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A b stract

T raditional pertnrbative techniques for solving QCD are unable to successfully de­

scribe the properties of hadrons, where non-perturbative effects are likely to be 

present. One way to solve QCD non-perturba.tively is to use Lattice QCD which 

offers a solution of QCD from first principles. This thesis describes the solution 

of bound states of heavy quarks using a Non-Relativistic form ulation of QCD 

(NRQCD) together w ith Lattice techniques.

C hapter 1 is an introduction to QCD as well as Lattice QCD, introducing the 

discretized action for relativistic fermions and the gauge field action. C hapter 2 

describes potential models which to some extent can successfully predict the spec­

tru m  of Quarkonium  states composed of Charm  or B ottom  quarks. NRQCD is then 

defined as an effective field theory in the continuum  and relativistic corrections are 

derived as a power series of the typical quark velocity inside the Q uarkonium . In 

C hapter 3 NRQCD is derived on the Lattice and the evolution of tlie quark Greens 

function given. The im portance of tadpole- improved perturba tion theory is stressed 

and its effect on spin-splittings is noted. O perators for various spin and orbital an­

gular m om entum  states are derived and sm earing of these operators are done to 

increase the signal to noise, ratio . C hapter 4 describes the calculation in detail of 

the spectrum  of C harraonium . To extract ground sta te  masses to high precision 

and also excited states, fits of m ultiple correlation functions to m ulti-exponential 

term s are done. The spectrum  for Upsilon is calculated on a coarser lattice than 

has previously been done to try to quantify any rem aining lattice spacing errors. 

The spectrum  for Be mesons is also calculated. These exotic heavy mesons have 

not been observed experim entally yet and the low lying states calculated can act 

as a prediction. In chapter 5 the two m ost im portan t system atic errors rem aining 

in the sim ulation are estim ated using a simple Schrodinger equation. These errors 

are quenching and 0 (a . y  corrections in the gluonic action. A djusting for G(a)^ 

corrections it is possible, to observe scaling of m ass-independent split!,ings on going 

from a finer to coarser lattice. This indicates there is no significant error left from 

lattice spacing errors. C hapter 6 is the conclusion.
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C h a p ter  1

In tro d u ct io n  to  L attice  Q C D

1.1 In trod u ction

111 particle theory today there is a highly successful model of particle interactions 

called the S tandard  Model (SM). In the SM the fundam ental particles of nature 

are fermions interacting with each other via. exchange of virtual gauge bosons. To 

understand the interaction requires gauge invariance and the SM dem ands invari­

ance under SU{3) ® SU{2) ® U{1) rotations. .5'f/(3) describes QCD the interaction 

of quarks and gluons. 517(2) 0  f / ( l )  is the electroweak interaction describing the 

in teraction  between leptons and the W  and Z  particles with the sym m etry breaking 

at low energies to 7 (1 ) of electrom agnetism  and the weak interaction.

Ti-aditioiially to calculate quantities of physical interest, scattering am plitudes 

and m atrix  elements, requires the use of perturbation  theory where a power series 

in the typical coupling constant between the appropriate fermion and gauge boson 

is used. Higher term s in the series represent more complex possibilities for exchange 

of v irtual gauge bosons between fermions. Collectively the,se dilTering processes are 

called Feynm an diagram s. For QED the characteristic coupling constant Og % jR  

and the series is very convergent m aking QED relatively simple to solve. However 

for QCD the coupling constant O'* ~  0 (1 )  and will cause perturbation  theory to 

break down. QCD has the property of asym ptotic freedom where the typical cou­

pling constant increases as the m om entum  scale a t which one wants to solve QCD 

decreases. The opposite is true for QED. One im m ediate consecpience of asym p­

to tic  freedom is th a t the quarks are confined into bound states called hadrons. The 

coupling constant increases as the separation of the quarks increases or the typical 

m om entum  exchange between such quarks decreases { A p A x  % f). In order to un-



clerstand for example the m ass spectrum  of QCD, where such bound states rely on 

the mechanism of confinement and hence non-pertnrbative QCD, another way to 

solve QCD other than from pertnrbative m ethods needs to be found.

In the next sections the form ulation of QCD is given and it is shown how through 

the pa th  integral approach it is possible to extract non-perturbative QCD physics 

using the m ethod of Lattice QCD [!].

1.2 D efin ing Q C D

QCD, like all gauge field theories, is defined tinough a Lagrangian density C qcD  

or equivalently the action S qcD  =  f  d'^xCqcD-  In analogy to U (i) of QED the 

Lagrangian density in Euclidean space [2, 3, 4, 5] is

^QCD = Cf  + Do  ( I f )

where

with

and

Ffi„{x) =  d„A„{x) ~  d,,Ait{x) -  ig[A,i{x),A„{x)]  (f.3)

Up — (T/< (b/( 4" -f 3Lo)

{ i l l  M l ' }  =  ‘̂ ^ i i u  t I  =  7/i  ( 1 . 4 )

Under local 5 7 (3 )  ro tations the quark and gluon fields transform  as

i / ’ [ x ]  — i- G{ x) ' i l ) { x )

41,,(.r) —> G(.i;)A„(.i:)6'“ H-'*0 -  ^-G{x)d^tG~^{x) (1.5)

Cf  and C q are invariant and colour charge a t any space-time point is conserved.

After w riting down a form ulation for QCD it is necessary to extract m easurable

quantities which are then compared to experim ent to test the theory. One rvay to 

do this is to use the path  integral representation of quantnm  field theory where the 

expectation values of tim e ordered product of interpolating fields are calculated.



The pa th  in ter al is defined as a partition  function given by

Z =  /  ( 1.6)

where V'll^^Vijj and V A  is a. short hand notation  for intergrating over all possible 

quantum  fluctuations of the quark, anti-quark and gluonic fields. Defining a collec­

tion of tim e ordered product of fields as 0 { i j ) A )  its expectation value is given 

by

< 0(J>,i}),A) > =  ^  j  V'^)V'il>VAO{J)pi}>,A)e-^^^'^ (1.7)

In perturbation  theory the to tal QCD action is split up into the free action for 

the fermion and the gauge fields and the interacting part of the action. Hence

'^QC'D — 5pi'ee 4" 5iiit (1 8 )

and the exponential for the interaction part of the action is expanded in the coupling 

constant go. By doing th is a series of Feynm an diagram s can be bu ilt np and the 

am plitudes for the various processes calculated analytically. There are a num ber of 

drawbacks to this, notably one has to have go sm all enough for pertu rbation  to be 

valid. Also the calculation involves integrals which are in general divergent and will 

need to be regulated. If it is required to solve QCD in the non-perturbative region 

where go is 0( 1 )  then a new m ethod to evaluate equ (1.7) will need to be found. 

This is where Lattice QCD comes into play,

1.3 L attice Q CD

In Lattice QCD space-tim e is split up into a. set of discrete points on a finite volume. 

T his introduces a natu ral cut off in m om entum  space of order of the inverse of the 

la ttice  spacing a “ b  The path  integral in eqn (1.6) is well defined and not necessarily 

divergent. Instead of expanding in go the whole exponential term  containing the 

in teraction p a rt of the action is kept and the path  integral evaluated numerically. 

This allows a study of non-perturbative effects,

The form ulation of QCD in the continuum  requires gauge invariance which m ust 

also be the case on the lattice. To define a gauge invariant action the following path  

ordered quantity  is introduced

U ( y ,x )  =  f  (1.9)

and under a general gauge transform ation G(x)  the quani.ily transform s as

U(y ,x )  = G(x)U{y , x )G~^ (y )  (1.10)



I t is then straight forward to produce a gauge invariant object like for example 

Discretizing the fermion Lagrangian C f is achieved by replacing

™  (V'(a: +  ap) ~  i ' {^ ~  o/U) ( 1 1 2 )

on a lattice w ith spacing a. For gauge invariance the path  ordered integral equ (1.9) 

between two lattice points is defined as

U { x ,y )  -  (1.13)

From this it follows th a t the action for fermions in the interacting case is given by

S f  =  [U(.n,//)'0 (<i; +  a//) -  f/l(.i; — a,y,)^j{x -  aft)] +  Motl}{x)\ l . lA)

Looking at the dispersion relation for such fermions in the free field case one has 

E ‘̂ = M " +  (f/“ b “ s5i^r/,;a (1.15)

where ™  < qi < ~ .  For Qi 0, E'^ —+ M~ which is the continuum energy for 

a ferm ion w ith zero m om entum  in the low energy region. However for qi ^  

E “̂ —> as well. There is then an ex tra  particle in the low energy region even

though its m om entnm  is high. This is purely a lattice artifact, and in d dimensions 

one has fermions using the naive action equ (1.14). To circumvent this problem 

ex tra  operators can be added to the Lagrangia,n which disappear in the continuum . 

The m ost commonly used action is that, given by W ilson [6] where the operator 

~'0(a;)A^'0(.T) is added to equ (1.14) to give an action

‘SV t’ =  S f  -  — '^a^ij>{x)A'^'iJ>{x) (1.16)

is the lattice version of the continuum  Laplacian and r is set to unity. From

this action in the free field case the dispersion relation l.iecomes

E ' M  + a cosf/ja) +  (a (1.17)

Taking qi — 0 as before one has E'^ =  M " but, now when qi —» ^   ̂ ( M H-2n~^),

Approaching the continuum  a —» 0 the effective mass becomes infinite and the extra 

2 ^̂ — 1 fermions do not propagate and hence decouple from the theory.

As for the gauge field action on the lattice this too should be gauge invariant as 

in the continuum  case. To make np a gauge invariant operator consisting of U fields

6



will involve taking a trace. The sim plest exam ple is to take a, trace of a p laquette 

defined by

TrU l„{x)  = Tr(U,XfOU„(x  + a, , )Ul (x  + av)U},(3:)) (1.18)

which is invariant under the gauge transform ation —» G { x ) U ^ { x ) G ~ ^ { x a j . i ) .

Defining

(1.19)

and taking the naive continuum  lim it one finds th a t G|y(;c) —>■ F,„/(.i;) +  (7(a) where 

F^„{x)  is given in equ (1.3). From this it is straightforw ard to show th a t the gauge 

field action on the lattice is

:C,/ ! , ; / > / ,

with

( 1.20 )

1.4 N u m erica l S im ulations

After defining the actions for the fermion and gauge fields of QCD it is necessary 

to  shoAV how the lattice can be used to calculate expectation values. The partition  

function is now given by

Z  = I  (1.21)

where as before S q cD  — S p  +  Sc-  But now, because we are on a finite lattice, the 

integral is well defined. Since

2)^  =  Y l  # ( n )  n  # ( " )  =  n  ( 1.22)
n  n. u

the integration measures in equ(??) are finite which in turn ensures th a t the par­

tition  function is finite and well defined. If we express S qc D  ^8

S q cD  = ^ ( U , y , x)ij> +  Sc  (1,23)
y.n‘

then the integration over the G rassm ann fermion fields can be done analytically to 

obtain

2  =  I  V U  d e l M ( U ) c ~ (1.24)

Expectation values of an operator 0{U,'iJ){y),‘i/’{x)) can then be evaluated. One of 

the m ost used operators in Lattice Q(TD is given by 0{-iJt{y),'tl>[x)) = '0(?v)VU-'*O



the expectation value <  4){y)ij)(x) > is called the Greens function G{y,  x).  It follows 

th a t

G { y , x )  =  ~  I  'DU M - \ U p y , x ) e - ^ ^ G l e i M { U )  (1.25)

Initially to evaluate the expectation value numerically one would generate a random  

configuration of 5 7 (3 )  m atrices and evaluate deiM{U)e~'^^-^ for this configuration 

explicitly and then average over as m any configurations as required. This however 

is com putationally  very expensive due to the large range in values of . A more 

efficient way is to use im portance sam pling where the gauge fields are generated 

w ith weight d e t M { U ) e ~ ^ ° .

Then quark Greens function G{y,  x)  is esf.imated by evaluating

I ^  t o n /

G ( y , x )  -  —-------  X 2  G i U i , y , x )  ( f .26)

where M ~ ^ { U , y , x )  has been rew ritten as G{U i , y ,x )  for configuration i. An­

other approxim ation in the numerical procedure comes from neglecting to evaluate 

d e t M{ U) .  This is a non-local quantity  and is too costly to calculate for present 

com puter power. In this so called quenched approxim ation which m ost lattice sim ­

ulations use, detM (U) is set to unity. In perturbation  theory doing this is equivalent 

to neglecting internal quark loops.

In order to find G(Ui,y,  ;r) it is necessary to solve an equation of the form

" ^ M { U i , y , x ' ) G ^ i U i , x / , x )  =  ^ { y , x )  (1.27)
X->

For x{y>x) = G^{U i , x^ ,x)  is the usual Greens function G (U i , x ' , x ) .  Since 

G^{Ui, x \  x) — G'(7,;, x \  z )x (z ,  x)  this is known as smearing tfje Greens function

w ith the function y(z, æ).

1.5 H adron C orrelators

To sim ulate hadrons with specific quantum  numbers it is necessary to w rite down 

the correct operator w ith the required quantum  numbers. For sim plicity consider a 

meson containing a cpia.rk and anti-quark wi(.h flavour /  and f  . The operator will 

be of the form

O = j T f  (1.28)

where F is a specific collection of j  m atrices and diagonal in colour space. For a

pseudo-scalar meson F =  75 where as for a vector meson F =  7 ,:. The propagation

8



of this meson from space-tim e point x  to y is repi'esented by the correlation function 

C(y,  x)

C(y,  x) = < o|o(!/)ot(a:)|o > = < o|7(w)r/(!/)7(jOi’*/'(.n|o > (1.2a)

P u ttin g  in explicitly colour and spin indices and using Wicks theorem to factorize 

the different flavour quarks it is possible to rewrite C{y, x)  as

C{ y , x )  =  Tr [G’̂ '(.7:,î/)rG.'(!A,T)r'l (1.30)

where the trace is over colour and spin indices. Therefore the procedure in num er­

ical sim ulations of QCD is to find the inverse of the m atrix  M (U ) ,  average over 

configurations to obtain  the quark Green function and coml.iine this appropriately

to produce the required hadron correlator. But w hat physics can be learnt from

knowing C{y, x)? Consider

C (t) =  X] < 0 |G (x ,t)C 9 t(0 ,0 ) |0 >  (1.31)

where we have m ade explicit in the RHS of equ (1.31) the spatial and tim e co­

ordinates of O.  In the Feynm an path  integral approacli the operator O is in the 

Heinsenberg representation and evolves in Euclidean time. Hence

G (x ,t)  =  (1.32)

for some H am iltonian operator 'H. Tnserllng a complete set of states into equ (1.31)

X ^ |nq  > <  nq | =  1 (1.33)
q . n

where the base states have lieen normalized so th a t

<C n q |m p  !> =  <^nin^nq (1.34)

C'(t) =  X] < 0 [G ( x , t ) jn q X n q |C b ( 0 ,0 ) iO >
x , q , n

=  X2 1< 0 |G (0 , 0 ) ! n q > |- e - ^ '' '+ 'A x  
x , q , n

=  y  V l <  O|0 (0 , 0) |n q > | - f - ' ' ' ”’
n , q

=  X ] l <  0 |G (0 ,0 )|n  -  |<  0|G(U,U)|1 > |'“ 4- .... (1,35)



In the large Euclidean tim e lim it the hadron correlator decays exponentially fast. 

In the large tim e interval this is determ ined by the lowest mass M i  of the hadron 

w ith specific qnantnm  num bers determ ined by the operator O.  In the sim ulation 

M l can be found by evaluating

C'(t +  I)
In

C'(t)
(1.36)

as f —> DO. The am plitude <  0|£7|i >  is the m atrix  element for the decay of 

the hadron, a non-perturbative quantity  which can only be calculated by Lattice 

sim ulations. T his is also true for the calculation of the hadron mass.

1Ü



C h a p ter  2

N o n -R e la t iv is t ic  Q C D

2.1 In trod u ction

Ever since the discovery of the C harm  quarlv [7, 8] and even before the discovery 

of the B ottom  quark [9, 10], potential models have been used with considerable 

success to predict the spectrum  of heavy-heavy l.iound states. In this chapter a 

sim ple introduction to potential models is given and their basic features which 

can be used to explain the bulk of the the heavy meson spectrum . Next Non- 

Relativistic QCD (NRQCD) is introduced as an effective field theory of QCD in 

the heavy quark lim it. Power counting in the typical quark velocity v~ is used to 

order the relativistic corrections away from the Non-Relativistic case. The relevant 

operators representing these corrections are w ritten down and their significance for 

the meson spectrum  described.

2.2 P o ten tia l M od els

In the S tandard  Model there are six quarks (accepting now th a t the top quark does 

exist). They fall into two cai.agories with the typical scale of QCD {Aq c d ) sepa­

ra ting  them . If one assumes th a t the typical m om entum  of quarks inside hadrons is 

0 { A q c d ) then for quarks w ith mass 0 { A q c d ), ie the u,d and s, they are considered 

to  be relativistic with t r  % For the other three c,b and t whose m ass are very 

much greater than  A q c d  they are considered f,o have velocities i r  < <  e". It seems 

then appropriate to consider c and b and eventually t in term s of potential models. 

T he starting  point would be to  pick an appropriate spin-independent potential and 

solve a Schrodinger type equation to predict spin-independent splittings for exam-

II



pie. To get an understanding of the type of potential to be chosen it is useful to 

calculate some elastic scattering between an equal mass quark and anti-quark and 

perform  a non-relativistic expansion. This will not only tell us the form of the static  

heavy quark potential bu t also the type of relativistic corrections.

The m atrix  element for such a scattering Mj-  between a quark and an anti­

quark with initial m om entum  p i , p 2 into a final quark and anti-quark s ta te  with 

final m om entum  q i , q  ̂ can be expressed in the form

F-fji = ü{(l i)Su{pi)Vr{pi  -  (li)v{p2)Cv{q2) (2 .1)

where F determ ines the spin structure of the interaction. The F ’s are m ade np of 

Dirac gam m a m atrices and classify the different types of potentials. In the non- 

relativistic lim it the different potentials contribute according to [11]

F  s c a l a r  —  1 Ks ( 2 . 2 )

1 p s eu d o s c a la r  — 1'5 d  ( 2 . 3 )

F  ve c to r  — T/(  ̂ U /  ( 2 . 4 )

F axint —vec to r  — T / tTS   ̂ <71 -0"^ W l  ( 2 . 5 )

F  t e n s o r  — '  O' ̂  .(Tv I T  ( 2 . 6 )

There is no pseudoscalar sta tic  potential contribution at. leading order. For the 

axial-vector and tensor term s this depends on the spin u i, of the quark and 

anti-quark at leading order. Consequently this would mean th a t spin-dependent 

splittings would be of the same order as spin-independent ones which clearly is not 

the case from experim ental data . These two potentials are then ignored. One is left 

w ith the conclusion th a t at leading order the static  potentials consist only of scalar 

and vector parts.

It is possible to calculate the m atrix  element perturlnitively via one glnon ex­

change which leads to a. potential of the form F  ~  It is straigh t forward to 

show th a t the resulting potential in position space is ld /(r)  — — the famil­

iar coulombic type potential of QED. This will be the dom inant potential at short 

distances where the m om entum  exchange is high and perturlnation works. For the 

long range potential, because of confinement, perturbation  is not applicable and a 

phenomenological potential will have to be used. This is taken to be of the form
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aMC for n > 0. Therefore we know th a t the sta tic  heavy quark potential has a 

vector an d /o r scalar part and th a t a t short distance the potential is coulombic and 

at large distances the potential increases with distance. It is norm ally taken th a t n 

=  1 from  spectroscopy considerations as well as lattice results. T he next (piestion 

to  ask is whether these potentials are of vector or scalar or both in nature. For this 

we need to  know w hat the relativistic corrections are.

2.3  R ela tiv istic  C orrections to  P o ten tia l M od els

One way to calculate relativistic corrections is to use the m ethod of Eichten and 

Feinberg [12] where the spin-dependent, potential correct up to order -U  is given by

V s n ( r )  =  +  g ( r )

where Lj =  r  x P j and Vo is the heavy quark sta tic  potential. The im portance of 

w riting it this way is because the l / ’s can be w ritten in term s of cros,s-correlations 

between the chrom o-m agnetic and electric fields and i.his allows a non-perturbative 

trea tm en t using, for example, lattice techniques [36]. A pertnrbative trea tm en t is 

possible if we make the following identifications in term s of the vector (F y) scalar 

(F^) and pseudoscalar (Vp)  potentials

Ff,{r) =  Fy(?*) 4- Vs{r)  (2,8)

F i(r)  - - I / ,(^ ‘) (2.9)

1A(?') =  V\/{r) (2.1Ü)

% ('-) =  -  v p r )  _  J) (2 .11)

Fi(î') =  2 V “ Vv{r)  4- v A A (î ')  (2.12)

Forgetting the pseudoscalar potential Vp{r)  for now one ends np with the well 

known Breit-Ferm i H am iltonian

H  — 2m  4- —  -  4- Fo(7-) 4- Fsv()') 4- V i s i r )  +  1G.5'()') 4- Fn(i’) (2.13)
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where the following potentials are given by

Fs 5 =  ^ ^ S i . S s  U v(r) (2.15)

with the abbreviation

5 o  =  1 2 ( ^ U i ^ F ^ - t s , . S . , j  (2.17)

Ti-eating these interactions pertnrbatively it is possible to find expectation values 

of the appropriate operators using suitable wavefunctions. For this the expectation 

values of S.L, S i .Sa and 5'i2 will need to be evaluated. Decomposing the eigenvalues

into the to ta l spin S, the relative orbital angular moment.um L, and the l.otal

m om entum  J — L +  S it follows th a t

<  S .L  > =  ^ ( J ( J  +  1) -  L(L + 1) -  5 ( 5 + 1 ) )  (2.18)

<  S i .Sa >  =  — (5 (5  +  1) — 5i(5 'i +  1) — 52(5% +  1)) (2.19)

For 5 i 2 w ith 5’i =  |  and 5o =  |  it can be w ritten in the form

S n  = 2 -  S - )  (2.20)

and using the m ethod of [14] to calculate the expectation values of tensors one has

<  >  =  ■(ï l G ^ l  +  3) ( <  = =

Using these results we see th a t for either L=ü or S=0 the ,spin-orbit sp litting  vanishes 

as well as does the tensor term . Representing a two body e(pial m ass bound sta te  

by the quantum  num bers where L = 0 ,l,2  is replaced by S,P,D the above

expectation values for various states can easily be calculated. For the (^ 5 'i /5 o )  

states, <  S 1 .S2 > =  ( | , - | ) .  For P 2 S Pi Pq) states, < S .L  > =  ( 1 , - 1 , - 2 ) ,  

5 i 2 =  (—1 ,2 ,—4) and <  S 1 .S2 > =  7 . The eigenvalues for the ^P[ s ta te  are zero 

except for <  S i .82 > =  — f .

From the knowledge obtained so far we know th a t the static  potential has a 

vector and scalar contribution with a short distance coulombic potential and a 

linearly rising confining potential. We will now use the P hyperhne splittings to
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deduce further the make up of the heavy quark potential and decide on which part 

of the potential is scalar and vector. To do this a param eter p is defined as

^  M ^ P , )  -  M e n )  M  2 2 ,

'  M(3J>i) -  M (3Po)  ̂ ' ‘

From  the previous expressions the spin-orbit and tensor term s will contribute to 

this splitting , the spin-spin term  if it does contribute at all to the P  states will 

be the sam e for all P states w ith S—I and will not contribute to p. Lets assume 

first th a t the sta tic  potential is purely of vector type so th a t Vv = Vo and Vs =  0. 

Taking U) =  - 1 ̂  +  o')' then

1 8a\s- <  > +7(t < r~^ >
5 2a,. <  1'-^ > +(T <  >

(2.23)

given the bounds |  <  /> < |  for n =  0 or a ,  — 0. This is not consistent w ith tlie 

experim ental value p^xp ~  0.6. Sim ilarly a. pure scalar is ruled out which would 

give a value p =  2. In conclusion the sta tic  potential has to be m ade up of both a 

scalar and a vector part. It is usual to identify the scalar part of the sta tic  potential 

w ith ar  the confining part of the potential and tlie vector part, with — | a , ï ' .  The p 

param eter eqn (2,23) now becomes

^  1 8» . < > - | , T  < ,.-1  >
5 2 a , <  7’“  ̂ > - 3 ( t  < 7' “  ̂ >

which for a purely coulombic term  a  =  Ü gives 0.8. Hence there m ust be a non­

zero scalar confining part, ar  which reduces the ratio  eqn (2.24) to agree w ith (he 

experim ental value [15, 16]. If we now substitu te  Vv =  ~ i n t o  the expression

for the S hyperhne splitting equ (2.15) and evaluate pertnrbatively f

A K s, =  1 +  <  S , .S 2 > W-(0) (2.25)
9m."

we see th a t the splitting is only going to effect states which have wavefunctions at 

the origin, for exam ple the S states and will not effect P or D states. The ^Pi sta te  

then is not effected by either the spin-spin, spin-orbit or the tensor term . This is 

verified experim entally to a good approxim ation since the splitting  between the  ̂Pi 

and the centre of gravity for the '^P'2 ,  ̂Pi and ^Po states is very sm all [17]. This 

indicates th a t the spin-spin interaction is al.isent, in the P states and in turn  suggest.s 

th a t indeed the vector potential is mostly coulombic in behaviour.
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2.4  N o n -R ela tiv istic  Q C D  as an effective field th e ­

ory

Potential models described alrove can be very successful in accounting for the bulk 

effect of heavy-heavy meson spectroscoiiy. There are disadvantages to this approach 

in th a t it is only a model and not a calculation of the meson spectrum  from first 

principles. For exam ple the heavy quark potential has two free param eters which 

need to be adjusted. Normally the lowest ground states states are used to fine-tune 

these param eters and then higher states can be predicted. A nother drawback is 

th a t it is still not certain w hether the scalar part of the heavy sta tic  potential is 

the confining part and w hether tlie short range coulombic piece is vector in nature. 

However potential models should not be totally dismissed bu t should be used as a 

guide to  solving heavy quark physics from first principles.

Looking at the spectrum  for C liarm onium  and Upsilon one can see stra igh t aw a,y 

the positronium  type spectrum  representative of non-relativistic befiaviour. One 

im portan t observation is the m agnitude of spin-independent sp littings relative to 

spin-dependent, ones. For exam ple in C harm ouium  and Upsilon the typical splitting 

between excited states or splittings between states of different angular m om entum  

is about 500 MeV. Com paring this to spin-dependent splittings, for example, the 

S hyperfine or the F hyper fine in Cliarm onium  these are typically of the order of 

100 MeV. The same is true also of Upsilon where spin-splittings are of order 50 

MeV. From potential models it is possible to calculate the typical quark velocity 

inside a hea.vy-heavy meson. The velocity for the Charm  quark is iS % 0.3 where 

as for the B ottom  quark lA % 0.1. Looking at the spectrum  for C liarm onium  and 

Upsilon it looks like spin-dependent quantities are down by the quark velocity and 

suggests th a t relativistic corrections can be added as a power series in u". This is the 

approach th a t N on-Relativistic QCD (NRQCD) takes. It is an effective field theory 

where corrections are added according to the im portance or weight the corrections 

have on the physics involved.

2.5 E nergy Scales in Q uarkonium

In order to understand NRQCD more and why it is well situated to Quarkonium  it is 

best to try  and understa.nd the different energy scales involved and the im portance 

each one of them  has. These scales are the heavy qua.i’k mass M ,  the quark 's 

m om entum  M u and the quark 's kinetic energy M x r.  The quark mass M  sets the
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overall scale of the meson and the scale for annihilation. The quark ’s m om entum  

M v  determ ines the size of the meson ( 7, ^ )  and its kinetic energy determ ines

the size of spin-independent splittings. In such mesons, since the typical quark 

velocity «  1, there is a large disparity in the three energy scales. This will 

m ake it difficult to  solve on the lattice if all three energy scales are present in 

the sim ulation. A first step would be to explicitly remove the mass scale from the 

theory. This will only alter the zero of energy and not for example the value of spin- 

splittings. I t is still possible for quarks w ith average m om entum  M v  to fluctuate 

into relativistic states of value M  bu t since this would occur for only a short period 

these relativistic corrections can be introduced as local interactions with coefficients 

determ ined pertnrbatively.

One starting  point for the derivation of NRQCD is to perform a Foldy-W ontiuiysen- 

Tani transform ation [18] on the original QCD lagrangian. This transform ation is a 

un itary  transform ation on the four fermi dirac fields which decouples the up].rer and 

lower com ponents system atically in powers of j j  leaving a. Non-Relativistic expan­

sion. Following the exam ple given in [19] one ends up aft.er such a transform ation 

w ith

¥ (D .7  -  M)  ® U D ,  -  M +  M )  +  V  +  ^ A . E . . . . )  ./(2.2G)

Although this expansion is valid for an individual heavy quark one needs to ask 

w hether this is an appropriate expansion for heavy quarks in Q uarkonium . Looking 

a t the expansion one sees th a t the <r.B term , which will presum ably lie responsible 

for spin-dependent splittings, comes in a t order A  This is the sam e order in A  as 

the kinetic energy operator which is m ostly responsible for spin-independent splil.- 

tings. T his suggests th a t the two types of splittings will be of the same order which is 

clearly not the case. As previously m entioned spin-dependent, splittings seem to be 

down by approxim ately u" and it looks like this miglit be an appropriate expansion 

param eter ra ther than To derive NRQCD we perform I.he FW T  transform ation 

to  produce the relevant relativistic corrections and evaluate the expectation values 

of the resulting term s in term s of and order tfiern a].ipropriai,ely.

2.6 Pow er C ounting for N R Q C D  in Q uarkonium

The work described below closely follows tlie work of [20] where the m agnitude 

for various fields m aking up NRQCD in a Q uarkonium  sta te  are estim ated. To 

start, w ith the estim ated m agnitude for the quark field i/’(;r) (or equivalently the
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anti-qiiai'k field %(z)) is m ade. The num ber operator

I  {x)ij>{x) (2.27)

which ju s t counts the num ber of heavy quarks is one for Quarkonium . Since the 

quark is localised in a region A x  ~

J  d:^xil>\x)ij>[x) ( A x Ÿ  ij0^x)'ilj{x) (2.28)

assuming the fields do not vary significantly over the region A x .  From this ^(,i;) ~  

(Mt)) =. The expectation value for the kinetic energy operator will be M i S  hence

/ d:^x.‘ij>\x)-^j^ij>{x) ~  M ib  (2.29)

so D ~  Mr;. From the lowest order Schrodinger ec|uation

iDi + f p j  =  Cl (2.30)

this leads to Dt  ~  M u". For a non-relativis(ic bound sta te  the virial theorem  tells 

us th a t the kinetic energy is balanced by the potential energy so th a t the potential 

energy g4>{x) ~  Mv^ .  To find the estim ate for the vector potential term  /7A (,r) it 

is best to solve the field equations for the vector fields which gives f/A(,r) ~  M .

From  these two estim ates it is stra igh t forward to obtain the estim ate for the electric

and m agnetic fields

r/E(;r) =  -  V  .70(;îO ~

r/B(;r) =  g V  xA (.r) ~  M "G  (2.31)

using the fact th a t V  ~  (Mv) .

Using these estim ates it is possible to build up various ojrerators order by order 

in away from the leading Schrodinger e<.piation. In doing so the operators can 

not be arb itrary  and m ust obey the sym m etries of QCD ie charge conjugation, 

parity  and gauge invariance. T his lim its the possibilil.ies and l.o (9(rr ) the possible 

correction term s are

(2.32)

C3+prV '*(.ï) (D .E  -  E .D ) ,/'(,<:) (2.33)Olvl ^

C3 - ^ i i x y c r . ( B  X E - E  X D ) i l i x )  (2,34)
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C- 4 ^  {x)a . B 4 i x )  (2.35)

T he first term  is simply the first relativistic correction from the rela.tivistic energy 

m om entum  dispersion relation E" =  +  M “. The next is also a spiminclependent

relativistic correction and is the QCD équivalent, of the Darwin term  in QED. The 

last two are spin-dependent.. The cr.B term  removes the degeneracy between stat.es 

w ith different spin orientations and the D x E  will act as a spin-orbit coupling 

producing a P hyper hue splitting  in the p states for example. We expect from 

the ordering of the operators in the typical quark velocity u th a t spin-dependent 

splittings should be down by about i r  compared to spin-independent splittings. 

This seems to be the case in the experim ental determ ined spectrum  for both  the 

C harm onium  and Upsilon. In a calculation in which only the above operat.ors 

are used there will be system atic errors arising from the omission of relativistic 

corrections coming in a t It is expected (.hen that, spin-independent splittings

will have an accuracy of (9(if*), since the leading order corrections a t 0 { t r )  will 

effect these splittings. Sim ilarly a relative accuracy of Ch(ir) in spin-dependent 

splittings is possible since they will be effected by operators which first occur at. 

the next to leading order.

For full predictability of NRQCD the arb itrary  coupling constants fq,C2,C3 , e4 

need to be evaluated. These coupling constanl.s will depend on the particu lar cut 

off A used and will cancel the cut-off dependence of the operat.ors to ensure physical 

quantities are independent of A to some specific order in perturbai,ion theory. To 

evaluate the coupling constants a t tree level a FW T transform ation can be per­

formed to the appropriate order in ^  for whicli one finds th a t all c,:’s are unity. 

A nother way to evaluate them  is to calculate scattering am plitudes in full QCD al. 

low energies and m atch these results in scattering am plitudes calculated in NRQCD 

[20]. Radiative corrections will occur away from tree-level values and will depend 

on a s { M )  and the ratio  ~  [33]. Taking A to infinity is not possible since the per­

tu rb  ative series breaks down which is ju st a reflection on the non-renorrnaliza,bility 

of NRQCD. If however A % ^  the perturbation  will work for large enough M. 

This will then leave two fundam ental param eters left which are exactly those in the 

original QCD La.grangian, the bare quark mass and the bare coupling constant,

2 .7  H eavy W ilson  Ferm ions

Any action defined on a lattice is an effective field theory, where (.lie cut-off in 

m om entum  space is of the order of the inverse of the lal.tice spacing a ~ h  As in any
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effective theory one expects problem s to arise when the highest m om entum  modes 

are greater than  the cut-off. For exam ple for heavy quarks with a bare m ass of Mo 

it is expected th a t the W ilson form ulation will break down when Mo a >  1. To get 

some idea of why this is so a non-relativistic expansion of the energy-m om entum  

relation for a W islon quark can be performed to obtain the expression

i5 =  M , +  ^  (2.36)

with

d'jfi — -j- M qu) (2.37)

M-i «  Q -  (2.38)
Mod

For sm all Mo a, M i =  M^ and Lorentz invariance is restored at this order in the 

expansion. However this will not. be the case when Mo a > f. Correction term s 

will have to be added to the original W ilson action to get the two definitions of the 

mass to be equal. A different in terpretation  of the problem is to recognise th a t ju st 

as ill NRQCD the mass term  M i is redundant and only affects the zero of energy. 

It is the m ass term  Mo which determ ines the splitting between different orbital 

angular m om entum  states and hence sets the scale. If a. dispersion relat ion sim ilar 

to  NRQCD is calculated so th a t the mass Mo is fixed to some physical quantity  then 

it is expected th a t W ilson fermions can s ta rt to correctly desci'ibe heavy quarks. Of 

course the mass term  appearing in the /C term  will be incorrect and a correction 

term  will need to be added.

In W ilson fermions there are 0{a )  corrections present which can be explicitly 

removed using the Symanzik im provem ent program  [21]. The Wilson fermion action 

can be corrected from these 0{a)  corrections by adding the term  [22]

A S  = iga^-K ^  (2.39)
.r

SO th a t an Improved Heavy W ilson (IHW ) action is defined by

S iH w  = S w F  +  A,S' (2.40)

At tree-level c =  1 and the rem aining corrections will be 0 (o a ) .  Mean field esti­

m ates of radiative corrections changes c to 1.4. At tree-level tlie im provem ent term  

adjusts the m ass Mg defined l.iy the interaction to be equal to Mg [23]. However 

the mass term  appropriate to the spin-orbit. interaction is incorrect and using ecpi 

(2.40) it is not possible to calculate the p spin-splittings correctly. E x tra  correction
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term s will need to be added to achieve the same accuracy of NRQCD in its present 

form. O f course since it is the discretization errors which lireak Lorentz invariance 

in the W ilson form ulation it is possible to take the lattice spacing explicitly to zero 

by brute force to obtain a fully Lorentz theory. Correction term s will (.hen no longer 

be necessary. A comparison in the spectrum  of Charm onium  between the W ilson 

case and NRQCD will be m ade in section (4.2.5).

2.8  W hy use N R Q C D  for Q iiarkonium  ?

Before we can answer the cpiestion why use NRQCD to study Qiiarkonium  it is 

best to ask the question why study heavy quarks at all. One simple answer is th a t 

there is a lot of experim ental d a ta  now available to compare to. Decays of hea.vy 

quarks into other heavy quarks in heavy-light mesons depends on (he param eters 

of the Cabibbo-Koba.yashi-A'1 askawa m atrix  ivhich are arbitrary  param eters in the 

S tandard  Model (SM) [24]. Nailing down these param eters could offer an indication 

of physics beyond the SM, for example, deciding on whetlier the CKM m atrix  is 

un itary  or not. Also if the olijective is to l.ry and solve QCD and understand the 

strong interactions it is best to study the most, simple systems which for example 

heavy-heavy mesons are with their positronium -like behaviour.

The next question to ask is what, is wrong with potential models since (hey can 

describe Q uarkoniuin systems accurately. As we have seen, potential models lose 

their predictability to a certain degree by using experim ental input to fix arb itrary  

constants in the heavy quark potential. One should not disregard potenl.ial m od­

els completely Imt they should be used as a guide of wlia.l. to expect when using 

NRQCD. Of im portance too is th a t they will be useful in deciding (he efi'ecl. of 

certain system atic errors present in lattice sim ulations. In particular to estim ate 

finite volume effects using pol.ent.ial wavefuncl.ions and help correcl, for the effect of 

quenching.

The answer to why use NRQCD to stuily Qiiarkonium is in two parts. The fii'st 

p a rt is th a t the dynam ics are well suited to lal.tice sim ulations. For exam ple the 

average size of a C harm onium  or Upsilon is about. 0 .1 to 1 frri so finite volume effects 

which occur in much lighter mesons will be negligible liere. From experim ental 

d a ta  the decay of both C harm onium  and Upsilon for sl.at.es al.iove thresiiold to 

a pair of heavy-light mesons is small indicating that, sea cpiarks do not have a 

significant effect in such systems. This m eans th a t quenching is not expected to 

have a significant distortion on the spectrum . In simulal.ions one considers pure
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sta tes whereas experim entally the observed states have wavefnnctions containing 

a m ixture of decay channels into lighter hadrons as well as the presence of hybrid 

states. Since m ost of the spectrum  we will consider lies below threshold the first 

problem  will not be significant. Decays into purely light quarks are suppressed 

by the Zweig rule. As for hybrids these are also suppressed in Q iiarkonium . The 

am plitude for emission of a gluon from a quark is % % v hence the probalhlity

for a hybrid s ta te  is 0{v'^) which is roughly 0.3 for Charm onium  and 0.1 for

Upsilon. Since the reaction tim e of a gluon is ^ times greater than  th a t of a (piark 

this explains why potential models which have a QQ pair interacting with each 

other by an instantaneous sta tic  potential work so well.

The other reason why NRQCD is more favoured over other theories to solve 

Q iiarkonium  is the fact th a t NRQCD is a much more efficient field Ifieory to solve 

on the lattice. C om putationally  the evolution of tlie Greens function is an inil.ial 

value problem . Using the lowest order form of NRQCD the equation of m otion for 

the G reen’s function G{x',  x) satisfies

( i A  +  ^ ) o ( ^ C . r )  =  (2.41)

where x  =  (x ,t) .  This means the G reen’s function can be obtained through one 

sweep of the lattice m aking the evaluation of the G reen’s functions very efficient. 

T his is in contrast to the Dirac case where a large m atrix  needs to be inverted at 

each tim e step requiring m any iterations. The iteration can also be done to as many 

tim e steps as required and does not suffer from the problem of periodic boundary 

conditions half way across the lattice. T his is because in the Dirac case the quark 

and anti-quark fields are coupled together and as well as having particles travelling 

forward in tim e there will also be anti-cpiarks travelling backwards in tim e. In 

NRQCD the cpiark and anti-quark fields are separated and only the quark or only 

the anti-quark can propagate.

O ther reasons which make Q iiarkonium  an easy system to sim ulate is th a t 

Qiiarkonium  is relatively small so different starting  sites on tlie lattice ca.n be used 

to  propagate the Greens function increasing the statistics. Experim entally the spin- 

average IP -IS  splitting is independent of the quark mass and is therefore an ideal 

quantity  to set the scale of the sim ulation. Unlike light quark sim ulations the cor­

rect bare mass can be chosen for the heavy quark case and no extrapolation  from 

unrealistic high cpiark mass values to their physical ones needs to be done. Lastly 

because Qiiarkonium  is a. two body problem  with the same type of quark and anti­

quark only the cpiark or the anti-quark propagator needs to be calculated whicli is
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then combined appropriately to form the required messon. All in all the reasons 

given above should make Qiiarkonium an ideal system to study not only to test 

QCD bu t also to  give us some indications of the type of system atic errors which are 

involved in lattice sim ulations and a framework in which these can be corrected for.
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C h a p ter  3

N o n -R e la t iv is t ic  Q C D  on th e  

L attice

3.1 In trodu ction

This chapter explains how NRQCD can be adapted to the lattice. The connection 

between the relevant operators in the continnum and on t.he lattice is made and (die 

particular quark Greens function which has been used in (.he simulation defined. 

An introduction to tadpole-improved perturbation theory is given and its impor­

tance for hyper fine splittings stressed. How meson operators with specific quantum 

numbers are formed from the individual quark and anti-quark fields is described. 

Smearing techniques are then introduced in order to improve tlie signal to noise ra­

tio. Finally it is shown how to extra.ct wavefnnctions and (.lie momenl.nm disjiersion 

relation which will be needed to fix the bare (juark mass.

3.2 L attice N R Q C D  O perators

To start  with it is best to write down fully the NRQCD lagrangian in the continuum 

which we intend to discretize. In Euclidean space this is given by

tZNRQCD =  -f V’(-'ïO T  5Csi +  5T-SD (3.1)

where

^ V ' * ( . * ) D V { . n - i ^ V ' ' { * ) ( D . E - E . D ) V - ( * )  (3.2)



and

SCsD = (.f)T. (D X E  -  E  X D) ,/,(x) + - ^ , l , H x ) a - . B , K x )  (3.3)

where the effect of the correction terms have on the Qiiarkonium spectrum is dis­

cussed in section (2.6) h  To discretize this action it is best to consider first the 

leading order term. This is a Schrddinger type term and to s tar t  with covariant 

derivatives in the continuum will need to be converted to co variant si lift operators 

on the lattice. From section (i.2) gluonic fields are represented on the lattice by 

Upi{x) fields defined as

U ^ x )  =  (3.4)

where A^(.r) —> A ^ { x )  as the lattice spacing a goes lo zero. Under a gauge trans­

formation G { x )  these Ufi(x)  fields transform as

U^i{x) G{ x ) U^, { x ) G~^( x  +  a)  ( 3 .5 )

This is in analogy witli the continuum covariant derivative Df  ̂ whicli transforms as 

—»■ G{x)D^iG'^^{x).  On the lattice we tlien simply replace

D̂ i'il’(x)  A+0(;r) =  U^t{x)i’{x +  afi.) -  ip{x) (3.6)

which is a forward shift operation and for a liackwa.rds shift operation

A “ ïp{x) = VI.T) -  -  aft.) (3.7)

The symmetric difference can be defined also (,o be

=  5 ( A  +  a ,t ) (3.8)

and the Laplacian is given by

A(-) =  ^ A ^ + ) A g - ^  (3.9)

Using the equation of motions for the leading order term in eqn (3.1) one ends np 

with the evolution equation for the (piark propagator to be

G*(x, t 4- a.; xq, to) =  f/q (x, t) ( 1 — alio] G(x,  Xq, In) (3.10)

with

„  a ' + ’a ' - '  
2 M a

i

^from n o w  on x  clenoles a vecl.or in Euclidean space-liine wlicrea.s x will denoi.e a 1.1 nee dimen­
sional vector

25



and // =  0 represents the time component in Euclidean space. Transforming this 

expression for the free field case into momentnm space the evolution ecpiation can 

be written as

/  4sin'“ ^  \
G (p, t +  a; to) =  f 1 — ^  2M a  j  (3.12)

For very high m om entum  there is an instability since at p; % ^

G ( p , t +  a; to) =  ^1 -  6 '(p , t ; to )  (3.13)

which will s tart  to blow up for M a  < 3. To prevent this the evolution equation is 

replaced by

rt- ^ 1G'(x, t +  a.;xo, to) =  t /J(x ,  t) (̂ 1 -  n - f / o j  G(x, t; xq, to) (3.14)

which is now stable for M a  > ~. The high momentum modes are expected to 

have little effect on the spectrum of Qiiarkonium which is determined l.iy much 

lower m om entum  modes. The instability from the high momentum modes is jus t  a 

numerical effect. The extra interactions which will occur to eliminate the instability 

will be surpressed by as well as the lattice spacing a.

Considering the next to leading order in eqn (3.2) and eqn (3.3) this involves 

the calculation of the chromo-magnei.ic and electric fields on the 1 at (ice. In the 

continuum these fields are defined l.iy

E,:(.r) =  Fn,(z) (3.15)

B/(;r) =  ^c?i;,:F?A.(;i;) (3.16)

so we need a lattice equivalent of F,,„(;r)- This is taken to be the cloverleaf term 

F^,„(.'i;) defined by [25]

where

e ( C )  =  A i M f S y M  _  i i , „  ( T , . ( u p x ) ) )  (3.17)

which is hermitian and traceless as in the case of the coni.inuum vei-sion. The 

sum m ation is over all the four plaque(,(,es centred a(. point x and in the //., i/ direction.
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3.3 L attice spacing errors to  L attice N R Q C D  op­

erators

Now th a t  the appropriate NRQCD operators on the lattice have been defined it is 

necessary to identify lattice spacing errors and correct for them. In NRQCD it is not 

possible to take the lattice spacing explicitly to zero because the continuum is not 

well defined due to the non-renormalizability of the theory. Therefore a systematic 

improvement program must exist to reduce the effects of the lattice spacing errors.

Since NRQCD is an improvement program in the effect of the lattice spacing 

errors in terms of will need to be calculated. First consider the correction to the 

time derivative. Define C* by

= ij}{x -f afi) (3.18)

where // =  0,1, 2, 3. In the free field case

AoG(x)  = (to -  1)G(;k) (3.19)

and in m om entum  space this is

- 1)
p p

^  (^ipoo -  +  ...^ (3.20)

The lattice spacing correction in the time direction is of (9(poo). If we take the 

typical value of po lo be < po >% K  % imP  and assume the lal.tice spacing is of 

order of the cut off a % M  the correction term is 0(v~).  The same can be done 

with spatial lattice spacing errors. These errors will appear in the laplacian which 

occurs in the kinetic energy operator at leading order. Defining the lattice laplacian 

as

A" +  - 2  (3.21)

and going to m om entum  space for the free field case gives

A ^ ^ V < p ) e T = J 2 - < K p y ^  "' (G"'" +  -  2)
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There is then an O(pfcr)  error away from (he continuum. Again if one has a % ^  

and assume the typical moment,um jh to be < p, >fs niv then the correction 

is 0{v'^) as in the case of (he time derivative. If an action correcl. to G(if ')  in 

spin-independent terms is recpiired then (.liese errors need to be removed. For the 

laplacian a corrected version is simply

=  (3.23)

W hen removing the time component, lattice spacing error it. is not possible to add 

higher derivatives in time in because this will prevent the evolution ecpiation being 

an initial value one. Instead t.he lowest order liamiltonian is redefined as [20]

= — i l l  (3.24)
4??

Other lattice spacing errors will occur for example in I,he chromo-magnetic and 

electric fields. This is an 0{cP)  affect, and since these fields come in at O(o'") away 

from the leading order action they will only need to be correct,ed for with an action 

correct to O(v^).  There is also an 0 (u " )  error present in the action for tlie gluonic 

gauge fields which is explained and corrected for in det.ail in [20].

These corrections are only cori ect at t.ree level wliere tlie fields are considered to 

be classical quantities. Quantum effects will undoubtly have an effect and will need 

to be taken into account. A systematic way to account for the bulk of t.he radiat.ive 

corrections is called tadpole-improvement and will be given in section (3.5).

3.4  E volu tion  o f  th e  quark G reens fun ction

So far the action for NRQCD in the continuum correct to C(n'Q have been derived. 

The conversion to the latt.ice of the appro].n iate operators corrected for lattice spac­

ing errors has also been given. It is now necessary to define an evolution equation 

from which the (piark Greens function can be calculated. For our particular evolu­

tion equation for the quark Greens function we define

G(x, l;xo,Ü) =  ( [̂ -  f/[!(x,0) (̂ 1 -  6x,xo (3.25)

and then continue to evolve this using the e(]nation

6'(x, t.-t-1; xo, to) =

( l  -  G j(x ,  t) 1̂ -  ( i -  a 6H) G{ x ,  I] xo , i o )  (3.26)
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The kinetic energy operator H q is given by eqn (3.11) and 6I i  contains the rela.­

tivistic and lattice spacing corrections defined by

-

'  ( A  X E  -  E  X A )  »  & . . B  +  ( 3 - 2 7 )
8A/2 ' 2 M  ■ 24 M  l ( b î M “

The first four terms are the familiar relativistic corrections and the last two the lat­

tice spacing corrections for the spatial and time direction. Here A"* =  (A?A_,:)"*.

The lowest order kinetic energy operator Ho will a.ct on the the qnark Greens 

function G (x , t ;x o , to )  according to

;3
A-^G(x, t; XQ, to) =  'Y2 G/(x, t)G (x  +  i, t; xq, to) +

r / / (x  -  i, t )G (x  — i, t; xo, to) — 2G'(x, t; xo, to) (3.28)

For the (A^)^ term this is jus t  two of the above successive operations. For the A'^
H"\

term  the effect on the quark Greens function is found by first considering the free 'I

field case hi

3 3
(A,: A_,;)" G'(x, t; xq , In) =  G (x +  2i, t; xq, to) -t- G(x -  2i, t; xq, to)

i i

- 4 G ( x  4- i , t ;x o ,  to) -  4G(x -  i, t ;xo ,  to) +  6G(x, t; xo, to) (3.29)

and then for the interacting case since we wa.nl, the quantity V'h^x)A'^G(x) to be 

gauge invariant this determines tha t

3 3
Y 2  ( A ;A _ ,y  G'(x, t; Xo, to) =  f/,;(x 4- i, t)f/ ,(x  4- 2i, t )6 '(x  4- 21, t; xq, to)

i i

- f / / ( x  -  i, t ) t / / ( x  -  21, t)G (x  -  21, t; xq, In) -  4ffi:(x 4-1, t)G'(x 4- 1, t; xg, to)

-  4 f / / ( x - i ,  / . ) G ( x - i , t ; x o , t o )  -  6G'(x, t; xo, to) (3.30)

The terms in the evolution equation involving (he chromo-electric fields involves 

the use of the symmetric difference operator eqn (3.8). For (.he spin-independent 

term the expression evalual.ed is 

3
y] A)*'~(A.,:G(x, t; Xo, to)) - A,;(Ad"G'(x, t; xq, to)) (3.31)
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For the spin-dependent term involving the electric held the expression is 

3 3
' ^ a i C i j k A f ~  {EkG{x,  t ;xo , to ) )  -  (T*e,:jA.-Gj(Aj“ G(x, t; xo, ki)) (3.32)

i i

The term with the chromo-magnetic field is straight forward and is just  simply

G(x,t;xo,to) (3.33)

with the appropriate m atrix  imdtiplication on spin and colour indices.

The form of the evolution is split up into two for computational reasons. The 

chromo-electric field at time t for example will involve the use of U fields at time 

t-a, t and t-fa  and so the chromo-electric field at 0 can not be calculated. Instead 

the evolution at t~ 0  is done as follows. First the U fields at ( —U are read in and tlie 

delta function is evolved according to eqn (3.25). Next tlie U fields at t = l  and t —2 

are read in whicli will allow the evaluation of the chromo-electric field at t = l .  The 

quark Greens function at t = l  and at subsequent times is then evolved according 

to equ (3.26). The fact tha t  6H  is not used in the first timestep will not effect the 

masses of the mesons since effective masses are extracted after several timesteps 

in the evolution equation where, the full Hamiltonian has been used. However the 

normalization of the quark’s wavefunction will be effected at 0 { 8 H ) .

3.5 Im proved P ertu rb ation

When comparing NRQCD to low energy QCD or performing the F W T  transfor­

m ation to compute the coupling constants in NRQCD it is done only at tree level. 

Q uantum  corrections will need to be estimated and the coupling constants shifted 

away from their tree level values appropriately. This will rely on perturbation the­

ory to do the calculation. The coefficients of these perturbât,ive corrections are 

expected to scale as powers of “  for a lattice spacing cut-off a. Perlnrbation 

theory is then expected to hold so long as iiia >  1. However it has been thought 

for a long time tha t  perturbation in the bare lattice coupling constant at present 

values of the lattice spacing has a poor convergence series. Tlie origin of this is tlie 

presence of tadpole diagrams caused liy the lattice version of the gluonic field. The 

way to overcome this is to use the method of [26]. It was recognised in [26] tha t  the 

presence of tadpoles will cause the lattice gluonic field in a fixed gauge to fluct uate 

about a value different from unil.y. For example in Landau gauge the quant,ity

<  1 -  L > U „  > =  0.139 (.3.34)
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is non zero. This in turn suggests that. < > is significantly different from

one which is naively expected if <  >  =  0 as in the continuum. The problem

arises from the naive connection between lattice and continuum operators where 

the connection is made by explicitly taking a to zero. For example it is assumed 

th a t

 ̂1 + h/uA;, (3.35)

forgetting quantum  corrections. When calculating the expectation value of t/y, in a 

fixed gauge there will be terms like <  >  which quadratically diverge as ^

and so

< A/, A/, >—i- 0{{r) (3.36)

producing a large renormalization between the lattice and (he continuum. It would 

then seem appropriate to redefine tlie If, fields as

Ifi —' a I) ( 1 T m.c/Ay, ) (3.3/)

where the term  in parenthesis has a. much improved connection with the continuum.

The term iq, is a gauge-invariant number. A ga.uge invariant expression which we

use in our simulation is

a-o = < -TrfG >T (3.38)

This is im portant when (lie chromo-magnetic and electric fields a,re evaluated. 

This involves the evaluation of the plaquette which contains four f/,, fields and 

tadpole-improving using the above prescrip (ion will change the définit,ion of the 

cloverleaf term according to

B —  (3.31))

This increases the strengths of tlie fields and neglect.ing tadpole-improvement will 

severely underestimate spin-dependent splittings. Tadpole-improvement will also 

effect other operators, for example, the (A)^ and (A)'' terms since these have U

fields in as well. Working out explicitly the effect of the (.errn ( A)'^ on the (piark

Greens function there will be a t.erm

-4G'(x,t;xo, to) - 2(A(x , t)f/(x,t)G(x, (,;xf), to) (3.40)
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After tadpole-improvement this term will become

- ( 4 + - ^ ) 6 ' ( x , t ; x o , t o )  (3.41)
Wq

which is a slight modification on the corresponding term given in equ (3.30). The 

importance of tadpole-improvement is th a t  removing tad])ole cont.ributions which 

are responsible, for tlie bulk of the radiative corrections means tha t  now it is possible 

to keep tree-level values for the arbil.rai'y coupling constants.

3.6 M eson  C orrelation  functions

Meson operators 0(.r)  are defined according to

G(.i:) = y)̂(.T) r 0Q ( .r ) (3.42)

where T determines the specific quantum  numbers of the meson. Generically the 

meson correlation function is evalnal.ed by the expression

< M  > =  y ^ : / > [ 6 ' ( f / ) r G i ( [ / ) r i ]  (3.43)
I!

The sum m ation is over gauge configurations generated with weight where

S{U)  is the gluonic action. To define each type of meson correlation function re­

quires r  to be explicitly defined.

We need first to decide on the spectroscopic notation of Quarkonium, Quarko- 

nium states are normally labelled by their spin S, angular momeni.um L and the 

to tal angular m om entum  J by + . In QCD as well as NRQCD the total angu­

lar m om entum  J, parity P and charge conjugation C are individually conserved. In 

Qiiarkonium P  = ( — 1)'^“  ̂ and C — (—l)^'^'^ and it is possible to use the ([uantum 

numbers instead. From this we can see tha t  st.al.es with tlie same will 

mix, for example, the ^S\, with the In our simulation we have looked at S,P

and D states with different spin orientation for each L. Below are dei ived tlie meson 

operators corresponding to Biese states.

3 .7  M eson  operators

The most fundamental operator which can lie used is the product of l.lie (piai k and 

anti-quark fields. To find out the properties of these fields one needs to look first at 

the action of the quark and aiiti-([uark. The actions for l.he ijuark and anti-ipiark 

are defined by

S  =  S q 4- 5hi =
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V'q ( r  ) A'o (G)V'q (.i:) +  kîi {x)KA{P)tl>A ( ( 3 . 4 4 )

where K(U) is the inverse of the quark or anti-quark Greens function. The quark 

fields transform under the representation 3 of SU(3) colour ie 'if{x] —+ G(.r) '0(r) 

with G(.r) =  transforms as K q ( U )  G ( x ) K q C A { x )  for gauge

invariance. Alternatively anti-quarks transform as the comjilex conjugate 3 of SIJ(3) 

and so K a {U) transforms as K a {U) G*{x ) K a (G)G^  . This in turn suggests that 

K a (.U*) =  A'Q(f/). It is then possible to write the lagrangian as

S  =  S q  - b  S a  =

i>l^(x)KQ{U)ijjQ{x) +  tl>\{x){KQ{U*))iA (z) (3.45)

It is convenient at this point to redefine (he anti-(juark fields Vvi('i') as x f { x )  so 

S a  — —X^(^')^fQ%/i('^:)- The field \/i( ;r)  now creates an ani.i-jiarticle which is 

the familiar representation in the dirac (fieory. The liermitian conjugate is taken 

in colour space at the moment and if we have dirac matrices in our action then 

another redefinition of the anti-quark fields will be necessary if one wants to take 

the hermition conjugate in spin space as well. Foi- example witli a cr.B term in the 

action K a [U) =  ([/)(%v with the complex conjugation now in colour as well

as spin space since

- f /c r .B* =  .BYcr-^ (3.46)

This is the 11(1) case where B* =  B  and the difference is then only due to (.he sign 

of the charge g. Rewriting the anti-quark action as

S a -  -  % i  ( -1 : ) 'V 3 (T 2 Ab( ( f n  R 2 /A 2 % a ( ) (3.47)

and defining y*;(a:) =  maÿ*^(:r) so tha.t %j^(z) =  —yj[(.T)mv the anti-quark action 

is now

S a - (3,48)

W ith  the action for both the quark and anti-C[uark now defined ( lie Greens functions 

can be written down in terms of these redefined fields as

G i  = ( c y )• =< Olx'VX'f,|0 > (3.4«)

e y  = <  olV 'S '/glo  >
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where a  and (5 are generic indicies for the colour and spin components. Under 

charge conjugation Y q {x ) ^  0/i(.r) and so from this

/V20q (.x')

Vm (;ïO =  -?G2X*i(:r) (3.51)

After introducing the quark and anti-quark fields it is now possible to sliow

how these can be formed to produce the meson operatoi's wh.h specific cpianl.um

numbers. In particular it is now possible to write down explicitly what F should be 

in equ (3.42). The most basic meson operator is when F is equal to one.

0{x, t) = yJi(x, t)0Q(x, t) (3.52)

Under parity the quark and anti-quark will transform as

0 Q ( x , t )  i/>q ( x , t )

Vu(x, t )  i/’/i(x, t) (3.53)

The minus sign is because of the opposite intrinsic parity. Then y ^ (x ,  t )0 g (x ,  t)

has negative parity. Under charge conjugation the individual fields will transform

as equ (3.51) hence

t)0Q(x, t) =  <0'/’q )x , I . )  (3.54)
0/3

under charge conjugation goes to

t)V’n(x , i.) = V'n(x, f) =
aP 0/3

t)0̂ (x, t) = Y  *̂A (̂ - t) = yĵ (x, t)0Q(x, t) (3.55)
aj0 0

This particular operator has tlien charge conjugation number C =  -f 1, parity P 

=  -1 and since it is a scalar there is no angular momentum associated wit.h it and 

hence J — 0. VVe can then identify this meson operator with the US'o state. Next 

consider

G(x, t) = ŷ (x, t)(T,-i/>Q(x, t) (3.56)

This still has P =  -1 and going through t.he same process as above it, is straight 

forward to show it has C =  -1. However it now has .1 =  1 in tha t  it transforms like
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Meson

^S'o (0 -+ )  X A ^ y h y )

^ S i  ( i " ~ )  %n('i:)o-,:V'Q(.T)

^Pi  (!■’■“ ) Xa ^ )  A i  0 g (z )

^Po (0++) (X]/ Ai  (T/) Y q G')

(i++� yJi(.i;) (̂ A; crj- A; R,:) Y q ^ )  

3p^ (2++) (a ,;  (Ti- A j  o-j) 0q(.t)

y l i ( r )  ( A i  c T j +  A j  o - J  i / >q[ x)  

9̂  Jl

(2 -  + ) An(z) ( au- -  A ,y) 0g(.r)

A i j  Y q i y  

(?' 9̂  i)

Table 3.1: Meson Operators

a vector and has three independent directions. We can associate this operator with 

the state.

For the rest of the states we have considered in the sirnnlaf.ion their operators 

are listed below in table (3.7) [28]. where we liave defined

0  A,;  V>q ( x , t) =  (3.57)

Q (A , :  -1- A_0%yi(x, t)^ 0 q (x ,  t) -  %^(x, t) (^^{Ai +  A _ , : ) i / ' q ( x ,  t)

Considering next the operator y^^(x, (,) A/ 0 Q (x , t )  this has no (t,; operators in so 

S—0 and J —L. Since the derivative A/ transforins like a spatial vector with three
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independent indices, J =  l, To work out the C and P numbers it is necessary to 

work out explicitly the effect of the derivative A? on the fields. In the simulation 

the gauge fields are fixed to coulomb gauge and so the meson operators will not be 

gauge invariant. For convenience it is possible to fix all the spatial f/y, fields in the 

meson operators to unity. Doing this can not effect the quantum numliers of the 

meson which must be gauge invariant since they are physical observables. From equ 

(3.57)

yJ i(x , t )  A /V ’q (x , t) =  (3.58)

Q ( x î i ( ^  +  i-I) -  %&(x -  i , t ) ) ^  0 q (x ,(.) -  \-Ji(x,t) Q(V>q (x +  i, t) -  V'q (x -  i, t)) 

Reflecting along the x axis for the parity operation

%&(x T  i, f) X"îi(x -  i , t )  (3.59)

so th a t  equ (3.58) becomes under a parity operation

Q ( x î i ( ^  -  i, f) -  +  i. t))^  0 q (x ,  t) -  X^(x, t) Q ( 0 g ( x  +  i, t) -  0 q ( x  -  i, t))

=  -%&(x, t) A,: V’q (x , t) (3.60)

Which makes P =  +1 (not forgetting the intrinsic parity). For charge conjugation

we know from equ (3.51) tha t

%n(x +  i, t)0Q(x, t) (x, t)0Q (x +  i, t) (3.61)

so then

>■') Ai  V'Q(x, t) —

I) Q(VA)(x +  i, t) -  Gq(x -  i, t ) ) j  -  Q (X 'î i (x  +  i, t) -  y ^ Jx  -  i, t ) ) l  0 q (x ,  t)

=  -%^(x, t) A,: 0 q ( x ,  t) (3.62)

which shows th a t  C =  - 1 . We can then identify this operatoi' to belong (,o the  ̂Fi 

s ta te  with quantum  numbers 1+“ .

Moving on to the next set of operators this involves the combination of spin 

S — 1 with L — 1. In terms of group theory the multiplication of 1 ® 1  where 1 

transforms in the fundamental re]iresentation of S0(3) is

i  0  i  —' T 0  3 T  5 (3.63)
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where the representation 1 and 5 are symmetric and 3 is anti-symmetric. Con­

sider the operator XIiA 'n(x,t) A i  ct,:V’q (x ,  t). This is symmetric and is a scalar 

since it  is a dot product of two vectors. From the above discussion we now know 

th a t  x ^ ( x , t ) ( A t  o'?;)'0q(x, t) has C —-fl  and P = + f  and we can then associate this 

operator with the state with quantum numbers 0"̂ "̂ . As far as the opera­

tor %I^(x, t)(A; o-j— A j  tT,:)'0Q(x, t) is concerned this is a vector product of the 

two operators Aj and (t,: and so is anti-symmetric and transforms like a three vec­

tor. This is the operator for the state ^Pi  with quantum numbers For the

operators of the ^Po these split up into two different representations on the lat­

tice. x ^ (x ,  t)(Aj ( T / —  A j  ( T j ) 0 q ( x ,  t) has I , wo independent degrees of freedom and 

belongs to the E rep. The y^i(x,i.)(Aj e-j-f A j  n-j)0Q(x,t) operator has three inde­

pendent degrees of freedom and belongs to the T  rep. Both operators are symmetric 

and so represent the ^P'j state with quant,nm numbers 2++. For the  ̂ a similar 

thing happens and the operators split up into two reps the E and T. It is straight 

forward to show they correspond to si, a tes witli quantum numbers 2“ + .

3.8 C oding up M eson  C orrelators

In the previous sections we have shown how meson operators can be formed us­

ing quark and anti-quark fields combined appropriately. Discussed also was (he 

evolution of the quark (or eciuivalently the anti-quark) Greens function with time 

from which it is straight forward to compute the evolution of the meson correlation 

function. It will now be shown how this is done numerically for the states we want 

to consider.

For a meson operator G(.r) =  \S^(x)rt/>Q(x) we can rejiresent the meson corre­

lation function as

M(t;to� = < OlyJi(x, t)F0Q(x, t)V>}̂ (xo, to)Flyn(xo, fco)|0 > (.3.64)

where the sum over x ensures tha t  the meson has zero momentum. The sum over 

spin and colour indices have not been made explicit yet.

Consider first the ^So state where F ~  1.

M(t; to) = Y  ^ 0|% T(x, i)V’g ( x ,  t)V’*̂ ' (̂xo, tn ) \^ (xo ,  t(,)|ü > (3.65)

where a  and /3 are summations on the spins and colour indices. It is possible to 

factorize out the quark and anti-quark fields (Wicks theorem). Using the definition
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of the quarks Greens function as

CYq {x , t ;x o ,  to) = <  O10q(x, t)0g^(xo, to)|0 >  (3.66)

and the anti-quark Greens function as

G ^ ^ (x , t ;x o , to )  =  G y ^ ( x , t ; x o , t o )  = <  0|%T(x,t)xT^(xo,to)|0  >  (3.67)

the meson correlation function for the ^Sq s tate becomes

M (t;  to) =  Y ,  G y ^ ( x ,  t; xg, to)GQ^(x, t; xg, t») =
xn0

y^Tr (G'I(x, t; xg, to)G(x, t; xg, to)) (3.68)

The trace is over spin and colour degrees of freedom which are averaged over in the 

simidation to increase the statistics. The next st ate of ini,ei est is the ^S\ .  Here for 

r  we use the matrices and where

cr+ = (cTi T  icT.j)

(T- =  ^  ((Ti -  i(T',] (3.69)

Hence

1 j  " - " ( i  C j = (  0 - i )
The meson correlation function can lie exjiressed as

M (t ; to )  = Y  ^  O|AGr(x,t)a-"^^/{^(x,t)'0y(xo,to)(7)''^\A.i(xo,to)|ü >  (3.71)
xappy

where the sum m ation on the spin indices lia.ve been made explicit. For j =  -b this 

is simply

M^_(t; to) =  G"''^"*(x, t; Xg, to)G^^(x, t; Xg, to) (3.72)

for j =  -

A7_(t; to) =  Y ,  G'*^^x, t; xg, to)G"-(x, t; xg, t,,) (3.73)

and for j =  3 this works out l,o lie

AG(t; to) =  Y  G'*'‘^(x, t; xg, to )G ^ \x ,  t;xg.to) -
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y y  t ;xo ,  to)G^^(x, t;;xo, to) -  G*^"(x, t ;xo , to)G '^(x, t ;xg , to)
X

+ G * ““(x, t; Xo, to)GV““{x, t; x q ,  to) (3.74)

An average over colour indices as well as sjiin polarizations is taken for increased

statistics.

For the state this involves a covariant derivative but because we fix to the 

coulomb gauge in the simulation this can be represented by simple difference op­

erators. The meson correlation function tlien becomes suppressing spin and colour 

indices

A//(t; to� = y^ < U|%̂ (x, (,) A; V’q(x, t)V’Ji(xo, t,,) A,: ;\'a(xo, to)|ü > =

y y  <  0 |((y îi(x  +  i, t) -  y ^ (x  -  i, 1.))0q (x , t ) -  

%&(x, t ) ( 0 o ( x  -b i, t) -  -0q (x -  i, t)))(0ĵ (xo, to)((yn(xo +  i, to) -  yn(xo -  i, to))

+  i, ki) — 0 q (xo — i, fü))ya(xo, to))jO >  (3.75)

Multipling this out would involve 16 terms and we need to look for some simplifi­

cation. Since we are summing over the final posh,ion x of the fields it is possible to 

replace part of the operator at the sink

-% !i(x, f)(kQ (x -b i, t) -  0 q (x  -  i, t)) (3.76)

with

- (% n (x  +  i,l  ) -  yÎi (x -  i, t ) )0 g (x ,  t) (3.77)

Next if the first term at the source is multiplied out there will be a term 

-  i, f)V'q(x, f )0 q (x o ,  bi)Yn(xo +  i, to) =

yy G*''^(x -  i, t; X o  +  i, ti^G'^'^fx, t ;xg , In) (3.78)
xq'/3

and similarly multiplying out the third term at the source will give a term 

(x -b i, 10VAi(x, t)kJ^(xo +  i, to)%a(xn, to) =

yy G""T(x -b i, t; Xo, to )G 'T(x , t; Xq -b i, to)
xa0
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“  y y  t.; X o ,  to)G"’̂ ^(x -  i, t; xq +  i, t o )  (3.79)
xo/3

These two terms equ (3.79) and equ (3.78) are complex conjugates of each other so 

instead of evaluating both t erms it is better just  to take twice the real part of one 

of them. Similarly if we do this for all terms we will find tha t  equ (3.75) reduces to

Real y y  < 0 |(y ^ (x  +  i, t) -  (x -  i, t ) )0 q (x ,  t)0{^(xo, to)(yn(xo +  i, to)

-% /i(xo -  i, to))|0 >  =  Real y^ G "^(x , t; x q ,  to)G*"^(x +  i, t; xo +  i, to)
xn/3

~ G “^(x, t; X o ,  to)G*“T(x +  i, t; xo -  i, to) -  CG'^\x, t, xo, to)G*"'^(x -  i, t; xo +  i, to)

+  G "^(x , t; Xo, to)G*“' '̂'(x -  i, t; xq -  i, to) (3.80)

Again the summation is over spin and colour indices for increased statistics and the 

average is also taken over the diffeient angular momentum polarization directions. 

For the meson correlators belonging to the '^P states it is convenient to define

yy <  0|%n(x, t) A j  (T/V’q ( x ,  t ) 0 Q ( x o ,  to) A i  c r j X A i y ^ o ,  to)|0 > (3.81)

from which the ^P  correlators can be expressed as

iV/a Pji =  yy O’ ] {j j ) (3.82)
hi

TGp, =  y ]  P^ij]{i j] -  (3.83)

— y y  A 7 p - j  (3.84)
e./

M i p,yj, — y y  A'/|, j j ] ij ] +  A7| j ,' ] {, j ] (3.85)

The evaluation of these correlators then essentially just involves evaluating equ 

(3.81). In equ (3.81) the derivative A j  can be replaced by a symmetric, difference 

operator just  as in equ (3.80) reducing the number of terms. Summing over spin 

indices is no different than in t.he case of t.he ■hS'i correlator except th a t  here there 

are now a few more terms to deal wit.h because of the derivative.
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Lastly we need to evaluate the ^D-  ̂ meson correlator. In (.he simulation we have 

only considered the operators corresponding to the T  rep. T h a t  is

A/f(t;to) =  < OlYÎi(x,t) AjAj 0q(x ,  L)0q (xo, In) AiAj \Vi(xo,to)|0 > (3.86)

where to sum over polarization directions a sum over i and j is done for i Y  Â The 

^£>2 operator is

xî i (x, t)  AjA,: 0 g ( x , t )  =  (3.87)

(%l(x +  i +  j, t) — yÎi(x +  i — j, t) — Yyt(x — i +  J, (.) +  Xa (^ ~ i — j, t))0g(x,  t)

and so in principle the correlator involves 16 terms. In practice we do not, do 

this bu t instead use smeared operators where for example tlie t.erms in parenthesis 

are replaced by an appropriate smearing wavefnnction. More will be said of t.lsis in 

the next section.

To sum up an outline has been given on how meson correlation functions can 

be evaluated numerically. First by deriving meson ojierators with specific quantum  

numbers and then evolving t he meson correlation function using the basic evolution 

equation of the quark Greens function. One last, piece of work winch needs t,o be 

done is to introduce the idea of smeared operat ors winch can considerably help t he

numerical procedure. This will now be explained in I,lie next section.

3.9 Sm eared O perators

In Lattice QCD simulal.ions effective masses are extracted from the asynqil.ol.ic fall 

off of the meson correlation function equ (1.35). For l.his to be the case In principle 

one would like to take the time to infinity. In pract.ice this is not possible because 

not only is there a restriction on the size of (.lie lal.tice in the time direction but 

also noise will tend to dominate the signal before the asymptotic, behaviour occurs. 

In simulations the noise is dominated by the meson whicli lias t.he lov'est possible 

ground state energy. [19]. For our case this will be the kSo sl.ate and I,fie ratio of

signal to noise for a. particular s ta te  wit.h a mass above (.fiat of (he ^6'o is

noise
(3.88)signal

which will grow exponentially with time. To increa.se the numerical accuracy of 

the simulation the signal needs to be extracted at. earlier times where noise has not 

started to dominate. To do this it. is nece.ssary to use smeared operators. Previously
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only local operators have been considered where for example in the 5̂'ci case the 

quark and anti-quark started from the same point on the lattice. Similarly in the 

case of the ^Pi  stat e the anti-(piark was displaced liy a minimal amount of one la ttice 

spacing relative to the quark to project out the required angular momentum. In 

smearing the quark or anti-(pia.rk is smeared over the whole of the lattice relative to 

the anti-quark or quark with an apjiropriate weighting function. For our smearing 

function we have used hydrogen type wavefnnctions from solving a f  potential.

To put it on a more formal basis our meson correlation function is

=  y y  < O|Ay(x,t)rVAi(x,t)0Q(xo,t(,)rQY^(xo,t[,)|O > (3.89)

and to smear for example the anti-(pia.rks the replacement

Y/i(xo, to) ^  Y/i(xo, to) =  y ]  S{z  -  xo)Y/i(^î, k,) (3.90)

is made where S{z  — X q )  is the appropriate wavefunction for t.hat meson state. 

Smearing is possible eitlier at. the source or at the sink or bot h. A  general expression 

for our smeared meson correlator is

A£(t;to) —

yy 5 (y  ~  x) < 0|yJi(y, t)F0Q(x, t)yl^(z, to)FG/vXxo, to)S(% -  xg)|0 >  (3.91)
x,y>z

with smearing at both the source and the sink.

To implement smearing at the source nnmerically, it is known t.hat at t= 0

<  0 | . \ ' ! , (y )y, i (xo) |0>= (3.92)

and so

< Ü|YÎi(y)Ya(xo)ü >  =

y y  < 0|Y&(y)%yi(%)|0 >  G(z -  Xo) =  y ]  G,y.S'(/, -  Xo) == .S'(y -  Xg) (3.93)
z z

Therefore instead of starting off with a delta function in the evolution this can

be simply replaced by the function S ( y  -  x q )  over I,he whole of the lattice. For

smearing at the sink this involves the evaluation of a convolution and to evaluate 

this it is best to transform the anti-([uark Greens function firstly into moment.nm 

space. Defining

Gn(x, t; Xq, to) =  y 2  Ga(p,  t; to)r“ 'i'’^ (3.94)
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the final smeared meson correlation function is

M (t;  to) =  ( A ) t  y y  6 ' (p ) rG q (p ,  t; to ) r lG ^ (p ,  t; to) (3.95)
p

where G n (p , t ; to )  represents the anti-quark Greens function smeared at the source. 

The fourier transforms can be performed using a Fast Fourier Ti'ans form routine 

[27].

The solutions to the wavefnnctions for a ~ potential are known exactly and it is 

relatively straight forward to substitute local for smeared operators. The following 

substitutions have been made to the various meson operators. For the kS’o the 

replacement

xîi(^o,k))V'Q(xo, to) ^ y y  j  i/>Q(xa,ta) (3.96)

is made, vq is a free parameter which can be adjusted comparing to wavefuncl.ions 

coming out. of NRQCD simulations of heavy-heavy mesons. This smearing funcl.ion 

is the ground state wavefunction for the QS’q state and should help the ground state 

signal to decay to its asymptotic value mucli earlier on. The same substitution has 

been made to the using the same S state smearing function. Also done for the 

S states was to use an excited state wavefunction to help project out an excited 

state. For this the smearing function

S'(z -  Xo) =  ^ 1 -  c - ^  (3.97)

was used. Different combinations of smearing at the source and sink can be done 

for example smearing at tlie source with a ground state and tfien using an excited 

smearing wavefunction at tlie sink. In all for the S states all different combinations 

were done using local, ground state and excited state smearing functions.

For the state it is sufficient to use the following meson operator

Xn(^o, to) Ai  0q (x o ,  to) =  ( \ 'q(xo +  i, t) -  y j j x o  -  i, t))V>Q(xo, to) (3.98)

which represents polarization in the i direction. The wavefunction for a s tate 

polarized in the z direction is given by

S{r,0,(f)) — ïcosOe^P'  (3.99)

were spherical polar co-ordinates have been used. Note tha t  the exponential term 

in equ(3.98) is not precisely tha t coming from a ^ potential since the wavefunction 

equ(3.98) models well a Richardson wavefunction. For the operator in ecpi (3.98)
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to be polarized in the z direction i =  3 and so tlie o].)era3or is smeared by in a kin g 

the replacement

(3.100)

A similar substitution for the polarized states i =  y and i — x has been done. For the 

states the same smearing function is used too. Only the ground state smearing 

function has been used for the P states and no at tempt to extract an excited state 

will be attempted.

Lastly for the states the wavefnnotion of VD2 ])olarized in the z direction 

with magnitude =  +1 can be used. This wa.vefiinction in the y plane, again 

with the exponential term modified, is given by

S{r,Q,<j>) — 7’“r “ Tsinilcosfl (3.101)

and so it is straight forward to to make I,lie replacenient

xîi(xo, to) A 1A .3 V'Q(xo,tci) — yIi(z, t o ) x z f ~ * "n"' ^ V'Q(xo,to) (3.102)

Similar replacements can be made for shift operators A 1A 2 and A 2A 3 .

To illustrate the effectiveness of smearing, S and P states have been used to 

compare results from using smearing operators to that when using local operators. 

The results are from a run of 200 UKQCD configurations at /i =  5.7 on a 12'  ̂ x 2d 

lattice using a cpiark mass appropriate for the Bo I. tom quark wii.h a smearing radius 

of 7*0 =  1.0. The values of the fitted masses from a single exponential fit are given 

in table (3.2) and table (3.3). The notation , 7g,(.) has been used where for 

example Usk represents the type of smearing at the sink. For a local operator loc is 

used and for smearing wii.h a. ground state 1 is used and 2 used for smearing with 

an excited state wavefunction. Effective mass plots are given in figures (3.1), (3.2) 

and (3.3) together with the corresponding Q values. The Q value is a measure of 

the probability th a t  a particular value of can be exceeded by chance. Since at 

minimization we want to be the smallest possible value it (.lien seems reasonable 

to have a high probability of having higher values of at this point, in general a. 

good fit is for Q >  0.1 and < 0.9 although a fit Q > 0.001 is acceptable.

The results for the ^ s l i o w  convincingly i.hal. I,he effective mass plai.ea.us much 

earlier on in the smeared case. For tlie (/or, loc) opera (or even a(. i.imes of =  10 

the Q value is poor and the effective mass still has not reached a steady value. Even 

a.fter times of t,nin ~  18 there is still evidence tha t  the effeci.ive mass is decaying.
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I m i n  / I m a x ( l E i Q

fits to (loc,loc) 1 10/24 0.5038(6) 1 X 10-3

12/24 0.5035(6) 0.07

14/24 0.5034(6 ) 0.10

16/24 0.5032(6) 0.16

18/24 0.5031(7) 0.068

fits to (1,1) 1 2/24 0.5028(6) 0.048

4 /2 4 0.5027(6) 0.25

6 /2 4 0.5027(6) 0.17

8 /2 4 0.5029(6) 0.27

10 /2 4 0.5028(6) 0.20

Table 3.2: Examples of single exponential fits to 1,1 le ^67

Ee.vp I m i n  / 1 m a x a . E i Q

fits to (loc,loc) 1 5/24 0.909(6) 0.20

6 /2 4 0 .893(7) 0.72

7 /2 4 0.89(1) 0.66

8 /2 4 0.89(1) 0.59

9/24 0.88(2) 0.69

1 0 /2 4 0.87(2) 0.62

11/24 0.88(3) 0.60

fits to (1,1) 1 2 /2 4 0.846(3) 0.78

3/24 0.840(4) OT^

4 /2 4 0 .840(6) 0.90

5 /2 4 0.841(6) OT#

6/24 0.845(9) 0.85

7 /2 4 0 .86(1) 0.95

Table 3.3: Examples of single exponential fits to the ^P\.
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On the other hand using the (1,1) operator it is possible to get acceptable Q values 

as early as =  4. Not only tha t  there is a definite plateau in the effective 

mass from these times onwards as well as steady Q values. The, effective mass in 

the two cases although agrees within errors does show in l,he [loc, loc) case tliat. 

the effective mass is consistently higher in comparison to the values from the (1,1). 

This indicates tha t  there are still higher excitations present using a {loc, loc) source. 

Other comparisons which can be be made are tha t  the errors are the same in both 

cases as one would naively expect since the noise is dominated by tlie ground state. 

Therefore for the ^Sn case smearing has worked well and if not done so the effective 

mass extracted from using a (loc, loc) operator would not lia.ve plateaued. As a 

result the value which would have l.ieen extracted would be too h igh .

Considering next the beha.viour for llie  ̂ case in tal.ile (3.3) this also shows 

well th a t  a plateau can be reached much earlier on with smearing. In 1 he (loc, loc) 

case a plateau has been reached at times =  7 onwards whereas in the (1,1) 

case t,nin — 3 is where a plateau can be seen. More importa.ntly is that the ei-rors 

of the effective mass for (1,1) at the point at whicli a plateau can lieen seen are 

smaller by a factor of about (.wo in com]uirison to the {lo(\ loc). This will allow the 

extraction of an effective mass to be made wii.h a. greater accuracy. The effective 

masses in the two cases do not agree, the (loc, loc) ones being much higher. This is 

too probably because of higher excitations being present and if smearing was not 

done an inaccural,e value foi- the effeci.ive mass for the ^Pi would have been taken.

The effectiveness of smearing is illustrated very well in figures (3.1), (3.2) and 

(3.3). Clearly earlier plateaus can be seen in the smearing case. For the smearing 

has worked equally well as in the case of the bS'o. This sliows I.hal. at this level 

of accuracy in the smearing technic|ue used, smearing is independenf. of the spin 

orientation for a particular angular rnornenl.urn sl.ate. This was also found to be (.he 

case for the ^P  states. It was also checked thal. smearing worked for ( he ^£>2 stal.es.

3.10 D isp ersion  R ela tion

In the original action of QCD and also of NRQCD there are (,wo arbil.rary constants, 

the bare cpiark mass and ( he strong coupling consl.anl.. fhe coupling constaul. is 

fixed when the lattice spacing is determined. To fix the haie (piark mass this is 

tuned so that, some physical observable, wliich is depen deni, on tlie (pi ark mass, 

coming out of the simulation agrees with its experimenl.al value. For our physical 

observable the ground state CS'o or the 'KSi mass is used. As well as deciding (.his it
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Figure 3.1: Examples of efFective ma.s.s plots using local aiul smeared operaioj-s For 

the ^So state.
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Figure 3.2; Example of effective mass plots for local and smeared operators for the 

state.
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Figure 3.3: Examples of effective mass plots for local and smeared operators for the 

^Pi  state.
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is necessary to decide on the definition of (lie mass of (he hS'o.

In NRQCD the non relativisi.ic dispersion relation of a meson with momentum 

p  is

= 0.103�

and Mo ^  M i  because the rest mass of the heavy cpiark has been removed from 

the theory. In turn Mi M 2 liecanse relativislic corrections away from the 

term have not been included. Full Lorentz invariance can only be a.cliieved when 

all relativistic corrections are added. Mi in eqii (3.103) is used as the definition 

of the ground state mass for the bS'o and will be referred l.o as the kinetic nia.ss. 

The value of Mi should be accurate to 0(( /Q  because of relativistic corrections and 

in turn  M 2  should then agree wii.h Mi (,o an accuracy of iF). To extract the 

value M l in the simulation a dispersion relation similar t.o ecpi (3.103) will need t.o 

be plotted. This will involve knowing the energy of tlie meson for several different, 

values of momentum. This energy of a meson stat e with rnoment.ump ca.n be found 

by measuring the exponential fall-off of the. correlation fnnet.ion defined by

M ( p , t ; R )  =  ^  <  0|y^^(x, t)r,/;Q(x, t.);/'^^(xn, t. |,)rlyy,(xn, t(,)|0 >

=  ^  f; X, t)FCr’Q(x, t; xo, to)r^e'*^^ (3.104)

and can be simply evaluated using Fast Fourier Transforms.

3.11 W avefunctions

Of phenomenological interest is tlie wavefnnct.ion of I lie meson coming out of the 

simulation. This can not only provide informat.ioii on the size of the meson but. 

can be used to estimate correction I.erms in the NRQCD action as well as providing 

improved smearing functions. Tlie meson wavefnnct.ion is defined as

4c(x, t . )  =  < O | \ ^ / x , t ) r , / ' q ( 0 , t ) | , g p  =  0 > (3.105)

The correlation function then has (.he asymptotic behaviour

C'(n,t;R)) =  Y ^ <  0|%!i(x +  n, t)rV'Q(x, t),/'Q(xu. I ;,)!"̂  \ a (xn ,  tn)|U >  =

^  0n(ii)Ca(O)r-^'^"'- A,(i i )Va(U)r-^^"' (3 .106)
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from which the wavefunction can be extracted. To evaluate equ (3.106) t.he quark 

Greens function is first transformed into momentum space after which the meson 

correlation function becomes

C ( i i , t ; to )  =  ^  G x (p ,  t; to )rG Q (p, t; to)Me'n " (3.107)
p

This can then be evaluated for all ii by fourier t.ransforming back the product 

Gyi(p, t; to ) r6 'g (p ,  t; to ) rb
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C h a p ter  4

Sim u lation  R esu lts

In this chapter the spectrum for Charmoniurn, Upsilon and the meson will he 

given in detail. How the spectrum can be found using a variety of mnlti-ex]ronen(.ial 

and multi-correlated fits is described. Tliis will allow a precise determination of 

ground state masses at early times as well as values foi' excited st.a.te masses.

4.1 M u lti-E xp on en tia l and M u lti-C orrelated  F it­

tin g  R ou tin es

To extract meaningful results from simulations it is necessary to fil. (.lie raw data 

coming out of the simulation f.o some functional form. From eqn (1.31) we know (.he 

form of the behaviour of the asymptotic fall off for a meson correlal.ion function. I(. 

would then seem reasonable to fit the da ta  to the function

C (t; to )  ^  (4,1)

This is the most simplest function po.ssible in that the contribution from excited 

states have been neglected. As well as defining a function l.o fit to it is necessaiy to 

define a measure of tlie goodness of fil. as well as some .sort, of standard devialion 

on the fitted parameters, fo r  the goodness of fit the minimization of ,\“ is chosen 

which in its simplest form is defined as

r  = (4.2)
7 =  1

y{ai...(iM) is the function depending on M  parameters whicli are determined in t.he 

minimization procedure and N  are the number of independent da ta  points. Tlie
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standard  deviation is taken to be

= («)

There is no real specific value of which needs to be reached in the minimization. 

In general if per degree of freedom is less than one the fit is taken to be acceptable, 

The number of degrees of freedom in this case is defined as N  — M .  This is however 

a very naive model to use to extract effective masses from the data. For example, 

correlation between successive d a ta  points will need to be taken into account when 

defining the standard deviation and Also a more general function will have to 

be used instead of ecpi (4.1) to take into account of higher state contamination.

When fitting the spectrum results we have used two functional foims. These not 

only ha.ve more exponential terms in to extract higlier excitations but also allow a 

simultaneous fit between meson correlat ors which have different types of smearing. 

Firstly define the meson correlation function as

=  < 0|O,.A:(t)Oj^.(0)|ii > (" .̂d)

where for example Osk represents the type of smearing at t.he sink. This expression 

can be easily decomposed into energy eigenstates so that

= X i < >< >.|Ot(())|0 > (4.r>)

The first functional form that can l.)e fitted to is called I , he row fit and has tlie 

decomposition

M{gk,sc}{^‘) = Y 1  /■'«(•‘’■h; .sc) (4.6)

The next is called the matrix  fit which has the decomposition

4(.sh)a„(.s'c) (4.7)

with the identification

an{sk) = < njOjj,(b)|0 > Un(sc) =  < 77.|Oj^(Ü)|U >  (4.8)

Different combinations of smearing at the sink and at. the source can be used si­

multaneously in the fit restraining the energy to be the same for each different 

correlation function. This will involve using dat a winch is correlated. There is also 

correlation between measurement for meson correlation functions talaui at different.
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times which too will need to be taken into account. To do this we define a gener­

alized version of equ (4.2) for the y" to be minimized. Taking into account of the 

correlation between the data, the yT be minimized is defined as

=  E  ( r ) - y ,  ( M  -  (4.9)

The a,/3  indices represent different meson correlation functions ie dilferent types of 

smearing combinations and i and // are time indices. A 4 is the functional form 

fitted to which is either equ (4.6) or equ (4.7). The covariance m atrix  is defined as

O-Lf,' =  X i  < M .( f )  > )  (A fp ( / ') -  < M l , ( I ' )  > ) =

< Ma( t )Mp( t ' )  > -  < Mai'/-) >< Mpit ' )  > (4.1Ü)

where the average is taken over gauge configurations. The covariance m atrix  will be 

a. Ncoi-r X TVf; square matrix where Ncorr is the number of correlators which are used 

in the simultaneous fit and Ah is the range in time in which tin? fitting is performed. 

In the minimization of the y" it will be necessary to invert the covariance mat.rix 

which can be singular. In general if the number of gauge configurations N is much 

greater than Â coj-r x Ah then all the eigenvalues of t.he covariance m atilx  will be non 

zero and the inverse will exist. If this is not the case a singular value decomposition 

will have to be done on the matrix using routines given in [27]. In practice in oui- 

simulations the number of configurations is several times greater tlian Â eon- x Ah. 

A singular value decomposition (SYD) routine is still used since it is possible to 

have a large range of eigenvalues which can be great.er than the machine precision 

and cause false fits to be performed. In general in tlie ma.jori(.y of cases of fitting we 

did, it was found th a t  there was not. a large spread in eigenvalues of t.he covariance 

matrix . The minimization of the y^ is done using conjugate gradient methods with 

the routines taken out of Numerical Recipes and will not be discussed here. After 

minimization, and assuming an acceptable y “ has lieen achieved, it is necessary t.o 

quote some sort of error on the fitted parameters. To simplify things for the moment, 

consider tha t  there is only one parameter in the theory A and that a minimum y- 

has been reached. So then

Amin =  A "(Am.) (4.11)

Expanding y^ around its minimum value

=  y"(Am. +  <̂ A) -  y "(Am.) -
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since the partial derivative at minimum is zero. If SÀ is chosen so

= Q î è r )

then (5y  ̂ =  1. Changing Afit l?y such an amount will cause the fitted function .'C(A) 

to change in the range jP(Ant T  6A) to >*(Ani — ^A). The range of the function will 

then span 68 % of the input d a ta  ie by one n. If the number of parameters is greater 

than  one, the generalization of ecpi (4.13) is

n  cPy''

and the associated errors are the diagonal matrix  elements of Mai,-

4.2 C harm onium  Spectroscopy

In the next sections the spectrum for Charmoninm will be presented in detail t.o- 

gether with varions technicpies used to fit the spectrum. In tlie simulations we have 

used the cpiark evolution equation defined l.iy ecpi (3.26). Using the not ation + 

we ha.ve looked at meson propagators for the following states: bS'o, "bS'i, *Pi, "’Fn, 

^F i, for both the E and T  represen talion and the ’ £>2 in the. T  representation. 

For the S states, smearing functions both for the ground and first radially excited 

state were used as well as a local S function (n =  /oc). From tins all possible com­

binations of smearing at the source and sink were formed making a 3 x 3 matrix  of 

S s ta te  correlation functions. For the P and D states only a ground state smearing 

function and a local S function was used. We calculated tlie dispersion relation for 

the by looking at the meson jn-opagator for small momentum comjionents using 

(«■A'c. =  {loc, loc) and (1, loc). For the 'hS'i, ^Pi,  ‘’F i,  DU and ’ Fv an average

over individual polarization directions is clone making a total of 30 S, P and D 

meson propagators to analyse'. Before it is po.ssible to under-take a large simulation 

it is necessary to determine the remaining arbitrary paramet.ers left, Tlie strong 

coupling constant is determined for ns in advance by the particular glnonic gauge 

configurations we will use. The heavy bare cpiark mass will need to be tuned numer­

ically to determine a suitable value appro]uiate for the Charm cpiark. To do tliis 

we have used the bS'a mass as an input from experiment and timed ( he lieavy cpiark 

mass so th a t  our simulation value is in agreement witli the (experimental value of 

2.98 GeV. For this a dispersion relallon is used in order to evaluate the CS',, energy
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for small momentum components. The rnel.hod outlined in section {3.1U3) is used 

here.

In the first simulation performed we used 4Ü configurations supplied by the 

FermiLab group with =  5.7 quenched gauge configurations on a 16 lattice. The 

bare quark mass in lattice nnits o.iV Iq  was ta.ken to be 1.2. To fix the latl.ice spacing 

the spin averaged IP -IS  splitting is used. More of this will be said in the next 

section. Only the lowest non-zero momentum component p = (1 ,0 ,0 )  as well as the 

zero mom entum  energy was extracted here for the bS'o. A l atio fit (again more will 

be said on this) was performed on the two meson propagal.ors and fitted to a single 

exponential. Hence

Meson P,opagal.o.-„,) ^  ,
M eson 1 ‘ r op agator |  (, ̂

The value Mmn is taken, for reasons discussed in sections (3.103), as I , lie ma.ss for 

the lowest ^Sq state. Tlie momentum on the 1 at.lice for the lowest momentum 

component is pa = 4siny^ so using tins with the fitted value for the ratio in ecpi 

(4.15) a value for can easily be found. For a heavy ba,re cpiark ma.ss of 1.2

a value for M,nn in physical units is found to be a value much larger than 2.98 

GeV. A better estimation for u M q  is chosen to be 0.8. It is this value which we 

will use in all simulations involving the Charm mass. The results for Charmoninm 

which will be presented in the next sections were obtained using 273 ([iienched gauge 

configurations produced from the standard Wilson action and were provided by tlie 

UKQCD collaboration. The configurations are at /7 =  5.7 for a 12"̂  x 24 lattice and 

are fixed to Coulomb gauge. The value of the smearing radius used was ?"o =  1.0. A 

sum m ary of the Clharrnonium spectrum using these configurations is given in figures

(4.1) and (4.2).

4.2.1 F i t t i n g  S im u la t io n  D a t a

In the simulation it is nec.essa.ry to maximize tlie available statistics, for example 

by averaging over spin or colour indices in the meson propagator. We can also take 

advantage of the fact tha t heavy rnivsons like Charmoninm are relatively small and 

different starting sites on tlie lattice can be used to propagate the meson. As well 

as this, since the evolution equation is an initial value one, it is possible to choose 

different starting times in the time direction as well. In the spatial direction 8 

different starting sites maximally spaced are used and two different starting times. 

There will inevitably be some correlation between meson propagators starting  at 

different sites. To decide on the arnonnt of correlation a simple test can be used
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Figure 4.1: NRQCD simulation results for the spectrum of tlie Charm oninm  system 

plotted relative to the Q9o using an inverse lattice spacing of 1.23 GeV. Experimental 

values are indicated by dashed lines. The bS'o was used to set the zero of energy for 

simulation results while the spin-averaged S-P was used l,o se I, a “ G Error bars are 

shown where visible, and only indicate statist,ical nncertaint.ies.

where the propagators are binned. Here two sets of propagatoi's stai ting at different 

sites are averaged and the error of the mean of t.he. new set of pi'opagat.ors calculated. 

An increase in the error will be a. sign of correlation. To test for correlation the 

effective mass together with its naive error was calculal.ed. By liinning propagators 

only in the spatial direction there was a. small but, significant, increase in t.lie error 

suggesting some correlation was ju'eseut. Bining in t.he time direction showed tliere 

was no correlation at all. In most cases wlien we fit. the data we Inn over spatial 

points as well as time.

The quantity which needs first, t.o be extracted from the simulation is tlie latt.ice 

spacing. This will allow conversion from dimensionle.ss quantities calculated on t.he 

lattice to physical units in GeV for exanqde. To do this it is necessary to fix some 

simulation result, with experiment, so that.

Mlai — U. 4 I) +  G((7)" (4.16)

where the 0(a)~  error is from t.he gluonic action. If t.lie lattice spacing corrections 

are ignored and knowing can be extracted, fn Quarkoniurn syst.ems tliere

is a. very na.tural (piantity which can be nsed to set. the scale. Spiu-indejiendent

57



MeV
40-

•' J v ’

- 4 0 ’

A cl

- 8 0 -

- 120 -

Vc

-Afii

Figure 4.2: Siniiilatioii results for the spin struct ure of t he C ha rruou iu in  family, 

using an inverse la ttice s|)acing of 1.23 GeV. Energies for S and F hyiierfines are 

m easured  relative to their  center of mass. Error bars for points are s ta tis t ica l.

sp li t t ings  such as the  spin-averaged A M - j s - i s  or the A /l / i /> _ i5  in Q uarkon ium  are 

independen t of  the  heavy (piark mass and of sp in-dejiendent relal ivistic corrections. 

I t is then expected th a t  can be ex trac ted  witli much higher accuracy than  say 

w ith  light meson system s. T here  will however be a system atic  error from quenching 

which will cause to  be dependent on the  m o m e n tu m  scale ap j iropria te  to t he 

physical q uan t i ty  which has been used in de term in ing  a “ *. For exam ple  a “ ’ will 

be different if A A /2 5 - 1 5  is used to fix t he scale in compari.soii to using A A / i p _ i 5 . 

More will be said on this. Here the A .I / i />_ i 5  split ting was used to ex t ra c t  I he 

la t t ice  spacing because the noise of the  2 S s la te s  was poor in com parison to  the  IF  

s ta tes .  Tlie spin-averaged A M i p - i s  is given by

A A ' / i p _ i 5  =  M l  P i  — (4.17)

and  ex t rac ting  the la ttice value for this  will involve a ratio  fit of t he various meson 

propaga to rs .  In general there will be some correlation between meson p ropaga to rs  

calculated  on the sam e conligural ion and m ost cert ainly bet ween p ropaga to rs  wit h 

the  sam e orb ita l  angu lar  m om ent um but different spin orientations. To reduce this 

correla tion a collection of b o o ts t ra p  ratios are ]uoduced which can then be fitted 

to  som e functional form. For each b o o ts t ra p  ratio  N  configurations (where A' is 

the  num ber  of independent configurations) are chosen at random  and the  ratio  

calculated . For the  num ber  of b o o ts t ra p  ratios a to ta l of .500 are chosen alt hough

58



the final outcome has very little deju-mdence on the numlier of hootsi.rap samples. 

Using the preliminary experimental value of the IP - iS  splitting of 457 MeV [17] 

and fitting the bootstrap ratios to only a single exponential fit a value for is 

found to be 1.23(4) GeV. Errors quoted here are only statistical and no a t tem pt 

has been made at this stage to add in sysl.ematic errors. Fixing the scale has then 

determined the bare coupling constant go{a~^) to be ^  at the scale — 1.23 

GeV.

W ith  one of the free parameters now determined the next stage in tlie analysis 

of the da ta  is to see what mass for the is found using a a bare mass a M q  =  0.8. 

In the previous study where a dispersion relation was used in order to fine I,une 

ciÂ^Q only the first order kinetic term up to j r  was taken into account. Here a 

more refined method needs to be nsed to take into account of relativistic effects 

and lattice spacing errors. Since we have a ojiera.tor in tlie original kinetic 

energy Hamiltonian operator it is expected contributions should be present,. 

Also Charmoninm is quite relativistic (ie more so than Upsilon) and only having a 

pF term in the fit to the dispersion relation is inappropriate. From secl.ion (3.1Ü3) 

we know th a t  because Lorentz invariance is broken in NllQCf) tlie kinetic mass 

appropriate to say the pr term is not the same as the mass a.ppropria(,e for the p/’ 

term in the dispersion relation. Two fnnctlonal forms for tlie dispersion relation are 

used in the fitting. They are

'S(P) -  E(0) = ^  (4 18)

and

The second form of the dispersion relation eqn (4.20) has a lattice artifact due to 

the lattice form of the continuum laplacian in the kinetic energy operator. This is 

a non-rotationa.l term which is allowed on t.he lattice since rotational invariance is 

broken. Since G(n)^ errors in tlie lal.t.ice laplacian have l.ieen removed we expect 

this term to be zero. It is also expected tha t  (Cl) a is unity up to corrections of 

The difference in energies E{p)  — E{0)  is chosen in t.he fits because this 

will remove the zero of energy from the fit.ted form. It is known thal. this zero of 

energy will not be equal to A Ain because t.he bare (pi ark rest, mass was explicitly 

removed from the theory. To take in t.o acconnt. of tliis difference in mass another 

parameter would have to be introduced into the functional form for the dispersion 

relation. Since a value for the difference of energies is needed a. ral.io of meson
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propagators are produced. In the fitting routines ral.io of pi'opagators are produced 

using a jack knife procedure which in turn are then fitted to single exponentials. A 

jackknife da ta  point Pljack('i) for i = i, N  is defined to be

Mjark{i) = < M  > — M{ i )  (4.2U)

where is the original d a ta  point and < M  > \s the mean of over l.lie

d a ta  sample N .  This is then repeated say 40 times to produce 40 jackknife energies 

E{p)  — E{0)  which are then fitted to the functional forms e r p i  (4.19) or e.(ju  (4,20).

When doing the fit 4 different meson propagators with different m om entum  

components are used and fiti.ed simull.aneously. To st art with the lowest, four com­

ponents are used, p  =  ( 1, 0, 0), ( f , f ,0),(1 , 1, 1) and (2 ,0 ,0)  in unit.s of not, only 

to reduce extra pF cont.rilmtions but also t he noise to signal rat io will l.iecome mucii 

worse for higher m om entum  values since the noise will lie dei.ermined l.iy the low­

est m om entum  component. Using ecpi (4.19) first it, is found in lattice units that, 

=  2.430(6) and = 2.09(4). For t.he second fit ecju (4.20) tlie parameters 

were found to be iVI^ =  2.429(7),C'l =  1.7(1) and Cb =  —0.12(13). For our defi­

nition of kinetic mass which should be compared t.o t.he experiment.al mass of t.he 

^Sq s tate the value of jVlf or is used. They are hol.fi l.fie same within errors 

and converting to pfiysical unit.s our value for tlie bsb is found t.o be 2.99(10) GeV. 

This is expected t.o be accurate to C9( e‘') and so l.aking into account of t.he system­

atic errors as well this mass agrees wii.h experiment, Tlie bare mass a.M = 0.8 is 

appropriate for the Charm  case at this lat.tice spacing. The mass in the pG term is

found to be 2.6(1) GeV and 2.5(1) GeV from equ (4.19) and eqn (4.20) respect,ively.

Again both masses agree within errors and so there is lit.tie variation on the tyjie of 

function used in the fit. The two masses in l.lte p/“ and /U terms are expected to agree 

with because of omit ted relativist.ic correct.ions breaking Lorent.z invariance.

This is found t.o be t.he case for Charmoniurn where i r  % 0.3. A similar analysis 

using instead Upsilon [28] found tliis to be case as well alt liough the differences in 

the masses was smaller. For the paramelei' Gb t.liis is indeed zero wii.hin errors as 

expected.

It now needs to be decided whether or not. the fit.t.ing ]uocednre has been opt.i- 

mized. For example have the riglit. momentum conq.ionent.s been used and would 

higher momentum componenl.s reveal more of a p/'* st.rucl.ure present, and hel]) t.o 

account for some of t.he discrepancy in say t.he parameters and iV/fb Con­

versely it needs t.o be tested whet.her there is a p'’ |iresent. in t.he dispersion relat ion 

or whether in fact there is no pU present at. all and we are constrainig the fit. to
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111
000
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000

Ratio fits 0.0554(2) 0.1089(4) 0.1597(7) 0.210(1)
P~ 0.0564 0.1128 0.1692 0.226

|P (P'C" 0.0554 0.1087 0.1599 0.2102Md

Table 4.1; Comparison of ratio fits of E{p)  — E{0)  to values of E ( p )  — E{0)  using 

fitted parameter values

be so. Simply fitting the dispersion relation to only a j r  t.enn prodnces a totally 

unacceptable Q value and the fit. can be ruled out. To see if any j/' term is j) resen I. 

in the dispersion relation a term Gbj—EyTj-j is added l.o ec|u (4.20). Tlie pf  term 

which is known not, to contribute much to (lie fit is removed l.o reduce the number 

of parameters in the fit. Fit t ing to this form shows f.liere is no p/' piesent and the 

parameters Adp and C'l remain unchanged within errors. As a last check higlier 

m om entum  components have been used in etpi (4.19) and ecpi (4.20). For example 

using p  =  (1,1, 0), (1,1, 1), (2, 0, 0) and (1 ,1 ,2)  produced t he same values for the 

parameters bu t wit.h a. lower Q value suggesting higher momentum values will not 

reveal more p'’ in the dispersion relat ion. To test whet.her the paramet.ers from the 

fit are acceptable or not we can simply work out E{p) — E{0) using the fitted pa­

rameters and compare that, t o the energies from fitting a. l atio of meson propagat ors 

to

meson propagator|oj

This is summarized in table (4,1) where tlie parameters from e([u (4.19) have been 

used. The table show that, t.fie fitted paramet.eis produce t.he same E{p)  — E{{)) as 

from the ratio fit only if a //’ term is present.. There is disagreement if only a single 

pF term is used verifying t.liat a p/' contribution is definitely |uesenl..

In summary we have used l.wo in]uits bom  experiment, the spin-averaged IP -IS  

splitting and the lowest lying bS'o stat.e to lix the two free jiarameters in tlie theory. 

All results now will be predictions, for example t.he P and S hyper fin es and the 

2S-1S splitting. The extract.ion of t.hese quantit.ies will be described in the next, 

subsections.
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4.2.2 F i t t i n g  re su l t s  for th e  S, P  an d  D s ta t e s

In this sub-section multiple exponential fits will be nsed to ext.ract not only the 

ground state to high precision for the ^6b and ‘bS’i but also l.lieir first excited state. 

F itting  to the ground state of (lie P and D stal.es will also be done but no a t tem pt 

will be made to exf.ract any excited states. Using multi-exponential fits will involve 

fitting several meson correlation functions simultaneously as described in the pre­

vious section. Doing multiple exponential fits, for example fitting to n exponentials 

will give an accurate value for n ~  1 states with higher excited state conl.amination 

contained in the last exponential. When using several meson cori'elation functions 

it is necessary to use différent, types of smearing at l.fie source and sink. All possible 

permutations of smearing at. the sink and .source ha\-e been calcula.t.ed using del (a 

function smearing, ground stat.e and excited state smearing for t.he S st.ates.

The results from various t.ypes of smearing for t.he S stat.es are summarized 

in figure (4.3) where effective masses defined l.py +  l ) / 6 ' ( 0 )

are plotted t.ogether with bootst.rap errors. From t.hese plol.s of effeci.ive masses 

smearing works reasonably well and plateaus can be seen early on in the (77*0. 'hsA;) =

(1,1) than in comparison to tlie {loc, loc) case for example, For plots with an 

excited smearing function no st.eady pla.tea.u can be seen for the first, excited state 

and the signal decays to the ground state. This is in contrast t.o the Upsilon case 

where excited stat.e plateaus are just, present. This could rellect. t.he fact t.liat their 

smearing functions have a. l^ett.er overla.]) t.o t.he excit.ed meson state. However 

another possibility is tha t  the effect, is due t.o t.he fact that. Upsilon was simulat.ed 

a t  a. higher /? value of 6.0. Here t.he lattice spacing is smaller so effective masses in 

lattice units are smaller in turn. Therefore higher radial st.ates ai'e less exponent.ially 

suppressed relative l.o the ground st.ate. When lower [3 values are used as in the case 

of Charmoniurn, it is expect.ed l.hat excited st.ates will decay more (piickly making it. 

more difficult to extract a. value, It. is also expect.ed that, ground st.af.es will jilat.eau 

earlier on for the same reason and so at. lower /9’s t.he met.hod of smearing and multi­

exponential fits will become more and more redundant.. Plot.ted in figure (4.4) are 

effective masses for t.he QV and ^0 - 2  states where as can be seen the noise is much 

worse, as expected from ecpi (3.88), althougli a reasonal.de jdat.eau can be seen.

Two functional forms have been used in the mnti-exponential (its wliich are 

described in the previous section. For the row fit ecpi (4.6) two meson correlation 

functions (îî.vc, 77..,̂ ;) =  ( f , /oc) and {‘2, loc) are used. The fit. will involve fit.t.ing 

"n-par =  n-exp{ncvr +  1) ]7arameters where i?.,.,.,, is t.lie number of exponentials and ricor
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Figure 4.3: ^SD Eiïect.ive masse,s by (source, sink).
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is the number of meson correlation functions. The maximum is* 3 and iicor — 2 

making in this case — 9. No (loc, loc) correlation functions are nsed in these 

fits since it is expected tha t  they will have significant contamination of higher radial 

states. In general if a certain radial state is t.o be extracled accurately it must liave 

an appropriate smearing function for that, sl.ate in l.lie meson correlal.ion function 

used in the fit. The second functional foiin used is the matrix fit ecpi (4.7) whei'e 

different correlation functions are made up using the combination =  1,2 and 

Usk =  1,2 forming a. 2 x 2 matrix. The number of parameters fitted to in this case is 

given by Upar = if-expi^row +  1) where n,.ow is the dimension of the mat.rix. For the 

m atrix  fit we use Uruw =  2 and the rnaximmn number of exponentials is = 3 

giving the maximum number of fitted parameters Upar - 9 as in the correlated fits.

In Tables 4.2 and 4.4 are data, from the correlated and matrix lits for the bSh 

and ^S\ .  The errors stated are those causing a change <i\“ =  1 and we also quote, 

the quality of the fit, Q. To improve our statistics we only bin correlation functions 

which s tar t  from different spatial origins but not, ones which have diffeieut starting 

timeslices. This has little effect on the. central value but does increase the Q value 

giving us more confidence in the fit.

From both tables it is clear th a t  an accurate ground state mass can be obtained 

a t  very early times. Only a. of 2 gives an unacceptable Q for the 2 exponential 

fit. Adding a 3rd exponential then produces an acce])table fit. Again this contrasl.s 

with the Upsilon spectroscopy i-esults at fi =  6.Ü. Here it takes much longei' for tlie 

ground state effective mass to plal.eau with worse Q values at early values o f . 

The fitted parameters olil.ained front l.he two fit.s are independent of t.he type of 

fitting routine within errors, although the values for Q are lower for l.he matrix  lits. 

At this point it is constructive to test how e flee live tlie multiple exponential fits are 

for the ground states at fi =  5.7. In Table 4.3 are values for a single exponent.ial fit 

to the (nsc,nsk) = (I,  loc) and (1,1) for the bS’o state. In both cases an acceptable 

Q  can only be obtained at larger than when using a. multiple exponential fit. 

This demonstrates the need for mnlt.ijfie fits in extracting ground states even at 

these relatively low f i ’s.

For the first excited state the choice of fitted value is far more difficult. To have 

confidence in the value we should use a 3 ex|)onential fit although tliis gives larger 

errors in the fitted masses. AVe look for both a steady ^-alne in l.lie fitted mass as 

t m i n  is changed and a steady value for Q. It is also useful to look at the amplitude 

for the second excited state in the 3 exponential fit to see at what values it has 

decayed away. For the ^  S o  row fit we choose a value 1.17(5) for the excil.eil s tate mass
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I'min / Uiias, aEi aEo Q
fits to (l,loc) 2 2/24 0.6171(6) 1.172(6) 2 X 10"^

and (2,loc) 3/24 0.6178(6) 1.16(1) 0.65

4/24 0.6176(6) 1.16(1) 0.64

5/24 0.6170(7) 1.14(1) 0.79

6/24 0.6182(7) 1.21(5) 0.94

7/24 0.6183(7) 1.27(8) 0.93

3 2/24 0.6180(7) 1.15(2) 0.38

3/24 0.6177(20) 1.15(4) 0.53

4/24 0.6181(6) 1.16(2) 0.79

5/24 0.6183(7) 1.30(16) 0.94

6/24 0.6183(7) 1.19(8) 0.87

7/24 0.6183(7) 1.25(24) 0.85

fits to 2 3/24 0.6185(6) 1.18(2) 0.06

(1,1), (1,2) 4/24 0.6183(6) 1.17(3) 0.15

(2,1), (2,2) 5/24 0.6178(6) 1.16(4) 0,25

6/24 0.6177(6) 1.08(6) 0.16

7/24 0.6181(6) 0.90(6) 0.42

3 3/24 0.6180(6) 1.19(2) 0.27

4/24 0.6178(6) 1.14(4) 0.23

5/24 0.6170(6) 1.21(7) 0.16

6/24 0.6180(6) 1.26(11) 0.18

7/24 0.6181(6) 0.91(6) 0.33

Table 4.2; Examples of simiill.a.neous miill.i-exiionenlial PiLs l.o I , lie bS'o u.siiig row 

and ma.trix fits respectively.
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U„,:„ /I'lna.v aEi Q

fits to (Ijloc) 1 5/24 0.6188(8) 0.01

6/24 0.6184(8) 0.66

7 / 2 4 0.6183(8) 0.72

fits to (1,1) 1 4/24 0.6184(8) 0.05

5/24 0.6181(8) 0.22

6/24 0.6181(8) 0.18

7/24 0.6182(8) 0,15

Table 4.3: Examples of single ex]mnenl,ial fits to tlie bS'o .

(average of Uni,,. “  3 ,4 ,6 )  and from the ma.trix fit 1.18(4) (average of U,,,:,, — 3 ,4 ,5) . 

There is then agreement within errors between tlie l.wo fits and we choose 1.17(5) 

as the global average. For the 'hS’i state there is a. significant deterioration in the 

Q values over those for the and the fitting errois are slightly larger. This is

presumably a reflection of the additional noise in the channel corning from the 

^So- For the row fit a value of 1.19(7) (average for Un,:,,. =  4 ,5 ,6 )  is chosen and a. 

value of 1.22(3) (average for =  3, 4, 5) from the. matrix fit. A global average for

the excited is chosen to be 1.20(7). All the fitted values are collected in Table 

4.13.

An alternative test which can be used to extract an excited state is tha t  suggested 

by [29]. Here a matrix  of correlation functions which all ha.ve the same quantum 

numbers is formed. Explicitly diagonalizing tliis matrix will produce orthogonal 

eigenstates consisting of the ground state and higlier excitations. The dimension of 

the m atrix  determines tlie number of eigenvalues and hence tlie number of excited 

states which can be extracted. In our case we have used correlators which differ by 

the type of smearing to form our matrix  of correlators and restricted the dimension

of the m atrix  to be a 2 one. Define the matrix of correlators to be

a n  = (  ]  (4.22)

where is given in ecpi (4.5) and a and b denote different smearing conibina-

tions. Inserting a complete set of energy eigenstates one has

a t )  =  )  (4.22)
\  ( in{b)a), {a) la„(6)l“ J

Diagonalizing the m atrix  by solving for the eigenvalues it is relatively simple to
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S^exp l-miii /I'lnaw a El (1E 2 Q

fits to (l,loc) 2 2/24 0.6951(8) 1.247(7) 4 X 10" =

and (2,loc) 3 / 2 4 0 .6961(8) 1.23(1) 0.23

4/24 0.6958(9) 1.22(2) 0.23

5/24 0.6961(9) 1.18(2) 0.46

6/24 0.6966(9) 1.21(5) 0.56

7/24 0.6968(10) 1.25(8) 0.56

3 2 / 2 4 0.6964(9) 1.21(4) 0.10

3 /2 4 0 .6957(9) 1.20(4) 0.17

4/24 0.6964(10) 1.16(5) 0.47

5 / 2 4 0.6967(10) 1.22(8) 0.55

6/24 0.6966(7) 1.19(6) 0.41

7/24 0.6969 (10 ) 1.25(16) 0.40

fits to 2 3/24 0.6970(8) 1.22(1) 0.04

(1.1) .  (1,2) 4 / 2 4 0 .6967(8) 1.21(3)) 0,05

(2,1) ,  (2,2) 5/24 0.6965(8) 1.24(5) 0.07

6 /2 4 0.6966(8) 1.31(9) 0.09

7 / 2 4 0.6967(9) 0.95(8) 0.08

3 3 /2 4 0.6966(8) 1.23(2) 0.08

4 / 2 4 0 .6965(8) 1.20(3) 0.06

5 / 2 4 0.6964(8) 1.23(4) 0.04

6 /2 4 0,6969(8) 1.46(13) 0.06

7 / 2 4 0.6967(9) 1.00(9) 0.07

Table 4.4: Examples of simiill.aneoiis imiH.i-exponeiitial fil.s to tlie '^S\ using row 

and m atrix  fits respectively.
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Figure 4.4; Pi Efleclûve masses by (source, sink).

( 1 , 1)

1.4

0.8
0.6

8 100 2 4 6

Figure 4.5: Flleclive niasses by (source, sink).

sliow th a t  the behaviour of the l.wo eigenvalues witli time is 

A+ ~  (1 +  _7+(a;(n),f/,;(6))f“ ^ ^ ' ' )

where

A _  ~  <r (1 +  f / _ ( a . , ( f / ) ,  n / ( / ) ) ) f

A  E n  =  E n  — /?(:

=  min (E] — Eu, E-> ~

(4.24)

(4.2.5:

Therefore we expect A^ to lue dominated by tlie. ground state very early on in time 

and A- to platea.u to the first excited state. To start a local smearing function is 

used for a and the ground state for b. When diagonali%ing the matrix tliere will be 

correlation between different elements of tlie matrix  which needs to be removed. To 

do this a bootstrap ensemble of ma trices are produced from the original d a ta  set and 

for each bootstrap m atrix  this can be dia.gonali%ed by solving a simple quadratic 

equation. The two bootstrap eigenvalues are then fil,ted to a single exponential. 

The ground state and first, excited state plal.eaus are shown in figure (4.6). The

w)

■•S'

Î
■s
A
T
SS:.
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^e..vp l-m i n //■ m a x a El Q

1 3/15 1.284(7) 3 X 10-4

4/15 1.24(1) 9 X 1 0 - '

5/15 1.20(2) 0.32

6/15 1.20(3) 0.24

7/15 1.19(6) 0.17

Table 4.5: Fits from a sirij^le exponential for 1.1 le first excited .state eigenvalue

1.8

1.4

0.8
0.6
0.4
0.2

0 2 106 128
Figure 4.6: First excited and ground state obtained by diagonalization for the ,̂S'n 

state.

fitted results obtained for tlie first excited stat.e are tabnlat.ed in t.alde (d.5). There 

it can be seen tha t  it takes a relatively large time for l.iie first excii.ed stale t.o 

plateau to a steady value in conp^arison to (lie values from the multi-ex])onential 

fits. These higher state cont.ribnlions are [irobaldy caused by liavlng a [loc,loc) 

correlation present.. However the values in table (4.5) agiee witliin errors wit.h the 

multi-exponential fits which acts as a t.est for the va I i dit,y of botli methods.

In Tables (4.6) and (4.7) are the amjilitndes from the various fit.s for part icular 

values of imin/'lma.v■ The value o f f r o m  which t he amplitudes were taken 

are from the fit. for which the first excited st.al.e was closest, t.o the average result 

quoted above. In both the correlated and mat.iix fits it was found that the amplitude 

for a second excited state is e.ssent.ially zero. This indicates t.hat. cont.aminat.ion from 

higher states iir onr fits are negligible. (Consider first, the amplitudes from the mat,]ix 

fit given in table (4.6). The amjilit.nde coellicient.s are delined by

a„(.sc) =  < > (4.26)

so tha t  for example a i ( l )  = <  lICFlJU > is the project.ion of the ground stat.e
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onto the ground state smearing o]’»erator. It can be seen [Vom the table that, tlie 

smearing functions are doing a reasonable job in projecting out the desired state (on 

diagonal amplitudes) and suppressing unwanted slates (off-diagonal amplitudes). 

For example « i ( l )  >  «^(l) and in turn aaC^) > «i(2). For the amplitude coefficients 

in table (4.7) these are from the row fit and are defined by

b n { s k \ s c )  =  < > <  > (4.27)

Again the smearing functions are projecting out (.he requirerl sl.af.e, for example 

the off-diagonal amplitudes again are more suppressed comjrared to the on-diagonal 

ones. Thus it is of advantage to fiave smearing funet.ions alt.fiougli t.fiey are clearly 

not optimal. It. may be bet.t.er t.o use the out.]nil, wavefunct.ions t.o in-odnce input, 

smearing functions in an improved calculat.ion.

To illustrate the quality of the multi-exponential fits into eai ly times effective 

amplitude plots given by the avera.ge of e^^'fA/(/) for some meson correlat ion func­

tion are plotted. Also plot,ted is the function

44(f)  =  n -p (4.28)

where the parameters are t.aken from t.he fit. It can he seen from all t he fit.s t.hat. 

the functional form for t.he effective amplit.ude lies well wit lnn t.he ei ior bars giving 

confidence in the quality of t.lie fit ted paj-ameters.

For the singlet. P and D stat.es because we liave only included the ground s(.a.1,e 

smearing function in the simulation, multiple exponential fit.s are not possible. In­

stead a. single exponential fit was jmrformed t.o 1,1 te n , k )  — ( 1 , 1 )  meson propa­

gators of the ^P[ and  ̂ The results are shown in Tables (4.8) and (4.9), In both 

cases a. reasonable Q can be obtain with relatively small st.atist.ical errors alt.hoiigli 

these are larger for the D states as expectctl. 'I'o isolate the ground st.ate early on 

and achieve better errors higher radial smearing functions need to be added. AVork 

has begun on this for the P stat.es.

4,2,3 F i t s  to  Spin  S p l i t t ings

The operators in the NRQCdD action res]ionsible for the S and P fiyperfine split­

tings involve the chromo-mag ne t.ic and elect.ric fields, lienee s|un sjdil.t.ings are 

very dependent, on the tadpole-im]U'oved coupling constants e ,’s. This makes the 

spin-splittings a good test of tlie t a cl p ole- i m ]U'ovemen t, sch en u \  It. is also true t.hat, 

potential models find it, hard to produce s]iin-splil.tings in agreement, wit.li exqieri- 

ment so we would liope that, t.fiey are also a good test, of tlie differences lietween a full
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Fit ^min / tmax k C'A:()Ec,̂ A: =  i) (^Psc,.st — 2)

Nexp =  2 4/24 I 0.681(1) -0.1188(8)

for ^6b 2 0.18(9) 0.52(2)

Â e.rp ~  2 5/24 1 0.700(3) -0.164(1)

for 2 0.29(2) 0.53(5)

Table 4.6: Examples of fit results for amplitudes

Fit ^in in J  I- m a x k 6(u.sc =  11 ^0 b ( 7 7. —  2 , A l )

N e x p  — 2 4/24 1 0.1037(7) -0.0184(4)

for ^  57i 2 0.032(3) 0.064(2)

N e x p  =  2 5/24 1 0.103(1) -0.0253(4)

for 2 0.036(7) 0.069(3)

Table 4.7: Examples of fit results for amplitudes

^■e.vp bn/n /  ̂max aEi Q

fits to (1,1) 1 3/24 1.059(4) 0.45

4/24 1.052(5) 0.68

5/24 1.049(7) 0.66

6/24 1.046(9) 0.62

7/24 1.048(14) 0.55

Tal.de 4.8: Example of a fit.

D̂ cvp l-m.ax a.E[ Q

fits to (1,1) 1 3/24 1.35(1) 0.62

4/24 1.32(2) 0.77

5/24 1.30(3) 0.78

6/24 1.26(5) 0.78

7/24 1.26(9) 0.72

Table 4.1); Exam]4e of a  ̂Da fit.
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Figure 4.7: ^5’o Effective amplitudes G'(f) J2i ■! from two-eximnentia! i-ow fits ( l ,f )

(2,f) and two-exponential matrix  fits (1,1) (2,2) with =  4,/.,„.a.r =  24 .

calculation in QCD, such as ours, and a poteni.ial model. Tlie calculai.ion of tliese 

hyperfine splittings are direct predictions of QCD, the remaining free parameters 

have been fixed previously using spin-independent quanti lies,

It is expected tha t meson operators with (lie same orbital angular momentum 

bu t different spin orientations will be highly correlated. To take this into account a 

bootstrap ensemble of ratios of correlation functions are produced. Doing a ratio fit 

has the ad vanta,ge of reducing statistical errors because tlie liigh correlation between 

the numerator and denominator is divided out. In most cases a. single exponential 

fit is used in ratio fits which has the form

Ratio(t) =  Ac -<SEi (4.2Ü)

where dE  is the energy diffei-ence between the two mesons in the ratio. Me.son 

correlation functions with smearing =  (1,1) are n.sed. Binning on time

and spatial origin have been used in all cases and it is found tha.(. very higli Q values 

in general can be achieved. Shown in Table (4.11) are values obtained for various 

combinations of spin-splittings using eqn (4..40). Tlie bE  obtained for the 'bS'i to 

5̂*0 lit is in agreement with tliat obtained from the separate row and matrix  fits of 

Tables (4.2) and (4.4). There a value of 0.0780(14) was obtained winch has a higher
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error than in tlie ratio ht case siiowing tliat a. ratio fit can indeed reduce statistical 

noise.

If instead a. ratio fit was done between (wo meson correlatois with different 

angular m om entum  it is not necessarily true tha t (.he noise will be reduced. Tlie 

Monte Carlo noise experienced by the cpiark in the D stai.e is different than the 

noise experienced by the cpiark in the S st.al.e because of the greater .separation 

between cpiark and anti-cpiark in the D state. The two different types of noise will 

not then cancel out when a ratio is taken. As an example a ratio fit to ^ ^  -So 

ga.ve a value 0.69(3) where as fitting the two states directly gave a splitting 0.68(4). 

Hence the noise and central value remains tlie same. For the P sl.ates all different 

types of splitting between different spin orientations were done. Using tliese values 

P splittings relative to the centre of mass can be calculated. For example with I.lie 

centre of mass for the P stales defined by

then

■'P-i -  P c M  =  5 p f t  P ,)  +  i (»Pj P„) (4,31 )

The cpiality of the da ta  also allows direct fits to the P states to extract P liyjierfine 

splittings. Again the central value is unchanged but the errors are increased. From 

table (4.11) it can be seen tha t  (.lie splittings involving the P states in the E rep give 

the sa.me values within errors as P states in the T  re.[i. This is a, good indication 

th a t  rotational symmetry is restored on the particular lattice wliich we have used.

To estimate (he effect of higher radial excitations in the ratio fi(. for (.he "hS’j and 

^So we have used a correlated 6E  fit and fitted to (he Ibian

- V . , . ,

G me.son ^  A ) ' (4,32)
C' = i

G m e ^ o n  B { n ! : c G0C- , 1 . )  =  C/v( ï ï . , , , , 1 ) +  ' ^  C /j(7 ) , , , .Q :)  C '

for Use = 1 , 2  for each mesou. The results shown in Table (4.12) show tlial. tlie 

 ̂ 6b splitting can be obtained at early (imes with smaller errors (.han in the 

ratio lit. The extra excited slates have beiui absorbed in tlie exl.i a. 1er ms in the 

correlated fit. The results from the row and matrix lil.s arc' not able to give a clear 

signal for the 2.S hyperfine splii.ting and we are also unable' to obtain (liis witli (lie 

ratio fit either, for example by adding addilional exponentials.
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Split',iing Ne, p l'min aÔE Q

-  K% 1 4/24 0.0794(3) 4.0 X 10-%

1 6/24 0.0784(4) 0.35

8/24 0.0784(4) 0.32

10/24 0.0783(5) 0.21

12/24 0.0778(6) 0.25

Table 4.10: S hyperfine splil.l.ing from a rat io fit,.

Split.i.ing N(.vp ^tuin/^nia.r (ibll, Q

^P2E - 'G . 1 3/13 0.090(2) 0.94

4/13 0.089(4) 0.91

5/13 0.090(6) 0.85

6/13 0.086(9) 0.81

’̂ P2E - ^Pi 1 3/13 0.045(1) 0.99

4/13 0.046(3) 0.99

5/13 0.045(4) 0.99

6/13 0.044(6) 0.97

-  -^Po 1 3/13 0.086(2) 0.87

4/13 0.086(4) 0.57

5/13 0.087(5) 0.64

6/13 0.083(9) 0.65

1 3/13 0.041(1) 0.97

4/13 0.043(3) 0.97

5/13 0.043(4) 0.95

6/13 0.042(7) 0.90

^Pi -  ®Po 1 3/13 0.045(1) 0.13

4/13 0.043(2) 0.13

5/13 0.045(3) 0.12

6/13 0.041(5) 0.09

Table 4 .iJ :  P hyperfine splK.Ung fioin a ratio fit,.



'̂inin /^m ax l^S’o 2QS’o iGS’j -  lES’o 2 \9 j Q

3/24 0.6170(6) 1.17(1) 0.0779(3) 1.23(1) 0.29

4/24 0.6178(6) 1.17(1) 0.0778(3) 1.24(2) 0.33

5/24 0.6180(6) 1.16(2) 0.0777(3) 1.19(2) 0.72

6/24 0.6183(6) 1.20(4) 0.0780(4) 1.20(4) 0.88

7/24 0.6183(7) 1.20(6) 0.0781(4) 1.20(6) 0.82

8/24 0.6184(7) 1.16(11) 0.0781(4) 1.25(13) 0.76

Table 4.12: Example of correlated bE  fit. lor t.he and bS'o st.at.e.s

.Simnlation Results

l^S'o 0.618(1)

l^Sh 0.697(1)

2b9u 1.17(5)

2GS’i 1.20(7)

G P i 1.050(7)

E d -, 1.30(4)

.9,, 0.0782(4)

^P-i Po 0.088(8)

Pi 0.044(5)

^Pi P(i 0.044(3)

Table 4.13: Filled dimensioidess energies.

3sl-ls(l
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Figure 4.8: Example ol a S hyperfine lit using (/p,,', ) =  (1.1) meson propagators.
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Figure 4.9: Example of a P hyperfine fit using (/p,,., Ujt) =  (1,1) meson propagators. 

4.2.4 W avefunc t ions

As well as determining the sjiectriirn of Charmonium, wavefunctions for l.lie ESi,,S’i 

and the ^P\  ground stal.es have been calculated. Wavefunctions are ini.eresting from 

a phenomenlogical point, of view but can also help to det,ermine I,he size of the lieavy 

meson and estimat e for finite volume effects. Wavefunct.ions coming out. of t he sim­

ulation can be used to estimate t.he expectat ion values of oj^erators in (.he correct,ion 

program of NRQCD instead of relying on |notential- ins]hred wavefunctions. More 

importantly  is tha t  the wavefnnct ions can be used to exl-ract. a. heavy qnark |iot.en- 

tial using a simple inverse Schrotlinger ecpiation. A. program now exists t.o do this 

[30]. The pot.ential extracted here will have tlie advantage over more conventional 

techniques because relativist ic coiTect.ions sliould lie present, and comparison t.o t.lie 

conventional static heavy c[uark potentials can be made. If, for example, the heavy 

quark potential is found using a hS'o wa.vefnnct.ion and anot.her pot.ent.ial from the 

wa.vefvmction the t.wo potentials can be subt.ract.ed and the pot.ential responsible 

for the S hyperfine splitting found. This can t.hen be conqiared to what, is ex]iecl,ed 

from potential models eqn (4.34). Another use for simulation wavefunctions is tliat. 

they can offer a much improved smearing function for future simulations.

Shown in figure (4.10), (4.11) and (4.12) is the radial wavefnnct.ion component, 

for the and the  ̂P] respect,ively. For the S si,at,es their wavefunct.ions

are normalized so tha t  the modulus of tlie wavefuncl.ion scpiared summed over t he 

whole lattice is equal to one. As for t.he st.ate the wa.vefnnct.ion is normalized so 

th a t  it is equal to one at a distance of one from tlie origin. The distinct.ive feat.ure 

of all three radial wavefunctions is that, t.fiey all are coulombic in behaviour. The 

radial wavefunctions of the S states goes as r ” ëT whereas for t.he P stat.es t.hey 

behave as re . A fit to tlie wa.vefnnct.ions gives ro to be a lion t, 1.6. Clearly the 

wavefunctions are dominated by a p |iotent ial in the Charmonium case and suggests
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Figure 4.10: WaveOinclion for (lie FSn sl.ate.

that, the original choice of smearing fun étions is a satisfactory one. Looking at the 

dilTerence between the different spin states hS’o and ^6'i it can ])e seen that for 

the the wavefuncl.ion at tlie origin is slightly less than in the FS'o case. Tiiis 

is to be expected since the 'hS'i has a higher excitation energy relative to tlie FS'o 

case and hence a slightly greater separation belaveen tlie piiark and anti-qiiai'k is 

expected. In all cases it is possible to see the effect of periodic boundary conditions 

at a separation of six lattice spa.cings.

4.2.5 C o m p a r i s o n  w i th  E x p e r i m e n t

To compare, simulation resulls to experiment it is necessa.ry to fix the scale a ~ ' .  If 

the spin-averaged IP-i.S splitting is used equ (4.18) it is found tha t  = 1.23(4) 

GeV where the error is only stat.istical. It is also jiossible in principle to use the 

2S-1S splitting to set (lie scale because tliis splitting also has tlie piojiej-ty of being 

insensitive to the quark mass and relativistic correcilons. Using this splitting would 

give a slightly different a~^ as a result of quencliing and l.aking an average of the 

two would help to limit the quenching effect. However in practice the staiistical 

error on the 2S state is too high for this to he done. In Table (4.14) we conpiare 

the splittings obtained from the simnlation wii.h exjierimental results. The results 

are plotted in figures (4.1) and (4.2). It is im portant to remember tha t  there is a. 

potential O(M n^) % 30 — 45 MeV systematic error in all splittings coming from 

relativistic. corrections not included in tlie heavy quark action.



Figure 4..11: AVavefuuction for t.lie 'kS'i .st.at.e

\

Figure 4.12; Wavefuucfiou for (he  ̂Pi s(,al.e.
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Simulation B.esnlt.s [GeV] Experiment [GeV]

2QS'o -  lASo 0.679(62)

2^S i  -  l=̂ 6’i 0.619(87) 0.586

^D2 ~ 0.84(5)

-  Q9o 0.789

— \9a 0.096(2) 0.116

0.108(10) 0.141

^P2 -  ^Pl 0.054(6) 0.045

^P l  - 0.054(4) 0.095

0.012(2)

Table 4.14: NRQCD spectriim resiill.s and comparison willi cx]ieriment for a~^ = 

1.23(4) GeV and a M  =  0.8.

As discussed the sta.tisl.ica! erroi- on l.he 2,S slrile is too large to .see any sig­

nificance in the disagreement with ex[ieriinent. Tlie fact thai. is conies out larger 

than  experiment, when the scale is fixed from tlie iP-bS splitting in a cpienched cal­

culation, is in agreement wilii results from tlie Upsilon wliere the difference (here 

is thought to be mostly from (pienching [28]. To lest for this in Cliarmonium it 

is necessary to reduce the statistical errors and systemal.ic errors from the heavy 

quark action in the 2S state.

The mass of (.he ^ s t a t . e  is rallier higher I,han tha(. found for (.he i/'(3770), 

thought to be a '^Di state. Prom the spin splittings alone you would expect, (.his 

difference. The U(3770) is also above l.liresfiold for decay to D D  so quenching might 

have a significant effect on masses in this region. The has the sa.me (piantum 

numbers as the .̂S’l and will ap]iea.r as a. (.bird excited stat.e in tliat channel. In 

order to observe such a state the cros.s-correlal.ion be I .  ween (he meson correlators 

and the would have t.o be calculated and we have not. at.t.ernpl.ed t.o do t.fiis 

here.

Spin splittings ha.ve been calculated for (he ground S and P st.at.es. Prom Ta­

ble (4.14) we can see that tlie hyperliiie splitting -  iV/(US'o) has a very

small statistical error. The difference from experiment I . hen sliows up clearly and 

is presumably a. result, of our systematic (urors. Foi' s|hn-s|-ilil.t.ings t.liere is an ap­

proximate 45 MeV systemat ic error from liigher order relal.ivisi.ic, disci-el.isal ion a.ntl 

radiative corrections t.o t.he heavy quark act.ion. The discretisation errors are. 0 { ( r )
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errors in the chrorno-magnel.ic and electric fields and the radiative corrections are 

corrections to the coefficient c[s- away from tadpole-irnprovement. This could 

easily account for the difference in the S hyperfine splitting with experiment tha t  is 

observed. Quenching though is also expected to have a significant effect certainly 

in the case where S states are concerned. ITorn potential models tlie S hyperfine 

splitting is given by

 ̂h/-’(0)i“, (4.33)

where the effect of (pienching on the running of a „ up to the Gharm mass scale will
( I'j" /  '3 " f \

cause it ro be reduced by approximately — — % 20% wliich again can 

explain the discrepancy with experiment,. It. is also ])ossible for t.he wavefnnct.ion at 

the origin to change on going from cjuencliing t.o uinpienching. This change is found 

to be small which will be explained in chapter (5). Recent results for Upsilon using 

iincpienched configurations sliow a. significant, increase in l.lie S fiyperfine, reinforcing 

the above argument of the effect, of quenching on the S hyperfine split.ting. One 

advantage of the Charmonium syst.em is t.liat an experiment al value for l.he hyperfine 

splitting does exist and this should enable us t.o monii.or how we are inqn’oving the 

result as we remove systematic errors including, eventually, tha t of the c|uenciied 

approximation. A comparison t.o of.her rnetliods of calculaling t.he Cliarmonium 

S hyperfine can be made. For examjile the Ferrnilab groiqi [31] give for the S 

hyperfine a  rather smaller value than ours. Here t hey use a t.ad]>ole-improved Wilson 

fermion action equ (2.40) for t.lie lieavy cpiarks and l.fiis approacli has different, 

systematic errors tha.n ours. In terms of an expansion in powers of i r /c ^  their 

current calculation is not. as accurate since t.he relat ivistic corrections of type jP/ M'^ 

are not included correctly, as ours are. This will [iroduce errors in t.heir calculai.ion in 

fixing the bare heavy cpiark mass from t.he meson dispersion relation. Tlie hyperfine 

splitting is rather sensitive t.o t.liis, as can he seen from e([U (4.34). Tlie Ferrnilab 

group have, however, pieces of yet. higlier order l.errns wliicli are entirely missing 

from our calculation. A similar calculat.ion from the UKQCD collaboration [32] 

using an unimproved Wilson as well as an improved Wilson fermion action found 

also th a t  the S hyperfine was much smaller in comparison t.o a NRQCD calculation. 

Here it was clear that using an irrqn oved Wilson act.ion increased the fiyperfine 

splitting significantly. However t lie improvement was only done at. t.rcavlevel and 

the hyperfine splitting from l.he tree-level improved Wilson action gave a. value 

smaller than the l^ermilab group.

In the case of the P st.ate sjiliti.ings it is expected I.hat I he correction as a. result.
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of quenching will be less. This is because the momentum scale causing the splittings 

in the P states lies more closely to the average moment,nmscale in l.he Charmonium. 

In contrast the m om entum  scale causing the S hyper line s]ilitting is larger and tliis 

splitting will be effected more by (.pienching. Nevertheless there is a discrepancy in 

P state splittings between our rt'snll.s and experiment which is due to higlier order 

relativistic and /o r  discretisation errors in the heavy quark action. In the Upsilon 

spectrum calculation there was no significant disagreement wit.h experiment but the 

results had the same qualitative tendency as here i.e. t.he overall splitt.ing between 

X2 and xo is* too small and tlie s tate tends to be equidistant between X2 and yo 

instead of much closer to The experimental values for t.lie ratio

are 0.48(1) for cc, 0.66(2) for bb ( IP )  and 0.58(3) for bb (2P). The values from our 

simulation at f3 — 5.7 are 1.0(2) for cc and 0.7(3) for bb at p  =  6.0. Fut.nre calcula­

tions which include higher orders terms should be able to nvsolve t.liis discrepancy.

The main conclusion from the calcula.t.ion of l.he S and P hyperfine s]ilittiug is 

th a t  the simnlation resull.s lia.ve very small sl.atisl.ical errors allowing for the obser­

vation of systematic, errors. The disagreement wit.h experinieiil. can lie put. down t.o 

these errors which are the omission of relativist ic. corrections in the lieavy quai k ac­

tion and cpienching. The fact, that, tins is the case is a success of tadpole imjiroved 

perturbation theory. When tadpole-improving the chromo-magnetic and elect.ric 

fields are divided by iq]. For /? =  5.7 it is found from Monte-Carlo simulations t.hat. 

«0 =  0.861 and so tadpole- improvement will increase the strenglli of t.he cliromo- 

magnetic and electric fields by a fact.oi- of 1.8. Not doing this will severely reduce 

the value of spin-dependent, splii.tings. The reduction being such t.hat. it could not 

be accounted for by the remaining systemal.ic. errors. Tad]mle-im|irovement is t.hen 

fundamental to t.he success and in'edictive power of NRQCD.

4.3 U psilon  and B^. Spectroscopy

In this section the spectroscopy of Upsilon and D,- at. = 5.7 will be given. An 

extensive ca.lcnlat.ion of t.lie Upsilon sjiectrum at. b =  6.0 already exists [28] and 

doing the same calculation at lower I fs  will enable to help quantify errors arising 

from lattice spacings. As for l.lie R,. spectrum none of i.lnise mesons have been 

experimentally observed. Unlike Qiiarkoninrn systems tlie Br is charged. This 

means it can not lie produced in elect.ron ]iositron annihilation into a. cpiark and
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anti-quark as in the case of Charmoninni or Upsilon. It is likely tliat F3c bound 

states will be produced from b and c quarks coming from the separate deca.ys of 

particles or hadronization of b cpiarks. When the bound states are formed below 

BD threshold they will be even more stable than Qnarkonium. Being charged they 

are unable to decay into gluons and must do so via. electromagnetic transitions t.o 

the ground stat.e which will then decay by the weak interaction.

The results from tlie simulation can then act. as predictions. In the simnlation 

both  the Upsilon and Be spectrum are calculated at, the same time t.o save on 

computation time. The code will essentially be the same as for Charmonium but 

some slight adjnstments are necessary. No att.empt. to calcul ate any of t.he D staf.es 

has been made because for these t.o be of use the states really need to done for a 

comparison to experiment. When calcnlat.ing the quark Greens functions it. is best 

to keep the Cha.rm quark local and smear l.he Bot.torn (|uark in'ojuiga.t.or instead. 

This is because it. is computationally quicker to calculate the Bot.tom cjiia.rk Greens 

function. For the Bottom qnark the stabilizing factor n in the evolution equation 

is smaller in comparison to using a Charm  quark. This will reduce t.he number of 

loops in the kinetic energy operal.o]- has l.o perform. Tlie only change needed in l.lie 

evolution part of the code is to add an ext.ra. Greens funct ion wliich is local and must, 

be evolved with a mass appropriai.e to tliat of the Charm. An import,ant. change will 

come about when calculating the P sta.tes in the Be syst.em. For Quarkoninrn t.he 

states were represented by t.lie quantum numbers which were all individually 

conserved. It was then impossible for states differing in these numbers to mix. 

However since the Be system is charged, the charge conjugation qnantnm number 

G is not defined. Therefore this means tliat. states wliich liave t.he same J and P 

quantum  number will mix. In conclusion Be st.at.es can be labelled by the cpiant.um 

numbers and states like t.he and '^P\ wit.h =  1“ will mix. The problem 

with mixing will cause t.he meson propagator l.o be a linear comlhnation of mass 

energy eigenstates with c[nantum numbers .7^. For exanqde tlie meson propagator 

has the following decomposition

<  | U > =  .... (4.3.5)

To extract both masses is ecpiivalent to the problem of extracting both t.he 

ground and excited stat.es containing the same (piaiitiiiri nnmbers when there is no 

mixture of states with different t| nan turn nnmbers. II was shown in sect,ion (4.2.2) 

how this is possible. A. cross-correlation matrix  is formed using operators which 

ha.ve the same qnant.nm numbers. Upon diagonalization t.liis will jn’oduce
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eigenvalues of the form ~  t

be extracted. Here since the masses M?p, ~  Mip, one will not have to worry about 

the higher mass state being exponentially surpressed relative to the lower mass 

state. Defining the operator

< OjCWGjlO > =  < a\b > (4.36)

the cross-correlation m atrix  which needs to lie evaluated is

\  <' Fil^Ri > <' PipPi > )

For this it is necessary to add in tlie correlation fnuctioiis Pil^Pi > and 

P i p P i  >  into the code. Another modification from the Qnarkonium case is that 

as well as the real parts of t.he correlation funct.ion being kept the imaginary parts 

for the Be also will lie required. Tins is a reflection on t.he fact tha t B^ has no 

C number. In Qnarkonium the correlation function will be purely real because of 

charge conjugation. If C does not exist, then tlie correlation funct.ion is in general 

complex.

For the operators a.]ipropriat.e t.o Be st.at.es tliese do not have to be t.he same 

as those for Qnarkonium. For Qnarkonium the various operators are chosen wit.h

specific where as here only tlie cpiant.um nnmbers .1^ needs t.o be considered and

so some simplifications might, arise. As an exanqile consider t he angular moment um 

operator

,\îi(x, t) A,: V'q (x , t) — (4.38)

t) +  b 0  -  V’o (x  -  i, t.))^ -  Q ( .v î i (x  +  b t) -  vîi(x -  i, t))^  t;

Both terms in parenthesis ha \e  t.lie required angular moment.iim and parity for a 

— 1“ state. But because of charge conjugation it. was necessary to ha.ve both 

of the terms present, in the final operat.or for Qnarkonium. For the Be case then 

only one of the terms will be needed. However from sect ion (3.8) it. was shown that, 

this spatial derivative could lie sirrqilified so that, only one term in the parenthesis 

needs to be used. This hoivever used the ]iroperty that, some terms were com]ilex 

conjuga.tes of one another. This will not. be t.lie case in Be and to use tliat. argument 

for the simplification of the operator is incorrect. So it. t.iirns out. t hat even tliougli 

the Be has one less quantum number compared to Qnarkonium the same operat.ors 

can be used.
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The cross-correlation function which needs to he evaluated is

7Vy (t; -

5 3  <  A t V'Q(x, t)i/4j(xo,t(,) ( a ;  (tj-  A j  n,-) X/i(xo,t(,)|0 >  (4.39)

and similarly for the correlation function A/(t, tu){«p,}{ip,]. The summation over 

spatial indices is such tha t  k ^  i ^  j .  The determination of tliese cross-correlat.ion 

functions is very much like tha t  of the on diagonal terms ie M{i\  to){iPi]{vq) (ind 

involves the procedure outlined in section (3.8).

As previously with tlie (Hia.rmonium spectrum it is uece.ssary l.o fix tlie bare 

quark masses. It, is known wiiat t.he Charm bare ma.ss is from t.he simnlat.ion of 

Charmonium and t.o get the Bottom bare quark mass it is possible to scale down 

the value used at /7 — (i.O to ji =  5.7. By doing this the bare quark mass in 

physical nnii.s is being kept, fixed and indepeiideni. of l.he lattice size. A more 

physical definition which should be kept, fixed is the pole quark mass which can 

be written as the bare qnark ma.ss multiplied by a renormalization coiist.ant. This 

renormalization constant, will depend on l.he cut.-off [33], ie the lattice s]iacing, and 

hence the bare quark mass will scale in a non trivial way. If t.lie renornializal.ion 

constant is known at /5’s of 5.7 and 6.0 t hen it is possible to find the value of the 

bare quark mass for the Bottom case at. /i =  5.7. However it. will be necessary t.o 

convert from physical units to lattice units once the bare (piark mass is fixed and 

for this the inverse lattice s]iacing needs t.o be used which lias been extracted at 

the moment using the Charmonium spect.rum. This is not. t.lie ajipropriate for 

the Upsilon case because of cinenching, see section (5.3). It, then seems reasonable 

to fine tune the Bottom bare (piark ma.ss in a simulât.ion extract.ing t.he correct, 

value for in the proc.es,s. For this if. is lu'ce.ssary t.o calculat.e tfie dispersion 

relation for the .̂S'j stat.e in (.lie Ujisilon case until t.he simulât.ion value agrees with 

the experimeni.al value of 9.46 CeV. Tlie bS'o st.at.e could not. be used since t.his 

has not been observed ex]ierimentally and to calculate the dispersion relation for 

the ^Si  state requires only a slight change in the code. Aft.er several trial runs a 

value for the Bottom bare (piark mass at. H =  5.7 was found to be 3.15 in lattice 

units. Comparing known coulombic. wavefunct.ions to simnlat.ion wavefunct.ions the 

parameter ?’o best suited was found to lie 1.Ü for Upsilon and 1,45 for Be. H is too 

costly in cornpnl.er time t.o change t.he jiresent. code to include t wo set.s of smearing 

functions for l.he two co’s. It was decided t.o choose ro appropriate t.o the Ujisilon 

system since here one wants t.o maximize t.he statistics to see any de via I. ion from
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the already high statistics calculation al. p  =  (i.ü. The fncl. tha t ro is greater for 

Upsilon than Be which in turn is greater for Charmoninrn is as expected since tlie 

size of the meson should decrease with increasing (]iiark mass.

The main reason for doing simulations of Upsilon at lower /Ts is to try and (pian- 

tify lattice spacing errors. It is expected from poteni.ial models and |iert.nrbatiori 

theory th a t  the dominant source of error will be coming from 0 { c r )  errors in the 

glnonic action. Tliis will ha.ve the effect, of for example, reducing t.lie IP - lS  split­

ting and increasing the determination of a “ h  In the next, chapter it is shown that, 

the correction con Id be anything np to the order of 10 %. However if we forget this 

for the while and just  go ahead and fit. the dat a to ext.racl. physical ma.ss split.t.ings 

and then try to see if any disagreement, to t.lie values found at /i =  6.0 occurs. Any 

disagreement, can t.hen be corrected for in l.lie next chaider.

4.3.1 U psilon  S p e c tro sco p y

To find the kinet.ic mass we fit. l.o two forms of the dispersion relation ecpi (4.10) 

and (4.20) just  as in the case of Charmonium. However because Upsilon is more 

non-relativistic a problem arises in extracl.ing a value for t.lie kinetic mass in t.he p ' 

term. Even though it was possible to do this at ,6= 6.0 our kinetic bare mass in 

lattice units at. lower f f s  is higher which can offer more su]q.nessioii of t.he tei in 

relative to  the j r  one. In the lit, we used t.he four highest, set s of moment um availal)le 

in the dispersion fit. From l.he fil.l.ed parameters l.liere was very lit,tie jP present, 

to make the fit worthwhile. Instead a simultaneous fit. using t.he two lowest, set.s of 

m om entum  was fitted to just, a yr term. To set. the scale t.he spin-averaged If-’-IS 

splitting defined by ecpi (4.18) was used. From tliis it. is found t.hat a " '  =  1.37(4) 

Gev where the error is only st.atistical. Using this a. value for the kinet.ic mass for 

the ^Si  state is found t.o be 0.65(30) GeY to be corujia.red to t.he experiment.al value 

of 9.46 GeV.

In table (4.15) are fit.s for t.he hS'i st.at.es. In cont rast to t lie fit.s of Charmonium 

a clear signal for the first excited st.at.e can be seen. A mort' stable plateau can be 

seen for the Upsilon case and could be a rellect.ion on the fact that, the effect.ive 

mass in lattice units for the split.f.ing 2S-1S is smaller in comjuirison and so less 

exponentially surpressed. In physical units t.he split.t.ings are very similar and t.he 

fact tha t  they differ in lat.tice units is a direct consetjuence of quenching producing 

different values of n."^ for Charmonium and Upsilon. The Upsiloii’s excit.ed st.al.e can 

be observed ont to a timeslice o f =  9 wliich was not. possible for (dharmoniiim. 

Again adding a f.liird exponentia! in the correlat.ed fit. produces a much bett.er Q
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exp Ftnin/Fna.v oJl/i (1.E2 Q

fits to (Ijloc) 2 3/24 0.5186 6) 0.888(5) 1.3 X 10- “

and (2,loc) 4/24 0.5186 6) 0.901(7) 0.37

5/24 0.5186 6) 0.91(1) 0.64

6/24 0.5188 6) 0.93(1) 0.73

7/24 0.5188 6) 0.95(3) 0.70

8/24 0.5187 6) 0.93(4) 0.65

9/24 0.5186 0) 0.93(6) 0.70

3 3/24 0.5187 6) 0.93(3) 0.77

4/24 0.5188 6) 0.94(4) 0.73

5/24 0.5189 6) 0.98(3) 0.68

6/24 0.5188 0) 0.94(6) 0.60

7/24 0.5188 3) 0.93(3) 0.57

fits to 2 3/24 0.5185 5) 0.95(1) 2 , 0  X  1 0 - ' '

(1.1), (1.2) 4/24 0.5185 5) 0.97(2) 3.5 X  1 0 - '

(2,1), (2,2) 5/24 0.5183 5) 0.92(5) 8 . 6  X  1 0 “ ''

6/24 0.5184 5) 0.95(5) 2.9 X 10-"

7/24 0.5191 0) 0.95(9) 2.4 X 10-"

3 3/24 0.5184 •5) 0.95(2) 1 . 0  X  i t r "

4 /24 0.5185 5) 0.97(2) 1 . 6  X  1 0 - "

5/24 0.5183 5) 0.91(3) 3.8 X  10-"

6/24 0.5184 5) 0.95(5) 1 . 1  X  1 0 - "

7/24 0.5191 6 ) 0.95(9) 1 . 1  X  1 0 - ' "

e 4.15: Examples of simultaneous multi-expone nt.ial lil.s to t he 'hSh using

and m atrix  fits respectively.

Fit 1 /n. i n / 1 m a ,r b (1 p ( /1 — 1 ) n ÿ c, ,s — 2 )

exp — 2 5/24 1 0.901(1) 0.1380(6)

2 0.04(1) 0.49(3)

Table 4.16: Exam]des of lit results for amplitudes ) lo the 'hSj st.ate
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Fit Fnin / Fnax k — 1) bp{n^,c = 2)

Nexp ~  2 6/24 1 0.344(2) 0.0524(6)

2 0.02(1) 0.151(8)

Table 4.17: Examples of fit. resulls for amplit udes t.o t,lie '^S\

^ e x p i m i n / l - n i a x aEi Q

fits t.o (1,1) J 2/24 0.845(3) 0.78

3/24 0.840(4) 0.92

4/24 0.840(6) 0.90

5/24 0.841(6) 0.88

6/24 0.845(9) 0.85

7/24 0.86(f) 0.95

Table 4.18: Exa.nqde of a ' R; fit..

value at, earlier times. As for t.he matrix fit. t.he Q values are cert.ainly not. as good 

as in the correlated fits alt.liongh the fitted paramet.ers are consist.eut.. Adding a 

third exponential does not help for the matrix fit suggesting t.lie ]mor Q values are 

not from higher excited state cont.aminat.ion.

Comparing the values of the amplitudes in t.able (4.16) and (4.17) again t.he off- 

diagonal values are more heavily supju'e.ssed I hau the oii-diagonal ones as expecl.ed. 

Here it is nsefiil to compare t.hese values l.o t.lie ones from Cliarmoninm. Looking 

at the amplitudes from Iml.h types of fitting for =  2 the smearing funct.ion 

for the ground state of Upsilon is far more effective in projecting out the ground 

s ta te  and suppre,ssing the excit.ed case. In both the Charmonium and U]xsilon runs 

the same smearing radius ro =  j .0 was used wliich is a])proprial.e for Upsilon but 

not so for Charmonium. From the fit.s l.o the simulation wavefunctions a radius of 

ro =  1.6 should be used in tlie future for Charmonium. If one compares the effect ive 

mass plots figure (3.3) and (4.4) of the ' /**i states for Upsilon and Charmonium 

respectively it is clear that, a plateau is reached earlii'r on in Upsilon case even 

though the value of the effect.ive mass is smaller. Again this indicates tlie smearing 

function is more well suited t.o Upsilon,

To extra.ct S and P spin-splittings a jack knife ensemble was fil.l.ed t.o t.lie ratio 

equ (4.30). The results are summarized in t.able (4.19). As wit.h the Cliarmonium
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Splitting P̂ c.vp f m in / l-mci.v Ü.6E Q

'^Si — "So 1 4/24 0.01576(7) 0.50

1 6/24 0.01574(7) 0.41

8/24 0.01578(9) 0.44

10/24 0.01573(9) 0.43

12/24 0.01573(10) 0.33

'^P2E -  ‘̂PO 1 3/24 0.0182(6) 0.72

4/24 0.019(1) 0.76

5/24 0.019(2) 0.70

6/24 0.020(3) 0.65

7/24 0.022(4) 0.60

^P2E ~  '^Pv 1 3/24 0.0104(4) 0.79

4/24 0.0109(7) 0.78

5/24 0.01 1(1) 0.74

6/24 0.012(2) 0.70

7/24 0.013(3) 0.67

Table 4.19: S and P hyperiine split.i.ing fi'oin a ratio fit.

d a ta  there is near degeneracy between tlie splittings from I,be E and T  re|i for 

the ^P '2 state and only resull.s from (.lie E reps are ciuol.ed liere. Tlie final fitted 

values in dimensionless units are given in table (4.20) which are I,hen converted to 

dimensionfnl energies in table (4,21).

Even though glnonic corrections liave not been taken into accout yet it is still 

instructive to compare the simulation resull.s at /i =  5.7 to experiment and the 

simnlation values given at p = 6.0. The splitting between the first excited s ta te  and 

the ground state for the 'hS'i agrees wii.li exjieriment althougli the errors are ipiite 

high. This result is expected to increase using a corrected glnonic Tliis s]ditl.ing 

should then turn out to be higlier than experiment which is in accord with tlie fact 

th a t  the scale has been set by the IP-IS  splitting in tlie qiH'uched a.]quoximation. 

More interesting is to look at the S and P s|nn-s|)littings. (.bmpariug to experiment 

for the P fine structure it can be seen that tlie splittings from the simulation are 

too small. If the S hyperfine is compared to the value found at /i =  6.0 of 29 MeV, 

since no experimental value exists, again tliere is a reduction in the value obtained 

at (3 =  5,7, An increase in tliese values are expected from glnonic corrections but if 

ratios of P spin-splittings are calculated thes(' should not depend on wliich type of
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Simulation Results

l"5o 0.5030(5)

l"5’i 0.5187(6)

2%S’o 0.93(4)

2%S’i 0.94(4)

\^Pi 0.843(6)

0.01575(8)

0.020(2)

'M-2 .Pi 0.011(2)

''Pi Po 0.0079(5)

Table 4.20: Fil.l.ed dimensionless energies.

Simulation Results [GeV] Fxperiment [GeV]

2'Po -  E Po 0.585(58)

2^Ri -  l \ 9 i 0.577(58) 0.563

■\S'i -  'Po 0.0216(6)

^P2 -  "Po 0.027(3) 0.053

^P-2 -  "P i 0.015(3) 0.021
3 p i -  "Po 0.0108(7) 0.032

Table 4.21: NRQGD spectnim resull.s and coiripa.rison with expi'riment lor a ' 

1.37(4) GeV and a M  =  3.15.
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lattice spacing is used. From these ratios there is still disagreement with experiment 

which can not be understood for example in terms of possible relativistic corrections 

still to be included. For example I,he ratios calculated here areses """
which are very different from the experimental value of 0.66(2) and the lat tice value 

of 0.7(3) at /? =  6.0 even taking int.o account of syst.em a t.ic errors of 10%>. Also l.lie 

splitting M (y s )  — M (x o )  = 27(3) iMeV is much smaller than experiment and the 

result at (3 — 6.0 but glnonic correct,ions are expected to all.er t.lie result somewhat. 

From the 2S-1S splitting it seems reasonable to assume that, sjiin-averaged S|ditt.ings 

are well reproduced at. these relatively low li values. I'lie problem could t.lien arise 

from the operators whicli effect, spin sjdit.tings, notably the chromo-magnet.ic and 

electric fields. Here there are G (a)" corrections in tliese fii'lds wliich have not. been 

taken into account.

4.3.2 Be S p e c tro sco p y

In this section the spectrum of 77,. is ])resen(.(vl. In contrast, to Qnarkonium systems 

the correlation funct.ions will in general be complex. Tlie fit l.ing routines have not. 

been modified to take into account of t.his. However t.his is not a severe: problem 

because it is still possible t.o use the row fit, metliod to do multiple fits. With tlie 

m atrix  fits this is not possible since tlie decomposition of t.he correlat.ed functions 

involves a product of amplil.iides and imaginary terms will need l.o I.h' kejU. at all 

times in the fitting. Taking the real part of tlu' correlation funct.ion and litting t.o 

equ (4.30) will produce tlu' correct energies. The amplil inh's will just, be t.he real 

parts of the amplitudes found from fitting lioth the real ]iart and imaginary part 

of the correlation funct.ion. In the ratio fits the imaginary terms will need to be 

taken into account. Here a, jackknife of correlation functions with botli t he real and 

imaginary terms in is produced and the real value of the ratio taken. Tliis is tlien 

fitted to a single exponential as before.

To s tart  with the kinetic mass needs to be found. As witli t.he Upsilon case 

there was no real evidence of a p" contribution and just  fil.I.ing to a. j r  term gave a 

value for the FS'o state in lattice units to be 4.79. To set, t.he scale recpiires an iiquit. 

from experiment, which we do not have. A sensible choice would again be t o use the 

IP -IS  splitting wliich is known not to vary by much through tlie Hottorn to (411arm 

qnark mass scale. Taking a naive average of the IP -IS  s]4ittiug from (dharmoninm, 

457 MeV, and Upsilon, 452 MeV, gives for Be a possible experimental value of
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Figure 4.13; NRQCD simulation results for l.he spectrnin oC the Be system using 

an inverse lattice spacing of 1.32 GeV. Error bars are shown wliere visible and only 

indicate statistical uncertainl ies.

454.5 MeV. As mentioned in the previous section l.lie  ̂P[ and '"Rj states are mixed 

and will need to be made orthogonal by diagonalizing the cross-correlation matrix 

ecpi (4.38). Calculating a liootstia.p ensemble of inatrix elements and finding t.he 

eigenvalues of each matrix  produces a complex ensemble of eigenvalues which are 

true eigenstates of t.he "Pi and '"Pi st.at.es. To calculate t.he ground state of the "Pi 

it is sufficient, to take the real part, of the eigenvalues and fit. l.o a. single exponent.ial. 

For P hyperfines a complex ratio of eigenvalues is found, t.he real ]nirl. t.aken and 

then fitted. Using this method one finds that, a " '  =  1.32(4) GeV which in turn 

gives a value for the mass of t.lie hb'd to be 6.28(20) GeV. Figure (4.13) summarizes 

the calculated spectrum for t.lie Be. There is no experiment.al data t.o corrqiare wit.h 

but there have been iioteni.ial model calcul at. ions of t.lie Be which are useful for 

comparison. Here we will make a del,ailed comparison to l.he work of Eichteii and 

Quigg [34]. Other calcnlations also exist for example tho.se given in [35] where a. 

different form for the heavy (piark potential is chosen. For the mass of the state bsb 

ref [34] finds a value of 6.26(2) GeV. This agrees with onr result, althougli ours may lie 

slightly high because the choice of t.he Bottom bare mass was too higli. A table 

of fitted results is given in t.able (4.22) which are then coiivert.ed t.o dimensionful 

units and compared to poteni.ial model predict.ions in t.able (4.23). For the 2,S- 

IS splittings the errors are too large foi' a direct conqiarison although the ceul.ral
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Simnlat.ion Results

i 'S ’ü 0.6052(8)

0.6353(9)

29S’o 1.12(6)

2%S’j 1.14(6)

l 'T i 0.971(8)

"5', ,S'd 0.0305(3)

" P .  Pn 0.045(4)

3 P . Pi 0.023(2)

"P i Pc. 0.022(2)

Table 4.22: Fil.l.ed dimensionb'ss energies l'or sl.al.es.

Simnlat.ion Resull.s [GeV] Pot.ent.ial iVlodel Resull.s [GeV]

2QS’o -  iQS’o 

2^9i -  lAS'i

0.673(75) 0.592 

0.660(75) 0.562

"Pi -  "Pc,

"Pa  -  "Po 

"Pa  -  " P i  

" P i  -  "Po

0.040(1) 0.073 

0.059(5) 0.047 

0.030(3) 0.017 

0.029(3) 0.030

Table 4.23: NRQCD spectrnin resull.s for 11,, sl.af.es and coniparison wif.h expe.rinienl. 

for n .- ' =  1.32(4) GeY
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value lies above the potential model predictions as exjiected since (be scale was 

set by the IP -IS  splitting. As for the spin-dependent splitting one naively expects 

to get agreement due to relativistic corrections t.o about 20% or equivalently 20 

MeV. Comparing to potential model predictions gives good agreement. However 

the potential model predictions vary considerably witli the type of potential used 

and in the table the potential model results are just  from one tyjie of potential, 

the Biichmiiller-Tye potential. The spread for example in the Pq splitting is

from 45 MeV to 115 MeV wliere as for the S hy]ierfine t.he sjiread is b om 45 MeV 

to 96 MeV which limits t.he predictive power of potential model calculations. It. is 

not so easy to make a firm predict.ion for the S fiyperfine coming from tlie NRQCD 

simulation here because of quenching, but. our result, is consistently lower l.han all 

the potential model values. As wit.h t.lie U]isilon results problems could arise with 

the effect of 0 (n )"  corrections in the E and B fields as well as the glnonic action. 

Since the Be is a larger meson tliese are not expected to be as severe. If t.lie ratio 

in equ (4.41) is calculated for the. B^ case it. is found t.o be very close to unity as in 

Charmonium but not in Upsilon where t.lie rat io was far from correct if compared 

to experiment. This could suggest that, the |U'ol.4ems in t.lie P spin-splitt.ings for 

the Upsilon will not occur here for t.he B,.- Tlie large variai.ion in ]iotent.ial model 

predictions for Be make it a good system which NRQCD can improve upon. If 

higher order relativistic corrections are added in t.lie syst.em at. ic errors for tlie P fine 

splittings can be brought down to aliout 4 MeV. Other known syst.ematic eriors 

will contribute at t.his level. For example 0{(/)^ correct.ions away from tad]iole 

improving. But. if the next simulation will involve tlie addition of the relativist ic 

corrections for the Cliarmoninm t.hen it. is relatively cheap t.o use the jnesent code 

which was used to calculate the Upsilon and B,. simultaneously. 11 ere one can just 

substitute the Bottom mass for the Charm mass and vice a versa t.o calculate t.he 

Charmonium and Br spectrum sirnull.aiieousiy.
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C h a p ter  5

E stim a tes  o f  Q u en ch in g  and  

0 { a )  G lu on ic  correction s

5.1 Introduction

In this chapter a simple Schrodinger ecpiation is used as a me(,hod to estimate i.he 

effects of quenching in Quarkoninm and liie effects of C(c/)" errors coming from 

the gluonic action. It is shown that there is agreement between the perturluitive 

estimates for these gluonic lattice spacing errors and tlie non-jrerturbative ones from 

using the Schrodinger equation. Using these results, mass split,tings in the Upsilon

can be adjusted and it is shown that, scaling from /i =  b.ü down to 0  = 5.7 is

successful when using these adjust.ed results.

5.2 Schrodinger equation  on th e  lattice

The Schrodinger equation acting on a wa.vefuuction (/'(x,f ) in Uucliclean time is 

given by

+  V(x}) 0(x, t) =  U (5.1)

where /Co is the kinetic energy operator.V(x) is taken t.o he t.Iie st.at.ic potent.ial 

between two heavy quarks. This ecpiation can be readily converted to the 1 at,lice 

by introducing shift operators

=  -  (V’(.r +  //) -  -  //■)) (5.2)
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which have been expressed in i.errns of iaXt.ice units (a = 1), To lowest ordei- the 

kinetic energy operator /Co is given by

A-
/t.„V'(x,t) =  t)

=  -  ^  V'(x +  i, t) +  (/’(x -  i, t) -  20(x, t ) j  (5.3)

which will contain (!)(a)^ corrections. The general solution to equ (5.1) is

U (x ,t)  =  (5.4)

Decomposing '0(x,t ) hrto energy eigenstai.es so t.hal. 0(x, I.) =  V’n.(x, t) one has

V"(x, t) -  to) ^  r"^'""~'' 'hp(i(x, to) (5.5)

with E q the lowest ground stai.e possible. To find t.he lowest, energy eigenvalue 

for a particular angular mornent.um state an appropriate smearing fuuci.ion is used

for the wavefunction at t =  0. This is then evolved according to etpi (5.4) iint.il a

plateau in the effective mass is seen. The advant.age over the NldQCD .simulât,ions is 

th a t  it is possible to evolve out in time to as many time steps as is recpiired. Tliere 

is no problem with noise increasing wit.h t.ime since I,here ai'e no errors associated 

with the heavy quark jiotential V(x) that, we use. This means t.he ground state can 

be removed of any exited state contamination. Of course this is only a model and 

certainly has its limitations, for example, the exclusion of relativist.ic corrections. 

Since one is restricted to using smearing funct.ions which will not. be true eigenstates 

of the system there will only need t.o be a small contribution of ground state in order 

for it to dominate at large times. This can cause a jiroblem in t.he extraction of 

excited states with the signal decaying to t.he ground sl.ate Indore a, plateau can be 

found in the excited state. To try and avoid this liajq.iening a reorthogonalixat.ion 

procedure is introduced. First, the ground st.ate S and F wavefunctions are found 

a,fter evolving many time steps in t he evolution equat ion. The S and P wavefunctions 

are then used as improved smearing funct.ions for t.lie next set of evolut.ions. To 

remove unwanted ground st,a.t,e contaminai,ion from exc.it,ed sI.at es the excit ed st.ate 

wa.vefnnction at each t.irnestep is found and tlien made orthogonal to l.lie ground 

state. Explicitly let (x, t.) be t he true ground st.at.e wavefunction obtained 

after the first set of evolutions and fq ^ tfx ,! )  t he wa.vefuuction of the first, excited 

state at time t found by evolving a. conlombic type wavefunction at time t =  Ü and 

reorthogonalizing at each time step. Then we want a wavefunction defined by

' 0 | y j { x , t )  =  V 4 : z ) ( x , t )  +  o ' F ^ | | ( x ,  t . )  ( 5 . 6 )
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such th a t  (x, f) =  U. Ifeuce (he waveliiuctiou which should he

evolved at time t =  t +  1 is then

V"{2 } ( x , t )  =  Vh2 ] { x , t ) -  /^^ X ^ { 2 | ( x .  0 ' / { J ] ( x T )  \  i ) (5.7)

V E x  | V ' { i i ( x , t ) |  /
This can easily be extended to include liigher excitations, each being orthogonalized 

with respect to one another in a systematic way.

The heavy qua.rk potential used, V(x), is measured on t.lie lattice by finding I , he 

average of Wilson loops in a. Monte-Carlo simulation [36]. The fi at which these 

simulations are performed defines the lattice spacing for our Schrodinger eipiation. 

The volume of the lattice used here is also the same as the one usi'd t.o extract t.lie 

heavy quark potential. The jmtenl.ial lias not. been calculated on all points of t.he 

lattice and wit.h the d a ta  available t.lie jiof.ent.ial will ha\e t.o be inl.erjiolat.ed across 

the whole of our lat.t.ice. For example if t he jiot.eut.ial at dista.nce iq and iq is known 

the potential at distance r  bet.ween these two jioint.s is calculated from

V(r) =  V (r i ) -b ( V ( r , ) - V ( i n ) )  (5.8)
iq -  iq

This is assuming a linear relation between t he two known pot.iuit.iaJs. Tliis is a 

reasonable assumption since at large distances it is exjiecl.ed t.hat. the jiotent.ia! is 

linear with distance and at. smaller distances ecjn (5.8) siiouid hold irrespective of 

the form of V(x).

The evolution of t.he wavefunction is jierformed in two parts. First, the wave- 

function is transformed into moinentuin space and evolved according to

( /> (p , t+ l )  -  f “ ^ ( / ’( p . t )  (5.9)

where the lattice momentum is given l.iy

IT. =  (5.1Ü)

dehned such th a t  0{a)'^ corrections are removed from t.lie bajdacian ojiei al.or, e<ju 

(5.3). Since the exponent,iai has been kejil, in the evolution no st,abillzing factor

needs to be introduced as in the case of NFQCi'D. After this part, of 1,1 le evolul,ion

the wavefunction is transformed back into jiosit ion space and evolved using t he t,erm 

e - v W .

The effective mass can be ext ract.ed by t aking the dot, juoduct, of t wo wavefunc­

tions, which if they are normalized to nnit.y will be

X2 '/'(x. t + 1 �t"(x, I.� = (5.11�
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Simulation .Resnlts [GeV] Experiment. [GeV]

2S  - 15 0.56 0.56

35 - 15 1.00 0.89

2 P  - 15 0.92 0.81

ID  - 15 0.79

|/?.(0 )!“ Simulation Results [GeV]'^ Experimen 1. [GeV]

15 5.6 5.1(2)

Table 5.1: Schrodinger sped.nim results and comparison with experiment for a  ̂

=  2.70 GeV and M q  % 5.0 GeV.

from which jEc// be easily extracted. The zei o of energy lias not been included 

and only splittings relative to the ground S stat.e are calculable. The cpiark mass 

used is tha t  appropriate to tlie value of its pole mass. The code to solve I,his 

Schrodinger equation has been set. up to extract effective masses for the IS, 2S, MS, 

IP, 2P and the ID state. As a test, run the spectrum using a quark mass a.ppro|n ia.te 

for the Bottom quark is ta,bvilat,ed in table (5.1) and compared to experiment. Since 

there is only the lowest order kinetic energy operator in t.lie evolution e<jua.t.ion an 

accuracy of 10% is possible. The scale is set, using the IP-IS splitting. For this 

example the lieavy quark jiotential used is obt.ained at /I =  6.0 on a. volume of HP*. 

T he splittings obtained show agreement to exjieriment within t.he expect.ed 10% 

accuracy. The experirnent.al value for (die ID-IS is not known but. the value obt.ain 

using the Schrodinger equation can be compared to the KR.QCD result, of 0.74(1) 

GeV [28]. The value for the wavefunction at. t.lie origin is consistent, wii.li other 

values obtained by usiirg another discretized form of the Schrodinger etjuation [19]. 

The experimental value quoted for tlie wavein net.ion at, t.lie origin was obt.ained by 

looking at branching ratios of tlie Upsilon ini.o lept.on |.iairs wii.liout ta.kiug into 

account of radiat.ive correct.ions.

5.3 Quenching

One of the main errors in Lat.t.ice simulation results is t.lial. of ciuenchiug where 

internal qua.rk loops are neglected. As a conseciuence. t.lie inverse spacing which 

is extracted by comparing to some experiment.ally known (jiiant.it.y will depend on 

the typical moment um scale as.sociat.ed wit h t.hat. (piani.ily. The bare strong coupling
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W ith a fixed r/o, let a^ be the inverse lat tice spacing fonmi using an exjierimental

input with typical momentum m and a 7.A found using an experimental input, with

constant r/o is defined through /j — and hence lias a lixcxl value for a fixed /h 

However r/o runs with the momentum scale and the scale at which r/o is given must 

also be defined. This scale will be the cut,-off and will be of C9{r/.“ q .  Removing 

virtual quark loops will cause tlie coupling constant, t.o rim t.oo fast, wit.h increasing 

m om entum  since it is the virtual rpiark loojis whicli are resjionsilde for t.he screening 

elTect.

Consider for example ext.ractiiig two from two different energy scales,

'qi)

 .
typical mornent.um r / o .  For r / o  > r/i, rtjl/j > because of the difference in t.lie

running of the coupling constant in ( he qiienclnxl and nnrjuenched l.ln'orir^s. To ]iut. 

it another way, when is fixed from experiment., I.he uinjuenched and rjuenched 

coupling constants are the same at t.lie t.y|ucal momentum scale associated wit.h t.lie 

experiment result. Hence

O„^=o(r/*) =  (5.12)

where q* is the typical momentum and nj  the number of fermion Ilavoiirs appro­

priate for the momentum scale r/“ . V\hth rnoment.um r/ > q* (lie (|uenclied coupling 

constant will run too much in comparison to t.he iinrjuenclied and so

O'rty=o(7) <  <^nj[q) (5.13)

The two wa.ys at. looking at. t he effect, of quenching are erjuivalent.. In the former case 

we were keeping the coupling coiist.ant. the same and showing that a difference in 

the scale at which r/o is defined will be different. in I.lie I at. ter I .he  coupling coi ist.au Is 

a t  the same momentum q were being conqnired.

We can see this variation in with t.fie NR.QCD simulat.ion result.s from

Quarkoninm and Be. The typical mornent.um is ex|iected to increase for smaller 

(or equivalently heavier) mesons (A/rA.r % 1) and so r/̂ Q̂  ̂ >  > f/jcc-]- The

inverse lattice spac.ings (in CeV) obt.ained air'

F b b )  =  a - q  =  1 . 3 2 ( 1 )  q J ,  =  1 . 2 3 ( 4 )

which is in agreement, with the argument, given abo\'e. l l i i s  effect can also be 

tested using the Schrodinger equation. Tlie inverse lat tice s|iacing using tlie string 

tension from a heavy quark potential gives a value of 1.8 CeV at. j3 = 6 .Ü .  If I his 

same potential is used in t.lie Sclirodinger erpiat.iou and the scale set. by the IP-bS 

splitting in Quarkoninm a value for is 2.70 CeV. This rc'sult was also seen in a

08



NRQCD [42] simulation at j3 — (5.2 wliei'e tlie scale set hy (lie IP -IS  sjilii.i.ing gave 

3.4(3) GeV. This compares to (.lie value of 2.6(1) GeV found by setting the scale 

from the sting tension of a heavy cpiark potent.!al produced using the same set of 

configurations. The difference can be explained simply by I.he fact t.hat, t.he string 

tension par t  of the heavy rpiark jiotential is dominated by momentum exchange of 

0 { K q c d ) whereas tlie t.ypical energy scale in Quarkoninm like Upsilon is about 

0.75-1 GeV and hence larger than i \ q c d -

The effect of quenching on will affect conversion of lattice results to di­

mensionful quantities. Quenching will also affect dimensionless quanti I. ies. This 

has been mentioned already wlien t.lie ,S hyjieriine for Charmouium was being com­

pared t.o experiment. From perturbation theory this sjditt.ing is given by

^   ̂ IV' ( 3 ) IT (5.14)

Since a'o(y*) =  f‘'3(v*) with q" % 0.56'cV' for (dharmoniiim ou(d7q) < c\‘3{A3q )

and the S hyperfine sjditting will be reduced by cpienching. If 7* is large enough

the difference in t.he running can bc’ ('stimated perturbativoly. In the 1-loop ap­

proximation the strong coupling constant evolves with some mass scale l\I by t.fie 

expression

"  W E iW A A A )

where =  11 — p i j .  In t.fie limit, of largi' M  t.he differiuice in colliding constants 

should approach the value [38]

y i f ~ n  j f y = . a

TE =  ' "
The effect, of quenching on tlie wavefunction at. the origin will need to be calcu­

lated in a. non-pertnrbat.ive way. The Schrodinger ecpiation is used to calculate the 

spectrum and wa.vefunétions for Upsilon in I10t.f1 a cpienched and nncpienched heavy 

quark potential. The heavy cpiark mass was fixed liy using the same physical jiole 

mass [39] for both potentials. For the uncpieucheci pot.ential we use tlie pot.ent.ial 

which has been calculated using t he uncpienclnxl llEiMCJGG configurat.ioiis [40]. For 

the wavefunction at tfie origin we find in pfiysical units

^  j , 07 ,5 ,7)
V’( X ,  t ) { , ; i i f

where the variation is due to t.fie kind of sea cpiarks used ie if t.hey are Wilson or 

Staggered. The fact that the wavefunction is reduced in the cjiienclied ap]uoxi­

mation is as expected from arguments abovm Since t.fic’ cou])ling constant, runs too
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much ill the quenched case (.lie (|iiark and aiiti-cjuaik are less deejdy honnd at sliorter 

distances and hence are expeci.ed to have a si nailer wavefunction at these shorter 

dista.nces. This finding also agrees with the studies of [41] where the wavefunction 

a t  the origin also showed a decrease in going to the cjuenclied tlieory. Here a. cont.iii- 

iium Richardson potential was used for the (juenched and unquenched potent.ials. 

A larger decrease was found for t he wavefunction at t.lie oi igin of % 15%.

5.4 0 { a ) ‘̂ G luonic C orrections

The remaining systematic errors are expect ed t o come from ( lie C'l(a)" lat.t.ice spacing 

errors in the gluonic action, f^revious studies liave snggesi.cxl, for examjile wit.h 

Upsilon at R — 5.7, t.hat. these could he t.he dominant, correct.ion over relativist.ic 

corrections at. 0(v ) "  and other lat.t.ice spacing errors [4.3]. In t.lie study of [43] 

Richardson wavefunct.ions were used to jiert.iirhatively calculate the expect.at.ion 

values of the operators causing the Cl(a)“ errors in t.lic' gluonic action. There are 

problems in using Richardson wavefunct.ions, for example’ t.hey are only defined in 

the continuum limit, and known wit.h limit.ed accuracy. Here a non-pert.urbat.ive 

method on the latt.ice is used t.o es timale Cl(a“) gluonic corrections which are then 

compared to perturbation theory using NRQC3D wavefunct.ions. In ginieral we find 

good agreement between the two methods.

For the non-perturliat.ive method the Schrodinger equation is used t.oget.her wit.h 

a Cornell type pot.ent.ial. In [36, 37] t.lie results for t.lieir heavy cpiark pot.ent.ial are 

fitted to the form

and this has now been done for /Us of 5.7, 6.Ü and 6.2 [44]. The second term in ecpi 

(5.18) is the lattice version of the one gluon exchange, which would produce a A 

Conlombic potential in tlie continuum. To evaluat.e t.liis sum on a 16-' lat.t.ice for all 

points will require, a lot of computer time and hence some sort, of siirqilificat.ion is 

needed. The gluonic lai.tice momentum is evaluated using the exjiressioii

4siir((7,- -  l)7r/3h) (5.19)

where the sum for cy,- is from 1 t.o3 h for a lat t.ice of volume h'U Tliis subst.it ut.ion 

L 3L  helps remove finite volume effect.s. 14le fonric'r l.raiisform is clone exjilicit.ly 

and is evaluated only once for a particular value of R. This enables the pot.ent.ial t.o 

be found for different lat.t.ice points which liai'e t lie same R  saving consichu able in
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Splittings 5.7 6.0 6.2

6 ( IP  -  1,5') -Ü.0394 -0.0041 -0.ÜÜ18

6(2.5' -  15) -Ü.U181 -0.0017 -0.0008

Table 5.2: DilTerences in splittings for Upsilon between an irnpi'oved and unimproved 

heavy quark potential.

Splittings Be CC.

6(1P -  1,5') -0.0105 -0.0060

6(2,S' -  1.5') -0.0027 -0.0015

Table 5.3: Differences in splittings for Be and cc at /? =  5.7 bel,ween an improved 

and unimproved heavy quark pol.eni.ial.

computer time. To estimate t lie size of gluonic correct.ions the lat.t.ice expre.ssioii for 

the gluon m om entum  in e.qn (5.18) is corrected for C'l(n)“ errors by the subsl.it.ution 

given in equ (5.10).

The differences in split.tings ext.ract.ed using an unimproved and imjuoved heavy 

quark potential in lattice units are given in ta.ble (5.7) and (5.3). In table (5.7) are 

results for Upsilon at. R’s of 5.7, 6.0 and 6.2 using an unimproved and improved 

potential. Also given in table (5.3) are the result.s for Charnionium and B,. at 

P =  5.7. Comparing the change in values in t.lie IP-bS and 2S-1.S S|dit.t,ing in 

all cases it is the IP -IS  splitting which suffers the most, cliange. This is t.o be 

expected qualitatively since the 2S and IS are meson states which are. Iroth relatively 

small compared to the average size of I.he meson. Both will experience a greater 

change in comparison to t.he P stat.e when 0{a)'- corrections are removed. On a. 

more quantitative basis as we will see in perl.nrbat.ion theory the expected shift in 

t.he mass of a meson state going from an uncorrecl.iul t.o col lected gluonic act.ion 

depends on the wavefunction at t.lie origin for that, stat.e and hence sliouhl be zero 

for P states. Comparing I.he Upsilon result.s to Be and Cdiarmoninm at. ,d =  5.7 

the changes experienced in t.lie Upsilon case are inucli larger as one would naively 

expect. Upsilon is smaller l.lian liotli Be and Cliarinonium and hence will be more 

effected by C)(a)" correct.ions. Even t.liongh one is comparing results at. a constant [3 

the a “  ̂ extracted will be slight.ly different de|)ending on t.he type of meson but. this 

should generally not. effect tlie result.s too much. For Upsilon going from ,3 =  5.7 

through to p  — 6.2 it can clearly be seen t.liat. the clianges in splittings decreases
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Sjilit. tings 5.7 0.0 0.2

6{ iP  -  15) -10.2% -2.39% -1.59%

6(25 -  15) -4.1.5% -0.75% -0.40%

Table 5.4: Percentage differences in sjdittings for Upsilon between an imjiroved and

unimproved heavy quark pot.ent.ial

Splitt.ings 5,7 0.0 0.2

6(15  -  15) -10.9% -2.39% -1.1%

6(25 -  15) -3.0%, -0.75% -0.309%

Table 5.5: Scaling results from P =  0.0 for U|isilon assuming 0(a)~  coi i ect.ions.

appreciably. It is instructive to fiiul t.he jiercent.age cliange in the sjilit.tings from 

going from un corrected to corrected pot.entials, For example in t.he Upsilon case it. 

is possible to see if (.lie percent.age changes scale as 0 { a p . In table (5.4) are given 

these percentage changes and in table (5.5) are the ex pec ted percent.age clianges 

scaled from t.he value at /,? =  6.U. The lat.t.ice spaciiigs wei'e t.lie ones obt.a.ined in t.he 

uncorrected potential. As can be seen from t lie table t.lie changes scale in agreement, 

assuming there are only 0 { a Y  correct.ions. Tlnne is obvious a. limit, t.o t.he accnracy 

in the estimation of these gluonic CRn-) errois using the Schrodinger equation wit h 

the heavy quark pot.ent.ial. There might be radiat.ive cor red.ions to the constants 

associated with the O(a)-^ errors which would be expect.ed t.o depend on the lattice 

spacing and scale in a non-t.rivial way.

The pertnrbative formulae foi' t.he mass s In ft. in lat.t.ice units from 0 { a - )  gluonic 

corrections is given by [45]

A3Q  =  |i/-(Ü)|" . (5.20)

where qs is approximately twice the reduced mass [46]. Tin’ wavefunction at t.he 

origin can be found direct.ly from a NRQCd) simulation. Define t.lie wavefunction 

at the origin t.o be

U„. (0)  =  <  0 | C h , „ - t "  >  ( 5 . 2 1 )

where Oiac are the local ,S st.at.e operat.ors defined in table (3.1). In the decom­

position of the meson correlation function M\ioc,ivc] the square of equ (5.21) ,

j< 0|O?oc|n > | “ , is just; t.he amplit.nde for the. n''^ st.at.e and so i/T(0) can be easily
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Meson

(nS)

Direct Fit 

t.o b„ {loc, sc)

Using 

sc = 1

h„{ioc, sc)/a.n{fic) 

sc =  2

bb(15) .389(1) .382(1) ----------

bb(25) ---------- ---- ----- .30(2)

Bc(LS) .2118(4) ---- ----- ----------

cc.(l5) .1535(6) .1523(3) — — ——

0 ^ 2 5 ) ---------- — — —— .125(4)

Table 5.6: Mesoiiic wave fiinctioii a(. (.lie origin, i/>(0), fi'oiii NRQCT) .simulai,ions. A 

dashed line means that, no signal coiilcl Uc <’xl.racl.ed.

extracted. Since local-local meson correlation fnncl.ions contain appreciable con­

tam ination  from higher states a multiple lit is performed using d / p j v V / p  

and M^iocjoc] correlation functions to three exponentials. Using this method a. s ta­

ble ground state wavefunction can be found but not thal. for tlie first excited sl.ate. 

An alternative procedure is to calculate the ratio

/j„ {loc, sc
= < o|ch,„T" > (5.22)

u„(.st)

The results for the wavefunctions from the two types of fittings are summarized 

in table (5.6). Using these results for the wavefunction at the origin tlie pertnrbative 

mass shift, from gluonic corrections can be calculated. Tlicvse are compared to the 

non-perturbative estimates from the Schrodinger e(|uation in the cases of the IS 

and 28 states in tables (5.7), (5.8). In general there is good agreement. The resnlts 

have been scaled so tha t  the lattice spacing at the same p  from using tlie lieavy 

quark potential and tlie NRQGD simulation agri’e. TIk' one anomaly is tlie result 

for Upsilon at. p  =  5.7 where then’ are cpiite large diflereiices, the non-pertiu'bative 

result being higher. This could mean for exainph’ tliat tin’ wavefunction at tlie origin 

in the NRQCD simulation is too small. But scaling tlie wa.vc'fimci.ion at p — 6.0 

down to 5.7 does show reasonable agreement. Tins snggesls that the jiol.ential 

a t  short distances, to which the Upsilon is more susceptible, is too singular and 

changes in going from nncorrected l.o corrected gluonic potentials is overestimated. 

In extracting the potential down to R — 0 a conlombic belunuour is assumed and no 

a t tem pt has been made in ta.king into account asymptolic freedom in the running 

of the coupling constant. Evidence of this is found in l.lie wavefnnction at tlie 

origin, the Schrodinger wavefunctions being too high in comjiarison t.o t.he N RQCD 

wavefunction results. This is a problem wliicli has been ex|ierienced in using a
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Non-Pert Masses 5.7 6.0 6.2

ATus] U.U34 0.0041 0.0020

%/{2,S} Ü.ÜU) 0.0024 0.0012

Pert J\la,sses 5.7 6.0 6.2

0.023 0.00.36 0.0028

dUivyi 0.014 0.0023 ---------

Table 5.7: Comparison for Upsilon of perinrliat.ive and non-perlnrlialive sliifl.s of 

effective masses in lattice units lietweeu an improved and unimproved heavy (|um k 

potential.

Non-Pert Masses Be CC

E l  •S') 0.011 0.0063

0.008 0.0040

Pert Masses Be cc

M^ is] 0.000 0.0062

----------- 0.0041

Table 5.8: Comparison for B.- and cc at P = 5.7 of jierturliative and non-jiertirbative 

shifts of effective masses in lal lice iinhs betwei'ii an imjiroi'ed and unimjiroved heavy 

quark potential.

lOd



coiitimmm Cornell potential where it is likely that, the jiol.ential near R. =  0 is even 

more singular than on the lattice.

When correcting for gluonic corrections in I.he IP -IS  splitting we shall use the 

pertnrbative estimations. Tlie corrected a “ ^’s in CeV are for P =  5.7

i i ,^_  =  1.40(41 a , , q  =  1.30(4) f i g ,  =  1.2.5(4) (5.23)

and for /? =  6.0

f i U j  =  2 .61 (10 )  (5.24)

W ith  the gluonic improved u~^’s calculated it is constructive to see how they scale 

from one P to another. For this tlie scale A i s  used, the dimensionless quanl.ity 

a h v  calculated on the lattice using l.lie ex]iecta(.ion values of 1 x 1 jdaipiettes [47]. 

Hence using the identity

Y  ) r , . 7  _  ) ( |  II

( u  ) ,1,0 ( a A y  y
:r,.25)

for example can be scaled from its value at p  =  5.7 to p  =  6.0. A value 

of 2.53(7) GeV is found which compares well t.o t.he value 2.61(10) CeV found by 

direct simulation. Using the correct.ed values for gluonic improved dimensionful 

energies should be recalculated. For Lljisilon at. p  — 5.7 tlie corrected value for tlie 

kinetic mass is 10.28(32) CeV and f.iie corrected hS’o mass for the FT is 6.47 (20) 

GeV. Correcting for the 2' .̂S'i — P'5i splitting in Upsilon at p — 5.7 gives a value of 

602(62) MeV. This corrected value is more in line with t.he value (juoled at, P = 6.0 

of 627(26) GeV than t.he un correct.ed value hut. t.he error bars are higlier for t.he 

p  =  5.7 case. Correcting the S hyperfine for Upsilon at p ~  5.7 gives a splitting of 

23 MeV still significantly smaller than tlie p = 6.0 result.s of 29 MeV. However t.he 

Bottom  quark mass we have used in t.he simulat.ion is t.oo heavy and the S hyperfine 

is certainly sensitive to tliis. If one rescales t.he kinetic mass to t.lu’ value 9.46 GeV 

the S hyperfine becomes 25 MeV. The dependence of the lieavy (juark mass on tlie 

S hyperfine is taken t.o be G ( ^ ) ,  Hi dimensionle.ss nnit.s t.he S I ly per fine will also 

be affected by gluonic. correct.ions since for ,S states l.lie wavefunct.ion at. I,he origin 

is non-zero. However it seems unlikely I,hat the differences in tlie si lift, lie I. ween the 

and E[i states is large since they have very similar wavefunct.ions, as can be 

seen from the plots for G harmonium for example. However as far as t.he P st.at.es are 

concerned no shift, in dimensionless units will occur. 14le only shift, clue t.o gluonic 

corrections is in the change in I.lie value o\' a~P  This should liowever not affect 

the ratio of P hyperfine split.t.ings and it is hard l.o understand t.lie disparit.y in tin’ 

ratios eqn (4.41) t.o the values at. /i =  6.0 in terms of only gluonic corrections.
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lP-15

1 .2 5 -

1.0

0.75
0,1

Figure 5.1: Asymptot.ic scaling of Die I f  -  1,9 sjnlilling for bh for quenclied resulLs 

in the V  scheme. Open circles re[U'esent lauv resulLs at /? =  5.7 and 6.0 and filled 

circles represent results corrected for gluonic 0 { ( r )  errors.

A good example of I , he need for glnonic corrections is in the scaling of the 

ratio IP -IS  to Ay, defined hy the plaquette, with /?. Plotted in figure (5,1) is the 

ratio which should be constant for asynqd.otic scaling. Clearly this is not. so in 

the uncorrected case bu t is within errors when gluonic corrections have been done. 

So not only is it possible to observe scaling violations but also it is possible to 

systematically remove tliem,

5.5 D ecay  C onstants

The pseudoscalar decay constant., whirli will det.ermine t.he annifjilat.ion decay 

rate for Be is defined in t.lie rest frame of t he B,, as

(5.26)

The pseudoscalar decay constant, can be related l.o a nonrelativislic wa.V(dhncl,ion 

through the Van Royen-Weisskopf formula. [48] by

12|(/>(0)P
Jb , Mi\.

(5.27)

where M b  ̂ is taken to be the mass of the jiseudoscalar particle. When relating 

wavefunctions from lattice sirnnlal.ions to cont.innnm (piantities, renormalixat.ion
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constants between the continuum and the lattice should really he t aken int.o accout.. 

However it is not done here because they have not been calculated yet. It is also 

expected th a t  large errors coming from the small com])onent,s of the heavy Dirac 

spinors will effect the result at t.he O(v^)  % 20% level. Using the. value of the 

wavefunction given in tab el (5.6) a. va.lne of /f , .  =  460(13) M e v  is obtained where 

the error quoted is only from the error in This value for is in line with

estimates using various potential models [34]. A more accurate method would be 

to evaluate equ (5.26) direct ly by expressing this mat rix element, in t.erms of matrix 

elements in NRQCD. To O ( ^ )  equ (5.26) will be

< 0\W'7^oC\Bc > =  C'l < ()\xl</>c\Br > +CÇ < 0 |(D y Q t.D W |/C  >  +.. . .  (5.28)

For an accuracy of CRu'Q, radiative correct.ions to C'l need to be évaluat.(xl and CC 

evaluated at least to tree-level. Tliis has been done in [40] for I.he cont.innnm. Wlien 

Be has been obsei'ved experimentally and t.fie annihilation decay measured it. will 

be possible to extract an accurate value for given a value for ./A., calculated on 

the lattice.

107



C h a p ter  6

C on clu sion

The first, part of the work presented was tlie calculation of the sped,rn in of Cham  io­

nium to next to leading order using NRQCD. Tliis allowed rehilivistic effects t.o he 

investigated, for example, the calculation of spin-dependent splittings. Agreement 

with experiment was found within the expectetl remaining sysl.ematic errors wliich 

are quenching and tlie omission of relaiivistic corrections in the. heavy quark action. 

For agreement with experiment it is essential to use tadpole improved peid.nrhation 

theory. Not doing so would have severely underestimated s]^in-splittings to such an 

extent tha t the discrepancy to experiment, could not have been understood by t.he 

remaining systematic errors. Spin-independent split.t.ings, for exanqde the 2S-1S, 

were also calculated although l.lie noise in I.he 28 st.ate is found to be (jiiite high for 

direct comparison to experiment. Tlie extract ion of excited st,at.es reiiixl on using 

multi-exponential multi-correlated fits. For this it is necessary t.o have smeared op­

erators in the meson correlation function t.o project ont. at. early times the ret; ni red 

state. This was successful in old.aining plateaus in t.he ground stat.e at. early t.irnes 

where the noise to signal rat.io is smaller.

Presented also was t.he s]rectrnm for Id r  at. a lowin' /i of 5.7 t han has previously 

been done. Disagreement in spin-splitl.ings to t.lie values at. R =  (10 and to ex])er- 

iment was found indicating Cl(cr) correct.ions in the chromo-magnet,ic and electric 

field are significant at these low fi values. The spect rum of B,- stat.es, none of which 

have yet been observed experimentally, has also been given. A juedict.ion for l.lie 

lowest ground state bS'o for Br is 6.47(20) GeV. Tliese could in t.fie future be ob­

served in the decay modes Be , 0/// wliere t.he (/■ decays ult imately into a

lepton pair [50], In all cases tlie scale was set. using t.lie H*-IS sjdit.t.ing as experi­

mental input. The ext.ract.ed is quite different, depending on the i.ype of meson
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used. The values obtained obey (he relation  ̂ is a direct

consequence of quenching and is a. good demonstration of it..

A non-perturbative method t.o determine 0{a~)  gluonic corrections has been

presented, the values obtained are consist.enl. wit.h i>ertnrbat.ive estimates. Tliese

gluonic correct.ions are significant, for Upsilon at, fi — 5.7. Asymptotic scaling from

fi — 6.0 to /? =  5.7 for t.he IP -lS  splitt.ing, is succe.ssful provided tliese glnonic

corrections are taken int.o account.. This increases a~f-  ̂ at. ji = 5.7 to about. 7 %tbb]
which is significant, when converting to physical units.

For future work relativist.ic corrections must, be includeil to reduce t.he remain­

ing systematic errors. This should be possible for (.tharmoninni. Cfiarmoniuni is a 

good system to use in order t.o gauge the improvement, program of NRQCD since for 

example the S hyperfine is known experiment.ally. Any changes seen in the Char- 

m onium spectrum  can be used l.o monit.or t he iiossil.de changes exjiected in Dpsilon. 

Performing nncpienched simnla.t.ions for Charnionium is also necessary whicli will 

help to decide the effect, of cpienciiing on for example the S hyperfine Sjdit.t.ing. Do­

ing such simulations will also enable another value for the st rong conpling constant., 

O’s, to be extracted. Agreement wit.h I.he result, from Upsilon will lie a great success 

for NRQCD showing that sysi.emat.ic errors are under control. If sirnnlal.ions for 

Upsilon are done again at fi = 5.7 then it. must, be necessary to correct, for 0 [ ( r )  

corrections in the chromo-magnet ic and elect ric fields. More irnport.ant ly con figura­

tions from a 0{(B)  corrected gluonic act.ion should lie used. it. will be inl.eresf.iiig t.o 

observe the changes to see if t.hey agree wii.fi the ]iert.urbal.ive and non-pert.nrbat.ive 

estimates. This underlines an im|iort.aril. jirincijih' of NRQCD. One should identify 

lattice spacing errors and correct for t.liem syst.enialically instead of naively t.aking 

the lattice spacing to zero by using higher (i values.
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