shin et al., 1999). Similarly, our 

group identified arfophilin 2, a novel 83KDa protein showing homology to arfophilin 1 

(see figure 1.4) (Hickson et al., 2003). Both proteins were shown to bind ARF5 in its 

active, GTP-bound form and not GTP-bound ARFl. Therefore it was proposed that the 

arfophilins were downstream effectors of the class II ARFs. Since then, it has been 

shown that arfophilin also interacts with the GTP-bound form of the class III ARF,

ARF6 (Shin et al., 2001).

Binding of the ARF5 and 6 to arfophilin is dependent on two different sequences 

on the ARF proteins; amino acids 2-17 in the case of ARF5 and amino acids 37-80 in the 

case of ARF6, which are not homologous to each other. Therefore, although both the 

ARFs bind to arfophilin within the same region of it’s C-terminal domain (amino acids 

612-756), it seems that there are two separate binding sites within this region for ARF5 

and ARF6 (Shin et al., 2001). It has not yet been detei*mined whether arfophilin2/Rabll- 

FIP4 can bind ARF6. As both the class II and III ARFs bind arfophilin/Rabl 1-FIP3, it 

has been suggested that these ARFs may actually influence the same downstream 

pathways (Shin et ah, 2001).

Arfophilin (Rabl 1-FIP3) shows co-localisation with ARF5 to intracellular 

membranes, particularly the Golgi, suggesting it may play a role in vesicle trafficking at 

this site.
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Figure 1.4 Alignment of Arfophilin1/Rab11-FIP3 (Arfo1), Arfophilin 
2/Rab11-FIP4 (Arfo2) and Drosophila Nuf. These proteins show greatest 
homology in their C-terminal sections, particularly over their last 146 amino 
acids (indicated by line). In this area 26% of the sequence is identical 
across all three proteins, with 63% identity occurring between the Arfo1 
and Arfo2 proteins. This is the area thought to bind both the ARF proteins 
and Rabl 1 (Shin et a l,1999; Prekeris et al, 2001). The residues shown in 
italics at the extreme C-terminus indicate the minimal “Rab binding 
domain” (RBD) necessary to bind R abl 1 as described by Prekeris et al 
(Prekeris et al, 2001).
Alignment taken from Hickson et al, 2003.
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Studies of arfophilin 2 (Rabl 1-FIP4), suggest a number of potential roles for this 

protein. It has been localised to three main areas of the cell. Firstly, it co-localises with 

Rabll in the pericentriolar recycling endosome. It is also present in focal adhesions, 

where it co-localises with paxillin. Thirdly, it is present at the centrosomes, and later the 

midbody during mitosis/cytokinesis (Hickson et al., 2003),

Over-expression of a GFP-tagged arfophilin 2/Rabll-FIP4 resulted in a tight 

pericentrosomal localization in a range of cells and this also caused the redistribution of 

transferrin receptors and Rabll to the same location, whilst early endosomal markers 

were unaffected. This suggests a role for arfophilin 2/Rabll-FIP4 in the regulation of 

the pericentriolar recycling endosomes.

Currently no functional data has been gathered about the potential role of 

aifophilin 2/Rabll-FIP4 in focal adhesions. However, it is striking to note the known 

roles of ARFs 1 and 6 in the regulation of the action cytoskeleton through interaction 

with the Rho family of small GTPases, as discussed previously, and that the Class II 

ARFs remain unstudied in this area.

Finally, regarding the localization of arfophilin 2/Rabl 1-FIP4 to the midbody 

during cytokinesis, there is good evidence to suggest a possible role for this protein in 

this process. Arfophilin2/Rab 11-FIP4 (and arfophilin/Rabl 1-FIP3) shows close 

homology to Nuclear-fallout (Nuf) (Hickson et al., 2003) (see figure 1.4). This is a 

Drosophila protein that is required for cellularisation (Riggs et al., 2003), a process 

analogous to cytokinesis in the syncytium of Drosophila embryos (see section 1.2.8).

1.3 Summary and Aims

In summary, studying Rabll-FIP4 should aid our understanding of the co

ordination between the Rab and ARF families, which is currently a novel concept and
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also has the exciting possibility of discovering a role for the Rabs, ARFs and Rabl 1- 

FIP4 itself in the process of cytokinesis.

The aims of this study are to confimi and further evaluate the interactions of 

Rabl 1-FIP4 with the ARF and Rab family members with which it is known to interact, 

to investigate the localization and co-localization of these proteins in human cells during 

both interphase and throughout cell division and then to investigate the possible 

functional roles for Rabl 1-FIP4 and its binding partners in cytokinesis.
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Chapter 2

Methods



2.1 Recombinant Protein Expression

75ml tenific broth (for 1 L; 12 g bacto-tryptone, 24 g bacto-yeast extract, 4 mL glycerol, 

2.31 g KH2P04, 12.54 g K2HP04, ddHjO to IL) was inoculated with BL21 cells 

transformed with the appropriate plasmid and either Kanamycin or Ampicillin added to 

30ug/ml or lOOug/ml respectively. After 16 hours at 37*̂ C, spimiing at 200rpm, this 

culture was added to 1 litre terrific broth plus the appropriate antibiotic. When the OD̂ oo 

reached 0.6, IPTG was added to a final concentration of ImM and cultures were left 

spinning at 200ipm, 37”C for a further 2 hours. Cultures were then spun down at 

4000rpm, 4'̂ C, for 15 minutes and then the supernatant removed and pellets re

suspended in 20ml/litre of breaking buffer (PBS (138 mM NaCl, 2.7 mM KCl, 8.1 mM 

Na2HP0 4 , 1.5 mM IŒ 2PO4, pH 7.4) plus 0.1%Tween, ImM EDTA, ImM 2- 

mercaptoethanol, 4mM PMSF and ImM Pepstatin). Samples were then French pressed 

twice at 950psi and subsequently spun at 17,000rpm, 4”C for 25 minutes. The 

supernatant was added to 0.5ml/litre original culture of Glutathione Sepharose 

(Amersham Biosciences) if the protein had a GST-tag or Talon Resin (BD Biosciences) 

if the protein was his-tagged. The supernatant plus the beads were then incubated at 4”C 

for 1 hour with gentle rotation to allow binding of the protein.

In the case of the GST-tagged proteins, the beads were then washed 4 times with 

20 bed volumes of PBS, 0.1% Tween, by centrifugation at lOOOipm for 3 minutes. The 

beads were then re-suspended in an equal volume of PBS and stored at 4"C. If soluble 

GST-tagged protein was required then the beads were placed in a filter column and the 

protein eluted with glutathione in elution buffer (50mM Tris-HCl, lOmM reduced 

glutathione, pHS.O). If soluble, un-tagged protein was required, thrombin (Amersham 

Biosciences) was added to the beads and these were then incubated overnight at 4°C, 

then added to a filter column, and the flow-tlii’ough collected and stored at -80®C.
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In the case of His-tagged proteins, the talon resin was washed four times with 20 

bed volumes of His wash buffer (25mM HEPES, pH8.0, 250mM NaCl, 10% glycerol, 

5mM Immidazole), before being re-suspended in an equal volume of wash buffer and 

added to a filter column. The resin was then allowed to settle and then the wash buffer 

allowed to run thi'ough. Proteins were then eluted with elution buffer (25mM HEPES, 

pH8.0, 250mM NaCl, 10% glycerol, 75-250mM Immidazole) containing increasing 

concentrations of Immidazole (typically 75mM, ISOniM, 250mM).

2.2 GST Binding Experiments

Beads with 5pg of the GST-protein in question attached were taken and the volume of 

beads made up to 50pl with glutathione beads. lOOpl of reaction buffer (PBS plus 

200mM NaCl, ImM MgCb, 0.2% Triton X-100) was added to each tube. BSA was 

added to a final concentration of 0.2mg/ml, PMSF to 4mM and GMP-PMP (Roche 

Molecular Biochemicals) to 0.2mM. 20pg (unless otherwise stated) of the soluble 

protein under investigation was then added to each tube and the total volume brought to 

500|xl with reaction buffer. Tubes were then incubated at 4®C for 1 hour whilst rotating. 

Beads were then washed 4 times with reaction buffer by spimiing for 2 minutes, 

3000rpm, 4‘̂ C and then eluted with 50|il of Ix SDS-PAGE sample buffer (50mM Tris- 

HCl (pH6.8), lOOniM DTT, 2% SDS, 0,1% Bromophenol Blue, 10% glycerol). Tubes 

were boiled for 5 minutes, then spun at 6000ipm for 1 minute to pellet the beads and 

1 Ojil of the supernatant was then run on a gel for western blotting.

2.3 HeLa Cell Transfections

HeLa cells were 75ml flasks (Coming) at 37"C, 5% CO2 in Minimal Essential 

Media (Invitrogen Life Technologies) supplemented with 10% Fetal Calf Serum 

(Invitrogen Life Technologies), 1% Non-Essential Amino Acids (hivitrogen Life
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Technologies), and 1% Penicllin/Strepomycin (Invitrogen Life Technologies).HeLa cells 

were transfected using Lipofectamine 2000 (Invitrogen Life Teclinologies) and the 

protocol provided for this product followed. Briefly, 24 hours prior to transfection the 

HeLa cells were split into 12-well plates (Coming) containing 13mm glass cover slips 

(BD Biosciences). This was done in normal growth media except that the antibiotic mix, 

Penicllin/Strepomycin), nonnally added to the media was excluded as this becomes toxic 

to the cells if it enters them via the Lipofectamine 2000. At the time of transfection,

1.6pg of plasmid DNA per well is added to lOOjil Optimem I Reduced Serum Medium 

(Invitrogen Life Technologies). In a separate tube, 6pi of Lipofectamine 2000 per well is 

added to lOOpl OptiMEM I. These solutions were left to incubate at room temperature 

for 5 minutes. The DNA and Lipofectamine 2000 solutions were then combined, gently 

mixed and allowed to incubate for a further 20 minutes to allow the DNA/

Lipofectamine 2000 complexes to fomi. Meanwhile, the cells were washed 3 times in 

OptiMEM I and 0.8ml of OptiMEM I added to each well. After the 20 minute 

incubation, the solution was then added to the well. Cells were then placed back in their 

incubator for 5 hours before 1ml of 20% serum media was added back to the cells. Cells 

were then left 24 or 48 hours before analysis.

2.4 Immunofluorescence Staining of Ceils

Growth media was removed and cells gently washed Ix with PBS. Fresh 4% 

parafomialdehdye was then added and left for 10 minutes at room temperature. Cover 

slips were then washed 3 times with PBS and then 30mM NH4CI added for 5 minutes. 

Cover slips were again washed 3 times with PBS before 0.1% Triton (in PBS) was added 

for 10 minutes to permeabilise the cells. Again cells were washed 3 times in PBS, then 3 

times in blocking buffer (PBS plus 0.2% Fish Skin Gelatin (Sigma), 0.1% Donkey
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Antibody
type

Antigen Source Species Dilution for
Western
Blots

Dilution for 
immuno
fluorescence

Primary ARF6 Gift,
J.Donaldson

Rabbit 1:1000 1:200

Primary

Primary

ARF5

Rabll

Home made, 
anti peptide 
Zymed

Sheep

Rabbit

1:1000

1:1000

1:200

1:200
Primary FIP4 Home made 

(characterised 
Hickson et al, 
2003)

Sheep 1:2000 1:200

Primary Rab5 Santa-Cruz Rabbit 1:1000 N/A
Primary Transferrin

Receptor
Zymed Mouse N/A 1:200

Primary MKLPl AbCam Rabbit N/A 1:200
Primary Survivin Novus Rabbit N/A 1:200
Primary RhoA Upstate Mouse 1:1000 N/A
Primary Alpha-

Tubulin
Sigma Mouse N/A 1:3000

Primary myc Santa-Cruz Rabbit 1:1000 1:200
Primary HA Santa-Cruz Rabbit 1:1000 1:200
Secondary, 
Horse Radish 
Peroxidase 
coupled

Sheep Pierce Rabbit 1:2000 N/A

Secondary, 
Horse Radish 
Peroxidase 
coupled

Mouse Amersham
Biosciences

Sheep 1:1000 N/A

Secondary, 
Horse Radish 
Peroxidase 
coupled

Rabbit Amersham
Biosciences

Donkey 1:1000 N/A

Secondary, 
Alexa Fluor® 
594 or 488 or 
647 coupled

Sheep, 
Rabbit or 
Mouse

Molecular
Probes

Donkey N/A 1:400

Table 2.1 Details of antibodies used in this study.
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Serum (Sigma). Blocking buffer was freshly prepared and passed through a 0.2|iM filter. 

Cells were washed 3 more times in PBS, then primary antibody added, usually at a 1:200 

dilution in blocking buffer for 2 hours (see table 2.1 for full list of antibody details).

Cells were then washed again 3 times in blocking buffer followed by 3 times in PBS 

before the secondary, fluorescent, antibody was added at a dilution of 1:400 in blocking 

buffer and left for 1 hour. Molecular Probes 488 (gi'een), 594 (red) and 647 (blue)

“Alexa Fluor Dyes” secondary antibodies were used (see table 2.1 for full list of 

antibody details). Cover slips were then washed 3 more times in blocking buffer and 

PBS. If actin staining was required then phalloidin was added for 30 minutes at this 

stage. A 1 in 20 dilution (in PBS) of Molecular probes 488, 594 or 647mn labelled 

phalloidin stock was used as appropriate. Cells were then washed again 3 times with 

PBS. If nuclear staining was required, then DAPI (Molecular probes), diluted in PBS to 

a final concentration of lug/ml was added for 2 minutes, before a final 3 washes in PBS. 

Cover slips were then mounted onto glass slides using a drop of “Immunomount” 

(Shandon Lipshaw, Pittsburgh, PA) and then left overnight in the dark to dry. The 

exposure of cover slips to light was minimised tlrroughout the procedure to help prevent 

fading of fluorescence.

2.5 Confocal Microscopy

After staining, cells were obseiwed and data collected on either a confocal 

microscope, or a Deltavision Microscope, as described in section 2.6 below. The 

confocal microscope used was a Zeiss LSM 5 Pascal instrument, with a Zeiss 63x or 40x 

oil immersion objective. 488nm Alexa-Fluor dyes and GFP were excited using a 488 nm 

argon laser, whilst helium neon lasers were used to excite both the 594 and 647mii 

Alexa-Fluor dyes. The appropriate long-pass filters were used to detect the fluorescence. 

Zeiss Pascal software was used to collect the images.
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2.6 DeltaVisioii Microscopy

3D data sets were either acquired using a MicroMax cooled CCD camera 

(5MHz: Roper Scientific, USA), on a DeltaVision Restoration Microscope (Applied 

Precision, LLC, WA, USA), built around a Nikon TE200 Eclipse stand, fitted with a 

lOOX/1.4N.A. PlanApo lens, or using a CoolSnap HQ cooled CCD camera on a 

DeltaVisioii Spectris Restoration Microscope built around an Olympus 1X70 stand fitted 

with an a 60x/1.4NA lens (Applied Precision, LLC, WA, USA). Optical sections were 

recorded every 0.2 pm. 3D data sets were deconvolved using the constrained iterative 

algoritluii (Swedlow et al, 1997; Wallace, 2001), implemented in SoftWoRx software 

(Applied Precision LLC, WA, USA). Image data was saved in TIFF format for 

presentation.

2.7 Adenovirus Production and Infections

A sample of adenovirus containing a myc-Rabl 1-S25N vector was kindly 

donated by Rytis Prekeris. A GFP alone expressing virus was already available in our 

lab. Viruses were amplified according to standard protocols. Briefly, HEK293 cells were 

grown in 150ml flasks (Coming) in DMEM (Invitrogen Life Teclmologies) 

supplemented with 1% Glutathione (Invitrogen Life Teclmologies) and 5% Fetal Calf 

Serum (Invitrogen Life Technologies). Once cells were 60-70% confluent, vims was 

added. Cells were left under nomial gi'owth conditions until the cells floated off the flask 

base (typically 3-4days). Media and cells were then collected in 50ml tubes and cells 

spun down at lOOOrpm for 5 minutes. Supematent was removed and then cell pellets re

suspended in an equal volume of PBS. Tube then freeze-thawed 4 times to break open 

cells. For continued amplification, this was then added back to a larger number of HEK 

293 flasks. For purification at this stage, an equal volume of Arklone P added to the 

freeze-thawed mixture and this was mixed thoroughly. Tubes were left to stand for 10
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minutes for the layers to separate and then spun at lOOOrpm for 5 minutes. Meanwhile, 

CsCl gradients were prepared in Beclanan 14x95mm tubes. 1.5ml of CsCl 1.2 was added 

to the tube and then carefully underlain with 3mis of CsCl 1.4. The top, lysed layer from 

the spun tubes was now carefully added to the top of the gradient and these then spun in 

a Beclcman SW40 swingout rotor at 27000rpm, Ŝ 'C, for 90 minutes with 0 deceleration. 

The viral band was then removed from the tubes with a 19 gauge needle and inserted 

into a dialysis pack. This was then dialysed overnight at 4”C in 2 Litres of TBS.

Dialysed virus was then removed and stored at -80®C until required. To infect HeLa cells 

with vims media was first replaced with 5% PCS Minimal Essential Media (rather than 

the noimal 10%). Virus was then added at a concentration to give 80-95% infection 

(typically a 1:500 to 1:1000 dilution of stock). After 3 hours, extra ECS was added to 

bring the final concentration to 10%. Cells were left for 24 or 48 hours before being 

processed for immunofluorescence or protein extraction.

2.8 Microiiiiectioiis

HeLa cells were grown on “Cell Locate” gridded cover slips (Eppendorf). These 

are marked with a grid and letters to allow identification of particular cells. Prior to 

microinjection, cells were transferred from their nomial growth buffer to a dish 

containing microinjection buffer. Cells were then transfeiTed to a heated stage and were 

microinjected using an Eppendorf Microinjector 5171 and Transjector 5246 system with 

Eppendorf Femtoptips. The FIP4 antibody used was at a concentration of 0.68mg/ml, 

whilst proteins were diluted to a concentration of 1 mg/ml in Ix PBS. Antibody and 

protein buffers were free from detergents. Antibodies and proteins were centrifuged for 

15 minutes at 13000 rpm, transferred to a new tube and kept on ice prior to the 

injections. In some cases, a small amount of 488 nm fluorescently tagged Bovine Serum
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Albumin conjugate (Molecular Probes) was added to the antibody or protein solution to 

aid identification of micro-injected cells.

2.9 siRNA Transfections

siRNAs were prepared according to the Ambion “Silencer™ siRNA 

Construction Kit” protocol. They were then transfected into HeLa cells outlined below:-

24 lirs prior to transfection, HeLa cells plated out onto 13mm glass coverslips in 

6-well plates in HeLa media without antibiotics. For a final siRNA concentration of 

50nm, the following amounts of siRNA and reagents were used. Amounts adjusted as 

necessary for lower/higher concentrations. For each well (6-well plate, total 1ml) lOul of 

6pM siRNA pluslSOpl Optimem I Reduced Serum Medium (hivitrogen Life 

Technologies) was mixed. In a separate tube, 9ul Oligpfectamine (hivitrogen Life 

Technologies) +36pi Optimem I Medium were mixed. Both tubes were then left for 5 

minutes before being combined, mixed gently and left for a further 20 minutes. 

Meanwhile, the media in plates was washed twice and replaced with 800pl Optimem I. 

After 20 mins, the siRNA/Olifectamine mixtures added to cells, giving a final volume of 

1ml. After 5hrs, 1 lOpl FCS (hivitrogen Life Teclmologies) was added to make 10% 

Serum media. Cells were then left for 24, 48, 72 or 96hrs at 37*C, 5%C02.

Coversilps were then removed to separate 6-well plate and fixed for 

immunofluorescence staining as described in section 2.4.

For the cells remaining in the original 6-well plate, protein extracts were 

prepared as described in section 2.10 below.
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2.10 Protein Extracts from HeLa Cells

The whole of the following procedure was perforaied on ice:- 

Firstly, the media was aspirated off and then the cells gently washed twice in ice-cold 

PBS. 150pl of following protein extract buffer (50mM HEPES, lOOmM KCl, 5mM 

NaCl, ImM MgCfr, 0.5mM EGTA, ImM EDTA, Proteinase inhibitor tablet, 0.1% 

Triton-x-lOO, ImM DTT) was added to each 6-well dish. Cells were then scraped and 

left for 5 minutes, before being passed five times tluough a 23 gauge needle. The cells 

were then spun at 14,000rpm for two minutes and then the supernatant transfeiTed to a 

separate tube and either used immediately or stored at -80^f C. To determine the 

concentration of the samples, lOpl supernatant added to BioRad reagent (BioRad) 

diluted 1:5 with dHiO. The solution was then mixed and left 5 minutes and then the 

absorbance read at 595mn against a blanlc. The protein concentration of the sample could 

then be gained by comparison to a standard cuiwe (prepared with known concentrations 

of Bovine Serum Albumin.

2.11 SDS PAGE

SDS Polyacrylamide-Gel-Electropluesis (PAGE) was canied out according to 

standard protocols. Briefly, a “separation” buffer containing 12-15% Polyacrylamide 

was poured between glass plates (Bio-Rad), leaving a 1.5cm gap at the top of the plates 

(For 3Omis of 12% separating gel:- 10.2ml ddH20, 7.5ml 1.5 M Tris-HCl, pH 8,8,

0.15ml 20% (w/v) SDS, 12.0ml Acrylamide/Bis-acrylamide (30%/0.8% w/v), 0.15ml 

10% (w/v) ammonium persulphate (APS)'*' and 0.02ml TEMED*. *Add these last). 2mls 

of isopropanol was added to the top of the separation buffer to ensure a level upper 

surface of the separating gel and the gel was then left to set. Once set, the isopropanol 

was poured off and the top of the gel rinsed with dH20. A “stacking” buffer was then 

mixed and added up to the top of the glass plates and a comb inserted to create wells
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(For 5mls of 4% stacking gel:- 3.075ml ddH^O, 1.25ml 0.5 M Tris-FlCl, pH 6.8, 0.025ml 

20% (w/v) SDS, 0.67ml Acrylamide/Bis-acrylamide (30%/0.8% w/v), 0.025ml 10% 

(w/v) ammonium persulphate (APS)* and 0.005ml TEMED*. *Add these last). Once 

set, the comb was removed. The plates were then inserted into a SDS-PAGE tank (Bio

Rad) and the tank filled with SDS-PAGE rumiing buffer (0.025 M Tris-HCl, 0.192 M 

Glycine, 0.1% (w/v) SDS, pH 8.3). Protein samples were then loaded onto the gel 

alongside a coloured molecular weight marker (Bio-Rad). Gels were then run at SOVolts 

until the samples had “stacked” along the interface between the “stacking” and 

“separating” gels. The supply was then turned up to 1 SOVolts and the gel ran until the 

protein markers were well separated. Gels were then removed from the tanlc and either 

placed in Coomassie blue stain (0.025% Coomassie Brilliant Blue R250, 40% (v/v) 

methanol, 7% (v/v) acetic acid, ddHzO to required volume) or transfeiTed onto 

nitrocellulose in preparation for Western blotting.

2.12 Western Blotting

Transfer buffer (25mM Tris, 190mM glycine, 20% (v/v) MeOH) was prepared 

and a piece of nitrocellulose membrane (Schleicher & Schuell BioScience), plus four 

pieces of filter paper (Whatman) were soaked in this buffer for 10 minutes. The gel was 

then placed on the nitrocellulose membrane and sandwiched between two sheets of filter 

paper and a transfer sponge on either side. This stack was then placed in a transfer 

cassette and subsequently a transfer tank containing transfer buffer. Gels were 

transferred to the nitrocellulase by passing a current (250mAMPs) tlrrough the tanlc for 2 

hours. Nitrolcelluloase membranes were then carefully removed and placed in PBS plus 

5% Marvel dried milk (Premier Brands), 0.05% Tween 20 for 1 hour in order to “block” 

the membrane. Primary antibody was then added in PBS plus 2% dried milk, 0.05% 

Tween 20 at an appropriate concentration (see table 2.1). After 2 hours, primary
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antibody solution was removed and the membrane washed 3x 10 minutes in PBS plus 

2% dried milk, 0,05% Tween 20. Secondary antibody was then added (for 

concentrations see table 2.1) in PBS plus 2% dried milk, 0.05% Tween 20 for 1 hour. 

Membranes were then washed 3x 10 minutes in PBS plus 0.05% Tween 20. ECL re

agents were then mixed and added to the membrane for 1 minute before the membrane 

was placed in a cassette and overlaid with film (Kodak) Film was then developed using a 

Kodak “Exomat” machine.

NB. Unless otheiwise stated, all reagents were supplied by Sigma, UK.
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Chapter 3 -  Binding of Rabll"FIP4 to ARF and Rab Family Members 

3.1 Introduction

Rabl 1-FIP4 (FIP4) has previously been shown to bind 2 proteins of different 

sub-families within the small GTPase superfamily. These are the Class II ADP- 

Ribosylation factor, ARF5, and Rabl 1, a member of the Rab family of proteins (Hickson 

et ah, 2003). Other members of the Rabl 1-FIP family have been shown to bind further 

proteins in both the ARF and Rab families. For example, Rabl 1-FIP3/ arfophillinl has 

been shown, by yeast-2-hybrid and GST-pull down approaches, to bind both ARF5 and 

ARF6 (Shin et ah, 1999, 2001) and also Rabl 1 (Prekeris et ah, 2001).

Therefore, the aims of this chapter were to further investigate the binding of 

Rabl 1-FIP4 (FIP4) to Rabl 1 and ARF5, to determine whether or not FIP4, like FIP3, 

can bind to ARF6, and to start to investigate the possibility of FIP4 binding to further 

members of the ARF and Rab protein families.

3.2 Results

3.2.1 Expression of FIP4, Rab and ARF proteins

In order to carry out pull-down experiments it was first necessary to express and 

purify the proteins in question. It was chosen to express ARF5, ARF6, Rabll and Rab5 

as N-tenninally GST-tagged proteins cloned into the pGEX-5X-l vector (Phannacia) in 

BL21 cells and to purify these proteins over Glutathione sepharose. A GST-alone 

construct to use as a negative control in the binding experiments was also expressed and 

purified. By rumiing these purified proteins on Coomassie gels alongside BSA standards 

it was found that all of these proteins expressed at a good level and that only one major 

product of the coiTect size for the intact protein was produced in each case, indicating 

the proteins had been expressed and purified successfully (Figure 3.1 (a)). A
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(a)
Rab5 Rab11 ARF5 ARF6 

e1 e3 e1 e3 e1 e3 e1 e3

(b)
Immadazole 

concentration (mM) 
Ladder 25 75 150 150 150

e l e2 e3 e4 e5

(c)

e3

Figure 3.1(a) Purified GST-Rab/ARF proteins were run on a 
12% SDS-PAGE gel and Coomassie stained. For each protein, 
5pl of each of the first (e l) and third (e3) elutions were run to 
check their approximate concentration (against BSA standards, 
not shown) and integrity, (b) 5pl of each of elutions 1-5 of 
purified his-tagged FIP4 330 were run on a 12% SDS-PAGE gel 
to check their integrity and approximate concentration (e1-e5 
below the gel indicate elutions1-5). The concentration of 
Immadazole used to elute each of the five 1.5ml aliquots of the 
purification is shown, (c) 5pl of a sample of elution 3 diluted 
1:200 in elution buffer was run on a 12% SDS-PAGE gel and 
then transferred to nitrocellulose membrane and immunoblotted 
for FIP4. Molecular weight of markers in ladder is shown in kDa 
at the left side of each panel.
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more accurate determination of the protein concentration of each sample was made by 

perfomiing BioRad protein assays, as described in section 2.10.

Initially it was attempted to purify full length, GST-tagged FIP4 using the same 

methods as for the Rabs and ARFs. However, purification of the full-length product 

proved difficult, usually resulting in a ladder of protein fragments of several different 

sizes when run on a protein gel. A possible reason for this mixed population of proteins 

is due to the possible stalling of the bacterial translational machinery at various points 

along the GST-FIP4 sequence, resulting in a mixed population of peptides. In normal 

E.Coli cells this problem can occur due to the variability in the preferred codon usage for 

an amino acid between higher eukaryotes and prokaryotes. Because some common 

human codons may rarely occur in bacterial DNA, the bacteria will contain few of these 

tRNAs. Therefore, when attempting to translate a human gene the process may stall due 

to a lack of the required tRNA. To try and overcome this problem GST-FIP4 was 

transfomied into Rosetta E.Coli. This strain of E.Coli is engineered to contain 

supplemental copies of rare E.Coli, common higher eukaryote codons to aid translation 

of higher eukaryote proteins. However, expressing and purifying the GST-FIP4 from 

Rosetta cells seemed to make little difference to the quality of the purification, with a 

mixed population of peptides still resulting (data not shown). Various induction times 

and temperatures were also trialled as these have been reported to have effects on the 

quality of purifications but these also did not lead to pure preparations (data not shown).

It is also Imown that the purification of larger recombinant proteins using the 

tagged approach is generally more difficult than the purification of smaller proteins. This 

phenomenon is detailed by Frangioni and Neel in their study on the purification of GST- 

tagged proteins (Frangioni and Neel, 1993). They found that the amount of GST-fusion 

protein purified per volume of beads used decreased as the size of the fusion protein
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increased, more gi'eatly than would be expected than if binding capacity was constant on 

a molar basis. Indeed they coimnented that proteins of over lOOlcDa would be predicted 

to give extremely low yields. The total size of the GST-FIP4 would be 107 kDa. They 

also suggested that if the protein is at all liable to proteolytic cleavage during the 

purification process, then the smaller fragments of your protein will be preferentially 

bound to the GST-sepharose and purified, making a clean purification of a large protein 

even more difficult to achieve. This comment may explain the “ladder” of proteins 

typically visible of a GST-FIP4 purification. For these reasons it was decided to try and 

purify a smaller part of FIP4 for the binding experiments in this chapter. It has been 

previously demonstrated that both the ARF5 and Rab 11 binding sites on FIP4 are 

located within the C-temiinal 330 amino acids of the protein. Therefore, it was decided 

to try and purify this part of FIP4 and use this for the binding studies.

3.2.2 Purification of His-tagged FIP4 330

A construct containing the C-terminal 330 amino acids of FIP4 cloned into a 

pET28b vector (Novagen) with an N-terminal hexa-his tag was already available from 

within the lab. This was transformed into BL21 cells and expressed and purified over 

Talon Metal Affinity Resin (BD Biosciences) as described in section 2.1. In this case, 

providing protease inliibitors were used and the preparation kept cold throughout 

purification, a single peptide of a satisfactory concentration could be obtained. This is 

shown in figure 3.1(b) and (c) where a sample of each of the elutions from a typical 

purification has been run on an SDS-PAGE gel and Coomassie stained. The gel shows 

one major band in each lane, at approximately the coivect size for the C-terminal 330 

amino acids of FEP4. Figure 3.1 (c) shows a western blot of one of these elutions which 

has been probed with an anti-FIP4 antibody. Again, one major band is seen at the same 

size as on the Coomassie stained gel, with some much fainter bands of smaller size
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indicating a very minor pool of breakdown products. Therefore, this was the protein 

used for the binding experiments perfoimed in this chapter.

3.2.3 Recombinant Protein GST-pull down Experiments

GST-pull downs are now a fimily established method of investigating 

interactions between two or more proteins. With the inclusion of appropriate controls, 

they are an ideal method of detennining the specificity of binding within a protein 

family. Pull-downs can be perfoimed with proteins recombinantly expressed and 

purified from bacteria or from in vivo proteins purified from the appropriate cells, or a 

combination of both approaches. Each method has its own advantages. Here, 

recombinantly expressed proteins were used as a method which allows Imown amounts 

of each of the proteins within the experiments to be used, therefore allowing 

comparisons of the amount of binding observed of the ARE and Rab family members to 

FIP4. In vivo type experiments to confirm that the interactions shown in this chapter do 

actually take place in living cells are being earned out by other members of our lab. In 

order to ask different questions, several different types of experiment were undertaken, 

although the basic methodology behind each, as described in section 2.2, remained the 

same. Firstly, a “specificity” experiment was performed which allowed the confirmation 

of the binding of FIP4 to Rabl 1 and ARF5, the absence of binding to ARFl, as 

previously shown by Hickson et ah (Hickson et ah, 2003) and to deteimine whether or 

not ARF6 binds FIP4. “Affinity” experiments were then earned out to detennine the 

relative strength of binding of FIP4 to each of the small GTPases. Finally, “competition” 

and “trimeric” experiments were conducted to investigate the possibility that FIP4 can 

bind more than one of the small GTPases simultaneously.
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3.2.4 Specificity Experiments

A specificity experiment was perfoimed as an initial means of confiiming the 

binding status of ARFl, 5 and Rabl 1 to FIP4 and to ask if ARF6 is also a binding 

partner for FIP4.

5pg of GST-ARF/Rab or GST alone (as determined by comparing to BSA 

standards on Coomassie gels of the purified proteins) were added to separate tubes. To 

each of these, 20pg of FIP4 was added. After incubation and washing, the proteins were 

eluted from the beads by adding an equal volume of Ix SDS-PAGE buffer and lOpl of 

each of the eluted solutions was run on a 12% gel. The gels were then transfeiaed to a 

nitrocellulose membrane, the membranes Ponceau stained and scanned to check for 

equal loading of the proteins and then the membranes probed with FIP4 antibody. Figure 

3.2(a) shows a typical result of this experiment.

As can be seen in figure 3.2(a), the GST- alone lane shows no FIP4 binding, 

showing that FIP4 does not readily bind GST on if  s own and therefore any binding that 

is seen is a bona-fide result of F1P4 binding to the protein in question. As a further 

negative control, GST-ARFl was included. This has previously been shown not to bind 

F1P4 (Hickson et al., 2003) and lack of a band in this lane confirms that there is little or 

no binding between ARFl and FFP4. The GST-ARF5 lane shows a band of F1P4. This is 

expected as the binding between these two proteins has previously been shown and was 

indeed how F1P4 was originally identified (Hickson et al., 2003). The GST-ARF6 lane 

shows a very strong band for FIP4, indicating strong binding of these two proteins, 

which has not previously been shown. As expected, the Rabl 1 lane shows a sigirificant 

band for F1P4, indicating binding between these two proteins, as has previously been 

shown (Hickson et al., 2003).

It is noted that only a low percentage of the input F1P4 was recovered in this pull 

down experiment. This can be seen to be the case by comparing the strength of the FIP4
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(a)

GST- GST- GST- GST- 
FIP4 GST ARF1 ARF5 ARF6 Rab11

FIP4 -4 5

(b)

Rip11

GST- GST- GST- GST-
ARF1 ARF5 ARF6 Rab11

-4 8

Figure 3.2 (a) Anti FIP4 western blot of specificity pull down 
experiments. The first lane contained 25ng of purified FIP4 run 
as a positive control. The subsequent lanes show experiments 
where 20pg of FIP4 has been added to 5pg of GST alone, GST- 
ARF1, GST-ARF5, GST-ARF6 and GST-Rab11. The Western 
blot shows a typical result of three independent experiments.
(b) Anti-Rip11 western blot o f Rip11 specificity, control 
experiment. The lanes show GST-ARF1, GST-ARF5, GST- 
ARF6 and GST-Rab11 pull downs. The Western blot shows a 
result typical of three independent experiments. The numbers 
on the right of both panels (a) and (b) indicate the approximate 
molecular mass (in kDa) of the bands shown.

56



signal in the control lane to the other lanes. The control FIP4 lane contained 25ng of 

FIP4, whilst the total input to each of the pull down experiments was 20Qg. It can be seen 

the strength of the FIP4 signal in, for example the GST-ARF5 lane, is approximately 

equal to that of the control lane. This suggests that only 25ng out of the 20Dg, 

approximately 0.1%, of the added FTP is recovered. There are several possible reasons 

for this, including that the small GTPases may not all be in their GTP-bound 

conformations, that not all the proteins are folded coiTectly or that the binding affinities 

of these proteins may only be relatively weak, either specifically in this in vitro situation 

or in the in vivo situation. All of these possible reasons are discussed in section 3.3. One 

of the major implications for this experiment is that the comparative strengths of binding 

as described above should not be over-inteipreted as, with such a low recovery of 

protein, the potential variance in results of experiments of this type could be large.

Due to the somewhat unexpected result of ARF6 seeming to readily bind to FIP4, 

a control experiment to test the specificity of the ARF6 binding was devised to ensure 

that the GST-ARF6 was not, for whatever reason, non-specifically “sticky”.

3.2.5 R ipll control experiment

Ripl 1 is another member of the Rabl 1-FIP family and therefore has a broadly 

similar sequence and predicted structure to FIP4. It has previously been shown to bind 

Rabl 1 but not to bind any of the ARF family of proteins. Here, an experiment identical 

to the “specificity” experiment described above was carried out, except that soluble 

R ipll rather than FFP4 was added to the beads. In this case, if Ripl 1 were blotted for, 

then it would be expected to only see a band in the Rabl 1 lane. However, if the ARF 6 

beads are non-specifically “sticky” then a band may also be seen in the ARF6 lane.

The results of this experiment are shown in figure 3.2(b). This blot shows Ripl 1 

has only bound signifieantly to Rabl 1 and not to any of the ARFs tested. This therefore
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suggests that the ARF6 beads do not non-specifically bind protein of the Rabl 1-FIP 

family type and subsequently suggests that the binding of FIP4 to ARF6 seen in figure 

3.2(a) is genuine.

3.2.6 Affinity Experiments

To further characterise the binding of FIP4 to the Rabs and ARFs “affinity” 

experiments were perfoimed for each of the ARFs and Rabs that had been shown to bind 

FIP4. These experiments were designed to both confiim the pattern of binding obseiwed 

in the initial “specificity” experiment and to further study the relative strengths of 

binding of the different binding partners. The experiments were carried out for ARF5, 

ARF6, Rabl 1 and, in addition, Rab5. Rab5 was included in these experiments as by this 

stage of the work it had become clear hom experiments performed by others in our lab 

(unpublished data) that Rab5 was also a potential FIP4 binding partner.

These experiments were performed as follows. For each of the ARFs or Rabs, 8 

tubes were assembled. Into each of these was placed 5pg of GST-bound Rab or ARF. 

The experiments were then earned out as described in the methods section except that 

varying amounts of FIP4 were added to each tube. These were 0, 0.1, 0.5, 2, 10, 20, 40 

and lOOfig for each of the 8 tubes. After binding, washing and elution with SDS-PAGE 

buffer, lOpl from each of the tubes was run on an SDS-PAGE gel. After transfemng to 

nitrocellulose, the membrane was Ponceau stained to verify the equal loading of the 

ARF or Rab in each tube and then the membrane immunoblotted for FIP4 to deteimine 

how much FIP4 had bound in each of the tubes. An example of one of these blots, 

showing an ARF5 “affinity” experiment, is shown in figure 3.3(a).

Blots were then quantified and the intensity of the bands then plotted as a 

graph, as shown in figure 3.3(b). If a specific protein-protein interaction was taking
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(a)
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Figure 3.3 (a) Anti-FIP4 western blot of GST-ARF5/FIP4 affinity 
experiment. The first lane shows 25ng of FIP4 which was loaded as a 
positive control. Subsequent lanes are 10pl samples from tubes 
containing 5pg of GST-ARF5 with increasing amounts of added 
soluble FIP4 (as indicated). The approximate size of the shown band 
is indicated on the left hand side (in kDa). (b) This shows the 
quantification of the affinity blots for GST-ARF5, GST-ARF6, GST- 
Rab5 and GST-Rab11, displayed graphically. The x-axis shows the 
pM concentration of FIP4 whilst the y-axis shows an arbitrary “binding 
units” scale. Each point is the average of at least three experiments 
and error bars representing one standard deviation each side of the 
points are shown.
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place and was plotted as a graph as appears in figure 3.3(b) then a specific shape of 

curve, known as a saturation curve, would be expected. This is a hyperbolie curve an 

initial steep increase in the amount of binding seen, followed by a gradual decrease in 

the steepness, leading to a flattening out of the curve as the point at which saturation 

occurs is approached. Figure 3.3(b) is difficult to inteipret as generally the data shown 

do not appear as saturation curves. Possible reasons for this and a general discussion 

about the limitations of this experiment can be found in section 3.3. Here, I shall 

consider each set of data as it appears in figure 3.3(b).

The ARF6 plot shows an initial steep increase in the amount of binding 

measured, followed by a small deerease at the 0.75GM FIP4 point, before increasing to 

its maximum and then showing a slight decrease in binding at highest concentration of 

FIP4. This is not the shape of curve expected for two reasons. Firstly, a smooth curve up 

to the maximum amount of binding would be expected. This makes the point at 0.75DM 

an anomaly. Secondly, as the maximum amount of binding is approached, a flattening of 

the curve, but not a decrease in binding as observed here, would be expeeted. However, 

although the data for ARF6 does not seem to be of high quality, it does show the main 

characteristics of a saturation curve, i.e. an initial steep increase in binding followed by a 

flattening out of the curve. Therefore, it does seem likely that there is specific binding 

between ARF6 and FIP4 in this experiment.

The Rab5 plot shows an initial steep increase and then flattening up to the 

O.750M FIP4 point. However, at higher concentrations of FIP4, there is a marked 

decrease in the amount of binding measured. Therefore, although binding is detected 

between Rab5 and FIP4 at relatively low concentrations of FIP4, the shape of plot is not 

what would be expected, which makes this set of data very difficult to analyse.

The Rabl 1 and ARF5 plots show a similar pattern. At the lower concentrations 

of FIP4 they show very little binding. They then show a steady increase in binding up to
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the last point where they have reached a binding value of approximately 25% of the 

maximum value seen for ARF6. This straight line increase in binding suggests that, in 

this experiment, ARF5 and Rabl 1 are binding only in a non-specific manner to FIP4. 

This is highly unexpected as FIP4 has previously been shown to interact with both of 

these proteins (Hickson et al, 2003). Possible reasons for not observing a specific 

interaction between these proteins in this experiment are discussed in section 3.3.

3.2.7 Competition Experiments

Now that the relative strengths of binding of the small GTPases had been 

analysed it was interesting to ask another question regarding the binding of the Rab and 

ARF species. This was “can FIP4 bind both a Rab and an ARF simultaneously?”. 

Answering this question may help to explain why FIP4 was a relatively rare example of 

a protein which was able to bind small GTPases of two different classes (and indeed the 

first example of a dual ARF/Rab binder) and would help towards proposing a model for 

FIP4’s function. To address this question two different types of binding experiments 

were performed. Firstly “competition experiments” were caii'ied out. These involved the 

binding of FIP4 to the GST-ARF proteins before the addition of increasing amounts of 

soluble Rabl 1 protein. Rab5 was not included in these studies as at the time of 

performing these experiments, the binding of FIP4 to Rab5 had not been confirmed. If 

the Rabs and ARFs bound to the same or overlapping site on FIP4, thus negating the 

formation of a trimeric complex, then increasing amounts of soluble Rabl 1 should 

compete off the bound GST-ARF and so a decrease in the amount of FIP4 bound to the 

GST-ARF would be expected. The poor binding of Rabl 1 and ARF5 seen in figure 3.3 

also makes figure 3.4 somewhat difficult to interpret as this also involves Rab 11 and 

ARF5 binding to FIP4. However, here the results are interpreted as they appear, whilst 

the limitations of the approaches used in this chapter are discussed in section 3.3.
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(a)

Ponceau
(ARF5) -45

(b)
pg soluble Rab11 added

1 5 20 100

Anti-FIP4 42

Figure 3.4 “Competition Experiment”. 5 tubes, each containing 
5pg of GST-ARF5 were taken. To each of these tubes 20pg of 
FIP4 was added. Then, varying amounts of un-tagged Rab11 
were added to each tube (0-100pg) as shown in panel (b) above. 
After incubation, beads were washed and then eluted in loading 
buffer. 10ul from each tube was run on a 12% SDS-PAGE gel 
and this transferred to nitrocellulose. This was then Ponceau 
stained to verify that equal amounts of GST-ARF5 had been 
loaded in each lane, (a) shows one of these Ponceau stains 
showing the GST-ARF5 band. The nitrocellulose membrane was 
then immunoblotted using an anti-FIP4 antibody. The result of 
one of these blots is shown in (b). The approximate size of the 
band (in kDa), as deduced by comparison to the molecular 
weight markers, is indicated on the right hand side. The Western 
blot shown is a typical result of three experiments.
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Experiments were carried out with GST-ARF5 against soluble Rabl 1 (figure 

3.4). It can be seen that the amount of FIP4 that remains bound to the GST-ARF5 at 

even the highest concentrations of soluble Rab 11 was constant (figure 3.4 (b)). The same 

experiment was carried out with GST-ARF6 and this showed a similar result (data not 

shown). The fact that the highest concentrations of Rabl 1 do not seem to have competed 

with FIP4 for ARF5 binding suggests that the ARFs and the Rab proteins bind at 

different sites on FIP4. In turn this suggests that a trimeric complex of FIP4 binding both 

an ARF and Rab simultaneously could be fonned.

To further test this hypothesis the “trimeric” experiments described below were 

carried out.

3.2.8 Trimeric Experiments

These experiments were designed to show that a complex of FIP4, ARF6 and 

Rabl 1 could be formed. GST-ARF6 plus soluble FIP4 and Rabl 1 were all added to the 

same tube. After binding and washing, the beads were eluted and a gel and transfer 

performed. The membranes were Ponceau stained to verify the presence of GST-ARF6 

and immunoblotted with an anti-FIP4 antibody to show the presence of FIP4.

Membranes were then immunoblotted with an anti-Rabl 1 antibody to determine if 

Rabl 1 was present. If Rabl 1 was present, this would suggest that a trimeric complex of 

ARF6, FIP4 and Rabl 1 could be formed. As a control, Rab 11 was added to GST-ARF6 

in the absence of FIP4 and the same blotting procedures carried out. This would indicate 

whether FIP4 was necessary for the binding of the Rabl 1 to the GST-ARF6. An 

additional control was to use another member of the Rabl 1-FIP family, R ipll in place 

of FIP4. This has been shown to bind Rabl 1 but not ARF6. This further ensured that any 

Rabl 1 binding seen in the GST-ARF6, Rabl 1 and FIP4 experiment would be due to the 

Rab and ARF binding properties of FIP4.
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(b) Anti-FIP4
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23

Figure 3.5 “Trimeric” Experiment. 3 tubes, each containing 5pg of 
GST-ARF6 were taken. To the first of these tubes, 20pg of un
tagged Rab11 was added. To the second, 20pg of un-tagged Rab11 
plus 20pg of FIP4 was added. To the third, 20 pg of un-tagged 
Rab11 plus 20pg of Rip11 was added. After incubation, beads were 
washed and then eluted in loading buffer. 10pl from each tube was 
run on a 12% SDS-PAGE gel, next to a FIP4 positive control, and 
this transferred to nitrocellulose. This nitrocellulose was firstly 
Ponceau stained, (a) shows a Ponceau stain of the area of the 
membrane containing GST-ARF6. The membrane was then cut in 
two along the 32kDa marker and the top half immunoblotted for FIP4 
whilst the lower half was immunoblotted for Rabl 1. The results of 
these two FIP4 and Rabl 1 immunoblots are shown in (b) and (c) 
respectively. The size of the bands, as deduced from comparison to 
molecular weight markers, is indicated on the right of the panels.
The results shown are typical of three independent experiments.
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Figure 3.5 (c) shows that significant amounts of Rabl 1 were only found in the 

lane including GST-ARF6, Rab 11 and FIP4. The very faint band of Rabl 1 in the GST- 

ARF6 and Rabl 1 lane indicates that Rabl 1 only binds directly to ARF6 either very 

weakly or not at all. This suggests that FfP4 either greatly enhances or indeed is 

responsible for the presence of the Rabl 1 band in the GST-ARF6, Rabl 1 and FIF4 lane. 

This is further confirmed by the lack of a Rabl 1 band in the GST-ARF6, Rabl 1 and 

Ripl 1 lane. The simplest explanation for these results would be that FIP4 can 

simultaneously bind to ARF6 and Rabl 1 in a heterotrimeric complex.
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3.3 Discussion

In this chapter reeombinantly expressed proteins have been used to investigate 

the binding of FIP4 to members of the ARF and Rab small GTPase families, hi 

summary, it has been shown that FIP4 can bind to Rab5, Rabl 1, ARF5 and ARF6 but 

cannot bind ARFl, a closely related small GTPase. The binding of ARF 5 and Rabl 1 to 

FIP4 has previously been shown (Hickson et ah, 2003). However, ARF6 and Rab5 are 

newly identified binding partners. To verify that the observed binding to ARF6 was not 

an artefact of the GST-ARF6 preparation, a “specificity” experiment was carried out 

using R ipll, another member of the Rabl 1-FIP family, instead of FIP4. This protein has 

been shown to bind to Rabl 1 and not to any of the ARFs. The result of this experiment 

confirmed that binding of ARF6 to FIP4 was indeed specific to FIP4 as ARF6 did not 

bind R ipll.

It must be stressed that these experiments were all perfoimed using 

recombinantly expressed proteins in an in vitro situation and that therefore the relative 

strengths of binding discovered may not be true reflections of what is occurring in the 

cellular enviromnent. This may be the case for a number of reasons, for example the 

reeombinant proteins lack the post-translational modifications they may have in the cell, 

the cellular concentrations of the proteins in question are not Imown, and even if these 

were known, localised concentrations which would be difficult to deteimine are likely to 

occur within the cell. There are also other limitations of the experiments performed in 

this chapter, particularly the “affinity” experiment, shown in figure 3.3. These 

limitations, their consequences for the conclusions which can be drawn from this data 

and alternative methods to ask the questions asked here are described below.
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3.3.1 Use of Proteins Lacking Post-translational Modifications

One of the major issues for consideration when using recombinant proteins 

expressed in bacteria is that these proteins are likely to lack the post-translational 

modifications that they would acquire in vivo in a higher eukaryote cell. Post- 

translational modifications may be important for various aspects of the protein’s 

function. In some cases, the post-translational modifications may be required for the 

binding of one protein to another. Therefore, using baeterially expressed proteins may 

result is misleading findings if protein-protein interactions were to be studied, as has 

been done here. In light of this, the post-translational modifications which occur on the 

Rabs, ARFs and FIP4 will be discussed here and the likely effects of using these proteins 

lacking their post-translational modifications for binding studies will be considered.

Rab proteins are singly or doubly geranylgeranylated on C-terminal cysteine 

residues. This modification is carried out as Rabs are bound to the escort protein REP 

(Rab escort protein). Once geranylgeranylated the Rab can be delivered to its membrane 

where the geranylgeranyl groups insert into the lipid bi-layer, providing a membrane 

anchor for the Rab. Here the Rab is converted to its GTP bound form and can then 

interact with its effectors. Once it has carried out its function the Rab is converted to its 

GDP bound form and is then removed from the membrane into the cytosol by a GDI 

protein (GDP-dissociation inhibitor).

GDI proteins share structural homology with REP proteins in that they both 

contain a hydrophobic groove to accept the geranylgeranyl groups, which allows these 

proteins to interact with Rabs in the cytoplasm. Therefore, the geranylgeranyl groups are 

likely to be important for the binding of Rabs to REPs and GDIs, so if these interactions 

were to be studied, then baeterially expressed proteins, lacking the post-translational 

modifications, would be a poor choice. However, Rabl 1-FIPs have been identified as 

Rabl 1 effectors, i.e. they have been shown to interact with only GTP-bound Rabl 1 at
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physiologically relevant concentrations (Junutula et al., 2004; Lindsay et al., 2002; 

Meyers and Prekeris, 2002). In the cellular environment, GTP bound Rabs are associated 

with membranes, with their geranylgeranyl groups inserted into the lipid bi-layer. 

Therefore it is unlikely that the geranylgeranyl groups will be required for Rab/Rab- 

effector interactions. Therefore, in this case the lack of post-translational modifications 

on the Rabs would be predicted to not have a major effect on the binding of the Rab to 

FIP4, suggesting that this aspect of the experimental approaches used here is reasonable.

ARF proteins are myristoylated at their N-termini. This modification, like the 

Rab geranylgeranyl groups, has been shown to be important for ARF association with 

membranes, where it inserts into the lipid bi-layer. As ARFs go through a similar 

regulatory cycle as Rabs, being membrane bound and interacting with their effectors in 

the GTP-bound form and that FIP4 has been shown to specifically bind the GTP-bound 

form of ARF5 (Hickson et al., 2003) then the same conclusions can be drawn for ARFs 

as for the Rabs regarding this issue. This is that the lack of post-translational 

modifications on bacterially-expressed ARFs would not be expected to significantly 

effect the binding of the ARF to the FIP4 and that therefore the approaches used in this 

chapter are reasonable one in this regard.

CuiTcntly, no post-translational modifications have been identified on the Rabl 1- 

FIP family of proteins. Therefore the effects of using FIPs lacldng post-translational 

modifications cannot be evaluated. However, as interactions between the FIPs and small 

GTPases have been identified previously using baeterially expressed proteins (Junutula 

et ah, 2004; Lindsay et al., 2002; Meyers and Prekeris, 2002) then it seems unlikely that 

post-translational modifications on the FIPs are required for their interactions with the 

Rabs and ARFs.
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3.3.2 Are the Rabs and ARFs in their GTP-bound Conformations?

The FIPs have been identified as classic effectors of the Rab and ARF small 

GTPases in that they have been shown to preferentially bind the GTP bound foim of the 

Rabs and ARFs over the GDP bound forms (Shin et al., 2001, 1999; Junutula et al.,

2004; Hickson et al., 2003; Lindsay et al., 2002; Meyers and Prekeris, 2002). Indeed, 

this has been specifically been shown for FIP4 in the case of ARF5 and Rabl 1 (Hickson 

et al., 2003). Therefore studies examining the binding of effector proteins to the small 

GTPases, as earned out in this chapter, should use, as far as possible, the Rabs and ARFs 

in their GTP bound forms. Although, as explained below, attempts were made for this to 

be the case, the method used was not a stringent one. The faet that the Rabs and ARFs 

used in these experiments are likely to have not all been in their GTP bound forms could 

be one of the major explanations as to why some of the experiments here, particularly 

the “affinity experiment” presented in figure 3.3, produced results which were difficult 

to analyse.

In each of the experiments in this chapter, wild type recombinant proteins were 

used. In order to try and ensure that the small GTPases were in their GTP bound forms 

during the experiments, GMP-PMP (a non-hydrolysable analogue of GTP) was added to 

each of the reaction mixtures at a concentration of 0.2mM. It was envisaged that this 

excess of a GTP analogue would ensure that the majority of the Rabs or ARFs present 

would be in their GTP bond conformation. However, this is not a very stringent method 

of converting the small GTPases to their GTP bound form. This is because, although the 

GTP analogue was present in excess, the rate of small nucleotide exchange on small 

GTPases is intrinsically very low. In vivo the exchanges are catalysed by protein 

regulators, the GEFs and GAPs (see section 1.2.2 and 1.2.7). However, these will 

obviously not be present in bacterially-expressed purified protein preparations. This can

69



be overcome by performing a “nucleotide exchange” step with baeterially expressed 

proteins prior to starting a pull-down experiment in order to ensure that the majority of 

small GTPase present is in its GTP (or GDP) bound conformation. This reaction 

achieves loading of the small GTPase with GTP, GDP (or an analogue) by making use 

of the fact that Mĝ '*' is an essential co-factor which is required for nucleotide binding to 

the small GTPases. Briefly, the small GTPases are incubated in an exchange buffer 

containing EDTA to remove Mĝ "̂  ions, thereby rendering the small GTPases unable to 

bind any nucleotide and so forcing them into a nucleotide free status. The desired small 

nucleotide is included in the exchange mixture in excess. The reaction is terminated by 

adding a high concentration of Mĝ "̂  which results in the small GTPases binding the 

small nucleotides in the solution, the vast majority of which will be the added 

nucleotide. This is a more stringent method than the one used in the experiments 

presented here to ensure small GTPases are in the appropriate conformation. Therefore 

this nucleotide exchange reaction would ideally be carried out in future experiments of 

this type.

3.3.3 Quantification of Western Blots

Another limitation of the approach used in figure 3.3 is the fact that the 

quantification of the binding was made by analysing western blots, using computer 

software. Although western blots can be quantified in this way, the data gained will not 

be a linear function of the amount of protein that was present on the membrane, making 

the values gained somewhat unreliable. This is the ease because of the method by which 

the protein is detected inherently involves several steps of amplification: Initially, more 

than one primary antibody is likely to bind to each protein present in the membrane and 

in turn more than secondary antibody is likely to bind to each of the primary antibodies. 

Therefore, although western blotting can be used to gain rough estimates of the relative
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amounts of protein present, it is not a good method where more detailed studies are to be 

made. One example of a method which would allow more accurate quantifications of 

pull-down type experiments would be to use radio-labelled proteins. Quantification of 

the radioactivity of a sample would provide a more linear signal than that from a western 

blot.

3.3.4 Alternative Methods for Assessing Protein-Protein Affinities

The “affinity” experiment described here was simply designed to see the 

comparative strengths of binding of each of the small GTPases tested to FIP4. However, 

quantitative values for the strength of binding between two proteins can be deduced.

Perhaps the cuiTent method of choice for gaining quantitative values of protein 

interactions is the technique of surface plasmon resonance, which is probably best 

developed for asldng biological questions in the “Biacore” system. In this technique 

your protein “bait” of choice is linked to a chip. A solution containing the target protein 

in question is then flowed over the chip. The amounts of protein bound to the chip at 

various time points throughout an experiment are detected by the physical surface 

plasmon resonance technique and then the data can be taken to calculate various values. 

For example, a value known as the “Equilibrium affinity constant” can be calculated 

from the data gained. This value gives an indication of the “strength” or “affinity” of an 

interaction. This Biacore approach was begun to study the interactions of FIP4 and the 

small GTPases used in this chapter. However, time restraints and the difficulties of 

obtaining protein samples of the high degree of purity required for this technique meant 

that this work needs to be continued in the future in order to gain quantitative data about 

the interactions of these proteins.
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3.3.5 Other Considerations

In addition to the points discussed in detail above there are a number of other 

considerations regarding the design of the experiments in this chapter. Some of these 

will be briefly discussed here.

In the “specificity” experiment shown in figure 3.2, GST-ARF 1 and GST-alone 

are used as negative controls. These are probably sufficient for the ARF5 and ARF6 

experiments. However, ideally a Rab protein which is not thought to bind to FIP4 would 

be used as a negative control for the Rabl 1 experiment, hideed, this leads on to the faet 

that the binding of FIP4 to other Rabs in addition to Rabl 1 and Rab5 has not yet been 

investigated and therefore these are experiments which need to be carried out in order to 

further investigate FIP4s Rab binding properties. This issue is discussed further in 

section 6.1.

In these experiments no checks were made as to whether the baeterially 

expressed proteins had folded correctly. It was assumed that as FIP4 showed binding to 

ARF5, 6 and Rabl 1 but not to ARF5 and GST alone that the binding seen was specific, 

indicating at least some coiTcctly folded proteins. However, not all of the proteins 

produced may have been folded coiTcctly, which may account for some of the 

unexpected results that were observed. In order to detennine if a protein is folded 

correctly a number of approaches could be taken. Circular Dichroism Spectroscopy is a 

biophysical method which can indicate the presence or absence of secondary structure in 

a sample of protein, therefore indicating if the protein had folded to at least some extent. 

More specifically for the proteins used here, the nucleotide binding properties of the 

small GTPases could be assessed using radiolabelled nucleotides. If the Rabs and ARTs 

were folded correetly they should be able to bind GTP or GDP or one of their analogues. 

Performing one of these experiments would give an indication of the proportion of 

folded protein within a purified sample.
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3.3.6 Conclusions

Despite the numerous limitations of the experiments in this chapter which have 

been discussed here and the fact that these findings do not necessarily represent the more 

complex situation that may be occurring in vivo, some conclusions can be drawn from 

this work which can at least give us a starting point for proposing a model for FIP4 

function. Figure 3.2 shows that FIP4 binds GST-ARF5, GST-ARF6 and GST-Rabll and 

yet does not bind GST-ARF 1 and GST-alone, suggesting that the binding observed is 

specific. The R ipll control shown in figure 3.2 (b) further suggest that the GST-ARF6 

binding to FIP4 seen in figure 3.2(a) is specific.

In addition, figure 3.3 shows that GST-Rab5 can also bind, to some degree, to 

FIP4, although further analysis of this interaction is clearly required. As for reasons 

discussed the data in figure 3.3 is not of high quality and therefore the comparative 

affinities of the ARFs and Rabs for FIP4 are difficult to deduce. A more powerful 

approach, using the Biacore system, to assess the interactions of these proteins has been 

initiated.

Although not an ideal approach, for the reasons discussed, the GST-pull down 

“trimeric” experiment shown in figure 3.5 does suggest that the presence of FIP4 at least 

considerably enhances the amount of soluble Rabll recovered from a GST-ARF6 pull 

down experiment, in comparison to the amount of soluble R abll recovered from a pull 

down including GST-ARF6 but no FIP4. This suggests that the presence of FIP4 at least 

enhances, and may be responsible for, the interactions of ARF6 and Rabll. The most 

likely explanation of this, given that FIP4 has been shown to bind both Rabl 1 and 

ARF6, is that FIP4 can bind both of these proteins simultaneously, forming a trimeric 

complex.
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3.3.7 FIP4 and its Binding Partners: Links to Cytokinesis

A major observation made in this chapter relates to the involvement of identified 

binding partners of FIP4 in cytokinesis. As previously mentioned, FIP4 (and FIP3) are 

homologues of the Drosophila Nuf protein, which has been shown to be required for 

eellularisation, a process analogous to cytokinesis in the syncitium of a developing 

drosophila embryo (Riggs et al., 2003). FIP4 has also previously been observed to 

localise to the midbody during cytokinesis in mammalian cells (Hickson et al, 2003). 

These obseiwations suggest that FIP4 may play a role in cytokinesis. In this chapter I 

have confirmed the binding of FIP4 to Rabl 1 and identified the binding of FIP4 to 

ARF6. Interestingly, both of these proteins have been implicated in cytokinesis (see 

sections 1.1.10 and 1.2.3). Rabl 1 has been shown to be involved in cytokinesis in 

Drosophila and C.elegans (Riggs et al., 2003; Pelissier et al., 2003; Skop et al., 2001), 

although not yet in mammalian cells. ARF6 has been shown to be involved in 

cytokinesis in mammalian eells (Schweitzer and D'Souza-Sehorey, 2002). Therefore the 

binding of FIP4 to these molecules is further evidence that FIP4 may be involved in 

cytokinesis. Indeed, the trimeric complex which I have shown can be foimed between 

these tlnee molecules is an exciting progression that suggests that the vesicle trafficking 

properties of Rabll may combine with the vesicle trafficking and actin re-an'angement 

properties of ARF6, tlirough an interaction with FIP4, in order to regulate a membrane 

trafficking and/or actin remodelling step that is necessary for the completion of 

cytokinesis.

In the next chapter the co-localisations of FIP4 with the ARFs and Rabs that have 

been shown to be binding partners here are examined. This is earned out in interphase 

eells and, due to the possible links with cytokinesis discussed here and during the 

introduction, in cells at various stages of cell division.
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Chapter 4 - Localisation of FIP4, R abll. ARF5 and ARF6 in Interphase and 

Cytokinesis

4.1 Introduction

In this chapter it was sought to identify the localisation and co-localisation of the 

proteins studied during the previous chapter, namely FIP4 and the small GTPases ARF5, 

ARF6, Rab5 and Rabl 1. As FIP4 has been identified as binding each of these proteins in 

an in vitro setting it was hoped to use co-localisation studies as a method of determining 

whether this binding could be possible in vivo. To do this interphase HeLa cells were 

stained with antibodies against FIP4 and, where possible, each of the small GTPases. 

They were then counter-stained with species-specific secondary antibodies conjugated to 

varying fluorescent probes and then the cells were examined under either fluorescent or 

confocal microscopy. In some cases cells were also co-stained with fluorescent markers 

of parts of the cell structure, for example fluorescently labelled phalloidin toxin, which 

stains the actin cytoskeleton, or DAPI, a dye which stains DNA and fluoresces blue 

under UV light, therefore marking the ehromosomes/nueleus.

In the second part of this chapter the localisation and co-localisation of FIP4, the 

Rabs and the ARFs in cells at various stages of mitosis are examined. These experiments 

were carried out due to the possible links that FIP4, Rabl 1 and ARF5 and 6 may have 

with cytokinesis, as described in sections 1.1.10, 1.2.3 and 1.2.13.

4.2 Results

4.2.1 Localisation of FIP4 with R abll ARF5 and ARF6 During Iiiterphase

FIP4 has previously been shown to localise predominantly to a pericentrosomal 

recycling endosome compartment and to have a partial overlapping localisation with 

R abll, a molecule known to reside in the recycling endosome. However, as ARF6 was a
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previously unidentified binding partners of FIP4, their co-localisation within cells has 

not yet been characterised. Also, the localisation of ARF5 compared to FIP4 within cells 

has not been previously examined, due to the lack of an appropriate antibody.

4.2.2 ARF6 and FIP4 Localisations

Figure 4.1 (a) shows the localisation of ARF6 identified by a rabbit anti-ARF6 

antibody. The cell is counterstained with Alexa-Fluor 488nm labelled phallodin toxin to 

mark the actin cytoskeleton and with DAPI to mark the nucleus.

As can be seen, ARF6 shows three primary locations within the cell, firstly, a 

large peri-nuclear pool, secondly a plasma membrane pool where it co-localises with the 

actin staining and thirdly some nuclear staining, producing a “magenta” nucleus due to 

co-localisation with the blue DAPI staining.

Although the exact localisation of ARF6 is not yet clear (as discussed in section 

1.2.3), the consensus seems to be that there is a plasma membrane pool and a, possibly 

unique, endosomal pool (Radhakrishna and Donaldson, 1997; Chavrier and Goud, 1999; 

Donaldson, 2003).

The staining observed agrees with this data, with a clear plasma-membrane pool 

and an endosomal pool, which in this case is, for the vast majority, in a well defined, 

peri-nuclear, location. Some nuclear staining was also observed which has not been 

previously reported. As the nature of this staining is not clear and, as described below, 

none of the other proteins studied here localise to the nucleus, it was thought to be not 

within the scope of this work to continue investigation of this localisation.

In figure 4.1 (b), the cell shown is stained for both ARF6 and FIP4. It can be seen 

that the largest pool of each ARF6 and FIP4 is a peri-centrosomal pool, which co- 

localise very well as indicated by the yellow patch below the nucleus in the merged
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a-ARF6 Phalloidin DAPI Merge

(b)

a-ARF6 0-FIP4 Merge

(c)

Ü-ARF6 a-Transferrin
receptor

DAPI Merge

Figure 4.1 (a) HeLa cells were paraformaldehyde fixed onto g lass coverslips and 
then permeablised with Triton-X-100, as described in section 2.4. Cells were then 
incubated with a rabbit polyclonal anti-ARF6 antibody, followed by an Alexa-Fluor 
594nm fluorescent secondary anti-rabbit antibody (for antibody details s e e  table 
2.1). The cells were also incubated with Alexa-Fluor 488nm labelled phalloidin and 
DAPI. Images were taken on a Zeiss Pascal Microscope (se e  section 2.5) and the 
594,488 and DAPI channels are shown separately and then merged together, (b) 
shows HeLa cells fixed, stained and observed in a similar fashion, except that this 
time an anti-FIP4 sheep  polyclonal antibody w as stained with an Alexa-Fluor 
488nm labelled sheep  secondary antibody in addition to the ARF6 594nm staining, 
(c) show s HeLa cells stained with an anti-transferrin receptor antibody (Alexa-Fluor 
488nm labelled) in addition to ARF6 594nm and DAPI staining. Scale bars are 
shown in each of the merged images.
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picture. There are also significant amounts of both ARF6 and FIP4 at some areas of the 

plasma membrane and, where present, they show an at least partially overlapping 

localisation. The staining of FIP4, seems to coneentrate, although not exclusively so, to 

small spike-like structures. These probably represent focal adhesions as FIP4 has 

previously been shown to localise to these structures (Hickson et ah, 2003). The ARF6 

staining occurs a little more broadly at areas underlying the plasma membrane, showing 

some overlap with FIP4. It is well documented that ARF6 is present at many sites 

underlying the plasma membrane, usually associated with cortical actin (Song et ah, 

1998; Donaldson, 2003). It has also been shown to interact with components of focal 

adhesions (Kondo et ah, 2000; Turner et al., 1999, 2001). Figure 4.1 (c) shows cells 

stained for ARF6, the Transferrin Receptor and DAPl. The Transferrin Receptor is a 

marker of the recycling endosome (and is used here as a substitute for Rabl 1 as the 

ARF6 and R abll antibodies available were both raised in the same species). It can be 

seen that there is some overlap between ARF6 and the Transferrin Receptor in a peri

nuclear patch but elsewhere there is little co-localisation. This suggests partial overlap 

between ARF6 and the recycling endosome.

Therefore, figure 4.1 shows that the staining seen for ARF6 agrees with other 

reports in that there is a plasma membrane and endosomal pool of ARF6. In these 

images it can be seen that the ARF6 endosomal pool is located in a peri-nuclear position. 

It is also clear that F1P4 co-localises with ARF6 at both the peri-nuclear and plasma 

membrane sites. This agrees with the finding in chapter 3 that ARF6 binds to F1P4. The 

partial overlap with the Transfemn receptor agrees with previous findings that show that 

there is an “ARF6 endosome” which is initially distinct from other endosome 

compartments but components of this endosome fuse with sorting endosome and may 

recycle through the conventional recycling endosome (Radhakrishna and Donaldson, 

1997; Chavrier and Goud, 1999; Donaldson, 2003).
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4.2.3 ARF5 localisation

In Figure 4.2(a) a HeLa cell has been stained with a sheep anti-ARF5 antibody 

followed by a 594nm Alexa-Fluor conjugated anti-sheep secondary antibody. The cell 

has then been stained with 488nm Alexa-Fluor conjugated phalloidin toxin to label the 

actin cytoskeleton. It can be seen that the major pool of ARF5 staining is a peri-nuclear 

patch which looks very similar to that of FIP4 and ARF6 shown in figure 4.1. There is 

also some staining present at the plasma membrane which, similarly to F1P4, seems to 

concentrate at (although not exclusively to) small patches which could be focal 

adhesions. Further study is required to identify the nature of these sites.

Figure 4.2(b) shows cells stained with both the sheep anti-ARF5 antibody and a 

rabbit anti-Rabl 1 antibody labelled with 594nm and 488nm Alexa-Fluor conjugated 

secondary antibodies respectively. Figure 4.2(c) shows a close up view of a plasma 

membrane area and peri-nuclear area which are indicated in the “merged” panel of 

figure 4.2(b). Ideally 1 would liked to have co-stained ARF5 with F1P4 but as 1 only had 

one antibody available to me against each of these proteins and these were both raised in 

the same species this was not possible. As Rabll has previously been shown to localise 

to the peri-nuclear recycling endosome and to have at least partial overlap with F1P4 it 

was thought that this would be an ideal marker to use to localise ARF5. It can be seen in 

figure 4.2(c) that the pen-nuclear patch of ARF5 is largely, although not completely, co

localised with the major pool of R abll. The fact that some green and some red patches 

(rather than all being yellow) are visible indicates that although these proteins seem to 

reside close to each other they are not necessarily completely co-localised. The sites of 

ARF5 membrane association show a similar pattern in that, in the same patches there is 

also Rabl 1 staining present, although the red and green staining shows partial rather 

than complete co-localisation.
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(a)

a-ARF5 Phalloidin Merge

a-ARF5 a-R ab11 DAPl Merge

ARF5
pre-immune

Alpha-
tubulin

DAPl Merge
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Figu re 4.2 (a) HeLa cells were paraformaldehyde fixed onto glass 
coverslips and then permeabilised with Triton-X-100, as described in 
section 2.4. Cells were then incubated with a sheep polyclonal anti-ARFS 
antibody, followed by an Alexa-Fluor 594nm labelled secondary anti-sheep 
secondary antibody (for details of antibodies and concentrations used see 
table2.1). The cells were also incubated with Alexa-Fluor 488nm labelled 
phalloidin (Molecular Probes) and DAPl, as described in section 2.4. 
Images were taken using a Zeiss LSM 5 Pascal Microscope (see section 
2.5) and the 594nm and 488nm channels are shown separately and then 
merged together, (b) shows HeLa cells stained with an anti-Rabl 1 rabbit 
polyclonal antibody labelled with an Alexa-Fluor 488nm secondary 
antibody, a sheep polyclonal anti-ARF5 antibody, labelled with an Alexa- 
Fluor 594nm secondary antibody and stained for DAPl. In the “merged” 
panel, two boxes, labelled 1 and 2 are shown, (c) shows a larger image of 
the two boxes highlighted in panel (b). (d) shows HeLa cells which were 
incubated with pre-immune serum of the ARF5 antibody and subsequently 
with a 594nm Alexa-Fluor labelled secondary anti-sheep secondary 
antibody. In addition, cells were labelled with a anti-alpha tubulin antibody 
and a 488nm Alexa-Fluor labelled secondary anti-mouse secondary and
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As the ARF5 antibody was made in our lab (although designed from a published 

peptide sequence which had previously been successfully used to make an ARF5- 

specific antibody (Cavenagh et ah, 1996)) and had not previously been used for 

immunofluorescence, a control experiment was earned out, shown in figure 4.2(d). Cells 

were incubated with the pre-immune serum of the ARF5 antibody and then labelled with 

an Alexa-Fluor 594nm sheep secondary antibody. The blank “ARF5 pre-immune” panel 

in figure 4.2(d) indicates that there was no non-specific staining arising from 

components of the serum used to make the antibody. Cells were also stained for alpha 

tubulin and DAPl to show staining had been successful. In addition to this control, blots 

using the ARF5 antibody were earned out against recombinantly purified ARF4, ARF5 

and ARF6 proteins. These blots showed that ARF5 is specifically stained by this 

antibody (data not shown).

4.2.4 Staining of FIP4 during cell division

The localisation of F1P4 in interphase HeLa cells has been examined, both by 

myself and previously (Hickson et ah, 2003). In the course of maldng these observations 

the striking localisation of F1P4 in dividing cells was noted, particularly its localisation 

to the spindle poles during late prophase/early metaphase and to the midbody and 

Flemming body in cells connected by just an intracellular bridge in late telophase. 

Therefore 1 thought it would be of interest to further study the localisation of F1P4 in 

dividing cells. A further reason to study FlP’s localisation and possible function in 

cytokinesis is that, as discussed in section 1.2.13, F1P4 (and F1P3) are the mammalian 

homologues of the Drosophila protein Nuclear fallout. This has been shown to localise 

to the microtubule organising centre and be essential for the completion of 

cellularisation (Riggs et al., 2003), a process analogous to cytoldnesis during the late 

syncytial divisions of a Drosophila embryo.
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To examine the location of FIP4 during cell division, HeLa cells were fixed and 

stained as described in the section 2.4, except that, in order to gain a large number of 

cells undergoing cell division, cells were “pseudo-synchronised”. This is a non

biochemical approach where by normally growing HeLa cells are trypsinised and split to 

approximately 15% confluency onto glass coverslips. Cells are then left for 17 hours and 

then fixed. This typically results in a high proportion (20-30%) of cells being fixed 

during cell division. Cells were then stained with anti-FlP4, anti-alpha tubulin to stain 

microtubules, DAPl to stain DNA and in some cases Mitotic Kinesin-Like Protein-1 

(MKlpl) as a marker for the midbody ring structure (see section 1.1.11). Images of cells 

in prophase, metaphase, anaphase, telophase (during cleavage furrow ingression) and 

late telophase (where extended midbody is present) were taken.

4.2.5 FIP4’s Localisation in Mitosis and Cytokinesis

Figure 4.3 (a) shows a cell which has just entered prophase, where the DNA, 

shown in blue, has started to condense into chromosomes and the green alpha-tubulin 

staining shows that the two microtubule organising centres (MTOCs), have been 

positioned on opposite sides of the DNA. F1P4 seems to show punctate staining of 

vesicular and tubulo-vesicular structures which have started to concentrate around the 

two MTOCs. As this staining still appears to be vesicular (rather than cytoplasmic) a 

simple hypothesis to explain this localisation would be that the endosomal compartment 

that F1P4 is largely present in during interphase has been split into two in parallel with 

the centrosome /MTOC and has now moved with the two separated centrosomes to the 

opposite MTOCs. This would be supported by interphase observations of FIP4 

localisation, where it resides in an endosomal compartment which is associated with the 

centrosomes, localises to purified centrosomes and, upon overexpression, collapses to a 

centrosomal location (Hickson et ah, 2003).
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Alpha -tubulin FIP4 Survivin Merge

(f)

Alpha -tubulin

MKlpl

FIP4

Merge

Figure 4.3 Panels (a)-(d) show HeLa cells that have been fixed and stained for 
alpha tubulin (488nm secondary antibody), FIP4 (594nm secondary antibody) 
and DAPl (for antibody details s e e  table 2.1). Cells shown are at various 
stages of cell division, namely (a) prophase, (b) m etaphase, (c) anaphase and 
(d) early telophase. For each image the 488nm, 594nm and DAPl channels 
are shown separately and then merged. Panel (e) shows the sam e cell as 
panel (c), except that here the image show s staining for Survivin (stained with 
647 secondary and appearing as blue) in addition to the 488nm aplha tubulin 
and 594nm FIP4 staining. Panel (f) show s a close up view of a midbody 
forming an intracellular bridge between two, almost separated, daughter cells, 
in late telophase. Again alpha tubulin is in the 488nm channel and FIP4 in the 
594nm channel, but this time MKLP1 is stained with a 647nm secondary and is 
coloured blue. All of these im ages were acquired on a Deltavision microscope 
and de-convolved using the appropriate software, section 2.6).
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In figure 4.3 (b) a cell in the next stage of division, metaphase, is shown. Here it 

can be seen that the chromosomes have aligned halfway between the two MTOCs and 

that an anay of microtubules stretch from each MTOC towards the aligned 

chromosomes. Here, although there is some punctate, vesicular, FIP4 staining 

throughout the cell, a large proportion of FIP4 seems to have moved onto the 

microtubule arrays, where it is co-localising with alpha tubulin. It seems that FIP4 has 

been loaded onto the microtubules and is being delivered towards the spindle-midzone 

area of the cell.

Figure 4.3(c) shows a cell in anaphase, where the chromosomes have segregated 

and are moving towards each of the MTOCs at opposite ends of the cell. FIP4 now 

seems to be positioned on the spindle midzone microtubules, the area of overlapping 

microtubules equidistant from each of the two MTOCs. Here it co-localises with 

Survivin, a protein known to position to the spindle midzone (Wheatley et al., 2001).

A cell in early telophase is shown in figure 4.3 (d). By this stage mitosis is 

complete, the nuclear envelope has formed and it can be seen the DNA has started to dé

condense as individual chromosomes are no longer discernable. The cleavage furrow has 

largely ingressed and the spindle midzone microtubules are starting to be compacted to 

form the midbody. Here, the majority of FIP4 localises to towards the ends of the 

microtubule bundles which will go on to fonn the midbody structure. In the final late 

telophase image in figure 4.3(f), the cells are now only connected by a naiTow canal of 

cytoplasm which contains tightly bundled microtubules whose opposite ends overlap in 

the protein dense central “Flemming Body”, Encircling this structure is the “midbody 

ring”, a structure which is thought to be an important site for the delivery of membrane 

for the final “abscission” of the intracellular canal to form two separate daughter cells 

(see section 1.1.14). Here, the midbody ring is stained with MKlpl in blue, a protein 

which is known to localise to this structure at a relatively early stage after its formation.
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As can be seen, FIP4 is present on the microtubules of the midbody as well as on the 

midbody ring where it co-localises with the MKlpl staining. It should be noted here that 

this midbody ring localisation is likely to be a relatively late event as, as can be seen in 

this image there is still a large amount of FIP4 localised to the midbody microtubules 

rather than on the ring itself. Also, in some cells FIP4 can only be seen localised to the 

midbody microtubules and not to the ring structure. It is likely that these cells are at a 

slightly earlier stage of division where the FIP4 has not yet translocated to the centre of 

the midbody.

4.2.6 Localisation of FIP4’s Binding Partners During Cell Division

As FIP4 showed a striking localisation throughout mitosis and cytokinesis it was 

decided to also localise the binding partners of FIP4 which had been identified, i.e. 

ARF5, ARF6 and Rabll. As the discovery of Rab5 binding to FIP4 was a relatively late 

event in the work and that the antibody available for Rab5 did not work well for 

immuno-fluorescence, the localisation of this protein during cell division was not 

examined.

As for the localisation of ARF5, ARF6 and R abll, as well as being an interesting 

question to ask from the results of my work alone, there is also substantial evidence that 

membrane traffic involving members of the Rab and ARF families of small GTPases is 

essential for the completion of cytoldnesis. Indeed Rabll has been shown to be required 

for cytokinesis in Drosophila and C.elegans (Pelissier et ah, 2003; Riggs et al., 2003; 

Skop et al., 2001) but a function in mammalian cytokinesis has not yet been 

demonstrated. ARF6 has also been shown to have an involvement in cytokinesis, this 

time in mammalian cells (Schweitzer and D'Souza-Schorey, 2002). The localisation and 

possible function of ARF5 in cytokinesis, however, has not previously been studied.
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To study their localisation in cells undergoing division, the same approach as for 

the FIP4 studies was taken.

4.2.7 R abll's localisation during cell division

A Zymed anti-Rabl 1 antibody was used to stain for Rabl 1. Figure 4.4 shows 

R abll staining in prophase, metaphase, anaphase, late anaphase, telophase and late 

telophase. In figure 4.4(a) a cell in prophase is shown. This cell is probably at a slightly 

more advanced stage than the FIP4 prophase image as the MTOCs are now well defined, 

as shown by alpha-tubulin staining radiating from two dense centres and that the 

chromosomes have begun to align along the centre of the cell. Here, although some 

R abll can be seen throughout the cell, it can be seen strongly concentrated around each 

of the two MTOCs, with some staining starting to appear on some of the microtubules 

radiating towards the chromosomes. Like FIP4, the most simple explanation for this 

strong staining would be that the endosomal compartment that R abll resides in during 

interphase has now divided into two and become concentrated around the 

centrosomes/MTOCs. In metaphase, shown in figure 4.4(b), a large proportion of Rabll 

is seen to have moved onto the microtubules leading towards the aligned chromosomes, 

whilst some remains at the MTOCs. As for FIP4, a population of the Rabl 1 seems to 

remain in punctate structures distributed throughout the cell. By anaphase, shown in 

figure 4.4(c), R ab ll’s localisation has become less distinct, although a proportion of the 

staining remains associated with the MTOCs and there does seem to be a slight 

concentration of Rabl 1 on the microtubules close to the centre of the cell, where the 

midzone microtubules have not yet formed a dense structure. In figure 4.4(d), a cell in 

late anaphase is shown. By this stage, it can be seen that the midzone microtubules are 

being bundled together and have started to form the midbody structure. It can be clearly 

seen that Rabll is concentrating on the midzone microtubules, as well as distinct
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Alpha-tubulin R ab11 DAPl Merge

Figure 4 .4  HeLa cells at various s ta g e s  of cell division w ere fixed and stained  
(a s described in section  2 .4 ) with an alpha tubulin antibody which w as labelled 
with a 593nm  Alexa-Fluor conjugated secondary antibody and a R ab11 
antibody which w as labelled with a 488nm  Alexa-Fluor conjugated secondary  
antibody (for antibody details s e e  table 2.1). In addition the cells w ere DAPl 
stained. Im ages w ere taken on a Z eiss  LSM 5 P ascal m icroscope (s e e  section  
4.5). Cells in (a) prophase, (b) m etaphase, (c) early an aph ase, (d) late 
anaphase, (e) early te lop h ase and (f) late telophase are shown. In each  c a se  
the 593nm , 488nm  and DAPl channels are shown separately and then  
m erged.
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staining being visible at the two MTOCs. Figure 4.4(e) shows a cell in telophase where 

the Rabl 1 staining is now clearly concentrated on the densely packed midzone 

micro tubules adjacent to the cleavage fuiTOw, which has almost completely ingressed.

By late telophase, shown in figure 4.4(f) a significant amount of Rabll has moved onto 

the midbody micro tubules where it is clearly concentrated and some Rabll has reached 

the central Flemming body/ midbody ring structure.

4.2.8 Localisation of ARF 6 during cell division

An anti-ARF6 antibody was used to image ARF6 localisation through the 

various stages of cell division. Figure 4.5 shows panels of images of ARF6 stained in 

cells at prophase, metaphase, anaphase and late telophase. The images shown were taken 

in the absence of alpha tubulin staining as a control to verify that high degree of overlap 

seen between the microtubules and ARF6, R abll and FIP4 was indeed genuine.

In figure 4.5(a) a cell with condensed, yet not yet aligned chromosomes is 

shown, indicating that the cell is in prophase. Here, the ARF6 staining is largely 

clustered around two points and in addition some staining can be seen on thread-like 

projections emanating towards the centre of the cell, suggesting that ARF6, like FIP4 

and Rabll is clustered around the two MTOCs and has started to move onto 

micro tubules. In figure 4.5(b) a cell in metaphase is shown, with its condensed 

chromosomes aligned in the centre of the cell. Here ARF6 can be clearly seen in two 

dense patches, the MTOCs and now, much more clearly, on the microtubules which are 

leading towards the condensed chromosomes. Figure 4.5(c) shows a cell in early 

anaphase where the chromosomes have begun to separate and move to opposite poles of 

the cell. Here ARF6 is still visible at one of the MTOCs, although less so at the second 

which may be out of focus. Like FIP4 in anaphase, it is now also clearly visible between 

the separating chromosomes at the site of the spindle midzone microtubules. A close up
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Anti-ARF6 DAPl Merge

( a )

(b)

( c )

(d)

Figu re 4.5 HeLa cells at various stages of cell division were fixed and 
stained (as described in section 2.4) with an anti-ARF6 antibody which 
was labelled with a 488nm Alexa-Fluor conjugated secondary antibody 
(for antibody details see table 2.1). In addition the cells were DAPl 
stained. Images were taken on a Zeiss LSM 5 Pascal microscope (see 
section 4.5).Panels show cells in (a) late prophase, (b) metaphase, (c) 
anaphase and (d) telophase. The 488nm and DAPl channels are 
shown separately and merged.
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of an intracellular midbody bridge is shown in figure 4.5(d). ARF6 is very clearly 

concentrated along both arms of this bridge, with only fainter staining at the Flemming 

Body at the centre of the bridge visible at this stage. Again, this staining is very similai' 

to that seen for both FIP4 and Rabll.

4.2.9 ARF5 localisation at late telophase

The anti-peptide ARF5 antibody described in section 4.2.3 above was used to 

localise ARF5 at the final stage of cell division, late in telophase where the cells are 

connected only by a thin intracellular bridge. Figure 4.6 shows two cells at this late stage 

of division. In both of these cells, ARF5 localises to the “midbody ring” structure where 

it is co-localised with MKlpl, as described for FIP4. The graphs shown beneath the 

images verify this localisation and co-localisation with MKlpl. They are a plot of the 

intensity of fluorescence measured across the midbody structure (as indicated by the red 

lines on the images) for DAPl, ARF5 and MKlpl. It can be seen that in figure 4.6(a) that 

ARF5 concentrates at the centre of the midbody with MKlpl. In figure 4.6(b) an 

enlarged view of the midbody can be seen. The accompanying graph shows not only that 

ARF5 and MKlpl are concentrated at the centre of the midbody but both appear as a 

twin peak in this area, indicative of the “midbody ring” structure that they are both 

present in.

Experiments are currently being earned out by members of our laboratory to 

identify the localisation of ARF5 at earlier stages of cell division and cytokinesis. It is 

predicted that it will show a similar localisation to R abll (and ARF6 and FIP4) as it 

largely co-localises with R abll during interphase (see section 4.2.3) and here shares the 

same localisation as R abll, ARF6 and FIP4 in late telophase. As can be seen from 

figures 4.5 and 4.6, the localisation of ARF6 at each stage of cell division and of ARF5 

in the late telpohase stage are very similar to that of both R abll and FIP4.
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(a) (b)

&

Figure 4 .6  HeLa cells w ere fixed and stained (as described in section  2.4) with an 
ARF5 antibody which w a s labelled with a 488nm  Alexa-Fluor conjugated  
secondary antibody and a MKLP1 antibody which w as labelled with a 594nm  
Alexa-Fluor conjugated secondary antibody (for antibody details s e e  table 2.1). In 
addition the cells w ere DAPl stained. Im ages w ere taken on a Z eiss LSM 5 P ascal 
m icroscope (s e e  section 4.5). Two cells in late te lop h ase are show n in (a) and (b). 
Panel (a) sh o w s a picture of a  w hole cell whilst panel (b) sh o w s a  view of the  
midbody of a cell. In both c a s e s  a red line has been  traced along the centre of the  
midbody. In both c a s e s  the graphs shown beneath the im ages show  
representations of the intensity of flu orescen ce of each  of the fluorophores along  
the traced red line (intensity is in arbitrary units on the Y-axis whilst d istance, in 
pm, is on the X-axis). The colours on the graphs match the fluorophores they  
represent in the im ages. The total length of the traced red line in im age (a) is 22pm  
whilst in im age (b) is 3.5pm .
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4.3 Discussion

4.3.1 Localisation of FIP4 and its binding Partners In Interphase Cells

It has been previously shown that FIP4 has some overlapping with Rabll and 

therefore the pericentrosomal recycling endosome (Hickson et al, 2003). However, 

although the majority of FIP4 does undoubtedly reside in a peri-centrosomal patch, this 

patch only shares partial co-localisation with Rabl 1 and the precise location of the 

remaining FIP4 in interphase cells has, as yet, remained undetermined. Here it is shown 

that ARF6 staining in HeLa cells occurs mostly at a peri-centrosomal patch. This patch 

shows partial, but by no means complete localisation with Transfemn Receptor staining, 

which, like Rabl 1 is a marker of the recycling endosome. This suggests that ARF6 and 

FIP4 may share the same localisation, in an endosomal compartment which partially 

overlaps the recycling endosome compartment. This is confirmed by co-localisation 

studies of ARF6 and FIP4 which show that these two proteins co-localise almost 

completely in inteiphase cells (disregarding the unconfirmed nuclear localisation of 

ARF6). Therefore I would suggest that FIP4 resides in the “ARF6 endosome” in HeLa 

cells, as described by Donaldson and co-workers (Radhalaishna and Donaldson, 1997; 

Donaldson, 2003). This endosome’s constituents and properties have not yet been 

entirely elucidated although the fact that it shows a peri-centrosomal location and some 

overlap with the Rabl 1/Transfemn Receptor recycling endosome does not contradict 

any previous studies on ARF6. A a plasma membrane pool of ARF6 is also seen here, 

which again is well documented by others (Song et al., 1998; Donaldson, 2003). FIP4 

also seems to at least partially co-localise with ARF6 at the plasma membrane.

These suggestions of nearly complete overlapping localisation of FIP4 and ARF6 

agree with my findings in chapter 3 which show that FIP4 binds to ARF6. Taking both 

the localisation and binding results together may suggest that FIP4 shows “constitutive” 

binding to ARF6 within a cell. Where ARF6/FIP4 and Rabll localisations overlap may
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indicate the presence of an ARF6+FIP4+Rab 11 trimeric complex, the formation of 

which was shown to be possible in chapter 3.

The localisation of ARF5 in interphase HeLa cells has also been studied, using 

DAPl, phalloidin and R abll co-staining to aid identifying its localisation. It was not 

possible to directly visualise the co-localisation of ARF5 with FIP4 as the antibodies 

which were available for both of these proteins were raised in the same species. ARF5 

showed a very similar co-localisation to Rabl 1, with both a major peri-centrosomal pool 

and a plasma membrane pool, which, like R abll, FIP4 and ARF6, concentrated at spike

like structures which are likely to be focal adhesions.

Several possible theories can be proposed which may explain the function of 

ARF5 based on the localisation and binding properties that have been discovered here, 

although this list is obviously not complete. A first possibility is that ARF5 plays a 

redundant role to ARF6, as it seems to share a similar localisation to ARF6 and yet its 

binding to FIP4 seems to be considerably weaker. However this seems to be a somewhat 

naïve idea as weaker binding of FIP4 to an ARF may be required for some processes. 

Also the possibility that both ARF5 and ARF6 could simultaneously bind to FIP4 was 

not tested. As the exact binding sites for the ARFs on FIP4 have not yet been identified 

this would be difficult to predict. Also it may be the case that there are specific 

localisations of ARF5 and therefore perhaps compartmentalised interactions with FIP4 

that have not been able to be identified here due to the resolution of images possible with 

confocal microscopy.

Another possibility is that ARF5 may be more constitutively present in the 

Rabl 1 recycling endosome compartment than ARF6, therefore having a specific role in 

this compartment. This is a good possibility as ARF5 seems to have almost total co

localisation with R abll, unlike ARF6 and FIP4 which have been concluded to lie in an 

“ARF6 endosome”, which only has partial co-localisation with the Rabl 1 recycling
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endosome. This could also explain the weaker binding of FIP4 to ARF5 that was found 

as it may only be desirable for this interaction to take place whilst FIP4 is in the 

recycling endosome. A transient binding to ARF5 to FIP4 would ensure that once FIP4 

moves out of the R abll recycling endosome, the localisation of ARF5 could be 

maintained within this compartment.

4.3.2 FIP4, Rab and ARF localisation during cell division

Here it has been shown that FIP4, Rabl 1 and ARF6 to share a very distinct 

localisation at each stage of cell division and in addition shown that in the final stage of 

division, ARF5 also has the same localisation as the other proteins. At prophase it is 

clear that FIP4, Rabl 1 and ARF6 are tightly clustered around the centrosomes/ MTOCs. 

As the nonnal interphase localisations of all three of these proteins is lost it seems most 

likely that cause for this tight peri-centrosomal location at prophase is due to the 

“collapse” of the ARF6 and/or R abll recycling endosome to this point. The cause of 

this collapse is not clear, although a feasible reason could be a change in the way the 

endosome interacts with the microtubule network at the onset of mitosis. A candidate for 

the mediation of this interaction is FIP4 itself as it has previously been shown that if C- 

terminally truncated constructs of FIP4 are over-expressed in cells then this causes a 

collapse of the recycling endosome to a tight peri-centrosomal spot, similai- to that seen 

in prophase cells. Therefore it is possible that the C-teiminal section of FIP4 mediates an 

interaction between the endosome and the microtubule network which under normal 

circumstances anchors it in place. In the event of truncation, or in the case of the onset of 

mitosis, a modification such as phosphorylation, FIP4 may no longer be able to mediate 

the endosome’s interaction with the microtubule network, therefore causing its collapse 

to a tight spot. In the case of mitosis, this collapse will have the beneficial function of
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brining the contents of the endosomes into close proximity with the MTOC. Once at the 

MTOC, FIP4, ARF6 and R abll are now in a position to be loaded onto microtubules.

By metaphase it is clear that FIP4, Rabll and ARF6 are associated with the 

microtubules leading towards the aligned chromosomes at the centre of the cell and that 

by anaphase they have moved past the chromosomes and are now associated with the 

spindle midzone microtubules. Again, how this association takes place is not known, but 

one of the possibilities are described in section 4.3.3, below.

FIP4, R abll and ARF6 remain associated with the spindle midzone microtubules 

through into telophase where the microtubules elongate to from the midbody. Finally, 

late in telophase FIP4 and at least some ARF6, ARF5 and Rabl 1 move to the very 

centre of the midbody and become associated with a midbody ring structure, concuirent 

with MKlpl staining. It is maybe here that the FIP4/ARF6/Rabl 1 complex is having its 

effect, as it is thought that this ring structure serves as a docking site for the delivery of 

membrane fusion and remodelling components. For example, both SNAREs and the 

exocyst, a complex of proteins required for exocytosis, have been shown to localise to 

this ring structure (Gromley et al., 2004). In addition it has here been shown that ARF6, 

ARF5 and Rabl I also go to this structure. Obviously these are also proteins known for 

their membrane interactions, the ARFs for their role in vesicle formation and, at least in 

the case of ARF6, cortical actin re-arrangements and the Rabs for their multiple roles in 

vesicle trafficking. Once all components have reached this site it is likely that a complex 

interaction takes place between the membrane at the centre of the intracellular canal, the 

entourage of membrane trafficking and remodelling proteins which have been delivered 

and, possibly, new membrane which has been delivered to this site as vesicles along the 

midbody microtubules. These interactions will lead to the sealing of the intracellular 

canal into two separate daughter cells and therefore cytokinesis will be complete.
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4.3.3 Association of FIP4+ARF6/ARF5+Rabll Complexes with the Microtubule 

Network During Cytokinesis

The descriptions above show that FIP4, ARF6/5 and R abll seem to associate 

with and move along microtubules throughout cell division, firstly moving from the 

MTOCs to the spindle midzone and later moving along the midbody to the midbody ring 

structure present at its very centre. How this is achieved is not known but obvious 

candidates are the kinesin/dynein family of proteins which can both bind cargo and 

“walk” along microtubules, thereby providing a means of transporting cargos around 

cells. There are many members of the kinesin/dynein family and it is not cumently 

known which protein interacts with FIP/ARF5/6 and Rabll. However one good 

candidate is Mitotic Kinesin Like Protein 1 (MKlpl). This protein is known function in 

cytokinesis and locate to the midzone microtubules, where it serves a microtubule- 

bundling function and to the “midbody ring” structure, where here it was observed co- 

localising with FIP4. In addition to its known cytokinesis function and co-localisation 

with FIP4 during cell division there is a further reason to suspect this proteins specific 

involvement with the proteins being investigated here. That is that it has been shown to 

be able to bind to every member of the ARF family of proteins (Boman et ak, 1999). 

Therefore, although at this stage purely speculation, MKlpl would provide a mechanism 

for the localisation of an ARF6/FIP4/Rab 11 complex that I have observed during 

cytokinesis.

4.3.4 What is function of ARF5/6+FIP4+Rabll localisation?

Possibly the simplest hypothesis to explain the localisation of 

ARF5/6+FIP4+Rabll throughout cytokinesis is that, as discussed above, R abll and 

ARF5 and/or 6 are required as membrane trafficking proteins at the centre of the 

midbody during the final stages of cytokinesis. Here they interact with other components
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that have been delivered there to make the final abscission of the intracellular bridge and 

seal the ends to form two separate daughter cells. The localisation seen at the earlier 

stages of cytokinesis may simply be the most efficient route for the delivery of these 

proteins to the midbody during telophase. In this model FIP4 would act as a scaffold 

type protein, binding both an ARF and Rabl 1 simultaneously and ensuring their delivery 

to the same place and at the same time where they can then cany out their functions 

correctly. This idea seems logical as a Rab protein will probably act immediately after 

an ARF protein in the course of vesicle delivery; i.e. the ARF is required for the 

formation and budding of the vesicle and once budded, this vesicle now needs to bind a 

Rab protein to ensure it is tethered to the conect target membrane. Also, as shown by the 

interphase co-localisation experiments, ARF6, 5 and Rabl 1 all originate from the same 

area of the cell, even if the overlap between their localisations is not complete. Therefore 

it makes sense that FIP4 would bind these proteins here and then the complex be 

delivered, most probably as constituents of a membrane vesicle, from the same part of 

the cell to the midbody. This then is the simplest situation, i.e. the ARFs and Rabl 1 are 

delivered, coupled by FIP4 to the centre of the midbody, where they have their effect.

A more complex situation may occur in that in addition to the ARF/FIP4/Rabll 

complex and membrane vesicles being delivered together, actin would also be part of the 

“package”. This is proposed in parallel with the model for Nuf (the Drosophila 

homologue of FIP4/3) action, which is proposed to load vesicles containing actin and 

deliver these to the cleavage furrow, thereby providing a source of both the membrane 

and actin required for fuiTow invagination (see section 1.1.9 and figure 1.1). However, 

this hypothesis does not fit as well with the model proposed here as it is envisaged that 

the ARF/FIP4/Rabl 1 complex would have its major effect at the midbody abscission 

stage rather than the fuiTow ingression stage, due to its localisation to the midbody and 

midbody ring. At this final stage it is unlikely that actin is still required.
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Having discounted this, however, it should also be mentioned that the situation 

could be more complex still, with the ARF/FIP4/Rabll complex acting not just at the 

final abscission event but additionally at other, earlier stages of cytokinesis.

However as there is cumently no clear evidence for any of the above hypotheses 

the most simple hypothesis should first be tested. That is that the ARF/FIP4/Rab 11 

complex is delivered to the midbody and here it has its effects, at a late stage of 

cytokinesis.

In the next chapter it was aimed to establish if these proteins are indeed required 

for cells to divide successfully.
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Chapter 5 : Do R abll, ARF5/6 and FIP4 Play a Functional Role in Cytokinesis?

5.1 Introduction - Bi-nucleate Experiments

In this chapter I wanted to start to investigate whether the striking localisations of 

FIP4, R abll, ARF5 and ARF6 that were observed thi'oughout cell division in the 

previous chapter are indicative of a functional role for these proteins in this process. One 

of the most striking and therefore easily quantifiable defects observed when cell division 

fails at a late, post-anaphase, stage is the formation of bi-nucleated cells. These occur 

when mitosis, i.e., the separation of the chiomosomes into the two halves of the cell, has 

been completed successfully but then cytokinesis fails and therefore the cell fails to 

divide into two. In this case the end result is a cell containing two nuclei. Therefore an 

easy way to check whether a protein is involved in cytokinesis is to perturb it’s action is 

some way in living cells, for example by over-expression of a mutant form, knocking 

down expression using RNAi or prevent the protein from binding to its nomial partners 

by injection of antibody. The cells are then left for enough time for the perturbation to 

have its effect and the cells to go through the cell cycle at least once (a HeLa cell cycle 

lasts 15-20 hours on average) and finally fix the cells, stain the nuclei and count the 

percentage of cells with two or more nuclei. This technique has been used in many 

studies on cytokinesis and provides a relatively quick and easy approach to investigate 

whether a protein is required for cytokinesis. However, it does have a number of 

drawbacks. Firstly, as emphasised in section 1.2.1, cytokinesis seems to be a remarkably 

resilient process making any type of study on its individual constituents a difficult 

process. There are many “backups” in place, meaning that perturbing one protein may 

have little or no effect on the process if its semi-redundant partner is still able to 

function. In some cases, even when a seemingly essential process is perturbed, the 

cytokinesis machinery struggles on and eventually successfully divides the cell, although

102



this may be at a significantly slower rate than normal. Live cell experiments may be able 

to detect a delay in cytokinesis but the bi-nucleate experiment described above will not. 

The other limitation of the experiment is that if a bi-nucleate phenotype does occur it 

cannot be determined at which stage cytokinesis has failed. It may have been an early 

fuiTow ingression event or could have been that much later, the final abscission stage has 

failed and the cleavage fuiTOW has subsequently regressed. A further problem is that bi- 

nucleate cells are not the only phenotype associated with cells that have failed 

cytokinesis. In some cases, cells failing cytokinesis remain intercoimected by a long, 

intracellular bridge or in other cases may undergo apoptosis.

Despite its limitations, however, the bi-nucleate experiment is an ideal method to 

start determining whether a protein is involved in cytokinesis. Therefore, in this chapter 

this approach has been used, with various methods of protein perturbation, to start an 

initial investigation into the involvement of FIP4, ARF5 and Rabll in cytokinesis (as 

discussed in section 1.2.3, ARF6 has already been shown to play a role in mammalian 

eytokinesis; Schweitzer and D'Souza-Schorey 2002).

5.2 Results

5.2.1 Rabll-S25N Virus Bi-nucleate experiments

Rabl 1-S25N refers to a point mutation in Rabl 1 sequence in which an 

asparagine residue is substituted for serine 25. This amino acid is located in the loop 1 

region of the protein, which, together with loop 2, is the region that binds to GTP/GDP. 

The S25N mutation renders Rabl 1 in a state unable to bind GTP and therefore is 

refeiTed to as an “inactive” mutant. This is a well characterised mutant which has been 

used in many studies on Rab 11 and has been shown to block nonnal recycling through 

the pericentrosomal recycling endosome compartment (Ullrich et ah, 1996; Ren et al., 

1998). Therefore, if the vesicle trafficking properties of Rabl 1 are required for
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cytokinesis then upon expression of the inactive mutant it would be expected to see 

defects in this process.

In this experiment I used the Rabl 1-S25N constmct with an N-temiinal myc-tag 

inserted into an adenovims vector. A virus with a vector containing GFP-alone was used 

as a negative control. Use of adenovims ensures a high transfection efficiency into the 

HeLa cells I used for the experiment. Cells were grown on glass cover slips in normal 

media and when they reaehed -20% confluency they were infected with the vims at a 

concentration that gave a 20-30% infection rate. Cells were then left for 481trs at 

standard gi'owth conditions (37$^C, 5% CO2) before being fixed for 10 minutes with 

fresh 4% parafomialdehyde. Cells were then processed for immunofluorescence staining 

as described in section 2.4 and stained with an anti-myc antibody (Santa-Cruz) to label 

cells expressing myc-Rabl 1-S25N, alpha-tubulin in order to help detennine individual 

cells and DAPI stained to show the DNA. Cells were then visualised under a confocal 

microscope and the number of infected cells with two or more nuclei were counted for 

both the Rabl 1-S25N infected cells and the control, GFP-expressing vims. Figure 5.1(a) 

shows a field of cells from a coverslip infected with the myc-Rabl 1-S25N vims and 

stained for myc, alpha tubulin and DAPI. In this field of cells only one of the cells is 

expressing myc-Rabl 1-S25N, therefore appearing green. This cell has two nuclei, whilst 

all of the surrounding, uninfected cells have the nonnal single nucleus. This illustrates 

that, whilst the majority of uninfected cells appeared normal, a large proportion of the 

infected cells had two or more nuclei. This observation was quantified by counting the 

number of Rabl 1-S25N expressing cells with two or more nuclei compared to cells 

infected with and expressing a GFP-alone constmct. These results are shown in figure 

5.1(b). This shows the results of five independent experiments, where 100 infected cells 

were counted on each occasion for both the Rabl 1-S25N and GFP vims.
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Figure 5.1 HeLa cells were infected with either the myc-Rab11-S25N virus or a 
virus containing GFP alone as a negative control and cells were left for 48  
hours. Cells were then fixed and stained with alpha tubulin which w as labelled 
with an Alexa-Fluor 594nm secondary antibody, anti-myc which w as labelled 
with an Alexa-Flour 488nm secondary antibody and DAPI (as described in 
section 2.4, s e e  table 2.1 for antibody details). The number of infected cells 
with double or multiple nuclei were then counted, (a) A field of cells stained for 
alpha tubulin, myc (to identify Rab11-S25N expressing cells) and DAPI. Images 
were taken on a Zeiss LSM Pascal microscope (see  section 2.5). 594nm, 
488nm and DAPI channels are shown separately and merged, (b) The bar 
graph shows the percentage of cells with double or multiple nuclei for both 
R ab ll-S25N  expressing cells and GFP expressing cells. Each series is the 
average of 5 independent experiments in which 100 cells were counted for both 
R ab ll-S25N  and GFP expressing cells. Plus and minus one standard 
deviation is shown.
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Figure 5.1 (continued) (c) Show s immunoblots for Rabl 1, RabS and Rab4 of 
protein extracts taken from untreated cells (mock) and cells treated with R a b lla  
and R a b llb  siRNAs (Rabl 1 siRNA) for 72 hours, (d) show s the number of 
binuclear cells counted in mock cells compared to Rabl 1 siRNA depleted cells. N 
is the number of cells counted. Data are the m eans ± SE. ‘Statistically significant 
difference at p < 0.01. N.B. Data shown in Figure 5.1 (c) and (d) w as collected by 
members of the Prekeris Lab and is shown a s published in Wilson et al’s  recent 
paper (Wilson et al, 2005).
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After 48 hours an average of 15.33% of Rabll-S25N infected cells have two or 

more nuclei compared to the GFP control vims where only an average of 1.67% of cells 

are hi or multi-nucleate. This shows that there is clearly an increased number of bi or 

multinucleated cells in the presence of Rabl 1-S25N, indicating that over-expression of 

this non-cycling, GDP locked from of Rab 11 in some way perturbs cytokinesis, which in 

turn suggests that the normal functioning of Rabl 1 is required for cytokinesis.

This data has now been further backed up by our collaborators investigating the 

possible role for Rabl 1 by an independent experimental method. They have shown that 

when Rabl la  and Rabl lb are simultaneously knocked down by RNAi that a high 

proportion of cells become bi-nucleate (Wilson et ah, 2005). This data is shown in figure

5.1 (c) and (d). 5.1 (c) shows that, compared to control cells, the level of Rabll in 

Rabl la  and b siRNA treated cells is greatly reduced. This knockdown seems to be 

specific for R abll as levels ofRab5 are not affected. Interestingly, Rabll depletion 

resulted in increased levels of Rab4 GTP as e (Figure 5.1 (c)). Because Rab4 is also 

known for its role in endocytic recycling, it is likely that this represents a compensatory 

increase as a result of Rabl 1 depletion. The sequences of the siRNAs which they used to 

knock down Rabl la  and Rabl lb are shown in appendix la.

Figure 5.1 (d) shows that the number of bi-nucleate cells occumng in cells 

treated with siRNAs targeting Rabl la  and Rabl lb is significantly increased over 

untreated cells. Furtheimore, transfection of HeLa cells with scrambled Rabl 1 siRNA 

did not have any effect on the number of binucleate cells (unpublished data). It is not 

surprising that both Rabl la  and Rabl lb have to be knocked down to see an effect as the 

two isoforms are very similar to each other, reside in the same compartment and 

therefore it could be easily envisaged that they could he redundant to each other for at 

least some functions (see section 1.2.11).
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5.2.2 ARF5 Bi-nucleate experiments

Studies by Schweitzer and D'Souza-Schorey (Schweitzer and D'Souza-Schorey, 

2002) show that over-expression of an ARF6 mutant, ARF6-Q67L an “active”, GTP- 

locked from of ARF6, results in a significant number of cells failing to successfully 

complete cytokinesis, implicating ARF6 in this process. This supports the striking 

localisation of ARF6 which I observed in cells undergoing cell division. This also 

supports the notion that the localisation of ARP5 (and Rabl 1 and FIP4) seen through 

cell division, which was very similar to that of ARF6, suggests a function for this protein 

in cytokinesis. As a functional assay had not been earned out for ARF5,1 sought to cany 

out this experiment by over-expressing the ARF5 equivalent of the ARF6-Q67L 

mutation, ARF5-Q71L.

I carried out the experiment very similarly to the Rabl 1-S25N experiment 

described above except that an HA-tagged ARF5-Q71L plasmid was transfected into the 

cells using the standard protocol for Lipofectamine 2000 (In vitro gen), as described in 

section 2.3. A plasmid containing only GFP was transfected into separate cells as a 

negative control. Again, the cells were left for 48 hours and then fixed and stained for 

HA to identify transfected cells, alpha-tubulin and either DAPI or MKlpl (which resides 

in the nucleus during interphase and the central spindle and later the midbody during 

cytokinesis).

Figure 5.2(a) shows a cell with green staining, indicating that it has been 

transfected with the HA-ARF-5Q71L construct. The blue staining is against MKlpl.

This staining clearly shows that this cell contains two nuclei. Interestingly, a dense patch 

of blue staining in between the two nuclei probably represents a failed midbody which 

has at least partially foiTned but as, at some point, cytokinesis has failed, it is now within 

a cell with two nuclei. Anti-FIP4 staining shows two bright patches which partially 

overlap with the MKlpl staining in the “failed midbody”. This suggests that FIP4 was
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ARF5Q71LT r ansf ected DoubI e NucI ei Exper i ment
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F igure 5 .2  (a) HeLa cells w ere transfected with an ARF5Q71L-HA- 
tagged  plasmid and left for 24 hours. Cells w ere then fixed with 4% 
paraformaldehyde and perm eabilised with 0.1% Triton. Cells w ere  
then incubated with a 488nm  fluorescently tagged  anti-HA antibody, 
an anti-FIP4 and an anti-MKIpl antibody. FIP4 w a s labelled with a 
594nm  secondary antibody whilst MKIp-1 w a s labelled with a 647nm  
secondary antibody. All antibody concentrations can be found in 
table 2.1. (b) The number of transfected cells with double or multiple 
nuclei w ere counted, whilst on the sa m e coverslip the number of 
untransfected cells (those showing no green staining) with double or 
multiple nuclei w ere a lso  counted. Counts w ere d one a s  s e t s  of 100 
cells for either the transfected or untransfected cells. The graph 
sh ow s the m ean of 5 independent s e t s  of experim ents (i.e. 5 x 1 0 0  
cells). The error bars sh ow  plus and minus o n e  standard deviation.
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able to move to the midbody but in the absence of a functional ARF5, cytokinesis has 

failed. Figure 5.2 (b)shows the results of 5 independent experiments where, for each 

experiment 100 transfected cells were counted for both the ARF5-Q71L and the GFP- 

alone control. On average, 12.33% of ARF5-Q71L transfected cells have two or more 

nuclei, which is significantly more than the GFP control cells which have an average of 

2.83% double or multi-nucleated cells. Therefore, over-expression of a non-cycling, 

active mutant of ARF5 seems to interfere with cytokinesis, implicating that normal 

ARF5 function is required for cytokinesis to complete normally.

Further experimental approaches to verify that ARF5 does indeed play a 

functional role in cytokinesis are cun ently being earned out by members of our research 

group.

5.2.3 FIP4 m mitosis

Now that I had established that both Rabl 1 and ARF5 play at least some role in 

mammalian cytokinesis (in addition to previous studies implicating ARF6) I 

hypothesised that FIP4, as a protein which could couple together Rabl 1 and ARF5 or 

ARF6 could also be required. Therefore I aimed to carry out similar experiments with 

FIP4 to that which I had completed for Rabl 1 and ARF5 to see if a functional role could 

be elucidated. However the initial difficultly in the design in these experiments was 

trying to find a method of perturbing FIP4 action. In the case of both Rabl 1 and ARF5, 

mutants were already available which had been established in many studies as non

cycling, therefore functionally perturbed forms of the proteins. These mutants could be 

over-expressed, therefore interrupting the normal function of the proteins within cells. 

However, no such mutants were available for FIP4. Therefore a number of approaches 

were taken to try and study the possible role of FIP4 in cytokinesis. These were micro-
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injections of both specific antibodies and purified proteins and RNAi knockdown of 

FIP4.

5.2.4 Microiniection of FIP4 antibody and protein

Microinjection of individual cells with either a specific antibody or 

recombinantly produced protein is a common method to try to perturb a protein’s 

function. Binding of antibody to the protein in question will prevent it from interacting 

with its nonnal partners, therefore preventing its action, whilst large amounts of injected 

protein may perturb the protein’s function by binding to and therefore “soaking-up” all 

of the protein’s normal interactors, leaving the system unable to function.

HeLa cells were grown on gridded coverslips (Eppendorf) and Anti-FIP4 

antibody or protein was injected (as described in section 2.8). Cells were left for 48hours 

and then cells fixed, stained and observed. The number of injected bi-or multi-nucleated 

cells were counted as compared to a control.

In some cases, bi-nucleated cells were observed in areas of the cover slip that had 

been injected, as shown in figure 5.3. However, despite numerous attempts, the numbers 

of bi-or multi-nucleated cells observed did not prove to be significantly different to that 

of control cells. This could have been due to teclmical difficulties with the 

micro injection technique. Initially, the major problem here was that, although the 

location of cells was noted upon injection, when observing the cells it was difficult to 

detennine exactly which cells had been injected. During the 48hours that the cells were 

left, they had been undergoing normal processes of replication, migration and, in some 

cases, apoptosis. This made the identification of injected cells very challenging. To try 

and overcome this problem, further experiments were carried out where the antibody or 

protein to be injected was first mixed with a 488nm fluorescent dye to try and aid 

identification of injected cells (see section 2.8). This worked to some extent, in that in
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(a)
Alpha tubulin DAPI Transmission Merge

Figure 5.3 HeLa cells were grown on gridded coverslips and injected with anti- 
FIP4 antibody (see  section 2.8). The cells which had been injected were noted on 
a log sheet. Cells were then left for 48 hours and then fixed and stained for alpha 
tubulin, labelled with an Alexa-Fluor 594nm secondary anitbody and DAPI (see  
section 2.4 and table 2.1 for antibody details). Coverslips were examined under a 
Zeiss LSM Pascal microscope (see  section 2.5) and areas of cells that had been  
injected with antibody were identified using the grids on the coverslips. (a) shows 
an area that had been microinjected, with 594nm, DAPI and transmission channels 
shown separately and then merged. In the merged image arrows indicate two cells 
which have double nuclei.
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some cases it was possible to observe some green fluorescing cells after fixation. 

However it showed that on the whole the microinjections being perfoimed were very- 

variable in terms of the amount of antibody/protein/dye injected. Of the cells which I 

had attempted to inject I would typically see a great range in the brightness of their 

fluorescence. A very low percentage of the cells would fluoresce brightly, some would 

fluoresce faintly, whilst in the majority of cells no fluorescence was visible. With 

varying amounts of antibody or protein being injected, the interpretation of the results 

became difficult and somewhat qualitative. Therefore, despite some success as 

illustrated in figure 5.3, other methods of investigating FIP4’s potential role in 

cytokinesis were undertaken.

5.2.5 RNAiofFIP4

RNAi is the current method of choice for perturbing a protein’s fimction in cells. 

In some cases, once optimised, simply transfecting a short RNA strand into cells can 

specifically knock down levels of your chosen protein to 10% or less of normal levels. 

This makes the RNAi approach a potentially very powerful tool for studying the 

function of your protein.

There are several methods of implementing RNAi, each with their advantages 

and disadvantages. Here, it was ehosen to transcribe short interfering RNAs (siRNAs) in 

vitro and to then transfect these into cells, using the “Silencer™ siRNA Construction 

Kit” from Ambion, as described in section 2.9. This is a rapid and reasonably economic 

approach which should allow the analysis of the effects of knocking down your protein 

for up to 96 hours.

Using programmes and advice from several websites (see appendix Ic for 

details) tliree siRNAs were chosen which were targeted against different sections of the 

FIP4 sequence and were predicted to have a high degi'ee of potency. These were named
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436, 1067 and 1654, according to the position in the FIP4 sequence on which they began 

(see appendix lb for sequences). A control sequence was also designed, which was a 

scrambled version of the 1067 siRNA. Once designed, all the sequences were run 

through a “BLAST” programme (NCBI) to check the sequences did not match any other 

human sequences too closely (see appendix Ic for parameters used).

Transcription and transfection of the siRNAs was earned out as described in 

section 2.9 and then cells were left for 24, 48, 72 or 96 hours for the siRNA to have its 

effect. Various concentrations of transfected siRNAs were tried although typically cells 

were either transfected with individual siRNAs to a final concentration of 50nM or were 

transfected with all three FIP4 siRNAs at a concentration of 40nM, giving a total 

concentration of 120nM. Duplicate sets of cells were then either fixed and prepared for 

immunofluorescence or harvested for protein extraction.

Figure 5.4 shows a set of cells stained for FIP4 (and DAPI) 72 hours after 

transfection with 40nm each of 436, 1067 and 1654. Panel (a) shows a typieal field of 

approximately 30 cells, viewed under a Zeiss Pascal confocal microscope. It can be seen 

that all the cells show significant staining for FIP4, localised to the areas of the cell that 

would be expected (largely peri-centrosomal). Panel (b) shows another field of cells 

from the same slide. Again red anti-FIP4 staining can be seen at the expected 

localisation in all cells, including two cells which are undergoing cytokinesis. This 

indicates that the knockdown of FIP4 by these siRNAs has not been successful. Blots of 

FIP4 protein levels in lysates prepared from siRNA treated cells also showed no 

consistent Imockdown of FIP4 compared to a standard protein (RlioA). A problem with 

this experiment was the lack of a positive control for knockdown. This was not canied 

out due to the siRNA work being earned out in the very late stages of this work and 

therefore being constrained by time. However, this issue has now been addressed by 

other members of the lab using the Ambion “Silencer™ siRNA Construction Kit” and
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Figu re 5.4 (a) HeLa cells were transfected with siRNAs 436, 1067 
and 1654 simultaneously (as described in section 2.9). Each siRNA 
was at a concentration of 40nM, giving a total concentration of 
120nM. Cells were then left for 72 hours before being fixed with 4% 
paraformaldehyde and then stained with anti-FIP4 antibody. This 
was is turn stained with a 593nM Alexa-Fluor anti-sheep antibody 
(visualised as red). For antibody details, see table 2.1.The cells were 
also stained with DAPI to mark the nuclei (visualised as blue).
Stained cells were visualised under a Zeiss Pascal confocal 
microscope, (a) shows a typical field of approximately 30 cells is 
shown. There seems to be significant staining for FIP4 in all cells, (b) 
Cells were treated in an identical manner to panel (a). Here, arrow 
heads indicate two cells undergoing cytokinesis. The green arrow 
indicates a cell in late anaphase/ early telophase whilst the pink 
arrow indicates a cell in late telophase. In both cases is can be seen 
that the localisation of FIP4 appears normal.
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successful knockdown of a control gene has been accomplished. This suggests that this 

is an effective method for producing siRNAs. Possible explanations for the lack of FIP4 

laiockdown obseiwed are discussed below.

A number of reasons are possible for the lack of FIP4 laiock down. However, 

several reasons were nded out: it was verified that the siRNAs had been successfully 

synthesised and that, by fluorescently labelling some of the siRNAs, they were being 

successfully transfected into the cells (data not shown). Therefore it did not seem to be a 

problem of production, degradation or of transfection into the cells. 40nM is a relatively 

high concentration for a siRNA, with most effective siRNAs being able to knock down 

protein levels at below 20nM. Therefore, a low concentration of the siRNA also seemed 

unlikely to be the reason for the failure to Icnock down FIP4. Therefore there are two 

main reasons that remain which may be responsible for the failure to significantly knock 

down this protein. Firstly, the siRNAs used were not from the most effective part of the 

sequence or were not of optimmn design. In this case designing siRNAs against different 

target sequences may be successful. However, the target sequences chosen were 

deliberately taken from thi ee different areas of the coding sequence to give the best 

chance of targeting the most “vulnerable” parts of sequence. Also, each siRNA was 

designed using all the parameters available from three separate, reliable, sources and 

each of these sources picked each one of the siRNAs as being particularly well designed. 

Therefore, although it is possible that simply designing further siRNAs would, in the 

end, lead to a successful outcome, these siRNAs were rigorously designed to give the 

best chance of knock down. It is possible, therefore, that FIP4 is a particularly difficult 

sequence to target by this method. However, it is not known whether this is the case for 

FIP4 and further attempts to carry out RNAi of FIP4 are currently being canned out by 

our research group.
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5.3 Discussion

5.3.1 R abll and ARF5 play a functional role in Mammalian Cytokinesis

For both Rabl 1 and ARF5 I have shown that introducing a non-guanine- 

nucleotide-cycling mutant of these proteins, a GDP locked, “inactive” mutation in the 

case of Rabl 1 and a GTP-locked, “active” mutation in the case of ARF5, prevents 

cytokinesis from completing successfully in a significantly higher percentage of cells 

than control cells. This implicates both proteins to be functionally active in cytokinesis. I 

have not been able to conclusively show a functional role for FIP4 in cytokinesis. 

However, my experiments do certainly not rule out a role for FIP4 in this process and its 

striking localisation and binding to Rab 11, ARF5 and 6, along with it’s homology to 

Drosophila Nuf certainly suggest it has an important role to play. This and the possible 

reasons for not obseiwing a phenotype here are discussed in section 5.3.3 below.

This is the first study to show that Rabl 1 is involved in mammalian cytokinesis. 

These results complement studies which have been earned out in both Drosophila and 

C.elegans which have shown that Rabl 1 is required for successful cellularisation/ 

cytokinesis in these organisms (Riggs et ah, 2003; Skop et ah, 2001). The RabllS25N 

over-expression studies carried out here have now also been backed up by RNAi studies 

in mammalian cells. Together these data convincingly show that Rabl 1 plays an 

important role in mammalian cytokinesis (Wilson et ah, 2005).

This is the first study of the involvement of ARF5 in cytokinesis in any organism 

and indeed one of very few studies to have looked at the function of ARF5 in any 

cellular role. Therefore, to have found that ARF5 plays a functional role in this process 

is of great importance, both for the cytokinesis field and for the Class II ARFs. As it is 

not yet clear what function ARF5 may caixy out within cells it cannot yet be detennined 

what role it is playing in cytokinesis. However, it is probable that, like the class I and III 

ARFs, the class II ARFs play roles in both membrane trafficking and cytoskeletal
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rearrangements. Therefore, ARF5 could be important for cytokinesis because of 

membrane delivery events to the cleavage fuiTow and/or midbody as well as actin- 

rearrangements at these sites.

5.3.2 “Inactive” R abll and “Active” ARF5 Produce The Same Phenotype in 

Cytokinesis

The experiments here showed that expression of Rabl 1S25N, a mutant of Rabl 1 

locked in its GDP-bound, “inactive” conformation and ARF5Q71L, a mutant of ARF5 

locked in its GTP-bound, “active” conformation, produced the same phenotype of bi- 

nucleated cells, suggesting a failure of cytokinesis. This may at first seem difficult to 

explain, particularly in light of the claims made here that FIP4 binding to these proteins 

is likely to be important for cytokinesis. However, these findings can be explained if the 

results of these mutations on the small GTPase cycle are considered.

Small GTPases caiTy out their functions by cycling between their GTP-bound 

and GDP-bound forms. For example, a Rab could be considered to start its cycle in its 

GDP bound form, bound to a GDI protein in the cytosol. In this form it is recruited to a 

specific membrane compartment, which is the “donor” membrane compartment for that 

Rab. Here, it is converted to its GTP-bound form and can hence bind its effectors, 

therefore having its effects on vesicle trafficking, involving possibly the budding of a 

vesicle from the membrane compartment, movement of the vesicle towards another 

“target” compartment and docking and fusion of the vesicle to this different “target” 

membrane compartment. Once it has had carried out these functions, the GTP-bound 

Rab is converted to its GDP-bound form. In this confoimation it can be recognised by a 

GDI protein, which removes the Rab from the target membrane into the cytosol, before 

delivering the Rab back to its “donor” membrane where the cycle can start again.
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If the cycle is considered in this way it can be seen that both mutants locked in 

their GTP-bound or GDP-bound conformations will become “stuck” at one stage of their 

cycle and therefore one point in the cell and so neither can effectively caiTy out their 

functions. For example, a GDP-locked mutant will be “stuck” in the cytosol or the donor 

membrane, unable to bind its effectors and therefore unable to have its effects. A GTP- 

locked mutant may be able to bind its effectors and thereby cany out its functions once. 

However, it will then be “stuck” on the target membrane. In its GTP-bound form it will 

be unable to bind its GDI and therefore unable to return via the cytosol to its donor 

membrane. Therefore, it can be seen that a GTP-locked mutant will only, at best, be able 

to carry out its functions once (although even this is unlikely as newly synthesised Rabs 

rely on being delivered to their correct membranes by REP proteins, which only bind 

Rabs in their GDP-bound forms). So for functional analyses, the terms “active” and 

“inactive” mutants of the small GTPases, referring to their GTP-bound and GDP-bound 

conformations respectively are perhaps misleading as it is the cycling between GTP and 

GDP bound forms which is important for small GTPase function and therefore neither 

the GTP or GDP-locked forms are able to carry out their functions effectively.

Therefore, it could be envisaged how an “active” and “inactive” mutant of a small 

GTPase could produce the same phenotype, regardless of whether it is able to bind its 

effectors or not. It can also be envisaged how this may be the case for Rabs, as described 

here, but also for other small GTPases, including the ARFs, as these undergo a similar 

cycle. This has indeed been noted and commented on for one member of the ARE 

family, ARF6. In a review paper, J. Donaldson points out that “observations obtained 

with these inactive and active mutants should be intei'preted with caution as Arf6 

function normally depends on its GTPase cycle, and expression of any mutant that 

blocks the cycle may block Arf6 function”. Later in the paper she describes work earned 

out by several research groups on the actin reaiTangement activities of ARF6. These
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pieces of work show that if either the GTP-binding defective, dominant negative mutant 

of Arf6, T27N or Arf6Q67L, the constitutively active mutant are expressed then the 

same phenotype, a block of the actin rearrangement activities of ARF6, results (Franco 

et ah, 1999; Brown et ah, 2001; Zhang et ah, 1998 ). She again concludes that this is the 

case as it is required “that Arf6 cycles between active and inactive forms to function 

properly.” (Donaldson, 2003).

5.3.3 Weak phenotypes are due to Experimental Limitations and Redundancy in 

Cytokinesis

It may at first seem surprising that only a relatively low percentage of the cells (15.3% in 

the case of Rabl 1S25N and 12.3% in the case of ARF5Q71L) show defects. If these 

proteins play a role in cytokinesis would it not be expected that a much higher 

percentage of cells would show defects? I believe the explanation for this anomaly is due 

to two factors, the design of the experiment and the nature of cytokinesis itself. As 

mentioned in the introduction to the bi-nucleate experiments, the approach I have used is 

not sensitive enough to capture all defects in cytokinesis as it measures only the cells 

which have completely failed to complete cytokinesis. As discussed earlier, there are 

several examples where defects have been introduced into important cytokinetic 

machinery and the cells have still been able to divide, although at a slower rate. The bi

nuclear experiment would not sense these defects as, as along as the cells go on to 

divide, they would appear normal. An obvious experiment that could be earned out to 

resolve this “timing” issue would be to carry out live-cell microscopy on 

infected/transfected cells and measure the length of time required for Rabl 1 or ARF5 

mutant expressing cells to complete cytokinesis compared to that of controls.

The other reason why the phenotype I obseiwed after introducing the mutated 

proteins I used in my experiments may have shown a relatively weak phenotype is the
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possibility that Rab 11 and ARF5 show partial redundancy, i.e. that their functions in 

cytokinesis can be partially carried out by alternative proteins. From the experiments I 

have performed it is not possible to conclude whether redundancy is present for Rabl 1 

and ARF5 but it has been shown for other proteins involved in cytokinesis to be the 

case. An obvious candidate for a partially redundant partner for ARF5 would be ARF6 

as these have both been shown to localise strikingly throughout cytokinesis and both 

have relatively weak phenotypes in the bi-nucleate experiments described above. 

However, ARF5 and 6 are not part of the same class of ARFs (ARF5 is a class IIARF, 

whereas ARF6 is in class III) and both have been shown to have specific effectors. 

Therefore I think it would be surprising if they were completely redundant to each other. 

An experiment where both ARF5Q and ARF6Q were transfected into the same cells 

simultaneously could begin to address these ideas.

Rabl 1 also has potentially redundant partners, in particular the other members of 

the Rabl 1 family, Rabl lb and Rab25. As discussed in section 1.2.11 all of these 

proteins reside in the recycling endosome and share relatively high homology. Therefore 

they could potentially carry out the same roles as Rabl 1 during cytokinesis. However, as 

these proteins have been studied relatively little, have not been localised during cell 

division and I have not tested them for FIP4 binding, it is difficult to comment here on 

their possible functions within cytokinesis.

5.3.4 FIP4 Discussion

In this chapter I have attempted to detennine whether FIP4 plays a functional 

role in cytokinesis. Like R abll and ARF5 (and ARF6) there are several factors which 

suggest it does. Firstly, there is the striking localisation of FIP4 throughout cell division, 

as demonstrated in chapter 4. This evidence alone is suggestive of FIP4 playing a 

functional role in the process. Also, its localisation is the same as R abll, ARF5 and
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AEJF6 throughout cytokinesis. As these proteins have been shown here, and elsewhere, 

to play a role in cytokinesis and I have shown that FIP4 binds to each of these proteins, 

this is also strong evidence that FIP4 itself plays a functional role. Lastly, but equally 

importantly, is the fact that FIP4 (and FIP3) are the mammalian homologues of the 

Drosophila protein, Nuf, which has been shown to play a role in cellularisation, a 

process analogous to cytokinesis (Riggs et ah, 2003).

Here I have not been able to conclusively show that F1P4 is essential for 

cytokinesis. Some of the possible teclmical reasons for this are described in the results 

section above (sections 5.2.4 and 5.2.5). However, it is likely that, as discussed for the 

Rabs and ARFs above, there are real in vivo reasons that could also explain the lack of 

an observed phenotype. The most likely of these is that FIP4 is semi-redundant, i.e. that 

another protein can caiTy out its function in FIP4’s absence, bringing us back to Ray 

Rapparot’s “old Maine fishing boat engine” (see chapter 1.2.1). FIP3 is an obvious 

candidate as a semi-redundant partner for FIP4. It shares good homology with FIP4 and 

is the only other member of the Class III FIPs (Hickson et ah, 2003). As mentioned 

above, it is also a homologue of Nuf. In addition, it also localises similarly to FIP4 in 

cytokinesis (Wilson et ah, 2005). These are all good pieces of evidence that FIPs 3 and 4 

could be redundant to each other. Therefore, in order to study the possible roles of FIP4 

(and FIP3) in cell division it may be necessary to perturb both of the proteins 

simultaneously. Unfortunately, these types of experiments were not possible within this 

work.

Therefore, FIP3 and FIP4 may be at least semi-redundant to each other in teims 

of cytokinesis. But is the sole reason for having both FIP3 and FIP4, to ensure that they 

can “stand-in” for each other if the other fails? This is possible, although some evidence 

points to individual roles for these proteins. One argument is a fairly subtle, but possibly 

important difference between their binding strengths for the various Rabs and ARFs.
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Both FIP3 and FIP4 have been shown to bind Rabl 1 and ARF6. However, it is possible 

that the binding affinities of FIP3 and FIP4 vary for these two proteins. Also, FIP4 has 

been shown to bind ARF5 and Rab5, whereas FIP3 does not seem to bind these proteins. 

Therefore these potential differences suggest that, at least in interphase cells, they could 

be associated with subtly different membrane trafficking steps. This may not be the case 

in cytokinesis, where they may truly play the same role. In addition to these binding 

partner anomalies, FIP3 and FIP4 show some differences in their tissue distributions 

(Hickson et al., 2003). Therefore, they may also have tissue-specific roles to play.

5.3.5 R abll. FIP4 and ARF5 and/or ARF6 complexes co-ordinatelv deliver 

membrane and actin rearrangement properties to the cleavage furrow and 

midbody

In chapter 1, several models were discussed which argued for the importance of 

membrane trafficking in cytokinesis and how this might be achieved. Section 1.2.8 

included the Drosophila based models by Riggs et al. which proposed that Rabl 1 and 

Nuf were important for the co-ordinated delivery of membrane and either actin or an 

actin re-arrangement factor to the site of cellularisation (Riggs et al., 2003).

In mammals, Gromley et al. proposed a model suggesting that membrane 

delivery to the centre of the midbody, the “midbody ring”, was essential for the final 

abscission of the two daughter cells (Gromley et al., 2004, section 1.2.13).

The data collected here suggest a model which incorporates both of the above 

ideas. FIP4, the mammalian homologue of Nuf, binds Rabl 1 and ARF5 and/or ARF6. In 

this way membrane vesicles and an actin rearrangement factor (ARF5 and/or 6) are co- 

ordinately delivered to the cleavage fuiTow where they provide both the membrane and 

the actin rearrangement properties required for furrow ingression.
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In addition, taking into account the localisation of all of the proteins studied here 

in the final stages of cytokinesis, Rabl 1/FIP4/ARF5 and/or 6 vesicles are delivered to 

the centre of the midbody where they dock with the “midbody ring” and hence deliver 

the membrane and possibly the actin re-arrangement capabilities necessary for the final 

abscission of the cell into two, separate daughter cells.

The evidence gathered here, i.e. that Rabl 1/FIP4/ARF5 and or 6 can form a 

complex, that these proteins all localise to the “midbody ring” structure and that 

perturbing Rabl 1 or ARF5 causes cytokinesis defects is highly supportive of this model. 

In addition, several other pieces of evidence support this model. Firstly, ARF6 has been 

shown to be involved in cytokinesis (Schweitzer and D'Souza-Schorey, 2002). Although 

these authors propose that its role may be of endocytosis at the midbody, the function it 

plays has not yet been determined and therefore it could equally as likely play a role in 

the model proposed here (or even be a part of both models, as they are not mutually 

exclusive). In addition, Gromley et al. observed that one of the early components to 

arrive at the midbody ring is MKlpl (Gromley et al., 2004). In this work, MKlpl was 

also observed at the midbody ring (section 4.2.4), where is co-localised with FIP4,

R abll, ARF5 and ARF6. As mentioned in section 4.3.3 it has been previously shown 

that MKlpl can bind to all members of the ARF family. This binding would serve as a 

way for the membrane vesicles containing Rabl 1/FIP4/ARF5 and or 6 complexes to 

“dock” at the midbody ring, therefore being held in place in order for an accumulation of 

membrane to occur at this site.
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Chapter 6

Discussion



Chapter 6 -  Discussion

Rabl 1-FIP4 is a human protein which is known to bind ARF5 and Rabl 1 and 

shows partial co-localisation with the recycling endosome (Hickson et ah, 2003). It also 

shows homology to Nuclear Fallout, 2i Drosophila protein which has been shown to play 

an essential role in cellularisation (Hickson et al., 2003; Riggs et al., 2003), a process 

that is analogous to mammalian cytokinesis.

6.1 FIP4 binds and Co-localises with ARF5. ARF6. Rab5 and Rabll

Here it has been shown that Rabl 1-FÏP4 can bind to further members of the ARF 

and Rab families, namely ARF6 and Rab5. It has also been shown that Rabl 1-FIP4 is 

likely to foi*m multi-protein complexes, simultaneously binding members of the Rab and 

ARF families. This provides a mechanism by which the actions of the ARF and Rab 

families of small GTPases could be spatially co-ordinated.

Although it seems that Rabl 1-FIP4 binds only to ARF5 and ARF6 from the ARF 

family, the binding to further Rab proteins in addition to Rabl 1 and Rab5 has not yet 

been tested. Therefore there is the possibility for further co-ordination between the ARFs 

and additional Rab family members. However, it is unlikely that Rabl 1-FIP4 will bind 

to many other Rabs as its closest homologue in maiumals, Rabl 1-FIP3, has been shown 

to bind only members of the R abll subfamily (i.e. Rablla, Rabl lb and Rab25) and not 

Rab la, Rab2, Rab3a, Rab3b, Rab5, Rab8a and Rab 17 (Hales et al., 2001; Prekeris et al., 

2001). There have been reports that one members of the Rabl 1-FIP family, RCP, can 

bind Rab4 in addition to Rabll (Lindsay et al., 2002) but it has been suggested that this 

may not be the case in vivo (Peden et ah, 2004). In either case, due to Rabl l-FIP4’s 

homology to other F IPs and also its endosomal location, it seems likely that FIP4 will 

bind few, if any other Rabs in addition to Rabl 1 and Rab5.
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Although initially it was somewhat surprising to find that FIP4 bound to Rab5, 

this interaction can be explained well in parallel to the discovery that FIP4 also binds 

ARF6. ARF6 is thought to cycle from the plasma membrane to its own “ARF6 

endosome” (Radhakrislnia and Donaldson, 1997). From here a proportion of it returns 

directly to the cell surface, whilst the remainder moves to the sorting endosome before 

being recycled back to the surface, possibly via the recycling endosome (Radhakrishna 

and Donaldson, 1997; Donaldson, 2002; see figure 1.2). Here it has been shown that 

FIP4 co-localises with ARF6, probably both in the “ARF6 endosome” and whilst ARF6 

travels tlmough the sorting and recycling endosomes. As Rab5 localises (at least in part) 

to the sorting endosome, it makes sense that FIP4 can bind Rab5, therefore providing co

ordination between ARF6 and the sorting endosome. Then, as vesicles leave the sorting 

endosome and travel to the recycling endosome, FIP4 could cease to bind Rab5 and 

instead bind R abll. FIP4’s binding to ARF6 provides a link for ARF6 to be targeted 

thi'ough the sorting and recycling endosomes.

ARF5 seems to show partial overlap with Rabll and, as previously suggested 

(Hickson et al., 2003), probably cycles between the recycling endosome and Trans- 

Golgi-Network (see figure 1.2). Evidence from FÎP3 suggests that the ARFs bind the 

FIPs at different regions (Shin et al., 2001). Therefore, although not tested here, it could 

be the case that FIP4 can bind to ARF5 and ARF6 (and Rabl 1/Rab5) simultaneously. 

Exactly what the function of this may be is not clear although ARF5 binding could 

provide an additional “anchor” for the FIP4 complex at the recycling endosome.

Further studies need to be conducted to explore the possibility of FTP binding to 

other members of the Rah family. More detailed work on the multi-protein complexes 

which could form also needs to be carried out. These studies may help in identifying a 

more precise role for FIP4, Also, in vivo binding studies need to be earned out to 

confinn the new binding partners identified here (ARF6 and Rab5). However, as these
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experiments have already been carried out for ARF5 and Rabl 1 (Hickson et al., 2003) 

and for ARF6 in the case of FIP3 (Prekeris et al., unpublished data) and that these 

findings agree with the in vitro data here then it is likely that the ARF6 and Rah5 

binding shown here does occur in vivo. Additional support for these binding events 

comes from the co-localisation of ARF6 with FIP4 that has been shown here.

6.2 FIP4 and its binding partners in Cytokinesis

Here it has been shown that FIP4, R abll, ARF6 and ARF5 show a striking and 

largely overlapping localisation throughout cell division. Initially, at prophase, these 

proteins become tightly clustered around the centrosomes, suggesting a “collapse” of the 

Rabl 1 recycling endosome and possibly the ARF6 endosome to this point. It is possible 

that this “collapse” is, at least in part, mediated by F1P4. This comes from the 

observation that expressing N-teiTninally truncated versions of FIP4 causes it (and 

Rabl 1) to collapse to a tight peri-centrosomal spot in inteiphase cells (Hickson et ah,

2003) which looks identical to that obseiwed at prophase. Therefore, in addition to co

ordinating Rah and ARF actions, FIP4 could mediate the interaction of the recycling and 

ARF6 endosomal compartments with components of the cytoskeleton. Upon onset of 

mitosis, a modification on FIP4 could be altered, resulting in the collapse of it and its 

associated endosomes to the tight peri-centrosomal localisation,

FIP4, ARF6 and a proportion of Rabl 1 then seem to be loaded onto the 

microtubules radiating from the centrosomes and re-localise to the central spindle during 

anaphase. Subsequent to this they localise to the midhody and laterally to the midbody 

ring in the centre of the midbody where they co-localise with MKlpl at a late stage of 

cytokinesis. In agreement with observations made by Gromley et al. (Gromley et al.,

2004), it is likely that they are co-delivered to the midhody ring with membrane vesicles. 

An accumulation of membrane and membrane re-modelling components at this point
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could then lead to a “pln*agmoplast” like abscission event to divide and seal the cell into 

two, separate daughter cells (see figure 6.1 (c)).

Here it has been shown that, as is the case in C.elegans and Drosophila (Skop et 

al., 2001; Pelissier et al, 2003; Riggs et al, 2003), Rabl 1 is required for cytokinesis in 

mammalian cells. This was perfonned by over-expressing a non-cycling mutant fonn of 

Rabl 1 in cells which resulted in an increased number of cells with two or more nuclei, a 

phenotype of failed cytokinesis. These observations were backed up by RNAi studies 

performed by our collaborators (Wilson et al, 2005).

Here it has also been shown that ART5 plays a role in cytokineisis. Again, this 

was performed by over-expression of a non-cycling mutant of ARF5, in a similar 

mamrer to experiments performed by Schweitzer and D'Souza-Schorey (Schweitzer and 

D'Souza-Schorey, 2002) which identified a role for ARF6 in mammalian cytokinesis. 

Further approaches to verify a role of ARF5 in cytokinesis are cuiTently being carried 

out in our laboratory.

In this work it was not shown that FIP4 plays a functional role in cytokinesis, 

despite much evidence suggesting that this may be the case (FIP4’s binding partners 

playing roles in cytokinesis, its localisation during cytokineiss and its homology to 

Nuclear Fallout). This was probably due to difficulties with the experiments conducted 

here, as discussed in chapter 5, although partial redundancy of FIP4 with its closest 

mammalian homologue, FIP3, could also mask a potential role for FIP4. Clearly further 

experiments need to be carried out to study the function of FIP4. Possible approaches 

would be to design new siRNA targets, optimising the micro-injection experiments or to 

design mutant fonns of FIP4 which, for example, are unable to bind one or more of its 

small GTPase partners. All these approaches are currently being pursued in our 

laboratory.
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Figure 6.1 Model of FIP4/ARF5/6/Rabl 1 actions during cytokinesis, (a) Cartoon of 

cell at prophase/metaphase. At prophase, the recycling endosome and possibly the 

“ARF6 endosome” collapse to a tight peri-centrosomal location. This collapse may 

be a result of an alteration of a modification on FIP4. This brings constitutive 

FfP4/ARF6 complexes to this point and into close proximity to R abll. Rabl 1 

regulates the exit of vesicle trafficking from the recycling endosome. Upon 

activation, during late prophase/early metaphase, Rabll binds to the FIP4/ARF6 

complex and vesicles containing these proteins then bud from the recycling 

endosome and are loaded onto astral microtubules which lead towards the centre of 

the cell, through an interaction with a kinesin-like protein, possibly MKlpl (ARFs 

bind MKlpl). ARF5/FIP4/Rabl 1 complexes or possibly ARF5/ARF6/FIP4/Rab 11 

complexes may also form at the collapsed endosome and become loaded onto the 

microtubules. The membrane vesicles containing the protein complexes are 

delivered towards the central spindle during anaphase, (b) Cartoon of extended 

midbody during late telophase. Anti-parallel microtubules overlap at the protein- 

dense central “Flemming Body”. Rabl 1/FIP4/ARF5/6 complexes on membrane 

vesicles are delivered along the microtubules to the Flemming Body. Here, as the 

kinesin reaches the end of its microtubule, the membrane vesicles and protein 

complexes congregate. Due to the veiy high protein density at the Flemming Body, 

antibody staining of proteins at this point may appear as a ring around this central 

structure. This is known as the “midbody ring”, (c) Shows the final steps of 

abscission at the centre of the midbody. For clarity, only membrane vesicles are 

shown. As the vesicles accumulate at the centre of the midbody, the membrane 

manipulating proteins which have gathered there along with the vesicles (these 

include Rabll and ARF 5 and 6 as well as the exocyst and various members of the 

SNARE protein family which have also been shown to localise to this point) allow 

the vesicles to fuse with one another, forming larger vesicles, and eventually with 

the plasma membrane. This results in the abscission of the midbody into two 

separate, sealed daughter cells. This membrane accumulation and fusion model is 

analogous to the phragmoplast model of cell division which occurs in plant cells. 

The binding of FIP4 to both an ARF and Rabl 1 simultaneously ensures that the 

delivery of these proteins to the centre of the midbody is both temporarily and 

spatially co-ordinated. This is likely to be of importance to the success of the 

membrane abscission events at the midbody as ARFs and Rabs have inter-related 

roles in membrane trafficking events.
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A major question which remains to be answered for Rabl 1, ARF5 and 6 and 

FIP4 (should it be found to play a role in cytokinesis) is “at what stage of cytokinesis do 

these proteins function?” Figure 6.1 presents a model for the roles of these proteins in 

cytokinesis, based upon the evidence gathered in this thesis. This suggests they will play 

a role in the final abscission stage of cytokinesis. This is likely due to the localisation of 

the proteins to the midbody ring. However, it is also possible that these proteins will 

play additional roles at earlier stages of cytokinesis. The best way to ask these questions 

would be by studying the effects of perturbing these proteins in live cells, using time- 

lapse photography. Our laboratory is currently starting to perfonn these experiments.

The possible functions of FIP4 in interphase cells has not yet been thoroughly 

examined although, as previously mentioned, it does seem to play a role in maintaining 

the normal moiphology of the recycling endosome (Hickson et al., 2003). The binding 

properties and localisation of FIP4 presented here suggest that FIP4 is likely to play a 

role in co-ordinating ARFs and Rabs during the cycling of membrane from the cell 

surface through the ARF6 endosome, the sorting endosome and the recycling endosome. 

Its binding to the ARFs and Rabs would ensure spatial and temporal co-ordination of 

their actions and therefore help ensure a high fidelity of membrane traffic through these 

compartments.

6.3 Membrane Traffic is Required For Cytokinesis

More generally, this work lends further support to the now widely accepted view 

that membrane traffic is required for cytokinesis. Specifically, it supports the more 

recent revelation that membrane events are required in mammalian cells for abscission, 

the very final stage of cytokinesis. This suggests that although animal and plant cell 

division differs greatly in that animal cells make use of an actomyosin ring to constrict 

the cell, whereas plants rely solely on membrane delivery to the central phi'agmoplast,
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the fundamental mechanism by which the cells finally divide themselves into two may 

actually be conseiwed from plants to animals, relying upon membrane delivery to a 

central point between the two divided daughter nuclei.

A model incoiporating the binding properties, localisations and functional roles 

of FIP4 and its small GTPase binding partners discovered in this thesis, in the context of 

the “pliragiuoplast like” abscission model which may occur in animal as well as plant 

cells, is presented in figure 6.1.
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Appendix la  R abll siRNAs

Rabl la  and Rabl lb isoforms were depleted with siRNA oligonucleotides based 

on human Rabl la and Rabl lb sequences. These sequences, designed by Prekeris and 

co-workers (as described in Wilson et al., 2005) are shown below:-

R ablla

5’-AATGTCAGACAGACGCGAAAA-3'

Rabllb

5'-AAGCACCTGACCTATGAGAAC-3'

Appendix lb FIP4 siRNAs

The antisense and sense sequences of the FIP4 siRNAs, described as 436, 1067, 

1654 and 1067-scrambled are shown below

436

Antisense siRNA Oligonucleotide Template:

5'- AACTTCAAGGACTTTTGCCGGCCTGTCTC -3'

Sense siRNA Oligonucleotide Template:

5'- AACCGGCAAAAGTCCTTGAAGCCTGTCTC -3'

1067

Antisense siRNA Oligonucleotide Template:

5’- AAAATCAACCTGCTCAATGACCCTGTCTC -3'

Sense siRNA Oligonucleotide Template:

5'- AAGTCATTGAGCAGGTTGATTCCTGTCTC -3’
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1654

Antisense siRNA Oligonucleotide Template:

5’- AAGCGCATGATGGACAAGCTGCCTGTCTC -3' 

Sense siRNA Oligonucleotide Template:

5'- AACAGCTTGTCCATCATGCGCCCTGTCTC -3'

1067-Scrambled

Antisense siRNA Oligonucleotide Template:

5'- AATCATGCACGCATACTAAACCCTGTCTC -3' 

Sense siRNA Oligonucleotide Template:

5'- AAGTTTAGTATGCGTGCATGACCTGTCTC -3'

Appendix Ic siRNA Websites

The following websites were used to aid the design of the FIP4 siRNAs :- 

Ambion

httn://www.ambion.com/techlib/misc/siRNA tools.html

This site allows you to enter the target sequence and then picks suitable siRNA 

sequences based upon parameters published by TuschFs group (Elbashir et ah, 2001). It 

also provides a tool to add the necessary sequences to the chosen siRNA so it can be 

transcribed using the Ambion Silencer™ siRNA Constmction Kit.
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Whitehead Institute of Biomedical Research at MIT

http ://i ura. wi.mit, edu/pubint/http ://iona. wi.mit. edu/siRNAext/

This is a publicly available site which picks siRNA sequences from your target 

sequence using both Tuschl’s and their own, stricter, additional selection parameters.

Qiagen

http://wwwl.qiagen.com/Prodiicts/GeneSilencing/CustomSiRna/SiRnaDesigiier.aspx 

This design tool incorporates standard Tuschl-based design, with additional 

parameters. For example the overall GC content is considered and long stretches of Gs 

or Cs avoided.

These online tools were used to select the above thi'ee sequences which were 

predicted as good target sequences by the various programmes. The “1067 scramble” 

sequence contains the same bases as the 1067 siRNA but in a different order. This was 

used as a negative control.

All sequences were then run tlmough the NCBFs BLAST programme to check 

they did not contain an unacceptably high degree of homology with any other human 

sequences. This ensured that the siRNAs that had been designed would be specific for 

FIP4. The sequences chosen showed a maximum of 15 contiguous base pairs homology 

to any other coding sequences. The accepted maximum number of base pairs of 

contiguous sequence allowing a siRNA to still act specifically is 16-17. As the above 

siRNAs fall within this limit, they should be specific.

The BLAST progi'amme can be found on the NCBl server at: 

www.ncbi .nlm.nih. gov/BLAST.
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