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ABSTRACT

Retroviral vectors are replication-defective viral genomes, in which genes essential for viral 

replication have been replaced by therapeutic genes. Essential genes are provided in trans by 

a helper virus, or packaging cell line. Stable producer cell lines are selected following 

transfection or infection of the vector into a packaging cell line. Such cell lines produce 

infectious, but replication incompetent virus particles containing the therapeutic gene(s) of 

interest. A potential hazard in the adaptation of retroviruses for use as gene delivery vehicles is 

the potential for recombination between vector and packaging cell line sequences to produce 

replication-competent retrovirus (RCR). The primary objective of the present study was to 

validate and determine optimal conditions for assays employed in the detection of RCR. The 

results Indicated that murine Mas dunni and feline PG4 S'"L' cells were of similar sensitivity to 

infection by amphotropic murine leukaemia virus (A-MLV); three passages were found to be 

sufficient to detect the presence of RCR at a virus input of 10'  ̂ infectious units/ml. Using co­

cultivation procedures it was possible to detect 1 RCR in a total of lO^cells. It was determined 

that the presence of replication incompetent vector reduced the sensitivity of direct PG4 S"’L‘ 

assay to detect wild-type A-MLV. This effect was reduced in extended Mus dunni and PG4 Ŝ ’L' 

assays while the presence of retroviral vector producing cells did not affect the detection of A- 

MLV in co-cultivation assays. Accordingly, it is recommended that co-cultivation and/or 

extended assays should be performed for detection of RCR.

In addition, studies were performed to evaluate the parameters which influence production of a 

selected retroviral vector. Including determination of optimal cell culture and harvesting 

conditions, investigating scale-up of production, and assessing stability and methods of 

concentrating viral vector supernatants. Parameters for optimal cell growth coupled with 

maximum viral titre for a model producer cell line were defined using tissue culture flasks, and 

found to be suitable for scale-up without loss of viral titre into roller bottles or Fibra-Cel disks in 

a spinner culture flask. Producer cells could also be adapted to culture in serum-free media 

although cell expansion was slower and a decrease of approximately 1 log^o unit in viral titre



was observed. Ultrafiltration was assessed as a method for increasing viral titre, where it was 

demonstrated that viral titre could be increased by 1 log^o unit following concentration. The 

stability of vector supernatant was examined by assessing viral titre following storage at 

different temperatures in relation to wild-type A-MLV. Resulting viral titres indicated that 

supernatant could be stored at -80°C for six months without loss of titre, whereas at 4°C titre 

decreased within 5 days. At 37°C the half-life of viral vector was determined to be 

approximately 5 hours after which complete Inactivation was observed. Although inactivation 

may have been expected to be complete within a short incubation period at 56°C, the results 

Indicated that a fraction of the virus was resistant to inactivation following incubation for two 

hours.
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1.0 INTRODUCTION AND REVIEW

1.1 Introduction to gene therapy

Gene therapy, or transfer of "foreign" genetic material into patients for treatment or 

prevention of disease has been accepted for many years, The aim of such therapy is to 

provide gene functions which have been lost through mutation or caused by a genetic 

disorder, or to introduce genes to serve a particular function, such as resistance to 

cytotoxic drugs, inhibition of viral replication, or elimination of tumour cells. It could be 

argued that gene therapy encompasses attenuated viral vaccination, whereby 

replication and expression of viral genes results in an immune response to the gene 

product. The earliest example of such gene therapy was the vaccinia vaccine for 

smallpox (Newson, 1988), and today, vaccination with attenuated rubella, polio, 

measles and mumps viruses is widespread (Murphy and Ghancock, 1990). Another 

example of therapy involving gene transfer into patients are allogeneic organ 

transplants (Carpenter, 1990).

In order to effect gene transfer, genetic material of interest must be Included in a 

construct which either integrates into the target genome, replicates autonomously, or is 

otherwise expressed. The basic methods of gene insertion include transduction (by 

viral vectors) or transfection (by DNA-mediated systems) of target cells (Miller, 1992; 

Led ley, 1994). Gene transfer as a therapeutic method for the treatment of genetic 

disease and tumours is now feasible owing to significant advances in the development 

of recombinant virus vectors that encode the therapeutic genes in place of the viral 

structural genes. Vectors based on various viruses have been developed, including 

adenovirus (Le Gal La Salle et a/., 1993), pox virus, such as vaccinia (Cooney et al., 

1993), insect baculoviruses (Barsoum et al., 1997) and retroviruses. Retroviruses have 

received the greatest attention as vectors for gene therapy because they can infect a 

variety of cell types, integrate stably into the target cell and have simple, well-
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characterised genomes (Coffin, 1992, 1996). The first retrovirus vector was described 

in 1981 (Wei et al., 1981) and the first patient was treated for severe combined 

immunodeficiency syndrome (SCID) by transference of the gene encoding adenosine 

deaminase in 1990 (Anderson etal., 1990).

1.2 R etroviruses

1.2.1 Classification

The retroviruses comprise a group of infectious agents, identified by a common virion 

structure and mode of replication. Retroviruses are unique owing to the ability of their 

single stranded RNA genome to direct the formation of a double stranded DNA provirus 

(Coffin, 1992, 1996). Retroviruses interact with host cells to cause a variety of 

diseases, the effects of which may range from benign to fatal. Until recently, 

classification of retroviruses was based primarily on virion structure and pathogenicity, 

however, recently acquired gene sequencing information reflecting fundamental 

relationships has led to an updated classification system. Seven major subfamilies of 

retrovirus are now recognised; mammalian type B, murine leukaemia virus (MLV)- 

related, human T-cell leukaemia virus (HTLV)-bovine leukaemia virus (BLV) group, 

mammalian type D, avian leukaemia virus (ALV)-related, lentiviruses, and 

spumaviruses (Coffin, 1992, 1996). The term oncovirus encompasses the first five 

subfamilies; oncoviruses are usually leukaemogenic viruses, and may remain latent In 

the host, such as HTLV-1, or replicate and interact with cellular proto-oncogenes to 

induce tumours, for example feline, avian, and murine leukaemia viruses. Lentiviruses, 

such as human and simian immunodeficiency virus (HIV and SIV), are responsible for 

the induction of a variety of non-neoplastic diseases in humans and animals, while 

spumaviruses, such as human, simian and feline foamy viruses, have not yet been 

linked to any known diseases. Classification may also be based on virion structure 

(oncoviruses may be subdivided into types A to D based on morphology and pattern of
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virion released from infected cells), utilisation of specific cell receptors (Sommerfelt and 

Weiss, 1990), presence or absence of an oncogene, and mode of transmission 

(endogenous [integrated in the germline] or exogenous).

Vectors based on several different retroviruses have been developed, including HIV-1 

(Jolly et al., 1994) and gibbon ape leukaemia virus (GaLV) (Miller et al., 1991), 

however, those based on MLV have been most widely used in gene therapy to date. 

Infection of cells by enveloped viruses depends on viral proteins which bind the virus to 

the target cell and promote fusion of the viral and cellular membranes. The envelope 

proteins {env) of MLV-related viruses can be divided into different classes based on the 

cell surface receptors with which they interact (Rein and Schultz. 1984), and the host- 

range or tropism of the viruses is limited to host species which express the appropriate 

receptor (Sommerfelt and Weiss, 1990). Various types of endogenous type-C MLV 

have been defined on the basis of their ability to infect and replicate in different types of 

cells: ecotropic MLV (E-MLV), such as Moloney-MLV (Mo-MLV), is infectious for murine 

cells only, whereas xenotropic MLV (X-MLV) is infectious for non-murine cells only. 

Other types of MLV-related sequences In cellular DNA exist, such as polytropic 

sequences, which are involved in the generation of recombinant mink cell focus-forming 

(MCF) viruses. MCF viruses are recombinants between ecotropic and xenotropic 

endogenous viruses, and infect cells of both murine and non-murine origin (Rein, 1982). 

A separate class of virus, amphotropic MLV (A-MLV), Isolated from wild mice (Hartley 

and Rowe, 1975), is also replicative in both murine and non-murine species, and has 

been shown to induce a high incidence of myeloid leukaemia In mice (Wolff et al., 

1991). Amphotropic virus exhibits a host range similar to that of polytropic viruses, but 

is distinct from other MLV species with regard to antigenic and interference properties 

(Rein, 1982). Different strains of A-MLV differ in their interference capacity to 

superinfection by other MLVs (Chesebro and Wehrly, 1985).
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1.2.2 Structure and Replication

All retroviruses are similar In virion structure, genome organisation, and mode of 

replication (Coffin, 1992, 1996). The virion is enveloped and approximately 100nm in 

diameter. The genome is diploid, consisting of two molecules of single stranded 

ribonucleic acid (RNA) (7-1 Okb in length) enclosed In an Icosahedral core. The RNA Is 

reminiscent of cellular messenger RNA (mRNA), modified by capping at the 5' end, and 

polyadenylation at the 3' end. The core is bridged to the envelope by a matrix protein. 

To initiate viral infection, the envelope glycoprotein (SU) binds to a receptor on the host 

cell surface and a transmembrane protein (TM) mediates virus entry into the host cell 

by fusion of the viral envelope and cell membrane. The virion is released into the 

cytoplasm, where the vlrally encoded enzyme, reverse transcriptase (RT), transcribes 

the virion RNA into deoxyribonucleic acid (DNA) by the process of reverse transcription. 

Reverse transcriptase uses a molecule of host-cell transfer RNA (tRNA) as a primer to 

copy the viral genome into DNA, from which a second strand of DNA is synthesised 

(Panganiban and Fiore, 1988; Varmus, 1983). The resulting linear duplex DNA 

provirus, consisting of an internal region encoding the virion proteins flanked by two 

identical long terminal repeats (LTR) is shown in Figure 1.1. These terminal non- 

coding regions are essential in cis for viral replication, and contain the R, U3, and US 

regions. The LTR represents the intact regulatory region, and includes all transcriptional 

sequences required for expression of the viral DNA genome. Between the LTRs are 

three main genes encoding structural proteins, the order of which Is invariably gag-pol~ 

env where gag encodes the internal proteins, pol encodes RT, and env the SU and 

TM protein.

The provirus produced by reverse transcription is circularised and is inserted into 

random sites in the genome of the host cell, with the aid of the integrase function of RT. 

The viral DNA serves as a primer for the synthesis of viral RNA. Transcription of the 

provirus is affected by the chromosomal position of integration, the cell type infected,
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and the regulatory regions within the U3 region, which contains both the promoter and 

enhancer. The integrated DNA is normally transcribed by the host cell machinery Into 

RNA that either acts as viral mRNA or is enclosed in a virion and released by budding 

from the host cell membrane. A less abundant mRNA produced by the action of the 

splice donor site in the 5’ LTR region is used to express env. Translation of the full 

length genomic transcripts results in the expression of the gag, pol, and env proteins 

(Weiss et al., 1983:1985). Packaging of the genomic transcripts into virions requires an 

RNA signal known as the ps/sequence (Mann etal., 1983) which lies 3' of the 5' LTR. 

This sequence is not present in spliced messages, therefore they cannot be packaged 

(Mann etal., 1985).

1.3 R etroviruses as Vectors

Retroviruses which transform cells in culture are often defective for replication because 

essential replicative genes have been replaced by cellular genes. These cellular genes 

acquired by the virus genome are known as oncogenes, and confer upon the virus the 

ability to transform normal Into malignant cells (Neil et. al., 1983). In order to replicate, 

these viruses require the presence of a helper virus such as MLV, to supply the 

necessary functions for replication and packaging via functional gag, pol, and env 

genes. The defective, oncogenic viruses are called sarcoma viruses, and the 

replicating helpers, which are generally non-transforming, are leukaemia viruses. 

Retroviruses which contain transforming oncogenes, such as myc, are natural vectors 

for the transmission and expression of foreign genes. Thus, retroviruses can be 

genetically manipulated to mimic natural modifications, and become vehicles for the 

delivery and expression of cloned genes in eukaryotic cells. The viral protein coding 

elements of a retrovirus can be deleted and replaced prior to packaging in a cell line 

which expresses the stuctural proteins, thus enabling infectious recombinant virus 

particles to be formed. Features of retroviruses favouring this purpose include their 

relatively small genome, which can be easily manipulated to introduce foreign genes,
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such that resulting defects can be complemented for in trans, the high titres to which 

they grow in culture, and the potential of high efficiency of infection of target cells. 

Retroviruses carry powerful transcriptional enhancers that ensure a high level of gene 

expression. Infection leads to integration of retroviral DNA in the host cell genome such 

that virtually all infected cells can express the gene carried by the virus (Gluzman and 

Hughes, 1988). In addition, the broad tropism of retroviruses permits a wide range of 

cell types to be infected, including cells of the hematopoietic system. There are 

however, some limitations to the use of retroviral vectors. Retroviruses can only 

integrate into mitotically active cells (Roe et a/.,1993), and the size of the DNA insert is 

limited owing to the small overall size of the retroviral genome. However, the main 

concern in the use of retroviruses as vectors for gene therapy is that of safety, based 

on the possibility that recombination events could result in the production of wild-type 

replication competent virus (See section 1.7 below).

1.4 Retrovirus Vector System s

Retrovirus vectors should resemble natural defective transforming viruses where viral 

products essential for the replication and integration of transforming retroviruses are 

supplied in trans by a non-transforming, replication competent helper virus. Thus, a 

retrovirus vector system is designed to follow nature in having two elements: a 

replication-defective vector (section 1.4.1) and helper virus, or 'packaging' cells 

(section 1.4.2). Retroviral vector particles lack coding sequences essential for 

generation of progeny while retaining the c/s-acting elements essential for virus 

infection, reverse transcription, integration, and transcription in transduced cells. 

Packaging cells provide in trans the coding sequences for retroviral enzymatic and 

structural proteins.
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1.4.1 Vector constructs

Retroviral vectors are constructed as part of plasmid DNA molecules which can be 

grown in bacteria and manipulated by recombinant DNA techniques {Miller et al., 1993). 

Vectors are constructed from the DNA form of the retrovirus, which corresponds to the 

integrated provirus. The vector must behave as a viral genome to allow it to pass as a 

virus from the producer line, and therefore must retain the c/s-acting sequences that 

allow it to replicate efficiently. These essential sequence elements are; the two LTRs, 

the packaging signal sequence {psi), which lies close to the 5' LTR, and the primer 

binding sites for reverse transcription, which lie adjacent to the LTRs. In retroviruses, 

the major determinant of RNA packaging is the psi sequence, which maps between the 

5' LTR and the start of the gag coding sequence (Mann et al., 1983). All the remaining 

sequences are dispensible, as their loss can be complemented for in trans. However, 

inclusion of a portion of the gag region into a vector construct has been shown to 

significantly increase viral titre, suggesting existence of an extended signal sequence 

which results in more efficient packaging (Bender et al., 1987). Efficient vectors usually 

contain part of gag and have deleted splice donor sites and mutation of the gag* start 

codon. The gag sequence must be in its native position, adjacent to psi, to have an 

effect of 5-10 fold increase in viral titre (Morgenstern and Land, 1990). Thus, the 

structure of the provirus, with regulatory regions located at the ends of the genome, and 

structural genes occupying the central 8kb region, makes it relatively simple to replace 

the central structural genes {gag, pol, env) with therapeutic genes of interest. The loss 

of these sequences can be complemented in trans by a packaging cell line, the simplest 

of which consists of a provirus in which the psi sequence has been deleted (Mann et 

al., 1983). When a recombinant provirus is introduced into packaging cells viral 

particles are produced which contain almost exclusively RNA genomes of the 

recombinant vector. Thus, the encapsulated recombinant is infectious and integrates 

into the host cell, but the RNA transcripts produced are not capable of self-replication, 

and cannot be packaged into viral particles.
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A safe retrovirus vector should contain the minimal amount of retroviral sequence 

consistent with its ability to be packaged, undergo reverse transcription and integrate. 

Many vectors employed In gene therapy to date have been based on Mo-MLV, modified 

to produce either a single gene or two different genes (a therapeutic gene and a marker 

gene). Gene expression can be driven by the endogenous retroviral promoter (the 

LTR), or the second gene can be cloned in with its own promoter (commonly the SV40 

or herpes simplex virus thymidine kinase (HSV-TK) gene promoters) to drive 

expression. A minimal vector generally contains only 10% of sequences found in a 

replication competent virus, as the viral structural genes are deleted and replaced with 

one or more restriction enzyme sites for the insertion of new sequences. This minimal 

vector is self-inactivating (SIN) (Yu e t at, 1987) owing to the lack of a complete 3' U3 

region. The proviral LTRs in infected cells are transcriptionally inactive, eliminating the 

possibility of transcriptional activation of adjacent genes. Although considered safer 

than double-gene vectors, SIN virus titres obtained to date have been low, in the region 

of 10^ colony forming units per ml (cfu/mi) (Yee et at, 1987). These simple vectors are 

limited in their applications because of the low viral titres obtained and their restriction 

to transmission of genes eliciting a clearly distinguishable phenotype owing to the lack 

of a suitable selectable marker. Double gene vectors include a gene encoding a 

selectable phenotype. Several selectable markers have been used for this purpose, 

including the genes encoding neomycin phosphotransferase (neo) (Cepko et at, 1987) 

and thymidine kinase (TK) (Caruso et at, 1993). A wide variety of vector constructions 

have been described, including those with LTRs as the major promoters (Cepko et at, 

1987), with internal promoters (Overell et at, 1988) and with the gene of interest 

expressed in reverse orientation (Dzierzak et at, 1988).

The more distal gene may be expressed from an internal promoter or from spliced 

subgenomic mRNA analogous to env. An example of a double gene splicing vector is 

pZIP Neo SV(X) (Cepko et at, 1987) in which the gene encoding neo, which confers
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resistance to the antibiotic Geneticin (G418) is inserted in the env equivalent position in 

the vector genome. A selected gene can be cloned into a BamH1 site at the env 

equivalent position. In this construction the LTR transcription signals drive expression 

of both genes. However, an internal promoter in either orientation relative to 

transcription may drive the more distal gene from the viral LTR. One commonly used 

internal promoter is the SV40 early promoter. This type of vector has possibilities for 

regulating the introduced gene by employing either inducible, cell-type specific, strong 

or weak promoters in vectors. A disadvantage to this type of vector is that an LTR- 

based promoter can exert a negative effect on promoters downstream of it, disturbing 

the relative levels of expression from the two promoters (Emerman and Temin, 1984). 

"Promoter selection" may be partially overcome by constructing double expression 

vectors with the internal promoter In the reverse orientation to the direction of 

transcription from the LTR.

1.4.2 Packaging cell lines

Recombinant vector constructs can be transcribed, processed, packaged, and 

replicated, but the viral functions necessary for the assembly of recombinant virus 

particles must be provided for in trans by a packaging cell line. Many MLV packaging 

cell lines are derived from adherent murine cell lines engineered to produce gag, pel, 

and env protein, but no full length genomic RNA or RNA which can be encapsidated. 

First generation packaging lines consisted of a provirus in which the psi sequence had 

been deleted (Mann et al., 1983). However, recombination events between 

homologous regions of the vector and the packaging line resulting in the production of 

wild-type RCR has been observed in such cell lines (Miller, 1986, Otto et a!., 1994; 

Vanin et a!., 1994). In order to decrease sequence homology between the vector and 

packaging sequence, second generation packaging lines have been developed in which 

the 3’ LTR was deleted as well as the psi sequence, and replaced with heterologous 

promoters and polyadenylation sites. Thus two recombination events between the

24



vector and packaging line are necessary in order to generate RCR. An example of a 

second-generation packaging line is the amphotropic retrovirus packaging cell line 

PA317 (Miller and Buttimore, 1986). PA317 cells were derived from NIH 3T3 thymidine 

kinase (TK)' cells by co-transfection with retrovirus packaging construct DNA (pPAM3) 

and the HSV TK gene. Introduction of retroviral vectors into these cells by transfection 

or infection results in the production of retrovirus virions with an amphotropic host 

range. However, even with deletions of psi, the 3' LTR, and part of the 5 'LTR in 

second generation packaging cells, the possibility of producing RCR on introduction of 

a vector still exists (Danes and Mulligan, 1988). To further reduce the possibility of 

RCR production, third generation packaging cells have been developed, in which the 

gag-pol and env genes are introduced to the packaging cells on different DNA 

constructs (Morgenstern et ai., 1990). Sequential introduction reduces the high 

frequency of recombination that occurs during transfection. The amphotropic lines 

CRIP (Danes and Mulligan, 1988) and GP+envAm12 (Markowitz et al., 1988) are two 

examples of packaging lines which, in addition to the deletions described above, 

contain viral DNA in which the gag and pel genes are on one plasmid and the env gene 

on another. Two independent rounds of transfection are employed to produce these 

cells: firstly, the gag-pol construct can be transfected and clones expressing gag and 

pol proteins selected for by reverse transcriptase assay. It is possible to determine the 

host range conferred by the packaging line in the second round of tranfection by 

choosing appropriate env gene constructs. Production of a functional envelope in 

secondary transfectants can then be tested for using a packaging assay. An advanced 

system has been developed involving the generation of the QE cell line, a high titre 

ecotropic packaging cell line (Morgenstern et ai., 1990). This line was developed with 

separate gag-pol and env constructs with minimum sequence overlap and decreased 

sequence homology achieved by ’codon wobbling'. The QE line was developed in 

conjunction with pBabe retroviral vectors, in which homologous gag coding sequences 

have been deleted. Together, the vector and packaging line reduce the risk of 

generating RCR through recombination events. These third generation lines Increase
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both safety and efficiency for gene transfer into cells, owing to the fact that three 

separate recombination events would be necessary to form an intact genome, which is 

likely to be a rare event. An estimate of the potential for recombination occurring would 

be difficult to estimate at present, owing to the frequency rate being thought to depend 

on the particular retroviral vector system.

1.5 Producer Cells

1.5.1 Introduction of vector into a packaging cell line

The introduction of a vector into a packaging cell line gives rise to a producer cell line 

which makes only replication-defective vector particles capable of introducing their 

genes into target cells. Producer cells release virus particles containing an RNA 

transcript of the vector including the c/s-acting sequences necessary for its reverse 

transcription and integration. As many MLV packaging lines described to date are 

derived from murine NIH3T3 or BALB/c 3T3 cells, vector DNA can be introduced by 

transfection using a standard calcium phosphate precipitation method. However, 

enhanced virus titres are obtained if the vector is introduced by infection rather than by 

physical transfection techniques (Hwang et al., 1984). Selecting for a dominant marker 

carried by the vector itself, or on a co-transfected plasmid, gives rise to virus produced 

from a stably transfected packaging line. Virus produced from transfection of one 

packaging line can be used to infect a second line. Packaging cells have immunity to 

infection by viruses that use the same cellular receptor; therefore a cell infected by one 

retroviral subgroup can only be infected by virus of a different subgroup (Chesebro and 

Werhly, 1985). It is possible to employ a ‘shuttle system' where a vector is transfected 

Into one packaging line and shuttled into another by infection (Cepko et al., 1984: 

Berger and Bernstein, 1985). For example, the vector could be transferred from an 

ecotropic to an amphotropic packaging line, or vice versa. Danes and Mulligan (1988) 

shuttled a vector between ORE cells (the ecotropic equivalent of CRIP) and either CRIP
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or PAS 17 amphotropic lines. When the vector was psuedotyped several times to 

increase the possibility of detecting RCR, all virus stocks from the CRE/CRIP shuttling 

system were negative for the presence of RCR. Producer clones with titres of 10® 

cfu/ml were isolated by this method. However, recombination was apparent after the 

fourth and fifth round of infection in two separate experiments using the CRE/PA317 

shuttling system. Advantages in sequential use of two different packaging lines over 

single-step transfection include a 100-fold increase in viral titre and Infected colonies 

which are genetically more uniform, owing to Individual copies of the proviral DNA being 

integrated in a precisely defined manner (Danos and Mulligan, 1988).

1.5.2 Production of vector

Initially, the producer cell line should be cultured, and a series of growth curves 

constructed to determine the optimal media formation and cell seed concentration for 

maximum cell growth. Media components may have an adverse effect on culture of 

producer cells, for example, it may desirable to adapt cells to serum-free media, as in 

vivo studies have shown that retroviral vectors are inactivated by serum in an antiviral 

immune response (Hodgson, C., 1995). Kotani et al. (1994) described the production 

and optimisation of transduction in twenty-two retroviral vector producer lines. They 

compared vector production at 32°C and 37°C in PA317 producer cells and found that 

although vector particle growth was slightly reduced at 32°C, the stability and titre of the 

vector were substantially higher. Therefore, the temperature at which retroviral vectors 

are produced may be important in the transduction efficiency of retroviral vectors. 

Assays should be also performed to determine the optimal titre obtainable for the viral 

vector. Small-scale evaluation studies should be performed to optimise vector 

production, and set the parameters for scaled-up production. Systems for culturing 

producer cell lines include tissue culture flasks, roller bottles, and the CellCube 

Bio reactor [The area of one Cellcube is equivalent to 25 roller bottles (850cm^)]. Large 

scale production of retroviral vectors would be greatly improved if producer lines could
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be grown as single cell suspensions, and other factors which Influence large-scale 

production of retroviral vectors need to be defined,

1.5.3 Concentration of retroviral vector supernatant

Membrane technologies such as ultrafiltration may be used to concentrate retroviral 

particles using membranes with molecular weight cut-off (MWCO) values of 100 or 

300kDaltons. Kotani et al. (1994) reported an approximate 20-fold increase in vector 

titre with over 90% recovery of infective particles using a Pellicon tangential flow 

concentrator using a SOOkDalton MWCO membrane, generating viral vector titres of 

around lO^cfu/ml. In another study, Saha et al. (1994) reported a 30-fold increase in 

concentration of MLV without loss of infectivity using a 100 kDalton MWCO.

1.5.4 Storage and stability of retroviral vectors

Recombinant retrovirus stocks are obtained from producer lines by harvesting culture 

medium when the cells are growing exponentially (Morgan et al, 1995, Roe et al. 1993). 

One method is to add fresh culture medium to producer cells cultured in tissue culture 

flasks at 37 °C on reaching at 80-90% confluence and harvest the supernatant 24 hours 

later (Andreadis and Palsson, 1997). The half-lives of retroviral vectors cultured at 

37°C have been measured to be 5 hours (Sanes et al., 1986), 3.5-6.5 hours (Paul et 

al., 1993) and 6-8hours (Chuck et al., 1996). The length of time for which a retroviral 

vector can be maintained in culture under conditions that produce quality commercial 

products has yet to be fully established.

Retrovirus stocks should remain stable stored at -70°C in harvested tissue culture 

medium containing foetal bovine serum (FBS). Lyophilisation with storage at -20°C 

may be accomplished relatively simply, resulting in a long half-life (>200 days). Kotani 

et al. (1994) used a combination of additives including 50% glucose, 50% sorbitol, and
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25% gelatin in phosphate buffered saline (PBS) resulting in a recovery rate of 64-83%. 

Retrovirus vectors have been described as displaying stability to variations in pH, ionic 

strength, and shear forces (Naussbaum et al., 1993). Kotani et al. (1994) used another 

approach to enhance transduction efficiency in NIH-3T3 cells. Centrifugation of vector 

supernatants onto target cells to concentrate the viral particles directly onto the surface 

of cells increased transduction efficiency as measured by vector titration for Geneticin 

resistance, fluorescence-activated cell sorting (FACS), and polymerase chain reaction 

(PCR) analysis.

1.5.5 Determination of vector titre

Some retroviral vectors contain no selectable marker, and determination of vector titre 

is based on a measure of the gene product, for example, enzyme activity or protein 

concentration. These factors can vary widely between producer clones and data must 

be generated through extensive evaluation studies. Viral titre can be determined most 

accurately when a selectable marker is present in the producer line (Vile, 1991). For 

example, inclusion of the HSV-TK gene in producer cells which are treated with a 

nucleoside analogue such as ganciclovir means that dividing cells are killed, owing to 

the phosphorylated nucleoside acting as a chain terminator (Caruso et al., 1993). Cells 

deficient in the expression of the TK gene can be grown in HAT 

(hypoxanthine/aminopterin/thymidine) medium. Selection must be positive, so that the 

cells of interest remain alive. The pBabe retroviral vector constructs transmit inserted 

genes at high titre from the Mo-MLV LTR. These vectors have been constructed with 

four different dominantly acting selectable markers, allowing the growth of infected 

mammalian cells in the presence of Geneticin, hygromycin B, bleomycin/phleomycin or 

puromycin. High titres are obtained from a third generation ecotropic packaging line 

(QE) designed in conjunction with pBabe vectors (Morgenstern et al., 1990). Titration 

by non-selectable gene expression requires a method tailored to suit the specific 

producer line concerned. For example, a retrovirus vector coding for human a-L-
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iduronidase has been prepared for use in a clinical trial for treatment of human 

mucopolysaccharide disease (IMPS), using a neo-organ approach as used for the MRS 

VII disorder in mice (Moullier et al., 1993). This vector is titrated by assaying the level 

of enzyme in supernatant from vector-infected MRS I cells using a fluorimeter. Another 

commonly used titration method to determine the quantity of viral genomic RNA in 

supernatant is hybridisation with a ®^R-labe!led DNA probe. This is performed using a 

standard RNA dot-blot procedure after concentrating the virus. A quantitative 

determination is obtained by comparing hybridisation intensities with an accurately 

titrated control virus.

1.6 M ethod of delivery

Application of retroviral vectors may be applied in treatment of disease such as cancer 

whereby the transduced gene expresses an enzyme capable of converting a pro-drug 

into a cytotoxic drug, induces an immunological response, confers drug resistance, or 

restores tumour supressor genes (Jasmin, 1993). Treatment of the patient may be in 

the form of viral supernatant harvested from the producer cells, or direct injection of the 

producer cells themselves. For application in early stage clinical trials, where the target 

cells are haematopoietic stem cells or lymphocytes, or other easily isolated cell types, 

administration of retroviral vectors Is achieved ex vivo. This is achieved by removing a 

biopsy from the patient, and expanding the cells prior to transduction in vitro with 

retroviral vector. Doses are then stored frozen and re-administered by injection to the 

patient. This can be an expensive procedure, but overcomes the potential problem of 

low Infectivity of retroviruses, as it is possible to perform the transduction in a way in 

which infection can be increased or stimulated. An alternative method of application to 

patients is direct administration of retroviral vectors. Rroducer cell lines secreting 

retroviral vectors encoding FISV-TK have been injected into brain tumours (Culver et 

al., 1992) and intramuscular injection of HIV-1 vectors expressing env have been 

employed to stimulate cellular immune responses to HIV-1 (Jolly et al., 1994). The
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ideal method of gene delivery for general clinical use is the direct (or in vivo) approach, 

where highly concentrated and purified retrovirus vectors can be prepared as ready-to- 

inject doses, and directly administered to a large patient base.

1.7 Targetting o f retroviral vectors

The host range of MLV-based vectors can be extended by pseudotyping, which is

achieved by packaging the vector genome in a virion particle bearing envelope proteins 

from another virus (Kasahara et a!., 1994.) The vectors currently used in clinical trials 

are made in hybrid systems, where the host range of ecotropic Mo-MLV is altered by 

combining the gag-pol gene from Mo-MLV with an env gene from another source 

(pseudotype formation). For example, combination with MLV strain 4070A, which has 

an amphotropic envelope, allows the vector to infect a variety of cell types, including 

human cells (Porter et al., 1996). Approaches employed in targetting specific host cell 

types include the use of tissue specific enhancers and promoters, alteration of the 

binding site of the env gene for attachment to specific cell receptors, and incorporating 

new ligands into the vector membrane which bind to specific cell receptors. However, 

such targeting approaches are still under development (Gunzburg et. ai., 1995).

1.8 Safety Considerations

The main concern in the development of biopharmaceutical applications is the 

production of safe products. Regulatory authority guidelines outlining quality and safety 

testing strategies are in place, advising on procedures recommended for a 

biotechnology derived product to obtain market authorisation. For any cell-based 

production process, full characterisation and testing of the master and working cell 

banks, intermediate harvests, the end of production cells, and the final product itself, is 

recommended by the authorities (CBER, 1997; ICH Q5A, 1996). Examples of testing 

recommended for the presence of adventitious agents include;
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• mycoplasma and sterility screening

• identity testing

• in vitro assay (inoculation of supernatant onto different detector cell lines, 

including human and primate, in order to detect a range of viral contaminants)

• in vivo assay (inoculation of sample into animal systems in order to detect a 

range of viral contaminants which are not easily detected in vitro)

• testing for the presence of retrovirus contamination using a variety of 

techniques

• analysis by electron microscopy

• testing for the absence of infectious murine viruses produced from murine cell 

lines

• testing for the presence of bovine and porcine viruses (if exposure to serum 

and trypsin from these sources has occurred, this is essential).

In addition to virus safety testing, validation of a down-scaled version of the 

manufacturing process used for production is required, to demonstrate that any virus 

which was inadvertently present in the manufacturing facility would be removed or 

inactivated by the production process (CPMP, 1996). This provides additional 

confidence in the safety of the final product.

In addition to the above testing recommendations, specific guidelines have been 

implemented with regard to gene therapy studies, and in particular RCR testing. At 

present, production and purification processes used for retroviral vector systems do not 

contain process steps that will eliminate contaminants, therefore it is not feasible to 

perform virus validation studies to provide additional data concerning the safety of the 

product. Thus, thorough characterisation of the producer cells, and validation of both 

the packaging cell line and the recombinant gene constructs is essential, involving DNA 

fingerprinting, sequence analysis, and restriction mapping.
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It is clear that safety issues are paramount in the use of retroviral vectors for treatment 

of disease by gene therapy (Smith et al., 1996, Ostrove, 1994, Anderson et al., 1993, 

Cohen-Haguenauer, 1995). In Europe, the Committee for the Proprietary Medicinal 

Products (CPMP) issued guidelines addressing quality aspects with regard to materials 

used for production of gene therapy products (CPMP, 1995). The Center for Biologies 

Evaluation and Research (CBER) of the Food and Drug Administration (FDA) have 

established guidelines for screening post-production vector producing cell lines and 

vector-containing supernatant used in production of retroviral vector products for human 

application, for the presence of RCR (CBER, 1991,1996, 1998). Vector-producing cell 

lines and culture supernatant require sensitive screening for the presence of RCR prior 

to use in the clinic, owing to the fact that recombination events between homologous 

sequences in the vector and packaging cell line may lead to the generation of RCR 

(Otto et al., 1994, Vanin et al., 1994). Otto et al. (1994) used retroviral-specific primer 

pairs to demonstrate that recombination, rather than a contamination, created a novel 

virus in retoviral supernatant harvested from PA317/G1Na producer cells.

Knowledge of the effect of MLV infection in primates Is limited. Although MLV has been 

reported to be of limited pathogenicity in rhesus monkeys (Cornetta et al., 1990, 1991), 

A-MLV was reported to induce T-cell lymphomas in three out often immunosuppressed 

macaques (Donahue et a i, 1992); In the latter study, exposure of RCR following ex- 

vivo transduction of bone marrow cells has been proven to be the cause of disease. 

The monkeys that died had prolonged retroviremia, and murine RCR sequences were 

detected in the lymphomas (Vanin et al., 1994, Purcell et al., 1996). This finding has 

increased concerns about the risk of MLV exposure in humans.

The need for safer retroviral vector systems which decrease the possibility of RCR 

generation has resulted in advances in vector design, and the development of third 

generation packaging cells, which require three separate recombination events in order
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to generate RCR. This significantly reduces the frequency of recombination between 

vector and packaging sequences, and necessitates the employment of RCR detection 

assays of high sensitivity.

CBER recommend that product release testing for retroviral vector use in gene therapy 

includes amplification of 5% of the total vector-containing supernatant volume on an 

MLV replication-permissive cell line, for example, Mus dunni cells (Lander et at., 1984), 

and 1% of the total post-production vector producing cells (or 10® cells, whichever is 

less) by co-cultivation with an MLV replication-permissive cell. Supernatants generated 

from extended Mas dunni and Mus dunni co-cultivation assays should be tested for the 

presence of RCR using the PG4 S^L' (PG4) assay. This is a simple S'̂ L" assay using 

feline PG-4 S^L" cells to detect the presence of xenotropic or amphotropic retroviruses 

(Bassin et al., 1982). PG-4 S'^L' cells contain a defective murine sarcoma virus genome 

(sarcoma positive, leukaemia negative [S^'L']). Superinfection of the PG-4 S"'L’ cells with 

RCR results in rescue of the murine sarcoma virus. Replication of the murine sarcoma 

virus results in the transformation of MLV-infected PG-4 S'̂ 'L' cells, and thus the 

formation of foci, which can be visualised via low-power light microscopy (Bassin et al., 

1982). An alternative to the PG4 S^'L'assay is the marker rescue assay (Forestell et. al. 

1996J, which is acceptable to the authorities (CBER, 1996), if validated, and of 

sensitivity comparable to the PG4 S^L' assay. The detection assays are required to be 

of high sensitivity, as high levels of replication-incompetent particles have been 

reported to interfere with the detection of RCR in vector supernatants (Printz et al., 

1995). Therefore, assay sensitivity should be determined in the presence of high titre 

retroviral vector.

Testing at various stages of production is required owing to limited knowledge of the 

risks of retrovirus exposure and the possibility of generating recombinant RCR at any 

point in the production process (CBER, 1996). An improvement in the safety of 

retrovirus vectors may be achieved by incorporation of the packaging constructs into
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cells that do not contain endogenous retroviruses. Most amphotropic packaging lines 

are based on NIH 3T3 cells which express endogenous VL30 retroviral related 

sequences. These sequences contain LTRs, and could act as insertional mutagens If 

packaged into virions. Therefore, safety could be improved in packaging lines by the 

use of non-murine cells, such as canine or human cells, in which endogenous retroviral 

elements are defective. A human-derived packaging cell line based on 293 cells was 

recently reported to transduce target cells with high efficiency (Davis et al., 1997).

An additional safety issue in the use of retroviral vectors in gene therapy is that 

insertional mutagenesis may Induce oncogenesis, either by disrupting a gene involved 

In growth suppression, or by activating a proto-oncogene. Therefore, a goal of current 

retroviral vector technology is to develop site-specific integration.

1.9 Sum m ary

The safety of a viral vector for gene therapy is a combination of good vector design, 

controlled production and extensive evaluation and testing, which can be displayed as a 

'safety triad’ (Smith et al., 1996; Figure 1.2). Retroviruses are well characterised and 

are suitable as vectors for gene delivery owing to the unique characteristics of the virus 

replication cycle.

Advances in the development of packaging cell lines and vector constructs should 

permit safer and more efficient gene transfer. Recombinant virus titres have been 

improved by the inclusion of gag sequences in the vector construct and, by introduction 

of the vector construct to the packaging cell by infection, rather than transfection. 

Packaging cell lines have been constructed in which the gag/pol and env products are 

produced from separate transcriptional units, which both increases safety, and allows 

the construction of pseudotyped vectors.
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•Production Control 

•Quality Control 

•Documentation Control 

•Clean Room Control

VECTOR SYSTEM DESIGN

Identity / Purity Tests 

Sterility Tests

Replication Competent Virus Tests 

Adventitious Agent Tests 

Contaminating Substance Tests

•Mobilisation / Recombination

•Safe Vector Lineage

•Rederivation of "Safer" Packaging / 
Complementing Lines

•Control of Delivery / Expression

Figure 1.2 Safety considerations in production of retroviral gene therapy products
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Retroviral vectors bind to a host cell and insert the vector sequence, resulting in stable 

integration of the genetic material into the host genome without detrimental effects on 

the cell. However, the random way in which the provirus integrates into the host 

genome is undesirable owing to the potentially variable level of gene expression, and 

the potential for insertional mutagenesis to occur. Other limitations in the use of 

retroviral vectors include the inability to transduce non-dividing cells, production of low- 

titre stocks (rarely greater than 10® units/ml), and an upper limit to the inserted gene 

size of approximately 9kb. Gene expression from retrovirus vectors can be achieved in 

a broad range of tissues, though many applications have targetted haematopoetic stem 

cells, which are easily accessed, and infection can be performed ex vivo.

The ideal retrovirus vector should have the following characteristics; reproducibly high- 

titre stock; tissue-specific delivery; optimal and regulated expression level of the 

transgene; and site-specific integration. However, tissue specific vectors with 

regulated, stable gene expression have yet to be developed. Production of retroviral 

vectors should be evaluated to provide optimal small-scale culture conditions that will 

provide stable, high titre vector stocks for use in clinical trials. One study has indicated 

that growth of cells at 32°C results in increased viral titre in producer cell stocks (Kotani 

et a!., 1994). For clinical trials, large volumes of vector are required at the highest 

possible titre. Production parameters identified in the evaluation phase would be used 

to scale-up production to the most suitable and cost-effective technology, for example, 

roller bottles, the CellCube system or the Brunswick Celligen system. Recent advances 

in vector production technology include optimisation of vector production by 

concentration and lyophilisation, as well as large-scale production of producer cells for 

the treatment of brain cancer. Various techniques, such as ultrafiltration can be used to 

concentrate large volumes of viral vector.
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Retroviral vectors for use in gene therapy should be produced safely and efficiently, 

free from contaminating adventitious agents. The potential risk of exposure of patients 

to RCR is of concern. Development of complementing packaging cell lines and vector 

constructs with minimum sequence homology has increased the safety of retroviral 

vector systems. Third generation packaging cell lines have been developed to reduce 

homology between the vector construct and packaging cell line so that three separate 

recombination events would be required to generate RCR. A further increase in safety 

is manifest in currently used packaging cell lines which express the gag and pol 

proteins from one inserted provirus construct, and the env proteins from a second. The 

development of non-murine packaging cells would confer further advances in the safety 

of retroviral gene therapy products.
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2.0 VALIDATION OF ASSAYS FOR DETECTION OF REPLICATION 

COMPETENT RETROVIRUS

2.1 Introduction

Many gene therapy protocols employ recombinant retroviral vectors, which are 

replication-defective retroviruses designed for gene transfer. Most retroviral vector 

systems are based on replication defective murine retroviruses, and consist of two 

components, a packaging cell line, and the vector (as discussed in section 1.4). The 

env component of the vector has been most commonly based on A-MLV, which was 

isolated from wild mice (Hartley and Rowe, 1975). The env component from other 

retroviruses, for example GaLV, has also been incorporated into vector constructs (Lam 

et al., 1996). Transfecting or transducing packaging cells with a defective retrovirus 

vector incorporates the vector RNA into virus particles. These virions are capable of 

infection of target cells to integrate a DNA copy of the vector genome into the target 

cell, but are incapable of further replication.

A potential problem in using retroviral vectors is the possibility of generating replication 

competent retrovirus (RCR) through recombination events between the vector and the 

packaging sequence. The potential hazards of the presence of A-MLV are not easily 

predicted. One study indicated that A-MLV was not an acute pathogen in rhesus 

monkeys, as viraemia was not observed following administration of high titre RCR 

(Cornetta et al., 1990). In contrast, another study reported the development of T-cell 

lymphomas in immunosuppressed monkeys following exposure to high levels of helper 

virus during retrovirus mediated gene transfer (Donahue et al., 1992). However, the 

differences in these results may be partially explained by the fact that Cornetta injected 

the RCR intravenously, resulting in virus being lysed through complement inactivation, 

whereas Donahue’s group transduced the cells ex vivo. Transient transfections of

39



vector constructs into packaging cell lines can result in generation of wild type virus in 

harvested supernatant, therefore development of safer systems has been a focus of 

research. Although the packaging cells and vector constructs have been modified to 

reduce the possibility of recombination occurring (Danos and Mulligan, 1988), safety 

testing for detection of RCR is of utmost importance. Current recommendations for the 

detection of RCR in retroviral vector products are set by the FDA Center for Biological 

Evaluation and Research (CBER, 1991, 1996, 1998) in the United States, and the 

CPMP (1995) in the European Union. As for all biopharmaceuticals, a system of 

Master Cell Bank (MCB) and Working Cell Bank (WCB) should be set up to provide 

fully-characterised starting material for the clinical lot (CBER, 1993). Testing at various 

stages of production is required owing to limited knowledge of the risks of retrovirus 

exposure and the possibility of generating recombinant RCR at any point in the 

production process. The required tests include both an amplification assay and co­

cultivation assay with a cell line permissive to A-MLV infection. A commonly used cell 

line for RCR detection is derived from the tail fibroblasts of the Asian wild mouse. Mus 

dunni, which is permissive for replication of all classes of MLV (Lander and 

Chattopadhyay, 1984). The supernatant resulting from amplification or co-cultivation 

assay should be tested by feline PG-4 ST" assay (Bassin et al., 1982). PG-4 S"'L" cells 

contain a defective murine sarcoma virus genome (sarcoma positive, leukaemia 

negative [S'"L"]). Superinfection of the PG-4 S'̂ L" cells with RCR results in rescue of the 

murine sarcoma virus. Replication of the murine sarcoma virus results in the 

transformation of MLV-infected PG-4 S""L' cells, and thus the formation of foci, which 

can be visualised via low-power light microscopy (Bassin et al., 1982). Mus dunni cells 

are highly permissive for all MLV types and lack sequences homologous to known 

murine retroviruses, and are therefore unlikely to generate RCR spontaneously (Lander 

and Chattopadhyay, 1984). Thus, any RCR detected can be presumed to have 

originated from the sample being tested. The guidelines recommend testing 5% of the 

total supernatant from a cell bank by Mus dunni infectivity assay, and 1% of total pooled 

cells (or 10® cells, whichever is less) by co-cultivation with Mus dunni cells (CBER,
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1996, 1998). Supernatants generated from both extended Mus dunni and Mus dunni 

co-cultivation assays are tested by PG4 S'̂ L" assay. Additional recommendations have 

recently been published which further clarify regulatory opinion with respect to 

experience gained since the initial guidelines were implemented (Wilson et a!., 1997). 

This paper states that if appropriate, an alternative marker rescue assay Is acceptable, 

if validated, and of sensitivity comparable to the PG4 S’̂ L' assay (Forestell ef a/., 1996).

This chapter presents results of studies designed to optimise the procedures used for 

detection of RCR. In the currently approved assay system, Mus dunni ceWs are infected 

or co-cultivated with vector supernatant or the producer cell line and passaged five 

times in order to amplify any infectious virus. Supernatants are tested at passages 1 

and 5 for infectivity by PG4 S'"L' assay and at passage 5 for reverse transcriptase 

activity. To validate and determine optimal conditions for the extended assay. Mus 

dunni cells were infected with varying multiplicities of MLV (both A-MLV and X-MLV, to 

assess the effect of virus variation on the assay) and the culture supernatants 

harvested at each passage for both PG4 S'"L' and RT assay. The experiment was 

performed in parallel using PG4 S^L' cells, in order to compare the sensitivity of the 

assays. Similar experiments were performed for co-cultivation assays, where Mas 

dunni cells were co-cultivated with MLV-infected cultures containing varying 

percentages of infected cells, and supernatants harvested at each passage for PG4 

S^L' and RT assay. An additional study was performed to determine if the presence of 

retroviral vector supernatant or vector producing cells (non-RCR) in excess in culture 

supernatant would reduce the sensitivity of the assay for detection of RCR. This was 

performed by titration of A-MLV through culture supernatant containing either vector or 

ecotropic murine leukaemia virus (E-MLV) prior to assay on Mus dunni or PG4 S^L" 

cells.

2.2 M aterials and M ethods

2.2.1 Culture medium, cells, viruses and antibodies

41



Cell lines were grown at 37°C in a mixture of 5% COg and 95% air in Dulbecco's 

modified Eagles medium (DMEM) {Mus dunni and PALidSN), RPMI 1640 (mink (MiCli) 

CL'), or McCoy's medium (PG4 C L ') supplemented with 10% foetal bovine serum 

(FBS), L-glutamine, antibiotics, and vitamins (all reagents supplied by Life Technologies 

Ltd., Paisley, UK). Mus dunni (CRL2017), NIH/3T3 (CRL1658), MiCI^ mink S T ' 

(CCL64.1), and PG4 S^L' (CRL2032) cells were obtained from the American Type 

Culture Collection (ATCC). A murine fibroblast based producer cell line (PALidSN) was 

obtained from Dr L. Fairbairn (Paterson Institute for Cancer Research, Manchester). 

The A-MLV, strain 292A (VR884) was obtained from the ATCC. E-MLV strain mov3 

(Moloney, 1960) and feline leukaemia virus (FeLV, strain FeLV-C) were supplied by 

Professor D.E. Onions (Department of Veterinary Pathology, University of Glasgow). 

Anti-MLV monoclonal antibody (34C) was undiluted supernatant of cell line 34C 

(CRL1889) obtained from ATCC.

2.2.2 Infectivity assays

2.2.2.1 Introduction

The infectivity assays were performed in a direct and extended format. In direct assays 

a given volume of sample was inoculated onto the cells in the presence of polybrene 

and the virus titre determined directly by enumeration of resulting foci of infection or by 

indirect immunofluorescence. Low levels of infection, which may not be detected by 

direct assays, may be amplified by serial passage of inoculated cells (Morse and 

Hartley, 1986). Hence, extended assays were performed in which inoculated cultures 

were passaged five times. Extended assays are not quantitative, but in validation 

studies performed at Q-One Biotech Ltd (Glasgow, Scotland), they have been found to 

be of greater sensitivity than direct assay by up to a factor of one log^o
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2.2.2.2 Mus dunni assays

In the direct Mus dunni assay, ceiis were seeded onto Labtek 2 chamber slides {NUNC 

Inc. Napaville, Illinois USA) at a dilution of 2x1 O'’ cells/well and inoculated the following 

day with 0.25ml/well of vector supernatant and 0.25ml/well polybrene (effective 

concentration of lOpg/ml). Four days later the cultures were fixed in cold acetone. 

Indirect immunofluorescence was performed using the murine anti-MLV monoclonal 

antibody 340 (Cheesebro et a!., 1983) and anti-murine FITC conjugated antibody 

(Sigma) as the second antibody. Foci were identified and enumerated by fluorescent 

microscopy (Olympus). Negative control (culture medium) and positive control (A-MLV) 

cultures were tested in parallel. In the extended assay Mus dunni cells were seeded 

into duplicate 25cm^ tissue culture flasks at a concentration of 2.5x1 OTells/flask and 

inoculated the following day with 0.5ml/flask of supernatant and 0.5ml/flask polybrene 

(20]ag/ml). The cultures were passaged every 3-4 days for a total of five passages. At 

each passage supernatant from the cultures was harvested and tested for A-MLV by 

PG-4 Ŝ 'L" assay. Negative (culture medium) and positive (A-MLV) controls were tested 

in parallel.

2.2.2.3 S'^L'assays

In the direct mink Ŝ L̂' assay cells were seeded onto duplicate 60mm dishes (NUNC) at 

a dilution of 2.5x10®cells/plate and inoculated the following day with 0.5ml/plate of 

supernatant and O.Sml/plate polybrene (8pg/ml polybrene). The cells were examined 

daily for formation of foci and focus forming units (ffu) counted. Samples with fewer 

than lOffu/ml were tested by the extended assay by passaging every 3-4 days for a 

total of five passages and foci counted as before. Negative (culture medium) and 

positive (FeLV) controls were tested in parallel.
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In the PG4 Ŝ 'L" assays cells were seeded onto duplicate 60mm^ dishes at a 

concentration of 2x10®ce 11 s/p I ate and inoculated the following day with 0.5ml/plate of 

supernatant and 0.5ml/plate polybrene (20pg/ml polybrene). The cells were examined 

daily for focus formation and ffu counted (direct assay). The cells were then passaged 

every 3-4 days for a total of five passages and foci counted as before (extended assay). 

Negative (culture medium) and positive (A-MLV) controls were tested in parallel.

2.2.3 Reverse transcriptase (RT) assay

The purpose of this assay was to determine if reverse transcriptase activity was present 

in supernatant and to aid in the discrimination between viral and cellular DNA 

polymerase activities by using two different templates. The test was based on RNA- 

dependent DNA polymerase (RT) activity packaged in extracellular retroviral particles. 

This sensitive assay is useful for the detection of retrovirus production by cultured cells. 

The assay quantitated the incorporation of radiolabelled nucleotides into cDNA that is 

precipitated and bound to Whatman GC filters. If retrovirus was present in a sample, 

radiolabelled nucleotides incorporate into DNA which is copied from a synthetic viral 

template-primer [poly (rA)- oligo (dT)]. Use of a second template-primer [poly (dA)-oligo 

(dT)] provided a means to measure the endogenous cellular DNA polymerase activity of 

the test article (Kornberg, 1980). If RT was not present in the test article, synthesis 

from the viral template would not occur, and no labelled DNA would be precipitated and 

bound (Kacian and Spiegelman, 1974, Temin and Baltimore, 1972).

10 mis of the test samples were clarified at 11,000 x g for 10 minutes. The samples 

were concentrated by centrifugation at approximately 100,000 x g for 1hour and each 

pellet was solubilised in 180pl of disruption buffer (40mM Tris pH8.1; 50mM KCl; 20mM 

DTT; 0.2% NP40). An aliquot of 25pl was then added to an equal volume of each of 

six reaction mixtures. Ail reaction mixtures contained 40mM Tris pH8.1, SOmMKCI, 

25pCi [methyPH] TTP (Amersham) with poly (rA) (O.OSAaeo units) or oligo (dT)
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(O.OSAaeoUnits) or 2mM Tris pH8.1/30nnM NaCI with 2mM MnCij, or poly (rA) (0.1 A260 

units) or oligo (dT) (0.1 Aggo units) or 4mM Tris pH8.1/60mM NaCI with 20mIVI MgClg. 

The combined sample and reaction mixtures were incubated at 37°C for Ihour and the 

DNA or RNA templates precipitated by 10% trichloroacetic acid (TCA), 1% sodium 

pyrophosphate, onto GFC filters (Whatman). The ®FI-TTP incorporated into DNA or 

RNA templates and the background activity (no-template mixes) with either the 

Manganese (Mn^'') or Magnesium (M g ^  cation was measured in Ecoscint in a 

scintillation counter (Beckman). The Mn^+ cation is preferred by the Type 0  

oncoviruses belonging to the MLV and FeLV paradigm group. The Mg^+ cation is 

preferred by Type G retroviruses like bovine leukaemia virus (BLV) and human T-cell 

leukaemia virus (FITLV), Type B retroviruses like mouse mammary tumour virus 

(MMTV), Type D retroviruses like squirrel monkey retrovirus (SMRV) and the lentivirus 

group such as Maedi-visna virus (ovine lentivirus; M W ) and Human Immunodeficiency 

virus (HIV). If RT is not present in the test article, synthesis from the viral template wilt 

not occur, and no labelled DNA should be precipitated and bound. Results were 

presented as disintegrations per minute (dpm). A positive result was concluded when 

the poly (rA) incorporation exceeded 2000dpm with the poly (rA) incorporation at least 

twice the poly (dA) incorporation and at least four times the negative control poly (rA) 

incorporation. A negative result was concluded when the poly (rA) incorporation was 

less than 2000dpm. Any other result was regarded as equivocal. Negative control 

(disruption buffer) and positive controls (E-MLV for Mn^^ dependent incorporation and 

bovine leukaemia virus (BLV) or Maedi Visna virus (M W ) for Mg '̂" incorporation) 

samples were tested in parallel.

2.2.4 Immunofluorescence assay

Cells were washed with Phosphate buffered saline (PBS), then centrifuged at lOOOg for 

5 minutes before resuspending at 10® cells per ml in PBS. lOpI of cell suspension was 

added to each well of Flow 8-well multitest slides and allowed to air dry. Slides were
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then fixed by immersing in cold {-20®C) acetone (Phillip Harris) for 15 minutes. The 

slides were either tested immediateiy, or stored at -80®C. To perform the indirect 

immunofluorescence test, lOpl of undiluted anti-MLV monoclonal antibody 34C 

(Cheesebro et al., 1983) in PBS was added to the fixed cells and incubated at 37°C in a 

humidified chamber for 30 minutes. 10pl of PBS was added to act as a negative control 

well. After incubation, the slides were washed in PBS for 5 minutes, washed in distilled 

water, and dried. Next, lOpI of fluorescein isothiocyanate (FITC)-conjugated anti­

murine antiserum at a 1 in 20 dilution in PBS containing 0.01% Evans blue (Sigma) was 

added to each well. The slides were incubated at 37°C in a humidified chamber for 30 

minutes then washed once in PBS and once in distilled water before drying. The slides 

were mounted in glycerol/PBS (1:1) under a glass coverslip, and examined using a 

Olympus BX fluorescence microscope with a mercury lamp source and an NB filter. 

Infected cells appear fluorescent green, and non-infected cells dark red or invisible.

2.2.5 Optimisation of infectivity assays

To validate and determine optimal conditions for the Mus dunni assay, Mus dunni cells 

were infected with varying titres of A-MLV and the cultures passaged five times. To 

evaluate the sensitivity of Mus dunni and PG4 S^L' cells to known inputs of A-MLV, the 

assay was performed in parallel using PG4 S'^L' cells. Culture supernatants were 

harvested at each passage and tested for the presence of infectious MLV by PG4 S"'L‘ 

assay. Supernatants from selected samples were also tested by RT assay. To 

evaluate the relative sensitivities of various cell lines to infection by A-MLV, known 

inputs of virus were titrated by direct assay onto Mus dunni, ST ', and PG4 S^L cells.
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2.2.6 Optimisation of co-cultivation assays

Co-cultivation of producer cells with Mus dunni cells and subsequent passage of Mus 

dunni cells was performed in order to amplify MLV that may have been present at low 

levels in producer cells. After passage 5, cell culture supernatant was assayed by PG4 

S‘"L" focus forming assay for the presence of X-MLV and A-MLV. Presence of 

retrovirus at passage 5 was also determined by RT assay. To validate and determine 

optimal conditions for the co-cultivation procedure, Mus dunni cells were co-cultivated, 

either by direct co-culture or using transwell dishes (Costar, Cambridge, MA) with MLV- 

infected cultures containing varying percentages of infected cells. Cultures were 

incubated for 5 passages and tested for infectious MLV by PG4 S^L‘ assay and also by 

RT assay. In order to ensure that the cell count dilutions were accurate, dilutions were 

plated in quadruplicate onto a 24-well plate, which was examined daily for cell growth, 

and the supernatants examined for viral detection by assay on PG4 S'̂ 'L' cells. Also, 

the percentage of infected cells in the input sample was determined by indirect 

immunofluorescence, as described in section 2.2.4.

The use of direct co-cultivation of detector cells and test article cells presents the 

problem that all the test article cells must be removed or selectively killed by the end of 

the assay so that any retrovirus present in culture supernatant was from infected 

detector {Mus dunni) cells and not from test article cells. In addition, if test cells were 

not removed then they may outgrow detector cells. One method that obviates mixing of 

detector and test article cells is the use of transwell dishes. These dishes consist of a 

90mm plate into which Mus dunni detector cells were seeded. A second dish with a 

base plate consisting of a 0.45]am membrane was inserted and test article cells seeded 

onto this. Retroviruses range in diameter from approximately 80-120nm (Coffin, 1992), 

thus any retrovirus being produced from the test article cells should pass through the 

membrane pores and be present in the culture supernatant surrounding the detector 

cells. Following a 4-5 day period of co-cultivation the upper transwell dish (and
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consequently all test article cells) was removed and the detector cells passaged to 

amplify any low-level infection. Although this method does not permit cell to cell 

contact, which for some retroviruses aids virus infection, the test article cells and Mus 

dunni detector cells were seeded subconfluently and maintained in the same culture 

fluid for a period of 4-5 days. During this period both cell lines were in mitosis which is 

optimal for retroviral production and infection (Morgan etal., 1995, Roe etal., 1993).

2.2.6.1 Direct co-culture

Mus dunni cells were plated in 75cm^ tissue culture flasks at a dilution of 1X10® cells in 

total. After 24 hours, A-MLV infected Mus dunni cells serially diluted In non-infected 

Mus dunni cells were inoculated onto the Mus dunni monolayer in the presence of 

8pg/ml polybrene. The total number of cells inoculated was kept constant at a 

concentration of 1X10® cells, with a ratio of infected: uninfected Mus dunni cells ranging 

from 0:10® to 10®:0 at 10 fold intervals. The A-MLV infected Mus dunni cells were 

diluted out to a concentration of 10 ®. The cell count of infected Mus dunni cells was 

demonstrated to be accurate by plating each of the dilutions from 10'® to 10® in a 24-well 

plate. The proportion of Mus dunni cells expressing virus in the infected culture was 

determined by indirect immunofluorescence using the 34C monoclonal antibody to 

MLV. The cells were co-cultured in flasks for four days, after which the cells were 

passaged five times and supernatants harvested after each passage and tested for the 

presence of retrovirus by direct PG4 S"L' assay. Negative (culture medium) and 

positive (A-MLV infected Mus dunni ceWs) controls were tested in parallel.

2.2.6.2 Co-culture using transwell dishes

Mus dunni cells were plated at a dilution of 1x10® cells/plate in the lower dish of 90mm 

transwell dishes with pore size 0.4pM (Costar, Bucks., UK). In separate experiments, 

A-MLV infected Mus dunni cells or the amphotropic retroviral vector producer cell line
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PALidSN, were serially diluted in non-infected Mus dunni cells. The dilutions were 

inoculated onto the upper plate of the transwell, as described above, in the presence of 

8pg/ml polybrene. The total number of cells inoculated was kept constant at a 

concentration of 1x10® cells, with a ratio of infected:uninfected Mus dunni cells ranging 

from 0:10® to 10®;0 at 10 fold intervals. The A-MLV infected or producer cell Mus dunni 

cells were diluted out to a concentration of 10'^ The cell count of infected Mus dunni 

cells was shown to be accurate by plating each of the cell dilutions from 10® to 10'® in a 

24-well plate as above (2.2.6.1). The proportion of Mus dunni cells expressing virus in

the infected culture was determined by indirect immunofluorescence using a

monoclonal antibody to MLV. The cells were co-cultured in transwells for four days 

after which the upper transwell dish containing either infected cells or producer cells 

was discarded. The cells from the lower transwell were passaged five times to amplify 

any low level infection, and supernatants harvested after each passage and tested for 

the presence of retrovirus by PG4 S^L'assay.

Negative controls were mock-infected Mus dunni cells. Cell culture supernatants were 

harvested at each passage, and tested for A-MLV by PG-4 Ŝ ’L' assay. The presence 

of retrovirus was also detected in supernatants by RT assay.

2.2.7 The effect of non-RCR on infectivity and co-cultivation assay

2.2.7.1 The effect of non-RCR on direct PG4 infectivity assay

To evaluate the effect of retroviral vector supernatant on detection of A-MLV, virus was 

titrated through various concentrations of retroviral vector supernatant before direct 

assay on PG4 S'*'L' cells. Vector supernatant with known titre of 4x10® colony forming 

units per ml (cfu/ml) was serially diluted in culture medium to give supernatant titres of 

4x10'^ and 4x10® cfu/ml. A-MLV with a known titre of between 2-5x10® ffu/ml was 

titrated through culture medium, the three concentrations of vector supernatant, and E-
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MLV with a known titre of 1.4x10® ffu/ml. E-MLV utilises a different cellular receptor 

from A-MLV, therefore the presence of E-MLV should have negligible effect on A-MLV 

titre (Somerfelt and Weiss, 1990).

2.2.7.2 The effect of non-RCR on the Mus dunni co-cultivation assay

Retroviral vector producer cells were directly co-cultivated with Mus dunni cells in the 

presence of known quantities of Mus dunni cells infected with A-MLV. Cells were 

passaged five times, and supernatant from each passage harvested for titration on PG4 

S'^L' cells. Cultures without producer cells, containing Mus dunni cells infected with 

known A-MLV concentration were set up in parallel.

Throughout the studies, the negative control was Mus dunni cultures mock-infected with 

tissue culture medium. The positive controls were Mus dunni cultures co-cultivated with 

MLV-infected Mus dunni cultures or Mus dunni or PG4 S’"L' cultures infected with A- 

MLV (Strain 292A, ATCC VR-884).

2.3 Results

2.3.1 Infectivity assays

2.3.1.1 Direct infectivity assays

Table 2.1 presents the relative sensitivities of Mus dunni, PG4 S'^L’, and mink S^L" cells 

to infection by A-MLV when compared by direct assay. The viral titres resulting from 

known inputs of virus were converted to log values and plotted. Linear regression 

graphs indicate the relationship between the direct assays (Figure 2.1). The results 

indicated that Mus dunni and PG4 S '̂L' cell lines were of similar sensitivity to infection 

by A-MLV, and that both cell lines were of higher sensitivity to A-MLV infection than
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mink S"^L' cells by approximately 1 IoQio-

Table 2.1 Comparison of sensitivities of Mus dunni, PG4 S+L-, and mink S L cells 

to infection by A-MLV by direct assay

Virus Input^ Cell Types

Mus dunni PG4 S^L- Mink S+L-

Titred) Loq titre Titre(2) Loq titre Titre*®) Loq titre

10" 4 x  10" 4.6 1.8 X 10" 4.3 4x10® 3.6

10® 4x10® 3.6 5 x  10® 3,7 1 X 10® 3.0

10^ 4x10^ 2.6 3x102 2.5 1x10® 2.0

10̂ 4x10 '' 1.6 1 x10 i 1.0 0 0

10° 0 0 0 0 0 0

ICM 0 0 0 0 0 0

1. titre

2. titre

3. titre

titre measured by Mas dunni assay (fluorescent ffu/ml). 

titre measured by PG4 S’̂ L' assay (ffu/ml) 

titre measured by mink S’*'L assay (ffu/ml)
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Figure 2.1 Comparative titration of varying quantities of amphotropic murine 
leukaemia virus by Mus dunni, PG4 S + L" and mink S + L  assays
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2.3.1.2 Extended infectivity assays

The results of the evaluation of the sensitivity of the extended Mus dunni and PG4 S^L" 

assays are presented in Table 2.2. Mus dunni and PG4 S '̂L' cells infected with varying 

dilutions of A-MLV were passaged five times, and the supernatants harvested at each 

passage for PG4 Ŝ 'L" assay. The number of foci observed at each passage when 

tested by PG4 S^L' assay is presented in Table 2.2 The results indicate that Mus dunni 

and PG4 S'"L‘ cells are of similar sensitivity to A-MLV infection by extended assay. 

Overall, both cell lines showed similar sensitivity to infection by A-MLV, and virus was 

detected following inoculation of a dilution of lOM infectious units of A-MLV. However, 

there appeared to be differences in the dynamics of infection in the early passages 

following inoculation. At this dilution (10'^) virus was detected at passage 1 in Mus 

dunni cells, and at passage 2 in PG4 S+L" cells. Inoculation of A-MLV diluted to low 

multiplicity (10^ infectious units) resulted in confluent foci in the duplicate cultures by 

passage 2 of Mus dunni assay, and by passage 4 of PG4 S+L" assay. At lower dilutions 

of A-MLV, virus was not detected in either cell line.
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Table 2.2 Detection of A-MLV by PG4 assay in supernatants of Mus dunni or 

PG4 cells infected with known virus concentration

Virus Passage number

Inpuf

P1 P2 P3 P4 P5

PG4 Mus^ PG4 Mus PG4 Mus PG4 Mus PG4 Mus

S"L- dunni S"L- dunni Ŝ L- dunni S+L- dunni S^L- dun

0 0/0° 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

10^ 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

10^ 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

10M 0/0 +V63 +/0 +/+ +/0 +/+ +/+ 4-/4- +/+ 4-/4-

10° 9/46 +/+ +/+ +/+ +/+ +/+ +/+ 4-/4- 4-/4- 4-/4-

10' +/55 +1+ +/+ +/+ +/+ +/+ +/+ +/+ +1+ 4-/4-

10" +/+ +1+ +/+ +/+ +/+ +/+ +/+ -<-/4- -f/4- +/+

10° +/+ +/+ +/+ +/+ +/+ +/+ +/+ 4-/4- 4-/4- 4-/4-

1.

2 .

3.

4.

titre measured by PG4 S^L' assay (ffu/ml).

titre measured by Mus dunni assay (fluorescent ffu/ml).

0 symbolises no foci were observed.

+ symbolises observation of confluent foci.

Reproducibility of the results for the Mus dunni assay presented in Table 2.2 was 

determined by re-titrating A-MLV in Mus dunni cells, passaging 5 times, and assaying 

supernatant from each passage on PG4 Ŝ 'L* cells. Table 2.3 presents the results 

obtained on repetition of the amplification assay. Again, inoculation of A-MLV at low 

muliplicity (10’  ̂ infectious units) resulted in confluent foci in the duplicate cultures by
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passage 2 of Mus dunni assay, and focus forming virus was not detected at lower A- 

MLV dilutions. The results, therefore, were similar to the previous experiment.

Table 2.3 Detection of A-MLV by PG4 S"̂ L' assay in supernatants of Mus dunni cells 

infected with known virus concentration

Virus Input' Passage Number

P1 P2 P3 P4 P5

10-° 0/0" 0/0 0/0 0/0 0/0

10'" 0/0 0/0 0/0 0/0 0/0

10-' 10/7° +/+ +/+ +/+ +/+

10° 54/55 +/+4 +1+ +/+ +/+

10' +/+ +/+ +/+ +/+ +/+

10" +/+ +/+ +/+ +/+ +/+

10° +/+ +/+ +/+ +/+ +/+

1. titre measured by PG4 S'^L‘ assay (ffu/ml)

2. 0 symbolises no foci were observed.

3. ffu/ml

4. + symbolises observation of confluent foci

Supernatants generated from each passage of the Mus dunni cells infected with the 

lowest A-MLV dilution at which virus was detected (10'') by direct PG4 S^L" assay were 

assayed for the level of RT activity. This was performed for both Mus dunni titrations, 

and the resulting RT activities are presented in Table 2.4. (x representing duplicate 

samples). RT activity was detected In only one of the duplicate samples in the first 

titration at passage 1, but by passage 2, activity increased and duplicate samples in
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each titration were positive for RT activity. In both experiments RT activity rose to a 

peak by passage 3, after which the level remained at a plateau through to passage 5.

Table 2.4 Reverse transcriptase activity (Mn^'^dependent) In supernatants of Mus 

dunni cells Infected with A-MLV at low multiplicity (10 ' infected cells)

1st titration (Table 2) 2nd titration (Table 3)

virus input 10-' 10-1X IQ-' 10-1X

Passage 1 8679' 1070 497 546

Passage 2 201277 14054 4671 4394

Passage 3 1106148 1078935 . 261161 193161

Passage 4 765041 401403 249851 228341

Passage 5 1196963 869724 204059 237858

1. Numbers indicate the disintegrations per minute (dpm) in reverse transcriptase reactions with a poly rA template in 

the presence of the manganese cation ((Vln̂ "). A positive resuit is indicated by a value greater than 2000dpm. The 

supernatants tested above were negative (less than 2000dpm) for reverse transcriptase activity dependent on the 

presence of magnesium cations (Mg^O-

Figure 2.2 presents the Mn"'^-dependent RT results converted to log values for cells in 

both Mas dunni assays inoculated with A-MLV at a dilution of 10'' infected cells. RT 

enzyme levels increased from passage 1 to passage 3, with enzyme activity reaching a 

peak at passage 3, and remaining at a high level through to passage 5.
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Figure 2.2 Reverse transcriptase activity in supernatants generated from Mus

dunni cells inoculated with A-MLV at low multiplicity
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2.3.2 Co-cultivation assays

To validate and determine optimal conditions for the co-cultivation procedure, Mus 

dunni cells were co-cultivated, either directly or indirectly using transwell dishes, with 

MLV-infected cultures containing varying percentages of infected cells. The proportion 

of Mus dunni cells expressing virus in the stock infected culture used in these 

experiments was 10%; determined by indirect immunofluorescence using anti-MLV 

monoclonal antibody 340 as described in section 2.2.4. Following co-cultivation, 

cultures were incubated for 5 passages and tested for infectious MLV by PG4 S^L' 

assay.

A culture of Mus dunni cells infected with A-MLV was used to inoculate the co­

cultivation assays. In order to ensure that the cell count dilutions made were accurate, 

diiutions were plated in quadruplicate onto a 24-well plate, which was examined daily 

for cell growth. The cell counts were found to be accurate, with confluent cell growth 

being observed in the wells inoculated with 100, 10 and 1 virus-infected cells. Three 

out of the four wells of the 0,1 infected cell inoculation also displayed confluent cell 

growth, whereas no cell growth was observed in the 0.01 or 0.001 cell dilutions. This 

was confirmed by inoculating supernatants from each well of the 24-well plate onto a 

24-well plate of PG-4 S^L" cells. The number of well displaying foci which were 

observed by PG-4 S"L' assay of the Mus dunni lA-MLV cell supernatants are presented 

in Table 2.5.
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Table 2.5 PG4 S^L* assay of serially diluted A-MLV-infected Mus dunni cell 

supernatants Inoculated into a 24-well plate

Well number 10

Number of Infected Cells Plated

1 0.1 0.01

1 +1 + + 0"

2 + + + 0

3 + + + 0

4 + + 0 0

1, + symbolises observation of confluent foci

2. 0 symbolises no foci were observed

2.3.2.1 Direct co-cultivation assay

The resuits of the PG4 S’*‘L' assays on supernatants harvested from each passage after 

direct co-cultivation are presented in Table 2.6. Confluent foci were observed after 

inoculation of A-MLV at low multiplicity (10'^ infectious units) in the duplicate cultures by 

passage 2, and focus forming virus was not detected at lower A-MLV dilutions. 

Confluent focus forming virus was detected from passage 1 onward when 1 infected 

cell per 10® cells was co-cultivated with Mus dunni cells. The sensitivity of the assay 

was at a detection level of 1 infected cell per 10  ̂cells. RT assay was not performed in 

this study, as all direct co-culture supernatants would be expected to be positive owing 

to the presence of virus-producing cells in all cultures.

59



Table 2.6 Detection of A-MLV by PG4 S^L assay in supernatants of Mus dunni cells 

directly co-cultivated with cells infected with known virus concentration

No. of Mus 

dunni / MLV 

infected cells^

Passage number

P1 P2 P3 P4 P5

0 0/Q2 0/0 0/0 0/0 0/0

10^ 0/0 0/0 0/0 0/0 0/0

10^ 0/0 0/0 0/0 0/0 0/0

10^ 18/ 11® +/+4 +/+ +/+ +/+

1 +/+ +/+ +/+ +/+ +/+

10̂ +/+ +/+ +/+ +/+ +/+

10= +/+ +/+ +/+ +/+ +/+

1. titre determined by immunofluorescence using a MAb to MLV

2. 0 symbolises no foci were observed.

3. ffu/ml

4. + symbolises observation of confluent foci

2.3.2.2 Co-cultivation assay using transwell dishes

The results of PG4 S'"L‘ titre measured by PG4 S'̂ L" assay of supernatants harvested 

from each passage following co-cultivation using transwell dishes are presented in 

Table 2.7. Mus dunni ceWs were plated in the lower dish of the transwell plate and Mus 

dunni ceWs with varying proportions of A-MLV infected cells were seeded onto the upper 

membrane base as described in section 2.2.6.2.
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Table 2.7 Detection of A-MLV by PG4 S"̂ L' assay In supernatants of Mus dunni cells 

co-cultivated with cells infected with known virus concentration using 

transwell dishes

No. of Mus 

dunni-MLV 

infected cells^

Passage Number

P1 P2 P3 P4 P5

0 0/02 0/0 0/0 0/0 0/0

10® 0/0 0/0 0/0 0/0 0/0

10-2 0/0 0/0 0/0 0/0 0/0

lOM 0/1® 0/+4 1/+ +/+ +/+

1 +/+ +/+ +/+ +/+ +/+

10 +/+ +/+ +/+ +/+ +/+

10® +/+ +/+ +/+ +/+ +/+

10® +/+ +/+ +/+ +/+ +/+

10< +/+ +/+ +/+ +/+ +/+

1. titre determined by immunofluorescence using a MAb to MLV

2. 0 symbolises no foci were observed.

3. ffu/ml

4. + symbolises observation of confluent foci
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The number of foci observed after inoculation of A-MLV at low multiplicity (10'^ infected 

cells) reached confluency in the duplicate cultures at passage 4. At higher 

concentrations, the confluent foci were observed in the duplicate cultures by passage 1. 

Virus was not detected in dilutions lower than 10''’ infected cells. Co-cultivation using 

transwell dishes was of similar sensitivity to direct co-cultivation (detection of 1 infected 

cell in lO^cells).

Supernatants from cell cultures co-cultivated in transwell dishes with A-MLV at low 

multiplicity (0.1 infectious units) were tested by RT assay, the results of which are 

presented in Table 2.8. RT results correlated with PG4 S"̂ L' results in that RT activity 

was not observed at passage 1. At passages 2 and 3 only one of the duplicate cultures 

was positive and at passages 4 and 5 both duplicates were positive for RT activity with 

Mn®"' preference (the cation of preference for MLV).

Table 2.8 Reverse transcriptase activity (Wln^^-dependent) in supernatants

of Mus dunni cells co-cultivated with A-MLV infected cells at low 

multiplicity (0.1 infectious units)

RT activity in duplicate cultures

Passaae number Sample 1 Sample 2

P1 5 0 3 1 482

P2 2455 1052

P3 53845 591

P4 22768 3525

P5 34030 31997

1. Numbers indicate the disintegrations per minute (dpm) in reverse transcriptase reactions with a poiy rA tempiate in 

the presence of the manganese cation. A positive result is indicated by a value greater than 2000dpm. The 

supernatants tested above were negative (that is, less than 2000dpm) for reverse transcriptase activity with 

preference for the Mg^* cation.

62



2.3.3 The effect of non-RCR on infectivity and co-cultivation assays

2.3.3.1 The effect of non-RCR on the PG4 infectivity assay

To evaluate the effect of retroviral vector supernatant on detection of A-MLV, virus was 

titrated through various concentrations of retroviral vector containing supernatant before 

direct assay on PG4 S"̂ L' cells, the results of which are presented in Table 2.9. To 

determine if any effect observed was specific, A-MLV was also titrated through E-MLV. 

The titre of the E-MLV stock used in the assay was 1.4x10® plaque forming units per ml 

(pfu/ml) as determined by the XC plaque assay (Klement et a/., 1969), as performed at 

Q-One Biotech Ltd. The results indicated that there was a loss of sensitivity of 

approximately 1 log^o in the presence of higher titre retroviral vector (4X10®ffu/ml). 

Vector supernatant of lower titre had no effect on PG4 S'̂ L" assay sensitivity (ie. 

variability of the assay was less than 0.5 log^offu). The presence of E-MLV also had no 

effect on A-MLV titre.
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Table 2.9 The effect of the presence of vector supernatant or E-MLV on detection of 

A-MLV by PG4 S"̂ L' assay

A-MLV titrated through:- No. of ffu® detected 

at 10-4

No. of ffu® detected 

at 10-®

Calculated Titre^

Vector Supernatant 1/1 0/0 2.0 x 104

(4 x  10®)'

Vector Supernatant 15/11 1/1 2.6 X 10®

(4x 107

Vector Supernatant 11/12 0/1 2.3 x 10®

(4 x  10®)'

Ecotropic MLV 11/13 2/0 2.0 X 10®

(1 .4 x 1 0 7

Culture media 22/25 2/1 4.7 X 10®

1. colony forming units per ml (cfu/ml)

2. plaque forming units per ml (pfu/ml)

3. focus forming units (ffu)

4. ffu/ml of inoculum

2.3.3.2 The effect of non-RCR on the Mus dunni co-cultivation assay

Retroviral vector producer cells were directly co-cultivated with Mus dunni cells in the 

presence of known quantities of A-MLV infected Mus dunni cells. Cells were passaged 

five times, and supernatant from each passage harvested for titration on PG4 S'̂ L" cells. 

Assays where no producer cells were present were inoculated in parallel as a control. 

The results showing the effect of vector cells on detection of A-MLV by Mus dunni 

assay are presented in Table 2.10. Supernatants generated from co-cultivation in the
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presence or absence of producer cells produced similar results by titration on PG-4 S'*'L 

cells. The results were also similar to previous co-cultivation and infectivity titrations in 

that virus was not detected in supernatants harvested from cultures infected with 0.01 

or less infected Mus dunni cells, whereas confluent focus-forming virus was observed 

at all passages when 1 or more infected cells were inoculated. At passage 1, following 

low multiplicity of infection (0.1 infected cell), 19 foci were detected in the absence of 

producer cells and 18 foci in the presence of producer cells. For both titrations, 

confluent foci were observed from passage 2 through to passage 5. Thus the effect of 

the presence of producer cells on indirect co-cultivation assay was negligible with 

regard to RCR detection, with the sensitivity of the assay remaining at 1 infected cell in 

10'' cells in the presence or absence of producer cells.



Table 2.10 Detection of A-MLV by PG4 S L assay in supernatants of Mus dunni cells 

after direct co-cultivation with Mus dunni or retroviral vector producing 

cells seeded with varying dilutions of A-MLV infected Mus dunni cells

No. of Mus 

dunni 1 MLV 

infected cells

Passage Number

P1 P2 P3 P4 P5

Mus

dunni

Vector Mus

dunni

Vector Mus

dunni

Vector Mus

dunni

Vector Mus

dunni

Vector

0 0/0' 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

10® 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

10-2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

10' 18/1® 15/3 +/+® +/+ +/+ +/+ +/+ +/+ +/+ +/+

1 +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+

10 +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+

10% +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+

1. 0 symbolises no foci were observed.

2. titre measured by PG4 S^L' assay (ffu/ml).

3. + symbolises observation of confluent foci

2.4 Sum m ary

This study determined the limits of sensitivity of infectivity and co-cultivation assays 

used for the detection of RCR, and investigated the effect of the presence of non-RCR 

on RCR detection.
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2.4.1 infectivity and co-cultivation procedures

Relative sensitivities of Mus dunni, mink S T ' and PG4 S'"L‘ cells to infection by A-MLV 

were assessed by titrating known inputs of virus by direct assay onto each cell line. 

(Table 2.1). The results indicated that Mus dunni and PG4 S'*'L' cells were of 

comparable sensitivity to infection by A-MLV, whereas mink S V  cells were 

approximately 1 log^j less sensitive to A-MLV infection.

The sensitivity of Mus dunni and PG4 S^L' cells to A-MLV infection by extended assay 

was evaluated (Tables 2.2 and 2.3). The results indicated that both cell types were 

similar in sensitivity for detection of A-MLV. Manganese-dependent RT activity in 

supernatants from each passage of Mus dunni cells infected with A-MLV at low 

multiplicity (10 ' infectious units) was measured (Table 2.4). The results indicated that 3 

passages are adequate for viral detection with respect to both PG4 S'^L’ assay results 

and RT activity detected (Figure 2.2). Infectivity results by PG4 S'^L' assay of Mus 

dunni supernatants displayed no change in virus titre from passage 2 onwards (a virus 

input of 10'' infected cells resulted in confluent foci), indicating the high sensitivity of the 

assay.

Validation of co-cultivation procedures demonstrated that the presence of 1 RCR in 10'' 

cells could be detected by direct co-cultivation in tissue culture flasks or indirect co­

cultivation using transwell dishes (Tables 2.6 and 2.7).

2.4.2 Effect of non-RCR on RCR detection

The results indicated that there was a loss in sensitivity of the direct PG4 S'^L' assay in 

the presence of high titre retroviral vector (Table 2.9). This result was shown to be 

specific for vector supernatant, as viral titre was not reduced by titration of A-MLV In the 

presence of E-MLV. E-MLV uses a different viral receptor to A-MLV (Somerfelt and
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Weiss, 1990), therefore the A-MLV receptor can be blocked by vector but not by E-MLV. 

The presence of vector producer cells in the co-cultivation assay had no effect on 

detection of A-MLV (Table 2.10).



3.0 STUDIES ON RETROVIRAL VECTOR PRODUCTION IN A MODEL

CELL LINE

3.1 Introduction

In order to achieve optimal viral vector production from producer cells, it is important to 

establish specific growth parameters for the particular cell line, as maximum retrovirus 

production is attained when cells are rapidly dividing (Roe et al., 1993, Morgan et al., 

1995). In this study, growth characteristics of a model producer cell line were 

investigated, including the effect of culture in media containing varying concentrations of 

either foetal or newborn bovine serum, glucose, and serum-free media. Optimal growth of

producer cells in flasks, roller bottles and Fibra-Cel® disks in a Techne spinner flask was

assessed. Optimal culture conditions were established to assess specific cell growth 

parameters that provide retroviral vector of the highest possible titre. The effect of 

culturing producer cells at different temperatures, and in the presence of inducing agents 

was examined. In addition, studies were performed to determine the effect on retroviral 

vector by concentration of supernatant by filtration.

The cell line used to produce the model retrovirus vector for these experiments was 

PALidSN cells, which were obtained from Dr. L. Fairbairn from the Paterson Institute of 

Cancer Research. Manchester. PALidSN is a murine fibroblast cell line which expresses 

the a-L-iduronidase (IDUA) gene in a vector used for the treatment of Hurler's syndrome. 

PALidSN is a vector construct consisting of the genes encoding a-L-iduronidase, the 

SV40 promoter and neo marker flanked by two LTRs (LidSN) which is packaged in the 

amphotropic retrovirus vector packaging cell line PA317 (Miller and Buttimore., 1986).

LTR  IDUA  SV/neo ---------  LTR LidSN
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Geneticin (G418-sulphate, or G418) is an antibiotic that is toxic to both eukaryotic and 

prokaryotic cells (Vile, 1991). The gene encoding neomycin transferase (neo) confers 

resistance to G418 by converting the toxic drug into tolerable byproducts. The presence 

of neo in eukaryotic cells provides a dominant selectable marker that allows cell growth in 

media containing G418. PALidSN cells encode the neo gene therefore are permitted 

growth in media containing G418 as the antibiotic is rendered non-toxic. Thus the titre of 

the vector can be obtained by assessing the number of living colonies of PALidSN cells 

when titrated in media containing G418 (Vile, 1991).

Retroviruses can only infect growing cells, as integration of viral DNA is dependent on 

mitosis (Roe et al., 1993, Morgan et al., 1995). Mammalian cells can be characterised in 

culture by four growth phases: lag, log, plateau and decline. In lag phase the cell culture is 

in a 'resting' state and growth is negligible. The log phase of cell growth is when 

exponential growth occurs and the proportion of cells in cycle is high. For adherent cells 

such as PALidSN, the plateau is normally reached when confluence is achieved. Division 

slows down and cell growth is balanced by cell death if the culture is supplied with fresh 

culture media. However, if the medium is unchanged, cell death will exceed cell growth 

and the culture will decline. A series of growth curves for PALidSN cells were established 

in this study and optimal cell growth conditions established in relation to viral vector 

production and IDUA enzyme activity in culture supernatants.

One study reported higher transduction efficiency of retroviral vector, resulting in higher 

titre virus stock, when producer cells were cultured at 32°C rather than 37° (Kotani et al., 

1994). Therefore, viral titre of PALidSN cells was assessed at both temperatures to 

determine if a similar effect was observed. Producer cells were also exposed to inducing 

agents which have been reported to increase vector titre. One such agent is sodium 

butyrate (NaB), which affects expression of a number of viral and cellular genes, and has 

been reported to increase production of virus from retroviral-derived producer cell lines by 

between 20-fold to 1000-fold (Olsen and Sechelski, 1995). Another is the phorbol ester

70

.a



12-0 tetradecanoly-phorbol-13-acetate (TPA), an inducing agent which can increase viral 

production from infected cells by promoting latent viral infections to the lytic cycle (Zur 

Hausen etal., 1978).

Chemically defined culture medium such as Dulbecco's Modified Eagle's Media (DMEM) 

used in this study normally requires the addition of a serum base such as foetal or 

newborn bovine serum. There are disadvantages to using a serum-based system in that 

serum is potentially cytotoxic to certain cell types owing to the presence of selective 

inhibitors, bacterial toxins and lipids. Batch to batch variations in the composition of sera 

necessitate extensive screening, and the presence of serum in supernatant may be a 

cause for safety concerns owing to the potential for contamination of cell lines with bovine 

adventitious agents (McLean et al., 1996). Thus, in this study, adaptation of PALidSN 

cells to serum-free media and the resultant level of viral vector production was examined 

by assessing cell growth and viral titre in cells both during adaptation and in completely 

serum-free media.

As larger quantités of gene therapy material are required will become necessary to scale 

up the production process. This may involve different culture systems such as the Costar 

Cellcube system or the New Brunswick Celligen fermenter system. In the study 

presented in this report, the feasibility of scale-up for retroviral vector production by 

PALidSN cells was determined using both roller bottles and the Celligen fermenter 

system, which was used to evaluate cell growth and vector production on Fibra-Cel® disks 

in a Techne spinner flask.

As higher titres of vector material are required for use in gene therapy protocols, methods 

for concentrating retroviral vector stocks are being studied. In this study, the potential for 

viral vector supernatant concentration was examined by filtration using SARTACON 

MICRO 100KD filters.
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3.2 Materials and Methods

3.2.1 Assay of retroviral titre in vector supernatant

Murine NIH/3T3 cells were seeded at 3X1 O'* cells/well in 24 well plates (NUNC Inc. 

Napaville, lllinios USA), and inoculated in quadruplicate the following day with 0,25ml/well 

of vector supernatant and 0.25ml/well (4pg/we!l) polybrene (Sigma), with one row of wells 

serving as negative control (culture medium). The medium was replaced after 6 hours 

exposure to virus, with fresh medium containing G418 at a concentration of 60Qpg/ml (Life 

Technologies Ltd. After 14 days of selection, with media replaced every 3-4 days, the 

negative control cells were non-viable. The titre of vector was obtained by counting the 

number of colonies in the wells containing the lowest dilution of vector supernatant which 

gave rise to G418 resistant colonies.

3.2.2 Assay of enzyme activity in vector supernatant

Retroviral vector activity was determined by infection of human fibroblast MPSI cells 

(supplied by Dr Jean-Michel Heard, Institut Pasteur, Paris) followed by preparation of 

cell extracts in which IDUA enzyme activity was measured by fluorimetry. MPSI cells 

were seeded into 90mm plates (NUNC) at 2X10® cells/plate. The following day, 

retrovirus vector supernatant was 0.45pM filtered and 4mls inoculated onto 

subconfluent MPSI cells in the presence of 8pg/ml polybrene. Plates were incubated 

at 37°C for 2 hours, after which 6mls medium was added to each plate. The 

supernatant was replaced after 24 hours. When the MPSI cells reached confluence 

after 4-5 days, they were harvested with trypsin, washed in PBS and resuspended in 

lysis buffer. The cells were lysed by three freeze/thaw cycles and centrifuged at 1012g 

for 5 minutes. The supernatant was harvested and the protein concentration measured 

using a Sigma micro protein determination kit. Enzyme activity was measured by
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reaction of 0.25mg/ml cellular extract with the substrate (4-methyl umbelllferyl I DU A) 

(Sigma) and detection of product by fluorimetry. The optical density (O.D.) value from a 

reaction mix containing cellular extract was read and calculated by the formula O.D. x

1.2 = units/mg protein. For infection of MPSI cells, the negative control was mock- 

infected MPSI cells, and the positive control was culture supernatant from a vector 

containing producer line. For the enzyme assay, the negative control was the extract 

from mock infected MPSI cells, and the positive control was the extract from MPSI cells 

infected with CRIP-ID15 supernatant (supplied by Dr. Jean-Michel Heard, Institut 

Pasteur, France).

3.2.3 The effect of serum and glucose content in culture media on cell growth and viral vector 

production of PALidSN cells in tissue culture flasks

In order to determine the optimal media for PALidSN cell culture, cells were cultured in 

DMEM supplemented with 4500mg/L or lOOOmg/L glucose containing either 10% foetal 

bovine serum (FBS) or 10% newborn bovine serum (NBS), and a series of growth curves 

established to provide information on doubling times and cell yields. PALidSN cells grown 

in each of the media types were seeded at 1.0X10^ viable cells in each of ten 75cm^ 

flasks. The flasks were cultured over a period of 168 hours and two flasks from each 

culture system harvested per 24 hour time period (with the exception of the 120 and 144 

hour timepoints). Viable cell counts were calculated at each timepoint using a 

haemocytometer, and all supernatants were clarified by centrifuging at 1012g for 10 

minutes, stored at -70°C for analysis of viral vector titre (section 3.2.1) and IDUA enzyme 

activity (section 3.2.2).

A study was performed to compare viral vector titres for PALidSN cells cultured in high 

glucose DMEM containing either the standard FBS supplement of 10% or a lower 

concentration of 5%. PALidSN cells seeded at 1.0X10® viable cells per T75cm^ flask were 

cultured over a period of 6 days and each culture system harvested per 24 hour time
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period. Supernatants were clarified by centrifuging at 2000rpm for 10 minutes and stored 

at “70°C for analysis of viral vector titre (section 3.2.1).

3.2.4 The effect of temperature and inducing agents on viral vector production of PALidSN cells 

in tissue culture flasks

PALidSN cells were seeded at 1.0X10® viable cells into each of eight 75cm^ flasks. TPA 

(Sigma) at a concentration of 20ng/ml was added to two of the flasks, 5mM NaB (Sigma) 

was added to two flasks, and a combination of TPA and NaB at the same concentrations 

were added to another two cultures. The additional two cultures served as controls with 

no inducing agent added. A control and one of each of the induced cultures were 

incubated at 32°C, and the remaining four cultures at 37C. The flasks were cultured over 

a period of 3 days after which supernatants were harvested. Supernatants were clarified 

by centrifuging at 1012g for 10 minutes and stored at ~7Q°C for analysis of viral vector titre

3.2.5 Cell culture In serum-free media

The process of adaptation of PALidSN cells to serum-free media was investigated. The 

media used were as follows; Ultraculture (Biowhlttaker Inc., Walkersvllle, MD), CHO-S- 

SFMII (Life Technologies Ltd,, Paisley, UK), QBSF51 (JRH Boiscience, Lenexa, KS) and 

QBSF56 (JRH Bloscience, Lenexa, KS). PALidSN cells cultured in high glucose DMEM 

containing 10% FBS were harvested and each of four 25cm^ flasks seeded with 6x10® 

viable cells, in media formulations of 90% DMEM (as above)/10% serum-free media. All 

cultures were examined daily. When the cultures became confluent they were passaged 

Into media formulations of 80% DMEM (as above)/ 20% serum-free media (as above) and 

seeded at 2x10® viable cells/flask. The cultures were passaged with progressive 

reduction of serum concentration until the PALidSN cell cultures were growing in 100% 

serum-free media. In order to determine the growth characteristics of the PALidSN cell 

line, cultured in the media named above, three growth curves were generated to provide
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information on doubling times and cell yields.

PALidSN cells cultured In 100% Ultraculture, QBSF51 and QBSF56 were seeded at 

1.0x10® viable cells per T75cm^ flask, into 5 flasks for each medium studied. These flasks 

were cultured over a period of 168 hours with one flask from each system harvested per 

24 hour time period. (The Ultraculture system was not harvested at the 120 and 144 hour 

time point. QBSF51 and QBSF56 were not carried beyond the 72-hour time point.) The 

condition of the PALidSN cell culture In each of the specified media was determined by 

microscopic examination provided total viable counts and trypan blue staining. 

Supernatants generated from the Ultraculture system were clarified by centrifuging at 

2000rpm for 10 minutes and stored at -70®C for analysis of viral vector titre.

3.2.6 Viral vector production by PALidSN cells cultured in roller bottles in DMEM containing 1% 

or 10% FBS

Titres of viral vector produced from PALidSN cells in roller bottles were determined by 

assay of supernatants harvested from cultures of PALidSN cells in media containing 

10% serum. The aim was to optimise the production of viral vector In roller bottles over 

15 days to determine the viral titre and stability of the viral vector at 37°C. PALidSN 

cells cultured in high glucose DMEM containing 10% FBS were harvested and 3 x 

850cm^ roller bottles initiated at 1.1x10^ viable cells/roller In 150ml of medium. Roller 

bottles were designated numbers 1, 2 and 3. Roller bottle 1 was Incubated for the first 

4 days at 37®C. On day 4 the supernatant was harvested, clarified by spinning at 

1012g for 10 minutes, aliquoted and frozen at -80°C. Fresh growth medium was then 

added to the roller culture. This process was repeated dally from days 4 to 15. Roller 

bottle 2 was harvested In the same manner from days 1 to 15 and roller bottle 3 was 

incubated for the first 7 days and then harvested daily until day 15. Samples of the 

supernatants harvested were assayed for viral vector titre on NIH/3T3 cells as 

described in section 3.2.1.
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In a separate study, the effect of decreasing the serum concentration from 10% to 1% 

FBS in cells cultured In a roller bottle was determined. PALidSN cells cultured in DMEM 

containing 10% FBS were harvested and an 850cm^ roller bottle Initiated at 1.5x10^ viable 

cells In 150ml of medium. The roller bottle was incubated for 5 days at 37°C. On day 5 

the supernatant was harvested, clarified by spinning at 2000rpm for 10 minutes, allquoted 

and frozen at -80°C. 150ml of fresh DMEM containing 1% FBS was added to the roller 

culture. This process was repeated dally until day 10 when the maintenance medium 

volume was reduced to 75ml. Daily harvests then continued until day 14.

3.2.7 Scale-up of producer cells; PALidSN cells grown on FIbra-Cel® disks in a Techne spinner 

flask

The growth of PALidSN cells and viral vector production was determined In cells grown on 

FIbra-Cei® disks in a Techne spinner flask. A spinner flask containing 575mg of Fibra- 

Cel® disks was prepared and autoclaved. The FIbra-Cel® disk culture system was seeded 

with 1.0x10^ viable PALidSN cells in 12.5ml growth medium and allowed to adhere for 2 

hours at a spinner speed of 20 rpm with stirring for 2 minutes every 30 minutes. At the 

end of this time period the medium was made up to 50ml with prewarmed growth medium 

(DMEM, 10% FBS) and the vessel was returned to the incubator spinning continuously at 

a spinner speed of 20 rpm. The culture system was sampled at 24, 48, 120, 144 and 168 

hours and nuclei counts taken using 0.1 M citric acid (Sigma) containing 0.1% crystal violet 

(Sigma). Medium replacement was carried out after the 48-hour harvest and 120 hour 

harvest. The PALidSN spinner supernatant harvested at 120 hours was assayed for 

retroviral vector titre by titration on N1H/3T3 cells as described In section 3.2.1.
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3.2.8 Concentration of vector supernatant by fitratlon

In order to concentrate large volumes of vector supernatant, the supernatant was Initially 

filtered using a MiLLIPAK-40 0.45pM filter unit, A Watson-Marlow peristaltic pump was 

used to exert a low membrane feed pressure to draw the supernatant through the filter 

unit Into a sample collection bag which was kept on Ice at all times. The filtered 

supernatant was concentrated using SARTOCON MICRO 100KD filters. The membrane 

filters were flushed through with HBSS before addition of the supernatant. The filtered 

supernatant was pumped through two parallel SARTOCON filters as part of a cyclical 

system. Virus-free filtrate was drawn from the system by creating backpressure on the 

retentate line, thus forcing the supernatant through the filter units, by using a restriction 

clamp. The system was pre-washed with sterile HBSS (GIbco) before passing the 

supernatant through the system. Filtrate was drawn off at a flow rate of approximately 

4.5mi/mlnute. The starting material, filtrate and retentate were assayed for viral vector 

titre by titration on NIH/3T3 cells as described in section 3.2.1.

3.2.9 Calculation of exponential growth/doubling time/cell yield

Using the data from viable cell counts over a period of time, various phases of cell 

growth can be plotted. Exponential growth and doubling times were determined using 

the following equations (Dawson, 1992).

logio(mean)N = logio(mean)No + xlogio2

where, mean N= average final cell number, mean Nq= average initial cell number, and 

x= number of generations of exponential growth.

Doubling Time = Total time elapsed

Generations of exponential growth
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Cell yield/cm^ = No. viable cells(T75cm^ flasks used)

75

3.3 Results

3.3.1 The effect of serum and glucose content in culture media on PALidSN cell growth and 

vector production in tissue culture flasks

3.3.1.1 Effect of serum type and glucose content on viable cell count

Initially, a series of growth curves were established for PALidSN cell culture in high or 

low glucose DMEM containing 10% FBS or 10% NBS. Table 3.1 presents viable cell 

counts obtained over a 168-hour period after seeding 1X10® viable PALidSN cells in 

tissue culture flasks in each of the above media.

From the data presented in Table 3.1 a series of growth curves were established. The viable 

cell counts in relation to time (hours) for cultures of PALidSN cells in each of the media above 

are presented in Figure 3.1. The curves indicate that cells cultured in media supplemented with 

lOOOmg/L glucose rapidly cease growing as glucose is depleted from the media. This result 

contrasts with cells cultured in media supplemented with 4500mg/L glucose, where the 

decrease observed in viable cell count following 96 hours culture is less. Exponential growth 

and cell doubling time were calculated using the equations as in section 3.2.6 (Dawson, 1992), 

and these values are summarised in Table 3.2. The cell yield per cm^ was similar with each of 

the media, ranging between 2.2X10® and 3.1X10® cells. However, the doubling time of 13.99 

hours for ceils cultured in DMEM with 4500mg/L glucose containing 10% FBS is lower than cells 

cultured in media containing 1000mg/L glucose with 10% NBS and 4500mg/L or 1000mg/L 

glucose containing 10% NBS by at least 6 hours.
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Table 3.1 The effect of serum type and glucose content on total viable cell counts 

for PALidSN cells cultured In tissue culture flasks

TIME 4500mg/L 

(hours) glc/10% NBS

lOOQmg/L 

glc/10% NBS

4500mg/L 

glc/10% FBS

1000mg/L 

glc/10% FBS

0 1X10® 1X10® 1X10® 1X10®

24 1.9X10® 6.9X10® 4.9X10® 1.6X10®

48 4.6X10® 7.2x10® 1.9X10® 6.4X10®

72 7.5X10® 12.5X10® 7.6X10® 15.1X10®

96 16.8X10® 2.35X10® 19.8X10® 18.8X10®

168 13.5X10® 7.7X10® 17.6X10® 1.5X10®

Table 3.2 Effect of serum type and glucose concentration on doubling times and 

cell yields for PALidSN cells

4500mg/L 1000mg/L 4500mg/L 1000mg/L

glc/10% NBS glc/10% NBS glc/10% FBS glc/10% FBS

Doubling time (hours) 22,64 28.24 13.99 20.17

cell yieid/cm^ 2.2X10® 3.1X10® 2.64X10® 2.5X10®

79



lO
O

Bc
3
O
Ü

"o
o
B
J2
nj>

250

200

150

100 -

50 -

1

[g|4500mg/Lglc/10%NBS 

glOOOmg/L glc/10%NBS

□ 4500mg/L glc/10%FBS

□  1000mg/L glc/10% FBS

24 48 72 96

Time (hours)
168

Figure 3.1 The effect of media serum type and glucose content on viable cell 
counts during PALidSN cell culture
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3.3.1.2 Effect of media serum type and glucose content on IDUA enzyme activity in PALidSN

supernatants

Table 3.3 presents IDUA enzyme activity in supernatants generated over a 168-hour 

period from the celi cultures above. Figure 3.2 presents this data graphically. Enzyme 

activity was greater in culture supernatants harvested from ceils grown in high glucose 

DMEM. Activity reached a peak of 10,968 U/mg after 72 hours culture in NBS, and 

14,940 U/mg after 96 hours culture in FBS. Enzyme activity was lowest in media with 

lower glucose concentration containing FBS, where activity reached a peak of 6,924 

U/mg after 72 hours and declined rapidly to 42 U/mg after 168 hours. In lower glucose 

media containing NBS the enzyme activity was an average of 5,472 U/mg over the 168 

hours. Thus, the results showed enzyme activity to be greatest (14,940 U/mg) after 96 

hours culture in high glucose DMEM with 10% FBS.

Table 3.3 The effect of media serum type and glucose content on IDUA enzyme 

activity In PALidSN supernatants

Time of Harvest 

(hours)

1000mg/L 4500mg/L 1000mg/L 4500mg/L

glc/10% FBS glc/10% FBS glc/10% NBS glc/10% NBS

24

48

72

96

168

7721

2916

6924

571

42

NA%

7332

4764

14940

12000

4380

7584

6552

4908

3936

8244

7500

10968

6504

5088

1. IDUA enyme activity (units/mg protein)

2. not applicable

3. Note: assay negative control 021/031, assay positive control 1496/1680
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3.3.13 Effect of serum type and glucose content on viral vector production in PALidSN

supernatants

The viral vector titres as determined by neo resistance in supernatants generated over 

a 168-hour period from the cell cultures above are presented in Table 3.4 and Figure 

3.3. Viral titres were greater in culture supernatants harvested from cells grown in high 

glucose DMEM, which correlates with the enzyme activity values obtained above. The 

titre reached a peak of 2.0x10^ cfu/ after 168 hours culture in NBS, and 1.0x10® cfu/ml 

after 168 hours culture in FBS. Viral titre was lowest in media with lower glucose 

concentration containing FBS or NBS, where the maximum titre obtained was in the 

order of 10® cfu/ml. The results showed titres to be greatest (7X10'' and 1X10® cfu/mi) 

after 96 and 168 hours culture in high glucose DMEM with 10% FBS, Thus, the optimal 

enzyme activity and viral titre was obtained when PALidSN cells were cultured in high 

glucose DMEM containing 10% FBS and culture supernatant harvested after 96 hours.

Table 3.4 The effect of media serum and glucose content on viral vector titre in 

PALidSN supernatants

Time of Harvest 1000mg/L 4500mg/L 1000mg/L 4500mg/L

(hours) glc/10% FBS glc/10% FBS glc/10% NBS glc/10% NBS

24 5.0 X 102(1) 3.0x102 1.6 X 102 1.0 X 10®

48 4.0 X 10® 1.0 X 10̂ 1.6 X 10® 5.0 X 10®

72 4.0 X 10® 1.0 X 10" 2.0 X 10® 4.0 X 10®

96 3.0 X 10® 7.0 X 10" 2.0 X 10® 1.8 X 10"

168 4.0 X 102 1.0 X 10® 0 2.0 X 10"

1. titres (cfu/ml) measured by NIH-3T3 titration
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3.3.1.4 Titres of vector supernatant from PALidSN culture in tissue culture flasks in high 

glucose DMEM containing either 5% or 10% FBS

Flaving established that high glucose DMEM with 10% FBS was the culture media of 

choice for PALidSN cells, a comparison of 10% and 5% FBS was made to determine if 

reduced serum concentration had an effect on titre. Table 15 presents viral titres 

determined by titration on NIH 3T3 cells. Titres were found to be similar throughout the 

144 hour period, increasing from 10® to 10® cfu/mi over days 1 to 3, reaching a peak of 

5x10® cfu/ml at 96 hours, then declining to 5x10" cfu/mi by 144 hours.

Table 3.5 The effect of media serum concentration on viral vector titre in PALidSN 

supernatants

TIME (hours) 5% FBS 10% FBS

24 5.0 X 10®(i) 5.0 X 10®

48 2 .5 x1 0 " 3.5 X 10"

72 1.5 X 10® 1.5 X 10®

96 5.0 X 10® 5.0 X 10®

120 1.0 X 10® 1.0 X 10®

144 4.5 xIO" 5.0x10"

1. titres (cfu/ml) measured by NIH-3T3 titration
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3.3.2 The effect of temperature and inducing agents on viral vector production by PALidSN 

ceils

Table 3.6 presents viral vector titres following 3 days incubation of PALidSN ceils at 

32°C or 37°C in the presence and absence of the inducing agents TPA and NaB. The 

results did not indicate a significant effect (ie. outwith 0.5 log TCIDgo) on titre either by 

lowering incubation temperature or inducing cultures by the addition of TPA or NaB.

Table 3.6 The effect of temperature and by Inducing agents on viral vector 

production during 3 days PALidSN cell culture

PALidSN culture Titre at 32°C Titre at 37°C

Control 2.0X10®(̂ > 5.0X10®

NaB-induced 5.0X10® 2.0X10®

TPA-induced 5.0X10® 7.0X10®

NaB and TPA-induced 2.0X10® 6.0X10®

1. titres (cfu/ml) measured by NIH-3T3 titration
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3.3.3 Adaptation of PALidSN ceils to culture in serum-free media

3.3.3.1 Viable cell counts on adaptation of PALidSN cells to serum-free media

The effect of adapting PALidSN cells to growth in serum-free media was determined as 

described in Section 3.2.3. Total viable cell counts were taken from ceil cultures as 

they were gradually adapted from culture in high glucose DMEM containing 10% FBS to 

growth in four different types of serum-free media; Ultracuiture, CHO-S-SFMII, 

QBSF51, and QBSF569. Counts were calculated by removing a cell sample from each 

flask, placing onto a haemocytometer, observing under a light microscope, and using a 

cell counter to count the number of cells within a field of vision. Viable cell counts from 

the adaptation of PALidSN cells to the four types of serum-free media over a 32-day 

period are summarised in Table 3.7. PALidSN cells adapted well to growth in 

Ultraculture, QBSF51 and QBSF56 serum-free media, and were confluent and healthy 

at the end of the culture period. Cell growth was initially very poor on addition of CHO- 

S-SFMII serum-free media, but by day 14 (90% original medium/10% serum-free 

medium) the cells reached confluency and the total viable cell count was found to be 

7x10® cells. However, further increasing the proportion of serum-free medium led to 

complete detachment of the cell sheet from the tissue culture flasks by day 21 (50% 

original medium/50% serum-free medium). The morphology of the cells appeared 

altered, and when the culture was further passaged it began to decline, resulting in 

complete cell death. Therefore CHO-S-SFMII serum-free media was not used in further 

studies.

87



Table 3.7 Cell counts on adaptation of PALidSN cells to serum-free media

Day

ULTRACULTURE 

Form.^ Count®

CHO-S-SFMII 

Form. Count

QBSF51

Form. Count

QBSF56

Form. Count

7 90:10 3.9X10® N/A® N/A 90:10 8.7X10® 90:10 8.7X10®

10 80:20 3.2X10® N/A N/A 80:20 8.9X10® 80:20 5.9X10®

14 70:30 6.5X10® 90:10 7.0X10® 70:30 6.7X10® 70:30 1.6X10®

16 60:40 3.4X10® 70:30 3.1X10® 60:40 3.9X10® 60:40 2.8X10®

18 50:50 3.6X10® 60:40 2.7X10® 50:50 6.1X10® 50:50 4.2X10®

21 40:60 5.8X10® 50:50" 5.1X10® 40:60 4.5X10® 40:60 7.4X10®

23 30:70 3.0X10® N/A N/A 30:70 8.0X10® 30:70 4.9X10®

25 20:80 7.2X10® N/A N/A 20:80 4.0X10® 20:80 5.8X10®

28 10:90 2.4X10® N/A N/A 10:90 3.9X10® 10:90 3.7X10®

32 0:100 3.8X10® N/A N/A 0:100 2.3X10® 0:100 2.1X10®

1. media formulation (a;b), where a; original 10% medium and b; serum free medium

2. total viable cell counts

3. not available

4. complete detachment of cell sheet from flasks was observed

3.3.3.2 Viable cell counts for PALidSN cells cultured in serum-free media

Growth parameters for PALidSN cell culture in Ultracuiture, QBSF51 and QBSF56 

serum-free media are presented in Table 3.8. The data in Table 3.8 for growth of cells 

in Ultracuiture medium was plotted as a function of viable cell count in relation to time 

(Figure 3.4). The lag phase of cell growth was 48 hours (1.1x10® viable cells) and the 

exponential phase of cell growth ended at 72 hours (2.3x10® viable cells). Exponential
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growth and doubling time were determined using equations described by Dawson 

(1992). When cultured in QBSF51 or QBSF56 media the PALidSN cell culture began to 

decline at the 24-hour time period and did not recover. Therefore the exponential 

growth, doubling time and cell yield cannot be calculated.

Table 3.8 Total viable cell counts from growth of PALidSN cells in serum-free 

medium

Time (hours) Ultracuiture QBSF51 QBSF56

0 1.0X10®(^) 1.0X10® 1.0X10®

24 9.0X10® 2,9X10® 3.1X10®

48 1.1X10® 3.1X10® 2.5X10"

72 2.3X10® 1.1X10® adherent 1.6X10" adherent

9.0X10® suspension 8.0X10" suspension

96 2.1X10® N/A‘2) N/A

168 8.0X10® N/A N/A

1. total viable cell counts

2. not applicable
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3.3.3.3 Viral vector production for PALidSN cells cultured in serum-free media

The virai vector titres for three separate PALidSN cell cultures in Ultracuiture serum- 

free media over a 15-day period are presented in Table 3.9 and Figure 3.5. 

Supernatants were harvested at various timepoints in each of the three flasks in order 

to determine the optimum conditions to produce high titre virus. In flask 1, the cultures 

were harvested periodically, and the results show a maximum titre of 4X10® cfu/mi 

(flask 1, day 12). In flask 2, the expected optimum culture conditions resulting from 

studies in serum-containing media (that is, a 96-hour harvest) produced a titre of only 

1x10® cfu/mi. The maximum titre obtained in flask 2 was on day 7, when the titre was 

2x10® cfu/ml.

The lowest titres obtained were in flask 3, where the cells were left in culture for 7 days 

prior to harvesting. This produced iow titre virus (lO^-IO® cfu/ml) until day 11, after 

which the culture was not harvested until day 14. The titre was found to have increased 

by day 14 to 1x10® cfu/mi. From these results, cells cultured in serum-free media 

appear to require a ionger cuiture period, and more regular media replacement than 

cells cultured in serum-containing media.
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Table 3.9 Viral vector production from supernatants harvested over a 15 day period

from PALidSN cells cultured in Ultracuiture serum-free medium

Day Flask 1 Flask 2 Flask 3

1 6 .0x  10®(i) N/A<2) N/A

2 1.0 X 10" N/A N/A

3 N/A N/A N/A

4 N/A 10 X 10® N/A

5 1.0 X 10" N/A N/A

6 2.0 X 10" N/A N/A

7 5 .0 x10 " 2.0 X 10® 2X3x102

8 10x10® 4x10® 7X3x102

9 lO x  10® 2.0 X 10" 7X3x10®

10 N/A 3.0 X 10" 5X3x10®

11 N/A 7.0 X 10" 3.0 X 10®

12 4.0 X 10® N/A N/A

13 1.0 X 10® N/A N/A

14 10  X 10® 4 x 1 0 " 1.0 X 10®

15 1.0 X 10® 1.0 X 10" 3.0 X 10"

1. titre measured by NiH-3T3 titration (cfu/ml)

2. not applicable
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3.3.4 Optimisation of viral vector production by PALidSN cells cultured in 850cm^ roller 

bottles

3.3.4.1 Viral vector production from supernatants harvested over a 15 day period from 

PALidSN cells cultured in roller bottles in DMEM containing 10% FBS

PALidSN cells were cultured in roller bottles in high glucose DMEM containing 10% 

FBS, and the viral vector titre was established by assay of supernatant on NIH-3T3 

cells. Table 3.10 presents vector titres from PALidSN cultures In high glucose DMEM 

with 10% FBS from three separate roller bottles from which supernatant was harvested 

over a fifteen day period, as described in section 3.2.6.

The results of the assays indicated that viral vector titres in roller bottles with high 

glucose DMEM supplemented with 10% FBS were of similar titre to virus harvested 

from tissue culture flasks (see Table 3.5). Titres in the region of lO'’ colony forming 

units per ml (cfu/ml) were obtained in the first three days of culture (roller bottle 2), 

rising to 2X10® cfu/ml after four days. Thereafter, the titres of supernatants from roller 

bottles over the fifteen-day period ranged from 1X10® to 8X10® cfu/ml, with the 

exception of supernatant on days 7 and 10 from roller bottle 3, for which slightly lower 

titres were obtained.
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Table 3.10 Titres of retroviral vector In supernatants harvested over a 15-day period 

from PALidSN cells cultured in DMEM (4500mg/L glucose containing 10% 

FBS) in roller bottles.

Day Roller Bottle 1 Roller Bottle 2 Roller Bottle 3

1 4x10^ (2) N/A

2 N/A 2 x 1 ^ N/A

3 N/A 4 X 10" N/A

4 2 X 10® 2 X 10® N/A

5 8x10® N/A N/A

6 5 X 10® N/A N/A

7 4x10® 1x10® 2 X 10"

8 6x 10® N/A N/A

9 N/A 3x10® 6x 10®

10 N/A N/A 3x 10"

11 2 X 10® 3x10® 2 X 10®

12 6 X 10® N/A N/A

13 3 X 10® N/A N/A

14 8x10® 4 X 10® 4 X 10®

15 3x10® 4x10® 3 X 10®

1. titres measured by NIH-3T3 titration (cfu/ml)

2. not applicable
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3.3.4.2 Viral vector production from supernatants harvested over a 15 day period from 

PALidSN cells cultured in roller bottles in DMEM containing 1% FBS

PALidSN cells were cultured In a roller bottle in medium containing 1% FBS, to 

determine the effect of low serum concentration on titre. Cells were cultured for five 

days in high glucose DMEM containing 10% FBS, whereupon the serum concentration 

was reduced to 1% FBS. The resulting titres from various harvests taken between day 

5 and day 15 are presented in Table 3.11. Titres were found to be slightly lower when 

PALidSN cells were cultured in media supplemented with 1% rather than 10% serum 

concentration. However, by days 13 and 14 a titre of 2X10® cfu/ml was obtained, which 

was comparable with supernatant from cells grown in media containing the higher 

serum concentration.

Table 3.11 Viral titres measured over a 10-day period from roller bottle culture of 

PALidSN cells In DWIEM (4500mg/L glucose containing 1% FBS)

Day Titre

5 7X103(1)

6 7X10"

7 7X10"

8 N/A(2)

9 N/A

10 5X10"

11 8X10"

12 2X10®

13 2X10®

1. titre measured by N1H-3T3 titration (cfu/ml)

2. not applicable
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3.3.5 Feasibility of PALidSN cells for scaled-up production; PALidSN cell culture on Fibra 

Cel®disks in a Techne spinner flask.

The results demonstrating feasibility of culturing PALidSN cells on Fibra-Cel® disks in a 

Techne spinner flask are presented in Table 3.12. The viral titre in the 120-hour 

supernatant was measured by NIH-3T3 titration at 1X10®cfu/ml. The cells adapted well 

to culture in the spinner flask, and were found both to adhere to the disks and remain 

free in the supernatant Counts for both adherent and suspension cells are presented. 

The results of growth of PALidSN Cells on Fibra-Cel Disks are therefore presented in 

Figure 3.6.

Table 3.12 PALidSN cell growth and retroviral vector production on Fibra-Cel® disks 

in a Techne spinner flask.

Time (hours) Nuclei/diski Nuclei/ml supernatanfi Viral titre^

24 1.6 X 10® 2 X 10® N/A®

48 1.3 X 10® 2.1 X 10® N/A

120 5.2 X 10® 2.5 X 10" 1 X 10®

144 1.8 X 10® N/A N/A

168 2.3 X 10® 3.9 X 10® N/A

1. viable cell counts

2. titre measured by NIH-3T3 titration (cfu/ml)

3. not applicable
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3.3.6 Concentration of vector supernatant by filtration

Tables 3.13 and 3.14 present results obtained in two separate experiments performed 

to concentrate retroviral vector by ultrafiltration. The tables present retroviral titres of 

supernatant harvested from PALidSN cell cultures prior to concentrating by filtration, 

after concentration (the retentate), and for the filtrate which was drawn off as a control. 

In table 3.13, the initial volume of 0.45pM filtered retroviral vector supernatant 

wasi 140ml. The supernatant was concentrated over a 5-hour period, with the filtrate 

drawn off at a constant flow rate of 4.5 ml/minute. The flow rate was maintained by 

adjustment of restriction clamps in the cyclical system. The final volume of retentate 

(virus containing fraction) was 77ml, which represented 6.75% of the original stock 

volume. The supernatant was therefore 15 times more concentrated by volume, which 

would be expected to give an estimated 15-fold increase In viral titre. The data 

presented in Table 3.13 indicates that the concentration was successful. The titre of 

the concentrated retroviral vector increased from 2x10® to 2x10® cfu/ml, an increase of 1 

log^o- The filtrate was shown to contain no vector, as expected.

Table 3.13 Concentration of vector supernatant by filtration (i)

Supernatant for titration Supernatant volume (ml) Titre^

Filtered starting material 1140 2 x 10®(i)

Retentate 77 2 x10®

Filtrate 1063 virus not detected

1. titre measured by NIH-3T3 titration (cfu/ml)

The data presented in Table 3.14 indicates that the second concentration was also 

successful. The initial volume of 0.45pM-filtered retroviral vector supernatant was
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1300ml, and the final volume of retentate was 300ml, which was 23% of the original 

stock volume. The supernatant was therefore 4.3 times more concentrated by volume, 

which resulted in a 5-fold increase in viral titre from 6x10® cfu/ml to 3x10® cfu/ml.

Table 3.14 Concentration of vector supernatant by filtration (ii)

Supernatant for titration Supernatant volume (ml) Tltre^

Filtered starting material 1300 6 x10®

Retentate 300 3x10®

Filtrate 1000 virus not detected

1. titre measured by NIH-3T3 titration (cfu/ml)

3.4 Summary

3.4.1 Optimal cell culture conditions

The retroviral vector producer line, PALidSN, was initially examined for the effect of 

varying culture media serum and glucose content on cell growth and viral vector titre. 

Of the four media formulations examined (DMEIVI containing 4500mg/L or lOOOmg/L 

glucose supplemented with either FBS or MBS), total viable cell counts were highest for 

PALidSN cells at the 96-hour timepoint. Optimal cell yield coupled with lowest doubling 

time was best achieved by culturing PALidSN cells in high glucose DMEM 

supplemented with 10% FBS (doubling time during exponential growth of 13.99 hours 

and a highest cell yield of 2.64 x 10® viable cells). Correlation between the results of 

the enzyme and infectivity assays was observed, in that the highest value of IDUA 

enzyme activity per milligram of protein (14,940 U/mg) and highest viral vector titre
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measured by NIH/3T3 assay (7X10“̂ cfu/ml) were obtained from supernatant harvested 

from cells after 96 hours culture in high glucose DMEM containing 10% FBS (Figure 

3.1). Reduction of serum concentration from 10% to 5% FBS had negligible effect on 

viral titres. Reduction of serum concentration to 1% FBS in roller bottles (section 3.4.3) 

also produced a comparable viral titre (2x10® cfu/ml), although an extended culture 

period was required to reach this titre (12 days).

A study was performed to determine the potential for adaptation of PALidSN cells to 

various types of commercially available serum-free media; Ultraculture, CHO-S-SFMII, 

QBSF5 and QBSF56 (Table 3.7). Details of the media ingredients were unavailable 

from the suppliers as the information is patented and proprietary. Of the four types, 

PALidSN cells were found to be most suitable for adaptation to culture in Ultraculture 

serum-free medium, for which a lag phase duration of 48 hours and log phase duration 

of 24 hours were determined. The doubling time was determined to be 22.43 hours 

with a viable cell yield of 3.09x10'' viable cells/cm^. Although the doubling time appears 

to be short, it must be noted that the log phase of growth was only 24 hours and the cell 

culture began to decline after this point. This indicates that feeding or harvesting may 

be required every 72 hours.

3.4.2 Effect of incubation temperature and inducing agents on viral vector titre

Incubation of producer cells for 3 days at 32°C rather than 37°C had no effect on 

PALidSN viral vector titre. The induction of cultures for 3 days by TPA or NaB also had 

no effect on viral vector titre.

3.4.3 Scale-up of cell culture

PALidSN cells adapted well to culture scale-up from tissue culture flasks to roller bottles 

and Fibra-Cel® disks in a Techne spinner flask. Culture was scaled-up in high glucose
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DMEM containing 10% FBS, and the viral titre in the supernatant harvested after 120 

hours was found to be 1X10®cfu/ml.

3.4.3.1 Cell culture in roller bottles

Cells adapted well to culture in the roller bottle system, producing viral vector titres 

comparable to those obtained by culture in tissue culture flasks, in the roller bottle 

system, when the culture was incubated for four days prior to harvesting, viral titres 

increased to 2x10® cfu/ml on day 4, and the maximum viral titre obtained was 8x10® 

cfu/ml on days 5 and 14 (Table 3.10). This titre was not achieved from cells where 

supernatants were harvested daily, or when cultures were incubated for 7 days prior to 

harvesting. One roller culture of PALidSN cells was incubated in DMEM containing 

10% FBS until confluent (4-5 days) after which serum concentration was reduced to 1% 

FBS to determine the effect on production of vector. The results (Table 3.11) indicate 

that reducing the serum concentration to 1% FBS (in ISOmIs media) reduced 

production of viral vector from 4.7x10® cfu/ml (roller bottle 1, mean viral vector titre) to 

4.93x10'* cfu/ml (1% FBS, mean viral vector titre). Decreasing the volume of media to 

75ml resulted in an increased titre of 1.45x10®cfu/ml (Table 3.11, roller bottle 2 in 1% 

serum, Day 11 to Day 14, mean viral vector titre). The resulting viral titre is comparable 

to titres obtained from cells cultured in serum containing media, however, required an 

extended culture period of 11 to 14 days to reach this titre.

3.4.3.2 Cell culture on Fibra-Cel disks in a Techne spinner flask

PALidSN cells also adapted well to growth on Fibra-Cel disks in a Techne spinner flask. 

Initial observations of the data generated in the study showed that at the 24-hour 

timepoint 43% of the PALidSN cells remained free in the supernatant. The large 

volume of circulating medium owing to the disks not being tightly packed may explain 

the large number of cells in suspension. At the 48-hour stage the medium was
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replaced resulting in removal of cells in suspension and it was noted that logarithmic 

phase growth continued from this point to the 120-hour timepoint. A harvest of the 

supernatant generated at the 120 hour timepoint was titrated and the titre found to be 

1x10®cfu/ml, which is approximately 0.5 log higher that the average titre which was 

obtained by roller bottle production (4.7X10® cfu/ml). Unfortunately, further samples 

from later time-points were unavailable.

3.4.4 Concentration of vector supernatant by filtration

Retroviral vector supernatant was successfully concentrated by filtration using 

SARTOCON MICRO 100KD filters. In one study, the volume of supernatant was 

decreased 15-fold by concentration, which resulted in an increase in viral vector titre of 

1 log^o unit (from 2x10® c.f.u/ml to 2x10® cfu/ml), and in the other, the volume of 

supernatant was decreased 4.3-fold by concentration, which resulted in a 5-fold 

increase in viral vector titre (from 6x10® c.f.u/ml to 3x10® cfu/ml). As expected, the 

filtrate which was drawn from the system was found to contain no virus particles.
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4.0 STABILITY OF RETROVIRUS SUPERNATANTS

4.1 Introduction

Retrovirus-containing supernatant stocks are obtained from producer cells by harvesting 

the culture medium in which the cells have been growing. The log phase of cell culture is 

when exponential growth occurs and the proportion of cells in cycle is high. Since infected 

ceils release virus at a maximum rate when growing exponentially (Roe et al., 1993, 

Morgan et a i, 1995), the highest titres should be obtained before an adhérant cell line 

reaches confluence. In practice, maximum achievable recombinant viral titres have been 

reported to be approximately 10®cfu/ml. Retroviral particles are considered to be fragile, 

with short half-lives even under optimal conditions (Sanes eta!., 1986, Paul et a!., 1993). 

They are also reported to be relatively labile in terms of the narrow pH range and ionic 

strength within which retrovirus infectivity can be maintained (Naussbaum et a!., 1993). 

Therefore, harvesting should be performed gently, and materials should be kept cold in 

order to maintain viral infectivity.

Retroviral vector stocks are stable for long periods of time when stored frozen at -70°C in 

harvested tissue culture medium containing 10% FBS. Stocks should be frozen in small 

aliquots as repeated freeze thawing can considerably reduce viral titre. However, storage 

of retroviral vectors at -70°C in medium containing 10% serum is impractical for many 

clinical facilities, therefore other methods of storage have been explored. These include 

lyophilization with storage at -20°C, for which a half-life of over 200 days has been 

reported, and storage at 4°C, for which a shelf-life of over 3 months can be expected 

(Jolly, 1994). In addition it has been reported that sugars can act as stabilisers and help 

to preserve unstable samples by replacing water, thus providing a stable structure to 

biological molecules (Aldridge, 1995).

In this section of the study, the stability of retrovirus containing supernatants was
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assessed by comparing titres of vector and wild-type AMLV stock after storage at varying 

temperatures and time. The effect on titre of storage in the presence of various sugars 

was also determined.

4.2 Materials and Methods

4.2.1 Virus and vector supernatants

The producer cells used in for these experiments were PALidSN cells, described in 

Section 3.1. These cells are based on the amphotropic retrovirus vector packaging cell 

line PA317. The wild-type A-MLV supernatant (strain 292A, ATCC VR-884) was also 

assessed for stability as a control. Supernatant from the Mus dunni cell line (ATCC CRL 

2017) infected with A-MLV was used as control for comparison with vector supernatant.

4.2.2 Storage of virus stocks at varying temperatures

Retroviral vector and A-MLV containing supernatants were harvested, aliquoted, and the 

viral titres determined. In order to determine the stability of titre, aliquots of supernatant 

were held at -70°C, 4°C, 32°C, 37°C, and 56°C for varying periods of time and assayed 

for the presence of virus. The experimental procedure for titration of PALidSN 

supernatant in murine NIH-3T3 cells by neo resistance is detailed in section 2.3.1, and A- 

MLV titration on PG4 S^L" cells as described in 2.2.2.3.

4.2.3 Storage of supernatants at 4°C and -70°C in the presence and absence of sugar 

stabilisers

Supernatants were harvested and titrated as above (section 4.2.2.) then aliquots were 

placed at 4°C or -70°C in 50% v/v solutions of the sugars trehalose (Sigma), mannose 

(Sigma) and sorbitol (Sigma). The solutions were prepared in PBS and 0.22pm filtered.
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The glucose solution was supplied as a 20% solution and was used as such (Gibco). An 

aliquot (1ml) of each of the sugar solutions was added to viral supernatant (19mls) derived 

from PALidSN producer cells or Mus dunni /A-MLV infected cells and aliquots stored at 

4°C or -70°C. Stability of retrovirus containing supernatants was assessed by assay of 

virus stored at both temperatures at various time-points. Virus stored in the absence of 

various sugar stabilisers was tested at each time-point as a control.

4.3 Results

Stability of retrovirus containing supernatants was assessed by titration following storage 

at different temperatures for varying periods of time in the presence and absence of 

sugars. The resulting titres are displayed in log.,o colony forming units of vector per ml 

(logio cfu/ml) and log^o focus forming units of A-MLV per ml (log^offu/ml).

4.3.1 Inactivation of virus and vector supernatant at 56°C

Retroviral vector and A-MLV supernatants from three tissue culture flasks were harvested 

and held at 56°C for two hours. Over the two-hour period samples were removed for 

titration on NIH-3T3 and PG4 S'"L' cells, respectively. The resulting titres converted to

log^o ffu/ml virus and log^o cfu/ml vector are presented in Table 4.1. The results indicated

that vector and A-MLV were rapidly inactivated at 56°C. However in three separate 

studies, both A-MLV and vector appeared to contain a fraction that was resistant to heat 

invactivation after two hours incubation at
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Table 4.1 Titres of retroviral vector and wild type A-MLV after incubation at 56°C for

varying periods

VECTOR' A-MLV®

Time Expt. 1 Expt. 2 Expt. 3 Expt. 1 Expt. 2 Expt. 3

Initial titre 5.60 5.60 5.48 5.36 5.18 4.00

30-40 min 0 2.48 N/A® 3.43 0 N/A

1 hour 1.78 1.00 3.60 3.26 1.78 2.00

2 hours N/A 2.48 2.70 N/A 1.30 0

1. titre measured by NIH-3T3 titration (IoQio cfu/ml).

2. titre measured by PG4 S T ' assay (logio ffu/ml).

3. not applicable

4.3.2 Stability of vector and A-MLV supernatants at various temperatures over 24 hours

Vector and A-MLV supernatants were stored at 4°C, 32°C and 37°C over a 24-hour 

period. During incubation, samples were removed for titration on NIH-3T3 and PG4 S"'L' 

cells, respectively. The resulting titres displayed as log^o ffu/ml virus and logio cfu/ml 

vector are presented numerically in Table 4.2, and graphically in Figure 4.1. No 

significant change in viral titre was observed after eight hours storage at each temperature 

for either virus or vector. However, after 24 hours, a decrease in titre was observed for 

vector stored at 32°C and 37°C, and A-MLV stored at 4°C and 32°C. A-MLV incubated at 

37°C for 24 hours retained only 0.4% of the initial titre, a reduction of 2,36 log^o units. At 

4°C, vector titre displayed greatest stability, decreasing by only 0.3 log^o units over 24 

hours.
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Table 4.2 Stability of titres of vector and A-MLV after incubation at 4°C, 32°C or 37<

over a 24- hour period

TIME

4°C

VECTOR' 

32°C 37°C 4°C

A-MLV®

32°C 37°C

Initial titre 5.60 5.60 5.60 5.36 5.36 5.36

30 min 5.70 5.70 5.60 5.00 5.00 5.26

1 hour 5.70 5.60 5.70 5.34 5.34 5.32

2 hours 5.70 5.60 5.70 5.04 4.95 4.85

4 hours 5.60 5.48 5.60 5.20 5.04 5.23

8 hours 5.60 5.30 5.30 5.38 5.04 N/A®

24 hours 5.30 4.48 4.60 4.30 4.48 3.00

1. titre measured by N1H-3T3 titration (log^o cfu/ml).

2. titre measured by PG4 S T ' assay (IoQio ffu/ml),

3. not applicable
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Figure 4,1 Titres of vector and A-MLV following incubation at varying temperature over a period of 24 hours.
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4.3.3 Long-term stability of vector and A-MLV supernatants at 4°C, 32°C or 37°C

Vector and A-MLV supernatants were incubated at 4°C and 37°C over a longer period of 

time. Over a thirty-seven day period samples were removed for titration on NIH-3T3 and 

PG4 S^L" cells, respectively. The resulting titres converted to log^o ffu/ml virus, and IoQio 

cfu/ml vector are presented in Table 4.3 and Figure 4.2. The decrease of 2.4 log^o units 

in titre for A-MLV over 24 hours at 37°C was similar to previous results (Table 4.2.). In 

this study, the vector titre decreased by 2.65 log^o over 24 hours at 37°C in comparison to 

a decrease of 1 log^o in the previous study. Both vector and A-MLV were completely 

inactivated by storage at 37°C for 3 days. However, differences were observed in that 

vector was apparently more stable than A-MLV over long-term incubation at 4°C. A-MLV 

titre declined throughout the study period and virus could not be detected after 37 days, 

whereas vector had decreased in titre by 0.6 log^o units after 37 days.

Table 4.3 Titres of vector and A-MLV after long-term incubation at 4°C or 37°C

VECTOR'

4°C 37°C

VIRUS"

4°C 37°C

Initial titre 5.60 5.60 5.18 5.18

D1 5.90 2.95 3.85 2.78

D3 4.00 0 3.90 0

D7 5.08 0 3.70 0

D16 5.30 N/A" 1.70 N/A

D37 5.00 N/A 0 N/A

1. titre measured by NIH-3T3 titration (logio cfu/ml).

2. titre measured by PG4 S^L' assay (log^o ffu/ml).

3. not applicable
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4.3.4 Stability of vector and A-MLV supernatants at 4°C or -80°C with sugar stabilisers

4.3.4.1 Stability of vector and A-MLV supernatants at -80°C with sugar stabilisers

Vector and A-MLV supernatants were stored at -80°C in the presence of the sugar 

solutions mannose, sorbitol and trehalose as described in Section 4.2.3. Over the storage 

period samples were removed for titration on NIH-3T3 and PG4 S"̂ L' cells, respectively. 

The resulting titres in logio ffu/ml virus, and log^o cfu/ml vector are presented in Table 4.4. 

No significant change in titre (that is, greater than 0.5 log units) was effected by storage of

vector supernatant at -80°C over 21 days, or A-MLV supernatant at -80°C over 65 days

with or without sugar stabilisers present.

Table 4.4 Stability of vector and A-MLV at -80^C with sugar stabilisers

VECTORS 

-ve  ̂ glc.4 mann.® sorb.® tre.7

A-MLV"

-ve glue. mann. sorb. tre

initial 5.48 5.48 5.48 5.48 5.48 4.00 4.00 4.00 4.00 4.00

D1 5.08 5.00 5.30 4.95 5.30 4.00 4.00 4.00 4.00 4.00

D21 5.00 4.78 5.48 4.78 5.00 4.30 4.00 4.00 4.00 4.04

D65 N/A® N/A N/A N/A N/A 4.60 4.48 4.48 4.30 4.48

1. titre measured by NIH-3T3 titration (log^o cfu/ml).
2. titre measured by PG4 S '̂L’ assay (!ogio ffu/ml).
3. negative control :
4. glucose
5. mannose
6. sorbitol
7. trehalose
8. not applicable
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4.3.4.2 Stability of vector and A-MLV at 4°C with sugar stabilisers

Vector and A-MLV supernatants were stored at4°C in the presence of the sugar solutions 

glucose, mannose, sorbitol and trehalose as described in Section 4.2.3. Over the storage 

period samples were removed for titration on NIH3T3 and PG4 S'^L’ cells, respectively. 

The resulting titres in log^o ffu/ml virus, and log^o cfu/ml vector are presented in Table 4.5. 

No significant change in titre (that is, greater than 0.5 log units) was observed in vector or 

viral supernatant stored at 4°C over 16 days with or without sugar stabilisers present. 

However, when viral vector supernatant in the absence of sugar was titrated following 70 

days storage at 4°C, no colonies were observed. This contrasted with titres obtained for 

viral vector supernatant stored in the presence of each of the sugars studied, where the 

titre obtained was comparable to titres obtained following 16 days storage at 4°C. These 

titrations were repeated, and identical results obtained.

Table 4.5 Stability of vector and A-MLV at 4°C with sugar stabilisers

-ve®

VECTOR' 

glc.'* mann.® sorb.® tre.7 -ve

A-MLV"

glue. mann. sorb. tre

initial 5.48 5.48 5.48 5.48 5.48 4.00 4.00 4.00 4.00 4.00

D2 5.00 5.00 5.48 5.00 5.48 3.60 3.70 3.30 3.95 3.70

D8 4.85 4.78 4.60 4.95 5.00 N/A® N/A N/A N/A N/A

D16 5.48 5.00 4.85 5.30 5.00 4.60 4.48 3.70 4.00 4.00

D70 0 4.84 4.95 4.90 4.85 N/A N/A N/A N/A N/A

titre measured by NIH-3T3 titration (logio cfu/ml).
titre measured by PG4 S V  assay (log^o ffu/ml).
negative control :
glucose
mannose
sorbitol
trehalose
not applicable
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4.4  Sum m ary

In these initial studies, the retroviral vector exhibited similar stability to wild type A-MLV. 

Both vector and virus contained a fraction that was resistant to inactivation following two 

hours incubation at a temperature of 56°C. in addition, the results were variable, with 

virus detected at later time-points, although apparently undetectable after 30-40 minutes 

of incubation. Virus validation studies previously performed at Q-One Biotech have 

produced similar results (unpublished data). This may be caused by variations in 

sampling in accordance with the Poisson distribution, however, with the limited data 

available In this study, these results should be treated with caution.

Following three days incubation at 37°C, both vector and A-MLV supernatants were 

completely inactivated. Supernatants were relatively stable at 4°C, vector supernatant 

slightly more so than virus supernatant; A-MLV was inactivated after 37 days storage at 

4°C, whereas only 2 log units of vector titre were lost after storage at 4°C. In a limited 

study the presence of the sugars glucose, mannose, trehalose, or sorbitol, had no 

significant effect on virus or vector titre within three weeks storage at 4°C or -80°C. No 

decrease in titre was observed for vector or A-MLV stored at 4'^C or -80°C in the presence 

or absence of sugar stabilisers. However, viral vector supernatant appeared to be 

inactivated following 70 days storage at 4°C. This effect was not observed in viral vector 

supernatant stored in the presence of sugar stabilisers, in that viral titres obtained 

following 70 days storage were comparable with those obtained within the initial three- 

week storage period. Further long-term studies on the effect of sugar stabilisers on MLV 

titre are necessary.
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5.0 DISCUSSION

5.1 Occurrence of RCR

A potential problem in the use of retroviral vectors is the possibility of recombination 

events occurring which result in generation of replication competent retrovirus (RCR) 

(Miller et al., 1993, Otto et al., 1994, Vanin et al., 1994). The principal factor influencing 

RCR formation is the level of homology between the vector genome and packaging cell 

line sequences, which may undergo genetic recombination to form RCR. The potential 

risk of RCR formation in clinical application was highlighted by the observation that murine 

RCR generated in this manner was associated with lymphomas in immunosuppressed 

rhesus macaques (Donahue at a/., 1992). Another factor influencing RCR generation is 

the method used to introduce the viral protein coding sequence into the producer cell line; 

if the gag-pol and env sequences are introduced as two separate plasmids, the possibility 

of RCR formation occurring during vector construction is decreased.

The rate of recombination that occurs in a vector-producing cell line is dependent on the 

particular characteristics of the cell line, and theoretically, therefore, would vary between 

producer cell lines. Third generation packaging cell lines were developed to minimise 

sequence homology beween the vector and packaging cell line sequences, where three 

separate recombination events are necessary for RCR formation. This has greatly 

improved confidence in the safety aspect of using retroviral vectors. However, the 

producer cell line GP+envAM12 (Markowitz et al., 1988), which was developed by 

introducing vector sequences into a third generation packaging cell line on two separate 

plasmids, has been reported to generate RCR by a mechanism which is not yet fully 

understood (Chong and Vile, 1996).
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Another potential hazard In vector safety Is the contamination of retroviral vectors by 

endogenous murine proviral elements that also may recombine with packaging cell line 

sequences to generate RCR. Most stable packaging cell lines currently used are derived 

from rodent cell lines, such as NIH-3T3 cells, which have been engineered to express 

MLV gag, pol and env genes in order to generate recombinant retroviral vector particles 

(Miller and Buttimore, 1986, Markowitz et al., 1988, Danos and Mulligan, 1988). Most 

rodent cell lines carry endogenous viral sequences, which have been reported to 

recombine with vector sequences to generate RCR (Otto et al. 1994, Purcell et al., 1996). 

VL30 elements, which are common endogenous viral sequences in rodent cell lines, 

have been reported to be efficiently packaged into virions, and undergo reverse 

transcription, integration, and high level expression in the host cell (Hatzoglou et al.,

1993), Owing to the presence of such endogenous elements in addition to polytropic or 

xenotropic retroviruses that can infect human cells, murine cells are not ideal packaging 

lines for use in human gene therapy. Therefore it is beneficial to develop packaging lines 

and vectors which do not contain endogenous viral sequences. Feline cells have also 

been used as packaging cell lines. However, feline cells also contain endogenous viral 

sequences, including the RD114 virus, which could potentially be involved in RCR 

generation, and thereby compromise safety (Coffin, 1996). Packaging cell lines derived 

from human and canine cells, which lack endogenous retroviruses, are also potential 

candidates for vector development. The Madin-Derby canine kidney (MDCK) cell line has 

been found to be negative for endogenous type-C retrovirus production (Squires, 1991), 

and has potential for exploitation as a packaging cell line. Human cells can be readily 

infected with retroviruses from various animal species, and different receptor groups have 

been defined by interference assays (Somerfelt and Weiss, 1990). A packaging line 

derived from human 293 cells expressing an ecotropic MLV vector with amphotropic MLV 

env genes was recently described which contained minimal sequence homology between 

the vector genome and structural genes, and has not demonstrated RCR formation 

throughout extensive testing (Rigg et a i, 1996). Other limitations associated with murine 

packaging cell lines are the relatively low titres generated, and the complement sensitivity
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of particles derived from them (Cosset et al, 1995, Rigg et al, 1996). The susceptibility of 

retrovirus vectors derived from MLV to inactivation in human serum has a negative impact 

on gene delivery in vivo, therefore, the production of vector in human cells may be more 

appropriate for in vivo therapy. A packaging cell line derived from 293 cells was reported 

to transduce target cells more efficiently than the N1H-3T3 CRIP packaging cell line 

(Danos and Mulligan, 1988) by a minimum of 10-fold (Davis et a l, 1997). This is 

advantageous both in terms of yielding producer cell lines with enhanced transduction 

efficiencies and theoretically in terms of safety.

Contamination of packaging cell lines with RCR may also be caused by introduction of 

virus from other cell lines within a facility. Such contamination should be preventable by 

adherence to Good Manufacturing Practice (GMP), However, failure in the management 

of the system can cause introduction of RCR from elsewhere in the facility as a 

contaminant of the system. RCR has also been mistakenly identified as an artefact of the 

detection system (Miller ef a/., 1996).

5.2 Detection of RCR

The development of lymphomas in association with recombinant A-MLV infection in three 

of ten highly Immunosuppressed macaques raised concern about the risks of MLV 

exposure in humans (Donahue et a l, 1992). All three animals died within 200 days, and 

high titre retroviraemia and murine RCR sequences were later detected within the 

lymphomas of these animals (Vanin et al, 1994, Purcell et a l, 1996). Although RCR was 

not directly proven to be the causative agent of disease, it is reasonable to conclude from 

the results that exposure to high RCR levels under Immunosuppressed conditions could 

result in lymphomas. Safety testing for the presence of RCR in production cells and 

retrovirus vectors is therefore of utmost importance. Current recommendations for the 

detection of RCR in retroviral vector products are set by the FDA (CBER, 1991,1996, 

1998) in the U.S. and the CPMP (CPMP, 1995) in Europe. Specific recommendations for
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testing retroviral gene therapy products from CBER Indicate that RCR testing should be 

performed by infectivity or co-cultivation assays using an appropriate cell line such as the 

Mus dunni tail fibroblast cell for amplification followed by detection using the PG4 cell 

line . Other tests such as a marker rescue assay (Forestell et ai., 1996, Rigg et ai., 1996) 

are also suitable as an alternative to this testing.

Mas dunni cells were already in use at Q-One Biotech in tests for detection of xenotropic 

retrovirus in murine monoclonal antibody producing cell lines, and it seemed logical to 

adapt these assays for detection of RCR with A-MLV envelope. The assay format 

adapted for use at Q-One Biotech for RCR detection was infection or co-cultivation of 

samples with Mus dunni monolayers, followed by subculture over 5 passages in order to 

amplify infectious virus. Supernatants harvested after passage 5 of Mus dunni culture are 

assayed for infectious virus on feline PG4 S^L" cell monolayers.

The experiments performed in this study were undertaken in order to determine the 

sensitivity of the assay for detection of RCR and the optimal conditions for assay 

performance. Factors that may adversely affect assay sensitivity such as presence of 

interfering non-RCR were also investigated. Mus dunni cells were recommended by the 

FDA as a requirement for RCR testing as they are susceptible to Infection by all known 

retrovirus classes, thereby allowing detection of anticipated infectious virus (Lander and 

Chattopadhyay, 1984). It has been reported that ecotropic Moloney MLV (E-MLV) Infects 

Mus dunni cells poorly (Lander and Chattopadhyay, 1984). However, this is not of great 

concern with respect to human gene therapy protocols, as E-MLV infects cells of murine 

origin only. In the studies described in this report, comparison of relative sensitivities of 

mink S"'L', Mus dunni and feline PG4 Ŝ ’L" cells by direct Infectivity assay determined that 

Mus dunni and PG4 cells were of similar sensitivity. Mink S+L- cells were less sensitive 

than both Mus dunni and PG4 S’̂ L' cells by approximately 1 log in titre (Table 2.1). Further 

comparison of extended Infectivity assays for the detection of RCR evaluated that Mus 

dunni and PG4 S^L" assays were comparable in sensitivity to A-MLV infection over five
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passages (Table 2.2). These results contrast with studies at Q-One Biotech 

(unpublished) which indicated that mink S'L cells are more sensitive than feline PG4 S^L 

cells for detection of xenotropic MLV. The Mn""'-dependent RT activity and PG4 S'̂ L’ 

assay results at each passage of Mus dunni cells infected with A-MLV at low multiplicity 

suggested that 3 passages are adequate for viral detection, as enzyme activity and 

Infectivity increased to reach a plateau at passage 3 (Figure 2.2). Infectivity results by 

PG4 S'^L' assay of extended Mus dunni supernatants showed no change in virus titre from 

passage 2 onwards (a virus input of 10'' infectious units resulted in confluent foci) 

indicating the high sensitivity of the assay. The data suggests that the current method for 

Mus dunni detection assay over five passages may be excessive, and that three 

passages may prove adequate for testing of supernatants by extended assay. This would 

be advantageous in reducing the time required for testing of retroviral vector prior to 

clinical use. However, it is possible that RCR generated from vector producing cell lines 

may be more fastiduous and slower growing than the wild type A-MLV used as a control in 

the present experiments.

A potential problem in testing supernatant for the presence of RCR is that the presence of 

high-titre retroviral vector may potentially affect the sensitivity of detection assays. In this 

study, wild type A-MLV was titrated through varying concentrations of PALidSN 

supernantant and tested by PG4 S'̂ L" assay in order to determine if the presence of 

replication defective vector can mask the presence of low level RCRs in test 

supernatants. The sensitivity of the direct PG4 S"L" assay was not affected in the 

presence of vector supernatant with a titre of less that 10® cfu/ml, but there was a loss In 

sensitivity of the direct PG4 assay in the presence of retroviral vector In excess of 10® 

cfu/ml (Table 2.9). This observation is in agreement with the results of other reports which 

have indicated that the presence of high titre vector reduces the sensitivity of detection 

assays (Printz et al 1995, Cornetta et al., 1993, Forestell et a i, 1996). This result was 

shown to be specific for vector supernatant, as viral titre was not reduced by titration of A- 

MLV in the presence of E-MLV at a titre of 10® pfu/ml. E-MLV uses a different viral
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receptor to A-MLV, therefore the A-MLV receptor can be blocked by vector but not by E- 

MLV (Somerfelt and Weiss, 1990).

Validation of Mus dunni co-cultivation procedures demonstrated that the presence of 1 

RCR in 10^ cells can be detected by direct co-cultivation in tissue culture flasks or indirect 

co-cultivation using transwell dishes. The presence of vector producer cells in the co­

cultivation assay was found not to inhibit detection of A-MLV. These results suggest co­

cultivation and/or extended assays rather than direct assay should be performed for 

detection of RCR. The results suggest that although testing vector supernatants by 

infectivity assay provides a useful indication of safety, co-cultivation methods may be 

more reliable for detection of RCR. However, results of studies reviewed by CBER (Wilson 

et al., 1997) indicated, suprisingly, that on occcasion positive results In RCR assays have 

been obtained by assay of supernatant while negative results were obtained in co­

cultivation assays of the corresponding producer cells. Therefore, although the results of 

this and other reports indicate that co-cultivation assays for vector-producing cells are 

more sensitive than supernatant testing for RCR detection (Printz at a/., 1995), CBER 

continues to recommend that both extended assay using vector supernatant, and co- 

cultlvation assay using vector-producing cells are performed until further data Is obtained 

(CBER, 1998).

A recent review of the CBER regulations for RCR testing during retroviral vector 

production and patient monitoring examined data which has been accumulated since the 

original guidelines were implemented in 1993 (Wilson, 1997). A number of important 

points are addressed in this paper. Firstly, the ‘marker rescue assay’ is recommended as 

an acceptable alternative assay system to the PG4 S '̂L' detection system (Printz et al., 

1995, Forestell et a i 1996, Miller et a i, 1996). The marker rescue assay is based on the 

presence of RCR in a sample resulting In the ‘rescue’ or mobilisation of a vector encoding 

a marker gene, which can be visualised following inoculation onto an indicator cell line. As 

recommended in previous guidelines (CBER, 1996), the marker rescue assay employed 

for RCR detection should be validated, and shown to be of similar sensitivity to the PG4
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S^L' assay. Secondly, CBER has identified and deposited with the ATCC a producer cell 

line for production of a standardised RCR stock for use as a control in assays employed In 

the detection of RCR. The stock is based on the proviral clone Mo-MLV with env coding 

sequences replaced by the 4070A strain of A-MLV. This RCR standard will be 

characterised by electron microscopy to determine the particle count, PG4 S"L' assay to 

determine titre, and extended Mus dunni assay with PG4 S'^L end-point to determine end­

point limiting dilution, in four independent laboratories (Wilson et al., 1997). The use of 

this standard may have Implications regarding the volume of supernatant required to be 

tested. The addendum to the CBER guidelines published In 1993 (CBER, 1996) 

recommends that a volume of 5% of the total vector-containing supernatant in each lot of 

manufactured vector product is amplified on Mus dunni cells, followed by PG4 S'̂ 'L' assay 

to detect RCR. However, knowing the sensitivity of the assay in relation to the standard, 

the criteria limits for RCR, and the probability limits for detecting RCR, the required test 

volume can be calculated from the Poisson distribution (assuming the RCR is 

characterised by the Poisson distribution) (Wilson et al., 1997). However, it is probable 

that a standard sensitivity of the infectivity assay would be difficult to validate given that 

different producer/cell-vector combinations may produce different levels of Inteference In 

RCR detection systems. The results of the RCR testing presented in this report would 

require to be re-validated using the new vector and producer cell line controls that have 

been deposited with the ATCC.

CBER is at present considering evaluation of a standard RCR-producing cell line for use 

in validating the sensitivity of co-cultivation assays. The guidelines (CBER, 1996) 

currently recommend co-cultivation of 1% or 10® (whichever is less), of the total pooled 

post-production cells or ex vivo transduced cells, with a cell line permissive for MLV 

replication eg. Mus dunni ceWs, and testing the resulting supernatants by PG4 S^L assay. 

Should a standard be produced, the statistics used for determining the volume of 

supernatant to be tested above could also be applied to determine the number of cells to 

be used in the co-cultivation assay, again, depending on the sensitivity of the assay. The
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results presented in this report for validation of the co-cultivation assays indicated the high 

sensitivity of the assay, suggesting that a detection limit of 1 infected cell in a total of 10  ̂

cells was attainable. Should the standard be produced, these results would also require 

re-validation to determine any difference in sensitivity of the co-cultivation assay when 

using the standard control. For ex vivo cells, there are a number of additional issues 

which should be taken into consideration, such as the number of cells in the total patient 

dose, and the length of time that the cells are in culture following transduction. Further 

data and discussions are required, in addition to production and characterisation of a co­

cultivation standard and validation of assay detection systems, before such 

recommendations for co-cultivation procedures can be implemented.

Despite implementation of the above measures to minimise risk of RCR formation which 

have increased confidence in safety of the use of retroviral vectors, additional monitoring 

of risk is required by monitoring patients receiving treatment for evidence of RCR. Viral 

infection may be detected by assaying for either free virus, viral antigen, or viral antibodies 

which may be present in the patient’s serum. Therefore, clinical trial patients treated with 

recombinant retroviral vector are monitored for evidence of RCR using immunological 

and/or polymerase chain reaction (PCR)-based methods. If productive infection with 

resultant viraemia occurs, viral DNA or RNA is detectable in peripheral blood lymphocytes 

(PBLs) by PCR, while viral antibody in patient serum can be detected by serological 

assays such as Western blot or ELISA. The ELISA assay is quicker and less expensive 

to perform, but cannot distinguish between an immune response induced by direct vector 

treatment or RCR infection and thus has the potential to generate false positives induced 

by vector treatment, or false negatives in immunocompromised subjects (Donahue et al., 

1992). Ideally, a PCR assay should be used for patients into whom vector has been 

directly administered, and ELISA for detection of RCR in the sera of patients receiving ex 

vivo treatment (Martineau et al., 1997). According to CBER, European Regulatory 

Groups, and the Gene Therapy Advisory Committee (GTAC), the consensus decision on 

patient monitoring is to perform both PCR assay for viral env (or gag) sequences on PBL
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samples, and Western blot or ELISA assay for detection of viral antibody to env proteins 

on serum samples. In the case of a positive result, where the possibility of a false positive 

has been eliminated, co-cultivation of PBLs with Mus dunni cells should be performed in 

order to detect infectious retrovirus. Patient monitoring should be performed 6 weeks, 3 

months, 6 months, and 12 months after each treatment is complete, and annually after the 

first trial year (CBER, 1996). The frequency of testing performed, particularly in early 

stages of treatment is currently under review (Wilson et al., 1997). In addition, Wilson et 

al. (1997) recommend that assays employed in patient monitoring should be chosen with 

specific consideration to the patient population and mode of vector administration. For 

example, serological methods may be misleading in an immunosuppressed patient 

population.

In the recent study in which RCR was erroneously detected as an artifact of the detection 

system, patient screening following administration of retroviral vector suggested the 

presence of RCR that originated from human haematopoietic cells (Miller et al., 1996). 

Characterisation of the viruses, which were detected in all of the patients tested, showed 

all to be almost identical. Interference analysis suggested that this virus represented a 

new murine retrovirus group, which the researchers named Mas dunnI endogenous virus 

(MDEV). It was reported that hydrocortisone or 5-iodo-2-deoxyuridine (IDU) can activate 

production of this virus. The presence of these agents in samples may therefore give rise 

to false-positive results in the RCR assay. However, a limited study at Q-One Biotech has 

failed to induce increased reverse transcriptase expression in Mus dunni cells following 

IDU treatment. The occurrence of such false positives may cause costly and time- 

consuming delay to clinical trials. An additional disadvantage with the use of Mus dunni 

cells is that they cannot be infected by some non-murine retroviruses, such as G a lV  or 

FeLV (Q-One Biotech, unpublished data), on which some retrovirus packaging lines are 

based. There is a requirement for infectivity or marker rescue assays to be developed 

which detect retroviruses of different tropism and which are not prone to false-positive 

results. Marker rescue assays could also be employed as confirmatory assays to follow
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co-cultivation of sampies v/ith MLV-permissive cell lines that resulted in suspected RCR 

infection,

5.3 Production of retroviral vector

The ideal retroviral vector should exhibit the following characteristics; a high titre to 

enhance transduction efficiency and reduce production costs, tissue-specific delivery of 

the therapeutic gene, optimal and sustained expression of the transgene (which can be 

regulated by physiological signals), and insertion into a specific site of the genome. Thus 

it is important to optimise methods for retroviral vector production and transduction. Cell 

banks used to produce retrovirus vector must be qualified, and the vector itseif must be 

characterised and shown to be free of contaminating agents and substances. Evaluation 

of the vector includes constructing growth curves using appropriate ceil culture medium 

and performing optimisation studies for production. Each producer cell line should be 

individually evaluated to assess optimal cell culture conditions and maximise and 

maintain production levels. Also, the growth and production characteristics of the 

producer cell line should be investigated by a variety of scale-up methods, such as 

roller bottles, microcarriers, and fermenters. In the case of the model vector used in 

these studies, the cell line was adherent, therefore smaii scale studies using tissue culture 

flasks, roller bottles and Fibra-cel disks were performed to optimise vector production and 

to set the parameters for scale-up. The parameters Identified in the evaluation are used to 

scale-up production using cost-effective and appropriate technology.

In this study, initial titres resulting from the model producer cell line PALidSN were 

determined by NIH- 3T3 titration to be in the region of 10^cfu/ml for both tissue culture 

flasks and roller bottle systems. PALidSN cells produced retroviral vector in the roller 

bottle culture system at an average of 4.7x1 O^cfu/ml (Table 3.10, roller bottle 1, mean 

viral vector titre). Typical cell culture harvest titres previously reported for producer 

cells constructed using the PA317 packaging cell line were reported to be in the region 

of 10^-10® cfu/ml, but titres of up to 2x10^ cfu/ml have been achieved when cell culture
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was scaled up using the Cellcube system (Kotani et al., 1994). The feasibility of scaling- 

up culture of PALidSN cells in Fibra-Cel® disks in a Tech ne spinner flask resulted in a 

viral vector titre of 1x10®cfu/ml in a sample harvested after 120 hours cell culture. The 

large volume of circulating medium owing to the disks not being tightly packed may 

explain the large number of cells in suspension (Table 3.12). Although there were 

some problems with non-adherence of PALidSN cells to the disks, cell growth improved 

following feeding of the cells with fresh media. Different systems used to increase 

production have both advantages and disadvantages, and vary in their potential for 

manufacturing scale-up. Culture in roller bottles is straightforward, but relatively labour 

intensive in comparison to some recently manufactured systems. One of these is the 

microcarrier system (Pharmacia Cytodex 3™) which consists of a surface layer of 

denatured collagen, covalently bound to a matrix of cross-linked dextran spheres, 18.5g 

of which is equivalent to 100 roller bottles (surface area 4600cm^/g). Another is the 

New Brunswick Celligen™ fermenter, which may provide an improved vector yield via 

controlled cell growth. The New Brunswick Celligen™ system Is composed of fibrous 

polyester disks, of which 70g are the equivalent to 100 roller bottles. Both this and the 

New Brunswick Celligen™ system are disposable and use a smaller amount of medium 

more efficiently than roller bottle culture. These systems also allow culture conditions to 

be easily altered, and carry a lower risk of potential contamination than roller bottles. 

The Celligen™ system also allows easy monitoring of media circulation, including media 

input as and when required.

An improved production strategy for retroviral vector supernatants was recently 

described which Is based on gene transfer potential rather than vector titre (Foresteil et 

al., 1995). A packed-bed bioreactor operated in perfusion mode was developed, which 

is easily scaled-up and produces large volumes of supernatant with high transduction 

efficiency. The supply of medium by continuous perfusion limits the time that virions 

are exposed to inactivating temperatures, and ensures a constant supply of nutrients, 

as well as continually removing inhibitors. This system could be applied to all
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bioreactors that support high cell densities and can be operated in a perfusion mode.

Adaptation of cell growth to suspension culture is a goal of large-scale processes for 

viral vector production. For some cell lines, such as 293 cells, which are normally 

adherent, simply adapting the cells to serum-free media causes them to become lightly 

adherent or non-adherent. Suspension culture is more easily scaleable and adaptable 

to downstream processing, and also allows for higher density cell growth.

5.4 Use of serum and trypsin in culture media

Raw materials used in in vitro cell culture include components such as cell culture 

media, including synthetically manufactured supplements, such as amino acids, and 

materials of animal origin, such as bovine serum. In general, eukaryotic cells require 

the addition of serum to cell culture medium In order to grow in vitro. Serum is a 

complex mixture of a large number of constituents such as essential growth factors and 

nutrients. The use of serum in cell culture media poses a number of problems, 

including the addition of proteins to the culture medium, variability in the composition 

and quality of different batches, and risk of contamination with adventitious agents from 

the source animai (McLean et al., 1997). Another raw material of concern in culturing 

anchorage-dependent cells such as the PALidSN cell line is trypsin, which is used to 

dissociate the cells. Trypsin is generally of porcine origin, in which the most common 

extraneous agent of concern is porcine parvovirus (PPV). Regulatory authorities such 

as the FDA and CPMP have ruled that sera must be sourced from selected countries 

such as Australia, New Zealand and the United States, where bovine spongiform 

encephalopathy (BSE) is not known to exist, A certificate of origin must be supplied, as 

well as information on the health status and age of the donors, and details on the 

manufacturing process. Internal quality control (QC) testing includes cell growth 

performance tests, testing for absence of bovine viruses, BSE, bacteria, fungus, 

mycoplasma and endotoxin contamination. The main viruses of concern in bovine
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material are the pestivirus bovine viral diarrhoea virus (BVDV) and bovine polyomavlrus 

(BpyV), which are widespread contaminants in bovine serum. Requirements for 

production include slaughterhouse licenses, adequate training of personnel, controlled 

transport of blood to the processing plant and extraction of serum using aseptic 

techniques, as well as sterile filtration and filling, and provision of full documentation.

In the studies presented in this report, the retroviral vector producer line, PALidSN, was 

initially examined for the effect of varying culture media serum and glucose content on 

cell growth and viral vector titre. Of the four media formulations examined (DMEM 

containing 4500mg/L or 1000mg/L glucose supplemented with either FBS or NBS), 

optimal cell yield coupled with lowest doubling time was best achieved by culturing 

PALidSN cells in high glucose DMEM supplemented with 10% FBS (doubling time 

during exponential growth of 13.99 hours and a highest cell yield of 2.64 x 10® viable 

cells). Correlation between the the results of the enzyme and infectivity assays was 

observed. In that the highest value of IDUA enzyme activity per milligram of protein 

(14,940 U/mg) and highest viral vector titre measured by NIH-3T3 assay (7X10" cfu/ml) 

were obtained from supernatant harvested from cells after 96 hours culture in high 

glucose DMEM containing 10% FBS (Figure 3.1). Results of a study comparing viral 

titres resulting from PALidSN cells cultured in tissue culture flasks in media containing 

either 5% or 10% serum content indicated that the effect of reducing serum 

concentration on viral vector titre was minimal (Table 3.5). The possibility of further 

reducing, or eliminating, serum during culture of PALidSN cells was indicated when 

reduction of serum concentration to 1% FBS in roller bottles (section 3.4.3) also 

produced a comparable viral titre (2x10® cfu/ml), although an extended culture period 

was required to reach this titre (12 days). This extended culture period may be 

explained by the lower availability of nutrients at the reduced serum concentration.

In studies reported here in which PALidSN cells were adapted to culture in serum-free 

media, cells adapted well to Ultraculture serum-free media, but not to CHO-S-SFMII,
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QBSF51 or QBSF56 media. This suggests that a specific formulation is required for 

particular producer cell lines, indicating that evaluation studies for adapting cells to various 

media formulations would be necessary for individual producer cell lines. When the 

PALidSN cell line was cultured using Ultraculture serum-free media, the cells required 

daily feeding with fresh media in order to ensure a viral vector titre of at least 1x10"cfu/ml 

at an early stage of culture (Table 3.9). Leaving the culture for four days (Flask 2) resulted 

in a poor viral vector titre and deterioration of the cells. The culture did not recover until 

four days of daily feeding had occurred (Days 7 to 10) and the highest titre obtained was 

7x10"cfu/ml. Flask 3 did not recover from the first seven days without feeding and viral 

vector titres were poor. Therefore, cells cultured in serum-free media appear to require a 

longer culture period, and more regular media replacement than cells cultured in serum- 

containing media. When the results of this study are compared to viral production in a 

serum-based system, there is on average a reduction in titre from 4.7x10®cfu/mi (Table 

3,10, roller bottle 1) to 1.1x10®cfu/ml (Table 3.9, roller bottle 1) in the serum-free 

system. Although the titre is slightly lower in the serum-free system, the absence of 

serum facilitates the downsteam processing, and the material produced also has the 

potential to undergo concentration techniques. The feasibility of serum-free cell culture 

indicated in this study suggests that a completely serum-free production process is 

possible. However, it should be noted that some cell lines are more easily adapted to 

culture in serum-free media (SFM) than others. In addition, media termed SFM may 

contain serum fractions, and are therefore at risk of contamination by the same agents 

as in whole serum (Hodgson, 1995).

5.5 Production methods to Increase viral titre

A limitation in using retroviral vectors is the relatively low titres of virus which have been 

obtained from existing packaging lines (10®-10  ̂ cfu/ml) (Crystal, 1995). A complete 

discussion of vector design to increase titre is outwith the scope of this document. 

However, complementary packaging cells and vector constructs have been developed
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which are reported to be of higher titre and safer than previously described producer cell 

lines (Morgenstern et al. 1990). Variations in the methods used in production of retroviral 

vectors have been employed in attempts to increase viral titre. Production at reduced 

temperature has been reported to improve vector titre (Kotani et al., 1994). However, in 

the limited study on production temperature for the model vector PALidSN in this report, 

harvesting supernatant from cells incubated at for 3 days at 32°C rather than 37°C did not 

result in an increase in viral titre. This is in contrast with the results of Kotani et al. (1994), 

who reported a 5- to 15-fold increase in vector produced at 32°C in comparison to 37°C, 

and Olsen and Sechelski (1995) who reported an 8-fold increase in vector production at 

32°C in comparison to 37°C. In their study, Kotani et al. (1994) reported that viral 

production rate was increased, and survival improved at 32°C. This was observed to be 

the case in this study, where viral inactivation was observed to be greater in supernatants 

incubated at 37°C rather than 32°C (Figure 4.1). However, cultivation of producer cells at 

32°C rather than 37°C is more likely to lower the rate of viral thermal inactivation rather 

than increase virus production (Foresteil et al., 1995). Growth at 32°C results in retroviral 

vector supernatants with higher transduction efficiency by reducing the ratio of inactivated 

to transducing virus particles (Foresteil et a!., 1995). Different clones of retroviral vector 

vary widely in the vector titre produced from them. Foresteil et al. (1995) suggested that 

production at 32°C should be combined with harvesting supernatants at short time- 

intervals. They suggested that retroviral vector supernatants reach their maximum 

transduction efficiency between 3 to 5 hours following medium exchange. This 

contradicts the recommendations of Kotani et al. (1994), which are that supernatant 

should be harvested at 48-hour intervals. Forestall et al. (1995) also suggest that shorter 

incubation times would limit the accumulation of inhibitors of producer cell metabolism or 

non-viral factors that may reduce transduction efficiency.

Other potential methods that attempt to increase virai vector titre utilise agents that are 

known to stimulate virus production, such as sodium butrate (NaB) (Olsen and Sechelski, 

1995) and TPA (Harada et al., 1986). In this study, a three-day induction period of
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PALidSN cell cultures with either NaB or TPA did not have an effect on viral titre (Table 

3.6). NaB was reported to increase production of a retroviral vector from between 20-fold 

to greater than 1000-fold, depending on the producer clone, resulting in vector titres of (

approximately 10  ̂ infectious units/ml (Olsen and Secheleski, 1995). Therefore, different 

producer lines would require assessment for susceptibility to viral inducing agents. NaB 

exerts its effect on virus production by affecting viral gene expression, although its 

inhibitory effects on the cell cycle may also be Important in some cases (Shadan at al., "

1994). The increase observed by Olsen and Secheleski (1995) was partially accounted 

for by an increase in steady-state levels of full-length vector RNA within the producer cells. ;
I

With some of the producer cell lines, combining NaB treatment with lowering the 

temperature of the virus harvest to 32°C resulted in an apparent synergistic increase in 

virus production. The effect of NaB treatment, however, is not consistent. When the 

producer cell line contained a different vector construct, NaB treatment resulted in only 2- 

fold to 10-fold increase in viral titre. In the limited experiment on PALIidSN producer cells 

reported in this study, no increase in viral titre was observed with NaB treatment. NaB
’ji

treatment has been shown to induce production of HIV (Antoni at al., 1994), but not Friend 

leukaemia virus (Zajac-Kaye at al., 1986). Therefore the effects of NaB on gene 

expression may be virus specific or prompter/enhancer and cell-type dependent. The 

treatment may be useful to increase vector production from selected stable producer cell 

lines, but it will be necessary to validate the safety of producer cells and retroviral vector 

supernatants prepared in the presence of NaB.

The use of bioreactors to propagate retroviral producer lines has also been shown to 

increase viral production up to five-fold (Kotani et a!., 1994). Culture in bioreactors could 

be combined with other methods reported to Increase viral titre such as incubation with 

deoxynucleotides to stimulate de novo reverse transcription (Zhang et a/., 1995) or the 

addition of dexamethasone or NaB to stimulate viral production from retrovirus packaging 

cell lines (Pages et a/.,1995). However, different producer lines would require individual 

assessment for susceptibility to viral inducing agents,
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5.6 Concentration of retroviral vector

The problem of low titre virus may be partially addressed by retrovirus concentration 

methods (Paul et a i, 1993; Kotani et ai, 1994). It has been suggested that retroviral 

particles may be limited in their ability to be concentrated by ultracentrifugation owing to 

the possibility of damage to the envelope protein (Burns et al., 1993). One approach to 

overcome this has been the use of pseudotyped retroviruses containing vesicular stomatis 

virus (VSV) G protein, but the toxicity of this protein may inhibit sustained virus production 

(Burns et a i, 1993), Bowles et a i (1996) reported the recovery of infectious amphotropic 

virus at approximately 95% following low speed centrifugation, whereas, after 

ultracentrifugation, only 50% of the virus was recovered. Virus particles which were 

initially concentrated by low speed centrifugation (6,000 x g for 16 hours at 4°C) were 

further purified by sucrose gradient centrifugation. The combination of low-speed 

sedimentation and sucrose banding steps resulted in titres up to 500-fold higher than in 

the original starting supernatant. Increasing viral titres from 10®-1-2x10^ cfu/ml was 

reported to result in a proportional increase in viral transduction activity in vivo, but a 

decrease in transduction efficiency was reported in virus particles concentrated beyond 

10  ̂ffu/ml. Jacomino et a i (1997) postulated that in both their study and that of Bowles et 

a i (1996), the decreased potency of highly concentrated retrovirus particles may have 

been caused by concentration of toxic materials during centrifugation. Le Doux et a i 

(1996) identified proteoglycans secreted by packaging cell lines as one of the interfering 

substances present in retroviral stocks. It is possible that these proteoglycans may 

have been concentrated by being bound to retroviral particles during the purification 

procedure. A producer cell line based on recombinant amphotropic retroviral vector 

was recently reported to produce a viral titre of up to 2x10® cfu/ml without inclusion of a 

concentration step (Kitten ef a i, 1997). The producer cell line was constructed with 

particular attention to ensuring efficient in vivo gene transfer to the liver. No decrease
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in transduction efficiency was observed with higher titre vectors in the study by Kitten et 

al. (1997), which Is probably explained by the absence of a concentration step.

Another physical method used to increase viral titre examined in this study was 

ultrafiltration. Retroviral vector supernatant harvested from PALidSN cell cultures was 

successfully concentrated by filtration in two separate studies using SARTOCON 

MICRO 100KD filters (Table 3.13 and 3.14). In one study, the volume of supernatant 

was concentrated 15-fold, resulting in a 10-fold increase in viral vector titre (from 2x10® 

c.f.u/ml to 2x10® cfu/ml). This represents a level of 67% recovery of infective viral 

particles. In the other study, the volume of supernatant was concentrated 4.3-fold, 

resulting in a 5-fold increase in viral vector titre (from 6x10® c.f.u/ml to 3x10® cfu/ml). 

Therefore, no loss of vector activity was determined by NIH/3T3 assay following 

concentration by ultrafiltration in the second study. In both studies, virus was not 

detected In the filtrate that was drawn from the system. The samples were pre-filtered 

prior to titration, and the titration assay performed in the presence of antibiotics. 

Concentration of MLV by up to 24-fold was also demonstrated by Kotani et al. (1994) 

using 300KD membrane filtration, with over 90% recovery of infective viral particles. These 

results are encouraging for concentration of retroviral vectors by ultrafiltration, but 

individual producer cell lines would require stability testing to ensure that infectious viral 

particles can be recovered. However, as with concentration by centrifugation, a recent 

study reported that increasing end-point titre by ultrafiltration of amphotropic retroviral 

vector supernatants does not improve, and can even reduce, transduction efficiency 

(Foresteil et al., 1995). In this study, dilution of concentrated supernatant restored the 

ievel of transduction efficiency, suggesting that an inhibiting agent had been co­

concentrated with the virus particles. This may have been caused by the presence of 

non-transducing virus particles causing a decrease in transduction efficiency without 

affecting the virus titre. As the study by Foresteil et al. (1995) reported that lowered 

transduction efficiency is only observed in supernatants from amphotropic producer or 

packaging cell lines, the inhibition may be specific to the viral envelope protein.
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5.7 Transduction of retroviral vector

As observed above, increased virus concentration does not always lead to increased 

transduction rate, Rather, there is an optimal titre, after which increased concentration 

does not lead to increased transduction rates (Chuck and Palsson, 1996). The number 

of cells that are transduced, however, is dependent on virai titre and polybrene levels. 

Recently reported data suggests that 10® c.f.u. recombinant retrovirus is the finite amount 

which can be safely and efficaciously administered through portal vein infusion in the rat 

(Bowles etal., 1996).

Retrovirus mediated gene transfer is normally performed using static transduction 

methods, where retroviral supernatant is inoculated onto a bed of target cells. 

However, this system is limited by Brownian motion of the retrovirus, decay of the 

retrovirus, and absorption of retrovirus by the target cells. By relying on Brownian 

motion to deliver the retrovirus, the rate of virus delivery is largely determined by the 

proximity of the virus to the target cell, and the half-life of the virus. The limitations of 

Brownian motion can be overcome by directing the motion of the virus to the target cells 

using flow-through transduction methods (Chuck et al., 1996). This method is achieved 

using a fluid flow of retroviral supernatant passing through a porous membrane that 

supports the target cells. This results in an increase in the number of successful gene 

transfer events which is much less sensitive to virus concentration than the static 

transduction method. Reproducibly high numbers of transduced cells can be obtained 

with a wide range of virus titres. Additional advantages in using flow-through 

transduction methods are that a smaller volume of viral supernatant is required for gene 

transfer and that the method can be carried out without the use of polybrene. (Chuck 

and Palsson, 1996).
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5.8 Limitation of selectable markers

Selectable markers permit positive selection in that the selecting agent does not kill the 

cells of interest. One of the most frequently used selectable markers Is neo (contained in 

the PALidSN cells in this study), which confers resistance to a group of antibiotics 

(including G418) which are toxic to cells. Two separate resistance genes found in certain 

bacterial strains can be functionally transferred into eukaryotic cells to permit growth in 

media containing G418. An issue of concern in the use of retroviral vectors containing 

neo as a marker gene Is the variability of titration on NIH 3T3 cells and a number of 

factors have to be standardised in order to achieve reproducible results. Firstly, the NIH 

3T3 cells must be in exactly the same state of growth before infection with vector, as 

G418 selection is dependent on cell density and non-resistant cells can survive in 

otherwise toxic concentrations if they are crowded on a tissue culture dish. It should be 

ensured that sufficient clones are counted for statistical accuracy and that the G418 

antibiotic used to select neo resistant cells has been corrected for specific activity. The 

specific activity of the drug is batch dependent, therefore each lot should be independently 

titrated on NIH 3T3 cells to determine the minimum cytotoxic concentration for use in the 

assay. Its effects should be titrated on test cells over the range 200pg-2mg/ml. The 

problems encountered in the use of neo as a marker suggest that other markers may be 

more appropriate, for example lacZ, for colony counting or luciferase, which would enable 

automated counting.

Inclusion of a second gene as a dominant selectable marker may have unwanted effects 

in gene therapy studies. Firstly, the presence of a two promoters in a retrovirus may 

result in interference between the two transcriptional units, causing ‘promoter suppression’ 

(Emerman and Temln, 1984). Secondly, expression of selectable markers in vivo may 

Induce host Immune responses that could eliminate transgene-expressing cells. Some
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retroviral vectors have no selectable marker with the result that titration of the vector is 

based on a measure of the gene product, for example enzyme activity or protein 

concentration. An example of this is included in this study where IDUA enzyme activity in 

PALidSN cells was determined by infection of human fibroblast MPSI cells, and enzyme 

activity in cell extracts measured by fluorimetry. Enzyme activity measured per milligram 

of protein was comparable with viral vector titres measured by NIH-3T3 titration (section 

3.3.1). In such cases, measurement of titre by enzyme activity results in the 

characterisation of virus-producing clones being more laborious. A simple and reliable 

assay has recently been developed to identify clones producing recombinant retrovirus 

that lack dominant selectable markers (Onodera et al., 1997). This is based on a 

validated two-day RNA dot-biot procedure, the titres obtained by which were 

demonstrated to correlate with titres obtained by conventional G418-resistant cfu/ml, and 

by Southern analysis of HeLa cells transduced with supernatant from each clone. In 

contrast with many conventional assay systems, the RNA dot-blot method allows 

comparison of titres from different packaging cell lines, therefore is useful as a method for 

directly comparing titres obtained from different producer clones.

5.9 Optimisation of stability of retroviral vectors

Extension of the shelf-life of pharmaceutical products, or storage at ambient temperatures 

would greatly benefit the pharmaceutical industry. Thus, it is important to optimise the 

stability of retrovirus vectors in order to maximise their clinical application. The European 

Agency for the Evaluation of Medicinal products (EMEA) recently implemeted ICH 

document Q5C, which provides notes for guidance on stability testing of biological 

products. Stability during the intended storage period must be confirmed; biological 

activity must be maintained and degradation avoided. Thus a minimum of six months 

stability study data should be provided for biological products to obtain market 

authorisation. As inactive virus particles can reduce transduction efficiency of retro via I 

vectors, storage conditions should be optimised to reduce the accumulation of these
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competitor particles in retroviral vector supernatants {Foresteil etal., 1995). Foresteil e ta l 

(1995) reported that supernatants incubated at 0°C for 4 days lost 50% of their gene 

transfer potential although the titre determined by infectivity remained stable. It was 

therefore recommended that retroviral vector supernatants should be rapidly frozen and 

stored at~80°C shortly after harvesting.

In this study, the stability of retroviral vector from PALid SN cells and wild-type A-MLV in 

culture supernatants was determined by measuring titre following short or long term 

storage at different temperatures. Retroviral vectors have been reported to be more 

stable at 32°C than at 37°C and this was found to be the case with PALidSN cells where 

viral titre decreased more rapidly in supernatants incubated at 32°C rather than at 37°C 

(section 5.5). The half-life of retroviral vectors has been reported to be 3.5 to 6.5 hours at 

37°C, dependent on the vector construct (Paul et al., 1993). The half-life of the 

amphotropic vector from the packaging cell line ^CRIP was measured to be between 5-8 

hours at 37°C, while the half-life of another amphotropic retroviral vector at 37^C was 

recently determined to be 3.5 hours (Jacomino et a!., 1997). In another study a reduction 

of 92% in vector titre after 24 hours at 37°C was reported, whereas no significant 

reduction was observed after 48 hours at 32°C (Kotani et al., 1994), In this study, vector 

titre was observed to decrease by 98% after 24 hours at 37°C, and by 70% after 24 hours 

at 32°C. After 3 days a low titre was detected in vector at 32°C whereas vector at 37°C 

was completely inactivated. In the present study the stability of the vector at 4°C was 

found to indicate that loss in viral titre over 3 days storage at 4°C is insignificant. These 

results are comparable to a report by Bowles et al. (1996), where the loss of viral titre by 

overnight storage at 4°C was found to be consistently less than 10%. The stability of the 

viral titre of virus and vector supernatants at 4°C or 32°C remained constant for at least 

the first eight hours of incubation, which is also similar to previously reported data 

(Foresteil ef a/. 1995).

The mechanism by which MLV-derived vectors decay is not clear, although inactivation of
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HIV has been proposed to occur by shedding of glycoproteins from the lipid envelope of 

virus particles (Layne at al., 1992). Loss of infectivity would directly result from loss of 

ability to bind to cellular receptors. The short half-life of MLV-derived retroviral vectors 

significantly affects their ability to transduce genes successfully by limiting the distance 

that they travel before decaying (Chuck and Palsson, 1996). Therefore, a better 

understanding of the mechanisms that determine retroviral stabillity will be useful in 

increasing the efficiency of gene transfer. The presence of polybrene has been reported 

to significantly affect the kinetics of retroviral decay, owing to differences observed in the 

pattern of loss of retroviral activity in the presence and absence of polybrene (Andreadis 

and Palsson, 1997). In the presence of a high concentration of polybrene (13.2pg/ml), the 

kinetics of decay were exponential from the beginning of the decay period, whereas in the 

absence of polybrene, loss of retroviral activity did not follow simple exponential decay. 

The dynamics of viral inactivation showed a sigmoidal decrease, with an initial phase 

during which the transduction efficiency remained constant prior to exponential decay. 

The sigmoidal pattern of retroviral decay is in agreement with the pattern of decay 

reported for HIV-1 (Layne et al., 1992). Two alternative mechanisms were proposed to 

address the data suggesting that the presence of polybrene affects the kinetics of 

retroviral decay. Polybrene may induce virus aggregation, which reduces the effective 

concentration of retroviral particles, or, neutralisation of polybrene (positively charged) by 

FBS components (negatively charged) could decrease the effective concentration of 

polybrene. These results outline the importance of considering the processes that may 

occur in solution during the steps of viral binding and entry into the target cell, and their 

effect on the stability of retroviral particles.

Freeze drying, or dehydration, is a process where solvent is physically removed from a 

sample such that the solids are maintained in an essentially dry (eg. water-free) condition. 

One of the benefits of freeze drying is to aid the long-term storage of pharmaceuticals, 

while retaining their biological activity. There are three steps involved in freeze drying a 

product. Firstly, the product is frozen solid, thus the water present in the material is
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converted to ice. Next, the ice formed in freezing is removed by conversion from solid to 

vapour (sublimation). Thirdiy, water which is strongly bound to the solid and therefore not 

frozen, is converted to vapour and removed from the product (desorption). The presence 

of sugars may aid freeze drying by protecting cell membranes and proteins during the 

desiccation process. Trehalose, a colourless and odour-free disaccharide constisting of 

two glucose molecules, is currently being applied to the improvement of stabilised 

vaccines, hormones, and blood components.

In this study the ability of trehalose, along with glucose, mannose and sorbitol to stabilise 

retroviral vector supernatant stored at -80C and 4C was examined. Viral vector titres 

obtained were found to be similar in the presence and absence of sugars. However, the 

study was not continued over a long enough period of time to draw any conclusions from 

the effect of the presence of sugar stabilisers.

5.10 Overview and future directions for retroviral gene transfer

As stated in a recent review, appropriate vector design and mode of delivery remain the 

main obstacles to successful human gene transfer (Crystal, 1995). The ultimate goal of 

gene therapy using retroviral vectors is to obtain tissue and cell specific targeting and 

regulated expression of the appropriate gene that is both safe and regulated. The first 

step in attempting to target retroviral vector gene delivery is in pseudotyping the 

packaging cell lines. The envelope of A-MLV can be used to deliver genes to human 

haemopoetic stem cells, however, not all cell types can be infected by A-MLV. The 

tropism of vectors can be increased by the use of other retroviral envelope genes or the 

glycoproteins of other viruses capable of forming pseudotypes.

in the present study extensive experiments were performed to validate co-cultivation 

and infectivity assays for RCR detection using Mus dunni cells and the PALIDSN 

retroviral vector-producing cell line. Further limited studies were performed on the
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PALIDSN cell line that elucidated the characteristics of the cell line w ith respect to 

optimal conditions for vector production and on the vector w ith respect to 

comparative stability to temperature and concentration. The limited nature of the 

observations made here preclude general conclusions regarding optimal conditions 

for production and storage of retroviral vectors. It is probable that each producer 

cell-vector combination should be individually evaluated w ith respect to each of the 

parameters discussed above.

Further studies should be undertaken to validate the Mus dunni or a suitable marker 

rescue assay for RCR detection using the reference RCR producing cell line 

deposited by CBER w ith the ATCC.
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