https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

# EVALUATION OF SAFETY AND METHODS <br> FOR PRODUCTION OF RETROVIRAL <br> <br> VECTORS FOR USE IN GENE THERAPY 

 <br> <br> VECTORS FOR USE IN GENE THERAPY}

# CAROLINE KEWNEY 

MSc. Biotechnology

## University of Glasgow

December 1998

ProQuest Number: 10391130

All rights reserved
INFORMATION TO ALLUSERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.


ProQuest 10391130
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346



#### Abstract

Retroviral vectors are replication-defective viral genomes, in which genes essential for viral replication have been replaced by therapeutic genes. Essential genes are provided in trans by a helper virus, or packaging cell line. Stable producer cell lines are selected following transfection or infection of the vector into a packaging cell line. Such cell lines produce infectious, but replication incompetent virus particles containing the therapeutic gene(s) of interest. A potential hazard in the adaptation of retroviruses for use as gene delivery vehicles is the potential for recombination belween vector and packaging cell line sequences to produce replication-competent retrovirus ( $R C R$ ). The primary objective of the present study was to validate and determine optimal conditions for assays employed in the detection of RCR. The results indicated that murine Mus dumi and feline PG4 S+L" cells were of similar sensitivity to infection by amphotropic murine leukaemia virus (A-MLV); three passages were found to be sufficient to detect the presence of RCR at a virus input of $10^{-1}$ infectious units/ml. Using cocultivation procedures it was possible to detect 1 RCR in a total of $10^{7}$ cells. It was determined that the presence of replication incompetent vector reduced the sensitivity of direct PG4 S ${ }^{+} \mathrm{L}^{-}$ assay to detect wild-type A-MLV. This effect was reduced in extended Mus dunmi and PG4 S ${ }^{+} \mathrm{L}^{-}$ assays while the presence of retroviral vector producing cells did not affect the detection of AMLV in co-cultivation assays. Accordingly, it is recommended that co-cultivation and/or extended assays should be performed for detection of RCR.

In addition, studies were performed to evaluate the parameters which influence production of a selected retroviral vector, including determination of optimal cell cullure and harvesting conditions, investigating scale-up of production, and assessing stability and methods of concentrating viral vector supernatants. Parameters for optimal cell growth coupled with maximum viral titre for a model producer cell line were defined using tissue culture flasks, and found to be suitable for scale-up without loss of viral titre into roller bottles or Fibra-Cel disks in a spinner culture flask. Producer cells could also be adapted to culture in serum-free media although cell expansion was slower and a decrease of approximately $1 \log _{10}$ unit in viral titre


was observed. Ultrafiltration was assessed as a method for increasing viral titre, where it was demonstrated that viral titre could be increased by $1 \log _{10}$ unit following concentration. The stability of vector supernatant was examined by assessing viral titre following storage at different temperatures in relation to wild-type A-MLV. Resulting viral titres indicate o that supernatant could be stored at $-80^{\circ} \mathrm{C}$ for six months without loss of titre, whereas at $4^{\circ} \mathrm{C}$ titre decreased within 5 days. At $37^{\circ} \mathrm{C}$ the half-life of viral vector was determined to be approximately 5 hours after which complete inactivation was observed. Although inactivation may have been expected to oe complete within a short incubation period at $56^{\circ} \mathrm{C}$, the results indicated that a fraction of the virus was resistant to inactivation fol owing incubation for two hours.

## DECLARATION

The studies prosented un this thesis were performed un $Q$-One Biotech tel, Glasgow, between 1994 and 1997. Au the work is my own, wotmout exception. I confirm that no pout of then thesis has been, or 10 beng, subnuted for oust other academic award.

CAROLINE KEWNEY
JUNE pga

## ACKNOWLEDGEMENTS

I would like to thank my project supervisors, Dr Alasdair Shepherd and Professor David Onions, for their guidance and support throughout the project. I also thank Lorraine Borland for her help in growth and production of PALidSN cell and supernatant stocks using roller bottle culture and serum-free media, and Craig Hart for his help in concentrating viral vector supernatant by ultrafiltration. I would also like to thank Dr L. Fairbairn of the Paterson Institute of Cancer Research, Manchester, for providing the PALidSN producer cell line used in the study, and Dr J.M. Heard of the Institue Pasteur, Paris, for supplying MPS I cells used for assay of enzyme activity. In addition, I would like to thank Q-One Biotech Ltd for supporting me during the project, and the staff there who have aided in complation of the thesis, including John Black, Pauline Lawson, and Susan Gillies.

## TABLE OF CONTENTS

List of Figures ..... 9
List of Tables ..... 10
Abbreviations ..... 13
1.0 THE USE OF RETROVIRAL VECTORS IN GENE THERAPY
1.1 Introduction to gene therapy ..... 15
1.2 Retroviruses ..... 16
1.2.1 Classification ..... 16
1.2.2 Structure and replication ..... 18
1.3 Retroviruses as vectors ..... 20
1.4 Retrovirus vector systems ..... 21
1.4.1 Vector constructs ..... 22
1.4.2 Packaging cell lines ..... 24
1.5 Producer cells ..... 26
1.5.1 Introduction of vector into a packaging cell line ..... 26
1.5.2 Production of vector ..... 27
1.5.3 Concentration of retroviral vector supernatant ..... 28
1.5.4 Storage and stability of retroviral vectors ..... 28
1.5.5 Determination of viral vector titre ..... 29
1.6 Method of delivery ..... 30
1.7 Targeting of retroviral vectors ..... 31
1.8 Safety considerations ..... 31
1.9 Summary ..... 35
2.0 VALIDATION OF ASSAYS FOR DETECTION OF REPLICATION COMPETENT RETROVIRUS (RCR)
2.1 Introduction ..... 39
2.2 Materials and methods ..... 41
2.2.1 Culture medium, cells, viruses, antibodies ..... 41
2.2.2 Infectivity assays ..... 42
2.2.3 Reverse transcriptase assay ..... 44
2.2.4 Immunofluorescence assay ..... 46
2.2.5 Optimisation of infectivity assays ..... 46
2.2.6 Optimisation of co-cultivation assays ..... 47
2.2.7 The effect of non-RCR on infectivity and co-cultivation assays ..... 49
2.3 Results ..... 50
2.3.1 Infectivity assays ..... 50
2.3.2 Corcultivation assays ..... 58
2.3.3 The effect of non-RCR on infectivity and co-cultivation assays ..... 63
2.4 Summary ..... 66
2.4.1 Infectivity and co-cultivation assays ..... 67
2.4.2 The effect of non-RCR on RCR detection ..... 67
3.0 OPTIMAL CONDITIONS FOR RETROVIRAL VECTOR PRODUCTION
3.1 Introduction ..... 69
3.2 Materials and methods ..... 72
3.2.1 Assay of retroviral titre in vector supernatant ..... 72
3.2.2 Assay of enzyme activity in vector supernatant ..... 72
3.2.3 The effect of serum and glucose content in culture media ..... 73
3.2.4 The effect of temperature and inducing agents ..... 71
3.2.5 Cell culture in serum-free media ..... 74
3.2.6 Scale-up to roller bottles ..... 75
3.2.7 Scale-up to Fibra-Cel ${ }^{ \pm 0}$ disks in a Techne spinner flask ..... 76
3.2.8 Concentration of vector supernetant by filtration ..... 77
3.2.9 Calculation methods ..... 77
3.3 Results ..... 78
3.3.1 The effect of serum and glucose content in culture media ..... 78
3.3.2 The effect of temperature and inducing agents on vector titre ..... 86
3.3.3 Cell culture in serum-free media ..... 87
3.3.4 Scale-up to rolier bottles ..... 94
3.3.5 Scale-up to Fibra-Cel ${ }^{\mathscr{S}}$ disks in a Techne spinner flask ..... 97
3.3.6 Concentration of vector supernatant by filtration ..... 99
3.4 Summary ..... 100
3.4.1 The effect of serum and glucose content in culture media ..... 100
3.4.2 The effect of temperature and inducing agents on vector titre ..... 101
3.4.3 Scale-up of cell culture ..... 101
3.4.4 Concentration of vector supernatant by filltration ..... 103
4.0 STABILITY OF RETROVIRUS CONTAINING SUPERNATANTS
4.1 Introduction ..... 104
4.2 Materials and methods ..... 105
4.2.1 Virus and vector supernatants ..... 105
1.2.2 Storage of virus producing cells at various temperatures ..... 105
4.2.3 Storage of virus-containing supernatants ..... 105
4.3 Results ..... 106
4.3.1 Inactivation of virus-containing supernatants at $56^{\circ} \mathrm{C}$ ..... 106
4.3.2 Stability of virus-containing supernatants ..... 107
4.3.3 Longer-ierm stability of virus-containing supernatants ..... 110
4.3.4 Storage of virus-containing supernatants with sugar stabilisers ..... 112
4.4 Summary ..... 114
5.0 OVERVIEW OF RETROVIRAL VECTORS; PRODUCTION PARAMETERS AND DETECTION OF RCR
5.1 Occurrence of RCR ..... 115
5.2 Detection of RCR ..... 117
5.3 Production of retroviral vector ..... 124
5.4 Use of serum and trypsin in culture media ..... 126
5.5 Production methods to increase viral titre ..... 128
5.6 Concentration of retroviral vector ..... 131
5.7 Transduction of retroviral vector ..... 133
5.8 Limitation of selectable markers ..... 134
5.9 Optimisation of stability of retroviral vectors ..... 136
5.10 Overview and future directions for retroviral gene transfer ..... 138
6.0 REFERENCES ..... 140
1.1 Double-stranded DNA provirus ..... 19
1.2 Safety considerations in production of retroviral gene therapy products ..... 36
2.1 Comparative tifration of varying quantities of amphotropic murine ..... 52 leukaemia virus by Mus dunni, PG4 S'L` and mink S+'L` assays
2.2 RT activity in supernatants generated from Mus dunni cells inoculated ..... 57 With A-MLV at low multiplicity
3.1 The effect of media serum type and glucose content on viable cell ..... 80 counts during PALidSN cell culture
3.2 The effect of media serum type and glucose content on IDUA enzyme ..... 82 actitvity during PALidSN cell culture
3.3 The effect of media serum type and glucose content on viral vector titre ..... 84 during PALidSN cell culture
3.4 Total viable cell counts during culture of PALidSN cells in Ultraculture ..... 90 Serum-free medium
3.5 Retroviral vector titres from PALidSN cells cultured in roller ..... 93
Bottles in Ultraculture serum-free media
3.6 PALidSN cell culture on Fibra $\mathrm{Cel}{ }^{\oplus}$ disks in a Techne spinner flask ..... 98
4.1 Titres of vector and A-MLV following incubation at varying temperature ..... 109 over a period of time
4.2 Titres of retroviral vector and A-MLV after incubation at varying ..... 111 temperature over a period of 37 days

| 2.1 | Comparison of sensitivities of Mus dunni, PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$and mink $\mathrm{S}^{+} \mathrm{L}^{-}$ cells to A-MLV by direct assay | 51 |
| :---: | :---: | :---: |
| 2.2 | Detection of A-MLV by PG4 S*L. assay in supernatants of Mus dumi or PG4 cells infected with known virus concentration | 54 |
| 2.3 | Detection of A-MLV by PG4 S'L" assay in supernatants of Mus dunni cells infected with known virus concentration | 55 |
| 2.4 | Reverse transcriptase activity ( $\mathrm{Mn}^{2+}$ dependent) in supernatants of Mus dunni cells Infected with A-MLV at low multiplicity ( $10^{-3}$ infected cells) | 56 |
| 2.5 | PG4 S ${ }^{+}{ }^{-}$assay of serially diluted MLV-infected Mus dunni cell supernatants inoculated into a 24 -well plate | 59 |
| 2.6 | Detection of A-MLV by PG4 S+L assay in supernatants of Mus dunni cells directly co-cultivated with A-MLV infected cells | 60 |
| 2.7 | Detection of A-MLV by PG4 S'L' assay in supernatants of Mus dumni cells co-cultivated with cells infected with known virus concentration using transwell dishes | 61 |
| 2.8 | Reverse transcriptase activity ( $\mathrm{Mn}^{2+}$-dependent) in supernatants of Mus dunni cells co-cultivated with A-MLV infected cells | 62 |
| 2.9 | Effect of vector supernatant and E-MLV on detection of A-MLV by PG4 S ${ }^{+}$assay | 64 |
| 2.10 | Detection of A-MLV by PG4 S+L assay in supernatants of Mus dunni cells after direct co-cultivation with Mus dunni or retroviral vector producing cells seeded with varying dilutions of A-MLV infected cells | 66 |
| 3.1 | The effect of serum type and glucose content on viabie cell counts for PALidSN cells cultured in tissue culture flasks | 79 |

3.2 Effect of serum type and glucose concentration on doubling times and ..... 79 ceil yields for PALidSN cells
3.3 The effect of media serum and glucose content on IDUA enzyme activity in PALidSN supernatants
3.4 The effect of media serum and glucose content on viral vector titre ..... 83 PALidSN supernatants
3.5 The effect of media serum concentration on viral vector titre in ..... 85
PALidSN supernatant
3.6 The effect of temperature and inducing agents on viral vector ..... 86 production of PALidSN cells
3.7 Cell counts on adaptation of PALidSN cells to serum-free media ..... 88
3.8 Total viable cell counts from growth of PALidSN cells in serum-free ..... 89 Medium
3.9 Viral vector production from supernatants harvested over a 15 day ..... 92 period from PALidSN cells cultured in Ultraculture serum-free medium
3.10 Titres of retroviral vector in supernatants harvested over a 15 day ..... 95 period from PALidSN cells cultured in DMEM ( $4500 \mathrm{mg} / \mathrm{L}$ glucose containing $10 \%$ FBS) in roller bottles
3.11 Titres of supernatants harvested over a 10 day period from PALidSN ..... 96 cells cultured in DMEM ( $4500 \mathrm{mg} / \mathrm{L}$ glucose containing $1 \% \mathrm{FBS}$ ) in a roller bottle
3.12 PALidSN cell growth and retroviral vector production on Fibra-Cel disk ..... 97 a Techne spinner flask
3.13 Concentration of vector supernatant by filtration (i) ..... 99
3.14 Concentration of vector supernatant by filtration (ii) ..... 100
4.1 Titres of retroviral vector and wild type A-MLV after incubation at $56^{\circ} \mathrm{C}$ ..... 107for varying periods
4.2 Stability of titres of vector and A-MLV after incubation at $4^{\circ} \mathrm{C}, 32^{\circ} \mathrm{C}$ or ..... 108 $37^{\circ} \mathrm{C}$ over a 24 - hour period
4.3 Titres of vector and $\mathrm{A}-\mathrm{MLV}$ after long-term incubation at $4^{\circ} \mathrm{C}$ or $37^{\circ} \mathrm{C}$ ..... 110
4.4 Stability of vector and A-MLV at $-80^{\circ} \mathrm{C}$ with sugar stabilisers ..... 112
4.5 Stability of vector and $\mathrm{A}-\mathrm{ML} \mathrm{V}$ at $4^{\mathrm{n}} \mathrm{C}$ with sugar stabilisers ..... 113

## ABBREVIATIONS

| A-MLV | Amphotropic murine leukaemia virus |
| :---: | :---: |
| ALV | Avian leukaemia virus |
| ATCC | American Type Culture Collection |
| BLV | Bovine leukaemia virus |
| CBER | Center for Biologics Evaluation and Research |
| cfu | colony forming units |
| CPMP | Committee for Pharmaceutical Medicinal Products |
| DNA | Deoxyribonucleic acid |
| dpm | disintigrations per minute |
| E-MLV | Ecotropic murine leukaemia virus |
| env | retrovirus gene encoding SU and TM proteins |
| FACS | fluorescent activated cell sorting |
| FBS | Foetal bovine serum |
| FDA | Food and Drug Administration |
| FITC | Fluorescein Isothiocyanate |
| ffu | focus forming units |
| FLV | Feline leukaemia virus |
| G418 | Geneticin (G418) |
| gag | retrovirus gene encoding internal proteins |
| GaLV | Gibbon ape leukaemia virus |
| GTAC | Gene Therapy Advisory Commitee |
| HIV | Human immunodeficiency virus |
| HSV | Herpes simplex virus |
| HTLV | Human T-cell leukaemia virus |
| ICH | International Conference on Harmonisation |
| IDUA | $\alpha$-L-iduronidase |
| LTR | Long terminal repeat |


| MCF | Mink-cell focus-forming |
| :---: | :---: |
| MLV | Murine leukaemia virus |
| Mo-MLV | Moloney murine leukaemia virus |
| Mg ${ }^{2+}$ | Magnesium cation |
| $\mathrm{Mn}^{2+}$ | Manganese cation |
| MPS | Mucopolysaccharide |
| MWCO | molecular weight cut-off |
| neo | neomycin transferase |
| O.D. | Optical density |
| PALIdSN | Retrovirus vector producer cell line |
| PBS | Phosphate buffered saline |
| PCR | Polymerase chain reaction |
| PBL | peripheral blood lymphocyte |
| psi | packaging signal sequence |
| RCR | Replication competent retrovirus |
| RPMI | Roswell Park Memorial institute |
| pol | Retroviral gene encoding RT |
| RT | Reverse transcriptase |
| RNA | Ribonucleic acid |
| SIN | Self-inactivating vector |
| SU | major retroviral envelope glycoprotein |
| TCID | tissue culture infectious dose |
| TM | minor retroviral transmembrane protein |
| TPA | 12.0 tetradecanoyl-phorbol-13-acetate |
| VSV | vesicular stomatitis virus |
| X-MLV | Xenotropic murine leukaemia virus |

### 1.0 INTRODUCTION AND REVIEW

### 1.1 Introduction to gene therapy

Gene therapy, or transfer of "foreign" genetic material into patients for treatment or prevention of disease has been accepted for many years. The aim of such therapy is to provide gene functions which have been lost through mutation or caused by a genetic disorder, or to introduce genes to serve a particular function, such as resistance to cytotoxic drugs, inhibition of viral replication, or elimination of tumour cells. It could be argued that gene therapy encompasses attenuated viral vaccination, whereby replication and expression of viral genes results in an immune response to the gene product. The earliest example of such gene therapy was the vaccinia vaccine for smallpox (Newson, 1988), and today, vaccination with attenuated rubella, polio, measles and mumps viruses is widespread (Murphy and Chancock, 1990). Another example of therapy involving gene transfer into patients are allogeneic organ transplants (Carpenter, 1990).

In order to effect gene transfer, genetic material of interest must be included in a construct which either integrates into the target genome, replicates autonomously, of is otherwise expressed. The basio methods of gene insertion include transduction (by viral vectors) or transfection (by DNA-mediated systems) of target cells (Miller, 1992; Ledley, 1994). Gene transfer as a therapeutic method for the treatment of genetic disease and tumours is now feasible owing to significant advances in the development of recombinant virus vectors that encode the therapeutic genes in place of the viral structural genes. Vectors based on various viruses have been developed, including adenovirus (Le Gal La Salle et al, 1993), pox virus, such as vaccinia (Cooney et al,, 1993), insect baculoviruses (Barsoum et al. 1997) and retroviruses. Retroviruses have received the greatest attention as vectors for gene therapy because they can infect a variety of cell types, integrate stably into the target cell and have simple, well-
characterised genomes (Coffin, 1992, 1996). The first retrovirus vector was described in 1981 (Wei et al., 1981) and the first patient was treated for severe combined immunodeficiency syndrome (SCID) by transference of the gene encoding adenosine deaminase in 1990 (Anderson ef al., 1990).

### 1.2 Retroviruses

### 1.2.1 Classification

The retroviruses comprise a group of infectious agents, identified by a common virion structure and mode of replication. Retroviruses are unique owing to the ability of their single stranded RNA genome to direct the formation of a double stranded DNA provirus (Coffin, 1992, 1996). Retroviruses interact with host cells to cause a variety of diseases, the effects of which may range from benign to fatal. Until recently, classification of retroviruses was based primarily on virion structure and pathogenicity, however, recently acquired gene sequencing information reflecting fundamental relationships has led to an updated classification system. Seven major subfamilies of retrovirus are now recognised; mammalian type B, murine leukaemia virus (MLV)related, human T-cell leukaemia virus (HTLV)-bovine leukaemia virus (BLV) group, mammalian type $D$, avian leukaemia virus (ALV)-related, lentiviruses, and spumaviruses (Coffin, 1992, 1996). The term oncovirus encompasses the first five subfamilies; oncoviruses are usually leukaemogenic viruses, and may remain latent in the host, such as HTLV-1, or replicate and interact with cellular proto-oncogenes to induce turnours, for example feline, avian, and murine leukaemia viruses. Lentiviruses, such as human and simian immunodeficiency virus (HIV and SIV), are responsible for the induction of a variety of non-neoplastic diseases in humans and animals, while spumaviruses, such as human, simian and feline foamy viruses, have not yet been linked to any known diseases. Classification may also be based on virion structure (oncoviruses may be subdivided into types $A$ to $D$ based on morphology and pattern of
virion released from infected cells), utilisation of specific cell receptors (Sommerfelt and Weiss, 1990), presence or absence of an oncogene, and mode of transmission (endogenous [integrated in the germline] or exogenous).

Vectors based on several different retroviruses have been developed, including HIV-1 (Jolly et al., 1994) and gibbon ape leukaemia virus (GaLV) (Miller ot al., 1991), however, those based on MLV have been most widely used in gene therapy to date. Infection of cells by enveloped viruses depends on viral proteins which bind the virus to the target cell and promote fusion of the viral and cellular membranes. The envelope proteins (emv) of MLV-related viruses can be divided into different classes based on the cell surface receptors with which they interact (Rein and Schultz, 1984), and the hostrange or tropism of the viruses is limited to host species which express the appropriate receptor (Sommerfelt and Weiss, 1990). Various types of endogenous type-C MLV have been defined on the basis of their ability to infect and replicate in different types of cells: ecotropic MLV (E-MLV), such as Moloney-MLV (Mo-MLV), is infectious for murine cells only, whereas xenotropic MLV (X-MLV) is infectious for non-murine cells only. Other types of MLV-related sequences in celluar DNA exist, such as polytropic sequences, which are involved in the generation of recombinant mink cell focus-forming (MCF) viruses. MCF viruses are recombinants between ecotropic and xenotropic endogenous viruses, and infect cells of both murine and non-murine origin (Rein, 1982). A separate class of virus, amphotropic MLV (A-MLV), isolated from wild mice (Hartley and Rowe, 1975), is also replicative in both murine and non-murine species, and has been shown to induce a high incidence of myeloid leukaemia in mice (Wolff et al., 1991). Amphotropic virus exhibits a host range similar to that of polytropic viruses, but is distinct from other MLV species with regard to antigenic and interference properties (Rein: 1982). Different strains of A-MLV differ in their interference capacity to superinfection by other MLVs (Chesebro and Wehrly, 1985).

All retroviruses are similar in virion structure, genome organisation, and mode of replication (Coffin, 1992, 1996). The virion is enveloped and approximately 100 nm in diameter. The genome is diploid, consisting of two molecules of single stranded ribonucleic acid (RNA) ( $7-10 \mathrm{~kb}$ in length) enclosed in an icosahedral core. The RNA is reminiscent of cellular messenger RNA (mRNA), modified by capping at the 5 . end, and polyadenylation at the $3^{\prime}$ end. The core is bridged to the envelope by a matrix protein. To initiate viral infection, the envelope glycoprotein (SU) binds to a receptor on the host cell surface and a transmembrane protein (TM) mediates virus entry into the host cell by fusion of the viral envelope and cell membrane. The virion is released into the cytoplasm, where the virally encoded enzyme, reverse transcriptase (RT), transcribes the virion RNA into deoxyribonucleic acid (DNA) by the process of reverse transcription. Reverse transcriptase uses a molecule of host-cell transfer RNA (tRNA) as a primer to copy the viral genome into DNA from which a second strand of DNA is synthesised (Panganiban and Fiore, 1988; Varmus, 1983). The resulting linear duplex DNA provirus, consisting of an internal region encoding the virion proteins flanked by two identical long terminal repeats (LTR) is shown in Figure 1.1. These terminal noncoding regions are essential in cis for viral replication, and contain the R, U3, and U5 regions. The LTR represents the intact regulatory region, and includes all transcriptional sequences required for expression of the viral DNA genome. Between the LTRs are three main genes encoding structural proteins, the order of which is invariably gag-pofenv where gag encodes the internal proteins, pol encodes RT, and env the SU and TM protein.

The provirus produced by reverse transcription is circularised and is inserted into random sites in the genome of the host cell, with the aid of the integrase function of RT. The viral DNA serves as a primer for the synthesis of viral RNA. Transcription of the provirus is affected by the chromosomal position of integration, the cell type infected,


Figure 1.1 Double stranded DNA provirus
and the regulatory regions within the U 3 region, which contains both the promoter and enhancer. The integrated DNA is normally transcribed by the host cell machinery into RNA that either acts as viral mRNA or is enclosed in a virion and released by budding from the host cell membrane. A less abundant mRNA produced by the action of the splice donor site in the 5 ' LTR region is used to express env. Translation of the full length genomic transcripts results in the expression of the gag, pol, and env proteins (Weiss ef al., 1983;1985). Packaging of the genomic transcripts into virions requires an RNA signal known as the psi sequence (Mann et al., 1983) which lies $3^{\prime}$ of the $5^{\prime}$ LTR. This sequence is not present in spliced messages, therefore they cannot be packaged (Mann et al., 1985).

### 1.3 Retroviruses as Vectors

Retroviruses which transform cells in culture are often defective for replication because essential replicative genes have been replaced by cellular genes. These cellular genes acquired by the virus genome are known as oncogenes, and confer upon the virus the ability to transform normal into malignant cells (Neil et. al., 1983). In order to replicate, these viruses require the presence of a helper virus such as MLV, to supply the necessary functions for replication and packaging via functional gag, pol, and onv genes. The defective, oncogenic viruses are called sarcorna viruses, and the replicating helpers, which are generally non-transforming, are leukaemia viruses. Retroviruses which contain transforming oncogenes, such as myc, are natural vectors for the transmission and expression of foreign genes. Thus, retroviruses can be genetically manipulated to mimic natural modifications, and become vehicles for the delivery and expression of cloned genes in eukaryotic cells. The viral protein coding elements of a retrovirus can be deleted and replaced prior to packaging in a cell inire which expresses the stuctural proteins, thus enabling infectious recombinant virus particles to be formed. Features of retroviruses favouring this purpose include their relatively small genome, which can be easily manipulated to introduce foreign genes,
such that resulting defects can be complemented for in trans, the high titres to which they grow in culture, and the potential of high efficiency of infection of target cells. Retroviruses carry powerful transcriptional enhancers that ensure a high level of gene expression. Infection leads to integration of retroviral DNA in the host cell genome such that virtually all infected cells can express the gene carried by the virus (Gluzman and Hughes, 1988). In addition, the broad tropism of retroviruses permits a wide range of cell types to be infected, including cells of the hematopoietic system. There are however, some limitations to the use of retroviral vectors. Retroviruses can only integrate into mitotically active cells (Roe et al., 1993), and the size of the DNA insert is limited owing to the small overall size of the retroviral genome. However, the main concern in the use of retroviruses as vectors for gene therapy is that of safety, based on the possibility that recombination events could result in the production of wild-type replication competent virus (See section 1.7 below).

### 1.4 Retrovirus Vector Systems

Retrovirus vectors should resemble natural defective transforming viruses where viral products essential for the replication and integration of transforming retroviruses are supplied in trans by a non-transforming, replication competent helper virus. Thus, a retrovirus vector system is designed to follow nature in having two elements: a replication-defective vector (section 1.4.1) and helper virus, or 'packaging" cells (section 1.4.2). Retroviral vector particles lack coding sequences essential for generation of progeny while retaining the cis-acting elements essential for virus infection, reverse transcription, integration, and transcription in transduced cellis. Packaging cells provide in trans the coding sequences for retroviral enzymatic and structural proteins.

### 1.4.1 Vector constructs

Retroviral vectors are constructed as part of plasmid DNA molecules which can be grown in bacteria and manipulated by recombinant DNA techniques (Miller et al., 1993). Vectors are constructed from the DNA form of the retrovirus, which corresponds to the integrated provirus. The vector must behave as a viral genome to allow it to pass as a virus from the producer line, and therefore must retain the cis-acting sequences that allow it to replicate efficiently. These essential sequence elements are: the two LTRs, the packaging signal sequence ( $p s i$ ), which lies close to the $5^{\prime}$ LTR, and the primer binding sites for reverse transcription, which lie adjacent to the LTRs. In retroviruses, the major determinant of RNA packaging is the psi sequence, which maps between the 5. LTR and the start of the gag coding sequence (Mann et al., 1983), All the remaining sequences are dispensible, as their loss can be complemented for in trans. However, inclusion of a portion of the gag region into a vector construct has been shown to significantly increase viral titre, suggesting existence of an extended signal sequence which results in more efficient packaging (Bender et al., 1987). Efficient vectors usually contain part of gag and have deleted splice donor sites and mutation of the gag ${ }^{+}$start codon. The gag sequence must be in its native position, adjacent to psi, to have an effect of 5-10 fold increase in viral titre (Morgenstern and Land, 1990). Thus, the structure of the provirus, with regulatory regions located at the ends of the genome, and structural genes occupying the central 8 kb region, makes it relatively simple to replace the central structural genes (gag, pol, env) with therapeutic genes of interest. The loss of these sequences can be complemented in trans by a packaging cell line, the simplest of which consists of a provirus in which the psi sequence has been deleted (Mann ef al., 1983). When a recombinant provirus is introduced into packaging cells viral particles are produced which contain almost exclusively RNA genomes of the recombinant vector. Thus, the encapsulated recombinant is infectious and integrates into the host cell, but the RNA transcripts produced are not capable of self-replication, and cannot be packaged into viral particles.

A safe retrovirus vector should contain the minimal amount of retroviral sequence consistent with its ability to be packaged, undergo reverse transcription and integrate. Many vectors employed in gene therapy to date have been based on Mo-MLV, modified to produce either a single gene or two different genes (a therapeutic gene and a marker gene). Gene expression can be driven by the endogenous retroviral promoter (the LTR), or the second gene can be cloned in with its own promoter (commonly the SV40 or herpes simplex virus thymidine kinase (HSV-TK) gene promoters) to drive expression. A minimal vector generally contains only $10 \%$ of sequences found in a replication competent virus, as the viral structural genes are deleted and replaced with one or more restriction enzyme sites for the insertion of new sequences. This minimal vector is self-inactivating (SIN) (Yu et. al., 1987) owing to the lack of a complete $3^{3}$ U3 region. The proviral LTRs in infected cells are transcriptionally inactive, eliminating the possibility of transcriptional activation of adjacent genes. Although considered safer than double-gene vectors, SIN virus titres obtained to date have been low, in the region of $10^{2}$ colony forming units per ml (cfu/ml) (Yee et al., 1987). These simple vectors are limited in their applications because of the low viral titres obtained and their restriction to transmission of genes eliciting a clearly distinguishable phenotype owing to the lack of a suitable selectable marker. Double gene vectors include a gene encoding a selectable phenotype. Several selectable markers have been used for this purpose, including the genes encoding neomycin phosphotransferase (neo) (Cepko et al., 1987) and thymidine kinase (TK) (Caruso et al., 1993). A wide variety of vector constructions have been described, including those with LTRs as the major promoters (Cepko et ad, 1987), with internal promoters (Overell et al., 1988) and with the gene of interest expressed in reverse orientation (Dzierzak et al. 1988).

The more distal gene may be expressed from an internal promoter or from spliced subgenomic mRNA analogous to env. An example of a double gene splicing vector is pZIP Neo SV(X) (Cepko et al., 1987) in which the gene encoding neo, which confers
resistance to the antibiotic Geneticin (G418) is inserted in the env equivalent position in the vector genome. A selected gene can be cloned into a BamHy site at the env equivalent position. In this construction the LTR transcription signals drive expression of both genes. However, an internal promoter in either orientation relative to transcription may drive the more distal gene from the viral LTR. One commonly used internal promoter is the SV40 early promoter. This type of vector has possibilities for regulating the introduced gene by employing either inducible, cell-type specific, strong or weak promoters in vectors. A disadvantage to this type of vector is that an LTRbased promoter can exert a negative effect on promoters downstream of it, disturbing the relative levels of expression from the two promoters (Emerman and Temin, 1984). "Promoter selection" may be partially overcome by constructing double expression vectors with the internal promoter in the reverse orientation to the direction of transcription from the LTR.
1.4.2 Packaging cell lines

Recombinant vector constructs can be transcribed, processed, packaged, and replicated, but the viral functions necessary for the assembly of recombinant virus particles must be provided for in trans by a packaging cell line. Many MLV packaging cell lines are derived from adherent murine cell lines engineered to produce gag, pol, and onv protein, but no full length genomic RNA or RNA which can be encapsidated. First generation packaging lines consisted of a provirus in which the psi sequence had been deleted (Mann et al., 1983). However: recombination events between homologous regions of the vector and the packaging line resulting in the production of wild-type RCR has been observed in such cell lines (Miller, 1986, Otto et al., 1994; Vanin et al., 1994). In order to decrease sequence homology between the vector and packaging sequence, second generation packaging lines have been developed in which the $3^{\prime}$ LTR was deleted as well as the psi sequence, and replaced with heterologous promoters and polyadenylation sites. Thus two recombination events between the
vector and packaging line are necessary in order to generate RCR. An example of a second-generation packaging line is the amphotropic retrovirus packaging cell line PA317 (Miller and Buitimore, 1986). PA317 cells were derived from NiH 3 T3 thymidine kinase (TK) cells by co-transfection with retrovirus packaging construct DNA (PPAM3) and the HSV TK gene. Introduction of retroviral vectors into these cells by transfection or infection results in the production of retrovirus virions with an amphotropic host range. However, even with deletions of $p$ si, the $3^{\circ}$ LTR, and part of the $5^{\circ} \mathrm{LTR}$ in second generation packaging cells, the possibility of producing $R C R$ on introduction of a vector still exists (Danos and Mulligan, 1988). To further reduce the possibility of RCR production, third generation packaging cells have been developed, in which the gag-pol and env genes are introduced to the packaging cells on different DNA constructs (Morgenstern et al., 1990). Sequential introduction reduces the high frequency of recombination that occurs during transfection. The amphotropic lines CRIP (Danos and Mulligan, 1988) and GP+envAm12 (Markowitz et al. 1988) are two examples of packaging lines which: in addition to the deletions described above, contain viral DNA in which the gag and por genes are on one plasmid and the env gene on another. Two independent rounds of transfection are employed to produce these cells: firstly, the gag-pol construct can be transfected and clones expressing gag and pol proteins selected for by reverse transcriptase assay, it is possible to determine the host range conferred by the packaging line in the second round of tranfection by choosing appropriate env gene constructs. Production of a functional envelope in secondary transfectants can then be tested for using a packaging assay. An advanced system has been developed involving the generation of the $\Omega \mathrm{E}$ cell line, a high titre ecotropic packaging cell line (Morgenstern et al., 1990). This line was developed with separate gag-pol and env constructs with minimum sequence overlap and decreased sequence homology achieved by 'codon wobbling', The $\Omega$ E line was developed in conjunction with pBabe retroviral vectors, in which homologous gag coding sequences have been deleted. Together, the vector and packaging line reduce the risk of generating RCR through recombination events. Thase third generation lines Increase
both safety and efficiency for gene transfer into cells, owing to the fact that three separate recombination events would be necessary to form an intact genome, which is likely to be a rare event. An estirrate of the potential for recombination occurring would be difficult to estimate at present, owing to the frequency rate being thought to depend on the particular retroviral vector system.

## $1.5 \quad$ Producer Cells

1.5.1 Introduction of vector into a packaging cell line

The introduction of a vector into a packaging cell line gives rise to a producer cell line which makes only replication-defective vector particles capable of introducing their genes into target cells. Producer cells release virus particles containing an RNA transcript of the vector including the cis-acting sequences necessary for its reverse transcription and integration. As many MLV packaging lines described to date are derived from murine NHH3T3 or BALB/c 3 T3 cells, vector DNA can be infroduced by transfection using a standard calcium phosphate precipitation method. However, enhanced virus titres are obtained if the vector is introduced by infection rather than by physical transfection techniques (Hwang et al., 1984). Selecting for a dominant marker carried by the vector itself, or on a co-transfected plasmid, gives rise to virus produced from a stably transfected packaging line. Virus produced from transfection of one packaging line can be used to infect a second line. Packaging cells have immunity to infection by viruses that use the same cellular receptor; therefore a cell infected by one retroviral subgroup can only be infected by virus of a different subgroup (Chesebro and Werhly, 1985). It is possible to employ a 'shuttle system' where a vector is transfected into one packaging line and shuttled into another by infection (Cepko et at., 1984: Berger and Bernstein, 1985). For example, the vector could be transferred from an ecotropic to an amphotropic packaging line, or vice versa. Danos and Mulligan (1986) shuttled a vector between CRE cells (the ecotropic equivalent of CRIP) and either CRIP
or PA317 amphotropic lines. When the vector was psuedotyped several times to increase the possibilify of detecting $R C R$, all virus stocks from the CRE/CRIP shuttling system were negative for the presence of RCR. Producer clones with titres of $10^{6}$ cfu/ml were isolated by this method. However, recombination was apparent after the fourth and fifth round of infection in two separate experiments using the CRE/PA317 shutting system. Advantages in sequential use of two different packaging lines over single-step transfection include a 100 -fold increase in viral titre and infected colonies which are genetically more uniform, owing to individual coples of the proviral DNA being integrated in a precisely defined manner (Danos and Mulligan, 1988).
1.5.2 Production of vector

Initially, the producer cell line should be cultured, and a series of growth curves constructed to determine the optimal media formation and cell seed concentration for maximum cell growth. Media components may have an adverse effect on culture of producer cells, for example, it may desirable to adapt cells to serum-free media, as in vivo studies have shown that retroviral vectors are inactivated by serum in an antiviral immune response (Hodgson, C., 1995). Kotani et al. (1994) described the production and optimisation of transduction in twenty-two retroviral vector producer lines. They compared vector production at $32^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$ in PA317 producer cells and found that although vector particle growth was slightly reduced at $32^{\circ} \mathrm{C}$, the stability and titre of the vector were substantially higher. Therefore, the temperature at which retroviral vectors are produced may be important in the transduction efficiency of retroviral vectors. Assays should be also performed to determine the optimal titre obtainable for the viral vector. Small-scale evaluation studies should be performed to optimise vector production, and set the parameters for scaled-up production. Systems for culturing producer cell lines include tissue culture fiasks, roller bottles, and the CellCube Bioreactor [The area of one Cellcube is equivalent to 25 roller bottles $\left(850 \mathrm{~cm}^{2}\right)$ ]. Large scale production of retroviral vectors would be greatly improved if producer lines could
be grown as single cell suspensions, and other factors which influence large-scale production of retroviral vectors need to be defined.

### 1.5.3 Concentration of retroviral vector supernatant

Membrane technologies such as ultrafilitration may be used to concentrate retroviral particles using membranes with molecular weight cut-off (MWCO) values of 100 or 300kDaltons. Kotani et at. (1994) reported an approximate 20 -fold increase in vector titre with over $90 \%$ recovery of infective particles using a Pellicon tangential flow concentrator using a 300 kDalton MWCO membrane, generating viral vector titres of around $10^{7} \mathrm{cfu} / \mathrm{ml}$. In another study, Saha et at. (1994) reported a 30 -fold increase in concentration of MLV without loss of infectivity using a 100 kDalton MWCO.
1.5.4 Storage and stability of retroviral vectors

Recombinant retrovirus stocks are obtained from producer lines by harvesting culture medium when the cells are grawing exponentially (Morgan et al, 1995, Roe et al. 1993). One method is to add fresh culture medium to producer cells cultured in tissue culture flasks at $37^{\circ} \mathrm{C}$ on reaching at $80-90 \%$ confluence and harvest the supernatant 24 hours later (Andreadis and Palsson, 1997). The half-lives of retroviral vectors cultured at $37^{\circ} \mathrm{C}$ have been measured to be 5 hours (Sanes et al., 1986), 3.5-6.5 hours (Paul et al., 1993) and 6 -8hours (Chuck et at., 1996). The length of time for which a retroviral vector can be maintained in culture under conditions that produce quality commercial products has yet to be fully established.

Retrovirus stocks should remain stable stored at $-70^{\circ} \mathrm{C}$ in harvested tissue culture medium containing foetal bovine serum (FBS). Lyophilisation with storage at $-20^{\circ} \mathrm{C}$ may be accomplished relatively simply, resulting in a long half-life ( $>200$ days). Kotani et al. (1994) used a combination of additives including $50 \%$ glucose, $50 \%$ sorbitol, and
$25 \%$ gelatin in phosphate buffered saline (PBS) resulting in a recovery rate of $64-83 \%$. Retrovirus vectors have been described as displaying stability to variations in pH , ionic strength, and shear forces (Naussbaum et al., 1993). Kotani et al. (1994) used another approach to enhance transduction efficiency in $\mathrm{NH} \mathrm{H}-3 \mathrm{~T} 3$ cells. Centrifugation of vector supernatants onto target cells to concentrate the viral particles directly onto the surface of cells increased transduction efficiency as measured by vector titration for Geneticin resistance, fluorescence-activated cell sorting (FACS), and polymerase chain reaction (PCR) analysis

### 1.5.5 Determination of vector titre

Some retroviral vectors contain no selectable marker, and determination of vector titre is based on a measure of the gene product, for example, enzyme activity or protein concentration. These factors can vary widely between producer clones and data must be generated through extensive evaluation studies. Viral titre can be determined most accurately when a selectable marker is present in the producer line (Vile, '1991). For example, inclusion of the HSV-TK gene in producer cells which are treated with a nucleoside analogue such as ganciclovir means that dividing cells are killed, owing to the phosphorylated nucleoside acting as a chain terminator (Caruso et al., 1993). Cells deficient in the expression of the TK gene can be grown in HAT (hypoxanthine/aminopterin/thymidine) medium. Selection must be positive, so that the cells of interest remain alive. The pBabe retroviral vector constructs transmit inserted genes at high titre from the Mo-MLV LTR. These vectors have been constructed with four different dominantly acting selectable markers, allowing the growth of infected mammalian cells in the presence of Geneticin, hygromycin B, bleomycin'phleomycin or puromycin. High titres are obtained from a third generation ecotropic packaging line $(\Omega \mathrm{E})$ designed in conjunction with pBabe vectors (Morgenstern et al., 1990). Titration by non-selectable gene expression requires a method tailored to suit the specific producer line concerned. For example, a retrovirus vector coding for human $\alpha-L$ -
iduronidase has been prepared for use in a clinical trial for treatment of human mucopolysaccharide disease (MPS), using a neo-organ approach as used for the MPS VIl disorder in mice (Moullier ef al., 1993). This vector is titrated by assaying the level of enzyme in supernetant from vector-infected MPS I cells using a fluorimeter. Another commonly used titration method to determine the quantity of viral genomic RNA in supernatant is hybridisation with a ${ }^{32}$ P-labelled DNA probe. This is performed using a standard RNA dot-blot procedure after concentrating the virus. A quantitative determination is obtained by comparing hybridisation intensities with an accurately titrated control virus.

### 1.6 Method of delivery

Application of retroviral vectors may be applied in treatment of disease such as cancer whereby the transduced gene expresses an enzyme capable of converting a pro-drug into a cytotoxic drug, induces an immunological response, confers drug resistance, or restores tumour supressor genes (Jasmin, 1993). Treatment of the patient may be in the form of viral supernatant harvested from the producer cells, or direct injection of the producer cells themselves. For application in early stage clinical trials, where the target cells are haematopoietic stern cells or lymphocytes, or other easily isolated cell types, administration of retroviral vectors is achieved ex vivo. This is achieved by removing a biopsy from the patient, and expanding the cells prior to transduction in vitro with retroviral vector. Doses are then stored frozen and re-administered by injection to the patient. This can be an expensive procedure, but avercomes the potential problem of low infectivity of retroviruses, as it is possible to perform the transduction in a way in which infection can be increased or stimulated. An alternative method of application to patients is direct administration of retroviral vectors. Producer cell lines secreting retroviral vectors encoding HSV-TK have been injected into brain tumours (Culver et al., 1992) and intramuscular injection of HVV-1 vectors expressing env have been employed to stimulate celiular immune responses to HIV-1 (Jolly et al., 1994). The
ideal method of gene delivery for general clinical use is the direct (or in vivo) approach, where highly concentrated and purfied retrovirus vectors can be prepared as ready-toinject doses, and directly administered to a large patient base.

### 1.7 Targetting of retroviral vectors

The host range of MLV-based vectors can be extended by pseudotyping, which is achieved by packaging the vector genome in a virion particle bearing envelope proteins from another virus (Kasahara et al., 1994.) The vectors currently used in clinical trials are made in hybrid systems, where the host range of ecotropic Mo-MLV is altered by combining the gag-pol gene from Mo-MLV with an env gene from another source (pseudotype formation). For example, combination with MLV straln 4070A, which has an amphotropic envelope, allows the vector to infect a variety of cell types, including human cells (Porter ot al., 1996). Approaches employed in targetting specific host cell types include the use of tissue specific enhancers and promoters, alteration of the binding site of the env gene for attachment to specific cell receptors, and incorporating new ligands into the vector membrane which bind to specific cell receptors. However, such targeting approaches are still under development (Gunzburg et. al., 1995).

### 1.8 Safety Considerations

The main concern in the development of biopharmaceutical applications is the production of safe products. Regulatory authority guidelines outlining quality and safety testing strategies are in place, advising on procedures recommended for a biotechnology derived product to obtain market authorisation. For any cell-based production process, full characterisation and testing of the master and working cell banks, intermediate harvests, the end of production cells, and the final product itself, is recommended by the authorities (CBER, 1997; ICH Q5A, 1996). Examples of testing recommended for the presence of adventitious agents include;

- mycoplasma and sterility screening
- identity testing
- in vitro assay (inoculation of supernatant onto different detector cell lines, including human and primate, in order to detect a range of viral contaminants)
- in vivo assay (inoculation of sample into animal systems in order to detect a range of viral contaminants which are not easily detected in vitro)
- testing for the presence of retrovirus contamination using a variety of techniques
- analysis by electron microscopy
- testing for the absence of infectious murine viruses produced from murine cell lines
- testing for the presence of bovine and porcine viruses (if exposure to serum and trypsin from these sources has occurred, this is essential).

In addition to virus safety testing, validation of a down-scaled version of the manufacturing process used for production is required, to demonstrate that any virus which was inadvertently present in the manufacturing facility would be removed or inactivated by the production process (CPMP, 1996). This provides additional confidence in the safety of the final product.

In addition to the above testing recommendations, specific guidelines have been implemented with regard to gene therapy studies, and in particular RCR testing. At present, production and purification processes used for retroviral vector systems do not contain process steps that will eliminate contaminants, therefore it is not feasible to perform virus validation studies to provide additional data concerning the safety of the product. Thus, thorough characterisation of the producer cells, and validation of both the packaging cell line and the recombinant gene constructs is essential, involving DNA fingerprinting, sequence analysis, and restriction mapping.

It is clear that safety issues are paramount in the use of retroviral vectors for treatment of disease by gene therapy (Smith et al., 1996, Ostrove, 1994, Anderson et al. 1993, Cohen-Haguenauer, 1995). In Europe, the Commitlee for the Proprietary Medicinal Products (CPMP) issued guidelines addressing quality aspects with regard to materials used for production of gene therapy products (CPMP, 1995). The Center for Biologics Evaluation and Research (CBER) of the Food and Drug Administration (FDA) have established guidelines for screening post-production vector producing cell lines and vector-containing supernatant used in production of retroviral vector products for human application, for the presence of RCR (CBER, 1991,1996, 1998). Vector-producing cell lines and culture supermatant require sensitive screening for the presence of RCR prior to use in the clinic, owing to the fact that recombination events between homologous sequences in the vector and packaging cell line may lead to the generation of RCR (Otto et al., 1994, Vanin et al., 1994). Otto et al. (1994) used retroviral-specific primer pairs to demonstrate that recombination, rather than a contamination, created a novel virus in retoviral supernatant harvested from PA317/G1Na producer cells.

Knowledge of the effect of MLV infection in primates is limited. Although MLV has been reported to be of limited pathogenicity in rhesus monkeys (Cornetta et al., 1990, 1991), A-MLV was reported to induce T-cell lymphomas in three out of ten immunosuppressed macaques (Donahue et al., 1992): In the latter study, exposure of RCR following exvivo transduction of bone marrow cells has been proven to be the cause of disease. The monkeys that died had prolonged retroviremia, and murine $R C R$ sequences were detected in the lymphomas (Vanin et al., 1994, Purcell et al., 1996). This finding has increased concerns about the risk of MLV exposure in humans.

The need for safer retroviral vector systems which decrease the possibility of RCR generation has resulted in advances in vector design, and the development of third generation packaging cells, which require three separate recombination events in order
to generate RCR . This significantly reduces the frequency of recombination between vector and packaging sequences, and necessitates the employment of RCR detection assays of high sensitivity.

CBER recommend that product release testing for retroviral vector use in gene therapy includes amplification of $5 \%$ of the total vector-containing supernatant volume on an MLV replication-permissive cell line, for example, Mus dunni cells (Lander et al., 1984), and $1 \%$ of the total post-production vector producing cells (or $10^{8}$ cells, whichever is less) by co-cultivation with an MLV replication-permissive cell. Supernatants generated from extended Mus dunni and Mus dumni co-cultivation assays should be tested for the presence of RCR using the PG4 $\mathrm{S}^{+} \mathrm{L}^{-}(\mathrm{PG} 4)$ assay. This is a simple $\mathrm{S}^{+} \mathrm{L}^{-}$assay using feline PG-4 S'L celis to detoct the presence of xenotropic or amphotropic retroviruses (Bassin et al., 1982). PG-4 SL. cells contain a defective murine sarcoma virus genome (sarcoma positive, leukaemia negative $\left[\mathrm{S}^{+} \mathrm{L}\right]$ ). Superinfection of the PG-4 $\mathrm{S}^{+} \mathrm{L}^{-}$cells with RCR results in rescue of the murine sarcoma virls. Replication of the murine sarcoma virus results in the transformation of MLV-infected PG-4 S+L cells, and thus the formation of foci, which can be visualised via low-power light microscopy (Bassin et al., 1982). An alternative to the PG4 $\mathrm{S}^{+} \mathrm{L}$ - assay is the marker rescue assay (Forestell et. al. 1996), which is acceptable to the authorities (CBER, 1996), if validated, and of sensitivity comparable to the PG4 S ${ }^{+} \mathrm{L}^{\cdot}$ assay. The detection assays are required to be of high sensitivity, as high levels of replication-incompetent partlcles have been reported to inferfere with the detection of RCR in vector supernatants (Printz et al, 1995). Therefore, assay sensitivity should be determined in the presence of high titre retroviral vector.

Testing at various stages of production is required owing to limited knowledge of the risks of retrovirus exposure and the possibility of generating recombinant RCR at any point in the production process (CBER, 1996). An improvement in the safety of retrovirus vectors may be achieved by incorporation of the packaging constructs into
cells that do not contain endogenous retroviruses. Most amphotropic packaging lines are based on NIH 3 T3 cells which express endogenous VL30 retroviral related sequences. These sequences contain LTRs, and could act as insertional mutagens if packaged into virions. Therefore, safety could be improved in packaging lines by the use of non-murine cells, such as canine or human cells, in which endogenous retroviral elements are defective. A human-derived packaging cell line based on 293 cells was recently reported to transduce target cells with high efficiency (Davis et al, 1997).

An additional safety issue in the use of retroviral vectors in gene therapy is that insertional mutagenesis may induce oncogenesis, either by disrupting a gene involved in growth suppression, of by activating a proto-ancogene. Therefore, a goal of current retroviral vector technology is to develop site-specific integration.

### 1.9 Summary

The safety of a viral vector for gene therapy is a combinatlon of good vector design, controlled production and extensive evaluation and testing, which can be displayed as a 'safety triad' (Smith et al., 1996; Figure 1,2). Retroviruses are well characterised and are suitable as vectors for gene delivery owing to the unique characteristics of the virus replication cycle.

Advances in the development of packaging cell lines and vector constructs should permit safer and more efficient gene transfer. Recombinant virus titres have been improved by the inclusion of gag sequences in the vector construct and, by introduction of the vector construct to the packaging cell by infection, rather than transfection. Packaging cell lines have been constructed in which the gag/pol and env products are produced from separate transcriptional units, which both increases safety, and allows the construction of pseudotyped vectors.


Figure 1.2 Safety considerations in production of retroviral gene therapy products

Retroviral vectors bind to a host cell and insert the vector sequence, resulting in stable integration of the genetic material into the host genome without detrimental effects on the cell. However, the random way in which the provirus integrates into the host genome is undesirable owing to the potentially variable level of gene expression, and the potential for insertional mutagenesis to occur. Other limitations in the use of retroviral vectors include the inability to transduce non-dividing cells, production of lowtitre stocks (rarely greater than $10^{5}$ units $/ \mathrm{ml}$ ), and an upper limit to the inserted gene size of approximately 9 kb . Gene expression from retrovirus vectors can be achieved in a broad range of tissues, though many applications have targetted haematopoetic stem cells, which are easily accessed, and infection can be performed ex vivo.

The ideal retrovirus vector should have the following characteristics; reproducibly hightitre stock; tissue-specific delivery; optimal and regulated expression level of the transgene, and site-specific integration. However, tissue specific vectors with regulated, stable gene expression have yet to be develaped. Production of retroviral vectors should be evaluated to provide optimal small-scale culture conditions that will provide stable, high titre vector stocks for use in clinical trials. One study has indicated that growth of cells at $32^{\circ} \mathrm{C}$ results in increased viral titre in producer cell stocks (Kotani et al., 1994). For clinical trials, large volumes of vector are required at the highest possible titre. Production parameters identified in the evaluation phase would be used to scale-up production to the most suitable and cost-effective technology, for example. roller bottles, the CellCube system or the Brunswick Celligen system. Recent advances in vector production technology include optimisation of vector production by concentration and lyophilisation, as well as large-scale production of producer cells for the treatment of brain cancer. Various techniques, such as ultrafiltration can be used to concentrate large volumes of viral vector.

Retroviral vectors for use in gene therapy should be produced safely and efficiently, free from contaminating adventitious agents. The potential risk of exposure of patients to RCR is of concern. Development of complementing packaging cell lines and vector constructs with minimum sequence homology has increased the safety of retroviral vector systems. Third generation packaging cell lines have been developed to reduce homology between the vector construct and packaging cell line so that three separate recombination events would be required to generate RCR. A further increase in safety is manifest in currently used packaging cell lines which express the gag and pof proteins from one inserted provirus construct, and the env proteins from a second. The development of non-murine packaging cells would confer further advances in the safety of retroviral gene therapy products.

### 2.0 VALIDATION OF ASSAYS FOR DETECTION OF REPLICATION COMPETENT RETROVIRUS

### 2.1 Introduction

Many gene therapy protocols employ recombinant retrovaral vectors, which are replication-defective retroviruses designed for gene transfer. Most retroviral vector systems are based on replication defective murine retroviruses, and consist of two components, a packaging cell line, and the vector (as discussed in section 1.4). The env component of the vector has been most commonly based on A-MLV, which was isolated from wild mice (Hartley and Rowe, 1975). The env component from other retroviruses, for example GaLV, has also been incorporated into vector constructs (Lam ef al., 1996). Transfecting or transducing packaging cells with a defective retrovirus vector incorporates the vector RNA into virus particles. These virions are capable of infection of target cells to integrate a DNA copy of the vector genome into the target cell, but are incapable of further replication.

A potential problem in using retroviral vectors is the possibility of generating replication competent retrovirus ( RCR ) through recombination events between the vector and the packaging sequence. The potential hazards of the presence of A-MLV are not easily predicted. One study indicated that A-MLV was not an acute pathogen in rhesus monkeys, as viraemia was not observed following administration of high titre RCR (Cometta et al., 1990), In contrast, another study reported the development of T-cell lymphomas in immunosuppressed monkeys following exposure to high levels of helper virus during retrovirus mediated gene transfer (Donahue et al., 1992). However, the differences in these results may be partially explained by the fact that Cornetta injected the RCR intravenously, resulting in virus being lysed through complement inactivation, whereas Donahue's group transduced the cells ex vivo. Transient transfections of
vector constructs into packaging cell lines can result in generation of wild type virus in harvested supernatant, therefore development of safer systems has been a focus of research. Although the packaging cellis and vector constructs have been modified to reduce the possibility of recombination occurring (Danos and Mulligan, 1988), safety testing for detection of RCR is of utmost importance. Current recommendations for the detection of RCR in retroviral vector products are set by the FDA Center for Biological Evaluation and Research (CBER, 1991, 1996, 1998) in the United States, and the CPMP (1995) in the European Union. As for all biopharmaceuticals, a system of Master Cell Bank (MCB) and Working Cell Bank (WCB) should be set up to provide fully-characterised starting material for the clinical lot (CBER, 1993). Testing at various stages of production is required owing to limited knowledge of the risks of retrovirus exposure and the possibility of generating recombinant RCR at any point in the production process. The required tests include both an amplification assay and cocultivation assay with a cell line permissive to A-mLV infection. A commonly used cell line for RCR detection is derived from the tail fibroblasts of the Asian wild mouse, Mus dumni, which is permissive for replication of all classes of MLV (Lander and Chaltopadhyay, 1984). The supernatant resulting from amplification or co-cultivation assay should be tested by feline PG-4 S'L' assay (Bassin et at., 1982). PG-4 S'L' cells contain a defective murine sarcoma virus genome (sarcoma positive, leukaemia negative $\left[S^{+} L^{-}\right]$). Superinfection of the PG-4 $S^{+} L^{\circ}$ cells with RCR results in rescue of the murine sarcoma virus. Replication of the murine sarcoma virus results in the transformation of MLV-infected PG-4 ST, cells, and thus the formation of foci, which can be visualised via low-power light micrascopy (Bassin et al., 1982). Mus dunni cells are highly permissive for all MLV types and lack sequences homologous to known murine refroviruses, and are therefore unlikely to generate RCR spontaneously (Lander and Chattopadhyay, 1984). Thus, any RCR detected can be presumed to have originated from the sample being tested. The guidelines recommend testing $5 \%$ of the total supernatant from a cell bank by Mus dunni infectivity assay, and $1 \%$ of total pooled cells (or $10^{8}$ cells, whichever is less) by co-cultivation with Mus dumi cells (CBER,

1996, 1998). Supernatants generated from both extended Mus dunni and Mus dunni co-cultivation assays are tested by PG4 St ${ }^{+}$assay. Additional recommendations have recently been published which further clarify regulatory opinion with respect to experience gained since the initial guidelines were implemented (Wilson et al., 1997). This paper states that if appropriate, an alternative marker rescue assay is acceptable, if validated, and of sensitivity comparable to the PG4 S+L. assay (Forestell et al., 1996).

This chapter presents results of studies designed to optimise the procedures used for detection of RCR. In the currently approved assay system, Mus dunni cells are infected or co-cuitivated with vector supernatant or the producer cell line and passaged five times in order to amplify any infectious virus. Supernatants are tested at passages 1 and 5 for infectivity by PG4 S ${ }^{+} \mathrm{L}^{-}$assay and at passage 5 for reverse transcriptase activity. To validate and determine optimal conditions for the extended assay, Mus dunni cells were infected with varying multiplicities of MLV (both A-MLV and X-MLV, to assess the effect of virus variation on the assay) and the culture supernatants harvested at each passage for both PG4 StL- and RT assay. The experiment was performed in parallel using PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$cells, in order to compare the sensitivity of the assays. Similar experiments were performed for co-cultivation assays, where Mus dunni cells were co-cultivated with MLV-infected cultures containing varying percentages of infected cells, and supernatants harvested at each passage for PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$and RT' assay. An additional study was performed to determine if the presence of retroviral vector supernatant or vector producing cells (nor1-RCR) in excess in culture supernatant would reduce the sensitivity of the assay for detection of RCR. This was performed by titration of A-MLV through culture supernatant containing either vector or ecotropic murine leukaemia virus (E-MLV) prior to assay on Mus dunni or PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$ cells.

### 2.2 Materials and Methods

2.2.1 Culture medium, cells, viruses and antibodies

Cell lines were grown at $37^{\circ} \mathrm{C}$ in a mixture of $5 \% \mathrm{CO}_{2}$ and $95 \%$ air In Dulbecco's modified Eagles medium (DMEM) (Mus dumi and FALidSN), RPMI 1640 (mink ( $\mathrm{MiCl}_{1}$ ) $\mathrm{S}^{\prime} \mathrm{L}^{-}$), or McCoy's medium (PG4 $\mathrm{S}^{-} \mathrm{L}^{-}$) supplemented with $10 \%$ foetal bovine serum (FBS), L-glutamine, antibiotics, and vitamins (all reagents supplied by Life Technologies Ltd., Paisley, UK). Mus dunni (CRL2017), NIH/3T3 (CRL1658), MiCl mink $\mathrm{S}^{+} \mathrm{L}^{-}$ (CCL64.1), and PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$(CRL2032) cells were obtained from the American Type Culture Collection (ATCC). A murine fibroblast based producer cell line (PALidSN) was obtained from Dr L. Fairbaim (Paterson Institute for Cancer Research, Manchester). The A-MLV, strain 292A (VR884) was obtained from the ATCC. E-MLV strain mov3 (Moloney, 1960) and feline leukaemia virus (FeLV, strain FeLV-C) were supplied by Professor D.E. Onions (Department of Veterinary Pathology, University of Glasgow). Anti-MLV monoclonal antibody (34C) was undiluted supernatant of cell line 34C (CRL1889) obtained from ATCC.
2.2.2 Infectivity assays
2.2.2.1 Introduction

The infectivity assays were performed in a direct and extended format. In direct assays a given volume of sample was inoculated onto the cells in the presence of polybrene and the virus titre determined directly by enumeration of resulting foci of infection or by indirect immunofluorescence. Low levels of infection, which may not be detected by direct assays, may be amplified by serial passage of inoculated cells (Vorse and Hartley, 1986). Hence, extended assays were performed in which inoculated cultures were passaged five times. Extended assays are not quantitative, but in validation studies performed at Q-One Biotech I-td (Glasgow, Scolland), they have been found to be of greater sensitivity than direct assay by up to a factor of one $\log _{90}$

In the direct Mus dunni assay, cells were seeded onto Labtek 2 chamber slides (NUNC Inc. Napaville, Illinois USA) at a dilution of $2 \times 10^{4}$ cells/well and inoculated the following day with $0.25 \mathrm{ml} /$ well of vector supernatant and $0.25 \mathrm{~m} / /$ well polybrene (effective concentration of $10 \mu \mathrm{~g} / \mathrm{ml}$ ). Four days later the cultures were fixed in cold acetone. Indirect immunofluorescence was performed using the murine anti-MLV monoclonal antibody 34C (Cheesebro of al, 1983) and anti-murine FITC conjugated antibody (Sigma) as the second antibody. Foci were identified and enumerated by fluorescent microscopy (Olympus). Negative control (culture medium) and positive control (A-MLV) cultures were tested in parallel. In the extended assay Mus dumi cells were seeded into duplicate $25 \mathrm{~cm}^{2}$ tissue culture flasks at a concentration of $2.5 \times 10^{5} \mathrm{cells}$ flask and inoculated the following day with $0.5 \mathrm{~m} / \mathrm{fl}$ lask of supernatant and $0.5 \mathrm{~m} / \mathrm{fflask}$ polybrene $(20 \mu \mathrm{~g} / \mathrm{ml})$. The cultures were passaged every $3-4$ days for a total of five passages. At each passage supernatant from the cultures was harvested and tested for A-MLV by PG-4 S'L- assay. Negative (culture medium) and positive (A-MLV) controls were tested in paraliel.

### 2.2.2.3 $\mathrm{S}^{+\mathrm{L}}$-assays

In the direct mink $S^{+} L^{-}$assay cells were seeded onto duplicate 60 mm dishes (NUNC) at a dilution of $2.5 \times 10^{5}$ celis/plate and inoculated the following day with $0.5 \mathrm{~m} / \mathrm{plata}$ of supernatant and $0.5 \mathrm{~m} / \mathrm{plate}$ polybrene $(8, . \mathrm{g} / \mathrm{ml}$ polybrene). The cells were examined daily for formation of foci and focus forming units (ffu) counted. Samples with fewer than $10 \mathrm{ffu} / \mathrm{ml}$ were tested by the extended assay by passaging every $3-4$ days for a total of five passages and foci counted as before. Negative (culture medium) and positive (FeLV) controls were tested in parallel.

In the PG4 $S^{+} L^{-}$assays cells were seeded onto duplicate $60 \mathrm{~mm}^{2}$ dishes at a concentration of $2 \times 10^{5}$ cells/plate and inoculated the following day with $0.5 \mathrm{ml} /$ plate of supernatant and $0.5 \mathrm{ml} / \mathrm{plate}$ polybrene $(20 \mu \mathrm{~g} / \mathrm{ml}$ polybrene). The cells were examined daily for focus formation and ffu counted (direct assay). The cells were then passaged every 3-4 days for a total of five passages and foci counted as before (extended assay). Negative (culture medium) and positive (A-MLV) controls were tested in parallel.
2.2.3 Reverse transcriptase (RT) assay

The purpose of this assay was to determine if reverse transcriptase activity was present in supernatant and to aid in the discrimination between viral and cellular DNA polymerase activities by using two different templates. The test was based on RNAdependent DNA polymerase (RT) activity packaged in extracellular retroviral particles. This sensitive assay is useful for the detection of retrovirus production by cultured cells. The assay quantitated the incorporation of radiolabelled nucleotides into cDNA that is precipitated and bound to Whatman GC filters. If retrovirus was present in a sample, radiolabelled nucleotides incorporate into DNA which is copied from a synthetic viral template-primer [poly (rA)- oligo (dT)]. Use of a second template-primer [poly (dA)-oligo (dT)] provided a means to measure the endogenous cellular DNA polymerase activity of the test article (Komberg: 1980). If RT was not present in the test article, synthesis from the viral template would not occur, and no labelled DNA would be precipitated and bound (Kacian and Splegelman, 1974, Temin and Baltimore, 1972)

10 mls of the test samples were clarified at $11,000 \times \mathrm{g}$ for 10 minutes. The samples were concentrated by centrifugation at approximately $100,000 \times \mathrm{g}$ for 1 hour and each pellet was solubilised in $180 \mu \mathrm{f}$ of disruption buffer ( 40 mM Tris pH8.1; $50 \mathrm{mM} \mathrm{KGl} ; 20 \mathrm{mM}$ DTT; $0,2 \%$ NP40). An aliquot of $25 \mu$ was then added to an equal volume of each of six reaction mixtures. All reaction mixtures contained 40 mM Tris $\mathrm{pH} 8.1,50 \mathrm{mMKCH}$, $25 \mu \mathrm{Ci}$ [methyl. $\left.{ }^{3} \mathrm{H}\right]$ TTP (Amersham) with poly ( IA ) ( $0.05 \mathrm{~A}_{\text {zeo }}$ units) or aligo (d7)
$\left(0.05 \mathrm{~A}_{2 \mathrm{si}}\right.$ units) or 2 mM Tris $\mathrm{pH} 8,1 / 30 \mathrm{mM} \mathrm{NaCl}$ with $2 \mathrm{mM} \mathrm{MnCl}_{2}$, or poly ( rA ) ( $0.1 \mathrm{~A}_{\text {2er }}$ units) or oligo (dT) ( $0.1 \mathrm{~A}_{260}$ units) or 4 mM Tris $\mathrm{pH} 8.1 / 60 \mathrm{mM} \mathrm{NaCl}$ with 20 mM MgCl . The combined sample and reaction mixtures were incubated at $37^{\circ} \mathrm{C}$ for 1 hour and the DNA or RNA templates precipitated by $10 \%$ trichloroacetic acid (TCA), 1\% sodium pyrophosphate, onto GFC filters (Whatman). The ${ }^{3} \mathrm{H}-\mathrm{TTP}$ incorporated into DNA or RNA templates and the background activity (no-template mixes) with either the Manganese $\left(\mathrm{Mn}^{2+}\right)$ or Magnesium $\left(\mathrm{Mg}^{2+}\right)$ cation was measured in Ecoscint in a scintillation counter (Beckman). The $\mathrm{Mn}^{2}+$ cation is pfeferred by the Type C oncoviruses belonging to the MLV and FeLV paradigm group. The $\mathrm{Mg}^{2}+$ cation is preferred by Type C retroviruses like bovine leukaemia virus (BLV) and human T-cell leukaemia virus (HTLV), Type B retroviruses like mouse mammary tumour virus (MMTV), Type D retroviruses like squirrel monkey retrovirus (SMRV) and the lentivirus group such as Maedi-visna virus (ovine lentivirus; MVW) and Human Immunodeficiency virus (HIV). If RT is not present in the test article, synthesis from the viral template will not occur, and no labelled DNA should be precipitated and bound. Resuls were presented as disintegrations per minute (dpm). A positive result was concluded when the poly ( rA ) incorporation exceeded 2000dpm with the poly (rA) incorporation at least twice the poly (dA) incorporation and at least four times the negative control poly ( rA ) incorporation. A negative result was concluded when the poly (rA) incorporation was less than 2000dpm. Any other result was regarded as equivocal. Negative control (disruption buffer) and positive controls (E-MLV for Mn ${ }^{2+}$ dependent incorporation and bovine leukaemia virus (BLV) or Maedi Visna virus (MVV) for $\mathrm{Mg}^{2+}$ incorporation) samples were tested in parallel.
2.2.4 Immunofluorescence assay

Cells were washed with Phosphate buffered saline (PBS), then centrifuged at 1000 g for 5 minutes before resuspending at $10^{6}$ celis per ml in PBS . 10,1 of cell suspension was added to each well of Flow 8 -well multitest slides and allowed to air dry. Slides were
then fixed by immersing in cold $\left(-20^{\circ} \mathrm{C}\right)$ acetone (Phillip Harris) for 15 minutes. The slides were either tested immediately, or stored at $-80^{\circ} \mathrm{C}$. To perform the indirect immunofluorescence test, $10 \mu \mathrm{l}$ of undiluted anti-MLV monoclonal antibody 34C (Cheesebro et al, 1983) in PBS was added to the fixed cells and incubated at $37^{\circ} \mathrm{C}$ in a humidified chamber for 30 minutes. 10 .ll of PBS was added to act as a negative control well. After incubation, the slides were washed in PBS for 5 minutes, washed in distilied water, and dried. Next, $10 \mu \mathrm{l}$ of fluorescein isothiocyanate (FITC)-conjugated antimurine antiserum at a 1 in 20 dilution in PBS containing $0.01 \%$ Evans blue (Sigma) was added to each well. The slides were incubated at $37^{\circ} \mathrm{C}$ in a humidified chamber for 30 minutes then washed once in PBS and once in distilled water before drying. The slides were mounted in glycerol/PBS (1:1) under a glass coverslip, and examined using a Olympus BX fluorescence microscope with a mercury lamp source and an NB filter. Infected cells appear fluorescent green, and non-infected cells dark red or invisible.
2.2.5 Optimisation of infectivity assays

To validate and determine optimal conditions for the Mus dunmi assay, Mus dunni cells were infected with varying titres of A-MLV and the cultures passaged five times. To evaluate the sensitivity of Mus dunni and PG4 $\mathrm{S}^{+} \mathrm{L}^{\circ}$ cells to known inputs of $\mathrm{A}-\mathrm{MLV}$, the assay was performed in parallel using PG4 $\mathrm{S}^{+} \mathrm{L}$ cells. Culture supernatants were harvested at each passage and tested for the presence of infectious MLV by PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$ assay. Supernatants from selected samples were also tested by RT assay. To evaluate the relative sensitivities of various cell lines to infection by A-MLV, known inputs of virus were titrated by direct assay onto Mus dunni, $\mathrm{S}^{+} \mathrm{L}^{-}$, and PG4 S+L• cells.

Co-cultivation of producer cells with Mus dunni cells and subsequent passage of Mus dunni cells was performed in order to amplify MLV that may have been present at low levels in producer cells. After passage 5, cell culture supernatant was assayed by PG4 $S^{+} L^{-}$focus forming assay for the presence of $X-M L V$ and $A-M L V$. Presence of retrovirus at passage 5 was also determined by RT assay. To validate and determine optimal conditions for the co-cultivation procedure, Mus dunni cells were co-cultivated, either by direct co-culture or using transwell dishes (Costar, Cambridge, MA) with MLV. infected cultures containing varying percentages of infected cells. Cultures were incubated for 5 passages and tested for infectious MLV by PG4 S'L. assay and also by RT assay. In order to ensure that the cell count dilutions were accurato, dilutions were plated in quadruplioate onto a 24 -well plate, which was examined daily for cell growth, and the supernatants examined for viral detection by assay on PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$cells. Also, the percentage of infected cells in the input sample was determined by indirect immunofluorescence, as described in section 2,2,4.

The use of direct co-cultivation of detector cells and test article cells presents the problem that all the test article cells must be removed or selectively killed by the end of the assay so that any retrovirus present in culture supematant was from infected detector (Mus dunn) cells and not from test article cells. In addition, if test cells were not removed then they may outgrow detector cells. One method that obviates mixing of detector and test article cells is the use of transwell dishes. These dishes consist of a 90 mm plate into which Mus dunn detector cells were seeded. A second dish with a base plate consisting of a $0.455_{1 r r i}$ membrane was inserted and test article cells seeded onto this. Retroviruses range in diameter from approximately $80-120 \mathrm{~nm}$ (Coffin, 1992), thus any retrovirus being produced from the test article cells should pass through the membrane pores and be present in the culture supernatant surrounding the detector cells. Following a 4-5 day period of co-cultivation the upper transwell dish (and
consequently all test article cells) was removed and the detector cells passaged to amplify any low-level infection. Although this method does not permit cell to cell contact, which for some retroviruses aids virus infection, the test article cells and Mus dumi delector cells were seeded subconfluently and maintained in the same culture fluid for a period of 4-5 days. During this period both cell lines were in mitosis which is optimal for retroviral production and infection (Morgan et al., 1995, Roe et al., 1993).

### 2.2.6.1 Direct co-culture

Mus dumi cells were plated in $75 \mathrm{~cm}^{2}$ tissue culture flasks at a dilution of $1 \times 10^{6}$ cells in total. After 24 hours, A-MLV infected Mus dumi cells serially diluted in mon-infected Mus dunni cells were iroculated onto the Mus dumni monolayer in the presence of $\delta_{\mu \mathrm{g}} / \mathrm{ml}$ polybrene. The total number of cells inoculated was kept constant at a concentration of $1 \times 10^{\circ}$ cells, with a ratio of infected: uninfected Mus dunni cells ranging from $0: 10^{6}$ to $10^{6}: 0$ at 10 fold intervals. The A-MLV infected Mus dunni cells were diluted out to a concentration of $10^{-3}$. The cell count of infected Mus dunni cells was demonstrated to be accurate by plating each of the dilutions from $10^{-3}$ to $10^{3}$ in a 24-well plate. The proportion of Mus dunni cells expressing virus in the infected culture was determined by indirect immunofluorescence using the 34 C monoclonal antibody to MLV. The cells were co-cultured in flasks for four days, after which the cells were passaged five times and supernatants harvested after each passage and tested for the presence of retrovirus by direct PG4 $\mathrm{S}^{\dagger} \mathrm{L}^{-}$assay. Negative (culture medium) and positive (A-MLV infected Mus dumi cells) controls were tested in parallel.

### 2.2.6.2 Co-culture using transwell dishes

Mus dunni cells were plated at a dilution of $1 \times 10^{6}$ cells/plate in the lower dish of 90 mm transwell dishes with pore size $0.4 \mu \mathrm{M}$ (Costar, Bucks., UK). In separate experiments, A-MLV infected Mus dumi cells or the amphotropic retroviral vector producer cell line

PALidSN, were serially diluted in non-infected Mus dumni cells. The dilutions were inoculated onto the upper plate of the transwell, as described above, in the presence of $8 \mathrm{hg} / \mathrm{ml}$ polybrene. The total number of celis inoculated was kept constant at a concentration of $1 \times 10^{6}$ cells, with a ratio of infected:uninfected Mus dunni cells ranging from $0: 10^{6}$ to $10^{6}: 0$ at 10 fold intervals. The A-MLV infected or producer cell Mus dunni cells were diluted out to a concentration of $10^{-2}$. The cell count of infected Mus dumni cells was shown to be accurate by plating each of the cell clitutions from $10^{3}$ to $10^{-3}$ in a 24 -well plate as above (2.2.6.1). The proportion of Mus dunni cells expressing virus in the infected culture was determined by indirect immunofiworescence using a monoclonal antibody to MLV. The cells were co-cultured in transwells for four days after which the upper transwell dish containing either infected cells or producer cells was discarded. The cells from the lower transwell were passaged five times to amplify any low level infection, and supernatants harvested after each passage and tested for the presence of retrovirus by PG4 S'Lassay.

Negative controls were mock-infected Mus dunni cells. Cell culture supernatants were harvested at each passage, and tested for A-MLV by PG-4 S'L assay. The presence of retrovirus was also detected in supernatants by RT assay.
2.2.7 The effect of non-RCR on infectivity and co-cultivation assay
2.2.7.1 The effect of non-RCR on direct PG4 infectivity assay

To evaluate the effect of retroviral vector supernatant on detection of A-MLV, virus was titrated through verious concentrations of retroviral vector supernatant before direct assay on PG4 $\mathrm{S}^{+} \mathrm{L}$ cells. Vector supernatant with known titre of $4 \times 10^{5}$ colony forming units per ml (cfu/mi) was serially diluted in culture medium to give supernatant titres of $4 \times 10^{4}$ and $4 \times 10^{3} \mathrm{cfu} / \mathrm{ml}$. A-MLV with a known titre of between $2-5 \times 10^{5} \mathrm{ffu} / \mathrm{ml}$ was titrated through culture medium, the three concentrations of vector supernatant, and E-

MLV with a known titre of $1.4 \times 10^{5} \mathrm{ffu} / \mathrm{ml}$. E-MLV utilises a different cellular receptor from A-MLV, therefore the presence of E-MLV should have negligible effect on A-MLV titre (Somerfelt and Weiss, 1990).
2.2.7.2 The effect of non-RCR on the Mus dumni co-cutivation assay

Retroviral vector producer cells were directly co-cultivated with Mus dunni cells in the presence of known quantities of Mus dunni cells infected with A-MLV. Cells were passaged five times, and supernatant from each passage harvested for titration on PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$cells. Cultures without producer cells, containing Mus dunni cells infected with known A-MLV concentration were set up in parallel.

Throughout the studies, the negative control was Mus dunni cultures mock-infected with tissue culture medium. The positive controls were Mus dunni cultures co-cultivated with MLV-infected Mus dunni cultures or Mus dunni or PG4 S ${ }^{+} \mathrm{L}$ cultures infected with AMLV (Strain 292A, ATCC VR-884).

### 2.3 Results

2.3.1 Infectivity assays
2.3.1.1 Direct infectivity assays

Table 2.1 presents the relative sensitivities of Mus dumi, PG4 S ${ }^{+} \mathrm{L}^{-}$, and mink $\mathrm{S}^{\prime} \mathrm{L}^{-}$cells to infection by A-MLV when compared by direct assay. The viral titres resulting from known inputs of virus were converted to log values and plotted. Linear regression graphs indicate the relationship between the direct assays (Figure 2.1). The results indicated that Mus dumni and PG4 S ${ }^{+} \mathrm{L}^{-}$cell lines were of similar sensitivity to infection by A-MLV, and that both cell lines were of higher sensitivity to A-MLV infection than
mink $S^{+} L^{-}$cells by approximately $1 \log _{10}$.

Table 2.1 Comparison of sensitivities of Mus dunni, PG4 S+L-, and mink S'L- cells to infection by A-MLV by direct assay
Virus Input ${ }^{3} \quad$ Cell Types

|  | Mus duni |  | PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$ |  | Mink S'L- |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underline{T i t r e}{ }^{(1)}$ | Log titre | Titre ${ }^{(2)}$ | Log titre | Titre ${ }^{(3)}$ | Log titre |
| $10^{4}$ | $4 \times 10^{4}$ | 4.6 | $1.8 \times 10^{4}$ | 4.3 | $4 \times 10^{3}$ | 3.6 |
| $10^{3}$ | $4 \times 10^{3}$ | 3.6 | $5 \times 10^{3}$ | 3.7 | $1 \times 10^{3}$ | 3.0 |
| $10^{2}$ | $4 \times 10^{2}$ | 2.6 | $3 \times 10^{2}$ | 2.5 | $1 \times 10^{2}$ | 2.0 |
| $10^{\circ}$ | $4 \times 10^{1}$ | 1.6 | $1 \times 10^{4}$ | 1.0 | 0 | 0 |
| $10^{\circ}$ | 0 | 0 | 0 | 0 | 0 | 0 |
| $10^{-1}$ | 0 | 0 | 0 | 0 | 0 | 0 |

1. titre measured by Mus dunni assay (fluorescent fufiml).
2. titre measured by PG4 S ${ }^{+}$- assay (ffulml)
3. titre measured by mink $\mathrm{S}^{+} \mathrm{L}$ assay (ffuimi)

$\rightarrow$ Mus dunni - PGG4S+L-$-\triangle$ Mink $S+L-$

## Approximate virus input (log10)

Figure 2.1 Comparative titration of varying quantities of amphotropic murine leukaemia virus by Mus dunni, PG4 $\mathrm{S}^{+} \mathrm{L}$ and mink $\mathrm{S}^{+} \mathrm{L}^{\circ}$ assays

The results of the evaluation of the selnsitivity of the extended Mus dunni and $\mathrm{PG} 4 \mathrm{~S}^{+} \mathrm{L}^{-}$ assays are presented in Table 2.2. Mus dunni and PG4 S ${ }^{+}$cells infected with varying dilutions of A-MLV were passaged five times, and the supematants harvested at each passage for PG4 S+L' assay. The number of foci observed at each passage when tested by PG4 $\mathrm{S}^{\prime} \mathrm{L}^{\prime}$ assay is presented in Table 2.2 The results indicate that Mus dunni and PG4 $\mathrm{S}^{-}$. cells are of similar sensitivity to A-MLV infection by extended assay. Overall, both cell lines showed similar sensitivity to infection by A.MLV, and virus was detected following inoculation of a dilution of $10^{-1}$ infectious units of A-MLV. However, there appeared to be differences in the dynamics of infection in the early passages following inoculation. At this dilution ( $10^{-1}$ ) virus was detected at passage 1 in Mus dunni cells, and at passage 2 in PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$cells. inoculation of A-MEV diluted to low multiplicity ( $10^{-1}$ infectious units) resulted in confluent foci in the duplicate cultures by passage 2 of Mus dumi assay, and by passage 4 of PG4 S+L. assay. At lower dilutions of A-MLV, virus was not detected in either cell line.

Table 2.2 Detectlon of A-MLV by PG4 S'L assay in supernatants of Mus dunni or PG4 cells infected with known virus concentration

Virus<br>Passage number<br>Input ${ }^{1}$

|  | P1 |  | P2 |  | P3 |  | P4 |  |  | P5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PG4 | Mus? | PG4 | Mus | PG4 | Mus | PG4 | Mas | PG4 | Mus |
|  | $\mathrm{S}^{+} \mathrm{L}^{-}$ | dunni | $S^{+} L^{-}$ | dunni | $\mathrm{S}^{+} \mathrm{L}^{-}$ | dunni | $S^{+} L^{-}$ | dunni | $S^{+} L^{-}$ | dun |
| 0 | $0 / 0^{3}$ | 0\%0 | 0\% | 010 | 0/0 | $0 / 0$ | 0/0 | $0 / 0$ | $0 / 0$ | 0/0 |
| $10^{-3}$ | $0 / 0$ | 0\%0 | 00 | 010 | 0/0 | 0\% | $0 / 0$ | 010 | 010 | 0/0 |
| $10^{-2}$ | $0 / 0$ | 0/0 | $0 / 0$ | $0 / 0$ | 010 | 010 | 010 | $0 / 0$ | $0 \% 0$ | 0/0 |
| $10^{-1}$ | 0/0 | $+4 / 63$ | +/0 | +/+ | +/0 | +/+ | $+/+$ | +/+ | +/+ | +/t |
| $10^{0}$ | 9/46 | +/+ | +/+ | +i/ | +/+ | +/+ | +/+ | +/+ | +/+ | +/+ |
| $10^{1}$ | +/55 | +/+ | +/+ | +/+ | +/+ | $+/+$ | +/+ | +/+ | +/+ | +// + |
| $10^{2}$ | +/t | +/* | +/+ | +/+ | +/+ | +/t | $+/+$ | +/4 | +/+ | +/+ |
| $10^{3}$ | +/+ | +/+ | +/+ | +/+ | +/+ | +/+ | +/+ | +/+ | +/+ | +/+ |

1. fitre measured by PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$assay (fu/ml).
2. titre measured by Mus dumi assay (fluorescent ffu/ml).
3. 0 symbolises no foci were observed.
4. $\quad+$ symbolises observation of confluent foci.

Reproducibility of the results for the Mus dunni assay presented in Table 2.2 was determined by re-titrating A-MLV in Mus dunni cells, passaging 5 times, and assaying supernatant from each passage on PG4 S'L- cells. Table 2.3 presents the results obtained on repetition of the amplification assay. Again, inoculation of A.MLV at low muliplicity ( $10^{-4}$ infectious units) resulted in confluent foci in the duplicate cultures by
passage 2 of Mus dumi assay, and focus forming virus was not detected at lower AMLV dilutions. The results, therefore, were similar to the previous experiment.

Table 2.3 Detection of A-MLV by PG4 S'L• assay in supernatants of Mus dunni cells infected with known virus concentration

| Virus Input ${ }^{1}$ | Passage Number |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | P1 | P2 | P3 | P4 | P5 |
| $10^{-3}$ | $0 / 0^{2}$ | $0 / 0$ | 00 | 010 | 0/0 |
| $10^{-2}$ | 010 | 010 | $0 / 0$ | $0 / 0$ | 010 |
| $10^{-1}$ | $10 / 7^{3}$ | +/t | +/+ | +/4. | +/+ |
| $10^{\circ}$ | 54/55 | +/+4 | +/+ | +/+ | +/+ |
| $10^{1}$ | +/+ | +/+ | +/4 | $+/ 4$ | +/+ |
| $10^{2}$ | +/+ | +/+ | +/+ | +/t | +/+ |
| $10^{3}$ | +/+ | +/+ | +/+ | +/+ | +/+ |

1. titre measured by PG4 S'L. assay (ffu/ml)
2. 0 symbolises no foci were observed.
3. fulfol
4.     + symbolises observation of confluent foci

Supernatants generated from each passage of the Mus dumni cells infected with the lowest A-MLV dilution at which virus was detected ( $10^{-1}$ ) by direct PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$assay were assayed for the level of RT activity. This was performed for both Mus dunnittrations, and the resulting RT activities are presented in Table 2.4. (x representing duplicate samples). RT activity was detected in only one of the duplicate samples in the first titration at passage 1, but by passage 2, activity increased and duplicate samples in
each titration were positive for RT activity. In both experiments RT activity rose to a peak by passage 3 , after which the level remained at a plateau through to passage 5 .

Table 2.4 Reverse transcriptase activity ( $\mathrm{Mn}^{2+}$ dependent) in supernatants of Mus dunni cells Infected with A-MLV at low multiplicity ( $\mathbf{1 0}^{-1}$ infected cells)

|  | !st titration (Table 2) |  | 2nd titration (Table 3) |  |
| :--- | :--- | :--- | :--- | :--- |
| virus input | $10^{-1}$ | $10^{-1 \times}$ | $10^{-1}$ | $10^{-1 x}$ |
| Passage 1 | $8679^{*}$ | 1070 | 497 | 546 |
| Passage 2 | 201277 | 14054 | 4671 | 4394 |
| Passage 3 | 1106148 | 1078935 | 261161 | 193161 |
| Passage 4 | 765041 | 401403 | 249851 | 228341 |
| Passage 5 | 1196963 | 869724 | 204059 | 237858 |


#### Abstract

1. Numbers indicate the disintegratons per minute (dpm) in reverse transcriptase reactions with a poly ra template in the presence of the manganese cation ( $\mathrm{Mn}^{2+}$ ). A positlve result is indicated by a value greater than 2000dpm. The supernatants tested above were negative (less than 2000 dpm ) for reverse transcriptase activity dependent on the presence of magnesium cations ( $\mathrm{Mg}^{2 \boldsymbol{}}$ ).


Figure 2.2 presents the $\mathrm{Mn}^{2+}$-dependent RT results converted to log values for cells in both Mus dumni assays inoculated with A-MLV at a dilution of $10^{-1}$ infected cells. RT enzyme levels increased from passage 1 to passage 3, with enzyme activity reaching a peak at passage 3 , and remaining at a high level through to passage 5 .


Figure $2.2 \quad$ Reverse transcriptase activity in supernatants generated from Mus dunni cells inoculated with A-MLV at low multiplicity

To validate and determine optimal conditions for the co-cuitivation procedure, Mus dunni cells were co-cultivated, either directly or indirectly using transwell dishes, with MLV-infected cultures containing varying percentages of infected cells. The proportion of Mus dunni cells expressing virus in the stock infected culture used in these experiments was $10 \%$; determined by indirect immunofluorescence using anti-MLV monoclonal antibody 34 C as described in section 2.2.4. Following co-cultivation, cultures were incubated for 5 passages and tested for infectious MLV by PG4 S ${ }^{+}$assay.

A culture of Mus dunni cells infected with A-MLV was used to inoculate the cocultivation assays. In order to ensure that the cell count dilutions made were accurate, dilutions were plated in quadruplicate onto a 24 -well plate, which was examined daily for cell growth. The cell counts were found to be accurate, with confluent cell growth being observed in the wells inoculated with 100,10 and 1 virus-infected cells. Three out of the four wells of the 0.1 infected cell inoculation also displayed confluent cell growth, whereas no cell growth was observed in the 0.01 or 0.001 cell dilutions. This was confirmed by inoculating supernatants from each well of the 24 -well plate onto a 24-well plate of PG-4 St' cells. The number of well displaying foci which were observed by PG-4 S+L" assay of the Mus dunni/A-MLV cell supernatants are presented in Table 2.5.

Table 2.5 PG4 $\mathbf{S}^{+} \mathrm{L}^{-}$assay of serially diluted A-MLV-infected Mus dunni cell supernatants inoculated into a 24 -well plate

|  | Number of Infected Cells Plated |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Well number | 10 | 1 | 0.1 | 0.01 |
| 1 | +1 | + | + | 0 |
| 2 | + | + | + | 0 |
| 3 | + | + | + | 0 |
| 4 | + | + | 0 | 0 |

1.     + symbolises observation of confluent foci
2. 0 symbolises no foci were observed
2.3.2.1 Direct co-cultivation assay

The results of the PG4 S+L. assays on supernatants harvested from each passage after direct co-cultivation are presented in Table 2.6. Confluent faci were observed after inoculation of A-MLV at low multiplicity ( $10^{-1}$ infectious units) in the duplicate cultures by passage 2, and focus forming virus was not detected at lower A-MLV dilutions. Confluent focus forming virus was detected from passage 1 onward when 1 infected cell per $10^{6}$ cells was co-cultivated with Mus dunni cells. The sensitivity of the assay was at a detection level of 1 infected cell per $10^{7}$ cells. RT assay was not performed in this study, as all direct co-culture supernatants would be expected to be positive owing to the presence of virus-producing cellis in all cultures.

Table 2.6 Detection of A-MLV by PG4 S ${ }^{+} \mathrm{L}^{\prime}$ assay in supernatants of Mus dunni cells directly co-cultivated with ceils infected with known virus concentration

```
No. of Mus Passage number
dunni / MLV
infected cells }\mp@subsup{}{}{1
```

|  | P1 | P2 | P3 | P4 | P5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $0 / 0^{2}$ | $0 / 0$ | $0 / 0$ | $0 / 0$ | 0/0 |
| $10^{-3}$ | $0 / 0$ | 0/0 | $0 / 0$ | 010 | $0 / 0$ |
| $10^{-2}$ | $0 / 0$ | 0/0 | $0 / 0$ | $0 / 0$ | 0/0 |
| $10^{-1}$ | 18/113 | $+/+^{4}$ | $+/ 4$ | $+/+$ | +/+ |
| 1 | $+/+$ | +/+ | +/+ | +/4 | $+/+$ |
| $10^{\dagger}$ | $4 / 4$ | +/4 | +/ + | +/+ | t/t |
| $10^{2}$ | +/+ | + + | +/4 | $+/+$ | +/+ |

1. titre determined by immunofluorescence using a MAb to MLV
2. 0 symbolises no foci were observed.
3. ffu/ml
4.     + symbolises observation of confluent foci
2.3.2.2 Co-cultivation assay using transwell dishes

The resulis of PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$titre measured by PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$assay of supernatants harvested from each passage following co-cultivation using transwell dishes are presented in Table 2.7. Mus dunni cells were plated in the lower dish of the transwell plate and Mus dunni cells with varying proportions of A-MLV infected cells were seeded onto the upper membrane base as described in section 2,2,6,2.

Table 2.7 Detection of A-MLV by PG4 S ${ }^{+} \mathrm{L}^{\circ}$ assay in supernatants of Mus dunni cells co-cultivated with cells infected with known virus concentration using transwell dishes

No. of Mus

```
dunni-MLV Passage Number
infected cells'
```

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

1. titre determined by immunofluorescence using a MAb to MLV
2. 0 symbolises no foci were observed.
3. ffuiml
4. $\quad+$ symbolises observation of confluent foci

The number of foci observed after inoculation of A-MLV at low multiplicity ( $10^{-1}$ infected cells) reached confluency in the duplicate cultures at passage 4. At higher concentrations, the confluent foci were observed in the duplicate cultures by passage 1 . Virus was not detected in dilutions lower than $10^{-1}$ infected cells. Co-cultivation using transweil dishes was of similar sensitivity to direct co-cultivation (detection of 1 infected cell in $10^{7}$ cells).

Supernatants from cell cultures co-cultivated in transwell dishes with A-MLV at low multiplicity ( 0.1 infectious units) were tested by RT assay, the results of which are presented in Table 2.8. RT results correlated with PG4 S ${ }^{+} \mathrm{L}$ ' results in that RT activity was not observed at passage 1 . At passages 2 and 3 only one of the duplicate cultures was positive and at passages 4 and 5 both duplicates were positive for RT activity with $\mathrm{Mn}^{2+}$ preference (the cation of preference for MLV).

Table 2.8 Reverse transcriptase activity ( $\mathrm{Mn}^{2+}$-dependent) in supernatants of Mus dunni cells co-cultivated with A-MLV infected cells at low multiplicity ( 0.1 infectious units)

## RT activity in duplicate cultures

| Passage number | Sample 1 | Sample 2 |
| :---: | :---: | :--- |
| P1 | $503^{1}$ | 482 |
| P2 | 2455 | 1052 |
| P3 | 53845 | 591 |
| P4 | 22768 | 3525 |
| P5 | 34030 | 31997 |

[^0]2.3.3 The effect of non-RCR on infectivity and co-cultivation assays
2.3.3.1 The effect of non-RCR on the PG4 S ${ }^{+} \mathbf{L}^{*}$ infectivity assay

To evaluate the effect of retroviral vector supernatant on detection of A-MLV, virus was titrated through various concentrations of retroviral vector containing supernatant before direct assay on PG4 S L - cells, the results of which are presented in Table 2.9. To determine if any effect observed was specific, A-MLV was also titrated through E-MLV. The titre of the $E-M L V$ stock used in the assay was $1.4 \times 10^{5}$ plaque forming units per ml (pfu/ml) as determined by the XC plaque assay (Klement et al., 1969), as performed at Q-One Biotech Ltd. The results indicated that there was a loss of sensitivity of approximately $1 \log _{10}$ in the presence of higher titre retroviral vector ( $4 \times 10^{5}$ ffu/ml). Vector supernatant of lower titre had no effect on PG4 S ${ }^{+} \mathrm{L}^{-}$assay sensitivity (ie, variability of the assay was less than $0.5 \log _{10}$ ffu). The presence of E-MLV also had no effect on A-MLV titre.

Table 2.9 The effect of the presence of vector supernatant or E-MLV on detection of A-MLV by PG4 S ${ }^{+}$L- assay

| A-MLV titrated through:- | No. of ffu ${ }^{3}$ detected at $10^{-4}$ | No. of ffu ${ }^{3}$ detected at $10^{-5}$ | Calculated Titre ${ }^{4}$ |
| :---: | :---: | :---: | :---: |
| Vector Supernatant | $1 / 1$ | $0 / 0$ | $2.0 \times 10^{4}$ |
| $\left(4 \times 10^{5}\right)^{7}$ |  |  |  |
| Vector Supernatant | 15/11 | 1/1 | $2.6 \times 10^{5}$ |
| $\left(4 \times 10^{4}\right)^{1}$ |  |  |  |
| Vector Supernatant | 11/12 | $0 / 1$ | $2.3 \times 10^{5}$ |
| $\left(4 \times 10^{3}\right)^{1}$ |  |  |  |
| Ecotropic MLV | 11/13 | 2/0 | $2.0 \times 10^{5}$ |
| $\left(1.4 \times 10^{5}\right)^{2}$ |  |  |  |
| Culture media | 22/25 | $2 / 1$ | $4.7 \times 10^{5}$ |

1. colony forming units per mll (cfu/mil)
2. plaque forming units per ml (pfu/ml)
3. focus forming units (ffu)
4. fuy/ml of inoculum
2.3.3.2 The effect of non-RCR on the Mus dunni co-cultivation assay

Retroviral vector producer cells were directly co-cultivated with Mus dunni cells in the presence of known quantities of A-MLV infected Mus dunni cells. Cells were passaged five times, and supernatant from each passage harvested for titration on PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$cells. Assays where no producer cells were present were inoculated in paraliel as a controi. The results showing the effect of vector cells on detection of A-MLV by Mus dunni assay are presented in Table 2,10. Supernatants generated from co-cultivation in the
presence or absence of producer ceils produced similar results by titration on $\mathrm{PG}-4 \mathrm{~S}^{+} \mathrm{L}^{-}$ cells. The results were also similar to previous co-cultivation and infectivity titrations in that virus was not detected in supernatants harvested from cultures infected with 0.01 or less infected Mus dunni cells, whereas confluent focus-forming virus was observed at all passages when 1 or more infected cells were inoculated. At passage 1, following low multiplicity of infection ( 0.1 infected cell), 19 foci were detected in the absence of producer cells and 18 foci in the presence of producer cells. For both titrations, confluent foci were observed from passage 2 through to passage 5 . Thus the effect of the presence of producer cells on indirect co-cultivation assay was negligible with regard to RCR detection, with the sensitivity of the assay remaining at 1 infected cell in $10^{7}$ cells in the presence or absence of producer cells.

Table 2.10
Detection of A-MLV by PG4 $\mathrm{S}^{+} \mathrm{L}^{\prime}$ assay in supernatants of Mus demni cells after direct co-cultivation with Mus dunni or retroviral vector producing cells seeded with varying dilutions of A-MLV infected Mus dunni cells

```
No. of Mus dumni / MLV
infected cells
```

|  | P1 |  | P2 |  | P3 |  | P4 |  | $P 5$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mus <br> dunni | Vector | Mus สแmai | Vector | Mus <br> $d u m i$ | Vector | Mus <br> dunnt | Vector | Mus donni | Vector |
| 0 | $0 / 0^{1}$ | 0/0 | $0 / 0$ | 010 | $0 / 0$ | $0 \%$ | 010 | O/O | 0/0 | $0 / 0$ |
| $10^{-3}$ | 0/0 | $0 / 0$ | $0 / 0$ | $0 / 0$ | $0 / 0$ | O/O | $0 / 0$ | 010 | $0 / 0$ | $0 / 0$ |
| $10^{-2}$ | $0 / 0$ | 0/0 | 010 | 010 | O/O | $0 / 0$ | $0 / 0$ | 010 | $0 / 0$ | $0 / 0$ |
| $10^{-1}$ | $18 / 1^{2}$ | 15/3 | $+/+^{3}$ | +/+ | +/+ | +/4 | +/4 | +/4 | +/+ | +/+ |
| 1 | $+/+$ | +/+ | +/+ | +/f | $+/ 4$ | +/+ | +/+ | +/t | t/t | +/+ |
| 10 | +/4 | +// | $+/ 4$ | +/+ | +/+ | $1 / \mathrm{H}$ | $+/ 4$ | +/t | +/4 | $+/-$ |
| $10^{2}$ | +/+ | $+4+$ | $+1+$ | t/ + | $+1+$ | $+/+$ | +/+ | $t / t$ | +/t | +/t |

1. 0 symbolises no foci were observed.
2. titre measured by PG4 S'L. assay (ffurmi).
3.     + symbolises observation of confluent foci

### 2.4 Summary

This study determined the limits of sensitivity of infectivity and co-cultivation assays used for the detection of RCR, and investigated the effect of the presence of non-RCR on RCR detection.

### 2.4.1 Infectivity and co-cultivation procedures

Relative sensitivities of Nus dumb, mink $\mathrm{S}^{+} \mathrm{L}^{-}$and PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$cells to infection by A-MLV were assessed by titrating known inputs of virus by direct assay onto each cell line. (Table 2.1). The results indicated that Mus dunni and PG4 $\mathrm{S}^{*} \mathrm{~L}$. cells were of comparable sensitivity to infection by AnMLV, whereas mink $S^{\circ} L^{\circ}$ cells were approximately $1 \log _{10}$ less sensitive to A-MLV infection.

The sensitivity of Mus dunni and PG4 S'L cells to A-MLV infection by extended assay was evaluated (Tables 2.2 and 2.3 ). The results indicated that both cell types were similar in sensitivity for detection of A-MLV. Manganese-dependent RT activity in suparnatants from each passage of Mus dunni cells infected with A-MLV at low multiplicity ( $10^{-1}$ infectious units) was measured (Table 2.4). The results indicated that 3 passages are adequate for viral detection with respect to both PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$assay results and RT activity detected (Figure 2.2). Infectivity results by PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$assay of Mus denni supernatants displayed no change in virus titre from passage 2 onwards (a virus input of $10^{-1}$ infecled cells resulted in confluent foci\}, indicating the high sensitivity of the assay.

Validation of co-cultivation procedures demonstrated that the presence of 1 RCR in $10^{7}$ cells could be detected by direct co-cultivation in tissue culture flasks or indirect cocultivation using transwell dishes (Tables 2.6 and 2.7).

### 2.4.2 Effect of non-RCR on RCR detection

The results indicated that there was a loss in sensitivity of the direct PG4 $\mathrm{S}^{+} \mathrm{L}$ assay in the presence of high titre retroviral vector (Table 2.9). This result was shown to be specific for vector supernatant, as viral titre was not reduced by titration of A-MLV in the presence of E-MLV. E-MLV uses a different viral receptor to A-MLV (Somerfelt and

Weiss, 1990), therefore the A-MLV receptor can be blocked by vector but not by E-MLV.
The presence of vector producer cells in the co-cultivation assay had no effect on detection of A-MLV (Table 2.10).

### 3.0 STUDIES ON RETROVIRAL VECTOR PRODUCTION IN A MODEL CELL LINE

### 3.1 Introduction

In order to achieve optimal viral vector production from producer cells, it is important to establish specific growth parameters for the particular cell line, as maximum retrovirus production is attained when cells are rapidly dividing (Roe et al., 1993, Morgan et al., 1995). In this study, growth characteristics of a model producer cell line were investigated, including the effect of culture in media containing varying concentrations of either foetal or newborn bovine serum, glucose, and serum-free media. Optimal growth of producer cells in flasks, roller bottles and Fibra-Ce ${ }^{(9)}$ disks in a Techne spinner flask was assessed. Optimal culture conditions were established to assess specific cell growth parameters that provide retroviral vector of the highest possible titre. The effect of culturing producer cells at different temperatures, and in the presence of inducing agents was examined. In addition, studies were performed to determine the effect on retroviral vector by concentration of supernatant by filtration.

The cell line used to produce the model retrovirus vector for these experiments was PALidSN cells, which were obtained from Dr. L.. Fairbairn from the Paterson Institute of Cancer Research, Manchester. PALidSN is a murine fibroblast cell line which expresses the $\alpha$-L-iduronidase (IDUA) gene in a vector used for the treatment of Hurler's syndrome. PALidSN is a vector construct consisting of the genes encoding $\alpha$-L-iduronidase, the SV40 promoter and neo marker flanked by two LTRs (LidSN) which is packaged in the amphotropic retrovirus vector packaging cell line PA317 (Miller and Buttimore., 1986).


Geneticin (G418-sulphate, of G418) is an antibiotic that is toxic to both eukaryotic and prokaryotic cells (Vile, 1991). The gene encoding neomycin transferase (neo) confers resistance to G 418 by converting the toxic drug into tolerable byproducts. The presence of neo in eukaryotic cells provides a dominant selectable marker that allows cell growth in media containing G418. PALidSN cells encode the neo gene therefore are permitted growth in media containing G418 as the antibiotic is rendered non-toxic. Thus the titre of the vector can be obtained by assessing the number of living colonies of PALidSN cells when titrated in media containing G418 (Vile, 1991).

Retroviruses can only infect growing cells, as integration of viral DNA is dependent on mitosis (Roe et al., 1993, Morgan et al., 1995). Mammalian cells can be characterised in culture by four growth phases: lag, log, plateau and decline. In lag phase the cell culture is in a 'resting' state and growth is negligible. The log phase of cell growth is when exponential growth occurs and the proportion of cells in cycle is high. For adherent cells such as PALidSN, the plateau is normally reached when confluence is achieved. Division slows down and cell growth is balanced by cell death if the culture is supplied with fresh culture media. However, if the medium is unchanged, cell death will exceed cell growth and the culture will decline. A series of growth curves for PALidSN cells were established in this study and optimal cell growth conditions established in relation to viral vector production and IDUA enzyme activity in culture supernatants.

One study reported higher transduction efficiency of retroviral vector, resulting in higher titre virus stock, when producer cells were cultured at $32^{\circ} \mathrm{C}$ rather than $37^{\circ}$ (Kotani et at., 1994). Therefore, viral titre of PALidSN cells was assessed at both temperatures to determine if a similar effect was observed. Producer cells were also exposed to inducing agents which have been reported to increase vector titre. One such agent is sodium butyrate ( NaB ), which affects expression of a number of viral and cellular genes, and has been reported to increase production of virus from retroviral-derived producer cell lines by between 20 -fold to 1000 -fold (Olsen and Sechelski, 1995). Another is the phorbol ester

12-O tetradecanoly-phorbol-13-acetate (TPA), an inducing agent which can increase viral production from infected cells by promoting latent viral infections to the lytic cycle (Zur Hausen et al., 1978).

Chemically defined culture medium such as Dulbecco's Modified Eagle's Media (DMEM) used in this study normally requires the addition of a serum base such as foetal or newborn bovine serum. There are disadvantages to using a serum-based system in that serum is potentially cytotoxic to certain cell types owing to the presence of selective inhibitors, bacterial toxins and lipids. Batch to batch variations in the composition of sera necessitate extensive screening, and the presence of serum in supernatant may be a cause for safety concerns owing to the potential for contamination of cell lines with bovine adventitious agents (McLean et al., 1996). Thus, in this study, adaptation of PALidSN cells to serum-free media and the resultant level of viral vector production was examined by assessing cell growth and viral titre in cells both during adaptation and in completely serum-free media.

As larger quantites of gene therapy material are required will become necessary to scale up the production process. This may involve different culture systems such as the Costar Cellcube system or the New Brunswick Celligen fermenter system. In the study presented in this report, the feasibility of scale-up for retroviral vector production by PALidSN cells was determined using both roller bottles and the Celligen fermenter system, which was used to evaluate cell growth and vector production on Fibra-Cel ${ }^{\text {T }}$ disks in a Techne spinner flask.

As higher titres of vector material are required for use in gene therapy protocols, methods for concentrating retroviral vector stocks are being studied. In this study, the potential for viral vector supernatant concentration was examined by filtration using SARTACON MICRO 100 KD filters.

### 3.2 Materials and Methods

3.2.1 Assay of retroviral titre in vector supernatant

Murine NIH/3T3 cells were seeded at $3 \times 10^{4}$ cellshwell in 24 well plates (NUNC Inc. Napaville, Illinios USA), and inoculated in quadruplicate the following day with $0.25 \mathrm{~m} /$ well of vector supernatant and $0.25 \mathrm{~m} /$ well ( $4 \mu \mathrm{~g} /$ well) polybrene (Sigma), with one row of wells serving as negative control (culture medium). The medium was replaced after 6 hours exposure to virus, with fresh medium containing G418 at a concentration of $600 \mu \mathrm{~g} / \mathrm{ml}$ (Life Technologies Ltd. After 14 days of selection, with media replaced every 3-4 days, the negative control cells were non-viable. The titre of vector was obtained by counting the number of colonies in the wells containing the lowest dilution of vector supernatant which gave rise to G418 resistant colonies.
3.2.2 Assay of enzyme activity in vector supernatant

Retroviral vector activity was determined by infection of human fibroblast MPSI cells (supplied by Dr Jean-Michel Heard, Institut Pasteur, Paris) followed by preparation of cell extracts in which IDUA enzyme activity was measured by fluorimetry. MPSI cells were seeded into 90 mm plates (NUNC) at $2 \times 10^{5}$ cells/plate. The following day, retrovirus vector supernatant was $0.45 \mu \mathrm{M}$ filtered and 4 mls inoculated onto subconfluent MPSI cells in the presence of $8 \mu \mathrm{~g} / \mathrm{ml}$ polybrene, Plates were incubated at $37^{\circ} \mathrm{C}$ for 2 hours, after which 6 mls medium was added to each plate. The supernatant was replaced after 24 hours. When the MPSI cells reached confluence after 4-5 days, they were harvested with trypsin, washed in PBS and resuspended in lysis buffer. The cells were lysed by three freeze/thaw cycles and centrifuged at 1012 g for 5 minutes. The supernatant was harvested and the protein concentration measured using a Sigma micro protein determination kit. Enzyme activity was measured by
reaction of $0.25 \mathrm{mg} / \mathrm{ml}$ cellular extract with the substrate (4-methyl umbelliferyl IDUA) (Sigma) and detection of product by fluorimetry. The optical density (O.D.) value from a reaction mix containing cellular extract was read and calculated by the formula O.D. $x$ 1.2 = units/mg protein. For infection of MPSI cells, the negative control was mockinfected MPSI cells, and the positive control was culture supernatant from a vector containing producer line. For the enzyme assay, the negative control was the extract from mock infected MPSI cells, and the positive control was the extract from MPSI cells infected with CRIP-ID15 supernatant (supplied by Dr. JeannMichel Heard, Institut Pasteur, France).
3.2.3 The effect of serum and glucose content in culture media on cell growth and viral vector production of PALidSN cells in tissue culture flasks

In order to determine the optimal media for PALidSN cell culture, cells were cultured in DMEM supplemented with $4500 \mathrm{mg} / \mathrm{L}$ or $1000 \mathrm{mg} / \mathrm{L}$ glucose containing either $10 \%$ foetal bovine serum (FBS) or $10 \%$ newborn bovine serum (NBS), and a series of growth curves established to provide information on doubling times and cell yields. PALidSN cells grown in each of the media types were seeded at $1.0 \times 10^{6}$ viable cells in each of ten $75 \mathrm{~cm}^{2}$ flasks. The flasks were cultured over a period of 168 hours and two flasks from each culture system harvested per 24 hour time period (with the exception of the 120 and 144 hour timepoints). Viable cell counts were calculated at each timepoint using a haernocytometer, and all supernatants were clarified by centrifuging at 1012 g for 10 minutes, stored at $-70^{\circ} \mathrm{C}$ for analysis of viral vector titre (section 3.2.1) and IDUA enzyme activity (section 3.2.2).

A study was performed to compare viral vector titres for PALidSN cells cultured in high glucose DMEM containing either the standard FBS supplement of $10 \%$ or a lower concentration of $5 \%$. PALidSN cells seeded at $1.0 \times 10^{6}$ viable cells per $775 \mathrm{~cm}^{2}$ flask were cultured over a period of 6 days and each culture system harvested per 24 hour time
period. Supernatants were clarified by centrifuging at 2000rpm for 10 minutes and stored at ${ }^{7} 70^{\circ} \mathrm{C}$ for analysis of viral vector titre (section 3.2.1).
3.2.4 The effect of temperature and inducing agents on viral vector production of PALidSN cells in tissue culture flasks

PALidSN cells were seeded at $1.0 \times 10^{6}$ viable cells into each of eight $75 \mathrm{~cm}^{2}$ flasks. TPA (Sigma) at a concentration of $20 \mathrm{ng} / \mathrm{ml}$ was added to two of the flasks, 5 mM NaB (Sigma) was added to two flasks, and a combination of TPA and NaB at the same concentrations were added to another two cultures. The additional two cultures served as controls with no inducing agent added. A control and one of each of the induced cultures were incubated at $32^{\circ} \mathrm{C}$, and the remaining four cultures at 37 C . The flasks were cultured over a period of 3 days after which supernatants were harvested. Supernatants were clarified by centrifuging at 1012 g for 10 minutes and stored at $-70^{\circ} \mathrm{C}$ for analysis of viral vector titre
3.2.5 Cell culture in serum-free media

The process of adaptation of PALidSN cells to serum-free media was investigated. The media used were as follows; Ultraculture (Biowhiltaker Inc., Walkersville, MD), CHO-SSFMII (Life Technologies Ltd, Paisley, UK), QBSF51 (JRH Boiscience, Lenexa, KS) and QBSF56 (JRH Bioscience, Lenexa, KS). PALidSN cells cultured in high glucose DMEM containing $10 \%$ FBS were harvested and each of four $25 \mathrm{~cm}^{2}$ flasks seeded with $6 \times 10^{5}$ viable cells, in media formulations of $90 \%$ DMEM (as above)/10\% serum-free media. All cultures were examined daily. When the cultures became confluent they were passaged into media formulations of $80 \%$ DMEM (as above)/ $20 \%$ serum-free media (as above) and seeded at $2 \times 10^{\hat{1}}$ viable cells/flask. The cultures were passaged with progressive reduction of serum concentration until the PALidSN cell cultures were growing in $100 \%$ serum-free media. In order to determine the growth characteristics of the PALidSN cell line, cultured in the media named above, three growth curves were generated to provide
information on doubling times and cell yields.

PALidSN cells cultured in 100\% Ultraculture, QBSF51 and QBSF56 were seeded at $1.0 \times 10^{6}$ viable celis per $775 \mathrm{~cm}^{2}$ flask, into 5 flasks for each medium studied. These flasks were cultured over a perlod of 168 hours with one flask from each system harvested per 24 hour time period. (The Ultraculture system was not harvested at the 120 and 144 hour time point. QBSF51 and QBSF56 were not carried beyond the 72 -hour time point.) The condition of the PALidSN cell culture in each of the specified media was determined by microscopic examination provided total viable counts and trypan blue staining. Supernatants generated from the Ultracuiture system were clarified by centrifuging at 2000 rpm for 10 minutes and stored at $-70^{\circ} \mathrm{C}$ for analysis of viral vector titre.
3.2.6 Viral vector production by PALidSN cells cultured in roller bottles in DMEM containing 1\% or $10 \% \mathrm{FBS}$

Titres of viral vector produced from PALidSN cells in roller boltles were determined by assay of supernatants harvested from cultures of PALidSN cells in media containing $10 \%$ serum. The aim was to optimise the production of viral vector in roller bottles over 15 days to determine the viral titre and stability of the viral vector at $37^{\circ} \mathrm{C}$. PALidSN cells cultured in high glucose DMEM containing $10 \%$ FBS were harvested and 3 x $850 \mathrm{~cm}^{2}$ roller bottles initiated at $1.1 \times 10^{7}$ viable cells/roller in 150 ml of medium. Roller bottles were designated numbers 1,2 and 3. Roller bottle 1 was incubated for the first 4 days at $37^{\circ} \mathrm{C}$. On day 4 the supernatant was harvested, clarified by spinning at 1012 g for 10 minutes, aliquoted and frozen at $-80^{\circ} \mathrm{C}$. Fresh growth medium was then added to the roller culture. This process was repeated daily from days 4 to 15 . Roiler bottle 2 was harvested in the same manner from days 1 to 15 and roller bottle 3 was incubated for the first 7 days and then harvested daily until day 15. Samples of the supernatants harvested were assayed for viral vector titre on NIH/3T3 cells as described in section 3.2.1.

In a separate study, the effect of decreasing the serum concentration from $10 \%$ to $1 \%$ FBS in cells cultured in a roller botle was determined. PALidSN cells cultured in DMEM containing $10 \%$ FBS were harvested and an $850 \mathrm{~cm}^{2}$ roller bottle initiated at $1.5 \times 10^{7}$ viable cells in 150 ml of medium. The roller bottle was incubated for 5 days at $37^{\circ} \mathrm{C}$. On day 5 the supernatant was harvested, clarified by spinning at 2000 rpm for 10 minutes, allquoted and frozen at $-80^{\circ} \mathrm{C}$, 150 ml of fresh DMEM containing $1 \%$ FBS was added to the roller culture. This process was repeated daily until day 10 when the maintenance medium volume was reduced to 75 ml . Deily harvests then continued until day 14 .
3.2.7 Scale-up of producer cells; PALidSN cells grown on Fibra-Cel disks in a Techne spinner flask

The growth of PALidSN cells and viral vector production was determined in cells grown on Fibra-Cel ${ }^{(1)}$ disks in a Techne spinner flask. A spinner flask containing 575 mg of FibraCel ${ }^{6}$ disks was prepared and autoclaved. The Fibra-Cela disk culture system was seeded with $1.0 \times 10^{7}$ viable PALidSN cells in 12.5 ml growth medium and allowed to adhere for 2 hours at a spinner speed of 20 rpm with stirring for 2 minutes every 30 minutes. At the end of this time period the medium was made up to 50 ml with prewarmed growth medium (DMEM, $10 \% \mathrm{FBS}$ ) and the vessel was returned to the incubator spinning continuously at a spinner speed of 20 rpm . The culture system was sampled at $24,48,120,144$ and 168 hours and nuclei counts taken using 0.1M citric acid (Sigma) containing $0.1 \%$ crystal violet (Sigma). Medium replacement was carried out after the 48 -hour harvest and 120 hour harvest. The PALidSN spinner supernatant harvested at 120 hours was assayed for retroviral vector titre by titration on N/H/3T3 cells as described in section 3.2.1.

In order to concentrate large volumes of vector supernatant, the supernatant was initially filtered using a MILLIPAK-40 $0.45 \mu \mathrm{M}$ filter unit. A Watson-Mariow peristaltic pump was used to exert a low membrane feed pressure to draw the supernatant through the filter unit into a sample collection bag which was kept on ice at all times. The filtered supernatant was concentrated using SARTOCON MICRO 100KD filters. The membrane filters were flushed through with HBSS before addition of the supernatant. The filtered supernatant was pumped through two parallel SARTOCON filters as part of a cyclical system. Virus-free filtrate was drawn from the system by creating backpressure on the retentate line, thus forcing the supernatant through the filter units, by using a restriction clamp. The system was pre-washed with sterile HBSS (Gibco) before passing the supernatant through the system. Flltrate was drawn off at a flow rate of approximately $4.5 \mathrm{~m} / \mathrm{m}$ minute. The starting material, filltrate and retentate were assayed for viral vector titre by titration on $\mathrm{NH} \mathrm{H} / 3 \mathrm{~T} 3$ cells as described in section 3.2.1.
3.2.9 Calculation of exponential growth/doubling time/cell yield

Using the data from viable cell counts over a period of time, various phases of cell growth can be plotted. Exponential growth and doubling times were determined using the following equations (Dawson, 1992).
$\log _{10}($ mean $) N=\log _{10}($ mean $) N_{0}+x \log _{10} 2$
where, mean $N=$ average final cell number, mean $N_{0}=$ average initial cell number, and $x=$ number of generations of exponential growth.

Doubling Time $=$ Total time elapsed
Generations of exponential growth

## Cell yield $/ \mathrm{cm}^{2} \quad=\quad$ No. viable cells $\left(T 75 \mathrm{~cm}^{2}\right.$ flasks used)

### 3.3 Results

3.3.1 The effect of serum and glucose content in culture media on PALidSN cell growth and vector production in tissue culture flasks
3.3.1.1 Effect of serum type and glucose content on viable cell count
initially, a series of growth curves were established for PALidSN cell culture in high or low glucose DMEM containing $10 \%$ FBS or $10 \%$ NBS. Table 3.1 presents viable cell counts obtained over a 168 -hour period after seeding $1 \times 10^{5}$ viable PALidSN cells in tissue culture flasks in each of the above media.

From the data presented in Table 3.1 a series of growth curves were established. The viable cell counts in relation to time (hours) for cultures of PALidSN cells in each of the media above are presented in Figure 3.1. The curves indicate that cells cultured in media supplemented with $1000 \mathrm{mg} / \mathrm{L}$ glucose rapidly cease growing as glucose is depleted from the media. This result contrasts with cells cultured in media supplemented with $4500 \mathrm{mg} / \mathrm{L}$ glucose, where the decrease observed in viable cell count following 96 hours culture is less. Exponential growth and cell doubling time were calculated using the equations as in section 3.2 .6 (Dawson, 1992), and these values are summarised in Table 3.2 . The cell yield per $\mathrm{cm}^{2}$ was similar with each of the media, ranging between $2.2 \times 10^{5}$ and $3.1 \times 10^{5}$ cells. However, the doubling time of 13.99 hours for cells cullured in DMEM with $4500 \mathrm{mg} / \mathrm{L}$ glucose containing $10 \% \mathrm{FBS}$ is lower than cells cultured in media containing $1000 \mathrm{mg} / \mathrm{L}$ glucose with $10 \%$ NBS and $4500 \mathrm{mg} / \mathrm{L}$ or $1000 \mathrm{mg} / \mathrm{L}$ glucose containing $10 \%$ NBS by at least 6 hours.

Table 3.1 The effect of serum type and glucose content on total viable cell counts for PALidSN cells cultured in tissue culture flasks

| TIME | $4500 \mathrm{mg} / \mathrm{L}$ | $1000 \mathrm{mg} / \mathrm{L}$ | $4500 \mathrm{mg} / \mathrm{L}$ | $1000 \mathrm{mg} / \mathrm{L}$ |
| :--- | :--- | :--- | :--- | :--- |
| (hours) glc/10\% NBS | glc/10\% NBS | glc/10\% FBS | gIc $/ 10 \% \mathrm{FBS}$ |  |
| 0 | $1 \times 10^{6}$ | $1 \times 10^{6}$ | $1 \times 10^{6}$ | $1 \times 10^{6}$ |
| 24 | $1.9 \times 10^{6}$ | $6.9 \times 10^{5}$ | $4.9 \times 10^{5}$ | $1.6 \times 10^{6}$ |
| 48 | $4.6 \times 10^{6}$ | $7.2 \times 10^{6}$ | $1.3 \times 10^{6}$ | $6.4 \times 10^{6}$ |
| 72 | $7.5 \times 10^{6}$ | $12.5 \times 10^{6}$ | $7.6 \times 10^{6}$ | $15.1 \times 10^{6}$ |
| 96 | $16.8 \times 10^{6}$ | $2.35 \times 10^{6}$ | $19.8 \times 10^{6}$ | $18.8 \times 10^{6}$ |
| 168 | $13.5 \times 10^{6}$ | $7.7 \times 10^{5}$ | $17.6 \times 10^{6}$ | $1.5 \times 10^{5}$ |

Table 3.2 Effect of serum type and glucose concentration on doubling times and cell yields for PALidSN cells

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $4500 \mathrm{mg} / \mathrm{L}$ <br> glc/ $10 \% \mathrm{NBS}$ | $1000 \mathrm{mg} / \mathrm{L}$ <br> glc $/ 10 \% \mathrm{NBS}$ | $4500 \mathrm{mg} / \mathrm{L}$ <br> glc $/ 10 \% \mathrm{FBS}$ | $1000 \mathrm{mg} / \mathrm{L}$ <br> glc/10\% FBS |
| Doubling time (hours) | 22.64 | 28.24 | 13.99 | 20.17 |
| cell yield $/ \mathrm{cm}^{2}$ | $2.2 \times 10^{5}$ | $3.1 \times 10^{5}$ | $2.64 \times 10^{5}$ | $2.5 \times 10^{5}$ |



Figure 3.1 The effect of media serum type and glucose content on viable cell counts during PALidSN cell culture
3.3.1.2 Effect of media serum type and glucose content on IDUA enzyme activity in PALidSN supernatants

Table 3.3 presents IDUA enzyme activity in supernatants generated over a 168 -hour period from the cell cultures above. Figure 3.2 presents this data graphically. Enzyme activity was greater in culture supernatants harvested from cells grown in high giucose DMEM. Activity reached a peak of $10,968 \mathrm{U} / \mathrm{mg}$ after 72 hours culture in NBS, and $14,940 \mathrm{U} / \mathrm{mg}$ after 96 hours culture in FBS. Enzyme activity was lowest in media with lower glucose concentration containing FBS, where activity reached a peak of 6,924 U/mg after 72 hours and declined rapidly to $42 \mathrm{U} / \mathrm{mg}$ after 168 hours. In lower glucose media containing NBS the enzyme activity was an average of $5,472 \mathrm{U} / \mathrm{mg}$ over the 168 hours. Thus, the results showed enzyme activity to be greatest (14,940 U/mg) after 96 hours culture in high glucose DMEM with $10 \%$ FBS.

Table 3.3 The effect of media serum type and glucose content on IDUA enzyme activity in PALidSN supernatants



Figure 3.2 The effect of media serum type and glucose content on IDUA enzyme activity during PALidSN cell culture
3.3.1.3 Effect of serum type and glucose content on viral vector production in PALidSN supernatants

The viral vector titres as determined by neo resistance in supernatants generated over a 168-hour period from the cell cultures above are presented in Table 3.4 and Figure 3.3. Viral titres were greater in culture supernatants harvested from cells grown in high glucose DMEM, which correlates with the enzyme activity values obtained above. The titre reached a peak of $2.0 \times 10^{4} \mathrm{cfu}$ after 168 hours culture in NBS, and $1.0 \times 10^{5} \mathrm{cfu} / \mathrm{ml}$ after 168 hours culture in FBS. Viral titre was lowest in media with lower glucose concentration containing FBS or NBS, where the maximum titre obtained was in the order of $10^{3}$ cfu/ml. The results showed titres to be greatest ( $7 \times 10^{4}$ and $1 \times 10^{15}$ cfu/mil) after 96 and 168 hours culture in high glucose DMEM with $10 \%$ FBS. Thus, the optimal errzme activity and viral titre was obtained when PALidSN cells were cultured in high glucose DMEM containing 10\% FBS and culture supernatant harvested after 96 hours.

Table 3.4 The effect of media serum and glucose content on viral vector titre in PALidSN supernatants

| Time of Harvest | $1000 \mathrm{mg} / \mathrm{L}$ | $4500 \mathrm{mg} / \mathrm{L}$ | $1000 \mathrm{mg} / \mathrm{L}$ | $4500 \mathrm{mg} / \mathrm{L}$ |
| :--- | :--- | :--- | :--- | :--- |
| (hours) | glc/ $10 \% \mathrm{FBS}$ | glc/10\% FBS | glc/10\% NBS | glc/10\% NBS |
| 24 | $5.0 \times 10^{241)}$ | $3.0 \times 10^{2}$ | $1.6 \times 10^{2}$ | $1.0 \times 10^{3}$ |
| 48 | $4.0 \times 10^{3}$ | $1.0 \times 10^{4}$ | $1.6 \times 10^{3}$ | $5.0 \times 10^{3}$ |
| 72 | $4.0 \times 10^{3}$ | $1.0 \times 10^{4}$ | $2.0 \times 10^{3}$ | $4.0 \times 10^{3}$ |
| 96 | $3.0 \times 10^{3}$ | $7.0 \times 10^{4}$ | $2.0 \times 10^{3}$ | $1.8 \times 10^{4}$ |
| 168 | $4.0 \times 10^{2}$ | $1.0 \times 10^{5}$ | 0 | $2.0 \times 10^{4}$ |

1. titres (cfu/mi) measured by $\mathrm{NiH}-3 \mathrm{~T} 3$ titration


Figure 3.3 The effect of media serum type and glucose content on viral vector titre during PALidSN ceil culture
3.3.1.4 Titres of vector supernatant from PALidSN culture in tissue culture flasks in high glucose DMEM containing either $5 \%$ or $10 \%$ FBS

Having established that high glucose DMEM with $10 \%$ FBS was the culture media of choice for PALidSN cells, a comparison of $10 \%$ and $5 \%$ FBS was made to determine if reduced serum concentration had an effect on titre. Table 15 presents viral titres determined by titration on NIH 373 cells. Titres were found to be similar throughout the 144 hour period, increasing from $10^{3}$ to $10^{5} \mathrm{cfu} / \mathrm{ml}$ over days 1 to 3 , reaching a peak of $5 \times 10^{5}$ cfu/ml at 96 hours, then declining to $5 \times 10^{1} \mathrm{cfu} / \mathrm{ml}$ by 144 hours.

Table 3.5 The effect of media serum concentration on viral vector titre in PALidSN supernatants

| TIME (hours) | $5 \% \mathrm{FBS}$ | $10 \% \mathrm{FBS}$ |
| :--- | :--- | :--- |
| 24 | $5.0 \times 10^{341)}$ | $5.0 \times 10^{3}$ |
| 48 | $2.5 \times 10^{4}$ | $3.5 \times 10^{4}$ |
| 72 | $1.5 \times 10^{5}$ | $1.5 \times 10^{5}$ |
| 96 | $5.0 \times 10^{6}$ | $5.0 \times 10^{5}$ |
| 120 | $1.0 \times 10^{5}$ | $1.0 \times 10^{5}$ |
| 144 | $4.5 \times 10^{4}$ | $5.0 \times 10^{4}$ |

1. titres (cfu/mi) measured by NHH-3T3 titration
3.3.2 The effect of temperature and inducing agents on viral vector production by PALidSN cells

Table 3.6 presents viral vector titres following 3 days incubation of PALidSN cells at $32^{\circ} \mathrm{C}$ or $37^{\circ} \mathrm{C}$ in the presence and absence of the inducing agents TPA and NaB . The results did not indicate a significant effect (ie. outwith $0.5 \log \mathrm{TCID}_{50}$ ) on titre either by lowering incubation temperature or inducing cultures by the addition of TPA or NaB .

Table 3.6 The effect of temperature and by inducing agents on viral vector production during 3 days PALidSN cell culture

| PALidSN culture | Titre at $32^{\circ} \mathrm{C}$ | Titre at $37^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- |
| Control | $2.0 \times 10^{5(1)}$ | $5.0 \times 10^{5}$ |
| NaB-induced | $5.0 \times 10^{5}$ | $2.0 \times 10^{5}$ |
| TPA-induced | $5.0 \times 10^{5}$ | $7.0 \times 10^{5}$ |
| NaB and TPA-induced | $2.0 \times 10^{5}$ | $6.0 \times 10^{5}$ |
|  |  |  |

1. titres (cfu/ml) measured by NIH-3T3 titration

### 3.3.3 Adaptation of PALidSN cells to culture in serum-free media

### 3.3.3.1 Viable cell counts on adaptation of PALidSN cells to serum-free media

The effect of adapting PALidSN cells to growth in serum-free media was determined as described in Section 3.2.3. Total viable cell counts were taken from cell cultures as they were gradually adapted from culture in high glucose DMEM containing $10 \%$ FBS to growth in four different types of serum-free media; Ultraculture, CHO-S-SFMH, QBSF51, and QBSF569. Counts were calculated by removing a cell sample from each flask, placing onto a haemocytometer, observing under a light microscope, and using a cell counter to count the number of cells within a field of vision. Viable cell counts from the adaptation of PALidSN cells to the four types of serum-free media over a 32 -day period are summarised in Table 3.7. PALidSN cells adapted well to growth in Uitraculture, QBSF51 and QBSF56 serum-free media, and were confluent and healthy at the end of the culture period. Cell growth was initially very poor on addition of CHO -S-SFMII serum-free media, but by day 14 ( $90 \%$ original medium $/ 10 \%$ serumnfree medium) the cells reached confluency and the total viable cell count was found to be $7 \times 10^{6}$ cells. However, further increasing the proportion of serum-free medium led to complete detachment of the cell sheet from the tissue culture flasks by day $21(50 \%$ original medium $/ 50 \%$ serum-free medium). The morphology of the cells appeared altered, and when the culture was further passaged it began to decline, resulting in complete cell death. Therefore CHO-S-SFMII serum-free media was not used in further studies.

Table 3.7 Cell counts on adaptation of PALidSN cells to serum-free media

| Day | ULTRACULTURE |  | CHO-S-SFMII |  | QBSF51 |  | QBSF56 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Form. ${ }^{1}$ | Count ${ }^{2}$ | Form. | Count | Form. | Count | Form. | Count |
| 7 | 90:10 | $3.9 \times 10^{10}$ | $N / A^{3}$ | N/A | 90:10 | $8.7 \times 10^{5}$ | 90:10 | $8.7 \times 10^{6}$ |
| 10 | 80:20 | $3.2 \times 10^{6}$ | N/A | N/A | 80:20 | $8.9 \times 10^{6}$ | 80:20 | $5.9 \times 10^{6}$ |
| 14 | 70:30 | $6.5 \times 10^{6}$ | 90:10 | $7.0 \times 10^{9}$ | 70:30 | $6.7 \times 10^{6}$ | 70:30 | $1.6 \times 10^{6}$ |
| 16 | 60:40 | $3.4 \times 10^{6}$ | 70:30 | $3.1 \times 10^{\circ}$ | 60:40 | $3.9 \times 10^{6}$ | 60:40 | $2.8 \times 10^{6}$ |
| 18 | 50:50 | $3.6 \times 10^{6}$ | 60:40 | $2.7 \times 10^{5}$ | 50:50 | $6.1 \times 10^{6}$ | 50:50 | $4.2 \times 10^{6}$ |
| 21 | 40:60 | $5.8 \times 10^{6}$ | 50:501 | $5.1 \times 10^{6}$ | 40:60 | $4.5 \times 10^{6}$ | 40:60 | $7.4 \times 10^{6}$ |
| 23 | 30:70 | $3.0 \times 10^{6}$ | N/A | N/A | 30:70 | $8.0 \times 10^{6}$ | 30:70 | $4.9 \times 10^{6}$ |
| 25 | 20:80 | $7.2 \times 10^{6}$ | N/A | N/A | 20:80 | $4.0 \times 10^{6}$ | 20:80 | $5.8 \times 10^{6}$ |
| 28 | 10:90 | $2.4 \times 10^{6}$ | N/A | N/A | 10:90 | $3.9 \times 10^{6}$ | 10:90 | $3.7 \times 10^{6}$ |
| 32 | 0:100 | $3.8 \times 10^{6}$ | N/A | N/A | 0:100 | $2.3 \times 10^{6}$ | 0:100 | $2.1 \times 10^{6}$ |

1. media formulation (a;b), where $a$; original $10 \%$ medium and $b$; serum free medium
2. total viable cell counts
3. not available
4. complete detachment of cell sheet from flasks was observed
3.3.3.2 Viable cell counts for PALidSN cells cultured in serum-free media

Growth parameters for PALidSN cell culture in Ultraculture, QBSF51 and QBSF56 serum-free media are presented in Table 3.8. The data in Table 3.8 for growth of cells in Uitraculture medium was plotted as a function of viable cell count in relation to time (Figure 3.4). The lag phase of cell growth was 48 hours ( $1.1 \times 10^{6}$ viable cells) and the exponential phase of cell growth ended at 72 hours ( $2.3 \times 10^{6}$ viable cells). Exponential
growth and doubling time were determined using equations described by Dawson (1992). When cultured in QBSF51 or QBSF56 media the PALidSN cell culture began to decline at the 24-hour time period and did not recover. Therefore the exponentiat growth, doubling time and cell yield cannot be calculated.

## Table 3.8 Total viable cell counts from growth of PALidSN cells in serum-free medium

| Time (hours) | Ultraculture | QBSF51 | QBSF56 |
| :--- | :--- | :--- | :--- |
| 0 | $1.0 \times 10^{3(1)}$ | $1.0 \times 10^{6}$ | $1.0 \times 10^{6}$ |
| 24 | $9.0 \times 10^{5}$ | $2.9 \times 10^{5}$ | $3.1 \times 10^{5}$ |
| 48 | $1.1 \times 10^{6}$ | $3.1 \times 10^{5}$ | $2.5 \times 10^{4}$ |
| 72 | $2.3 \times 10^{5}$ | $1.1 \times 10^{5}$ adherent | $1.6 \times 10^{4}$ adherent |
|  |  | $9.0 \times 10^{5}$ suspension | $8.0 \times 10^{4}$ suspension |
| 96 | $2.1 \times 10^{6}$ | $\mathrm{~N} / \mathrm{A}^{(2)}$ | $\mathrm{N} / \mathrm{A}$ |
| 168 | $8.0 \times 10^{5}$ | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |

[^1]

Figure 3.4
Total viable cell counts during culture of PALidSN cells in Ultraculture serum- free medium
3.3.3.3 Viral vector production for PALidSN cells cultured in serum-free media

The viral vector titres for three separate PALidSN cell cultures in Ultraculture serumfree media over a 15-day period are presented in Table 3.9 and Figure 3.5 . Supernatants were harvested at various timepoints in each of the three flasks in order to determine the optimum conditions to produce high titre virus. in flask 1 , the cultures were harvested periodically, and the results show a maximum titre of $4 \times 10^{5}$ cfu/ml (flask 1, day 12). In flask 2, the expected optimum culture conditions resulting from studies in serum-containing media (that is, a 96-hour harvest) produced a titre of only $1 \times 10^{3} \mathrm{cfu} / \mathrm{ml}$. The maximum titre obtained in flask 2 was on day 7 , when the titre was $2 \times 10^{5} \mathrm{cfu} / \mathrm{ml}$.

The lowest titres obtained were in flask 3, where the cells were left in culture for 7 days prior to harvesting. This produced low titre virus ( $10^{2}-10^{3}$ cfu/mi) until day 11, after which the culture was not harvested until day 14. The titre was found to have increased by day 14 to $1 \times 10^{5} \mathrm{cfu} / \mathrm{ml}$. From these results, cells cultured in serum-free media appear to require a longer culture period, and more regular media replacement than cells cultured in serum-containing media.

Table 3.9 Viral vector production from supernatants harvested over a 15 day period from PALIdSN cells cultured In Ultraculture serum-free medium

| Day | Flask 1 | Flask 2 | Flask 3 |
| :--- | :--- | :--- | :--- |
| 1 | $6.0 \times 10^{2(4)}$ | $\mathrm{N} / \mathrm{A}^{(2)}$ | $\mathrm{N} / \mathrm{A}$ |
| 2 | $1.0 \times 10^{4}$ | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
| 3 | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
| 4 | $\mathrm{~N} / \mathrm{A}$ | $1.0 \times 10^{3}$ | $\mathrm{~N} / \mathrm{A}$ |
| 5 | $1.0 \times 10^{4}$ | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
| 6 | $2.0 \times 10^{4}$ | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
| 7 | $5.0 \times 10^{4}$ | $2.0 \times 10^{3}$ | $2.0 \times 10^{2}$ |
| 8 | $1.0 \times 10^{5}$ | $4 \times 10^{3}$ | $7.0 \times 10^{2}$ |
| 9 | $1.0 \times 10^{5}$ | $2.0 \times 10^{4}$ | $7.0 \times 10^{2}$ |
| 10 | $\mathrm{~N} / \mathrm{A}$ | $3.0 \times 10^{4}$ | $5.0 \times 10^{2}$ |
| 11 | $\mathrm{~N} / \mathrm{A}$ | $7.0 \times 10^{4}$ | $3.0 \times 10^{3}$ |
| 12 | $4.0 \times 10^{5}$ | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
| 13 | $1.0 \times 10^{5}$ | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
| 14 | $1.0 \times 10^{5}$ | $4 \times 10^{4}$ | $1.0 \times 10^{5}$ |
| 15 | $1.0 \times 10^{5}$ | $1.0 \times 10^{4}$ | $3.0 \times 10^{4}$ |
| 15 |  |  |  |
|  |  |  |  |

1. titre measured by NiH-3T3 titration (cfu/mi)
2. not applicable


Figure 3.5 Retroviral vector titres from PALidSN cells cultured in roller bottles in ultraculture serum free media
3.3.4 Optimisation of viral vector production by PALidSN cells cultured in $850 \mathrm{~cm}^{2}$ roller bottles
3.3.4.1 Viral vector production from supernatants harvested over a 15 day period from PALidSN cells cultured in roller bottles in DMEM containing $10 \%$ FBS

PALidSN cells were cultured in roller bottles in high glucose DMEM containing 10\% FBS, and the viral vector titre was established by assay of supernatant on NIH-3T3 celis. Table 3.10 presents vector titres from PALidSN cultures in high glucose DMEM with $10 \%$ FBS from three separate roller botlles from which supernatant was harvested over a fifteen day period, as described in section 3.2.6.

The results of the assays indicated that viral vector tifres in roller bottles with high glucose DMEM supplemented with $10 \%$ FBS were of similar titre to virus harvested from tissue culture flasks (see Table 3.5). Titres in the region of $10^{4}$ colony forming units per ml (cfu/ml) were obtained in the first three days of culture (roller bottle 2). rising to $2 \times 10^{5}$ cfu/ml after four days. Thereafter, the titres of supernatants from roller bottles over the fifteen-day period ranged from $1 \times 10^{5}$ to $8 \times 10^{5}$ cfufml, with the exception of supernatant on days 7 and 10 from roller bottle 3 , for which slightly lower titres were obtained.

Table 3.10 Titres of retroviral vector in supernatants harvested over a 15-day period from PALidSN cells cultured in DMEM ( $4500 \mathrm{mg} / \mathrm{L}$ glucose containing $10 \%$ FBS) in roller bottles.

| Day | Roller Bottle 1 | Roller Bottle 2 | Roller Bottle 3 |
| :---: | :---: | :---: | :---: |
| 1 | $N / A^{(1)}$ | $4 \times 10^{4} 23$ | N/A |
| 2 | N/A | $2 \times 10^{4}$ | N/A |
| 3 | N/A | $4 \times 10^{4}$ | N/A |
| 4 | $2 \times 10^{5}$ | $2 \times 10^{5}$ | N/A |
| 5 | $8 \times 10^{5}$ | N/A | N/A |
| 6 | $5 \times 10^{5}$ | N/A | N/A |
| 7 | $4 \times 10^{5}$ | $1 \times 10^{5}$ | $2 \times 10^{4}$ |
| 8 | $6 \times 10^{5}$ | N/A | N/A |
| 9 | N/A | $3 \times 10^{5}$ | $6 \times 10^{5}$ |
| 10 | $N / A$ | N/A | $3 \times 10^{4}$ |
| 11 | $2 \times 10^{5}$ | $3 \times 10^{5}$ | $2 \times 10^{5}$ |
| 12 | $6 \times 10^{5}$ | N/A | $N / A$ |
| 13 | $3 \times 10^{5}$ | N/A | N/A |
| 14 | $8 \times 10^{5}$ | $4 \times 10^{5}$ | $4 \times 10^{5}$ |
| 15 | $3 \times 10^{5}$ | $4 \times 10^{5}$ | $3 \times 10^{5}$ |

1. titres measured by NIH-373 tifration (cfu/ml)
2. not applicable
3.3.4.2 Viral vector production from supernatants harvested over a 15 day period from PALidSN cells cultured in roller bottles in DMEM containing $1 \% \mathrm{FBS}$

PALidSN cells were cultured in a roller bottle in medium containing $1 \%$ FBS, to determine the effect of low serum concentration on titre. Cells were cultured for five days in high glucose DMEM containing $10 \% \mathrm{FBS}$, whereupon the serum concentration was reduced to $1 \%$ FBS. The resulting titres from various harvests taken between day 5 and day 15 are presented in Table 3.11. Titres were found to be slightly lower when PALidSN cells were cultured in media supplemented with $1 \%$ rather than $10 \%$ serum concentration. However, by days 13 and 14 a litre of $2 \times 10^{5} \mathrm{cfu} / \mathrm{ml}$ was obtained, which was comparable with supernatant from cells grown in media containing the higher serum concentration.

Table 3.11 Viral titres measured over a $\mathbf{1 0}$-day period from roller bottle culture of PALidSN celis in DMEM ( $4500 \mathrm{mg} / \mathrm{L}$ glucose containing 1\% FBS)

| Day | Titre |
| :--- | :--- |
| 5 | $7 \times 10^{3(1)}$ |
| 6 | $7 \times 10^{4}$ |
| 7 | $7 \times 10^{4}$ |
| 8 | $\mathrm{~N} / \mathrm{A}^{(2)}$ |
| 9 | $\mathrm{~N} / \mathrm{A}$ |
| 10 | $5 \times 10^{4}$ |
| 11 | $8 \times 10^{4}$ |
| 12 | $2 \times 10^{5}$ |
| 13 | $2 \times 10^{5}$ |

1. titre measured by $\mathrm{NH}-3 \mathrm{~T} 3$ titration (cfu/ml)
2. not applicable
3.3.5 Feasibility of PALidSN cells for scaled-up production; PALidSN cell culture on Fibra Cel ${ }^{\text {or }}$ disks in a Techne spinner flask.

The results demonstrating feasibility of culturing PALidSN cells on Fibra-Cel ${ }^{\text {en }}$ disks in a Techne spinner flask are presented in Table 3.12. The viral titre in the 120 -hour supernatant was measured by N|H-3T3 titration at $1 \times 10^{6} \mathrm{cfu} / \mathrm{ml}$. The cells adapted well to culture in the spinner flask, and were found both to adhere to the disks and remain free in the supernatant. Counts for both adherent and suspension cells are presented. The results of growth of PALidSN Cells on Fibra-Cel Disks are therefore presented in Figure 3.6.

Table 3.12 PALidSN cell growth and retroviral vector production on Fibra-Cel disks in a Techne spinner flask.

| Time (hours) | Nuclei/disk ${ }^{1}$ | Nuclei/ml supernatant ${ }^{1}$ | Viral titre $^{2}$ |
| :--- | :--- | :--- | :--- |
| 24 | $1.6 \times 10^{5}$ | $2 \times 10^{5}$ | $\mathrm{~N} / \mathrm{A}^{3}$ |
| 48 | $1.3 \times 10^{5}$ | $2.1 \times 10^{5}$ | $\mathrm{~N} / \mathrm{A}$ |
| 120 | $5.2 \times 10^{5}$ | $2.5 \times 10^{4}$ | $1 \times 10^{6}$ |
| 144 | $1.8 \times 10^{5}$ | $\mathrm{~N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
| 168 | $2.3 \times 10^{5}$ | $3.9 \times 10^{5}$ | $\mathrm{~N} / \mathrm{A}$ |
| 1. | viable cell counts |  |  |
| 2. | titre measured by NiH-3T3 titration (cfu/ml) |  |  |
| 3. | not applicable |  |  |



Figure 3.6
PALidSN cell culture on Fibra $\mathrm{Cel}^{\text {® }}$ disks in a Techne spinner flask

### 3.3.6 Concentration of vector supernatant by filtration

Tables 3.13 and 3.14 present results obtained in two separate experiments performed to concentrate retroviral vector by ultrafiltration. The tables present retroviral titres of supernatant harvested from PALidSN cell cultures prior to concentrating by filtration, after concentration (the retentate), and for the filtrate which was drawn off as a control. In table 3.13 , the initial volume of $0.45 \mu \mathrm{M}$ filtered retroviral vector supernatant was 1140 ml . The supernatant was concentrated over a 5 -hour period, with the filtrate drawn off at a constant flow rate of $4.5 \mathrm{ml} /$ minute. The flow rate was maintained by adjustment of restriction clamps in the cyclical system. The final volume of retentate (virus containing fraction) was 77 ml , which represented $6.75 \%$ of the original stock volume. The supernatant was therefore 15 times more concentrated by volume, which would be expected to give an estimated 15 -fold increase in viral titre. The data presented in Table 3.13 indicates that the concentration was successful. The titre of the concentrated retroviral vector increased from $2 \times 10^{5}$ to $2 \times 10^{\frac{1}{2}}$ cfu/ml, an increase of 1 $\log _{10}$. The filtrate was shown to contain no vector, as expected.

Table 3.13 Concentration of vector supernatant by filtration (i)

| Supernatant for titration | Supernatant volume (ml) | Titre $^{1}$ |
| :--- | :--- | :--- |
| Filtered starting material | 1140 | $2 \times 10^{5(1)}$ |
| Retentate | 77 | $2 \times 10^{6}$ |
| Filtrate | 1063 | virus not detected |

1. titre measured by NIH-3T3 titration (cfu/ml)

The data presented in Table 3.14 indicates that the second concentration was also successful. The initial volume of $0.45 \mu \mathrm{M}$-filtered retroviral vector supernatant was

1300 ml , and the final volume of retentate was 300 ml , which was $23 \%$ of the original stock volume. The supernatant was therefore 4.3 times more concentrated by volume, which resulted in a 5 -fold increase in vira! titre from $6 \times 10^{5} \mathrm{cfu} / \mathrm{ml}$ to $3 \times 10^{6} \mathrm{cfu} / \mathrm{ml}$.

Table 3.14 Concentration of vector supernatant by filtration (ii)

| Supernatant for titration | Supernatant volume (mi) | Titre ${ }^{1}$ |
| :--- | :--- | :--- |
| Filtered starting material | 1300 | $6 \times 10^{5}$ |
| Retentate | 300 | $3 \times 10^{5}$ |
| Filtrate | 1000 | virus not detected |

1. titre measured by $\mathrm{N} \mid \mathrm{H}-3 \mathrm{~T} 3$ titration (cfu/ml)

### 3.4 Summary

3.4.1 Optimal cell culture conditions

The retroviral vector producer line, PALidSN, was initially examined for the effect of varying culture media serum and glucose content on cell growth and viral vector titre. Of the four media formulations examined (DMEM containing $4500 \mathrm{mg} / \mathrm{L}$ or $1000 \mathrm{mg} / \mathrm{L}$ glucose supplemented with either FBS or NBS), total viable cell counts were highest for PALidSN cells at the 96 -hour timepoint. Optimal cell yield coupled with lowest doubling time was best achieved by culturing PALidSN cells in high glucose DMEM supplemented with $10 \%$ FBS (doubling time during exponential growth of 13.99 hours and a highest cell yield of $2.64 \times 10^{5}$ viable cells). Correlation between the results of the enzyme and infectivity assays was observed, in that the highest value of IDUA enzyme activity per milligram of protein ( $14,940 \mathrm{U} / \mathrm{mg}$ ) and highest viral vector kitre
measured by $\mathrm{NH} / 3 / 3$ assay ( $7 \times 10^{4} \mathrm{cfu} / \mathrm{ml}$ ) were obtained from supernatant harvested from cells after 96 hours culture in high glucose DMEM containing 10\% FBS (Figure 3.1). Reduction of serum concentration from $10 \%$ to $5 \%$ FBS had negligible effect on viral titres. Reduction of serum concentration to $1 \%$ FBS in roller bottles (section 3.4.3) also produced a comparable viral titre ( $2 \times 10^{5} \mathrm{cfu} / \mathrm{ml}$ ), although an extended culture period was required to reach this titre ( 12 days).

A study was performed to determine the potential for adaptation of PALidSN cells to various types of commercially available serum-free media; Ultraculture, CHO -S-SFMI, QBSF5 and QBSF56 (Table 3.7). Details of the media ingredients were unavailable from the suppliers as the information is patented and proprietary. Of the four types, PALidSN cells were found to be most suitable for adaptation to culture in Ultraculture serum-free medium, for which a lag phase duration of 48 hours and log phase duration of 24 hours were determined. The doubling time was determined to be 22.43 hours with a viable cell yield of $3.09 \times 10^{4}$ viable cells $/ \mathrm{cm}^{2}$. Although the doubling time appears to be short, it must be noted that the log phase of growth was only 24 hours and the cell culture began to decline after this point. This indicates that feeding or harvesting may be required every 72 haurs.
3.4.2 Effect of incubation temperature and inducing agents on viral vector titre

Incubation of producer cells for 3 days at $32^{\circ} \mathrm{C}$ rather than $37^{\circ} \mathrm{C}$ had no effect on PALidSN viral vector titre. The induction of cultures for 3 days by TPA or NaB also had no effect on viral vector tifre.

### 3.4.3 Scale-up of cell culture

PALidSN cells adapted well to culture scale-up from tissue culture flasks to roller bottles and Fibra-Cel ${ }^{\text {tis }}$ disks in a Techne spinner flask. Culture was scaled-up in high glucose

DMEM containing $10 \%$ FBS, and the viral titre in the supernatant harvested after 120 hours was found to be $1 \times 10^{6} \mathrm{cfu} / \mathrm{ml}$.

### 3.4.3.1 Cell culture in roller bottles

Cells adapted well to culture in the roller bottle system, producing viral vector titres comparable to those obtained by culture in tissue culture flasks. in the roller bottle system, when the culture was incubated for four days prior to harvesting, viral titres increased to $2 \times 10^{5} \mathrm{cfu} / \mathrm{ml}$ on day 4 , and the maximum viral titre obtained was $8 \times 10^{5}$ cfu/ml on days 5 and 14 (Table 3.10). This titre was not achieved from cells where supernatants were harvested daily, or when cultures were incubated for 7 days prior to harvesting. One roller culture of PALidSN cells was incubated in DMEM containing $10 \% \mathrm{FBS}$ until confluent (4-5 days) after which serum concentration was reduced to $1 \%$ FBS to determine the effect on production of vector. The results (Table 3.11) indicate that reducing the serum concentration to $1 \%$ FBS (in 150 mls media) reduced production of viral vector from $4.7 \times 10^{5} \mathrm{cfu} / \mathrm{ml}$ (roller bottle 1, mean viral vector titre) to $4.93 \times 10^{4} \mathrm{cfu} / \mathrm{ml}$ ( $1 \%$ FBS, mean viral vector titre). Decreasing the volume of media to 75 ml resulted in an increased titre of $1.45 \times 10^{5} \mathrm{cfu} / \mathrm{mt}$ (Table 3.11 , roller bottle $2 \mathrm{in} 1 \%$ serum, Day 11 to Day 14, mean viral vector titre). The resulting viral titre is comparable to titres obtained from cells cultured in serum containing media, however, required an extended culture period of 11 to 14 days to reach this titre.
3.4.3.2 Cell culture on Fibra-Cel disks in a Techne spinner flask

PALidSN cells also adapted well to growth on Fibra-Cel disks in a Techne spinner flask. Initial observations of the data generated in the study showed that at the 24-hour timepoint $43 \%$ of the PALidSN cells remained free in the supernatant. The large volume of circulating medium owing to the disks not being tightly packed may explain the large number of cells in suspension. At the 48 -hour stage the medium was
replaced resulting in removal of cells in suspension and it was noted that logarithmic phase growth continued from this point to the 120 -hour timepoint. A harvest of the supernatant generated at the 120 hour timepoint was titrated and the tifre found to be $1 \times 10^{2} \mathrm{cfu} / \mathrm{ml}$, which is approximately 0.5 log higher that the average titre which was obtained by roller bottle production ( $4.7 \times 10^{5} \mathrm{cfu} / \mathrm{ml}$ ). Unfortunately, further samples from later time-points were unavailable.

### 3.4.4 Concentration of vector supernatant by filtration

Retroviral vector supernatant was successfully concentrated by filtration using SARTOCON MICRO 100 KD filters. In one sludy, the volume of supernatant was decreased 15 -fold by concentration, which resulted in an increase in viral vector titre of $1 \log _{10}$ unit (from $2 \times 10^{5}$ c.f.u/ml to $2 \times 10^{6}$ cfu/ml), and in the other, the volume of supernatant was decreased 4.3 -fold by concentration, which resulted in a 5 -fold increase in viral vector titre (from $6 \times 10^{5}$ c.f.u/ml to $3 \times 10^{6}$ cfu/ml). As expected, the filtrate which was drawn from the system was found to contain no virus particles.

### 4.0 STABILITY OF RETROVIRUS SUPERNATANTS

### 4.1 Introduction

Retrovirus-containing supernatant stocks are obtained from producer cells by harvesting the culture medium in which the cells have been growing. The log phase of cell culture is when exponential growth occurs and the proportion of cells in cycle is high. Since infected cells release virus at a maximum rate when growing exponentially (Roe et at, 1993, Morgan et al., 1995), the highest titres should be obtained before an adherant cell line reaches confluence. In practice, maximum achievable recombinant viral titres have been reported to be approximately $10^{\circ} \mathrm{cfu} / \mathrm{ml}$. Retroviral particles are considered to be fragile, with short half-lives even under optimal conditions (Sanes et al., 1986, Paul ot al., 1993). They are also reported to be relatively labile in terms of the narrow pH range and ionic strength within which retrovirus infectivity can be maintained (Naussbaum et al., 1993). Therefore, harvesting should be performed gently, and materials should be kept cold in order to maintain viral infectivity.

Retroviral vector stocks are stable for long periods of time when stored frozen at $70^{\circ} \mathrm{C}$ in harvested tissue culture medium containing $10 \%$ FBS. Stocks should be frozen in small aliquots as repeated freeze thawing can considerably reduce viral titre. However, storage of retroviral vectors at $-70^{\circ} \mathrm{C}$ in medium containing $10 \%$ serum is impractical for many clinical facilities, therefore other methods of storage have been explored. These include lyophilization with storage at $-20^{\circ} \mathrm{C}$, for which a half-life of over 200 days has been reported, and storage at $4^{\circ} \mathrm{C}$, for which a shelf-life of over 3 months can be expected (Jolly, 1994). In addition it has been reported that sugars can act as stabilisers and heip to preserve unstable samples by replacing water, thus providing a stable structure to biological molecules (Aldridge, 1995).

In this section of the study, the stability of retrovirus containing supernatants was
assessed by comparing titres of vector and wild-type AMLV slock after storage at varying temperatures and time. The effect on tifre of storage in the presence of various sugars was also determined.

### 4.2 Materials and Methods

4.2.1 Virus and vector supernatants

The producer cells used in for these experiments were PALidSN cells, described in Section 3.1. These cells are based on the amphotropic retrovirus vector packaging cell line PA317. The wild-type A-MLV supernatant (strain 292A, ATCC VR-884) was also assessed for stability as a control. Supernatant from the Mus dunni cell line (ATCC CRL 2017) infected with A-MLV was used as control for comparison with vector supernatant.
4.2.2 Storage of virus stocks at varying temperatures

Retroviral vector and A-MLV containing supernatants were harvested, aliquoted, and the viral titres determined. In order to determine the stability of titre, aliquots of supernatant were held at $-70^{\circ} \mathrm{C}, 4^{\circ} \mathrm{C}, 32^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$, and $56^{\circ} \mathrm{C}$ for varying periods of time and assayed for the presence of virus. The experimental procedure for titration of PALidSN supernatant in murine $\mathrm{N} \mid \mathrm{H}-3 \mathrm{~T} 3$ ceils by neo resistance is detailed in section 2.3.1, and AMLV tilration on PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$cells as described in 2.2.2.3.
4.2.3 Storage of supernatants at $4^{\circ} \mathrm{C}$ and $-70^{\circ} \mathrm{C}$ in the presence and absence of sugar stabilisers

Supernatants were harvested and fitrated as above (section 4.2.2.) then aliquots were placed at $4^{\circ} \mathrm{C}$ or $-70^{\circ} \mathrm{C}$ in $50 \% \mathrm{w} / \mathrm{v}$ solutions of the sugars trenalose (Sigma), mannose (Sigma) and sorbitol (Sigma). The solutions were prepared in PBS and $0.22 \mu \mathrm{~m}$ filtered.

The glucose solution was supplied as a $20 \%$ soiution and was used as such (Gibca). An aliquot ( 1 ml ) of each of the sugar solutions was added to viral supernatant ( 19 mls ) derived from PALidSN producer cells or Mus dumi/A-MLV infected cells and aliquots stored at $4^{\circ} \mathrm{C}$ of $-70^{\circ} \mathrm{C}$. Stability of retrovirus containing supernatants was assessed by assay of virus stored at both temperatures at various time-points. Virus stored in the absence of various sugar stabilisers was tested at each time-point as a control.

### 4.3 Results

Stability of retrovirus containing supernatants was assessed by titration following storage at different temperatures for varying periods of time in the presence and absence of sugars. The resulting titres are displayed in $\log _{10}$ colony forming units of vector per ml $\left(\log _{10}\right.$ cfu/ml) and $\log _{10}$ focus forming units of A-MLV per $\mathrm{ml}\left(\log _{10}\right.$ ffu/ml).
4.3.1 Inactivation of virus and vector supernatant at $56^{\circ} \mathrm{C}$

Retroviral vector and A-ML.V supernatants from three tissue culture flasks were harvested and held at $56^{\circ} \mathrm{C}$ for two hours. Over the two-hour periad samples were removed for titration on NIH-3T3 and PG4 S'L cells, respectively. The resulting titres converted to $\log _{t 0}$ ffu/ml virus and $\log _{10}$ cfurml vector are presented in Table 4.1. The results indicated that vector and A-MLV were rapidly inactivated at $56^{\circ} \mathrm{C}$. However in three separate studies, both A-MLV and vector appeared to contain a fraction that was resistant to heat invactivation after two hours incubation at $56^{\circ} \mathrm{C}$.

Table 4.1 Titres of retroviral vector and wild type A-MLV after incubation at $56^{\circ} \mathrm{C}$ for varying periods

|  | VECTOR $^{4}$ |  |  |  | A-MLV $^{2}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Time | Expt. 1 | Expt. 2 | Expt. 3 | Expt. 1 | Expt. 2 | Expt. 3 |  |
| Initial titre | 5.60 | 5.60 | 5.48 | 5.36 | 5.18 | 4.00 |  |
| $30-40$ min | 0 | 2.48 | N/A $^{3}$ | 3.43 | 0 | $\mathrm{~N} / \mathrm{A}$ |  |
| 1 hour | 1.78 | 1.00 | 3.60 | 3.26 | 1.78 | 2.00 |  |
| 2 hours | $\mathrm{N} / \mathrm{A}$ | 2.48 | 2.70 | $\mathrm{~N} / \mathrm{A}$ | 1.30 | 0 |  |

1. titre measured by NIH-3T3 titration ( $\log _{10}$ cfu/ml).
2. titre measured by PG4 $\mathrm{S}^{\prime} \mathrm{L}^{\prime}$ assay $\left(\log _{10}\right.$ ffu/m).
3. not applicable
4.3.2 Stability of vector and A-MLV supernatants at various temperatures over 24 hours

Vector and A-MLV supernatants were stored at $4^{\circ} \mathrm{C}, 32^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$ over a 24 -hour period. During incubation, samples were removed for titration on $\mathrm{NH}-3 \mathrm{~T} 3$ and PG4 S ${ }^{+} \mathrm{L}$ cells, respectively. The resulting titres displayed as $\log _{10}$ ffu/ml virus and $\log _{10}$ cfu/ml vector are presented numerically in Table 4.2, and graphically in Figure 4.1. No significant change in viral titre was observed after eight hours storage at each temperature for either virus or vector. However, after 24 hours, a decrease in titre was observed for vector stored at $32^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$, and $\mathrm{A}-\mathrm{MLV}$ stored at $4^{\circ} \mathrm{C}$ and $32^{\circ} \mathrm{C}$. A-MLV incubated at $37^{\circ} \mathrm{C}$ for 24 hours retained only $0.4 \%$ of the initial titre, a reduction of $2.36 \log _{10}$ units. At $4^{\circ} \mathrm{C}$, vector titre displayed greatest stability, decreasing by only $0.3 \log _{10}$ units over 24 hours.

Table 4.2 Stability of titres of vector and A-MLV after incubation at $4^{\circ} \mathrm{C}, 32^{\circ} \mathrm{C}$ or $37^{\circ} \mathrm{C}$ over a 24- hour period

| TIME | VECTOR ${ }^{1}$ |  |  | A-MLV ${ }^{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $4^{\circ} \mathrm{C}$ | $32^{\circ} \mathrm{C}$ | $37^{\circ} \mathrm{C}$ | $4^{\circ} \mathrm{C}$ | $32^{\circ} \mathrm{C}$ | $37^{\circ} \mathrm{C}$ |
| Initial titre | 5.60 | 5.60 | 5.60 | 5.36 | 5.36 | 5.36 |
| 30 min | 5.70 | 5.70 | 5.60 | 5.00 | 5.00 | 5.26 |
| 1 hour | 5.70 | 6.60 | 5.70 | 5.34 | 5.34 | 5.32 |
| 2 hours | 5.70 | 5.60 | 5.70 | 5.04 | 4.95 | 4.85 |
| 4 hours | 5.60 | 5.48 | 5.60 | 5.20 | 5.04 | 5.23 |
| 8 hours | 5.60 | 5.30 | 5.30 | 5.38 | 5.04 | $N / A^{3}$ |
| 24 hours | 5.30 | 4.48 | 4.60 | 4.30 | 4.48 | 3.00 |

1. titre measured by $\mathrm{NIH}-3 T 3$ titration $\left(\log _{10} \mathrm{cfu} / \mathrm{ml}\right)$.
2. titre measured by PG4 S'L'assay $\left(\log _{10} f f u / m 1\right)$.
3. not applicable


Figure 4.1 Titres of vector and A-MLV following incubation at varying temperature over a period of 24 hours.
4.3.3 Long-term stability of vector and A-MLV supernatants at $4^{\circ} \mathrm{C}, 32^{\circ} \mathrm{C}$ or $37^{\circ} \mathrm{C}$

Vector and A-MLV supernatants were incubated at $4^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$ over a longer period of time. Over a thirty-seven day period samples were removed for titration on NIH-3T3 and PG4 $\mathrm{S}^{+} \mathrm{L}^{\prime}$ cells, respectively. The resulting titres converted to $\log _{; 0} \mathrm{ffu} / \mathrm{ml}$ virus, and $\log _{10}$ cfu/ml vector are presented in Table 4.3 and Figure 4.2. The decrease of $2.4 \log _{40}$ units in titre for AnMLV over 24 hours at $37^{\circ} \mathrm{C}$ was similar to previous results (Table 4.2.). In this study, the vector fitre decreased by $2.65 \log _{; 0}$ over 24 hours at $37^{\circ} \mathrm{C}$ in comparison to a decrease of $1 \log _{10}$ in the previous study. Both vector and A-MLV were completely inactivated by storage at $37^{\circ} \mathrm{C}$ for 3 days. However, differences were observed in that vector was apparently more stable than A-MLV over long-term incubation at $4^{\circ} \mathrm{C}$. A-MLV titre declined throughout the study period and virus could not be detected after 37 days, whereas vector had decreased in titre by $0.6 \log _{10}$ units after 37 days.

Table 4.3 Titres of vector and A-MLV after long-term incubation at $4^{\circ} \mathrm{C}$ or $37^{\circ} \mathrm{C}$

|  | VECTOR ${ }^{1}$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $4^{\circ} \mathrm{C}$ | $37^{\circ} \mathrm{C}$ | $4^{\circ} \mathrm{C}$ | $37^{\circ} \mathrm{C}$ |
|  |  |  |  |  |
| Initial titre | 5.60 | 5.60 | 5.18 | 5.18 |
| D1 | 5.90 | 2.95 | 3.85 | 2.78 |
| D3 | 4.00 | 0 | 3.90 | 0 |
| D7 | 5.08 | 0 | 3.70 | 0 |
| D16 | 5.30 | $\mathrm{~N} / \mathrm{A}^{3}$ | 1.70 | $\mathrm{~N} / \mathrm{A}$ |
| D37 | 5.00 | $\mathrm{~N} / \mathrm{A}$ | 0 | $\mathrm{~N} / \mathrm{A}$ |

1. titre measured by NitH-3T3 titration $\left(\log _{10}\right.$ cfu/mi).
2. titre measured by PG4 $\mathrm{S}^{+} \mathrm{L}$ - assay ( $\log _{10}$ ffu/ml).
3. not applicable


Figure 4.2 Titres of retroviral vector and A-MLV after incubation at varying temperature over a period of 37 days
4.3.4 Stability of vector and A-MLV supernatants at $4^{\circ} \mathrm{C}$ or $-80^{\circ} \mathrm{C}$ with sugar stabilisers
4.3.4.1 Stability of vector and A-MLV supernatants at $-80^{\circ} \mathrm{C}$ with sugar stabilisers

Vector and A-MLV supernatants were stored at $-80^{\circ} \mathrm{C}$ in the presence of the sugar solutions mannose, sorbitol and trehalose as described in Section 4.2.3. Over the storage period samples were removed for titration on $\mathrm{NIH} \mathrm{H}-3 \mathrm{~T} 3$ and PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$cells, respectively. The resulting titres in $\log _{10}$ ffu'ml virus, and $\log _{10}$ cfu'ml vector are presented in Table 4.4. No significant change in titre (that is, greater than 0.5 log units) was effected by storage of vector supernatant at $-80^{\circ} \mathrm{C}$ over 21 days, or A-MLV supernatant at $-80^{\circ} \mathrm{C}$ over 65 days with or without sugar stabilisers present.

Table 4.4 Stability of vector and A-MLV at $80^{\circ} \mathrm{C}$ with sugar stabilisers

|  | VECTOR ${ }^{1}$ |  |  |  |  | A-MLV ${ }^{2}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -ve ${ }^{3}$ | glc. ${ }^{4}$ | mann | sorb. ${ }^{5}$ | tre. ${ }^{7}$ | -ve | gluc. | mann. | sorb. | tre |
| initial | 5.48 | 5.48 | 5.48 | 5.48 | 5.48 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
| D1 | 5.08 | 5.00 | 5.30 | 4.95 | 5.30 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
| D21 | 5.00 | 4.78 | 5.48 | 4.78 | 5.00 | 4.30 | 4.00 | 4.00 | 4.00 | 4.04 |
| D65 | $N / A^{B}$ | N/A | N/A | N/A | N/A | 4.60 | 4.48 | 4.48 | 4.30 | 4.48 |

1. titre measured by Nill-3T3 titration ( $\log _{10}$ cfu/ml).
2. titre measured by PG4 S'L' assay ( $\log _{10}$ ffu/ml).
3. negative control:
4. glucose
5. mannose
6. sorbitol
7. trehalose
8. not applicable

Vector and A-MLV supernatants were stored at $4^{\circ} \mathrm{C}$ in the presence of the sugar solutions glucose, mannose, sorbitol and trehalose as described in Section 4.2.3. Over the storage period samples were removed for titration on NIH3T3 and PG4 S $\mathrm{S}^{+}$- cells, respectively. The resulting titres in $\log _{10}$ ffu/ml virus, and $\log _{10}$ cfu/mi vector are presented in Table 4.5. No significant change in fitre (that is, greater than $0.5 \log$ units) was observed in vector or viral supernatant stored at $4^{\circ} \mathrm{C}$ over 16 days with or without sugar stabilisers present. However, when viral vector supernatant in the absence of sugar was titrated following 70 days storage at $4^{\circ} \mathrm{C}$, no colonies were observed. This contrasted with titres obtained for viral vector supernatant stored in the presence of each of the sugars studied, where the titre obtained was comparable to titres obtained following 16 days storage at $4^{\circ} \mathrm{C}$. These titrations were repeated, and identical results obtained.

Table 4.5 Stability of vector and A-MLV at $4^{\circ} \mathrm{C}$ with sugar stabilisers

|  | $-\mathrm{ve}{ }^{3}$ | VECTOR ${ }^{1}$ |  |  |  |  | A-MLV ${ }^{2}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | glc. ${ }^{4}$ | mann | sorb. ${ }^{6}$ | tre. ${ }^{7}$ | -ve | glue. | mann | sorb. | tre |
| initial | 5.48 | 5.48 | 5.48 | 5.48 | 5.48 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
| D2 | 5.00 | 5.00 | 5.48 | 5.00 | 5.48 | 3.60 | 3.70 | 3.30 | 3.95 | 3.70 |
| D8 | 4.85 | 4.78 | 4.60 | 4.95 | 5.00 | $N / A^{B}$ | N/A | N/A | N/A | N/A |
| D16 | 5.48 | 5.00 | 4.85 | 5.30 | 5.00 | 4.60 | 4.48 | 3.70 | 4.00 | 4.00 |
| D70 | 0 | 4.84 | 4.95 | 4.90 | 4.85 | N/A | N/A | N/A | N/A | N/A |

1. titre measured by NIH-3T3 titration $\left(\log _{10}\right.$ cfu/ml).
2. titre measured by PG4 S+L- assay $\left(\log _{10}\right.$ ffu/ml).
3. negative control
4. glucose
5. mannose
6. sorbitol
7. trehalose
8. not applicable

### 4.4 Summary

In these initial studies, the retroviral vector exhibited similar stability to wild type A-MLV. Both vector and virus contained a fraction that was resistant to inactivation following two hours incubation at a temperature of $56^{\circ} \mathrm{C}$. In addition, the results were variable, with virus detected at later time-points, although apparently undetectable after 30-40 minutes of incubation. Virus validation studies previously performed at Q-One Biotech have produced similar results (unpublished data). This may be caused by variations in sampling in accordance with the Poisson distribution, however, with the limited data available in this study, these results should be treated with caution.

Following three days incubation at $37^{\circ} \mathrm{C}$, both vector and A-MLV supernatants were completely inactivated. Supernatants were relatively stable at $4^{\circ} \mathrm{C}$, vector supernatant slightly more so than virus supernatant; A-MLV was inactivated after 37 days storage at $4^{\circ} \mathrm{C}$, whereas only $2 \log$ units of vector titre were lost after storage at $4^{\circ} \mathrm{C}$. In a limited study the presence of the sugars glucose, mannose, trehalose, or sorbitol, had no significant effect on virus or vector titre within three weeks storage at $4^{\circ} \mathrm{C}$ or $-80^{\circ} \mathrm{C}$. No decrease in titre was observed for vector or A-MLV stored at $4{ }^{\circ} \mathrm{C}$ or $-80^{\circ} \mathrm{C}$ in the presence or absence of sugar stabilisers. However, viral vector supernatant appeared to be inactivated following 70 days storage at $4^{\circ} \mathrm{C}$. This effect was not observed in viral vector supernatant stored in the presence of sugar stabilisers, in that viral titres obtained following 70 days storage were comparable with those obtained within the initial threeweek storage period. Further long-term studies on the effect of sugar stabilisers on MLV titre are necessary.

### 5.0 DISCUSSION

### 5.1 Occurrence of RCR

A potential probiem in the use of retroviral vectors is the possibility of recombination events occuring which result in generation of replication competent retrovirus ( RCR ) (Miler et al., 1993, Otto et al., 1994, Vanin et al., 1994). The principal factor influencing RCR formation is the level of homology between the vector genome and packaging cell line sequences, which may undergo genetic recombination to form $R C R$. The potential risk of RCR formation in clinical application was highlighted by the observation that murine RCR generated in this manner was associated with lymphomas in immunosuppressed rhesus macaques (Donahue at al., 1992). Another factor influencing RCR generation is the method used to introduce the viral protein coding sequence into the producer cell line; if the gag-pol and env sequences are introduced as two separate plasmids, the possibility of $R C R$ formation occurring during vector construction is decreased.

The rate of recombination that occurs in a vector-producing cell line is dependent on the particular characteristics of the cell line, and theoretically, therefore, would vary between producer cell lines. Third generation packaging cell lines were developed to minimise sequence homology beween the vector and packaging cell line sequences, where three separate recombination events are necessary for RCR formation. This has greatly improved confidence in the safely aspect of using retroviral vectors. However, the producer cell line GPtenvAM12 (Markowitz et al., 1988), which was developed by introducing vector sequences into a third generation packaging cell line on two separate plasmids, has been reported to generate RCR by a mechanism which is not yet fully understood (Chong and Vile, 1996).

Another potential hazard in vector safety is the contamination of retroviral vectors by endogenous murine proviral elements that also may recombine with packaging cell line sequences to generate RCR. Most stable packaging cell lines currently used are derived from rodent cell lines, such as $\mathrm{NH}-3 \mathrm{~T} 3$ cells, which have been engineered to express MLV gag, pol and errv genes in order to generate recombinant retroviral vector particles (Miller and Buttimore, 1986, Markowitz et at., 1988, Danos and Mulligan, 1988). Most rodent cell lines carry endogenous viral sequences, which have been reported to recombine with vector sequences to generate RCR (Otio et al. 1994, Purcell et at., 1996). VL30 elements, which are common endogenous viral sequences in rodent cell lines, have been reported to be efficiently packaged into virions, and undergo reverse transcription, integration, and high level expression in the host cell (Hatzoglou et at, 1993). Owing to the presence of such endogenous elements in addition to polytropic or xenotropic retroviruses that can infect human cells, murine cells are not ideal packaging lines for use in human gene therapy. Therefore it is beneficial to develop packaging lines and vectors which do not contain endogenous viral sequences. Feline cells have also been used as packaging cell lines. However, feline cells also contain endogenous viral sequences, including the RD114 virus, which could potentially be involved in RCR generation, and thereby compromise safety (Coffin, 1996). Packaging cell lines derived from human and canine celis, which lack endogenous retroviruses, are also potential candidates for vector development. The Madin-Derby canine kidney (MDCK) cell line has been found to be negative for endogenous type-C retrovirus production (Squires, 1991), and has potential for exploitation as a packaging cell line. Human cells can be readily infected with retroviruses from various animal species, and different receptor groups have been defined by interference assays (Somerfelt and Weiss, 1990). A packaging line derived from human 293 cells expressing an ecotropic MLV vector with amphotropic MLV env genes was recently described which contained minimal sequence homology between the vector genome and structural genes, and has not demonstrated RCR formation throughout extensive testing (Rigg et al., 1996). Other limitations associated with murine packaging cell lines are the relatively low titres generated, and the complement sensitivity
of particles derived from them (Cosset et al., 1995, Rigg et al., 1996). The susceptibility of retrovirus vectors derived from MLV to inactivation in human serum has a negative impact on gene delivery in wivo, therefore, the production of vector in human cells may be more appropriate for in vivo therapy. A packaging cell line derived from 293 cells was reported to transduce target cells more efficiently than the N1H-3T3 CRIP packaging cell line (Danos and Muligan, 1988) by a minimum of 10 -fold (Davis et al., 1997). This is advantageous both in terms of yielding producer cell lines with enhanced transduction efficiencies and theoretically in terms of safety.

Contamination of packaging cell lines with RCR may aiso be caused by introduction of virus from other cell lines within a facility. Such contamination should be preventable by adherence to Good Manufacturing Practice (GMP). However, failure in the management of the system can cause introduction of RCR from elsewhere in the facility as a contaminant of the system. RCR has also been mistakenly identified as an artefact of the detection system (Miller et al., 1996).

### 5.2 Detection of RCR

The development of lymphomas in association with recombinant A-MLV infection in three of ten highly immunosuppressed macaques raised concern about the risks of MLV exposure in humans (Donahue ef al., 1992). All three anlmals died within 200 days, and high titre retroviraemia and murine RCR sequences were later detected within the lymphomas of these animals (Vanin et at. 1994, Purcell et al., 1996). Although RCR was not directly proven to be the causative agent of disease, it is reasonable to conclude from the results that exposure to high RCR levels under immunosuppressed conditions could result in lymphomas. Safety testing for the presence of RCR in production cells and retrovirus vectors is therefore of utmost importance. Current recommendations for the detection of RCR in retroviral vector products are set by the FDA (CBER, 1991,1996, 1998) in the U.S. and the CPMP (CPMP, 1995) in Europe. Specific recommendations for
testing retroviral gene therapy products from CBER indicate that RCR testing should be performed by infectivity or co-cultivation assays using an appropriate cell line such as the Mus dunni tail fibroblast cell for amplification foliowed by detection using the PG4 $\mathrm{S}^{+} \mathrm{L}$ - cell line. Other tests such as a marker rescue assay (Forestell ef al., 1996, Rigg et al., 1996) are also suitable as an alternative to this testing.

Mus dunni cells were already in use at Q-One Biotech in tests for detection of xenotropic retrovirus in murine monoclonal antibody producing cell lines, and it seemed logical to adapt these assays for detection of RCR with A-MLV envelope. The assay format adapted for use at Q -One Biotech for RCR detection was infection or co-cultivation of samples with Mus dumn monolayers, followed by subculture over 5 passages in order to amplify infectious virus. Supernatants harvested after passage 5 of Mus dunni culture are assayed for infectious virus on feline PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$cell monolayers.

The experiments performed in this study were undertaken in order to determine the sensitivity of the assay for detection of RCR and the optimal conditions for assay performance. Factors that may adversely affect assay sensitivity such as presence of interfering non-RCR were also investigated. Mus dunni cells were recommended by the FDA as a requirement for RCR testing as they are susceptible to infection by all known retrovirus classes, thereby allowing detection of anticipated infectious virus (Lander and Chattopadhyay, 1984). It has been reported that ecotropic Moloney MLV (E-MLV) infects Mus dumi cells poorly (Lander and Chattopadhyay, 1984). However, this is not of great concern with respect to human gene therapy protocols, as E-MLV infects cells of murine origin only. In the studies described in this report, comparison of relative sensitivities of mink $S^{+} L^{-}$, Mus dumni and feline PG4 S ${ }^{+} \mathrm{L}^{-}$cells by direct infectivity assay determined that Mus dumi and PG4 cells were of similar sensitivity. Mink S+L- cells were less sensitive than both Mus dunni and PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$cells by approximately 1 log in titre (Table 2.1). Further comparison of extended infectivity assays for the detection of RCR evaluated that Mus dumi and PG4 S'L. assays were comparable in sensitivity to A-MLV infection over five
passages (Table 2.2). These results contrast with studies at Q-One Biotech (unpublished) which indicated that mink $\mathrm{S}^{+} \mathrm{L}^{\prime \prime}$ cells are more sensitive than feline PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$ cells for detection of xenotropic MLV. The Mn ${ }^{2+}$-dependent RT activity and PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$ assay results at each passage of Mus dunni cells infected with A-MLV at low multiplicity suggested that 3 passages are adequate for viral detection, as enzyme activity and infectivity increased to reach a plateau at passage 3 (Figure 2.2). Infectivity results by PG4 S*L- assay of extended Mus dunni supernatants showed no change in virus titre from passage 2 onwards (a virus input of $10^{-1}$ infectious units resulted in confluent foci) indicating the high sensitivity of the assay. The data suggests that the current method for Mus dunni detection assay over five passages may be excessive, and that three passages may prove adequate for testing of supernatants by extended assay. This would be advantageous in reducing the time required for testing of retroviral vector prior to clinical use. However, it is possible that RCR generated from vector producing cell lines may be more fastiduous and slower growing than the wild type A-MILV used as a control in the present experiments.

A potential problem in testing supernatant for the presence of RCR is that the presence of high-itre retroviral vector may potentially affect the sensitivity of detection assays. In this study, wild type A-MLV was titrated through varying concentrations of PALidSN supernantant and tested by PG4 $\mathrm{S}^{+} \mathrm{L}^{-}$assay in order to determine if the presence of replication defective vector can mask the presence of low level RCRs in test supernatants. The sensitivity of the direct PG4 S+L" assay was not affected in the presence of vector supernatant with a titre of less that $10^{5}$ cfu/ml, but there was a loss in sensitivity of the direct PG4 assay in the presence of retroviral vector in excess of $10^{5}$ cfu'ml (Table 2.9). This observation is in agreement with the results of other reports which have indicated that the presence of higin titre vector reduces the sensitivity of detection assays (Printz et al 1995, Cornetta et al., 1993, Forestell et al., 1996). This result was shown to be specific for vector supernatant, as viral titre was not reduced by titration of AMLV in the presence of E-MLV at a titre of $10^{5}$ pfuml. E-MLV uses a diflerent viral
receptor to $\mathrm{A}-\mathrm{MLV}$, therefore the A-MLV receptor can be blocked by vector but not by EMLV (Somerfelt and Weiss, 1990).

Validation of Mus dunni co-cultivation procedures demonstrated that the presence of 1 RCR in $10^{\boldsymbol{\gamma}}$ cells can be detected by direct co-cultivation in tissue culture flasks or indirect co-cultivation using transwell dishes. The presence of vector producer cells in the cocultivation assay was found not to inhibit detection of A-MLV. These results suggest cocultivation and/or extended assays rather than direct assay should be performed for detection of RCR. The results suggest that although testing vector supernatants by infectivity assay provides a useful indication of safety, co-cultivation methods may be more reliable for detection of RCR. However, results of studies reviewed by CBER (Wilson et al., 1997) indicated, suprisingly: that on occcasion positive results in RCR assays have been obtained by assay of supernatant while negative results were obtained in cocultivation assays of the corresponding producer celts. Therefore, although the results of this and other reports indicate that co-cultivation assays for vector-producing cells are more sensitive than supernatant testing for RCR detection (Printz at al.,1995), CBER continues to recommend that both extended assay using vector supernatant, and cocultivation assay using vector-producing cells are performed until further data is obtained (CBER, 1998).

A recent review of the CBER regulations for $R C R$ testing during retroviral vector production and patient monitoring examined data which has been acoumulated since the original guidelines were implemented in 1993 (Wilson, 1997). A number of important points are addressed in this paper. Firstly, the 'marker rescue assay' is recommended as an acceptable alternative assay system to the PG4 SL detection system (Printz et al., 1995, Forestell et al. 1996, Miller et al., 1996). The marker rescue assay is based on the presence of RCR in a sample resulting in the 'rescue' or mobilisation of a vector encoding a marker gene, which can be visuallsed following inoculation onto an indicator cell line. As recommended in previous guidelines (CBER, 1996), the marker rescle assay employed for RCR detection should be validated, and shown to be of similar sensitivity to the PG4

S'L' assay. Secondly, CBER has identified and deposited with the ATCC a producer cell line for production of a standardised RCR stock for use as a control in assays employed in the detection of RCR. The stock is based on the proviral clone Mo-MLV with onv coding sequences replaced by the 4070A strain of A-MLV. This RCR standard will be characterised by electron microscopy to determine the particle count, PG4 $\mathrm{S}^{+} \mathrm{L}$ assay to determine titre and extended Mus dunni assay with $\operatorname{PG4} \mathrm{S}^{+}$. end-point to determine endpoint limiting dilution, in four independent laboratories (Wilson et at., 1997). The use of this standard may have implications regarding the volume of supernatant required to be tested. The addendum to the CBER guidelines published in 1993 (CBER, 1996) recommends that a volume of $5 \%$ of the total vector-containing supermatant in each lot of manufactured vector product is amplified on Mus dunni cells, followed by PG4 $\mathrm{S}^{+} \mathrm{L}$ assay to detect RCR. However, knowing the sensitivity of the assay in relation to the standard, the criteria limits for $R C R$, and the probability limits for detecting $R C R$, the required test volume can be calculated from the Poisson distribution (assuming the RCR is characterised by the Poisson distribution) (Wilson et al., 1997). However, it is probable that a standard sensitivity of the infectivity assay would be difficult to validate given that different producer/cell-vector combinations may produce different levels of inteference in RCR detection systems. The results of the RCR testing presented in this report would require to be re-validated using the new vector and producer cell line controls that have been deposited with the ATCC.

CBER is at present considering evaluation of a standard RCR-producing cell line for use in validating the sensitivity of co-cultivation assays. The guidelines (CBER, 1996) currently recommend co-cultivation of $1 \%$ or $10^{8}$ (whichever is less), of the total pooled post-production cells or ex vivo transduced cells, with a cell line permissive for MLV replication eg. Mus dunni cells, and testing the resuling supernatants by PG4 $\mathrm{S}^{+} \mathrm{L}^{\prime}$ assay. Should a standard be produced, the statistics used for determining the volume of supernatant to be tested above could also be applied to determine the number of cells to be used in the co-cultivation assay, again, depending on the sensitivity of the assay. The
results presented in this report for validation of the co-cultivation assays indicated the high sensitivity of the assay, suggesting that a detection limit of 1 infected cell in a iotal of $10^{7}$ cells was attainable. Should the standard be produced, these results would also require re-validation to determine any difference in sensitivity of the co-cultivation assay when using the standard control. For ex vivo cells, there are a number of additional issues which should be taken into consideration, such as the number of cells in the total patient dose, and the length of time that the cells are in culture following transduction. Further data and discussions are required, in addition to production and characterisation of a cocultivation standard and validation of assay detection systems, before such recommendations for co-cultivation procedures can be implemented.

Despite implementation of the above measures to minimise risk of RCR formation which have increased confidence in safety of the use of retroviral vectors, additional monitoring of risk is required by monitoring patients receiving treatment for evidence of RCR. Viral infection may be detected by assaying for either free virus, viral antigen, or viral antibodies which may be present in the patient's serum. Therefore, clinical trial patients treated with recombinant retroviral vector are monitored for evidence of $R C R$ using immunological and/or polymerase chain reaction (PCR)-based methods. If productive infection with resultant viraemia occurs, viral DNA or RNA is deteciable in peripheral blood lymphocytes (PBLs) by PCR, while viral antibody in patient serum can be detected by serological assays such as Westem blot or ELISA. The ELISA assay is quicker and less expensive to perform, but cannot distinguish between an immune response induced by direct vector treatment or RCR infection and thus has the potential to generate false positives induced by vector treatment, or false negatives in immunocompromised subjects (Donahue et al., 1992). Ideally, a PCR assay should be used for patients into whom vector has been directly administered, and ELISA for detection of RCR in the sera of patients receiving ex vivo treatment (Martineau et al., 1997). According to CBER, European Regulatory Groups, and the Gene Therapy Advisory Committee (GTAC), the consensus decision on patient monitoring is to perform both PCR assay for viral env (or gag) sequences on PBL
samples, and Western blot or ELISA assay for detection of viral antibody to env proteins on serum samples. in the case of a positive result, where the possibility of a false positive has been eliminated, co-cultivation of PBLs with Mus dunni cells should be performed in order to detect infectious refrovirus. Patient monitoring should be performed 6 weeks, 3 months, 6 months, and 12 months after each treatment is complete, and annually after the first trial year (CBER, 1996). The frequency of testing performed, particularly in early stages of treatment is currently under review (Wilson et al., 1997). In addition, Wilson et al. (1997) recommend that assays employed in patient monitoring should be chosen with specific consideration to the patient population and mode of vector administration. For example, serological methods may be misleading in an immunosuppressed patient population.

In the recent study in which RCR was erroneously detected as an artifact of the detection system, patient screening following administration of retroviral vector suggested the presence of RCR that originated from human haematopoietic cells (Miller et al., 1996). Characterisation of the viruses, which were detected in all of the patients tested, showed all to be almost identical. Interference analysis suggested that this virus represented a new murine retrovirus group, which the researchers named Mus dunni endogenous virus (MDEV). It was reported that hydrocortisone or 5-iodo-2-deoxyuridine (IDU) can activate production of this virus. The presence of these agents in samples may therefore give rise to false-positive results in the RCR assay. However, a limited study at $Q$-One Biotech has failed to induce increased reverse transcriptase expression in Mus dunni cells following IDU treatment. The occurrence of such false positives may cause costly and timeconsuming delay to clinical trials. An additional disadvantage with the use of Mus dunni cells is that they cannot be infected by some non-murine retroviruses, such as GaLV or FeLV (Q-One Biotech, unpublished data), on which some retrovirus packaging lines are based. There is a requirement for infectivity or marker rescue assays to be developed which detect retroviruses of different tropism and which are not prone to false-positive results. Marker rescue assays could also be employed as confirmatory assays to follow
co-cultivation of samples with MLV-permissive cell lines that resulted in suspected RCR infection.

### 5.3 Production of retroviral vector

The ideal retroviral vector should exhibit the following characteristics; a high titre to enhance transduction efficiency and reduce production costs, tissue-specific delivery of the therapeutic gene, optimal and sustained expression of the transgene (which can be regulated by physiological signals), and insertion into a specific site of the genome. Thus it is important to optimise methods for retroviral vector production and transduction. Cell banks used to produce retrovirus vector must be qualified, and the vector itself must be characterised and shown to be free of contaminating agents and substances. Evaluation of the vector includes constructing growth curves using appropriate cell culture medium and performing optimisation studies for production. Each producer cell line should be individually evaluated to assess optimal cell culture conditions and maximise and maintain production levels. Also, the growth and production characteristics of the producer cell line should be investigated by a variety of scale-up methods, such as roller bottles, microcarriers, and fermenters, In the case of the model vector used in these studies, the cell line was adherent, therefore small scale studies using tissue culture flasks, roller bottles and Fibra-cel disks were performed to optimise vector production and to set the parameters for scale-up. The parameters identified in the evaluation are used to scale-up production using cost-effective and appropriate technology.

In this study, initial titres resulting from the model producer cell line PALidSN were determined by NIH- 3 T3 titration to be in the region of $10^{5} \mathrm{cfu} / \mathrm{ml}$ for both tissue culture flasks and roller bottle systems. PALidSN cells produced retroviral vector in the roller bottle culture system at an average of $4.7 \times 10^{5} \mathrm{cfu} / \mathrm{ml}$ (Table 3.10 , roller botile 1 , mean viral vector titre). Typical cell culture harvest titres previously reported for producer cells constructed using the PA317 packaging cell line were reported to be in the region of $10^{L}-10^{6} \mathrm{cfu} / \mathrm{ml}$, but titres of up to $2 \times 10^{7}$ cfu/ml have been achieved when cell culture
was scaled up using the Cellcube system (Kotani et al., 1994). The feasibility of scalingup culture of PALidSN cells in Fibra-Cel ${ }^{10}$ disks in a Techne spinner flask resulted in a viral vector titre of $1 \times 10^{6} \mathrm{cfu} / \mathrm{ml}$ in a sample harvested after 120 hours cell culture. The large volume of circulating medium owing to the disks not being tightly packed may explain the large number of cells in suspension (Table 3.12). Although there were some problems with non-adherence of PALidSN cells to the disks, cell growth improved following feeding of the cells with fresh media. Different systems used to increase production have both advantages and disadvantages, and vary in their potential for manufacturing scale-up. Culture in roller bottles is straightforward, but relatively labour intensive in comparison to some recently manufactured systems. One of these is the microcarrier system (Pharmacia Cytodex $3^{\text {TM }}$ ) which consists of a surface layer of denatured collagen, covalently bound to a matrix of cross-linked dextran spheres, 18.5 g of which is equivalent to 100 roller bottles (surface area $4600 \mathrm{~cm}^{2} / \mathrm{g}$ ). Another is the New Brunswick Celligen ${ }^{\text {TK. }}$ fermenter, which may provide an improved vector yield via controlled cell growth. The New Brunswick Celligen ${ }^{\text {mM }}$ system is composed of fibrous polyester disks, of which 70 g are the equivalent to 100 roller bottles. Both this and the New Blunswick Celigen ${ }^{\text {™ }}$ system are disposable and use a smaller amount of medium more efficiently than roller bottle culture. These systems also allow culture conditions to be easily altered, and carry a lower risk of potential contamination than roller bottles. The Celligen ${ }^{\text {rM }}$ system also allows easy monitoring of media circulation, including media input as and when required.

An improved production strategy for retroviral vector supernatants was recently described which is based on gene transfer potential rather than vector titre (Forestell et al., 1995). A packed-bed bioreactor operated in perfusion mode was developed, which is easily scaled-up and produces large volumes of supernatant with high transduction efficiency. The supply of medium by continuous perfusion limits the time that virions are exposed to inactivating temperatures, and ensures a constant supply of nutrients, as well as continually removing inhibitors. This system could be applied to all
bioreactors that support high cell densities and can be operated in a perfusion mode.

Adaptation of cell growth to suspension culture is a goal of large-scale processes for viral vector production. For some cell limes, such as 293 cells, which are normally adherent, simply adapting the cells to serum-free media causes them to become lightly adherent or non-adherent. Suspension culture is more easily scaleable and adaptable to downstream processing, and also allows for higher density cell growth.

### 5.4 Use of serum and trypsin in culture media

Raw materials used in in vitro cell culture include components such as cell cuiture media, including synthetically manufactured supplements, such as aming acids, and materials of animal origin, such as bovine serum. In general, eukaryotic cells require the addition of serum to cell culture medium in order to grow in vilro. Serum is a complex mixture of a large number of constituents such as essential growth factors and nutrients. The use of serum in cell culture media poses a number of problems, including the addition of proteins to the culture medium, variability in the composition and quality of different batches, and risk of contamination with adventitious agents from the source animal (McLean et al., 1997). Another raw material of concern in culturing anchorage-dependent cells such as the PALidSN cell tine is trypsin, which is used to dissociate the cells. Trypsin is generally of porcine origin, in which the most common extraneous agent of concern is porcine parvovirus (PPV). Regulatory authorities such as the FDA and CPMP have ruled that sera must be sourced from selected countries such as Australia, New Zealand and the United States, where bovine spongiform encephalopathy (BSE) is not known to exist. A certificate of origin must be supplied, as well as information on the health status and age of the donors, and details on the manufacturing process. Internal quality control (QC) testing includes cell growth performance tests, testing for absence of bovine viruses, $B S E$, bacteria, fungus, mycoplasma and endotoxin contamination. The main viruses of concern in bovine
material are the pestivirus bovine viral diarrhoea virus (BVDV) and bovine polyomavirus (BpyV), which are widespread contaminants in bovine serum. Requirements for production include slaughterhouse licenses, adequate training of personnel, controlled transport of blood to the processing plant and extraction of serum using aseptic techniques, as well as sterile filtration and filling, and provision of full documentation.
in the studies presented in this report, the retroviral vector producer line, PALidSN, was initially examined for the effect of varying culture media serum and glucose content on cell growth and viral vector titre. Of the four media formulations examined (DMEM containing $4500 \mathrm{mg} / \mathrm{L}$ or $1000 \mathrm{mg} / \mathrm{L}$ glucose supplemented with either FBS or NBS), optimal cell yield coupled with lowest doubling time was best achieved by culturing PALidSN cells in high glucose DMEM supplemented with 10\% FBS (doubling time during exponential growth of 13.99 hours and a highest cell yield of $2.64 \times 10^{5}$ viable cells). Correlation between the the results of the enzyme and infectivity assays was observed, in that the highest value of IDUA enzyme activity per milligram of protein ( $14,940 \mathrm{U} / \mathrm{mg}$ ) and highest viral vector titre measured by NIH-3T3 assay ( $7 \times 10^{4}$ cfu/mi) were obtained from supernatant harvested from cells after 96 hours culture in high glucose DMEM containing 10\% FBS (Figure 3.1). Results of a study comparing viral titres resulting from PALidSN cells cultured in tissue culture flasks in media containing either $5 \%$ or $10 \%$ serum content indicated that the effect of reducing serum concentration on viral vector tifre was minimal (Table 3.5). The possibility of further reducing, or eliminating, serum during culture of PALidSN cells was indicated when reduction of serum concentration to $1 \%$ FBS in roller bottles (section 3.4.3) also produced a comparable viral titre ( $2 \times 10^{5} \mathrm{cfu} / \mathrm{mt}$ ), although an extended culture period was required to reach this titre ( 12 days). This extended culture period may be explained by the lower availability of nutrients at the reduced serum concentration.

In studies reported here in which PALidSN cells were adapted to culture in serum-free media, cells adapted well to Ultraculture serum-free media, but not to CHO-S-SFMII,

QBSF51 or QBSF56 media. This suggests that a specitic formulation is required for particular producer cell lines, indicating that evaluation studies for adapting cells to various media formulations would be necessary for individual producer cell lines. When the PALidSN cell line was cultured using Ultraculture serum-free media, the cells required daily feeding with fresh media in order to ensure a viral vector titre of at least $1 \times 10^{4} \mathrm{cfu} / \mathrm{ml}$ at an early stage of culture (Table 3.9). Leaving the culture for four days (Flask 2) resulted in a poor viral vector titre and deterioration of the cells. The culture did not recover until four days of daily feeding had occurred (Days 7 to 10) and the highest titre obtained was $7 \times 10^{4} \mathrm{cfu} / \mathrm{ml}$. Flask 3 did not recover from the first seven days without feeding and viral vector titres were poor. Therefore, cells cultured in serum-free media appear to require a longer culture period, and more regular media replacement than cells cultured in serumcontaining media. When the results of this study are compared to viral production in a serum-based system, there is on average a reduction in titre from $4.7 \times 10^{5}$ cfu'ml (Table 3.10, roller bottle 1) to $1.1 \times 10^{5} \mathrm{cfu} / \mathrm{ml}$ (Table 3.9, roller botle 1 ) in the serum-free system. Although the titre is slightly lower in the serum-free system, the absence of serum facilitates the downsteam processing, and the material produced also has the potential to undergo concentration techniques. The feasibility of serum-free cell culture indicated in this study suggests that a completely serum-free production process is possible. However, it should be noted that some cell lines are more easily adapted to culture in serum-free media (SFM) than others. In addition, media termed SFM may contain serum fractions, and are therefore at risk of contamination by the same agents as in whole serum (Hodgson, 1995).

## 5.5 <br> Production methods to increase viral titre

A limitation in using retroviral vectors is the relatively low titres of virus which have been obtained from existing packaging lines ( $10^{5}-10^{7}$ cfu/ml) (Crystal, 1995). A complete discussion of vector design to increase titre is outwith the scope of this document However, complementary packaging cells and vector constructs have been developed
which are reported to be of higher titre and safer than previously described producer cell lines (Morgenstern et al. 1990). Variations in the methods used in production of retroviral vectors have been employed in attempts to increase viral titre. Production at reduced temperature has been reported to improve vector titre (Kotani et al, 1994). However, in the limited study on production temperature for the model vector PALidSN in this report, harvesting supernatant from ceils incubated at for 3 days at $32^{\circ} \mathrm{C}$ rather than $37^{\circ} \mathrm{C}$ did not result in an increase in viral titre. This is in contrast with the results of Kotani et al. (1994), who reported a 5 - to 15 -fold increase in vector produced at $32^{\circ} \mathrm{C}$ in comparison to $37^{\circ} \mathrm{C}$, and Olsen and Sechelski (1995) who reported an 8 -fold increase in vector production at $32^{\circ} \mathrm{C}$ in comparison to $37^{\circ} \mathrm{C}$. In their study, Kotani et al. (1994) reported that viral production rate was increased, and survival improved at $32^{\circ} \mathrm{C}$. This was observed to be the case in this study, where viral inactivation was observed to be greater in supernatants incubated at $37^{\circ} \mathrm{C}$ rather than $32^{\circ} \mathrm{C}$ (Figure 4.1). However, cultivation of producer cells at $32^{\circ} \mathrm{C}$ rather than $37^{\circ} \mathrm{C}$ is more likely to lower the rate of viral thermal inactivation rather than increase virus production (Forestell et al., 1995j. Growth at $32^{\circ} \mathrm{C}$ results in retroviral vector supernatants with higher transduction efficiency by reducing the ratio of inactivated to transducing virus particles (Forestell et al., 1995). Different clones of retroviral vector vary widely in the vector titre produced from them. Forestell ef al. (1995) suggested that production at $32^{\circ} \mathrm{C}$ should be combined with harvesting supernatants at short timeintervals. They suggested that retroviral vector supernatants reach their maximum transduction efficiency between 3 to 5 hours following medium exchange. This contradicts the recommendations of Kotani et al. (1994), which are that supernatant should be harvested at 48 -hour intervals. Forestell et al. (1995) also suggest that shorter incubation times would limit the accumulation of inhibitors of producer cell metabolism or non-viral factors that may reduce transduction efficiency.

Other potential methods that attempt to increase viral vector titre utilise agents that are known to stimilate virus production, such as sodium butrate ( NaB ) (Olsen and Sechelski, 1995) and TPA (Harada et al., 1986). In this study, a three-day induction period of

PALidSN cell cultures with either NaB or TPA did not have an effect on viral titre (Table 3.6). NaB was reported to increase production of a retroviral vector from between 20 -fold to greater than 1000 -fold, depending on the producer clone, resulting in vector titres of approximately $10^{7}$ infectious units $/ \mathrm{ml}$ (Olsen and Secheleski, 1995). Therefore, different producer lines would require assessment for susceptibility to viral inducing agents. NaB exerts its effect on virus production by affecting viral gene expression, although its inhibitory effects on the cell cycle may also be important in some cases (Shadan at at., 1994). The increase observed by Olsen and Secheleski (1995) was partially accounted for by an increase in steady-state levels of full-length vector RNA within the producer cells. With some of the producer cell lines, combining NaB treatment with lowering the temperature of the virus harvest to $32^{\circ} \mathrm{C}$ resulted in an apparent synergistic increase in virus production. The effect of NaB treatment, however, is not consistent. When the producer cell line contained a different vector construct, NaB treatment resulted in only 2 fold to 10 -fold increase in viral titre. In the limited experiment on PALIidSN producer cells reported in this study, no increase in viral titre was obseryed with NaB treatment. NaB treatment has been shown to induce production of HIV (Antoni at ai., 1994), but not Friend leukaemia virus (Zajac-Kaye at al., 1986). Therefore the effects of NaB on gene expression may be virus specific or prompterlenhancer and cell-type dependent. The treatment may be useful to increase vector production from selected stable producer cell lines, but it will be necessary to validate the safety of producer cells and retroviral vector supernatants prepared in the presence of NaB .

The use of bioreactors to propagate retroviral producer lines has also been shown to increase viral production up to five-fold (Kotani et al. 1994). Culture in bipreactors could be combined with other methods reported to increase viral titre such as incubation with deoxynucleotides to stimulate de novo reverse transcription (Zhang et al.,1995) or the addition of dexamethasone or NaB to stimulate viral production from retrovirus packaging cell lines (Pages et al.,1995). However, different producer lines would require individual assessment for susceptibility to viral inducing agents.

### 5.6 Concentration of retroviral vector

The problem of low titre virus may be partially addressed by retrovirus concentration methods (Paul et al., 1993; Kotani et al., 1994). It has been suggested that retroviral particles may be limited in their ability to be concentrated by ultracentrifugation owing to the possibility of damage to the envelope protein (Burns et al., 1993). One approach to overcome this has been the use of pseudotyped retroviruses containing vesicular stomatis virus (VSV) G protein, but the toxicity of this protein may inhibit sustained virus production (Burns et al., 1993). Bowles et al. (1996) reported the recovery of infectious amphotropic virus at approximately $96 \%$ following low speed centrifugation, whereas, after ultracentrifugation, only $50 \%$ of the virus was recovered. Virus particles which were initially concentrated by low speed centrifugation ( $6,000 \times \mathrm{g}$ for 16 hours at $4^{\circ} \mathrm{C}$ ) were further purified by sucrose gradient centrifugation. The combination of low-speed sedimentation and sucrose banding steps resulted in titres up to 500 -fold higher than in the original starting supernatant. Increasing viral titres from $10^{6}-1-2 \times 10^{7} \mathrm{cfu} / \mathrm{ml}$ was reported to result in a proportional increase in viral transduction activity in vivo, but a decrease in transduction efficiency was reported in virus particles concentrated beyond $10^{7}$ ffurml. Jacomino et al. (1997) postulated that in both their study and that of Bowles of al. (1996), the decreased potency of highly concentrated retrovirus particles may have been caused by concentration of toxic materials during centrifugation. Le Doux ef af (1996) identified proteoglycans secreted by packaging cell lines as one of the interfering substances present in retroviral stocks. It is possible that these proteoglycans may have been concentrated by being bound to retroviral particles during the purification procedure. A producer cell line based on recombinant amphotropic retroviral vector was recently reported to produce a viral titre of up to $2 \times 10^{R}$ cfu/ml without inclusion of a concentration step (Kitten of al., 1997). The producer cell line was constructed with particular attention to ensuring efficient in vivo gene transfer to the liver. No decrease
in transduction efficiency was observed with higher titre vectors in the study by Kitten et al. (1997), which is probably explained by the absence of a concentration step.

Another physical method used to increase viral titre examined in this study was ultrafiltration. Retroviral vector supernatant harvested from PALidSN cell cultures was successfully concentrated by filtration in two separate studies using SARTOCON MICRO 100 KD fiters (Table 3.13 and 3.14). In one study, the volume of supernatant was concentrated 15 -fold, resulting in a 10 -fold increase in viral vector titre (from $2 \times 10^{5}$ c.f.u/ml to $2 \times 10^{6}$ cfufml). This represents a level of $67 \%$ recovery of infective viral particles. In the other study, the volume of supernatant was concentrated 4.3 -fold, resulting in a 5 -fold increase in viral vector titre (from $6 \times 10^{5} \mathrm{c} . \mathrm{f} . \mathrm{u} / \mathrm{ml}$ to $3 \times 10^{6} \mathrm{cfu} / \mathrm{ml}$ ). Therefore, no loss of vector activity was determined by NIH/3T3 assay following concentration by ultrafiltration in the second study. In both studies, virus was not detected in the fillrate that was drawn from the system. The samples were pre-filtered prior to titration, and the titration assay performed in the presence of antibiotics. Concentration of MLV by up to 24 -fold was also demonstrated by Kotani et al. (1994) using 300 kD membrane filtration, with over $90 \%$ recovery of infective viral particles. These results are encouraging for concentration of retroviral vectors by ultrafiltration, but individual producer cell lines would require stability testing to ensure that infectious viral particles can be recovered. However, as with concentration by centrifugation, a recent study reported that increasing end-point titre by ultrafiltration of amphotropic retroviral vector supernatants does not improve, and can even reduce, transduction efficiency (Forestell et al., 1995). In this study, dilution of concentrated supernatant restored the level of transduction efficiency, suggesting that an inhibiting agent had been coconcentrated with the virus particles. This may have been caused by the presence of non-transducing virus particles causing a decrease in transduction efficiency without affecting the virus titre. As the study by Foresteil ef al. (1995) reported that lowered transduction efficiency is only observed in supernatants from amphotropic producer or packaging cell lines, the inhibition may be specific to the viral envelope protein.

### 5.7 Transduction of retroviral vector

As observed above, increased virus concentration does not always lead to increased transduction rate. Rather, there is an optimal titre, after which increased concentration does not lead to increased transduction rates (Chuck and Palsson, 1996). The number of cells that are transduced, however, is dependent on viral titre and polybrene levels. Recently reported data suggests that $10^{8}$ c.f.u. recombinant retrovirus is the finite amount which can be safely and efficaciously administered through portal vein infusion in the rat (Bowles et al., 1996).

Retrovirus mediated gene transfer is normally performed using static transduction methods, where retroviral supernatant is inoculated onto a bed of target celis. However, this system is limited by Brownian motion of the retrovirus, decay of the retrovirus, and absorption of retrovirus by the target cells. By relying on Brownian motion to deliver the retrovirus, the rate of virus delivery is largely determined by the proximity of the virus to the target cell, and the half-life of the virus. The limitations of Brownian motion can be overcome by directing the motion of the virus to the target cells using flow-through transduction methods (Chuck et al., 1996). This method is achieved using a fluid flow of retroviral supernatant passing through a porous membrane that supports the target cells. This results in an increase in the number of successful gene transfer events which is much less sensitive to virus concentration than the static transduction method. Reproducibly high numbers of transduced cells can be obtained with a wide range of virus titres. Additional advantages in using flow-through transduction methods are that a smaller volume of viral supernatant is required for gene transfer and that the method can be carried out without the use of polybrene. (Chuck and Palsson, 1996).

### 5.8 Limitation of selectable markers

Selectable markers permit positive selection in that the selecting agent does not kill the cells of interest. One of the most frequently used selectable markers is neo (contained in the PALidSN cells in this study), which confers resistance to a group of antibiotics (including 0418 ) which are toxic to cells. Two separate resistance genes found in certain bacterial strains can be functionally transferred into eukaryotic cells to permit growth in media containing G418. An issue of concern in the use of retroviral vectors containing neo as a marker gene is the variability of titration on NIH 3 T3 cells and a number of factors have to be standardised in order to achieve reproducible results. Firstly, the NH 3 T3 cells must be in exactly the same state of growth before infection with vector, as G418 selection is dependent on cell density and non-resistant cells can survive in otherwise toxic concentrations if they are crowded on a tissue culture dish. It should be ensured that sufficient clones are counted for statistical accuracy and that the G418 antibiotic used to select neo resistant cells has been corrected for specific activity. The specific activity of the drug is batch dependent, therefore each lot should be independently titrated on NIH 3 T3 cells to cetermine the minimum cytotoxic concentration for use in the assay. Its effects should be titrated on test cells over the range $200 \mu \mathrm{~g}-2 \mathrm{mg} / \mathrm{ml}$. The problems encountered in the use of $n e 0$ as a marker suggest that other markers may be more appropriate, for example $\operatorname{lacZ}$, for colony counting or iuciferase, which would enable automated counting.

Inclusion of a second gene as a dominant selectable marker may have unwanted effects in gene therapy studies. Firstly, the presence of a two promoters in a retrovirus may result in interference between the two transcriptional units, causing 'promoter suppression' (Emerman and Temin, 1984). Secondly, expression of selectable markers in vivo may induce host immune responses that could eliminate transgene-expressing cells. Some
retroviral vectors have no selectable marker with the result that titration of the vector is based on a measure of the gene product, for example enzyme activity or protein concentration. An example of this is included in this study where IDUA enzyme activity in PALidSN cells was determined by infection of human fibroblast MPSI cells, and enzyme activity in cell extracts measured by fluorimetry. Enzyme activity measured per milligram of protein was comparable with viral vector titres measured by NIH-3T3 titration (section 3.3.1). In such cases, measurement of titre by enzyme activity results in the characterisation of virus-producing clones being more laborious. A simple and reliable assay has recently been developed to identify clones producing recombinant retrovirus that lack dominant selectable markers (Onodera et ad., 1997). This is based on a validated two-day RNA dot-blot procedure, the kitres obtained by which were demonstrated to correlate with titres obtained by conventional G418-resistant cfu/ml, and by Southern analysis of HeLa cells transduced with supernatant from each clone. In contrast with many conventional assay systems, the RNA dot-blot method allows comparison of titres from different packaging cell lines, therefore is useful as a method for directly comparing titres obtained from different producer clones.

### 5.9 Optimisation of stability of retroviral vectors

Extension of the shelf-life of pharmaceutical products, or storage at ambient temperatures would greatly benefit the pharmaceutical industry. Thus, it is important to optimise the stability of retrovirus vectors in order to maximise their clinical application. The European Agency for the Evaluation of Medicinal products (EMEA) recently implemeted 1 CH documeni Q5C, which provides notes for guidance on stability testing of biological products. Stability during the intended storage period must be confirmed; biological activity must be maintained and degradation avoided. Thus a minimum of six months stability study data should be provided for biological producis to obtain market authorisation. As inactive virus particles can reduce transduction efficiency of retrovial vectors, storage conditions should be optimised to reduce the accumulation of these
competitor particles in reiroviral vector supernatants (Forestell et al., 1995). Forestell et ai (1996) repoted that supernatants incubated at $0^{\circ} \mathrm{C}$ for 4 days lost $50 \%$ of their gene transfer potential although the titre determined by infectivity remained stable. It was therefore recommended that retroviral vector supernatants should be rapidly frozen and stored at $-80^{\circ} \mathrm{C}$ shortly after harvesting.

In this study, the stability of retroviral vector from PALid SN cells and wild-type A-MLV in culture supernatants was determined by measuring titre following short or long term storage at different temperatures. Retroviral vectors have been reported to be more stable at $32^{\circ} \mathrm{C}$ than at $37^{\circ} \mathrm{C}$ and this was found to be the case with PALidSN cells where viral titre decreased more rapidly in supernatants incubated at $32^{\circ} \mathrm{C}$ rather than at $37^{\circ} \mathrm{C}$ (section 5.5). The half-ife of retroviral vectors has been reported to be 3.5 to 6.5 hours at $37^{\circ} \mathrm{C}$, dependent on the vector construct (Paul et al., 1993). The half-life of the amphotropic vector from the packaging cell line $\psi$ CRIP was measured to be between $5-8$ hours at $37^{\circ} \mathrm{C}$, while the half-life of another amphotropic retroviral vector at $37^{\circ} \mathrm{C}$ was recently determined to be 3.5 hours (Jacomino et al., 1997). In another study a reduction of $92 \%$ in vector titre after 24 hours at $37^{\circ} \mathrm{C}$ was reported, whereas no significant reduction was observed aitter 48 hours at $32^{\circ} \mathrm{C}$ (Kotari et al., 1994). In this study, vector titre was observed to decrease by $98 \%$ after 24 hours at $37^{\circ} \mathrm{C}$, and by $70 \%$ after 24 hours at $32^{\circ} \mathrm{C}$. After 3 days a low titre was detected in vector at $32^{\circ} \mathrm{C}$ whereas vector at $37^{\circ} \mathrm{C}$ was completely inactivated. In the present study the stability of the vector at $4^{\circ} \mathrm{C}$ was found to indicate that loss in viral titre over 3 days storage at $4^{\circ} \mathrm{C}$ is insignificant. These results are comparable to a report by Bowles et al. (1996), where the loss of viral titre by overnight storage at $4^{\circ} \mathrm{C}$ was found to be consistently less than $10 \%$. The stability of the viral titre of virus and vector supernatants at $4^{\circ} \mathrm{C}$ or $32^{\circ} \mathrm{C}$ remained constant for at least the first eight hours of incubation, which is also similar to previously reported data (Forestell et al. 1995).

The mechanism by which MLV-derived vectors decay is not clear, although inactivation of

HIV has been proposed to occur by shedding of glycoproteins from the lipid envelope of virus particles (Layne at al., 1992). Loss of infectivity would directly result from loss of ability to bind to cellular receptors. The short half-life of MLV-derived retroviral vectors significantly affects their ability to transduce genes successfully by limiting the distance that they travel before decaying (Chuck and Palsson, 1996). Therefore, a better understanding of the mechanisms that determine retroviral stability will be useful in increasing the efficiency of gene transfer. The presence of polybrene has been reporied to significantly affect the kinetics of retroviral decay, owing to differences observed in the pattern of loss of retroviral activity in the presence and absence of polybrene (Andreadis and Palsson, 1997). In the presence of a high concentration of polybrene ( $13.2 \mu \mathrm{~g} / \mathrm{ml}$ ), the kinetics of decay were exponential from the beginning of the decay period, whereas in the absence of polybrene, loss of retroviral activity did not follow simple exponential decay. The dynamies of viral inaclivation showed a sigmoidal decrease, with an initial phase during which the transduction efficiency remained constant prior to exponential decay. The sigmoidal pattern of retroviral decay is in agreement with the pattern of decay reported for HIV-1 (Layne et al., 1992). Two alternative mechanisms were proposed to address the data suggesting that the presence of polybrene affects the kinetics of retroviral decay. Polybrene may induce virus aggregation, winich reduces the effective concentration of retroviral particles, or, neutralisation of polybrene (positively charged) by FBS components (negatively charged) could decrease the effective concentration of polybrene. These results outline the importance of considering the processes that may occur in solution during the steps of viral binding and entry into the target cell, and their effect on the stability of retroviral particles.

Freeze drying, or dehydration, is a process where solvent is physically removed from a sample such that the solids are maintained in an essentially dry (eg. water-free) condition. One of the benefits of freeze drying is to aid the long-term storage of pharmaceuticals, while retaining their biological activity. There are three steps involved in freeze drying a product. Firstly, the product is frozen solid, thus the water present in the material is
converted to ice. Next, the ice formed in freezing is removed by conversion from solid to vapour (sublimation). Thirdly, water which is strongly bound to the solid and therefore not frozen, is converted to vapour and removed from the product (desorption). The presence of sugars may aid freeze drying by protecting cell membranes and proteins during the desiccation process. Trehalose, a colourless and odour-free disaccharide constisting of two glucose molecules, is currently being applied to the improvement of stabilised vaccines, hormones, and blood components.

In this study the ability of trehalose, along with glucose, mannose and sorbitol to stabilise retroviral vector supernatant stored at -80 C and 4 C was examined. Viral vector titres obtained were found to be similar in the presence and absence of sugars. However, the study was not continued over a long enough period of time to draw any conclusions from the effect of the presence of sugar stabilisers.

### 5.10 Overview and future directions for retroviral gene transfer

As stated in a recent review, appropriate vector design and mode of delivery remain the main obstacles to successful human gene transfer (Crystal, 1995). The ultimate goal of gene therapy using retroviral vectors is to obtain itssue and cell specific targeting and regulated expression of the appropriate gene that is both safe and regulated. The first step in attempting to target retroviral vector gene delivery is in pseudotyping the packaging cell lines. The envelope of A-MLV can be used to deliver genes to human haemopoetic stem celis, however, not all cell types can be infected by A-MLV. The tropism of vectors can be increased by the use of other retroviral envelope genes or the glycoproteins of other viruses capable of forming pseudotypes

In the present study extensive experiments were pertormed to validate co-cultivation and infectivity assays for RCR detection using Mus dunni cells and the PALIDSN retroviral vector producing cefl line. Further limited studies were performed on the

PALIDSN cell line that elucidated the characteristics of the cell line with respect to optimal conditions for vector production and on the vector with respect to comparative stability to temperature and concentration. The limited nature of the observations made here preclude general conclusions regarding optimal ennditions for production and storage of retroviral vectors. It is probable that each producer cell-vector combination should be individually evaluated with respect to each of the parameters discussed above.

Further studies should be undertaken to validate the Mus dunni or a suitable marker rescue assay for RCR detection using the reference RCR producing cell line deposited by CBER with the ATCC.

## 6.0 REFERENCES

Aldridge, 5. 1995. Trehalose boosts prospects for improved biopharmaceuticals and vaccines. Genetic Engineering News March 15 th: 10-11.

Anderson, W.F., R.M. Blaese and K. Culver. 1990. The ADA human genc thorapy clinical protocol. Human Gene Therapy 1:331-362.

Anderson, W.F., G.J. M"Grarrity and R.C. Moen. 1993. Report to the NIH Recombinant DNA Advisory Committee on murine replication-competent retrovirus (RCR) assays. Human Gene Therapy 4:311-321.

Anreadis, S and B.O. Palsson. 1997. Coupled effects of polybrene and calf serum on the efficiency of retroviral transduction and the stability of retroviral vectors. Human Gene Therapy 8:285-291

Antoni, B.A., A.B. Rabson, A.B. Kinter, et al. 1994. NF-KB-dependent and -independent: pathways of HIV activation in a chronically infected 7 cell line. Virology 202:684-694

Barsoum, J., R.Brown, M.McKee, and F.M. Boyce. 1997. Efficient transduction of mammalian cells by a recombinant beculovirus having the vesicular stomatitis virus $G$ glycoprotein. Human Gene Therapy 8:2011-2018

Bassin, R.H., S. Ruscetti, 1. Ali et al. 1982. Normal DBA/2 mouse cells sythesise a glyccoprotein which interferes with MCF virus infection. Virology 123:139-151

Bender, M.A., T.D. Palmer, R.E. Gelinus and A.D. Milier. 1987. Evidence that the packaging signal of Moloney murine leukaemia virus extends into the gag region. J. Virol. 61: $1639 \cdot 1646$.

Borger, S.A. and A. Bernstein. 1985. Characterisation of a retrovirus shuttle vector capabie of either proviral integration of extrachromosomal replication in mouse cells. Mol. and Cell. Biol. Feb 1985:305-312.

Bhatt, P.N., R.O. Jacoby, H.C. Morse 1 月 and A.E. New. 1986. 'Murine leukaemia viruses'. In: Methook in virohogy, Academic Press NY, pp. 349-388.

Bowles, N.E., R.C. Eisensmith, R. Mohuiddin, et a/. 1996. A simple and efficient method for the concentration and purification of recombinant retrovirus for increased hepatocyte transduction in vivo. Human gene therapy 7:1735-1742

Burns, J.C., T. Friedmann, W. Driever, et a/. 1993. Vesicular stomitis G glycoprotein pseudotyped retroviral vectors: Concentration to very high titre and efficient gene transfer into mammalian cells and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90:80338037.

Carpenter C.B. 1990. Immunosuppression in organ transplantation. N. Engl. J. Med. 322:1224-1226

Caruso, M., Y. Panis, S. Gagandeep, et al. 1993. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc. Natl. Acad. Sci. USA. 90:7024-7028.

Centre for Biologics Evaluation and Research (CBER), Food and Drug Administration, U.S. Points to Consider (PTC) in Human Somatic Cell Therapy and Gene Therapy, 1991.

Centre for Biologics Evaluation and Research (CBER), Food and Drug Administration, U.S. Points to Consider (PTC) in the characterisation of cell lines used to produce biologics, 1993. Draft points to consider in gene therapy, 1996.

Centre for Biologics Evaluation and Research (CBER), Food and Drug Administration, U.S. Guidance for human somatic cell therapy and gene therapy, 1998. (Available from the Centre for Biologics, FDA, Bethesda, MD 20205, USA).

Cepko, C.L., B.E. Roberts, and R.C. Mulligan. 1984. Construction and applications of a highly transmissible murine retravirus shuttle vector. Cell. 37:1053-1062.

Chesesbro, B., W. Britt, L. Evans, K. Wehrly, J. Nishio and M. Cloyd. 1983. Characterization of monoclonal antibodies reactive with murine leukemia viruses: Use in analysis of strains of Friend MCF and Friend ecotropic murine leukemia virus. Virology 127:134-148.

Chesesbro, B. and K. Wehrly, 1985. Different murine cell lines manifest unique patterns of interference to superinfection by murine leukaemia viruses. Virology 141:199-229.

Chong, H., and R Vile. 1996. Replication-competent retrovirus produced by a 'splitfunction' third generation amphotropic packaging cell line. Gene Ther. 3:624-629

Chuck, A.S., M.F. Clarke and B.O. Palsson, 1996. Retroviral infection is limited by Brownian motion. Human Genc Therapy 7:1527-1534.

Coffin, J.M. 1992. Structure and classification of retroviruses. In: The Retroviridae. Ed J.A. Levy. Plenum Press, New York, chapter 2.

Coffin, J.M. 1996. Retroviridae: The viruses and their replication. Fields Virology, Third Edition edited by B.N. Fields et a/. Lippincott-Raven Publishers.

Cohen-Haguenauer, 0 . 1995. Overview of regulation of gene therapy in Europe: A current statement including reference to US regulation. Human Gene Therapy 6: 773785.

Commitee for Proprietary Medicinal Products (CPMP) 1995. Ad Hoc Working Party on Biotechnology/Pharmacy. Gene therapy products-quality aspects in the production of vectors and genetically modified somatic cells.

Commitee for Proprietary Medicinal Products (CPMP) 1996. Virus validation studies: The design, contribution and interpretation of studies validating the inactivation and removal of viruses.

Cooney, E.L., M.J. M'Eltran, L. Corcy ot a/. 1993, Enhanced immunity to human immunodeficiency virus $(\mathrm{H} \mid \mathrm{V})$ envelope elicted by a combined vaccine regimen consisting of priming with a vaccinia recombinant expressing HIV emvelope and boosting with gp160 protein. Proc. Natt. Acad. Sci. USA 90:1882-1886.

Cornetta, K., R.C. Moen, K. Culver, et al. 1990. Amphotropie murine leukaemia retrovirus is not an acute pathogen for primates. Hum. Gene Ther. 1:15-30

Cornetta, K., R.A. Morgam, A. Gillio et al. 1991. No retroviraemia or pathology in longterm follow-up of monkeys exposed to a murine amphotropic retrovirus. Hum. Gene Ther. 2:215-219.

Cornetta, K., N. Nguyen, R.A. Morgan et al. 1993. Infection of human cells with murine amphatropic replication-competent retroviruses. Hum. Gene Ther. 4, 579-588

Cosset, F.-L., Y. Takeuchi, J.-L. Batini et al., 1995. High titre packaging cell lines producing recombinanat retroviruses resistant to human serum. J. Virof. 69: 7430-7436

Crystal, R.G. 1995. Transfer of genes to humans: early lessons and obstacles to success. Science. 270:404~410

Culver, K.W., Z. Ram، S. Walbridge et at. 1992. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumours. Science 256:15501552.

Cunliffe, V., D. Thatcher and R. Craig. 1995. In ovative approaches to gene therapy. Curr. Opin. in Biotech. 6; 709-713.

Danos, O. and R.C. Mulligan. 1988. Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc. Natl. Acad. Sci. USA. 85:6450-6464.

Davis, J.L., R.M. Witt, P.R. Gross et at. 1997. Retroviral particles produced from a stable human-derived packaging cell line transduce target cells very high efficiency. Human Gene Therapy. ㅇ:1459-1467

Dawson, M. 1992, Initiation and Maintenance of Cultures. In: Cell Culture. Eds. M. Butler and M. Dawson. Bios Scientific Publishers Limited, pp. 25-42.

Dawson, M. 1992. Cryopreservation. In: Cell Culture. Eds. M. Butler and M. Dawson. Bios Scientific Publishers Limited, pp. 141-145.

Donahue, R.E., S.W. Kessler, D. Bodine et al. 1992. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J. Exp. Med. 176:1125-1135.

Dzierzak, E.A., T. Papayannopoulou, R.C. Mulligan. 1988. Lineage-specific expression of a human B-giobin gene in murine bone marrow transplant recipients reconstituted with retrovirus -transduced stem colis. Nature 331:35-41.

Emerman, M. and H.M. Temin. 1984. Genes with promoters in retroviral vectors can be independently suppressed by an epigenic mechanism. Cell 39:459-467.

Fischinger, P.J., C.S. Blevins, S. Nomara. 1974. Simple, quantitative assay for both xenotropic murine leukaemia and ecotropic feline leukaemia viruses. J. Virology 14:177179.

Forestell, S.P., E. Böhnlein and R.J. Rigg, 1995. Retroviral end point titre is not predictive of gene transfer efficiency: implications for vector production. Gere Thefapy 2:723-730.

Foresteil, S.P., J.S. Dando, E. Böhnlein and R.J. Rigg. 1996. Improved detection of replication competent retrovirus. J. Virol. Methods. 60:171-178.

Fischinger, P.J., C.S. Blevins, and S. Nomura. 1974. Simple, quantitative assay for both xenotropic murine leukaemia and ecotropic feline leakaemia viruses, $/$. Viroi, 14:177-179.

Gluzman, Y. and S.H. Hughes. 1988. Viral vectors. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

Gunzburg, W.H., R.M. Saller, and B. Salmons. (1995). Retroviral vectors directed to predefined cell types for gene therapy. Biologicals 23:5-12.

Haapala, D.K., W.G. Robey, S.P. Oroszlan and W.P. Tsai. 1985. Isolation from cats of an endogenous type $C$ virus with a novel envelope glycoprotein. J. Virol. Mar 1985:827833.

Harada, S., Y. Koyangi, H. Nakashima ot al. 1986. Tumour promoter, TPA, enhances replication of HTLV-III/LAV. Virology 154, 249-258

Hartley, J.W. and Rowe, W.P. 1978. Clonal cell lines from a feral mouse embryo which lacks host- range restrictions for murine leukaemia viruses. Virology 65: 128-134.

Hodgson, C . 1995. The vector void in gene therapy. BioTechnology 13:222-225

Hodgson, J. 1995. Fo treat ar not to treat: that is the question for serum. Biotechnology 13:333-343.

Hwang, L.-H.S., E. Gilboa. 1984. Expression of genes introduced into cells by retroviral infection is more efficient than that of genes introduced into cells by DNA transtection. $J$. Virol. 50:417-424.

International Conference on Harmonisation (ICHO5A) Viral safety document. 1996. Viral safety evaluation of biolechnology products derived from cell lines of human or animal origila.

Izquierdo, M., M. Cortés, P. de Felipe, et al. 1995. Long term rat survival after malignant. brain tumour regressionby retroviral gene therapy. Gene Therapy 2:66-69.

Jacomino, M., P. Shukla, and S.J. Henning. 1997. Use of amphotropic retroviral vectors for gene transfer in human colon carcinoma cells. Human Gene Therapy 8:835-84.1.

Jasmin, C. 1993. Gene therapy and concer from concopts to clinical implications. Pathologies Biologie. 41:686-690.

Jolly, D. 1994, Viral vector systems for gene therapy. Cancer Gene Ther. 1:51-64.

Jolly, J.D., J.F. Warner, B. Merchant et a/. 1994. Retroviral vectors as directly administered therapeutics for HIV infection, J. Cell Biochem. 18A:220.

Julias, J.G., D. Hash and V.K. Patnak. 1995. E vectors: Development of novel selfactivating retroviral vectors for safer gene therapy. J. Virol. Nov 95:6839-6846.

Kasahara, N., A.M. Dozy and Y.W. Kan. 1994. Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science 266:1373-1376.

Kacian, DL and Spiegelman S. 1974. Purification and detection of reverse transcriptase in viruses and cells. In: Methods in Enzymology. pp Acndemic Press, New York. 29:150173.

Kitten, O., F-L. Cosset, and N. Ferry. 1997. Highly efficient retrovirus-mediated gene transfer into rat hepatocytes in viva. Human Gene Therapy $8: 1491$ 1494.

Klement, V., W.P. Rowe, J.W. Hartley, and W.E. Pugh. 1969. Mixed culture cytopathogenicity: A new test for growth of murine leukaemia viruses in tissue culture. Proc. Nat. Acad. Sci. USA, 63:753-758.

Kornberg, A. 1980. DNA Replication. W.H. Freeman \& Co., San Francisco, CA..

Kotani, H., P.B. Newton, S. Zhang et al. 1994. Improved methods of retroviral vector transduction and production for gene therapy. Homon gene therapy $\underline{\mathbf{5}}: 19-28$.

Lander, M.R., S.K. Chattopadhyay. 1984. A Mus dunni coll line that lacks sequences closely related to endogenous murine leukaemia viruses and can be infected by ecotropic, amphotropic, xenotropic, and mink cell focus-forming viruses. J. Virol. 52:695-698.

Lam, J.S., M.E. Reeves, R. Cowherd et a/. 1996. Improved gene transfer into human lymphocytes using retroviruses with the gibbon ape leukaemia virus envelope. fuman

Layne, S., J., M. Merges, M. Dembo et al., 1992. Factors underlying spontaneous inactivation and susceptibility to neutralisation of human immunodeficiency virus. Virology 189:695-714

Ledley, F. 1994. Non-viral gene therapy. Curr. Opin. Biotechnol. 5:626-636

LeDoux, J.M., J.R. Morgan, R.G. Snow et al., 1996. Proteoglycans secreted by packgging cell lines inhibit retrovirus infection. J. Virol. 70:6468-6473.

Le Gal La Salle, G., J.J. Robert, S. Berrard et al. 1993. An adenovirus vector tor gone transfer into neurons and glia in the brain. Science 259:988-990.

Makino, M., K. Ishikawa, K. Yamaguchi et af. 1994. Concentration of live retrovirus with a regenerated cellulose hollow fibre. BMAM. Arch. Virol. 139:87-96

Mann, R.S., R.C. Mulligan and D. Baltimore. 1983. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 32:871-879.

Mann, R.S., R.C. Mulligan and D. Baltimore. 1983. Col/ 33:151-159;

Mann, R.S. and D. Baltimore. 1985. Varying the position of a retrovirus packaging sequence results in the encapsidation of both unspliced and spliced RNAs. $J$. Virol. 54:401-4.07.

Martineau, D., W.M. Klump, J.E. MIcCormack et al. 1997. Evaluation of PCR and ELISA assays for screening clinical trial subjects for replication-competent retrovirus. Human Gene

Maurer, H. R. (1986) Towards Chemically-Defined, Serum-Free Media for Mammalian Cell Culture. In: Animal Cell Culture a Practical Approach. Ed. Freshney R. I. IRE Press Limited, pp. 13-31.

Markowitz, D., S.Goff and A. Bank. 1988. Construction and use of a safe and efficient amphotropic packaging cell line. Virology 167:400-406.

McLean. C., D. Docherty and A.J. Shepherd. 1997. Key raw materials used in the manufacture of biotechnology-derived products. Eur. Jour. Parenteral. Sci. Biotechnoiogy Special Issue:27-30

Miller, A.D. and C. Buttimore. 1986. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell Biol. 6:2895-2902.

Miler, A.D. 1990. Retrovirus packaging cells. Human Gene Therapy.1:5-14

Miller, A.D., J.V. Garcia, N. von Suhr et al. 1991. Construction and properties of retrovirus packaging cekks based on gibbon ape leukaemia virus. J. Virol. 65:22202224.

Miller, A.D. 1992. Human gene therapy comes of age. Narure 357:455-460

Miller, A.D., D.G. Miller, J.V. Garcia, et al. 1993. Use of retroviral vectors for gene transfer and expression. Methods Enzymol. 217: 581-599.

Miller, A.D., L. Bonham, J. Alfano et al. 1996. A novel murine retrovirus identified during testing for helper virus in human gene transfer trials. J. Viroh. Warch 1996:1894-
1809.

Moloney, J.B. 1960. Biological studies on lymphoid leukaemia virus extracted from sarcoma 37.1. Origin and introductory investigations. J Natl Cancer Inst. 24: 933-951.

Morgan, J.R., d. M. LeDoux, R.G. Snow et al. 1995. Retrovirus Infection: Effect of time and target cell number. J. Virol. Nov 95: 6994-7000.

Morgenstera, J.P. and $H$. Land. 1990. Advanced mammalian gene transfer: High titre retroviral vectors with multiple drug selection markers and a complementary hefper-free packaging cell line. Nucleic Acids Research 18 (12):3587.

Morling, F.J. and S.J. Russell. 1995. Enhanced transduction efficiency of retroviral vectors co-precipitated with calcium phosphate. Gene Therapy 2:504.-508.

Morse, H.C. and J.W. Hartley. 1986. Murine Leukaemia Viruses. In: Viral and mycoplasmal infections of laboratory rodents, Effects on Biomedical Research., eds: P.N. Bhatt, R.O.Jacoby, H.C. Morse, A.E.New. Academic Press NY, pp349-388.

Moultier, P., N. Naffakh, A. Henri et al. 1993. Secretion of soluble proteins from neoorgans: application to the treatment of lysosomal storage diseases. Nature Genetios. 4:154-159.

Murphy B.R., Chancock R.M. 1990. Immunisation against viruses. Fields B.N., Knipe D.M.,eds. Virology, $2^{\text {nd }}$ ed. Now York, NY:Raven Press, Ltd;469-4.93

Naussbaum, O., A. Roop, and W.S. Anderson. 1993. Sequences determining the pH dependence of viral entry are distinct from the host range-determining region of the murine
ecotrpic and amphotropic envelope protein. Virology. 67:7401-7405.

Neil, J.C., R. Hughes, R. McFarlane et a/. 1983. Transduction and rearrangement of the myc gene by feline leukaemia virus in naturally occuring T-cell leukaemias. Nature 308:814820.

Newson L. 1988. Smallpox: The eradication of a myth. New Sciontist. 24:75-76

Otto, E., A. Janes-Trower, E.F. Vanin et al. 1994. Characterisation of a replicationcompetent retrovirus resulting from recombination of packaging and vector sequences. Human Gene Therapy 5:567-575.

Olsen, J.C. and J. Sechelski. 1995. Use of sodium butyrate to enhance production of retrovirus vectors expressing CFTR CDNA. Human Gene Therapy 6:1195-1202.

Onodera, M., A. Yachie, D.M. Nelson et al. 1997. A simple and reliable method for screening retroviral producer clones without selectable markers. Human Gene Therapy. 8: 1189-1194.

Ostrove, J.M. 1994. Saftey testing programs for gene therapy viral vectors. Cancer Gene Therapy 1121:125-131.

Overell, R.W., K.E. Weisser and D. Cosman. 1988. Stably transmitted triple-promoter retroviral vectors and their use in transformation of primary mammalian cells. Mol. Cell. Biol. 8:1803-1808.

Pagès, J-C., N. Loux, D. Farge et a/. 1995. Activation of Moloney murine leukaemia virus LTR enhances the titre of recombinant retrovirus in YCRIP packaging cells. Gene

Panganiban, A.T. and D. Fiore. 1988. Ordered interstrand and intrastrand DNA transfer during reverse transcription. Science 241:1064.

Paul, R.W., D Morris, B. Hess et al. 1993. Increased viral titre through concentration of viral harvests trom retroviral packaging lines. Human Gerne Therapy 4:609-615.

Porter, C.D., M.K. Collins, C.S. Tailor, et at. 1996. Comparison of effeciency of infection of human gene therapy target cells via four diferent retroviral receptors. Human Gene Therapy 7:913-919.

Printz, M., J. Reynolds, S.J. Mento et at. 1995. Recombinant retroviral vector interferes with the detection of amphotrophic replication competent retrovirus in standard culture assays. Gene Therapy 2:14.3-150.

Purcell, D.F.J., C.M. Broscius, E.F. Vanin, et al. 1996. All array of murine leukaemia virus-related elements is transmitted and expressed in a primate recipient of retroviral gene transfar. J. Virol, 70:887-897

Rein, A. 1982. Interference grouping of murine leukaemia viruses: A distinct receptor for the MCF-recombinant viruses of mouse cells. Virology 120:251-257.

Rein, A., and A. Schultz. 1984. Different recombinant murine leukaemia viruses use different cell surface receptors. Virology. 136:144-152

Rigg, R.J., J. Chen, J.S. Dando et a/. 1996. A novel human amphotropic packaging cell line: high titro, complenent resistance, and improved safety. Virology. 218: 290-295

Roe, T.Y., T.C. Reynolds, G. Yu, et al . 1993. Integration of murine leukaemia DNA depends on mitosis. EMBO J. 12:2099-2108.

Rollins, S.A., C.W. Birks, E. Setter, et af. 1996. Retroviral vector producer cell killing in human serum mediated by natural antibody and complement: strategies for evading the humoral immune response. Human Gene Therapy 7:619-626.

Roth, J.A., D. Nguyen, D.D. Lawrence, et al. 1996. Retrovirus - medicated wild type p53 gene transfer to tumour of patients with lung cancer. Natural Medicine 2\{9): 985991.

Russ, A.P., C. Friedel, M. Grcz and H. van Melcher. 1996. Self-deleting retrovirus vectors for gene therapy. J. Virol. Aug 1996:4927-4932.

Russel, D.W., M.S. Berger and A.D. Miller. 1995. The effects of human scrum and cerebrospinal fluid on retroviral vectors and packaging cell lines. Human Gene Therapy 6:635-641.

Saha, K., Y.C. Lin, and P.K. Wong. 1994. A simple method tor obtaining highly viable virus from culture supernatant. J. Virol. Methods 46:349-352

Samejirta, Y. and D. Nervelo. 1995. 'Bystanding killing' induces apoptosis and $u_{3}$ inhibited by forskolin. Gene Therapy 2:50-53.

Sanes, J.R., J.L. Rubenstein, J.F. Nicolas. 1986. Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO. 5:3133-3142.

Shadan, F.F.r L.M. Cowsert, and L.P. Villarreal. 1994. n-Butyrate, a cell cyclo blocker, imhibits the replication of polyomaviruses and pappilomavirues but not that of adenoviruses
and herpesviruses. J. Virol. 68:4785-4796.

Smith, K.T., A. J. Shepherd, J.E. Boyd and G.M. Lees, 1996. Gene therapy systems for use in gene therapy: an overview of quality assurance and safety issues. Gene Therapy 3:190-200.

Somerfelt, M.A. and R.A. Weiss. 1990. Receptor interference groups of 20 retroviruses plating on human cells. Virology 176:58-69.

Squires, R. 1991. Ph.D. Thesis, University of Glasgow.

Temin H. and Baltimore D. 1972. RNA directed DNA synthesis and RNA tumor viruses. In, Advances in Virus Research. 17: pp. 129-185.. Academic Press, New York.

Vanin, E.F., M. Kaloss, C. Broscius and A.W. Neinhuis. 1994. Characterisation of replication-competent retroviruses from nonhuman primates with virus-induced T-cell lymphomas and observations regarding the mechanism of oncogenesis. J.Virol. 68:424.14250.

Varmus, H.E. 1983. Retroviruses. In: Mobile Genetic Elements. Ed. J. Shapiro. Academic, NY, pp. 41\}-503.

Vile, R. 1991. Selectable markers for eukaryotic cells. In Practical Molecular Virology, Humana Press, Clifton, New Jersey, pp. 49-60.

Wang, H. et al. 1991. Plasma membrane receptors for ecotropic murine retroviruses require a limiting accessory factor. J. Virol. 65:6468-6477.

Wei, C.M., M.Gibson, P.G. Spear et a/, 1981. Construction and isolation of a transmissible retrovirus containing the src gene of harvey murine sarcome virus and the thymidine kinase gene of herpes simplex virus type 1. J. Virol. 39:935-944.

Weiss, R.A. 1993. Cellular receptors and viral glycoproteins involved in retrovirus entry. in: The Retroviridae Vol 2. Ed. J.A. Levy. Plenum Press, pp1-108.

Weiss, R.A., N. Teich, J. Varmus and J. Coffin. Eds. 1983. Molecular biology of tumour viruses, FNA turrour viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, Vol. 1

Weiss, R.A., N. Teich, J. Varmus and J. Coffin. Eds. 1985. Molecular biology of tumour viruses, RNA tumour viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor,NY, Yol. 2

Wilson, C.A.,N.G. Tai-Hua and A.E. Miller. 1997. Evaluation of recommendations for replication-competent retrovirus testing associated with use of retroviral vectors. Human Gene Therapy 8:869-874

Wolff, L., R. Koller, and W. Davidson. 1991. Acute myeloid leukacmmia induction by amphotrophic murine retrovirus (4070A): Clonal integrations involve c-rnyb in some but not all leukaemias, J. Virol. 65:3607.

Yang, Y., E.F. Vanin, M.A. Whitt et al. 1995. Inducible, high-level production of infectious murine leukaemia retrovirus vactor particles pseudotyped with vesicular stomatis virus G envelope protein. Human Gene Therapy 6:1203-1213.

Yee J.K., J.C. Moores, D.J. Jolly et al. 1987. Gene expression from transcriptionally disabled retroviral vectors. Proc Nat/ Acad Sci USA.84:5197.5201.

Yu S-F, T. von Ruden, P.W. Kantoff ot a/. 1987. Self-inactivating retroviral vectors designed for tansfer of whole genes into mammalian cells. Proc Nati Acad Sci. 83: 31943198.

Zhang H., L...X. Duan, G. Dornadula and R.J. Pomerantz. 1995. Increasing transduction efficiency of recombinant murine retrovirus vectors by initiation of endogenous reverse transcription: Putential utility for genetic therapies. J. Virot. 69: 3929-3932.

Zajac-Kaye, M., E. Brown and C. Friend. 1986. Induction of differentiation on Friend erythroleukaemia cells with dimethyl sulphoxide, hexamethylene bisacetamide and sodium butyrate is not accompanied by changes in proviral DNA or its expression. Virus Res, 6:4555.

Zur Hausen H., F.J. O'Neill, U.K. Freese, and E. Hecker. 1978. Persisting oncogenic herpesvirus induced by tumour promoter TPA. Nature, 272: 373-375.



[^0]:    1. Numbers lndicate the disintegrations per minute (dpris) in reverse transcriptase reactions with a poly a tempiate in the presence of the $\mathrm{Mir}^{2+}$ manganese cation. A positive result is indicated by a value greater than 2000 dpm . The supernatants tested above were negative (that is, less than 2000dpm) for reverse transcriptase activify with preference for the $\mathrm{Mg}^{2+}$ cation.
[^1]:    1. total viable cell counts
    2. not applicable
