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Abstract

The LH1-RC core complexes from a range of purple bacterial species were investigated.
The complexes were isolated by solubilisation with the detergent LDAO, then purified
using a combination of techniques such as sucrose gradient centrifugation, anion
exchange and gel filtration chromatography. The integrity of the complexes during
purification was monitored by means of absorption spectroscopy. This showed that the
stability of the detergent solubilised cores was species dependent. The most stable cores
were obtained from Rps. acidophila, Rps. cryptolactis, Rps. palustris and Chr.
vinosum. The least stable core complexes were from Rv. gelatinosus and Rs. rubrum.
The intactness and stability of the purified cores was further investigated by circular
dichroism (CD) spectroscopy. This technique provided a much more sensitive spectral
test for intactness than that offered by absorption spectroscopy. CD spectra in the NIR
region confirmed that the cores from Rv. gelatinosus and Rs. rubrum denatwed during
purification.

The purified core complexes were screened for their suitability for forming 3-D
crystals using vapour diffusion methods. Core complex crystals did not form when
I.DAO was used as detergent or when ammonium sulphate and potassium phosphate
were nsed as precipitants. However, when LDAQO was exchanged for other detergents,
such as cholate and heptyl thioglucoside, and PEG was used as a precipitant core
complex crystals did form. The presence of MgCl, and other small additives scemed an
absolute requirement for crystal formation. The best crystals were obtained using core
complex from Rps. acidophila strain 10050. Preliminary characterisation of one of these
crystals showed it diffracted X-rays to a resolution of 7.6A. Data analysis suggested a
space group with putative tetragonal P4 symmetry and unit cell dimensions of

=b=156.56A and c=181.11A, and o=P=y= 90.0°. Due to a problem of irreproducibility
the crystallisation experiments failed to yield crystals of a sufficient quality to allow a

stiuctural detcrmination of the LH1-RC core.
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The LH1 (B880) complex from RA. marinum was also isolated and purified, and the
effects of chemical oxidation on its absorption and flucrcscence emission spectra was
investigated. Mild chemical oxidation of the LH1 complex, by addition of 10mM
potassium ferricyanide, causcd a 2-3% blecaching of the 880nm Qy absorption band. In
contrast, at the same ferricyanide concentration, fluorescence emission intensity of the
complex was quenched by about 50%. This result demonstrated that oxidation of a very
few bacteriochlorophyll molecules in the LH1 ring is enough to completely quench its

flucrescence. This suggests the possibility of redox control of energy transfer.

The antenna arrangement in the photosynthetic membrane of the 7750 strain of the
purple bacterivm Rps. acidophila was investigated by means of [fuorescence induction
spectroscopy. The membrane of this species is thought to be composed of LH1-RC core
complexes which are surrounded by peripheral LH2 complexes. The sigmoidicity of
fluorescence induction curves was uscd to probe the excitonic connectivity of RC’s, and
this information were used to gain information on the structural arrangement of the
antennae. The data obtained excluded models of the Rps. acidophila photosynthetic unit
(PSU) that assume aggregates of LH1-RC complexes or linear chains of LHI-RC
complexes to which LH2 complexes are attached on the periphery. Rather, they support
the model suggested by Papiz et al. (1996) (Trends in Plant Science 1, 198-206) in

which peripheral LH2 rings tightly surround each core complex chrcumferentially.
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Abbreviations

The S.I. standard is used were possible throughout this thesis. Most of the abbreviations

used are explained in the text. The most common ones are:

ICM
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B-0G
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ps
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RC
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wavelength
bacteriopheophylin
Angstrom
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bacteriopheophytin
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circular dichroism
cytochrome

Dalton

electron microscopy
intracytoplasmic membrane
lauryl dimethylamine-N-oxide
light-harvesting complex 1
light-harvesting complex 2

light-harvesting complex i-reaction
centre

near infrared

oplical density
photosynthetic
n-octy!-f-D-glucopyranoside
special pair bacteriochlorophylls
polyethylene ghycol
picosecond

photosynthetic membrane
photosynthetic unit

quinone

rcaction centre

sodium dodecyl sulphate
ultraviolet
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Chapter One Introduction

1.1. An overview of photosynthesis

Photosynthesis is the process by which plants and some bacteria convert
solar energy into chemically useful energy. This fundamental process is
virtually the only mechanism of net energy input inte the biosphere. The
only exceptions occur in chemosynthetic bacteria that derive encrgy by the
oxidation of inorganic substrates, such as ferrous ions and sulphur, leached
from the earth’s crust or HyS released by volcanic activity (Stetter, 1996).
Additionally, energy can be put into biological systems in the form of heat
by hydrothermal vents (Prieur, 1997). However, these non-photosynthetic
processes represent only a small fraction of the energy flow in the

biosphere.

Photosynthesis is the largest scale synthetic process on earth. Annually,
phototrophs fix ~2 x 10" tonnes of carbon into organic compounds
(Salisbury, 1991). Green plants, algae and cyanocbacteria perform oxygenic
photosynthesis during which carbon, in the form of CO, , is fixed into
carbohydrates and water is oxidised to yield molecular oxygen as a by-
product. This mode of photosynthesis is responsible for replenishing the

entire atmospheric oxygen content every 2,000 years (Barber & Andersson,

1994).

The green and purple bacteria, the latter group which are divided into
the purple sulphur bacteria and purple non-sulphur bacteria and form the
basis of this thesis, are capable of anoxygenic photosynthesis. Like the green
plants and algae these organisms also fix CO, into organic compounds.
However, they do not oxidise water or evolve oxygen. Instead, the green
and purple sulphur bacteria utilise inorganic sulphur compounds as
electron donors for the reduction of CO,. In the purple non-sulphur bacteria

organic compounds such as succinate replace sulphur (Pfennig, 1978).
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Although the green and purple bacteria are regarded as being of little
importance ecologically compared to the higher plants and algae, the study
of bacterial photosynthesis has made landmark contributions to our

understanding of photosynlhesis in general.

Photosynthesis is not a single reaction and water, inorganic sulphur or
organic compounds do not directly reduce CO,. Rather, the overall
photosynthetic process is both chemically and physically separaled into two
sub-processes: the light and dark reactions (Gregory, 1989). During the light
reactions, light energy absorbed by the pigments of the photosynthetic
apparatus is used to generate ATP and reducing equivalents in the form of
NADPH (or, in photosynthetic bacteria, NADH). Both the reducing
equivalents and ATP are then utilised during the dark rcactions in the

reductive synthesis of carbohydrate from CO,.

The ability of phototrophs to convert solar energy into chemical energy
supports almost all other life on earth. Heterotrophic organisms can onty
derive energy by the conirolled oxidation of carbohydrates and similar
organic compounds furnished by phototrophs. Thus, the importance of
photosynthesis cannot be averstated: without it virtually all life on earth

would become extinct.

1.2, A brief history of photosynthesis research

Since the time of the ancient Greeks it was generally believed that
plants derived all their matter from soil. This concept went unchallenged
until 1648, when a simple experiment prompted van Helmont to guess that
most of a plant's mass was derived from water. It was not until the early

18th century that Hales suggested plants actually gained nourishment from
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Chapter One Introduction

the atmosphere and that light was involved in this process. For a good

review of Hales's and other early work on photosynthesis see Gest {1988).

In 1771, an interest in the study of gases and their effect on animals led
an English clergyman and chemist, Joseph Priestly, to design a series of
elegant experiments which showed that green plants could restore air made
‘bad’ by the burning of candles or breathing of animals. Thus, Priestly's
experiments were the first demonstration that green plants produce oxygen,
or, as he termed it, dephlogisticated air. At the Hme, Priestly did not know
that oxygen was a molecule or light was essential for this process. However,
in 1779, the Dutch physician Jan Ingenhousz, credited as the discoverer of
photosynthesis, not only determined that light was required for oxygen
production but also identified leaves as the site of photosynthesis (for a
review see Gest, 1997). Three years later, Jean Senebier showed that plants
required what he called 'fixed air' (or CO,) to dephlogisticate the air, Thus,
by the end of the 18th century it was known that at least two gases
participated in photosynthesis. The work of Lavoisier and others showed
that these gases were indeed oxygen and CO,. Adopting Lavoisiet’s ideas,
Ingenhousz proposed that the organic matter in plants was derived from
CO,. The nature of this organic matter was reported by von Sachs. In 1864
he observed the formation of starch grains in illuminated chloroplasts. This
observation also implied a role for chlorophyll in the photosynthetic

process.

In the 1920‘s, C.B. van Nicl cmbarked on a study of bacterial
photosynthesis that gave rise to the essentially correct view of the overall
photosynthetic reaction. van Niel studied photosynthetic bacteria that
utilised H»S as an clectron source and deposited elemental sulphur as a by-

product (van Niel, 1941). The photosynthetic equation for these bacteria is:
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light + bacteriochloroplnyll

CO, + 2H,S > (CILO) + 11,0 + 28 (1)

Comparison of this photosynthetic reaction scheme with that of green
plants stimulated van Niel to postulate that O, released during oxygenic
photosynthesis was derived from HyO, not CO, as was belicved at the time.
His reasoning was based on analogies between the roles of H,S, H,O and O,
and elemental sulphur. Thus, both anoxygenic bacterial and oxygenic plant

photosynthesis can be represented by the general equation:

Tight + ( bacterio)chloraphyll

2H2A + C02 > (CHzO) + 2A + HQO (2)

where H,A is water in the green plants, algae and cyanobacteria, hydrogen
sulphide in sulphur bacteria and simple organic compounds in the purple
non-sulphur bacteria. The oxidised product, 24, is molecular oxygen in the
oxygenic phototrophs and elemental sulphur in the sulphur bacteria. In the
non-sulphur bacteria, 2A represents oxidised organic compounds. van
Niel’s view of photosynthesis as a redox reaction, driven by light and
mediated by (bacterio)chlorophyll, still forms the basis of contemporary

descriptions of the photosynthetic process.

1.3. Physiology of the phototrophic purple bacteria

Both the phototrophic purple and green bacteria share the capacity to
perform anoxygenic photosynthesis utilising light energy absorbed by

bacteriochlorophylls (Pfennig & Triiper, 1974; Triiper, 1976). However, in
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contrast to the green bacteria, which are metabolic specialists, the purple
bacteria exhibit a great diversity in their metabolic capabilities. This
diversity allows them to adapt to a wide range of environmental and
growth conditions (Imhoff, 1995). With regard to their metabolic
capabilities, the purple bacteria can be divided into the purple sulphur and

purple non-sulphur bacteria (Triiper & Pfennig , 1978).

Typically, the purple sulphur bacteria grow photoautotrophically using
either reduced sulphur compounds or molecular hydrogen as electron
donors for the reduction of CO,. The purple non-sulphur bacteria grow
preferentialty under photoheterotrophic conditions utilising a variety of
organic substrates as both electron donors and carbon sources. However,
some of the purple non-sulphur bacteria can  also  grow
photoautotrophically using sulphide or molecular hydrogen as electron
donors and CO; as a carbon source. Most of the species which perform this
particular type of anoxygenic photosynthesis oxidise sulphide to elemental
sulphur only (Hansen & van Gemerden, 1972). Others, such as
Rhodopseudomonas  sulfidophila, oxidise sulphide to sulphate without

accumulation of elemental sulphur (Hansen & Veldkamp, 1973).

Although some species of purple non-sulphur bacteria are extremely
oxygen sensitive, most can grow aerobically in the dark (Madigan & Gest,
1979; Kampf & Pfennig, 1980). Under these chemolithotrophic conditions,
the cultures are either faintly pigmented or colourless due to the repression
of synthesis of the photosynthetic pigments by oxygen (Cohen-Bazire et al.,
1957). Such is the metabolic versatility of the purple non-sulphur bacteria
that some species, such as Ritodospirillum rubrum, are even capable of
fermentation under anaerobic conditions in the dark (Gorrell & Uffen,
1977). This metabolic versatility is further illustrated by the recent discovery

of a new species of phototrophic bacterfa with the proposcd name of
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Porphyrobacter tepidaris (Hanada ef al., 1997). This bacterium is a

thermophilic obligate aerobe.

1.4. Taxonomy of the phototrophic purple bacteria

Historically, classification of the phototrophic bacteria was based on a
variety of characteristics such as cell morphology and ultrastructure,
pigment composition, physiological properties and DNA base ratio (Pfennig
& Triper, 1974; Triiper & Pfennig, 1981; Imhoff & Triiper, 1989).
Chemotaxonomic methods, in which the cellular composition of qui