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Abstract

Traditional perturbative lechniques for solving QUD ave unable to successfully de-
scribe the properties of hadrons, where non-perturbative ellects are likely to he
present. One way Lo solve QCD non-perturbatively is to use Lattice QCD which
offers a solution of QCD from Arst principles. Thig thesis describes the solution
of bound states of heavy quarks using a Non-Relativistic formulation of QCT)
(NRQCD) together with Taltice techuiques.

Chapter 1 is an introduction to QCD as well ag Lattice QCD, introdncing the
discretized action for relativistic fermions and the gange field action. Chapler 2
descrihes potential models which to some extent can successfully predict the spec-
trum of Quarkonium states composed of Charm or Bottom quarks, NRQCD is then
defined as an eflective field theory in the contivnum and relativistic covrections are
derived as a power serics of the typical quark velocity inside the Quarkoniwm, In
Chapter 3 NRQOCD is derived on thie Lattice and the evolution of the quark Greens
function given. The importance of tadpole- improved perturbation theory is stressed
and its effect on spin-splittings is noted. Operators for various spin and orbital an-
gular momentmin states are derived and smearing of these operators are done to
increase the signal to noise ralio. Chapter 4 deseribes the caleulation in detail of
the spectrum of Charmoniui, To exbract ground state masses to high precision
and also excited states, fits of mulliple corvelation functions to multi-exponential
terms are dore. The spectinm for Upsilon is calenlated an a coarser lattice than
has previously been done to try to quantify any remaining latlice spacing errors.
The spectrum for B, mesous is also calculated. These exotic heavy mesons have
nol heen observed experimentally yet and the low lying states calculated can act
as a prediction. In chaprer b the two most important systematic errors remaining
in the simulation are estimated using a simple Schrédinger equation. These errors
are quenching and Of«)® corrections in the gluonic action. Adjusting for ((e)?
corrections it is possible to observe scaling of mass-independent. splittings on going
from a finer Lo coarger lattice, 'Lhis indicates there is no significant ervor lefl from

lattice spacing errors. Chapter 6 is the conclusion.
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Chapter 1

Introduction to Lattice QCD

1.1 Introduction

In particle theory taday there is a highly suceesslul model of particle interactions
called the Standard Model (SM). In the SM ihe fundamental particles of nature
are [ermions interacting with each other via exchange of virtual gauge bosous. To
understand the interaction requires gauge invariance and the SM demands imvayi-
ance under SU(3) & SU(2) @ U(1) rotations. SU(3) deseribes QCD the inleraction
of quarks and gluons. SU(2) @ U(1) is the electroweak internction describing ble
interaction between leptons and the W oand Z particles with the symmetry breaking
at low energies to U(1) of electromagnelism and the wealk interaction.
Traditionally to caleulale quantities of physical interest, scabtering awaplitudes
and mabrix elements, requires the use of pertwrbalion theory whaore a power serics
in bhe typical coupling constant between the appropriale fermion and gange bason
is used. Higher terms in the series vepresent more complex passibilivies for exchange
of virtual gauge bosons hebween fermions. Collectively these differing processes arve
called Feynman diagrams. For QD the charactevistic conpling conskant v, =2 51z
and the series is very convergent making QET relatively simple Lo solve. ITowever
for QCD the coupling constant o, = (1) and will canse perturbation theory (o
break down., QCD has the property of asymptotic freedon where thie typical cou-
pling constant increases as the momentnm scale at which one wants to solve QCD
decreases. The opposite 18 true for QED. One imimediale consegnence of asymp-
totic Treedom s that the quarks are confined into bound states called hadrons. The
coupling consfant increases as the separation of the quarks increases or the lypical

momentum exchange between such quarks decreases (ApAz = 1), In order to un-



derstand for example the mass spectrum of QCUD, where such bouud states rely on
the mechanism ol econlinement and hence non-perturhative QCD, another way to
solve QCD other than from perturbalive methods needs to he found.

In the next sections the formulation of QCD is given and it is shown how throngh
the path integral approach if is possible to extract non perturbaiive QCD physics

using the method ol Lattice QCD [1].

1.2 Detining QCD

QCD, like all gange field theorics, is defined through a Lagrangian density Locp
or equivalently the action Sgep = [ @'z Loep. In analogy to U(L) of QED the

Lagrangian density in Euclidean space [2, 3, 4, 5] is

Locp = Lp + Lg (L.1)
where
Lo = §Tr Ml (19)
with
Fue(®) = 8,48.,(2) - & Aule) — g [Aplx), Au(a)] (1.3)
and

Lp — E(:l) (71: (({J;( |- i!l(}f(l;t) + ﬂ"[(l.] '125(-7-')

{Tﬂ:‘_"i) } . 2(‘".;w ’}’l = T {14)
Under local SU(3) rotations the quark and ghion fields transform as

TfJ,(:l:) — Gla)p(x)

— L -1y .
Ap() — Gla) A, ()G ) — (—’(;(a,-)a,‘ 2 ) (1.5)
Lr and L arve invariant and colour charge at any space-time poinl is conserved.
quantities which are then compared o experiment Lo Lesl the theory. One way to

do this is to use the patl integral representation of quantmm field rheory where the

expectation values of time ordered produch ol interpolating ficlds are calculated.
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'T'he path interal is defined as a partition luaction given by
Z= / DpDyp DA ™ Seco (1.6)

where D9, D and DA is a short hand vwotation for ifergrating over all possible
quantum fluctuations of the quark, anti-quark and gluonic Gelds. Defining a collec~
tion of time ordered product of fields as (4, ¥, A) its expectation value is given
by

1

e

<

< O0h, 1, A) >= /’DJ’D-J)’DA O@h, 4, A) e~ Saen (1.7)

I perturbation theory the total QCI aclion is split up inko the free action for

the fermion and the gauge fields and the interacting parl. of the action. Hence
‘S'QCD = SFP@& + .S’[nl. (18)

and the exponential for the interaction part ol the action is expanded in the coupling
constant go. By doing this a series ol Feynman diagrams can be built np and ihe
amplitudes {or the various processes caleulatled analytically. ‘Ihere are & number of
drawbacks to this, notably one has Lo have go small enough lor perturbation o be
valid. Also the calculabion invabves integrals which are in general divergent and will
need to be regulated. I it is roquired to solve QUL in the noa-perturbative reglon
where go 1s ©(1) then a new method to evaluate equ (1.7} will need to be found.

This is where Lattice QUD comes into play.

1.3 Lattice QCD

Tn Lattice QO space-time is split up into a set. of diserete points on a finite volune.
This introduces a nainzal cut off in momensum space of order of the inverse of the
lablice spacing «='. The path integral in equ (1.6) is well defived and not necessarily
divergent. Instead of expanding in go the wliole exponenlial term containing the
interaction part of the action ig kept and the patll integral evaluated numerically.
This allows a study of nou-perturbative cllects,

The formulation of QCD in Lhe continuum requives gange invarianee whicl must
also be the case on Lhe laltice. To define a gauge invariant action the [ollowing path

ordered quantity 1s introduced
. v
Uly,x) = peliom [l i) (1.9)
and nuder a general gauge transformation G(a) the quantity translorms as

Uly,2) = Gyt (w, :;Y)G'"l(g;) {(1.10)



It 15 then straight forward to produce a gauge invariank object like lor example
T (g, 2 )ei) (L11)
Discretizing the fezmion Lagrangian £ is achieved by replacing
. i .
Fpp() = % (w2 4 ap) — (e — ap)) (1.12)
a

on a lattice with spacing a. Tor gauge invariance the path ordeved inregral equ (1.9}

between two lattice points is defined as
U, p) = elfrde@m (1.13)
From (his il follows that ibe aclion Tar fermions i the interacting case is given by

N — ] . )
Sp = a* L P (7# - [U{x,,u.)-u‘)[m boage) = Utz - a, p)p(e — u.;:.)] o i‘lf(;'f}i‘(.‘tlj\l.l‘i)
1 /

i

Looking at the dispersion relation for such fermions in the free ficld case one has
E* = M* 4 (a™")? Zsinzg,ﬂ. (1.15)
i

where 7" < @ < 77, For i — 0, E? — AM? which is the conlinuum energy for

a lermion wilh zero momenbwin iz the low energy region. Ilowever for ¢ —

Al

E? — M% as well. There is Wien an extra particle in the low energy region even
though its morentunt is high. This is purely a lallice artifact and in d dimensions
one has 24 fermions using Lhe naive action equ (1.14). To cirenmvend Lhis problem
exlra operalors can be added to the Lagrangian which disappear i the continuum.
The meost commonly used aclion is Lhat given hy Wilson [6] where the operator
A

L p(z)A%p(x) is added to equ (i.14) to give an action

Swr = Sp - %j- aly(a) A% Y(r) {1.16)

T
A? is the laktice version of the continnum Laplacian and v is set to unity. Frorw

this action in the free ficld case the dispersion relation hecomes

n
E* = |M4ati(1- Z cosgqia)] 4+ ((I._1)2 Z sin“gia (1.17)
i i
Taking ¢; — 0 as before one has 7 = A2 hul now when g; — = £ — (M +2e7).
Approaching the continuum a — O the affective mass becomes infinite and the extra
2% — 1 fermions do not propagate and hence decouple fror the theory.

As for the zauge field action on the latlice this too should be gauge invariant as

m the contiruum case. To make up a gauge invariand operator consisiing of U fields




will involve taking a trace. The sunplest example is 1o Lake a trace of o plagucelte

defined by

TrOy,(z) = 2 (ulx)Uy(x + )V (x -+ av)U N ) (1.18)

which is invariant nnder the gange transformation U, (2) — G(2)U,(2)G 1 (2 ap).

Defining

e

Iz

(w) = elinoe™ () (1.19)

and taking the naive continnnm limit one Guds that F5 (2) — Fp(w) +O(a) where
Fuu(2) is given in equ (1.3). From this it is straightlorward to show that the gauge
field action on the Taltive s
. . 7"}' . .
Sz =8 . [1 = W)+ (WO ()) (1.20)
PN -1

with 8 = %

1.4 Numcrical Simulations

After defining the actions for the fermion and gauge fields of QU il is necessary
to show how the lattice can he used Lo caleulate expeetation values. The partition

function is now given by
2 = /D‘.,f:"pz,n'z)(fe*ﬁ'@f--‘ﬂ (1.21)

where as before Sgop = SF + Se. Bul now, because we are on & (inite latlice, the
integral is well defined. Since
Dip = [[dip(n) DY = || dpin) DU =[] dliu(n) (1.22)
n n N
the integration measures in equ{??) ara finite which in tiru ensures that the par-

tition funciion is finite and well defined. I we express Socop as

Sqen = ZEM(U. ¥R+ Sg {1.23)
¥
theu tle integration over the Grassmann fermion fields can be done analytically Lo

obtain
Z = /'nu det M (U g™ Seer (1.24)

Fxpectation values of an operatey ¢, 9{(y), w(2)) can then be evaluated. One of

the most used operators in Lattice QUD is given by C(H(y), 9{a)) — ¥ (u)hp(2) and



the expectation value < Tf?(y)ij}(a:) > ig calfed the Greens lunction Gy, ). It folows

that
17 . .
Gy, a) = Z / Dy quf_l((.f,y, ) e o del M (1) (1.23)

Initially to evaluate the expectatlion value numerically one wounld generate a random
confignration of SU(3} matrices and evaluate detAd{I/)e™5¢ for this confignration
explicitly and then average over as many coufigurations as required. This Lhowever
is computationally very expensive due to the large range in valnes of ¢ =79, A wore
efficient way is to use importance sampling where rhe pauge fields are generated
with weight det M (U)e™ e,

Then quark Greeus function Gy, @) is estimated by evaluating

Neans
-1 l ~ ¢ s N e
Gly.») = & — > G x) (1.26)
ens =l

where M ~!'(I7, 4,2} has been rewritten as G(U;,y, 2) for conlignrution 7. An-
other approximation in the numerical procedure comes ftom negleching to evaluate
det M(U). This is a non-local gqnantity and is too cosily 1o calculate for present
computer power. In this so called quenched approximation whicl mosl laltice sim-
ulations use, detM(U) 1s set to unity. In perfurbation theory doing Lhis is equivalent
to neglecting internal guark loops.

In order to find G(U;, y, 2} it is necessary 1o solve an equation of the form
SO MUy )G (Ui w' a) = X, w) (1.27)

For x(y,2) = &y, G\ (Ui, 2", 2) is the usual Greens function G{T;, z',2). Since
G. U a,ey=5 GU;, &, 2)x(z, x) this is known as smearing the Greens function
¥V, 3 X :

with the function x{z, =).

1.5 Hadron Correlators

To simulate hadrons with specific quantum numbers it is necessary Lo write down

the correct operater with the required quantum numbers, For siplicily cousider a
. . . 3 ! R .

meson containing a quark and anti-quark with flavour f and /. The operator will

be of the form
O = I/ (1.28)

where T' is a specific collection of v matrices and dingonal in colowr space. For a

pseudo-scalar meson I' = g where as for a veclor meson T = ;. The propagation



of this meseon from space-time point @ to y is represented by the correlaiion function

Cly ®)
Cly,®) =< 0]0(3})0'(.1:”0 >=< [)l?(y)]f‘f(y),?(m)1"T_f"{;z:)]U > {(i.29)

Putting in explicitly colonr and spin indices and using Wicks theoram to factorize

the diferent Javour quarks it is possible to rewrite C'(y, @) as
Cl.w) = 0[G4 (2, 0C (3, 2)T (1.30)

where the trace is over colowr and spin indices. Therefore the procedure in numer-
ical simulations of QUD is 1o find the inverse of the matiix M(U), average over
configurations to obtain the guark Green function aund combine this appropriately
to produce the required hadron correlator. But what physics can he learni from

knowing C(y, a)? Consider
Clt) = Y < 0]0(x, 100, 0)]0 > (1.81)

where we have made explicit in the RIIS of equ (1.31) the spatial and time co-
ordinates of @. In the Feynan path integral approach the operator €2 is in the

Heinseubery representation aud evolves in Buclidean (ime, Hence
Ox, 1) = ¢ =00, g)etia==T0 (1.32)
for some ITamiltonian operator H. Inserting a complete set of states into equ (1.31)

S ha<ngl = | (£.33)

g,

where the base states have been normahized so that

<nglmp > = ,58nq {(1.34)

Gl = Y0 < 0a(x, g >< nql@T(0,0){0 >

X011

= Z |< 0]E0, D)|neg > |* o Buftiax

2.8,0L

= Z Sqal< 000, 0)|ng >i* e !
M,q

00,0 > e Ml < i)

= > |<0

n

O, 0)|1 > e M {1.35)

e



In the large Buclidean time limit the hadvon corvelator decays exponentially fast.
In the large time interval this is determined by the lowest mass Ay of the hadron
with specific quanliun waubers delertnined by the operator (20 Tn the simmalation
My can be found by evalnating

ci - 1) e
—in |:“'“C':'—l:'t—)——':] (l.db,l

as { — oo. The amplitude < 0|@|L > is the matrix element for the decay of
the hadron, a non-perturbative quantity which can only be calculated by Lattice

simulations. ‘T'his 15 also true for the calculation of the hadreon mass.




Chapter 2

Non-Relativistic QCD

2.1  Introduction

Ever since the discovery of the Charm gquark [7, 8] and even before the discovery
of the Bottom quark [9, L0], potential models have been used will considerable
suceess Lo predict the spectrim of heavy-heavy hound states. In this chapler a
gimple mtroduction to potential models is given and their basic {eatures which
can be used to explain the bulk of the the heavy meson spectrnm. Next Non-
Relacivistic QUD (NRQCD} is introdnced as an eflective field theary of QUD in
the heavy quark limit. Power counting in the typical quark velocity v* 18 used to
order the relativistic correclions away fram the Non-Relativistic case. The relevant
operafors representing these corrections are wrikten down and their significance [or

the meson spectrum deseribed.

2.2 Potential Models

In the Standard Model there are six quatks {accepting now thoi the top quark does
exigt). They fall into two calagories with the typical seale of QUD (Ageop) sepa-
rafing them. [f one assumes that the typical momentinm of quarks inside hadrons is
O(Agep) then for quarks with mass O(Agep ), le the u,d and s, they are eonsidered
to be relalivistic with v* 2z ¢®. Tor the other three eb and t whose inass are very
much greater than Agep they are considered to have velocities v¥ << ¢, 1L seems
then appropriate to consider ¢ and b and eventually 1 in Lerms of potential models.
The starting point wonld be to pick an appropriate spin-independent potential and

solve a Schirédinger type equation to predict spin-independent splittings for exam-

L1



ple. ‘Lo get an understanding of the type of potential to he chosen it is useful to
caleulale somie clastic scattering between an equal mass guark aod anli-quark and
perloru ¢ non-relativistic expansion. This will not only tell us the form of the static
heavy quark potential but also the type of relativistic corrections.

The matrix element for such o scattering M}‘ between a quark and an anti-
quark with initial momentom py, ps inte a final guark and anti-quark state with

final momentum qq, g2 can be expressed in the form
M = T(q)Tu(p)) Vo (o1 — 02)(p2) T 0{g2) (2.1)

where ' determines the spin structure of the interaction. L'he I”s are made up of
Dirac gamuma matrices and classify the different types of potentials. In the non-

relativistic limit the dilferent potentialg contribnte according to {11]

Ticatar = 1 =V, (2.2)
Upsendoscalar = 75 — U (2.3)
Uyector = T — W E.fl)
Iasial~veetor = Y7o — 1,09 Va (QBJ
Viansor = &y = 0.0y Vp (2.6)

There is no pseudoscalar static potential contribution al leading crder. For the
axial-vector and tensor terms this depeiuds on the spin @), 0s of the quark and
anti-quark at leading order. Consequently this would mean that spin-dependent
splittings would be of the same order ag spin-independent ones which clearly s not
the case from experimental data. These rwo potentials are then ignored. One is lefi.
with the conclusion that at leading order the siatic potentials consist only of sealar
and vector parls.

Tt is possible o calenlate the mairix cloment perturbatively viz one gluon ex-
change which leads o a porential of the form V -~ {%, [ is straight forward o
show that the resulting potential in position space is W (») = ""_;OT' the {amil-
iar coulombic type potential of QED. This will be the dominant potential at short
distances where the momentiim exchange is high and pertwbation works. For the
long range potential, hecause of confinement, perturbation is not applicable and a.

phenomenological potential will have to be used. This is taken Lo be of Lhe form

12




aR™ for n > 0. 'I'herelore we koow that the static heavy guark potential has a
vector and/or scalar part and that at short distance the polential is coulombic aud
at large distances the potential increases with distance, 16 is normally Laken that n
= 1 from spectroscopy considerations as well as lattice resulis. The next question
to agk is whether these potentials are of vector or scalar or both in natuve. For this

we need to know what the relativisiic correclions are.

2.3 Relativistic Correctiaons to Potential Models

One way to caleulate relativistic corrections is 1o use the melhod of Eichten and

Feinberg [12] where the spin-dependent potential corvect up to order -2z is given hy

L1.S:i—TaSs (V,(») |
Vap(r) = === ( né " V;(r))

$1.5,
L) 4 L2 0 9
) Va(r) 4+ S Va(z)  (2.7)

L:.S2- Lp.Sy Vf‘ (1} n ((1‘.31)(1‘,52) _ S$1.8,

miy ! mir? 3

where Ty = » x P; and V¥, is the heavy quark static potential. The importance of
writing it #his way is because the Vi’s can be wrilten in terms of cross-corvelations
between the chromo magneiic and eleckric fields and this allows a non-perturbative
treatment using, for exauple, lattice techniques [36]. A perturbative treatment is
possible il we make the following identifications in terms ol the vector (14) scalar

(Vs) and psendoscalar (V) potentials

Vo) = Vi (r) + Vs (r) (2)
Vilr) = ~Vi(r) (24)

Vi) = Vi (r) (2.10)

vy = D= VED) ey — v (2.11)
Valr) = 29 Voo (r) -+ 92Vilr) (2.12)

Forgetting the pseudoscalur potential Vp(») for now one ends up with Lthe well
known Breit-Fermi Hamiltonian

p? p?

H = 2m - s T Volr) + Ver(e) + Ves(r) + Vas(r) + Vir(v) (2.13)

13



where Lhe lollowing potentials are given by

1
— e [ Sy — 2 , 2.
Vis T ( dlh/(ﬂ l + (1 )) L.S (2.14)
Vas = 2 55182 V* W (r) (2.15)
T 3m?
1 1
po=m—— [ = — — ) 2.16
Vi 12m? (1 dr Vo () h (r )) = (2.16)

with the abbreviation

C oy ((BL)(Szx) L o 1~
-.6'12:.[2(““—7’2——581.53 (21()

Treating these inferactions perturbatively it is possible to {ind expectation values
of the appropriate operators using suitable wavelunctivns. For this the expectation
values of 8.1, S3.82 and 512 will need to be evaluated. Decoruposing the eigenvalues
into the total spin 5§, the relative orbital angular momentwn L, and he Lotal

momentum J = L 4+ 8 it follows that

<8SL>= é[J(J—H)— LL+1)~5(S+ 1) (2.18)

1
< 81.8y > = 5(5'(.5’ 1y = 51051 + L) = Su(Se + 1)) (2.19)
it can be written in the form
5.a) “
Spy =2 (5( ?‘} s~) (2.20)

and using the method of [14] Lo caleulate Lhe expectation values of Lensors one has

b

For §:5 with 5§, = }, and Sy =

—12 1 1.
< Sy > = - SL>24+-<8L>—~ + 1) ]2.91
51 > BT =120 +3) (< > +2(SL‘> 7 S(S+ DNL(L 1 )JZI]

Using these results we see bhat for either L=0 or S=0 the spin-orbit splitting vanishes
as well as does the tensor termu. Represenling a twa hody cqual mass bonnd stale
by the quantum numbers 25410, where T,=0,1.2 is replaced by $,P,D the above
expectation values for various states can casily be calenlated. For the (25! Sy)
states, < $31.82 >= (%, 2). For (*#.° % A) states. < S L >= (1, ~1,~2),

1

S1p = (—%,2, —4) and < 8.8 »—= 1.

5+ The eigenvalues for the 1P state are zero

except for < §1.8z >= — 2.
From the knowledge obtained so far we know that the static potentinl has a
vector and scalar contribwtion willi a short distance coulombic potential and a

linearly rising confining potential. We will now use the I hyperfine splittings to

14




deduce further the make up of the heavy quark potential and decide on which part
of the potential is scalar and vector. To do s a pavaueler pis defined as

_ j'l-f?r(n.F’_J) - J’W‘—(SP])
P = MEP) — M(P)

(2.22)

¥rom the previous expressions the spin-orbil and tensor terms will contribute to
this splitting, the spin-spin term if it docs contribute at all to the I states will
be the same for all I* states with S=1 and will not contribute to p. Lets assume
first that the static poteniial is purely of vector type so that Vi = V4 and Vi = 0.

Taking Vo -+ —5%= + op then

18wy <+ > 470 < vt
p= g 1 (2.23)
D 200 < r P > Fo Ll >

given the hounds ;i <p < % for ¢ = 0 or e, = 0. Tlug is nol congistent witd the
experimental valne g, & 0.6. Similarly a pure scalar is ruled out which would
give a value p = 2. In conclnsion the static potential has Lo be made up of both a
scalar and a vector part. Tt is ushal to sdentify the scalar part of Lhe static potential
with ov the conlining part of the potential and ihe veetor part wilth w%rrﬁr. The g

parameter equ (2.23) now hecomes

[Bug < ¥ gyt )
p= i : (2.24)
V20, <A > o b >

which for a purely coulombic term & = ) gives 0.8. Ience (here must be a non-
gero scalar confining part or which reduces the ratio equ (2.21) to agrae with the
experimental value [15, 18], If we now substitute Wy = _;_l*ﬁr_a into the expression

for the S hyperfine splitting equ (2.15) and evaluaie perturbalively

8‘ " <y ) .
AVgs = —(JT”r; < 81.8z > ¥7(0) (2.25)
a1

we see that the splitting is only going to effect states which have wavefunctions ai.
the ovigin, for exampie the S states and will not effect P or D states. The 1Py gtale
then is not effected by either the spin-spiw, spin-crbit or the tensor term. Thig is
verified experimentally to a good approximation since the splilling between the '/
and the centre of gravity for the 9#,3 Fy and 3y states is very small [17]. “I'hig
indicates that the spin spin interactiow is abgeni tn the P states and in turn sugpests

that indeed the vecior potential is maostly conlombic in behaviour.




2.4 Non-Relativistic QCTI) as an effective field the-
ory

Potential models described above cun be very successful in accounting for the balk
cffcet of heavy-heavy meson spectroscopy. There are disadvantages to this approach
in that it is only a model and not a calculation of the meson spectrwm from first
prineiplos. For examiple the heavy quark potential has two {ree parameters which
need o be adjusted. Normally the lowest ground s$ates stales are used to fine-tune
these parameters and then higher states can be predicted. Another drawback 1s
that 1t is still not certain whether the scalar parl of the heavy stalic potential is
the confining part and whether the short range coulombic plece s vector in nature.
However potential maodels should not be totally dismissed bub should be used as a
guide to solving heavy queark physics [rom first principles.

Tooking at the spectrnm for Charrnoninm and Upsilon one can see straight away
the positropiwm Lype specbrum represeniative of non-relalivistiic behaviour. One
pportant observation ig the magnitude of spin-independent splittings relalive Lo
spin-dependent ones. For example in Charmmonium znd Upsilon the typical splitting
between excited statcs or splittings between skates of dilferent angnlar momentum
18 about 500 MceV. Comparing Uus Lo spin-dependeni splillings, {for example, the
S hyperfine ov the P hiyperfine in Charmonium these ave byplcally of the order of
100 MeV. The same is truc also of Upsilon where spin-gplitlings are of order 50
McV. From potential models 1t is possible to calculate the typical quark velocity
inside a heavy-heavy meson. ‘Lhe velocity for the Cliasm guark is +* = (.3 where
as for the Bottom quark v? = 0.1. Looking al the speclrura for Charmoniwm and
Upsilon it looks like spin-dependent ¢uantilies are down by the quark velocily and
sugpgests thak velativistic carrections can be added as a power series in #%. Lhis is the
approach that Non-Relativistic QUD (NRQCD}) takes, IL is an eflective field theory
where corrections are added according to the importance or weight the corrections

have on the physies involved.

2.5 Energy Scales in Quarkonium

In order to understand NRQOD more and why il is well situated to Quarkoninnmic is
best to try amd understand the diflerent enerpy scales involved and the impaortance
each one of them has. These scales are the heavy quark mass M, the quark’s

momentiun Mv and the quark’s kinetic energy M+®. The gquark mass M sels the
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overall scale ol the meson and fhe geale for avnihilation. The quark’s momentum
M determines the size of the meson (5) and its kinelic energy Me? determines
the size of spin-independent splittings. In such mesons, since the typical quark
velocity v? << |, there is a large disparity in the three energy scales. This will
make it difficult to solve on the latlice i all thvee energy scales are present in
the simulation. A first step would be o explicitly remove the mass scale {rom the
theory. This will only alter the wero al energy and not {or example the value of spin-
splittings. Tt is still possible lor quarks with average momentum Mw to fluctuate
into relativistic states of value M but since this would occur for only a short peried
these relativistic corrections can be introduced as local interactions with coefficients
determined perturbatively.

One starting point for the derivation of NRQCD is to perforim a Foldy-Woulltuysen-
Tani transformation [18] on the original QCD lagrangian. This transformation is .
unitary transformation on the four fermi dirac fields which decouples the upper and
lower components systemalicalty in powers of 7 leaving a Non-Relativistic expan-
sion. Following the example given in [19] one ends up afler such a transformation
with

P!

T(Doy— M)W — 41 (?‘.D; — M+ -D—) ek ! (J-’—-a.n 4 AE) #(2.26)

2M 28 82
Although this expansion is valid for an individual heavy quark one needs to ask
whether this is an appropriale expansion for heavy quarks in Quarkonivnt. Looking
at the expausion one sees thal the .3 term, which will presurnably be responsible
for spiu-dependent splittings, comes in at order ‘-ﬁ: This is the same order 1o ﬁ a8
the kinetic energy operator which is mostly responsible for #pin-independent. split-
tings. This suggests thak the two types of splitlings will be of the same order which is
clearly not the case. As previonsly menijoned spin-dependent splittings seem to be
down by approximately »* and il loaks like this might he an appropriate expansion
parameter rather than ﬁ To derive NRQCD we perlorar the WL transformaltion
to produce the relevant relativistic corrections and evaluate the expectation values

of the resulting terms ixn terms of v* and order therrt appropriadely.

2.6 Power Counting for NRQCD in Quarkonium

The work described helow closely [ollows the work of [20] where the magnitnde
for various fields making up NRQCD 0 o Quarkonium stale are estimated. To

starl. with Lhie estimaled magnitude for the gquark feld ¢(a) (or cquivalently the
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anti-quark ficld x(2)) is made. The numbher operator

/(l%tr{ﬁ(.xt)y"(.z:) (2.27)
which jusi counts the munber of heavy ¢natks is one for Charkonium. Since the
quark is localised in a region Az~ b=

/(13.1::/1-(:1:)'#{:12) ~ (Az) Pl (@) () (2.28)

assuming the fields do not vary significantly over the region Awx. From thig ¥{x) ~

(M'v) The expectation value for the kinetic encrgy operator will be Mu? hience

/J“.t gt (‘)W"" z) ~ Mu® (2.29)

ga D ~ Mo, From the lowest order Schradinger equation
( D* . : o

Dy + m) Wla) =0 (2.30)
this leads to Dy ~ Mv”. For a non-relativistic bound stale Lhe virial theorem tells
g that the kivelic energy is balanced by the potential energy so that the potential
energy gg(x) ~ Mv?. To find the estimate for ithe vector potential ternm gA (a) it
is best to solve the field equations for the vector Relds which gives gA(x) ~ M7,
From these bwo estimales it is straight forward Lo abtaiu the eslimate for the electric

and magnetic fields

oB(2) = - 7 gd(a) ~ M7
GB(2) = g 7 xAfx) ~ Mt {2.31)

using the tact that 5/ ~ (M),

Using these estimates it is possible (o hbuild up various operators order by order
in v* away from the leading Schradinger equation. In deing so the operators can
not. be arbitravy and wmwust obey the symmelries of QCILY ie charge conjugation,
parity and gange invariance. This limits the possihilities and to @(»*) Lhe possible

correction terms are

L
. ,’t ™ Eo0f o g e
(181‘/]3‘0 (21D a) (2.32)
osm‘[,,w (#)(D.E ~ E.D)(x) (2.33)
3‘%11 i) e (D x B — B x D)yifa) (2.34)



Ly
9

(&) Be(a) (2.35)

I'he first term is simply the first relativistic correction from the relativistic energy
momentum dispersion relation B? = I'? + M?. The uexl is also a spin-independent.
relabivistic cortection and is the QCD equivalent of the Darwin term in QED, The
last two are spin-dependent. ‘Fhe . B term vemoves whe degeneracy between states
with differenb spin orientations and the D x E will act as a spin-orbit coupling
producing a P hyperfine splitting in the p states for example, We expect from
the ovdering of the operators in the typical quack velocity v that spin-dependant,
splittings should be down by about v? compared to spin-independent splittings.
This seems to be the case in the experiinential determined specirumt lor both the
Charmoniuim 2nd Upgilen. In a calculation in which only the above operators
are used there will be systemalic errors arising from the omission of relativistic
corrections coining in at Q(v¢). i is expected then that spin-independent splitlings
will have an accuracy of O(v?), since the leading order corrections at Q(¢*) will
effect these splittings. Similarly a relative aceuracy of ((w*) in spin-dependent
splittings is possible since they will be effecled by operators which first ocour at
(v}, the next to leading order.

For full predictability of NRQCD the arbitrary coupling constanis ¢y, ¢9, ca, ¢y
need to be evaluated. These coupling constants will depend on the particular e,
off A used and will cancel the cut-off dependence ol the operators to ensure physical
guantities are independent of A Lo some specific order n perturbation theory, To
evalnate the coupling coustanis at tree level & FW'L transformation can he per-
formed to the appropriate order in J%, for which ene finds Lhab all ¢'s are unicy.
Another way to evaluale Lhern is to calenlate scattering amplitudes in (all QCD at
low energles and match these resulls in scaltering amplitudes calenlated in NRQCD
[20). Radiative corrections will occur awvay [rom free-level values and will depend
on o (M) and the ratio & [33]. Taking A to infinity is not possible since the per-
turhative series breaks down which is just o veflection on the non-renormalizability
of NRQCD. 1 however A = “'—, the perlurbation will work {or large enough M.
This will then leave two fundamental paramelers left which are exactly those in the

original QCD TLagrangian, the bare yuack mass and the bare coupling constant.

2.7 Heavy Wilson Fermions

Any action defined on a {ailice is an cffective field theory, whers the cui-ofl in

momentum space is of the order of the inverse of tie lattice spacing ¢!, As in any




offective thieory one expects problems to arise when the highesl momentom nodes
are greater than the cut-ofl. For example for heavy quarks with a bare mass of Ay
it is expected that the Wilson formulation will break down when Maa > 1. To gel
some idea of why this is so a non-relativistic expansion of the evergy-momeninm

relation for a Witlon quark can be performad to obtain the expression

9

P~

K= M : (2.36
L 20y { ]
with
My = log(1 4 Maa) (2.37)
My = 2.38
- Maa ( )
For small Mopa, M, = My and Lorentz invariance iz restored al this order iv the

expansicn. However this will not. be the case when Mpae > 1. Correction terms
will have to be added to the ariginal Wilson action to gel the Lwo delinitions of the
mass to be equal. A different interpretation of the problem is to vecognise that just
as in NBEQCD the mass term M is redundant. and only alects the gero of energy.
It is the mass termy Ay which determines the splitiing between different orbital
angular momentnm states aud hence sets the scale, 10 a dispersion relation sunilar
to NRQCD is calculated so that the mass My is ixed to sone physical quantity then
it s expected that Wilson fermions can start to carrvectly degeribe heavy quarks. Of
course the mass term appearing in the p* term will he incorrect and a correction
term will need to be added.

In Wilson fermions there are (}{a) corrections present which can be explicilly
removed nstng the Symanzik improvement program [21]. I'he Wilson fermion action
can be corrected from these ((a) corrections by adding the term [22]

. C - .
AS = r._r,:rj.-:-ij.". Z -:;.I(;rr]r,-',“,Fw,:‘f'.l(m) {2.39)
PR

so that an Improved Heavy Wilson (1HW) action 1s deliued by
.S“r Wy = ;S'H.-’,h' + AS [24 U)

At iree-level ¢ == 1 and the remaining carreciions will be CHaa). Mean field esti-
mates of vadialive corrections changes ¢ tao 1.4. Al tree-level the improvement term
adjusts the mass My delined by the interachion %TFB" to be equal to My {23]. However

the mass Lerm appropriate Lo the spin-orbil interaction is ircorrect and using equ

(2.40) it is not possible to calculate Lhe p spin-spliktings corvectly. Bxtra correction
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terms will need 1o be added o achieve the sarne accnracy of NRQCTY in its present,
form. OFf course since it is the discretization crrors which hreak Lorentz invariance
in the Wilson formulation it is possible to take the Jaliice spacing explicilly io zero
by brute force to obtain a fnlly Lerents theory. Correction Lerms will then no longer
be necessary. A comparizon in the spectrum of Charmonium between the Wilson

caze and NRQCD will be made in section (4.2.5).

2.8 Why use NRQCD for Quarkonium 7

Before we can answer the question why use NRQCD to study Quarkenium it is
besl Lo ask the question why study heavy quarks at all. One simple answer is Lhal
there is a lol of experimental data now available to compare to. Decays of heavy
quarks into ofher heavy quarks in heavy-light mesons depends on the paramelers
of the Cabibho-Kobayashi-Maskawa, matrix which are arbitrary parameters in the
Standard Model (SM) [24]. Nailing down these parameters cowdd olfer an indication
of pliysies beyond the SM, for example, deciding on whather the CKM matrix is
unitary or not. Also if the objective is to try and solve QCLY and understand the
strong inkeractions it is besl to study the most simple systems whicly for example
heavy-heavy mesons are with their positronium-like behayvionr.

The next question to ask s whal is wrong with potential models since they can
deseribe Quarkonium systems accurately. As we have seen, potential models lose
their predictability to a certain degree by nsing experimental input to Ax arbitrary
constants in the heavy quark potential, One should not disregard potential mod-
els completely but they should he used as a guide of whal to expect when using
NRQCD. OF importance wo is vhat they will be useful in deciding the effect of
certain systematic crrors present in labtice simulations. In particular 1o estimate
finite volume eflcets nsing polential wavefunctions and help correct. Jor the elfect of
quenching.

The answer to why use NRQCOD Lo study Quarkoninim is in two parts., The first
part is that the dynamics are well suited to fatlice simulaiions. For example the
average size of o Charmoniuwm ar Upsilon is about 0.1 te | [ so finite volure effects
which ceour in muck lghter mesons will be negligible here.  From experimental
data the decay of hoth Charmonium and Upsilon for stales above threshold o
a pair of heavy-light mesous is small indicating thot gea quarks do nol have a
significant eflect in such systems. “This means thal quenching is not expected to

have a significant distortion on the spectimii, In simulalions one considers pure
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states whereas experimenially the observed states have wavefunctious containing
o mixture of decay channels into lighter hadrons as well as the prosence of hybrid
states. Since mosl of the spectrum we will consider lics below Lhreshold the first
problem will not be significanl. Decays info purely light quarks are suppressed
by the Zweig rule. As for hybrids these are also suppressad in Quarkoniurm. The
amplitnde for emission of a gluon from a quark is = o, = v hence the probability
for a bybrid state Pgz, is {v*) which is roughly 0.3 lor Charmanium and 0.1 for
Upsilon. Since the reaction time of a ghuon is + times greaier than thal of a quark
this explains why poteniial models which have a Q@ pair interacting with ench
other hy an instantanecus static potential work so well.

The alher reason why NRQCD is more favoured over other theories to solve
Quarkonium is the fack that NRQCD is a much more sfficient feld theory 1o solve
on the lattice. Campntationally the evolution of the Greens Tunciion is an inilial
valne prohlem. Using the loweast arder form of NRQCD the equation of motion lor

the Green's function (f(a’, r) satishies
. DN o, .
(!-Df. - m) _J'(.’!‘. V) = 6_-,,-1_..; I_Z‘“.}

where 2 = (x,1). This means the Green’s function can he obtained through one
sweep of the latiice making the evaluation of the Green’s hinctions very eflicient.
This is in contrast Lo the Divac cage where a large malnx needs to he inverted at
cach time step reguiring many iterations. The iteration can alse be done to as many
tite steps as required and does not sufler from thic problem of periodic houndary
conditions half way across the Iattice. This is because in the Dirac case Lhe quark
and aunti-guark ficlds ave coupled rogether and as well as having particles travelling
forward in time there will also be anti-quarks travelling backwards in time. In
NRQCD the quark and anti-quark ficlds are separated and only the quark or only
the anti-qnark can propagate.

QOther reasons which make Quarkonium an rasy system to simulaie s that
Quarkoniam is relatively suall so different starting sites on the lattice can he used
to propagate the Greens {unction increasing the statisiics. Experimentally the spin-
average 1P-15 splitting is ndependent of the quark mass and is therefore an ideal
quantity to set the scale of the simulation. Unlike hight quark simwtations the cor-
rect bare mass can be chosen for the heavy quark case and no exirapolation [rom
unrealistic high quark mass values to their physical ones needs o he done. Lastly
because Quarkoninm is a two hody problem with the same type ol quark and anti-

quark only the quark or the anti-guark propagabor needs to be calculated which s

22




then combined appropriately to form the required messon. All in all the reasons
piven above should make Quarkonium an ideal system to study noi only to tesl
QCD but also te give us some indications of the fype of systemakic errors which are

involved iv lattice simulations and a framework in which these can he corrected lor.



Chapter 3

Non-Relativistic QCD on the
Lattice

3.1 TIntroduction

This chapter explaing how NRQCD can be adapted to the tatlice. The conneclion
between the relevant operators in the continnnm and ¢n the lallice is made and the
particular quark Greens function which has heen used in Lhe simulation defined.
An introduction to tadpole-improved pertnrbation theory is given and its impor-
tance for hypetfine splittings siressed. How meson operators with gpecific quantun
numbers are formed from the individual guark and anti-quark fields is described.
Smearing techniques are then infraduced in order to improve the signal Lo noise ra-
tio. Finally it 1s shown how to extract wavelunetions aud the momentom dispersion

velation which will be necded o fix the bare quark mass.

3.2 Lattice NRQCD Operators

‘Yo start with it is best to write down fully the NRQCD lagrangian in the coutinnum

which we intend to discarctize. In Buclidean space this is given by
D2
Lxngen = 91 (x) (—Dv + W) w(e) +8Ls1 | 8Lgn (3.1)
where
8L = ~1—-.:;T(-,-}D“-¢( £) — it () (DB — B.D) () {(3.2)
SE gags " AT A T -




and

‘q----rf;T[.-r:_]fr.Bi,'fv(:l:] (3.3)

SLsn = : :‘T(.'C)ﬂ". (DxE-ExD)y(=)+ Y

[
sM?
where the effect of the correction terms have on the Quarkonivan spectrumn is dis-
cussed in section (2.6) ' To discretize this action it is best to consider first the
leading order term. This is a Schrédinger type term and o start with covariant
derivatives in the continuum will need to be converted Lo covarianl shill operators
on the lattice. I'rom section (1.2) gluonic ficlds are represented on the lattice by

fo(%) fields defined as
Up(a) = e 40450 (3.4)

where Aﬁ’(m) — Af;" x) as the lattice spacing a pgoes (o zoro. Under a gauge trang-

formation (/(x) these Ug(a) ficlds travsfornmn as
Uylw) — Gl a)G e -+ @) (3.5)

This is in analogy with the continuum covariant derivative D, which translorms as
D, — G(2)D, G2}, On the lattice we then simply replace
Dyy(2) — A:’-uﬁ(fc} = (e)iie |- ap) — o(w) (3.6)
which 18 a forward shillt operation and for a backwards shift. operation
AT () = p(r) - l;';_mﬁs(ar — aft) (3.7

The svrmnctric difference can be defined also to he

. [
AT = Al +AD) (3.8)
and the Laplacian is given by
AR = T AA (3.9)

Using the equation of motions for the leading ovder Letm in equ (3.1} one ends up

with the evoluiion equation for the quark propagator to be

G, b+ 2y xo, to) = U, 80 (1 — alg) Gix, 1 xo, bo) (3.10)
witl
. A(.+;IA(._'
Myo— N T ‘
Ho >7—« 20 (3.31)

Hrom now on # denotes a veetor in Entidenn space-tinte whierees x will denole a twee dinmen-

siomnal vector




and g = 0 represents the time component in Euclidean space. Translorming this
expression for the free Held case into momentum space Lhe evolution equation can
be written as

4gin? et

Tf(tﬁ‘ G(p, t; to) (3.12)

Glpot+aito)= { 1=
B
For very high momentum there is an instability since al p; = %
Gpyt+ a3t0) = { 1 — e ) G, s 1) 3.13)
(P, t+a;tp) = Sira ) G lita (3.1
which will starl to blow up for dda < 3. To prevent this the evolution equation is

replaced by

Nl
Gl b+ ayxg, bg) = U‘l (x, %) (J - a.—.!'[u} (%, 1%, by) (3.14)
n
which is now stable for Mea > #. The high momentum modes are expected to

have littde effect on the spectrum of Quarkonium which is determined by much
lower momentum modes. The instability from the high momentum modes is just a
numerical cffect. The extra interactions which will oceur to eliminate the instability
will be surpressed by v* as well as the latlice spacing «.

Considering the next Lo leading order in equ (3.2) and equ (3.3) this involves
the caleulation of the chromo-magneiic and cleciric fields on the lattice, Tn the

contimim these ficlds are delined by

Ei(#) - Faile) (3.15)

1
Bi{x) = Efij!.-ij(-l?) (3.16)

so we need a lattice equivalent of Fpp(2). This is taken to e Lhe cloverleal Lorm

e, () defined by [25]

g
' (x) = _L' E O(F)
s 4

where

O(P) = UTw) () i (T (0¥ (x))) (3.17)

2 3
which is hermilian and traceless as in the case of the contimuum version. The

summation iz over all the [our plagueties centred al point 2 and in the g, » direction.
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3.3 Lattice spacing errors to Lattice NRQCD op-
erators

Now that the appropriate NRQCD operators on ihe laltice have been defined it is
necessary to identily lattice spacing exrors and corvect for them. In NRQOD 1t 1s not
possible to take the lattice spacing explicitly to zero because the conlinuum is not
well defined due to the non-renormalizabilily of the theory. Therefore a systemalic
improvement program must exist to reduce the effects of the lattice spacing errors,

Since NRQQCD is art improvement program in v* the eflect ol the laltice spacing
errors in terms of v* wiil needl to be calculated. First consider the correction to the

time derivative. Define £, by
L) = 6(e + afi) (3.18)
where 2 = 0, 1,2, 3. In the [ree field case
Agy{a) = (o — 1) () {3.19)

and i1 momentum space this is

Ag X,{JKJ{P}E:'JJ..T' . X 'i,"l)(}}:lfl"l:f"\':!: (r._;fljﬂu o l)

» n

- i1y o / I ] -
s L w(p)e’t® k';.pga — —ppat ) (3.20)
3 2 !

The lattice spacing correction in the time direction s of O(ppa). T we take the
typical value of jg to be < py > K a2 me? and assume the lattice spacing is of
order of the cut off & & 4 the correction Lerm is ((v?). 'The same can be done
with spatial lattice spacing ervors. ‘Fhese ervovs will appear in the laplacian which
oceurs in the Kinelic energy operator af leading order. Defining the lattice faplacian

as
A9=§ L+t —2 (3.21)
.‘:
and going to momentum space for the free field case gives

Al Z -lf}(p_}e”’-"' — Z‘f:'r’(}-?)ffp'r ({_.i:‘.n e e 2)
IP

»

W / Wy J- /| -
Y Z Pip)e?r {\—p;r:." + Epf(r.* + ) (3.22)
- !



There is then an O(pfa”) ervor away [row tie corlinuunm. Again if one has e = 47
and assume the ilypical jnomeubum p; 1o be < p > mo then the correction
is @(v*) as iu the cuse of the time derivative. 1f an action correct to {2} in
spin-independent terms is requived then these errors need to he removed. Tor the

laplacian v corrected version is shmply

R4
. y o Y o e
A=A - (AFTAT) (3.23)
12 =
12
When removing the time component. latbice spacing error it is not possible to add
higher derivatives in time in becanse this will prevent. the evolulion equalion heing
an initial value one. Instead the lowest order hamiltonian is vedelined ag [20]

Ho -+ Hy=Ho~ %Hﬁ (3.24)

Other lattice spaciug errors will occar for example in the chromo-magnetic and
electric ficlds. This 1s an Q(a?) alfect and since these fields corne in ab O(e?) away
[roun the leading order action they will only need to be correcled for with an action
correct Lo (9(1;{"). There is also an O(a?) error present. in the action for the glhonic
gange flelds which is explained and corrected for in detail in [20].

These corrections are only correct at tree level where the ficlds ave considered o
be classical quantivies. Quantwm effects will undoubtly have an allect aud will need
to be taken into account. A systemalic way to account for the bulk of the radiative

corrcetions is called tadpole-iinprovement. and will be giver in section (3.5).

3.4 Evolution of the quark Greens function

So far the action for NRQCD iu the continuim correct to ({1 have been derived.
The conversion ta the latlice of the appropriale operators corrected for latlice spac-
ing errors has also heen given. Tt is naw necessary to deline an evolution equation
from which the (uark Greens function ean be ealeulated. For our particular evolu-

tion equation for the quark Greens funclion we define

: H Ta
Gix, 1;%0,0) = (1 == “) U0y (1~ N ) bty (3.25)
Z 2n
and bhen continue to evalve this vsing the cquation
(.I’(X, L+ l;inl'U) =
allo\" o aH .
(1 - 2—7~;O> rlx, 0) (1 - 'zTU (J — 4 H )G, 1 X0, L) (3.26)
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The kinetic energy operator He is given by equ (3.11) and 6 contains the rela-
tivistic and lattice spacing corrections delined hy

CO R

§H = — S + g (AE—B.A) -
g ¥ aAt a(AR)? o
s (B E-ExA) - oo B 0T T TonM® (3.27)

The first four termis are the familiar relativistic corrections and the last two the fat
tice spacing corrections for the spatial and time direction. Here A' =5, (A,-A_,-)z.

The lowest order kinelic energy aperator g will act on the the quark Greens
function G(x, 1;xg, lo) according to

3
AR, 1 X0, ) = z Ui(x )C(x +1, b xa, to)  +

3

(/T.T(x — i, i-)(]‘l:x — i, I %0, I.(]:l — QG‘(X, i X, Lo) (3»28)

For the (A*)* term this is just two of the above suecessive aperalions, For the A?
terrn the effect on the quark Greens function is found by frst considering the free

field case

3 3
D T(AAL) Clx,tixg,ta) = Y Glx 1 2,4, Xo, () + Gix — 2,15 %0, to)
7 i
—AG{x + 1, tyx0, b)) = 4G(x —1, t; %0, ba) + 6G(x, 1 xp, be) (3.29)

and then for the interacling case since we wanl the quantity 4 (x)Aly(x) Lo be
gange invariant this determines that,

3 3
(AL Gl bixo,fe) = Y Ui(x 4+, O (x -k 20, )G (x + 24, £ X0, 1)

i i

—U,-t(x -1, I.)U,-T(x — 21, 0)(G(x — 21, 1y xq, bo) — 40:0% 4+ 1, 1)G{x -k 1, 4 %0, to)

— AT (6 = 1,0 G (x = 1, 6 Xa, t0) — BG(X, £ xp, ) (3.30)

The terms in the evolution egnation involving the chromo-eiectric fields involves
the use of the symmetric difference operator equ (3.8). For the spin-independent

term the expression evaiunated is

3
ST AFTEG, %0, W) — EAFT (%, b x0, 1)) (3.31)
i
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For the spin-dependent term involving the electric field the axprassion is

3 3
S i AT ELG(R, X0 b)) — 3 oicin B (AT Glx, o, 1)) (3.32)

The term with the chromo-magnetic field is straight forward and is just simply

(Z am;) G(x, %0, o) {3.38)
1.

with the appropriate matrix multiplication on spin and colour indices.

The form of the evolution is gplit up into two for computational reagons. The
chromo-electric feld at time U for example will involve the use of U fields at time
t-a, § and t-Fa and so the chromeo eleciric field at -0 can not be calculated. Instend
the evolution ab t-:0 15 done as [ollows, st the U fields at t-0 are read in and the
delta function is evolved according to equ (3.25}). Next the U fields at t=1 and t=2
are read in which will allow the evaluation of the chromo-eleciric ficld at t=1. The
quark Greens function at t=1 and at subsequent times i then evolved according
to cqu (3.26). The fact that 617 is not used  the firsl timestep will not effect the
masscs of the mesons since cflective musses are extracled aflcr several timesteps
in the cvolution cquation where the full Haniltouian has heen used, However the

normalization of the quark’s wavelunciion will be eflected ad Q{8 H ).

3.5 Improved Perturbation

When comparing NRQCD fo low energy QCD or performing the FWT transior-
mation to compute the coupling constants in NRQCD it is done ouly at tree level,
Quantum c¢orrections will need to be estimnated and the coupling constants shifbed
away from their tree level valucs appropriately. This will rely on perturbation the-
ory to do the calculation. The cocllicients of these perturbative corrections are
expected to scale as powers of riﬂ for a laitice spucing cut-oll @. Perturbalion
theory is then expected to hold so long as nig > 1. However i has been Llought
for a long time thal pertorbition iy the bare laltice coupling consiant at present
values of the Jallice spacing has a poor convergence serieg. The arigin of this is the
presence of tadpole diagrams cansed by the lattice version of the gluonic field. The
way to overcome this is to uge the methad of [28]. It was recognised in [26) that the

presence of tadpoles will cause the latiice gluonic field in a fixed gauge to fuctuale

aboulb a value dillerent rom unity. For example in Landan gange the ¢guantily

< |- %TrU,. > = 0.139 (3.34)
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is non zero. This in turn suggests thal < I, > is significantly different from
one which is naively expected if < AL = = 0 as in the contimmm. The problem
arises from the naive connection beiween lattice and coutinuum operators where
ihe connection is made by explicitly taking a lo zero. For example it is assumed

thaf,
Uy — b igad, (3.35)

forgetting quantum corrections. When calealating the expeclation value of U/, ina
fixed gauge there will he lerms like < Ay A, > which quadratically diverge as

a<

and so

prad < Ay Ay >— Olg*) {3.36)

producing a lavge renormalization between the lattice and the contimum. 1t wonld

then seera appropriate to redefine the 17, Felds as
0y — g (1 +iagAy) (3.37)

where the term in parenthesis has a mncl inproved connection witl the coatinuum,
The term ug is a ganpe-invariant nmumber. A gange invariani expression whicli we

use 11 our simulation is
| 1 .
v =< ST P> (3.38)

This 1s important when the chromo-magnetic and eleciric fields are evalualed.
This involves the evalnation of the plaguette which containsg four U, fields and
tadpole-improving using the above prescription will chiange the deliniiion ol the

cloverleaf term according to

B— — (4.39)

This increases the strengths of the fields and neglecting Ladpeole-improvement. will
soverely underestunate spin-dependent splittings. Tadpole-improvernent will also
effect, other operators, for example, the (A and (A} terms sinee these have U
fields in as well. Working out explicitly the effect of the term (A)! on the quark

Greens function there will he a term

— 4%, 1 x0, bn) = 20T (% ) (x, 1) (%, 13 X, ) (3.40)
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After tadpole-imsprovemenl this term will become
2
—(4 4+ =) G(x, t:x0, to) (3.41)
v;

which is a slight modification on Lhe corresponding term given in equ (3.30). The
importance of tadpole-improvement is that removing tadpole conlributions which
are responsibla for the bulk of the radiative corrections means that now it is possible

to keep tree-level values for the arbitrary coupling constants.
<

3.6 Meson Correlation functions

Meson operators O(a) are delined according to
O} = xh (#)hg (2) (3.42)

where T determines the specilic quantum numbers of 1he eson. Generically the

ueson correlation function is evaluated by the expression
<M > = e [Ginrat () (3.43)
U

The summation is over gange configurations generated wilh weight ¢~ %) where
S(T) is the glnonic action. Yo deline ench type of mesen correlation [unction re-
quires I' to he explicitly defined.

We need livst to decide on the spectroscopic notation of Quarkoninm, Quarko-
niun states are normally labelled by their spin S, angular momaentum L and the
total angular momenrum J by U7, In QCD as well as NRQCD Lhe total angu-
lar momentum 4, parity P and charge conjugalion C are individually conserved. Tn
Quarkonium P = (—1)* L and ¢ = (= 1) and it is possible to nse the quantum

JPY instead. From this we can see thal stales with bhe same JPC will

nwinbers
mix, for example, the 35, with the */1. In onr simulation we have looked at §,P
and D states with different spin orientation lor each L. Below are derived Lhe meson

operators corresponding Lo these stales.

3.7 Meson operators

The most fundamental operator which can be used is Lthe product of the quark and
andi-quark fields. To find out the properties of these fields one needs to look first ol
the action of the guark and anti-¢gnark. The actions lor the quazk and anli-quark

are defined by

S = o+ 84 =
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(23 Ko (g () 4+ )y (2 ) KA (7 pa () (3.44)

wlhere K(U) is the inverse of the quark or anti-quark Greens function. The quark
fields transform under the representation 3 of SU{3) colour e #{w) — C{a){=)
with G(z) = *EA) Ky transforms as Ko{l) — G{a)KgGH(x) for gange
invariance. Altcrnalively anti-quarks transformn as the complex conjugale 3 ol SU(3)
and so K () translorms as K,{07) — G* (@)K A(INGY, This in turn suggests that

Ka(U*) = Ko(U7). It is then possible to wrile ihe lagrangion as

S‘ = IS‘Q - lS',-l =

’!..IJE?(.’(:)J'\-Q((J')'f;")(g(.’l') + 1,.’111 () (Nep{U™ Ndra () (3.48)
it is convenient at this point to redefine the anti-quark fields #,4(x) as ¥4 (2) so
54 = —-f;(w)fﬁ';}j{'ﬂ(.z:). The ficld $a(2) now creates an anti-particle which is

the familiar representation in the dirae theory. The hermitian conjugate is taken
in colour space al the moment and i we have dirue matkrices in our action Lhen
another redefinition of the anti-quark fields will he necessary if one wants to take
the hermitiou coujupale 1 spin space as well. For exaumple with a ¢ B terrn in the
action Ko (U) = o, K5 (U You with (he complex conjugation now in celour as well

as spia space since
—ne. B = ay(ye .B) oy (3.46)

This is the U(1) case where 13¥ = B and the difference is then only due to the sign

af the charge &. Rewriting the anti-quark action as

Sp = =i a)irars N (1) ogioa vy () {3.47)
and defining x7% (a) = ioa¥3(x) so that x4\ (@) = ¥ ] (#)ioy the anti-quark action
is now

Sy = \(r}{(?)( Nl ) yale) = ——,\;'L (;i')]\'é xafe) (3.18)

With the action for Lolh the quark and anti-quark now defiued the Greens functions

can he written down in terms of Lhese redelined fields as

G = (G =< 0l o > (3.49)

3

(’Q =< U|'i,’lg'q'!33|0 >

—
o2
b
P
=
-
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where o and § oare generic indicies for the colour and spin components. Under

charge conjugation g (i} — pafe) and so [rom this

X;l (il!) - ’i(l'g T‘ﬁq (;I-‘)

() — ha() = —ieaxy(2) (3.50)

After infroducing the cuark and anti-quark fields it s now possible to show
how these can he formed to produce the meson operators with specific quantnm
numbers. In particular il is now possible to write down explicitty what I should be

in equ (3.42). 'The most hasic meson operator is when I is equal to one.
Ofx, 1) = ,\'t (x, Ly x, £} (3.52)
Under parity the quark and anti-quark will transform as

wg(x, 1) — yoix, i)

L [X l}) —_— "“V'Aixt [’,) (3")3)

Yhe minus sign is becanse of the vpposite intrinsie parity, 'Uhen \f (3, )thgx. 1)
has negative parity. Under charge conjugation the individual fields will transform

as equ (3.51) hence

,l(x Og(x. L) = Lwl,'”a’, (%, g (%, ) (3.54)
a3

under charge conjugation goes Lo

> il Ul e (e, 0 = = 3 A e Via Pl (x, 1) =
af o f?

Ewi Po( x,l'.)'q"’?2 x, 1) = Z\“ﬁ x, b) 1/rQ(x =y \\x o (x,1) (3.55)
wfl

This particular operator has then chavge conjugation number € = -1 L, parity P
= -1 and since it iz a scalay there is no angnlar momentinm associated with i and

hence I = 0, We can then identify this meson operator with the 'Sy state. Next

consider

Ax, 1) = x N (x, Dasig(x, L) (3.55)
This still has P = -1 and going through the same process as ahove it is straight
forward to show il has C = -1. Flewever it now has J = | in that it Llransforms tike
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Meson yj_‘ (@) 'po(a)
25+1LJ (JPC)

150 (071) (@)

35 (177) Yh(@)omig(x)

1py (1t () Ai o)
3Py (0 ) (Z; A ﬁ;] hg{x)

AP l‘ji(-‘!‘-) (Ai. Ti— Aj Ua‘) o)
3, (9 t ~ N o)
SRy (277) X la) (&x i A rr,y‘) o)

-‘KIL (&) (Er it ,,.&j (J'-;j '!fJQ(;gr)

(i £ 1)

?\’EL (=) E i afe)
(G # )

Table 3.1 Mesan Operators

a vector aud has three independent divections. We can associate this operator with
the 3,5‘1 state.
For the rest of the states we have considered in the simulation their operators

are listed below in table (3.7) [28]. where we have defined

L A dg(x,t) = (3.57)

1 ! . 1 ,
(g(h\f + A alx, i-)) Polx, ) = xi{x, 1) (;[(Az + Ao, U)

Considering next the oporator ;\'L(x,(.) Ar po(x,1) this has no o, operalors n so

S=0 amd J=L. Since the derivative A; translorms like o spatial vector with thres
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independent indices, J=1. 1o work oul the C and P nuwbers il s necessary Lo
work out explicitly the effect of the derivative E,- oi dhe fields. Too the simulation
the gauge fields are fixed to coulomb gaupe and so the weson operators will nob be
gauge invariant. For convenience il is possible to {ix all the spatial U, fields in the
meson operators to unity. Doing this can not effect the quantum minibers of the
meson which must be gauge invariant since they are physical observables. I'rom equ

(3.57)

_)(L{x,t) Ai ho(xt) = (3.58)

(é(XL.(x +1,8) — .‘\’]:1(3‘5 —1i, 1})) wo(x, 1) — _'(L{x,t) (%1(-:,*3(3(}{ +i,1) —aho{x —1, I)])
Reflecting along the x axis for the parity operalion

xhe43,8) = e - 1,1) (3.59)
so that equ (3.58) becames nuder a purity operation

(Fodhs 1) - xhiox 18,40 ) gl ) b ) (ol 14,0~ vl - i)

= —x () A olx, 1) (3.60)

Which makes P = +1 {not forgetting bhe intrinsic parity). For charge conjugation

we know from equ (3.51) that,

L+ g, 1) — ¥ (xR 1) (3.61)
so then

.\’L(x. 1) A (X, b}~

1 . . 1 . . .
xL(x, t) (E(y}@(x +1,t) — wg(x — 1, t-.};) - (;I()(Ll(x +1i,1)— ,\fil(:x —1i, t))) Palx, 1)
b /

= X 0) As o lx, 1) (3.62)

which shows that C= -« | . We can then identify Lhis operator 1o belong to the # 2
state with quantum unmbers (¥,

Moving on to the next set of operatars tlas involves the eombination of spin
S= Lwilh L = Tnterms of gronp theory the mulliplication of L & 1 where 1

transforms in the fundamental representation of SO(3) is

levl - 1235 (3.63)



wlere the representation 1 and 9§ are symmetric and 3 is anti-symmetric. Con-
sider the operator 3, J;L (x, 1) z; aipg(x,t). L'his is symmetric and is a scalar
since it is a dot product ol two vectors. krom ihe above discussion we now know
that xﬁt(x,tj(gg ai)ipo(x,t) has C=-1 and P=+1 and we can then associate s
operator with the 3P stale with quantwmn wumbers 07+, As Tar as the opera-
tor xL(x,tj{E; T Ej oi)ho(x,t) is concerned this is a vector product ol Lhe
two operators Zf and o7 abd so is anli-symumetric and wanslorms like a three vee-
tor. This is the operator for the state */2 with quantum nuabers 11T, For the
operators af the Py these split up inlo two different representations on the lat-
tice. XL (x,t)(;é;,-_ oi— A.;’ o 1o (x, 1) has two independent degrees of freedom and
belongs to the E rep. The 1L (x, f.)(E,— o+ ,EJ- ai Yo (x, L) operator has three inde-
pendent degrees of freedom and belongs Lo the I rep. Both operators are symmetric
and so represent. the 3P state with ¢quantnm vumbers 25+ For the * Dy a similar
thing happens and the operators split up nto Lwo reps the 15 and T. L is straight

forwazrd to show they correspond to states with gquantium nuwmbers 21,

3.8 Coding up Meson Correlators

In the previous sections we have shown how meson operators cal be formed as-
ing quark and anti-quark fields combincd appropriately. Discussed also was ihe
evolution of the quark (or equivalently the anli-gquark) Greeus function with time
fromn which it is straight forward to compute the evolulion of ihe meson correlation
function. It will now be shown how this is done nutmerically for Lhe states we wani,
to consider.

For a. meson aperator Oa) = xL( ) 0ihe (@) we can represent. the mweson corve-
lation function as

Mt t) = z < U[)(L(x, )T e (x, t)u‘l}e(x(;, )Ty 4 (%o, te )]0 > (3.64)
X

where the sum over x ensures that the mceson has zero momeontuin, The suin over
spin and colour indices have not been made explicit yot.

Consider firsc the 1S state where I' = 1.

M) =Y <G

xe

;(:ln(x, l]..,{.r,;a(x: f»]'?f-‘*f’{xg, 1__,]],\_,.-, iXg, L) > (3.65)

where o and 8 are sunumations on ihe spins and colour indices. Tt is possihle (o

factorize out the quark and anti-quark fields {Wicks theorem). Using the deftmition
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of the quarks Greens {unction as
e (x4 %0, t) =< OlGx, 1)y (x0, ka)]0 >
and the anti-quark Greens function as
Gl (%, %0, ka) = Gy (3¢, 1 X0, to) =< 01X (%, )x (xa, 10)10 >

the meson correlation function for the Sy state hecomes

Mt t) = Z (i.':;'ﬁ(x, t; %0, l‘-g)(_}'i{,ﬁ(x, tixo,ln) =

xaf

> T (GHx, 1 %0, 8 G, L X, )

(3.66)

{3.67)

{3.68)

The trace is over spin and colour degrees of freedor which are averaged over in Lhe

simulation to increase the statbistics. The next state of inlerest is the 25, Mere for

I’ we use the wmatrices 4. 0. and oz where

1 .
o4 = ‘ﬁ(ﬂ'l + foa)

|
= ﬁ(o—l —i(Tg]
Hence
(' 0 ¢ 1 qQ

oy = oT_ = [

0 0 1 0 0 -1
‘I'’he meson corrvelation funciion can he expressed as

-vn(

Mttg) = > <0

xrefdpry

(3.69)

(3.70)

V(x, lz)aj"’j’[f:g(x‘i.)'rf’:zz"(x[-..i:n)(r;"" Yi(xo, to)|0 > (3.71)

where the summalion on the spin indices have been made explicit. Tor j = 4 this

is simply
Ml L) = Z x4 %0, o) G (% 5 X, ba)
x
for j= —
M_(Lita) = Y G x, b, b0} G (x5 X0, L)
and for j — 3 this works ont Lo he

;"l'jg(l.; tp) = Z (}"'“{x,_ ' Xq, l.nJ(';“ (x. Lixa.lg) —
x
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..... e

b (.-7'*21(){, t-; Xa, L(.)G:’l(x‘ t Xy, ('.(g) . _TW'IH[X, 1\ Xo, |-())(J (X, l.;xl), t.n)

F+G™ (%, 1 %0, 10) G4 (%, 1 %0, bo) (3.74)

An average over colour indices as well as spin polarizations is Laken for increased
stalistics.

For the * Py state this involves a covariand derivative bul because we Jix to the

coulomb gauge in the sivmlation thix can be represented by simple diflerence op-

erators. ‘The meson corvelation Iunction then becomes suppressing spin and colonr

indices

M{tite) = 3 < 0lxh(x. ) As tiq(x, 1)erh (xo. W) Aj yalxo, )]0 > =

x

S <l 1) = v =1 0)bg(x, U=

x

X 0, ) (P (3¢ + 1, 1) — o (x — 1, ")))('/"JJ(Xu Sod((xalxo +1,64) = xa{xo — 1. 1a})

_("!'J'TQ(XU +1i,ty) '(f"gg(xn — i, b))y a (%o, te) 0 > (3.75)

Multipling this out would involve 16 terms and we nteed to look for sorme simplifi-
cation. Since we are summing over the final posilion x ol the felds it is possible to

replace part of the operator at the sink

=yl (o x4, 8) — dg(x = 1.1)) (3.76)
with

~ (el 10 = v (= 1, 1) (x, 1) (3.77)

Next if the first term at the souree is mulliplicd oul there will he a term

—J\’L (x — 1, L)tglx, l")?’."';;,’](x(]r tp)valxo +1,in) =

DTG (x — 1, 1xn + 1, G)GEOE(X, 1 xa, bo) (3.78)

xa ¥

and similavly rultiplying out the third term at the souree will give a term

_XL (x + 1, b)ppolx, 1-)"""33 (%o +1,tp)xalxo, o) =

DTGP (% i xo, L) (x, 1 xo - L)

xaj?




= 2: G¥(x, 1y %0, te )GP(x — 1, b %0 + 1, Ly) (3.79)

xa/d
These two $erms equ (3.79) and egu (3.78) are complex conjugates of each other so
instead of evaluaiing botlly lerms it is hetter just to take twice the real parl of one

of them. Similacly if we do this for all terms we will find that equ {3.75) reduces to
Real D < 0f(x] (x +1,0) — X} (x — 1, 6o, 1) (x0, L) (xa {0 + i, Lo)
X
—xa(xo =, 40))|0 > = Real 3 G (3, b %0, to)* (x + i, 13 X0 + 1., Lo)
. xofi

—-G“ﬁ(x,t; Xo, t.(,)(,',."“"ﬁ(x i b xg = 1) — G, 1 X0, b)) P x —- 1 i xo + b Lo)

+ G, g, ) (e — L xo — i L) (3.80)

Again the summation is over spin end coionr indices for inereased statistics and the
average is also taken over the different angular momenturn polarization directions.

Ior the meson correlators belonging to the P stales it iz convenient to define

MG to)igeg) =

3T < 0lxh(x ) Ay orholx, Ul (xo, ta) A7 7jxa(Xa, to}|0 > (3.81)

x

from which the 2P vorrelators can be expressed as

Map, =5 M) (3.82)
i

Map, = 3 My — Mynio (3.84)
RES]

Moy = 3 Myt = Muggygen (3.84)

-~

ﬂ’[é«pz,‘. = Z “"",{Z'Iij'J"J - ﬂ']'”f]{,-j] (3.85)

L

The evaluation of these correlators then essentially just involves evaluating equ
(3.81). In equ (3.8} the derivative Z, can be replaced by a symmetric diflerence
operator just as in equ {3.80) reducing the vumber of terms. Summing over spin
indices is no different than in the cage of the *9) correlator except thal here Uiere

are now a lew ore terins 1o deal with hecause of Lhe derivalive.
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Tastly we need to evaluate the 'y mieson correlator. In the simulation we have

only considered the operators corresponding lo the T rep. Thal 1s

xh () A A o ix, |-)'U9Iy(xn‘ to) AiA; va(xo, ta)|0 > (3.86)

M) = > <0

where to surn over polarizalion direclions a stom over 1 and j is done for i % §. The

' Dy operator is

XG0 ) AjAs dglx,t) = (3.87)

Ghe+i+i 0 —xh+i—in —ahx—i+5 0+ x e —i— 0ol L)

and so in principle the *Dj correlator involves 16 tarms. In practice we do not do
this it instead use stneared operators where for exwmpie the terms in parenthesis
are replaced by an appropriate smearing wavefunetion. More will be said of Lhis in
the next seclion.

To sum up an ontline has heen given on how meson correlation Limctions can
he evaluated numerically. Tirst by deriving meson operators with specilic quantum
numbers and rthen evolviug the meson corvelation fuiterion wzing Lhe hasic evolution
equation of the quark Greens function. One lasl piece of wark which ueeds 1o he
done 18 to introduce the idea of smeared operators which can cousiderably help Lhe

numnerical procedure. This will now be explained in the next seclion.

3.9 Smeared Operators

In Lattice QCD simulations effective masses are extracted feom the asymplolic Tall
off of the meson correlation [uction equ (1.35). For this to be the case in principle
one would like to tale the Lhne fo inlinity. Lo praclice this is nol possible because
not ouly is there a restriction on the size of the lallice in the time direction but
also noise will tend to dominate the sigual belore the asymptotic behaviour ocenrs.
In simulations Lhe noise s dominated by the meson which hag the lowest possible
ground state encrgy. [19]. For onr case this will be the 18, stale and the ratio of
signal to noise for a particular state with a mass above that of the 'Sy is

NOWE  e(Macre= Mg,
signal

(3.68)

which will grow exponentially with time. To increase the numerical aceuracy of
the simulation the signal needs to be exwracted at carlier tines whers noise hos not

started to dominate. Ta doe this it is necessary Lo use smeared operators. Praviously
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only local operators have heen considered whete for exmnple in the LSy case the
quark and anti-¢guark started from the same poinl on the laltice. Similarly in the
case of tie 1P stute the anti-quark was displaced by a minimal amonnt. of one lattice
spacing relative to the quark to project oul tlie required angular momentum. In
smearing the quark or anti-quark is smeared over the whole of the luttice relalive Lo
the anti-quark or quark with an appropriate weighting function. For our simcaring
function we have used hydrogeu type wavefunctions (rom selving a L potential.

To put il on o more Tarmal bagis our meson correlation function is
M(tite) =D < Olx), (%, O T (x, Dl xo. ta)l T a(x0. tn)]0 > (3.89)
X
and Lo sinear lor example the anti-quarks the replacerment
xa(Xo.bo) - 7 Lalxa, la) = Z Sz - x0)xal%: Lo) (3.90)
14

is made where S{z — xg] ts the appropriate wavelincetion for that meson state.
Smearing is possible either al the source or at the sink or botli, A general expresgion

for our simeared meson correlator is

;(U’(I-, Lg]) =

Z Sly —x) < C'1J\’L (¥, L) (x, 1-)X1|':Z‘ to) Tl (%0, be)S(% — x0)[0 > (3.91)

Xy,
with siearing at both the source and the sink.

To implement. smearing at the source mumerically, it is known that at 1==0

< 0

Yh ()X a(x0)|0 >= by, (3.92)
and =0

<0y )T Ao > =

S < Oy ixale)l0 > Stz — x0) = > 8,y 52 = %0} — Sy —~ %0)  (3.93)

z v
Therefore instead of starting off with a della function in Lhe evolntion this can
be stmply replaced by the function S(y — xg) over the whole of the lattice. Tor
smearing at the sink this involves Lhe evalualion of a convolulion wnd to evalnatke
this 1t Is best to transform the anli-¢quark Greens function firstly into momenium

space. Defining

} 1 , ot
Galx Bixo,tn) = =5 | Galptita)e ™! (3.04)
NS
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the final ameared meson correlalion function is

M(t;t0) = (N)? > SOITGaip, tito)TTGa(D, 15 10) (3.95)
P
where Gy (p, t; tg) represents the anti-quark Greens funciion smeared at the sonrce.
The fourier transforms can be performad using a Fast Fourier Transform rontine
[27].
The solutions to the wavefunctions for a L potential are known exactly and it is
relatively straight forward to substitule local for smeared operators. The following

substitutions have been made Lo the varicus meson operators. Ior the 'Sy the

replacement
. EELETN . X
xh (%o, ta)tho(xa, bo) — , (s ta)e™ R ] g (%0, t) (3,06)

N2
is made. rg 15 a free parameter which can be adjnsied comparing 1o wavelunclions
coming cul of NIRQCD simulations of leavy-hcavy mesons. This smearivg funciion
is the ground stale wavelnesion for the LSy stale and should help the ground state
sighal to decay to its asymprotic value wuch earlier o, The same substitution has
been made to the 35 using the same S stale smearing function. Also done for the
S states was to use an excited state wavefunction to help project ont an excited

state. For this the smearing Tunction

S(z ~ x0) = (1 ~

[~ xai bl (5.97)
i

was used. Different combinations of smearing at the source and sink can be done
for example smearing at the sonrce with a ground skate and then using an exciled
smearing wavelunction at the sink. In al] for the S stutes all dillerent combinations

were done using local, ground state and excited state smearing functions.

Tor the '/ siate 1t is sulficient to uze the [oflowin & Imeson operalor
(%, ta) A Bio(xo, ) = (Y (xn +1,1) — vhixo — 1, thig(xo, o) (4.98)

which represents polarization in Lhe i direction. The wavefunction for o 1P slate

polarized in the z direction is given hy
S(r, 0, ) = reostle™ T (3.99)

were spherical polar co-ordinates have heen used. Note that the exponential term
in equ(3.98) is not precisely that coming [rom a VL potential sinee the waveluuction

equ{3.98) models well a Richardson wavelunction. For the operatar in equ {3.98)

43




to be polarized in the 2 dircetion 1= 3 and so the operalor is smearcd by making

the replacement

& —x
xhxo,t) Ratg(x0,0) = [ SOxh(# ta)we™ o | polxont)  (3.100)
)

A gimilar substitution for the polarized states § = y and 1 = x has been done. For the
3P slales the same smearing function is used too. Ouly the ground stale simearing
function has been usad lor the P states and no aftempt Lo extract an excited slale

will be atternpted.
Lastly for the 'Ds stales the wavelunclion of 1Dy polarized in the 2 direclion
wilhh magmitude A4, = +1 can be used. This wavelunction in the y plane, again

with the exponential term rodified, is given by
Sie 0, ¢) = rie” msinflcosl (3.101)
ardd so ik 13 straight lorward to to make the replacement,

- . _la=rg] .
XL(XIL ko) A As g (Xo. ta) — Z Vi to)x a0 e Yo(xo, lo) {3.102)
%

-—t ™~ ) Ll
Similar replacements can be made for shilt operators Ay As antd AuAa.
To lluskrale the effectiveness of smearing, S5 and P stales have heen used 1o

compare resulls from using smearing operators to that when using locad operalors.

The resulls are [rom a run of 200 UKQUD configurations ai 4= 5.7 on a 123 x 24

lattice using a quark miass appropriate lor the Botlom quark with a smearing radius

of rg = 1.0, The values of the flad masses Trom asiugle exponential it are given
in table (3.2) aund table {3.3). The notation (2., n..) hag heen used where [or
example ngp represents the Lype of smeaving al the sink. For a local aperalor foe s
used and for smearing with a ground state L is uged and 2 nsed far smearing with
an exctted state wavelunction. Tffective mass plols are given in figures (3.1), (3.2)
and (3.3) together with the corresponding Q@ values. The Q value is a measure of
the probability that a particnlar valwe of v can be excecded by chance. Since at
minimization we want ¢ Lo be the simallest possible value it then seems reasanable
to have a high probability of having higher values of % at Lhis point. In general a
good it is [or Q > 0.1 and < 0.9 although a fit Q > 0.001 is acceptable.

The results for the 1Sy show convircingly thal the elleciive ntass plateans much
earlier on in the smeared case. For the (foc, lar) aperator even at times of 4, = 10
the €2 value 18 poor and the ellective mass still bas not reached a steady valne. Even

after Lienes of 4, = 18 there is sti]l evidence that the effeciive mass is decaying.
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Newp Tminflmas &) @
fits to (loe,loc) ! 10/24 0.5038(6) 1 x L0~
12/24  05035(8)  0.07
1794 0.5084(8) 010
18/20  0.5052(6)  0.16
18724 0.508L(7)  0.068
fits to (1,1) l 2/24 0.5028(6)  0.048
121 0.5027(5) 0.5
6/24 U.B027(5) 017
8/24 1.5029(1) 0.27
(0/24  0.5028(5)  0.20

Table 3.2: Examples of single exponential fits to the 150,

Nezp  tminflmee  @F) Q
fitsto locdoc) | 1 B/24 0.909(6) 0.20
6724 0.893(7)  0.72
7/ 0.89(:)  0.66
3/24 0.89(3) 059
9724 0.88(2)  0.69
10/24 0.87(2)  0.62
L1/24  0.88(3)  0.60
fits to (1,1 1 9/24 0.846(3) 0.78
3/24 0.840(4)  0.92
4724 0.840{6) 0.90
3/24 0.841{6) 0.88
6724 0.845(9)  0.85
7/24 0.86(1)  0.9%

Table 3.3: Examples of siugle exponential lits to the * 2.
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On the other hand using the {1, 1) operator it is possible to gel acceptable @ values
as early as {min = 4. Not only thal there is a definite platean in the effective
mass from these times onwards as well as steady @ valnes, The eflective mass in
the two cases alihough agrees wilthin ervors does shaw in Wlie (loe, loc) case that
the eflcctive mass is consistently higher in comparison to the values from the (1,1).
This indicates that there are still higher execitations present usiug a ({ne, loc) sonrce.
Other comparisons which can he be made are that the errors are the same in both
cagses as one would naively expect since the noise is dominated by the ground stale.
Therelore for the * Sy case smearing has worked well and if not done so Lhe effective
mass extracted from wsing a (for, foe) opevator would wot have plateaned. As a
result the value whic would have heen extracted wonld be lao high.

Considering next the behavionr for the 1) case in table (3.3) this also shows
well that a platean can be reached much earlier on with smearing. In the (Jee, loc)
casc a plateau has been reached ot times Ly = 7 onwards whereas in the (1, 1)
case Lmin = 3 Is where a platean can be seen. More importanily is that the errors
of the eflective mass for (1, 1) at the poid at wlich a platean can been seen arve
smaller by a facter of aboul iwe in comparison to Wie (foe, loc). "Fhis will allow the
extrachion of an ellective mass o Le made with a greater accuracy, 1hie elleclive
masses in the two cases da not agree, the (far, foc) ones being much higher, This is
too probably because of higher excitations heing present and if smearing was not
done an inaceurate value for the effective mass for the 1P, would have heen taken.

The elfecliveness of smearing is illustrated very well tn fisnres {3.1), (3.2) and
(3.3). Clearly earlier plateans can be seen in Lhe smearing case. For the 8.8y simearing
has worked equally well as in the case of the 'Sy, This shows that at this level
of accuracy in the smearing technique used, simwearig is independent of the spin
orientation for a particulay angular moment um state. This was alse fTound 1o he the

case for the # P states. It was also checked that smearing worked for the ! Dy slates.

3.10 Dispersion Relation

In the original action of QCD and also of NRQCD there are two achitrary constants,
the bare quark s and the streng coupling constant. Fhe coupling constant. is
fixed when the lattice spacing is determiined. To fix the bare quark mass (his is
tuned so thal some physical observable, which is dependent on the quark mass,
coring out of the simulation agrees with its experimental value. For our physical

observable the ground state 'Sy or the 38 mases is used. As well as deciding this it
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Figure 3.1: Toxamples of effective mass plots using local aud smeared operators for

the 1Sy state.
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is necessary o decide on the definition of the mass of the 'Sy.
[n NRQCD the non relativistie dispersion relalion of a megon with momentiim

pis

i 4

P v :
T — Mo -+ - 3.1
By = Mot 5o = s (3.103)

and Mg 3 M) because the rest mass of the heavy quark has been removed [rom
the theory, In turn M| # My hecanse relalivislic corrections away from the p?
term have not been mcloded. Tull Lorentz invariance can enly be achieved wlen
all relativistic corvections are added. M in equ (3.103) is used as the definition
of the ground state mass for the 1Sy avd will be referred Lo as the kineiic muss.
The value of M, should he acenrate to O(v") because of relalivistic corrections and
in turn Ay should then agree with Ay to an accuracy of CQ{v*). To extract the
value M7 In the simulation a dispersion relation similar to equ (3.103) will need to
be plotted. This will involve kuowing the energy of the weson for several diflerent
values of mormentun. Tz encrgy ol a meson state with meotnenlum p can be found
by measuring the exponential fall-off of the correlaiion function defined by

Mp, b 1c) = Z < Oy Ul (x, L)*f’zg(xn‘ ta) Py alxo, i0)]0 > 0%

X

= Al 1 TG (X, k. k)T P (3.104)
~

and can be simply evaluated nsing Fast Fourier ‘Tranzlorms.

3.11 Wavefunctions

Of plhenomenological imterest i3 the waveheiton of Lhe mezsou coming ont of the
simulation. This can not only provide information on the size of the meson bhul
can be used Lo estimate correction terms in the NRQCD action as well as providing

improved smearing functions. The meson waveluncetion is delined as

O, (1) = < Ok (x, 630 (0 )i, p = 0 > (3,108

AL

Py |
s

The correlation function then has the usymplotic bekavionr

Cln,t;te) = Z < Ot.\'; (% + 1, )T g(x, g (xy, o :.|)]‘t valxo, W)l > =
x

S a{uea (0067 M iy {n i (0)e M (3.106)

n

H)



from which the wavelunction can be extracted. To evaluale equ (3.146) the quark
| i
Gireens Tunction is first Lransformed into momentuin space alter whicl: the meson
1
correlation function becomes
Cln, b bg) = E Galp ) Golp, l'.;l.(,)l‘Tc""'" (3.107)
r
This can then be evalaated for all n hy lonrier lransforming hack the produel

Galp, t;ta)TGo(p. b to)TT.
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Chapter 4

Simulation Results

In this chapter the spectrwm for Charmonium, Upsilon and the B, mteson will be
given in detail. Flow the specim can be found using a variety ol inulti-exponential
and multi-correfated fits i# described. This wiil allow a precise determination of

gronnd state masses al early times as well as values (or exciied stale masses.

4.1 Multi-Exponential and Multi-Correlated Fit-
ting Routines

To extract meaningful results from simulations it is orcessary to it the rase data
coming oub of the simnlation to some Minciional fosm. From egn (1.31) we kuow Lhe
form of the behavieur of the asymptotic [all off for a meson correlation function. 1.

would then seem reasonable to [it Lhe data to the function
(b 1p) = Ac™M =t (4.1

This is the most simplest funclion possible iu that the contribution lrom excited
states have bean negleciod. As well as defining o function to fit to it is necessary o
define a measure ol the goodness of it as well as some sort, of standard deviation
on the fitted paramcters. For the goodness of fit. Lthe mivimization of v¥ is ¢hosen
wlicl in ity simplest. form s defined as

J;\’

N = Z (vi — ;r.f(ff-lq---ﬂ-lu))! (4.2)

s T
=1

Yy ...apg) s the lunction depending on A1 parameters which are determined in Lhe

minimization precedure and N are the nurmber of ndependeut data points. The
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standard deviation is taken to be

Z (- AI<_1!1>) (4.3)

There is no real specific value ol ¥* which needs o be reached in {he minimization.
In general if v* per degree of [reedom is Jess than oue the it is taken to be aceeptable.
The nuinber of degrees of freedom in this cage is defined as N ~ M. This 1s Lhowever
a very naive model to use to extract effective masses [rom the dala. For example,
correlation between successive data points will need (o be taken into account when
defining the standard deviation and x? Also a mare general function will have to
be used insicad of equ (1.1) Lo Lake inlo account of bigher state contamination.
When filling the spectram resutts we have nsed fwo functional forms. These not
only have more exponential terms in Lo exeract logher excilbations d also allow o
siinultancous it between mesan correlators wiich have dilforent types of smearing.

Firstly define the meson correlation hinction as

Mot eep(1) = < 0]Ou(1)OT 10

(4.4)

where for example Oy represents Lhe type of smearing al. Lhe gink. This expression
can be easily decoruposed into energy eigenstales so thal
Mg sep(t) = 3 < 010ul0)]n < n|OL ()]0 » e~ (4.5)
bl
The first functional form that can be fitted to iz called the row fit and hag the

decompoxition
Mge s {0) = D bu(shise) e¥0" (4.6)
The next is called the matrix fit which has the decomposiiion
Mg ey (1) = Z al {(sk)a, {se) o7 M (4.7

(2}

with the identification

ap(sk) = < nd ol

sk

0)|0 > e (se) = < n|OL(0)]0 > (d.8)

Different. combinations of sinearing al Lhe sink and at the sovuree can be used si-
muttanconsly i the Bt restraining the encrzy Lo be 1he sane (o each different
corredation Mnciion. This will ipvelve using data whicli 1s correlated. Thers is aleo

correlalion between measurement for meson correlation funetions taken at different




times which too will need to be taken into account. To do this we define a gener
alized version of equ (4.2) for the ¥* 4o be minimized. Taking into account of Lthe

correlation between the data. the y2 o be minimized is defined as
3 N Fiheo ¢ Iyv—1 s gtheo TRy
=) (M = ey (o) o (M — M%) (4.9
@t > o
The o, B indices represent. different mieson correlation Minclions ie different types of
) ! .
smearing combinations and ¢ and £ are Lime iedices. A7 ig the functional forrm

fitted to which is either equ {4.6) or equ (4.7). The covariance matrix is defined as

2 L ‘ ¢ d 2 ’f
Tatprr = ;\—rm—]me— < M) XYM ()= < Mp(t') >) =
N

< Mo (OMg (1) > — < Mo(t) >< Mg(t)) > (1.10)

where the average is taken over gange configuralions. ‘Ulie covariance matrix will he
a Neprp X Ny square malrix where Nooppr is the number of corvelators which are used
i
in the simultaneous fit and &, is the vange in time i which the fitting is performe:l.
In the minimization of the y* it will be necessary to invert the covariance matrix
which can be singular. In general iff the nummber of gauge conlignrations N is nawch
greater than Ny, x Ny then all che cigenvalues of the covariance matrix will e non
zero and the inverse will exiz(. IF this Is not Lthe casge a singnlar value decomposition
will have to be done ou the malrix using routines giver in [27]. [n practice i our
simulations the number of configuravions 15 several times greater than N, x N,.
A singular value decomposition (SVID) rontine i1s still nsed since il is possible to
have a large range of eigenvalues which can be greater than the machine precision
and canse false fits Lo be performed. In general in the wajorty of cases of illing we
did, it was fonnd that there was nal a large spread in eigenvaliues of tie covariance
matrix. The minimization of the v? is done using conjugate gradient methods with
the routines taken out of Numerical Recipes and will not be discnssed here. Alter
minimization, and assmming an aceeptable ¥ Tas been achieved, it is necossary Lo
quote some sort of error on the fitted parameters. To simplify things for the moment
consider that there is only cne parameter in the theory A and that a minimmn 2

has been reached. So then
v __ 12 R i \
Xinin = X (Asr ] (4.14}
. ] . T
Expanding y< arownd its winbmum valee

Sx¥ = (A4 0N = vidm ) =




L, I 5 0%x? .
PP QLSRRI B\ el H V. e 4.12
ax TRt ey T P (4.12)
gince the partial derivalive al minimum is zero. 1 §A is chosen so
N AR
5A' = (st (415
¢ (2 ) (4.13}

then 8% = L. Changing Ag. by such an amount will cause the fitved lunction F(A)
to chauge in the range F(An + 8A) to F(An — &A). The range of the [unction will
then span 68 % of the impul data le by one . Il the number of parameters is greater

than one, the generalization of equ {4.13) i

1 (-):4\414 ~1
Mo = | 77— 1.14
fai (2 mxm,.) (4.14)

and the associated ervors are the dingonal matlrix eleinents of M.

4.2  Charmoniunt Spectroscopy

[ the next seclions the spectrum (or Charmoninm will be presented in detail to-
gether with various techniques vsed (o fil the spectrura. In Che simulations wa have
nsed the quark evolution cquation defined by equ (3.26), Using the notation #5311,
we have looked at meson peopagators for Lhe following stakes: 15y, 28, ' Py, 3P,

3P, AP for botl) the B and T representalion and the 4

in the T representalion.
For the § states, sinearing funcuons both for the ground and first radially excited
state were used as well as a local & function {2 = loe). From this all possible corn-
binations of simearing at the source and sink were formed making a 3 x 3 matrix of
S state correlation fhimetions. Yor the P and I stales only a groend slale smeuring
Tunction ad a local & function was used. We caiculated the dispersion relation for
the 'Sy by looking ak the meson propagalor for simall rmorentain components using
(N, 751) = (loc, loe) and (} loc). Yor the 38, 2, 3Py, P and 1Dy an average
over individual polarization directions is done making o total of 30 S, P and D
meson propagators to analyse. Before il is possible to under-lake a Liwge simulation
it 1s necessavy to delermine the vernaining acbitrary parameiers left. The strong
coupling constant is determined for us in advance by the particular gluonic gauge
configurations we will use, The hieavy bure quark mass will need to be tuned numer-
ically o determine a suitable valne appropriate for the Chann gnark. To do s
we have used the 'Sy mass as an input fram experiment and tuned the heavy quark
mass so that onr simulation value is fn agreement. wilh the experimental value of

2.98 GeV. For this a dispersion relation is used in ovder 1o evaluale the 'Sy energy




for small momentum components. The method outlined in section {3.103) is used
here,

In the first simulation performed we used 40 conligurations supplied by the
Fermilab group with 2 = 5.7 quenched gange coufigurations on a k6 latlice. The
bare quark mass in lattice nnits e Mg was taken to be L2, To fix the lattice spacing
the spin avernged 1P-1S splitting is used. Aore of this will be said in the next
gection. Only the lowest non-zere mamenium component p = (1,0, 0) as well as the
zero momentum enetgy was extracted here for the LSy, A ratio fit {again more will
be said on this) was performed on the (wo meson propagators and fitted 1o a single
exponenlial. Henee

Meson ])l.o|m.p;m'.()rh)} - I1rmﬂ%f (4.15)

Meson Propagalor 1v]
The value My, i taken, for reasons discussed in sections (3.103), as the mass lor
the lowest 1Sy state. The momentum on the latiice for the lowesl romentin
component is pa = dsin{e so using this with the fitted value {or the ratio tn equ
(4.15) a value for My, can casily he found. Far a beavy bare quark nass of 1.2
a value [or My, o physical units is Tound te be a value much larger than 2.98
GeV. A betler cstimation for adg is chiosen to be (0.8, 11 is this value which we
will use in all simmulations involving the Charmn mass. The results for Charmonivm
which will be presented in the next sections were oblained using 273 quenched gange
corfigurations produced {rom the standard ¥Wilson action and were provided by the
UKQCD collaboration. Lhe conlignurations wre at }F = 5.7 far a 123 % 24 laltice and
are fixed to Coulomb gange. The value ol the simearing vadius wsed was rg = 1.0, A
smmmary of the Charmwounain spectrum using Lhese configuratious is given in figures

(4.1) and (1.2).

4.2.1 Fitting Simulation Data

In the simulation it is necessary Lo waximize the available suistics, for example
hy averaging over spin or colour indices in the moeson propagator. We can also Lake
advankage of the fact that heavy mesons like Charmoniuin are relatively stnall aud
different. starting sites on the latiice can be used to propagate the meson. As well
as (his, since the evolution eyuation is au initial value one, il is possible to choose
dilferent starting tines in the time direciion as well. Tu Lhe spalial diveciion &
different starting sites maximally spaced are nsed and two different starting Liynes,
There will inevitably be some correlation hetween meson prapagalors starting at

different siles. To dacide on the amount of carvelation a simple test can he used
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Figure 4.1: NRQCD siumlation results {or the spectani of the Charmeniun systen
plotted velative to the “ Sy using aninverse latticn spacing of 1.23 GeV. Experimenlal
values are indicated by dashed lines. The 'Sy was used Lo set the zevo of energy for
simulation results while the spin-averaged S-P wag nsed to set a™'. Error bars are

shown where visilie, and enly indicate statisiical unceriainties,

where the propagators are binned. Here two sels of vropagators starting at diflerent
sites are averaged and the error ol the mean of the tew sel of propagators calculated.
An increase in the error will be a sign of correlation. 1o test for corvelation Lhe
effective mass togetlier with its naive error was calentated. By binning propagators
only in the spalial direction there was a small ng significant increase in the crror
suggesting some correlation was present. Bining iu the time direction shawed there
was no correlation at all. In most cases when we fit (he data we bin over spatial
points as well as Lime.

The quantity which needs first to be extracted frow the simulation is the lattice
spacing. This will allow conversion [rorn divnensionless quanlitios caleulatad on the
lattice to physical units in GeV for example. To do this it is necessary to lix some

simulalion resnll with experiment. so that
Mg = aMopp + Na)® {(41.16)

where the O(a)” error is from the gluonic action. I the laltice spacing corrections
are ignored and knosing M., a~) ean be extracted . T Quarkenium systems there

ig a very uaural quanlity which can be used to sel the scale, Spin-independent
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Figure 4.2: Simulation results for the spin structure of the Charmonium family,
using an inverse lattice spacing of 1.23 GeV. Energies for S and P hyperfines are

measured relative to their center of mass. Error bars for points are statistical.

splittings such as the spin-averaged AM,s_ )¢ or the AM,p_ 15 in Quarkonium are
independent of the heavy quark mass and of spin-dependent relativistic corrections.
It is then expected that a=' can be extracted with much higher accuracy than say
with light meson systems. There will however be a systematic error from quenching
which will cause a=! to be dependent on the momentum scale appropriate to the
hysical quantity which has been used in determining a='. For example a=! wi
hysical quantity which has | used in deter e a3 | U will
be different if AMyg_ ;g is used to fix the scale in comparison to using AM;p_ 5.
More will be said on this. Here the AM;p_ s splitting was used to extract the
P-18 8] o
lattice spacing becanse the noise of the 2S states was poor in comparison to the 1P
states. The spin-averaged AM p_;5 is given by

(4.17)

IMsg Mic
AMyp_1s = Mip, — (”#T_z_)

and extracting the lattice value for this will involve a ratio fit of the various meson
propagators. In general there will be some correlation between meson propagators
calculated on the same configuration and most certainly between propagators with
the same orbital angular momentum but different spin orientations. To reduce this
correlation a collection of bootstrap ratios are produced which can then be fitted
to some functional form. For each bootstrap ratio N configurations (where N is
the number of independent configurations) are chosen at random and the ratio

calculated. For the number of bootstrap ratios a total of 500 are chosen although
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the final outcormne has very little dependence on the number of ootstrap samples.
Using the preliminary experimental value of the 11-15 splitting of 457 McV [17)
and fitting the bootstrap ratios to only a single exponential it a value for a=?! is
found to he 1.23{4) GeV. Lrrors quoled here are only stalistical and no atlempi.
has been made at this stage to add in systematic errors. Fixing the scale has Lhen
determined the bare coupling constant go(e™ ') to he ——T? at the scale a™- = 1.23

qeV.

With one of the [ree parameters now determined the next stage in the analysis
of the data is to see what mass for the 1Sy is Tound using a a bare mass ulMg = 0.8,
In the previous study whoere a dispersion relation was used i order 1o fne Lone
aMg only the firsl order kinetic term up to p* was taken into account. Heve a
more refined metiiod needs Lo be used to take into account. af reladivistic «ffecls
and lattice spacing crrovs.  Sinee we have o pt aperador in the original kinetic
energy llamiltonian operator tb is expected p* contributions should be present.
Also Charmonium is guite relativistic {ic more so than Upsilon} and only having a.
p* term in the fit to the dispersion relation is inappropriate. From seclion (3.103)
we know that because Lorendz invarience s broken in NRQCD the kinetie mass
appropriate fo say the p? term is not the same as the mass appropriate for the p
terni in the dizpersion relation. Two Mnctional forms lor the dispession relation are

used in the fitting. They are

2 2y
- oy e D (p)
E{p) — E(0) = SR RMAP (4.18)
and
2 <+
. P N N
Elp) - 2 = — (. — (5 ! 1. 1€
(p) (0 Qﬁt},—l‘r} 1 (mrff) “S(.'\"IJB]H' ( )

The second form ol the dispersion relation equ (4.20) has a latlice artilact due to
the lattice Torre of the continuue placian i the kineric energy operator. This is
a non-rolational ternn which iz allowed on the jattice ginee volational invariance is

broken. Since Oa)? errors in the lattice laplacian have heen removed we expect

. . - L. . . ~
Chis Leern o be zero, T is also expecied that (Ch)¥ {3 unity np te correclions of

O{v?). The dilference in energies A{p) ~ E(0) is chogen in the fits hecuwuse this

will vemove the zero of energy from the fited form. 1t is known thal this zero of

energy will not be eqnal to Ay, becanse the bare quark rest mass was explicilly
removed from the theary. 'To take into account of this difference in mass another
parameter would have to be jolrodnced into the functional form for Lthe dispersion

relation. Since a value for the difference of energics is nended o ralio of meson
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propagaiors are produced. Ty the Alling routines ratio of propagators are prodiced
using a jackknile procedure which in turn are then fitled to single cxponentials. A

jackknife data point My (4} Tor £ =1, ¥ is defined to be
Miaar(i) =< M > — M(i) (4-20)

where M (7) 1s the origival data peint and < A > is the mean of M (4)’'s over the
data sample N. This is then repealed say 40 times Lo produce 40 jackknile energies
F(p) — E(0) which ave then fitled to the funciional Torms equ (4.19) or eyn (4.20).

When doing the fit, 4 dillerent meson propagalors with diflerent momentum
components are used and fitted simultaneously. 'To start with the lowest lour corn-
ponents ave uged, p = (1,0,0), (1, L,0), (L, 1, 1)y and (2,0, 0} in units of %, notl only
to reduce exira p® contributions hut also the naise ta signal ratio will bacome much
worse for higher momentum values since the noise will he delermined by bhe low-
est momentumn component. Using equ {4.19) lirsl it is [ownd in labtice anits thal
M} = 2.430(6) and M4 = 2.09(4). For the second fit equ (4.20) the parameters

were found to be MP = 2.429(7), ¢y = L.7(1) and ¢y = —0.12(13). For our defi-

nition of kinetic muass which shanld be compared to the experimental mass of the
1Sy stare the value of M or MP is used. “Ihey are bolh the same wilhin errors
and converting to physical unils our vatne for the L8y is faund to be 2.99(10) GeV,
This is expected to be accurate ta ((x*) and so taking into accaunt of the system-
atic ervovs as well this mass agrees wilh expariment. The hare mass add = 0.8 is
appropriate for the Charm case ai this lattice spacing., The mass in the p? tern is
found to be 2.6(1) GeV and 2.5(1) GeV lrom eqn (4.19) and equ (4.20) respeciively.
Again botl masses agree within errors and so there is litile varialion on the Lype of
function used in the fit. The Lwo rnasses in the p# and p? teniis are expected (o agree
with O(x%) becanse of omilled relativistic correclions hreaking Loreniy invariance.
This is fonnd 1o be the case for Chartoninm where v2 2= 0.3, A similar analvsis
using instead Upsilon [28] found this (o be case as well although the differences in
the masses wus smaller. For the parameter Cy this is indeed zero wilhin errors as
expected.

It now needs to be decided whether or not the fitting procedure has been opti-
mized. For example have the right morentum components heen used and would
higher mormentum coruponsits reveal more of a p" structire present, and help Lo
acconnt for some ol the discrepancy tn say Lhe paameiers M7 and M3 Con-
versely il needs e be tested whether there is a p% present i the dispersion relation

or whether in fact there is no p? present at all and we are constrainig the fit to
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100 1o 11k 200
gy {I1(h0) THH) (0
Ralio fits | 0.0554(2)  0.1089(1) 0.1597(7) 0.210(1)
B 0.0564 01198 0.1692 0.226

IR
T warys | 00854 01087 01599 0.210
Table 4.1: Compavison of tatio fits of Z(p) — E(0} to values of Elp) — F(0) using

ﬁLI;e(l IJ arameler V('I-l HES

be so. Simply fitting the dispersion rolation La only = p? term praduces a Lotally
unaccepbable Q value and the fit can be ruled oul. To gee if auy 35 lerm is presernl
in the dispersion relation a term (7, TL'.%FT_;% is added to eqn (4.20). The p! term
which is known not e contril:ute much to the (it 1s removed Lo reduce the number
of purameters in the i, Pitling to this fornng shows there is no p& presenl and e
paramelers ME and ) remain unchanged withinn ervors. As a last check highesy
momenbum coinponents have been used inequ (4.09) and equ (4.20). For example
using p = (1, 1,0), (1.1, 1),(2,0,0) and (1, 1,2) produced the same values for Lhe
paramelers hal will a lower Q value suggesting higher momentum values will not.
reveal niore p? in Lhe dispersion relation. To test whether the parameters lrom the
fit are acceptable or not we can simply work out £{p) — £(0) using the litted pa-
rarneters and cotupare Lol o the encrgies from fitting a ratio of reson propagators
to

INE=ON o) El-gil.f.lf)l'{ 1}

Ae= Bt (1.21)
Meson pr()pagu.i.ol'{nj

This is sununarized in table (1.1) where the parameters from equ (4.19) Lhave heen
used. The table show that the fitted parameters produce the sune 2(p) — £(0) s
from the ratio fit oy il a p? term is present. There is disagreement iC only a siugle
p? terin is used verifying that a p? contribution is definitely present.

In summary we have used Lo inputs from experiment, the spin-averaged 1P-18
splitting and the lowesl lying 5y stale to lix the 1wo lree parameters in the theory.
All regulis now will e predictions, (or exammple Lie P and § hyperfines and tle
25-18 splitting. The extraction of Lhese quaniities will be describad in the nexi

subscctions.
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4.2.2 Fitting results for the S, P and D states

In this sub-section multiple exponentinl fits will be used Lo extract not ovuly the
ground state to high precision for the 1Sy and 5| but also their Arst excited state.
Fitting to the ground state of the 1 and 1> states will also be done but no attemnpt.
will be made 1o extract any cxcited states. Using mulli-exponential fits will involve
fitting several meson correlation functions simultaneously as described in the pre-
vious section. Doing multiple exponenlial [ils, lor example filting to @ exponentials
will give an accurate value [or n -- | states with higher excited stale contaminalion
comtained in the last exponential. Wheu nsing several meson correlation Nunclions
it is necessary to use <diffevent types of smeaving ad the souree and sink. All possibla
pormutations of smearing at the sink and source have heen cajeulated wsing delta
function smearing, gronnd state and excited state smearing for the S siares.

The results [rom various lypes ol smearing for the S slales are swmmatized
in igire (4.3) wheve elfective wiasses defined by mey (1) = - log(GUE b D)/ O(1)
are plotted together willi bootstrap errors. From these plots of effective niasses
smearing works reasonably well and plateaus can be scon carly on in the (12,,, 1) =
(1,1) than in comparison to the (Ioe,lve) case for example, lor plots with an
excited stmearing Minetion no steady plateau can be seen for the first excited state
and the signal decays to the ground state. This is i contrast Lo the Upsilon case
where excited stale plateaus ave just present. This could rellect the Tact that their
smearing hnctions have a Letfer overlap 1o the exciled meson state.  However
another possibility is that the eflect is due Lo Wie fact thatl Upsilon was siimuluted
at a higher A valne of 6.0. Here the fattice spacing is smaller so effective rasses in
latbice units are smaller in tneie. Thervefors higher radial states are less exponentially
suppressed relative Lo the gronnd state. When lower @ values are nsed as in the cage
of Clhiarmonium, il is expected that excited states will decay more quickly maling it
more difficull to extract @ value, [L s also expeeled that ground states will plateau
earlier ou for the sume reason and so at Jower 7’5 the method of stmearing and mulii-
exponential fits will becorne move and more redundant. Plotled in figure (4.4) are
eflective masses lor the 12 and 'y staies where as can be seen the noise s much
worse, a8 expectod from equ [3.88), although a reasonable platean can be secen.

Two functional lorms have been used in the muti-exponential fils which are
deseribed in the previous seclion. For ithe row fit eqi (4.6) two meson correlation
functions {ng.,m,) = (L loe) and (2,70o¢) ave used. Fhe [it will involve filding

Rpar = Negp(Teor + 1) Darameters where 2, .n is the nuniber of exponentials and ne,
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ts the number of megon correlation functions. Fhe maxitm ng,, is 3 and ey = 2
making in this case npe = 9. No ({oc. loc] correlation functions are used In these
fits since it is expected that they will have significant contauninaiion of higher vadial
states. In general il a certain radial stale is (o be extracied accurately 1L wust have
an appropriate smearing function far that stale in the meson correlation {unction
used in the fit. The second funclional form used is the matrix fit agqn (4.7) where
different correlation functions are made up using the combination n,. = 1,2 and
nsi = 1,2 forming a 2 x 2 matrix. The number of parameters fitted to in this case is
given by iper = Pewp(PReow 4 1) where 72,4y is the dimension of the matvix. For the
matrix fit we use nypq, = 2 and the maximuro mmmber of exponentials is v, = &
giving the maximuou number of (itled parameters npe, = Y as 1 the corvelated fils.

In Tables 4.2 and 4.4 are date (rom the corrclated and matrix fits for the 1S5,
and 85;. The errors stated are Lhose causing a change év? = | and we also gnole
the quality of the fit, Q. To hmprove our statistics we only bin correlation functions
which start from differant spatial origing but not enes wliich have different starting
timeslices. This lrax little eflect on the ceutral value but does ineraase the Q value
giving us wore coulidence in the fit.

From hoth tables it is clear that an accurale gronnd slaie mass can be oblained
at very catly times. Ounly a tpmin of 2 gives an unaceaptable Q for the 2 exponential
fit. Adding a 3rd exponeutial then produces an acceptable fit. Again Wlis contrasts
with the Upsilon spectroscopy resnlts al 7 = 6.0, llere it takes much longer Jor the
ground state eflective mass to plaienn with worse Q values al early vailues of 1y,
The fitted parameters oblainzd from the two His are independeni. of the type of
fitting rontine within ervors, although the values lor Q are lower (or Lhe malrix fs,
At this point it is constrneiive Lo tesl how ellective the multiple exponential fils ave
[or the ground states at # = 5.7, In Table 4.3 are values Tor a single exponential lit
to the (e, nsp) = (5 oe) and (1, 1) for the 15, state. In boll cases an acceptable
¢} can only he obtained at {ng, larger Lhan when using a nltipls exponential fit.
This demonstrates the need {or wmltiple lits in extracting gronnd stales even al.
these relatively low @s.

For the first exciled state the choice of fitted value iz far more dilficnlt. To have
confidence in the valie we should use a 3 exponeutial fit although this gives larger
errors in the fibted masses. We look for both a steady value in the fitled mass as
Emin 15 changed and a steady value for Q. It is also usefl Lo look ot the amplitude
tor the second excited state in the 3 exponental At Lo see at wlhal 4,,;, values it bas

decayed away. For the 1.5 vow it we chaose a value L17(5) Tor the excited stave mass
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Newp  Tonin fmag ki afiy Q2
fits to (1,loc) | 2 2/94  0.617L{6)  L172(6) 2 x 10~
and (2,loc) 3724 0.6178(6)  1.16(1) 0.65

A4 0.6176(8)  LI6(1) 0.64

5704 0.6179(7)  LL4()) 0.79

65/24 0.BL82(7)  1.21(5) 0.94

724 D.GLRS(TY  1.27(8) 0.92

3 2/24 0.6180(7) F.ED(2) 0.38

3724 0.6177(20)  1.15(4) 0.53

4724 0.6181{6) Li6(2) 0.79

5724 0.6183(7)  1.30(16) 0.9

6/24 0.6183(7)  1.19(8) 0.87

1t} 24 0.6183{7) 1.26(24) 0.85

fits to 2 3/24 {1.6185{6) 1.18(%2) 0.06
(1,1), (1.2) 4/24 0.6183(6)  1.17(3) 0.15
(2,1), (2.2) 5724 0.6178(6)  1.16(4) 0.25
t5/24 0.6177(6) 1.08{4) 0.15

7424 0.6181(6)  0.90(6) 0.42

3 3424 OGI8C6)  1.19(2) 0.27

4724 UGLTS(6)  1.14(4) (.23

5/24 0.6179(6) L.24(T) 0.16

5/24 0.6180(6) 1.26011) 0.18

7724 0.GLRL(B) 0.91{6) 0.33

Tabie 4.2: Examples of simullaneous mulli-exponential fits 1o the 18y using row

and matrix fits respeckively.




! Neep  bin/inas wly- Q
fits to (1,loc) [ 5/24 0.6158(8) 0.0l
6/24 0.6184(8) 0.66
/2 0.6183(8) 072
fits to (1,1) i 4724 0.6184(3) 0.05
5724 0.6181(8) 0.22
6/24 0.6181(8) 0.18
7724 0.6182(87 0.15

Table 4.3; Examples of single exponential fits o the 1Sy

{average ol {,,;, = 3,4, 6) and from the madvix [ 1.E8{4} (average of L = 3,4, 5).
There is Lhen agrezment within errors hetween Ehie two fits and we chaose [.17(5)
as the glohal average. For the *5; state there is a significant. delerioration in the
Q values over those for the 'Sy and the fittiog ervars are slightly larger. This is
preswinably a reflection of the additional noise in the *S5; channel coming from the
1Sy. Tor the row fit a value of LI9(7) (average for tmia = 4,5.6) is chosen and a
value of 1.22(3) (average for ipip = 3,4, 3) [rom the matrix fit. A global average for
the excited 35 is chosen to be 1.20(7). All the hitted values are collected in Table
4.13.

An allernative test whicl can be used Lo extract an excitad state Is that suggested
by [29]. Hers a matrix of correlation funetions which afl have Lhe smue quantum
numbers is formed. Txplicilly diagonalizing this matrix will produce orthogonal
eigenstates consisting of the ground state and higher excitations, The dimension of
the matrix determines the number of cigenvalues und keuce the mumber of excited
states which can be exiracted. T our case we have used correlators which diffor by
the type of smearing 1o form our malrix of correlators and restricted Lhe dimension

of the matrix to be a 2 one. Define the makrix ol correlators 1o he

A ot ] A ah
cy = e e e
Munay My

wheve Mg,y s given i equ (4.5) and @ and & denate differcut smearing combina-

tiong. Inserting a complete set of energy eigenstates oue has

aala)l?  an{a)es(h)
Cj = Zr_,u”, | )l ((a)ag (0] (4.23)

ta(D)ai{a)  |an (D))

Diagonalizing the matrix by solving lor the eigenvalues it is relalively simple 1o
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Neep  tovin tina alr) aliy Q
fits to (1,)oc) 2 2[4 G.6951(8)  L.247(7) 4 x 10~*
and (2,loc) 3/24 G.6961(8)  1.23(1) 0.23

424 G6Y58(9)  1.22(2) 0.23

524 0B961(9)  1.18(2) 0.46

6/24 0.6966(9)  1.21{5) 0.56

7724 0.BYBSII0)  1.25(8) 0.56

3 2124 0.8964(9)  1.21(4) 0.1¢

3/24 DA9RT(9)  1.20(4) 0.17

4724 0.6964(10)  1.16(5) 0.47

5794 0.6GO6T(I0)  1.22(R) 0.55

6/24 0.6966(7)  1.10(15) 0.4]

7724 0.6969(10)  1.25(16) 0.10

fits to 2 3/94 0.6970(8)  L.22(1) 0.04
(1,1), (1,2) 4/24 0.6967(8)  L.21(3)) 0.05
(2,1), (2,2) 5724 0.6965(8)  L.24(3) 0.07
8/24 0.6966(8) L3l 0.09

7724 1.6067(9)  1.95(8) 0.08

3 3724 (LOIG6(S) 1232 0.08

4724 0.GUGG(8Y  1.20(3) 0.06

5/24 D.6964(8)  1.23(4) .04

(/24 0.6969(8)  1.46(13) 0.06

724 0.6967(9)  LO0{9) 0.07

Tahle 4.4: Examples of simullaneous mnlti-exponential lits to the 5 using row

and matrix fits respectively.



14 e S e RUCIEL ERECIND i
1.3 | (L.1)
1.2+ -

2 ¥ T | |
18 F (1,1) 1
LE —
1.2 F ! -
: [
0.8 —
0.6 - | I ; ! !

0 2 4 6 8 10
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show that the hehaviowr of the Lwe eigenvalnes with time

Ay~ ¢~ Mo (1 |- 5;+{c1.5[ra},u.;{b))r-“&‘rj”)
Moo~ e ™M (] b g (s (), ai(B))e AT {4.21)
where
AE;? = En ~ [y
AL =miu(ly = Ey, 25— 7)) {4.25)

Therefore we expect Ay to he dominated by the ground stale very carly en in lime
and A_ to platcau to the first excited stute. Lo slart a local smearing function is
used for ¢ and the ground state for 6. When diagonalizing the matrix there will be
correlation between difterent elements of the nidrix which needs to be removed. To
do this a hootstrap ensemble of malrices ave produced {vom Lhe original data sl and
for each hootstrap matrix this can be diagonalized by solving a simple quadratic
equation. The two boatsirap eigenvalues are then fitted to a single expouential.

The ground state and first excited state plateans are shown in figure {(4.6). The
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Newp  torin /binae wly| Q
1 3/15 L284(7) 3= 107
4/1% L2(1) 9= 10—
5/18 1.20(2) 0.32
6/15 1.2003) 0.24
7/15 1.19(6) 0.17

Table 4.5: Fits from a siugle exponential for the first excited state eigenvalue
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Figure 4.6: Tirst excited and gromnd state obtained by diagonalization for the 15,

stale.

fitted results oblained for the st excited stats are tahnlated in table (4.5). ‘Ihere
it can be seen that it tnkes o relaiively large time for the first excited state to
plateau to a steady valne in comparison to the values from the muiti-exponential
fits. These higher state contributions are probably cavsed by having a (foc, lne)
correlation present. However the values in tuble (4.5) agree within errors with the
mulli-exponential fits which acts as a test for the validity of both methods.

In Tables (4.6) and (<.7) are the amphitudes from the various lits for particular
values of {min /lpar. The vitlue of Ly S ror whieh the mmplitudes were taken
arc from the fit for which the first excited state was clagest Lo the average resull
quoted above, I both the correlated and malrix fils it was found thal the amplitude
for a second excited state is essentianlly zero. This indicates that contamination (rom
higher states in onr fits are negligible. Consider first the amplitndes from the tatrix

fit given in table (4.6). The amplitude coellicients are delined by

tyl(sc) = < n|(’3;_‘r

0> (.26)
so that for example «; (1) =< 1OT0 > is the projection of Lhe gronnd state
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onto the ground slale smearing operator. 1 can be seen [rom the table that the
smearing Tunctions are doing a reasonable job in projecting oul the desired state (on
diagonal amplitudes) and suppressing unwanled stales (off-dingonal amplitudes),
For example e1(1) > az(1} and in torinas(2) > a1 (2). For the amplitude corlficients

in table (4.7) these arve fron the row fil and are delived by
bulsk; se) = < 0|OQynln > < n|O,.]0 > (1.27)

Again the smearing [unctions are projecting onl the requiced state, for example
ihe off-diagonal amplitndes again are mare suppressed compared Lo the on-diagonal
ones. Thus it is ol advantage Lo have siearing functions aluliough they are clearly
not optimal. 14 may be hetter to use the entpnt wavelunctions to produce input
smearing functions in ant improved calculalion.

To tllustrate the quality of the multi-axponential fils into early times eflective
amplitnde plats given by the average of ¢™ v A7 (8) Tor sorme meson correlation fune-

iion are plotied. Also plotted 1s the function
eMUM (1) = at + be = (M=o (14.28)

where the panwveters ave taken [tom the Gt T4 can be seen from all the Nits that
the functional form for the effective wmplitude lies well within the errar hars giving
confidence in the quality of the Btled parameters.

For the singlel P and D states because we have only included the ground slaie
smearing fuancltion in the sirlalion, multiple exponential fits are not possible. In-
stead a single exponential fit waz performed 1o the (e, 20 = (1, 1) meson propa-
gators of the 1P and ! Dy, The results are shown in Tables (4.8) and (4.9). I both
cases a reasonable @ can be obrain with relaiively small statistical errors although
these are lavger for the 13 stales as exnected. To tsolate Lthe gromnd stave early on
and achieve better errors higher vadial smearing limetions need to he added. Work

has begun on this for the P states.

4.2.3 Fits to Spin Splittings

The operators in the NRQCD action responsible for the § and P hyperfine split-
tings involve the chromo-magnetic and electrie lields. Henee spin splittings are
very dependent on the tadpale-improved coupling constants ¢;’s. This makes the
spin-splittings a good test of Lhe tadpele-improverent scheme, It is also true Lhat
potential models fivid il hard to produee spin-splittings in sgreament. with experi-

ment so we would hope thal they are also a goad test of the difflerences between a futl
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it Cnge flmae K au(Meesr = 1) an{neep = 2)
Nowp = 2 A2 1 0.681(1) 0.1188(8)
tor 1Sy 2 0.18(9) 0.52(2)
Negp = 2 5/94 L 0.700(3) 0.164(1)
for 33, 2 0.20(2) 0.53(5)

Table 4.6: Exampies of fit results lor amplitudes ag(nge, i)

it 'I:.a.«:-Iu./lf-mar ko blnge = LAY Dblnge = 2.0k)
Newp = 2 1724 I (NS -0L0184(1)
for .5 2 0.032(3) 0.064(2)
Neyp — 2 h/24 1 0.503(1) 0.0253(43
for 3G, 2 0.036(7) 0LOG9(3)
Table 4.7: Examiples of it rasulis for amplimdes b(n,-, &) ,,
Ne.r."n {min /"'I-nm.r‘ ”-J-;"i (2 »
fits to (I,1) 1 2724 1.059(4)  0.45 ;
4724 1.052(5) .68
8/24 1.049(7} 0.65
/24 1.016{9} 0.62
T/ 1.048(14)  0.55
Table 4.8: Examuple of a * 2 it
Nr.‘ ap "r-r.u'n./il- mar (!'El Q

fits to {I,1) ] 3/24 1.356(1)

A /4 1.32(2)  0.77
hfed 1.3003)
6/24 1.26(5) 0.78
7724 L.26(9)  0.72

Table 4.9: Fxample of w4 (il
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Figure 1.7: .5y Effective amphitudes G(1) - from two-exponential row fils (1.6

— 24 .

(2,0) and two-exponential matrix fits (1,3) (2.2} with £, = 4. fas

calculation i QCD, such as ours, and w polential model. The calenlalion of these
hyperfine splittings are direct prediclions of QUD, the retaining free parameters
have been fixed previously using spin-independent quantities,

It is expecbed thal meson operators witl the samie orbita] angular momentum
but different. spin orientations will be highly correlated. To take this into account a.
baotstrap ensemble of ratios of correlation (unctions are produced. Doing a ratio fit
has the advantage of reducing statistical errors because Lie high correlation hetween
the numerator and denominator is divided out. In most cases a single exponential

fit is used in ratio fits which has the form

Ralio{t) — Ar—* (4.29)

where &4 is the energy difference hetween e Llwo mesons in the ratio. Meson
correlation functions with smearing (v, ,0) = (1, 1) are nsed. Binning en tine
and spatial origin have been used in all cases and it s found that very high Q values
in general can he achieved. Shown in Table (d.11) are values ablained for various

combinations ol spin-splittings vsing equ {4.303. The &/ obtained lar the 35 1o

15 fit is in agreement witl that ablained Trom the separate row and matrix fits of

Tables (4.2) and (4.4). There a value of 0.0780{11) was obtained which has a higher
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error than in the ratio fit case showing that a ratio it can indeed rednce slatistical
Noise.

Il instead a ratio fib was done between two meson correlators with different.
angular momentum it is not. necessartly (rue that the noige will be reducad. Tlie
Monte Carlo neise experienced by the quark in the D state is cifferent than the
noise experienced by the quark in the S slate because of the grealer separaiion
between quark and anti-quark in the D state. The two cillferend Lypes of noise will
not then cancel out when a ralio is taken. As an exatuple a ratio fil to 22> —F S
gave a value 0.69(3) where as filling the two stales directly save a splitting 0.68(4).
Hence the noise and eentral valne remains the same. For Llie P states all different
types of aplitting between differeus spin orientations were done. Using these valizes
P splittings velalive to the centre of mass can be calenlated. For exaraple with Lhe
centre of mass for the P stales defined by

I:J:j ID'_J -} :iH .!Ul +3 ')u}

Pea = 0 (4.30)
then
) 3 p l .. i
APy Pergy = 5 (*Py =2 P) + 9 (3P, = 1) (1.31)

The quality of the data alsa allows direct lils to the [ siakes 1o extraclk P hyperfine
splittings. Again the cenlral valne iz nnchanged butl the ervors are increased. From
table (4.11) it can be seen that the splittings involving the P stades in the | rep give
the same values within errors as P states in tae I rep. Thig is 4 good indication
that rotational symmetry is restored on the partienlar latlize which we have used.

To estimate the effsct of higher radial excitations in the ratio fit lar the .5 and

16y we have used @ correlated ¢ 5 fit and flted 1o the Torm

Noayp
y - Ay o
Gineson A(”-.\'m {oe, ty = ('.‘1(”.\-‘: "'] ‘ i ()1'52}

frz

N
LR LA B,
(.J'mt:sun. B(”‘.\':‘: !"0(‘;1') = r”(”.n‘\ 1] ¢ VET A} + Z FU(“-‘"V ’,"] ¢ b

="

for nge = 1,2 for each meson. 'I'he resnlle shown i Table (4.12) show thal the
3¢ =L 5, splitking can he oblained ab carly Gmes with smaller errors than in the
ralio fit. The exlra exciled stales have been ahsorhed in the extra terms in the
correlated fit. The resulls from the row and matsix lils are not able to give a clear
signal for the 25 hyperfine splitiing and we are also unable to obtain this with the

ratio fit eilher, for example by adding additional exponentials.
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Splitling Neep  lmin/tmar ah Q

G - 1S 1 4124 0.0794(3) 4.0 % i0™"
! 6/24 0.0784(4) 0.35
8/24 0.0784(4) 0.32
10724 0.0783(5) 0.2t
12724 0.G778(6) 0.25

Table 4.10: 5 hyperline gplitting from a ratio fil.

Splitting Newr  torinlimae adld ¢}
SPup = 2P l 3/13 0.090(2)  0.94
4713 0.080(4)  0.91
5/13 0.090(6)  0.83
6/13 G.086(9) 0.8l
3P0 — A 1 3713 0.045(1)  0.99
4/13 0.046(3)  0.99
5/13 0.045(1) 0.9

6/13 0.044(6)  0.97
#Pyp - 2Dy 1 3/13 0. um(z 0.87
4713 J.08G(4) 057
5713 087(5)  0.64
6/13 0.G83(Y)  ¢.65
3Py — 3P, i 3/13 JMI(1)  0.97
1713 JE3(8) 097
5713 0.043(4)  0.95
6713 0.042(7)  0.9¢
P — R, i 3/13 0.045(1)  0.13

4/13 0.043(2) 013
5/13 0.046(3)  0.12
6/13 0.041(3)  0.04

Table 4.13:0 P hypecline splitting from a ratia A1,
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tmin/tmer 1450 225, 13§, - 1ls, 28§ Q
3/24  06L79(6)  1AT(1}  0.0779(3)  L.23(1)  0.20
4794 06178(6)  LI7(13  0.0778(3)  L24(2) 033
5/24  0.6180(6)  1.A6(2)  0.0TTTRY  L19(2) 0.2
6/24  0.6183(6)  1.20(4)  0.0780(4)  L.20(4) 0.88
7/24  0.6183(7)  L20(8)  0.0781(4)  L.20(6) 0.82
8/24  0.6184(7) LL6(t1)  0.0781{4)  1.25(13) 076

Table 4.12: Example of correlaled 8F it for the *S and

Simulation Results

115, (1.618(1)
133, 0.697(1)
plg 1.17(5)
238, 1.20(7}
1y 1.030(7)
D, 1.30¢4)

55, .15, (1.0782(4)

8p, _3 py 0.088(8)

Ap, -3 p, 0.044{5)

3p, L8 p, 0.044(3)

Table 4.13: It

ted dimensionless energios.
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Figure 4.8: Exampie ol .8 hyperfine [it wsing (n,., n.) = (1, 1) meson propagators.
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Figure 4.9: IExample ol a 1P hypertine fit using (1, nep) = (1, 1) meson propagators.

4.2.4 Wavefunctions

As well ag determining the specteuns of Chinrmanim, wavelunctions for the 15,2 .5,
and the * P gronnd states have beeu calenlated. Waveluuctions ave interesting (rom
a phenomenlogical point of view hut can also help to delerinine 1he size of the heavy
meson and estiynate [or finite volume elfects. Wavelunctions coming out of the sim-
ulation ¢an be used to estimale the expectation valnes of operators in the correction
program of NRQCD instead of relying an potential- inspired wavefnnclions. More
imporiantly js that the wavefunctions can be used 1o extrach a heavy quark poten-
tial using a simple inverse Schrddinger equation. A prograim now exisls Lo do this
[30]. The potenrial extracted lLiere will have the advantage over more canventional
techniques hecause relativistic corrections shoudd be present and cormparison 1o the
conventional stabic heavy quark potentiuls can be made, H, for example, the heavy
quatk pobential is found uvsing a 1.5, wavelunction and another potential from the
351 wavefunction the two potentials can be snbtracted and the potential responsible
for the S hypertine splitiing lound. This can then be compared o whal is expecled
from potential modets equ (1.34), Another nse for shmulation waveiimetions is (had.
they can offer o mnch improved smearing [inction {or Miare simulations.

Shown i figure (1.10), (1.11) and {4.12) is the radial wavelunclion component,
for the Y5535, and the ' 7 respectively.  For the § stales their wavelunections
are normalized so that the madubus of Lhe wavafunclion squared summed over the
whole latlice is equal to one. As for the ' state the wavelimetion is normalized so
that 1t is equal 1o one al a distance ol ane {von the origin. The distinctive featire
of all three radial wavelunctions is that they all are coulombic in behaviour. The
radinl wavefinctions of the § states goes us ¢~ whersas for the P states Lhey
behave as re” %0 . A Rt Lo the wavelunctions gives vo Lo he about 1.6, Clearly the

wavelunctions are dominated by a ,l patential i the Charmontum case and suggests
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Fignie 4.10: Wavefunction for the LS, slate,

that the originat choice of smearing (unclions is a savislactory ane. Looking at the
difference between the different spin states 15 and %5y i can he seen thad lov
the 25 the wavelunction al the origin is slightly less than in the 'Sy casc. This
is to be expected since Lhie 25| has o Ligher excitalion energy relative o the '8,
case and hence a slightly greater separation between the guark and anti-quark is
expected. In all cases it ts possible 1o see Lhe ellecl of periadic boundary conditions

at a separation of six lattice spacings.

4.2.5 Comparison with Experiment

To compare sinm)ation resulis (o experiment i is necessary 40 ix the seale o™ I
the spin-averaged P 1S splitting is wsed cqa (4.18) it is found that ¢! = 1.23(4)
GeV where the error is only stalisiical. It is also possible in principle 1o use Lhe
25-18 splitting to set the seale because this splitting alse has the property of heing
insensitive to the guark mass and relalivistic correctians. Using this splitbing would
give a slightly differenl 2=! ag a resall of quenching and taking sn average of the
two a ' wonld ielp to linnir the quenching elfect. Howover in practice the stalistical
error an Uk 25 state is Loo high for thiz to be done. In Table (4.14} we compare
the splitlivgs oblained from the sinmlation with experimental vesults. The rosnls
are plotled in figures (4.1} and (4.2). 1t iz important to remember that there is a
potential (A v®) &z 30 - 45 MeV systeraatic ervor in all splittings coming {rom

relativistic corvections not included in the heavy quark aclion.
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Simulation Results {GeV]  Fxperiinent |GeV)

2850 — 118 1 0.679(62)

236, — 135 | 0.619(87) 0.586

YDy - 18y | 0.84(B)

D - 18 0.789

38 — 18y 1 0.096(2) g.116

3Py, — 3Py 1 0.108(10) U.141

5p, - 3p, 0.054(06) 0.045

3P, — 2Py | 0.054{4) 0.005

SPeaw — 1Py | 0.012(2)

Table 4,14: NRQCD spectrurn results and comparison with experiment for e=! =

1.23(4) GeV and «M = 0.8.

As discussed the statistical ervor on the 28 state is 1oo large 10 see any sig-
nificance in the disagreoment witle experiment. The fact that is comes oul lager
than experiment, when the seale is fixed (rom the YP-1S splitting in a quenched cal-
culation, is tn agreement with resalts (rorm the Upsilon where the dillorence Lheare
is thought to be mostly from ¢uenching [28]. To test for this in Chavmenisin it
i8 necessary (o reduce the statistical errors and syslemalic errors from the heavy
quark action in Lhe 28 stare.

The mass of the !0y stale is vather higher than that Tound for e {3770},
thought to he & 30 state. From the spin splittings alone you would expect this
difference. The 9{3770) is also above threshold Tar decay 1o 17 se quenching might
have a significant. offect on imasses in Uis region. The 302 lias the same gunantum
numbers as the 35 and will appear as a third excited stale in that channel. In
arder to observe such a stale the cross-correlalion belween the vueson correlalors
28y and the 3D would have 1o be ealeulated and we have nol aikemptoed Lo do this
lLiere,

Spin splittings have heen caleulated for the ground S and P states, Fromn Ta-
bie (4.14) we can see thal the hypertine sphiiling A("S)) — M (1Sy) bas a very
small statistical cvror. The dilference from experivnent Then shows up cleacly and
is presumably a resull of onr systematic crvars. For spin-splittings there iz an -
proximate 45 MeV systemnalic error o higher order relutivislic, diserelisation aid

radiative corrections lo the heavy ¢uark action. The discretization errars are ({o2)



errors 1o the chiromo-magnetic and electrie flelds and the rudialive corrections are
O(y?) correclions (o the coellicient ¢fs away [rom tadpele-improvement. This could
castly account for the difference in the S hyperfine splittiog with experiment that is
observed. @Quenching though is also expecled o liave a signilicant offect cortainly
in the case where S stales are concerned. From potential models e S hyperfine
splitting is given by

3 2 T (.l"? ( M (;)” )

A, ==

O (4.33)

whaere the cflect of quencliing on the ruuning o['_(:r’s up Lo the Charm mass scale will
cause it ro be reduced by approximately ‘-6“151,;—,{%!—-—1 m 20% which again can
explain the discrepancy wilh cxperiment. 1i s n}l;o poszibie for Lhe wavefunciion at
the origint ta change on going from gquenching Lo unguenching. This chatge is [ound
ta be small which will be explained 1n chapter (5). Recent resilts for Upsilon using
unduenched conligurations show a significant increase n the S hyperfine, reinlorcing
the above argument of 1he ellect of quenching on the 5 hyperfine splilting. One
acdvankage of the Chavmoninnsystemn is Lhal an experimental valoe for Whe hyperfine
sphitting does exist. and this should enahle us to maouitor iow we ave improving the
result as we remove systematic ervors including, evenlually, that of the guanched
approximation. A cowmparisan (o other methods of caleulaling the Charmonhnn
S hyperfine can be made. For example the Fermilal gronp [31] give far the 5
hyperfine a rather smaller valne than ours. Here they use atadpole-improved Wilzon
fermion action equ (2.40) lor the heavy guarks and this approach has different
systemalic errors than owrs. In Lerms of an expansion i powers of o /¢ Lheir
current caleulation is not as accurate since the relativistic corrections ol Lype pt/34*
are not included correctiy, as onres are. This will produce errors iu their caleulition in
fixing the bare heavy gquark wass Irom the meson dispersion relation. The hyperfine
splitting is rather sensitive Lo Lhig, as can be seen lrom equ {4.34). The Termilab
group have, however, picces of yel higher order terms which are entively missing
from our calenlation. A similar calentation from the URQCD collaboralion [39]
using an uniuproved Wilson as wetl as an improved Wilson Termion aclion fonnd
also thal the S hyperfite was much smaller in comparison fo a NRQCD caleniation.
Here it was clear that using an improved Wilson acltion increased Lhe hyperfine
splitting significantly. However the improvement was oily done at bree-level and
the hyperfine splitting from the Leee-level improved Wilsou action gave a value
smaller than the Ferivilad group.

In the case of the P state splittings il is expected that the correclinn as a resull
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of quenching will he less, Fhis i3 becanse the mornentamscale causing the splittings
in the P states lies mmove closely to the average momentmm seale in the Charcmontun.
In contrast the momenlum scale causing the S hyperline splitting is larger and this
splitting will be elfected more by quenching. Navertheless there is a discrepancy in
P state splittings between our resulls and experinent which is <ne to higher order
relativistic and/or discretisation errors in the heavy quark action. In the Upsilon
spectrum calculation Lhere was no significant disagreement with experiment but the
results had the same qualilative tendency as here i.e. the overall splitting between
¥y and xp is too smali and the x| stale tends Lo be equidistant between yq and vo
instead of much cloger Lo ya. The experimental values for the ratio

Mixa) = Mixi) (4.34)
AMix) = M) h
are (.48(1) for ¢Z, 0.66(2) for b6 (LP) und 0.58(3) for 68 (2P). The values from our
simulation at 8 = 5.7 are L{2) lov ¢¢ and 0.7(3) for B at 2 = 6.0, Fulure caleula-
tions which include higher orders terms should be able ta resolve this discrepancy.

The main conclugion frem the caleulation of the § and P hyperfine splitting is
chat the sinmlaiion resulis have very small statiskical evvars allowing {or the obser-
valion of systemualic errors, The disagreemnent with experiment can be put down Lo
these arrors which are the ornission af relativisiic corrections v the heavy quark ac-
tion and quenching. The fact that this is tlie case is a success of Ladpole improved
perturbation theory. When tadpole-improving the chrome-magnetic and eleclric
fields are divided by wd. Yor 2 = 5.7 it is found from Monte-Carlo simulakions thal
g = 0.861 and so tadpole- improvement will increase the steenglh ol Lhe chrome-
magnefic and electric fields by a fctor of 1.8, Not doiug this will severely reduce
the value of spin-dependent splitiings. The reduction being such that il contd not

be accounted for by the remaining systemaiic errers. Tadpole-trmproverent is then

fundamental to the success and predictive power of NRQCT.

4.3 Upsilon and I, Spectroscopy

In this section e spectroscopy of Upsilon and . al g = 5.7 will be given. An
extensive calenlation of the Upsilon spectrum at 4 = 6.0 already exists [28] and
deing the same caleulation at lower i#%s will enable Lo help quanuly errors arising
from tatbice spacings.  As (or the B, spectrum uone ol these mesons have bheen
experinentally observed,  Unlike Quarkonivm systerms the 3. s charged. This

means it can not be produced in eleclron positron annihilation inlo a quark and




anti-guark as in the case of Charmomum ar Upsilon. 14 1s hikely that B. bound
states will e produced [rom b and ¢ quarks coming from ihe separate dzcays of Z°
particles or hadrowdzation of b quarks. When the bound stales are forrried below
BD threshold they will be even more stable than Quarkoninm. Being charged they
are unable to decay into glnons and must do so via electromagnetic transitions Lo
the ground state which will then decay by the weak interaction.

The results from the simulation can ten act as predictions. In the simulation
both the Upsilon and B, spectrum are calculated al the same Giue Lo save on
computation time. The code will essentially be the same as lor Charmonntm but
some slight adjustients are necessary. No allemnpt to calenlate any of the D states
has been mwade becanse for these 1o be of use the * D) states really need Lo done for a
comparison to experiment. When calenlating the grark Greens functions 16 is best
to keep the Charmn quark leeal and smenr the Bottom quark propagator instead.
This is because it is computationally quicker to calculate the Bottom gnark Greens

funclion. For the Bottom quark the stabilizing lactor 21 in the evolition equalion

iz smaller in comparison to using a Charm guark. This will reduce the mumber of

loops in the kinelic energy operalor has Lo perforu The only change needed in the
evolution part of the code is Lo add an extra Greens Munction which is local and must,
be evolved with a mass appropriate to that of the Charm. An important change will
came abont when caleulading the P stales in the B, system. For Quacrkoninm the

e
states were represented by the quantum mnnbers G0

which were all individually
couserved. I6 was then impossible [or staies differing in these ymaobers (o mix.
However since (e B, systern is charged, the charge conjugation gnantim number
C 1 nol defined. Therefore dhg means that states whkich have the same J and P
quantiuz pember will mix, To conclosion B3, stales can be jabelled by the qnanta
numbers JT and states like the P2 and P2 will J7 = 17 will mix. The problem
with mixing will canse the mesan propagator Lo e a linear comhinalion of inass
'lp

energy eigengtates with ¢uantum mumbers J5. For example the meson propagator

has the following decompozition
< Oif)aPIC)l;)l IU e /‘1("*\1':\;:‘! N Br"#”lpl ! {(]5.‘3)

To extract both masses is equivalent Lo the problem ol extracting botli the
ground and excited slales containing the same guantam numbers when there is no
mixture of states with different gnantum vurnbers. 10 was shiown in section (4.2.2)
how this 1s possible. A cross-carvelation matriy ts formed using operators which

have the samme J© = 17 quantum numbers. Upon diagoenalization this will produce

82




-Ma s f —ah iy 1

eigenvalies of the form ~ ¢ amnd ~ ¢ fronn which 4he mnasses can then
be extracted. Here since the masses Map, ~ Mip, one will nok have to worry about
the higher mass state being exponentially surpressed relative Lo the lower miass

state. Defining the operator
< U}CJHL'J“[} > =< afb > (4.30)

the cross-correlation rnatrix which needs 1o be evalualed is

<3 .PJ|3_P|_ > &8 P||1P| > e
(4.37)
<P PPP > <R P >
For this it is necessary to add fn the correlation functions <* P E > andg <!
P3P > into the code. Another madification [rom the Quarkonium case is that
ag well as the real paris of ihe correlation funcilon being kepl the imaginary parts
Tor the B, also will be required. This is a reflection on the fact that B. hos no
C nwmber. o Quarkoriuin the correlation hinction will be purely real hecanse of
charge conjugation. If C does not exist then the correlation hmction is i general
complex.

TFor the operators appropriate to £, staces these do not bave Lo be the same
as those for Quarkominm. For Quarkonimm ihe various epcerators are chosen with
specific J7¢ whera as here only the qnantum normbers /7 neods o e considered and
so some simplifications mighi avise. As an example consider the angular momentum

operator

xh (6,1 Ay g (x, L) — (1.38)

N

(I, N T : . .
xhx.t) (—(wmx i —volx =L | = { ~(xLx i = viix =10 ) dalx,t)
\ 4 / W4

Both terms in parenthesis have the regnired angular momentuate and parily lor o
J¥ = 1™ state. B becanse of charge conjugalion il wis necessary Lo have hoth
of the termy present i the Ainal operator for Quarkoniun. Por the I case then
only one of the terms will be needad. However [rom section (3.8) it was shown thal
tlug spatial devivative could be simplified so Whiak caly one ternn i Lhe pasentiiesis
needs to be used. This however usad the property thal seme Lerms were complex
conjugates of one another. This will not be ihe case in B. and to use Lthat argiment
for the simplification of the operator is incoreect. So i wnrns ond that even though
tite B, has one less quanturn winmber compared to Quarkonnun the sarue operators

can be used.




The cross-correlation funclion whiclh necds to he evaluated is

ﬂ(l’(l-; o ){ 1 {spy) =

Z < UEXL(XJ-) Ax Pa(x, l-]if{; (xa, tn) (E; Ti— AJ 0.‘) yalxa, W) > (4.39)

ax, ki
and similarly for the correlalion fanction M(k, Lo)qxp, (e The summation over
gpatial indices is such that § # 1 # j. The determination of these cross-correlation
fanctions is very much like that of the on diagonal tevms ic A (4; bo) 2y {2p,) and
involves the procedure outlined in section (3.8).

As previously willy the Charmonimn spectrum il is necessary te [ix the bare
(uark masses. Il is known what the Charin bare mass iz [rom the simulation of
Charmonium and to geh the Bottor bave quark mass it is possible to scale down
the value nsed at 7 = 6.0 to 5 = 5.7. By doimg this the bare quark mass in
physical unils ig being kept lixed and independent. of Lhe lattice size. A wore
physical definition which should he kept fixed is vhe pole quark mass which can
be written as the bare quark mass nmltiplicd by a renormalization constant. This
renornalization constant will depend on the cut-olT [33], ie the lutlice spacing, and
lience the bare quark mass will scale in a uon (eivial way, 1 the renormialization
conslant 18 known al Fs of 5.7 and 6.0 ithen it is possible to find the valne of the

bare quark rmass for (he Boltorn case at 7 = 5.7, However il will be nece:

cary to
convert from physical units Lo latlice units once the bare quark mass i fixed and
for this the inverse lattice spacing o~1 needs Lo Le used which has heen extracted al
the moment nsing the Charmoninim spectrant. This is not the appropriate et for
the Upsilon case becnuse of quenching, see section (5.3). 1l then seerns reasonable
to fine tune the Botitom bare quark mass in a simulation extracting e correct

value for ¢!

in the process. For this il is necessary Lo calculade the dispersion
relation for the 28; stale w the Upsilon case until the simulation value agrees with
the experimenlal value of .46 CeV. The 18, stale could not be nsed sinee Chis
has not been obsgerved experimentally and Lo calculats the dispersion relatiou for
the 38y state reguires only a slight change in the code. Afler several treial vtuns a
value for the Bottom bare quark mass at. 7 = 5.7 was found 1o be 3.15 in lattice
units. Comparing known coulombic wavelunctions to sitnulation wavelninclions the
parameter ry best suited was lonnd to be 1,0 for Upsilon and 1,45 tor B.. 1L is Loo
costly in cornputer time 1o change the present code 1o include wo sets of smearing
functions for the two ry's. 1L was decided Lo choose ry appropriaie to the Upsilon

system since here one wants to maxinize the statistics Lo see any deviation [rom
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the already high statistics calculotion at ¢ = 6.0. The Tact thal vy 15 grealer for
Upsilon than B, which in turn is greater fer Charmonium iy as expecled since the
size of the meson should decrease with increasing quark mass.

T'he main reason for doing simulations ol Upsilen at. lower 3's is to Lry and guan-
tify laltice spacing errorvs. Tt is expected ron: patential models aned pertucbation
theory that the dominant source of error wilt be comiug from O(«®) errors tn Lhe
gluonic aclion. Tlhis will liave the elfecl, of for example, reducing the 1P-1S split-
ting and increasing the delermination of a™%, T the next chiapter it is shown tlat
the correction could be anything up to the order of 0 %. [Towever if we forget this
for the while and just go ahead and fit the data to extract physical rmass splitlings
and then try Lo sec il any disagreeent Lo the values lTound at 7 = 6.0 aceurs. Any

disagreement can Lthen be correcled for in Whie next chapter.

4.3.1 Upsilon Spectroscopy

‘Lo {ind the kinelic mass we fit Lo two forims of the dispersion relation equ (4,19}
and (1.20) just as in the case of Charmonium. However hecause Upsilan is more
non-relativistic a problem arises in extracting w vadue for the kinetic mass in the p*
term. Even though it wus possible to do this at 4= 6.0 our kinetic hare 1rass in
lattice units al lower @3's is higher which can olfer more suppression ol the p? term
relative to the p? oue. Tithe fit we used the four highest sets of momentum available
in the dispersion fit. From the fitled paranwelers there was very litlle " present
to make the fit wortlawhile. Tnstead a sinaltaneous fit nging the two lowest sets of
momenture was fitled o just a p? term. To set the scale the spin-averaged 11915
gplitting delined by equ (4.18) was nsed. From this it is found that «' = 1.37(4)
Gev where the ervor 18 only statisiical. Using this a value for the kinetic mass for
the 38| skate is lound to be 9.65(30) GeV (o be compared (o the experimental value
of 9.46 GeV.

In table (4.15) are fits for the 5] states. I conlrast Lo the fits of Channonium
a clear signal for the firsi exciled slale can he seea. A more stable platean can be
seen for the Upsilon case and could be a rellection on the Tact ihat the cffective
mass in latiice units for the splitting 25-15 is staller in comparison and so less
exponentially surpressed. Tu physical units the splitlings are very similar and the
fact that they differ in Tatbice units is a direct consequence of yuenching producing
different values of o= for Charmouivnt wnd Upsilon. The Upsilon’s excited state can
Ie observed oul to a limeslice of ¢,,,;,, = 9 which was vol possible for Charmoninn.

Again adding a thivd exponentia! in the correlated (it produces a nich better
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: n ¥
N e ima‘n./ Lo @l @l Q

fits to {1,lac) 2 3/21 0.5186(6) 0.388(5) laix 1072
and (2,loc) 4724 0.618G(6)  0.WJI(7)  0.37

524 0BHLE6(6) 0911 0.64
6/24  0.5188(6) 093(1)  0.73
T/ 05I188(6) 0.95(3)  0.70
§/24  05I87(6) 0.93(4)  0.65
9/24  0HIS6(6)  0.93(6)  0.70
3 3724 O5IS7(6)  0.93(3) 077
A2 USIERG)  0.01(4)  0.73
i 5724 0BLRD(6) 0.98(3)  0.68
| /24 U5188(6) 0.04(6)  0.60
7724 0ALE(3) 0.93(3)  0.57

lits 1o y /24 Q518R(5)  D9A(L) 2.0 x 10=
(1,1}, (1,2) 4/24 0.5185(5)  0D.9T(2) 3.5 x 10~
(2,1), (2,2) 3/24 0.5183(5) 0.92(5)  8.6x 107

§/24 U.5L84(5)  D.UB(E) 2.9 x 1074
/94 05101(6) DUBY) 2.4 x 101

3 /24 0.5184(5)  0.95(2) LUx Lo?
424 O.5185(5)  0497(2) L4 = g~

5724 0.5183(5) 0.91(3)  3.8x g~
/24 05184(5) 0.95(5)  1.1x 1o~¢
7/24 0BL91(6)  D.95(9) 1.1 x 103

Table 4.15: Examples of simultaneous tinlti-exponential fils Lo the .S using row

and 1matzix fils respectively.

Fit f'min-/f-mn.v k f‘);('”n-,sk = 1) (ll.:[ﬂ-.w,xk. = 2)
Negp = 2 5,24 L 0.901(1) 0.1380(6)
d 0.04(1) 0.49(3)

Table 4.16: Examples of it vesulls for amplitndes ap(n, . o) to the ¥5) state.
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it "'n:ivl/inh‘:.v k bk(“.ﬁr = l] bk(”xc = 2)
Newp =2 6/24 1 0.344(2) 0.05241(6)
2 0.02(1) 0.151(8)

Table 4.17: Bxaiples of fit results for amplitudes br(¢0) to the 35,

-Nc.rp Tmin /tllh‘l:l.‘ alyy Q
fils to (‘,lj 1 ‘2/2’3 .846(3) 0.78

324 0.840(4)  0.92
4724 0.840(6)  0.90
5 /34 0.841(6)  0.38
6724 Ga5(9) 085
7724 G.86(1) 095

Table 4.18: Example of o 12 it

value al carlier Limes. As for the matrix fit the @ values are certainly not as good
as in the corrclated fits although the fitled parameters are consistent. Adding a
Lhird exponential does not help lor the matrix fit sugpgesiing the poor @ valnes are
nol from higher excited state contaminalion.

Gornparing the values of the amplitndes in table (4.16) and (4. 17} again the oft-
diagonal values are more heavily suppressed than the on-diagonit ones as expected,
Here it is useful to compare these vulues Lo the ones frenn Charmonimm. Looking
ab the amplitudes fcom hotls types of litting lor n. = 2 the smearing function
for the ground state of Upsilon 1s far more effeclive in projecting out the ground
stale and suppressing the excited case. In both the Charmoniwm and Upsilon rauns
the same smearing vading 7q = 1.0 was nsed which is appropriate for Upsilon but
not zo for Charmoninm. From the fits Lo the simulation wavefurctions a rading ol
7y = 1.6 should be usad in e lutare for Cliartnoninm. Hene conmnpaves 1he eflective
mass plots figure (3.3) and (4.4) of the ) states for Upsilon and Charmoninm
respectively il is clear that a plaleau is veached earlier on in Upsilon case sven
thougl the value of the effective mass is smaller. Again this indicales the smearing
function is more well suited ko Upsilon.

To extract S and P spin-splittings a jackknife engemble was fitted Lo the ratio

equ (1.30). The resulls are smrunarized in table (4.19). As with the Charmoniura



Splitling Neep  tmin/buar ad fy @
38, — 15, 1 4/24 0.01576(7)  0.50
1 6/24 0.01574(7) 0.4l

87241 0.01578(9) (44

10/24 0.01a73(9)  0.43

12/24 0.01673(10)  0.33

8P — 8Py |1 3724 0.0182(6)  0.72
1/24 G.019(1D) 0.76

5/24 0.019(2)  0.70

6/24 0.020(3)  0.65

7724 0.022() 060

Spap - PP 1 3/ 0.0104(1) 0.7
4724 GLOTON(T) 0.78

5724 0.011(1)  0.74

6/24 0.012(2) (.70

7/24 0.013(3) 067

Table 4.1% 5 and P hyperfine splitting from a ratio fit.

data there s near degeneracy belween the splittings rome the 15 and ‘I° rep lor
the P, state and only resulis [vom the B oreps are quoted liere. The tnal lited
values in dimensionless units are given in table (4.20) which are Lhen converled to
dimensionful encrgies in table (4.21).

Even though glonie correciions have not been taken into accout yet it is still
instructive to compare the simalation resulis al @ = 3.7 o experiment and the
simulation values given at. 7 = 6.0. The splitting hetween Lhe first, excited state and
the ground staie for the 28, agrees with experiment although the ecrors are quite
high. This result is expected Lo increase using a corrected ghonic a1, Thissplitting
should then turn ont to be higher than experiment which is in azcord with the fac
that the scale has been set hy the [P-18 sphitting i the quenchied approximation.
More interesting s 1o loak at the S and P spio-splittings. Costparing Lo experitnent
for the P fine slrocture it con be seen that the splittings from Lhe siimnlation are
too small. If the 5 hyperfine is compared Lo the value Tonnd a6 3 = 6.0 of 29 MeV,
since no experimental value exists, again there is o reduction in tlie value obtained
ab @+ 5.7, Anincrease in these values are expected from ghionie corrections but if

ratios of P spin-splittings are calenlaled Lhese gshould not depend on which type of



Simmlalion Resulls
£ Sy 0.5030(5}
185, 0.5187(6)
218, 0.93(4)
283, 0.94(4)
Sy 0.843(6})
6 =1 Sy 0.01575(8)
3Py =3 P, 0.020(2)
Py 2P 0.01L1{2)
S =2n, 0.0079(5}

Table 4.20: Witled dimensionless energies,

Simmtadion Resulls [GeV] Experiment [GeV]
248, — 118y | 0.535(58)
238) — 138, | 0.577(58) 0.563
38 — LS | 0.0216(6)
APy — WPy | 0.027(3) 0.053
3Py o 3P 100156 0.021
3py - 3Py | 0.0108(T) 0.032

Table 4.21: NRQCD spectrur resubts and eomparison willi experitnent for 07! =

1.37(‘1) GeV and a«df = 3,156,
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lattice spacing is used. L'rown Lhese ralios there ig still disagroement wilh experiment
which can nof be understood [or example in terms of possible relativistic corrections

still to be included. TFor example the ratios calculated here are

M(xs)— M)
M(x1) — M(xa)

which are very different from the experimental valne of $.66(2) and the latiice value

= LA(3) (4.40)

of 0.7(3) at 8 = 6.0 even taking into account ol systemalic errors of 10%. Also the
splitting M (x2) — M{yu) = 27(3) MeV is much smaller than experiment. and he
result at # = 6.0 hut gluonic corrections are cxpected to atier the resnlt sormewhad.,
From the 25-15 splitting it secms reasonable to assume that spin-averaged splitlings
arve well reproduced at these relalively low 55 values. The problenn could then avise
from the operators which elleck spin sphittings, notably the clirvomo-magnetic and
electric fields. ere there are Ofa)* corrections in tiese fields which have not heen

taken into account.

4.3.2 B, Spectroscopy

In this section the spectriim of B, is presented. In contrast 1o Quarkoninm systerns
the correlation funclions will 1 general be compiex. The fiting rontines have nolt
been modified to take into account of Lhis. However this is not a severe problem
because it is still possible Lo use ithie row fit method Lo do modtiple fits. Wil the
matrix [iks this is not possible sines the decomposition of the correlaled Tinclions
involves a preduct of amplitndes and imaginaty terms will veed 1o be kept at all
times in the fitting. Taking the veal part of Llie correlation (unetion and litting to
aqu (4.30) will produce the correcl energies. I'he amplitudes will just be the real
parts of the amplicades fourd rom fitting hoth the real park aved imaginary pavk
of Lhe correlalion funclion. In the ratin fiks the imaginaey rerms will need Lo be
taken inta account. Here a jackknife of correlation functions with lioth the veal and
imaginary lerms in s produced and Lhe real value of Lhe ratio taken, This iz then
fitted to a single exponential as befare.

To start with the kineulc mass needs 1o be found.  As with the Upsilon case
there was no real evidence of & p* contribution and just fitting Lo a p? term gave a
value for the 15y state in lattice units 1o be 4.79. To set the scale requires an inpat.
[rom experiment which we do ol have. A sensible cholce would again be 1o use the
1P-185 splicting which is known nol to vary by mnel througl the Bottom o Charms
quark nmass scale. Taking a naive average of the 117-18 splitting {romy Charroninm.,

457 MeV, and Upsilon, 452 MeV, gives for 13, a possible experimental vablue of

Do
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Figare 4.13: NRQOCD simulation results for the spectrmm of the [, system using

an inverse lattice spacing of 142 GeV. Error bars ave showy where visible and only

indicate sfalistical uncertainties.

454.5 MeV. As mentioued in the previons section e 2P and 30, states are mixed
and will need to be made orthogonal by diagonaliziug (he eross-correlation malrix
equ (4.38). Caleulating & hootslrap ensemble of matrix elements and finding the
eigenvalues of cach ualrix produces a complex ensernble of eigenvalues whicli are
true eigenstates ol the P, and 3P} states. To calenlate the ground stake of the ' 2,
it 1s sufficienl to take the real part of the cigenvalues and fit Lo a single exponeniial.
For P hyperfines a complex ratio of cigeuvalues is found, the real part taken and
then fitted. Using this method one inds that o™t = 132(4) GeV which in taen
gives a value {or the mass of the 15, to he 6.28(20) GeV. Figere (4.13) smmubarizes
the caleulated spectinm for the £ There is no experitnental dita Lo compare with
but there have been potential model calenlations of the 3. which are uselul for
comparison. Here we will make a detailed comparison to the work of Fichiben and
Quigg [34]. Other calenlations also exis. for exampie those given in [35] where a
difTerent formn for the heavy quark potential is chosen. For the mass of Lhe state 'S,
ref [34] finds a value of 6.26(2) GeV. 'T'his agrees with owr result aithough onrs maybe
slightly high hecanse ihe choice of the Bottom bare miass was too bigh. & 1able
of fittec resnlls is given in table (4.22) which are then converled Lo dintensionful
ity and compured Lo potential model predictions in table (4.23}).  [For the 28-

1S splittings the ervors ara too large for a direct cotuparison although the central
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Simnlation Results
118y 0.6052(8)
135, 0.6353(9)
215, L 12(6)
233, L.14(6)
e 0.971(8)
25 =1 8, 3.0305(3)
Py =3 Py 0.045(4)
R & 0.023(2)
p -4 py 0.022(2)

Table 4.22: Fitted dicusionless energies lor 1. stnles,

| Simulation Resnifs [GeV)  Potential Model Resuhis [GeV]

G, — 118, | 0.673(75) 0.592 S
255 — 135, | 0.660(75) 0.562
gy - 1S5y |oodo(ty; 0ot
3Py — 3Py | 0.059(5) 0.047
3P, — 3P | 0.030(3) 0.017
3P — Py | 0.0293) 0.030

Table 4.23: NRQCD spectrum results for 3. states and comparison with experimment.

for a=1 = [.32(4) GeV
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value lies above the potential model predictions as expected siuce the scale was
get by the 1P-18 splitting. As lor the spin-dependent splitting oue najvely expects
to get agreemeni due to relafivistic corrections ta aboul 20% ar equivalently 20
MeV. Comparing Lo polencial model prediclions gives good agreement. However
the potential model prediclions vary cousiderably with the type of potential used
and in the table the potential model resulls are just [rom onc type of polential,
the Buchmiiller-Tye potential. The spread lor example in the Py —2 Py splitling is
from 45 MeV to 115 MeV where as for Lhe § hyperfine the spread is [rom 45 MeV
to 96 MeV which Iimits the predictive power of potential model caleulations. It is
not so easy to make a firm prediction for ihe 8 hyperfine coming lton the NRQCD
simulation here because of quenching, il oor resalt is consistently lower than all
the potential model values. As with the Upsilon resulls problerns conld arise sith
the effect of (a)? corrections in the & and 13 fields as well as (he glnonic action.
Since the B3, iz a larger meson these ave it expected to e as severs, 1 the ratio
in equ (4.41) is caleulated Tor the &, case it is fomnd Lo be very cese Lo unity as in
Charmonium bat nof i Upsilon where the calio was [ar [rom correcl f corypared
to experiment. ‘I'his could suggest thal the problems in the P ospin-splittings lor
the Upsilon will not oceur herve for the 3. The lazge varintion (1 potential model
predictions lor B, maike 1l a good sysltem which NRQCD can nnprove upon. If
higher order relatlivisiic corrections are added in bye systemalic errots for the P fine
splittings can be brought down to about 4 MeV. Other known systematic errors
will coutribute at this level. TFor example (2(¢)? corrections away from Ladpole
improving, But il the next sunnlation will involve the addition ol the relativistic
corrections for the Chacmiomium Lhen il s relatively cheap Lo use the present cade
which was used to calewlale the Upsilen and 2. sionultanconsly, Here one can jusi
subgtitute the Bottom mass [or the Charin mass i vice a versa to cadenlate 1he

Charmonium and Z, spectrum simulianconsly.




Chapter 5

Estimates of Quenching and

:) L L4
O(a)* Gluonic corrections

5.1 Introduction

In Ghis chapter a sinple Schrodinger egquation js used as a meihad 1o estimate the
effects of quenching in Quarkoninm and ihe offects of ((a)? errors coming from
the gluonic action. It is shown thak thers is agreement between the perturbative
estiimakes for these ginonic latlice spacing ervors and the non-perturbative ones lrom
using the Schradinger ecquation. Using these vesults, mass splittings in the Upsilen
can be adjusied and it s shown thal sealing rom 3 = 6.0 down 10 3 = 5.7 is

successil when nsing these adjnsted resalis.

5.2 Schrodinger equation on the lattice

The Schrodinger equation acting on a wavelunction #(x, 1) in Buclidean tiime is

given by

%
(:E + Ky \*'(x}} h(x, ) =1 (5.1)

where Ky iz the kinetic energy operator.V{x) Is taken to be ilie slatic polential
between two heavy quarks. This egnalion can he readily converted to the laltice
by introducing shilt operators

|
(e A ) = (e = ) (5.2)

Ayaplr) = 5
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which have been expressed in terms of fallice nnits {a = 1). l'c lowest order the

kinetic energy operator Ky is given by

J’\.[;.?;.'(_X, ".) = —m'i;’i(x, |)
= o DD i — 0 — 200, ) (5.9

which will contain O(«)* corrections. T'he general sclution 1o equ (5.1} Is
i(x,4) = ¢TUEVORE Ry ) (5.4)
Decomposing $i{x, 4) ile energy eigenslates so that d{x, t) = 3, (x. 1) oue his

Pl ) = e B g, () — e P g (x 1) (5.5)

1"
with Ey the lowest ground stale possihle. To lind the lowest energy eigenvalue
for a particular angular momentum state an appropriale smearing funciion is used
for the wavelunction al t = 0. This is then evolved according Lo equ (5.4) nuatil a
plateau in Lhe eficelive wiass iy seen. The advadage over ilie NRQCD siimulations is
that it is possible o evolve oul in time to as many time steps as I8 required. There
is no problem with noise incrensing willl tine since {lleve are no errors associaled
with the heavy quark potential V(x) that we use. This ineans the grownd stale can
be removed ol any exiled stale contanyuation. OF coupse this ix ouly a model and
cephbainly has ils Hiniialions. lor exiunple, Lthe exelusion of relanivislic corrections.
Since one Is restricted to nsing srpearing functions which will ot be Lrue eigenstales
of the system there will only need Lo be a small contribution of ground stule in order
for it to dominate at large timas. This can coange a problem in the extraction of
exciled states with the signal decaying to the ground state before a platean can be
fonnd in the exeited state. To try and aveid this happening a reorthogonalization
procedure s mtroduced. Mirst the ground alate S and P owavefitnetions are foundd
after evolving raany time steps in the evolution egnation, The 8 and P wavelincltions
are then used as improved siearing fanetions for ihe nest set of evelulions. To
remove unwanted ground state contamination from excited states the exciled state
wavefunction at ecach timestep is found and then made orthogonal 1o 1he ground
state. Explicilly leb tiyy(x.1) be the wne gronnd state wavefinction chtained
after the first set of evolutions and 4y4){x, 1) the wavelunction of Lhe first. excited
gtate at time t found by evoiving a coulombic type wavelinchion af time = ¢ and

reorthogonalizing at each timie skep. Then we want o wavelunction defined by

k1]
pa

ey (0 ) = () F oy (6,1) (é




such that 37 yf;{g}(x,t.}-i,’J“](x:i.} = {. Mence the wavelunclion which shiould he

evolved at time i =1 + 1 is then

Do Wy (X )y, 1)
T by 0

This can easily be extended to include higher excitations, each beiug orthoganalized

—
on
-3

—

1/):,3} (x,8) = thysy{x,1) = (X, )

with respect Lo one another in a systemalic way.

The heavy quark potential used, V{x}, is measured on the lattice by finding the
average of Wilson loops in a Monte-Carle simulation [36]. The 3 al which these
simulations are performed defines the lattice spacing {or our Schrodinger equadion.
The volume of the lattice uged here is alsa the same as the one used ta extiact the
heavy quark potential. The potential has not been calenlated an all points ol the
lattice and with the data available the patential will have to be derpolated across
the whale of our latdice. For example il the putential ol distance vy and s is known
the potential al distance ¥ between these two poiuls is calenlated from

V(r) = Vi) + ;5:% (Vixy) = Virs) (5.8)
4=

This is assuming a lincar relation between the two known potentials. This is a
reasonable assumplion since at large distances 14 is expected Lhat the potential is
linear with distance and at smaller distances equ (5.8) shouid hold irrespective of
the form of V(x).

Tha evolution of the wavelunction is perfarmed in two parts. First the wave-

function is transformed into momeninm space and evolved according to
$p b4+ 1) = e 7 BT(p, 1) (5.9}

where the lattice moraentum p7 s given hy

. W dLoap 5160
;= flsm‘%—}- ;}-.sm'a-- (5.10)

defined such that O(a)? correclions are rersoved From Whe Laplacian operater, equ
(6.3). Since the exponential Las been kept in the evolution no stabilizing (actor
needs to be infroduced as in the case of NRQOD. Aller this part of the evalntion
the wavefunetion is transformed back into position space and evolved using the term
e VG,

The ellective mass can be extracted by taking the dot product of two wavefnie-
tions, whicl il they are normalized tla untty will be

D wtxob+ Dplxt) = oo Fo (5.11)

x
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Simulation Resnlis [GeV! Fxperiment {GeV)

28 — L5 | 0.56 0.56
38 —~ LS | L0 0.89
2P — 15 ] 0.492 (.81

10 - 151079

|R(0)* | Simulation Results [(eV]®  Experiment [(leV]?
I 5.6 5.1{2)

Table 5.1: Schrddinger spectrum results anud comparison with experiment for o=

= 2.70 GeV and Mg =~ 5.0 GeV.

[rom which £,y can be easily extracted. The zero ol energy has nol heen inchided
and only splittings relative to the ground S stale are caleulable. The quark mass
used is thal appropriate to the value of its pole muss, The code to solve Chis
Sclurddinger equations has heen set up Lo extract effective musses lor the 15, 25, 18,
1P, 2P and the 1D state. As atest run Lhe speclrum using o quarlomass appropriake
for the Bottom quark is tabulated in table {5.1) and compared to experiment. Since
there i3 only the lowest order kinetic energy operator in diie evolution equation an
accuracy of 10% is passible. The scale is set using the [P-1S splitting.  LFor this
example the heavy quark potential used is oblained at # = 6.0 on a volime of 167,
The splittings obtained show agreement Lo experiment within the expected 10%
accuracy. The experimental value for the [D-1S iz nol known bat the value obtain
using Lhe Schrddinger equation can be compared to the NRQCD result. of 0.74(1)
GeV [28]. The value for the wavefunction al the origin s consistent with other
values obtained by using another discretized foruof the Schrédinger equation [19].
The experimental value quoted for the wavelunction at the origin was oblained by
looking at branching ratios of the Upstlon inle lepton pairs without taking into

account of radiative corrections.

5.3 Quenching

One of the main errors in Latlice simulation results is that of quenching where
internal quark loops are neglected. As a conseqnence the inverse spacing ™! whick
is extracted by comparing to some experimentally known guantity will depend on

the typical momentim scale associatad with that quantity. The hare strong canpliue
| A & &
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constant gy is defined throngh 4 — and hence lias a Bxed value Tor a fixed 4.
Ilowever gq runs with the momentum scale and the scale at which gg is given must
also be defined. This scale will be the cib-oll and will be of e™!). Removing
virtual quark loops will cause the coupling constant 1o run too fast with iuercasing
momentium sinee it is the virtual quark loops which are responsible for the sereening
effect.

Consider for example exiracting two «~Vs fromn two diflerent energy scales.
Witlh a fixed ¢q. let a.{'ll] be Lhe inverse latuice spacing found using an experimental

input with typical momentum ¢ and ) foud using an expecimentad inpat with

L

—11 > r.f;”, hecanse of the difference n the

lypical momentum ¢z, For ¢ > ¢4, o P
running of the coupling constant in the quenched and ungienched thoories. ‘o pai
it another way, when ™! is fixed from experiment, the uneeenched and quenched
coupling constants are toe same at Lhe Lypical mamentinn seale associated will e

experiraent resull. Hence
“n.f.-:{l(f[\) = “r:’;({{w) (512]

where ¢* is Lhe typical momenturn and 2y the wnmber of fermion Qavours appro-
priate for the momentum scale ¢*. With momerlmn ¢ > ¢* the guenchied conpling

constant will mn too much in comparison to the ungquenched and so
p,=n () < o ay () (5.13)

The two ways al looking al the ellect of quenching are cquivalent. In the former case
we were keeping the coupling constant, the same and showing (hat a dilfeeence in
the seale at which go is deflined will be diflerent. T the lalter the coupling constanis
at the samne momentum ¢ weve heing cornpared.

We can see this vacialion in ¢~ with the NRQCD sitwulation resnlts [ror
Quarkonium and B.. The typical momenlum is expected Lo inerease for smaller
{or equivalently heavier) mescns {ApAr == 1) aud so Uiy = ) 2 ) The

mverse lattice spacings (v GeV) obtained are

-1 _ QT A . . oI -1 _ Y
“'{T;b] = 1.37{1) g = 13204 Mz = i.2:3(4)

which is tn agreemont with the argument given above. This eflect can also he
tested using the Schrddinger eqguation. "Tie inverse lablice spacing using Lthe siving
tension {rom & heavy quark polential gives a value ol 1.8 GeV oal 3 = 6.0, H this
sane potential is used in the Schrodinger eguation and Lhe seale get by the IT-18

splitting in Quarkonime: a vaine for o ' is 2.70 GeV. This resnlt was also seon in a
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NRQCD [42] sinwmlation at 3 = 6.2 where the seale sel. by the 1P-18 splitting gave
3.4(8) GeV. This compares to the value of 2.6(1) GeV found by setting the scale
from the sting tension ol a heavy quark potential produeed using Lhe same set of
confligurations. The difference can be explained simply by the lact thal the string
tension part ol the lieavy quack polential is dominated by momentun exchauge of
O(Agep) whereas the Lypical energy scale in Quarkonium like Upsilon is about
0.75-1 GeV and hence Jarger than Apep.

il affect conversion of latlice resnlts Lo di-

The eflect of quenching on a™
mensionful quantities. Quenching will also aflect cimensionless quantities, This
Liss beeu mentioned already when the S hypecline [or Charinmoniwm was being com-
parcd to experiment. From perturbation theory this splithing is given by
3w a(Mo)

AA Ir]“‘s e 97 7

li ) . (5.14)

Since eo(y™) = aalq™) with ¢° & 0.5CV for Clarmoninn ng(dy) < asidg)
and the S hyperfine splitting will te reduced by quenching, 11" is large enaugh
the diflference in Lthe rmnuing can be estiiated perlurbatively. In thie L-loop ap-

proximation the strong coupling constant evolves with some mass scale A hy the

expression
. pE
n, (M) e : {(h.15)
Ao log (M Agen)
it i . . . Iy . .
where 3,7 = 11— gug. y the imitof large A7 the difference iu coupling constants

should approach the value [38]

"

(}';;I!_r:[i! _ :'}:;"-::‘\l
A L2 20Y% (5.16)

g — o

s gy
The eflect of ¢uenching on the wavelunetion at the origin will need 1o be caleu-
lated in a non-parturbaiive way. The Schrodinger eqnation is used to calculale the
spectrum and wavefunctions for Upsilon in botl a quenched snd nnquenchad heavy
quark potential. The heavy quark masgs was fixed by nsing the same physical pole
mass [39] for both patentials. Far thie unquenched potential we use the potendial
which has been calenlated using the wnguenched HISMCGC conlignrations [40:. For
the wavelunction at the ovigio we find in physicad units

[/'(X, l')i titrquenched)

@f’(x: l']{qunza:h(r!}

= 10510 1.07 (5.17)

where the variaticn is duc to the kind ol sea gnarks used e if they are Wilson or
Staggered. The [act that the wavelunction s reduced 1 the quenched approxi-

mation is as expected (ron arguments above. Shice the cenpling canstant ruus oo
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mnch in the quenched cage the guark and anti-quark are less deeply bownd at shorter
distances and hence are expecled to have o smaller wavehmetion al these shorler
distances. This fincding also agrees with the studies of [41] where the wavelunction
at the origin also shawed a decrease in going to Lthe quenched theory. Here a contin-
uum Richardzon potential was used for Lhe quenched and unquenched potentials,

A larger decrease was found for the wavefunclion ak the origin of a2 15%.

5.4 Ofa)* Gluonic Corrcctions

The remaining systemalic esrors are expected Lo come vam Hhe O{e)* lallice spacing
errors i the gluonie action. Previoug studies have sugpested, for example will
Upsilon at 4 = 5.7, that ihese could he the dominant correction over relativistic

9

corrections al O(w)? and ather lattice spacing errors [437. In the stady ol [43]
Richardson wavelunclions were uged Lo perturbatively calenlale the expectation
values ol the operators causing the (O(a)® errors v Lhe glionie aclion. There ate
prablemes in using Richardson wavelunciions, for examnplie they are only delined in
the contimuum limit and knewn with limted accuracy, Here a son-pertarbative
method on the laltice is used o estimain O{n?Y gluonic corrections which are then
compared to perturbation theory using NRQCI wavelunclions. In general we find

good agreement hetween the two methods.

For the non-perturbative method the Schrddiuger equation 1s used together with
a Cornell type potential. Tn [36, 37] the results for thelr heavy quark poleniial are

fitted to the form

i IS cos( g R o
VIR) = AR~ - 5 Y 5.18
(R) ' (3L)H q%{l Yo dsinT g /) * Y (5.18)

and this has now been done Tor s of 5.7, 6.0 and 6.2 [44]. Tle second Lerm in equ
(5.18) is the lattice version of the one ghion exehange, which wonld produce a 4
Condombic potential in the continuum. Te evalnate this sum on a 16% [attice lor all
points will reguire alot of compuler time and hence seme sort of shnplification is

needed. The glnonic laitice niamentum is evaluated using the expression
¥ s 1
T “ r - .
Asin™{({¢; — [ymw/3L) (5.14)

where the smm for ¢; is from Lo 3/ for a lallice of velime L2, This substitution
L - 3L helps remave fante vohune effecis. The Tourier transtorm is dore explicitly
and 1s evaluated only ance lar a particular value of R 'Ihis enables Lhe potential to

be found for different lattice points which have ile same IR saving considerahle iu
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Splittings \ BT 6.0 4.2
S(1P — 15) | -0.0394  -0.0u41  -0.0018
6(25 — LS) | -0.0181  -0.0017  -0.000&

Tahle 5.2: Nierences in splitiings lar Cpsilon between an iimproved and unimproved

heavy quark potential.

Splittings B, Te
S(HF — 15) | 00105 -.0060
825 — 1.8) | -0.0027  -0.0015

Table 5.3: Differances in splillings for B, and Te au F = 5.7 betweer an improved

ancl unimproved heavy quark potential,

computer time. To estimate the sige of gluonic corrections the lattice expression for
the gluon momentuimn in equ (5.18) is corrected for O{a)? ervors by the substitntion
given in equ (5.10).

The dilferences i splittings extracted nsing an unimproved and inproved heavy
gquark potential in latbice units are given in table (5.7) and (5.3). Tn tahle (5.7) are
results tor Upsilon at #'s of 5.7, 6.0 nid 6.2 nsing an nuimproved and improved
potential,  Also given in table (5.3) are the results lor Charnmionium and 73, ad
¢ = 5.7. Compering the change in valiues in the [P-18 and 25-19 splitting in
all cases it 15 the 1P 1S splitting which saflers the most change.  This 3% o be
expected gualitatively sivce the 25 and 1S are meson states which are Totl relatively
small compared Lo the average size of the meson. Bolh will experience a grealer
chauge in comparison Lo the P state when ((«)? corrections are removed. Oun a
more quantitailve bagis as we will see in perturhation theory the expectod shifi in
the mass of a meson stale going from an uncorrected 1o carrected gluonic action
depends on the waveluuction at the origin for thal state and hence should he zero
for P states. Comparing the Upsilon cesalls lo B. and Charmonium at @ = 5.7
the changes experienced 1o the Upsilon case ave muach larger ag one would naively
expect. Upsilon is staller than both 2o and Charioniuvm and hence will he more
elfected by () corvections. Even though one is comparing resulis at a conslant /3
the 07! extracted will be slightly dilfevent. depending on the type of meson but this
should generally not effect the resulis woo much. For Upsilon going from 7 = 5.7

through to § = 6.2 it can clearly be seen that the changes iy splittings decrcases
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Splitlings 5.7 G.G (3.2
(1P — 1S) | -10.2% -2.3% -1.5%
825 — 185y | -4.15%  -0.79% -0.40%

Table 5.4: Percentage differences in splittings lor Upsilon between an tmproved and

unimproved heavy quark potential,
Spliltings 5.7 6.0 6.2
(1P - 18) | -109%  -23%  -1.1%
28 — 15) | <% -0.78%  -0.36%

Table 5.5: Scaling results from 2 — 6.0 for Upsilon assmuing Qfa)? eorreclions.
appreciably. T is instructive to fiud the percentage change in the splitlings from
going from uncorrvected to correcled polentials, For example in the Upsilon case il
is possible to see i[ the percentage changes seale as Ofe}?. Tn table {3.4) are given
these perccntage changes aud in table (5.5) are the expected percentage changes
scaled from the value at 7 = 640 The fatlice spacings were e ones obtained in the
uncorrectad polential. As can he seen frong the table the changes scale in agreement,
assuiting there are only €{e)? corrections, "P'here is ohvious a limil Lo the acenracy
in the estimation of these ghionic Of{a?) crrors using the Schradinger egnalion with
the heavy quark potential. There tuight be radiative corrections to the constants
associaled with the Q(a)” ervors which would be expected ta depend on thie lattice
spacitg and scale in a non-Lrivial way.

The perturbative formulae for the isass ghift in laklice units from Q{a®} gluonic
correclions is given by [43]

Aarer{gs)

A, =
! 9

(o . (5.20)

where g5 is approximately twice vhie reduced mass [46] The wavelunction ab the
origin can be found divectly from a NRQOCD simulation. Define the waveluetion

at the origin to be
Fn(0) = < O]Qfefn > (5.21)

where Qg are the local S stote operalors delined v tahle (3.1). i the decom-
position of the meson correlation function Mg roe the square of equ (5.21) |

th

| < 0|Dree |1 >, is just the amplitnde fer the 1™ stave and so g (0) can he easily
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Meson Direct Fit Using b, (Inc, sc) /ey (s¢)
(ns) to by (foe,se) | se =t se ="
Bh(LS) 389(1) | 8821 o
bh(25) ——— —_— 30(2)
B.(15) 2118(1) — .
Te(19) o L1535(6) 1523(3) e
YY) N R U 125(4)

Table 5.6: Mesonic wave function al Lhe origin, H{0). froin NRQCD simulations. A

dashed line means that no sigral could he extracted.

extractad. Since local-local mesen correlation hinetions contain appreciable con-
tamination from higher states a mnltiple it s petformed usiug Myo poey. My e
and M (14¢,10¢) correlation frncetions to three exponentials. Using this miethod a sta-
bie gronud state wavelmetion can be Tound bub net than far Wie first exeited shate.
An alternative procedure is Lo calenlade the ratio
—_b,,(/oc, 50) = < O[] > (5.22)
fy, (K0)
“I'he vesulls for the wavelunciions from Lha bwo types of fttings are sununarized
in fable (5.6). Using these resulls for the wavelnuction al Lhe origizi the perturbative
mass shift from gluenic corrections can be calcuiated. These are comnpared ta the
non-perturbalive estitnates from ihie Schirodinger equation in the cases of the |S
and 25 states i tables (5.7), (5.8). In general there is good agreement. The resnlts
lrave been sealed so tliat the lattice spacing al the saie 2 fron using the heavy
quark potenlial and the NRQUD stinulation agree. ‘The one anomaly is Lhe vesnll
for Upsilon at 3 = 5.7 where Lhere wre quite large differenees, the uon-perturbalive
result being higher. This contd mean for example that the wavefunetion st the origin
in the NRQCD sironiabicn iz too small. But gealing tae wavelinelion al f = 6.0
down lo 5.7 does show reasonable agreetient. This suggests thal the polential
al shout distances, to which the Upsilon 15 more susceplilie, is toe singular and
changes in going from uncorrected o corrected gluonie potentials is overestimated.
In extracting the potensial down to B — 0 a caulombic beliaviour is assumed and no
abtorpt has been made 1o taking nite account asyuplotic freadon in the runniug
of the coupling constand. vidence of this s found in the wavelunction al the
origin, the Schirodinger wavelunctions heing oo ligh iu comparison to the NRQOD

wavefunection resulls. This is a problem which has been experienced in using a
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:K;I.l-bl’.['l- Ma'«ts 5.7 6.0 6.2
' M) 0,034 00041 0.0020
Myus 0019 00024 00012
Pert Masses 2.7 6.0 5.2
Mg 0,024  0.0036 0.002a
M .04 00023 — - ——

Table 5.7: Comparison {or Upsilon of perturbative and non-perturhative shifls of

eflective masses in laltice wnitg between an nmproved and animproved heavy (qnark

potentiat,
Nou-Pert. Wasses . te
Mi1s) 0.01t 0.0063
."l"fwlf;-] 0.008 0.00449
Mo B _u
Mgy | U.(—J(iﬂ UUU—(JJ—
My — ———  0.0041

Table 5.8: Comparison for . and Te at. & = 5.7 of perturhative and von-pertivhative
shifts of effective mnsses i lallico units between an improved and unimproved henvy

quark potential.



contintum Cornell poteniial where it s hkely thal the potentiad near R =0 is even
more singular than on the latfice.
When correcting for gluonic corrections in the IP-15 splitting we shall use the

perturbative estimations. The corrected o= s in CleV oare [or £ = 5.7

HEEIb] = 1.46(4) a{_;?‘_] = 1.36(4) (l-{_FL-J = 1.25(4)  (5.23)

and for 8 = 6.0

-1 — id 5 0
oy = 2.61(10) (5.241)

With the gluonic improved o™ s caleulated it is construclive 1a see how they scale
[tom one @ Lo another. For this the scale Ay is nsed. the dimeusionless quantity
ady caleulated on the latiice nsing Lhe expectation values ol 1 x | plagnebles [47].
Hence using the idenbity

I:u_"]_,-l_'; (1M )

- = (5.25}
{(l“l],:_n (e Av )—, .
a.;—lb} for example can he scaled from s valne an 3 = 5.7 lo 8 = 6.0. A value

of 2.53(7) GeV is found which compares well to the value 2.61(10) GeV found by
direct simulation. Using the corrected values [or « ! gluonic improved dimensionful
energies should he recaleulatred. For Upsilon at # = 5.7 the corrected value for the
kinetic mass is 10.28(32) GaV and the corvected 'Sy mass for the B3, is 6.47 (20)
GeV. Correcting for the 238, — 15 splitling in Upsilon at 7 = 5.7 sives a value of
602(6%) MeV. This correcled valine is mcre i line with Lhe valne quoted al 3 = 6.0)
of 627(26) GeV than the uncorrected value but the arror hars are higher lor the
B = 5.7 case. Correciing the S hyperfine for Upsilon at 4 = 5.7 gives a splitting of
23 MeV still significant]ly srller Lhan the o — 6.0 resulls of 29 dMeV. However the
Bottom quark mass we have used in the simulation is too heavy and the S hyperfine
is cortainly sensitive to Lhis. I one rescales tlie kinetie mass to the value 9.46 GeV
the § hyperfine becomes 25 MeV. The depandence of Lhe beavy guark mass on the
S hyperfiue is Laken to be {’7(3—%). In direensionless units Lhe § hyperfine will alsa
lre allected by gluonic corrections since for S stales the wavefunetion at Lhe origin
is non~-sero. However it seems unlikely Mhiat ihe differences in the shift hetween the
35, and 15, states is large since they have very similar wavelunclions, as can be
seen [rom the plows for Charmenivm for example. Hewever as far as the T slales are
concerned no shift in dimensionless units will ceevr. The only shilt due 1o ghionic

corrections is in the change in the valne of «=b

This should kowever not affect
the ratio of T hyperfine splittings and it ts hard to nuderstand the disparity in the

rafios equ (4.41) to the values at ¢ = 6.0 in terms of anly ghionic corrections.
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1.25+
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0.1 0.2 0.3 Ava

Figure 5.1: Agymplobic scoling of the 122 — 15 splitling for bb for ¢uenched results
in the V scheme. Open circles represent vaw resolis ab 3 = 5.7 and 6.0 and [lled

circles represent results corrected for ghonic €(a”) creors.

A good example of the neced for ghionic corrections is i the sealing of the
ratio IP-1S5 to Ay, defined by the plaguette, with 4. Plotted n figure (5.1) is the
ratio which should he constant for agymplotic sealing. Clearly this is wot so in
the nncorrecied case bl is within errors when gluemic corrections have been doue.
So mot only is il passible to observe sealing violations but also it is possible to

systematically remove them,

5.5 Decay Constants

The pseudoscalar decay constant, [, which will deteriniue the annibitation decay

rate for B, is defined in the rest leame of the 5. as
<Oy yselBe > = ifp My, {5.25)

The pseudoscalar decay constant can be related fo a nonrelativistic wavelunclion
through the Van Royen-Weisskopl fommnla [48] by

12 {0)

Ty (5.27)

o
/ .

where My, is taken to be the nuss of the pseudescalar particle. When relating

wavefunctians from lattice simnlalions to continmum quantities, renottmalization
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constants between the continuum and the fattice should really be taken into accout.
However it is not deone here because they have nol been caleulated yet, It is also
expected that large errors coming from the small components ol the heavy Dirac
spinors will effect the vesnlt al the €{»?) 2 20% level. Using the value of the
wavefinction given in tabel (5.6} a value ol fz = 460(13) AMew i3 oblained where
the error ¢quoted is only from Lhe ervor in e, This value for fi_ is in line with
estimates using varions polanitial maodels [34]. A more accurate method would be
to evaluate equ (5.26) divectly by expressing this matrix alemenl in terms of matrix

elements in NRQCD. To C)(';\j)l"-:r) equ (5.26) will be

< OBy ysedBe > = O < 0T | Be > 4-Ch < O[(Dy) Do | Be > 4o (5.28)

For an accuracy of ¢}(u1), radiative correclions 1o ¢ need 1o be evaduated amd O
evaluated at Jeast Lo troe-level, This has been done in [49] Tor We coutinnnmm. When
B has been observed experimentally and the annihilation decay measured it will
be possible to extract an acenrate value (or Vo given a value for o ealenlated on

the lattice.
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Chapter 6

Conclusion

The first part of the work presented was the calculation of the spectriim of Charrmo-
mum ko nexi Lo leading orvder using NRQCD. This allowed relativistic ellects to he
investigated, for example. the calenlation of spin-dependent gplittings. Agreement,
with experiment was found within the expected remaining systemalic arvors which
are quenching and the omission of relativistic correctious in Lhe heavy guark action.
For agreement with experiment il is essential o use Lacdpole nproved pertarbation
theory. Nof doing so would have severely underestimared spin-splittings to snch an
extent that the discrepancy Lo experiment coild not have heen understood by Uhe
remaining systemaric errors. Spin-indepeadent splittings, Jor example the 25-18,
were also caleulated aithough the noise in the 25 staie is found to be qnite high lor
direct comparison to experiment. Lhe extraction of exeiled slates reiied on using
multi-exponential multi-correlated lits. Tor this il i3 necessary Lo have smeated op-
erators in the meson correlation fanctian to project cul at early timnes the required
state, This was snccessful in oblaining platcaus in the ground state at early times
where the noige to signal ralio s smaller.

Presented also was the spectrnm for bh al a lower 4 ol 5.7 than Las previonsly
been done. Disagreement in spin-splitiings o the values al 7 = 6.0 and to exper-
iment was found indicating O(a) corrections in the chrormo-magnetic and electrie
field ave significant ab these low A values, The spectyurn ol 3, states, none of which
have yet been observed experimentally, has also been given. A prediciion (or the
lowest ground state 1.8 lov /3. is 6.47(20) GeV. These could in the hitnre he oh-
served in the decay modes B, — g, i where the #f decays ultimasely into @
lepton pair [50]. In all cases the seale was set nsing the 17-18 splitting as experi-

mental input. The ¢! extracted is quite different. depending on the Lype of nieson
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e S —1 e e diroel
fny 7 B > This 15 a direct

consequence of quenching and is a good demonstration of it.

used. The values obiained obey the velation «

A non-perturbative method to determine Ofa?) gluonic carreclions has been
presented, the values oblaited are consistent with perturbative estimales. Thege
rluonic corrections are significant for Upsilon ar @ = 5.7. Asymptotic scaling Mrom
& B 1 yimp &

= 6.0 to F = 5.7 for the P18 splitling, is snceessful provided these gluonic

—1
{hb}
which is significant. when converting Lo physical units.

correcbions are taken into account. This increases « al = 5.7 Lo ahoul 7 %

For future work relativigiic corrections must he included Lo rednce the remain-
ing systematic errors. This shonld be possible lfor Charmonium. Charmonium is a
good system ko use in order Lo gauge the nprovenient program of WRQOT since for
example the § hyperfine 15 known experimentally. Aay chapges seen in the Char-
monitm spectrum can he nsed Lo monitor the possible chaiges expected in Upsilon.
Perfonming unquenched simulations for Chavmoninm is also necessary which will
help to decide the effect of quencliing on for example Lhe S hyperfine splivting. Do-
ing such simulations will also enable anather value lor the strong couphing conslant,
ay, ko be extracted. Agreement with the result from Upsilon will be a great snecess
for NRQCD showing that systernadic evrors are under comtrol. I simulatious for
Upsilon are done again al 3 = 5.7 then il must he necessary to correct for ¢{a)
corrections in the chromoe-magnetic and electrie ficlds. Move imporlauatly configura-
tions from a (a?) corvected gluonie action should be used. 1t will he jnteresting Lo
observe the changes to see i they agree witl the perturbalive and non-perturhative
estimates. This underlines an important prirciple of NRQOCD. One should identify
lattice spacing crrors and correct for them systematicatly instead of naively taking

the latbice spacing Lo sero by using higher & values.
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