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Abstract

In this study, mutated versions of liDOR, hMOR and rKOR fused to GiiaC^^^I protein were 

constructed. Mutations were introduced either in the receptor or in the G protein part of the fusion 

proteins. A highly conserved glycine was mutated into alanine (G202A) in the GnaC^^^I protein 

abolishing GDP/GTP exchange. For the opioid receptors a pair o f valines belonging to the 2"  ̂

intracellular loop were mutated in glutamic acid and aspartic acid. This double mutation 

eliminated agonist-induced receptor activation of the GjiaC^^^I protein. However, when the pair 

of non-functional fusion proteins were co-expressed agonist induced [^^S]-GTPyS binding was 

recovered for all homo and heterodimers tested including the MOR/KOR combination, which 

was previously indicated as being unable to dimerise. A cross-talk between hDOR and p2~ 

adrenoceptor fusion proteins was also observed but the reconstituted signal was two times weaker 

compared to the hDOR homodimer. This result suggested that the affinity of hDOR to 

homodimerise is higher than to heterodimerise with p2-adrenoceptor. Ligand binding affinity for 

the different fusion proteins was assessed and a loss of ligand binding affinity was observed for 

all the fusion proteins incorporating the pair of mutated valines. However, upon co-expression 

with the corresponding fusion protein containg the G^^^A mutation, the wild-type pharmacology 

seemed to be recovered. In this study the hDOR N-terminal and/or TMl were also demonstrated 

as interacting with the full length hDOR as well as self-associating. Consequently, TMl is a 

possible interface for hDOR homodimer formation. Co-expression of membrane tethered hDOR 

TMl with full length hDOR did not produce agonist-induced [^^S]-GTPyS binding, suggesting 

that two full length receptors are necessary to generate a functionnal signal.
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Abbreviations

a  alpha subunit of G protein

aa amino acid

AC adenylate cyclase

ANOVA analysis of variance

Bmax maximum binding sites

bp base pair

BSA bovine serum albumin

cDNA complementary DNA
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CTOP D-Phe-Cys-Tyr-D-Tip-Orn-Trh-Pen-NHz

DADLE [D-Ala^, D-Leu^] enkephalin

DAMGO [D-Ala^,N-methyl-Phe'^,Gly^-ol]enkephalin

DMEM Dulbecco’s Modified Eagle’s Medium

DMSO dimethyl sulphoxide

DNA deoxyribonucleic acid

DOR delta opioid receptor

DPDPE [D-Pen^’̂ ] enkephalin

DPM désintégration per minute

DTT dithiothreitol

EC50 concentration of agonist producing half maximal response

E.coli Escherichia coli

EDTA ethylenediamine tetra-acetic acid

Fmol femtomol

G ABA gamma amino butyric acid

GABAbl GABAb receptor 1

GAB Ab2 GABAb receptor 2

G protein guanine nucleotide binding protein

Gi inhibitory G protein

Go other G protein

Gs stimulatory G protein

GDP guanosine 5’-diphosphate
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GNTI 5’-Guanidinyl-17-(cyclopropylmethyl)-6,7~dehydro4,5-epoxy-3,14'

dihydroxy-6,7-2 ’ ,3 ’ -indolomorphinan 

GPCR G protein coupled receptor

GppNHp guanylyl 5’-(Py imido) diphosphate

GTP guanosine 5’-triphosphate

GTPy S guanosine-5 ’ -0-(3 -thio)triphosphate

^H tritium

HCl hydrochloridric acid

HEK Human Embryonic Kidney

HEPES (N- [2-hydroxethyl] piperazine-N’- [2-ethanesulphonic acid])

IC50 concentration of drug which inhibits 50% of an effect

ICI 174 864 N,N-diallyl-Tyr-Aib-Aib-Phe-Leu

kb kilo base

kDa kilo dalton

Kd dissociation constant

Ki inhibition constant

KO knock out

KOR kappa opioid receptor

MAPK mitogen activated protein kinase

min minute

MOR mu opioid receptor

NaCl sodium chloride

NBCS newborn Calf Serum

NG 108-15 neuroblastoma X glioma hybrid

PAGE polyacrylamide gel electrophoresis

PB S pho sphate buffered s aline

PCR polymerase chain reaction

pECso EC50 negative log

PIC50 IC50 negative log

PKA protein kinase A

PKC protein kinase C

pKi Ki negative log

PTX Pertussis toxin

RGS regulator of G protein signalling
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sulphur 35 

SDS sodium-dodecyl sulphate

SEM standard error of the mean

SSTr somatostatin receptor

TIPPT^ Tyr-Ticvp(CH2NH)-Phe-Phe

TM transmembrane domain

Tris Tris (hydroxymethyl) aminomethane

U69593 N-methyl-N-[7-(lpyrrolidinyl)-l-oxaspirol[4,5]deC“8-yl]-benzeneacetamide
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Fusion protein abbreviations:

-adrenoceptor-G; 1 the pz-adrenoceptor fused to Güa which contains a cysteine

mutated in isoleucine in position 351

hDOR-GiinrC^^^I: the human DOR fused to Güa which contains a cysteine mutated in 

isoleucine in position 351

h D O R V ^ V *̂ "^D-GiiryĈ ^̂ I: the human DOR in which a pair of valine belonging to the 2"  ̂

intracellular loop has been mutated in glutamic acid and aspartic acid. This mutated receptor 

is fused to Gila containing a cysteine mutated in isoleucine in position 351.

hDOR-GiifvG^^^A.C^^^I: the human DOR linked with Gua which contains a glycine mutated in 

alanine in position 2 0 2  and a cysteine mutated in isoleucine in position 351

hMOR-GiifvC^^^I: the human MOR fused to Gua which contains a cysteine mutated in 

isoleucine in position 351

hMQRV^^^E.V^^^D“Gnr,C^^^I: the human MOR in which a pair of valine belonging to the 2”  ̂

intracellular loop has been mutated in glutamic acid and aspartic acid. This mutated receptor 

is fused to Güa containing a cysteine mutated in isoleucine in position 351.

tiMOR-G; 1 fvĜ ^̂ A.Ĉ ^̂  : the human MOR fused to Güa which contains a glycine mutated in 

alanine in position 202 and a cysteine mutated in isoleucine in position 351

rKORzGüaGÜ!i: the rat KOR fused to Güa which contains a cysteine mutated in isoleucine in 

position 351

rKORV^^^E.V^^"^D“G; i » ^ : the rat KOR in which a pair of valine belonging to the 2"  ̂

intracellular loop has been mutated in glutamic acid and aspartic acid. This mutated receptor 

is linked to Güa containing a cysteine mutated in isoleucine in position 351.
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rKOR-GiigG^^^A.C^^^l : the human KOR fused to Gpa containing a glycine mutated in 

alanine in position 2 0 2  and a cysteine mutated in isoleucine in position 351

Flag-Nt-TMlnnR-GiigC^^^I: Flag tagged version of the N-terminal and TM 1 of the DOR and 

fused to Gila containing a cysteine mutated in isoleucine in position 351
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CHAPTER 1 

Introduction
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1.1 Cell signalling

The body is made of organs and tissues themselves composed of cells. These cells coordinate 

all the vital functions and need to communicate. An intercellular network exists, where cells 

exchange signals either by direct contact or via messenger molecules. The binding of such 

messenger ligands to cell surface receptors trigger conformational changes within the receptor 

and initiate a sequence of reactions leading to a specific cellular response. This response is 

dependent on the nature of both ligand and its receptor. There is a large variety of ligands e.g. 

hormones, growth factors, nem'otransmitters, toxins and four major classes o f cell surface 

receptors are known, namely ion channels, tyrosine-kinase receptors, receptors with intrinsic 

enzymatic activity and G protein coupled receptors (GPCRs).

The last class, GPCRs, are encoded by some 2-3% of the genes and mediate their actions 

through intracellular G proteins. GPCRs are key controllers of diverse physiological processes 

such as neurotransmission, cellular metabolism, secretion, cellular differentiation and growth, 

inflammatory and immune responses. For this reason GPCRs are important targets for drug 

discovery with already a majority of commercialised therapeutics acting on them.

1.2 G protein-coupled receptors

1.2.1 Structural features

Many GPCRs have been reported since bovine rhodopsin was first cloned in 1983 and the Pz- 

adrenoceptor in 1986 (Nathans and Hogness, 1983; Dixon et a l,  1986). All GPCRs share a 

common topology of seven transmembrane helices linked by three extracellular and three 

intracellular loops (figure 1.1). These receptors have a barrel shape, orientated roughly 

perpendicular to the plasma membrane and the transmembrane helices have a counter 

clockwise orientation when viewed from the extracellular membrane surface. The C-terminal 

tail o f the GPCR is intracellular whereas the N-terminal region is extracellular. These regions 

vary in size depending on the receptor. The N-terminal tail can be composed of 7 to 600 

amino acids (aa), the loops from 5 to 230 aa and the C-terminal tail from of 12 to 350 aa.

The extracellular N-terminal domain has been reported to play a role in ligand binding for 

certain GPCRs (Strader et al., 1994; Wess et al., 1996). The N-terminal domain can be O or
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N-glycosylated in order to generate a properly folded receptor as well as providing correct 

targeting to the plasma membrane. The extracellular regions also contain highly conserved 

cysteines which can form disulphide bridges that stabilise the receptor’s ternary structure.

The intracellular domains and C-terminal tail are known to be important for G protein 

recognition and activation (Wess et ah, 1997). Additionally, the C-terminal tail is rich in 

serine and threonine residues which can be phosphorylated by second messenger-activated 

and other kinases consequently inducing receptor desensitisation. The C-terminal domain can 

also undergo palmitoylation on specific cysteines thus creating an anchor in the plasma 

membrane which is described as the 4*'' intracellular loop (Ovchinnikov et al., 1988). 

Moreover, receptor palmitoylation has been reported to affect G protein coupling and receptor 

internalisation (Okamoto et al., 1997; Eason et al., 1994).

In attempt to understand GPCRs structure many studies have been performed. Mutagenesis 

and biochemical experiments provided initial information and recently the rhodopsyn receptor 

structure, a class A GPCR, was resolved at the atomic level using crystallisation (Palczewski 

et al., 2000). This crystal structure provides a structural template for other GPCRs as the 

seven transmembrane helices and the extracellular loops are expected to be similar for class A 

family members.

Sequence analysis had speculated that the transmembrane domains, predominantly 

hydrophobic, comprised 20-25 aa and form alpha helical domains. This conjecture was also 

confirmed by the rhodopsin crystallisation. Other studies have reported that transmembrane 

domains the most exposed to the membrane lipid bilayer are TM I, TMIV and TMV (Unger et 

ai., 1997) whereas TMIII seems to be deeply buried inside the receptor core. This highly 

packed core is postulated to be maintained via hydrogen bonds and/or salts bridges between 

residues of similar or different transmembrane domains (Pebay-Peyroula et al., 1997; 

Palczewski et al., 2000).

1,2.2 Family subtypes

Initial estimates predicted the existence of about a 1000 GPCRs (Marchese et al., 1999). 

Detailed analysis of the human genome sequencing programme indicate some 380 genes 

coding GPCRs likely to respond to endogenously produced ligands and a further 350 that are 

chemosensory receptors. However, of these many remain orphan receptors for which 

endogenous ligands have not yet been identified.

23



Different designations have been used to classify GPCRs depending on their amino acid 

sequence, ligand structure or G protein coupling properties. Based on sequence homology 

they are classed as followed:

- The rhodopsin type or Class A receptor, this is by far the largest receptor subfamily with 

89% of the known GPCRs and is the most extensively investigated. Ligands acting on these 

receptors are very diverse and include biogenic amines, peptides and neuropeptides, 

chemokines and prostanoids as well as sensory stimuli such as light and odours. Class A 

receptors display two highly conseived motifs, a DRY (Asp/Arg/Tyr) motif situated at the 

cytoplasmic end of TMIII and a NPXXY (Asn/Pro/X/X/Tyr) motif located in TMVII.

- The secretin/glucagon or Class B receptor family. This group is relatively small with 7% of 

the known GPCRs. Class B receptors have a relatively large N-terminal extracellular domain 

that contains six well conserved cysteine residues (Laburthe et ah, 1996)

- The metabotropic-glutamate receptor like or Class C family. This is the smallest group 

with only 4% of the known GPCRs. These have a long extracellular N-terminal segment 

(500-600aa) which has been reported to contain the ligand binding site (O’Hara et ah, 1993; 

Conn and Pinn, 1997).

A new nomenclature based on phylogenetic analyses of GPCR sequence from the human 

genome was recently described by Fredriksson et ah, (2003). This classification system has 

been named GRAFS, which is the acronym for the five different groups (glutamate, 

rhodopsin, adhesion, ffizzled/taste2  and secretin) comprising the system.

1.2.3 G protein subunits

A common feature of GPCR family function is the way they transduce signals after receptor 

activation. All GPCRs activate G proteins which are composed of three different subunits 

namely a , p and y.

- G protein activation

In the absence of activation, G proteins are an aPy heterotrimer with GDP bound to the G« 

subunit. Ligand binding to a GPCR leads to the exchange of GDP for GTP on the Ga subunit. 

With bound GTP the G« subunit undergoes a conformational change which triggers its 

dissociation from the Py dimer. At this point both GTP-G% subunit and the py dimer can
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interact with and modulate effector proteins. Ga subunits possess an intrinsic GTPase activity 

that cleaves the terminal phosphate of GTP, the subsequent GDP-Ga subunit can reassociate 

with the py-dimer resulting in the deactivation of both components. The system is thus 

returned to basal state (Figure 1.1).

“ Ga subunit

The Ga subunit is formed of two domains, a GTPase and an alpha helical domain. Between 

these two domains there is a cleft where guanine nucleotides bind. The G« subunit is anchored 

to the plasma membrane via covalently attached lipids. Twenty different a  subunits have been 

identified and divided in the four major families based on their effector interactions.

- Gs subfamily: named due to its ability to stimulate adenylate cyclase. Gs is 

ubiquitously expressed in cells and has 4 known splice variants {Gs], Gs2, Gs3 andGs4).

Golf is grouped with Gs due to their high sequence homology, Gdf is coupled to olfactory 

receptors and activates an olfactory specific adenylate cyclase.

The members of this family can be ADP rybosylated on a specific arginine residue by cholera 

toxin from Vibrio Cholera. This results in the Gg subunit being permanently activated.

- Gi/o subfamily: inhibits adenylate cyclase and is composed of different isotypes. The 

family members are Gn, G |2 which shares 8 8 % homology with Gn and Gia that stimulates 

various ion channels.

Go (other) has two splice variants Goi and Go2. These G proteins are only expressed in 

neuronal and electrically excitable cells. Go inhibits the opening of voltage sensitive N-type 

Ca^^ and channels (Hescheler et at., 1987).

Gt (transducin) has two splice variants Gti and Gt2 which are major components o f retinal rod 

outer segment (Gti) and cone (Gti). Following activation by opsin Gtiandz inhibit cGMP 

phosphodiesterase.

Ggust, (gustducin) is expressed in the taste buds and modulates a cGMP phosphodiesterase.

Gz inhibits adenylate cyclase and is expressed in neuronal cells (Taussig and Gilman, 1995).
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All members of this family (except G%) can be ADP ribosylated on a specific cysteine residue 

by Pertussis toxin from Bordetella Pertussis, This maintains the G« subunit in the GDP bound 

state preventing its activation by receptors.

-Gq subfamily: is composed of five different members including Gq and Gn which are 

widely expressed and 8 8 % identical, G # sharing 81% homology with Gq and with a more 

restricted expression pattern and G 15 and Gig corresponding to the murine and human form of 

the same G protein. These are only expressed in a subset of haematopoietic cells (Wilkie et 

al., 1991) These subunits share only 57% homology with Gq. All the members of this family 

activate phospholipase C-{3 isoforms.

-G12/13 subfamily: regulates small GTP binding proteins of the Rho family (Klages et 

ah, 1999) as well as Na' /̂H'  ̂ ion exchange in cells (Hooley et aL, 1996) Two members, G 12

and Gi3, comprise this family and they are ubiquitously expressed.

C/ py subunit

The GPy subunit is composed of two polypeptides p and y. There are six p subunits 

and 11 y subunits that have been identified so far.

-p subunit: p i, 2, 3 and 4 share high sequence homology. p5 which has two splices 

variants (short and long form) shows much less homology with the other member of the 

family. P5L and P5S are only expressed in the retina and in the central nervous system 

(Watson er a/., 1996)

-y subunits are more diverse. These subunits are classed in different subfamilies on the 

basis of their amino acid sequences.

-Class I is composed of yl, ye and yl l .  They undergo different modifications such as 

famesylation or geranylgeranylation (Fukada et al., 1990; Mumby et al., 1990). yl is

expressed in rod photoreceptors, yc in cones and y ll  in several tissues.

-Class II includes y2, y3 and y4, which are abundantly expressed in the nervous

system.

-Class III is formed of two members, y7 and y 12.

-Class IV consists of three members i.e. y5, y8 and y 10.
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Several approaches have shown that p and y subtypes associate selectively (Pronin et ah, 

1992) and with varying affinities for one another (Yan et al., 1996). Experiments have 

demonstrated that the p subunit is folded improperly in the absence of y and that y3 is 

sensitive to degradation in the absence of the py dimer foimation (Schmidt and Neer, 1991). 

Early studies suggested that py complex formation is a requirement for receptor/G protein 

interaction and that this complex also interacts directly with the receptor (Florio and 

Sternweis, 1989). Phillips and Cerione, (1992) demonstrated this direct interaction using a 

peptide mimicking the rhodopsin C-terminal tail. When coexpressed with the py subunit and 

the rhodopsin receptor, the peptide abolished their contact. Further experiments showed that 

this direct interaction was mainly due to the y componement of the complex (Kisselev and 

Gautam, 1993).

When py complexes were first discovered their role in signalling was underappreciated. Only 

after finding that py dimers were responsible for activating muscarinic receptor regulated 

inwardly by rectifying ion channel in heart were those subunits investigated as modulators 

of effector functions (Logothetis et a l, 1987). Since then, a number of other effectors have 

been shown to be regulated by Py complexes; among them are certain adenylate cyclase 

isoforms (Tang and Gilman, 1991), phospholipase C-p isoforms (Katz et ah, 1992), voltage- 

sensitive Ca^^ channels and certain Na"** channels (Ikeda, 1996; Ma et al 1997).

1.2.4 Signal transduction and ligand binding

The cascade of events leading to signal transduction through GPCRs is not completely 

understood. These receptors are believed to exist in an equilibrium between inactivated R and 

activated R"̂  state that is dependent on ligand binding as well as G protein heterotrimer 

association. However structural understanding of GPCR activation is still in the early stages 

and more structural data are awaited.

A/ Ligand binding

Depending on the GPCR class or the receptor considered, ligand binding domains are 

reported to be different. For example, the ligand binding domain of class C receptors is 

situated in the extracellular N-terminal region (Hirsch et ah, 1996) whereas ligands of many
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class A GPCR bind within the transmembrane domains. Moreover, the transmembrane 

domains involved in ligand binding of class A GPCR appeared to depend on the specific 

receptor examined. Use of ai and pz.adrenoceptor chimeras showed that TMs VI and VII are 

essential for agonist and antagonist binding specificity (Kobilka et ah, 1988) whereas TMIII 

was described as giving ligand binding specificity to dopamine D2-4 receptors (Shih et ah, 

1997). Similarly, residues belonging to TMIII and TMIV of the type 1 angiotensin receptor 

were reported to play a role in the binding o f angiotensin II and various analogues (Monnot et 

a l, 1996).

B/ Signal transduction

Domains and mechanisms responsible for GPCR conformational changes upon ligand binding 

have been difficult to establish. Early studies described TMIII and TMVI movement as 

important for activation of rhodopsin as well as the p2-adrenoceptor (Fan'ens et a l, 1996; 

Javitch et al., 1997). The activation of these receptors is presumed to cause the “opening” of 

the intracellular receptor surface thus enabling G protein interaction with residues that were 

previously inaccessible (Bourne, 1997; Wess, 1997). Rhodopsin crystallisation confiimed this 

hypothesis by observing that the highly conserved DRY motif situated at the beginning of the 

2"  ̂ intracellular loop produces eritical constraints by creating H-bonds with the surrounding 

residues. Consequently, this receptor is kept in an inactive state. The authors reported that 

when the receptor is photo-activated, a rearrangement of TMIII and TMVI takes place 

resulting in a change of environment of the DRY motif. Associated with these movements, 

the reeeptor is switched from an inactive to an active state (Palczewski et al., 2000). A similar 

mechanism was recently described for (̂ 2-adrenoceptor based on computational studies 

(Gouldson et ah, 2004) as well as for DOR (Decaillot et al., 2003).

Cl Regions of GPCRs involved in interaction with G protein

Different domains are involved in GPCR/G protein interaction/activation including the 2"  ̂

and 3"̂  ̂ intracellular loops and at least in some receptors, the C-terminal tail. These domains 

are important for both receptor/G protein recognition and G protein activation efficacy. 

Mutation within the 2"  ̂ intracellular loop of one of the most highly conserved residues of the 

class A family (the arginine residue fi'om the DRY motif) completely abolished or drastically
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reduced G protein coupling (Jones et a l,  1995; Arora et al., 1997). Substitution of four amino 

acids of the 2"  ̂ intraeellular loop of the M3 muscarinic receptor that is coupled to Gq/n with 

into the Gi/o coupled M% muscarinic receptor is sufficient to confer Gq/n coupling selectivity 

to the M2 muscarinic receptor (Blin et a l, 1995). Moreover, studies on the M5 muscarinic 

receptor suggested a critical role of intracellular loop 2 in maintaining the G protein in an 

inactive state (Burstein et a l,  1998)

Similar involvements in G protein coupling specificity were observed for the 3*̂  ̂ intracellular 

loop. Liu and Wess, (1996) described that the substitution of this loop from the Gs coupled V2 

vasopressin receptor into the Gq/n coupled V ia  vasopressin receptor enable the resultant 

chimera to activate Gg. The role of C-terminal domain in G protein activation has been 

exemplified for different receptors such as opioid receptor (Georgoussi et a l, 1997). These 

authors observed that in the presence of a peptide mimicking the opioid receptor C-terminal 

tail, G protein activation by opioid receptors was abolished. Similarly, the C-teiminal domain 

was described as playing a critical role in maintaining p2-adrenoceptor/G protein coupling 

(O’Dowd et a l,  1988).

D/ Structural features important for G protein coupling with the receptor

A large body of evidence indicate that the C-terminal part of G« subunits is important for 

contact with the receptor. A series of residues located in Ga subunit C-terminal domains have 

been predicted to form contacts with the receptor (Kallal and Kurjan, 1997). Furtheimore, the 

published crystal structure of the G protein heterotrimer suggests that these amino acids are 

surface exposed and hence can easily make contact with receptors (Lambright et a l,  1996). 

Site directed mutagenesis and use of combinatorial peptide libraries have shown the presence 

of two leucines in the highly conserved last 7 amino acids of G« protein C-teiminal tail that 

are essential for receptor and G protein contacts as well as G protein activation (Osawa and 

Wess., 1995; Martin et a l, 1996). To a smaller extent, the N-terminal part of the G« is also 

involved in receptor/G protein contact. This was demonstrated by using a synthetic peptide 

eorresponding to the Gat N-terminal part, which was able to prevent rhodopsin/Gat 

interactions (Hamm et a l,  1988).

Similarly, Py complexes have also been shown to associate directly with different receptors 

such as rhodopsin and the Pi-adrenoceptor (Phillips and Cerione, 1992; Kurstjens et a l,
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1991). This interaction with the receptor seems to be mainly due to the y subunit tail 

becoming available when the heterotrimer is formed (Kisselev et aL, 1995).

E/ One receptor activates several G proteins

Although most GPCRs are preferentially linked to members of a certain G protein subfamily, 

it has become clear that they can also couple to other G-protein classes. In fact, members of 

the secretin/glucagon receptor family which usually interact with Gg were observed to also 

stimulate Gq/n proteins (Gudermami et aL, 1996). Another example is the thyrotropin (TSH) 

receptor which has been described to be coupled with all four major classes of G protein 

(Laugwitz et aL, 1996). Some studies have also demonstrated that one class o f coupling can 

be abolished while the other family remain unaffected. This is exemplified by the LH receptor 

which activates two pathways i.e. adenylate cyclase and phospholipase C via Gg and Gq 

respectively. However, when the 3*̂  ̂ intracellular loop of the LH receptor is mutated, the 

phospholipase C signal is altered but not cAMP production (Gilchiist et aL, 1996). This result 

also highlights the fact that GPCRs interact with G proteins at distinct sites.

1.2.5 GPCR regulation

The binding of an agonist to its receptor not only results in G protein activation but also 

triggers a series of molecular interactions that allow feedback regulation such as receptor 

desensitisation and downregulation.

AJ Desensitisation

Desensitisation is defined as a process, which reduces receptor/G protein/2"^ messenger 

coupling. When the receptor is activated by an agonist this may result in the phosphorylation 

o f the serine/threonine of its C-terminal tail. Protein kinases such as PKC, PKA and the G 

protein coupled receptor kinases (GRKs) are responsible for these phosphorylations. GRK- 

mediated receptor phosphorylation promotes receptor association with p~arrestins (Kmpnick 

et aL, 1998) thus targeting the receptor for internalisation in clathrin-coated vesicles and 

resulting in receptor/ G protein uncoupling. The receptor can be either recycled at the plasma 

membrane allowing resensitisation or degraded into lysosomes (Oakley et aL, 1999; Zhang et
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al., 1999). These processes result in a rapid attenuation of responsiveness and occur in the 

range within seconds for phosphorylation to minutes for endocytosis.

B/ Down-regulation

In contrast to desensitisation, down regulation results from a long (from hours to days), 

chronic exposure of the receptor to agonist. This leads to an irreversible loss of receptor 

expression at the plasma membrane. Different regulation mechanisms are triggered to produce 

a decrease in the number of receptor binding sites. These include reduction in receptor mRNA 

production and/or protein synthesis as well as receptor internalisation and degradation via 

lysosomes (Vallquette et al., 1990).
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1.3 GPCR dimérisation

1.3.1 History of GPCR dimérisation

For a long time, the conventional assumption was that GPCRs were monomeric entities 

activating a G protein upon ligand activation. The concept that dimérisation participates in 

cell surface receptor activation was well accepted for other receptors classes such as growth 

factor or cytokine receptors (Heldin, 1995). However, studies throughout the 1970s and 1980s 

had proposed that GPCRs could exist as dimers but it was not before the mid-1990s that this 

concept started to be accepted. One of the first strong pieces of evidence of dimer formation 

came from studies on the GAB Ah receptor, a class C GPCR. The GABAbl receptor was first 

cloned as a possible GABAb receptor (Kaupmann et aL, 1997) but it was shown that it could 

not account for the functional activity of the native GABAb receptor. The GABAb2 receptor 

was then identified and when these two receptors were co-expressed, the pharmacology and 

functional activity expected for the native GABAb receptor was recovered (Jones et aL, 1998, 

Kaupmann et aL, 1998, White et aL, 1998, Kuner et aL, 1999). This result provided several 

lines of evidence that the GABAb receptor was a dimer and that this dimer is the functional 

unit. The observation of rows of rhodopsin receptor dimers in native rod outer-segment disc 

membranes using atomic force microscopy (Figure 1.2) also provided one of the clearest 

demonstration that GPCRs can exist as dimers (Fotiadis et aL, 2003). However, reservations 

have been expressed about the preparation procedui’e employed to observe the rhodopsin 

dimers in native retinal rods (Chabre et aL, 2003). Nevertheless, it is nowadays a widely 

accepted notion that GPCRs form dimers as well as higher order oligomers (Milligan et aL, 

2003).

1.3.2 Methods used to study GPCR dimérisation

A range o f approaches have been used to study GPCR dimérisation.

-Co-immunoprecipitation

Co-immunoprecipitation was one of the first and still most extensively used approaches to 

detect GPCR dimers. Differentially epitope tagged GPCRs are co-expressed in heterologous
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expression system. Antibodies to one epitope are used to immuno-isolate the receptor in the 

complex tagged with the corresponding epitope then the second receptor in the complex is 

visualised by westem-blot using antibodies against the second epitope. This technique was 

used to document homo and hetero-dimerisation o f GPCRs including the dopamine D2 

receptor (Ng et aL, 1996), CCR2 (Rodriguez-Frade et al, 1999), 5HTlb and 5HTld (Xie et 

aL, 1999) and adenosine A 1 receptor and metabotropic glutamate l a  receptor (mGluia) 

(Ciruela et aL, 2001).

Although commonly used to study GPCR oligomerisation, Salim et al., (2002) reported that 

every GPCR they tested could interact with the 5HTia receptor hence raising questions about 

the specificity of this technique. One of the issues is that co-immunoprecipitation requires 

membrane solubilisation. GPCRs being highly hydrophobic, this procedure could induce 

formation of artefactual GPCR aggregates following solubilisation or apparent dimer pattern 

due to incomplete solubilisation. To address this concern a combination of detergents as well 

as cross linking agents have been used (Abdalla et aL, 2001a, Jordan and Devi, 1999). 

Another good control for artefactual aggregation is the use of cell mixtures that individually 

express each of the differentially epitope-tagged receptors. If after co-immunoprecipitation 

dimers are not observed from these mixed cells, this would imply that solubilisation did not 

promote receptor aggregation.

-Resonance Energy Transfer (RET) methods

To provide further evidence of GPCR dimérisation RET approaches such as FRET 

(Fluorescence Resonance Energy Transfer) or BRET (Bioluminescence Resonance Energy 

Transfer) have been developed. These techniques measure the energy transfer exchanged 

between a donor and an acceptor molecule when the distance between these two molecules is 

<100Â. In FRET the donor molecule is a fluorophore whereas in BRET it is a bioluminescent 

molecule such as Renilla Luciferase, which emits light upon degradation of its substrate, 

coelenterazine. For both RET methods the acceptor molecule is a fluorophore usually a 

variant of green fluorescent protein (GFP). Variants of these two techniques have been 

developed including time resolved FRET, photobleaching FRET and BRET^. As well as 

monitoring dimer formation, these approaches also have the advantage of detecting 

dimérisation in living cells, therefore without disrupting the natural environment of the 

receptors. These approaches have generated further evidence of dimer formation for 

dopamine D2 and somatostatin SSTr5 receptors (Rocheville et aL, 2000b), CCR5 (Issafras et
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aL, 2002) and aia and aib-adrenoceptors (Stanasila et aL, 2003). Furthermore, they have been 

used to try to measure the affinity of two receptors to form a dimer (Ramsay et aL, 2002; 

Dinger et aL, 2003). Mercier et al., (2002) developed the saturation BRET method to study 

the ability of the p2-adrenoceptor to homodimerise. This approach permits determination of 

two parameters, BRET50 and BRETmax- BRET50 reflects the two receptors interaction affinity 

and BRETmax maybe useful in estimating the total number of dimers formed.

However, these strategies have some drawbacks. The signal observed is dependent on the 

distance and orientation of the donor and the acceptor molecules. BRET does not report 

GPCR dimer cellular location. Some concerns were also raised about overexpression of the 

receptors leading to random collisions and consequently artefactual RET signals.

-Complementation technique

A third technique employed to study GPCR dimérisation is functional complementation. This 

method involves either the use of chimeric or mutant receptors. This approach can provide 

fuilher understanding of the region(s) involved in dimérisation as well as giving some clues 

about the role of dimérisation in cell signalling. Good examples are the studies done by 

Maggio et aL, (1993, 1999) on muscarinic M3 receptor/a2c-adrenoceptor interactions. The 

authors generated chimeras by exchanging TMVI,VII and the C-terminal tail between both 

receptors. When transfected alone, neither of the chimeras were able to bind their selective 

ligands nor signal. However, when co-expressed, ligand binding and signalling properties 

were rescued, even enhanced. Taken together these results provide evidence of a physical 

interaction between the receptors and indicate conformational changes upon dimer formation 

leading to an increase in functional properties. The same authors reported that the functional 

complementation was no longer observed when the 3*̂  ̂ intracellular loop was deleted but that 

dimer formation was not altered thus suggesting involvement of the 3’̂'̂  intracellular loop in 

receptor function (Maggio et aL, 1996). Other groups have also used similar techniques to 

further understand the purpose of GPCR dimérisation (Monnot et aL, 1996; Bai et aL, 1999; 

Carrillo et aL, 2003). A limitation of this technique lies in the fact that the receptors physical 

interaction is not directly demonstrated but this is usually presumed by the fact that functional 

complementation is obsei’ved.
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All approaches have their strengths and their limitations and thus are complementary for 

studying dimérisation.

1,3.3 Homo and Heterodimer/oligomers

Up to now, the term dimer has been used, however, different type of dimers may exist namely 

homodimers and heterodimers. Furthermore, more than two receptors may associate 

consequently forming oligomers.

A/ Homodimer and Heterodimer

When two identical proteins associate the term homodimer is used. GPCRs have been widely 

reported to form homodimers (Herbert et aL, 1996; Ng et aL, 1996; Romano et aL, 1996; 

Fukushima et aL, 1997; Roess et aL, 2000) Similarly, when non-identical proteins interact the 

entity foimed is called a heterodimer. Heterodimerisation has been described for various 

GPCRs and between closely or less-closely related receptors. For example subtypes of the 

same family can associate such as (31- and (32-adrenoceptors (Mercier et aL, 2002), 

angiotensin II ATI and AT2 receptors (Abdalla et aL, 2001b) and GABAbl and GABAb2 

receptors (Jones et aL, 1998). Interactions can also be between less homologous GPCRs e.g. 

adenosine A2a and dopamine D2 receptors (Hillion et aL, 2002) or somatostatin SSTr5 and 

the dopamine D2 receptor (Rocheville et al 2000h). Even heterodimerisation between class A 

adenosine A1 receptor and class C mGlulR was observed by Ciruela et al, (2001). This result 

was unexpected as these two receptors do not share any homology except the 7 

transmembrane domain topology.

B/ Oligomers

An oligomer requires the association of more than two identical (homo-oligomer) or non

identical (hetero-oligomer) proteins. Frequently, when dimers have been visualised by co- 

immunoprecipitation, as well as detecting a band coiTcsponding to the dimer molecular mass, 

bands of higher molecular size and multiples of the monomer mass could also be visualised. 

These observations raised the hypothesis that GPCRs not only form dimers but also
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oligomers. However, this hypothesis is difficult to validate and little data are available on the 

subject. However, Park and Wess, (2004) have provided direct evidence that the M2 

muscarinic receptor forms at least a trimer by using three differentially epitope-tagged forms 

of this receptor. Similarly, it was proposed that the complement C5a receptor could form a 

tetramer (Klco et aL, 2003). By contrast, when pi-and p2-adrenoceptor interaction was studied 

and the authors tried to distinguish between dimer and higher-order oligomer formation using 

saturation BRET, they concluded that these receptors formed dimeric complexes (Mercier et 

aL, 2002). Visualisation of rhodopsin dimer rows by atomic force microscopy also provide 

further evidence of the dimeric but also the oligomeric status of this GPCR (Fotiadis et aL, 

2003). Overall, these studies suggest that new approaches will be needed to further investigate 

the concept of oligomerisation.

The term dimer will thus be used in the following text refening to either dimer or higher- 

order oligomer.

1.3.4 Ligand modulated or constitutive dimérisation ?

A key question is whether ligands modulate GPCR dimer formation and stability or not.

- ligand modulated dimérisation

Rocheville et al., (2000a, b) studied ligand effects on somatostatin SSTrS and SSTrl receptors 

as well as on somatostatin SSTr5 and dopamine D2 receptor heterodimer formation. They 

used FRET and/or co-immunoprecipitation assays to monitor ligand-induced dimer formation 

and concluded that agonists promoted dimer formation. Equally, for the p2-adrenoceptor and 

the lutropin receptor agonist-induced dimérisation was observed but the authors also 

described a certain level of constitutive dimérisation (Herbert et aL, 1996; Angers et aL, 2000; 

Tao et aL, 2004). Additionally, agonist-dependent dimérisation has been reported for various 

chemokine receptor homodimers such as CCR2, CCR5 and CXCR4 (Rodriguez-Frade et aL, 

1999; Vila-Coro et al., 1999-2000). However, more recent studies involving the same 

chemokine homodimers reported results in complete opposition. The authors obseived ligand 

independent dimérisation of these chemokine receptors (Issafras et aL, 2002; Babcock et aL,

2003). These contradictory results are confusing and raise questions about the validity of the
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approaches used to monitor ligand-dependent dimérisation. Moreover, some constitutive 

GPCRs dimers have been reported to dissociate upon ligand treatment. Such results were 

observed for TSH receptor and neuropeptide Y Y4 receptor homodimers as well as for D1 

dopamine and A1 adenosine receptor heterodimer (Latif et ah, 2002; Berglund et aL, 2003; 

Gines et aL, 2000).

- Constitutive dimers

In contrast to the above, a large literature has reported constitutive dimérisation of GPCRs. 

For example the D2 dopamine receptor, the aib-adrenoceptor and the yeast a  factor receptor 

were described to be constitutive dimers using various approaches including cross-linking or 

FRET (Guo et aL, 2003; Stanasila et aL, 2003; Overton and Blumer, 2000). Recently, 

Percherancier et al., (2005) have used saturation BRET to study the potential effect o f ligand 

on CCR2-CXCR4 heterodimerisation. They obseived no change in BRET50 (affinity of the 

receptors to form a dimer) upon agonist treatment but an increase in BRETmax (estimate of 

number of complex formed) and interpreted these data not as a ligand-induced dimérisation 

but as a conformational change within the preformed dimer. They argued that an increase in 

BRETmax could not be taken as an increase in dimer formation if the BRET50 value is 

unchanged. Their hypothesis is that the ligand is inducing a conformational change within the 

dimer consequently bringing the donor and acceptor closer thus an increase in BRETmax was 

observed. A similar analysis was previously reported by Ayoub et al., (2002) for the 

melatonin receptors. The use of saturation BRET and the interpretation of its parameters 

(BRET50 and BRETmax) could bring some new insights to ligand-induced dimérisation studies 

as some of the earliest studies reporting BRET or FRET increases as ligand-dependent dimer 

formation could have been misinterpreted.

In conclusion, the discrepancies observed suggest that no generality can be made on whether 

GPCR dimérisation is ligand modulated or not. Each GPCR dimer has to be studied in an 

independent maimer.

1.3.5 Location of GPCR dimer formation

GPCRs have been proposed to dimerise either in the endoplasmic reticulum (ER) during 

biosynthesis or at the plasma membrane.
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- Plasma membrane dimérisation

Plasma membrane dimérisation suggests that GPCR monomers are transported from the 

endoplasmic reticulum to the cell surface where they associate in a ligand-dependent or 

independent fashion. This mechanism has been reported for several GPCRs such as the 

somatostatin SSTr5 and SSTrl, SSTr5 and dopamine D2 receptors as well as for the 

gonadotrophin releasing hormone receptor (GnRH) using co-immunoprecepitation and/or 

FRET approaches (Rocheville et aL, 2000a and b; Cornea et aL, 2001).

ER dimérisation

Alternatively, numerous studies have reported that dimers could be assembled in the ER and 

then be transported as dimeric units to the plasma membrane. Dimérisation prior to plasma 

membrane expression is described as constitutive dimérisation. One of the first pieces of 

evidence of ER dimer formation was reported for the class C GPCR, the GABAb receptor 

heterodimer. GABAbl was unable to reach the plasma membrane in the absence o f GABAb2 

receptor expression but trafficked normally upon co-expression with GABAb2 receptor 

(Margeta-Mitrovic et aL, 2000). The authors proposed that the GABAb2 receptor is masking 

an ER retention motif when dimerising with GABAbl. These observations were comfirmed 

in a recent study by Villemure et al, (2004). Another recent study using cell fractionation 

provided evidence that the class A p2-adrenoceptor dimérisation was taking place in the ER. 

These authors reported that when a putative dimérisation motif was mutated normal 

trafficking to the plasma membrane was prevented. Hence they concluded that p2- 

adrenoceptor homodimerisation was a prerequisite for cell surface targeting (Salahpour et aL,

2004). Similar conclusions were drawn for the aib and aid adrenoceptors (Hague et aL, 2004) 

and oxytoein and vasopressin receptor heterodimers (Terrillon et aL, 2003).

Additionally, the concept that dimérisation occurs prior to cell surface expression is supported 

by studies involving mutated receptors. Such mutated receptors can act as dominant negatives 

of the wild type receptor upon dimérisation thus preventing cell surface expression. Such an 

effect has been reported for the dopamine D2 receptor (Lee et al., 2000), the platelet- 

activating factor receptor (Le Gouill et aL, 1999) and the V2 vasopressin receptor (Zhu and 

Wess, 1998).
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GPCR dimérisation during biogenesis seems to be more predominant in comparison to dimer 

formation at the plasma membrane.

1,3.6 Domains involved in GPCR dimérisation

Various regions have been implicated in GPCR dimérisation. These include the extracellular, 

transmembrane and C-terminal domains (Figure 1.3).

“ Extracellular domain

Usually when extracellular domains are involved in dimérisation it is via disulphide bridge 

formation. Studies on the mGluRl receptor showed that a single dlsulphide bridge between 

Cys 140 in the receptor N-terminal domain was implicated in dimer formation (Ray and 

Hauschild, 2000). In agreement with these data, the extracellular N-terminal domain of 

mGluRS and the calcium sensing receptor were also found to be important for dimérisation 

(Romano et aL, 1996; Bai et aL, 1998). Furthermore extracellular loop 2 (Cys 140) and 3 

(Cys 220) of the muscarinic M3 receptor were described as participating in dimer formation 

(Zeng and Wess, 1999). However for some receptors the disulphide bond was found not to be 

the only region involved in dimer formation.

-Transmembrane domains (TM)

Along with disulphide bridges, transmembrane domains have been reported to play a key role 

in dimérisation. One of the first TM domains suggested to be involved in dimérisation was 

described for the (32-adrenoceptor, TMVI was proposed as a contact interface between the 

monomers (Herbert et aL, 1996). In a recent study Carrillo et al, (2004) examined all the 

potential sites of interaction involved in aib-adrenoceptor homodimerisation instead of testing 

a limited number o f possible interfaces. They concluded that TMI and TMIV were contact 

points involved in aib-adrenoceptor dimer formation. Similarly TMI and/or TMIV have been 

described as being contact interfaces for different GPCRs including the C5a receptor, 

rhodopsin and the dopamine D2 receptor (Klco et aL, 2003; Liang et aL, 2003; Guo et aL, 

2003). Different TMs, such as TMII and TMV, were also reported to take part in rhodopsin 

and C5a receptor dimérisation respectively. Additionally a putative dimérisation motif
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GXXXG located in TMI or TMVI was reported for the yeast alpha factor receptor (Overton et 

ah, 2003) and the P2-adrenoceptor (Salhapour et aL, 2004) respectively. In fact, specific 

residues have even been identified as crucial for dimérisation such as Ile52 (TMI) and V ail50 

(TmlV) for the CCR5 receptor (Hernanz-Falcon et aL, 2004).

When heterodimers are involved, determination of the dimer interface is even more 

complicated as transmembrane domains implicated in the dimérisation process must be 

determined for each of the receptors within the heterodimer. Canals et al, (2003) suggested 

that TMV and/or TMVI of the dopamine D2 receptor are likely to approach TMIV of the 

adenosine A2 receptor. In addition to biochemical and biophysical analysis, computational 

studies have been performed to predict interfaces for GPCR dimérisation (Gouldson et aL, 

2001; Filizola et aL, 2002a and b). For instance, Nemoto and Toh, (2005) have developed a 

new method which can be applied to different GPCRs as they took into account that the 

interfaces involved in GPCR interactions differed between receptors. In fact, certain of their 

predictions seem to agree with what was found previously using biochemical and biophysical 

experiments, namely for rhodopsin, dopamine D2 and p2-adrenoceptors.

-C-terminal domain

Few studies have reported this domain as playing a role in dimérisation. One of the only 

GPCRs for which the C-terminal tail has been implicated in dimérisation is the class C 

GABAb receptor (White et aL, 1998). However, this interaction is not essential for GABAb 

dimérisation as the deletion of the C-terminal tail did not prevent dimer formation (Margeta- 

Mitrovis et aL, 2000). Although, in the case of the mGluRia and adenosine A1 receptor 

heterodimer the interaction appears to depend on the mGluRia C-teiminal domain as a splice 

variant of mGluRi with a shorter and different C-teiminal tail was not observed to interact 

with the adenosine A1 receptor (Ciruela et aL, 2001). Similarly, a recent study by Grant et al, 

(2004) identified using somatostatin SSTrl and SSTr5 chimeras the C-terminal tail of SSTr5 

as a key determinant for dimérisation

1.3.7 Domain swapped or contact dimers?
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The discrepancies observed between GPCRs domains involved in dimer formation make it 

complicated to propose a general mechanism for GPCR dimérisation. However, two modes of 

dimérisation have been suggested for the general thi*ee-dimensional organisation of GPCR 

dimers (Figure 1.4). If two monomers interact most likely via hydrophobic interactions and 

the ligand binding domains of each receptor are maintained, a contact dimer is probably 

formed. This kind of dimer was first suggested by Herbert et al, (1996) for the P2- 

adrenoceptor. Studies on V2 vasopressin and D2 dopamine receptors also support the contact 

dimers hypothesis (Schulz et ah, 2000; Lee et aL, 2000). However, if  transmembrane domains 

are exchanged between monomers novel binding sites may be generated. These have been 

described as domain swap dimers (Gouldson et aL, 1998). Domain swap dimers have been 

suggested by studies involving mutant or chimeric receptors. These receptors are unable to 

function when individually expressed but when the complementary mutant receptors are co

expressed function is rescued. Such functional complementation has been recorded for type 1 

angiotensin, dopamine D2, muscarinic M3 and a 2a-adrenoceptor and muscarinic M3 and M2 

receptor heterodimers (Monnot et aL, 1996; Scarselli et aL, 2000; Maggio et al., 1993; 

Barbier et al., 1998). A recent study involving the histamine Hi receptor has even suggested 

that contact and swapped dimers can co-exist in the same cells (Bakker et aL, 2004), This 

observation was based on binding data using two different radioligands for the histamine H% 

receptor, one supposedly detecting only histamine Hi receptor oligomer (Booth et aL, 2002). 

The discrepancy in Bmax obtained after ligand binding saturation with the two radioligands 

was interpreted by the authors as reflecting a mix of contact and swapped dimers.

1.3.8 Pharmacology and function alterations due to heterodimerisation

In many cases when GPCR heterodimerisation is observed, changes in pharmacological, 

functional and/or internalisation properties have been documented.

-Pharmacological property

Heterodimerisation leading to a change in pharmacology has been described for several 

GPCR pairs such as the M2 and M3 muscarinic receptors. The authors have reported the 

formation of a new binding site with unique pharmacology when these receptors were 

coexpressed (Maggio et aL, 1999). Likewise, in a recent study, involving pi and P2-
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adrenoceptor heterodimers Lavoie and Herbert (2003) have reported that ligand binding to 

one subtype affected the specific ligand binding of the other subtype. However, when the 

SSTr2 and SSTr3 receptors were co-expressed a similar pharmacology as the SSTr2 receptor 

has been observed whereas a 100 fold decrease in SSTr3 selective ligand affinity was noted 

(Pfeiffer et aL, 2001). Ligand binding alteration has also been monitored for the SSTr5 and 

dopamine D2 receptors (Rocheville et aL, 2000b), the adenosine A1 and dopamine D l 

(Torniven et aL, 2002) and the aiA and pi-adrenergic receptors (Xu et aL, 2003), The 

pharmacological diversity brought by GPCR interaetions could be of great interest for new 

drug development.

Signalling property

Receptor function has been established as resulting from heterodimerisation for the GABAbl 

and GABAb2 and the taste T1R3 and T lR l receptors (Galvez et aL, 2001; Nelson et aL, 2001 

and 2002). Moreover, alterations of signalling properties such as signalling potentiation were 

observed when the chemokine CCR5 and CCR2 receptor and the angiotensin ATI and 

bradikinin B2 receptors were co-expressed (Mellado et aL, 2001; AbdAlla et aL, 2001b). In 

contrast, interactions between the somatostatin SSTr2 and SSTr3 as well as the angiotensin 

ATI and AT2 receptors were reported to result in inactivation of the somatostatin SSTr3 or 

ATI receptor function respectively (Pfeiffer et aL, 2001; AbdAlla et aL, 2001a). Alteration in 

G protein coupling has also been described upon heterodimerisation. For example when the 

Gi/o-coupled CCR5 and CCR2 receptors form heterodimers, Gq/i i pathway has been proposed 

to be activated as PTX treatment did not block all CCR2/CCR5 signalling (Mellado et aL, 

2001). A similar alteration in G protein selectivity has been observed when the P2 and p3- 

adrenoceptors were co-expressed (Breit et aL, 2004).

Internalisation pattern

Studies have pointed out that heterodimerisation could affect agonist-induced endocytosis. On 

one hand, it was reported that stimulation of one receptor was sufficient to promote co- 

intemalisation of the two receptors within the heterodimer. Stanasila et al, (2003) showed that 

an a  1 ̂ -adrenoceptor selective agonist induced co-internalisation of and aib-adrenoceptor 

heterodimers whereas this effect was not observed when the aia-adrenoceptor was co
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expressed with the tachykinin NKl or CCR5 receptors thus ruling out any non-specific effect. 

Similar results were observed for a 2a and pi-adrenoceptors or adenosine A2 and dopamine D2 

heterodimers (Xu et aL, 2003; Hillion et aL, 2002). On the other hand, receptors that do not 

undergo ligand-promoted endocytosis were documented as having a possible dominant 

negative effect on the wild-type receptors they were interacting with. Indeed, it was reported 

that internalisation of the p2-adrenoceptor upon agonist treatment was prevented by its co

expression with the internalisation resistant ps-adrenoceptor (Breit et aL, 2004).

1.3.9 GPCR-G protein ratio

A common concept was that one GPCR was activating one G protein. However, the 

acceptance of GPCR dimérisation has jeopardized this idea. The question is asked whether a 

dimer interacts only with one G protein (Hamm, 2001, Arimoto et aL, 2001). The 

visualisation of rhodopsin by atomic force microscopy (Liang et aL, 2003) suggested that the 

size and geometry of these dimers allow a perfect fit for the binding of one G protein. Early 

studies on the class C GABAb receptor are also in agreement with this theory (Margeta- 

Mitrovic et aL, 2001; Galvez et aL, 2001; Duthey et aL, 2002). The authors have 

demonstrated using chimeras that only GABAb2 intracellular loops were responsible for G 

protein activation whereas both subunits were taking part in the receptor function and thus 

supporting the idea that only one G protein was needed for the GABAb receptor dimers to 

function. Moreover, Baneres and Parello, (2003) reported a 2:1 GPCR:G protein ratio for the 

leukotriene B4 BLTl receptor homodimer demonstrating that this dimer was able to signal 

only through one G protein. If this concept of a GPCR dimer activating one G protein is 

verified for all GPCRs, it would mean that the minimum GPCR functional structure is a 

dimer.
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1.4 Opioid receptor

1.4.1 Opioid history

Opiates have been used for centuries due to their analgesic and euphoric properties. Opium is 

an extract of the poppy plant, Papaver somniferum and its culture goes back to 3400 BC in 

Mesopotamia. It was reported that opium was used to relieve pain and relax people suffering 

from asthma or heart failure as far back as ancient Greece, in that Hippocrates, “the father of 

medicine” acknowledged the usefulness of the opium to treat diseases. In 1806, opium 

alkaloids were extracted from the poppy plant by the German chemist Fiediich Sertumer. One 

of these opioids was morphine, named after Morpheus, the god of dreams. Although pure 

morphine was isolated, it was not until 1833 that chemists at Macfarlane & Co in Edinburgh 

were able to isolate and purified this molecule on a commercial scale. Sinee then, morphine 

has been one of the most widely used opioids in the treatment of pain because of its very high 

analgesic power. Furthermore, morphine is used as a recreational drug due to its euphoric 

properties. The use of morphine induces addiction and tolerance as well as other side effects. 

For these reasons chemists have tried to derivitise morphine hoping to get a compound with 

no such adverse side effects. In 1874, C.R Wright synthesised diaeetylmoiphine or heroin by 

boiling morphine over a stove. Heroin was found to produce the same analgesic effect as 

morphine without the common side effects raising the possibility that it could be used as a 

morphine step-down cure. Thus in America a campaign was mounted in which free samples 

o f heroin were distributed through the mail to morphine addiets who were trying to give up 

their habits. However, it became clear with time that the side effects of heroin were as bad as 

morphine. Heroin has become one of the most addictive recreational drugs illegally used 

nowadays. So far few drugs have been developed that are as effective as morphine in the 

treatment of pain but without the major side effects. A promising compound was etorphine 

which is about one thousand times more potent than morphine as an analgesic, however, its 

use is limited to immobilising large animals as it is also a very potent sedative. The 

development of the ideal opioid analgesic is still awaited.

1.4.2 Endogenous and exogenous opioids
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The brain produces its own endogenous analgesic compounds. In mammals they are mainly 

derived from three precursors i.e. pro-opioimelanocortin, pro-enkephalin and pro-dynorphin 

(Nakanishi et aL, 1979; Kakidani et aL, 1982; Noda et aL, 1982). These precursors are 

hydrolysed by specific proteases that recognise basic amino acid sequences positioned just 

before and after the opioid peptide sequence. The endogenous opioid ligands are characterised 

by a common tetrapeptide sequence (Tyr-Gly-Gly-Phe) at their N-termini and comprise a 

dozen or so ligands including (3-endorphin, Met/Leu-enkephalin and dynorphin A and B. 

These peptides have varying affinity for MOR, DOR and KOR but none binds exclusively to 

one opioid receptor. Two other endogenous ligands, endomorphin 1 and 2, were discovered 

with a tetrapeptide sequence (Tyr-Pro-X-Phe) differing from that of the classical endogenous 

opioid peptides. Endomorphin 1 and 2 show high affinity and selectivity for MOR (Zadina et 

aL, 1996).

The discovery of exogenous opioids preceded endogenous ligand identification. The 

extraction of the natural opioid ligands such as morphine, codeine and thebaine from the 

poppy plant allowed synthesis of semi-synthetic molecules derived from the natural 

compounds including buprenorphine, etorphine and methadone. Numerous morphine 

derivatives have been synthesised in an effort to discover ideal analgesics without the side 

effeets of morphine. Finally, a range of synthetic ligands e.g. DAMGO, DPDPE, 6 -GNTI 

were produced based on the endogenous peptide structures.

1.4.3 Medical applications

Opioid receptor activation results in a multitude of actions including analgesia, respiratory 

depression, euphoria, feeding, hormone release, inhibition of gastro-intestinal transit, anxiety. 

Commonly, DOR and MOR agonists produce analgesia and reward effect whereas KOR 

selective agonists are dysphoric. However, MOR seems to be the primary target of 

morphine’s therefore it is considered as the receptor which mediates the majority of morphine 

analgesic effects (Matthes et aL, 1997)

Morphine, due to its high analgesic property is used clinically. This drug is administrated for 

anaesthesia but most usually for the relief of pain after surgery or to treat pain resulting from 

an injury or a disease such as cancer. Moiphine, in addition of being a potent analgesic 

induces adverse effects such as respiratory depression, sedation, nausea and vomiting, 

constipation, urticaria and, most importantly, tolerance which is a major drawback for
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medical use. Severe withdrawal symptoms are also obseived when moi*phine is no longer 

taken, these includes anorexia, loss of weight, chills, excessive sweating, increase in heart rate 

and blood pressure as well as cramps, muscle spasms and hyperirritability. Other opioids used 

therapeutically include heroin, codeine, methadone, buprenoiphine, fentanyl and lovarphanol. 

Codeine has a similar action as morphine but is a less potent analgesic, it is usually used to 

suppress cough or diarrhoea and in combination with paracetamol and aspirin. Methadone and 

buprenorphine are given to treat opioid addicts and in cases of opioid overdose naloxone is 

employed as an antidote. Opioids such as fentanyl and sufentanil are also widely used during 

delivery to inhibit pain due to contractions. Lovarphenol can be prescribed as a substitute for 

morphine.

1.4.4 Opioid receptors

Opioids drugs mediate their action through DOR, MOR, and KOR, which belong to the class 

A GPCR family. For several year opioid pharmacology and physiological effects were 

reported, however, opioid receptor cDNAs were not cloned before 1992-3. DOR was the first 

cloned using an expression cloning library (Kieffer et aL, 1992; Evans et aL, 1992) followed 

by MOR and KOR. In 1994, NOR was cloned and initially characterised as an orphan 

receptor termed ORLl for opioid receptor like-1. It was named ORLl due to its high 

homology with the other opioid subtypes (60%) but displayed very low levels of binding to 

all known opioid ligands. However, a new endogenous peptide able to bind to NOR, was 

identified soon after cloning of this receptor and named nociceptin (Reinscheid et aL, 1995; 

Meunier et aL, 1995). This ligand appeared to be closely related to the KOR ligand dynorphin 

A so NOR is now recognised as belonging to the opioid receptor family.

Based on pharmacological investigations MOR (p), DOR (8) and KOR (k ) subtypes have 

been further subdivided (p i, p2, 51, 52, k 1, k 2, k 3) but so far no cDNAs for these subtypes 

have been cloned. Two subtypes of DOR have been proposed, 51 which displays high affinity 

for DPDPE, DADLE and BNTX whereas DSLET, 5’-NTI and naltriben bind selectively to 

DOR sites designated as 52 (Noble and Cox, 1995; Xu et aL, 1993). Similarly, for KOR the 

different pharmacologies observed have highlighted three potential binding sites k 1, 2 and 3. 

Whereas k 1 selectively binds dynorphin but not DADLE, k 2 binds DADLE and Met- 

enkephalin and k 3 sites are sensitive to naloxone or benzoylhydrazone (Akil and Watson, 

1994). Subdivision of MOR into p i and p2 was proposed by Wolozin and Pasternak, (1981)
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based on radioligand binding studies. The authors observed two site binding curves when 

distinct [^H]-radioligands were displaced by various opiates and enkephalins. However, when 

the same samples were treated with naloxazone the displacement of the [^H]-radioligands by 

the different ligands appeared to be monophasic. Consequently, the high affinity sites 

observed were described as conesponding to p i sites whereas the low affinity sites detected 

were named p2. As the cDNA cori'esponding to these subtypes have not yet been cloned other 

hypotheses have been proposed to explain the subdivision of MOR, DOR and KOR. These 

include different receptor splicing variants, receptor dimérisation and interactions with 

accessory proteins.

1.4.5 Opioid receptor localisation and function

Opioid receptors are 65% homologous (Reisine and Bell, 1993) with higher homology in the 

transmembrane domains and the intracellular loops. They are localised mainly in the brain 

and spinal cord. They have discrete but overlapping distributions. DOR is found in the 

nucleus accumbens and olfactory bulb where it is highly expressed and with a lower density 

in the amygdala, cerebral cortex, hypothalamus, thalamus and substantia nigra. Regions 

which have been described to be rich in MOR receptor are the spinal cord, hypothalamus and 

amygdala and, in more moderate density, the substantia nigra and the periaqueductal grey. 

Equally, these regions were shown to express a low density of KOR whereas substantia nigra 

and cortex display high levels of this reeeptor (Mansour et aL, 1994; Sim and Childers, 1997). 

All three receptors have also been found in various immune cells e.g. T and B lymphocytes 

and macrophages (Chuang et aL, 1995a and b; Belkowski et aL, 1995).

Opioid receptors are coupled predominantly to Gi/o proteins and modulate adenylate cyclase 

activity as well as voltage operated calcium channels, potassium channels, phospholipase C(3 

and MAPK. Moreover, opioid receptors have also been showed to modify the immune 

response to HIV (Peterson et aL, 1990; Sharp et aL, 2001)

1.4.6 Opioid receptor structure

All four opioid receptors possess two conseived cysteine residues in the first and second 

extracellular loops and the highly conserved DRY motif specific to the class A GPCR family.
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These receptors can be glycosylated on asparagine residues in their N-terminal domains and 

palmitoylated in the C-terminal domain.

- Ligand binding

Based on biochemical analysis and computational modelling opioid receptors have been 

postulated to share a common binding pocket formed of TMIII, IV, V, VI and VII. This cavity 

is partially covered by the extracellular loops (less homologous regions of opioid receptors) 

which are proposed to be important for ligand interaction (Chavkin et al., 2001). The opioid 

receptor binding pocket was described as consisting of an imier conserved region between the 

three opioid receptors and a less homologous peripheral region responsible for DOR, MGR 

and KOR ligand binding selectivity (Pogozheva et al., 1998). Larger opioid ligands were 

reported to fill all the available space into the opioid binding pocket whereas smaller agonists 

such as morphine were reported to bind into the bottom of the cavity thus interacting 

predominantly with conseiwed residues. Similarly, small antagonists (e.g. naloxone) were 

suggested to bind deep into the binding pocket but slightly shifted compare to small agonists 

thus preventing TMIII and VII movement. This absence of movement is described as 

blocking the receptor in an inactive state therefore leading to functional antagonism 

(Pogozheva et ah, 1998). In addition to certain transmembrane residues opioid ligands 

selectivity have been attributed to the and 3“̂̂  extracellular loop for MGR, the 2"  ̂

extracellular loop for KGR and the 3"̂  ̂extracellular loop for DGR (Chavkin et al.,200\\ Wang 

et al.,\995\ Zhang et al., 2002). However, MGR ligand binding affinity was reported to be 

only due to four aminoacids i.e. Asp 128, Asn 150, Lys 103 and Trp 318 (Chavkin et al., 

2001). Key residues responsible for DGR ligand binding affinity include Arg 291, Arg 292, 

Trp 284, Val 296, Val 297 and Trp 284 which belong to TMVI and the 3̂^̂ extracellular loop 

(Quock et al., 1999). For KGR, Asp 138 which belongs to TMIII was described as a key 

anchoring point for agonist association. Equally, TMVI residues such as His 291, Glu 297 lie 

294, Leu 295, and Ala 298 were reported to be important for KGR ligand binding affinity 

(Subramanian et al., 1998; Stevens et al., 2000).

" G protein activation
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As a general mechanism for GPCRs-mediated G protein activation, ligand binding was 

proposed to induce transmembrane domain movements and lead to the exposure o f key 

residues from the 2"  ̂and 3̂  ̂ intracellular loops. Residues from the 3̂^̂ intracellular loop were 

proposed to play a key role in G protein coupling whereas amino acids from the 2"  ̂

intracellular loop seem to be involved in G protein activation efficacy. More specifically for 

DOR and MGR, Georgoussi et al, (1997) provided evidence using a series o f peptides 

mimicking the different opioid receptor’s intracellular loops that the 3*̂  ̂ intracellular loop and 

the C-terminal tail were playing a role in G protein activation. Recently, a study based on 

receptor random mutagenesis provided a ligand-induced activation scheme for DGR 

(Decaillot et al., 2003). The authors proposed that an opioid agonist would bind to 

extracellular loop 3 and possibly to the N-terminal of DGR thus destabilising TMVI and 

TMVII on their extracellular part. This shift would provide the opportunity for the ligand to 

enter into the binding pocket and produce TMIII, VI and VII movement. Consequent to the 

TM displacements the cytoplasmic ionic locks would break therefore providing an 

intracellular anchorage for G protein activation.

1.4.7 Knock out (KO) mice

Genetically modified mice are interesting tools to understand the exact role of each opioid 

receptor in response to drugs or in nociception. Therefore to complement biochemical and 

biophysical data, opioid receptor null mutant mice for the three opioid receptor have been 

generated. Studies of these mice have clarified or revealed roles for MGR, DGR and KGR. 

To summarise the major results obtained, it was confirmed that MGR is the primary target of 

morphine. Essentially all responses to morphine, including analgesia and the major side 

effects (reward, dependence, constipation, respiratory depression) were abolished in mice not 

expressing MGR (Matthes et al., 1996; S ora et al., 1997). In the absence of DGR expression 

morphine tolerance did not develop and analgesia was reduced (Zhu et al., 1999). An anti

depressant effect mediated by DGR was also highlighted (Baamonde et al., 1992). 

Fuithermore DGR analgesia appeared to be compromised in MGR ko mice suggesting 

crosstalk between MGR and DGR (Fuchs et al., 1999; Matthes et al., 1998). KGRs’ role in 

visceral chemical pain analgesia and involvement in dysphoria were confirmed by using KGR 

deficient animals (Simonin et al., 1998). KGR participation in adaptation to long term 

exposure to moiphine was also suggested but no contribution to morphine analgesia and
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reward was obseived. Additionally, these genetically modified mice as well as a triple ko 

mouse for all thi*ee opioid receptors permitted deduction that the pharmacological sites 

attributed to further subdivision of the three main opioid receptors (i.e. p i, p2, 51, 82, k 1, k 2, 

k3) are actually encoded by the three cloned opioid genes (Kitchen et al., 1997; Zhu et al., 

1999; Simonin et al., 1998; Simonin et al 2001). Genetically modified animals are good tools 

to complement biochemical and biophysical studies to help to further understand the roles 

mediated by opioid receptors.

50



1.5 Opioid receptor dimérisation

1.5.1 Homo and Heterodimerisation

All thi'ee opioid receptors have been described to form homodimers (Jordan and Devi, 1999; 

George et aL, 2000). Cvejic and Devi, 1997 first demonstrated using co-immunoprecipitation 

that DOR dimerise. They also reported that its dimérisation was ligand modulated as the 

number of DOR dimers visualised by Westem-blot decreased upon treatment with DOR 

selective agonists (DADLE, DPDPE) but not with MGR selective agonists (DAMGG and 

morphine) thus demonstrating the specificity of the dissociation observed. However, different 

results were obseiwed using FRET and BRET techniques (McVey et aL, 2001). The authors 

reported that no change in FRET or BRET signal was noticed when cells expressing DGR 

were treated with agonist or inverse agonist ligands and concluded that DGR was a 

constitutive dimer and that dimérisation was not influenced by the presence of ligands. DGR 

was also reported to form dimers with the other opioid receptor subtypes KGR and MGR 

(Jordan and Devi, 1999; George et ah, 2000) as well as with less related receptors such as P2- 

and the a 2a-adrenoceptor (Jordan et ah, 2000; Rios et ah, 2004). KGR and MGR were first 

demonstrated as not interacted by co-immunoprecipitation and no dimérisation interface was 

identified by a computational study, therefore it was concluded that they did not interact 

(Jordan and Devi, 1999; Filizola et ah, 2002b). However, in a recent study these two subtypes 

were showed as interacting using BRET^ approach (Wang et ah, 2005). KGR was also 

documented as interacting with less homologous receptors such as the Pi-adrenoceptor and 

the TRH receptor but its affinity to dimerise with these receptors was lower compared to the 

KGR homodimer or a KGR/DGR heterodimer (Ramsay et ah, 2002). Likewise, 

heterodimerisation between MGR and the somatostatin SSTr2A was described using co- 

immunoprecipitation (Pfeiffer et ah, 2002) as well as with the aza-adrenoceptor (Jordan et ah, 

2003). All three opioid receptor subtypes have also been described as interacting with CCR5 

(Suzuki et ah, 2002; Chen et ah, 2004).

1.5.2 Domains involved in opioid receptor dimérisation
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Various domains have been described to be involved in opioid dimérisation, namely C- 

terminal and transmembrane domains as well as disulphide bridges. The truncation of the 

DOR C-terminal tail was demonstrated to inhibit DOR homodimerisaton (Cvejic and Devi., 

1997) suggesting its involvement in DOR homodimer formation. For the KOR homodimer as 

well as a DOR/KOR heterodimer Jordan and Devi, (1999) suggested that disulphide bridges 

were taking part in dimer formation as the immunoprecipitated homo and hetero dimers were 

sensitive to reducing agents. Computational analysis based on the rhodopsin crystal structure 

was also utilized to try to identity putative transmembrane domains involved in opioid 

dimérisation. Firstly, for opioid homodimerisation, TMIV and TMV were predicted as being 

the contact interfaces of the DOR homodimer, for the KOR homodimer only TMV was 

identified as the domain most likely involved in dimérisation and TMI and TMIII were 

suggested to participate in MGR homodimer interactions (Filizola and Weinstein, 2002). 

Secondly, for opioid hetero dimers the most likely interfaces were proposed to implicate 

TMIV, TMV and TMVI of DGR with TMI of MGR (Filizola et ah, 2002). However, when 

the procedure was applied to determine MGR and KGR domains involved in 

heterodimerisation no TM was predicted. Recently, interactions between G protein and the 

receptors was suggested to play a role in MGR/DGR dimérisation as in cells co-expressing 

MGR and DGR treatment with Pertussis toxin (PTX) decreased the number of heterodimers 

observed (Law et ah, 2005).

1.5.3 Pharmacology of heterodimers involving opioid receptor

A large number of studies have reported changes in pharmacological properties associated 

with formation of opioid receptor hetero dimer s. Moreover, the pharmacological profiles that 

have not been explained by the cloning of DGR, MGR and KGR cDNAs and for which 

different opioid subtypes (p i, p2, 51, 82, k 1, k 2, k3) have been postulated might be explained 

by the original pharmacology representing MGR/DGR or DGR/KGR heterodimerisation. 

Nonetheless, no significant change in pharmacology was yet reported when opioid receptors 

heterodimerise with less homologous receptors.

- DOR/KOR heterodimer
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The KOR/DOR heterodimer was one of the first for which a change in pharmacology was 

described (Jordan and Devi, 1999). The authors reported that KOR and DOR selective 

agonists and antagonists showed no significant affinity for the KOR/DOR heterodimer 

whereas partially selective ligands such as naloxone, diprenorphine or ethylketocyclazocine 

displayed a higher affinity for the co-expressed receptors. The authors suggested that this 

pharmacology was identical to the one reported for the k 2 receptor subtype. Similar 

suggestion by Bhushan et a l, (2004) was based on using a bivalent ligand strategy to target a 

KOR/DOR heterodimer. The authors observed a pharmacology comparable to that suggested 

for k 2 sites when their bivalent ligand was tested on cells co-expressing DOR and KOR but 

not on mixed cells expressing either DOR or KOR. This study also provided evidence for 

possible development of drugs specifically targeting heterodimers. Jordan and Devi, (1999) 

observed a synergistic ligand binding when combinations of KOR and DOR ligands (e.g. 

DPDPE and U69593) were tested on cells co-expressing KOR and DOR. Taken together 

these results suggest the fomiation of a new ligand binding site upon KOR/DOR 

heterodimersation, which could account for the unexplained pharmacological data attributed 

to the k 2 subtype.

- MGR/DOR heterodimer

Similarly, MGR/DGR heterodimerisation may result in the generation of a novel binding site 

with distinct pharmacology than that of either individual receptor expressed alone. Several 

groups have explored these new properties. George et a l, (2000) observed a reduced affinity 

for synthetic agonists such as DADLE, DPDPE or DAMGG whereas endogenous opioid 

ligands endomorphin 1 and Leu-enkephalin exerted an enhanced affinity for the heterodimer. 

Additionally, a synergistic ligand binding was reported by Martin and Prather, (2001) as co

exposure of cells co-expressing DGR/MGR to DAMGG and DPDPE resulted in the 

synergistic displacement of ^H-[DPDPE]. It was also described that occupation of DGR by 

ligands including deltorphine II, TIPP-i(f, naltriben or ICI 174 864 enhanced MGR agonist 

binding (Gomes et ah, 2003). In a recent report, in which the authors established a 1:1 

MGRiDGR ratio, differences in ligand binding affinity between homodimer and hetero dimer 

was confirmed (Law et al., 2005). The authors monitored a decrease in high affinity binding 

for DAMGG, morphine and endomorphin 1 and an increase of 10 fold for endomorphin 2
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MOR/KOR heterodimer

As MOR/KOR heterodimer was recently demonstrated as dimerising few data are available 

on the pharmacology o f this homodimer. However, Wang et al, (2005) suggested a KOR 

binding profile for the MOR/KOR heterodimer.

1.5.4 Functional changes

- DOR/KOR heterodimer

A potential DOR/KOR heterodimer has been reported to exhibit new functional properties 

(Jordan and Devi, 1999). Adenylate cyclase inhibition was found to be increased by agonists 

when these two receptors were co-expressed. Furthermore, MAPK kinase phosphorylation 

was enhanced when a combination of selective agonists of each receptor was used. The 

trafficking properties of this dimer were also modified as etorphine, a non-selective agonist 

which provoke internalisation of DOR but not KOR, was unable to induce internalisation of 

DOR when co-expressed with KOR.

- MOR/DOR heterodimer

Functional changes upon MOR/DOR heterodimer formation have been widely investigated. 

Firstly, enhanced inhibition of adenylate cyclase activity was documented upon co-exposure 

to MGR and DGR agonists (Martin and Prather, 2001) as well as when morphine was co

administrated with the DGR antagonist TIPP-\|/ (Gomes et al., 2004). As morphine is a 

clinically relevant drug further studies were conducted to explore the physiological 

consequences of the observed enhanced activity upon co-exposure to morphine and TIPP-\|/. It 

was shown that morphine-induced analgesia was increased in the presence of TIPP-\j/ 

therefore the MGR/DGR heterodimer might be used as a model to develop novel drug 

combinations to treat pain. Secondly, alteration in G protein binding was observed when
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whereas no difference in affinity for the tested antagonist was observed upon MGR/DGR co

expression. These results contrast with some of the previous reports, perhaps due to a 

difference in MGRiDGR ratio.
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DOR/MOR heterodimer was fomied. The authors demonstrated that when DOR and MGR 

were co-expressed a switch from PTX sensitive Gi to PTX insensitive G proteins was 

occurring (George et ah, 2000). Moreover, it was reported that the ability of MGR to inhibit 

Ca^”̂ release was altered when co-expressed with DGR (Charles et al., 2003). Finally, it was 

observed that the internalisation pattern of the individual receptors was altered by heterodimer 

formation. DPDPE-induced internalisation was abolished when MGR was co-expressed with 

DGR. However, the results of Law et al., (2005) are mainly in opposition with the 

observations reported by the previous studies. They demonstrated that the ability of MGR 

agonists to inhibit adenylate cyclase activity was similar in the presence or absence of DGR. 

No changes in G protein coupling was observed, contrasting with George et al, (2000). DGR 

and MGR were also suggested as internalising as monomers, contrasting with He et al, (2002) 

who suggested that MGR receptors were internalising as homodimers.

Opioid receptor heterodimerisation with other GPCRs

Gpioid receptor heterodimerisation with less related GPCRs has been reported to alter 

trafficking properties of the receptors. This is exemplified by the heterodimers that p2- 

adrenoceptor form with KGR and DGR (Jordan et al., 2000). In cells co-expressing P2- 

adrenoceptor and DGR, DGR was described as undergoing endocytosis when cells were 

treated with a Pi-adrenoceptor agonist. Conversely, the p2-adrenoceptor in these cells was 

internalised upon DGR agonist treatment. By contrast, when the p2-adrenoceptor was co

expressed with KGR, KGR abolished the ability of p2-adrenoceptor to internalise (Jordan et 

al., 2000). Trafficking alteration was also obseiwed following SSTr2a and MGR dimérisation, 

as MGR was obseiwed to undergo internalisation upon SSTr2a agonist exposure (Pfeiffer et 

al., 2002). Additionally, MGR cross-phosphorylation and desensitisation was reported when 

the SSTr2a subunit of a SSTr2a/MGR heterodimer was activated and vice versa. Similarly, 

cross-desensitisation was documented for MGR/CCR5 interactions (Chen et al., 2004). Study 

of DGR and a 2c-adrenoceptor interactions in Neuro 2A cells revealed neurite outgrowth 

enhancement of the cells when these receptors where co-expressed. The authors suggested 

that this phenomenon might account for DGR and a 2c-adrenoceptor synergy in spinal 

antinociception (Fairbanks et al., 2002).
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In conclusion, a certain amount of data have been collected on opioid receptor dimérisation. 

Some are complementary whereas others are in contradiction. However, new functional and 

pharmacological properties have definitively been identified. For these reasons, further 

studies need to be pursued for a better comprehension of the structure and role of opioid 

dimer formation. A better understanding of this phenomenon is important to try to improve 

design of novel compounds targeting those entities.
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Figure 1.1: G protein cycle following GPCR activation

Binding of an agonist induce a conformational change in the receptor triggering its 

association with the heterotrimeric G protein (apy). This association induces a conformational 

change within the G protein and induces the exchange of GDP for GTP followed by the 

dissociation of the G protein into G^ and Gyp subunits. These two complexes are then able to 

activate their effectors. GTP is rapidly hydrolyzed to GDP which leads to the reassembly of 

the inactive heterotrimer.
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Figure 1.2: Rhodopsin organisation in native dise membranes

The organisation of rhodopsin in dimer rows visualised by atomic-force microscopy in mouse 

disc membranes. From Fotiadis et aL, (2003)
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Figure 1.3: Interactions between GPCR monomers

Various domains have been implicated in GPCR dimer formation A. the C-terminal tail via 

coiled-coil interaction B. by formation of disulphide bridges between two cysteine residues 

and C. through transmembrane domains.

Adapted from Bouvier (2001)
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Figure 1.4: Contact and domain-swapped dimers

Contact dimers involved two GPCR monomers which are in contact via transmembrane 

helices. In the example shown this is predominantly TMV and VI. In domain-swapped 

dimers, these domains are exchanged between the receptor monomers. Adapted from 

Breitwieser (2004).
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CHAPTER 2 

Materials and Methods
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2.1 Materials

2.1.1 General reagents

BDH, Lutterworth, Leicestershire, UK

Sodium di-hydrogen orthophosphate, ethanol, methanol, isopropanol, di-sodium-hydrogen 

orthophosphate, urea

Calbiochem, CN Biosciences UK, Nottingham, UK

Pansorbin®Cells, Güa subunit myristoylated rat recombinant, NP40

Duchefa, Haarlem, The Netherlands

Yeast extract, tryptone, agar

Fisher Scientific UK Ltd., Loughborough, Leicestershire, UK

Calcium chloride, glycine, HEPES, sucrose, SDS, HCl, potassium acetate, potassium 

dihydrogen orthophosphate, sodium hydrogen carbonate. Tris

Interactiva Thermo Hybaid, Ulm, Germany

Oligonucleotides for PCR reactions

Invitrogen BV, Groningen, The Netherlands

NuPage® Novex pre-cast bis-tris gels, Xcell Suielock^'^ mini-cell tank, Xcell II™ blot 

module, MES rumiing buffer, MOPS running buffer

Kodak, Kodak Industrie France

MXB X-ray film

Pierce, Perbio Science UK Ltd, Tattenhall, Cheshire, UK

Supersignal® west pico chemiluminescent substrate

Promega UK Ltd., Southampton, UK
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Restriction endonucleases, Pfu Polymerase, T4 DNA ligase, calf intestinal alkaline 

phosphatase, DNA purification kit Wizard™, Plus SV Minipreps and Wizard^^ Plus SV 

Maxipreps systems

Qiagen, Crawley West Sussex, UK

QIAquick gel extraction kit, Maxiprep kit

Roche Diagnostics Ltd., Lewes, East Sussex, UK

Complete mini-protease inhibitor cocktail tablets, Ikb DNA ladder, bovine serum albumin 

SIGMA-Aldrich Company Ltd., Poole, Dorset, UK

Agarose, magnesium chloride, sodium chloride, sodium hydroxide, DTT, EDTA, 

bromophenol blue, deoxycholic acid, Triton X-100, DMSO, ethylene glycol, glycerol, MES, 

Tween 20, ampicillin, Protein G-sepharose, ethidium bromide, Ponceau S, manganese 

chloride, sodium hydroxide, polyethylenimine, rubidium chloride, GTPyS, GDP, GppNHp

Stratagene, La Jolla, CA, USA

Quikchange®site directed mutagenesis kit

2.1.2 Tissue culture plastic ware and reagents

American Tissue Culture Collection, Rockville, MD, USA

HEK 293 cells

Bibby Sterelin Ltd., Sone, Staffordshire, UK

15ml and 50ml centrifuge tubes

Costar, Cambridge, MA USA

5ml, 10ml and 25 ml pipettes, 75cm^ tissue culture flasks, 100mm dishes, cell scrapers

Gibco BRL, Life technologies Ltd., Paisley, UK

OPTIMEM-1, L-glutamine (200mM), NBCS
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Novagen, EMD Biosciences Inc., Darmstadt, Germany

Gene juice transfection reagent

SIGMA-Aldrich Company Ltd., Poole, Dorset, UK

Pertussis toxin, DMEM, Trypsin-EDTA

2.1.3 Radiochemicals

Amersham Pharmacia Biotech UK limited, Buckinghamshire, England

l-[prn/7y/-2 ,3 -^H] Dihydroalprenoiol 61Ci/mmol

2.1.4 Ligands

SIGMA-Aldrich Company Ltd., Poole, Dorset, UK

DADLE, DAMGO, DPDPE, Naloxone, Isoproterenol, Propanolol

TOCRIS

ICI 174 864, CTOP, U69593

2.1.5 Antisera 

Anti-Flag antibody M2

Mouse monoclonal antibody that binds N-teiminal Flag protein 

Purchased from SIGMA-Aldrich Company Ltd., Poole, Dorset, UK

Anti-Mvc antiserum

Rabbit polyclonal antiserum which detects Myc tagged proteins 

Purchased from Cell Signalling Teclinology, NEB, UK
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PerkinElmer life science, Inc.Boston, MA, USA

Diprenorphine [15,16-^H] 50 Ci/mmol 

Guanosine 5’-(y-thio) triphosphate, [^^S] 1250 mCi/mmol



Anti-GFP serum

Sheep antiserum raised against GFP, produced by the Scottish Antibody Production Unit, 

Lanarkshire, UK

Anti-mouse IgG

Goat polyclonal antiserum conjugated with horseradish peroxidase, purchased from 

Amersham Pharmacia Biotech, Buckinghamshire, UK

Anti-rabbit IgG

Donkey polyclonal antiserum conjugated with horseradish peroxidase, purchased from 

Amersham Pharmacia Biotech, Buckinghamshire, UK

Anti-sheep IgG

Donkey polyclonal antiserum conjugated with horseradish peroxidase, purchased from 

Jackson Immunoresearch, PA., USA

Anti-Gmi-i SG3 #13

From sheep, in house stock
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2.2 Methods:

Standard Buffers:

Tris EDTA (TEf (^X^

Tris/HCL lOmM 

EDTA O.lmM 

pH adjusted to 7.5

This was made for membrane preparation and protein quantification

Phosphate Buffered Saline (PBS) fix )

Na2HP0 4  S.lmM

K2HPO4 1.5mM

NaCl 140mM

KCl 2.7mM

pH adjust to 7.4

2.2.1 Molecular Biology

Manipulations were performed with materials that had been autoclaved. Gloves were worn to 

prevent contamination.

AJ Polymerase Chain Reaction (PCR)

PCR was performed with sterile materials. This technique used a modified polymerase 

enzyme which is resistant to higher temperatures named Pfu polymerase. It permits 

amplification of specific parts of DNA. It was used to introduce point mutations, tags and new 

restriction sites in DNA constructs.

PCR reaction mix:

Pfu polymerase buffer (1 Ox) 5pi

DMSO 5 pi
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Deoxynucleotide tri-phosphates dNTP 1 pi

(0.2mM of dATP, dCTP, dTTP, dGTP)

Primer sense: 25 pmol/pl ip l

Primer antisense : 25 pmol/pl 1 pi

DNA template 50 ng/pl 1 pi

Pfu enzyme 1 pi

dHiO to a final volume of 50pl

PCR cycles:

1/Preheating 95 °C 5min

2/Denatmation 95 °C Imin

3/Annealing 50-60°C (depending on the primer Tin) Imin

4/Extension 72°C 3min

Repeat from step 2/ 29 x

5/End 72°C lOmin

6 /Hold 4'^C

All reactions were performed on a Thermocycler (Mastercycler eppendorf). The annealing 

temperatures were determined depending on the Tm of the primers used for each PCR.

B/ Introduction of point mutations (QuikChange site-directed point mutagenesis kit)

Point mutations were introduced using QuikChange kit (Stratagene) according to the 

manufacturers instructions:

Design o f primers to introduce point mutations:

Each primer was designed depending on the desired mutation to be introduced. Primers had a 

length of between 25 to 45 bases, a melting temperatm'e greater than or equal to 78°C and a 

minimum GC content of 40%.

Reaction mix:

Reaction buffer 1 Ox 5 pi

Deoxynucleotide tri-phosphates dNTP 1 pi

(0.2mM of dATP, dCTP, dTTP, dGTP)
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Primer sense; 125 ng/pl Ipl

Primer antisense : 125 ng/pl Ipl

DNA template 50ng/pl 1 pi

PfuTurbo QYLzymQ {2.5\M\û) Ipl

dH20 to a final volume of 50pl

PCR program:

The following PCR program was used to introduce mutations.

1/Preheating 95°C 30 sec

2/Denaturation 95°C 30 sec

3/Annealing 55°C Imin

4/Extension 6 8 °C 1 min/kb of plasmid length

Repeat from step 2/ 18 cycles

5/End IT C lOmin

6 /HoId 4°C

Digestion bv Dpnl:

Amplified DNA and a diluted sample of parental DNA (negative control) were digested with 

Ipl of Dpnl restriction enzyme (lOU/pl) for Ih at 37°C. This allowed the digestion of the 

parental (i.e. the non mutated) super coiled dsDNA.

Transformation:

The digested mix and negative control were transformed into XL 1-Blue supercompetent cells 

following the protocol described later in section 2.2.2. No colonies are expected on the 

negative control plate.

C/ DNA constructions

DORV^%.V^^'*D-G„.C^^^I

DOR-GiiaC^^^I cDNA cloned in pcDNA3.1 was previously generated in the laboratory 

(Moon et ah, 2001) and was used as a template to introduce mutations in the 2"  ̂ intracellular 

loop of the receptor, using the following primers:

Sense primer:
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5’-GAC CGC TAC ATC GCT GAG TGC CAC C C I GAC AAG GCC CTG GAC TTC-3' 

Antisense primer:

5’-GAA GTC CAG GGC CTT GTC AGG GTG GCA CTC AGC GAT GTA GCG GTC-3’ 

The initial valines (GTC) were mutated into glutamate (GAG) and aspartate (GAC) using 

QuikChange kit (Stratagene). Bold letters indicate bases mutated. The cDNA was amplified 

by PCR using the primers containing the mutations and using a specific PCR program as 

described previously in section 2.2.IB. The PCR product was then digested with Dpnl and 

transformed into bacteria.

DOR-Gi,„G^"^A.C^^'l

DOR-GiiaC^^'l cDNA was used as a template to introduce the mutation in Gna using the

following primers:

Sense primer:

5’-G TTT GAC GTG GGA GCC CAG AGA TCA GAG C-3’

Antisense primer:

5’-G CTC TGA TCT CTG GGC TCC CAC GTC AAA C-3’

The initial glycine (GGC) was mutated into alanine (GCC) using QuikChange kit 

(Stratagene). The cDNA was amplified by PCR. The PCR product was then digested by Dpnl 

and was transformed into bacteria.

Flag DORV'^°E.V'^'*D-Gii„C^^‘T

FlagDORV’^°E,V*^‘'D-GiioiC^^’l was constructed using the following primers:

Sense primer

5’ ACT AGT GCT AGC ATG GAC TAG AAG GAC GAC GAT GAT AAG  GAA CCG GCC 

CCC TCC GCC GGC-3’

Antisense primer

5’-GAA TTT GGA TCC GGC GGC AGC GCC ACC GCC GGG-3’

DORV^^^EV^ '̂^D was amplified between these primers The sense primer contained a flag 

sequence (in italics) and an Nhel restriction site (underlined) and coiTesponds to the N- 

terminal region of DOR. The antisense primer, contained a BamHl site (underlined) and 

corresponds to the C-terminal region of DOR, PCR product and pcDNA3.1 containing 

GiiaC^^^I were digested by Nhel and BamHl. The digested products were then ligated.
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Mvc DOR-Gii„G^°^A.C^ ‘̂l

MycDOR-Gi]ctG^*’̂ AC^*'l was constructed using the following primers;

Sense primer

5 -CCC TTT GCT AGC ATG GAA CAA AAA CTT ATT TCT GAA GAA GAT CTG GAA 

CCG GCC CCC TCC GCC-3’

Antisense primer

5’-GAA TTT GGA TCC GGC GGC AGC GCC ACC GCC GGG-3’

DOR was amplified between these primers. The sense primer contained myc sequenced (in 

italics) and Nhel restriction site (underlined) and corresponds to the N-terminal region of 

DOR. The antisense primer, contained BamTR site (underlined) and coiTesponds to the C- 

terminal region of DOR. PCR product and pcDNA3.1 vector containing GiiaG^^^A,C^^^I were 

digested by Nhel and BamHl. The digested products were then ligated.

MOR-GiiaC^^^I cDNA cloned in pcDNA3 was previously generated in the laboratory 

(Massote et aL, 2002) and was used as a template to introduce mutations in the 2"  ̂

intracellular loop of the receptor using the following primers:

Sense primer:

5’-GAT CGA TAC ATT GCA GAG TGC CAC CCT GAC AAG GCC TTA GAT TTC-3’ 

Antisense primer:

5’-GAA ATC TAA GGC CTT GTC AGG GTG GCA CTC TGC AAT GTA TCG ATC-3’ 

The initial valines (GTC) were mutated into glutamate (GAG) and aspartate (GAC) using 

QuikChange kit (Stratagene). Bases mutated are in bold. The cDNA was amplified by PCR 

using primers containing the mutations and a specific PCR program. The PCR product was 

then digested by Dpnl and was transformed into bacteria.

MOR-Gn„Ĝ "̂ A.Ĉ '̂l

MOR-GfiaC^*'l cDNA was used as a template to introduce the mutation in Gua using the

following primers:

Sense primer

5’-G TTT GAC GTG GGA GCC CAG AGA TCA GAG C-3’

Antisense primer

5’-G CTC TGA TCT CTG GGC TCC CAC GTC AAA C-3’
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The initial glycine (GGC) was mutated into alanine (GCC) using QuikChange kit 

(Stratagene). The cDNA was amplified by PCR. The PCR product was then digested by Dpnl 

and was transformed into bacteria.

KOR-Gn.C^^'l

KOR-GiiaC I was constructed using the following primers:

Sense primer

5 -CCC AAA AAG CTT ATG GAG TCC CCC ATC CAG ATT TTC C-3’

Antisense primer

5’-GGC ATC GGT ACC TAC TGG CTT ATT CAT CCC ACC CAC ATC CCT CAT GGA- 

3’

ratKOR was amplified between these primers corresponding to KOR N and C-termini and 

containing Hindlll and Kpnl restriction sites (underlined). The PCR products and pcDNA3 

vector containing Gjia were digested by the above enzymes. As the rKOR contained an 

internal Hindlll site, a two-way ligation was used to ligate the vector and the 2 pieces of 

digested PCR products.

KORV̂ ^̂ E.V̂ *̂ D̂-Gi,. Ĉ ^̂ I

KORGiiaC^^^I cDNA cloned in pcDNA3.1 was used as a template to introduce mutations in 

the 2 "̂  intracellular loop of the receptor, using the following primers:

Sense primer

5’-GAC CGC TAC ATT GCC GAG TGC CAC CCT GAC AAA GCT TTG GAT TTC-3’ 

Antisense primer

5’-GAA ATC CAA AGC TTT GTC AGG GTG GCA CTC GGC AAT GTA GCG GTC-3’ 

The initial valines (GTC) were mutated into glutamate (GAG) and aspartate (GAC) using 

QuikChange kit (Stratagene). Bases mutated are in bold. The cDNA was amplified by PCR 

using the primers containing the mutations and using a specific PCR program. The PCR 

product was digested by Dpnl and was transformed into bacteria.

KOR-Gii„Ĝ "̂ A.Ĉ '̂l

KOR-GiiaC^^'l cDNA was used as a template to introduce the mutation in Gua using the

following primers:

Sense primer
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5’-G TTT GAC GTG GGA GCC CAG AGA TCA GAG C-3’

Antisense primer

5’-G CTC TGA TCT CTG GGC TCC CAC GTC AAA C-3’

The initial glycine (GGC) was mutated into alanine (GCC) using QuikChange kit 

(Stratagene). Bases mutated are in bold. The cDNA was amplified by PCR. The PCR product 

was then digested by Dpnl and was transformed into bacteria.

p9-adrenoreceptor-Gi, ryĈ  ̂ I

P2”adrenoreceptor-Giia cDNA previously generated in the laboratory (Feng et al.^ 

unpublished) was used as a template to introduce the mutation in Gii« using the following 

primers:

Sense primer

5’-GGG ATA TCT TAG AAT GGG CTG CAC ACT GAG C-3’

Antisense primer

5’-GCC ATT CTC GAG TTA GAA GAG ACC GAT GTC TTT TAG GTT-3’

The C^^ Î mutation was introduced by amplifying Giia-C^^’l. The sense primer corresponding 

to the beginning of the G protein sequence and containing an Xbal restriction site (underlined) 

was used as well as an antisense primer containing the C^^ Î mutation, Xhol site (underlined) 

and corresponding to the end of the G protein. The PCR product and vector were digested. 

The initial Giia contained in pz-adrenoreceptor-G,i« cDNA was digested and extracted from 

the DNA plasmid. Digested PCR product and plasmid containing p2-adrenoreceptor were 

ligated.

Flag-TMl-Gu„C^^‘l

Flag-TMl-Giia C^^'l was constructed using the following primers:

Sense primer

5’ ACT AGT GCT AGC ATG GAC TAC AAG GAC GAC GAT GAT AAG GAA CCG GCC 

CCC TCC GCC GGC-3’

Antisense primer

5’-CCC ATT GGA TCC GGT GGC CGT CTT CAT CTT AGT GTA CCG-3’ 

Flag-DOR-GiiaC^^^I was used as template for PCR. The first 252bp were amplified by PCR 

and were then digested using BamRl and Nhel restriction sites (underlined). The same
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digestion was used on the template, Nhel being situated at the end of the receptor sequence. 

PCR products and vector were ligated.

D/ DNA gel electrophoresis

Agarose gels were run in order to check for the presence of PCR products, for gel extraction, 

or before a ligation.

Buffers:

Tris acetate EDTA Buffer (TAE’t tlX1

Tris-acetate 40mM

EDTA ImM

pH adjusted to 8

Used to prepare DNA agarose gels and used also as running buffer.

Prepared as a 5OX stock solution (242g Tris/HCl, 57.1ml of glacial acetic and 100ml of 

lOmM EDTA) and was diluted when required to IX.

Gel loading Buffer 6x

Bromophenol Blue (2%) 1.25ml

Sucrose 4g

dHzO 10ml

This loading buffer was mixed with the DNA samples to make a final IX concentration. 

Agarose gel

35 ml of Ix TAE was added to 0.35g of agarose for a 1% gel. This percentage depended on 

the size of the DNA fragment required to be visualized (0.8 to 2% gel). The mix was heated

for 1 mill in a microwave and 3.5pi of Ethidium Bromide (2.5 mg/ml) was added in order to

visualise the DNA under UV light. The gel was poured in the appropriate gel tank of the 

electrophoresis kit (Life technologies, Gibco, Horizon 58 Model). After solidification the gel 

was immersed in TAE (IX) and the DNA samples previously mixed with gel loading buffer 

were loaded. A marker solution (Ikb ladder) was also loaded in order to determine the sizes 

of the band(s) visualized. The samples were run for 20 to 40 min under a voltage of 50 to
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lOOV. The DNA was visualised under UV light using a BioRad Gel Doc 2000. The size of 

each DNA fragment was evaluated by comparison with the markers.

E/ DNA digestion by restriction endonucleases

cDNAs were digested by restriction enzymes to cany out the subcloning of DNA fragments

into plasmids. The digestions were set up as follows;

lOX restriction enzyme buffer 2 pi

DNA (ipg/pl) Ipl

Enzymes (lunit/pl) 2pi

dH2 0  up to 2 0 pl

This mix was incubated between 2h and 24h at a temperature dictated by the restriction 

enzyme used.

F/ Alkaline phosphatase treatment

Digested plasmid was treated with alkaline phosphatase to dephosphorylate the vector ends. 

This treatment prevents the plasmid re ligating.

Digested DNA 20pi

Phosphatase Buffer lOX 5 pi

Phosphatase alkaline (lU /pl) 5 pi

dH20 up to 50pl

This mix was incubated at 37°C for 30 min to Ih. The enzyme was then inactivated by 

heating the sample for 15 min at 65°C.

G/ Gel extraction (Quiagen QIAquick Kit)

Purification of DNA from agarose gels was performed using Qiaquick Gel Extraction 

Purification Kit (Quiagen, West Sussex, UK). After running the agarose gel a DNA fragment 

was excised with a razor blade under a UV lamp and transfered to an Eppendorf tube. The gel 

slice was weighed and 3 volumes of buffer QG added. The samples were incubated at 50°C 

for 10 min to dissolve the gel. One volume of isopropanol was added for DNA pieces smaller 

than 500 bp or bigger than 4kb. The mix was transferred to a DNA binding column and 

centrifuged for Imin at ISOOOxg. The column was washed by centrifugation with 750 pi
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buffer PE. The column was placed in a clean Eppendorf tube and DNA eluted with 30pi of 

sterilised water by centrifugation. The eluated DNA was stored at -20°C.

H/ Ligation

Digested cDNA and plasmid were ligated using T4 DNA ligase (Promega). Prior to ligation 

plasmid and insert quantity were assessed by agarose gel and a plasmid:inseit ratio of 1 :2  was 

used for each ligation.

1 OX T4 DNA buffer Ipl

T4 DNA Ligase ( 1 unit/pi) Ipl

Plasmid 1 pi

Insert 2 pi

dH20 up to lOpl

This mix was incubated for 4h at room temperature or overnight at 4°C.

2.2.2 Preparation of competent bacteria, transformation, DNA purification

AJ General Materials 

Lnria Bertani (LB) broth

Trypton lOg

Yeast Extract 5 g

NaCl lOg

dH2 0  up to 11

The solution was sterilised by autoclaving.

LB Amnicillin agar plates

This solution was the same as above but supplemented with agar (1.5% LB).

The solution was autoclaved and left to cool down to 55°C before adding ampleillin to a final 

concentration of 50pg/ml. 25ml of liquid LB-agar was poured into 10cm dishes and allowed 

to solidify at room temperature. Plates were stored at 4°C.

75



B/ Preparation of competent bacteria DH5a

Buffer 1:

Potassium acetate IM 3ml

RbCl IM 10ml

CaClz IM 1ml

MnCL IM 5ml

Glycerol (80%) 18.75ml

dHiO to final volume 1 0 0 ml

pH adjusted to 5.8 with acetic acid and sterilised.

Buffer 2:

MOPS lG0mM,pH6.5 4ml

CaCL IM 3ml

RbCl IM 0.4ml

Glycerol (80%) 7.5ml

dHiO to final volume 40ml

pH adjusted to 6.5 with HCl and sterilised.

A conical flask containing 100ml of LB was innoculated with a 5ml culture of DH5a and 

allowed to grow at 37°C in a shaker for 90min or until an optical density of 0.48 at 550nm 

was reached. The culture was then chilled on ice. It was centrifuged at 3000xg for 10 min at 

4°C. Each pellet was resuspended in 20ml of buffer 1, chilled on ice and centrifuged as 

before. They were resuspended in 2ml of buffer 2 and chilled on ice for 15 min. 220 pi 

aliquots were stored at -80°C for future transformation.

C/ Transformation of DNA

Transformation is the introduction of DNA into bacteria. It allows production of a high 

amount of DNA by replication of bacteria (such as the DH5a strain of E.coli).

This technique was used in order to amplify DNA produced by molecular biology or to make 

a large amount of a specific DNA construct.

Protocol
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Ip l of pure DNA or 5 pi for ligated DNA were incubated with 50pl of competent bacteria for 

15 min on ice. The mix was heat shocked at 42°C for 45s and returned on ice for 2 min. 450 

pi of LB was then added. The samples were allowed to recover by incubation for 45 min at 

37°C in a shaking incubator.

200 pi of the mix was spread out on a LB agar ampicillin plate. They were incubated 

overnight in the incubator at 37°C. The next day random colonies were picked from the plate 

and cultured in 5ml LB with ampicillin overnight. Glycerol stocks were made of the different 

DNAs and kept at -80°C.

D/ DNA Purification 

Miniprep (Promega Wizard Plus SV Miniprep)

The DNA contained in bacteria from the above cultures were purified with Promega Wizard 

Miniprep kit according to the manufacturers’ instructions:

A 5ml culture was spun down and the cell pellet was resuspended in resuspension buffer. The 

pellet was lysed using the lysis buffer for 5 min at room temperature. Neutralising solution 

was added to precipitate the DNA and the sample was spun for 10 min at 13000g. The 

supernatant was transferred into a DNA piuification column. The column was washed twice 

with wash buffer and the DNA was eluted using sterile water.

Maxiprep (Quiafilter Quiagen Plasmid Purification Kit)

5ml bacterial culture containing the desired DNA was poured into 100ml LB medium 

containing the appropriate antibiotic and grown overnight at 37°C. Bacterial cells were 

harvested the next morning by centrifugation at 6000xg for 15 min at 4°C. The bacterial pellet 

was resuspended in 10ml buffer PI, lysed by addition of 10ml buffer P2 and incubated for 

5min at room temperature. The DNA was precipitated by adding 10ml of buffer P3 poured 

directly into the barrel of the Quiafilter cartridge and incubated for 10 min. The filter cell 

lysate was transferred into DNA extraction columns. They were washed twice, DNA was 

eluted and then precipitated by adding 10.5ml of isopropanol. DNA was pelleted by 

centrifugation at 15000xg for 30min at 4°C. DNA pellet was washed with 5ml of 70% ethanol 

and recentrifuged at 15000xg for lOmin. The pellet was resuspended into sterile water and the 

absorbance was measured.

77



E/ Measure of DNA concentration

The concentration of plasmid DNA was determined by UV spectrophotometry at 260nm, 

using a UV-1201 UV-VIS spectrophotometer (Shimadzu). A 200x dilution was performed 

and the absorbance read. The OD was transformed into a concentration in pg/pl knowing that 

an OD of 1 at 260nm corresponds to 50pg/pl of double stranded DNA. For 200x diluted 

samples, an OD of 0.01 corresponded to O.lpg/pl.

The absorbance at 280 nm was also measured in order to assess the purity of the DNA, A 

DNA solution with an A260/A280 ratio between 1.7 and 2.0 was considered pure enough for 

use.

F/ DNA sequencing

DNA constructs were sent for sequencing to BaseClear, 2333C Leinden, The Netherlands. 

The constructs were fully sequenced to check that the required mutations, tags or DNA were 

coiTectly introduced and that no other mutations had appeared during the process of making 

the constructs. BLAST2 program was used to align the different sequences.

2.2.3 Cell culture

The tissue culture manipulations were perfonned in a laminar flow hood. Aseptic techniques 

were used with all manipulations of cells or preparations of dishes. Liquid waste was added to 

antiseptic before discarding. Solid waste was removed and autoclaved before being disposed.

AJ Routine cell culture

Human Embryonic Kidney cells (HEK 293 T) were used for transient transfection. The HEK 

293 T cell line is a derivative of the HEK 293 that give a higher level of expression after 

transient transfection. The cells were cultured in DMEM supplemented with 10% Newborn 

Calf Serum and 2mM L-Glutamine. They were grown in monolayers in 75cm^ tissue culture 

flasks in humidified atmosphere, at 37°C and under 95% air / 5% CO2 in cell culture 

incubators (Jencons Nuaire). The cells were detached using 2ml trypsin solution, followed by
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1min incubation at 37°C and neutralisation with 5ml medium. They were then centrifuged for 

5min at lOOOxg, the supernatant discarded, then resuspended in medium and plated out at 

1:10 dilution in 75 cm^ flasks for routine maintenance or into 10cm dishes for transfection the 

next day.

B/ Transient Transfection

Cells were transfected using Lipofectamine reagent (Gibco Life Technologies) or Gene Juice 

(Novagen) and the appropriate cDNA(s) according to the manufacturers’ instructions.

Between 1 to 8 pg of the required DNA(s) was incubated in 500pl Optimem plus 500pl of 

Lipomix (Optimem and Lipofectamine 1:30) or lOpl Gene Juice plus 190pl Optimum for 30 

min under the laminate air flow cabinet. After 30 min the mix was adjusted to 5 ml by adding 

Optimum and poured onto 50-70% confluent cells cultured in 10 cm dishes. Dishes were then 

left 5h in the tissue culture incubators. After this time, the transfection mix was removed and 

replaced by 10 ml fresh DMEM supplemented with 10% Newborn Calf Serum and 2mM L- 

Glutamine. The medium was changed the following morning and cells were hai-vested 48h 

after tranfection.

Pertussis Toxin treatment:

Pertussis toxin (PTX) is secreted by Bordella pertussis. This toxin catalyses the addition of 

ADP-ribose to the a  subunit of Gi and prevents receptor activation of the G protein. The same 

transient transfection protocol as above was followed, except that the cells were treated with 

PTX (25ng/ml) for 16 to 18 h prior to haivesting.

1 ml of a 250 ng/ml stock of PTX in medium was added to 9 ml of medium.

C/ Cell Harvesting

Cells were harvested by removing medium followed by addition of 5ml ice cold PBS. The 

cells were scraped out from the dishes and then centrifuged at 3000xg for 5min at 4°C on a 

bench top centrifuge. The cells were washed by resuspension in 10ml PBS and centrifuged as 

above. The PBS was then discarded and the cell pellets were stored at -80°C or used directly.
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D/ Cell number determination

Cells were harvested as before and 50pl of the 10ml resuspended cells were diluted lOx in 

PBS and 15pi was applied to a Neubauer cell to count cell number.

2.2.4 Membrane Preparation

A/ Membrane preparation

Frozen cells were resuspended in ice cold TE supplemented with an anti-protease cocktail.

They were transferred into a homogeniser, and broken down by repeated strokes (45 to 50).

The resultant homogenate was then centrifuged at 1200xg for 10 min at 4°C. The supernatant 

was retained and transferred into ultracentrifugation tubes (Beckman). Before centrifugation 

the rotor was prechilled and the tubes were balanced. The samples were centrifuged at 

50000xg for 20 min at 4°C using a Beckman Optima™ TLX Ultrancentrifuge. The
.

supernatant was discarded and the pellet was resuspended in 500pi ice cold TE buffer, first by 

pipetting up and down and then using a syringe. The protein concentration of the different 

samples was then measured using the BCA assay method. The samples were frozen at -80°C 

until required.

B/ Determination of the protein concentration using the BCA assay

Reagents:

Reagent A: Reagent B

1%BCA 4% C uS04

2% NazCO)

0.16% sodium tartrate 

0.4% NaOH 

0.95% NaHCOs 

pH adjusted to 11.25

Protein concentration of cell lysates or membrane preparations was determined using 

bincinhononic acid (BCA) and copper sulphate solutions. Proteins reduce Cu(II) ions to Cu(I)
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ions in a concentration dependent manner and BCA forms a complex with Cu(I) ions to 

generate a puiple solution.

Standard protein concentrations were prepared using BSA diluted with water in a range of 

0.2pg/pl to 2pg/pl. 96 well plates were used to perform the assays. 10 pi o f the standards and 

the different samples were added. Then 200pl of a mix of reagent A and B (1 part reagent B 

for 49 parts reagent A) was distrubuted in each well. The plate was then incubated for 20min 

at 37“C. The OD was then measured at 492nm using an SLT spectrophotometer.

2.2.5 Radioligand binding experiments

Membrane preparations were used for all the binding experiments.

AJ  Binding buffers 

Tris EDTA-MgCb (TEMl ( I X )

Tris 75mM

EDTA ImM 

MgClz 12.5mM 

pH adjusted to 7.5

Tris EDTA fTE) ( IX )

Tris 75mM

EDTA ImM 

pH adjusted to 7.5

This was used for washing of binding experiments and usually prepared as a 5X stock 

solution that was diluted as required

B/ Saturation experiments

r̂ H1-Diprenorphine binding

The expression of opioid receptors was assessed using H] -diprenorphine. This was 

performed in 96 well blocks in triplicate, containing the following mixes:
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25pl (0.4pg/pl) membrane + 25 pi [^H]-diprenorphine (range of concentrations) + 50pl TEM= 

Total binding

25pi (0.4pg/pl) membrane + 25pl [^H]-diprenorphine (range of concentrations) + 25pl 

(400pM) naloxone + 25pi TEM = Non-specific binding

Binding was initiated by adding 10 pg of membrane preparation to TEM containing 0.1 nM to 

8nM of H]-diprenorphine. Non-specific binding was deteiininated in the same way but in 

presence of lOOpM final concentration of naloxone. Reactions were incubated for Ih at 25°C. 

Bound ligand was separated from free by vacuum filtration through GF/B filters. The filters 

were pretreated with 0.3% polyethyleneimine in TEM and washed three times with cold TE 

buffer. Bound ligand was estimated by liquid scintillation spectroscopy. The specific binding 

was calculated by subtracting non-specific binding fiom total binding. Data were analysed 

using GraphPad Prism software (San Diego, CA). Saturation data were fitted to non-linear 

regression cuives.

f^HI-dihvdroalprenolol binding

The expression of pi-adrenoceptor was assessed using [^H]~dihydroalprenolol. This was 

performed in 96 well blocks in triplicates, containing the following mixes;

25 pi membrane + 25pi [^H]-dihydroalprenolol (range of concentrations) + 50pl TEM = Total 

binding

25 pi membrane + 25 pi [^H]-dihydroalprenolol (range of concentrations) + 25 pi propanolol 

(40pM) + 25pi TEM = Non-specific binding

For [^H]-dihydroalprenolol binding the same protocol as above was followed except that the 

samples were incubated for 30 min at 30°C and lOpM propanolol was used as competitor to 

determine non-specific binding.

C/ Competition experiments
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r^HI-diprenorphine competition experiments using different opioid agonists or 

antagonists

Opioid ligand affinity was measured using competition experiments. Increasing 

concentrations of unlabelled ligand usually between 10“’ and lO'^^M, were used to compete 

for the binding o f InM [^H]-diprenorphine. Glass tubes were set up as follows:

25pi membrane + 25pi [^H]-diprenorphine + 200pl TEM -  Total binding

25pi membrane + 25pi cold competitor + 25pi [^H]-diprenorphine + 175pi TEM = Binding

with competitor

25pi membrane + 25pl naloxone + 25pi [^H]-diprenoiphine + 175pi TEM = Non-specific 

binding

Reactions were initiated by adding membrane preparations into the rest of the reaction mix 

and incubated for Ih at 25°C. Bound ligand was separated from free by vacuum filtration. The 

filters were pretreated with 0.3% polyethylenimine in TEM and washed three times with cold 

TE buffer. Bound ligand was estimated by liquid scintillation spectrometry.

Data were analysed using GraphPad Prism software (San Diego, CA). Competition data with 

antagonists were fitted using 1 site competition non linear regression curves. For competition 

with agonists a 1 site competition model was compared with a 2  site model, the preferred 

model was chosen.

Ki was calculated using Cheng-Prusoff equation Kj = IC5Q

1 + (L/Kd)

Statistics were analysed using pKi value = -log Ki.

For the 1 way ANOVA, the analysis was followed by a Turkey post test.

D/ [^^S]-GTPyS binding experiments

Buffers:

IPX Assay Buffer:

Tris 0.5M pH 7.4 

MgClz 30 mM
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NaCl 1 M

pH adjusted to 7.4, and diluted to IX as stop buffer during the experiment.

Solubilisation Buffer*.

Tris 100 mM

NaCl 200 mM

EDTA Im M  

NP40 1.25%

pH adjusted to 7.4 and 10% SDS added depending on reaction step to 0.2% final.

Beads Buffer:

BSA 2%

NaNs 0.1%

Protease inhibitor cocktail 

pH adjusted to 7.4

Assav Buffer:

HEPES (pH 7.4) 20 mM

MgClz 3 mM

NaCl lOOmM

GDP 10 pM

Ascorbic acid 0.2 mM

[^^S]-GTPyS 50nCi

Protocol

The experiment was initiated by adding the assay buffer mix in the presence or absence of 

agonist to a defined amount of membranes. The non-specific binding was determined in the 

same conditions but in the presence of 100 pM GTPyS. The reaction mix was incubated for 

15 min at 30°C and was terminated by adding 1ml of ice-cold stop buffer. The samples were 

centrifuged for 15 min at 16000xg at 4°C and the resulting pellets were resuspended in 

solubilisation buffer plus 0.2% SDS. Samples were precleared with Pansorbin for Ih at 4°C 

and centrifuged for 2min at 16000xg. Supernatant was added to a mix of protein G and SG3- 

13 antiserum (anti-GiaAb) and left rotating overnight at 4°C for immunprecipitation. Finally



the immunocomplexes were washed twice with ice-cold solubilisation buffer and bound [^^S]- 

GTPyS was measured by liquid scintillation spectrometry.

Concentration curves: The same protocol as above was used except that an increasing 

concentration of the appropriate agonist was added to the samples, usually between lO'^^M 

and

Concentration inhibition cuiwes: The above protocol was also followed. Samples were 

stimulated with 10 ‘̂ M agonist and increasing concentrations of antagonist were added usually 

between lO'^^M and 10

Analvsis of results:

Data were analysed using GraphPad Prism. Values were expressed as a percentage of 

maximum stimulation for concentration curve experiments. For statistics pEC5o=-log EC50 

values were used.

2.2.6 Protein detection 

AJ  Co-immunoprecipitation

Buffers:

2X RIPA buffer: IX RIPA Buffer:

Hepes lOOmM 2x RIPA 25ml

NaCl 300mM NaF 0.5M 1ml

TXlOO 2% (w/v) EDTA 0.5M, pHS 0.5ml

Na-deoxycholate 1% (w/v) Na2HP04 O.IM 5ml

SDS 0.2% (w/v) ethylene glycol 2.5ml

pH 7.4 dH2 0  up to 50ml

1 complete protease inhibitor cocktail

tablet

Protocol:
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Cells were resuspended in 1ml of IX RIPA buffer and left rotating for 60 min at 4°C to be 

lysed. The samples were centrifuged at 14000xg for lOmin at 4°C and the supernatant was 

retained. 50pl of a protein G-sepharose and PBS mix was added to the supernatant and left 

rotating for another 60 min at 4°C. This step allowed the samples to be precleared of non

specific binding proteins. Samples were centrifuged at 14000xg for 10 min at 4°C. 

Supernatant was conserved and protein concentration was measured using the BCA assay 

method. The protein samples were equalised to Ipg/pl. The receptors were then 

immunoprecipitated from 500pl samples by incubation with 20|l i 1 of protein G-sepharose and 

the appropriate antibody overnight at 4°C on a rotating wheel. The immune complex was 

isolated by centrifugation at 14000xg for 1 min and washed twice with 1 ml RIPA (IX). 

Proteins were eluted from the protein G-sepharose by the addition of 30-50pl Laemmli buffer 

and heated for 4 min at 85°C. The eluate was then loaded onto SDS-PAGE gels.

B/ Western Blotting

Buffers and solutions

Laemmli Buffer (2xJ

DTT 0.4M

SDS 0.17M

Tris/HCl (pH8) 50mM

Urea 5M

Bromophenol Blue 0.01% (w/v)

Gel running Buffer

20x Gel Running Buffer Novagen (MES) 50ml

dHzO 950ml

Transfer Buffer

Glycine 11.26g

Tris 2.24g

Methanol 200ml

dHzO 800ml
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Gel running buffer and transfer buffer was made fresh each time.

Blocking Buffer iPhosphate buffered Saline. 5% non-fat milk and 0.1% Tween 20

PBS IX 40 ml

Milk 2g

Tween 20 40pl

Ponceau red;

Ponceau S 0.1%

trichloroacetic acid 3%

Wash 1:

PBS O.IM

NaCl O.IM

Tween 20 0.1%

Wash 2:

PBS O.IM

NaCl 0.5M

Tween 20 0.1%

Protocol

Samples were run on NuPage Novex pre-cast bis-tris gels (Invitrogen BV). The NuPage 

system is based on a bis-tris-HCl buffered (pH 6.4) polyacrylamide gel, with a separating gel 

that operates at pH 7. 4-12% acrylamide gels were used to achieve the best seperation o f the

proteins. NuPage MES or MOPS buffer were used for running the gels. Gels were mn at 

200V using the Xcell Surelock mini gel tank (Invitrogen BV). Following SDS-PAGE the 

proteins were transferred onto nitrocellulose using the Xcell II blot module (Invitrogen BV). 

Gels were transferred at 30V for Ih to 2h in transfer buffer. The transfer onto nitrocellulose 

was checked using red Ponceau staining. Membranes were then blocked overnight in blocking 

buffer. The next day membranes were incubated in blocking buffer containing the primary 

antibody or serum for Ih at room temperature. This incubation was followed by 3 washes of 

10 min using alternatively wash 1 and wash 2. The blots were then incubated with a HRP
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conjugated secondary antibody in blocking buffer for lli at room temperature. After 3 washes, 

the blots were incubated for 5 min in a mix of enhanced chemiluminescent substrate for 

detection of HRP. This allowed proteins to be visualised after developing on film using a 

Kodak X-OMAT developer.

For Western blots the following antibody or antiserum dilutions were used: 

Antibody/Antiserum Dilution 2"  ̂Antibody Dilution

Anti-myc 1:1000 Anti-mouse 1:10000

Anti-Flag 1:1000 Anti-rabbit 1:10000

Gii&2a antiserum 1:1000 Anti-rabbit 1:10000
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Chapter 3 

Opioid receptor homodimerisation 

studied using a complementation

technique
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3.1 Introduction :

The opioid receptor family is composed of three different subtypes, namely the Delta (DOR), 

Kappa (KOR) and Mu (MOR) opioid receptors which were first cloned only in the early 

1990s (Kieffer et a l, 1992, Chen et al., 1993, Li et al., 1993). In addition to these three types 

of opioid receptors, an orphan opioid receptor-like protein ORLl has been cloned (Lachowicz 

et a l,  1995) and the so-called s opioid receptor (O’Dowd et a l, 1995), still remains poorly 

characterised. The DOR, KOR and MOR are 65 % homologous with highest homology 

among the transmembrane domains, intracellular loops and a small portion of the C-terminal 

tail. The remaining 35% of the opioid receptor confers subtype selectivity (Reisine and Bell, 

1993).

Opioid receptors inhibit adenylate cyclase activity and modulate the activity of voltage gated 

calcium and potassium channels via pertussis-toxin-sensitive Gj/Go protein activation. They 

are involved in pain perception by mediating analgesia. They can also modulate endocrine 

processes (Maggi et al., 1995) and affect immune responses (Me Carthy et ah, 2001; Suzucki 

et ah, 2002). As such opioid receptors are attractive targets for the development of new drugs 

to control pain. A current problem hindering investigations is that the use of opioid drugs as 

analgesics also leads to side effects such as addiction and tolerance. One of the principal goals 

in opioid research, therefore, is to dissociate these effects, and so developing an understanding 

of the molecular nature of their regulation is essential.

Opioid receptors are found in the central nervous system where they have a discrete but 

overlapping distribution. They can be found in the nucleus accumbens, olfactory tubercule 

and bulb, in the cerebral cortex, amygdala, hypothalamus, hippocampus, thalamus or corpus 

striatum. Diverse types of ligand recognise the opioid receptor family, including peptides, 

opioid alkaloids and a variety o f synthetic non-peptide small molecules. The opioid ligands do 

not bind exclusively to one specific receptor subtype but frequently have a higher affinity for 

one particular receptor subtype (Przewlocki and Przewlocka, 2001). The pharmacology of the 

opioid receptors is complicated, and several subtypes (p i, p2, 51, 52, k 1, k 2, k 3) have been 

postulated on the basis of pharmacological studies. The lack of cDNA corresponding to these 

subtypes and the emergence of receptor dimérisation could suggest that these different 

pharmacological profiles are due to opioid receptors dimérisation.
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The opioid receptors belong to the G Protein Coupled Receptor (GPCR) superfamily. The 

GPCRs are likely to have a three-dimensional structure with seven transmembrane segments, 

three extracellular loops and three intracellular loops. The amino terminus is extracellular 

whereas the C-terminus is intracellular. It has been assumed previously that the GPCRs exist 

as monomers and interact with G proteins upon ligand activation. More recently, an 

increasing number of studies have suggested that GPCRs could dimerise. Homodimerisation 

has been detected for several receptors such as the p2-adrenoceptor (Angers et a l, 2000), 

TRH receptor (Kroeger et al., 2001) and D2 dopamine receptor (Lee et al., 2000; Ng et al., 

1996). This has also been demonstrated for DOR (Cvejic et ah, 1997), KOR (Jordan and 

Devi, 1999), and MOR (Li-Wei et ah, 2002).

The dimérisation process has been obseiwed using several techniques including Western 

blotting, immunoprécipitation (Zeng and Wess, 1999), Bioluminescence Resonance Energy 

Transfer (BRET) and Fluorescence Resonance Energy Transfer (FRET) (McVey et ah, 2001 ; 

Ramsay et ah, 2002, Kroeger et ah, 2001). However the role of dimérisation in receptor 

function and the mechanism for the initiation of signal transduction by the dimer has been 

difficult to investigate.

One of the most informative models so far has been a class C GPCR, the y-aminobutyric acid 

type b (GABAb) receptor. This receptor is composed of two subunits GAB Ah I and GABab2. 

The GABAb 1 subunit binds the ligand GAB A, but is unable to activate G proteins. GABAb2 

does not have a GABA binding site but does possess a heptahelical domain which is able to 

activate the G protein. When these two subunits associate G proteins are activated (Galvez et 

ah, 2001). This observation provides strong evidence that GPCR activation involves 

transactivation whereby ligand binding to one subunit leads to the activation of the G protein 

tlirough the second subunit. This is the first model showing the importance of dimérisation for 

signalling. Mutated versions of those two submiits have also been constructed to try and 

determine which part of the GABAb 1 and GABAb2 were important to activate G proteins 

(Duthey et ah, 2002; Margeta-Mitrovic et ah, 2001). It was found that mutations in the 

GABAb2 prevent formation of the functional dimer, illustrating that a single subunit is 

important for G protein contact in a dimeric receptor.

Osuga et ah, (1997) have also identified a luteinizing hormone (LH) receptor mutant which 

retained its ability to bind ligand but could not signal. When this mutant was co-expressed 

with a truncated LH receptor that lacked the ligand binding site, a partial restoration of signal 

was produced.
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Fusion proteins have become an interesting and widely used tool to study GPCR signalling. 

Fusions between receptor and G protein allow a 1:1 stoichiometry. Their expression level can 

then be directly assessed by satuiation binding (Milligan, 2000; Wurch and Pauwels, 2001). A 

C^^ Î mutation introduced in the G,a protein subunit gives resistance to Pertussis toxin (PTX). 

Indeed ADP ribosylation of the G protein normally produced by this toxin is prevented. When 

cells transfected with such a fusion protein are treated with PTX, endogenous Gi/o proteins are 

inactivated. An exact measurement of the G protein activation by the receptor fusion can then 

be made.

Mutated fusion proteins consisting of a receptor linked directly to the G protein a  subunit 

have been used to study aib-adrenoceptor or histamine HI receptor dimérisation in our group 

via a protein complementation technique (Carrillo et a l, 2003). In this first Results chapter 

this strategy was employed, whereby pairs of distinct but potentially complementary fusion 

proteins were generated to analyse opioid receptor homodimerisation.

92



3.2 Results :

3.2.1 Human DOR homodimerisation studied using a protein 

complementation technique

A/ Construction of non functional but potentially complementary fusion proteins: 

hDOR-GiiaG^”̂ A,Ĉ ^̂ I and hDORV^^^E,V^^^D-GiiaC^^^I

To study DOR homodimerisation two distinct fusion proteins were constructed. A fusion 

protein made previously in the laboratory hDOR-GiiaC^^^I was used as a template (Figure

3.1 A). This fusion protein was also utilised as a control in the different experiments. In this 

constmct the human DOR was fused to Gfia subunit, which contains a cysteine residue in 

position 351 mutated into an isoleucine. This has been shown to induce resistance of the 

corresponding G protein to the ADP ribosylation activity of PTX. Normally PTX treatment 

prevents receptor-mediated exchange of GDP for GTP, with Güa subunit remaining in the 

GDP-bound inactive confonnation. This does not occur when the C^^'l mutation is 

incorporated. Cells transfected with such a construct were treated with PTX to inactivate the 

endogenous pool of Gai/o- With this treatment any signal observed must result from the G 

protein fused to the receptor. In this study all transfected cells were treated with PTX (25 

ng/ml) for 16h prior to harvesting.

The first mutated fusion protein, hDOR-GiiaG^^^A,C^^^I (Figure 3.1 B) consisted of the wild 

type DOR fused with a mutated Güa subunit. Stratagene point mutation kit was used to 

introduce the G^^^A mutation into the Gua subunit of hDOR-GüaC^^^I cDNA. All wild type G 

protein a  subunits have a conseived GGQR sequence (Figure 3.2). The mutation of the initial 

glycine into alanine generates a form of the G protein which is unable to exchange GDP for 

GTP and hence become activated. The mutation was introduced to create a non-functional 

fusion protein. The complementary fusion protein hDORV'^^E,V^^'^D-GüaC^^^I (Figure 3.1 

C) was also built by point mutation. Two valines near the DRY motif of the 2"  ̂ intracellular 

loop of the receptor were mutated into glutamic acid and aspartic acid, respectively. This time 

the mutations of highly conserved hydrophobic residues (Figure 3.3) to acidic residues make 

the interaction between the receptor and the fused G protein non-functional.
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B/ Analysis of hDOR-GiiaG^“̂ A,Ĉ ^̂ I and liDORV^^®E,V^^^D-GiiaC^® Î expression and 

determination of the dissociation constant for [^H]-diprenorphine in comparison with 

the wild type fusion hDOR-GnaC^^ I

The mutated fusion proteins, hDORV’^°E,V^ '̂^D-GiiaC^^^I, hDOR-GiiaG^^^A,C^^^l as well as 

hDOR-GiiaC^^’l were transiently transfected into HEK 293 cells which were treated with 

PTX (25ng/inl) 16h prior to harvesting. A membrane preparation was produced and 

expression of the fusion proteins was assessed by saturation ligand binding (Figure 3.4). The 

opioid antagonist [^H]-diprenorphine was used as radioactive ligand to deteimine total 

binding and the antagonist naloxone for non-specific binding. Specific binding was calculated 

by subtracting non-specific binding from total binding. Each of the fusion proteins gave an 

expression level of approximately 2000 finol/mg protein (Table 3.1).

The level of expression when the two mutated versions of the fusion were co-transfected was 

also assessed. The transfection used 1 pg of DNA for each constmct so that the final amount 

used was the same as for each singly transfected construct (2 pg final). The expression 

observed was 2310 ± 301 finol/mg (Table 3.1). Although the level of construct expression 

varied between individual transfections, there was no specific pattern that could be ascribed to 

the mutations introduced.

Saturation binding also permitted the determination of the dissociation constant (Kd) of the 

fusion proteins for [^H]-diprenorphine (Figure 3.4). The Kd observed was 0.65 ± O.OSnM 

(mean ± SEM, n=4) for hDOR-GjiaC^^^I , 1.66 ± 0.06nM for hDORV^^^E,V‘̂ ^D-GiiaC^^^I, 

0.67 ± 0.07nM for hDOR-GiiaG^^^A,C^^^I and 1.43 ± 0.07nM for the mutated fusions 

expressed together (Table 3.1). The Kd value for hDOR-GiiaG^^^A,C^^^I was not significantly 

different from hDOR-GjiaC^^^I. However, the affinity of hDORV^^^E,V^^'^D-GiiaC^^^I for the 

antagonist [^H]-diprenorphine was diminished. The Kd was significantly increased (1 way 

ANOVA test, P<0.001) compared to the wild type fusion suggesting that the double mutation 

of the valine in the 2"  ̂ intracellular loop altered the binding site of the receptor. Likewise 

when the mutated pair of fusion proteins were co-transfected a Kd of 1.43 ± 0.07nM was 

observed. This value was significantly different from hDOR-GiiaC^^^I and similar to 

fiDORV^^^EjV’ '̂^D-GiiaC^^^I. This could reflect a predominant expression of 

hDORV‘^^E,V^^^D-GiiaC^^^I over hDOR-GiiaG^^^A,C^^^I when the constructs were co

expressed. This was not obvious from the expression levels obtained when the fusion proteins 

were individually transfected.
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Table 3.1. Expression level (Bmax) and dissociation constant (Kd) of DOR fusion proteins

Construct
Bmax

(fmol/mg)
Kd(nM) pKd

hDOR-G,i„C’^‘l 18161209 0.65 1 0.05 9.20 1 0.03

hDORV‘“ E,V‘®‘'D-

GiiaC^^'l
2181+228 1.6610.06*’*'* 8.7810.01***

hDOR-Gii„G“ ^A,C“ ‘l 1777 + 285 0.6710.07 9.1910.05

hDORV'""E,V'^"D-

GilaC'^'l

+ hDOR-Gii„G“ ^A,C” ‘l

23101301 1.43 10.07*** 8.85 10.02***

Data represent n=4 experiments performed on different membrane preparations. Numbers 

represent means ± SEM.

*** Significantly different from hDOR-GnaC^^^I, P<0.001

C/ Increasing amounts of hDOR-GjiaC^^^I result in increasing levels of agonist-

stimulated [^^S]-GTPyS binding

HEK 293 cells were transiently transfected with or without hDOR-GüaC^^^I and membranes 

were prepared. The addition of the agonist DADLE (lOpM) to the membranes expressing the 

fusion protein resulted in a large stimulation of the binding of [^^S]-GTPyS (Figui'e 3.5A). For 

10 pg of membrane protein a signal of some 6000 dpm over basal was observed. No 

significant stimulation was noticed when membranes without hDOR-GiiaC^^^I were used (10 

or 20 pg). This showed that the signal detected in response to agonist stimulation reflected
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activation of the fusion protein. [^^S]-GTPyS binding could also be observed in the absence of 

agonist stimulation. This binding increased proportionally with the amount of hDOR- 

GiiaC^^^I present. This could reflect some level of constitutive activity of the fusion protein. 

When increasing amount of membranes expressing hDOR-GjiaC^^^I were used [^^S]-GTPyS 

binding induced by DADLE was dependent on the amount of receptors present. A linear 

increase was observed with the number of fmol of receptor over a range between 0-60 fmol 

(R^=0.99).

D/ Reconstitution of function using pairs of distinct non functional hDOR-GuaC^^ I 

fusion protein mutants

The mutated fusion proteins, hDOR-GiiaG^^^A,C^^^I and hDORV^^^E,V^^'^D-GiiaC^^^I were 

singly or co-transfected into HEK 293 cells. The wild type version of the fusion protein was 

also transiently transfected into HEK 293 cells. Cells were treated with PTX for 16h prior to 

harvesting. Expression of the fusion proteins was assessed by the binding of a single, near 

saturating concentration of [^H]-diprenorphine in membrane preparations. An equal amount 

of each construct (15 fmol) was used to study their activation as monitored by [^^S]-GTPyS 

binding in the presence or absence of 10 pM DADLE (Figure 3.6). [^^S]-GTPyS binding was 

measured following immunocapture of the fusion proteins using an anti-Gü/2 antiserum.

As expected, low [^^S]-GTPyS binding was obseiwed in the absence of agonist for hDOR- 

GiiaC^^^I, described hereafter as basal. In the presence of agonist a large stimulation (520 ±32 

%) was produced (Table 3.2). For hDOR-Gii«G^^^A,C^^^I no stimulation of [^^S]-GTPyS 

binding over basal was detected after DADLE treatment (P>0.05, T test) (Table 3.2). The 

introduction of the G^^^A mutation into the Gua of hDOR-GjiaC^^^I eliminated DADLE 

stimulation. A similar effect was obsei-ved for hDORV^^‘̂ E,V^ '̂^D-GiiaC^^^I. No significant 

difference (P>0.05, T test) was seen between basal and DADLE-stimulated [^^S]-GTPyS 

binding. Introduction of V'^^E,V^^"^D in the 2"  ̂ intracellular loop of the DOR fusion protein 

thus also prevented agonist-stimulated [^^S]-GTPyS binding by Gua (Table 3.2). The pair of 

distinct fusion proteins were non-functional as predicted by their design.

However, the co-expression of the two distinct non-ftmctional mutants reconstituted DADLE- 

mediated binding of [^^S]-GTPyS. When 45 finol of [^H]-diprenorphine binding sites were 

used the signal reconstituted upon agonist stimulation of the non-functional pair o f fusion
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proteins was 484 ± 33% vs. wt basal. This was similar to the stimulation produced by 15 fmol 

of the wild type fusion protein (520 ± 31% vs. wt basal) (Table 3.2). Three times as many 

[^H]-diprenorphine binding sites in the co-expression study as hDOR-GjiaC^^^I were needed 

to reconstitute a full wild type signal. When membranes containing 15 fmol of [^H]- 

diprenorphine binding sites of hDORV^^‘̂ E,V^ '̂^D-GiiaC^^^I and 15 fmol of hDOR- 

were prepared individually and then combined before the assay, no 

significant difference (P>0.05, T test) in stimulated [^^S]-GTPyS was observed in the presence 

or absence of agonist (Figure 3.6, Table 3.2). This demonstrated that the reconstitution 

detected when the distinct pair of non-functional fusions were co-expressed was specific and 

required the proteins to be in the same membrane. Assuming a dimmer as the functional 

receptor, upon agonist activation, was able to activate the G protein linked to the other 

receptor in the dimer. This result was consistent with the hypothesis that delta opioid receptor 

dimérisation is required for agonist function in HEK 293 cells.

[^^S]-GTPyS binding could also be observed in the absence of agonist stimulation. This basal 

binding increased proportionally with the amount of fusion proteins used. This might reflect 

some level of constitutive activity of the reconstituted fusion proteins (Figui'e 3.6). It was also 

noticed that the level of [^^S]-GTPyS binding observed in the absence of agonist stimulation 

for the mutated proteins individually expressed was significantly lower in comparison to the 

wild type fusion protein (P<0.05, T test) (Table 3.2). This could indicate that the mutations 

introduced decreased the constitutive activity observed for hDOR-Gjia C^^ Î.

Table 3.2. [^^S]-GTPyS bindiiig of DOR fusion proteins

Construct Basal
DADLE lOqM 

% maximum

hDOR-Gii„ C’^ 'llS fm o l 100 520 ±31

hDORV'^'’E,V'^‘'D-Gii„C“ ‘l 15 fmol 27 + 7* 59 ±13

hDOR-GiiaG“ ^A,C“ ‘l 15 fmol 20 + 4* 31 ± 9

Co-transfection 15 fmol 40 + 6 179±15

30 fmol 88 ±30 343 ± 38

45 fmol 137±12 484 ± 33
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Mix Membrane

hDORV'^“E,V '’‘'D-Gi,aC^’ ‘l 15 fmol + 7 3 + 2 105 + 5

hDOR-Gii„G“ ^A,C” 'l  15 fmol

Data represent n=5 experiments performed in triplicate on different membrane preparations. 

Numbers are the means ± SEM % versus basal wild type fusion protein.

* Significantly different from wild type fusion protein basal P<0.05 (1 way ANOVA)

E/ Interactions of hDOR-GnaG^“ A,C^®‘l  with hDORV‘*"E,V' ‘̂‘D-Gii„C^®'l observed by 

co-immunoprecipitatioii

The mutated hDOR-GjiaC^^^I fusion proteins were N-terminally tagged. A c-Myc version of 

hDOR-GiiaG^^^A,C^^^I and a Flag-tagged version of hDORV^^®E,V^ '̂^D-GiiaC^^^I were 

constructed. HEK 293 cells were mock transfected or transfected to express either Flag- 

hDORV^^^EjV^^'^D-GiiaC^^^I or c-Myc-hDOR-Gi i aG^^  ̂A,C^^ ̂ I or both. Samples were 

immunoprecipitated using an anti-Flag antibody. They were resolved by SDS-PAGE, and 

anti-c-Myc antibody was used for protein detection (Figure 3.7A). No band was visualised in 

the mock-transfected line, or in samples expressing either Flag-hDORV^^^E,V^^'^D-GiiaC^^^I 

or c-Myc-hDOR-GiiaG^®^A,C^^’l alone. It was observed that bands were only present when 

the Flag and c-Myc versions of the different fusions proteins were co-expressed. Specific 

bands were detected at 80, 65 and 35 kDa, as well as higher apparent molecular mass. The 

expected molecular mass for the fusion protein is around 80 kDa as DOR molecular mass is 

42 kDa and Giia is 40.2 kDa. This was consistent with the 80 kDa band immunodetected 

corresponding to the monomer form of the DOR fused with Gjia. The bands at 65 and 35 kDa 

may be degradation products, but this was not explored further. Anti-c-Myc reactivity was 

also seen at the top of the gel which suggests higher order oligomers or aggregated protein. A 

mixed membrane control was generated where membranes singly expressing Flag- 

hDORV‘“ EV'^‘'D-GiiaC^^‘l or c-Myc-hDOR-Gn„G“ ^AC’^‘l were mixed and then 

immunoprecipitated. Nothing was detected in this lane following immunoprécipitation. Re

blot of the gel with anti-Flag antibody revealed bands of the same molecular size in all

98



samples in which the Flag-tagged version of the fusion were expected to be expressed (Figure 

3.7B).

The results demonstrated that the addition of a G protein to the C-terminal tail of the DOR did 

not prevent GPCR dimérisation. In addition, the introduction o f the mutations into the 

receptor or G protein does not prevent receptor interaction.

F/ The affinity of different DOR selective agonists for hDOR-GiiaC^^^I fusion proteins

- Competition for [ H]-diprenorphine binding by DADLE

Membranes from HEK 293 cells transfected with hDOR-GiiaC^^'l; hDORV^^^E,V^^'^D- 

GiiaC^^^I; h D O R - G i I  cDNA or co-expressing the mutated pair of distinct fusion 

proteins (hDORV^^^E,V^^^D-GiiaC^^^I + hDOR-GiiaG^^^A,C^^^I) were used for [^H]- 

diprenorphine competition experiments using varying concentrations of DADLE (Figure 3.8). 

Two binding site curves were best fitted in each case, with higher and lower affinity binding 

sites (Kh, Ki ) (Table 3.3). Introduction o f the G^^^A mutation in the G-protein subunit did not 

alter the DADLE binding properties as similar Kh, K] values as observed with the wild-type 

fusion were obtained (Table 3.3). In contrast, the double mutation in the 2"  ̂intracellular loop 

of DOR did alter binding affinity of DADLE with loss of affinity in both high and low 

affinity binding sites (56 ± 33 and 21643 ± 17278 nM respectively compared to the wild type 

fusion protein 1.29 + 0.48 and 652 ± 372 nM). However, when the distinct but 

complementary pair of fusion proteins were co-expressed wild-type pharmacology was 

reconstituted with no significant difference in the percentage of high and low site numbers 

compared to the wild type fusion protein (P>0.05, 1 way ANOVA).

Table 3.3: Binding affinity of DADLE for the different fusion proteins and co-expression 

of the mutated pair of fusion proteins

Construct Kh (nM)

%

Kh

sites

pKh K i (nM) pK,
Hill

coefficient

hDOR-GiiaC^^^I 1.29 ± 0.48 6 3 + 6 9.03 ±0.18 652 ± 372 6.79 ± 0.42 -0.39 + 0.03
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hDORV'“ E
56 ±33*** 57 ± 8 7.40 ±0.24*** 21643±17278* 4.99 ±0.37* -0.50 ± 0.02

hDOR-

G i,aG “ ^AC^^‘l
2.18 ±0.40 59 ±3 8.70 ±0.12 2319 ±800 5.82 ±0.23 -0.34 ± 0.04

hDORV'^^EV'^V-

G ila C ^ ' l  

+ hDOR- 

GiiaG^"^AC^’ ‘l

2.7 ± 1.05 45 ± 9 8.69 ±0.15 1257 ± 842 6.29 ± 0.28 -0.41 ±0.04

Data represent n=4 experiments performed in triplicate on different membrane preparations. 

Numbers represent means ± SEM.

Statistics were performed using 1 way ANOVA on pKh and pKi numbers.

* Significantly different from hDOR-GnaC^^^I, P<0.05 

*** Significantly different from hDOR-GiiaC^^^I, P<0.001

- Competition for [^H]-diprenorphine binding by DPDPE, a highly selective 

DOR agonist

Membranes preparation expressing hDOR-GiiaC^^*I, hDORV^^^EjV^^'^D-GjiaC^^^I, hDOR- 

GiiaG^^^A,C^^^I or co-expressing the pair of mutated fusion proteins were used for [^H]- 

diprenorphine competition experiments using varying concentrations of DPDPE (Figure 3.9). 

Competition curves with higher and lower affinity binding sites were observed in each case 

(Table 3.4). Introduction of the mutation G^^^A in the G-protein subunit did not alter DPDPE 

binding properties. Although the double mutation in the 2"  ̂ intracellular loop of the receptor 

significantly modified the binding affinity of DPDPE for the high binding site (40.4 ± 8.8nM) 

compared to the wild type fusion protein (1.71 ± 0.33nM), the lower affinity site was not 

affected. As with DADLE, when the pair of distinct fusion protein were co-expressed wild- 

type pharmacology was reconstituted with no significant difference (P>0.05, 1 way ANOVA) 

in the proportion of high and low affinity binding sites.

Table 3.4: Binding affinity of DPDPE for the various fusion proteins and co-expression 

of the mutated pair of fusion proteins.
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Construct K|,(nM) pKh

%

Kh

site

Ki (nM) pKi
Hill

coefficient

hDOR-GiiaC^^^I 1.71 ±0.33 8.79 ± 0.09 70 ±3 2100± 1173 5.89 ±0.25 -0.41 ±0.005

hDORV^^^E,V^^^D-
40.4±8.8**

7.42 ± 

0 .11**
5 1 ±20 7658±4250 5.48 ±0.41 -0.61 ±0.04

hDOR-

Gii«G^'^A,C'''l
1.56±0.46 8.88 ±0.15 65 ± 4 3200± 1510 5.82 ±0.38 -0.40 ± 0.03

hDORV^^^E,V^^^D-

GiiaC'^'l

+ hDOR-
7.49±2.95 8.31 ±0.28 5 5 ±  12 1660±888 6.10 ±0.35 -0.46 ±0.01

Data represent n==4 experiments performed in triplicate on different membrane preparations. 

Numbers are the means ± SEM.

Statistics were performed using 1 way ANOVA analysis on pKh and pK] numbers 

** Significantly different from hDOR-GjiaC^^'l, P<0.01

G/ The ability of the reconstituted dimer to activate or inactivate G protein function 

-Comparison of hDOR-GuaC^^ I fusion protein and the reconstituted dimer to 

activate G protein in response to DADLE

The h D O R - G i f u s i o n  protein or the pair of mutated fusion proteins were transiently 

transfected into HEK 293 cells. Cells were treated with PTX for 16h prior to harvesting and 

membrane preparations were made. Equal amounts of receptor binding sites (15 fmol, based 

on [^H]-diprenorphine binding) were used to study activation of the wild type versus 

reconstituted fusion proteins. This was investigated by measuring [^^S]-GTPyS binding in the 

presence of increasing concentrations of DADLE (Figure 3.10). No significant difference was 

observed between the two samples. EC50 for hDOR-GüaC^^’l was 273 ± 100  nM and for the 

co-transfected but individually inactive fusion proteins was 97.2 ± 45.6 nM (Table 3.5). It is
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important to note that for the co-transfected sample the [^^S]-GTPyS binding observed can 

only come from the reconstituted dimer as neither of the individual mutants are functional 

(Figure 3.6). The ability of DADLE at the reconstituted dimer to activate Güa was similar to 

the wild-type fusion protein, but as noted previously for equal numbers of [^H]-diprenorphine 

binding sites the maximal stimulation of [^^S]-GTPyS binding was higher for the wild type 

fusion.

Table 3.5: EC5 0  for hDOR-GiiaC^^^I versus the reconstituted dimer: [^^S]-GTPyS 

binding studies

Construct pECso EC50 (nM)

hDO R-G iiaC’^'l 6.63 ± 0.25 273 + 100

hDORV'^'’E,V'^‘'D-Gii„C“ 'l 

+ hDO R-G iiaG “ ^A,C^^‘l
7.10 + 0.19 97.2 ± 45.6

Data represent n=3 experiments performed in triplicate on different membrane preparations 

and numbers are means ± SEM.

T test was performed using pECso-

- Comparison of the potency of naloxone to inhibite the G alpha protein subunit 

of hDOR-GiiaC^^^I fusion protein and the reconstituted dimer after DADLE 

stimulation

Membranes containing equal amounts of [^H]-diprenorphine binding sites (15 fmol) were 

used to study the inhibition of the Gua subunit of the hDOR-Gi laC^^  ̂I or DOR reconstituted 

dimer by the opioid antagonist naloxone. A concentration of lO'^M DADLE was used to 

stimulate [^^S]-GTPyS binding and increasing concentrations of naloxone applied to compete 

(Figure 3.11). IC50 values of 560 ± 62nM and 270 ± 44 nM were observed for hDOR- 

GiiaC^^^I and following co-transfection o f the mutated fusion proteins respectively (Table 

3.6). These values were not significantly different (P>0.05, T test).
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Table 3.6: The IC50 of naloxone to inhibit hDOR-GuaC^^^I fusion and the reconstituted

dimer: [^^S]-GTPyS binding studies

Construct pICso IC50 (nM)

hDOR-Gii„C^” l 6.26 ± 0.05 560 ± 62

hDORV‘™E,V'’''D-GiiaC^^‘l 

+ hDOR-Gii„G“ ^A,C“ ‘l
6.58 ± 0.06 270 ± 44

Data represent n=3 experiments performed in triplicate on different membrane preparations 

and represent means ± SEM.

T test was performed using pICso.
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3.2.2 Human MOR homodimerisation studied using protein 

complementation

A/ Construction of non functional but potentially complementary fusion proteins: 

hMOR-GiiaG^‘’̂ A,Ĉ ^̂ I and hMORV^^^E,V^^^D-GiiaC^^ Î

As for DOR, mutated MOR fusion proteins were constructed using hMOR-GiiaC^^*! as a 

template (Figure 3.12A). This fusion protein was previously made in the laboratory and 

contained the mutation that generates a PTX resistant Gii« subunit.

The first fusion protein, hMORV^^^E,V^^^D-GiiaC^^^I was mutated in positions 169 and 173 

of the 2"  ̂ intracellular loop after the DRY motif (Figure 3.12C). Two hydrophobic valines 

were substituted with glutamic acid and aspartic acid residues respectively to prevent the 

receptor from signalling to its G protein. In the second fusion protein hMOR“GjiaG^®^A,C^^^I, 

the Gila subunit was mutated in position 202 whereby the glycine was replaced by alanine 

(Figure 3.12B) to prevent guanine nucleotide exchange. All transfected cells were treated with 

PTX 16h prior to harvesting to inactivate endogenous G|/o proteins.

B/ Analysis of hMOR-GiiaG^®^A,C^^^I and hMORV^%,V^^^D-G;iaC^^^I expression and 

determination of the dissociation constant for [^H]-diprenorphine in comparison with 

the wild type hMOR-GuaC^^ I fusion protein

Receptor expression was assessed using membrane preparations of HEK 293 cells transfected 

to express hMOR-GnaC^^^I, hMORV^'^^E,V^^^D-GiiaC^^*I, hMOR-GüaG^“ A,C^^^I or to co

express the two mutated fusion proteins. [^H]-diprenorphine saturation binding assays were 

performed (Figure 3.13). The expression levels obtained were not significantly different 

between membranes expressing the individal fusion proteins or the co-transfection, with a 

Bmax of approximately 1200 fmol/mg of protein (Table 3.7). [^H]-diprenorphine had a high 

affinity for the different fusion proteins and the co-transfected pair of mutated fusion proteins 

with Kd values of 0.36 ± 0.07; 0.46 ± 0.15; 0.32 ± 0.05 and 0.31 ± 0.07nM (mean ± SEM, 

n=3) for hMOR-GiiaC^^’l, hMORV^^^E,V^'^^D-GiiaC^^^I; hMOR-GiiaG^®^A,C^^^I and the co-
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transfection, respectively. The pKd values were not significantly different (1 way ANOVA, 

P>0.05). None of the mutations affected diprenorphine binding, which contrasts with the 

observation for the DOR fusion proteins.

Table 3.7: Expression level (B,„ax) and dissociation constant (Kj) of hMOR-GiiaC^^^I 

fusion proteins

Construct Bmax (fmol/mg) Kd(nM) pKd

hMOR-GiiaC’^'l 1217 ±72 0.36 ±0.07 9.47 ± 0.08

hMORV‘“ E ,V '"D -

Gi,cC” 'l
901 ±110 0.46 ±0.15 9.39 ±0.17

hMOR-GiiaG^“ A,C“ ‘l 1251 ±20 0.32 ± 0.05 9.52 ± 0.08

Co-transfection 1285 ± 120 0.31 ±0.07 9.56 ±0.10

Data represent n=3 experiments performed in triplicate on different membrane preparations 

and numbers are the means ± SEM.

Statistics were performed using 1 way ANOVA on Bmax and pKd numbers.

C/ Reconstitution of function using pairs of distinct non functional hMOR-GnaC^^ I 

fusion protein mutants

Membrane preparations expressing hMOR-GiiaC^^^I, hMORV^^^E,V‘^^D-GiiaC^^^I, hMOR- 

GiiaG^^^A,C^^^I or co-expressing the pair of distinct mutated fusion proteins were used to 

study guanine nucleotide exchange on the G protein a  subunit by [^^S]-GTPyS binding 

(Figure 3.14). When membranes expressing 15 fmol of hMOR-GiiaC^^^I binding sites were 

treated with 10 pM of the MOR specific agonist DAMGO, a stimulation of 528 ± 23 % over 

basal was observed. In contrast, following expression of either hM0RV^^^E,V^^^D-GiiaC^^4 

or liMOR-Gj laG^^^A,C^^ ̂ I fusion proteins, DAMGO did not cause a significant stimulation of 

nucleotide binding (Table 3.8). As expected by their design the two mutated fusion proteins
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were non-functional. Interestingly, subjecting membranes containing 15 fmol or 30 Imol of 

[^H]-diprenorphine binding sites of the co-expressed mutated fusion proteins to agonist 

treatement resulted in reconstitution of [^^S]-GTPyS binding. Approximately two times as 

many [^H]-diprenorphine binding sites as hMOR-GiiaC^^^I were required to reconstitute half 

of the full wild-type signal when the mutated fusion proteins were co-expressed. When 

membranes individually expressing hMORV^^^E,V^^^D-GiiaC^^^I or hMOR-GuaG^^^AC^^^I 

were mixed and agonist added, no significant stimulation was noted. This indicates that the 

reconstitution observed was specific and that MOR dimérisation was required for agonist 

function. These observations were consistent with those obtained for the DOR fusion proteins. 

[^^S]-GTPyS binding was obseived in absence of agonist stimulation. This basal activity 

increased proportionally with the amount of fmol of fusion proteins used. This may reflect 

some level of constitutive activity of the fusion proteins.

Table 3.8: [’^S]-GTPyS binding of hMOR-G„aC"‘I fnsion proteins351i

Construct Basal DAMGO lOpM

hMOR-GiiaC^^'l 100 528 ± 23

hMORV‘“ E,V '"D -

GilaC'^'l
79 ±41 84 ±25

hMOR-GiiaG“ ^A,C^’ 'l 66 ± 24 82 ± 9

Co-transfection 15finol 35 ± 5 149 ± 7

30fmol 106 ± 7 277 ± 14

Mix membrane 30fmol 124 ±58 137 ±38

Data represent n=3 experiments performed in triplicate on different membrane preparations 

and numbers are the means ± SEM % versus basal compared to the wild type flision protein.

D/ The affinity of MOR selective agonist DAMGO for hMOR-GuaC^^ I fusion proteins
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Membranes from HEK 293 cells expressing hMOR-GiiaC^^^I, hMORV^^^E,V*^^D-GiiaC^^^I, 

hMOR-GiiaG^^^A,C^^'l or the pair of mutated fusion proteins were used to compete [^H]- 

diprenorphine binding using increasing concentrations of DAMGO (Figure 3.15). Two 

binding site curves with high and low affinity sites were observed, except when 

hMORV^^^E,V’̂ ^D-GiiaC^^^I was expressed alone which provided a Hill coefficient of -0.86 

± 0.07 (Table 3.9). In this case a single binding site was observed with a Kj value of 961 ± 50 

nM. However when both mutated fusion proteins were co-transfected wild type pharmacology 

was reconstituted. The percentage of high affinity sites were similar as if  the co-expression of 

the mutated fusion proteins rescued the original binding sites (P>0.05, 1 way ANOVA). This 

could also reflect the mix of hMORV^^^E,V*^^D-GiiaC^^'l and hMOR-GiiaG^^^A,C^^' I 

pharmacology.

Table 3.9: Binding affinity of DAMGO for MOR fusion proteins and the co-expressed 

pair of mutated fusion proteins

Construct Kh (nM) pKh

%

high

affinity

site

Ki (nM) pKi
Hill

coefficient

hMOR-GiiaC^^'l 2.37± 1.1 8.71 ±0.18 47 ± 8 182 ±116 6.91 ±0.27 -0.55 ± 0.007

hMORV'^^E,¥ '■ '+ -

GiicC^^'l
961 ±50* 6.02 ± 0.02* -0.86 ± 0.07

hMOR-

G i,aG “ ^A,C^^'l
2.73 ± 1.3 8.68 ±0.23 54 ± 9 268 ± 135 6.69 ± 0.23 -0.54 ±0.03

Co-transfection 3.5 ±0.5 8.47 ±0.06 40 ± 2 675 ±110 6.18 ±0.07 -0.44 ± 0.05

Data represent n=3 experiments perfonned in triplicate on different membrane preparations 

and numbers are the means ± SEM.

Statistics were performed using 1 way ANOVA on pKh and pKi numbers.
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* Significantly different from hMOR-Gi I P<0.05

E/ The ability of the reconstituted dimer to activate G protein function

Membranes expressing hMOR-GiiaC^^^I or the pair of mutated fusion proteins were used to 

compare DAMGO potency to activate the G„ protein subunit by measuring [^^S]-GTPyS 

binding. Equal amounts of [^H]-diprenorphine binding sites were used. Increasing 

concentrations of DAMGO were utilised to build a concentration response curve (Figure 

3.16). A significant difference was observed between the two samples with EC50 values of 

345 ± 29 nM and 830 ± 124 nM for hMOR-GjiaC^^^I and the co-transfected but individually 

inactive fusion proteins respectively (Table 3.10). A reduction in potency to activate the G 

protein was observed for the reconstituted dimer and as noted previously for equal numbers of 

[^H]-diprenorphine binding sites the maximal stimulation of [^^S]-GTPyS binding was higher 

for the wild type fusion.

Table 3.10: The EC50 for hMOR-GnaC^^ I versus the reconstituted dimer: [^®S]-GTPyS 

binding studies

Construct pECso EC50 (nM)

hMOR-GiiaC’^‘l 6.46 ± 0.04 345 ± 29

Co-transfection 6.09 ± 0.07* 830 ± 124*

Data represent n=3 experiments performed in triplicate on different membrane preparations 

and the numbers are the means ± SEM.

T test was performed using pECso.

* Significantly different P<0.05
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3.2.3 Human KOR homodimerisation studied by protein complementation

AJ Construction of non functional but potentially complementary fusion proteins: 

rKOR-GiiaG^®^A,C^^^I and rKORV^^**E,V ^̂ D̂-GiiaĈ  ̂ I

To complete the study on opioid receptor homodimers, similar fusion proteins to those 

incorporating DOR and MOR were constructed for KOR. The rat KOR was first fused with 

the PTX resistant Gii« subunit to generate rKOR-GjiaC^^’l (Figure 3.17A). Secondly, two 

distinct but potentially complementary pair of fusions were produced. The first of these, 

rKOR-Gj A , ^  I, incorporated the same mutation in the G« protein subunit as used 

previously (Figure 3.17B), wherein the second glycine of the GGQR motif was mutated into 

alanine to prevent guanine nucleotide exchange and hence activation. To generate the second 

fusion protein rKORV^^^E,V^^'^D-GiiaC^^^I, the highly conserved valines in the 2"*̂  

intracellular loop of rKOR were mutated to glutamic acid and aspartic acid respectively, 

hopefully to abolish receptor signalling to the G protein (Figure 3.17C). All transfected cells 

were treated 16h with PTX prior harvesting to inactivate endogenous Gj/o proteins.

B/ Analysis of rKOR-Gii„G^“ A,C“ 'l and rKORV“ *E,V"“ D-Gi,„C^®"l expression and 

determination of the dissociation constant for [^H]-diprenorphine in comparison with 

rKOR-G„aC^®'l

Expression of the different fusion proteins as well as the co-transfection of the distinct but 

potentially complementary pair of fusion proteins was similar with a Bmax of some 2200 

fmol/mg of protein (Table 3.11 and Figure 3.18). The Kd of rKOR-Gn«G^^^A,C^^^I and the 

co-transfected, mutated, fusion proteins were comparable to the wild type construct. 

However, rKORV^ ̂ ^E,^' ^D-Gj  i ^  I displayed a significantly different Kd compared to 

rKOR-GiiaC^^^I with a reduction in affinity for the antagonist [^H]-diprenorphine. These 

results were similar to those previously noted for the DOR fusion proteins.

Table 3.11: Expression level (Bmax) and dissociation constant (Kd) of rKOR-GuaC^^ I 

fusion proteins
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Construct Bmax (fmol/mg) Kd pKd

rKOR-Gii„C“ 'l 2355 ± 193 0.51 ±0.07 9.30 ± 0.06

rKORV'^^E.V^^D-
2391± 177 1.35 ±0.13** 8 .8 8  ±0.04**

rKOR-GiiaG“ ^A,C^*‘l 2191± 148 0.49 ± 0.07 9.32 ±0.06

Co-transfection 2417± 187 0.70 ± 0.09 9.17 ±0.06

Data represent n=3 experiments performed in triplicate on different membrane preparations 

and the numbers are the means ± SEM.

Statistics were performed using 1 way ANOVA on Bmax and pKd numbers.

**Significantly different P<0.01

C/ Reconstitution of function using pairs of distinct non functional rKOR-GnaC^^ I 

mutants

Membranes containing 15 fmol of rKOR-GjiaC^^^I [^EI]-diprenorphine binding sites were 

treated with 10 pM or 100 nM of the highly selective KOR agonist U69593. A large 

stimulation of 1193 ±319 and 8 6 8  ± 226% over basal was observed respectively (Table 3.12). 

Similar to the DOR and MOR fusion proteins, mutations introduced in the 2"  ̂ intracellular 

loop o f the receptor of the first fusion and in the G protein of the other fusion protein resulted 

in the absence of signal upon agonist treatment. These results confirmed that both 

rKORV'“ E,V‘“ D-GiiaC^^'l and rKOR-GnaG“ ^A,C^’ 'l were non-functional as expected 

from their design (Figure 3.19). Once again, when the pair of distinct but complementary 

fusions were co-transfected, the wild type signal was reconstituted. Thi’ee times the number of 

binding sites of co-expressed mutated fusion proteins were necessary to reconstitute a full 

wild type signal. No significant difference was observed when membranes singly expressing 

both mutated fusion protein were mixed and agonist-stimulated (P>0.05, T test).

This demonstrates that for opioid receptor homo dimers (MOR, DOR and KOR) the 

reconstitution produced by the co-expression of the two non-functional but potentially 

complementary fusion proteins must result from a transactivation in the dimer in which the 

wild type receptor activated the wild type G protein even though it was linked to the inactive 

receptor (Figure 3.20).
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Similarly as to the DOR and MOR fusion proteins [^^S]-GTPyS binding was observed for 

KOR fusion proteins in the absence of agonist stimulation. This binding increased 

proportionally with the amount of fmol of mutanted fusion proteins used. This basal binding 

likely reflects some level of constitutive activity of the fusion proteins.

Table 3.12: [^^SJ-GTPyS binding of rKOR-GnaC"'I fusion proteins351i

Basal U69593 10 pM U69593 lOOnM

rKOR-GiiaC“ ‘l 10 0 1193±319 8 6 8  ± 226

rKORV‘“ E,V‘*’’D-

GilaC” ‘l
72 ±12 95 ± 7 96 ± 9

rKOR-G„aG“ ^A,C’^‘l 120 ±77 61 ± 15 71 ± 13

Co-transfection 15 finol 60 ± 5 384± 102 223 ± 45

30fmol 110± 17 6 8 8  ±150 417 ± 6 8

45 fmol 145 ±47 1193 ±534 615 ±180

Mix membrane 30fmol 155 ±35 226 ± 8 2 1 2  ± 1 2

Data represent n=4 experiments performed in triplicate on different membrane preparations 

and numbers are the means ± SEM % versus basal of the wild type fusion protein.

D/ The affinity of the KOR selective agonist U69593 for rKOR-GuaC^^ I fusion proteins

The affinity of the highly selective KOR agonist U69593 for single KOR fusion proteins or 

following co-transfection of the pair of mutated fusion proteins was investigated by 

competition experiments using [^H]-diprenorphine (Figure 3.21). Competition curves were 

best fitted to a two binding sites model for the different fusion proteins except for 

rKORV^^^EjV^ '̂^D-GiiaC^^^I. For this construct, one binding site was the preferred model 

(Table 3.13). The double mutation introduced in the 2"  ̂ intracellular loop affected the 

receptor affinity for U69593 in a similar manner as for hMORV^^^E,V^^^D-GuaC^^^I. Only a 

low affinity binding site (Hill coefficient = -0.92 ± 0.07) was obseived with a Kj=1007 ±133 

nM which was significantly lower compared to the wild type fusion protein (Ki=115 ± 4 1  

nM). When the mutated pair of fusion proteins were expressed wild type pharmacology was

111



reconstituted, with no significant difference in the percentage of high affinity sites (P>0.05). 

To investigate these findings further, competition experiments were performed both in the 

presence or in the absence of 100 pM GppNHp for rKOR-GjiaC^^^I and rKORV -

GiiaC^^^I. As shown in Figure 3.22 in the presence of GppNHp the competition curve for 

rKOR-GiiaC^^^I was still best fitted to a two binding site model with similar Ki, and Ki values 

(Table 3.14) as in the absence of GppNHp. The percentage of the high affinity binding site 

was not affected by the presence of GppNHp (P>0.05, T test). Likewise the Ki value for 

rKORV^^^EjV^ '̂^D-GiiaC^^^I was not altered in presence of GppNHp. This was not surprising 

because this fusion protein already exhibited only a low affinity binding site.

Table 3.13; Binding affinity of U69593 for the different fusion proteins and co

expression of the mutated pair of fusion proteins

Construct Kh (nM) pKh

%

high

affinity

site

Ki (nM) pKi
Hill

coefficient

rKOR-Gii^C^^'l 1.75 + 0.54 8.85 + 0.19 57 ± 7 115 ±41 7.10±0.18 -0.60 ± 0.02

rKORV'^E.V"’'*

D -G ii.C "'l
1007± 133* 6.00 ±0.06* -0.92 ± 0.07

rKOR-

GiiaG'“ A,C” ‘l
1.71+0.77 8.91 ±0.21 50 ± 6 121 ±59 7.12 ±0.26 -0.57 ±0.01

Co-transfection 2.00 + 0.79 8.92 ±0.31 48 ±5 336 ± 127 6.62 ± 0.23 -0.45 ±0.01

Data represent n=4 experiments performed in triplicate on different membrane preparations 

and are the means ± SEM.

Statistics were performed using 1 way ANOVA on pKh and pKi numbers and on high affinity 

site numbers.

* Significantly different P<0.05

Table 3.14: Binding affinity of U69593 in membranes expressing rKOR-GuaC^^^I or 

rKORV'^^E,V^^^D-GuaC^  ̂ I in the presence or absence of GppNHp
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rKOR-GiiaC^^'l rKORV'“ E,V‘“ D-GiiaC^^‘l

Control lOOpM GppNHp Control lOOpM GppNHp

Kh(nM) 0.82 + 0 .1 2 2 .1 + 2

pKh 9.1+0.06 8.97 ± 0.47

% high 

affinity site
37 + 7 27 + 10

Ki (nM) 48 + 10 107 + 29 798 ±293** 440 ±70**

pKi 7.34 + 0.09 7.01 ±0.11 6.16±0.17 6.37 ± 0.06

Data represent n=3 experiments performed in triplicate on different membrane preparations 

and are the means ± SEM.

Statistics were performed using 1 way ANOVA on pKh and pKi numbers.

**Significantly different P<0.01 compare to rKOR-GiiaC^^^I control in presence or absence 

of GppNHp

E/ The ability of rKOR-GuaC^^^I and the reconstituted dimer to activate G protein in 

response to U69593

Increasing concentrations of U69593 were used to build a concentration response curve to 

compare its potency to activate G protein (Figure 3.23). Equal amounts of receptor [^H]- 

diprenorphine binding sites were used in this study (15 fmol). Membranes expressing the 

reconstituted dimer exhibited an EC50 value of 168 ± 52 nM which was significantly different 

from the wild type fusion protein 54+11 nM (Table 3.15).

Table 3.15: rKOR-GuaC^^ I versus the reconstituted dimer: ["S]-GTPyS binding studies3 5  c

Construct PEC50 EC50 (nM)

rKOR-GiiaC^^'l 7.29 ± 0.08 54+11

Co-transfection 6.80 ±0.13* 168 ±52*

Data represent n=3 experiments performed in triplicate on different membrane preparations 

and are the means + SEM.
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T test was perfonned using pECso. 

* Significantly different P<0.05
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3.3 Discussion:

Many GPCRs have now been described to form homo dimers or higher order oligomers 

(Milligan, 2001; Angers et al., 2002). This is also true for the different opioid receptors 

(Cvejic and Devi, 1997; Jordan and Devi, 1999), which have been reported to dimerise using 

different techniques such as immunoprécipitation and resonance energy transfer (McVey et 

ah, 2001; Ramsay et aL, 2002). These techniques were mainly qualitative and did not report 

anything about the function or mechanisms of dimérisation. In this study I used a :

complementation technique to further investigate the importance of opioid dimérisation for |

signalling and pharmacology. j
i
!

Mutated DOR, MOR and KOR fusion proteins were constructed. Fusion proteins have . I

become widely used tools (Wurch and Pauwels, 2001; Seifert et ah, 1999). The fusion of 

reeeptor to G protein has been shovm to facilitate observation of agonist-induced signalling i

and owing to the 1:1 stoichiometry, the level of fusion protein expression can easily be 

monitored by saturation ligand binding assays. The effects of mutations in the receptor or the 

G protein can also be analysed.

In the complementation study the first fusion protein used contained a functional reeeptor 

linked to a non-funetional G protein. The second fusion protein was composed of a non- i

functional receptor fused to a functional G protein. As the binding of [^H]-diprenorphine was 

little affected by the mutations used, the expression of these fusion proteins was assessed by 

saturation binding experiments (Figures 3.4; 3.13 and 3.18). A Bmax of approximately 2000 

fmol/mg was obtained. This number was slightly lower for the hMOR-GjiaC^^^I fusion 

proteins. Opioid receptors are endogenously expressed in the brain at around 300 to 500 

fmol/mg (Szekeres and Traynor, 1997; Zhao et aL, 2003) so significant overexpression of
■

these fusions was produced by transient expression in HEK 293 cells. It has been suggested 

that dimérisation can be forced by overexpression of receptors. However, a study on and 

Pi-adrenoceptors showed that in a range of 0.44 to 46.6 pmol/mg dimérisation was
■

independent of receptor density but above that, random collision events could be observed 

(Mercier et al., 2002). Molinari et al., (2003) showed that the co-transfecton of a membrane

targeted G protein and a non-fused receptor produced a similar agonist-induced [^^S]-GTPyS
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binding as a receptor fused to a G protein. They concluded that a G protein only needs to be 

anchored to the membrane to interact with a nearby receptor suggesting that G protein 

activation in a fusion protein results from a close proximity with a receptor and not from 

dimer formation. However, in the work of Molinari et aL, (2003) fusion proteins were 

expressed at very high levels, within the range of potential random collision events. In my 

study approximately 2 pmol/mg of receptor was used so the dimérisation observed should not 

simply reflect receptor proximity, but this point will be futher investigated in Chapter 4. 

Moreover, other groups have worked on opioid receptor dimérisation using similar receptor 

expression levels (e.g. Jordan and Devi, 1999). The Kd for [^H]-diprenorphine of the different 

mutated fusion proteins was measured and compared to the respective wild type fusion 

proteins hDOR-GüaC^^'l, hMOR-GuaC^®‘l and rKOR-Gii„C^^‘l (Table 3.1, 3.7 and 3.11). 

The parental fusion proteins displayed similar Kd values to those that have been previously 

reported for opioid receptors (Szekeres and Traynor, 1997; Ramsay et aL 2002; Valenzano et 

a i, 2004). rKORV‘“ E,V‘“ D-GiiaC^’‘l and hDORV‘“ E,V‘ '̂’D-GiiaC^*‘l displayed a 

reduction in affinity for [^H]-diprenorphine of some 3 fold compare to their parental fusion 

proteins. Although the opioid receptor domains with the greatest homology are the 

transmembrane domains and the intracellular loops, this difference in Kd was not noted for 

rMORV^^^EV^^^D-GiiaC^^^I. Diprenorphine has been described as a MOR antagonist but also 

to have some partial agonist effects on KOR and DOR (Szekeres and Traynor, 1997; Lewis 

and Husbands, 2004). This may explain the change of affinity observed for KOR and DOR 

but not the corresponding MOR fusion protein. The Kd values for [^H]-diprenorphine of the 

fusion proteins mutated in the G protein part and the different co-transfections was not 

significantly different from the wild type proteins except for the co-expressed pair of DOR 

fusion proteins. One possible explanation might be that in the co-expression 

hDORV‘“ E,V'^‘'D-Gii„C^^‘l was highly expressed compared to h0OR-Gi,„G^“ A,C“ ‘l. The 

observed Kd would predominantly reflect the liDORV’’'*E,V'’'*D-GiiaC^^'l construct. 

However, this was not obvious from the expression levels measuied in individual 

transfections which exhibited similar Bmax levels, 2181 ± 228 and 1777 ± 285 fmol/mg of 

protein respectively. Although it is impossible to measure what level of each construct was 

present when they were co-transfected from analysis of binding studies, the immunoblots of 

Figure 3.7 do not suggest different levels of hDORV^^^E,V^ '̂^D-GiiaC^^*I in the singly or co

transfected samples.
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Immunoprécipitation studies demonstrated that neither adding G protein a  subunit to the end 

of the receptor nor introducing mutations prevented DOR from dimerising (Figure 3.7). Co- 

immunoprecipitation has been widely used to study GPCR dimérisation (Herbert et aL, 1996; 

Ng et aL, 1996; Jordan and Devi, 1999) but certain studies have suggested that it is maybe a 

non-specific process (Salim et aL, 2002) raising the possibility that incomplete receptor 

solubilisation may lead to biological artefacts. Studies using resonance energy transfer 

techniques BRET or FRET have been used to complement immunoprécipitation data (Angers 

et aL, 2000; Rocheville et al., 2000a). These techniques have allowed observation of 

dimérisation in living cells but also have their limitations. The signal obseiwed is dependent 

on the distance between the receptors or energy donor and acceptor molecules and is subject 

to the orientation of the electromagnetic dipoles. These limitations, as well as the success of 

other receptor complementation studies, are one of the reasons why complementation was 

employed to study dimérisation in my work.

In addition to using pairs of distinct but complementary fusion proteins, [^^S]-GTPyS binding 

was measured to monitor complementation. This permitted the activation of the G protein to 

be monitored by measuring exchange of GDP for GTP using an analogue of GTP that is 

resistant to GTPase activity. Guanine nucleotide exchange is a very early event in the signal 

transduction cascade. Therefore it is an attractive level to study as it is less subjected to 

amplification or regulation by other cellular processes and thus directly reflects ligand- 

induced signalling. It was demonstrated that a linear rise in agonist stimulated [^^S]-GTPyS 

binding was observed when increasing amounts of wild type fusion proteins were used 

(Figure 3.5). In each experiment expression of the fusion proteins were measured and equal 

amounts of each construct employed. When the various mutated fusion proteins were 

transfected alone no substantial agonist-induced stimulation was observed. The mutations 

introduced therefore successfully abolished any information transfer between receptor and its 

fused G protein and vice versa. This was anticipated from the conservation of sequences in 

the targeted region between GPCRs and G proteins used herein and the previous studies of 

Carrillo et aL, (2003). Moreover, introduction of the C^^4 mutation in the Güa subunit confers 

PTX resistance and successfully prevented activation of the endogenous Gj/o pool by the 

receptors of the fusion proteins. However, when the contrasting pairs of non-functional 

mutants were co-transfected a signal was detected after agonist stimulation (Figures 3.6, 3.14 

and 3.19). Receptor function was therefore rescued. The functional receptor was able to
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activate the functional G protein fused to the non-functional receptor thus generating a signal 

(Figure 3.20).

Although opioid receptors are class A rhodopsin-like GPCRs, the transactivation observed 

within the dimer is similar to results monitored from class C receptors. Galvez et aL, (2001) 

showed that the GABAb receptor where the GABAbl subunit contains the GAB A binding 

site is unable to activate G protein. However when co-tranfected with GABAb2, which camiot 

bind GABA, function is generated.

Studies involving chimeras of muscarinic M3 and aic-adrenoceptors have also shown 

restoration of function (Maggio et a l ,  1993a). When individually expressed such chimeras 

could not bind muscarinic or adrenergic radioligands nor transmit a signal. After co

transfection, however, a significant number of muscarinic and aic-adrenoceptor binding sites 

were detected. An agonist-dependent increase in phosphoinositide breakdown was also 

produced, reflecting a recovery of muscarinic receptor signalling ability. These results 

described the importance of dimérisation in receptor signalling and are in agreement with that 

observed in my study.

The complementation approach I have employed was used previously in our group for aib- 

adrenergic and histamine HI receptors. Similar results to those I have described for opioid 

receptors were reported (Carrillo et aL, 2003). In the case of the histamine HI receptor when 

complementary fusion proteins were co-expressed, the presence of twice the number of 

receptor binding sites were required to generate as large a signal as from the wild type fusion 

protein. It was argued that if  the functional receptor is a dimer then when the complementary 

fusion proteins are co-expressed half of the dimers formed should be non-functional. Dimers 

o f fusion proteins mutated both in the receptor part or in the G protein would be non

functional. The other 50% represent combinations of the different fusion proteins that 

subsequently signal in the presence of agonist. A similar ratio was not observed in the case of 

the aib-adrenoreceptor (Carrillo et aL, 2003). Monnot et al, (1996), also witnessed 

inteimolecular complementation using two ligand binding-deficient type 1 angiotensin II 

receptors. When singly expressed those mutated receptors were unable to bind different 

ligands, but upon co-expresssion 5% of the binding sites were restored compared to the wild 

type receptor. These studies suggest that class A GPCRs differ in their ability to foim dimers. 

For opioid receptors a signal corresponding to wild type was generated when three times the 

number of [^H]-diprenorphine binding sites of the co-transfected fusion proteins were used. A 

first hypothesis to explain these data might be that opioid receptors are present as dimers but
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also as monomers at the plasma membrane. This might allow different pharmacology or 

systems of regulation to be observed between monomers and dimers. If the fusions were 

present as a mixtme of dimers and monomers, the chance of forming the functional dimer 

would deerease.

The second explanation for the ratio obsei'ved is that one non-functional construct was under

expressed compared to the other, reducing the chances of forming a functional dimer. It was 

not possible to test this idea directly as the fusion proteins contained the same receptor but 

individual expression of each fusion protein did not result in markedly different expression 

level (Tables 3.1, 3.7 and 3.11). This hypothesis is therefore considered less likely.

This difference in ratio could also be due to the mutations introduced diminishing the ability 

of the receptor to foim a dimer, but, in general, domains described to be involved in homo- 

dimerisation of opioid receptors appear to be the transmembrane domains (Filizola and 

Weinstein, 2002) or the C-terminal tail (Cvejic and Devi, 1997) and these regions were not 

mutated in my studies.

One commonly proposed purpose for GPCR dimérisation is that the cytoplasmic surface area 

of a GPCR monomer is not large enough, 42Â for the inactive rhodopsin monomer, to be in 

contact with both a  and Py elements of a G protein heterotrimer. This supports the idea that 

the activating platform for G protein activation is a dimer (Bouvier, 2001; Hamm, 2001, 

Arimoto et al., 2001). In the case of the class C GPCR, the GABAb receptor Margeta- 

Mitrovie et al, (2001) demonstrated that only a single GPCR monomer was necessary for the 

activation of G protein within a dimeric receptor by using receptor chimeras. The 

crystallisation of the rhodopsin receptor (Palczewski et al., 2000) in combination with 

visualisation of these molecules by atomic force microscopy suggested that rhodopsin forms 

dimers and oligomers and that the size and geometry of such dimers allow a perfect fit for the 

binding of one G protein (Liang et al., 2003). These obseivations are consistent with those of 

Banères and Parello, (2003) on the leukotriene B4 receptor BLTl. Using a combination of 

chemical cross- linking followed by size-exclusion chromatography and mass spectroscopy 

they established that only one G protein apy trimer binds to a receptor dimer. In my study the 

functional receptor of the dimer unit was able to activate the G protein linked to the non

functional receptor under agonist stimulation (Figure 3.20). This result suggests that one G 

protein per receptor dimer is sufficient to transduce a signal.

Basal, constitutive activity was also measured for all the active fusion proteins. A linear rise 

in such activity was seen as the amount o f fusion protein was increased. This basal activity is
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likely to reflect constitutive activity of the fusion proteins as the introduction of the 

mutation in the G protein has previously been shown to optimise basal activity (Kellett et aL, 

1999; Welsby et al., 2002).

Ligand affinity for the different mutated fusion proteins was studied as it was important to 

check that alterations introduced would not cause substantial changes to their ability to bind 

ligands. Competition binding experiments were performed for the different opioid receptor 

fusion proteins using a variety of opioid agonists (Figures 3.8; 3.9; 3.15; 3.21). The parental 

fusion proteins were used as references to compare the agonist binding affinity of the 

modified constructs. All [^H]-diprenorphine versus agonist competition curves for the wild 

type fusion proteins were preferentially fitted by a two binding site model. No significant 

differences in agonist binding were noticed when the G^^^A mutation was introduced into the 

Gila subunit fused to the different opioid receptors. This may reflect that GDP bound G 

protein forms a relatively high affinity complex with these receptors. However the scenario 

was different in the case of the double modifications introduced in the 2"  ̂intracellular loop of 

the reeeptors. Each opioid receptor demonstrated a change in its ability to bind agonist. This 

difference was most obvious in the case of rKORV^^°E,V^^'^D-GiiaC^^^I and 

hMORV’̂ ^^EjV'^^D-GiiaC^^^I with a complete loss of high affinity binding sites resulting in a 

single site curve. For hDORV^^°E,V^^"^D-Gii^C^^by contrast only a shift in the affinity for 

both high and low binding sites for DADLE and DPDPE was witnessed (Figures 3.8 and 3.9). 

The 2"  ̂and 3*̂  ̂ intracellular loops and the C-terminal tail of GPCRs have been described to be 

involved in the activation and selectivity of G protein coupling (Liu and Wess, 1996; Wess, 

1998, Verrall et ah, 1997, Konig et ah, 1989). Peptides mimicking these three regions in 

MOR and DOR were used to identify which part of the receptor was able to activate G protein 

(Merkouris et ah, 1996, Georgoussi et ah, 1997). The 3*̂  ̂intracellular loop and C-terminal tail 

were found to be involved in both MOR and DOR G protein coupling. Although described as 

a non-specific effect by the authors, the peptide mimicking a part of MOR 2”*̂ intracellular 

loop was found to decrease 40% of the wild type [^^S]-GTPyS binding suggesting some role 

in G protein activation. One of the possibilities, in my study is that mutations may have 

abolished the association between receptor and the G protein, leading to the loss o f the high 

affinity binding site.

This idea was tested for the rKOR-GnaC^^^I fusion proteins (Figure 3.22). Competition 

experiments using rKOR-GjiaC^^'l and rKORV^^^E,V^^"^D-Gii«C^^were carried out in the 

presence or in the absence of GppNHp, a non-hydrolysable analogue of GTP which binds
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permanently to the G protein. However, GppNHp failed to convert the rKOR-GiiaC^^^I 

agonist binding cui*ve to a single low affinity state. Ugur et al, (2003) studied binding 

characteristics of the ^2-adrenoceptor fused to a wild type or mutated Gg protein agonist in the 

absence or presence of GTPyS. In this study the membranes expressing the wild type fusion 

protein displayed high and low affinity binding sites whereas when the Gg subunit of the 

fusion protein was mutated only a single binding site was detected. However, in their case, in 

the presence of GTPyS the wild type Pi-adrenoceptor-Gg fusion protein high affinity binding 

site was abolished and a similar low affinity site as for the mutated version of the fusion 

protein was observed. This was not the case in my study where in the presence of GppNHp 

the wild type fusion protein still displayed both a high and low affinity binding site. This 

absence of shift to a single binding site in the presence of GppNHp was also witnessed by 

other groups for the dopamine Di or the P2-adrenoceptor fused to Ga subunits (Gazi et ah, 

2003, Seifert et al., 1999). One possible explanation may be related to the fact that the KOR 

was fused to the Gn» protein, leading to a spatial constraint due to the proximity of the C- 

terminus o f the receptor and N-terminus of the G protein (Wurch and Pauweis, 2001). In this 

case, the modifications introduced in the 2”̂  intracellular loop of opioid receptors may have 

abolished or created different spatial contraints.

For all three receptors the co-transfection of the distinct but complementary pairs of fusion 

proteins reconstituted the pharmacology of the wild type receptor with no significant 

differences observed between the respective Kh and Ki values for agonist ligands or 

percentage observed for high and low affinity sites. These results reflect a physical interaction 

between the two receptors forming a dimer leading to a rescued binding pocket that other 

groups have also recorded. Galvez et ah, (2001) described that even though the extracellular 

binding domain of the GABAb 1 subunit of the GABAb receptor was sufficient to bind 

G ABA, the extracellular domain of the GABAb2 subunit had increased agonist affinity when 

they formed a dimer. Although more extreme, two angiotensin II receptor (ATi) mutants 

where agonist binding was abolished by different mutations, lead to restoration of a normal 

binding site when co-expressed (Monnot et a l, 1996). Two structural models of dimer 

formation have emerged in order to explain changes in functions and pharmacology observed 

upon dimérisation, namely contact dimers (Herbert et al., 1996) and the domain-swapped 

theories (George et al., 2002). In contact dimers, certain transmembrane domains are though 

to interact via hydrophobic interactions whereas in the domain-swapped theory, 

transmembrane domains of both receptors are likely to be exchanged. Until recently receptor
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dimérisation was described by either of these two theories. In a recent study, two histamine 

HI receptor mutants unable to bind radioligands, showed a reconstituted radioligand binding 

site when co-expressed (Bakker et aL, 2004). The authors suggested that the ligand binding 

sites were reconstituted upon mutual exchange of transmembrane domains from both 

receptors suggesting a domain-swapped dimer, however the difference observed between 

[^H]-mepyramine and [^H]-PAT B^ax values also suggested the presence of contact dimers, 

implying that a mix of contact and domaim swapped dimers could co-exist at the plasma 

membrane.

One of the advantages of complementation studied by [^^S]-GTPyS binding was that only 

dimers are anticipitated to be functional. For this reason it was interesting to note what 

happened to the potency of opioid ligands to activate or inactivate the G protein of the 

reconstituted dimer. In the case of DOR, no significant difference in EC50 or IC50 was
’

observed between the wild type fusion protein and the reconstituted dimer when they were 

stimulated by the DOR agonist DADLE or inhibited by the opioid antagonist naloxone 

(Figures 3.10 and 3.11). This could suggest that DOR is only expressed in a dimeric form at 

the plasma membrane.

In the case of KOR and MOR, a decrease of EC50 for agonist was noticed for the reconstituted 

dimers (Tables 3.10 and 3.15) in comparison to the parental fusion proteins. A first hypothesis 

to explain this reduction in agonist affinity is related to the observations witnessed in the 

competition binding experiments. In these experiments when either rKORV^^^E,V^^'^D- 

GiiaC^^^I or hMORV^^^E,V*^^D-GiiaC^^^I were expressed a loss of agonist affinity was 

observed for DAMGO and U69593 (Figure 3.15 and 3.21). These agonists were used to study 

the ability of the reconstituted dimer to activate G protein function, thus the loss of agonist 

affinity observed in the competition experiment might affect G protein coupling. However, 

this does not seem likely as the wild type pharmacology for DAMGO and U69593 was 

reconstituted when the mutated fusion proteins were co-expressed, suggesting that in the 

reconstituted dimer a high affinity binding site was rescued. However, the mutation in the 2"  ̂

intracellular loop could have impaired G protein coupling of the homodimer based on the 

hypothesis that MOR and KOR formed a swapped dimer. Consequently the mutations 

introduced in KOR could affect the potency of the dimer to activate the G protein. A second 

hypothesis is that MOR and KOR were expressed as a mixed population of monomers and 

dimers at the plasma membrane. In this case the reduction in potency observed for the
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reconstituted dimer could reflect monomers being more potent to activate G protein compared 

to dimers.
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Figure 3.1: Graphie representation of hDOR-GuC^^ I; hDOR-

and hDORV‘ ‘̂̂ E,V̂ ^̂ D-GiiaĈ ^̂ I 

A. hDOR-GiiaC^^^I fusion protein

This fusion protein consisted of DOR fused to GiiaC^^^I. The Gn» contained a cysteine 

mutated into isoleucine to prevent ADP ribosylation by PTX.

B. hDOR-G;iaG^^^A,C^  ̂ I fusion protein

This fusion protein consisted of DOR fused to the mutated GüaC^^^I subunit. The glycine at 

position 202 of GuaC^^^I was mutated into an alanine.

C. hDORV'*“E,V‘®^D-GiiaC“ ‘l  fusion protein

This fusion protein consisted of DOR mutated in the 2”“' intracellular loop of the receptor.

Two valines in positions 150 and 154 were mutated into glutamic acid and aspartic acid 

respectively.
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Figure 3.2: Conserved GGQR sequence in G protein a  subunits

Comparison of G protein a  subunit sequences belonging to different subfamilies and/or 

species. The alignment of the sequences highlights the conserved glycine contained in the 

GGQR motif that was mutated.
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G alpha subunit Species sequence

Gs Human vg | q r D e r r k

Golf Human vgJ q r D e r r k
Gii Human vg | q r se r k k

Rat vg | q r s e r k k

Gi2 Human vg | q r s e r k k
Mouse vg | q r se r k k

Gî3 Human vg | q r s e r k k
Rat vgJ q r se r k k

Goi Human vg | q r s e r k k

Bovine vgJ q r se r k k

Go2 Human vg | q r se r k k

Gz Human vgJ q r se r k k

Rat VGgQRSERKK
Gti Bovine vg | q r se r k k

Gt2 Human vg | q r se r k k

Ggust Rat vgBq r s e r k k

Gq Human vgJ q r s e r r k

Mouse vgJ q r s e r r k

Gii Human vg | q r s e r r k

Rat vg | q r s e r r k

G i2 Human VGgQRSQRQK
Rat vgÎ q r sq r q k

G i3 Human VGgQRSERKR

G i4 Human vgJ q r s e r r k

G i5 Mouse vgI q r s e r r k

G I6 Human vgI q k se r k k

From Milligan et al, (2004)



Figure 3.3; Highly conserved hydrophobic residues in the 2"̂  intracellular 

loop of the rhodopsin-like, class A GPCRs

Comparison of amino acid sequences situated downstream of the DRY motif in the 2^^ 

intracellular loop of different class A GPCRs. The alignment of the sequences highlights the 

conserved hydrophobic residues that were mutated.
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GPCR

5HT1A receptor 
5HT1B receptor 
5HT1D receptor 
5HT2A receptor 
5HT2C receptor 
5HT4 receptor 
5HT6 receptor 
a la  adrenergic receptor 
a lb  adrenergic receptor 
a2b adrenergic receptor 
p i adrenergic receptor 
p2 adrenergic receptor 
P3 adrenergic receptor 
A1 adenosine receptor 
A3 adenosine receptor 
M l receptor 
M2 receptor 
M3 receptor 
Melanocortin2 receptor 
ATI A receptor 
ATIB receptor 
B2 bradikinin receptor 
CXCR3 
CXCR4 
D2 receptor 
D3 receptor 
FSHR 
GRHR 
HI receptor 
H2 receptor 
LSHR
Ô opioid receptor 1 
K  opioid receptor 1 
p opioid receptor 1 
rhodopsin 
Oxytocin receptor 
P2U purinoceptor 1 
Prostaglandin D2 receptor 
Prostaglandin E2 receptor 
Somatostatin receptor 2 
TRH receptor

specie

human
mouse
rabbit
rat
rat
mouse
rat
bovine
hamster
rat
human
bovine
mouse
human
human
mouse
human
mouse
human
human
rat
human
mouse
human
mouse
rat
bovine
mouse
mouse
human
mouse
rat
mouse
rat
bovine
rat
rat
mouse
rat
human
rat

G protein

Gi/Go
Gi/Go
Gi/Go
G q/G ll
G q/G ll
Gs
Gs
G q/G ll
G q/G ll
Gi/Go
Gs
Gs
Gs
Gi/Go
Gi/Go
G q/G ll
Gi/Go
Gi/Go
Gs
G q/G ll
G q/G ll
G q/G ll
Gi/Go
Gi/Go
Gi/Go
Gi/Go
Gs
G q/G ll
G q/G ll
Gs
Gs
Gi/Go, Gz 
Gi/Go 
Gi/Go, Gz 
Gt
G q/G ll
G q/G ll
Gs
G q/G ll 
Gi/Go Gq 
G q/G ll

sequence 

d r y w a Q td
DRYWABTD
d ry w a Q td . 
d r y y a H q n p H h  
d r t v a R r n p R e  
d r y y a H c c q B l  
d r y l l H l s p s J r  
d r y i ( ^ s y p | J r  
d r y i g B r y s | q  
DRYWAQSRAgE 
DRYLAQrSPgR 
DRYLA0TSP@K
d r y l a Qt n p Qr

DRY]
DRY] 
DRYFSffiTRRHS
d r y f c B t k p |  
d r y f s Bt r p o  
d r y i t Bf i
DRYIAgVHPgE
DRYLAgVHBM
d r y l a Hv k ® Js
DR Y LsjjvH A TQ
d r y l a Hv h a t n
DRYTAgAMBËL 
DRYTi 
EBWH:
DRS]
DRYRSÎ 
DRY(
ERWH' 
DRYIAgCHPgK
d r y i a Qc h p Qk  
d r y i a B c h ]
ER]
DRC]

PgK
KP#S

HPfiF

HPUK

From Milligan et al, (2004)



Figure 3.4: [^H]-Diprenorphine saturation binding assays following 

expression of DOR-Güct fusion proteins

Membranes expressing hDOR-GüaC^^^I (dark blue squares); hDOR-GiiaG^^^A,C^^*I (green 

dots); hDORV^^°E,V^^'^D-GtiaC^^^I (light blue dots) and of the co-transfection of hDOR- 

GiiaG^°^A,C^^*I + hDORV^^^E,V^^'*D-GiiaC^^^I (pink squares) were used to measure the 

specific binding of different concentrations of [^H] -diprenorphine. Data are representative of 

n= 4  experiments performed in triplicate. Data points represent means ± SEM.
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Figure 3.5: DADLE activates hDOR-GüaC^^^I

A. Specific activation of hDOR-G;iaC^  ̂ I

Membranes of HEK 293 ceils expressing or not hDOR-GiiaC^^^I were used to measure the 

binding of [^^S]-GTPyS in the absence (open bars) or presence (filled bars) of lOpM DADLE,

Data are representative of n=3 experiments performed in triplicate.

B. Increasing levels of hDOR-GuaC^^ I proportionally increase agonist 

stimulated [^^S]-GTPyS binding

Increasing amounts of membranes of HEK 293 cell expressing hDOR-GiiaC^^*I were used to 

measure the binding of [^^S]-GTPyS in the presence of 10 pM DADLE. Numbers represent 

stimulation over basal. Data are representative of n=3 experiments performed in triplicate.
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Figure 3.6: Co-expression of a pair of distinct non functional mutants of 

hDOR-GiiaC^^^I fusion proteins reconstitute function

Membranes of HEK 293 cells expressing 15fmol of hDOR-GiiaC^^ Î, hDORV^^^E,V^ '̂̂ D- 

Gi,aC^ ‘̂l, hDOR-GiiaG^‘̂ Â,Ĉ ‘̂l or 30 or 45 fmol in the case of h D O R V ^ ^ D -  

GiiaC^^ Î+ hDOR-GiiaG^^^A,C^^*I co-transfection were used to measure [^^S]-GTPyS binding 

in the absence (open bars) or presence (filled bars) of 10 pM DADLE. Membrane expressing 

15 fmol of hDORV^%,V' '̂^D-GuaC^^^I and 15 fmol of hDOR-GiiaG^^%C^^^I were also 

mixed and stimulated with DADLE. Data represent of n=5 experiments performed in 

triplicate. Data points represent means ± SEM.
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Figure 3.7: Co-immunoprecipitation of a pair of epitope tagged non

functional fusion proteins 

A. Co-immunoprecipitation of differentially epitope-tagged 

forms of the mutated DOR fusion proteins

Membranes from HEK 293 cells (1) and cells transiently expressing Flag-hDORV^^^E,V^ '̂^D- 

GiiaC^ '̂l (2), Myc-hD0R-Gii„G^^2A,C^^^I (3), Flag-hDORV^^^E,V^^^D-GiiaC^ ‘̂l + Myc- 

hDOR-GiiaG^®^A,C^ ’̂l (4) or mix membrane of Flag-hDORV^^^E,V^ '̂^D-GiiaC^^ Î and Myc- 

hDOR-GiiaG '̂̂ ^AjC^̂ Î (5) were immunoprecipitated with Flag antibody and detected with 

Myc after being resolved by SDS-PAGE. Data are representative of n=3 experiments.

B. Anti-Flag antibody was used to detect anti-Flag reactive 

patterns

The same membranes as in panel A were rebloted using anti-Flag antibody.
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Figure 3.8: Effect of mutation and co-expression of hDOR-GüaC^^ I fusion

proteins on competition between [^H]-Diprenorphine and DADLE

Membranes expressing hDOR-GnaC^^ Î (dark blue squares), hDOR-GjiaG^^^A,C^^ Î (green 

dots), liDORV^ °̂E,V^^^D-GiiaC^^ Î (light blue dots) and both hDOR-GiiaG^“ A,Ĉ ^̂ I + 

hDORV’^^E,V‘̂ '̂ D-GiiaĈ ’̂l (pink squares) were used to measure the ability of varying 

concentrations of DADLE to compete with InM [^H]-diprenorphine. Data are representative 

of 11=4 experiments performed in triplicate. Data points represent means ± SEM.

131



o>
c

s
c

Z  ^  
Q) E
c 3
Z  E 
- So g 
c c

Q.
Û

Xco

120-1
110-
100-
90-
80-
70-
60-
50-
40- ■
30- e
20- e
10- ■
0-J

-12.5

DOR-G:,„C^^'I

DOR-Gii„C^^'l,G2®^A
Co-transfection

- 10.0 ■2.5
log [DADLE] M



Figure 3.9: Effect of mutation and co-expression of hDOR-GnaC^^ I fusion j

proteins on competition between [^H]-Diprenorphine and DPDPE

t
Membranes expressing hDOR-GnaC^^^I (dark blue squares), hDOR-GiiaG^^^A,C^^^I (green 

dots), bDORV'%,V^^^D-GiiaC^^^I (light blue dots) and both hDOR-GiiaG^^^A,C^^^I + |

hDORV‘̂ °E,V* '̂^D-GiiaC^^*I (pink squares) were used to measure the ability of varying j
concentrations of DPDPE to compete with InM [^H]-diprenorphine. Data are representative '

of n=4 experiments performed in triplicate. Data points represent means ± SEM. !
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Figure 3.10: Comparaison of agonist stimulated [^^S]-GTPyS binding of 

hDOR-GiiaC^^^I and hDOR-G;iaG^"%C^^^I + hDORV^"*^E,V'"^D-G;iaC"^ Î 

reconstituted dimer

Membranes expressing hDOR-GjiaC^^^I (blue squares) or co-transfected with hDOR- 

GiiaG^°^A,C^^*I + hDORV*^*^E,V^ '̂^D-GiiaC^^^I (pink squares) were used to measure the 

ability of increasing concentrations of DADLE to activate [^^S]-GTPyS binding. Data 

represents n=3 experiments performed in triplicate. Data points represent means ± SEM.
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Figure 3.11; Comparaison of the ability of naloxone to reverse DADLE 

stimulated [^®S]-GTPyS binding of hDOR-GiiaC^^ I and the reconstituted 

dimer

Membranes expressing hDOR-GjiaC^^^I (blue squares) or co-transfected with hDOR- 

+ hDORV^^^EjV^ '̂^D-GiiaC^^^I (pink squares) were used to measure the 

ability of increasing concentrations of naloxone to inactivate [^^S]-GTPyS binding produced 

by 10‘̂ M DADLE. Data represents n=3 experiments performed in triplicate. Data points 

represent means ± SEM.
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Figure 3.12: Graphie representation of hMOR-GuaC^^ ï, hMOR-

and hMORV^^^E,V^^^D-Gii«C^^ Î

A. hMOR-GiictC^^ Î fusion protein

This fusion protein consisted of MOR fused to GuaC^^^L The Güa contained a cysteine 

mutated into isoleucine to prevent ADP ribosylation by PTX.

B. hMOR-GiiaG^®^A,C^^*I fusion protein

This fusion protein consisted of MOR fused to the GuaC^^^I subunit. The glycine at position 

202 of GiiaC^^^I was mutated into an alanine.

C. hMORV‘^̂ E,V̂ ^̂ D-GiiaĈ ®̂ I fusion protein

This fusion protein consisted of MOR mutated in the 2"*̂  intracellular loop of the receptor. 

Two valines in positions 169 and 173 were mutated into glutamic acid and aspartic acid 

respectively.
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Figure 3.13: [^H]-Diprenorphine saturation binding assays following the 

expression of hMOR-GuaC^^ I fusion proteins

Membranes expressing hMOR-GiiaC^^^I (dark blue squares), hMOR-GiiaG^°^A,C^^^I (green 

dots), hMORV^^^E,V^^^D-GiiaC^^‘l (light blue dots) and co-expressing hMOR- 

GiiaG^^^AjC^^^I + hMORV*^^E,V^^^D-GiiaC^^^I (pink dots) were used to measure the specific 

binding of different concentrations of [^H]-diprenorphine. Data are representative of n=3 

experiments performed in triplicate.Data points represent mean ± SEM.
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Figure 3.14: Co-expression of a pair of distinct non-functional mutants of 

hMOR-GiiaC I fusion proteins reconstitute function

Membranes of HEK 293 cells expressing 15fmol of hMOR-GüaC^^^I; hMORV’^^E,V^^^D- 

GijaC^^‘l, hMOR-GiiaG^®^A,C^^‘l or BOfmol in the case of hMORV*^^E,V^^^D-GiiaC^^4 + 

hMOR-GiiaG^^^A,C^^'l co-transfection were used to measure [^^S]-GTPyS binding in the 

absence (open bars) or presence (filled bars) of 10 pM DAMGO. Membranes expressing 15 

fmol hMORV'%V^^^D-GuaC^^^I and 15 finol hMOR-GiiaG^'^^A,C^^^I were also mixed and 

stimulated with DPDPE. Data represent n=3 experiments performed in triplicate. Data points 

represent means ± SEM.
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Figure 3.15: Effect of mutation and co-expression of hMOR-GuaC^^ I fusion

proteins on competition between [^H]-Diprenorphine and DAMGO

Membranes expressing hMOR-GiiaC^^^I (dark blue squares); hMOR-GiiaG^®^A,C^^^I (green 

dots), hMORV‘̂ ^E,V '̂^^D-GiiaC^^‘l (light blue dots) and both hMOR-GiiaG^^^A,C^^^I + 

hMORV*^^E,V^^^D-GiiaC^^^I (pink squares) were used to measure the ability of varying 

concentrations of DAMGO to compete with InM [^H]-diprenorphine. Data are representative 

of n=4 experiments performed in triplicate. Data points represent means ± SEM.
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Figure 3.16: Comparaison of agonist-stimulated [^^S]-GTPyS binding of 

hMOR-GiiaC^^‘l  and hMOR-G;iaG^^%C^^^I + hMORV^^^E,V^^^D-GiiaC^ ‘̂l  

reconstituted dimer

Membranes expressing hMOR-GnaC^^^I (blue squares) or co-transfected with hMOR- 

+ tiMORV^^^EjV^^^D-GiiaC^^^I (pink squares) were used to measure the 

ability of increasing concentrations of DAMGO to activate [^^S]-GTPyS binding. Data 

represents n=3 experiments performed in triplicate. Data points represent means ± SEM.
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Figure 3,17: Graphie representation of rKOR-GuaC^^ I, rKOR-

GiiaĜ ®̂ A,Ĉ ‘̂l  and rKORV̂ ^®E,V̂ ®̂ D-GiiaĈ ®̂ I

A. rKOR-GiiaC^^^I fusion protein

This fusion protein consisted of KOR fused to GiiaC^^^I. The Gn» contained a cysteine 

mutated into isoleucine to prevent ADP ribosylation by PTX.

B. rKOR-Gii«G '̂^%C^^^I fusion protein

This fusion protein consisted of KOR fused to the GiiaC^^^I subunit. The glycine at position 

202 of GiiaC^^^I was mutated into an alanine.

C. rKORV^^®E,V^^^D-GiiaC^ '̂l fusion protein

This fusion protein consisted of KOR mutated in the 2"  ̂ intracellular loop of the receptor. 

Two valines in positions 160 and 164 were mutated into glutamic acid and aspartic acid 

respectively.
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Figure 3.18: [^H]-Diprenorphine saturation binding assays following 

expression of rKOR-GnaC^^ I fusion proteins

Membranes expressing rKOR-GjiaC^^^I (dark blue squares), rKOR-GiiaG^^^A,C^^^I (green 

dots), rKORV^^^E,V’̂ ^D-GiiaC^^^I (light blue dots) and co-expressing rKOR-GiiaG^^^A,C^^^I 

+ rKORV^^°E,V’̂ '^D-GiiaC^^*I (pink squares) were used to measure the specific binding of 

different concentrations of [^H]-diprenorphine. Data are representative of n=3 experiments 

performed in triplicate. Data points represent means ± SEM.
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Figure 3.19: Co-expression of a pair of distinct non functional mutants of 

rKOR-G;iaC^  ̂ I fusion proteins reconstitute function

Membranes of HEK 293 cells expressing 15 fmol of rKOR-GüaC^^^I, rKORV^^^E,V^^^D- 

rKOR-Gi,aG^®^A,C^^^I or 30 or 45 fmol in the case of rKORV^^^E,V^^'^D- 

GiiaC^^*I+ rKOR-GiiaG^^^A,C^^^I co-transfection were used to measure the [^^S]-GTPyS 

binding in the absence (open bars) or presence (filled bars) of 10 pM or (checkered bars) 100 

nM U69593. Membranes expressing 15 fmol of rKORV^^^E,V^ '̂^D-GiiaC^^^I and 15 fmol of 

rKOR-GiiaG^®^A,C^^*l were also mixed and stimulated with U69593. Data represent n=4 

experiments performed in triplicate. Data points represent means ± SEM.
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Figure 3.20: Schematic model of the complementation technique

The pair of distinct but complementary fusion proteins expressed alone are non-functional, no 

guanine nucleotide exchange was observed.

The reconstitution produced by the co-expression of two complementary mutant result from a 

transactivation in the dimer in which the wild-type receptor activates the wild type G protein 

even thought it is link to the inactive receptor.
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Figure 3.21: Effect of mutation and co-expression of rKOR-GuaC^^*! fusion

proteins on competition between [^H]-Diprenorphine and U69593

Membranes expressing rKOR-GiiaC^^*I (dark blue squares), rKOR-GiiaG^®^A,C^^^I (green 

dots), rKORV‘̂ ®E,V'^^D-GiiaC^^^I (light blue dots) and both rKOR-GiiaG^°^A,C^^^I + 

rKORV*^^E,V'^'^D-GiiaC^^^I (pink squares) were used to measure the ability of varying 

concentrations of U69593 to compete with InM [^Hj-diprenorphine. Data are representative 

of n=4 experiments performed in triplicate. Data points represent means ± SEM.
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Figure 3.22: Effects of the mutations introduced in the 2"̂  intracellular loop

of the receptor fused to the functional G protein on competition between

[^H]-Diprenorphine and U69593 in the presence or absence of GppNHp

Membranes expressing rKOR-GüaC^^^I or rKORV^^^E,V^ '̂^D-GiiaC^^^I were used to compete 

InM [^H]-diprenorphine by U69593 in presence (open squares) or absence (filled squares) of 

a lOOpM of GppNHp. Data are representative of n=3 experiments performed in triplicate. 

Data points represent means ± SEM.
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Figure 3.23: Comparison of agonist-stimulated [^^S]-GTPyS binding of 

rKOR-Gi,aC^^*I and rKOR-GiiaG^®^A,C^ '̂l + rKORV^^®E,V‘^̂ D-GiiaĈ *̂I 

reconstituted dimer

Membranes expressing rKOR-GiiaC^^^I or co-transfected with rKOR-GiiaG^^^A,C^^^I + 

rKORV^^®E,V^ '̂*D-GiiaC^^*I were used to measure the ability of increasing concentrations of 

U69593 to activate [^^S]-GTPyS binding. Data represents n=3 experiments performed in 

triplicate. Data points represent means ± SEM.
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Chapter 4 

Opioid receptor heterodimerisation 

studied using a complementation

technique
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4.1 Introduction:

GPCRs have been reported to foim homo as well as heterodimers/oligomers that contain at 

least two distinct gene products (in the text heterodimer will be used in referring to either 

heterodimer or oligomer). A variety of GPCRs from classes A (George et aL, 2002) and C 

(Gama et aL, 2001) have been reported to heterodimerise. Different groups demonstrated that 

GPCR family subtypes such as dopamine D2 and D3 receptors (Maggio et al., 1999) and 

serotonin SHTib and 5HTid receptors (Xie et al., 1999) were able to interact. The simplest 

hypothesis would be that closely related GPCRs are more likely to form heterodimers. 

However, this first hypothesis appears to be an over-simplification as the number of studies 

on heterodimerisation increased. This is exemplified by the detection of somatostatin receptor 

subtypes heterodimerisation. SSTrS and SSTrl interaction was detected whilst no association 

was noted between somatostatin SSTr5 and SSTr4 (Rocheville et al., 2000a). Equally, for ai~ 

adrenoceptor subtype, heterodimerisation appears to be specific within the sub-group. The am  

receptor was reported to dimerise with am  and am  whereas no experimental evidence 

suggested am  and am  interactions (Uberti et al., 2003). Moreover, less-related receptors were 

showed to form dimer such as MGR with SSTr2 (Pfeiffer et al., 2002). Furthermore, the class 

A adenosine A2 and class C glutamate mGluS receptors, which share no inherent homology 

beyond the seven transmembrane spanning domains, have been reported to interact (Ferré et 

al., 2002). These observations suggest that GPCRs have a natural tendency to dimerise, 

however, the physiological relevance of these interactions is less clear and is dependent on in- 

vivo co-expression of the two receptors involved. Such studies are qualitative and do not take 

the affinity of these receptors to form dimers into consideration. Ramsay et al, (2002) 

evaluated dimer formation by use of a BRET^ assay and observed that DOR and KOR were as 

efficient in forming heterodimers as homodimers but that less-related receptors such as the 132- 

adrenoceptor or thyrotropin-releasing hormone receptor-1 required a higher level of 

expression to form detectable heterodimers with KOR, To further investigate the ability of 

different GPCRs to associate saturation BRET techniques were used. Mercier et al, (2002) 

described that P2 and pi-adrenoceptors have equal affinity to form homo and heterodimers. 

Similar observations were reported on the ability of p2 and pa adrenoceptors to homo- or 

heterodimerise (Breit et al., 2004).

The importance of heterodimerisation is based on the description of new pharmacology and 

functions due to these interactions. These new properties are different from those displayed by

148



the individual receptors and from what might be expected by simple combination of the two 

independent GPCRs. An example of this phenomenon is the greater number of high affinity 

binding sites for tripitramine and pirenzepine observed when dopamine D2 and D3 receptors 

are co-expressed (Maggio et al., 1999). Effects on receptor internalisation have been 

described for SSTr2A and SSTr3, where dimérisation leads to a complex with a greater 

resistance to desensitisation compared to when the receptors are expressed individually 

(Pfeiffer et al., 2001). The formation of this dimer also results in a dominant negative effect 

as the SSTr3 function is inactivated when co-expressed with SSTr2A. Enlianced functionality 

and changes in G protein coupling have also been demonstrated upon hetero-oligomer 

formation. Mellado et al., (2001) described that chemokine CXCR2 and CXCR5 receptor 

oligomers displayed an enhanced calcium response upon combination of chemokines that 

could be due to recruitment of Gq/n protein by the heterodimer.

For opioid receptors the appearance of new ligand binding properties, alterations in receptor 

trafficking, new G protein coupling and synergy in signalling have been reported upon 

heterodimerisation. DOR/KOR, MGR/DOR and recently MGR/KGR heterodimer formation 

have been demonstrated (Jordan and Devi, 1999, George et al., 2000, Wang et al., 2005). The 

DGR/MGR complex has been described to be present in live cells and endogenous tissue such 

as spinal cord (Gomes et al., 2004). For the KGR and DGR heterodimers, an attenuated 

affinity for selective agonists of both receptors as well as an increase in affinity for partially 

selective ligands was observed. KGR and DGR heterodimers also displayed a synergistic 

inhibition of adenylate cyclase activity along with an increase of MAPK phosphorylation. 

Moreover, internalisation induced by etorphine, which normally causes DGR but not KGR to 

internalise, did not occur upon heterodimer formation (Jordan and Devi, 1999). In the case of 

the MGR/DGR heterodimer, formation of a novel binding pocket was suggested with an 

altered rank order and potency for highly selective synthetic agonists and enhanced affinity 

for endomorphin and Leu-enkephalin (George et al., 2000). Co-expression of MGR and DGR 

was also described as activating Ca^^ release in GH3 cells upon DAMGG treatment whereas 

cells only expressing MGR exhibited an inhibition of voltage-gated Câ "̂  channels (Charles et 

al., 2003). Evidence for a change in G protein coupling properties when DGR and MGR were 

co-expressed was observed by George et al., (2000). The heterodimer was reported to be 

insensitive to PTX treatment implying coupling to G proteins other than G,/o. However, this 

result is different to Law et al., (2005) whose recent observations on MGR and DGR 

heterodimerisation suggest no change in G protein coupling. Moreover, the authors described 

that MGR and DGR internalised independently and not as heterodimers.
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Heterodimer formation can increase the repertoire of signalling mechanisms available for a 

specific ligand and therefore represents a potential avenue for new drug design. Bivalent 

ligands (an agonist and an antagonist or two agonists from different opioid receptors) can be 

designed in order to avoid side effects of opioids but keep its analgesic property but also to 

obtain molecules with higher affinity or potency. All the above studies were cai'ried out on 

samples expressing heterodimers as well as homodimers, which raise the issue that observed 

changes of pharmacology or function of the receptors are simply a combination of signals in a 

mixture of co-expressed homo and heterodimers. In this second Result chapter, the protein 

complementation technique was used to study opioid receptor heterodimerisation as it allows 

monitoring of the heterodimer function alone, even if homodimers are also present. Thus 

heterodimer function and properties can be studied in the absence of confounding and 

extraneous signals originating from the co-expressed homodimers.
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4.2 Results:

4.2.1 Study of membrane targeted GiiaC^ '̂l and hDOR-G;iaG^^^A,C^  ̂ I co

expression

A/ Construction of a Flag-Nt-TMlooR-GiiaC^^^I fusion protein

To ensure that the complementation observed does indeed originate from dimer formation 

rather than from the fact that Gia subunit is anchored to the membrane thus enabling its 

interaction with a nearby receptor, a Flag-Nt-TMlDOR-GiiaC^^’l fusion protein was 

constructed (Figure 4.1 A). In this construct, DOR N-teiminus, first TM region and 1^ 

intracellular loop were fused with GiiaC^^’l. The N-terminus of the fusion protein was Flag- 

tagged to allow its detection in membrane preparations by immunoblot. As in the previous 

chapter, in all the experiments transiently tranfected cells were PTX treated for 16h prior to 

harvesting. This treatment should prevent any signal due to the activation of endogenous Gj/o 

in HER 293 cells.

B/ Analysis of Flag-Nt-TMlooR-GiiaC^^*! and hDOR-GuaG^**%C^^^I expression and 

determination of the dissociation constant for [^H]-diprenorphine

Flag-Nt-TMlDOR-GiiaC^^'l and hDOR-GiiaG^^^A,C^^^I fusion proteins were expressed 

individually or co-expressed in HEK 293 cells and liDOR-Gna was transfected as a

reference. Membrane preparations were used to measure expression of the fusion proteins by 

[^H]-diprenorphine saturation ligand binding (Figure 4.2). As expected Flag-Nt-TM 1 ooR- 

GiiaC^^^I did not bind [^H]-diprenorphine as one transmembrane domain is not able to form a 

binding pocket. The other fusion proteins and membranes co-expressing Flag-Nt-TMlooR- 

GiiaC^^^I and hDOR-GiiaG^^^A,C^^^I displayed an expression level of approximately 1800 

fmol/mg (Table 4.1).

The Kd values observed for the different membrane preparations were not significantly 

different from those expressing the wild type fusion protein hDOR-Giia,C^^^I (P>0.05, 1 way 

ANOVA).
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Table 4.1: Bmax^nd of hDOR-Gua,C^^^I full or truncated fusion proteins

Construct Emax Kd pKd

hD0R-Gi,aC^^4 1816 + 209 0.65 ± 0.05 9.2 ± 0.03

hDOR-

GiiaG^^^A,C^^^I
1777 ±285 0.67 ± 0.07 9.19 ±0.05

Nt-TMlDOR-GiiaC'^'l

4-hDOR-

GiiaG^^^C^^^I

1839 ±372 0.60 ± 0.04 9.23 ± 0.03

Data represent n=3 experiments performed in triplicate on different membrane preparations, 

numbers are means ± SEM.

Statistics were performed using 1 way ANOVA on B^ax and pKd numbers.

a  Co-expression of Flag-Nt-TMlooR-GiiaC^^^I with hDOR-GuaGA,C^^'l: [̂ Ŝ]- 

GTPyS binding

Flag-Nt-TM 1 D O R - G i i a n d  DOR-GiiaG^^^A,C^^^I fusion proteins were expressed 

individually or co-transfected into HEK 293 cells. Expression of the fusion proteins was 

assessed by the binding of a single, near saturating concentration of [^H] -diprenorphine in 

membrane preparations. An equal amount of [^H]-diprenorphine binding sites (15 fmol) or 

lOpg of Nt-TMlooR-GiiaC^^^I membranes (protein) were used to measure [^^S]-GTPyS 

binding in either the presence or absence of lOpM or lOOnM of DADLE (Figure 4.3). In each 

experiment [^^S]-GTPyS binding was monitored following an immunoprécipitation step with 

anti-Gil/2 serum. As previously observed in Figure 3.6 no significant agonist-induced [^^S]- 

GTPyS binding was detected for the hDOR-GiiaG^^^A,C^^^I fusion protein. Similarly, Flag- 

Nt-TM looR-GiiaC^^^I did not bind [^^S]-GTPyS in the presence of lOpM or lOOnM of 

DADLE. This result was anticipated as the construct was known to consist only of DOR N- 

terminal, transmembrane domain 1 and intracellular loop 1 fused to GiiaC^^^I. Co-expression 

of Flag-Nt-TMlooR-GiiaC^^^I with hDOR-GiiaG^^^A,C^^^I did not result in significant 

stimulation of [^^S]-GTPyS binding after DADLE exposure. Thus, simple membrane

.202 .,351i r35<
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expression of Güa did not result in its activation by the functional receptor fused to the non

functional G protein, excluding any transactivation due simply to physical proximity.

D/ Expression of FIag-Nt-TMlDOR"GiiaC^^*I fusion protein in samples used for 

GTPyS binding

As Flag-Nt-TMlooR-GiiaC^^^l did not bind [^H]-diprenoiphine, it was important to check that 

this construct was expressed in membranes used in [^^S]-GTPyS binding experiments. These 

membranes were resolved by SDS-PAGE, and anti-Gii/2 antiserum was used for protein 

detection (Figure 4.4). The membranes were compared with those from mock-transfected 

cells and a specific band at approximately 40 kDa was detected in all the samples. This band 

corresponds to the endogenous Gi protein. In addition to the band at 40 kDa, a specific band at 

50 kDa could also be visualised in samples transfected with Flag-Nt-TMlDOR-GiiaC^^^I 

cDNA. The 50 kDa band is in agreement with the molecular size expected for DOR N- 

terminal plus TM 1 fused to Gj protein. This result demonstrated that Flag-Nt-TM 1 d o r - 

GiiaC^^^I was expressed in the samples used for [^^S]-GTPyS binding experiments. Thus, the 

absence of signal observed after agonist treatment in [^^S]-GTPyS binding experiments was 

not due to the absence of expression of Flag-Nt-TMlooR-GiiaC^^^I but to the absence of 

activation of the membrane-anchored G protein by the receptor fused to a non-fiinctional G 

protein i.e. iiDOR-GiiaG^^^A,C^^^I.

E/ Interaction of Flag-Nt-TMlooR with hDOR (fused or not to GüaC^^ Î) monitored by 

co-immunoprecipitation

In these studies Flag and c-Myc versions of Nt-TMlooR and hDOR fused or not to GüaC^^^I 

were used. c-Myc-Nt-TMI ooR and Flag-hDOR were previously generated in the laboratory 

(Feng et ah, unpublished). HEK 293 cells were mock transfected or transiently transfected 

with c-Myc-hDOR-GiiaG^°^A,C^^^I, Flag-Nt-TMlooR-GiiaC^^'l, c-Myc-Nt-TMldor, Flag- 

hDOR or co-transfected with c-Myc-hDOR-GiiaG^^^A,C^^*I + Flag-Nt-TMlDOR-GuaC^^^I, c- 

Myc-Nt-TMlDOR +  Flag-hDOR and c-Myc-Nt-TM 1d o r + Flag-Nt-TMlDOR-GiiaC^^^I then 

immunopreciptated using an anti-Flag antibody and detected with anti-c-Myc antibody after 

being resolved by SDS-PAGE (Figure 4.5). Specific bands could only be detected where Flag
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and c-Myc versions of the constructs were co-expressed. In lane 4, where c-Myc-hDOR- 

GiiaG^^^A,C^^^I + Flag-Nt-TMlDOR-GiiaC^^^I were co-transfected bands at 65 and 80 kDa 

were obseiwed corresponding to the bands previously visualised in chapter 3 when the c-Myc- 

hDOR-GilaG^^^A,C^^^I monomer was detected (Figure 3.7A). This result showed that Flag- 

Nt-TMlooR fused to GüaC^^^I interacts with c-Myc-hDOR-GiiaG^®^A,C^^^I demonstrating 

that the absence of signal observed in the [^^S]-GTPyS binding studies did not result Ifom an 

absence of protein-protein contacts but that a single transmembrane domain associated with a 

functional receptor is not enough to activate a G protein.

In lane 7 con'esponding to the co-expression of c-Myc-Nt-TM 1 d o r  with Flag-hDOR two 

bands at 15 and 20 kDa were detected. These bands are in agreement with the molecular mass 

expected for c-Myc-Nt-TM 1 d o r  and may correspond to differentially glycosylated forms of 

the c-Myc-Nt-TM 1 d o r  construct. This hypothesis was not, however, examined directly. The 

upper band was not detected in lane 8 as c-Myc-Nt-TM 1 d o r  expression was not as strong as 

in lane 7. This result demonstrated that Nt-TMlooR can associate with the full lengh hDOR 

and may provide an important interface for DOR dimérisation. They also confirmed that the 

dimérisation observed was not forced by the presence of the G protein in these constructs.

To further investigate the importance of transmembrane 1 in the dimérisation process, c-Myc- 

Nt-TMlDOR was co-transfected with Flag-Nt-TM I DOR-Gi i aO  ̂̂  ̂ I. Following 

immunoprécipitation with anti-Flag antibody, a band at 15 kDa was immunodetected 

corresponding to c-Myc-Nt-TM 1 d o r * This indicates that it is possible for two transmembrane 

1 domains to interact and suggests a symmetrical TM l-TM l interface, which may play an 

important role in DOR dimérisation.

Re-blotting of this gel with anti-Flag antibody revealed bands where the different Flag-tagged 

constructs were expressed. In lanes 3, 4 and 8 a band at 50 kDa was detected, coiTesponding 

to Flag-Nt-TMiDOR-GjiaC^^*I expression. In lanes 5 and 7, expressing Flag-liDOR, bands at 

40 and 80 kDa were revealed likely to correspond to the Flag-hDOR monomer and dimer 

forms.
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4.2.2 DOR and pz-adrenoceptor heterodimerisation studied using the

protein complementation technique

AJ Construction of a Pz-adrenoceptor-GiiaC^^^I fusion protein

To study possible DOR and Pz-adrenoceptor heterodimerisation a fusion protein made 

previously in the laboratory, P2-adrenoceptor-Giia (Feng et al., unpublished) was used. The 

mutation was introduced in the Güa protein of this fusion protein using a Stratagene 

point mutation kit (Figure 4. IB). The mutation of the cysteine residue into isoleucine confers 

resistance of the corresponding G protein to the ADP ribosylation activity of PTX. PTX 

treatment of p2-adrenoceptor-GjiaC^^^I transiently transfected cells should eliminate any 

signal due to endogenous Gi/o protein.

B/ P2 -adrenoceptor-GiiaC^^^I [^^S]-GTPyS binding

HEK 293 cells were transiently transfected with P2-adrenoceptor-GiiaC^^^I or hDOR-Giia 

and membranes prepared. These membranes were used to study [^^S]-GTPyS binding 

after treatment with 10 pM of opioid or p2-adrenoceptor agonists, DADLE and isoproterenol 

respectively (Figure 4.6). The addition of either DADLE or isoproterenol did not result in any 

significant stimulation of [^^S]~GTPyS binding to the P2-adrenoceptor-GiiaC^^^I fusion protein 

over basal (Figure 4.6). Isoproterenol was therefore unable to activate GjiaC^^*I fused to the 

P2-adrenoceptor and neither did DADLE. These results were expected as the p2-adrenoceptor 

is coupled predominantly to Gs, so isopreterenol was not able to activate Gii and DADLE 

subsequently has no significant affinity for the P2-adrenoceptor. In parallel experiments 

membranes expressing hDOR-Giia C^^ Î produced a large signal in the presence of DADLE 

but not isoproterenol as would be expected hom the nature of these two agonists. These 

results demonstrated that the p2-adrenoceptor-GiiaC^^^I fusion protein is non-functional.

C/ Co-expression of p2-adrenoceptor-GiiaC^^^I and hDOR-GiiaG^®^A,C^^*I

The p2-adrenoceptor-GjiaC^^^I and hDOR-GiiaG^°^A,C^^*I fusion proteins were co-expressed 

in HEK 293 cells. A fixed amount (2 pg) of hDOR-GiiaG^^^A,C^^^I DNA was transfected in
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combination with varying quantities of p2-adrenoceptor-GiiaC^^^I cDNA. Expression of the 

two fusion proteins was assessed by the binding of single, close to saturating concentrations 

of either [^H]-diprenorphine or [^H]-dihydroalprenolol for the DOR and p2-adrenoceptor 

fusion proteins respectively. Equal expression of each fusion protein was obseiwed when 2 pg 

of hDOR-GiiaG^^^A,C^^4 cDNA was co-expressed with Ipg of p2-adrenoceptor-GiiaC^^^I 

cDNA (Figure 4.7). This cDNA ratio was used for cell transfection in the following 

experiments to assure a 1:1 expression level of each fusion protein when co-expressed. 

Expression levels and Kd for antagonist ligands were measured in membranes transfected with 

hDOR-GiiaC^^^l, hDOR-GiiaG^^^A,C^^^I, P2-adrenoceptor-GiiaC^^^I or co-expressing hDOR- 

GiiaG^^^A,C^^^I and p2-adrenoceptor-GiiaC^^^I by saturation ligand binding. Increasing 

concentrations of the opioid and p2-adrenoceptor ligands [^H]-diprenoiphine and [^H]- 

dihydroalprenolol were used to determine total binding of DOR and P2-adrenoceptor 

respectively (Figure 4.8 A and B). The antagonists naloxone and alprenolol were employed to 

define non-specific binding. When co-transfected each of the fusion proteins was expressed at 

approximately 1100 fmol/mg (Table 4.2) as predicted from the previous experiment (Figure

4.7), which added together give a total expression of some 2000 fmol/mg.

Saturation binding also permitted determination of the fusion proteins Kd values for [^H]- 

diprenorphine or [^H]-dihydroalprenolol, No significant differences in [^H]-diprenorphine Kd 

values were observed between the individual DOR fusion proteins and when P2-adrenoceptor- 

GiiaC^^^I and hDOR-GiiaG^^^A,C^^^I were co-expressed (Table 4.2 A, P>0.05, 1 way 

ANOVA). Similarly the [^H]-dihydroalprenoIol Kd values for p2-adrenoceptor-Gii%C^^^I in 

the presence of hDOR-Gi % «G^^  ̂A,C^^ ̂ I were not significantly different compared to that of the 

p2-adrenoceptor-GjiaC^^^I expressed alone (Table 4.2 B, P>0.05, T test).

Table 4.2: and Kd of the different fusion protein

A. [^H]-diprenorphine binding experiments

Construct Bmax (fmol/mg) Kd pKd

liDOR-GiiaC^^^I 1816 + 209 0.65 ± 0.05 9.2 ± 0.03

hDOR-GiiaG^°^A,C^^^I 1777 ±285 0.67 ± 0.07 9.19 ±0.05

p2-adrenoceptor-GiiaC^^^I

+hDOR-GiiaG^^^A,C^^^I
1135 ±74 0.73 ±0.15 9.17 ±0.04
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Data represent n=3 experiments perfonned in triplicate on different membrane preparations 

and numbers are means ± SEM.

One way ANOVA were performed using pKj

B. [ H]-dihydroalprenoIol binding experiments

Construct B m a x  (fmol/mg) Kd(nM) pKd

P2adrenoceptor-Gi laC^  ̂̂ I 4877 ±712* 0.60 ±0.18 9.28 ±0.18

p2adrenoceptor-Gi laC^^^I 

+hDOR-GiiaG^°^A,C^^^I
1295 ±170 0.32 ± 0.03 9.5 ± 0.07

Data represent n  

and numbers are means ± SEM. 

T test were performed using pKd

1=3 experiments performed in triplicate on different membrane preparations

D/ Reconstitution of function following co-expression of hDOR-GiiaG^^^A,C^  ̂ I and p2-.351i

adrenoceptor-GiiaC^^^I

The non-functional proteins hDOR-GiiaG^^^A,C^^^I and pi-adrenoceptor-GüaC^^^I were 

individually expressed or co-transfected into HEK 293 cells. hDOR-GiiaC^^^I was also 

individually transfected as a reference. Expression of the fusions proteins was assessed by the 

binding of a single, close to saturating concentration of [^H]-diprenorphine or [^H]- 

dihydroalprenolol depending on the receptor anticipated to be present in each membrane 

preparation. An equal amount of each constmct (15 fmol) was used to measure [^^S]-GTPyS 

binding in the presence of lOpM DADLE. As previously observed in Figures 4.6 and 3.6 no 

significant stimulation was noticed when P2-adrenoceptor-G, i ' I and hDOR-

GiiaG^^^A,C^^^I were treated with DADLE. However, when P2-adrenoceptor-GiiaC^^^I and 

hDOR-GiiaG^^^A,C^^^I were co-expressed, DADLE did enlrance [^^S]-GTPyS binding (Figure 

4.9). However this was not highly effective. When membrane containing 30 fmol of [^H]- 

diprenorphine and [^H] -dihydroalprenolol (1:1 ratio) binding sites were used, only some 40 % 

of the signal from hDOR-GiiaC^^^I was reconstituted (Table 4.3). This result demonstrates
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that the functional DOR was able to activate the G protein fused to p2-adrenoceptor. 

However, when compared to the DOR reconstituted homodimer, the effect of DADLE in 

membranes potentially expressing the p2-adrenoceptor/DOR heterodimer was substantially 

smaller. When membranes containing 15 fmol of p2-adrenoceptor-GiiaC^^’l and 15 fmol of 

hDOR-GiiaG^^^A,C^^*I were prepared and combined before the assay, no significant agonist- 

stimulated [^^S]-GTPyS binding was observed (Figure 4.9 and Table 4.3). This demonstrates 

that the reconstitution detected was specific and required co-expression of the two constructs. 

Basal, constitutive activity was obsei'ved in the absence of agonist stimulation. As previously 

noticed for the other mutated fusion proteins, constitutive activity was significantly lower 

compared to the wild type fusion protein (P<0,05, 1 way ANOVA) and increased with the 

amount of co-expressed mutants.

Table 4.3: [^^S]-GTPyS binding of P2 -adrenoceptor and DOR fusion proteins

Construct Basal DADLE lOpM

hDOR-GiiaC^^'l 29.3 ± 7.2 100

pi-adrenoceptor-GiiaC^^'l 5.4 ±2.1* 7.7 ±2.1

hDOR-GiiaG^“ A,C^^'l 8.3 ±2.4* 9.5 ±2.6

Co-transfection 15 fmol 13.3 ±3.2 20.9 ± 0.9

30 fmol 16.8 ± 3.6 39.7 ±4.6

45 foiol 22.5 ± 4.7 55.1 ±4.5***

Mix membrane 30 fmol 14.2 ± 2 10.6 ±5.2

Data represent n=5 experiments perfoimed in triplicate on different membrane preparations 

and numbers are means ± SEM expressed as a percentage of agonist-induced stimulation of 

hDOR-Gn„C“ ‘l.

* Significantly different P<0,05, 1 way ANOVA from wild-type basal

*** Significantly different P<0.001, 1 way ANOVA from wild-type stimulated

E/ The ability of the reconstituted dimer to activate G protein function
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The wild type hDOR-GiiaC^^*I or the pair of non-functional hDOR-GjiaC^^^I + p2- 

a d re n o ce p to r-G ,i^ I  fusion proteins were transiently transfected into HEK 293 cells and 

membranes prepared. An equal amount of [^H]-radioligand receptor binding sites (15 fmol) 

were used to study G protein activation of the wild type fusion protein or the reconstituted 

heterodimer by measuring [^^S]-GTPyS binding in the presence of increasing concentration of 

DADLE (Figure 4.10). No significant difference in the potency of DADLE to activate G 

protein was observed (P>0.05, T test).

Table 4.4; EC50 of DADLE for bDOR-G;iaC^^ I versus the reconstituted dimer hDOR- 

GiiaC^^ Î + p2 -adrenoceptor-GiiaC^^*I analysis by [^^S]-GTPyS binding studies

EC50 nM pECso

hDOR-GiiaC^^'l 247 ± 68 6.67 ±0.14

Co-transfection 181 ±76 6.85 ± 0.24

Data represent n=3 experiments performed in triplicate on different membrane preparations 

and numbers are means ± SEM.

T test was performed using pECso
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4.2.3 MOR and DOR heterodimerisation studied using the protein

complementation technique

To study MOR/DOR heterodimerisation, hMOR-GiiaG^°^A,C^^^I and hDORV^^%,V^^^D-Gjia 

C35ii f^gjon proteins were used.

AJ Analysis of hMOR-GüaG^®^A,C^^^I and hDORV^^‘‘E,V^^^D-Güa I co-expression 

and determination of the dissociation constant for [^H]-diprenorphine

Based on the expressions levels previously determined in Chapter 3 (Table 3.1 and 3.7) 

membranes co-expressing 2 pg of hMOR-Gj,«G ^^^A,C^^cD N A  and 1 pg of 

hDORV^^°E,V^^'^D-GiiaC^^^I cDNA were used to measure the specific binding of increasing 

concentrations of [^H]-diprenorphine (Figure 4.11). The level of expression observed was 

significantly different (3425 ± 377 fmol/mg) compared to the hMOR-GiiaC^^^I fusion protein 

(1217 ± 72 ftnol/mg). Saturation binding also permitted detennination of the co-expressed 

mutated fusion proteins Kd value (Table 4.5). This value was significantly different (P<0.001, 

1 way ANOVA) compared to the hMOR-GnaC^^^I fusion protein. However, no significant 

difference was obseiwed between the Kd value for the co-expressed mutated proteins and 

liDORV^^^E,V‘̂ ^D-GiiaC^^^I (Table 4.5). This result might reflect hDORV^^^E,V^^'^D- 

GiiaC^^^I overexpression compared to hMOR-GiiaG^^^A,C^^^I. This was not obvious from the 

level of expression observed (3425 ± 377 fmol/mg). Although, this value seems to reflect the 

addition of hMOR-GuaG^^%C^^'l and hDORV‘ '̂^E,V^^^D-Giia C^^*I individual expression 

level (1251 ± 20 and 2181 ± 228 fmol/mg) and would imply that liDORV^^°E,V^^'^D-Gija 

C^^ Î expression was two times higher compared to liMOR-GiiaG^^^A,C^^^I. This is not likely 

as only half the cDNA amount used in the earlier hDORV^^^E,V^^'^D-Giia C^^ Î studies was 

used in the co-expressed samples in an attempt to achieve a 1:1 MOR/DOR expression ratio.

Table 4.5: Bmax and Kd for [^H]-diprenorphine in membranes expressing hMOR- 

GiiaG^‘’̂ A,Ĉ ®*I and hDORV^^‘*E,V̂ ‘̂*D-Giia fusion proteins
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Construct Bmax (fmol/mg) Kd(nM) pKd

hMOR-Giia 1217 + 72 0.36 ± 0.07 9.47 ± 0.08

hMOR-GiiaG^®^A,C^^^I 1251 ±20 0.32 ± 0.05 9.52 ±0.08

hDORV^^‘̂ E,V^^^D-Giia 2181 ±228 1.65 ±0.06 8.78 ±0.01

hMOR-GiiaG^°^A,C^^^I+

hDORV^^®E,V^^^D-Giia
3425 ± 377 1.8 ±0.16*** 8.75 ±0.04***

Data represent n=3 experiments performed in triplicate on different membrane preparations

and numbers are means ± SEM

Statistics were performed using pKd

*** Significantly different P<0.001 from hMOR-Güa

B/ Reconstitution of function when co-expressing hMOR-GiiaG^®^A,C^^*I and 

hDORV̂ ®®E,V̂ ®̂ D-Gna

The mutated fusion proteins hDORV^^°E,V^^'^D-Giia and hMOR-GiiaG^^^A,C^^^I were 

individually or co-transfected in HEK 293 cells. hMOR-GfiaC^^^I was also transfected. 

Expression of the fusions proteins was assessed by the specific binding of a single, close to 

saturating concentration of [^H]-diprenorphine in membrane preparations. An equal number 

of [^H]-diprenorphine binding sites (15 fmol) was used to measure [^^S]-GTPyS binding in the 

absence or presence of lOpM DAMGO. As previously obsei'ved in Figure 3.14, hMOR- 

GiiaG^^^A,C^^^I did not produce any agonist-induced [^^S]-GTPyS binding as it is non

functional. hDORV*^®E,V^^^D-GiiaC^^^I also did not bind [^^S]-GTPyS in response to 

DAMGO treatment (Figure 4.12). This result was not sui'prising as it was previously 

demonstrated that the hDORV ̂ ̂ ^E,V ̂ ̂ " ^ D - G , ^  I fusion protein was non-functional (Figure 

3.6), and that the agonist used in this experiment, DAMGO, is a highly selective MOR 

agonist. Nevertheless, a large stimulation of [^^S]-GTPyS binding was observed when the two 

mutated fusion proteins were co-expressed (Table 4.6, Figure 4.12). Membranes of co

transfected cells expressing 30 fmol of [^H]-diprenorphine binding sites were employed, 

DAMGO stimulation of [^^S]-GTPyS binding was as great as in membranes expressing 15 

fmol of only hMOR-Gn«
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Basal, constitutive activity was observed for hMOR-GiiaC^^^I in the absence of agonist 

treatment as previously reported (Figure 3.14). h M O R - G i I  basal [^^S]-GTPyS 

binding was signifieantly lower compared to the wild type fusion protein, raising the 

possibility that the mutation introduced altered basal binding and that this difference reflects 

the level of constitutive activity of hMOR. This could be adressed by examining the effect of 

MOR inverse agonists but was beyond the scope of the current study. A rise in basal activity 

was observed when increasing amounts of co-expressed mutated fusion proteins were used. 

Interestingly, as in the case of the agonist-stimulated reconstituted signal, 30 fmol of co

expressed fusion proteins was found to be sufficient to produce a level of constitutive activity 

similar to that con’esponding to 15 fmol the wild type fusion protein.

Table 4.6: [^%]-GTPyS binding of the mutated fusion proteins

Construct Basal DAMGO lOpM

hMOR-Giia C^^'l 100 451 ±72

hM 0R-Gii„0“ ^A,C^’'l 41 ±8* 66± 13

hDORV'“ E,V‘ ‘̂'D-Gii„

c “ 'i
61 ±21 71 ±20

Co-transfection 15 fmol 49± 14* 286 ± 62

30 fmol 127 ±33 541 ±91

45 fmol 212 ±54 863 ±161

Data represent n=3 experiments performed in triplicate on different membrane preparations 

and numbers are means ± SEM.

* Significantly different P<0.05, 1 way ANOVA from hMOR-Giia C^^ Î basal 

100% is binding of [^^S]-GTPyS to hMOR-Güa C^^ Î in the absence of agonist

C/ The affinity of different opioid antagonists for co-expressed hMOR-GiiaG^®^A,C^^^I 

and hDORV^^“E,V^^^D-GiiaC^^ Î ■

Competition for [ H]-diprenorphine binding by CTOP
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Membranes from HEK 293 cells transfected with hMOR-GjiaC^^^I, liDGRV^^^E,V^ '̂^D- 

GiiaC^^^I, hMOR-GiiaG^^^A,C^^*I or co-expressing the mutated pair of distinct fusion proteins 

(hDORV^^®E,V^ '̂^D-GiiaC^^^I + hMOR-GiiaG^®^A,C^^‘l) were used for [^H]-diprenorphine 

competition experiments with varying concentrations of the highly selective MOR antagonist, 

CTOP (D-Phe-Cys-Tyr-D-Trp-Om-Trh-Pen-NHz) (Figure 4.13). One site binding curves 

were best fitted in each case, with no significant difference in Hill coefficients between the 

different samples (Table 4.7). Introduction in the hMOR fusion of the G^^^A mutation in the 

G protein subunit did not alter CTOP binding properties as similar Ki values were obtained 

for the mutated as for the wild type fusion (Table 4.7). The Ki value observed for 

liDORV^^^E,V* '̂^D-GiiaC^^^I was >10,000 nM. This low affinity value was expected as CTOP 

is reported to be a selective MOR antagonist and thus should not bind DOR with high affinity. 

However, when the pair of inactive MOR and DOR fusion proteins were co-expressed, a 

significantly different K| value was observed when compared to the wild type hMOR- 

GiiaC^^^I fusion protein (P<0.001, 1 way ANOVA), but similar to the value obtained for 

hDORV^%,V^^^D-GiiaC^^^I fusion protein (P>0.05, 1 way ANOVA). This result might 

suggest that hDORV^^^E,V^^"^D-GiiaC^^^I was overexpressed compared to hMOR- 

GiiaG^‘̂ ^A,C^^ Î and indeed that no significant amounts of the MOR fusion protein was 

present but this is not consistent with the high DAMGO-induced stimulation of [^^S]-GTPyS 

binding observed when these two mutated fusion proteins were co-transfected (Figure 4.12).

'

Table 4.7: Binding affinity of CTOP for the different fusion proteins when expressed 

individually or co-expressed

Construct Ki(nM ) pKi Hill coefficient

hMOR-Giia C^^ Î 25.7+13.4 7.72 + 0.24 -0.79 + 0.11

hMOR-GiiaG^°^A,C^^'l 25.1 + 12.3 7.71 ± 0.23 -0.83 ± 0.07

hDORV^%,V^^'^D-Gjia
C351i > 10,000*** -1.16 ±0.07

hMOR-

hDORV^^^E,V*^^D-Giia
C351j

>10,000*** -0.75 + 0.23
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Data represent n=3 experiments perfoimed in triplicate on different membrane preparations 

Numbers are means ± SEM.

Statistics were performed using pKi

*** Significantly different P<0.001 from hMOR-Giia fusion protein

Competition for [^H]-diprenorphine binding by ICI 174 864

The same membranes as used for [^^S]-GTPyS binding experiments, expressing hMOR- 

GiiaC^^^I, hDORV^%,V^^'^D-GiiaC^^^I, hMOR-GnaG^(^^A,C^^^I or co-expressing the pair of 

mutated fusion proteins were used for [^H]-diprenorphine competition experiments using 

varying concentrations of the selective DOR antagonist ICI 174 864 (Figure 4.14). 

Competition curves with one binding site were observed for fusion proteins individually 

expressed. A Ki value >10,000 nM was detected for hMOR-GiiaG^^^A,C^^^I, this low affinity 

value was not surprising as ICI 174 864 is a selective antagonist for DOR (Table 4.8). 

hDORV^^^E,V^^'^D-Giia C^^ Î exhibited a K, value of 124 ± 20 nM. However, when the 

mutated fusion proteins were co-expressed, competition curves were best fitted to a two 

ligand binding sites model (Hill coefficient = - 0.58 ± 0.03), with a higher and a lower affinity

hMOR-GiiaG^®^A,C^^^I Ki was also noted (P>0.05, 1 way ANOVA) (Table 4.8). These results 

suggested that the Kh and Ki values con'espond to the binding affinity of ICI 174 864 for 

hDORV‘“ E,V‘’‘‘D-GiiaC^^'l and hMOR-GiiaG“ ^A,C^^‘l, respectively. Moreover 58 ± 5 % of 

the [^H]-diprenorphine displayed high affinity for ICI 174 864, suggesting an equal 

expression of both mutated fusion proteins in these membranes.

binding site. Kh and Kj values of 84 ± 26 and >10,000 nM, respectively, were observed (Table

4.8). No significant difference in value was observed between hDORV*^^E,V^^'^D-GiiaC^^^I 

Ki and the Kh for co-transefected fusion proteins. A similar K; value compared to that for

>
V f i ,

i.

■ "'"V
Table 4.8: Binding affinity of ICI 174 864 for the different fusion proteins and co

expression of the distinct mutated pair of fusion proteins.

I
■V

1
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Construct Ki(iiM) pKi

% High 

affinity 

site

Hill

coefficient

hMOR-GiiaG^^^A,C^^^I > 10,000 4.53 ±0.03

hDORV^^^E,V^^^D-Gii„
C351J 124 ±20 6.92 ± 0.07 -0.88 ±0.14

hMOR-GiiaG^^^A,C^^^I+

hDORV^^^v'^'^D-Giia
C 35ii

84 ± 26/ 

>10,000

7.17 ± 0.15/5.27 ± 

0.28
58 ± 5 - 0.58 ± 0.03

Data represent n=3 experiments performed in triplicate on different membrane preparations 

Numbers are means ± SEM 

Statistics were performed using pKj

D/ Ability of the hMOR/hDOR reconstituted heterodimer to activate G protein function

The wild type hMOR-GnaC^^^I fusion protein or the pair of complementary hDOR or hMOR 

fusion proteins were transiently transfected into HEK 293 cells and membranes prepared. An 

equal number of receptor [^H] diprenorphine binding sites (15 fmol) were used to study G 

protein activation by measuring [^^S]-GTPyS binding in the presence of increasing 

concentrations of DAMGO (Figure 4.15). No significant difference in the potency to activate 

G protein was observed between the wild type fusion protein and the reconstituted 

hMOR/hDOR heterodimer (P>0.05, T test)

Table 4.9: ECso of DAMGO to activate hMOR-G;iaC^^ I and the reconstituted 

hMOR/hDOR dimer: [^%]-GTPyS binding studies

Construct ECso (nM) pECso

hMOR-Giia C " 'l 214 ±72 6.72 ±0.16

Co-transfection 2 7 9 ± 134 6.67 ± 0.24

Data represent n=3 experiments performed in triplicate and numbers are means ± SEM
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Statistics were perfonned using pECso

E/ The combination of MOR and DOR agonists on [^®S]-GTPyS binding to the 

reconstituted dimer

Membranes containing 15 fmol of [^H]-diprenorphine binding sites of the liDOR/hMOR 

reconstituted heterodimer were used to study the activation of Güa by a combination o f the 

MOR and DOR selective agonists, DAMGO and DPDPE, respectively. A concentration of 

200 nM DAMGO, corresponding to the EC50 determined previously, (Table 4.9) was used to 

stimulate [^^S]-GTPyS binding and increasing concentrations of DPDPE were applied (Figure

4.16). Membranes were also stimulated with 10 pM DAMGO as maximum stimulation 

control. No alteration in [^^S]-GTPyS binding was noted when 200 nM DAMGO and varying 

concentrations o f DPDPE were applied simultaneously therefore no synergistic or co

operative effects on the heterodimer were observed.
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4.2.4 MOR and KOR heterodimerisation studied using the protein

complementation technique

To study potential MOR/KOR heterodimerisation, hMOR-GiiaG^^^A,C^^^I and 

rKORV'^^EjV^^'^D-Giict fusion proteins were used.

A/ Analysis of hMOR-GiiaG^“̂ A,C"^I and rKORV ^"E,V ^'D-GiiaC"' l  co-expressioni351 I6O1 rI64n y351i

Membranes co-expressing h M O R - G i l a G ^ ^ ^ A , a n d  rKORV^^®E,V’ '̂^D-GiiaC^^^I were 

used to measure specific binding of increasing concentrations of [^H]-diprenorphine (Figure

4.17). An expression level of 2211 ± 267 fmoFmg was obsei'ved when 2 pg and 1 pg of 

hMOR-G|iaG^^^A,C^^^I and rKORV^^^E,V^^‘̂ D-GiiaC^^^I cDNA respectively, were co

transfected. These two different amounts of cDNA were used for co-transfection as 

rKORV^^^E,V^^'^D-GiiaC^^^I Bmax was two times higher than hMOR-GiiaG^®^A,C^^^I (Table 

3.7 and 3.11) and an equal expression level of each fusion protein was desired. Determination 

of the expression level of each individual fusion protein was not possible as [^H]- 

diprenorphine is an antagonist with similar affinity at both MOR and KOR. The expression 

level of the co-expressed mutated fusion proteins was significantly different to hMOR- 

GiiaC^^^I (Table 4.10). It was also possible to determine the Kd value for the co-expressed 

mutated fusion proteins using saturation binding. The value observed was significantly 

different (P<0.01, 1 way ANOVA) compared to hMOR-GjiaC^^^I, but did not differ from the 

Kd value for rKORV^^^E,V‘̂ ^D-GiiaC^^^I.

Table 4.10: B^ax and Kd of co-expressed hMOR-GiiaG^®^A,C^^^I and rKORV^^®E,V^^^D- 

Giia fusion proteins

Construct Bmax Kd pKd

hMOR-GiiaC^^^I 1217 ±72 0.36 ± 0.07 9.47 ± 0.08

hMOR-GiiaG^^^A,C^^^I 1251 ±20 0.32 ± 0.05 9.52 ±0.08

rKORV^^E,V^^'^D-GiiaC^^^I 2391 ±177 1.35 ±0.13 8.88 ± 0.04

hMOR-GiiaG^^^A,C^^^I + 

rKORV^^‘̂ E,V^^^D-Giia C^^ Î
2211 ±267** 0.89 ± 0.09** 9.06 ± 0.05**
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Data represent n=3 experiments perfoimed in triplicate on different membrane preparations 

Numbers are means ± SEM 

Statistics were performed on pKd 

**Significantly different P<0.01 ANOVA

B/ Reconstitution of function using the non functional fusion proteins hMOR- 

GiiaĜ ®̂ A,Ĉ ^̂ I and rKORV^®®E,V^®^D-Giia

The mutated fusion proteins rKGRV^^^EjV^^'^D-Güa and hMOR~GiiaG^^^A,C^^^I were 

individually or co-transfected into HEK 293 cells. hMOR-GüaC^^^I was transfected as a 

reference. Expression of the fusions proteins was assessed by the binding of a single, close to 

satui'ating concentration of [^H]-diprenorphine on membrane preparations. Membranes 

expressing equal numbers of [^H]-diprenorphine binding sites (15 fmol) were used to measure 

[^^S]-GTPyS binding in the presence of 10 pM or 100 nM DAMGO. As previously observed 

in Figure 3.14 and 4.12, hMOR-GiiaG^^^A,C^^^I did not exert any agonist-induced [^^S]- 

GTPyS binding as it is non-fimctional. rKORV^^^E,V^^"^D-Gii« 0 ^ ^ also did not bind [^^S]- 

GTPyS after DAMGO treatment (Figure 4.18). This result was expected as it was previously 

observed that rKORV'^^E,V^^"^D-GiiaC^^^I is non-functional (Figure 3.19), and that the 

agonist used in this experiment, DAMGO, is a highly selective MOR agonist. Nevertheless, 

stimulation was observed when the two mutated fusion proteins were co-expressed (Table 

4.11, Figure 4.18). When twice the number of [^H]-diprenorphine binding sites in membranes 

co-expressing the mutated fusion proteins were used a similar extent of agonist stimulation as 

for hMOR-Giia was observed for both agonist concentrations (Table 4.11). The level of 

reconstitution obsei’ved was similai' as previously noted for the MOR/DOR reconstituted 

heterodimer (Figure 4.12). When membranes containing 15 fmol of hMOR-GiiaG^^^A,C^^^I 

and 15 fmol of rKORV^^^E,V^^'^D-Giia were prepared individually and combined before 

the assay, no significant difference (P>0.05, 1 way ANOVA) in [^^S]-GTPyS binding was 

observed in the presence or absence of agonist (Table 4.11). The reconstitution detected 

therefore required co-expression and not simply the presence of both constructs in the assay. 

This result was surprising as others have suggested that KOR and MOR are not able to 

dimerise (Jordan and Devi, 1999, Filizola et aL, 2002).

The constitutive activity observed for the wild type fusion protein was reached when 30 fmol 

of co-expressed mutated fusion proteins [^H]-diprenoiphine binding sites was used as
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hMOR/rKOR reconstituted heterodimer. Twice the number of [^H]-diprenorphine binding 

sites of the reconstituted dimer were needed to reconstitute a full wild type signal as well.

Table 4.11: [^^S]-GTPyS binding of the hMOR and rKOR fusion proteins

Construct Basal DAMGO lOpM DAMGO lOOnM

hMOR-Giia Ĉ ‘̂1 100 430 ± 89 250 ± 29

hMOR-GiiaG“ ^A,C“ ‘l 102 ±40 134 ±49 120 ±41

rKORV‘'^"E,V'“ D-Giia

C’ '̂I
55 ± 6 77±  11 82 ±27

Co-transfection 15 fmol 56 ± 5 213 ±40 98 ± 7

30 fmol 116±31 405 ±116 210 ±38

45 fmol 208 ± 4 638 ± 82 303 ± 16

Mix membranes 30 fmol 122 ±23 150 ±20 139 ±35

Data represent n=3 experiments performed in triplicate and numbers are means ± SEM.

100% is binding of [^^S]-GTPyS to hMOR-Güa in the absence of agonist

C/ Interaction of hMOR with rKOR observed by co-immunoprecipitation

Flag-hMOR and rKOR-eYFP constructs made previously in the laboratory, were individually 

or co-transfected into HEK 293 cells. Samples were immunoprecipitated using an anti-GFP 

antiserum. These were resolved by SDS-PAGE, and anti-Flag antibody used for protein 

detection (Figure 4.19A). No specific bands were visualised in samples expressing either 

Flag-MOR or KOR-eYFP. A specific band at 40 kDa was present only when the Flag and 

eYFP versions of the proteins were co-expressed. The expected molecular mass for MOR is 

around 42 kDa and is consistent with the 40 kDa band immimodetected. An aliquot of each 

sample was reserved before immunoprécipitation and eYFP fluorescence emission (480nm) 

was measured. Fluorescence above mock transfected samples was only detected in the 

samples expressing rKOR-eYFP and was similar in extent in samples expressing KOR-eYFP 

alone or where rKOR-eYFP and Flag-hMOR were co-expressed (Figure 4.19B). These results
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demonstrated that hMOR and rKOR can interact and are in agreement with the signal 

reconstitution obsei'ved by [^^S]-GTPyS binding (Figure 4.18).

D/ The affinity of the MOR antagonist CTOP for hMOR-GiiaG^^%C^='I and 

rKORV^^"E,V^^^D-G;ia fusion proteins

3̂51i

Membranes expressing liMOR-GiiaC^^^I, rKORV*^^E,V‘̂ '^D-GiiaC^^^I, hMOR- 

OiiaG^^^AjC^^^I or co-expressing the mutated pair of distinct but complementary fusion

proteins (rKORV^%,V^^"^D-GuaC^^'l + liMOR-GiiaG^^^A,C^^*I) were used for [^H]- 

diprenorphine competition experiments using varying concentrations of the highly selective 

MOR antagonist, CTOP (Figure 4.20). One site binding curves, were best fitted in each case, 

with no significant difference in Hill coefficient between the different samples (P>0.05, 1 way 

ANOVA, Table 4.12). As previously reported (Table 4.7), introduction of the G^^^A mutation 

in the G-protein subunit did not alter CTOP binding properties as similar K, values as 

observed with liMOR-Gna C^^ Î were obtained (Table 4.12). A low affinity Ki value (2760 ± 

513 nM) was noted for rKORV^^®E,V^ '̂*D-Giia a result that was expected as CTOP is a 

MOR antagonist. When the distinct but complementary pair of fusion proteins were co

expressed, a significantly different Ki value was observed (P<0.001, 1 way ANOVA) 

compared to the hMOR-Güa but similar to the rKORV^^‘̂ E,V^^^D-GüaC^^^I fusion

protein (P>0.05, 1 way ANOVA). This result could suggest that rKORV^^^E,V^^"^D-GüaC^^ Î 

was overexpressed compared to hMOR-GüaG^^^A,C^^^I but this was not obvious from the 

high DAMGO-induced stimulation obsei'ved when these two mutated fusion proteins were 

co-expressed.

rl64l .351i

Table 4.12: Binding affinity of CTOP for the different fusion proteins and following co

expression of the mutated pair of fusion proteins

Ki(nM) pKi Hill number

hMOR-Gi,a C^^'l 14.3 ±4.5 7.89 ±0.14 -0.78 ± 0.02

hMOR-GiiaG^” A,C^’'l 24 ± 3 7.63 ± 0.06 -0.81 ±0.03

rKORV‘̂ '’E,V '“ D-Giia C’^'l 2760 ±513*** 5.57 ±0.07*** -1.04 ±0.13

Co-transfection 1350 ±363*** 5.90 ±0.15*** - 0.77 ± 0.09

170



Data represent n=3 experiments performed in triplicate on different membrane preparations 

Numbers are means ± SEM.

Statistics were performed using pKi

***Significantly different from hMOR-Gii« P<0.001 ANOVA

E/ The ability of the reconstituted dimer to activate G protein function

The wild type hMOR-GiiaC^^'l fusion protein or the pair of non-functional fusion proteins 

were transiently transfected in HEK 293 cells and membranes were prepared. Equal amounts 

of receptor binding sites (15 fmol) were used to study G protein activation of liMOR-Güa 

or the reconstituted hMOR/rKOR heterodimer by measuring [^^S]-GTPyS binding in the 

presence of increasing concentrations of DAMGO (Figure 4.21). No significant difference in 

the potency to activate G protein was observed between the wild type fusion protein and the 

reconstituted heterodimer with EC50 values of 417 ± 200 and 310 ±106 respectively (P>0.05, 

T test).

Table 4.13: EC50  for DAMGO stimulated [^^S]-GTPyS binding studies at hMOR-

G.iaC^  ̂ I and the reconstituted hMOR/rKOR heterodimer

EC50 (nM) pECso

hMOR-Giia 417 ±200 6.44 ± 0.24

Co-transfection 310±106 6.56 ± 0.16

Data represent n-3 experiments perfoimed in triplicate on different membrane preparations 

Numbers are means ± SEM 

Statistics were performed using pECso

F/ The combination of hMOR and rKOR agonists on [^^S]-GTPyS binding of the 

reconstituted dimer

Membranes containing 15 fmol of [^H]-diprenorphine binding sites were used to study the 

activation of the G^a subunit of the rKOR/hMOR reconstituted heterodimer by a combination
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of MOR and KOR agonists, DAMGO and U69593, respectively. A concentration of 200 nM 

DAMGO was used to stimulate [^^S]-GTPyS binding and increasing concentrations of 

U69593 were applied (Figure 4.22). Membranes were also stimulated with 10 pM DAMGO 

as a maximum stimulation control. No alteration in [^^S]-GTPyS binding was noticed when 

DAMGO and different concentrations of U69593 were applied simultaneously therefore no 

synergistic agonist effect of the heterodimer was observed.
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4.3 Discussion:

Although the protein complementation technique used in this investigation was useful for 

studying opioid receptor homodimerisation and provided evidence that the dimer was the 

active signalling unit, this technique was o f greatest interest to study opioid receptor 

heterodimerisation. The complementation between pairs of mutated fusion proteins allowed 

monitoring of heterodimer phaimacology and ftinction without the presence of the 

confounding signal of the homodimers that might also be expected in the samples upon co

expression of pairs of receptor (Figure 4.23).

Molinari et al, (2003) co-transfected a construct consisting of the vasopressin V2- 

transmembrane region 1 fiised to Go along with DOR and described that a G protein subunit 

simply inserted in the membrane via a transmembrane anchor was sufficient to enhance 

GTPyS binding to a nearby receptor. In their study a very high expression level of opioid 

receptor was employed which entered into the range of order of expression levels where 

dimers can potentially be formed by random collision events (Mercier et al., 2002). 

Nevertheless, it was important to demonstrate that the proximity between a membrane 

tethered G protein and a GPCR did not represent the basis for signals observed using the 

complementation technique. The hDOR N-terminal domain and TMl region were fused to 

GiiaC^^^I then Flag-tagged at the N-terminus (Flag-Nt-TMlooR-GiiaC^^^I) and co-expressed 

with the non-functional fusion protein hDOR-GiiaG^^^A,C^^^I. As expected, Flag-Nt- 

TMlooR-GiiaC^^^I did not bind [^H]-diprenorphine as a single transmembrane domain is not 

sufficient to create a ligand binding pocket. The Kd and Bmax values observed for [^H]- 

diprenorphine following co-expression of hDOR-GiiaG^^^A,C^^^I and Flag-Nt-TMlooR- 

GiiaC^^^I were not significantly different compared to individually expressed hDOR- 

GiiaG^®^A,C^^*I (Table 4.1). Immunoblots of membrane fractions used for [^^S]-GTPyS 

binding experiments clearly showed a specific band at 50 kDa, coiTesponding to the expected 

molecular size of Flag-Nt-TMlDOR-GiiaC^^^I (Figure 4.4). [^^S]-GTPyS binding assays in 

which the Flag-Nt-TMlooR-GiiaC^^^I construct was immunoprecipitated with anti-Oii/2 

antiserum confirmed that this construct did not bind [^^S]-GTPyS in response to DADLE 

(Figure 4.3). In a parallel experiment hDOR-GiiaC^^^I agonist-induced [^^S]-GTPyS binding 

was observed, confirming that the absence of signal for Flag-Nt-TMlooR-GiiaC^^^I was due to
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the lack of functionality of the construct generated. hDOR-GiiaG^^^A,C^^‘l was also non

functional as shown in previous experiments (Figure 3.6). The co-expression of hDOR- 

GiiaG^^^A,C^^^I and Flag-Nt-TM 1 n o R - G i i ^ I  did not result in significant detection of 

agonist-induced [^^S]-GTPyS binding (Figure 4.3). Therefore co-expression of hDOR- 

GiiaG^^^A,C^^^I with Flag-Nt-TMlooR-GiiaC^^^I did not allow significant transactivation of 

the G protein linked to DOR TM l, demonstrating that simple anchorage of a G protein to the 

membrane was not sufficient to result in activation of the G protein via a co-expressed 

receptor. As it was possible that co-expression of c-Myc-hDOR-GiiaG^^^A,C^^^I and Flag-Nt- 

TM iDOR-GiiaC^ '̂I did not result in their physical proximity (which might account for the lack 

o f activation observed), immunoprécipitation with anti-Flag antibody and detection with anti- 

c-Myc antibody of membranes individually or co-expressing Flag-Nt-TMlooR-GiiaC^^^I and 

c-Myc-hDOR-GiiaG^^^A,C^^^I was earned out (Figure 4.5). A specific band at 80 kDa was 

only detected when the Flag and c-Myc version of the constructs were co-expressed 

demonstrating that co-expressed Flag-Nt-TM looR-GiiaC^^^I and c-Myc-hDOR- 

GiiaG^^^A,C^^'l are able to interact. In parallel, samples singly or co-expressing c-Myc-Nt- 

T M I d o r  and Flag-liDOR were also immunoprecipitated with anti-Flag antibody and 

immunodetected with anti-c-Myc antibody. A band at 15 kDa was detected only when both 

constructs were co-expressed. This result confirmed that DOR TMl and full length DOR can 

interact, even in the absence of fused G protein, and consequently demonstrated that the 

presence of the G protein did not force dimérisation. Thus, the entity formed of a DOR-TMl 

and a full-lengh receptor cannot activate the G protein, confirming that the recovered function 

obseiwed in chapters 3 and 4 is due to receptor association. This provides further evidence that 

two GPCRs, as a dimer, are the platform for G protein activation, as discussed in chapter 3. 

Different transmembrane domains have been described as being involved in receptor 

dimérisation. For example TM6 was reported as being a p2~adrenoceptor dimer interface 

(Herbert et al., 1996), whereas TM4 was shown to mediate homodimerisation of the 

dopamine D2 receptor (Guo et aL, 2003). Rhodopsin crystallisation and visualisation of the 

dimeric organisation of rhodopsin units by atomic force microscopy have suggested 

involvement of TM4 and TM5 as contact interfaces whereas TM l, TM2 and the 3̂^̂ 

intracellular loop were proposed to be involved in dimer row formation (Fotiadis et ah, 2003, 

Liang et al., 2003). c-Myc-Nt-TM 1 ooR was also co-immunoprecipitated when co-expressed 

with Flag-Nt-TMlooR-GiiaC^^^I, suggesting that TMl can self-associate and hence that this 

domain might be a contact interface for DOR homodimer formation. This result was not
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predicted by a computational study, which suggested that the TM4 and TM5 domains maybe 

involved in DOR homodimerisation (Filizola and Weinstein, 2002). However, experimental 

studies on GPCRs such as the yeast a-factor receptor, the aib-adrenoceptor or complement 

C5a receptor have also proposed the involvement of TMl in dimérisation of these GPCRs 

(Overton and Blumer, 2002, Overton et a l, 2003, Canillo et aï., 2004, Klco et al., 2003).

Although the p2-adrenoceptor and opioid receptors couple to different G protein classes, their 

potential for heterodimerisation has been studied. Jordan et al, (2001) provided evidence by 

co-immunoprecipitation that DOR and KOR could both interact with the ^2-adrenoceptor. 

DOR/p2-adrenoceptor heterodimer formation modified receptor trafficking properties with 

endocytosis of both receptor noted upon treatment with agonist at the other receptor. 

Nevertheless, no change in ligand binding or coupling properties was observed. In the case of 

the KOR/p2-adrenoceptor heterodimer, KOR receptor had a dominant negative effect on p2- 

adrenoceptor as no agonist-induced internalisation of P2-adrenoceptor was observed when the 

two receptors were co-expressed. Futhennore, signal transduction was altered, MAP kinase 

phosphorylation was decreased in response to a P2-adrenoceptor agonist when both receptors 

were co-expressed. However, when P2-adrenoceptor and KOR heterodimerisation was studied 

using a BRET^ assay and compared to KOR homodimer and KOR/DOR heterodimer 

formation, a higher level of receptor expression was needed to detect a BRET signal. This 

suggests that KOR and p2-adrenoceptor have less affinity to form a heterodimer compared to 

KOR/DOR or the KOR/KOR homodimer (Ramsay et ah, 2002). A similar obseiwation for 

aia-adrenoceptor homodimers compared to the aia-adrenoceptor/DOR heterodimer has 

recently been reported (Ramsay et ah, 2004). Moreover, McVey et ah, (2001) showed a weak 

BRET and FRET signals for DOR/p2-adrenoceptor heterodimer hi comparison to the DOR 

homodimer. Thus, it was interesting to study the possible formation of a DOR/P2- 

adrenoceptor heterodimer using the complementation technique. This technique could provide 

information about the affinity and the functionality of any dimer formed by these two 

receptors. In order to do so, a p2-adrenoceptor-GiiaC^^^I fusion protein was used. The P2- 

adrenoceptor is usually associated with Gg but some groups have reported that the P2- 

adrenoceptor is able to switch coupling from Gg to G\ to initiate new signalling events (Daaka 

et ah, 1997, Zhu et al., 2001). However, when agonist-induced [^^S]-GTPyS binding to P2- 

adrenoceptor-GiiaC^^^I was measured, no significant activation was recorded (Figure 4.6). 

Thus, in my study I was unable to demonstrate p2-adrenoceptor activation of fused Gji. The
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discrepancy observed in comparison with other groups might be explained by the use herein 

of a fusion protein. The P2-adrenoceptor switching from Gg to G, coupling has been associated 

with PKA-mediated receptor phosphorylation (Zamah et al., 2002). In my study, the fusion of 

Gil protein with the receptor might have interfered with PKA phosphorylation of the receptor. 

The Bmax and Kd of the different fusion proteins were determined by saturation binding using 

[^H]-labeled antagonists for either DOR or P2-adrenoceptor. No significant difference was 

observed in Kd values for the co-expressed P2-adrenoceptor-GüaC^^^I and hDOR- 

GiiaG^^^A,C^^^I compared to the wild type fusion proteins (Table 4.2 A and B). A close to 1:1 

expression level was achieved when the fusion proteins were co-expressed and used for the 

different assays. When the distinct but potentially complementary fusion proteins were co

expressed, [^^S]-GTPyS binding was observed after DADLE treatment. The functional DOR 

receptor was therefore able to activate the functional G protein fused to the P2-adrenoceptor. 

This result favours DOR/p2-adrenoceptor forming a signalling unit, therefore a dimer. 

However, less than half of the reconstituted signal observed for the DOR homodimer was 

recorded when equal numbers of DORyp2-adrenoceptor fusion protein [^H]-antagonist binding 

sites were used. This might indicate that the propensity of DOR and p2-adrenoceptor to 

interact is lower in comparison to the homodimer formed by two DOR. This is in agreement 

with the conclusions of McVey et ah, (2001) as well as Ramsay et al., (2002) that less closely 

related receptors appear to have lower affinity to form dimers. No change in the potency of 

DADLE to activate the G protein was observed for the reconstituted dimer compared to 

hDOR-GiiaC^^^I fusion protein alone (Figure 4.10). This result is in agreement with the 

absence o f alteration in signalling reported by Jordan et al, (2001) upon DOR/p2-adrenoceptor 

co-expression. These workers did not observe any change in adenylate cyclase inhibition by 

opioid agonists.

In some cases, closely related GPCRs have been reported to fail to interact e.g the aiA and 

aiD adrenoceptors (Uberti et al., 2003), MOR and KOR have also been reported not to 

contact. Absence of MOR/KOR interaction was described in co-immunoprécipitation studies 

when differentially epitope-tagged MOR and KOR were co-expressed (Jordan and Devi, 

1999). A computational approach, suggesting transmembrane domains involved in opioid 

heterodimerisation has provided support for this lack of interaction (Filizola et al., 2002). 

However in my study, when hMOR-GuaG“ ^A,C’’ 'l  and rKORV‘“ E,V‘“ D-G|iaC” ‘l were 

co-expressed, DAMGO-induced [^*S]-GTPyS binding was recorded (Figure 4.18) indicating 

recovery of function upon fusion protein interaction. hMOR/rKOR interaction was confirmed
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by detection of a specific band at 40kDa following Flag-hMOR and rKOR-eYFP co- 

immunoprecipitation with a GFP antiserum and immunodetection with an anti-Flag antibody 

(Figure 4.19). Although these results are different from the finding of others, they do not seem 

surprising as the thi'ee opioid receptor share high sequence homology. Equally CCR2 and 

CXCR4 were widely reported not to dimerise (Mellado et a l,  1999) but they have recently 

been described to interact using a BRET based approach (Percherancier et ah, 2005).

As expected, when the hMOR-GiiaG^^^A,C^^‘l and hDORV^^^E,V^^^D-GjiaC^^^I fusion 

proteins were co-transfected, [^^S]-GTPyS binding was observed after DAMGO treatment 

reflecting rescue of receptor function by dimer formation (Figure 4.12). Competition for [^H]- 

diprenorphine binding by ICI 174 864 verified that the DOR and MOR fusion proteins were 

co-expressed a 1:1 ratio (Table 4.8). For both the hMOR/rKOR and hMOR/hDOR 

recontituted heterodimers, signal as great as for the wild type fusion protein was recovered 

when twice the numbers of [^H]-antagonist binding sites in the co-expressed samples were 

used (Tables 4.6 and 4.11). This percentage may be expected if the functional element is a 

dimer, as discussed in Chapter 3. The results obtained for opioid receptor heterodimerisation 

are different to the observations in Chapter 3 for opioid receptors homodimers (Figures 3.6, 

3.14 and 3.19) and could indicate that the mutations introduced into the receptor may affect 

the ability of the opioid receptors to form homodimers but not heterodimers. If this is true it 

may suggest that different interfaces are involved in homo- and hetero-interactions. No 

change in potency to activate the G protein upon DAMGO stimulation was recorded for 

hMOR/hDOR and hMOR/rKOR heterodimers (Tables 4.9 and 4.13). This contrasts with 

results obtained by George et al, (2000) that described the MOR/DOR heterodimer becoming 

insensitive to PTX, indicative of a change in G protein coupling. As fusion proteins were used 

in my work a change in G protein coupling would be difficult to observe, the fusion protein 

favouring its two elements to interact. However, the switch in G protein coupling upon 

DOR/MOR interaction observed by George et al., (2000) was recently contradicted by Law et 

al, (2005) who did not witness any change G protein coupling when MOR and DOR were co

expressed. This recent observation would be more in agreement with the absence of G protein 

enhanced potency to stimulate G protein of the MOR/DOR reconstituted dimer observed in 

my study.

Signalling potentiation upon heterodimer formation has been witnessed for some GPCRs. For 

example a CCR2/CCR5 heterodimer was described to be more efficient at inducing Ca '̂  ̂

mobilisation. The authors suggested that this response was due to a co-operative effect when
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both receptors were occupied by their ligands simultaneously (Mellado et al., 2001). A 

synergistic inhibition of adenylate cyclase upon co-exposure to DAMGO with DPDPE and
u-i

TAN 67 was noted when the DOR/MOR heterodimer was formed (Martin and Prather, 2001). 

Gomes et ah, (2003) also recorded alteration in DOR/MOR signalling properties using [^^S]- 

GTPyS binding and adenylate cyclase assays. MOR and DOR co-expression resulted in 

significant enhancement of MOR agonist-mediated signalling by DOR ligands, both in 

heterologous cells and in endogenous tissue. As only the heterodimer signal is recorded by the 

complementation technique, it was interesting to use a combination of DOR and MOR or 

MOR and KOR agonists and observe the stimulation obtained for the reconstituted 

heterodimers by these agonists. No synergistic effect was detected either on hMOR/hDOR or 

the hMOR/rKOR reconsituted heterodimer (Figures 4.16 and 4.22). Although Gomes et al, 

(2003) demonstrated ligand synergism when MOR and DOR were co-expressed, the only 

DOR agonist used in the different ligand mixes tested was deltorphine. The majority of the 

synergisms were obseived using a combination of MOR agonists and DOR antagonists, 

consequently their observations do not contradict my results. However, the findings of Martin 

and Prather, (2001) are in opposition to my observations, as they noted an increased adenylate 

cyclase inhibition upon co-treatmant with DAMGO and DPDPE. A reason for this would be 

that the synergy they observed is mediated through Go not Gj therefore in my study as only a 

Gi mediated signal was measured, a Go mediated synergy would not be obseiwed.

Taken together, these results are in favor of unchanged signalling properties of MOR/DOR 

and MOR/KOR heterodimers.

The pharmacological profile of co-expressed GPCRs have been described to differ compared 

to that of the same receptors individually expressed. For example SSTr2A and SSTr3 

interaction resulted in a new entity with the pharmacological profile of SSTr2A (Pfeiffer et 

al., 2001). In a similar way when muscarinic M2 and M3 receptors were co-expressed high 

affinity site for muscarinic ligands were identified (Maggio et al., 1999). For opioid receptor 

heterodimers new ligand binding properties have been documented. DOR/KOR heterodimer 

displayed no significant alteration in affinity for either KOR or DOR selective agonists and 

antagonists but showed greater affinity for partial agonists (Jordan and Devi, 1999). For the 

MOR/DOR heterodimer, George et al, (2000) reported a reduction of affinity for DOR and 

MOR selective agonists but an increase in affinity for endogenous opioid peptides. A recent 

study reported alteration of MOR binding as a result of heterodimerisation with DOR (Law et
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a l,  2005). However, they reported that some of the ligand binding data contrasted with the 

observations of George et al., (2000). Competition binding performed on membranes co- 

expressing hMOR-Gi,„G“ ^A,Ĉ '̂l and hDORV'^“E,V‘̂ ‘‘D-Gii„C^*'l using the DOR 

antagonist ICI 174864 were best fitted to a two site binding curve with both high and low 

affinity sites reflecting presumably hDORV^^^E,V‘ '̂^D-GiiaC^^^I and hMOR-GiiaG^^^A,C^^^I 

expression respectively (Figure 4.14). The percentage of high affinity sites was close to 50% 

providing evidence of an equal co-expression of each construct and no change in affinity for 

ICI 174 864 upon MOR/DOR heterodimer formation (Table 4.8). When the MOR antagonist 

CTOP was used, however, samples co-expressing hDORV^^^E,V^^"^D-GiiaC^^^I and hMOR- 

GiiaG^^^A,C^^^I displayed only a low binding affinity for this ligand similar to when 

hDORV^^°E,V’̂ '^D-GiiaC^^^I was expressed alone (Figure 4.7). This could be due to 

overexpression o f hDORV^^^E,V'^"^D-G,iaC^^ Î compared to hMOR-GiiaG^^^A,C^^*I but it is 

unlikely as the competitions with ICI 174 864 supported equal expression of each fusion 

protein when co-transfected. These observations argue in favor of the MOR/DOR heterodimer 

having a reduced affinity for the MOR selective antagonist CTOP. This is consistant with a 

selective change of pharmacology as previously observed by other groups. Equally, it was 

observed that samples co-expressing hMOR-Gji«G^^^A,C^^^I and rKORV^^^E,V^^'*D-GiiaC^^^I 

displayed a lower binding affinity for CTOP and that was similar to when rKORV^^®E,V^^"^D- 

GiiaC^^'l was expressed alone. Again this result might reflect an overexpression of 

rKORV^%,V'^y-GiiaC^^^I compared to hMOR-GiiaG^^^A,C^^^I but as a strong 

reconstituted signal was observed by [^^S]-GTPyS binding upon MOR selective agonist 

stimulation (Figure 4.12) this seem unlikely. This result could be the first indication of a 

change in ligand binding affinity upon KOR/MOR heterodimerisation, but further 

investigation is needed.
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Figure 4.1: Graphie representation of Flag-Nt-TMlDOR-GüaC^^^I and P2- 

adrenoceptor-GiiaC^^^I constructs

A. Flag-Nt-TMlooR-GiiaC^^^I fusion protein

This fusion protein consisted of DOR N-terminal, transmembrane domain 1 and 1®̂ 

intracellular loop fused to The Gua contained a cysteine mutated into isoleucine to

prevent ADP ribosylation by PTX.

B. pi-adrenoceptor-GiiaC^^^I fusion protein

This fiision protein consisted of Pz-adrenoceptor fused to GüaC^^^I.
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Figure 4.2: [^H]-Diprenorphine saturation binding assays following

expression of hDOR-G^aC^^ I and Flag-Nt-TMlDOR-GiiaC^^^I fusion

proteins

Membranes expressing hDOR-GnaC^^^I (blue squares), hDOR-GiiaG^^^A,C^^^I (green circles) 

and co-expressing hDOR-GiiaG^°^A,C^^^I + Flag-Nt-TMlooR-GiiaC^^^I (purple squares) were 

used to measure the specific binding of different concentrations of [^H]-diprenorphine. Data 

are representative of n=5 experiments performed in triplicate. Data point represent means ± 

SEM of triplicates.
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Figure 4,3: Co-expression of Flag-Nt-TMlDOR-GiiaC^^^I with hDOR- 

G;iaĜ ^̂ A,Ĉ  ̂ I does not induce receptor transactivation

Membranes of HEK 293 cells expressing 15 fmol of hDOR-GiiaC^^^I, hDOR-GiiaG^°^A,C^^^I 

or 30 or 45 fhiol in the case of Flag-Nt-TMiDOR-GnaC^^^I + hDOR-GiiaG^^^A,C^^^I co

transfection or 10 pg of membrane containing Flag-Nt-TMlooR-GiiaC^^^I were used to 

measure the binding of [^^S]-GTPyS in the absence (open bars) or presence of 10 pM (filled 

bars) and lOOiiM (checkered bars) DADLE. Membranes expressing 15 fmol hDOR- 

GiiaG^®^A,C^^^I and lOpg of membrane expressing Nt-TM 1 n o R - G i w e r e  also mixed 

and stimulated with DADLE. Data represent n=5 experiments performed in triplicate. Data 

point represent means ± SEM.
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Figure 4.4: Immunodetection of Fiag-Nt-TMlDOR-GuaC^®*I in samples used 

for (“ S]-GTPyS binding

Membranes from control HEK 293 cells (1) and those used in reconstitution experiments 

expressing Flag-Nt-TM iDOR-Giiatf^^I (2) or Flag-Nt-TMlooR-GjiaC^^^I + hDOR- 

GiiaG^^^AjC^^^I (3 and 4) were immunoblotted using anti-Gü/i antiserum after being resolved 

by SDS-PAGE.
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Figure 4.5: Co-immunoprecipitation of the different epitope tagged forms 

of Nt-TMl and DOR fused or not to I

A. Co-immunopredpitation

Membranes from HEK 293 cells (1) and cells transiently expressing c-Myc-hDOR- 

Gii„G“ ^A,C^^'l (2), Flag-Nt-TMlDOR-Gii„C” 'l  (3), Flag-Nt-TMlDoR-Gii„C’ ’̂l + Myc- 

hDOR-Gii„G“ ^A,C^’‘l (4), Flag-hDOR (5), c-Myc-Nt-TMlooR (6), Flag-hDOR + c-Myc-Nt- 

TMIdor (7) and Flag-Nt-TMlDOR-GnaC^ '̂l + c-Myc-Nt-TMlooR were immunoprecipitated 

with anti-Flag antibody and detected with anti-c-Myc antibody after being resolved by SDS- 

PAGE. Data represents n=3 experiments.

B. Anti-Flag antibody was used to detect anti-Flag reactive proteins.

The same membranes as in panel A were reblotted using anti-Flag antibody.
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Figure 4.6; p2-adrenoceptor-GiiaC^^^I [^^S]-GTPyS binding

Membranes of HEK 293 cells expressing 15 fmol of p2-adrenoceptor-GiiaC^^^I or hDOR- 

GiiaC^^’î were used to measure the binding of [^^S]-GTPyS in the absence (open bars) or 

presence of 10 pM isoproterenol (checkered bars) or DADLE (filled bars). Data represents 

n=3 experiments performed in triplicate. Data point represent means ± SEM of triplicates.
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Figure 4.7: Relative expression of DOR and Pz-adrenoceptor fusion proteins

when co-expressed

Membranes co-expressing 2 pg of hDOR-GüaC^^*! cDNA and varying amounts of p2- 

adrenoceptor-GiiaC^^’l cDNA were used to measure specific binding of 2nM [^H]- 

diprenorphine (open bars) and 2nM [^H]-dihydroalprenolol (filled bars). Data are 

representative of n=3 experiments performed in triplicate. Data points represent means ± 

SEM of triplicates.
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Figure 4.8: [^H]-diprenorphine and [^H]-dihydroalprenolol saturation 

binding following expression of pi-adrenoceptor and DOR fusion proteins

A

Membranes expressing hDOR-G,iaC^^^I (blue squares), hDOR-Gji«G^^A,C^^^I (green circles), 

and both p2- ad renocep tor -Gi i ^ I  + hDOR-GiiaG^^^A,C^^^I (purple squares) were used to 

measure the binding of different concentrations of [^H]-diprenorphine. Data are representative 

of n=6 experiments performed in triplicate. Data points represent means ± SEM of triplicates.

B

Membranes expressing P2-adrenoceptor-GiiaC^^^I (blue squares) and p2-adrenoceptor- 

GiiaC^^^I + hDOR-GiiaG^^^A,tf^*I (purple squares) were used to measure the binding of 

different concentrations of [^H]-dihydroalprenolol. Data are representative of n=6 

experiments performed in triplicate. Data points represent means ± SEM of triplicates.
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Figure 4.9: Co-expression of nonfunctional fusion proteins, P2-

adrenoceptor-G;iaC^^ I + hDOR-Gii(%Ĝ ^̂ A,Ĉ  ̂ I, reconstituted function

Membranes of HEK 293 cells expressing ISfmol of hDOR-GiiaC^^^I, hDOR- 

p2-adrenoceptor-GiiaC^^^I or 30 and 45 fmol Pi-adrenoceptor-GiiaC^^^I + 

hDOR-GiiaG^®^A,C^^^I at a 1:1 ratio were used to measure [^^S]-GTPyS binding in the 

absence (open bars) or presence (filled bars) of 10 pM DADLE. Membranes expressing 15 

fmol of Pa-adrenoceptor-GiiaC^^^I and 15 fmol of hDOR-GiiaG^^^A,C^^^I were also mixed 

and stimulated with DADLE. Data represent n=5 experiments performed in triplicate. Data 

points represent means ± SEM.

188



^ 1 0 0 -

DADLE 10mM



Figure 4.10: Comparison of agonist stimulated [^^S]-GTPyS binding to 

hDOR-GiiaC^^^I and hDOR-GiiaG^®^A,C^^ Î + Pz-adrenoceptor-Gu^C^^^I 

fusion proteins

Membranes expressing hDOR-GjiaC^^^I (blue squares) or co-transfected with 15 fmol of 

hDOR-GiiaG^^^A,C^^^I + P2“adrenoceptor-GiiaC^^^I (purple squares) were used to measure 

the ability of increasing concentrations of DADLE to activate [^^SJ-GTPyS binding. Data are 

representative of n=3 experiments performed in triplicate. Data points represent means ± 

SEM of triplicates.
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Figure 4.11: [^H]-diprenorphine saturation binding following co-expression 

of hDORV^'®E,V'""D-GiiaC"''l and hMOR-GiiaG'®%C""^I fusion proteins

Membranes co>expressing hMOR-GiiaG^°^A,C^^^I + hDORV^^°E,V^^'^D-GiiaC^^‘l were used 

to measure the specific binding of different concentrations of [^H]-diprenorphine. Data are 

representative of n=3 experiments performed in triplicate. Data points represent means ± 

SEM of triplicates.
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Figure 4.12: Co-expression of hDORV*̂ ®E,V̂ '̂*D-GiiaĈ ®̂ I and hMOR-

reconstitutes function

Membranes of HEK 293 cells expressing 15 fmol of hMOR-GiiaC^^^I, hDORV^^®E,V^ '̂^D - 

GiiaC^^^I, hMOR-GiiaG^^^A,C^^^I or 30 and 45 fmol in the case of tiDORV^^^E,V^ '̂^D - 

GiiaC^^^I + hMOR-GiiaG^^^A,C^^*I co-transfection were used to measure [^^S]-GTPyS 

binding in the absence (open bars) or presenee (filled bars) of 10 pM DAMGO. Data 

represent n=3 experiments performed in triplicate. Data points represent means ± SEM.
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Figure 4.13: Effect of mutations and co-expression of hMOR-

GiiaĜ ®̂ A,Ĉ ®'l and hDORV‘^®E,V̂ ^̂ D-GiiaĈ ®'l on competition between

[^H]-diprenorphine and CTOP

Membranes expressing hMOR-GiiaC^^^I (blue squares), hMOR-GiiaG^^^A,C^^^I (green 

circles), hDORV^^®E,V‘ '̂*D-GiiaC^^^I (light blue circles) and both hMOR-GuaG^^^A,C^^^I + 

hDORV*^^E,V'^'^D-GiiaC^^^I (red squares) were used to measure the ability o f varying 

concentrations of CTOP to compete for binding with InM [^H]-diprenorphine. Data are 

representative of n=3 experiments performed in triplicate. Data points represent means ± 

SEM of triplicates.
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Figure 4.14; Effect of mutations and co-expression of hMOR-

and hDORV^^^E,V^^^D-G;iaC^  ̂ I on competition between

[^H]-diprenorphine and ICI 174 864

Membranes expressing hMOR-GiiaG^°^A,C^^^I (green circles), hDORV^^^E,V^^‘̂ D-GiiaC^^^I 

(blue circles) and both hMOR-GiiaG^°^A,C^^^I + hDORV^^^E,V^ '̂^D-GiiaC^^^I (red squares) 

were used to measure the ability of varying concentrations of ICI 174 864 to compete with 

InM [^H]“diprenorphine. Data are representative of n=3 experiments performed in triplicate. 

Data points represent means ± SEM of triplicates.
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Figure 4.15; Comparison of agonist stimulated [^^S]-GTPyS binding of 

hMOR-GiiaC^®*I and the hMOR-G;iaG^^%C^^^I plus hDORV^^®E,V^^^D- 

GiiaĈ  ̂ I reconstituted heterodimer

Membranes expressing hMOR-GiiaC^^^I (blue squares) or co-transfected with hMOR- 

+ hDORV'^®E,V* '̂^D-GiiaC^^^I (red squares) were used to measure the ability 

of increasing concentrations of DAMGO to stimulate [^^S]-GTPyS binding. Data represents 

n-3 experiments performed in triplicate. Data points represent means ± SEM of triplicates.
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Figure 4.16; Effect of MOR and DOR selective agonists on [^®S]-GTPyS 

binding of the reconstituted heterodimer

Membranes co-transfected to express hMOR-GiiaG^*^^A,C^^^I + hDORV‘^^E,V^ '̂^D-GiiaC^^^I 

were used to measure the ability o f increasing concentrations of DPDPE in the presence of 

200nM DAMGO to activate [^^S]-GTPyS binding. Data are representative of n=4 experiments 

performed in triplicate. Data points represent means ± SEM.
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Figure 4.17: [^H]-diprenorphine saturation binding following expression of

of rKORV‘̂ ®E,V‘^̂ D-GiiaĈ ^̂ I and hMOR-GiiaG^^^A,C^ '̂l fusion proteins

Membranes co-expressing hMOR-GiiaG^°^A,C^^*I + rKGRV^^°E,V^^‘̂ D-GiiaC^^^I (red 

squares) were used to measure the specific binding of different concentrations of [^H]- 

diprenorphine and this was compared to the individual expression of hMOR-GiiaC^^^I (blue 

squares), hMOR-Gii„G^®^A,C^^^I (green dotes) and rKORV^^^E,V^^^D-GiiaC^^‘l (light blue 

dots). Data are representative of n=3 experiments performed in triplicate. Data points 

represent means ± SEM of triplicates.
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Figure 4.18: Co-expression of rKORV^^^E,V^^^D-G;iaC^  ̂I and hMOR-

reconstitutes function

Membranes of HEK 293 cells expressing 15 fmol of hMOR-GiiaC^^^I, rKORV^^^E,V^ '̂^D - 

GiiaC^^’l, hMOR-GiiaG^“ A,C^^^I and 30 or 45 fmol in the case of the rKORV‘^^E,V^^^D - 

GiiaC^^^I + hMOR-GiiaG^^^A,C^^^I co-transfection were used to measure the binding of [^^S]- 

GTPyS in the absence (open bars) or presence of 10 pM (filled bars) or 100 nM DAMGO 

(checkered bars). Data are representative of n=3 experiments performed in triplicate. Data 

points represent means ± SEM of triplicates.
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Figure 4.19: Co-immunoprecipitation of rKOR-eYFP and Flag-hMOR

constructs

A. Co-immunoprecipitation of rKOR-eYFP and Flag-hMOR

Membranes from mock transfected HEK 293 cells (1) or those transiently expressing Flag- 

hMOR (2), rKOR-eYFP (3), rKOR-eYFP + Flag-hMOR (4) were immunoprecipitated with 

anti-GFP antiserum and detected with anti-Flag antibody after being resolved by SDS-PAGE.

B. Expression of KOR-eYFF in the membranes detected by measure of the 

luminescence.

The same membranes as in panel A: HEK 293 cells (white bar) or transiently expressing Flag- 

MOR (blue bar), KOR-eYFP (pink bar), KOR-eYFP + Flag-MOR (purple bar) were used to 

measure KOR-eYFP fluorescence using Victor machine at 480nm.
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Figure 4.20: Effect of mutations and co-expression of hMOR-

and rKORV^^®E,V'^^D-GiiaC^^ Î fusion proteins on

competition between [^H]-diprenorphine and CTOP

Membranes expressing hMOR-GüaC^^^I (blue squares), hMOR-GiiaG^°^A,C^^^I (green 

circles), rKORV^^®E,V* '̂*D-GiiaC^^^I (blue circles) and co-transfected hMOR-GiiaG^°^A,C^^*I 

+ rKORV^^°E,V^^'^D-GiiaC^^^I (orange squares) were used to measure the ability of varying 

concentrations of CTOP to compete for binding with InM [^H]-diprenorphine. Data are 

representative of n=3 experiments performed in triplicate. Data points represent means ± 

SEM of triplicates.
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Figure 4.21: Comparison of agonist stimulated [^®S]-GTPyS binding to 

hMOR-GiiaC^^'l and the hMOR-GiiaG^®%C^^VhKORV^^®E,V‘®̂ D- 

GiiqĈ  ̂ I reconstituted heterodimer

Membranes expressing hMOR-GüaC^^^I (blue squares) or the co-transfection of hMOR- 

GiîaG^^^AjC^^^I + rKORV^^^E,V* '̂^D-GiiaC^^*I (orange squares) were used to measure the 

ability of increasing concentrations of DAMGO to activate [^^S]-GTPyS binding. Data 

represents n=3 experiments performed in triplicate. Data points represent means ± SEM of 

triplicates.

200



O) 125-

_o 1 0 0 -

MORGii„C^® l̂ 
Co-transfection

log [DAMGO] M



Figure 4.22: Effect of MOR and KOR agonists on [^^S]-GTPyS binding of 

the reconstituted heterodimer

Membranes cotransfected with hMOR-GiiaG^^^A,C^^^I + rKORV^^^E,V^^^D-GiiaC^^^I were 

used to measure the ability of increasing concentrations of U69593 in presence of 200nM 

DAMGO to activate [^^S]-GTPyS binding. Data are representative of n-3  experiments 

performed in triplicate. Data points represent means ± SEM of triplicates.
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Figure 4.23: Only the heterodimers should signal when the

complementation technique is used

When the wild type MOR fused (green) to the mutated Gü» (red) and the KOR or DOR 

mutated opioid receptor (blue) linked to the wild type Gua (green) are co-expressed only the 

MOR/DOR or MOR/KOR heterodimer formed will be functional whereas the homodimers 

will not signal upon agonist stimulation.
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GPCRs are now widely accepted as forming dimeric entities (Milligan et ah, 2003; Devi et 

al., 2001). Biochemical and biophysical approaches as well as computational studies have 

contributed to this. Dimers formed by two identical GPCRs, homodimers, or composed of two 

different GPCRs, heterodimers, have been described (Herbert et ah, 1996; Ng et ah, 1996; 

Jones et oL, 1998; Abdalla et aL, 2001b). New pharmacological and signalling properties 

have been demonstrated upon GPCR hetero dimer formation.

Opioid receptors belong to the GPCR family and have been demonstrated to form homo and 

heterodimers. Previous study failed to demonstrate MOR and KOR interaction (Jordan and 

Devi, 1999). It is only recently that Wang et a l, (2005) showed their heterodimerisation. 

Changes in pharmacology and signalling properties have been reported for all tliree opioid 

receptor heterodimers (George et al., 2000; Gomes et al., 2004; Law et al., 2005; Wang et al., 

2005). Differences in ligand binding, endocytosis patterns and G protein or adenylate cyclase 

coupling were observed. Nevertheless, many aspects of opioid receptor dimérisation still need 

to be investigated. Few data on the molecular basis of opioid receptor interaction or possible 

disparity in dimer formation with closely or less related GPCRs have been reported. The 

numbers of studies examining the proportion of dimers formed by GPCRs are also limited. 

Moreover, the signalling variation reported upon co-expression of distinct opioid receptors 

cannot be firmly established as reflecting heterodimerisation as a mixture of 

homo/heterodimers and monomers could be present in the samples analysed.

In this study I have taken advantage of a fusion protein strategy to build pairs of 

complementary constructs containing hDOR, hMOR or rKOR fused with the Güa subunit. 

Conserved residues have been mutated either in the 2"  ̂ intracellular loop of the opioid 

receptors or in the Ga protein to create non-functional fusion proteins. Two valines present in 

the 2"  ̂ intracellular loop of opioid receptors and highly conseiwed among most class A 

GPCRs were mutated into glutamic acid and aspartic acid. These mutations were shown to 

abolish G protein activation by the opioid receptors. Similarly, a highly conserved glycine 

residue in G« protein subunit, the glycine 202 in Gua, was mutated into alanine (Milligan et 

ah, 2005). Introduction of the G^^^A mutation resulted in a form of the G protein that could 

not exchange GDP for GTP. However, when these mutated fusion proteins were co-expressed 

agonist-induced signalling was recovered for all three opioid receptors demonstrating cross
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talk between identical DOR, MOR and KOR subtypes consistent with their 

homodimerisation.

To verify the specificity of the interaction observed, DOR N-terminal and TMl was fused to 

Gila and co-expressed with the fusion protein containing hDOR fused to the non-functional G 

protein. No significant [^^S]-GTPyS binding was observed after agonist treatment. 

Nevertheless, these fusion proteins were shown to interact as they could be co- 

immunoprecipitated following co-expression. These results provide evidence that two full 

length receptors might be necessary for G protein activation. However, contrasting data have 

been reported by Molinari et al, (2003). In their study the vasopressin V2 TMl linked to Go 

was activated by the full length DOR. The disparity observed could be due to the high 

receptor expression achieved and used in their study. Indeed, high level receptors 

overexpression has been reported to induce random collision events, thus unspecific physical 

contacts between proteins (Mercier et a l,  2002). These “bystanders” could have been 

misinterpreted as specific interactions by the authors.

In the present report DOR N-terminal and TMl were observed to self-associate. Therefore, 

one or both of these domains contribute to hDOR dimer formation. Although TM l was not 

proposed as a possible dimérisation interface for DOR by computational study (Filizola and 

Weinstein, 2002), this domain has been reported to play a key role in C5a receptor, yeast a  

factor receptor and aig-adrenoceptor dimérisation (Kclo et ah, 2003; Overton et al., 2003, 

Carrillo et al., 2004). Moreover, no experimental data have yet supported the informatic 

analysis, which suggested TM4 and TM5 as possible interfaces for DOR homodimerisation. 

Detailed analysis of the domains involved in opioid receptor interaction will be of interest. 

The putative glycophorin A dimérisation motif GXXXG was recently described as playing a 

key role in yeast a  factor receptor and [32-adrenoceptor dimérisation (Overton et al., 2003; 

Salhapour et al., 2004). Identification and mutation of this motif in opioid receptors would 

offer additional understanding of their dimérisation mechanism. Overall, identification of any 

residues responsible for opioid receptor interaction will be of prime importance to learn more 

about dimérisation and the role in opioid receptor function. Genetically modified animal; 

expressing opioid receptors mutated at these residues could be produced to bring insights into 

the role of dimérisation in opioid physiological responses such as analgesia, tolerance and 

dependence.
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Pharmacological properties of the diverse fusion proteins were also investigated herein using 

a rage of synthetic agonists (DADLE, DAMGO, DPDPE, U69593). Loss of agonist binding 

affinity was observed when the two valines were mutated into glutamic acid and aspartic acid. 

This alteration in ligand binding could be due to a change in G protein coupling. A 

modification in receptor/G protein coupling is likely as no agonist-induced [^^S]-GTPyS 

binding was observed for the fusion proteins containing these mutations. Thus, the two 

mutated valines from the 2"  ̂ intracellular loop can be considered as key residues for opioid 

receptor/G protein activation for all three opioid receptors/G protein interactions. These data 

contrast with other studies, which described no involvement of the 2”̂  intracellular loop for 

effective G protein coupling with MOR and DOR (Georgoussi et aL, 1997; Merkouri et al., 

1996).

Opioid receptor/G protein uncoupling could be confirmed by comparing the wild type opioid 

receptors and the version of the receptor mutated in the 2"  ̂ intracellular loop competition 

binding in the presence and absence of GppNHp.

Investigation of opioid receptor heterodimerisation by the complementation technique has 

confirmed DOR/MGR heterodimerisation and revealed MOR/KOR interactions. MOR/KOR 

dimer formation was also observed by co-immunoprecipitation. Such observations were 

unexpected as two other groups reported an absence of interactions between KOR and MOR 

either using co-immunoprecipitation technique (Jordan and Devi, 1999) or by computational 

analysis (Filizola et aL, 2002). However, during the completion of my thesis Wang et al, 2005 

have demonstrated MOR/KOR dimérisation using BRET approach, thus in agreement with 

my observations. Similar contradictions have been reported for other GPCRs. CCR4 and 

CCR2 were first documented as not interacting (Mellado et aL, 1999), however, recently this 

observation was refuted by Percherancier et aL, (2005). This may reflect the improving 

teclmiques and approaches as this field matures.

Consequently, MOR/KOR heterodimer pharmacology and signalling properties need to be 

further explored. A first attempt was made in this study by examining MOR/KOR binding 

affinity for the MOR selective antagonist CTOP. A loss of affinity for this ligand was 

obseiwed in the sample co-expressing the fusion proteins. It could be argued that this 

observation is the result of rKORV^^^E,V^ '̂^D-GiiaC^^*I fusion protein overexpression 

compared to hMOR-GiiaG^°^A,C^^^I, however, this was not obvious from the DAMGO-
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induced stimulation obsei-ved when hMOR-GiiaG^^^A,C^^^I and rKORV*^^E,V^^'^D-GiiaC^^^I 

were co-expressed. Moreover, in their recent study Wang et al, (2005) have suggested that 

MOR/KOR heterodimer pharmacology may resemble that of KOR. They observed a lower 

affinity for the MOR agonists (DAMGO and endomorphin 1) when tested on the sample co

expressing MOR/KOR heterodimers compare to the MOR expressing cells. These results are 

in agreement with my data.

The complementation technique developed in our laboratory (Carrillo et aL, 2003) allows 

specific analysis of signalling of the reconstituted heterodimers. Even if a combination of 

monomers, homodimers and heterodimers exist in the samples analysed, the response 

obsei'ved will only originate from the heterodimer. This is the first approach allowing 

exclusive monitoring of opioid receptor heterodimerisation without non-specific background 

i.e. monomer and/or homodimer signalling. Taking advantage of this method, agonist 

combinations were tested on the reconstituted DOR/MOR and MOR/KOR heterodimers. No 

synergistic responses were observed with the agonist mixes used. However, only one ligand 

combination for each heterodimer was examined. To complete this study more ligand 

combinations should be examined and mixtures of agonists and/or antagonists should be 

tested. Modulation of 2"  ̂messengers such as cAMP or Ca^^ could also be investigated in an 

effort to reveal distinct properties of opioid heterodimers.
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%Potential heterodimerisation between DOR and a less related receptor, the (32-adrenoceptor, 

was also investigated. Co-expression of hDOR-GiiaG^^^A,C^^^I and (32-adrenoceptor-GiiaC^^^I 

resulted in agonist-induced signal reconstitution thus confirming previous reports which 

described their heterodimerisation (Jordan et aL, 2000; McVey et aL, 2001; Ramsay et aL, 

2002). However, the extent of DOR/(32-adrenoceptor reconstitution was two times lower 

compared to DOR/DOR suggesting better affinity for DOR to self-associate than to interact 

with the p2-adrenoceptor. This difference did not reflect an alteration in G protein coupling as 

a similar potency to activate G protein was observed for the reconstituted dimer and the 

homodimer anticipated from expression of hDOR in isolation. Affinity for opioid receptors to 

interact with other GPCRs could be explored with this approach. Depending on the affinity of 

the receptors to interact new and original heterodimer properties observed can may be 

relevant to physiology.

I

I
I



In general, understanding of all aspects of GPCR dimérisation is essential if control of 

important functions such as pain relief or HIV infection are regulated by this mechanism.
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