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SUMMARY

Epithelial and fibroblastic cells were isolated from immature rat uteri by 

enzymic disaggregation, and established as primary cultures. Study of
autoradiographs from cultures of epithelial cells that were labelled with
tritiated thymidine, showed a variable heterogeneity in the distribution of

tk
labelled ahi unlabelled cells. This was interpreted as reflecting the 

A
distributions of proliferat^n'"*and quiescent cells. In general, more 
flattened cells located towards the edge of colonies, proliferated more 

rapidly than more rounded cells towards the centre of colonies. Culture of 
epithelial cells on collagen gels resulted in reduced proliferative 

heterogeneity. Factors affecting cell proliferation of rat uterine 

epithelial cells in vitro are discussed.

Proliferation of rat uterine fibroblastic cells in primary culture was 

studied using a fluoresence DNA microassay. Data confirming the validity 

of this assay are presented. The sensitivity of the proliferation of these 

fibroblastic cells to oestrogen was studied. The data are discussed in 
relation to current models which suggest an ’indirect’ mechanism/action of 

oestrogen-induced proliferation of target cells.

Oestrogen receptors were identified in cultured rat uterine fibroblastic 

cells, by a competitive binding assay using tritiated-oestradiol-17p and 
diethylstilboestrol. Conditions were established for a 'one-point'

I
'exchange' assay of oestrogen receptoi^evels. Using this assay, oestrogen 

receptor levels in cultured fibroblastic cells were monitored in response 

to different serum treatments. A 2.5-fold difference in the level of 
specific oestradiol binding in the cytosol between cells cultured in whole 
and in heat-inactivated charcoal stripped foetal calf serum, indicates the 

the presence of a factor, which depresses cellular binding levels. It is 

active in foetal calf serum (FCS), but is considerably less active in heat- 
inactivated charcoal stripped foetal calf serum (HIDCCFCS). This is 

discussed.
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IX

I
Characteristics of rat uterine epithelial and fibroblastic cells were 3

investigated by immunocytochemical detection of intermediate filaments.
Epithelial cells were found to express cytokeratins, and fibroblastic cells 

express vimentin, both in vivo and in culture. However, vimentin staining 

also appears in epithelial cells in vitro. Desmin staining of fibroblastic fi

cells was inconclusive. |j

I
Epithelial cells derived from human endometrial carcinomas (HEC cells) were 

also established as primary cultures. Characteristic changes in cell- 331
surface morphology were seen in response to oestrogen and a progestin in 

vitro, by using scanning electron microscopy. The data indicate that 

similar studies may be potentially useful in the dynamic evaluation of the 

hormone dependence of uterine cancer. Expression of a low molecular weight 
cytokeratin antigen ('simple epithelial antigen’) was found to be altered 

in cultured HEC cells by retinoic acid. The implications of these 

observations are discussed.



1. INTRODUCTION

1.1 HORMONES

A hormone may be defined as: an organic substance produced in small 
quantities in one tissue of an organism, then transported to other (target) 

tissues, where it exerts profound effects. Hormones are a group of diverse 

molecules which integrate the activities of different cells in 

multicellular organisms. Hormones act either at the cell surface or are 
internalised by the cell, depending to an extent on the permeability of the 

plasma membrane to the hormone.

Effects mediated by hormones acting at the cell surface are initiated by 

interactions with receptors located at the cell membrane. Such hormones 
invariably use a ’second messenger', to mediate their intracellular 

effects. Cyclic adenosine monophosphate (cAMP) plays a critical role as a 

second messenger for: adrenaline, glucagon, thyroid stimulating hormone, 
adrenocorticotropic hormone and luteinising hormone.

Hormones which are internalised by a target cell are generally lipophilic 

in nature, and such hormones are thought to move in and out of cells 
predominantly by passive diffusion (Rao, 1981). Steroid hormones are a 

classic example of lipophilic hormones, and are derived from cholesterol 
(see Gower, 1979), which is a major component of plasma membranes.



1.11 STEROID HORMONES

Steroid hormones are usually divided into three classes, in accordance with 

their effects upon target tissues, these are:

Corticosteroids {both gluco- and mineralocorticoids)
Androgens
Female sex steroids (oestrogen and progesterone)

Recently, vitamin D3 (cholicalciferol) metabolites have been included as 
steroids (Pike, 1982). The female sex steroids comprise oestrogen and 
progesterone, and regulate the normal growth and development of the female 

reproductive organs. After puberty they control the oestrous or menstrual 
cycles. In the fertile animal, female sex steroids are predominantly 
synthesised in the ovaries. Oestrogen is a generic name, covering all 
physiologically active steroids which are structurally related to its most 
biologically potent member, oestradiol-1'^ (see Gower, 1979). In practice 
the term oestrogen refers to: oestriol, oestradiol or oestrone, which all 
exert similar effects, though with differing biological potencies (see 

Clark & Peck, 1979). Changing plasma levels of oestrogen and progesterone 

during the oestrous or menstrual cycle, are fundamental in mediating the 
cyclic effects observed in the uterus.

1.12 THE OESTROUS CYCLE

Female sex steroids can regulate their own synthesis via the hypothalamic- 
pituitary axis (see Johnson & Everitt, 1980). Consequently, the plasma 

levels of both oestrogen and progesterone change cyclically, giving rise to 

the oestrous or menstrual cycle. In humans, there is a 28 day menstrual 
cycle. In non-mated rats, the oestrous cycle is usually of 4-5 days 
duration (Johnson & Everitt, 1980). In rats, during oestrous (see 

Nalbandov, 1976), plasma oestrogen levels are elevated, which initiates a 
'proliferative phase' in the uterus. Subsequently, plasma progesterone 

levels rise, and the endometrium progressively adopts a 'secretory' 
morphology, which is maintained until progesterone levels decline, (see 

Nalbandov, 1976). The decrease in progesterone levels towards the 'end' of



the oestrous cycle, results in the sloughing off of the uterine 
endometrium, with subsequent bleeding in humans (menstruation), but not in 

rats, where reabsorption of the endometrium occurs.

1.2 THE UTERUS

1.21 HISTOLOGY

The uterus can be functionally divided into two tissues, the myometrium and 

the endometrium. The endometrium is mainly composed of epithelial and 
stromal cells, while the myometrium comprises mostly smooth muscle cells 

(see sect 1.212). The proliferation of uterine cells is described in sect 
1.5.

1.211 Endometrium

The endometrium is firmly attached to the myometrium, and undergoes cyclic 
changes in response to ovarian secretory activity. It is composed of two 

layers: the lamina basalis (the layer from which the endometrium 

regenerates after menstrual shedding) and the overlying lamina 
functionalis.

Glandular Epithelium

The glandular epithelium is a single layer of columnar cells, forming the 
lining to glandular structures. These glands grow rapidly in length during 

the normal oestrous cycle (see sect 1.12), and become distended with 

secretory material under the influence of progesterone (Dallenbach-Hellweg, 
1981; Wynn, 1977). The surface morphology of glandular epithelial cells is 

described in sect 1.22 (see also Dallenbach-Hellweg, 1981).



Luminal Epithelium

The epithelial cells lining the lumen of the uterus, resemble the glandular 

epithelium. Surface features are described in sect 1.22 (see also 

Dallenbach-Hellweg, 1981; Wynn, 1977).

Stromal Cells

The endometrial stroma consists of mesenchymal cells. In the adult, under 

control of progesterone, endometrial stromal cells differentiate into two 
forms, endometrial granulocytes and predecidual cells. These are present 

in roughly equal proportions (Dallenbach-Hellweg, 1981; Wynn, 1977).

Other Cell Types

A variety of other minor cell types are also occasionally found in the 

endometrium, such as: lymphocytes, mast cells, plasma cells and eosinophils 

(Dallenbach-Hellweg, 1981; Wynn, 1977). Increased infiltration of 
eosinophils in response to oestrogen stimulation, has some important 
consequences (see sect 1.311).

The functionalis layer contains blood vessels which differ from vessels of 
other organs, by their unique structure and sensitivity to hormones 

(Dallenbach-Hellweg, 1981). Particularly obvious, are spiral arterioles 

which branch extensively. Blood capillaries, veins and lymphatic 
capillaries are all to be found in the endometrium. It is thought that 

nerve fibres do not exist in the functionalis layer, but may occur in the 
lamina basalis (Dallenbach-Hellweg, 1981).

1.212 Myometrium

The myometrium is a massive coat of smooth muscle surrounding the 
endometrium, and is contained inside the outer sheath of the uterus (the 
perimetrium). The muscle fibres are separated by connective tissue. At 
least three layers of muscle may be distinguished, but are somewhat ill- 
defined owing to the presence of interconnecting bundles (Shoenberg, 1977). 

The myometrium of the immature rat uterus comprises densely packed muscle



cells, with a few fibrocytes (Shoenberg, 1977). After treatment with 

oestrogen, the fibrocytes become fibroblasts (Ross & Klebanoff, 1967),

1.22 SURFACE MORPHOLOGY OF UTERINE EPITHELIAL CELLS

Functional aspects of the uterine epithelium seem to be related to 
alterations in the fine structure of secretory cells. Morphological 
changes of the cell surface of have been studied using both transmission 
and scanning electron microscopy.

1.221 Normal Human Luminal Epithelium

In the human, the luminal epithelium is composed of both ciliated and 

microvillus cells (also called secretory cells); microvillus cells being 

the prevalent type. The ratio of ciliated to microvillus cells in the 
luminal epithelium has been compared under both normal and pathologic 

conditions (Ferenczy, 1980). However, the validity of this index has been 

questioned due to the non-uniform distribution of ciliated cells throughout 
the human uterus (Martel et al, 1981).

Luminal epithelial cells of the endometrium, adopt a fusiform (elongated) 

morphology during regeneration of the epithelium in the early proliferative 
phase of the menstrual cycle. Microvilli are numerous and elongated in 

shape (Ferenczy, 1976, 1977; Ferenczy et al. 1972; Martel et al 1981). By 

mid-proliferative phase microvillus cells adopt a more polyhedral shape, 
but with much the same density and appearance of the microvilli. During 

early secretory phase, microvilli remain numerous, but become shorter and 

thicker; droplets are seen on the luminal surface, presumably a secretory 

product (Martel et al, 1981). Throughout the secretory phase microvillus 
cells continue to swell. Ectoplasmic projections (and blebs) become 

increasingly obvious, and microvilli remain short and thick.



1.222 Pathological Human Endometrium

Microvilli on the surface of the luminal epithelium of hyperplastic 

endometrium are more densely distributed than on these cells during the 

proliferative phase of normal endometrium. In adenomatous hyperplasia, 

both the number of microvillar promontories and the extent of their 

arborization (branching) are noteably increased, in comparison with either 
normal endometrium or cystic glandular hyperplasia (Ferenczy, 1980),

The surface structure of the luminal epithelium of endometrial 
adenocarcinoma is a function of the degree of histological differentiation 
of the tissue (Ferenczy, 1977, 1980; Stenback, 1982). Better developed 

surface features coincide with a well-differentiated histology. However, 
in even well-differentiated lesions, microvilli are reduced in density and 

size, when compared to normal or hyperplastic endometrium (Ferenczy, 1980)

1.223 Luminal Epithelium of the Rat Uterus

The surface morphology of rat uterine cells are similar to those of human 

cells of equivalent hormonal status (Anderson et al. 1975; Hammer et al,
1978). The cuboldal epithelium of unstimulated uteri of either immature or 

ovariectomised-adrenalectomised rats, have short blunt microvilli, 
distributed at a relatively low density (Anderson et al. 1975; Hammer et 
al, 1978; Rambo & Szego, 1983). In ovariecbmised-adrenalectomised rats,

K
luminal epithelial cells possess a distinctive non-motile solitary cilium 

(Hafez & Ludwig, 1977). Administration of oestradiol and/or progesterone 

results in both loss of these solitary cilia (Anderson et al. 1975; Tachi 
et al 1974) and the appearance of other surface features.

1.224 Changes in Surface Ultrastructure in Response to Steroids

It is apparent from the changes described in both the human, rat (see 

above) and in other species (Hafez & Ludwig, 1977), that the modulation of 
surface ultrastructural changes of endometrial luminal epithelial cells, is 
dependent on the hormonal status of the animal. The development of 
numerous elongated microvilli occurs in response to oestrogen. A secretory 

morphology (numerous short thick microvilli and increased incidence of



ectoplasmic projections and surface blebbing) is characteristic of cells 

under progesterone stimulation (Anderson et al. 1975; Ferenczy, 1980; 
Hammer et al, 1978).

1.3 OESTROGEN EFFECTS ON UTERINE CELLS

1.31 UTEROTROPHIC RESPONSES

A single injection of oestradiol into an immature female rat, stimulates a 
number of biochemical and metabolic events within the uterus. Such events 

are classified into 'early' or 'late' uterotrophic responses. This is 

discussed extensively elsewhere (Clark & Peck, 1979; Segal et al, 1977).

1.311 Early Responses

Early uterotrophic responses, include a vast array of events which occur 

within the first 3-4 hr after an oestrogen injection. They involve 

generalised initiation of the metabolic and biosynthetic mechanisms of the 
uterus. A detailed list and discussion of such events is described by 
Segal et al (1977).

Many of these responses such as: hyperemia, calcium influx, histamine 

release, eosinophil infiltration, increased RNA and protein precursor 
uptake and enhanced glucose oxidation, reflect the ability of oestrogen to 

mobilise many physiologic functions in order to optimise biosynthetic 

activity. Indeed, some increased biosynthetic activities occur as part of 
the 'early' responses to oestrogen. These are exemplified by rises in 

glucose-6-phosphate dehydrogenase and creatine kinase activities, resulting 
from increased transcriptional activity induced by oestrogen (Kaye, 1983).

However, some of the early metabolic events, such as water imbibition, 
increase in vascular permeability and histamine release, are not due to 
effects of oestrogen elicited through the cellular oestrogen receptor 

system of uterine cells. Such events have been attributed instead to 
effects of oestrogen on eosinophils; which are attracted to the uterus by



oestrogen. Eosinophils possess their own independent oestrogen receptor 

system (Lee, 1982; Tchernitchin, 1979).

1,312 Late Responses

Late uterotrophic responses to oestrogen are associated with cellular 

hypertrophy and hyperplasia of the uterus. They are considered to 

represent the true 'growth' responses, following the culmination of 
biosynthetic activity. Late uterotrophic responses are maximal by 24-36 hr 

after a single injection of oestradiol into immature or castrate rats.

Characteristic of late responses are maximal rates of protein and nucleic
;

acid synthesis (Segal et al. 1977). Particularly not|able, are elevated 

rates of DNA synthesis and numerous mitoses. Such proliferative responses 

to oestrogen are extensively described in sect 1.5.

1.32 MECHANISM OF OESTROGEN ACTION

1.321 Steroid Receptors

Most effects of steroids have been shown to be elicited through steroid 

hormone receptors. However, the 'classical' model of steroid hormone 

action is the subject of current debate, especially in light of recent 
studies on steroid hormone receptors using contemporary techniques, 
particularly monoclonal antibodies. The current situation is reviewed.

The Classical Model

The original "two-step" model of oestrogen receptor action suggested by 

Gorski et al (1968) and Jensen et al (1968), was based largely on 
biochemical evidence, gained by measuring the distribution of specifically 

bound t H]-oestradiol in the nuclear and soluble fractions of homogenised 

tissues. Tissues of animals having low endogenous oestrogen levels (ie 
ovariectomised or immature animals) contained most of the oestrogen-free 

(unoccupied) receptor in the soluble fraction (Toft et al, 1967); although 

10-15% of total bound steroid also remained in this fraction (Williams and



Gorski, 1972). Very little unoccupied receptor was found in the nuclear 

fraction (Shyamala & Gorski, 1969).

Autoradiographic evidence was interpreted as supporting proposals that

receptor with bound ligand was found in the nuclear fraction, whereas
unoccupied receptor was found in the cytosol (Stumpf, 1968). Even in a
cell-free system, hormone-receptor complexes acquire a high affinity for

o
nuclei when incubated at 37 G, but remain in the soluble fraction when 
incubated at 2^C (Jensen et al, 1968).

The formal proposals of this model were widely accepted. The nuclear- 
derived hormone-receptor complex was termed transformed' or 'activated' 
receptor, and differed from cytosolic receptor by several criteria, 
including an increased affinity for: oestradiol (Welchman & No tides, 1977), 
DNA (Yamamoto & Alberts, 1976) and nuclei (Jensen et al. 1972). In the 
rat, activation of oestrogen receptor complex results in an increase in its 

sedimentation coefficient from 4S (in 0.4M KCl) to 5S (Jensen et al. 1969).

The Equilibrium Model

Several investigators have pointed out problems in the supporting data for 

the classical steroid hormone receptor model. Such evidence principally 
came from Sheridan's group (Martin & Sheridan, 1980, 1982; Sheridan et al.

1979), Sheridan et al (1979), showed, by using autoradiography, that even 

at 0^0 extensive nuclear localisation of specifically bound oestradiol 
occurred within 5 min, in intact uteri. These data were in conflict with 

earlier reports (Stumpf, 1968), but claimed to be more realistic; owing to 

méthodologie advances (ie the use of the 'thaw-mount' technique).

Martin & Sheridan (1980), prepared nuclei from rat uteri using either 

aqueous or non-aqueous methods. Results from this study showed that when 
using aqueous methods, the proportion of receptor recovered in the nuclear 
pellet depended on the volume of buffer used for homogenisation. However, 
when using non-aqueous buffers, much of the unoccupied receptor was 
recovered in the nuclear fraction. Based on these results, a model was 
proposed in which unoccupied steroid receptors are in equilibrium 

throughout the intact target cell, but are partitioned between the nucleus



reviewed recently (Barrack & Coffey, 1983) and so is not discussed here. 
It is an interesting concept that an activated protein may utilise 

interaction with specific structural features, such as the cytoskeleton 

(Puca et al 1983) or nuclear matrix (Barrack & Coffey, 1983), to help 
locate the nuclear acceptor site. However, research in this area is still 
inconclusive.

1.322 Studies using Monoclonal Antibodies

Many cytochemical studies of the subcellular location of oestrogen 

receptors in target cells have come under severe criticism. Those 
cytochemical methods which utilise the detection of the bound steroid
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and cytoplasm according to the free water content of each compartment.

The Nuclear Model

A number of observations consistent with the suggestion that oestrogen 

receptors are localised predominantly in the nucleus of cells have been 

documented. Linkie & Siiteri (1978), reported that 4S oestrogen receptor
(the 'soluble' form) could be found in the nuclear fraction from immature Jj

rat uteri. Furthermore, a change in the sedimentation coefficient of 
oestrogen receptor from 4S to 58 was observed in the nucleus. Pietras &
Szego (1979), showed that by using hypotonic buffers during tissue £
homogenisation, unoccupied receptors are recovered in the cytosol. Whereas, 
buffers containing 0.25M sucrose allows recovery of unoccupied receptor 
principally from the particulate fraction. Zava & McGuire (1977), reported 

unoccupied oestrogen receptors in the nuclei of MCF-7 cells. These were 

thought to result from cytosolic contamination of nuclear preparations,
rbecause rigorous extraction procedures achieved soluljlisation of unoccupied 

receptor. The physiological relevance of such rigorous extraction 

procedures may be questioned. Shannon et al (1982), showed specific 

oestradiol binding as being confined to the nucleus of human target tissue, 
by labelling tissue in vitro, followed by autoradiography.

The specific suggestion that unoccupied steroid hormone receptors may be
(i " ' iassociated permaniently with nuclear structures, came from studies on the

li :'x
structure and function of the nuclear matrix. This has been extensively



itself, necessitate the use of sufficiently high concentrations of steroid 

so that ligand binding to proteins other than the true receptor, 
undoubtably occurs. This controversy has been extensively discussed 
(Chamness et al, 1980; Lee, 1984).

Although polyclonal antibodies have been raised to various oestrogen 

receptor preparations, specificity for the oestrogen binding protein has 
been acheived in only a few cases (eg Raam et al, 1982). Given the impure 

nature of many receptor preparations and the general ability of steroid- 
binding receptor subunits to react non-specific ally with a wide range of 
macromolecules (Clark & Peck, 1979), studies of specificity must be 
rigorously carried out (Greene et al, 1984).

King & Greene (1984) have developed five monoclonal antibodies each of 
which recognises a sequence on one or other part of the MCF-7 cell line 

(see sect 1.661) oestrogen receptor. They have used these antibodies to 

localise oestrogen receptor in frozen, fixed sections of human breast 
tumour, human and rabbit uterus and in fixed, MCF-7 cell cultures.
Moreover they have shown that in target cells not exposed to oestrogen, 
oestrogen receptor is localised predominantly in the nucleus. Following 
short-term treatment of cells or animals with physiological levels of 

oestradiol, little or no increase in nuclear staining occurs in either 

immature or ovariectomised rabbit uteri, or MCF-7 cells.

1.323 Enucleation of Cultured Cells

Welshons et al (1984) have demonstrated the nuclear localisation of 
unoccupied oestrogen receptors in GH3 pituitary tumour cells. Cytoplasts 

and nucleoplasts were produced from these cells by cytochalasin B-induced 
enucleation. Cytoplasts contained little oestrogen-binding activity and 
most unoccupied receptors were associated with nucleoplasts. However, the 

generality of these findings from this cell line, remain to be assessed in 
other systems.

1 1



1.324 Cooperativity of Oestrogen Binding

There is evidence that experimentally-soluble oestrogen receptor shows 

cooperative binding of oestrogen, but only when the concentration of 
receptors is InM or higher (Notides et al, 1981; Sakai & Gorski, 1984a). 

However, when solublised 'monomeric’ oestrogen receptor (4S) was 

immobilised, by binding to hydroxylapatite, subsequent oestrogen binding 

was not cooperative. This was true even at receptor concentrations at 
which solublised receptor in vitro shows cooperative binding of steroid 

(Sakai & Gorski, 1984a). Moreover, this immoblised monomeric receptor 
could be activated, as determined by the kinetics of oestrogen dissociation 
(see above), indicating retention of some functional criteria.

Furthermore, in the intact cell, the concentration of oestrogen receptor is 
estimated to be lOnM (Clark & Peck, 1979), which is 10 times the 

concentration necessary for 'solublised' receptor to show cooperativity. 
However, the actual oestrogen binding of intact cells and tissues, is non- 
cooperative (Kassis et al. 1984a; Williams & Gorski, 1972, 1974).
Therefore, these observations, although indirect, are consistent with the 

hypothesis that unoccupied receptor, in addition to 'activated' receptor, 
may be immobilised in vivo, by binding to some insoluble intracellular 

component (Gorski et al, 1984). However, 'activated' receptor clearly has 

a much greater affinity for nuclear material, as well as demonstrating 

other properties which are distinct from those of 'non-activated' oestrogen 

receptor (see sect 1.321).

1.33 MODULATION OF OESTROGEN RECEPTOR LEVELS

The oestrogenic response within target cells is dependent on a minimum 
level of oestrogen receptor. Oestrogen responsive cells, in a castrate or 

immature rat, maintain sufficient levels of receptor to enable responses to 

be elicited. This basal level of receptor is thought to be controlled by 
genetic mechanisms, which are programmed for the constitutive synthesis of 
'soluble' receptor (Clark & Peck, 1979; Kassis & Gorski, 1983). However, 
steroids can have a profound effect on oestrogen receptor levels, over and 
above constitutive receptor levels. It is possible that two genes coding
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for the oestrogen receptor exist, one of which is constitutively expressed, 

the other being sensitive to steroid hormones.

A general picture has emerged from studies of the immature or castrate rat 
uterus, on the modulation of cellular oestrogen receptor levels by 

steroids. After oestrogen injection, there is a dose-dependent depletion 

of 'soluble* oestrogen receptors and a concomitant rise in tightly bound 

nuclear receptors. This is followed by a gradual rise in unoccupied 

'soluble' receptors (replenishment). Control levels of soluble receptor 

are reached during replenishment after 11-16 hr, and then continue to rise 
and eventually overshoot control levels (up to about 1.5-fold, Clark &
Peck, 1979). Receptor replenishment is necessary for continued 

responsiveness of a tissue to subsequent oestrogen treatment, and is 

considered to be an important element in target organ function (Clark & 
Peck, 1979).

Most studies indicate that receptor replenishment after a single injection 

of oestradiol, is due to both recycling and resynthesis of receptor (Kassis 
& Gorski, 1983). After rats are injected with oestradiol, replenishment of 
soluble receptor lags behind depletion of nuclear receptors, so resulting 

in decreased total cellular receptor content during 2-6 hr after injection 
(Clark & Peck, 1979). This apparent 'loss' of receptor is termed receptor 

'processing'. Oestrogen receptor processing has been extensively studied 

in MCF-7 cells, in which, processing appears to both correlate with, and, 
be essential for, induction of progesterone receptor (Edwards et al. 1979; 

Kassis & Gorski, 1983).

In the rat uterus, oestrogen receptor processing also occurs, but many 

studies have concluded that such processing is not a prerequisite for some 

oestrogenic responses. However, it is mainly proliferative responses which 
have been studied (Baudendistel et al, 1978; Kassis & Gorski, 1983), and 

these may not be directly elicited by the oestrogen receptor system (see 

sect 1.67). Even so, these observations have lead to the conclusion by 

some authors (Kassis & Gorski, 1983), that receptor processing in uterine 
cells need not be directly involved in the oestrogen response pathway, but 
may have some alternative function. There is evidence to suggest that 
receptor processing may reflect an 'inactivation' as well as a purely

13



degredative phenomenon. This has led to the proposal of a model for 
receptor replenishment (Kassis & Gorski, 1983), which is is based on the 
assumption that three forms of oestrogen receptor exist;
(1) A form with high affinity for steroid, which is functionally 

active.
(2) A form with a low affinity for steroid, which is functionally 

inactive.
(3) An 'activated' form with a high affinity for steroid and increased 

affinities for nuclear material.

1.34 HORMONAL CONTROL OF OESTROGEN AND PROGESTERONE RECEPTOR LEVELS

Treatment of rat uteri with oestradiol results in Induction of oestrogen 

receptors. This is considered to be a marker of oestrogen action (Clark &
Peck, 1979). Oestrogen also induces increased levels of 'soluble' 
progesterone receptor in uterine cells (Clark & Peck, 1979). Measurement 

of 'soluble' progesterone receptor levels has been useful clinically as a 
marker of oestrogen responsiveness in human breast cancer (Edwards et al,
1979) and human endometrium (King et al, 1981, 1982).

Increased cellular progesterone receptor levels confers increased 
sensitivity of target cells to progesterone (Clark & Peck, 1979).
Furthermore, an established effect of progesterone is to decrease cellular 

levels of both progesterone and oestrogen receptors (Clark & Peck, 1979).
Thus oestradiol and progesterone have antagonistic effects on cellular 

levels of both of their receptors. The modulation of progesterone receptor 

levels during the oestrous cycle is a major factor in the functional state 

of differentiation of uterine cells (Clark & Peck, 1979). Induction of 
progesterone receptor represents one of the few specific markers of 

oestrogen action which is both recognised in the rat uterus, and can be 

functionally rationalised by current knowledge of steroid hormone action 
(see sect 1.8).
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1.35 STEROID RECEPTOR-CHROMATIN INTERACTIONS

Despite the current debate concerning the subcellular location, and 

'solubility’, of unoccupied oestrogen receptor in vivo (see sect 1.321), it 

is well established that the cellular effects of oestrogen are exerted by 
the interaction of 'activated' oestrogen receptor with chromatin, resulting 

in increased transcriptional activity (Clark & Peck, 1979; Leake, 1981).

However, the identity and nature of the nuclear 'acceptor' sites, to which 
activated oestrogen receptor complexes must bind in order to elicit a 
functional response, remains controversial. Some of the main reasons why 

true nuclear acceptor sites have eluded identification, are methodological. 
Problems exist in locating an undoubtably small number of true high- 
affinity acceptor sites, amongst the vast excess of chromatin binding sites 

(Leake, 1981), Furthermore, owing to the insoluble nature of many 
chromatin components, conditions must be used during nuclear fractionation 
which may irreversibly denature many proteins, thereby creating additional 
problems of both an experimental and interpretative nature. However, 

recent evidence demonstrates that chemical dénaturation of the oestrogen 

receptor may be largely reversible, at least in terms of steroid binding 

ability (Sakai & Gorski, 1984b). Thus suggesting that such experimental 

approaches which require dénaturation of proteins, may still yield 
physiologically relevant results. Current evidence suggests that non­
histone chromosomal proteins are involved in the structure of the nuclear 

acceptor sites in vivo (see Speisberg et al. 1983).

The proposal that DNA is an important component of nuclear acceptor sites, 
has gained tremendous momentum in recent years. Although it is well 
established that activated oestrogen receptor shows increased affinity for 
DNA, no specificity for DNA from different cell types, or even different 
species, was found (Yamamoto & Alberts, 1976). However, by using molecular 

cloning techniques, specific regions of DNA have been identified to which 
activated steroid receptor complexes bind, with increased affinity over 

bulk DNA. Furthermore, evidence from deletion studies, suggests that these 
DNA regions contain regulatory sites, pertinent to the steroid induced 
transcription of specific genes (Payvar et al. 1983; Renkawitz et al, 1984; 

Ringold, 1983; Rousseau, 1984).
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Specific regions of DNA which can both bind activated glucocorticoid 

receptor and affect transcription, have been identified flanking mammary 
tumour virus (see Payvar et al. 1983; Ringold, 1983} and egg white protein 

genes (eg lysozyme, Renkawitz et al, 1984). Similar DNA regions which 

bind progesterone receptor, have been found 5' to the rabbit uteroglobin 

gene (Bailly et al. 1983). A hexanucleotide DNA sequence has been 

identified which is located upstream of the avian lysozyme gene, but that 
is present in all glucocorticoid receptor binding sites analysed so far 

(Renkawitz et al, 1984). If this sequence represents a regulatory element, 
then this property is reminiscent of enhancer sequences (Khoury & Gruss,
1983).

However, the difference in relative affinities of steroid receptors for 

known DNA binding sites, compared with bulk DNA, are not as great as would 

be expected in' order for receptors to rapidly find such specific sequences 

amongst the vast array of non-specific sequences (Gorski et al. 1984). 
Furthermore, those absolute affinities which have been established for 

receptor binding to DNA sequences, are several orders of magnitude less 
than would be predicted from calculated intranuclear concentrations of 
steroid-receptor complexes.

The above arguments are based on the assumption that binding of receptors 
to specific DNA sequences in vivo is similar to that which occurs in vitro.
If such assumptions are correct, then these arguments gain validity by 

drawing analogies with the equilibrium binding of the prokaryotic lac 
repressor to DNA (Von Hippel et al, 1974). If however, binding of receptor 
to specific DNA sequences in vivo involves non-equilibrium conditions, as 

may exist if unoccupied receptor is not truly ’soluble’ (see sect 1.324), 
and/or allosteric considerations, as proposed by Kumar & Dickerman (1983), 
then such objections may not be so directly applicable. The situation 

remains to be resolved.
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1.4 THE MEASUREMENT OF CELL PROLIFERATION: A DISCUSSION OF METHODS

Several techniques exist for the measurement of cell proliferation of which 
none are ideal, and often the choice of any particular technique is limited 
by practical considerations. These methods may be roughly categorised into 

those which are 'end point’ or those which are ’kinetic’.

The most valid index of cell proliferation is an increase in cell number, 
which is an ’end point' measurement. However, practical considerations may 
often favour the measurement of some dependent parameter of cell number.
Moreover, study of a proliferating cell population by ’kinetic methods’ may 
allow elucidation of mechanisms of growth control.

1,41 MEASUREMENT OF CELL NUMBERS

Methods available to measure the number of cells in a suspension are either 
visual (eg haemocytometry), or electronic (eg coulter counting) (see 

Patterson, 1979). Using either method, accurate results depend on the 

suspension being monodisperse, since cell clumping complicates the 

statistical assumptions on which these methods are based. Monodisperse 

cell suspensions are usually easily and efficiently obtainable from 

cultured cell lines using standard enzymic methods (Adams, 1980). Whilst 
such suspensions are obtainable from many intact tissues (see Waymouth, 
1974), or primary cell cultures, efficiencies can be prohibitively low.

Alternatively, cells may be counted in situ using morphometric methods, 
provided that certain statistical criteria are met (see Aherne & Dunnill,
1982 for detailed review). Complicating factors in the direct enumeration 

of cells in tissue sections, are changes of either cell density or cell 
volume. Direct counting of cells in monolayer culture using morphometrical 

techniques, can be applied when cells are randomly distributed in a given 

area, and sufficient in number to give statistical accuracy (Aherne &
Dunnill, 1982).
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1.42 DETERMINATION OF TOTAL DNA OR PROTEIN

Commonly used indicfes of cell number in an organ, tissue or cell culture, 
are total DNA or protein content. These measurements assume that if the 
DNA or protein content per cell varies during its life cycle, then the 
total value when averaged out over an asynchronousiy growing population, 
will remain constant.

However, it is well known that the protein content of cells (and 

biological fluids) varies within wide limits according to physiological, 
pathological and experimental conditions. This is true even of continuous 

cell lines (see sect 1.612) proliferating in culture (Patterson, 1979).
Hence, protein determination, despite attractively simple methodology, and 

easy sample storage and preparation, is not a valid index of cell number 
(see also Fiser-Szafarz & Szafarz, 1984).

The measurement of total DNA content from an asynchronousiy growing cell 
population generally meets the criteria outlined above, and, unless 
problems of ploidy are encountered, is considered a valid index of cell 
number (see Patterson, 1979). The practical advantages of DNA assay over 

enumeration of whole cells, are ease of sample storage and preparation. 
Using colorimetric DNA assays, sensitivity may be a problem, but newer 

fluorescence methods have considerably reduced this limitation (see sect
1.432).

1.43 ASSAY OF DNA IN EXTRACTS OF TISSUES OR CELLS

1.431 Spectrophotometric Methods

Probably the most widely used method for the determination of DNA content
in cell or tissue extracts, is the diphenylamine reaction, described by

o
Burton (1956) and Richards (1974). The methodolly involves extraction of

A,
DNA using perchloric acid (PGA), followed by hydrolysis of the DNA at 100 C
to release free deoxyribose. This then reacts with the diphenylamine to

•S
produce a coloured product. The main advantage! of this assay are lack of
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interference from common laboratory reagents and a simple photometric 

determination. However, the limited sensitivity of the assay (>lfig) has 
prevented its use in some applications.

1.432 Fluorescence Methods

Recently, a '2-step' procedure has been re-advocated (Vytasek, 1982), where

19

Fluorescence methods for the determination of DNA are at least an order of 

magnitude more sensitive than photometric methods. These methods can be 

categorised into two types: those which react free deoxyribose (liberated
by acid hydrolysis of DNA) with a compound (eg diaminobenzoic acid, DABA) 
to yield a fluorescent product, and those which utilise fluorochromes which 

bind to native DNA with consequent enhancement of fluorescence (eg ethidium 

bromide, Hoechst 33258).

Diaminobenzoic Acid [DABA]

Kissane & Robbins (1958) described a sensitive method for the determination 

of submicrogram quantities of DNA using the reaction of DABA with free 

deoxyribose, then detection of the fluorescence yielding reaction product 
in a solution of PCA, The useful range of this assay was quoted as 0.05- 

6.4;ig DNA.

Several modifications and improvements of this procedure have since been 

published. Most noteable is that of Hindegardner (1971) who obtained more 
stable fluorescence readings by using IM hydrochloric acid (HCl) to dilute
the reaction mixture instead of PCA. Others, have either modified the 

extraction procedure, for removal of interfering materials, or used DNA 

precipitated onto filter discs for reaction with DABA (see Vytasek, 1982 
and references cited therein). Many of these procedures use HCl for both 

hydrolysis of the DNA and reaction of the liberated deoxyribose with DABA. 
Whilst this produces essentially a '1-step' procedure, the rate of the 

fluorescence yielding reaction is slow at low pH and elevated temperatures, 
so longer reaction times must be used. Moreover, such conditions also have 

the undesirable effect of increasing the blank value more rapidly than the 

sample, limiting the sensitivity of the assay.



DNA is hydrolysed by boiling PCA then diluted in DABA/HCl at a lower 
temperature. This procedure is reported to give a maximum sensitivity of 
O.OSpg DNA. Even so, some recently described methods for use in situ on 

cell cultures, still utilise a '1-step’ procedure and quote a sensitivity 

of O.ljjg DNA (Johnson-Wint & Hollis, 1982).

The advantage of fluorescence methods involving DABA are their sensitivity 
{0.05-0.1jig DNA), freedom from interference from common laboratory reagents 

and the unimportance of the integrity of the DNA. Limitations of the 

procedure are primarily related to the initial purity of the DABA, which is 
often crucial, and to the use of corrosive/caustic reagents and elevated 

temperatures.

Fluorochromes

An alternative approach to the determination of DNA, utilises the binding 

of certain antibiotic-type drugs to native DNA. The binding of such drugs 

to nucleic acids often, but not always, involves intercalation, and is 

accompanied by a change in their absorption of light, or in some cases, 
their fluorescence. To be useful, such changes must be highly significant 
upon binding to DNA, but minimal with other materials, particularly RNA.

Intercalating fluorochromes

Ethidium bromide meets some of the requirements mentioned above, since it 
gives a large and proportional fluorescence enhancement on binding to DNA 
(Boer, 1975; LePecq & Paoletti, 1966), although it does react strongly with 

RNA. More recently, conditions have been established allowing the enzymic 

determination of both DNA and RNA in the same sample, by use of DNAse 
and/or RNAse, with cell and tissue homogenates stained with ethidium 

bromide (Bentle et al, 1981). Under conditions used previously, ethidium 

bromide was found to inhibit these enzymes. Hence both DNA and RNA can be 
determined in the same sample, by measuring loss of fluorescence after 

addition of the appropriate enzyme. The sensitivity of this assay is 
quoted as 0.05 and 0.25jfig of DNA and RNA respectively.
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Non-Intercalating Fluorochromes

A number of non-intercalating fluorescent DNA-specific dyes, have been used 

for the determination of DNA. These include the guanine-cytosine specific 
binding fluorochrome mithramycin (Williams et al, 1980) and the adenine- 
thymine specific dyes Hoechst 33258 and 4',6-diamino-2-phenylindole (DAPI). 
Unlike the intercalating fluorochromes, these compounds do not bind to RNA 

to any great extent.

DAPI (Brunk & James, 1977; Dann et al, 1971) has been successfully used to
determine the DNA content of both crude cellular homogenates (Brunk et al.
1979; Kapuscinski & Skoczylas, 1977) and solubilised cell cultures (Sorger

& Germinario, 1983). Under optimal conditions, the fluorescence
enhancement of DAPI on binding to DNA is some 20-fold, whilst interference
from an eqîvalent weight of RNA is <1% of this value (Brunk et al, 1979).K. •———
Hoechst 33258 has been used in a similar manner to DAPI (Brunk et al, 1979;
Cesarone et al. 1979; Downs & Wilfinger, 1983; Labarca & Paigen, 1980). Its
fluorescence enhancement on binding to DNA is 40-fold, and interference
from the same weight of RNA is still <1% of this value, Hoechst 33258
appears to have some advantages over DAPI for use in a microassay of DNA,
since the fluorescence enhancement is greater, and the reaction is linear
over a broader range of DNA concentrations (Labarca & Paigen, 1980).

The sensitivity of assays using Hoechst 33258 or DAPI are quoted as being 
as low as 2.8ng DNA, using a conventional spectrofluorimeter (Brunk et al,

1979). This is at least an order of magnitude greater sensitivity than 

assays using DABA. The main problems with assays using fluorochromes, 
relate to any solubilisation or extraction procedures used, since the 

integrity of DNA must be maintained, and the fluorescence of either free or 
bound dye must not be subject to interference. Therefore, conventional 
acid extraction procedures can not be used.

1.433 Interaction of Hoechst 33258 with DNA and Chromatin

Binding of Hoechst 33258 to both native DNA and chromatin, is well 

documented (Brodie et al. 1975; Hilwig & Gropp, 1972, 1973; Latt & Stetten, 
1976; Latt & Wohlleb, 1975).
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Interaction with DNA

Hoechst 33258 binds preferentially and strongly to adenine-thymine rich 

DNA. This specificity is further enhanced by increasing the ionic strength 
(Latt & Stetten, 1976). It is thought that there are at least two (Latt &

. "5
Stetten, 1976) or possibly three (Labarca & Paigen, 1980) modes of dye ;;||

binding to DNA.

The first mode accounts for about half of the fluorescence enhancement and
■i{

is probably due to some form of strong binding which is dependent on both ;j
the double-stranded structure and base composition of DNA. It is thought

that this mode does not involve intercalation, but is a result of the dye 

binding to the large groove of the double helix (Brodie et al 1975; Labarca 

& Paigen, 1980; Latt, 1973).
?:

A second mode of binding is shown by the enhancement of fluorescence which 

results from binding of Hoechst 33258 to single-stranded DNA. Since this 

interaction can occur at a high ionic strength, then it is probably non­
ionic in nature (Labarca & Paigen, 1980).

%
;ç

There is probably a third mode of Hoechst 33258 binding to any' 

polynucleotide polymer. The strength of this interaction is either
relatively weak, or does not result in much fluorescence enhancement, and J
is demonstrated by the interaction of Hoechst 33258 with RNA. The 

interaction is extensively reduced at high salt concentrations. The 
difference between single-stranded DNA and single-stranded RNA (the former 
being over 400 times more effective in high salt) in enhancing fluorescence 

of Hoechst 33258, appears to be largely due to the absence of 2'-hydroxyl 

groups in the deoxyribose, and not to the absence of thymine residues in 

RNA (Labarca & Paigen, 1980).

Interaction with Chromatin
"C

The reaction of Hoechst 33258 with crude tissue homogenates and with 

purified chromatin (Latt & Wohlleb, 1975), produces enhancement of 
fluorescence. The excitation and emmission spectra of this fluorescence

22
".Ï



within a total cell population (ie the mitotic index), is an index of the

However, since the duration of mitosis is only a small fraction of the 

total cell cycle, mitotic indic&s are typically very low (<1%), and
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are identical with those obtained with purified DNA. This strongly 

suggests that fluorescence obtained from the reaction of crude homogenates 

with Hoechst 33258 is produced by binding to DNA.
3

The accessibility of DNA in calf-thymus chromatin to Hoechst 33258 has been /
estimated at 60% (Brodie et al. 1975; Latt & Wohlleb, 1975). Any increase 

in the fluorescence of the dye beyond that obtained with native chromatin, 
only occurs under conditions which dissociate chromosomal proteins (Brodie 

et al, 1975; Downs & Wilfinger, 1983; Labarca & Paigen, 1980). However, 
extreme care must be taken to ensure that such conditions do not alter
either the intrinsic fluorescence properties of the dye, or its specific 3j
binding to DNA.

1.44 KINETIC METHODS
,33

Kinetic studies of cell proliferation can be broadly categorised into 
methods which require the use of drugs or tracers, and those which do not.
All methods utilise the concept of the cell cycle, which is comprehensively 

reviewed elsewhere (Mitchison, 1971; Yanishevsky & Stein, 1981). One 
particularly important aspect of the cell cycle, from the point of view of 
studying cell proliferation, is that two easily detectable 'natural' 
markers are an integral part of this cycle. These markers are mitosis and §
DNA synthesis, and are expressed temporally and sequentially at specific
phases of the cell cycle (see Adams, 1980; Aherne et al, 1977; Mitchison, i
1971; Puck, 1964). The phase of DNA synthesis is also known as 'S phase'.

1.441 Enumeration of Mitoses

Mitosis is a window on the cell cycle, and is conceptually the most valid 
cell cycle marker because it represents cells 'caught' in the actual 
process of division. The proportion of cells in mitosis at any one time

rate of cell division. Because no further manipulations are required ÿ
before counting of mitoses, this is a potentially attractive method.



require the visual enumeration of a very large number of cells to gain 

accuracy. A more commonly used procedure, is to accumulate mitoses using 

stathmokinetic drugs, such as colcemid or vincristine; the latter usually 

giving better results in most applications (Wright & Appleton, 1980).

Common practice, as regards using these metaphase arrest techniques, is to 

administer the stathmokinetic drug, then count mitoses at some 

predetermined single time point afterwards. Such methods have been used to 
study the proliferation of uterine cells (Kaye et al, 1972; Kreuger et al,

1978; Tachi et al, 1972). Certain assumptions are made in using these 'one 
point’ methods which are not always valid, and can give misleading results. 
The criteria on which these assumptions are based are that;

(1) There is either a negligible, or constant, delay between administration 
of the drug and arrest of metaphases.

(2) The accumulation of metaphases occurs at a constant rate.
(3) There is no significant degeneration of the metaphases arrested by the 

stathmokinetic drug, during the course of the experiment.

Moreover, it is particularly important that the above criteria are not 
themselves influenced by experimental manipulations, and must remain 

constant between experimental and control cell populations, if any degree 
of accuracy is expected. Such potential problems can be avoided, or taken 

into account, if the mitotic index is measured at several time points after 

administration of the stathmokinetic drug; though this obviously requires 
serial sampling. Interestingly, neither vincristine nor colcemid appear to 
perturb the proliferation rate provided that their doses are carefully 

chosen (Wright & Appleton, 1980).

1.442 Cell Cycle Analysis

An alternative approach to kinetic analysis of cell proliferation is either
full or partial, cell cycle analysis. Classical, full cell cycle analysis
requires the scoring of both mitoses and cells in 'S' phase. The most 

common procedure for monitoring cells in 'S’ phase is by their ability to 
incorporate tritiated thymidine ([ H]-TdR) into DNA (this is discussed in 

sect 1.45), by autoradiography. The method of choice for accurate, full 

cell cycle analysis using these methods, is the ’fraction of labelled
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mitoses’ (FLM) method (see Adams, 1980; Aherne et al. 1977; Cleaver, 1967). 
Although this method only requires the administration of a short pulse of 
I^Hl-TdR, extensive serial sampling for many hours afterwards is required.
The labour intensiveness of this procedure can be considerably reduced by 

using continuous [ H]-Tdr labelling conditions and stathmokinetic drugs.
This allows a linear function to be derived from the data, so fewer time 
points are required than with the FLM method (see Adams, 1980; Aherne et 

1977; Puck, 1964).

1.443 DNA Synthesis as a Marker of Cell Proliferation

Although cell cycle analysis using both available markers (ie mitosis and 

DNA synthesis) remains the most accurate method for estimating the duration 

of individual phases of the cell cycle, such detailed analysis is not 
always required. Hence many studies utilise DNA synthesis as the only 

marker of cell proliferation; although full cell cycle analysis can still 
be carried out if stathmokinetic drugs are used (eg Gerschenson et al.

1977; Maekawa & Tsuchiya, 1968). However, such studies may suffer the 
critisicsm that not all cells which synthesise DNA may then go on to 
divide; as has been found in studies of the epidermis (Camplejohn et al.

1984). Even so, estimates of either the proportion of cells in 'S' phase, 
or of the overall rate of DNA synthesis, have been extensively used in 
studies of the oestrogen-promoted growth (see sect 1.5).

1.45 THE USE OF [%]-THYMIDINE

g
The extensive use of [ H]-TdR in quantitating rates of DNA synthesis is due 

to: its availability, purity, specific activity, incorporation (almost 
exclusively) into nuclear DNA and ease of detection. However, there are 

some serious limitations that need to be considered when interpreting data 

from such studies.

a
1,451 Radiobiological and Radiochemical Properties of [ Hl-Thymidine

a ^
[^H]-TdR, in common with other [ H] isotopes, can undergo self­

decomposition in aqueous solution, and as a result, may be incorporated

25



into raacromolecules other than DNA (Cleaver, 1967; Maurer, 1981). This is 

not usually a serious limitation, and may be further safegarded against by 

the incorporation of ethanol into the aqueous storage solution (Cleaver,

% 
ÿ:
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1967). In any case, extensive incorporation into other macromolecules would 
be detectable in autoradiographs as the appearance of grains over the 

cytoplasm.

3 ÎS
Radiobiological effects resulting from [ H] decay, are a very important 
consideration when cells are to be labelled in vitro. If high specific 
activity [^H]-TdR (>24Ci/mmol) is used, more cells may be killed than are 

in the process of DNA synthesis (Maurer, 1981). The problem increases with 

the duration of labelling. Even relatively brief exposure of cultured 

cells to high specific activity [^H]-TdR (30 minutes, 0.3)iCi/ml,
40Ci/mmol), can seriously perturb the proliferation kinetics of a cell 

population (Beck, 1981). Such effects can be minimised by reducing the 

duration of labelling, the total amount of label and its specific activity 

(Cleaver, 1967; Wiezsaecker et al. 1981). Potentially, such perturbations 

can be monitored by comparing the mitotic index of labelled and unlabelled 

cell populations (Wiezsaecker et al, 1981).

1.452 Factors Influencing the Labelling of Nuclear DNA

synthesis.

Furthermore, it is known that certain drugs and hormones can affect the 

differential usage of de novo and scavenger pathways of pyrimidine
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Incorporation of extracellular TdR into DNA utilises the 'scavenger 
pathway’ of pyrimidine nucleotide synthesis which involves serial 
phosphorylation (Cleaver, 1967). Evidence suggests that both the uptake of 
thymidine and its phosphorylation may be limiting during some phases of the 
cell cycle, but not during the phase of DNA synthesis (Adams, 1969, 1980). 
During DNA synthesis in the absence of exogenous TdR, thymidine 

triphosphate (dTTP) is synthesised using the ’de novo’ (or endogenous) 
pathway (see Adams, 1980; Cleaver, 1967). Indeed, at low (trace) 
concentrations of extracellular TdR (~lGnM) most of the dTTP is synthesised 

using the de novo pathway (Adams, 1969, 1980), so limiting the sensitivity 
of methods utilising [^H]*TdR to measure changes in the rate of DNA
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nucleotide synthesis. Oestradiol has well known effects on membrane 

permeability and has been shown to influence precursor pool, sizes. For 

example, oestradiol can affect nucleotide pool sizes in MCF-7 cells, by 

the above mechanism (Aitken & Lippman, 1982). This leads to a change in 
the specific activity of the pHl-dTTP pool, when labelled using ["̂ Hj-TdR. 

Since the amount of [^H]-thymine in DNA is dependent on the specific 

activity of [^H]-dTTP pool (Adams, 1969, 1980), then errors in estimating 
the true rate of DNA synthesis can result.

Similar effects of oestradiol on nucleotide pools have been noted in 
uterine cells (Soutter & Leake, 1978). This ability of oestradiol to 

change the specific activity of nucleotide pool sizes is a major problem in 

this type of experiment. However it should be noted that oestradiol is 
found to increase the rate of DNA synthesis in pituitary cells of Holtzmann

mP) a
rats, without affect! the specific activity of the [ H]-dTTP pool (Wiklund & 

Gorski, 1982). ^

Various methods have been used to try overcome such problems, so that true 

rates of cellular DNA synthesis can be measured. None of these methods is 

totally satisfactory, the first two involve addition of agents designed to 
alter cell metabolism, the third is unsuitable for autoradiographic 

analysis, and the remainder require extensive manipulation of either the 

tissue or data. However, all methods are attempts to overcome real 
problems which have sometimes been overlooked.

Flooding the dTTP Pool

It is known that the scavenger pathway of dTTP synthesis can be substrate 

promoted by induction of thymidine kinase (TdR->dTMP), and that the 
relevant nucletotide pools readily expand with increased TdR concentration, 
up to lOmM TdR (Adams, 1980). Therefore, by using pHl-TdR at micromolar 

(or greater) concentrations, the dTTP pool can be saturated via the 

scavenger pathway. However, when the dTTP pool expands to such a level, 
feedback inhibition of ribonucleotide reductase becomes significant, 
leading to a fall in the rate of DNA synthesis (Adams, 1980; Cleaver,
1967). This can be reversed by the addition of deoxycytidine. Adams 
(1980), recommends the use of O.lmM [^H]-TdR and lO^M deoxycytidine.
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The use of saturating, as opposed to trace, levels of TdR also has other 

advantages. The lower specific activity [^H]-TdR minimises radiobiological 
effects (see sect 1.451), and furthermore, depletion of pH]-TdR in the 

extracellular medium by cultured cells under continuous labelling 
conditions, is reduced (see Adams, 1980). However, the full physiological 

consequences of such expansion of thymidine phosphate pools are not fully 
understood, furthermore it is difficult to maintain saturating levels of 
thymidine in vivo (Cleaver, 1967).

Blocking the He Novo Pathway

The de novo pathway of dTTP synthesis may be blocked by the addition of 
amethopterin (lO^M), if hypoxanthine (3^M) and glycine (O.lmM) are also 

added (Adams, 1980). DNA synthesis can then be followed by the 

incorporation of [^H]*TdR into DNA. Moreover, it is reported that the 

presence of amethopterin does not affect either the cell proliferation 
rate, cell cycle time or the duration of 'S’ phase under these conditions 
(Adams, 1980). The rate of DNA synthesis is then dependent on TdR levels, 
which must be saturating (3-30^M).

Allowing for the De Novo Pathway

This method uses the direct relationship between the amount of [%î]-thymine 
in DNA and the specific activity of the pH]-dTTP pool. Thus by both 
estimating, and correcting for, the specific activity of the [^Hj-dTTP 

pool, the true rate of DNA synthesis can be measured. In practice this may 
be accomplished by measuring the total amount of [^ ]  in the acid soluble 

intracellular pool; of which f^H]-dTTP is the predominant species (~70%, 
Adams, 1980; Wiklund & Gorski, 1982). Additional corrections may be made 
by plotting the amount of [ H] in DNA against the amount of pHl in the 
acid soluble pool, for varying levels of [■̂ HpTdR (Adams, 1980),

Measurement of [^H] levels in chromatographic ally separated dTMP, dTDP and 
dTTP species, should show that most of the pH] is consistently contained 
in the [^H]-dTTP fraction (Soutter & Leake, 1978).
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novo or scavenger pathways (Aitken & Lippman, 1982). Unfortunately this 

method requires that DNA be extracted: since Pi is incorporated into 

macromolecules other than DNA. Moreover, extracellular Pi is not readily 

taken up by cells, so some 6-8 hours are needed for equilibration of 

intracellular phosphate pools with extracellular Pi.

DNA Synthesis In Vitro

3
Gorski’s group have successfully used the direct incorporation of [ H]-dTTP 

into DNA of isolated nuclei, in order to measure oestrogen effects on the 

rate of DNA synthesis (Stack & Gorski, 1983, 1984; Wiklund & Gorski, 1982). ÿ
The rate of DNA synthesis measured by this method, has been characterised 
as being both replicative in nature, and accurately reflecting the rate of 
DNA synthesis in the intact tissue (Stack & Gorski, 1984; Wiklund & Gorski,
1982).

321 Pi] Incorporation into DNA ÿ
•■■'y

Lippman's group have utilised the incorporation of radioactive phosphate 

{[̂ %*i]) into DNA, to measure the true rate of DNA synthesis in MCF-7
■ ■ I ; ' : "

cells; this method is independent of any differential regulation of the de

[*^G]-Acetate Incorporation into DNA

This approach has also been developed by Lippman’s group for use with 

cultured cells (Aitken & Lippman, 1983). The method utilises the 
incorporation of [^^G]-actetate into DNA by the de novo pathway of 
pyrimidine nucleotide synthesis. However, since the [̂ ^G] is also 
incorporated into other macromolecules this again is not a simple method, 
but is useful for studying the regulation of the de novo pathway of 
pyrimidine synthesis by steroid hormones (Aitken & Lippman, 1983).

1.46 GELLULAR DNA GONTENT AS A MARKER OF GELL PROLIFERATION

An alternative method of cell cycle analysis using DNA synthesis as the 
sole marker, is to measure the total DNA content per cell. This method has 

become increasingly popular due to developments in fluorescent stains and
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flow cytometers, making partial cell cycle analysis of cells, in suspension 

automated, fast and statistically accurate (Gray & Coffino, 1979). The 

procedure has the additional advantage that no tracers or drugs are needed, 
and so it is therefore useful for in vivo biomedical studies.

Based on DNA content alone, the cell cycle can be divided into three 

phases: 'Gl', 'S’ and 'G2+M' (see Braisch et al. 1982). Under ideal 
conditions cells in the ’G2+M’ fraction would have twice the measurable DNA 

content of cells in the ’Gl' fraction, and cells in 'S' phase would be 
contained in fractions between the ’G2+M’ and ’Gl’ peaks. However, due to 

imperfections in staining and detection methods, and microheterogeneity of 
cell cycle times of individual cells, analysis of these DNA distributions 
is a complex task. Adequate mathematical models can be applied to most 
cell populations. However, the accuracy of these models is a direct 

function of the coefficient of variance of the DNA distributions of cells 

in the 'G2+M’ .and the ’G l’ peaks (see Braisch et al, 1982). Moreover, all 
methods based on DNA content alone, underestimate the proportion of cells 

in ’S' phase, and, if major populations exist in either early or late 'S’ 
phase, then this error can be large (Braisch et al. 1982; Dean et al.
1984).

The absolute rate of DNA synthesis can be studied using flow cytometry, by 
following bromodeoxyuridine incorporation (BrUdR, a TdR analogue) into DNA. 
A method suggested originally by Latt et al (1977), and developed by Bohmer 

(1979) and Bohmer & Ellwart (1981), utilises the quenching effect of BrUdR 
on the Hoechst 33258-DNA fluorescence yielding interaction (see sect
1.433), in order to estimate the amount of BrUdR in the DNA of a particular 

cell. Another method originally suggested by Gratzner (1982), and further 

developed by Dean et al (1984), utilises a highly specific monoclonal 
antibody to BrUdR. This latter method is sufficiently sensitive to detect, 

by immunofluorescence, DNA synthesis in cultured cells after less than 10 
minutes exposure to BrUdR, under optimal conditions (Gratzner, 1982). This
technique could also be applicable histochemically, by using 

immunoperoxidase or similar detection methods. This would have advantages 

over the use of [^]-TdR (or [%I]-BrUdR), since no radiobiological problems 
would exist (see sect 1.451) and furthermore, no autoradiography would be
required; so speeding up the process considerably. However, the
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cytochemistry of the antibody-BrUdR interaction still requires further 

characterisation (Dean et al, 1984).

1.5 GROWTH KINETICS OF UTERINE CELLS IN VIVO

Oestrogen induced proliferation of uterine cells is well documented with 

regard to the rat (Clark, 1971, 1973; Kaye et al, 1972; Kirkland et al,
1979, 1981, 1984; Kreuger et al, 1974, 1978; Mukku et al, 1982; Stack & 

Gorski, 1983, 1984; Stormshak et al, 1976; Tachi et al, 1972), mouse 

(Epifanova, 1966; Finn & Martin, 1973; Kimura et al, 1976, 1978; Lee, 1972; 
Martin & Finn, 1968; Martin et al, 1973a, 1973b, 1973c; Ogasawara et al. 
1983; Quarmby & Korach, 1984) and the rabbit (Conti et al. 1981, 1984; 
Murai et al, 1981; see also Gerschenson et al, 1977, 1979). These studies 

monitor cell proliferation by stathmokinetic methods and/or radioactive 

precursor incorporation into DNA (usually [ H]-TdR, see sect 1.4). Some 

confusion has arisen in the literature concerning the roles of oestrogen 
and progestrone in regulating proliferation of uterine tissues in vivo, 
owing to the use of a variety of methods and of animals of differing ages 

and species (eg see Quarmby & Korach, 1984).

1.51 UTERINE EPITHELIUM

Early studies of uterine cell proliferation were on mouse epithelial cells 
(Epifanova, 1966; Martin & Finn, 1968). These data indicated that 
oestrogen-promoted proliferation of the mouse uterine epithelium, results 
from both decreases in the cell-cycle time of dividing cells, and 
synchronised recruitment of quiescent cells into active proliferation. 

Progesterone antagonises the oestrogenic effect in a dose-dependent manner. 
/ I  Further work has both confirmed these data, and shown that progesterone 

only acts on those mouse uterine epithelial cells which are already 

proliferating (Kimura et al, 1976, 1978).

Oestrogen-induced proliferation of uterine epithelial cells has been shown 

in both immature (Kaye et al. 1972; Kirkland et al. 1979, 1984; Mukku êL 

al, 1982) and mature ovariectomised (Clark, 1971, 1973; Kirkland et al.
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1981: Kreuger et al. 1974, 1978; Tachi et al, 1972) rats. Progesterone 

antagonism of this oestrogenic effect has also been shown {Clark, 1971, 
1973; Kaye et al. 1972; Kreuger et al, 1974; Tachi et al, 1972).

Extensive studies have been made on the steroid-induced proliferation of 
rabbit uterine epithelial cells (Conti et al, 1981, 1984; Murai et al,

1981). An important distinction between rabbits and rodents or humans, is 

that rabbits do not have an o es trous cycle, and so (unless ovariectomised 
or pregnant) are continually under oestrogen stimulation (Conti et al,
1981). It has been shown (Conti et al, 1981) in intact mature rabbits that 
the uterine glandular epithelium proliferates more rapidly than the luminal 
epithelium but, after ovariectomy no such differences are apparent.

Oestradiol administration to intact rabbits induces Increased rates of 
proliferation of glandular, but not luminal, epithelium. Whereas 
progesterone stimulates proliferation of both types of epithelium (Conti et 
al, 1981) (which is in contrast to the situation in either rodents or 

humans,see below). It was further deduced, from elegant labelling studies, 
that oestrogen-induced uterine epithelial cell proliferation in rabbits, is 

a result of recruitment of quiescent cells to active proliferation, but 

that progesterone-induced cell proliferation results from decreases in the 
cell-cycle time of already proliferating cells (Conti et al. 1984).
Oestradiol appears to also induce migration of some epithelial cells from 

glands to the lumen, and it has been concluded that there is tight control 
of net growth of the luminal compartment; since cells migrating into the 
lumen either decrease their proliferative rate, or slough off (Conti et al.

1984). Progesterone induces focal areas of proliferating cells in the 

luminal epithelium, which show budding and are highly suggestive of 
glandular development (Conti et al, 1981).

On the basis of the above evidence, a model is proposed (based on that 
suggested by Conti et al, 1984) concerning the regulation of proliferation 

of rabbit uterine epithelial cells by oestrogen and progesterone. This 

model suggests that:
(1) Target gland cells which are non-dividing, and probably arrested in 

GO/Gl, could function as a stem-cell population.
(2) Oestrogen causes these stem cells to proliferate and migrate towards
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the lumen. On reaching the gland/lumen junction they are then either lost 

by sloughing off, or continue towards the lumen. This decision is probably 

regulated by oestrogen.
(3) Once in the lumen, the daughter cells are still oestrogen-sensitive, 

but only with respect to their rate of loss and not their rate of 
proliferation,
(4) Progesterone acts on dividing daughter cells in both glands and lumen, 

inducing the formation of new glands which, when fully formed, are non- 

proliferating and secrete uteroglobin. Evidence of such a role for 
progesterone, comes from its mutually exclusive effects on proliferation 

and maximal uteroglobin secretion of gland cells (Murai et al. 1981).

While this model is tentative, it has several interesting concepts:
(1) It includes a stem cell population, contained in the glandular 

epithelium: as has been suggested previously (Leroy et al. 1981; 
Prianishnikov, 1978; Satyaswaroop & Mortel, 1981).
(2) It emphasises that the major proliferative effect of oestrogen is to 

stimulate cells from a quiescent state into active proliferation, rather 
than increasing the proliferation rate of already dividing cells.
(3) It shows differential effects of oestrogen and progesterone on the 
luminal and glandular epithelium.

However, the general applicability of certain aspects of this model to 

other species, may be limited, since progesterone-induced proliferation of 
uterine epithelial cells seen in the rabbit, is not observed in either mice 

(Kimura et al. 1976, 1978; Martin & Finn, 1970) or rats (Clark, 1971; 
Kreuger et al. 1974; Tachi et al, 1972). In addition, evidence gained from 

studies on the proliferation of human endometrial epithelial cells, 
suggests that administered progestins show inhibitory effects (King et al, 
1981), and furthermore that proliferation of endometrial epithelial cells 

is inversely related to serum progesterone levels during during the normal 

menstrual cycle (King et al, 1981; Ferenczy et al, 1979).

In summary, oestradiol is consistently reported to be mitogenic for uterine 

epithelial cells in vivo, and, with the exception of the rabbit uterus, 
progesterone antagonises this effect. In the rabbit uterus progesterone is 

mitogenic for uterine epithelial cells.
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1.52 STROMAL CELLS

The varying reports of the effects of oestrogen and progesterone on the 

proliferation of stromal cells, can be largely resolved by inter­
species differences and, more importantly, the age of the animal.

Stromal cells of the uteri in mature ovariectomised mice, only proliferate 

in response to oestrogen and progesterone in combination (Martin & Finn,
1968). However, it has been suggested that it is the presence of some 
factor, other than progesterone, secreted from the ovaries which allows 

oestrogen to be mitogenic (Quarmby & Korach, 1984).

Oestrogen-induced stimulation of uterine stromal cell proliferation has 

been shown with immature rats (Kaye et al, 1972; Kirkland et al, 1979; 
Mukku et al, 1982). Progesterone antagonises this effect (Kaye et al.
1972). Conversely, it has been reported that oestrogen alone, is not 
mitogenic for uterine stromal cells in mature ovariectomised rats (Clark, 
1971, 1973; Tachi et al, 1972), but that oestrogen and progesterone in 
combination are mitogenic (Clark, 1971, 1973; Tachi et al, 1972).
Oestradiol has been shown to be mitogenic for immature rats that either 

have (Kirkland et al. 1979), or have not (Kaye et al. 1972), been 
ovariectomised, which is in contrast to suggestions made concerning mice 
(Quarmby & Korach, 1984; see above).

Thus the literature is not in total agreement about whether progesterone is 
required in order for oestradiol to exert mitogenic effects on uterine 

stromal cells of mature rats. Nevertheless, it is clear that oestrogen is 

mitogenic for uterine stromal cells in immature rats.

1.53 MYOMETRIAL CELLS

The rat myometrium comprises mostly muscle cells with a small proportion of 

connective tissue (see sect 1.212). In the immature rat the muscle cells 
are by far the predominant cell type (see sect 1.212). Oestrogen is
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■reported to be mitogenic for uterine myométrial cells of both immature 
(Kaye et al, 1972; Kirkland et al. 1979; Mukku et al, 1982) and mature 

ovariectomised (Kirkland et al, 1981) rats. Progesterone antagonises this 

oestrogenic effect on myométrial cells in immature rat uteri (Kaye et al, 

1972).

1.54 RELATIVE MAGNITUDE OF THE MITOGENIC EFFECTS OF OESTROGEN IN 
DIFFERENT TISSUES

The magnitude of the mitogenic effects of oestradiol on individual tissues 

of the uterus is reported to vary considerably. Effects on epithelial 
cells may be up to 3-4 times greater than those on stromal or myométrial 
cells (eg Kirkland et al, 1979). The epithelial fraction comprises less 
than 10%, and the stromal/myométrial fraction greater than 90%, of the 
total uterine cell population (Kirkland et al, 1979; McCormack & Classer,
1980). Therefore, measurements derived from unfractionated uteri may 

contain significant contributions from all major uterine cell types.
Furthermore, measurements performed at different times after hormone 

administration may represent varying contributions from each of these cell 
types (Kirkland et al, 1979).

1.6 GROWTH CONTROL IN VTVO AND IN VITRO

Ordered, controlled growth is essential for the development and maintenance 

of a normal animal. Some aspects of growth control are observed in cell 
culture. In general, non-transformed cells in culture show more restricted 

and ordered growth than their transformed counterparts. Several factors 

have emerged as being critical to growth control of non-transf ormed cells 
in vitro. The more important of these relate to cell interactions with 

soluble growth factors, the substratum and each other.
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1.61 CELL CULTURE

Mammalian cells when grown in culture, undergo a variety of changes some of 
which may be modified by environmental factors. Viable cell suspensions 

(or cell-clumps) can usually be established as primary cultures and, if 

subcultured, may form a cell line of either finite, or infinite, (see sect 

1.612) lifespan.

1.611 Primary Cell Cultures

A primary cell culture is derived by disaggregation of a tissue into either 

single cells or cell-clumps (see Adams, 1980; Preshney, 1983; Waymouth,
1974). These primary cultures represent cells in the first of a series of 
processes, which may ultimately give rise to a relatively uniform cell 
line. However, primary cultures, even only a few hours old, are subject to 

selective pressure, based on the capacity of cells to survive the 
disaggregation procedure and adhere to the substratum (or survive in 

suspension).

After a further period, more selective pressure is applied, based on the 

capability of a cell to proliferate in vitro. The severity of such 

selection is dependent on other factors (eg initial cell density). Even 

when cells become confluent, proliferative selection still occurs, but is 
biased in favour of those cells which can overcome density-dependent growth 

regulation (see sect 1.63). Such cells often have characteristics usually 

associated with 'transformed cells' (Preshney, 1983). Thus by keeping the 
cell density of a culture subconfluent, selection in favour of transformed 

cells is minimised (Preshney, 1983). In either sparse or confluent primary 

cultures, the proliferating cell population is continually changing, 
favouring any subpopulation of cells which proliferates rapidly.
Minimisation of such selective pressure can be achieved by the use of 
either non-dividing cells, or cells which have undergone only a few rounds 

of division.
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1.612 Cell Lines

After the first subculture, a primary culture becomes a cell line, and may 

often be further subcultured several times (Adams, 1980). Further 

selective pressure is applied with each successive subculture. Eventually, 
the most rapidly proliferating subpopulation of cells in vitro, will emerge 
as the predominant cell type, regardless of its initial abundance in the 

parent tissue. Cell lines may be subcultured many times, but mostly they 
cease proliferating after a finite number of generations (about 50 
generations in human fibroblasts (see Preshney, 1983; Hayflick & Moorhead, 

1961). This 'crisis' time in the lifespan of a cell line, is occasionally 

overcome by some cells which become 'immortilised' (see Adams, 1980; 
Preshney, 1983; Hayflick & Moorhead, 1961).

Cell lines that are immortal, have been termed 'continuous cell lines', and 
often show many characteristics associated with malignant transformation 
(Preshney, 1983). However, the relationship between cells which have 

spontaneously 'transformed' in vitro , and those cells which were
originally derived from cancer tissue, is unclear (see Preshney, 1983).

A
Immortalisation by itself, is not necessarily sufficient evidence of 
malignant transformation, since some continuous cell lines show some 
characteristics of non-transf ormed cells. For example, BHK-21 hamster 
fibroblasts (MacPherson & Stoker, 1962), exhibit a certain amount of 
density-dependent growth regulation (see sect 1.63), and may be transformed 

further by oncogenic viruses such as SV40 (Adams, 1980).

The only generally accepted definition of malignant transformation, which 

can be applied to cultured cells, is the ability to form invasive or 
metastasising tumours when injected into animals (see Preshney, 1983). 
However, the inability of cells to form such tumours in vivo, does not 
always indicate that cells are not malignantly transformed (see Preshney, 

1983).

Continuous cell lines often show abnormal features compared to the original 

cells from which they were derived. Typically they are aneuploid with a 
chromosome complement between the diploid and tetraploid value (Preshney,

1983).
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1.62 SERUM GROWTH FACTORS AND NUTRIENTS

Non-transf ormed cells in culture require the addition of serum to most 
synthetic nutrient media for their maintenance and growth. It is believed 
that the primary role of serum is to provide growth factors and essential 
trace elements, which are absent from conventional synthetic nutrient media 

(Barnes & Sato, 1980b; Price & Gregory, 1982), The identity and properties 
of some of the many serum and tissue 'growth factors’, have been 

extensively reviewed recently (see Barnes & Sato, 1980b; Baserga, 1980; 
Berridge & Irvine, 1984), and will not be discussed here.

1.63 DENSITY-DEPENDENT GROWTH REGULATION

Non-transf ormed cells show density-dependent growth regulation, since they 

tend to grow to a certain saturation density and then cease proliferating. 
The resulting quiescent cells can remain healthy for some time. In 

contrast, transformed cells do not show density-dependent regulation, but 
grow continuously until the supply of nutrients in the medium is exhausted. 
These cells do not become quiescent and die if fresh medium is not added.

A most dramatic demonstration of density-dependent growth regulation, is 

seen by making a 'wound' in a quiescent confluent cell layer, by physically 

removing a narrow strip of cells (Dulbecco & Stoker, 1970). Cells migrate 
out from the edge of the wound, initiate DNA synthesis and proliferate 

until the wound is filled. This phenomenon, demonstrated in fibroblasts, 
was found to have a serum requirement. However, it has subsequently been 
shown that different mechanisms exist for the density-dependent regulation 

of epithelial and fibroblastic cells (Dulbecco & Elkington, 1973). It 
appears that normal density-dependent growth regulation of fibroblasts is a 
function of the exhaustion of medium components, particularly those in 
serum. Whereas density-dependent growth inhibition of epithelial cells, is 

predominantly regulated by the available dish surface area, so that in 

'crowded' epithelial cultures the cell-surface area which is available for 
nutrient absorption and growth factor action, is reduced (Holley, 1975).

38



Recent work indicates that the serum-dependent proliferation of cells next 

to a wound in vitro, is a diffusion-limited process (Dunn & Ireland, 1984).

Thus the density-dependent growth regulation of both fibroblastic and 

epithelial cells appears to be due to reduced interaction of soluble 

factors with the cell surface. These interactions may either be restricted 

owing to depletion of factors from the medium, or by a change in cell 
shape, thereby reducing the surface area : volume ratio (Dr C O’Neil, 
personal comm).

1.64 PHYSICAL INTERACTIONS IN GROWTH CONTROL

The complex morphogenesis of tissues and their successful participation in 

an organism's homeostasis, depends on regulatory interactions of cells with 

their environment. The influence of soluble molecules on growth and 

differentiation, is best illustrated by the powerful effects of hormones 
and growth factors. Less well appreciated, are the contacts and physical 
associations which nearly all cells make with each other and with 

extracellular structures. The effects of such associations on cell 
function is poorly understood because they are not easily manipulated or 

assessed in vivo, and even when duplicated in vitro the aspects of cell 
contact that are actually regulatory, are yet to be determined.

1.641 Cell Adhesions In Vivo

The coherence and organisation of all tissues involves the adhesive 

interactions of the component cells. In epithelial and central nervous 

tissues, cells are densely packed. Cell surfaces are often closely apposed 

and intercellular adhesions are elaborately structured (eg des^mosomes and 

zonula adherens of epithelia). These membrane specialisations are 

characterised by accumulations of intracellular filaments (eg cytokeratins 
at desmosomes, see sect 1.72, and microfilaments at zonular adherens, see 

sect 1.71), in addition to extracellular materials.

Epithelial tissues are always bound by their basal cell-surfaces to a basal 
lamina which, by usual criteria, consists of two layers: a 45-60nm thick
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layer conforming closely to the contours of the basal cell-membrane, 
possibly part of the cell-surface, and an adjacent parallel layer more 
variable in thickness which is clearly part of the extracellular-matrix 

(ECM) {Alberts et al. 1983; Hay, 1981). Basal laminae consist of non- 
fibrillar types of collagen (eg type IV), glycoproteins and in some cases 

proteoglycans and hyaluronic acid as well as fibronectin (Hay, 1981; 
Kelfalides, 1975). Fibronectin is a widely distributed, highly asymmetric 
dimeric glycoprotein forming adhesive fibrillar aggregates (Yamada & Olden, 

1978).

In connective tissues, the large intercellular spaces are filled with a 

matrix, containing varying proportions of fibrillar collagen (eg type I), 
glycoproteins, proteoglycans and hyaluronic acid. Fibroblastic cells in 

connective tissues have molecules at their cell-surface which are very 
similar and, in some cases identical with, those found in basal laminae 

(Hynes, 1981). '

1.642 Cell Adhesions In Vitro

The majority of cell adhesion studies have been carried out in vitro.
Cells are cultured on glass or plastic surfaces in liquid media. The 
relevance of such studies using artificial substrata may be questioned. 

Nevertheless, in serum-containing media an artificial substratum will be 

coated with adsorbed protein, to which the cells attach. Even so, the 
nature of the substratum underneath these adsorbed proteins is still 
critical. Cells will not attach and spread unless the artificial 
substratum is suitable (ie has the correct charge density, see Knox, 1980). 
The major serum molecules implicated in the coating of substrata are 
fibronectins, of either cellular or serum origin (Hedman et al, 1978).
Serum fibronectin (also known as cold insoluble globulin, CIg) is derived
from the serum supplement in culture medium and binds to in vitro
substrata, so promoting cell attachment and spreading (Hynes, 1981). Serum

fibronectin is very similar in molecular characteristics, but not identical 
to, cellular fibronectin (Yamada & Kennedy, 1979; also see sect 1.641), 
which is deposited on the substratum by desquamation of cell-surface 

materials.

40



1.643 Influences of Substratum on Cell-Shape and Growth

The shape of an epithelial or mesenchymal cell can be modified by its 
external environment. Such modifications have been shown to affect cell 
metabolism in vitro. For example, anchorage-dependent fibroblasts when 

removed from the substratum and then cultured in suspension, stop making 

mRNA and protein, but when allowed to reattach and spread start making 

protein again and then mRNA (Benecke et al. 1978), It is known that the 
cytoskeleton and cell-shape are closely linked (see sect 1.71) and it has 

been postulated that the cytoskeleton may affect protein synthesis by 

dictating the spatial arrangement of polysomes (Fulton et al, 1980).
Changes in cytoskeleton structure in relation to neoplastic transformation 
are of current interest (see sect 1.712). Furthermore, cytoskeletal 
influences on the intracellular location of steroid receptors are also 
currently debated (Puca et al. 1983; see sect 1.32).

Poly(2-hydroxyethyl)methacrylate Coated Substrata
e

One approach to illustrating direct ^ffects of cell-shape on growth 

control, is the use of non-transf ormed cells grown in sparse culture (ie 

not subject to density-dependent regulation) on dishes coated with varying 
thicknesses of poly(2-hydroxyethyl)methacrylate (poly(HEMA)) (Folkman & 

Moscona, 1978). Cells cultured on thick films of poly(HEMA) did not attach 

very well, remained rounded and showed low levels of DNA synthesis.
Whereas cells grown on thinner poly(HEMA) films were more well-spread and 
showed higher levels of DNA synthesis. A continuous gradient of levels of 

DNA synthesis between the two extremes of cell shape could be demonstrated 

by using poly(HEMA) films of varying thickness. Moreover, rounded cells 
cultured on a thick poly(HEMA) film required higher serum concentrations to 

stimulate DNA synthesis than flatter cells on thin films (Folkman & Tucker,
1980). Following wounding of confluent cell monolayers (ie subject to 
density-dependent regulation), the resulting increased levels of DNA 

synthesis in cells at, or near, the site of the wound, was inversely 
related to cell-height (Folkman & Moscona, 1978). Transformed cells have 
been shown to escape these effects of cell shape on growth control in vitro
(see Brouty-Boye et al. 1980; Folkman & Tucker, 1980).

If
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Extracellular Matrix

Studies of bovine corneal epithelial cells in culture, suggested that the 

effects of some growth factors, eg epidermal growth factor (EGF) and 

fibroblast growth factor (FGF), may be related to cell-shape, and moreover 

that cell-shape in turn may be regulated by the extracellular matrix (ECM)
(Gospodarowicz et ah 1978), Dissociated basal corneal epithelial cells 

when cultured on a plastic substratum, formed monolayers rich in
'

microfilaments, that showed increased proliferative responses to FGF, but
not EGF; even though EGF receptors were present (Gospodarowicz et al,-----
1978). However, when these cells were cultured on collagen gels, their 

rate of proliferation was increased in response to EGF, but not FGF.
Coincident with the switch from FGF- to EGF-controlled regulation of cell 
proliferation, were changes in cell-shape. Cells cultured on collagen gels 
were more rounded than those cultured on plastic. Gospodarowicz et al 
(1978), speculated that a flattened morphology predicts sensitivity to FGF, ÿ

whereas a rounded or columnar shape indicates sensitivity to EGF.

a
Collagen has been used either to coat substrata directly, or to form gels. 
Collagen has been classified into five types (see Linsenmayer, 1981).
Types I, II and III are fibrillar and gel-forming, whereas types IV and V 

are found in the basement membrane, and do not form gels (see Linsenmayer,
1981). Some cells cultured on collagen gels have been reported to adopt 
morphologies much more similar to the in vivo type, than if cultured on 

plastic substrata. This has been classically shown with both hepatocytes 
(Michalopoulos & Pitot, 1975) and mouse mammary epithelial cells (Emmerman 

et al, 1977). The hormonal control of proliferation and casein expression 

in rabbit mammary epithelial cells, are mutually exclusive both in vivo.
and in cells cultured on floating collagen gels. Whereas they can not be 

divorced in cells cultured on homologous ECM (Wilde et al, 1984). Thus it 
appears that floating collagen gels may have some distinct advantages over 

homologous ECM as a substratum for some rabbit epithelial cells.
V

Differences in the morphofunctional differentiation of MCF-7 cells have 

been reported to depend on whether they are cultured on attached or 
floating, collagen gels (Pourreau-Schneider et al, 1984). MCF-7 cells 

cultured on floating collagen gels, adopted a three-dimensional
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In summary, growth control of untransformed cells in vitro is regulated by 

cellular interactions with the substratum, other cells and soluble factors.
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configuration with better developed surface features, than cells cultured

on either attached collagen gels, ECM or plastic. However, the generality |
of these observations with respect to other well-differentiated mammary 

epithelial cells, requires further investigation.

The differential effects of floating, as opposed to attached, collagen gels

aas a cell substratum, may be due to both contraction of floating gels to 

fit the contour of a cell and to increased accessibility of soluble factors 

to the basolateral cell surface (see Battler et al. 1978; sect 9.). The 

increased oxygen tension available to cells floating at the surface of the
V

medium, may also be important (Reid & Rojkind, 1979).

■I

Current hypotheses (see Dunn & Ireland, 1984; Folkman & Moscona, 1978, V
1980; Gospodarowicz et al, 1978; 1983) suggest that modulation of cell |[
shape may affect the interaction of cells with soluble growth factors, 
although specific mechanisms are not yet known.

I f  I
1.65 OESTROGEN-PROMOTED GROWTH IN TARGET TISSUES , ,

II
Oestrogen was one of the first hormones to be called a mitogen (Bullough,

1946). This role was supported by observations that cyclic variations in 
circulating oestrogen levels during the oestrous cycle in rodents, 

correlated well with variations in the proliferative activity of the uterus
(Epifanova, 1958, 1966; Kimura et al, 1976, 1978; Lee et al. 1974).

Furthermore, oestrogen administration to either immature or mature 

ovariectomised rats, stimulated uterine DNA synthesis and cell 
proliferation (see sect 1,5).

However, the classification of oestrogen as a true mitogen, requires that 
it acts directly on the responding tissue, and not indirectly through other 

extracellular factor(s). Implicit in this requirement is the presumption 
that oestrogen acts directly on target cells through the oestrogen receptor 

system, without the need for other extracellular growth factors. Although |
this is known to be true for the induction of specific proteins (Kaye,

■I
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1983; Leake, 1981), it has yet to be proven that oestrogen-promoted cell 
proliferation can be fully explained solely by this mechanism (Sirbasku & 
Leland, 1982; Sonnenschein & Soto, 1980).
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Currently, three models of oestrogen-promoted growth have been described 

these are;

(1) The 'direct' model (Gerschenson et al, 1977; Lippman et al, 1979;
Stack & Gorski, 1984).

(2) The 'indirect-negative' model (Schatz et al. 1983, 1984; Sonnenschein
& Soto, 1980; Soto & Sonnenschein, 1980, 1983, 1984).
(3) The 'indirect-positive' model (Ikeda & Sirbasku, 1984; Sirbasku &
Leland, 1982).

Much of the data supporting 'indirect' models of oestrogen-promoted growth, 
has been derived from study of the growth regulation of oestrogen- 
dependent tumôurs. Whilst it is unknown whether mechanisms of oestrogen 

action in oestrogen-dependent tumour growth is the same as oestrogen- 
promoted growth of normal cells, it is not improbable that similar 

mechanisms may operate. However, this possible distinction must be borne 
in mind.

M

1.66 'DIRECT' MECHANISM OF OESTROGEN-PROMOTED GROWTH

1.661 Oestrogen-Promoted Growth In Vitro 

Human Mammary Tumour Cell Lines

It has been reported that oestrogen promotes the proliferation of MCF-7 
cells (Soule et al. 1973) in vitro (Lippman et al, 1976). The increase in 
cell number in response to oestradiol (at a concentration of lOnM) in the 
culture medium was 2-fold (Lippman et al, 1976). Proliferative effects 

measured by other parameters (eg mitotic index (Lippman et al. 1980) or, 
rate of DNA synthesis (Aitken & Lippman, 1980)), were also increased by a 

similar amount, in response to oestradiol. Others have found that 
oestradiol is not mitogenic for MCF-7 cells in vitro (Butler et al, 1983; 
Shafie, 1980; Sonnenschein & Soto, 1980). However, some of these
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discrepancies may be explained by variant sublines of MCF-7 cells {Page et 

al, 1983; Seibert et al, 1983),

Oestradiol has been shown consistently to exert growth-promoting effects on 

ZR-75-1 cells cultured in serum-free medium supplemented with other 
hormones and growth factors (Lippman et al. 1979). The increase in cell 
number in response to oestradiol is maximally about two fold.

Recently, a new cell line (PMC42) has been shown to give a 2-fold increase 

in cell number in response to oestradiol, when cultured in serum-free 

medium with no other supplementation (Whitehead et al, 1983, 1984). This 

cell line also shows increased cell proliferation in response to 
progesterone and a synergistic growth-response to oestrogen and 
progesterone in combination (Whitehead et al, 1984).

Uterine Cells

Mitogenic effects of oestradiol have been noted with human uterine cells in 

both long-term (Chen et al. 1973) and short-term (Pavlik &

Katzenellenbogen, 1978) culture. In both of these cases, the increase in 
cell number in response to oestradiol was less than two-fold. Primary 

cultures of rabbit uterine epithelial cells showed a growth response to a
non-steroidal oestrogen analogue, diethylstilboestrol (DES) in serum-free

\
medium supplemented with insulin (Gerschenson et al. 1974, 1977, 1979). 
These cells showed a maximal increase in thymidine labelling index of about 
1.5-fold in response to lOOnM DES (Gerschenson et al. 1974). This 

proliferative response, largely reflects the recruitment of a quiescent 
population of epithelial cells to active proliferation (Gerschenson et al,
1977). However, the level of DES used (lOOnM), is at least two orders of 

magnitude greater than that which promotes equivalent oestrogenic responses 
in vivo.

1.662 Localised Effects of Oestrogen In Vivo

Proliferative effects of oestrogen on target tissues in vivo have been 

demonstrated in response to the presence of oestrogen in the general 
systemic circulation (see sect 1.5). However, more direct effects have been
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demonstrated on both mouse {Fagg & Martin, 1979; Martin & Claringbold, 
1960) and rat {Stack & Gorski, 1984) uteri, by the intraluminal injection 
of oestrogen. Unfortunately, the studies on mice did not prove that the 

observed proliferative effects were due only to localised effects of 
oestrogen, since the levels of steroid entering into the systemic 

circulation were not monitored. In the study by Stack & Gorski (1984) this 

was taken into account by injecting one uterine horn with oestradiol and 

the other with vehicle alone. Therefore, any proliferative effects due to 

the presence of oestradiol in the systemic circulation, registered as an 
increase in the 'basal' proliferation rate of the 'control' horn. The 
results from this study, indicated that maximal stimulation of DNA 
synthesis due to localised effects of oestradiol, was 2.5 fold, by using an 
intraluminal injection of 300pg oestradiol.

I-

:
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II
This localised effect of oestradiol on the rate of uterine DNA synthesis, 
was much less than the 15-fold increase demonstrable after an 

intraperitoneal injection of oestradiol. The difference was ascribed by 
Stack & Gorski (1984) as being due to a consistent rise in the 'basal' 
level of DNA synthesis in 'control' uterine horns, owing to the physical 
trauma of an intraluminal injection (see Leroy et al. 1977), and to a 

further dose-dependent rise, owing to leakage of oestradiol into the 
systemic circulation. Additionally, the systemic effects of oestradiol may 

be partially mediated by an 'indirect' endocrine mechanism (Sporn & Todaro, 
1980; see sect 1,67). Thus only a 2.5-fold increase in the rate of DNA 

synthesis can be unambiguously ascribed to localised effects of oestradiol 
on uterine cells. Nevertheless, the possibility that even these localised 

effects are mediated 'indirectly', through an autocrine/paracrine mechanism 

(Sporn & Todaro, 1980; see sect 1.67), can not be excluded.

About 65% of the measured increase in the rate of DNA synthesis, in 

response to localised application of oestradiol, could be accounted for by 
increased activity of alpha-polymerase (Stack & Gorski, 1984); the major 

replicative DNA polymerase (Wist, 1979). The increased activity of this
enzyme in response to systemic administration of oestradiol, has been 

previously documented (Harris & Gorski, 1978; Soutter & Leake, 1978). 
Although increases in rates of both DNA synthesis and alpha-polymerase 

activity, follow similar kinetics in response to oestradiol, the magnitude
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of the rise in alpha-polymerase activity is insufficient, by itself, to 

account for the elevated rate of DNA synthesis (Stack & Gorski, 1984). 
Furthermore, because these measurements were independent of any hormonal 

influences on nucleotide pool sizes (see sect 1.452), other additional 
factors are undoub^)ly involved.

1.663 Evidence Against 'Direct’ Oestrogen-Promoted Growth

Much of the controversy concerning a 'direct' mode of action in oestrogen- 

promoted growth, concerns the effects of oestradiol in vitro. Oestradiol 
was not reported to be mitogenic for some rat uterine (Leland et al.
1981; Sonnenschein et al, 1974), rat pituitary tumour (Sorrentino et al,
1976; Sonnenschein & Soto, 1980) or human breast cancer (Butler et al. 

1983; Edwards et al, 1980; Shafie, 1980; Soto & Sonnenschein, 1983) 
continuous cell lines in vitro, whereas all these cell lines (including 
MCF-7 cells, see Shafie, 1980; Soto & Sonnenschein, 1983) exhibited 

oestrogen-promoted growth when established as tumours in animals. A 

consistant absence of any significant proliferative effects of oestradiol 
on primary cultures of cells derived from human breast cancer, (Love, 1982) 
or normal rat mammary gland (Edery et al, 1984), have also been noted.

Cultured cell lines which are oestrogen responsive, maximally show only a
limited (~2-fold) proliferative response to oestrogen in vitro (see sect
1.661). This fact has been used as evidence that a purely 'direct' mode of 
action of oestrogen is insufficient to account for all its in vivo 
proliferative effects (Sirbasku & Leland, 1982). Moreover, with one recent 
exception (see Whitehead et al, 1984), oestrogen-promoted growth responses 
of cells in vitro, require the presence of other growth factors (Barnes &
Sato, 1979), including insulin (Gerschenson et al. 1974; Lippman et al.
1979) or serum (Chen et al. 1973; Pavlik & Katzenellenbogen, 1978). These 

requirements for additional supplementation, have been used as evidence to 
try and discredit a 'direct' model, as the only mechanism of oestrogen- 
promoted proliferation (Sirbasku & Leland, 1982).

In summary, there is currently not enough evidence to conclusively prove 

that oestradiol alone is sufficiently mitogenic to account for all its 

proliferative effects in vivo, and so other factors may well be involved.
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The development of additional cell culture systems derived from oestrogen 

target cells (eg the PMC42 cell line, see Whitehead et al. 1984) may be 

useful in providing further evidence in this context.

1.67 ’INDIRECT’ ESTROGEN-PROMOTED GROWTH
I';

These hypotheses, propose that oestrogen does not elicit a direct mitogenic 

response itself, but acts through other (extracellular) factors.

Î  

,
1.671 ’Indirect-Negative' Mechanism of Oestrogen-Promoted Growth

The 'indirect-negative' model proposes that in general, cell proliferation
,

is a repressible function, which is under oestrogen control in oestrogen 

target cells, and that study of inhibition of cell proliferation, may be 

fundamental to- the understanding of oestrogen action (Sonnenschein & Soto,
1980). An investigable, specific hypothesis central to this model, 

proposes that components found in the general blood circulation directly
inhibit proliferation of oestrogen target cells, and furthermore that 
oestrogen acts by decreasing the biological potency of these inhibitor(s). 
The identities of such oestrogen-repressible inhibitors are currently

Alpha-Fetoprotein

However, although there is good evidence to show that AFP is inhibitory to 

the proliferation of certain oestrogen target cells in vitro, these 
inhibitory effects could not be overcome by the direct addition of
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unknown.
's i

It has been proposed that alpha-fetoprotein (AFP) may play such a role, 
based on both the recognised ability of AFP to strongly bind oestradiol 
(Germain et al. 1978), and other evidence which suggests that AFP may 

directly influence the proliferation of oestrogen target cells in vitro 
(Sonnenschein & Soto, 1979; Soto & Sonnenschein, 1980), The inverse 

relationship between oestrogen-induced cell proliferation and serum AFP 

levels with age, has also been used to support such proposals (Schatz g;t 
al. 1983).

.i;i
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oestradiol. Furthermore other evidence suggests that the ’basal' rate of 

proliferation of uterine cells of rats (Stack & Gorski, 1983) or mice 

(Ogasawara et al. 1983), is highest neonatally, when serum AFP levels are 
also high. This is inconsistent with the inhibitory effects of AFP on cell 
proliferation in vitro.

In summary, there is some doubt as to whether AFP is actually inhibitory to 

oestrogen target cells, particularly uterine cells, in vivo, which is in 

contrast to data derived from cell cultures. Furthermore, it appears that 
the reason for the markedly reduced oestrogen-responsiveness of the 

proliferation of uterine cells in neonatal rats, is due to a combined 

effect of a high 'basal' level of DNA synthesis, and the binding of serum 
oestradiol by AFP. The latter effect can be overcome by using either 
supraphysiological doses of oestradiol, or by using DES, which does not 
bind to AFP (Stack & Gorski, 1983).

Other Serum Factors

There is evidence that there are other serum factors which can influence 

the expression of an oestrogen-promoted growth response in vitro. Page et 
al (1983), allude to the presence of such a factor which enhances the 

proliferative response of MCF-7 cells. This factor does not appear to act

Ïj
I

I
by suppressing the basal' level of proliferation, in order to enhance 
oestrogen responsiveness.

Other data (as yet only published in abstract), derived using cloned MCF-7
cells, suggests the presence in serum, of an inhibitor of cell

■■

proliferation. This inhibitor is present in female human serum collected 

on day-1 of the menstrual cycle, but not in serum collected on day-14 of 
the cycle (Soto & Sonnenschein, 1983). The inhibitory effect of day-1 

serum can be overcome by the direct addition of physiological levels of: 

oestradiol, oestriol or DES to the serum but, not by addition of: 
testosterone, dihydrotestosterone, progesterone, insulin, EGF or 

transferrin (Soto & Sonnenschein, 1983, 1984). This inhibitor is 
apparently susceptible to heat-inactivation (Soto & Sonnenschein, 1983),
Hence evidence is accumulating that the oestrogen-promoted proliferation of 
MCF-7 cells in vitro, is influenced by one or more serum factors, although i
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some discrepancies in the literature may be due to variant sublines of 

MCF-7 cells which may have developed (Page et al, 1983).

Evidence supporting an 'indirect' liver-mediated mechanism of oestrogen- 
promoted oviduct cell proliferation has been demonstrated in ovariectomised 
quails (Laugier et al, 1983). When oestradiol was infused at a low rate 

(0,5ng/min) into the hepatoportal vein of the quail, proliferation of 
oviduct cells was evident, but no significant induction of 'nuclear' 
oestrogen receptors or 'soluble' progesterone receptors was detectable in 

the oviduct cells. Moreover, neither oestradiol nor any likely metabolites 
were detectable in the blood supply reaching the oviduct. Infusion of 
vehicle alone via this route did not produce any proliferative effects of 
oviduct cells.

Oestradiol similarly administered via the jugular vein produced similar 
proliferative effects on oviduct cells as oestradiol administered via the 

hepatoportal vein, but also gave rise to elevated oestradiol levels in 
blood reaching the oviduct and significant induction of 'nuclear' uterine 
oestrogen receptors. These data point to an 'indirect' liver-mediated 

mechanism of oestrogen-promoted oviduct growth in birds. However, it is 

not possible to distinguish a positive or negative 'indirect' effect.
Moreover, recent work from the same group shows ^h^f that similar results 
are not readily reproducedof this in rats (Schatz et al, 1984).

1,672 'Indirect-Positive' Mechanism of Oestrogen-Promoted Growth

The 'indirect-positive' model proposes that oestrogen alone is not 
mitogenic, but causes the production of mitogenic factors which act on 

oestrogen target cells (Sirbasku & Leland, 1982), These factors, produced 

by oestrogen target cells, may act on either the same (autocrine secretion: see 
Fig 1.1) or adjacent cells (paracrine secretion; see Fig 1.1) or both 
(autocrine/paracrine secretion).

A paracrine mechanism may relate to stromal-epithelial interactions. Such 
interactions have been previously suggested in this context (Cunha et al,

1983; McGrath, 1983).
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Tissue Factors

Some original evidence for an 'indirect-positive’ model, was based on the 

in vitro mitogenic effects of tissue extracts isolated from rat uterus, 
kidney or liver, on certain tumour (rat mammary, rat pituitary and hamster 
kidney) cell lines which showed oestrogen-promoted growth in vivo, but not 

in vitro (see Ikeda et al. 1982; Leland et al, 1981; Sirbasku & Leland,

1982). Moreover, in most cases, tissue extracts from male or 
ovariectomised female rats which were oestrogen-treated, showed a greater 

growth-promoting effect than extracts from male or ovariectomised female 

rats which were not oestrogen-treated. The cell-type specificity of these 

tissue extracts was consistent with an endocrine mechanism of oestrogen- 
promoted growth acting through growth factors (estromedins) (Sporn &

Todaro, 1980; see Fig 1.1).

However, it was discovered that the rat mammary tumour cell line when 
growing in vivo in response to oestrogen, had a growth factor activity 
associated with it, which was automitogenic in vitro (Benson et al. 1980;

Sirbasku, 1980; Sirbasku & Benson, 1980). While these data are open to 
other interpretations (ie the activity is concentrated in, rather than 

produced by, the cells) they indicate that a paracrine/autocrine mechanism 
may operate in oestrogen-promoted tumour cell growth (see Fig 1.1; Sporn &
Todaro, 1980). More recent evidence, suggests that the rat mammary tumour 

cell line also produces an oestrogen-inducible autostimulatory factor in 

vitro (Danielpour & Sirbasku, 1983), but in an inactive form which becomes 

mitogenic only after acid treatment (Danielpour & Sirbasku, 1984).

Uterine Derived Growth Factor

A growth factor activity has been purified from uterine extracts and named 

'uterine derived growth factor' (UDGF) (Ikeda & Sirbasku, 1984). UDGF is a 
protein (of molecular weight 4,200 by SDS-PAGE) that promotes growth 

responses in the 0.1-lnM concentration range (Ikeda & Sirbasku, 1984). The 

purification of UDGF by an acid extraction procedure has resolved some of 
the confusion concerning its cell-type specificity. When extracted at 
neutral pH, UDGF is not mitogenic for certain uterine tumour cell lines 

(Leland et al. 1981), but after acid treatment UDGF becomes potently
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îïiitogenic for these cell lines (Ikeda & Sirbasku, 1984; Leland & Sirbasku,

1983). Preliminary observations reported by Ikeda & Sirbasku (1984), 
suggested short-term monolayer cultures of normal rat uterine cells to 
respond to UDGF at concentrations of <50ng/ml in serum-free medium. UDGF 

was not mitogenic for normal rat-ear fibroblasts. Thus UDGF may be involved 

in the growth control of normal, as well as tumour, cells. However, in 

order to show the mitogenic effects of UDGF in vitro, supplementation with
a low level (non-stimulatory) of crude uterine extract is required, 

indicating that UDGF may need to interact with other factors in order to be 

mitogenic (Ikeda & Sirbasku, 1984).

UDGF is found in only very low amounts in serum which militates against an 
endocrine mode of action (Sirbasku & Leland, 1982). However it occurs in 
relatively large amounts in uterine luminal fluid, which supports a 

paracrine/autocrine mechanism (Sirbasku & Leland, 1982).

UDGF has differing chemical and physical properties from many of the well- 

characterised growth factors, such as multiplication stimulating activity, 
somatomedin-C, insulin, EGF and FGF (Ikeda & Sirbasku, 1984). Moreover, of 
all these factors, only UDGF was mitogenic for a rat mammary tumour cell 

line. Conversely, UDGF was several orders of magnitude less potent than 

EGF, in stimulating the proliferation of 3T3 cells (Ikeda & Sirbasku,
1984).

In summary, purified UDGF is mitogenic for mammary and pituitary tumour 
cell lines in vitro, and, after acid treatment, for normal and tumourigenic 
uterine cells as well. UDGF does not appear to be very similar to the 
currently characterised growth factors. A rat mammary tumour cell line 

produces in vitro, an oestrogen-inducible factor which is automitogenic 

after acid treatment. It is unclear at present whether the various 

described activities represent the same or different growth factors. The 

sum of the evidence to date, points towards a largely paracrine/autocrine 
mode of action for UDGF.
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organisation. Moreover, they are capable of changing their shape,

specificity shown by the different IF classes have generated much interest.

1.71 MICROFILAMENTS

Ac tin filaments are involved in such ’permanent’ structures as microvilli 
(Mooseker, 1983), and in these cases the microfilaments are usually quite 

stable. However, it is more usual for actin filament structures to be 

dynamic in nature. Such structures can be found on the cell surface (eg 
the microspikes and filopodia extended by cells in culture), or within the 

cytoplasm (eg the ’contractile ring’ which appears during cell division or
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1.7 CYTOSKELETON

:
Eukaryotic cells have distinct shapes and a high degree of internal

repositioning their organelles, and in many cases migrating from one place A
to another. These properties of shape, internal organisation and movement
depend on complex networks of protein filaments in the cytoplasm; the 

cytoskeleton.

Until recently, the best studied filamentous networks of the cytoskeleton 

were actin filaments (microfilaments) and microtubules. However, another a

type of filament network in the cytoplasm has also been extensively studied 
- the intermediate filament (IF) network. Whilst the functional role of A::
this latter network within the cell is at present unclear, the cell-type

particularly for use as a diagnostic tool (Osborn, 1983).

Actin constitutes a substantial portion of the protein in all eukaryotic 

cells, typically up to 10%, of which half is polymerised into filaments - 
microfilaments (Alberts et al 1983). Actin filaments serve at least two

c'y
functions in non-muscle cells: they provide crosslinked bundles giving

;■!
mechanical support for various cellular structures and extensions, and :

■A'together with myosin, they form the various contractile systems thought to f
be responsible for many cellular movements.
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î:A:
the 'belt desomosomes’ which are found near the apical surface of some 

epithelial cells: see Alberts et al, 1983).

1.711 Stress Fibres

Perhaps the most studied dynamic actin structures are the 'stress fibres'.

These are bundles of actin filaments {also known as 'actin cables') which 

occur in cells as sets of parallel, or slightly converging, fibres 
displaying varying amounts of intermittent myosin, alpha-actinin or 

tropomyosin staining images (Byers et al, 1984). Stress fibres are common 

in stationary and spread cultured cells, but are rarely seen in migrating 
cells (Jockush, 1983). A variety of factors have been found to influence 

the expression of stress fibres (Jockush, 1983). The formation of stress 
fibres in spreading cells appears to utilise actin already present in the 
cytoplasm, since inhibitors of protein synthesis do not prevent formation 

of stress fibres (Goldman & Knipe, 1973).

There is evidence to suggest that either loss of stress fibres in cultured 
cells results in cell-rounding, or that loss of cell-adhesion results in 

loss of stress fibres (Pollack & Rifkin, 1975; Willingham et al, 1977).
Whilst a 'cause and effect' relationship between cell-adhesion and stress 

fibre formation is difficult to establish, this phenomenon has generated 

interest because of the causal links between cell-shape and transformation 

of some tissue culture cells (see sect 1.712). Stress fibres appear to be 
associated with the 'adhesion plaques' in well-spread cells (Goldman et 
a  ̂ 1976). Recently, a protein named vinculin has been shown to be 

localised predominantly in these adhesion plaques (Geiger et al. 1980), and 
is thought to be involved in linking stress fibres to the cell membrane.

:

1.712 Stress Fibres and Pathology
À
'l;

Many parameters of malignant cells such as: immortality, de-differentiation 

and changes in morphology are observed in cultured cells which have been
A'infected with oncogenic viruses. It is widely believed that in vitro 

transformation of cells is a valid model of the processes leading to
.A'

malignancy in vivo. Hence, the interest in observation that transformation 
of some cultured cells by either DNA (eg SV40) or RNA viruses (eg Rous
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stress fibres is at present unclear. One mechanism by which stress fibre 

formation may be regulated is suggested by the observation that, in virally

One factor which influences the above arguments is whether stress fibres 

appear in normal cells in vivo. Indeed, some fibroblasts, which have 
stress fibres when cultured on a rigid substrate, do not develop stress
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sarcoma virus), can lead to either loss of stress fibres, or a drampAtic‘f  ,

decrease in their number. (Ash et al, 1976; Osborn & Weber, 1975).

i
Generally, virally-transformed cells become more rounded in cell-shape

after infection, presumably due to decreased cell-adhesiveness. However,

as previously mentioned, it is difficult to establish 'cause and effect'
relationships between loss of stress fibres and reduction in cell
adhesivity - although addition of fibronectin to transformed cells enhances
adhesion and development of stress fibres (Ali et al 1977).

"

The mechanism(s) by which cell transformation induces loss or reduction of

transformed cells the viral 'src' gene product (pp60src) has tyrosine 

kinase activity, and is thought to phosphorylate a protein at the adhesion 

plaques, probably vinculin (Hynes, 1982),

■■f
A variety of transformed cells have been examined for stress fibres in 
culture, (eg a rat mammary tumour cell line, Wharburton et al. 1981; and

■ -AJ
teratocarcinoma cells, Paulin et al. 1978), Initially many studies showed 

a positive correlation between loss of stress fibres and tumourigenicity 

(see sect 1.612). However, there is now increasing evidence that there are 

a considerable number of exceptions (Karsenti et al. 1978). For example, 
experiments carried out with primary cell cultures and cell lines of 
salivary gland and bladder, transformed in vitro using chemical 
carcinogens, (Wigley & Summerhayes, 1979) and primary cell cultures derived 

from normal or malignant human mammary glands (Yang et al 1980), showed no
correlation between stress fibre display and tumourigenicity. It is

A e
possible that this lack of correlation may be more prevelant in certain

\  A.
cell types, such as epithelial cells (Byers et al. 1984), but further 
studies are needed on a greater variety of cultured cells to both settle 

this controversy and indicate the reliability of the stress 

fibre/tumourigenicity relationship.

A

I



'11

fibre staining patterns when grown in collagen gels (Tomasek et al. 1982). 
Currently, there are at least two examples of cells in vivo which exhibit 
stress fibres: fibroblastic cells known as 'scleroblasts' residing as a 

thin monolayer on fish scales (Zylberberg & Nicolas, 1982), and endothelial 

cells {Wong et al. 1983).

Furthermore, it has been shown that wounds in epithelial sheets in vitro 

are followed by the appearance of stress fibres in cells adjacent to the 
wound {Gotlieb et al. 1979). A similar process is seen in wounded corneal 
epithelium in vivo (Gordon et al. 1982). Based on this evidence, one 

hypothesis supposes that stress fibre formation both in vivo and in vitro. 
may be related to various pathological conditions, particularly those 
associated with 'wounding' (Byers et al. 1984).

Further in situ studies are needed in order to assess the generality of 
these observations; especially in view of the in vivo locations of the

::
I;

cells mentioned above.

1.72 INTERMEDIATE FILAMENT SYSTEM
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Intermediate filaments (IF’s) were first identified by electron microscopy 
as a major filamentous system in the cytoplasm of higher eukaryotic cells 
and distinct from microfilaments and microtubules. IP's typically have a

■A;diameter of lOnm; being intermediate between microfilaments (6nm) and 

microtubules (25nm) (Alberts et al. 1983). IP's were first regarded as 

disaggregation products of myosin or microtubules and were thus largely 

ignored. With the advent of new biochemical and immunofluorescence 

techniques IP's were established as a distinct fibrous network, composed of 
chemically heterogenous subunits (Lazarides, 1980).

Five major classes of IF have been defined, which can be distinguished both 

biochemically and immunologically:

(1) cytokeratin (tono) filaments - found in cells of epithelial origin.
(2) vim en tin filaments - found in cells of mesenchymal origin,
(3) desmin filaments - found in smooth, skeletal and cardiac muscle,
(4) neurofilaments - found in neurones.

A
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(5) glial fibrillary acidic protein (GFAP) - found in all types of glial 

cells.

A major interest in the IF system stems from the fact that the most obvious 

biochemical and immunological classifications, also follow classic 
histological principles. Thus the use of antisera raised to specific 

classes of IF allows typing of cells in situ from both normal and 

pathologic tissue, and classification of cells in culture (Osborn, 1983; 
Ramaekers et al, 1981),

1.721 Occurence of Intermediate Filaments 

Normal and Malignant Cells In Vivo

In adult animals, including humans, the majority of cell types express only 
a single IF class. For example, the kératinocytes of skin in situ are 

stained by ’broad spectrum’ cytokeratin antibodies (see sect 1.722), but 

not antibodies to other IF classes (Moll et al, 1982). In contrast, 
vim en tin antibodies, but not antibodies to other IF classes, stain 
melanocytes and Langerhans cells in situ (Loning et al, 1982). Therefore, 
by the use of appropriate IF antibodies, specific cell types can be 

identified in complex tissues.

Occasionally, expression of more than one IF class is seen in a particular 

cell. For example, some astrocytes contain both vimentin and GFAP and some 
vascular smooth muscle cells contain vimentin and desmin (Osborn, 1983). 
Interestingly, such cases always show vimentin expresssion in addition to 

one of the more specialised IF classes,

IP typing can yield information which is helpful in diagnostic pathology.

This is particularly valuable in the small proportion of tumours in which 
diagnosis is ambiguous by normal histologic procedures, and in which 
treatment differs according to the diagnosis. Carcinomas of skin, breast, 
oesophagus, uterus, gastrointestinal tract or of many other epithelia are 

all apparently positive when ’broad-spectrum’ cytokeratin antibodies are 

used (Altmansberger et al. 1982; Gabbiani et al, 1981; Moll et al, 1983).

This seems true for well-, moderately- and poorly-differentiated

57



carcinomas. Tumours of non-epithelial origin also usually retain the IF 

class characteristic of the original cell type, and this seems a general 

principle for primary tumours {Osborn, 1983).

Métastasés have been examined to a more limited extent, but so far for 

solid tumours at least, the data show that métastasés continue to express 

the IF class characteristic of the cell type of origin (Altmannsberger ^  
aL 1982; Ramaekers et al, 1983). However, more data are needed especially 

in view of recent observations that certain carcinomas growing in ascites 
fluid, may express both vimentin and cytokeratin (Dairkee et al, 1984; 
Ramaekers et al, 1983).

Cultured Cells

Both cells in primary culture and cell lines, continue to express the IF 

class typical of their derivation, but, in the majority of cases, vimentin 
is also expressed (Franke et al. 1979a). For many cell types the vimentin 
network can be distinguished from cytokeratin filaments by formation of 

perinuclear bundles of vimentin after colcemid has been added (Franke ^  

al, 1979a).

The 'reason' for the expression of vimentin in almost all cultured cells is 

currently unknown. Results gained from some studies using primary cell 
cultures, are consistent with the hypothesis that vimentin expression is 

induced when cells are freed from three-dimensional restrictions. This 

would account for vimentin expression in monolayer cultured cells and also 
recent reports that ascitic métastasés of certain carcinomas coexpress 

vimentin and cytokeratins (Dairkee et al.1984; Ramaekers et al. 1983). It 
is also consistent with observations that cultured human carcinoma cells 
forming solid tumours when injected into nude mice, stop vimentin 
expression as soon as the cells grow in a solid three-dimensional structure 

(Ramaekers et al. 1982).

1.722 Cytokeratins: Molecular Markers of Epithelial Differentiation

The IF's of the desmin, vimentin or GFAP classes all usually consist of 
only one type of protein subunit, although there are an increasing number
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Fig 1.2 Classification of Cytokeratins

Fig A Classification of Human Cytokeratins into A  and B Subfamilies

Cytokeratins are represented by circles according, to their molecular 

weight (ordinate) and relative charge properties (pi; absissa). This

Fig B A Unifying Model of Cytokeratin Expression

Cytokeratins of subfamilies A and B are arranged according to their 

molecular weight (bar -= 5k).



■"•Kî

6 5 - 6 7  (1,2) 
64 ( 3 )  
59 ( 4 )  
5 8 ( 5 )  
5 6  ( 6 )  
54  ( 7 )  
52  ( 8)

4 5  (IB)

B

----- 56.5 (10) 
5 5  (12)
5 4 '  (13)  
5 0  (14)
5 0'  (15) 
4 8  (16)
4 6  (17)

4 0  (19)

b a s i c PI acidic F ig  A

c o r ne a
skin

56 , 5K) cornea
G5-67K

other
s.e other

s.e.

(M.w.)
4 0  K

s tra t i f i e d
epithel ia

simple
epithel ia

P i g  B

B A
keratin subfamilies

(Reproduced from Sun et al, in press)



of exceptions being discovered. In contrast to other IF classes, 

cytokeratin (tono*) filaments are a complex class composed of many 

different polypeptides. These cytokeratin species vary both in their 

biochemical and immunological relationships to each other, and in their 
expression in different epithelia. The polypeptides which comprise the 

cytokeratins vary in both their isoelectric pH values (5-8) and in their 
apparent molecular weight (40,000-80,000) (Moll et al, 1982; Winter et al,
1980). ’Broad-spectrum’ antisera have been raised to antigenic 

determinants present on all cytokeratin species (Sun et al. 1979),
Furthermore, monoclonal antibodies have been raised to determinants located
on selected cytokeratin species (see sect 1.723).

Many epithelial cells can be characterised by the appearance of the 

specific pattern of their cytokeratins, seen using high resolution two 
dimensional gel electrophoresis (O'Farrell et al, 1977). A total of over 

17 different cytokeratin species have been identified in various human 

epithelia, and a system of nomenclature based upon the differing apparent
molecular weight and isoelectric pH of these species was proposed by Moll
et al, (1982). This nomenclature is retained by Sun et al (in press) in a

unifying model of cytokeratin expression (see sect 1.723), Some
cytokeratin species (numbers 9 & 11) are excluded from this model because 

they may not be primary translation ijroducts. This nomenclature is
described in Fig 1.2.

Usually, a subset of between 2 and 10 cytokeratin species is expressed in 

any given epithelium. The detailed composition of the set which is 
expressed can be highly heterogenous and vary depending on; cell type, 
period of embryonic development, stage of histological differentiation, 
cellular growth environment and pathological conditions (Green et al, 1982; 

Moll et al, 1982; Woodcock-Mitchell et al, 1982)).

However, it appears that more complex (stratified) epithelia express a

number of cytokeratins of higher molecular weights, whilst the simpler 
(non-stratified) epithelia express fewer cytokeratins which are of lower 
molecular weight. A unifying model proposed by Sun et al (in press), is in 

accord with these observations, but also emphasises the concepts of 
'cytokeratin subfamilies' and ’cytokeratin pairs'.
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1.723 Cytokeratin Subclasses and Epithelial Differentiation

A model is described based on that proposed by Sun et al (in press). 

Cytokeratin Subfamilies

This model suggests that the cytokeratin species numbered: 1, 2, 3, 4, 5,
6, 7 & 8 (see Fig 1.2) are all closely related and form a ’subfamily', 
referred to as ’subfamily-B’. This is suggested because cytokeratins are 

all relatively basic in charge (pl>6) and share one or more common 
antigenic determinants. These antigenic determinants are recognised by both 

the ’AE3’ antibody of Sun's group (Woodcock-Mitchell et al. 1982) and the 

’KG8.13' antibody of Franke’s group (Gigi et al, 1982). Further evidence 

from peptide mapping (Schiller et al. 1982) and mRNA hybrid selection 
translation experiments (Kim et al. 1983), also suggest that these 

cytokeratins are closely related.

In contrast, cytokeratins numbered: 10, 12, 13, 14, 15, 16, 17, 18, & 19 

(see Fig 1.2) are proposed to form another subfamily - 'subfamily-A’.
These are all relatively acidic in charge (pl<5.7), and some show a common 

antigenic determinant, recognised by the ’AEl’ antibody of Sun’s group 
(Woodcock-Mitchell et al, 1982). Additional data from peptide mapping and 

mRNA/cDNA hybridization experiments, also suggest that the members of this 
subfamily are structurally related.

Cytokeratin Pairs: Coexpression and tissue distribution

Except for the smallest cytokeratin species (number 19), which is present 
in almost all non-epidermal epithelia (Tseng et al. 1982b), all other 
components of subfamily-A, have a corresponding member in subfamily-B, so 

forming 'cytokeratin pairs'. In general, both members of a cytokeratin 

pair follow similar rules for expression (see Fig 1.2(B)).

The cytokeratin pair (18 & 8) are thought to be markers for simple 

epithelia. The cytokeratin pair (17 & 7) are also found predominantly in 

simple epithelia, but can also be seen in some stratified epithelia. As
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mentioned previously, higher molecular weight cytokeratin pairs are 
expressed in stratified and/or keratinized epithelia. This is consistent 
with the hypothesis that increasing complexity of epithelium from: simple- 

> stratified-> keratinized, is reflected in a corresponding increase in 
molecular weight of the cytokeratin species expressed. Furthermore, Lane 
et al (1982) suggests that there is a 'simple-epithelial antigen' located 
on cytokeratins of molecular weight 40-45,000, which is is recognised by
two monoclonal antibodies LE61 and (probably) LE65.

Proper reconstitution of tonofilaments (in contrast to other IF classes) in 

vitro, requires two different cytokeratin subunits (Lee & Baden, 1976; 
Steinert et al, 1976). When this data is viewed in the light of the 

cytokeratin pair model, it is plausible that these cytokeratin pairs play 

complementary roles in tonofilament assembly or function(s).

1.724 Factors Affecting Expression of Cytokeratins

A variety of factors affect the expression of cytokeratins. These have
been studied mainly in the differentiating epidermis (Fuchs & Green, 1980; 
Nelson & Sun, 1983; Sun et al, 1983). Unfortunately, data on changes in 

the pattern of cytokeratin expression in response to various physiological 
stimuli in simple epithelia are not so well documented. However, 
modulation of cytokeratin expression by various nutritional and hormonal 

factors has been reported for cultured rat mammary glands (Palmer et al,
1984). One of the better characterised systems for the study of such 

modulation of cytokeratin expression, is the regulation of epithelial 
differentiation by vitamin-A (Fuchs & Green, 1981).

Vitamin-A is known to exert important influences on epithelial 
differentiation (Lotan, 1980). The foetal calf serum supplement of cell 

culture medium is reported to contain enough of the vitamin to affect the 
differentiation of certain cultured epithelial cells (Fuchs & Green, 1981). 
Solvent extraction of serum (delipidization) can affect cytokeratin 

expression. In the epidermal keratinocyte it both leads to increased 
synthesis of a 67kD cytokeratin, characteristic of the terminally 

differentiating epidermis (cytokeratin number 1, see Fig 1.2(A)), and to 

greatly reduced expression of the 52,000 and 40,000 cytokeratins (numbers
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& 19). However, addition of physiological amounts of vitamin-A (in the 

form of retinyl actetate) reversed this trend by decreasing expression of 
the 67,000 cytokeratin, while increasing expression of the 52,000 and 
40,000 cytokeratins (Fuchs & Green, 1981). Similar effects have also been 

noted in cultured conjunctival and vaginal kératinocytes (Fuchs & Green,
1981) and in conjunctival and oesphageal epithelia of normal and vitamin-A 
depleted rabbits (Tseng et al, 1982a).

Quantitative changes in cytokeratin expression were reported to be 
dependent on cell type, so indicating that the behaviour of epithelia may 
not be governed exclusively by the concentration of vitamin-A reaching the 

cells, but also by differing susceptibilities to a given level of the 

vitamin.

1.725 Functional Role of Intermediate Filaments

Currently, the functional role of IF’s in cells is largely unknown. The 

most obvious role for such a filamentous network is a structural one, as 
suggested by Lazarides (1980). Evidence for this role was based on the 
physicaU^^resistance of IF’s to chemical treatments - IF’s represent some 

of the most insoluble proteins within the cell and require high 

concentrations of denaturing agents to effect solubility (eg 8M urea; 
Lazarides, 1980). Other observations consistent with a role of IF’s as 

intracellular scaffolding, relate to the subcellular location of IF’s. For 

example, vimentin filaments frequently terminate at both the nuclear 
membrane and adhesion plaques of detergent extracted cytoskeletons of 
cultured fibroblasts (Lehto et al. 1978; Small & Cells, 1978).
Furthermore, in the absence of colcemid, there is always a certain 

perinuclear concentration of vimentin in many cell lines (Small & Cells,
1978) - suggesting that vimentin is associated with the cell nucleus, 

possibly by providing mechanical support, constraining it to a specific 

place within the cell (Lazarides, 1980).

In epithelial sheets, neighbouring cells are held together mechanically by 

strong ’rivet-like' junctions called spot desmosomes. On the inner surface 
of the cell membrane these serve as anchorage sites for cytokeratin 

filaments. It is thought that the desmosome-cytokeratin system serves to
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give mechanical strength to epithelial sheets (Sun et al. 1979). However, 
recent experiments in which vimentin (Gawlitta et al. 1981; Klymkowsky,
1981), or cytokeratin (Klymkowsky et al. 1983) antibodies were 

microinjected into cells, suggest that a structural role for IP's may not 

be important in cultured cells. Since although microinjection of these 

antibodies caused collapse of the IF network, they had no observable effect 

on either cell-shape, or location of the nucleus (Klymkowsky et al, 1983).
It also was noted that the collapse of the cytokeratin network of PtK2 

cells, also affected the vimentin network, but had no observable effect on 

either microfilament or microtubule organisation (Klymkowsky et al, 1983). 
These observations imply that IF's are not required to form a n^chanical 
framework inside cells cultured on a rigid substrate, but this is' does not 
exclude such a role in cells in vivo.

The discovery of a calcium-activated protease specific for both vimentin 

and desmin filaments, may relate to the mechanism by which any putative 
function of IF's is regulated; particularly in view of the insolubility of 
IF's under physiological conditions (see above). This protease was found 

to have a widespread occure^nce in a variety of mammalian tissues (Nelson & 
Traub, 1981; Traub & Nelson, 1981). It has also been shown that vimentin 

can undergo hormone-dependent phosphorylation, but that this occurs on 

only a small fraction of its copies (Browning & Sanders, 1981).

Recent evidence suggests that the total amount of cellular vimentin is in
fact regulated at the transcriptional level (McTavish et al. 1983). Post- 
translational effects, such as protease modification or phosphorylation, 
will probably have subtle effects on local IF function. This hypothesis is 

further supported by observations that most cytokeratin species are primary
translational products, and not the result of processing or post-
translational modification of precursor polypeptides (Kim et al. 1983;
Magin et al. 1983; Roop et al, 1983).



1.8 MARKERS OF GROWTH AND DIFFERENTIATION IN THE RAT UTERUS

1.81 USEFUL IN VIVO MARKERS

The rat uterus has remained the most studied organ of steroid action since 

the discovery and early characterisation of oestrogen receptors {see sect 

1.32), Numerous workers have used many morphological, biochemical or 

proliferative markers or 'end-points', in order to monitor the effects of 
steroids on the rat uterus, some being described in sects 1.223, 1.3 

& 1.5. The most commonly described include progesterone receptor (see sect 

1.34; Clark & Peck, 1979), plasminogen activating factors (Kneifel et al.
1982), peroxidase activity (Lyttle & DeSombre, 1977), 'induced-protein'
(IP, the BB-isozyme of creatine kinase, Walker and Kaye, 1981; Kaye, 1983), 
and proliferative indicies (see sect 1.5). A more extensive list of 
oestrogen responsive 'enzyme markers' in the rat uterus is given by Kaye 

(1983). Nevertheless, the analysis of oestrogenic action, in terms of 
effects of differentiation, on the rat uterus, has proven difficult because 

of the lack of a good marker protein (Walker & Kaye, 1981).

Measurement of progesterone receptor levels, remains one of the better 

markers of oestrogen action (see sect 1.34) in the rat uterus. Even so, 

the induction of progesterone receptor by oestrogen is not an ideal marker, 
since its mechanism of induction is not fully understood, and progesterone 

receptor is present in comparitively low levels within tissues; 

necessitating the use of either quite a large number of cells for 

biochemical analysis, or immunocytochemical methods see (sect 1.322). In 
neither case is accurate quantitaion of progesterone receptor easy.

The most commonly investigated oestrogen-induced marker protein is the 
'induced-protein' (IP), which is now well characterised as an isozyme of 
creatine kinase (Kaye, 1983). The functional role of IP is currently 

unproven, but it is suggested that it is involved in a 'buffering' action 
of intracellular ATP concentrations, during the rapidly changing metabolic 

responses to oestrogen (Kaye, 1983). The oestrogen-induction of thymidine 

kinase activity in rat uterus (Leake et al, 1975), and in breast cells,
(see sect 1.452) has frequently been observed, mostly in relation to its
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complicating effects on nucleotide pools (see sect 1.452). Recently, it 

has been suggested that induction of thymidine kinase activity may be a 
potentially useful specific marker of oestrogen action in the rat uterus 

(Bourtourault et al, 1984). Oestrogen causes de novo synthesis of the 

foetal isozyme of thymidine kinase, but further investigations are needed.

CL

Specific effects of oestrogen on many markers have been compar/tively easy 

to demonstrate in vivo. However, the demonstration that these effects are 
due to the direct action of oestrogen is more difficult, owing to the 

inherent complexity of in vivo systems. An example of this problem is the 

current debate as to the classification of oestradiol as a true mitogen 
(see sects 1.65, 1.66, 1.67). Attempts to show direct effects of 
oestradiol on target cells, have either utilised localised, rather than 
systemic, action of the hormone in vivo (see sect 1.662), or have used in 
vitro systems (eg sect 1.661),

Culture systems comprising cells derived from steroid target organs, are a 

potentially a powerful tool in the study of direct interactions of steroids 
with cells. They have been used successfuly to study steroid effects on 

proliferation (eg sect 1.4, 1.6) and induction of specific proteins (see 
Rochefort & Chalbos, 1984). Most cell culture studies have utilised 

continous cell lines (see sect 1.612) which may, or may not, respond to 

steroids in a similar manner to the parent tissue.

1.82 GENERAL AIMS
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A:;

I

The general aims of this project were to establish and characterise, 
primary cultures of uterine cells, in order to study some markers of 
proliferation and differentiation, at both the biochemical and

■A=:
morphological levels. An assessment of those steroid-sensitive markers 
which appear to be useful in vitro, and so merit further development, is 

given. More specific aims are described in the introduction to each 

chapter of results.

Ï

I
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MATERIALS & METHODS

2.01 SUPPLIERS

Advanced Instruments Inc. Highland Avenue, Needham Heights, Mass, USA. 
Amersham International PLC, PO BOX 16, Amersham, Bucks, UK.

BCL, Bell Lane, Lewes, East Sussex, UK.

BDH Chemicals Ltd, c /o  McFarlane Robson Ltd, Burnfield Avenue, Thornliebank,
Glasgow.

Calbiochem-Behring, c/o  Cambridge Bioscience, St Neots Road, Cambridge, UK. 
Chance Propper Ltd, Smethwick, Warley, UK.
City University Chemistry Dept, The City University, London, UK.
Costar, c/o  Northumbria Biologicals Ltd, South Nelson Ind Est, Cramlington,

Northumberland, UK.
DAKO Corp, c/o  Mercia Brocades Ltd, Pyrford Road, Weybridge, Surrey, UK. 
Difco Labs, PO BOX 14B, Central Avenue, East Molesley, Surrey,UK.
Durham Chemicals Ltd, Birtley, Chester Le Street, Co Durham, UK.
Falcon c/o  A & J Beveridge, Bonnington Road Lane, Edinburgh, UK.
Fisons, Bishop Meadow Road, Leicester, UK.
Flow Laboratories Ltd, PO BOX 17, Second Avenue Ind Est, Irvine, UK.
GIBCO Europe Ltd, Trident House, Renfrew Road, Paisley, UK.
Glaxo Laboratories Ltd, Cambois, Bedlington, Northumberland, UK.
Grant Instruments, Barrington, Cambridge, UK.

Ilford Ltd, c/o Hamilton Tait Ltd, Toryglen Street, Glasgow, UK.
Koch-Light Labs Ltd, c/o  A & J Beveridge, Bonnington Road Lane,

Edinburgh,UK.
Kodak Ltd, PO BOX 10, Dallimore Road, Manchester, UK.

Labsystems (UK) Ltd, Redford Way Uxbridge, Middx, UK.

Macarthy Surgicals Ltd, Glentannan Road, Glasgow, UK.
May & Baker Ltd, Dagenham, Kent, UK.

Miles Labs Ltd, PO BOX 37, Stoke Poges, Slough, UK.
Millipore (UK) Ltd, Peterborough Road, Harrow, Middx, UK.
Nunc, c/o  GIBCO Europe Ltd, Trident House, Renfrew Road, Paisley, UK. 
Pharmacia Ltd, Prince Regent Road, Hounslow, Middx, UK.
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Polaron Equipment Ltd, Greenhill Crescent, Holywell Ind Est, Watford,
Herts, UK.

Rohm & Haas, Croydon, Surrey, UK.
Sigma Chemical Company Ltd, Fancy Road, Poole, Dorset, UK.
John Staniar & Co, Sherbourne Street, Manchester, UK.
Sterilin Ltd, Clockhouse Lane, Feltham, Middx, UK.
Taab Laboratory Equipment Ltd, Grovelands Road, Reading, Berks, UK. 
Whatman LabSales Ltd, Springfield Mill, Maidstone, Kent, UK. 
Worthington, c/o  Lome Diagnostics Ltd, PO BOX 6, Reading, Berks, UK.

2.1 REAGENTS

2.11 FINE CHEMICALS

Ammonium hydroxide
Bovine serum albumin, fatty acid free

Bovine serum albumin ,Kohn fraction V (BSA-V)
Charcoal {Norit A)
Deoxycholate
Deoxyribonucleic Acid (Calf Thymus (type I)) (DNA) 
Dextran T-70
Diisopropylfluorophosphate (DFP)

Dithiothreitol (DTT)
Formaldehyde (40%)
Glutaraldehyde (25%, EM grade)
Hepes
Methylcellulose (low substitution)
Methanol, Ethanol, Acetone, Isopropanol 
Poly-Llysine (mol wt 170,000+)

Ribonucleic Acid (Yeast) (RNA)
Sucrose
Thymidine
Trichloroacteic acid (TCA)

Triton XlOO (purified)

May & Baker 

Calbiochem-Behring 

Sigma 

Sigma 
Sigma 

Sigma
Pharmacia 

Sigma 

BCL 

May & Baker 
Taab 

BDH
BDH

Fisons
Sigma

Sigma
Koch-Light
Sigma

Koch-Light

Sigma

All other fine chemicals were BDH 'AnalaR' grade or equivalent.
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2.12 RADIOCHEMICALS
(methyl [^H])-thymidine, ImCi/ml; 47Ci/mmol, Amersham International 
(2,4,6,7 [^H])-oestradiol, ImCi/ml; lOlCi/mmol, Amersham International

2.13 PHOTOGRAPHIC ITEMS

D19 Developer Kodak
Kodafix Kodak

Photoflo Kodak

K-2 Nuclear Emulsion Ilford

Panatomic-X (32 ASA) Kodak

Ektachrome (400 ASA) daylight film Kodak

HP4, HP5 (500 ASA) & FP4 (125 ASA) film Ilford

2.14 IMMUNOCHEMICALS

Normal mouse serum (pre-immune serum) was obtained from mice of the balb/C 

strain and kindly supplied by Dr J Jones. Normal Rabbit serum (pre-immune 

serum) was kindly supplied by Mrs A H Lope Pihie.

2.141 Primary Antisera

Polyclonals:
Rabbit anti-keratin 

Rabbit anti-desmin

(IgG)

(IgG)

DAKO

DAKO

Monoclonals:
Mouse anti-keratin (LE61) (IgG)

Mouse anti-vimentin (IgG)

kindly supplied by Dr E B Lane, 

ICRF, London 
Labsystems
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2.142 Conjugated Antisera

The following were purchased from Miles:
Fluorescein conjugated Goat anti-(rabbit IgG) and fluorescein conjugated 

Rabbit anti-(mouse IgG)

2.15 ENZYMES

Trypsin (1:250) . Difco
Trypsin (bovine pancreas) Sigma
Collagenase (code: CLS III, 110-120U/mg) Worthington
Deoxyribonuclease type I (code: DP) Worthington
Ribonuclease type A (code: RASE, 4160U/mg: 51mg/ml) Worthington 

Pancreatin (crude) GIBCO

2.16 SCINTILLATION MATERIALS

Toluene, AnalaR grade,
2,5-diphenoxazole (PPO) 

l,4-di(2-(5,phenyloxazolyl))benzene (POPOP) 
Triton XlOO (scintillation grade)

Koch-Light 
Koch-light 

Koch-light 
Rohm & Haas

2.17 STAINS & DYES 

Giemsa
(2-[2“(4-Hydroxyphenyl)-2-benzimidazolyll- 
-6-[l-methyl-4-piperazyllbenzimidazole trihydrochloride 
(Hoechst 33258)

2.2 STANDARD SOLUTIONS

BDH

Sigma

3
-A

2,21 PHENOL RED SOLUTION

To phenol red, 4% (w/v) dissolved in O.IM NaOH, IM HCl was added until a 
deep red colour was obtained. This solution was diluted to a final

A;,.
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concentration of 1% (w/v), then filtered through Whatman no 1 filter paper

2.22 PHOSPHATE BUFFERED SALINE (PBS-A)
(without calcium and magnesium)

The following salts were dissolved (w/v) in distilled water:

NaCl 0.8%, KCl 0.02%, Nâ ^HPĈ  0.115%, KĤ P̂Ô  0.02%

The pH was adjusted to 7.2. The osmolarity of the solution when checked 
using an osmometer (Advanced Instruments Inc) was found to be consistently 
in the physiological range 280-300 mosM/Kg (McAteer & Douglas 1979).

2.23 KREBS RINGER BUFFER (modified) (KRBG)
(with glucose, Hepes and methylcellulose)

Stock solutions were made up as follows and autoclaved individually:

2.231 Methylcellulose Solution

Ig of methylcellulose was autoclaved, then dissolved in 100ml of sterile 
distilled water by continuous stirring at 4^C for >18 hours. Undissolved 

material was removed by centrifugation (lOOOxg, lOmin).

2.232 KRBG Salts Solution (x25)

The following were dissolved in distilled water to a final volume of 200ml: 
NaCl 39.60g, KCl 1.765g, KH^PO^ 0.85g, phenol red solution (sect 2.21) 2.5ml.

2.233 Glucose Solution

Glucose 10% (w/v) in distilled water.

2.234 Sodium Bicarbonate Solution

NaHCOg 5.6% (w/v) in distilled water containing 50/il of phenol red per 
litre of solution.
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2.235 Hepes Solution

Hepes was dissolved at a concentration of IM in distilled water and the pH 
adjusted to 7.4. The solution was filtered through Whatman no 1 filter 

paper before autoclaving.

KRBG was prepared as follows:

20 ml KRBG salts solution (x25)

5 ml glucose solution

20 ml sodium bicarbonate solution
10 ml Hepes solution
50 ml methylcellulose solution

395 ml sterile distilled water

This solution was aliquoted and stored at 4^C. For solutions containing 

enzymes dissolved in KRBG, methylcellulose was omitted and re-added after 

filter sterilisation.

2.24 EARLES BALANCED SALT SOLUTION (EBSS)

The following were dissolved in 1 litre of distilled water:
NaCl 68g, KCl 4g, MgSO .̂ZH^O 2g, NaH2.F0^.2H 0 1.4g, CaC^.GH 0 3.93g,
phenol red solution 15ml.

EBSS was prepared and autoclaved by the staff of the Wellcome Cell culture 

unit. Before use, 40ml of sodium bicarbonate solution (see sect 2.234) was 

added per litre of EBSS,

2.25 PHOSPHATE BUFFER

A stock 0.2M phosphate buffer was prepared in distilled water as follows: 

solution-A: NaP^P0^.2H20 31.2g/l,
solution-B: Na^HPO  ̂ 28.4g/l.
The phosphate buffer (pH 7.4} was made by mixing 19ml of solution-A with
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81ml of solution-B.
This was filtered through Whatman no 1 filter paper, aliquoted and 

autoclaved before storing at ambient temperature. Further dilutions of 
this buffer were made in filtered distilled water.

2.3 CELL CULTURE MATERIALS

2.31 CELL CULTURE VESSELS

2.311 Plastic

Tissue culture dishes {35mm and 10cm diameter) were obtained from Nunc. 
Tissue culture dishes (6cm diameter) were obtained from Falcon. Multiwell 
plates (16mm diameter wells) were obtained from Costar.

2.312 Glass

Glass coverslips (10 or 13mm diameter) were obtained from Chance Propper 

Ltd. These were cleaned by immersion in a 1/2 dilution of boiling 
’chloros’ for 15min followed by rinsing in running tap water for >18hr 
then distilled water (three changes). The clean coverslips were then 

separated and dried on tissue paper before being oven-sterilised.

Winchester bottles were cleaned using a warm diluted solution of 'chloros', 
rinsed thoroughly, then sterilised by autoclaving. Cleaning and 

sterilisation of all glassware (except coverslips) was done by the staff of 
the Wellcome Cell Culture Unit.

2.32 DISAGGREGATION SOLUTIONS

2.321 Trypsin/Ca

Trypsin (1:250) and calcium chloride were dissolved in KRBG (without 
methylcellulose). The pH was readjusted to 7.2. This solution was filter 
sterilised then 1/10 vol of methylcellulose solution (see sect 2.231)
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added. The final concentrations of trypsin (1:250) and calcium chloride 

were 2% (w/v) and 11.5mM respectively. Aliquots were stored at -2GPC. 
After thawing, any insoluble material was removed by centrifugation before 

use.

2.322 Collagenase

Collagenase, 3000U/ml dissolved in PBS-A, was filter sterilised, aliquoted 

then stored at -20^C.

2.323 Trypsin/Collagenase

1

2.33 NUTRIENT MEDIA

The osmolality of all Ix nutrient media was checked before use. Only 
nutrient medium with an osmolarity in the range 280-300mOsM/Kg was used 
(see McAteer & Douglas 1979).
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fA sterile solution of trypsin (1:250), 0.9% (w/v) was prepared in KRBG, 
(see section 2.23) and stored as aliquots at -20 C. Immediately prior to 
use, trypsin/collagenase was prepared by mixing:

f'
I

I3/'-
4 vols trypsin (1:250) solution 0.9% (w/v),

5 vols collagenase solution (see sect 2.322),
1 vol methylcellulose solution (see sect 2.231).

2.324 Pancreatin/Trypsin

Pancreatin 2.5% (w/v), trypsin (1:250) 0.5% (w/v) and phenol red solution 

0.05% (v/v) were dissolved in PBS-A. The pH was readjusted to 7.2.
Insoluble material was removed by centrifugation (lOOOxg, lOmin) then

■ ■ A 3 ;

successive filtration, through: 0.8, 0.45, and 0.2^m filters. This 
solution was filter sterilised.

All nutrient media were purchased from either GIBCO or Flow. Ix nutrient 
media containing glutamine were stored for a maximum of 1 month at 4^C.



Nutrient media used were:

Eagle's minimal essential medium (MEM), alpha-MEM, Ham's F-12 medium (F12), 
RPMÏ 1640 medium (RPMI), medium 199 (M199), MCDB104 medium (MCDB104).

2.331 Preparation of Single Strength Nutrient Media

RPMI 1640 medium supplied by GIBCO in powdered form was reconstituted 

according to manufacturers instructions as a Ix concentrated solution.

This was done by the staff of the Wellcome Cell Culture Unit. All media 
supplied as lOx liquid concentrates were diluted in accordance with 

manufacturers recommendations to give a Ix solution.

2.332 Supplementation of Media

Media supplied without glutamine were supplemented from a stock solution 

(see sect 2.341) to a final concentration of 2mM. lOx concentrated media 
supplied without sodium bicarbonate were supplemented from a stock solution 
(see sect 2.234). Final concentrations of bicarbonate in the Ix medium 

were in accordance with manufacturers formulations. All media were 
supplemented from a stock solution of Hepes (see sect 2.235) to a final 

concentration of lOmM.

2.34 SUPPLEMENTS

2.341 Glutamine

A stock solution of glutamine 0.2M, was prepared in distilled water. This 

was filter sterilised and stored as aliquots at -26^C. Before use, it was 
diluted 1/100 in Ix nutrient medium (see sects 2.331, 2.332).

2.342 Bovine Serum Albumin (BSA)

A stock solution of BSA, 10% (w/v) in PBS-A containing 0.05% (v/v) phenol 

red solution, was prepared. The pH was readjusted to 7.2. This solution 

was filter sterilised, aliquoted and stored at -20^C.
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2.343 Penicillin/Streptomycin

2.344 Amphotericin B (Fungizone)

Amphotericin B was purchased as a commercial preparation (Fungizone) from 

GIBCO at 250^g/ml. This was diluted 1/100 in Ix nutrient media before use.

2.35 SERUM
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A solution of benzyl penicillin (sodium) lOOOOU/ml, and streptomycin 
sulphate 1% (w/v), was prepared in distilled water, filter sterilised, 
aliquoted and stored at -20^C. Benzyl penicillin (sodium) was obtained 

from Glaxo; streptomycin sulphate was obtained from Sigma.

Foetal calf serum (FCS) was purchased from either GIBCO or Flow. This was 

either used as' supplied, or was treated with dextran coated charcoal (DOC) 
(see below).

2.351 Heat Inactivated Charcoal Stripped Foetal Calf Serum 

(HIDCCFCS)

O
FCS was heat inactivated at 56 C for 30min, during which the temperature 

was monitored continuously. This heat inactivated serum was then cooled to 

4*̂ C.

Norit-A charcoal 2.5% (w/v) and dextran T-70 0.025% (w/v) were suspended in 
PBS-A and stirred gently at 4®C for >18hrs. The DCC was pelleted by
centrifugation (lOOOxg, lOmin, 4 C) and the supernatant discarded. This
DCC pellet was resuspended in 10 times its original volume of precooled 
heat inactivated FCS, then stirred gently for >18hrs at 4°C. Most of the 

DCC was subsequently removed by centrifugation. The remainder was removed 

by successive filtration through: 0,8, 0.45 then 0.2^m filters. This 
HIDCCFCS was filter sterilised, aliquoted and stored frozen at -20^C.
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2.36 CULTURE MEDIA

Media for culture of cells in vitro was prepared as follows:

(98-X)% (v/v) Ix concentrated nutrient medium (see sect 2.33)
X% (v/v) serum (see sect 2.35)
1% (v/v) penicillin/streptomycin (see sect 2.343)
1% (v/v) amphotericin B (see sect2.344).

2.37 SUBSTRATES 

2.371 Collagen Gels

A solution of rat tail collagen (3mg/ml in 3% (v/v) acetic acid), was 

kindly provided by Dr R Docherty (Dept Cell Biology, University of 
Glasgow). This was prepared as described previously (Brown, 1982), and 

stored at -20®C.

Collagen gels were prepared as follows:

All solutions and glassware were precooled and kept on ice during the 

procedure. All mixing was done in such a manner as to minimise the 

formation of air bubbles.

To 5ml of rat tail collagen solution, 0.5ml of lOx nutrient medium was 

added and mixed thoroughly. This solution was adjusted to physiological pH 
(as indicated by the colour of the phenol red) by the dropwise addition of 
sterile IM NaOH. Then, 75jnl of IM Hepes (pH 7.4, see sect 2.235) was added 

and mixed, followed by 3.5ml of culture medium (see sect 2.36). This was 
mixed thoroughly, then a further 3.5ml of culture medium was added, then 

mixed again,

A volume of 600pl of the above collagen solution (at 4^C) was pipetted into 
each 35mm dish (kept at room temperature), which was then quickly tilted to 

spread the solution evenly over the entire bottom surface. The solution 

gelled within a few minutes at room temperature. However, dishes were 
incubated at 37^C for a further 2hr (in a humidified incubator with an
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atmosphere of 5% (v/v) carbon dioxide). This ensured complete gelling and 

aids firm attachment of the gel to the dish (R Docherty personal comm).

2.38 HORMONES & GROWTH FACTORS

2.381 Insulin

Insulin (bovine pancreas), was obtained from Sigma. Insulin, dissolved at 

2mg/ml in O.IM HCl, was sterilised by filtration through a Millex 0.2jim 

filter, and stored at -2CPc.

2.382 Steroids

Steroids prepared as lOOOx concentrates in 95% alcohol were stored at -2cPC 

for up to 6 months. They were obtained as follows-:

5 Of-dihydroxytestosterone,oestradiol, progesterone,
cortisol, dexamethasone Sigma

medroxyprogesterone acetate (MPA) Upjohn.

2.383 Retinoic Acid

Retinoic acid (obtained from Sigma) was prepared as a lOOOx concentrate in 
95% alcohol, and stored (protected from light) at -2cPC for up to six 
months.

2.39 FIXATIVES & STAINS

2.391 Formal Saline

NaCl 5g, Na^SO^ 15g, 40% formaldehyde 100ml.
The volume was then made up to 1 litre with distilled water.
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2.392 Trichloroacetic Acid (TCA)

A stock solution of TCA, 50% (w/v) was prepared in distilled water and 
stored at 4*̂ C. Working solutions were made by further dilution in 

distilled water and also kept at 4^0.

2.393 Glutaraldehyde

A stock solution of glutaraldehyde, 25% (w/v) in distilled water (Taab) was 

stored at 4®C. Working solut 
appropriate buffer or medium.

2.394 Osmium Tetroxide

stored at 4^C. Working solutions were prepared by further dilution in the

A stock solution of osmium tetroxide, 4% (w/v) was prepared by breaking an 
ampoule containing Ig of osmium tetroxide into 25ml of filtered distilled 
water. This was stored in a tightly sealed bottle protected from light, 
at room temperature for a maximum of 2 weeks. Working solutions were made 

by further dilution in the appropriate buffer.

2.395 Giemsa Stain

A stock solution of giemsa stain was prepared as follows; 4g of Giemsa was 

added to 250ml of glycerol then stirred continuously for 2hr in a water 
bath at '~56°C. 250ml of methanol was then added with continued stirring
until the solution was homogeneous. This stock giemsa solution was left to 

stand at ambient temperature for 7 days, then filtered through Whatman 

no 1 filter paper and stored at ambient temperature.

2.4 METHODS IN CELL CULTURE

2.41 CELL DISAGGREGATION

2.411 Isolation of Rat Uterine Epithelial Cells

This was done by a modification of the method of McCormack and Classer 

(1980). Uteri from immature rats (see sect 2.61) were first blotted and
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then slit longitudinally using a sterile scalpel. These were then
incubated in pancreatin/trypsin (see sect 2.324) at a ratio of 1 uterus/ml, 
for Ihr at 4®C, then Ihr at 20®C. This uterine suspension was then 

vortexed for lOsec (at minimum setting) using a ’whirlimixer’.

The supernatant containing the epithelial cell clumps was aspirated into 

another vial containing 1/10 vol of FCS. The uterine pellet was washed 

twice with PBS-A; the washes being added to the epithelial cells. These 

cells were centrifuged (500xg, 5mins), resupended in PBS-A containing 1/20 

vol PCS, then filtered through a 200jnm gauze to remove large tissue clumps. 

The filtrate containing epithelial cell-clumps was further purified by 

retention on a 35^m gauze, then backwashed into culture medium.

2.412 Disaggregation of Fibroblastic Uterine Cells from Immature Rats

This procedure was modified from that described by Williams & Gorski 
(1973). Uteri from immature rats (see sect 2.61) were first minced using 

crossed scalpels, then incubated in trypsin/Ca (see sect 2.321), at a ratio 

of 2 uteri/ml, for 30min at 37®C with occasional shaking. The tissue 
pieces were subsequently washed twice, by centrifugation and resuspension, 
in KRBG (see sect 2.23), then incubated in trypsin/collagenase (see sect 

2.323) for a further 30min at 37®C.

Further dissagregation was facilitated by gentle pipetting of the 

suspension using a sterile disposable plastic syringe (without a needle).
This process was repeated at intervals, whilst the cells were maintained at 
37®C, for a maximum of 30min, or until dissagregation was judged to be 
complete. The resulting cell suspension was centrifuged (SOOxg, lOmin) 
then resuspended in KRBG. The cell suspension was centrifuged again 
(SOOxg, 5min) then resuspended in culture medium (sect 2.36) containing 

1/10 vol methycellulose solution (see sect 2.231). The cells were gently 

pipetted again before filtering through: 200, 45 and 35/im gauzes. The 
concentration of cells in this monodisperse suspension after passage 

through the gauzes, was estimated by counting an aliquot in a 

haemocytometer (see sect 2.51).
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2.413 Disaggregation of Human Endometrial Epithelial Cells

This procedure is modified from that described by Kirk & Irwin (1980). The 
endometrial tissue (see sect 2.62) was minced using crossed scalpels, 

washed once in culture medium (with 5% FCS), then incubated in culture
medium (with 5% FCS) containing 200U/ml of collagenase in a sealed T25 

culture flask for >18hr at 20®C. It was found unnecessary to incubate the 

medium in an atmosphere containing carbon dioxide.

After this time, dispersion of epithelial cell clumps was done by gentle 

pippetting. The cell suspension was transferred to a universal bottle and 

allowed to settle under gravity for 5min. The top two thirds of the 

suspension (stromal-rich fraction) was aspirated and discarded; the 
remaining third (epithelial-rich fraction) was resuspended in fresh culture 

medium (5% FCS). This procedure was repeated twice. Finally, the 

epithelial fraction was centrifuged (200xg, 5min) and resuspended in 

culture medium'.

2.42 CULTURE CONDITIONS

All Primary cultures, in dishes or flasks, were kept at 37®C in a 

humidified incubator with an atmosphere of 5% (v/v) carbon dioxide-95%
(v/v) air. Cells set up as roller-cultures in winchester bottles, were 

gassed with the same atmosphere and rotated at 0.5rpm in a room maintained 

at 37®C. Cells were grown in culture media as described in sect 2.36. The 

volumes of culture medium used for the various culture vessels were: 0.5ml 
per 16mm diameter well, 2ml per 35mm diameter dish, 5ml per 5cm diameter 

dish (or T25 flask), 20ml per 10cm diameter dish or 200ml per winchester 

bottle. Initial seeding of the cell suspension into culture dishes or 
flasks was carried out using, the required number of cells in a volume of 

<lml using an automatic pipette. Any additional culture medium required to 

make up the final volume was then added.

2.421 Epithelial Cells

All epithelial cell clumps were allowed to attach to the substrate for 24hr 

before replacing the medium with the appropriate experimental medium,
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unless otherwise stated.

(a) Rat Uterine Epithelial Cells

otherwise indicated) was RPMI + 5% (v/v) FCS. Experimental medium was 

changed every 48 hours unless otherwise stated.

(b) Human Endometrial Epithelial Cells

1

Cell clumps (and glands) (sect 2.411), were seeded at a density equivalent

to one uterus per 35mm diameter dish. When other vessels were used the
’

same density of cells per unit area of the culture dish was maintained.
:

The medium used for both attachment of cells and most experiments (unless

These cells were seeded at a density of 15-20 clumps per 16mm diameter 
well. Culture conditions were as in sect 2.421(a), but cells were cultured 

in alpha-MEM medium. Supplementation of the medium is described in 
individual figure legends.

2.422 Rat Uterine Fibroblastic Cell Suspension
- f t

I
I

These cells (see sect 2.412) were seeded at an initial density of one 

million cells per 5cm diameter dish or 0.2 million cells per 16mm diameter 

well, or 100 million per winchester bottle. The medium was changed 24hr 
after initial seeding, and every 48hr thereafter. However, the medium was 

always changed 24hr before an oestrogen receptor assay (see sect 2.54).
... .

Deviations from this scheme are noted in the individual experimental 
details. The routine nutrient medium used for cell attachment was RPMI 
supplemented with 5% (v/v) FCS.

2.423 Growth Experiments

Cells were initially seeded in culture medium containing 5% (v/v) PCS.
Before the medium was changed to the experimental medium the cells were 
washed once with warm EBSS (see sect 2.24) then warm experimental medium 

was added. This medium contained any hormones or growth factors to be used 

in the experiment. The experimental medium was changed every 48hr unless 
otherwise stated. When steroids or retinoic acid (see sects 2.382, 2.383) 

were added, the final concentration of ethanol in media of both

s '
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experimental and control cultures was 0.1% (v/v).

2.43 FIXING & STAINING OF CELL MONOLAYERS

2.431 Giemsa Staining

(a) Fixation

(ii) Cells Cultured on Collagen Gels

These were incubated in two changes of methanol/PBS-A (1:1 v/v) for 

15min each, then in two changes of methanol for a further 15min each. The 

dehydrated gels were then air-dried at 37®C for >30mm.

(iii) Cells Labelled with pHj-Thymidine

Cells that were labelled with [^Hl-thymidine and cultured on glass or

incubation for >18hr, 
methanoKwithout TdR), two changes lOmin each.

This was done at ambient temperature. The dehydrated gels were
Q

subsequently air-dried at 37 C for >30min.
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Culture medium was aspirated and the cells washed, twice with either EBSS or 

PBS-A.

(i) Cells Cultured on Glass or Plastic

The cells were first briefly washed, and incubated in methanol/PBS-A 

(1:1 v/v), for lOrain. The cells were then briefly washed and incubated in 

methanol, for a further lOmin, then finally allowed to air-dry.

plastic, were treated as above (sect 2.431(a)(1)). Labelled cells cultured 
on collagen gels were treated as follows (note: methanol(TdR) is methanol 

containing lOmM TdR):
'-V

methanol(TdR)/PBS-A (1:1, v/v), two changes 15 min each,
.... .

methanol(TdR), two changes 30 min each, then a further change and



(b) Staining

The cell monolayer was covered in a working solution of giemsa prepared by 

diluting stock giemsa stain (see sect 2.395) 1/10 with tap water. After 

incubating for lOmin at ambient temperature the stained cell monolayer was 
washed thoroughly in tap water until no more colour could be detected in 

the washes.

2.432 Immunocytochemistry

Immunostaining with the anti-desmin and anti-cytokeratin antisera using the 

immunoperoxidase technique (sect 2.141) were performed by Dr Ian Brown in | |
the Department of Pathology of the Western Infirmary, Glasgow. All other 
immunocytochemistry was done using indirect immunofluorescence as follows 

as described below.
i

(a) Fixation

Cell monolayers grown on glass coverslips were washed in two changes of 
PBS-A, then incubated in pre-cooled methanol/acetone (1:1 v/v) at 4 C for 
5min. This was aspirated and the coverslips allowed to air-dry, and 

either processed immediately, or stored for a maximum of 1 week dessicated 

at Longer storage times were at -20®C with dessicant. |

Frozen sections of immature rat uterus (prepared by Mr Hector Cairns of the 

Department of Bacteriology, Western Infirmary Glasgow), were sectioned in 

OCT medium after freezing in liquid nitrogen. The sections were about 6̂ im 

thick. Cut sections were allowed to air-dry for a maximum of 15 minutes at /

room temperature, then fixed and stored as above. g

Cytospin preparations of cell suspensions (sects 2.411 & 2.412) were done 

using a ’Shandon Cytospin 11' set to maximum acceleration. The 
centrifugation time was lOmin at lOOOrpm. Cytospin preparations were then 

processed in a similar manner to cells grown on coverslips.
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(b) Incubation with Primary Antiserum

After fixation, specimens were incubated with the primary antiserum. All 

primary antisera were diluted to their working concentration in PBS-A 
containing 0.01% (w/v) BSA-V. The dilutions of primary antisera (see sect 

2.141) used were:

Anti-keratin 1/200
LE61 1/20

Anti-vimentin 1/10

Specimens were covered with a drop of the diluted primary antiserum and
incubated at 37®C for 30min in a humidified incubator, then washed in three
changes of PBS-A of 5min duration each.

(c) Incubation with Conjugated Antiserum.

After incubation with primary antiserum, specimens were labelled with 

fluorescein-conjugated antiserum (see sect 2.142). The conjugated 
antiserum was diluted 1/20 in PBS-A (without BSA-V) before use. The 

specimen was covered with a drop of the diluted conjugated antiserum and 

incubated at 37 C for 30min in a humidified incubator, then washed in three 
changes of PBS-A for five minutes each wash, and drained onto filter paper.

(d) Double Labelling with Fluorescein and Hoechst 33258

This was done by incorporating Hoechst 33258 at a final concentration of 

l^g/ml into the final washes after incubation with the conjugated antiserum 

(sect 2.432(c)). Note that if the specimen is mounted in 'Citifluor' some 
background autofluorescence occurs (see sect 2.432(e)) when using the 

filter combination suitable for viewing the Hoechst fluorescence.

I

■

(e) Mounting

Coverslips were mounted with the cells facing downwards. Initially, PBS- 
A/Glycerol (1:3, v/v) was used, although in later experiments 'CitiFluor*

(a commercial preparation of PBS/glycerol obtained from City University 

Chemistry Dept) was used, since this markedly inhibits bleaching of certain
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fluorescent dyes (eg fluorescein) by ultraviolet light. However,
'Citifluor' exhibits some autofluorescence when viewing specimens under 

conditions suitable for Hoechst 33258 fluorescence, but this is preferable 

to the bleaching of fluorescein which occurs in the absence of 'Citifluor'. 
Frozen sections were also mounted as above. For short-term storage (less 

than one week), specimens mounted in 'Citifluor' were sealed around the 

edges of the coverslip with DPX mounting medium (BDH), then stored in the 

dark at 4®C.

2,433 Preparation of Cells for Scanning Electron Microscopy

Cells to be processed for the SEM, were cultured on glass coverslips of 
10mm diameter. Processing for the SEM was done as follows:

(a) Primary Fixation in Glutaraldehyde

Stock glutaradehyde solution, 25% (w/v) (see sect 2.393) was diluted to 5% 
(w/v) with EBSS. The pH was then readjusted to '^7.2. This fixative was 

pre-warmed to 37®C before direct addition to an equal volume of medium 

covering the cells (these and subsequent, manipulations at 37®C, were done 
in an atmosphere of 5% (v/v) carbon dioxide-95% (v/v) air).

After 5min, all the medium was removed and quickly replaced with a pre­
warmed glutaradehyde solution (2.5% (w/v) in EBSS, pH ~7.2). This was 

maintained at 37®C for Ihr. Coverslips were then washed with three changes 

of 0.15M phosphate buffer (see sect 2.25) at ambient temperature. Cells 

were then post-fixed in osmium tetroxide.

(b) Post-Fixation in Osmium Tetroxide

Stock osmium tetroxide solution, 4% (w/v) (see sect 2.394) was diluted 1/4 

in 0.2M phosphate buffer (see sect 2.25), then added to the cell monolayer. 
This was allowed to stand at ambient temperature for Ihr. Coverslips were 
then washed in two changes of distilled water before dehydration.
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(d) Mounting and coating of specimen

Coverslips werd mounted (cells facing upward) on to 13mm aluminium stubs 
(Taab) using double-sided adhesive tape, then coated with gold in a 

sputter-coater (Polaron) at a setting of 750V and 25mA for 4min, The edges 

of the coverslips were painted-over with silver paint, to ensure good 
electrical conduction of the coated specimen with the aluminium stub.

2,44 MICROSCOPY

2.441 Light Microscopy

viewed using an Olympus IMT inverted research microscope. This was fitted 

with an Olympus 0M2 camera for photog 
Panatomic-X photographic film was used.

Cells grown on coverslips and mounted on glass microscope slides were 
viewed using an Olympus EHT microscope fitted with the same equipment for 
photography.
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(c) Dehydration

!
Fixed and postfixed rat uterine epithelial cells on 10mm diameter 

coverslips were dehydrated by freeze-drying from liquid isopentane, which
■ -r

was precooled by liquid nitrogen.

Fixed and post-fixed human endometrial cells on coverslips were dehydrated 
through a series of graded acetones: 30, 50, 70, 90, 95% (w/v in filtered 

distilled water), then AnalaR (two changes). Each incubation was of 5min 

duration. Coverslips were then put into a 'bomb' critical-point drier 

(Polaron) and flushed with liquid carbon dioxide every 15min for a period 
of Ihr. Finally the specimens were critical-point dried from liquid carbon 
dioxide.

Cells cultured in plastic dishes or flasks and stained with giemsa were

with an Olympus 0M2 camera for photography. Either, Ilford FP4 or



2.442 Fluorescence Microscopy

Fluorescently labelled cells were examined with a Lietz Orthoplan 

fluorescence microscope using ultraviolet illumination. Background 

fluorescence was reduced by the use of appropriate filters. Photographs 
were taken using either Kodak Ektachrome (daylight) film (400 ASA, uprated 

to 800 ASA) or Ilford HP5 film (uprated to a maximum of 1600 ASA).

Specimens mounted on 10mm diameter aluminium stubs, were examined using a
Philips SEM500 scanning electron microscope. Accelerating voltages up to 

20kV were used as necessary. Tilt angles from -20® to +10® were used 

Photographs were taken on Ilford HP4 film.

2.5 QUANTITATIVE PROCEDURES

2.521 ETN Buffer

lOmM EDTA, lOmM Tris-HCl, lOOmM NaCl, pH 7.0

2.522 Stock Hoechst 33258 Solution

A stock solution of Hoechst 33258, 100|ig/ml (w/v) in distilled water, was 

prepared and stored at 4®C in the dark for a maximum of 1 month.

2.443 Scanning Electron Microscopy (SEM)

2.51 CELL COUNTING

The concentration of cells in monodisperse suspensions were determined by 

counting an aliquot using a haemocytometer. A minimum of 200 cells were 

counted for each determination.

2.52 ASSAY OF DNA CONTENT OF CULTURED CELLS
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2.523 Standard DNA Solution

Calf thymus DNA, at ~1.5mg/ml (w/v) in ETN buffer, was dissolved by 

continuous stirring at 4® C for >18 hours. The actual concentration of this 

solution was determined spectrophotometrically by assuming that an 
absorbance of 1 unit at a wavelength of 260nm corresponds to a 

concentration of 50|ig/ml. The stock solution was then diluted to exactly
l.Omg/ml.

; |

2.524 Stock RNAse Solution

This was supplied as a stock solution at 51mg/ml (4160U/mg) by Worthington, 
see sect (2.15).

2.525 Methodology

Cell monolayers were washed in two changes of PBS-A, then solubilised by 

direct addition of lOO/al of SDS solution (0.2% (w/v) in ETN buffer) to cell 
monolayers in 16mm diameter wells. Solubilisation was monitored by phase 
contrast microscopy. Cells were incubated in SDS for 15 min at 37^C, with 

occasional vortexing, to ensure solubilisation. The lOCt̂ l aliquots were 

either stored at -20 C, or assayed immediately as follows:

To a 100/al aliquot of solubilised cells was added to 2.4ml of ETN buffer 

containing lOOng/ml of Hoechst 33258 and 5jag/ml of RNAse. This was 
thoroughly mixed then allowed to stand at ambient temperature for a further 

15min. The fluorescence enhancement at a wavelength of 450nm was then 

measured using a Hitachi Perkin-Elmer MPF-2A fluorescence spectrophotometer 
(from Grant Instruments). The excitation wavelength was set to 360nm and 

both slit widths to 20nm. No emission barrier filters were used. The

amount of DNA present was determined from a calibration curve constructed
;s'

using the standard DNA solution (sect 2.523).
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2.53 [^Hl-THYMIDINE INCORPORATION

2.531 Labelling with [^H]-Thymidine

Cells were incubated with [^H]-thymidine as indicated in individual figure 

legends.

2.532 Fixation

After labelling, cells were washed with two changes of PBS-A, then fixed 

using methanol (see sect 2.43 (a) (iii)}.

2.533 Autoradiography and Staining

(a) Gelatin Chrome Alum

The following were dissolved in 800ml of distilled water:
CrK(SO )̂2.12H2^0 5g, (40%)formaldehyde 5ml, photoflo 1ml. Then 5g of 
gelatin, previously dissolved in 200ml of hot ('̂ 60®C) distilled water, was 
added to the above solution.

(b) Methodology

The fixed cells were briefly immersed in gelatin chrome alum solution, well
o

drained, then air-dried. Cells were then immersed in warm (40 C) liquid
emulsion (previously diluted 1:3 with warm distilled water), and well
drained. The coating of emulsion was dried in a horizontal position using

a fan until the emulsion was judged to be dry (~ 15min). These
Oautoradiographs were exposed for 5 days at 4 C in light-proof boxes 

containing dessicant. After this time they were brought to ambient 
temperature then developed and fixed by immersion in the following 

solutions, for the times indicated:

Kodak D19 developer, 5min; 
distilled water, two changes, 30sec each;
Kodafix (diluted 1/4 with distilled water), 5min; 
tap water, three changes Imin each.

I"
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These autoradiographs were allowed to air dry before staining with giemsa 
(see sect 2.431(b)).

2.54 ASSAY OF OESTROGEN RECEPTORS IN CULTURED CELLS

These assays were done using rat uterine mixed cells (see sect 2.412) 
either from roller-cultures in winchester bottles (see sect 2.42) or from 

the pooled cells of two 10cm diameter dishes (’one-point’ assays).

2.541 Scintillation Fluids

(a) Toluene/PPO

5g of PPO dissolved in 1 litre of toluene.

(b) Triton/toluene

Toluene 1400ml, PPO 5g/l, POPOP 0.24g/l: Triton XlOO 600ml: 
ethanol 200ml.

2.542 Buffers

(a) HED Buffer

20mM Hepes, l.SmM EDTA, pH 7.4. This was made 0.25mM with respect to DTT 
on the day of assay.

(b) Hepes Buffered Saline 

0.15M NaCl, lOmM Hepes, pH 7.4

(c) DCC Suspension

0.25% (w/v) norit-A charcoal, 0.0025% (w/v) dextran T-70, suspended in 20mM 

Hepes, 1.5mM EDTA, 0.25M sucrose. This suspension was stirred gently for 
>18hr at 4®C before use.
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2.543 Preparation of ['%i]-Oestradiol Solutions

[^H]-oestradiol ImCi/ml; lOlCi/mmol was supplied in toluene/ethanol. An 

aliquot of 126^1 was evaporated to dryness using a stream of compressed 

air, then re-dissolved in 500/il of ethanol thereby giving a stock solution 
of 2.5jjM with respect to the [^HJ-oestradiol.

32jil of this stock solution was added to 1ml of HED buffer, vortexed, then 

divided into two equal aliquots. To one aliquot was added 16jil of ethanol.
To the other aliquot was added 16 1̂ of 0.25M diethylstilboestrol (DES)
(dissolved in ethanol). The volume of each aliquot was made up to 2.0ml 
with HED buffer. Further dilutions of these solutions were made in HED 

buffer containing 1.6% (v/v) ethanol.

2.544 Preparation of Homogenate

The following procedures were done on-ice using pre-cooled solutions, 
unless otherwise stated. Culture medium was aspirated from the cell 

monolayers which were then washed thoroughly in four changes of PBS-A.

(a) Cells Cultured in Winchester Bottles

These cells were scraped into 3ml of HED buffer using a rubber policeman.
The cells were maintained on ice for 15min, theflhomogenised using four 
strokes of a motor driven Kontes-Duall glass-glass homogeniser, with 

cooling after eveiytwo strokes. Cells further disrupted by passage

throagh a 25 gauge needle, five times. These were used in Figs 8.1, 8.2 & 8.3

(b) Cells Cultured in Plastic Dishes

These were used for Fig 8.4 The cell monolayer

from one 10cm diameter dish was scraped into 0.5ml of HED buffer, then 

centrifuged (200xg, 5min, 4®C). The supernatant was added to another 
monolayer of cells in a 10cm diameter dish and these cells scraped from the 
dish. The scrapings from the two dishes were pooled and kept on-ice for 

15min. Cells were then disrupted by passage through a 25 gauge needle five 

times. An aliquot was retained for DNA assay, as in sect 2.552.
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2.545 Separation of Nuclei and Cytosol

The homogenate prepared above was centrifuged (lOOOxg, 5min, 4 C) and the

supernatant retained as the cytosol fraction. The crude nuclear pellet was

resuspended by vortexing in Hepes buffered saline and centrifuged
o

again (lOOOxg, 5min, 4 C). The supernatant was discarded and the pellet
its original volume with . .resuspended in Hepes buffered saline by vortexing then

passage through a 25 gauge needle three times. Cytosol ond nuclear fractions are not from
the same preparation except for those in Fig 
8.4.

Diisopropylfluorophosphate (DPP, see sect 2.11) was dissolved in 

isopropanol to a final concentration of IM and stored at -20®C. DPP was 

routinely added to both nuclear and cytosol fractions at a final 
concentration of ImM with respect to the DPP.

2.546 Assay of Oestrogen Receptors 

(a) In Cytosol

then cooled on-ice. The concentration range of [^H]-oestradiol used was 

0.1 - S.OnM.
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"3To an aliquot of 150^1 of cytosol, 50;il of [ HJ-oestradiol solution was
oadded, mixed gently then incubated at 30 C for 60min. These samples were

3To determine the total amount of [ H]-oestradiol in the cytosol, an aliquot

of 50pl was transferred to a mini-scintillation vial and the volume made up
to 200|al with HED buffer. To the remaining 150^1 of cytosol, an equal
volume of DCC suspension (sect 2.542 (c)) was added and maintained on-ice
for a further 20min, with periodic mixing. The DCC was then pelletted by

ocentrifugation (lOOOxg, 5min, 4 C) then 200^1 was removed from the 
supernatant and transferred to a mini-scintillation vial. These vials were 

used to determine the amount of ’bound' [^H]-oestradiol in the cytosol.
The above procedure was repeated for each dilution of l^]-oestradiol used 
(with or without DES).

4ml of triton/toluene scintillant was added to all mini vials, then counted 

in channel no 1 H] of a Searle Mark III liquid scintillation counter at 
~30% efficiency.

ft
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(b) In Nuclear Suspension

To an aliquot of ISOjal of nuclear suspension, 50jil of pH]-oestradiol 
solution was added, mixed gently then incubated at 37®C for 30min. The 

concentration range of [^Hl-oestradiol used was 0.1 - S.OnM. Samples were 

cooled on-ice, vortexed then an aliquot of 100^1 was immediately added to 

5ml of ice cold saline (0.9% w/v in distilled water), containing 0.1% (v/v) 
Triton XlOO. This was vacuum-filtered through a pre-wetted Whatman GF/C

■/
I-

filter using a Millipore filter apparatus, then washed with 5 then 15ml of 

ice-cold saline (without Triton XlOO). GF/C filters were then transferred 

to mini-scintillation vials. These vials were used to determine the amount 
of l^Hj-oestradiol bound to nuclei.

:r

A further aliquot of 50 1̂ was removed from the nuclear suspension and 
transferred directly on to a dry Whatman GF/C filter, to determine the 

total amount of [ H]-oestradiol present in the nuclear suspension.

3The above procedure was repeated for each dilution of [ H]-oestradiol used
o

(with or without DES). All minivials were then dried in an oven at 60 C 
for >4hr, cooled to ambient temperature, then 4ml of toluene/PPO 
scintillant was added before scintillation counting, at ~45% efficiency.

(c) Data Analysis

Competition binding data was analysed by the method of scatchard (see 

Scatchard, 1949; Leake 1980), and linear regression analysis using the 
'minitab' statistics package. The statistical limitations of linear
regression of scatchard plots are recognised.

If

2.547 One-Point Competition Binding Assays

This procedure was similar to that in sect 2.546, except that only one 

concentration of [^]-oestradiol was used. The final concentration of
3
[ Hl-oestradiol in assay tubes was InM, the final concentration of DES was 

lOOnM.

I

■Ï
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2.55 DETERMINATION OF PROTEIN/DNA RATIO OF CULTURED CELLS

Cells cultured in 3.5cm dishes were rinsed three times in PBS-A, then
scraped into 1ml of ETN buffer using a rubber policeman. Cells were
disrupted by passage 10 times through a 25 gauge needle using a plastic 

syringe.

Four, 200^1 aliquots were prepared. Two aliquots were assayed for protein 

content {see sect 2.551) and the remaining two aliquots for DNA content 

(see sect 2,552).

2.551 Assay of Protein Content

Cells were first solubilised by the addition of 1/10 vol of 2M NaOH, 
followed by vortexing, then incubation at room temperature for 30 min. 1/10 

vol of 2M HCl was then added, vortexed, and then the sample was assayed for 

protein content using the 'Bio-Rad' micro protein assay procedure. Any 
further dilutions of samples were made in ETN buffer (sect 2.521). BSA-V 
(sect 2.11), dissolved in ETN buffer, was used as a protein standard.

2.552 Assay of DNA Content

Cells were first solubilised by the addition of 1/10 vol of 2% (w/v) SDS in 

ETN buffer (see sect 2.521), vortexing, then incubating at 37®C for 15 min. 
Further dilutions were made in ETN buffer as appropriate. The DNA assay 

methodology was as described in sect 2.525 with necessary adjustments of 

Hoechst 33258 and RNAse concentrations to allow for increased sample 

volume.

2.6 TISSUE & LIVESTOCK

2.61 RATS

Immature female rats (16-23 days) were from the Glasgow University colony 

of the albino Wistar strain. They were housed in animal quarters having a
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12hr light - 12hr dark cycle and allowed free access to food and water.

Rats were killed (in batches of five), by cervical dislocation following 

brief anaesthesia with chloroform. Uteri were trimmed free of any fatty 

tissue, excised, then collected in ice-cold sterile PBS-A.

2.62 HUMAN TISSUE

Endometrial normal and cancer tissues were obtained as currettings either 

at hysterectomy or dilation and curretage, from the Department of 
Gynecology at the Western Infirmary, Glasgow. Samples were collected under 
sterile conditions and kept on-ice in a dry sterile container during 

transport to the laboratory. Subsequently, samples were kept in RPMI 
medium containing antibiotics and 5% (v/v) FCS at ambient temperature, for 

a maximum of three hours before starting disaggregation (sect 2.413).

2.7 MISCELLANEOUS

2.8 DATA ANALYSIS

Where indicated, grouped data were subjected to analysis of variance.

Single parametric linear regression analysis was applied where indicated 

and the correlation coefficient quoted.

All statistics was done using the ’MINITAB’ statistics package.
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Sterile disposable scalpels (Gillette), were obtained from Macarthy 

Surgicals. Millex and Swinnex filters and adaptors were obtained from 

Millipore. GF/C and other filter papers were obtained from Whatman.
Disposable sterile plasticware was obtained from Sterilin Ltd.
Nylon gauzes (Nybolt, 200, 100, 45 and 35^m), were obtained from John 

Stanlar & Co (these gauzes were sterilised by immersion in 70% (v/v) 
ethanol for >10min, then washed in four changes of sterile distilled 
water). 'Chloros' was obtained from Durham Chemicals.
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PRIMARY CULTURES OF RAT UTERINE EPITHELIAL CELLS

3.1 INTRODUCTION

The best characterised primary cell culture system for the study of steroid 
hormone effects on the proliferation of normal rabbit uterine epithelial 
cells is that described by Gerschenson et al (1974, 1977, 1979). They have 

shown direct effects of DES and progesterone in serum-free medium 
supplemented with BSA and insulin (Gerschenson et al, 1974).

Unfortunately, most of the in vivo studies of steroid regulation of both 
cell proliferation and receptor levels, have been carried out using rats 

(see sects 1.5, 1.33 & 1.34). Because of inherent differences between the 

rabbit and rat systems (see sect 1.51), it is advantageous to establish a 

rat uterine epithelial cell culture system.

Primary cultures of both fibroblastic and epithelial cells derived from rat 
uteri have been described previously (Echeverria et al. 1980; Rassis et al. 
1984a, 1984b; Pietras & Szego, 1975; Sananes et al, 1978; Vazquez-Nin et 

1979; Vladimirisky et al, 1977). Echeverria et al (1980) and Vazquez- 
Nin et al (1979), described the culture of epithelial cells derived from 

intact and ovariectomised mature rats, and studied oestradiol effects on 
ribonucleoprotein structures. Echeverria et al (1980) described two 

morphologically distinct populations of epithelial cells, these were:
(1) Flattened cells possessing large nuclei with dispersed chromatin and 
multiple nucleoli. These cells were frequently hi- or multinucleated.
(2) Polyhedral cells grouped in spherical masses with denser nuclei and 

smaller nucleoli than flattened cells.

Other groups have described cell cultures isolated from decidualised rat 
uteri (Sananes et al, 1978; Vladimirisky et al, 1977). Vladimirisky et al 
(1977), described the presence of dispersed spindle-shaped cells and 

colonies of closely packed polygonal cells. They also reported the
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presence of bi- and multinucleated cells within colonies of cells. From 

autoradiographic Î^H]-TdR labelling studies, it appears that maximal 
labelling of colonies occured on days 2-3 of culture, but progressively 

declined afterwards. Cultures were non-viable after one week (Vladimirisky 

et al, 1977).

3.11 AIMS

None of the above studies on immature rat uterine primary cell cultures 

have attempted to study the effects of steroids under differing 

environmental conditions. It was with this aim that the studies described 
below were undertaken.

3.2 RESULTS

3.21 ESTABLISHMENT OF PRIMARY CULTURES OF RAT UTERINE EPITHELIAL CELLS

Epithelial cells were dissociated from immature rat uteri by an enzymic 

procedure using pancreatin and trypsin (see sect 2.411) and then 

established as primary cultures (see sect 2.42). Epithelial cells were 

isolated as a mixture of glands (see Fig 3.1(A) & 4.1(C)) and sheets of 

luminal epithelium (see Fig 4.1(A)). After seeding into growth medium, 
both the glands and luminal sheets lost their distinctive morphologies, 

such that after one or two hours in growth medium they appeared as 

indistinguishable cell-clumps. After about 18 hours in culture, small 
colonies of epithelial cells, migrated out from some of the cell clumps 
that were attached to the substratum. These monolayered colonies increased 

in area over the next two days. The increase in colony area was due to 

both an increase in the number of cells, and increased spreading of cells 
located towards the periphery of some colonies. Colonies varied in size 

markedly. Some small colonies proliferated and increased in size 

considerably, others did not.
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Fig 3,1 Rat Uterine Epithelial Cells In Vitro

Rat uterine epithelial cells were isolated as in sect 2.411. They were 

cultured under standard conditions (sect 2.42), for three days before 

fixing and staining with giemsa (sect 2.43).

Fig A (mag x40, phase contrast)
Freshly isolated epithelial cell-clumps. Glands are clearly visible.

Fig B (mag x200, giemsa stained)
Colony of well-spread cells, showing binucleation.

Fig C (mag x200, giemsa stained)
Colony of more rounded cells, which are mostly mononucleated. 

Fig D (mag x200, giemsa stained)
Two coalescing colonies of cells, showing differing extents of 
spreading.
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Under the light microscope, (at least) two distinct subpopulations of cells 

could be seen, based on their appearance after staining with giemsa. One 

subpopulation comprised cells which were extremely flattened with varying 
proportions of bi- and multinucleation (Fig 3.1(B)). The other 
subpopulation of cells were more rounded in shape, with a much lower 

incidence of bi- and multinucleation (Fig 3.1(C)). Flattened cells were 

frequently located towards the edge of larger colonies and mitotic figures 
were clearly discernible (see sect 3.221). Some colonies consisted mainly 

of flattened cells, whereas others were mainly rounded cells (Fig 3.1(D)). 
Colonies comprising mainly flattened cells, did not proliferate 
extensively.

After some 3-4 days in culture, the cytoplasm of some cells started to 

appear granular under phase contrast microscopy. Such cells then floated 

off into the medium. These floating cells did not reattach if seeded into 

fresh medium. Even mild trypsinisation of floating cells, did not increase 
the ability of floating cells to reattach when seeded into fresh medium. 
Eventually, (after about five days in culture) most cells had detached from 

the substratum and disintegrated. The degeneration of the remaining cells 

continued, but was not studied.

No obvious differences were evident between cells grown in FCS or HIDCCFCS, 

except that the efficiency of initial attachment of cells to the substratum 
was very low if HIDCCFCS was used.

3.22 PROLIFERATION OF RAT UTERINE EPITHELIAL CELLS IN PRIMARY CULTURE

Various methods were used to attempt to quantitate the rate of 
proliferation of rat uterine epithelial cells in primary culture.
Measurement of total DNA content per dish (see sects 1.43 & 2.52) gave 

anomalous results, in that they did not agree with obvious increases in 
cell numbers when observed visually. This was probably due to clumps of 
cells which initially attached to the substratum, but did not give rise to 

monolayered colonies. Such cell-clumps detached intermittently from the 

substratum during the period of culture, probably accounting for the wide 
variations in DNA content of cultures. Moreover, the presence of bi- and
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multinucleated cells may also complicate the interpretation of data 
obtained from a assay of total DNA content per culture.

Attempts made to obtain a monodisperse suspension of rat uterine epithelial 
cells using trypsin/EDTA (see Adams, 1980), so that cells in suspension 
could be enumerated (see sect 1,41), were unsuccessful. Ceils detached 

from the substratum as firmly cohesive cell clumps. Further mechanical 
dissociation of these clumps by vigorous pipetting, resulted in many 
ruptured cells. Furthermore, difficulty was found in harvesting all cells 

present in cultures that were two or more days old, leading to variable 
efficiencies of recovery.

3.221 Association of [%[]-TdR Labelling Pattern with Cell Shape 

Measurement of [^H]-TdR incorporation into DNA as monitored by

(1) The proportion of cells labelled with ["̂ Hl-TdR, unlike the amount of

autoradiography (see Adams, 1980; Aherne et al, 1977). Thus, changes in 

the relative proportion and/or physical locations, of these subpopulations 
can be monitored in response to stimuli.
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scintillation counting was not attempted, because of the considerable 

potential artefacts inherent in this method (see sect 1.452). The approach 

which was adopted to study the proliferation of rat uterine epithelial 
cells in primary culture, was f^H]-TdR incorporation into DNA, as monitored 

autoradiographically (see sect 2.53). The autoradiographic method has 

potential advantages over scintillation counting, for the following 
reasons:

label per cell, is not greatly influenced by changes in the specific 

activity of nucleotide pools (see sect 1.452). Pool size effects were 

further minimised in this study by the use of [^H]-TdR at a concentration 
of l^M, which will largely saturate the intracelluar pHl-dTTP pool, via 
the scavenger pathway (see sect 1.452).

(2) Proliferating and quiescent subpopulations of cells can be visually 

distinguished from each other by continuous labelling with [ H]-TdR, then

______



Fig 3.2 Proliferation of Rat Uterine Epithelial Cells in Primary Culture

Rat uterine epithelial cells were prepared for culture as in sects 2.421,
2.433. Cells were allowed to attach for 20 hr in RPMI medium + 5% (v/v)

o
FCS. The cells were then refed with fresh medium containing [ H]-TdR 

(l^Ci/ml, IpM). Cultures were fixed and processed for autoradiography 

(sect 2.431) at the times indicated. The stated times represent total time 

in culture.

Fig A 22 hr

Fig B 25 hr

Fig C 30 hr

Fig D 42 hr

Pig E 45 hr

Fig F 52 hr
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Fig 3.3 Heterogenous Labelling Patterns in Rat Uterine Epithelial Cell 

Cultures

Rat uterine epithelial cells were cultured as in sects 2.421, 2.433. After 

48 hr in culture, [^H]-TdR was added (final concentration l^Ci/ml, l^M). 
Cells were fixed and processed for autoradiography (sect 2.431} after a 
further 4 hr.

Fig A (mag x200, giemsa stained)

A large epithelial colony, showing differential labelling.

Fig B (mag x200, giemsa stained, phase contrast)
A large epithelial colony, showing differential labelling.

Fig C (mag x40, giemsa stained)
Low magnification view of labelling pattern in epithelial cultures.
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Fig 3.4 Labelling Pattern of Rat Uterine Epithelial Cells using 

t^Hj-Uridine with or without [^1-Thymidine

Rat uterine epithelial cells were cultured as in sects 2.421, 2.433. After 

48 hr in culture, [^H]-uridine (final concentration lOpCi/ml, O.^M) + /-  
[^H]-TdR (final concentration IpCi/ml, IpM) were added. Cells were 

labelled for 4 hr, washed in PBS-A (as in sect 2.431) then fixed in formal 
saline (sect 2.391) for 30min at room temperature. Fixed cells were then 
washed in three changes of PBS-A and further processed as in sect 2.391.

Fig A (mag xlOOO, giemsa stained)
Epithelial cell labelled with [^H]-uridine.

Fig B (mag x40, giemsa stained)
Epithelial colonies labelled with [^]-uridine.

Fig C (mag x200, giemsa stained)

Epithelial colonies labelled simultaneously with [^H]-uridine and 
i*H]-TdR.
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Autoradiographs of rat uterine epithelial cells after continuous labelling 

with [^Hl-TdR, are shown in Fig 3.2 (details in figure legend). The number 
of cells per culture which were labelled, increased with time; indicating 
that some cells were synthesising DNA and therefore proliferating (although 

see sect 1.443). However, a marked degree of heterogeneity in the physical 
locations of labelled and unlabelled cells within cultures (or even the 

same colony) was seen (see Fig 3.2). The extent of this heterogeneity was 

such that estimation of the overall proportion of labelled cells within 

individual cell cultures by random sampling of the population, was not 
statistically valid. Attempts to do so yielded widely differing values;

3.222 I^H]”Uridine Labelling Pattern

even when unacceptable degrees of subjectivity were used to 'choose' areas 

of colonies in which labelled and unlabelled cells were 'uniformly' 
distributed.

A similar heterogeneity of labelled and unlabelled cells was seen whether 

cells were cultured with either FCS or HIDCCFCS.

Heterogeneous labelling patterns, like those seen under continuous 

labelling conditions, were also seen when cells were incubated with shorter 
pulses of l^Hl-TdR, then processed for autoradiography. Fig 3.3 shows the 

labelling pattern seen after a 4 hr pulse of [^H]-TdR. Pulses of as short 

as 30 min still revealed a similar pattern, but since the number of 
labelled cells was substantially reduced with such short labelling times, 
the heterogeneity was not so apparent. Labelling times of less than 30 min 

resulted in so few cells being labelled, that determination of a labelling 
pattern was not possible.

As seen in Figs 3.3(A) & 3.3(B), flattened cells were predominantly labelled. 

These were commonly located towards the edges of larger colonies (see also 
sect 3.21).

Incorporation of [ H]-UR into fixed cells, largely reflects RNA synthesis, 
which is continuous during the majority of the cell cycle, except during 

mitosis (Mitchison, 1971). Fig 3.4(A) shows the subcellular distribution 
of grains in an autoradiograph of a rat uterine epithelial cell that was
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Fig 3.5 Rat Uterine Epithelial Cells Cultured on Collagen Gels: 
[^Hl'TdR Labelling Pattern

Collagen gels were prepared as in sect 2.371. Cells were cultured as in 

sect 2.42. After 48 hr in culture, [^H]-TdR was added to the medium 
(IjaCi/ml, l^M). Cells were processed for autoradiography as in sect 2.431, 
after a further 4 hr.

Fig A (mag x40, giemsa stained}
Epithelial colony on a collagen gel.

Fig B ' (mag x40, giemsa stained)
Epithelial colony on plastic (see Fig 3.3(C)).

Figs C & D (mag xlOO, giemsa stained)
Focal areas of labelled cells, cultured on a collagen gel. Note the 
darker staining of certain areas.
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labelled with pH]-UR for four hours, then processed for autoradiography 

(see legend to Fig 3.4). Labelling of cytoplasm and nucleoli indicated 

extensive incorporation of [^H]-UR into RNA (see Dormer, 1973). As 
indicated by Fig 3.4(B), heterogeneity in the labelling pattern produced by 

using l^Hl-UR, also occurred. However, consistent correlation between 
cell shape and [^H]-UR incorporation was not apparent. The reasons for 

this heterogeneous labelling pattern with [^H]-UR are unclear.

When rat uterine epithelial cells were labelled simultaneously with 

TdR and pH]-UR (see Fig 3.4(C)), some differential labelling resulted.
Some cells, which had only low levels of labelling with [^H]-UR, were 
heavily labelled with [^H]-TdR. This indicated that the heterogeneous 

I H]-TdR labelling pattern, does not merely reflect either general 
differences in precursor uptake between rounded and flattened cells, or 

differences in the efficiency of [^H] detection, owing to greater self 
absorption of radiation in rounded cells.

3.223 Rat Uterine Epithelial Cells Cultured on Collagen Gels

When rat uterine epithelial cells were cultured on attached collagen gels 

instead of a plastic substratum, a more uniform cell shape and [^H]-TdR 
labelling pattern were seen, as shown in Fig 3.5(A) (see figure legend for 

details, also compare Figs 3.5(A) & 3.5(B)). However, when attempts were 

made to quantitate the proportion of [^H]-TdR labelled cells grown on 

collagen gels, it was apparent that some degree of heterogeneity still 
remained. Some colonies showed areas in which there were foci of labelled 

cells. Many of these foci coincided with areas that also stained more 
heavily with giemsa (see Figs 3.5(C) & 3.5(D)). The lifetime of the cells 

cultured on collagen gels was not obviously different to that of cells 

cultured on plastic.
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3,3 DISCUSSION

3.31 ESTABLISHMENT OF PRIMARY CULTURES OF RAT UTERINE EPITHELIAL CELLS

The procedure described in sect 2.421 for the establishment of primary 

cultures of rat uterine epithelial cells, appears to satisfy the basic 

criteria required to justify the routine use of the method. Cells were
E

obtained in reasonable yields, purity and viabil|ty. Although the 

epithelial cells showed some surface damage due to the dissociation 
procedure; as seen in the scanning electron microscope {see sect 4.21), 
this was repaired after 24 hours in culture. Cells isolated by this 

procedure, were confirmed as being epithelial by their expression of 

cytokeratins, including the 'simple epithelial antigen’ (see sect 7.214),

3.32 PROLIFERATION OF RAT UTERINE EPITHELIAL CELLS IN PRIMARY CULTURE

Rat uterine epithelial cells in primary culture proliferated for up to four 

days, after which the cultures degenerated. While it was not possible to 

accurately estimate the number of cell divisions undergone by these 
epithelial cells in culture, the lifespan of these cells is consistent with 

that reported for in vivo studies {see sect 3.33). There was a marked 

heterogeneity in the distributions of proliferating and quiescent 
subpopulations of cells, when cultured on plastic substrata. This was 

related to cell shape in that DNA synthesis and mitosis was commonly 

associated with the flattened cells at the outer edges of colonies, but was 
much reduced in rounded cells typically located towards the centre of 

colonies. The relationship between [^H]-TdR incorporation into DNA and 

cell shape reported here, is consistent with both observations in other 
systems, and current hypotheses (see sect 1.643). This is further 

supported by observations reported here, that rat uterine epithelial cells 

cultured on collagen gels show a greater uniformity of cell shape and pHl- 
TdR labelling pattern.
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It is not clear whether the changes in ceil shape and [^H]-TdR labelling 

pattern observed in cells cultured on collagen gels is directly due to 
general properties of deformable substrata with increased permeabilty (see 

Reid & Rojkind, 1979), or to specific interactions of uterine epithelial 

cells with collagen. It is known that collagen metabolism of the mature 
rat uterus is under oestrogen, control (Dyer et al, 1980), and that 
collagenase is produced by primary cultures of rat uterine cells derived 

from post-partum uteri (Halme et al, 1980). However, because 

unfractionated cell types were used in these previous studies, the specific 
relevance to uterine epithelial cells can not be assessed (see sect 1.54).

Specific mechanisms by which cell shape may exert influences over 

proliferation are unknown. It is plausible that such mechanisms may 

involve the cytoskeleton (see sect 1.71; Alberts et al, 1983) or the 

redistribution of receptors on the cell surface (Dr C O'Neil, personal 
comm). The degree of occlusion of the basal cell surface of cells cultured 

on impermeable substrata may also be an important consideration in 

assessing effects of cell shape on proliferation (see sect 9.).

3.33 STEM CELL POPULATIONS

Observations of focal areas of proliferating cells in rat uterine 

epithelial colonies cultured on collagen gels, may indicate the location of 
glandular epithelial cells that may include a stem cell population (see 
below). It has been shown that similar focal areas of proliferating cells 

can be induced in the luminal epithelium of the rabbit uterus in vivo, in 

response to progesterone (see sect 1.51). Such focal areas are apparently 

associated with gland formation. Moreover, it has also been shown that a 

putative stem cell population may reside in the uterine glandular 

epithelium of both rabbits (see sect 1.51) and rats (Leroy et al, 1981).

The growth kinetics and lifespan of rat uterine epithelial cells in primary 

culture, reported here, may be physiologically relevant. Similar 

proliferation kinetics were observed during the reepithelialisation of the 
uterine lumen, after its exerimental ablation in the rat (Leroy et al,
1981). However, since extensive proliferation of myométrial cells also
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resulted, this may represent a 'non-specific' physical stimulus, and 

hormonal involvement may not be critical (Leroy et al. 1981). Stimulation 

of uterine cell proliferation has been noted as a distention-induced 

phenomenon (see sect 1.662).

Thus, proliferation of uterine epithelial cells might be triggered by 

either experimental ablation in vivo, or establishment in primary culture 
and as such, be independent of steroid hormone action.
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3.34 BINUCLEATION OF RAT UTERINE CELLS

Flattened cells exhibiting bi- or multinucleation, have been described 
previously in primary cultures of rat uterine cells, derived from 

decidualised uteri (Vladimirisky et al, 1977). However, although high 

levels of progesterone are necessary to both allow, and maintain, a 
decidual response in vivo, no exogenous progesterone was added to the 

primary cultures of 'decidualised' uterine cells, which still maintained 

extensive binucieation in vitro (Vladimirisky et al. 1977). Therefore, the 

observations of Vladimirisky et al (1977) are consistent with findings 

reported here, in that the maintenance of binucleated cells in vitro does 

not require the presence of physiological levels of progesterone. Indeed, 
the data reported here further suggest that the very process of cell 
disaggregation and establishment in culture, may be sufficient to induce 

binucieation without previous exposure to physiological progesterone 

levels.

In vivo, binucieation in cells of rat uteri is characteristic of a decidual 

cell response, but predominantly occurs in the stroma and not the 
epithelium (Finn, 1977). Moreover, the colonies of cultured rat uterine 

cells described here, are unambiguously confirmed as being epithelial in 
nature, since they express cytokeratins (see sect 7.21). Although the 

colonies of binucleated cells reported by Vladimirisky et al (1977) have a 
similar appearance to the epithelial cells shown here, their origin was not 

confirmed using other criteria.



Multinucleated cells are described in primary cultures of rabbit uterine 

cells (Gerschenson et al. 1974). In contrast to the rat, the presence of 

multinucleated cells in the epithelium of decidualised rabbit uteri, is a 

common finding (Gerschenson et al, 1974). Thus multinucleation in primary 
cultures of rabbit uterine epithelial cells may not be directly analogous 

to the situation in cultures of rat cells.

The phenomenon of bi- and multinucleation does, however, relate to the 
general problem of ploidy. Extensive polyploidy rapidly occurs in primary 

cultures of human endometrial epithelial cells, and DNA synthesis, rather 

than cell fusion, plays an integral role in this process of 
polyploidisation (Kirk & Clingan, 1980). However, in the cultures of human 

cells, bi- or multinucleation only accounts for a small proportion of 
polyploid cells (Kirk & Clingan, 1980). It remains to be investigated if 
mononucleated cells in cultures of rat uterine epithelial cells show 

polyploidy.

3.35 STEROID EFFECTS ON RAT UTERINE EPITHELIAL CELLS IN PRIMARY CULTURE

Studies of either oestradiol or progesterone effects on the proliferation 

of rat uterine epithelial cells in primary culture were inconclusive 

because quantitative estimates of proliferation rates were not possible.
Oestrogen-promoted proliferation rates in vitro, of cells from other 

systems (see sect 1.661) show a ~2-fold increase. It is therefore feasible 

that oestrogen-promoted proliferation of rat uterine cells occurs in the 

system described here, but escaped detection.

Further optimisation of experimental conditions may reveal conditions under 

which oestrogen-promoted growth is both measurable and optimal. The growth 
of epithelial cells on collagen gels may well be a critical step in the 
development of such conditions. The lack of 'direct' steroid effects on 

uterine epithelial cell proliferation are consistent with an 'indirect' 
mode of action of oestrogen (see sect 1.67). A role for growth factors in 
regulating the proliferative response of uterine cells has been recently 

advanced by the discovery and isolation of a potent uterine derived growth 

factor (see sect 1,672).
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3.36 CONCLUSIONS

Rat uterine epithelial cells have been established as primary cell cultures 

which proliferate extensively, but have a limited lifespan. Quantitation 

of cell proliferation was problematical and related to differential cell- 
spreading. The culture of rat uterine epithelial cells on collagen gels 

resolves some, but not all, of the heterogeneity in cell spreading and in
the distribution of proliferating and quiescent cells. This residual
heterogeneity is partially due to to 'focal areas' of proliferating cells. 
This may indicate the location of glandu|lar epithelial cells, that may 

contain a putative stem-cell population.

Lack of steroid effects on proliferation of epithelial cell cultures grown 
on plastic were noted. The stimulation of epithelial cell proliferation 

owing to the mechanical stimulus of disaggregation, as occurs after 

experimental ablation of the uterine luminal epithelium in vivo, may be 

sufficient to obscure any potential mitogenic effects of steroids.
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4. SURFACE MORPHOLOGY OF UTERINE EPITHELIAL CELLS IN VITRO

4.1 INTRODUCTION

4.11 RAT UTERINE LUMINAL EPITHELIAL CELLS

Changes in the surface morphology of the rat uterine luminal epithelium in 

vivo in response to hormonal stimuli, have been described (see sect 1.223). 

In one study of enzymically dissociated cell-plaques of luminal epithelium 

from immature rats (McCormack & Classer, 1980), it was reported that 
microvilli are preserved, even though the surface membrane suffers some 

damage during the treatment. The microvilli of luminal epithelium in vivo 

from immature rats described in that report (McCormack & Classer, 1980), 
were more prominent than previously documented (Anderson et al. 1975). 
This may be due to differences in the treatment of uteri prior to fixation. 
Anderson et al perfused immature rats with fixative prior to dissection of 
the uteri, whereas McCormack & Classer cut sections of uteri and then 

immersed them in fixative. Reduction of tensional forces in the lumen of 

uteri that have been sectioned before fixation, may account for the 
different appearance of the cells in the two reports. No reports exist of 

studies on the surface morphology of rat uterine cells in primary culture.

4.12 HUMAN ENDOMETRIAL EPITHELIAL CELLS

Changes in the surface morphology of the human endometrial luminal ‘ 

epithelium in vivo, in response to hormonal stimuli have been described 

(see sects 1.221 & 1.222), Microvilli have been observed on the surface of 

human endometrial epithelial cells, after collagenase dissociation, by 

using scanning electron microscopy (Kirk et al. 1978). Various primary 

cell culture systems from human endometria have been established (eg
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Fig 4.1 Scanning Electron Microscopy of Disaggregated Rat Uterine

Epithelial Cells In Vitro

A suspension of rat uterine epithelial cells was prepared as in sect 2.411, 

except that cells were retained in PBS-A. Cells were fixed by the addition 
of an equal volume of a 5%(v/v) glutaraldehyde solution (pH 7.2) in PBS-A. 

Cells were fixed at room temperature for 3 hr, then washed copiously with 
PBS-A: whilst being retained on a 20um nylon gauze (sect 2.7). The 

epithelial cell clumps were then allowed to adhere, under gravity, to a 

10mm diameter glass coverslip which had been coated with poly-L-lysine (by 

dipping briefly in an aqueous solution of poly-L-lysine (Img/ml), then 

immediately air-drying). Specimens were postfixed and further processed 

for scanning electron microscopy as in sect 2.433.

Cultured cells were processed for scanning electron microscopy as in sect

2.433.

Fig A (mag xl60)
Luminal epithelial cell plaques.

Fig B (mag xSOOO)
Higher magnification of cells in Fig A.

Fig C (mag x320)
An endometrial gland. (The flattened appearance of the uppermost 

cells is an artefact introduced by surface-tension forces)

Fig D (mag x5000)
Dome-shaped endometrial epithelial cells after 24 hours in primary 

culture under standard conditions (see sect 2.421). These cells form 

clumps towards the centre of colonies from which monolayers migrate 

outwards.

Fig E (mag x5000)
Monolayered cells growing outwards from cell-clumps showing a 

flattened topography and reduced microvilli.
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Fleming & Gurpide, 1981; Kirk & Irwin, 1980; Pavlik & Katzenellenbogen, 
1978; Papanicolaou et al, 1958; Satyaswaroop et al, 1979). However, study 

of ultrastructural features has been largely carried out using transmission 
electron microscopy (Liszcack et al, 1977; Satywaswaroop et al, 1979).
While microvilli can be studied using this technique, characteristic cell- 

surface changes, visible in response to hormonal stimulation, are more 
readily seen using scanning electron microscopy.

4.13 AIMS

The aim of this research is to study surface morphology of uterine 

epithelial cells in primary culture, with a view to assessing the value of 
surface morphology as a functional marker of differentiation and hormone 

responsiveness, in normal rat and human carcinoma cells.

4.2 RESULTS

4.21 SURFACE MORPHOLOGY OF RAT UTERINE CELLS IN VITRO

Scanning electron micrographs of both epithelial glands and luminal 

epithelial plaques, isolated from immature rat uteri using enzymic 
disaggregation (see sect 2.411 and figure legend for details), are shown in 

Fig 4.1. Isolated luminal epithelial plaques are shown in Fig 4.1(A), fine 

detail is visible in Fig 4.1(B). The relatively long microvilli and 
irregular surface appearance seen here, is probably due to the dissociation 

methodology. An endometrial gland is shown in Fig 4.1(C).

After 24 hours in culture, most cells have spread out to form a monolayer 

(see sect 3.21), but those towards the centre of colonies which remain as 
cell-clumps are 'dome-shaped', with numerous well-developed microvilli 
(Fig 4.1(D). The surface of these cells appears to have undergone 'repair' 
in culture, when compared to their appearance directly after isolation 

(compare Figs 4.1(D) & 4.1(B)). Cells which migrated out to form 
monolayers were extremely flattened. The preservation of surface detail of
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monolayered cells required the use of a freeze-drying method during 
processing for scanning electron microscopy, rather than critical point 
drying (see sect 2.433), and demonstrates the extreme sensitivity of these 

rat cells to fixation artefacts.

Monolayered cells, processed by freeze-drying, showed relatively sparse 

microvilli of varying lengths {Fig 4.1(E)). It is possible that the poor 
surface morphology of monolayered rat cells is a result of the extremely 

spread nature of these cells; although the presence of occasional rounded 

cells showing microvilli of a similar appearance to those on spread cells 

(see Fig 4.1(E)), tends to militate against this argument. However, see 

sect 4.32.

Further detailed study of the surface morphology of cultured rat uterine 
epithelial cells was not pursued, because of considerable technical 
problems in the preservation of surface detail. For example, surface 

detail was found to be more sensitive to components of the processing 
procedure than to any hormones added in culture. Generally, most cultured 

cells are extremely sensitive to the osmolarity of the fixative buffer, 
which should be isotonic to avoid swelling or shrinkage artefacts (Brunk et 
al, 1981). However, these rat uterine cultures (but not the cell 
suspensions) were unusually sensitive to even the composition of the buffer 

(eg EBSS/MEM vs phosphate buffer). The best results were obtained by 

adding glutaraldehyde (pH ~7.4 in BBSS) directly to medium covering the 
cells, see sect 2.433. Such extreme sensitivity was not found to be a 

problem with cells cultured from specimens of human endometrial carcinoma; 

where standard processing procedures for cultured cells could be used (see 
sect 2.433; Bell & Revel, 1980; Boyde et al, 1972; Brunk et al, 1981).

4.22 SURFACE MORPHOLOGY OF HUMAN ENDOMETRIAL CARCINOMA CELLS 
IN PRIMARY CULTURE

Scanning electron microscopy was carried out on two specimens of human 
endometrial carcinoma, established as primary cultures. Three categories 

of cell could be defined in these cultures by using scanning electron 

microscopy:
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Fig 4.2 Scanning Electron Microscopy of HEC Cells in Primary Culture:

Different Cell Morphologies.

HEC cells were cultured in alpha-MEM medium with 5%{v/v) PCS for the first 

24 hours (see sect 2.421). This was then changed (after washing with BBSS) 
to 2%(v/v) HIDCCFCS. Cells were processed for scanning electron 

microscopy (sect 2.433) after a total of 5 days in culture.

Fig A (mag x2500)

Dome-shaped cells in clumps towards the centre of colonies (category-1 

cells: see sect 4.22).

Fig B (mag x2500)
Well-spread cells showing complex surface features. Note the 

arborization (branching) of some microvilli (category-2 cells, see 

sect 4.22),

Fig C (mag x2500)
Well-spread cells showing simple surface features (category-3 cells, 

see sect 4.22).

Fig D (mag x5000)
Higher magnification view of category-2 cells, showing fine detail of 

arborized microvilli (see Fig B).
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Fig 4.3 Scanning Electron Microscopy of HEC Cells in Primary Culture:

Effects of Added Steroids

HEC cells were cultured in alpha-MEM with 5%{v/v) FCS for the first 24 

hours, washed with EBSS once, then refed with alpha-MEM containing 10%(v/v) 

HIDCCFCS and any added steroids (see sects 2.421 & 2.423). Cells were then 

processed for scanning electron microscopy as in the legend to Fig 4.2.

Fig A (mag x2500)
Category-2 cells in the absence of added steroids (in the presence of 

0.1%(v/v) ethanol).

Fig B (mag xlO.OOO)
Higher magnification view of cells in Fig A.

Fig C (mag x5000)
Category-3 cells in the absence of added steroids (in the presence of 

0.1%(v/v) ethanol).

Fig D (mag x2500)
Category-2 cell (centre) and category-3 cell (bottom edge) in the

presence of lOOnM oestradiol.

Fig E (mag xl0,000)
Higher magnification view of category-2 cell in the presence of lOOnM 

oestradiol (compare with Fig B).





Fig 4.4 Scanning Electron Microscopy of HEC cells in Primary Culture:

Effect of Added Steroids

Cells were treated exactly as in the legend to Fig 4.3

Fig A (mag x2500)
Category-2 cells (see sect 4.22) in the presence of l;iM MPA.

Fig B (mag xl0,000)
Higher magnification view of cells in Fig A (compare with Fig 4.3(B) 
(no added steroids) and Fig 4.3(E) (lOOnM oestradiol)).





(1) Dome-shaped cells (Fig 4.2(A)), located in clumps towards the centre of colonies 

(category-1 cells).

(2) Well-spread monolayered cells with complex surface features (eg Figs 

4.2(B) & 4.2(D)), which were less common towards the very edge of colonies.

The predominant surface feature was arborization of the microvilli - 
(category-2 cells).

(3) Well-spread monolayered cells with simple surface features (eg Fig 

4.2(C)). These cells showed simple microvilli with little or no arborization - 
(category-3 cells).

In experiments where one of the carcinomas was cultured in the presence of 
different steroids, the most obvious changes were seen in arborized cells 
(category-2 above). Changes in surface morphology in réponse to steroids 

were not obvious in dome-shaped cells (category-1 above) and only minor in 
well-spread cells with simple surface features (category-3 above, see Figs
4.3 & 4.4).

When human endometrial carcinoma cells were cultured in the presence of 10%
(v/v) HIDCCFCS alone (data not shown) or in the presence of 0.1% (v/v) 
ethanol (Fig 4.3), microvilli on the surface of category-3 cells were 

poorly developed (Fig 4.3(C), microvilli on category-2 cells showed some 

degree of arborization (Fig 4.3(A) & 4.3(B)). ’Simple’ microvilli on 
category-2 cells were similar in appearance to those on category-3 cells 

(compare Figs 4.3(B) & 4.3(C)).

Cells cultured in the presence of 10% (v/v) HIDCCFCS and lOOnM oestradiol 
(Figs 4.3(D) & 4.3(E)) showed an increase in the length of microvilli in 

category-3 cells, and an increased frequency of arborization on category-2 

cells (Figs 4.3(D) & 4.3(E)). The size of arborized microvilli did not 
appear to change observably in either the absence (Fig 4.3(B)) or presence 

(Fig 4.3(E)) of added oestradiol. Since the proportions of cells of 
differing morphologies were not counted, the possibility that oestradiol 
(or MPA, see below) converts cells from ’one’ category to another, can not 

be excluded.
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Fig 4.5 Scanning Electron Microscopy of HEC Cells in Primary Culture:

Effects of Serum-Free Medium and MPA

Cells were treated as in the legend to Fig 4.3, except that after 24 hours
cells were refed with alpha-MEM without any serum supplementation.

Fig A (mag x2500)

Well-spread cells in serum-free medium without added MPA (with added 
ethanol, 0.1%(v/v)}.

Fig B (mag x5000)

Higher magnification view of cells in Fig A.

Fig C (mag x2500)
Well-spread cells in serum-free medium with l^M MPA.

Fig D (mag x2500)

Cells treated the same as in Fig C (different field of view).

Fig E (mag x20,000)
Higher magnification view of cells in Fig D, showing arborized 

microvilli and possible secretory material.



i ,  L * '  i T y



4.3 DISCUSSION

4.31 HUMAN ENDOMETRIAL CARCINOMA CELLS IN PRIMARY CULTURE

unclear, but may be related either to difficulties in observing surface

1 1 1

Cells cultured in the presence of 10% (v/v) HIDCCFCS and l^M medroxy 

progesterone acetate (MPA), showed slightly shorter microvilli in both 

category-2 and category-3 cells than in the presence of oestradiol (Fig
4.4). This is more obvious with simple, than with arborized, mic/bvilli 
(compare Fig 4.4(B) with 4.3(D)). The frequency of arborization on 

category-2 cells exposed to MPA was variable, but usually greater than in 
the absence of steroids. A characteristic feature of category-2 cells

exposed to MPA, compared to other hormonal regimes, was an increased 
incidence of surface blebbing within arborized structures (Fig 4.4).

.Microvilli on the surface of HEC ceils cultured in serum-free medium (Fig
4.5), were characteristically short and stumpy, and organised into a more 

regular 'array' than existed on HEC cells cultured in the presence of 
serum. This was particularly evident in cells that were not exposed to 

steroids (Figs 4.5(A) & 4.5(B)). It was very difficult to distinguish 

category-2 and category-3 cells under these conditions, since surface 

specialisations were not obvious. However, in the presence of IjpM MPA, 
category-2 cells showed some surface specialisation, although the extent 
varied from merely clustering of short stumpy microvilli (Fig 4.5(C)), to 

well-developed arborized structures (Fig 4.5(D)). Some droplets of 
presumably secretory material were evident in cultures exposed to MPA (Fig 
4.5(E)).

:.;:s
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■
The data presented here suggest that HEC cells in primary culture retain 

surface morphology characteristic of well-differentiated luminal epithelial 
cells, responsive to oestrogen and progestins. A significant finding in 
these experiments, was that dome-shaped cells, located in clumps towards 

the centre of colonies, failed to show any obvious surface changes in 

response to hormonal stimuli in vitro. Reasons for this observation are

■II



changes, owing to the rounded shape of the cells, or to genuine 

unresponsiveness of 'dome-shaped' cells to exogenous hormonal stimulation 

in vitro. In the latter case, it is not clear whether a rounded cell-shape 

affects the in vitro responsiveness of cells to hormones (eg sect 1.643), 
or whether this represents difficulty to fully adapt to an in vitro

environment. The fact that the dome-shaped cells failed to spread and form
a monolayer after even five days in culture, indicates reluctance to adapt 
to an in vitro environment.

Medroxyprogesterone acetate (MPA) in pharmacological doses, is reported to 

cause a profound decrease in the length and number of microvillus 
structures on responsive HEC cells in vivo (Ferenczy, 1977, 1980; Stenback, 
1982). Such changes are often accompanied by surface 'blebbing' and 
appearance of secretory droplets; indicating a secretory morphology. The 
data presented here suggest that MPA when added exogenously to primary 

cultures of HEC cells, can promote a similar response in vitro to that seen 

in vivo. This may be useful clinically (see sect 4.4).

HEC cells when cultured in serum-free medium showed short stumpy microvilli
with little or no complex surface structures (eg arborization). However, 
when MPA was added to culture medium, surface structures similar to those 

seen on cells with a secretory morphology in vivo, were observed. Thus, 
even though the serum-free conditions used here were probably not optimal, 
MPA alone was able to induce effects on surface morphology, suggesting that 
MPA has a direct effect on these cells.

4.32 RAT UTERINE CELLS IN PRIMARY CULTURE

Uterine epithelial cells were isolated from immature rats and established 

as primary cultures. Cells growing as a monolayer, showed poor surface 

morphology when compared to clusters of dome-shaped cells towards the 

centre of colonies. Monolayered cells were extremely flattened and 
surface details were very sensitive to fixation artefacts during processing 

for scanning electron microscopy. Surface changes on either monolayered or 
dome-shaped cells, were not evident in response to hormonal stimuli ^  

vitro. Dome-shaped cells were not evident after some time in culture, so
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that after three days all cells were monolayered.

The reasons for the degeneration of surface morphology of rat endometrial 
epithelial cells growing as a monolayer are unclear, but may be a result of 
the extremely flattened topography of these cells combined with an 

'unfavourable' environment {see below).

When cells spread out from a rounded state (resulting from either 

trypsinization or mitosis), reserve membrane, stored in blebs and 

microvilli, is used to provide the necessary increase in cell surface area 

(Erickson & Trinkaus, 1976; Pasternak, 1980). This results in either loss 

of, or a considerable reduction in the density and size of, microvilli and 

membrane blebs. Thus the well-developed appearance of microvilli on the 
surface of dome-shaped cells, when compared to those on the surface of 
monolayered cells, of both rat and human endometrial cells in primary 

culture reported here, may indicate a similar mechanism. However, 
superimposed.on this effect, particularly in the case of the rat cells, may 
be the inabilty of monolayered cells to fully adapt, and respond, to these 

culture conditions: resulting in defective regulation of the density and 

size of surface microvilli. In HEC cultures this was not as problematical 
as in cultures of rat cells.

In further support of this argument is a recent report which suggests that 

epithelial cell-clumps produced by primary tissue dissociation, may retain 
a microenvironment similar to that existing in vivo, by the formation of 
impermeable junctions (Merk et al, 1984). Hence the coincident effects of 
an increased sensitivity of cells to the in vitro environment as they grow 
out to form a monolayer, and the spreading phenomenon itself, may cause the 

extensive degeneration of the microvilli in monolayered rat uterine 

epithelial cells.

4.33 CONCLUSIONS

Primary cultures of epithelial cells derived from specimens of HEC showed 

complex surface morphology which changed in response to oestradiol and MPA 

in a manner similar to that in vivo. This may be a useful diagnostic tool
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in the assessment of both the hormone responsiveness, and state of 
differentiation of individual endometrial carcinomas. Both control and 

experimental cultures, can be derived from the same tissue sample, so 

dynamic effects of hormones and drugs may be more easily monitored than in 

studies carried out directly on tissue samples (eg Stenback, 1982).

Rat uterine cells in primary culture showed poor surface morphology when 

growing as a monolayer. These cells were extremely flattened, and careful 
measures needed to be taken to ensure preservation of surface detail during 

processing for scanning electron microscopy. The reason for these 

phenomena is unknown, but may reflect poor adaption of these cells to the 
cell culture conditions used.
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5. A MICROASSAY FOR DETERMINATION OF DNA CONTENT OF CULTURED CELLS
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5.1 INTRODUCTION

As discussed previously, (sects 1.432, 1.433} microassays of DNA content 

utilising the fluorochrome Hoechst 33258, appear to have some advantages 

over other methods. Important considerations in the use of such a 
procedure for the determination of DNA in homogenates or solubilised cells 

are:

(1) Quantitative and reproducible solubilisation of DNA.
(2) Preservation of the integrity of DNA.
(3) Accesibility of DNA in chromatin to the dye.
(4) Inhibition of endogenous DNAse activity.
(5) Maintenance of both the fluorescence and specific binding properties

of the dye.

Various extraction procedures have been used in conjunction with 

fluorochrome dyes, including: ammonium hydroxide-Triton XlOO (Downs &
Wilfinger, 1983), sodium hydroxide-Triton XlOO (Sorger & Germinario, 1983), 
sonication (Brunk et al, 1979), SDS (Cesarone et al, 1979) and 2M sodium 
chloride (Labarca & Paigen, 1980).

The use of sodium hydroxide is undesirable due to possible dénaturation of 
the DNA with consequent loss of some of the fluorescence enhancement.

Ammonium hydroxide is a weaker base than sodium hydroxide, but is an 
efficient extraction agent for DNA (Downs & Wilfinger, 1983). The use of 
SDS may also have advantages, since this detergent is efficient at 

disrupting cells, and, when diluted to concentrations of <0.001% (w/v), is 

reported to give little interference with either the DNA-binding or 
intrinsic fluorescence properties of Hoechst 33258 (Cesarone et al, 1979).
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FIG 5.1 E ffect of a Constant Excess of RNA or BSA on the

Hoechst 33258-DNA Interaction.

BSA-V or RNA (sect 2.11) were dissolved at a concentration of Img/ml in ETN 

buffer (sect 2.521) by stirring at 4^C (with readjustment of pH as 

necessary to maintain pH 7,0), and stored at -2(PC.

Either lOpg RNA or lOyig BSA-V was added (as Indicated) to 1, 3 or 5pg of 
DNA (sect 2.523). 500ng of Hoechst 33258 (sect 2.522) was then added and
volumes made up to 2.5ml with ETN buffer.

Fluorescence enhancement was measured as in sect 2.525.

'O’ represents DNA without RNA or BSA (ie control)

Values represent the mean of 3 determinations+SD.

No significant difference was found between control and experimental for 

each level of DNA.
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Fig 5.2 E ffect of Increasing Amounts of RNA on the Hoechst 33258-DNA

Interaction.

Either 50, 100 or 500 ;jg of RNA (see legend to Fig 5.1) was added to 500ng 

of Hoechst 33258. 3^g of DNA (sect 2.523) +/- lOfig of RNAse (sect
2.524) were also added (as indicated) when volumes were made up to 2.5ml. 
Incubation was carried out at ambient temperature for 30 min, then 
fluorescence enhancement was measured as in sect 2.525.

without RNAse

with RNAse

Fig A Fluorescence due to RNA in the absence of DNA

Fig B Fluorescence due to RNA in the presence of DNA

Values represent the mean of 3 determinations ^ SD.

(+) P > 0.05 (treatment vs control)
(++) P > 0.001 (treatment vs control)
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Fig 5.3 Effect of Increasing Amounts of BSA-V or RNAse on the 

Hoechst 33258-DNA Interaction

RNAse {sect 2.524) or BSA-V (see legend to Fig 5.1) were added 500ng of 
Hoechst 33258 (sect 2.522) with or without 3pg of DNA (sect 2,523).
Volumes were made up to 2.5ml, incubated at ambient temperature for 30 min, 
then the fluorescence enhancement was measured as in sect 2,525.

with 3pg DNA 

without DNA

Values represent the mean of triplicate determinations+ SD.

No significant differences were found due to any RNAse or BSA-V treatments.



5.2 RESULTS

5.21 INTERFERENCE OF RNA OR BSA WITH THE INTERACTION BETWEEN 

- HOECHST 33258 AND PURIFIED DNA

Constant amounts of BSA or RNA {10|ig) did not significantly affect the 

fluorescence enhancement of Hoechst 33258 on binding to varying amounts of 
DNA, as shown in Fig 5,1 (see sect 2,52 and figure legend for details).
Any possible contamination of either RNA or BSA by DNA, was not taken into 

account.

Significant fluorescence enhancement of Hoechst 33258 by RNA resulted when 

RNA was present in relatively large amounts (>50pg). Most of this 
fluorescence was removable by treatment with RNAse, as shown in Fig 5.2(A) 
(see 2.52 and figure legend for details). The effect of RNA, after 

treatment with RNAse, was only significant with >100pg RNA per tube (Fig 

5.2(A)).

In the presence of 3pg of DNA, additive effects of RNA on Hoechst 33258 

fluorescence enhancement were seen. Again, most of the fluorescence due to 
RNA was removable by addition of RNAse, as shown in Fig 5.2(B) (see figure 

legend for details), and was only significant when the RNA/DNA ratio 

exceeded about 30 (see Fig 5.2(B)). Such conditions are unlikely to exist 
in cellular homogenates or whole-cell lysates, where RNA/DNA ratios are 
usually not in excess of five-fold (Bentle et al, 1981).

RNAse alone (up to 50pg) was found not to affect the fluorescence 

properties of Hoechst 33258, in either the absence or presence of DNA, as 

shown in Fig 5.3(A) (see sect 2.52 and figure legend for details). A 
similar result was obtained with BSA (see Fig 5.3(B)). Neither RNAse nor 
BSA were checked for contamination with DNA.
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Fig 5.4 Effect of Various Solubilising Agents on the Hoechst 33258-DNA

Interaction.

lOOpl of solubilising agent (see below) were added directly to either: lOOpl 
ETN buffer or 100^1 DNA solution (lOpg/ml, see sect 2.523), or to a 
monolayer of Hela Cells grown in 16mm diameter dishes (and washed in PBS-A 
twice before use, see sect 2.525).

Solubilisation was carried out by incubation at 37  ̂C for 15 min, with 
occasional vortexing (samples containing ammonium hydroxide were incubated 

in sealed tubes, and neutralised with HCl after the incubation). Volumes 
were made up to 2.5ml. Further processing and fluorescence measurements 

were made, as in sect 2.525.

Solubilising agents were: 0.2% (w/v) SDS in ETN buffer (SDS)
IM Ammonium Hydroxide (NĤ )̂
1% (w/v) Deoxycholate (DOC)
ETN buffer alone (ETN)

Fig A Relative Effects of Solubilising Agents on Intrinsic Hoechst
33258 Fluorescence and Interaction with DNA

Fig B Relative Efficiency of Solubilising Agents on Monolayers of

HeLa Cells

Values represent the mean of triplicate determinations iS D .

(+) P > 0,05 (treatment vs control)
(++) P > 0.001 (treatment vs control)
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Fig 5.5 Linearity of the Hoechst 33258 DNA Assay

The fluorescence enhancement due to the Hoechst 33258-DNA interaction was 
measured in the presence or absence of a final concentration of 0.008%
(w/v) SDS. The amount of DNA was varied in the range 0.1-5pg per tube. 
Tubes in Fig 5.5(A) contained 240ng Hoechst 33258 and tubes in Fig 5.5(B) 
contained 600ng Hoechst 33258. All volumes were made up to 2.5ml.

O without SDS

' e  with SDS

Points are the mean value of duplicates.

Regression lin e  p lotted  for assay without SDS,
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Fig 5.6 Quantitativity of the SDS Solubilisation Procedure

Varying numbers of cells were seeded in 16mm diameter wells, then assayed 

for DNA content (sect 2.525) after the indicated time.

Fig A HeLa Cells
HeLa cells were allowed to attach in culture medium (MEM + 10% newborn 

calf serum) for 18 hours before assay.

Fig B Rat Uterine Fibroblasstic Cells
Rat uterine fibroblastic cells (sect 2.422) were cultured for a total 
of 4 days before assay (see sect 2.422). Experimental medium was RPMI 
supplemented with 5% (v/v) FCS.

Each point is the mean value of 4 dishes ̂  SD.
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5.22 VALIDATION OF A SOLUBILISATION PROCEDURE FOR USE WITH CULTURED 

CELLS

Under the conditions used (see legend to Fig 5.4), SDS was found to give 

minimal interference with the Hoechst 33258-DNA interaction (see Fig 

5.4(A)). Both ammonium hydroxide and deoxycholate interfered with the 
assay to a measurable extent (Fig 5.4(A)). Furthermore, under the 

conditions used, SDS was found to be the best solubilising agent for use on 

cultured cells, giving > 15-fold increase in fluorescence enhancement when 
compared to ETN buffer alone (see Fig 5.4(B)).

This DNA assay (sect 2.52) was found to be linear in the range 0.1-5jig DNA 
in the presence of SDS at final concentration of 0.008% (w/v) (see Fig

5.5). However, the DNA/Hoechst 33258 ratio (w/w) must not exceed 10 

(data not shown). The solubilisation of DNA from cultured cells, using 
0.2% (w/v) SDS in ETN buffer, was found to be quantitative, as shown in 

Fig 5.6 (see figure legend for details). This was demonstrated with L929 

cells (data not shown), HeLa cells and rat uterine fibroblastic cells (see 
Fig 5.6).

5.3 DISCUSSION

Data presented here, describe factors influencing the determination of the 

DNA content from cultured cells (or homogenates), based upon the 
enhancement of fluorescence seen when the fluorochrome dye Hoechst 33258 
binds to DNA. The final procedure (sect 2.52) provides a simple and 

reliable assay methodology which is reproducible, sensitive and fast. 
Solubilisation of cultured cells with SDS is recommended, but the final 
concentration of SDS in the assay must not exceed 0.01% (w/v). It should 

be noted that, in any DNA assay, the standard DNA should be calibrated 

spectrophotometrically (as described in sect 2.52). Gravimetric DNA 

determinations are reported to be 25-30% higher than spectrophotometric 

estimates, presumably due to the highly hygroscopic nature of DNA (Downs & 

Wilfinger, 1983), Interference of RNA on the DNA assay, described in sect 
2.52, was found not to be a serious problem if RNAse treatment was used.
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Although it is known that chromosomal proteins can limit the Hoechst 33258- 
DNA interaction, the use of SDS should reduce or eliminate this problem, by 

disrupting chromatin structure. However, even if the conditions employed 

in this assay (0.2% SDS for solubilisation) do not make the DNA fully 

accessible to the dye, then this is only likely to be a serious limitation 

at the lower limits of sensitivity of the assay. These lower limits have 
not been properly defined but are <50ng DNA (data not shown).
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6. PROLIFERATION OF RAT UTERINE FIBROBLASTIC CELLS IN PRIMARY CULTURE

6.1 INTRODUCTION

6.11 PRIMARY CULTURES OF FIBROBLASTIC CELLS FROM IMMATURE RAT UTERI

In vivo, uterine stromal and myométrial cells from immature rats show 

increased rates of proliferation in response to oestrogen (see sect 1,52 &
1.53). It is unclear whether such oestrogen-induced proliferation is a 
result of direct or indirect effects (see sects 1,66; 1.67).

A primary cell culture system of immature rat uterine fibroblastic cells, 
similar to the one developed here, has been very recently described (Kassis 

et al, 1984a, 1984b). However, effects of oestradiol on cell proliferation 

were not studied under varying environmental conditions, and no attempts 
were reported to experimentally verify the origin of the cells.

6.12 AIMS

The primary aim of the study undertaken here was to discover if direct 
effects of oestradiol on cell proliferation of rat uterine fibroblastic 
cells could be seen under varying conditions.
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Fig 6.1 Rat Uterine Fibroblastic Cells In Vitro

Rat uterine fibroblastic cells were disaggregated to give a monodisperse 
suspension as in sect 2.412, then cultured as in sect 2.422.

Fig A (mag xlOO, phase contrast) 

Monodisperse suspension of fibroblastic cells.

Fig B (mag x200, giemsa stained)

Rat uterine fibroblastic cells after 4 days in culture.
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6.2 RESULTS

6.21 ESTABLISHMENT OF PRIMARY CULTURES OF RAT UTERINE FIBROBLASTIC CELLS

Fibroblastic cells were disaggregated from minced immature rat uteri by an 
enzymic procedure using trypsin and collagenase {see sect 2.412), then 

established as primary cultures. Fibroblastic cells were isolated as a 
monodisperse suspension (see Fig 6.1(A)). Typical cell yields were of the 

order of about 10 million cells per uterus. This represents a recovery of 
~25%, based on an estimate of about 40 million cells per whole uterus (of 
which 90% are stromal/myométrial in the immature rat uterus, see sect 1.54;
Williams & Gorski, 1973). The viability of these cells as determined by 

trypan blue exclusion was routinely greater than 90%, but this value was 

found to be unrelated to the approximate proportions of cells which 
attached and spread in culture.

An alternative procedure for cell disaggregation, which employed 
collagenase alone at low concentrations (0.1%) in nutrient medium (see 

Muller & Wotiz, 1979), was found to give similar yields of cells.
Unfortunately, the vast majority did not attach and spread in culture.

This procedure was abandoned.

Cells isolated as a monodisperse suspension by the method described in sect 

2.412, attached to the plastic substrate after a few hours, and then 
started to spread, but their was no evidence of cell proliferation (see 
sect 6.22). This spreading continued over the next 48 hr. Cells were 

typically fibroblastic in appearance (see Fig 6.1(B)), and 

are probably mostly myométrial muscle cells ' -
as suggested by Kassis et al (1984a) which is consistent with published data using

other methods (see sect 1.21; McCormack & Classer, 1980; Ross & Klebanoff,

1967).

However, data from desmin staining of these 
cultures (sect 7.215) were inconclusive.

1 2 0
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Fig 6.2 Proliferation of Rat Uterine Fibroblastic Cells

Fibroblastic cells were allowed to attach to the substratum as in sect 

2.422. The experimental medium was RPMI supplemented with either FCS or 

HIDCCFCS to a final concentration of 5% (v/v) as indicated.

Dishes (16 mm diameter) were assayed for DNA content (sect 2.52) at the 

times indicated.

Each point is the mean value of 4 dishes+ SD.



Fig 6.3 Proliferative Response of Rat Uterine Fibroblastic Cells to 

Oestradiol with or without Progesterone

Fibroblastic cells were cultured as in sects 2.422 & 2.423. Experimental 
medium was RPMI with either 5- or 10% (v/v) HIDCCFCS and steroids (see sect 

2.423) as indicated.

Dishes (16mm diameter) were assayed for DNA content (see sect 2.52) after 

a total of 95 hr in culture.

Fig A Dose-Response of Oestradiol on Proliferation of Fibroblastic
Cells

Fig B Dose-Response of Progesterone on Proliferation of

Fibroblastic Cells in the Presence of InM Oestradiol

Each point is the mean value of 4 dishes + SD, 

No effects due to steroids were significant.
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6.22 PROLIFERATION OF RAT UTERINE FIBROBLASTIC CELLS IN PRIMARY CULTURE

Rat uterine fibroblastic cells proliferated in serum-containing media. An 
initial lag phase of about 2-3 days was followed by rapid proliferation, 

until a final saturation density was reached (see Fig 6.2). The presence of 
FCS, rather than HIDCCFCS, was important in attachment of the cells to the 
substratum. However, both HIDCCFCS and FCS supported rapid cell 
proliferation after initial attachment of cells in media containing FCS.

Rat uterine fibroblastic cells in primary culture did not respond 

proliferatively to either oestradiol or oestradiol plus progesterone, in 
medium containing either 5- or 10% HIDCCFCS (see Fig 6.3). This could 
indicate Jhaf"̂  a genuine unresponsiveness of uterine fibroblastic cells to 

oestrogen (or progesterone). Alternatively, the conditions of culture may 
be insufficiently optimised to observe such proliferative responses. With 

respect to the latter suggestion, the rate of proliferation of the 

fibroblastic cells at serum levels of 5% (or above), may be so rapid that 

further growth stimulation may not be possible.

6.23 REDUCED SERUM LEVELS

One role of serum supplementation in cell culture media, is probably to 

provide essential trace elements and other nutrients absent from some 

convential synthetic nutrient media (Ham & McKeehan, 1979). Therefore, a 
limited survey of some commercially available synthetic nutrient media was 

carried out in order to ascertain if nutrient or trace element depletion at 
low serum levels was likely to be a serious problem in this system.
Moreover, such a study may have identified the media which were least 

efficacious at low serum seruih levels. The development of a nutrient 
medium specifically optimised for the growth of rat uterine fibroblastic 
cells was not attempted. The choice of commercially available media for 

inclusion in the survey was based on comments made in the review by Ham & 

McKeehan (1979).
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Fig 6.4 Effects of Different Nutrient Media and Varying Serum Levels on 
the Proliferation of Rat Uterine Fibroblastic Cells

Fibroblastic cells were cultured as described in sects 2.422 & 2.423.

Experimental media were either: MEM, RPMI, M199, F12, MCDB104 or alpha-MEM 

supplemented with FCS as indicated.

Dishes (16mm diameter) were assayed for DNA content (sect2.52) after a 

total of 95 hr in culture.

Each value represents the mean of 4 dishes +  SD.
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Fig 6.5 Effects of Insulin and BSA on the Proliferation of Rat Uterine

Fibroblastic Cells at Varying Serum Levels

Fibroblastic cells were cultured as described in sects 2.422 & 2.423. 
Experimental medium was M199 supplemented with PCS, insulin {see sect 

2.381) or BSA (see sect 2.432) as indicated.

Dishes (16mm) were assayed for DNA content (sect 2.52) after a total of 95 

hours in culture

Fig A

O O PCS

PCS + Insulin (5)ig/ml)

Fig B

PCS + BSA (0.1% w/v)

FCS + BSA (0.1% w/v) + insulin (Syg/inl)

— #  FCS + BSA (0.1% w/v)

Each point is the mean of 4 dishes SD.
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Fig 6.6 Effects of Oestradiol on the Proliferation of Fibroblastic Cells

in the Presence or Absence of BSA Under Varying Serum Levels

Fibroblastic cells were cultured as described in sects 2.422 & 2.423. 
Experimental medium was F12 supplemented with HIDCCFCS (as indicated), 
insulin (5pg/ml) and:

O' O  No Other Additions (see sect 2.423)

A  InM Oestradiol

 0  lOOnM Oestradiol

- #  BSA (0.1% w/v) (see sect 2.342)

-A  BSA (0.1% w/v) + InM Oestradiol

BSA (0.1% w/v) + lOOnM Oestradiol

Dishes (16mm diameter) were assayed for DNA content (sect 2.52) after a 

total of 95 hr in culture.

Each point is the mean value of 4 dishes.

(Error bars are omitted for clarity, but all were within 15% of the mean).
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Data on the proliferation of rat uterine fibroblastic cells under varying 
serum levels and in differing media are shown in Figs 6.4 & 6.5. The data 
in Fig 6.4 indicated that RPMI and alpha-MEM medium were the better media, 
for use with 5% FCS, and that alpha-MEM was the best medium at 1% FCS. At 
0.5 or 0.3% FCS, RPMI and MEM were the poorer media as regards supporting 

proliferation. F12, M199, MCDB104 and alpha-MEM media were all efficacious 

at supporting cell growth at serum levels of 0.3 or 0.5% (see Fig 6.4).
Although alpha-MEM medium was the best medium for use with aU serum levels 
tested, the benefits were insufficient to outweigh its more limited 
commercial availability. Other media were not quite so officious at 

supporting proliferation at such a broad range of serum levels as alpha- 
MEM, but some were sufficiently useful and readily available to merit 
routine use. The following choices were made on the basis of practical 

considerations;

(1) For growth of fibroblastic cells in 5% serum, RPMI medium was used.
(2) For growth of fibroblastic cells in <1% serum, M199 or F12 medium was 

used.

1 2 2

?

The dose-response of FCS on rat uterine fibroblastic cells is shown in Fig 

6.5, These data show that the most sensitive portion of the dose-response 
curve, with respect to serum levels, was in the range 0.1 - 0.5% serum.

The addition of BSA (fatty acid free) to media enhanced cell proliferation 

to a measurable extent at low serum levels (see Fig 6.5(A)). Insulin at a 
concentration of 5pg/ml marginally stimulated proliferation in the presence 

or absence of BSA (see Figs 6.5(A) & 6.5(B)).

The addition of InM or O.ljiM oestradiol to medium with or without BSA did 
not significantly affect the proliferation of rat uterine fibroblastic 

cells in the presence of 0.1 - 0.5% HIDCCFCS (see Fig 6.6).

i



Fig 6.7 Changes in Protein/DNA Ratio of Fibroblastic Cells During Primary 
Culture

Fibroblastic cells were cultured (in 35mm dishes) as described in sect 

2.423. Experimental medium was RPMI supplemented with 5% (v/v) HIDCCFCS 

and insulin (5^g/ml) (see sect 2.381).

Protein and DNA assays were performed as in sect 2.55 at the times 

indicated.

Each point is the mean value of 3 dishes i  SD.
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Fig 6.8 Effect of Oestradiol on Protein/DNA Ratio of Cultured 
Fibroblastic Cells

Cells were cultured as in Fig 6.7. Experimental was supplemented with 

oestradiol (InM or lOOnM, see sect 2.423) as indicated.

Dishes (35mm diameter) were asseiyed for Protein and DNA content (see sect 
2.55) after either a total of 79 or 95 hr in culture as indicated.

Values represent the mean of 4 dishes ^  SD.

(++) P > 0.025 (treatment vs control)
(+++) P > 0.001 (treatment vs control)
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6.3 DISCUSSION

No significant proliferative effects of oestradiol could be demonstrated on 
the proliferation of rat uterine fibroblastic cells in primary culture.
This proliferation was highly serum dependent, at serum levels of less than 
0.5%, BSA, when added to growth medium, promoted extensive proliferation 

of cells under low serum conditions. Insulin had a marginal stimulatory 
effect. It is thus concluded that oestradiol per se, is not directly 

mitogenic for cultures of rat uterine fibroblastic cells under the 

conditions described here.

6.31 OESTRADIOL EFFECTS ON PROLIFERATION IN VITRO

The absence of mitogenic effects of oestradiol on uterine fibroblastic 

cells in vitro, is in contrast with in vivo effects (see sect 1.53), but 
is in agreement with other in vitro observations made on either normal 
(Kassis et al. 1984a, 1984b) or tumourigenic, rat uterine cell lines (see 

sect 1,663). However, proliferative effects of oestradiol on human uterine 

fibroblastic cells in vitro have been reported (Chen et al, 1973; Pavlik & 
Katzenellenbogen, 1978).

123

6.24 CHANGES IN THE PROTEIN/DNA RATIO DURING CULTURE OF RAT UTERINE

FIBROBLASTIC CELLS

Extensive spreading of rat uterine fibroblastic cells during the first 48 
hr of culture was noted, but no change in DNA content of cultures occured 

(see Fig 6.2). However, as shown in Fig 6.7, the protein/DNA ratio 

increased during this period. Moreover, the protein/DNA ratio further 
increased during cell proliferation to over 5-fold after the first 95 hours 
of culture (Fig 6.7). Small, but significant, effects of oestradiol were 

observed on the protein/DNA ratio of cultured rat uterine fibroblastic 

cells, as shown in Fig 6.8.



Potential reasons for the absence of any direct mitogenic effects of 

oestradiol in vitro are:

(1) Environmental conditions were not sufficiently optimised to 

demonstrate direct effects of oestradiol on cell proliferation.

(2) Rat uterine fibroblastic cells in culture do not possess functional 
oestrogen receptors.
(3) Oestradiol acts indirectly to increase cell proliferation rates, 
through either a positive or negative endocrine mechanism (see sect 1.671).
(4) Oestradiol acts indirectly to increase cell proliferation rates by an 
autocrine /  paracrine mechanism (see sect 1.672) which is not functional in 

vitro.

6.32 ENVIRONMENTAL CONDITIONS

The data presented here suggest that simple manipulation of serum levels, 

or addition of BSA or insulin to cell culture media does not lead to 
measurable oestradiol-promoted proliferation of rat uterine fibroblastic 

cells in vitro. It is possible that more extensive manipulation of 
environmental conditions may still prove fruitful. Another explanation for 

lack of oestradiol effects on proliferation in vitro may be that 
physiological oestradiol levels are not maintained for sufficient duration 

for a proliferative response to be elicited, owing to either metabolism of 
oestradiol by the cells and/or sequestration of oestradiol by serum binding 

proteins.

Although metabolism of oestradiol by uterine fibroblastic cells was not 
investigated here, the inefficacy of even O.lpM oestradiol (100-fold above 
physiological levels) in these studies, militates against this argument. 
Further, Kassis et al (1984a, 1984b) reported that metabolism of oestradiol 
by similar cultures of rat uterine fibroblastic cells was not evident. 
Sequestration of oestradiol was unlikely to be a serious problem because of 
the use of HIDCCFCS at low concentrations; the heat-inactivation of serum, 
destroys most of its steroid binding capacity (Westphal, 1971).
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6.33 ROLE OF BSA AND INSULIN IN CULTURE MEDIA

Proliferative effects of BSA at low serum levels may be due to either 
general effects of maintenance of an adequate protein environment, or to 

the ability of BSA to function as a binding protein. The ability of BSA to 

bind lipids, metals and hormones may cause BSA to act as a detoxifying 
agent. Thus in the absence of sufficient serum albumin from a serum 

supplement, exogenously added BSA may play a critical detoxifying role 
(Barnes & Sato, 1980a).

The presence of BSA at low serum levels may act to reduce cell damage by 
secreted proteases, or maintain more ph/siological cell-substratum 

contacts, by coating the substratum. Evidence for this latter role is 

provided by the considerable difficulty experienced in harvesting rat 
uterine fibroblastic cells by trypsinisation, after culture on plastic 

under reduced serum conditions.

Insulin has been found to be mitogenic for many cells in vitro, but only at 
pharmacological levels (Barnes & Sato, 1980b). It is thought that one 

reason for the necessity of such high insulin levels (1-lOjag/ml), is that 
it acts by mimicking other growth factors (Barnes & Sato. 1980a; 1980b). 
Another is that insulin is inactivated quickly at 37^C in cysteine- 
containing media (Barnes & Sato, 1980a). In the studies reported here a 

role for insulin as a mitogen, appears limited.

I
I

In cultures of rabbit uterine epithelial cells the presence of insulin and
;p

BSA allows proliferative effects of DES or progesterone to be seen under 

serum free conditions (Gerschenson et al, 1974). Data presented here, 
shows that similar conditions do not allow oestradiol-promoted
proliferation of rat uterine fibroblastic cells to be observed.

■■

6,34 OESTROGEN RECEPTORS IN RAT UTERINE FIBROBLASTIC CELLS

The lack of any mitogenic effects of oestradiol on rat uterine fibroblastic 
cells in vitro could be ascribed to low oestrogen-receptor levels, but this 
is not supported by observations reported either here, or elsewhere
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(Sonnenschein et al. 1974; Kassis et al, 1984a, 1984b). Furthermore, 
although oestrogen receptor levels in cultured rat uterine fibroblastic 
cells are reported to begin to decline beyond 36 hr after changing the 

medium (Kassis et al. 1984b), in the proliferative studies carried out 
here, the medium was changed every 48 hr. However, the effects of low 

serum concentrations, on cellular receptor levels over extended periods 

have not yet been assessed.

6.35 INDIRECT OESTROGENIC EFFECTS ON PROLIFERATION

The lack of any direct proliferative effects of oestradiol on the 

proliferation of rat uterine fibroblastic cells in primary culture, 
supports suggestions that such effects are elicited indirectly (see sect 
1.67), through an endocrine mechanism. However, an oestrogen-controlled 

autocrine/paracrine mechanism which is not autostimulatory in cell culture, 
is also possible. This has been recently suggested for a cultured mammary 

cell line (see sect 1.672).

PCS is mitogenic for rat uterine fibroblastic cells in vitro. Therefore 
some component(s) of serum are responsible for these effects. Evidence 

presented here suggests that serum albumin may play a major role in the 

growth-promoting effect of FCS on rat uterine fibroblastic cells in vitro.

6.36 RELEVANCE OF IN VITRO STUDIES TO UTERINE CELL PROLIFERATION IN VIVO

In vivo, myométrial and stromal cells do not proliferate extensively in the 

unstimulated immature rat uterus (see sect 1.5). However in vitro, 
fibroblastic cells derived from similar animals, proliferate rapidly in 
serum ,containing media. The approach used here was to suppress the basal 

level of proliferation in vitro by reducing serum levels. Although reduced 

serum levels did effectively suppress the rate of cell proliferation, no 
oestrogen-promoted proliferation was revealed.

In vivo, one of the major proliferative constraints on normal cells is 
density-dependent inhibition (see sect 1.63). This may operate via a
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mechanism whereby cells are unable access serum growth factors because of----------- -------

either their depletion in the medium, or because of effects related to 
surface area/volume ratios (see sect 3.3), Therefore, the use of reduced 
serum levels to suppress proliferation in vitro, is not without some 
justification. The proliferation of rat uterine fibroblastic cells at low 

cell densities may be analogous to a general wounding response which is 
serum dependent (see sect 1.63), but may not be influenced by steroid 

hormones.

Perhaps a more accurate in vitro model would be the use of density- 
inhibited cell cultures, followed by study of effects of oestradiol on the 
modulation of ffin ^  the/saturation density.

6.37 CHANGES IN FROTEIN/DNA RATIO OF CULTURED RAT UTERINE FIBROBLASTIC 

CELLS '

The drammatic increase in protein/DNA ratio of cultured rat uterine 
fibroblastic cells reported here, is indicative of adaption to an in vitro 

environment. Measurement of total cell protein includes both soluble and 

insoluble proteins. Thus direct comparison between the known effects of 
oestradiol on protein synthesis and the effects reported here are limited.

However oestradiol-induced changes in Protein/DNA ratios supports 
suggestions that oestrogen effects on differentiation are not necessarily 

coupled to effects on proliferation (see sect 1.65).
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7. EXPRESSION OF INTERMEDIATE FILAMENTS IN UTERINE CELLS

7.1 INTRODUCTION

It has been shown in rat uterus that IF expression follows the usual 
histological principles (Franke et al. 1979b). Luminal epithelial cells 

can be stained with 'broad-spectrum’ cytokeratin antibodies revealing a 
network similar to that in other mucosal epithelia. Stromal cells are 
stained with vimentin antisera and myométrial cells are exclusively stained 
with desmin antibodies. However, it is not clear from this report whether 
rat uterine myométrial cells show any staining with vimentin antisera.

The expression of cytokeratins in epithelia of the human female genital 
tract has also been documented in detail (Moll et al, 1983). These data 

show that both normal endometrium and endometrial carcinoma to express 
identical cytokeratin species; numbers 7, 8, 18 & 19 (see Fig 1.2(A)).

ÿ
It is not known whether uterine cells from immature rats, retain expression
of their characteristic IF in primary culture. Such data would be useful
in the characterisation of cell types in vitro. Previously, primary
cultures of uterine cells from mature (eg Echeverria et al, 1980) and

-------
immature (eg Kassis et al. 1984a, 1984b) rats have been studied with 

respect to ultrastructural and morphological criteria. But no attempts 

were made to identify cell types from their expression of IF’s.

7.11 AIMS

The aims of this study are to identify cell types present in primary 
cultures of rat uterine and human endometrial carcinoma cells, by their 
expression of intermediate filaments. Furthermore, an evaluation of the 

use of cytokeratin expression as a marker of epithelial differentiation is 
reported.
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Fig 7.1 Cytokeratins in Rat Uterine Epithelial Cells

Frozen sections of immature rat uterus were prepared as in sect 2.432. 
Cytospin preparations of suspensions of epithelial cell-clumps/glands (see 
sect 2.411) were carried out as in sect 2.432. Immunocytochemistry was 
carried out as in sect 2.432,

Fig A (mag x400, specific immunofluorescence staining of 

cytokeratins)
Frozen section of immature rat uterus.

Fig B (mag x250, specific immunofluorescence staining of 

cytokeratins)
Cytospin preparation of epithelial cell-clumps/glands (note that these 
were not isolated from fibroblastic cells before staining (see sect 

2.411)
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Fig 7.2 Cytokeratins and Vimentin in Frozen sections of Rat Uterus

Frozen sections were prepared as in sect 2.432. Immunocytochemistry was 
carried out as in sect 2.432.

Fig A (mag x200, specific immunoperoxidase staining of 
cytokeratins)

Frozen section of rat uterus.

Fig B (mag xlOOO, specific immunofluoresence staining of 
vimentin)

Staining of stroma in frozen section of rat uterus.

Fig C (mag xlOOO, specific immunofluoresence staining of 

vimentin)
Staining of stroma and myometrium in frozen section of rat uterus.

(S) (M)
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7.2 RESULTS

7.21 EXPRESSION OF INTERMEDIATE FILAMENTS IN IMMATURE RAT UTERINE 

CELLS

7.211 Frozen Sections

Both the glandular and luminal epithelium in frozen sections of rat uterus, 
showed positive staining using a broad-spectrum cytokeratin antiserum (Figs 

7.1(A) & 7.2(A); see figure legends and sect 2.432 for details). Stroma 
and myometrium in tissue sections, showed only weak staining with the 

cytokeratin antiserum, identical to that seen with normal-serum control 
specimens (not shown). At high magnifications (xlOOO) a filamentous 

cytokeratin network could be seen in epithelial cells; although the optics 
are poor at this magnification, owing to the thickness of the sections 

CGjira). No such network could be seen in stromal or myométrial tissues of 
the same section, or in the controls.

Immunofluorescence staining of frozen sections of rat uterus with a 

vimentin antibody showed specific staining in both stroma and myometrium 
(Figs 7.2(B) & 7.2(C)), but not in the epithelia (data not shown).
Although there was significant background fluorescence, characteristic 

'vimentin-like structures' (a 'wavy line') were clearly discernible in 
experimental sections, but absent in controls. At a gross level,the 
specific vimentin staining in the myométrial cells appeared to be stronger

‘ ■ij

than in the stroma (Fig 7.2(C)). This may be due to thicker IF's in the 
myometrium, compared to a finer network in stromal cells.

I
'1:

Staining of sections with a desmin antibody, using the immunoper oxidase 
technique (see sect 2.432), produced slightly greater intensity of staining 
in myométrial tissue than in stromal (this difference was barely 

discernible by eye and did not photograph well, so these data are not 
shown). Poor results using this desmin antibody may reflect poor 

specificity of the antibody and/or non-optimal conditions for the

A



Fig 7.3 Vimentin in Fibroblastic Cell Suspensions from Rat Uterus

Fibroblastic cell suspensions were prepared as in sect2.412, and 
immunocytochemistry was carried out on cytospin preparations as in sect
2.432.

Fig A (mag xlOOO, specific immunofluoresence staining of 
vimentin)

Fibroblastic cell suspension.

Fig B (mag xlOOO, non-specific immunofluoresence staining)

Fibroblastic cell suspension stained using 1/10 dilution of normal 
mouse serum in place of a specific antiserum.
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demonstration of specific fluorescence. Epithelial tissue did not show any 

staining with the desmin antibody (data not shown).

7.212 Cell-Clumps and Glands

Both cell-clumps and glands, isolated by enzymic disaggregation of immature 

rat uteri (sect 2.411), showed positive staining with a broad-specrum 

cytokeratin antiserum (Fig 7.1(B)). Contaminating single-cells, present in 
the preparation before filtration through 35pn gauzes (sect 2.411), showed 
only weak staining, similar to that seen in normal-serum controls. Again 

at high magnification a filamentous network was seen using the 

specific antiserum. This was not seen in controls.

Immunofluorescence staining of cell clumps and glands with vimentin 

antiserum, showed a level of staining only marginally greater than in the 
normal-serum controls (data not shown). Characteristic vimentin-like 

structures were only visible in the occasional cell located at the 

periphery of cell clumps. These cells may be contaminating stromal cells 

which have either failed to dissociate from the epithelial cell-clump, or 

have adhered to the clump during the preparation.

7.213 Fibroblastic Cell Suspensions

Fibroblastic cell suspensions prepared from rat uteri (sect 2.412) showed 
mostly positive staining with vimentin antiserum (Fig 7.3(A)). Background 
fluorescence when using either specific antiserum or normal serum (Fig 

7.3(B)) was quite high, but, at high magnification, specifically stained 
vimentin-like structures (see Alberts, 1983) were easily visible in the 
majority of cells (see Fig 7.3(A)). As shown in Fig 7.3(A), some cells 

showed only a small amount of specific staining, whereas others showed very 
obvious vimentin-like structures. Because of the high background 
fluorescence, specific staining was only readily identified at high 

magnification (xlOOO), making accurate quantitative estimates of the 

proportion of cells that expressed vimentin difficult. However, cells 

which did not show any specific staining were rare.
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Fig 7.4 Tonofilaments in Rat Uterine Epithelial Cells in Primary Culture

Epithelial cells under standard conditions (sect 2.421), and 

immunocytochemistry and Hoechst 33258 staining was carried out as in sect
2.432.

Fig A (mag x400, specific immunofluorescence staining of 
cytokeratins))

Epithelial cells stained after 24 hours in culture.

Fig B (mag x400, Hoechst 33258 fluoresence staining)

Same field of view as in Fig A, but the position of all cell nuclei 
are visualised by staining with Hoechst 33258. Note the 
presence of cells located between the colonies which do not express 

cytokeratins.

Fig C (mag xlOOO, specific immunofluorescence staining of 

cytokeratins)
Epithelial cells stained after 48 hours in culture.

Fig D (mag xlOOO, specific immunofluorescence staining of 
cytokeratins)

Epithelial cells stained after 72 hours in culture.
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Fig 7.5 Tonofilaments in Rat Uterine Epithelial Cells in Primary Culture

Cells were cultured as in sect 2.42. Immunocytochemistry was carried out 
as in sect 2.432.

Fig A (mag xlOOO, specific immunofluorescence staining of 

cytokeratins)
An epithelial cell after 72 hours in culture, showing a 'speckled 

pattern' of cytokeratin staining (see text).

Fig B (mag x250, specific immunofluorescence staining of 
cytokeratins using LE61)

Immunofluorescence staining of epithelial cells after 3 days in 

culture, using the monoclonal antibody LE61.
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Fig 7.6 Vimentin Filaments in Rat Uterine Epithelial and Fibroblastic 

Cells in Primary Culture

Cells were cultured as in sect 2.42, and immunocytochemistry was carried 

out as in sect 2.432.

Fig A (mag xlOOO, specific immunofluorescence staining of 
vimentin)

Epithelial cells stained after 48 hours in culture.

Fig B (mag xlOOO, specific immunofluorescence staining of 
vimentin)

Epithelial cells stained after 72 hours in culture.

Fig C (mag xlOOO, specific immunofluorescence staining of 
vimentin)

Fibroblastic cells stained after 96 hours in primary culture.
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staining of fibroblastic cell suspensions with a desmin antiserum using the 
immunoperoxidase technique was inconclusive (data not shown). As with the 

frozen sections, a high background and weak signal using this antiserum, 
made the criteria of assessment too subjective.

7.214 Primary Cultures of Epithelial Cells

Rat uterine epithelial cells in primary culture, showed positive staining 

with both c3dokeratin (Fig 7.4) and vimentin antisera (Fig 7.6).
Expression of cytokeratins was maintained for at least 72hr after plating, 
the fine structure of the network becoming more easily visible as the cells 
spread out (Fig 7.4(D)). About 24 hours after plating, many epithelial 
cells were reasonably well-spread, particularly towards the edge of 

colonies. Double immunofluorescence staining using fluorescein conjugated 
antisera and Hoechst 33258 (see sect 2.432 (d)) revealed the presence of 
some cells that did not express cytokeratins, which were located between 

colonies (compare Figs 7.4(A) & 7.4(B)). These cells expressed vimentin 

(data not shown) and probably represent contaminating fibroblastic cells.
The fine structure of the cytokeratin network in epithelial cells can be 
seen in Figs 7.4(C) & 7.4(D). Tonofilaments of adjacent cells met at focal 
points at the cell membrane; presumably spot desmosomes. Occasional cells 
located towards the edge of colonies showed a speckling pattern', rather 

than a filamentous one, when stained for cytokeratins (Fig 7.5(A)). The 

reason for this is unclear, but may be related to a similar phenomenon seen 
in mitotic cells of some cell lines (Lane et al, 1982).

Epithelial colonies stained intensely with a monoclonal antibody to 'simple 
epithelial antigen’, a low molecular weight cytokeratin component (LE61, 
see sect 2.141), as shown in Fig 7.5(B).

7.215 Primary Cultures of Fibroblastic Cells

Fibroblastic cells derived from a monodisperse cell suspension (sect 2.412) 
continued to express vimentin in primary culture (Fig 7.6(C)). The 
fluorescence signal was more difficult to see during the first three days 

after plating, this may be due to reorganisation of vimentin-like 

structures into a finer filamentous network. However, after 3-4 days in
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Fig 7.7 Cultured Human Endometrial Carcinoma Cells Stained with LE61

Cells were prepared as in sect 2.413 and allowed to attach for 24 hours in 

alpha-MEM medium + 5% FCS. Cultures were then washed with EBSS then fresh 
alpha-MEM medium was added containing the supplements described in 
individual figure legends. Cells were fixed and processed (sect 2.432) 
after 72 hours in culture. Retinoic acid was added as a 1000-fold 
concentrate in ethanol (see sect 2.383)

Fig A (mag x250, specific immunofluorescence staining of 
cytokeratins using LE61)

Cells cultured in 10% HIDCCFCS

Fig B (mag x250, phase contrast)

Same field of view as in Fig A. Note the
presence of fibroblastic cells located adjacent to the epithelial
colonies which do not show immunofluorescence staining in Fig A.

Fig C (mag x400, specific immunofluorescence staining of
cytokeratins using LE61)

Cells cultured in 10% FCS.

Fig D (mag x400, specific immunofluorescence staining of
cytokeratins using LE61)

Cells cultured in 10% FCS with O.l^M retinoic acid.

Fig E (mag xlOOO, specific immunofluorescence staining of 
cytokeratins using LE61)

High magnification view of cells cultured in 10% HIDCCFCS.

Fig F & G (mag xlOOO, specific immunofluorescence staining of 
cytokeratins using LE61)

High magnification view of cells cultured in 10% HIDCCFCS with O.lpM 

retinoic acid, to reveal changes in immunofluorescence signal and 

reorganisation of tonofilament network as compared to Fig E.
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culture, filaments stained more intensely and became more clearly visible 

{see Fig 7.6(C)).

Desmin staining of the cultured fibroblastic cells using the 
immunoperoxidase technique, showed some very weak staining of filamentous 

material in the cytoplasm of most, but not all, of the cells (data not 
shown). This staining of filamentous material was not seen in cells 
treated with normal-serum. However, the specific staining was too weak to

■ÿ
photograph well. An attempt to reduce the background staining by 

incubation of fixed specimens with DNAse-I (as recommended in the technical 
literature) was successful in this respect, but did not enhance the 

specific staining.
I

7.22 CULTURED HUMAN ENDOMETRIAL CARCINOMA CELLS

Epithelial cells from a specimen of human endometrial carcinoma were 

cultured under varying conditions, then fixed and stained using the 
monoclonal antibody LE61 (Fig 7.7; further details are in the figure 

legend). Observations were made on cultures supplemented with HIDCCFCS or 

FCS in the absence or presence of retinoic acid. This vitamin is reported 
to modulate histological differentiation and cytokeratin expression of some 

epithelia (see sect 1.724).

Cells cultured in either untreated FCS (see Fig 7.7(C)) or HIDCCFCS (Figs 

7.7(A) & 7.7(E)) showed a very fine cytokeratin network which radiated out 
from the nucleus to the cell membrane. Desmosomal junctions were not 
obvious (compare with Fig 7.4(C)). When these cells were cultured in the 
presence of physiological concentrations of retinoic acid (<l)iM), both the 

organisation qf the tonofilament network, and the strength of the 

immunofluoresnce signal changed remarkably (compare Fig 7.7(C) with 7.7(D); 
also Fig 7.7(E) with 7.7(F) & 7.7(G))). The filaments no longer adopted a 
radial appearance and appeared to be much thicker. Although the overall 
fluoresence signal was weaker in the presence of retinoic acid, this does 
not necessarily mean that expression of low molecular weight cytokeratins 

was correspondingly reduced. The reduction in fluorescence signal may 

reflect masking of some epitopes in the thicker filaments, that are exposed
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in thinner ones. This phenomenon may be similar to the 'antigen-masking' 

suggested by Franke et al (1983).

7.3 DISCUSSION

The data presented here support other observations (Franke et al. 1979b) 
that rat uterine epithelial cells express cytokeratins, but not vimentin or 

desmin, in vivo. It is also shown that ^haf primary cultures of these 
epithelial cells coexpress cytokeratins and vimentin; in common with other 

cultured epithelial cells (Franke, 1979a). Furthermore, strong 
immunofluorescence staining seen using a monoclonal antibody to 'simple 

epithelial antigen' (LE61), indicated the presence of low molecular weight 
cytokeratins in these cultured cells.

The data presented here, do not exclude the possibility of coexpression of 

cytokeratins and vimentin in epithelial cells before culture, but indicate 

that the expression of vimentin, if present, is comparatively weak. The 
phenomenon of cytokeratin and vimentin coexpression in epithelial cells 

before culture is discussed in sect 1.721.

Both stroma and myometrium were found to express vimentin in vivo. It is 

not clear whether observations of vimentin expression in myométrial cells 

are in disagreement with the report by Franke et al (1979b); if they are, 
then this may reflect the different antisera used. It is probable (but not 
conclusively shown by these data) that myométrial cells express desmin in 

vivo.

Fibroblastic cells, derived from rat uteri, express vimentin in suspension 

and continue to do so in primary culture. It is possible that many of the 

cells also express desmin, but this is not conclusive from these 
observations. A different antiserum showing a stronger and more specfic 

binding to desmin, must be used in order to give conclusive evidence.

Human endometrial carcinoma cells in culture, expressed the 'simple
■■S'

epithelial antigen', recognised by the monoclonal antibody LE61 and located
■■S

on cytokeratins of 40-45,000 molecular weight (Lane, 1982). It is reported
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here, that the expression of this antigen, as monitored by 

immunofluorescence, is sensitive to environmental variables, particularly 
retinoic acid. Although these effects of retinoic acid suggest changes in 
the availability of 'simple epithelial antigen' in response to the vitamin, 

because^^other possible phenomena (eg antigen masking), interpretation in 
terms o  ̂ changes in intracellular amounts of low molecular weight 
cytokeratin species, must be made with caution. However, retinoic acid 

exerts well-known effects on epithelial differentiation (Lotan, 1980) and
-

also specific effects on cytokeratin expression in other systems (see sect 
1.724). These observations should stimulate further investigation into the 

effects of retinoic acid on both tonofilament organisation and expression, 
in cultured normal and malignant endometrial cells, using both biochemical 
and immunological methodology.
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8. OESTROGEN RECEPTORS IN CULTURED RAT UTERINE FIBROBLASTIC CELLS

8.1 INTRODUCTION

Early studies of oestrogen receptors in intact uteri, after in vitro 

culture, were comparatively unsuccessful. These studies were typified by 

the report of Peck et al (1973), which suggested that the uterine oestrogen 
receptor in intact uteri in vitro, is very unstable at elevated 
temperatures when in the absence of oestrogen. However, considerable 

progress was made in this area with the use of suspensions of disaggregated 

cells, rather than intact uteri (Williams & Gorski, 1973, 1974).
Subsequently, various enzymic methods have been used to prepare such cell 

suspensions (eg McCormack & Glasser, 1980; Muller & Wotiz, 1979).

Williams & Gorski (1973, 1974) used an unfractionated cell suspension for 
their studies, whereas McCormack & Glasser (1980) were able to isolate 

separate epithelial, stromal and myométrial cell fractions, and clearly 

show that all cell fractions contained oestrogen receptors. Stromal and 
epithelial cells contained 2-3 fold more receptor per cell, than myométrial 
cells. Nevertheless, calculations based on the data of McCormack & Glasser 

(1980), show that more than 80% of the total oestrogen receptor of immature 
rat uteri, is contained in the myometrium, because of the predominance of 
myométrial cells in the uterus.

Cell suspensions in simple defined nutrient media, have only a limited 

lifespan, so other studies have been carried out in which cells have been 

grown for extended periods in monolayer culture. This approach has the 

additional potential advantage that other cellular responses to oestrogen 
may be studied in relation to oestrogen receptor levels.

A few permanent cell lines exist which contain oestrogen receptors. The 
best studied of these, in terms of characterisation of oestrogen receptors.
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is the MCF-7 cell line (human breast cancer cells, see Edwards et al,
1979). Studies of oestrogen receptors in uterine cell lines are limited, 
although some work has been carried out on both a tumourigenic rat uterine 
(Sonnenschein et al. 1974) and a human endometrial carcinoma (HEC-IB cells, 
Fleming & Gurpide, 1981; Fridman et al. 1982) cell line. Even though 

tumourigenic cell lines may well show different behaviour from ’normal’ 
cells (see sect 1.612), they have been extensively studied, because of 

their ease of establishment in culture (see also sect 1.661),

Short-term primary cell cultures are generally accepted to be the nearest 
equivalent to ’normal’ cells that can be ache^yed in vitro, over any useful 
lifespan (see sect 1.611). Such cultures of human endometrial cells have 

been established to study oestrogen binding (Fleming et al. 1980; Fleming & 

Gurpide, 1981; Rodgers & Kaufman, 1981).

8.11 OESTROGEN BINDING IN CULTURED HUMAN ENDOMETRIAL CELLS

Specific oestrogen binding has been measured in primary cultures of human 

endometrial epithelial and stromal cells (Fleming et al, 1980). Specific 
binding levels were found to decrease to negligible levels after 1 day in 

culture, but rise beyond levels in the intact tissue, after 3-4 days 
(Fleming et al, 1980). Moreover, dramatically increased specific binding 
was induced in 10 day old cultures by administration of lOOnM oestradiol 
for 24 hr (Fleming et al. 1980). However, more detailed measurements of 
these specific oestrogen binding levels, revealed striking fluctuations 

within periods as short as two hr (Fleming & Gurpide, 1981). Such 
fluctuations were attributed in part to partial synchrony of cultures, but 

since similar fluctuations existed in non-growing and apparently 
asynchronous cells, this phenomenon may be more generally related to the 

metabolic state of the cell (Fleming & Gurpide, 1981).

Further studies by this group however, revealed that only a small fraction 

of the specific oestrogen binding measured was, in fact, attributable to 

oestrogen receptors (Fleming & Gurpide, 1981; Fridman et al. 1982). It was 

apparent from binding studies carried out on HEC-IB cells, over a broad 
range of oestradiol concentrations, that the saturation curve so obtained,

'Ï::
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was biphasic. The second phase of saturable binding reflected a binding 

species with much lower affinity and higher capacity for oestradiol binding 
than seen in the first phase (which corresponds to oestrogen receptors) 

(Fridman et al. 1982). Moreover, the lower affinity binding sites did not 
change their partition between the cytosol and nuclear fractions, when
intact cells were assayed immediately after incubation for short periods of 
time at 3 
al, 1982).
time at 37^C in the presence of saturating levels of oestradiol (Fridman et

A class of binding sites similar to the lower affinity sites described by 

Fridman et al. has been noted in the rat uterus. These have been termed 

’soluble type II’ sites, but their physiological significance is currently 

unclear (Clark & Peck, 1979). It has however, been suggested that they may 
be involved in storage’ of steroid by the cell (Clark et al. 1980).

8.12 AIMS

Factors which modulate oestrogenic effects that are mediated through 
oestrogen receptors, have been extensively studied in uteri in vivo (see 
sects 1.33 & 1.34). However, many of the factors which complicate in vivo 
studies, are absent, or better controlled, in studies of intact cells in 
vitro (McCormack & Classer, 1980). Furthermore, experiments can be carried 

out in vitro, without many of the drawbacks inherent in the use of cell 
lines (see sect 1.612), if cells are grown in primary culture.

Since the rat uterus is the best studied target organ of oestrogen action, 
it is appropriate that primary cultures of rat uterine cells be 
established, in order to study, and attempt to correlate, oestrogenic 

effects with cellular receptor levels.
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8.2 RESULTS

8.21 OESTROGEN RECEPTORS IN RAT UTERINE FIBROBLASTIC CELLS IN

PRIMARY CULTURE

Rat uterine fibroblastic cells, cultured for five days, were assayed for 

specific oestrogen binding, using an exchange assay (see sect 2.54; also 
legend to Fig 8.1). Saturable, high affinity, specific oestrogen binding 

sites were found in both cytosol (Kd= O.i/nM ^  0.E5 SB (3 experiments)) and 
nuclear (Kd==0.î .mM ^  0.1 SD (3 experiments)) fractions (see Fig 8.1).
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Saturation binding curves obtained over the range 0.1-5nM E^]-oestradiol, 
were monophasic, and scatchard plots of these data (Figs 8.1(B) & 8.1(D)) 
were linear. A concentration of InM [^H]-oestradiol was used for 'one- 
point' assays. Although, this concentration is slightly below saturation 

for the cytosol fraction (see Fig 8.1(C)), it was found to be
experimentally optimal because of the marked rise in non-specific binding 
observed at greater concentrations of steroid.

■

Optimum conditions for the exchange of InM [^]-oestradiol with bound
unlabelled oestradiol in the cytosol and nuclear fractions, are shown in 
Fig 8.2. Diisopropylfluorophosphate (DFP) was found not to have any 

obvious effects on the exchange assay (in contrast to a previous report,
Lukola & Punnonen, 1983), equilibrium binding levels were more stable in

the presence of DFP (see Fig 8.2). DFP was routinely included in alla
assays as a precautionary measure against protease degradation of receptor 

at near-physiological temperatures (Clark & Peck, 1979). DFP has been 

found to be particularly efficacious in this respect (Hyder, 1983). C

Optimum, and experimentally convenient, conditions for exchange assays were 
determined to be 3cP C for 60 min for cytosol, and 37 C for 30 min for
nuclear fractions; with the inclusion of ImM DFP in both fractions (see Fig 

8 .2).
However, experiments were not carried out to
confirm tha t the conditions used here caused
all of the available oestrogen receptor sites 
to be filled with unlabelled oestradiol, 
before determination of exchange conditions.
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Fig 8,1 Saturable Specific Binding of pH]-E2 to Cytosol and Nuclear 

Fractions of Cultured Uterine Fibroblastic Cells

Fibroblastic cells were cultured under standard conditions (sect 2.422;
2.423) in winchester bottles. Experimental medium was RPMI supplemented 
with 5% (v/v) PCS and insulin (5)ig/ml), but changed to RPMI + 5% (v/v) 
HIDCCFCS + insulin (5^g/ml) 24 hr before assay. Cells were harvested and 

assayed for oestrogen receptors (sect 2.54) after a total of five days in 

culture.

Fig A Saturable and Competable Binding of [^H]-E2 to Cytosol

Fig B Scatchard Analysis of Data in Fig A.

Fig C Saturable and Competable Binding of [^H]-E2 to Nuclear

Fraction

Fig D Scatchard Analysis of Data in Fig C.
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Fig 8.2 Equilibrium Binding of pH]-0estradiol by Soluble and 

Nuclear Fractions: Optimisation of Conditions

Fibroblastic cells were cultured as in legend to Fig 8.1. Nuclear and 
soluble fractions were prepared as in sect 2.54 (and legend to Fig 8.1); 
although no DFP was added at this stage. Aliquots of cytosol and nuclear 

suspension were incubated with InM unlabelled oestradiol for 1 hr at 4̂  C to 

ensure that all oestrogen receptors were filled. Unbound oestradiol was 
then removed from the nuclear suspension by washing in Hepes buffered 
saline (sect 2.542), five times at 4®C. Unbound oestradiol was removed 
from the cytosol by incubation with DCC suspension (see sect 2.542). The 

time-dependence and effect of DFP on equilibrium specific binding of [%!]- 
oestradiol was then determined using a 'one-point'assay (see sect 2.547).

Fig A Nuclear suspension incubated in the absence of ImM DFP at 
o

37 C.

Fig B Nuclear suspension incubated in the presence of ImM DFP at

37°C.

o
Fig C Cytosol incubated in the absence of ImM DFP at 30 C.

o
Fig D Cytosol incubated in the presence of ImM DFP at 30 C.

All points are the mean value of duplicate determinations.
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Fig 8.3 Specificity of pH]-0estradiol Binding to Cytosol and Nuclear 
Fractions Isolated From Cultured Fibroblastic Cells

Cells were cultured as in sect 2,42 and legend to Fig 8.1. Nuclear and 

soluble cell fractions were prepared as in sect 2.54 and legend to Fig 8,1. 

'One-point' oestrogen binding assays (as in sect 2.547) were carried out 
using InM [^H]-oestradiol and O.lpM competitor. Competitors were: 
oestradiol (E2), diethylstilboestrol (DES), progesterone (Pg), cortisol 
(C), or 5c?C— dihydrotestosterone (DHT) as indicated. Incubations without 
the addition of unlabelled competitor are designated O'.

Values represent the mean of triplicates i  SD.

(+) P > 0.001 (treatment vs control).
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Fig 8.4 [%i]-Oestradiol Binding to Cytosol and Nuclear Fractions Isolated 

from Fibroblastic Cells Cultured in the Presence of Either 

HIDCCFCS or FCS

Fibroblastic cells were cultured in 10cm dishes for a total of five days 

under standard conditions (see sect 2.42). Experimental medium was RPMI + 

5% (v/v) FCS + insulin (5pg/ml). 24 hr prior to assay, medium was replaced
with RPMI medium containing insulin (^pg/ml) and either 5% (v/v) FCS. or 5% 
(v/v) HIDCCFCS. DNA content of disrupted cells (before fractionation) was 
assayed as in sect (2.55). Saturation binding assays were carried out jas 
in sect 2.547.

Specific [^H]-E2 binding of nuclear and cytosol fractions are shown.
’Total’ binding levels were derived from arithmetic addition of values 

obtained from nuclear and cytosol fractions.

Values represent the mean + SD, of 4 determinations pooled from two 
experiments.

CytosoKHIDCCFCS) vs Cytosol (FCS) P > 0.001 

Nuclear (HIDCCFCS) vs Nuclear (HIDCCFCS) P > 0.05 

Total Binding (HIDCCFCS) vs Total Binding (FCS) P > 0.001.
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The specificity of oestradiol binding to both cytosol and nuclear fractions 

was demonstrated by measuring the ability of other unlabelled steroids, 

when present as 100-fold excess, to compete with InM f^H]-oestradiol for 
binding, (see legend to Fig 8.3 for details). The data in Fig 8.3 show 

that lOOnM oestradiol and DES competed with InM [^H]-oestradiol for binding 
to cytosol and nuclear fractions, but progesterone, cortisol and 
5/p dihydrotestosterone did not.

8.22 MODULATION OF CELLULAR LEVELS OF SPECIFIC OESTROGEN BINDING BY FCS 
AND HIDCCFCS

Fibroblastic cells were allowed to attach in culture for 24 hr, then 

cultured for a further three days in medium containing 10% FCS. This was 

then changed to equivalent fresh medium which - contained either 10% FCS or 
10% HIDCCFCS. Cells were then harvested and assayed for specific oestrogen 

binding after a further 24 hr (see legend to Fig 8.4 for further details).

Cells cultured in HIDCCFCS for 24 hr before assay, showed 2.5-fold greater 

levels of specific binding per cell, than cells cultured in PCS (see Fig
8.4). Furthermore this is due to differences in specific binding in the 
cytosol, not the nuclear fraction. The ratio of specific binding in 

cytosol/nuclear fractions is about 2:1 in cells cultured with FCS, but 

about 4:1 in cells cultured in media supplemented with HIDCCFCS (see Fig
8.4).

The total levels of specific binding in cells cultured with HIDCCFCS 
('"20,000 sites/cell) compares very favourably with oestrogen receptor 

levels reported in either intact rat uterus (Clark & Peck, 1979) or rat 

uterine cell suspensions (McCormack & Classer, 1980; Muller & Wotiz, 1979;
Williams & Gorski, 1973). Moreover, the partition of specific binding 
described here between cytosol and nuclear fractions (4:1) is typical of 
that seen for oestrogen receptors in the unstimulated rat uterus (Clark &
Peck, 1979).
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8.3 DISCUSSION

Specific, saturable, high affinity binding of rH]-oestradiol to both 

soluble and nuclear fractions from rat uterine fibroblastic cells derived 
from primary cultures, has been demonstrated (Figs 8.1 & 8.3). These data 
strongly suggest that the high affinity, saturable specific binding 

observed in these studies is cellular oestrogen receptor.
%

Optimum conditions for a ’one-point' exchange assay of oestrdiol binding, 
have been established (see sect 2.547). Using this assay specific 

oestradiol binding levels in cells cultured in FCS or HIDCCFCS were 

compared.

8.31 DIFFERENCES IN SPECIFIC BINDING REPRESENT DIFFERENCES IN RECEPTOR 

LEVELS

The 2.5-fold difference in specific oestradiol binding observed in the 

soluble fraction of cells cultured in HIDCCFCS or PCS, could be either due 
to genuine differences in ’soluble’ receptor protein levels, or to an 

unmasking/masking phenomenon of steroid binding.

Fleming & Gurpide (1981) and Fridman et al (1982), both concluded that the 

rapid fluctuations of oestradiol binding sites which they observed, in 
cultured human endometrial cells (see sect 8.11), were due to a 

masking/unmasking phenomenon. They based their conclusions largely on the 

rapidity with which such fluctuations occured. However, as stated in sect 
8.11, their measurements are almost certainly not representative of the 

behaviour of the oestrogen receptor protein, since they were predominantly 
measuring a lower affinity component of much greater binding capacity than 
the oestrogen receptor.

Even so, such a masking/unmasking phenomenon has been suggested previously 

for oestrogen receptors, based on data derived in connection with receptor 
processing (see sect 1.33). Some of these studies, particularly on MCF-7 
cells, have been criticised for the use of an exchange assay rather than a
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’direct' assay, (see Kassis & Gorski, 1983). It was suggested that 

differences in observed binding levels measured by some exchange assays may 
merely reflect the generation, over time, of less extractable and less 

exchangeable receptors (Kassid et al, 1982). This argument is unlikely to 

be valid for the data presented here for the following reasons;

(1) No ’extraction’ procedure was used with the methodology in sect 2.547, 
since specific binding of the nuclear fraction was carried out directly on 
nuclei, rather than on a salt extract.
(2) Although exchange’ conditions were employed, most of the receptors 
were recovered in the soluble cell fraction, so it is very likely that the 

vast majority of receptors are unoccupied.

Very recently, a very similar, if not identical, cell culture system was

described by Kassis et al (1984a, 1984b). Their results are generally in
good agreement with those presented here, although they comment on 

 ̂ I
variabi|ty in their assay of receptor levels in cultured cells when using 

different batches of charcoal stripped (horse) serum. This may reflect 

inadequate and variable extraction of endogenous steroid from the serum 
(Kassis et al. 1984a). Such a problem was not obvious with the charcoal 
stripping procedure described in sect 2.351.

Kassis et al (1984b) reported differences in total cellular specific 

oestrogen binding levels with different feeding schedules. Their evidence 

strongly suggests that a non-dialysable factor accumulates in medium 
conditioned by rat uterine fibroblastic cells, which inhibits synthesis of 
the receptor protein (Kassis et al, 1984b). Inhibitor studies showed that 
protein synthesis was required for the cells to regain high levels of 
receptor ('"20,000 sites/cell), after replacement of the conditioned medium 

with fresh medium. Furthermore, they concluded that the half life of 
oestrogen receptor in cultured rat uterine fibroblastic cells may well be 

similar to that reported in vivo (Sarf & Gorski, 1971), which is much 
longer than the 6 hr half-life reported for studies on MCF-7 cells (Eckert 
et al. 1982). However, accurate quantitative data can not be deduced from 

their inhibitor studies (see Kassis et al, 1984b). These data of Kassis et 
al on modulation of oestrogen binding levels by environmental conditions, 
are strongly indicative of a change in soluble receptor protein levels,
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rather than an activation/inactivation phenomenon.

Interpreted in the light of the recent results of Kassis et al (1984b), the 
data presented here are consistent with the suggestion that FCS contains 

factors which affect soluble oestrogen receptor synthesis. Heat- 

inactivation followed by DCC stripping of PCS, appears to remove certain 

factors which are present in untreated FCS, leading to greater levels of 
soluble oestrogen receptor. The identity of such factors remains to be 
resolved. It is possible that such a factor is progesterone, but all 
reports of serum progesterone levels, including those from similar FCS to 

that used in this study (see Love, 1982) show very low levels of 
progesterone which are unlikely to affect oestrogen receptor levels.

In summary, a primary culture system is described, in which cellular 

oestrogen receptor levels can be manipulated by environmental conditions. 
Moreover, good potential exists for a study of direct effects of hormones 
(and other factors) on steroid receptor levels in a system which is more 
representative of ’normal cells’, than are cell Hnes.

'T'lt is also possible that since exchange 
conditions were not fully validated (see sect 
8.2) that differences in endogenous 
oestradiol levels in FCS and HIDCCFCS may 
account for this result.
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9. GENERAL DISCUSSION

With a few exceptions, it is the basolateral surface of naturally occuring 
epithelia which receives hormonal, and other, signals from the organism.
In many epithelial cultures the cells retain their normal apical- 
basolateral polarity. At high cell densities, tight junctions form, and
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A discussion of specific results is given at the end of appropriate 

chapters. The more important points will be emphasised here, and 

their relevance to current concepts of steroid hormone action and cell 
biology, will be discussed.

The results reported here, support the specific suggestion that effects of

oestrogen on proliferation and differentiation of target cells may not be I*

mediated by the same mechanism (Sonnenschein & Soto, 1980). Data on the 
control of proliferation of rat uterine cells in primary culture, are 

consistent with current observations and hypotheses that:

(1) Oestrogen-induced proliferation is achieved through indirect 

(autocrine/paracrine or endocrine) mechanisms,
(2) Cell proliferation is dependent on cytoskeletal structure,

I

(see also sect 1.6). In this study, proliferation of both epithelial and 

fibroblastic cells in vitro, was found to be very sensitive to some 

environmental influences, but not to the presence of oestrogen. Rat 
uterine epithelial cells showed a particular association between cell shape 

and proliferation. Collagen gels as a substratum for the culture of these 
epithelial cells, appeared to be effective at modulating this association.
Similar phenomena have been described in other systems (see sect 1.64), 
where both the cell surface area/volume ratio and accessibility of the 

basolateral cell surface to nutrients and growth factors, are important 
considerations.
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the basolateral surface becomes isolated from the growth medium (Handler ^  

al, 1984). In a sense, the epithelium restricts its own interaction with 

the culture medium. This restriction is obviously incomplete, since many 

epithelial cell lines and primary cultures, grow to confluency, and show 
evidence of apical to basolateral transport on conventional (impermeable) 
substrata. In the case of primary cultures of rat uterine cells, growth on 

more permeable substrata (collagen gels) does not affect the lifespan of 

cultures, but does appear to affect the distribution of proliferating and 

quiescent cell populations. Whether the state of differentiation and 
hormone responsiveness of the cells in vitro is also changed by growth on 

collagen gels, remains to elucidated.

Data presented here on the oestrogen sensitivity of proliferation of rat 

uterine fibroblastic cells, supports suggestions that other, as yet 

undefined, factors are required to mediate proliferative effects in vitro.
Such factors may be serum borne, as suggested for MCF-7 cells (Page et al. 

1983; Soto & Sonnenschein, 1983, 1984), or cellular-derived, as recently 
suggested for uterine cells (Ikeda & Sirbasku, 1984; see sect 1.672). 
Furthermore, a density-dependent inhibitory factor has been described, 
which inhibits the oestrogen sensitivity of proliferation of rabbit uterine

'■1:  

:
epithelial cells in culture (Gerschenson et al. 1981, 1984). Conceptually, 
such density-dependent inhibitory effects, seem more plausible in uterine 
epithelial systems, than in cell populations which do not undergo such

>;v.

frequent hormone-dependent renewal in vivo (ie stromal or myométrial 
cells). Density- (sect 1.63) and cell shape- (sect 1.643) dependence of

I'!
cell proliferation differ markedly in 'normal' and malignant cells in 

vitro. Although the data presented here do not indicate any obvious serum 

dependence of oestrogen effects under the conditions used, density-
E:'.

dependent effects were not evaluated. Further investigation of such 

effects in fibroblastic or epithelial systems, may lead to a greater
understanding of malignant transformation in uterine cells. -

Other recent evidence (Kassis et al. 1984a, 1984b; see sect 8.3) suggests 

that a factor is produced by cultures of rat uterine fibroblastic cells,
which inhibits oestrogen receptor synthesis. However, an important Î
distinction between this factor and the one described in the rabbit system 

(above), is that the latter inhibits oestrogen-promoted growth, but has no

1
I 
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Studies of changes in cell-surface morphology in response to oestradiol and 

progestin in vitro were, indicative of hormone responsiveness. Progestin -  
induced differentiation as a form of endometrial cancer therapy is a 
subject of current interest (Bonte, 1983; Taylor 1983).
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apparent affect on cellular oestrogen binding levels (Gerschenson et al,
1981).

Removal of the factor which inhibits oestrogen-receptor synthesis in rat 

uterine fibroblastic cells in vitro, by changing the culture medium, 
results in oestrogen receptor synthesis (Kassis et al. 1984b). Data 
presented here suggest the presence in FCS of a serum-factor, which also 
affects the increase in specific oestrogen binding observed during receptor 

synthesis. Such a serum-factor does not appear to be active in HIDCCFCS.
Whether this serum-factor modulates the resynthesis of oestrogen receptor, 
and/or is involved in masking/unmasking of oestrogen binding sites, remains 
to be elucidated.

*Experiments carried out with primary cultures of cells derived from human 
endometrial carcinomas, suggest that a functional state of differentiation 

is maintained, at least in the short term, by these cells in vitro.

Studies on the ability of retinoic acid (vitamin A) to modulate expression 

of the 'simple epithelial antigen’ (located on low molecular weight 
cytokeratins and recognised by the monoclonal antibody LE61 (Lane, 1982)), 
are also consistent with the maintenance of both a differentiated state, 
and sensitivity to physiological stimuli, of HEC cells in vitro. These 
data are especially interesting in light of both the suggested protective 

role of retinoic acid in some cancers (Yuspa, 1984), and the putative role 

of the cytoskeleton and cell shape in malignant transformation (see sect 
1.7).
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9,1 FURTHER EXPERIMENTS

'?
Several aspects of the work presented here, merit further investigation.

ÿ
Study of the proliferation of rat uterine epithelial cells cultured on 

permeable deformable substrata has yielded some interesting initial data.
Further development of such a system may prove fruitful in terms of general 
aspects of growth control, and also with respect to steroid hormone action; 
particularly in relation to a putative role for a uterine-derived growth |
factor. Experiments to investigate the effects of medium conditioned by 

uterine fibroblastic cells (under differing hormonal regimes) will 
contribute to our understanding of ’indirect' mechanisms of oestrogen- 
promoted growth. ■I,

4;4'-

Although this study of steroid hormone effects on the proliferation of rat 
uterine fibroblastic cells did not show any stimulatory effects, the 
investigation of the effects of different serum types and treatments may be 

worthwhile. An investigation into differences between FCS and HIDCCFCS, in 

terms of steroid hormone effects, was not carried out here, but such an
'■Ù

investigation would be interesting. Furthermore, a comparison of the 
mitogenic effects of homologous serum derived from rats injected with 

oestradiol, with ’control’ rat serum which has been mixed with oestradiol
. 4

in vitro, may give data appropriate to an 'indirect' mechanism of -----------
oestrogen-induced proliferation,

I
Conditions have been established for the study of oestrogen receptors in 
cultured rat uterine fibroblastic cells. The further investigation of 
their intracellular levels in response to a variety of treatments, both 

hormonal and otherwise, may lead to a greater understanding of their 
modulation in ’normal’ uterine cells.

In view of the results obtained from scanning electron microscopy of HEC 

cells in primary culture, with respect to responses seen to oestrogen and a 
progestin, such studies should be extended. Changes in the expression of 

’simple epithelial antigen' in HEC cells in response to retinoic acid are
reported here. Further characterisation of the effects of retinoic acid on

4:;
the cytoskeleton and cell morphology would be worthwhile. These studies

I :
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should use biochemical as well as immunological approaches. The production 

of one’s own specific antiserum to low molecular weight cytokeratins should 

be given serious consideration. However, contemporary techniques whereby 

different cytokeratin species can be identified by their ability to co- 
polymerise with each other (Magin et al, 1983), may provide another 

experimentally useful tool.

"I
In addition to the study of cytokeratins, the study of actin in cultured 
normal rat uterine epithelial, and normal and malignant HEC cells may 

provide further evidence as to the relatiqbhip between stress fibre 
formation and malignant transformation. The possible links between 
oncogenes, growth factors and protein kinases are of current interest. The 

fact that some targets for oncogene-coded protein kinases are cytoskeletal 
(eg vinculin) and membrane components (Hunter, 1984), supports further 
investigation of the cytoskeleton of HEC cells. A study of the effects of 

retinoic acid on cytoskeletal and membrane components would complement tl^ 
above work, especially in view of both the putative protective role of 
vitamin A in some cancers (Yuspa, 1983), and its known effects on the 
cytoskeleton (see sect 1.7).
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Q u e n c h i n g  o f  3 3 2 5 8  H o e c h s t  F l u o r e s c e n c e  b y  B r o m o d e o x y u r i d i n e  
I n c o r p o r a t i o n .  C e l l  T i s s u e  K i n e t  1 2 : 1 0 1 - 1 1 0 .

B o h m e r  R  M  & E l l w a r t  J  ( 1 9 8 1 )  C o m b i n a t i o n  o f  B u d R  Q u e n c h e d  H o e c h s t
F l u o r e s c e n c e  w i t h  D N A  S p e c i f i c  E t h i d i u m  B r o m i d e  F l u o r e s c e n c e  f o r  C e l l  
C y c l e  A n a l y s i s  w i t h  a  T w o  P a r a m e t r i c a l  F l o w  C y t o m e t e r .
C e l l  T i s s u e  K i n e t  1 4 : 6 5 3 - 6 5 8 .

B o n t e  J  ( 1 9 8 3 )  H o r m o n e  D e p e n d e n c y  a n d  H o r m o n e  R e s p o n s i v e n e s s  o f  
E n d o m e t r i a l  A d e n o c a r c i n o m a  t o  E s t r o g e n s ,  P r o g e s t o g e n s  a n d  
A n t i e s t r o g e n s , i n ;  R o l e  o f  M e d r o x y p r o g e s t e r o n e  i n  E n d o c r i n e  R e l a t e d  
T u m o u r s  v o l u m e  2  ( e d s  C a m p i o  L  e t  a l ,  R a v e n  P r e s s ,  N e w  Y o r k ) .

B o y d e  A ,  W e i s s  R  A  & V e s e l y  P  ( 1 9 7 2 )  S c a n n i n g  E l e c r o n  M i c r o s c o p y  o f  
C e l l s  i n  C u l t u r e .  E x p  C e l l  R e s  7 1 : 3 1 3 - 3 2 4 .

B r a i s c h  H ,  B e c k  H  - P ,  C h r i s t e n s e n  I  J ,  H a r t m a n n  N  R ,  F r i e d  J ,
D e a n  P  N ,  W h i t e  R  A ,  N i c o l i n i  C ,  Z e i t z  S & W a t s o n  J  V  ( 1 9 8 2 )  A  
C o m p a r i s o n  o f  M a t h e m a t i c a l  M e t h o d s  f o r  t h e  A n a l y s i s  o f  D N A  H i s t o g r a m s  
O b t a i n e d  b y  F l o w  C y t o m e t r y .  C e l l  T i s s u e  K i n e t  1 5  ; 2 3 5 - 2 4 9 ,

? B r o w n  A  F  ( 1 9 8 2 )  N e u t r o p h i l  G r a n u l o c y t e s  : A d h e s i o n  a n d  L o c o m o t i o n  o n  
C o l l a g e n  S u b s t r a t a  a n d  i n  C o l l a g e n  M a t r i c i e s ,  J  C e l l  S c i  5 8 : 4 3 5 - 4 6 7 .

B r o d i e  S ,  G i r o n  J  &  L a t t  S A  ( 1 9 7 5 )  E s t i m a t i o n  o f  A c c e s s i b i l i t y  o f
D N A  i n  C h r o m a t i n  f r o m  F l u o r e s c e n c e  M e a s u r e m e n t s  o f  E l e c t r o n i c  I
E x c i t a t i o n  E n e r g y  T r a n s f e r .  N a t u r e  2 5 3 :  4 7 0 - 4 7 1 .



B r u n k  C  F  & J a m e s  T  W ( 1 9 7 7 )  I n t r a c e l l u l a r  a n d  I n  V i t r o
F l u o r e s c e n c e  o f  t h e  D N A  S p e c i f i c  P r o b e :  4 ' 6 ~ D i a m i d i n o - 2 ” P h e n y l i n d o l e  
( D A P I ) .  J  C e l l  B i o l  7 5 ; 1 3 6 a .

B r u n k  C  F ,  J o n e s  K  C  & J a m e s  T  W ( 1 9 7 9 )  A s s a y  f o r  N a n o g r a m
Q u a n t i t i e s  o f  D N A  i n  C e l l u l a r  H o m o g e n a t e s .  A n a l  B i o c h e m  9 2 : 4 9 7 - 5 0 0 .

B r u n k  U *  C o l l i n s  V  P  &  A r r o  E  ( 1 9 8 1 )  T h e  F i x a t i o n ,  D e h y d r a t i o n ,  D r y i n g  
a n d  C o a t i n g  o f  C u l t u r e d  c e l l s  f o r  S E M .  J  M i c r o s c o p y  1 2 3 : 1 2 1 - 1 3 1 .

B u i l o u g h  W S  ( 1 9 4 6 )  M i t o t i c  A c t i v i t y  i n  t h e  A d u l t  F e m a l e  M o u s e  M u s  
M u s c u l u s  L .  A  S t u d y  o f  i t s  r e l a t i o n  t o  t h e  O e s t r o u s  C y c l e  i n  N o r m a l  
a n d  A b n o r m a l  C o n d i t i o n s .  P h i l o s  T r a n s  R  S o c  l ^ n d  [ B i o l ]  2 3 1 : 4 5 3 - 4 5 7 .

B u r t o n  K  ( 1 9 5 6 )  A  S t u d y  o f  t h e  C o n d i t i o n s  a n d  M e c h a n i s m  o f  t h e  
D i p h e n y l a m i n e  R e a c t i o n  f o r  t h e  C o l o r i m e t r i c  E s t i m a t i o n  o f  
D e o x y r i b o n u c l e i c  A c i d .  B i o c h e m  J  6 2  : 3 1 5 - 3 2 2 .

B u t l e r  W B ,  K i r k l a n d  W L ,  G a r g a l a  T  L ,  G o r a n  N ,  K e l s e y  W H  & B e r l i n s k i  
P  J  ( 1 9 8 3 )  S t e r o i d  S t i m u l a t i o n  o f  P l a s m i n o g e n  A c t i v a t o r  P r o d u c t i o n  
i n  a  H u m a n  B r e a s t  C a n c e r  C e l l  L i n e  ( M C F - 7 ) .  C a n c e r  R e s  4 3 : 1 6 3 7 - 1 6 4 1 .

B y e r s  H  R ,  W h i t e  G  E  & F u j i w a r a  K  ( 1 9 8 4 )  O r g a n i z a t i o n  a n d  F u n c t i o n  o f  
S t r e s s  F i b e r s  i n  C e l l s  I n  V i t r o  a n d  I n  S i t u ,  i n ; C e l l  a n d  M u s c l e  
M o t i l i t y  V o l u m e  5 ( e d  S h a y  J  W ,  P l e n u m  P r e s s ,  N e w  Y o r k J .

C a m p l e j o h n  R  S , G e l f a n t  S ,  C h a l k e r  D  & S i t t a m p a l a m  Y  ( 1 9 8 4 )  M i t o t i c  
a n d  L a b e l l i n g  A c t i v i t y  i n  N o r m a l  E p i d e r m i s  I n  V i v o .
C e l l  T i s s u e  K i n e t  1 7 : 3 1 5 - 3 2 2 .

C e n t o l a  G M ,  G i s a r  M  &  K n a b  D  R  ( 1 9 8 4 )  E s t a b l i s h m e n t  a n d
M o r p h o l o g i c  C h a r a c t e r i z a t i o n  o f  N o r m a l  H u m a n  E n d o m e t r i u m  I n  V i t r o .
I n  V i t r o  2 0 : 4 5 1 - 4 6 2 .

C e s a r o n e  C  F ,  B o l o g n e s i  C  & S a n t i  L  ( 1 9 7 9 )  I m p r o v e d
M i c r o f l u o r o m e t r i c  D N A  D e t e r m i n a t i o n  i n  B i o l o g i c a l  M a t e r i a l  U s i n g  
3 3 2 5 8  H o e c h s t .  A n a l  B i o c h e m  1 0 0 : 1 8 8 - 1 9 7 .

C h a m n e s s  G  C ,  M e r c e r  W D  & M c G u i r e  W L  ( 1 9 8 0 )  A r e  H i s t o c h e r a i c a l
M e t h o d s  f o r  E s t r o g e n  R e c e p t o r  V a l i d ?  J  H i s t o c h e r a  C y t o c h e m  2 8 : 7 9 2 - 7 9 8 .

C h e n  L ,  L i n d n e r  H  R  & L a n c e t  M  ( 1 9 7 3 )  M i t o g e n i c  A c t i o n  o f  O e s t r a d i o l  
I 7 ~ p  o n  H u m a n  M y o m é t r i a l  a n d  E n d o m e t r i a l  C e l l s  i n  L o n g - T e r m  T i s s u e  
C u l t u r e .  J  E n d o c r i n o l  5 9  : 8 7 - 9 7 ,

C l a r k  B  F  ( 1 9 7 1 )  T h e  E f f e c t s  o f  O e s t r o g e n  a n d  P r o g e s t e r o n e  o n  U t e r i n e  
C e l l  D i v i s i o n  a n d  E p i t h e l i a l  M o r p h o l o g y  i n  S p a y e d ,  A d r e n a l e c t o m i s e d  
R a t s .  J  E n d o c r i n o l  5 0 : 5 2 7 - 5 2 8 .

C l a r k  B  F  ( 1 9 7 3 )  T h e  E f f e c t  o f  O e s t r o g e n  a n d  P r o g e s t e r o n e  o n  U t e r i n e  
C e l l  D i v i s i o n  a n d  E p i t h e l i a l  M o r p h o l o g y  i n  S p a y e d ~ H y p o p h y s e c t o m i z e d  
R a t s .  J  E n d o c r i n o l  5 6  : 3 4 1 - 3 4 2 .

C l a r k  J  H ,  H a r d i n  J  W & M c C o r m a c k  S A  ( 1 9 8 0 )  E s t r o g e n  R e c e p t o r  B i n d i n g  
a n d  t h e  S t i m u l a t i o n  o f  N o r m a l  a n d  A b n o r m a l  G r o w t h ,  i n :  S t e r o i d  
R e c e p t o r s  a n d  H o r m o n e - D e p e n d e n t  N e o p l a s i a  ( e d s  W i t t l i f f  J  L  &  D a p u n t  
0 ,  M a s s o n  P u b l i s h i n g  I n c ,  U S A ) .

C l a r k  J  H  & P e c k  J r  E  J  ( 1 9 7 9 )  F e m a l e  S e x  S t e r o i d s  R e c e p t o r s  a n d  
F u n c t i o n ,  M o n o g r  E n d o c r i n o l  V o l  1 4 .  T S p r i n g e r - V e r l a g ,  B e r l i n ) .

C l e a v e r  J  E  ( 1 9 6 7 )  T h y m i d i n e  M e t a b o l i s m  a n d  C e l l  K i n e t i c s  ( N o r t h  
H o l l a n d  P u b l i s h i n g  C o ,  A m s t e r d a m ^ .

C o n t i  C  J ,  G i m e n e z - C o n t i  I  B ,  Z e r b r e  G  O &  G e r s c h e n s o n  L  E  ( 1 9 8 1 )  
D i f f e r e n t i a l  E f f e c t s  o f  E s t r a d i o l - 1 7 ^  a n d  P r o g e s t e r o n e  o n  t h e  
P r o l i f e r a t i o n  o f  G l a n d u l a r  a n d  L u m i n a l  C e l l s  o f  R a b b i t  U t e r i n e  
E p i t h e l i u m .  B i o l  R e p r o d  2 4 :  6 4 3 - 6 4 8 .
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C o n t i  C  J ,  G i i ï i e n e z - G o n t i  I  B ,  C o n n e r  E  A ,  L e h m a n  J  M  & G e r s c h e n s o n  L  E  
( 1 9 8 4 )  E s t r o g e n  a n d  P r o g e s t e r o n e  R e g u l a t i o n  o f  P r o l i f e r a t i o n ,

M i g r a t i o n  a n d  L o s s  i n  D i f f e r e n t  T a r g e t  C e l l s  o f  R a b b i t  U t e r i n e  
E p i t h e l i u m  E n d o c r i n o l  1 1 4 : 3 4 5 - 3 5 1 .

C u n h a  G  R ,  C h u n g  L  W K ,  S h a n n o n  J  M ,  T a g u c h i  0  & F u j i i  H  ( 1 9 8 3 )  
H o r m o n e - I n d u c e d  M o r p h o g e n e s i s  a n d  G r o w t h :  R o l e  o f  M e s e n c h y m a l -  
E p i t h e l i a l  I n t e r a c t i o n s .  R e c e n t  P r o g  H o r m  R e s  3 9 : 5 5 9 - 5 9 8 .

D a i r k e e  S H ,  S m i t h  H  S &  H a c k e t t  A  J  ( 1 9 8 4 )  E x p r e s s i o n  o f  V i m e n t i n  i n  
P r i m a r y  C u l t u r e s  o f  N o r m a l  a n d  M a l i g n a n t  H u m a n  M a m m a r y  G l a n d  a n d  M i l k .  
I n  V i t r o  2 0 : 2 6 8  ( a b s t r  1 1 4 ) .

D a l l e n b a c h - H e l l w e g  G  ( 1 9 8 1 )  H i s t o p a t h o l o g y  o f  t h e  E n d o m e t r i u m  
( S p r i n g e r - V e r l a g ,  B e r l i n ) .

D a n i e l p o u r  D  & S i r b a s k u  D  A  ( 1 9 8 3 )  A u t o c r i n e  C o n t r o l  o f  E s t r o g e n -  
R e s p o n s i v e  M a m m a r y  T u m o r  C e l l  G r o w t h .  I n  V i t r o  1 9 : 2 5 2  ( a b s t r  7 1 ) .

D a n i e l p o u r  D  & S i r b a s k u  D  A  ( 1 9 8 4 )  A c t i v a t i o n  o f  M T W 9 / P L  R a t  M a m m a r y  
T u m o r  A u t o s t i m u l t o r y  G r o w t h  F a c t o r  b y  A c e t i c  A c i d .  I n  V i t r o  2 0 : 2 7 5  
( a b s t r  1 3 9 ) .

D a n n  O , B e r g e n  G ,  D e m a n t  T  & V o l z  G  ( 1 9 7 1 )  T r y p a n o c i d e  D i a m i d i n e s  o f  
2 - P h e n y b e n z o f u r a n ,  2 - P h e n y l i n d e n e  a n d  2 - P h e n y i n d o l e ,
A n n  C h e m  7 9 4  : 6 8 - 7 5 .

D a v i s o n  P ,  L i u  S & K a r a s e k  M  ( 1 9 7 9 )  L i m i t a t i o n s  i n  t h e  U s e  o f
p u ) - T h y m i d i n e  I n c o r p o r a t i o n  i n t o  D N A  a s  a n  I n d i c a t o r  o f  E p i d e r m a l  
K e r a t i n o c y t e  P r o l i f e r a t i o n  I n  V i t r o .  C e l l  T i s s u e  K i n e t  1 2 : 6 0 5 - 6 1 4 .

D e a n  P  N , D o l b e a r e  F ,  G r a t z n e r  H ,  R i c e  G  C  & G r a y  J  W ( 1 9 8 4 )  C e l l -  
C y c l e  A n a l y s i s  U s i n g  a  M o n o c l o n a l  A n t i b o d y  t o  B r d U r d .
C h l l  T i s s u e  K i n e t  1 7 : 4 2 7 - 4 3 6 .

D o r m e r  P  ( 1 9 7 3 )  Q u a n t i t a t i v e  A u t o r a d i o g r a p h y  a t  t h e  C e l l u l a r  L e v e l ,  
i n :  M i c r o m e t h o d s  i n  M o l e c u l a r  B i o l o g y  ( e d ,  N e u h o f f  V ,  C h a p m a n  &  H a l l  
L t d ,  L o n d o n ) .

D o w n s  T  R  & W i l f i n g e r  W M  ( 1 9 8 3 )  F l u o r o m e t r i c  Q u a n t i f i c a t i o n  o f  D N A  
i n  C e l l s  a n d  T i s s u e .  A n a l  B i o c h e m  1 3 1 :  5 3 8 - 5 4 7 ,

D u l b e c c o  R  &  E l k i n g t o n  J  ( 1 9 7 3 )  C o n d i t i o n s  L i m i t i n g  M u l t i p l i c a t i o n  o f
F i b r o b l a s t i c  a n d  E p i t h e l i a l  C e l l s  i n  D e n s e  C u l t u r e s .  N a t u r e  2 4 6 : 1 9 7 - 1 9 9 .

D u l b e c c o  R  &  S t o k e r  M  G  P  ( 1 9 7 0 )  C o n d i t i o n s  D e t e r m i n i n g  I n i t i a t i o n  o f  
D N A  S y n t h e s i s  i n  3 T 3  C e l l s .  P r o c  N a t l  A c a d  S c i  U S A  6 6 : 2 0 4 - 2 1 0 .

D u n n  G  A  & I r e l a n d  G  W ( 1 9 8 4 )  N e w  E v i d e n c e  t h a t  G r o w t h  i n  3 T 3  C e l l s  i s  
a  D i f f u s i o n - L i m i t e d  P r o c e s s .  N a t u r e  3 1 2  : 6 3 - 6 5 ,

D y e r  R  F ,  S o d e k  J  & H e e r s c h e  J  N  M  (  1 9 8 0 )  T h e  E f f e c t  o f  1 7 / ? ~ E s t r a d i o l  
o n  C o l l a g e n o u s  a n d  N o n  C o l l a g e n o u s  P r o t e i n  S y n t h e s i s  i n  t h e  U t e r u s  
a n d  s o m e  P e r i o d o n t a l  t i s s u e s .  E n d o c r i n o l  1 0 7 : 1 0 1 4 - 1 0 1 9 .

E c h e v e r r i a  0  M ,  V a z q u e z - N i n  G  H  & P e d r o n  J  ( 1 9 8 0 )  A  R a p i d  M e t h o d  f o r  
t h e  I s o l a t i o n  a n d  C u l t u r e  o f  E n d o m e t r i a l  E p i t h e l i a l  C e l l s  R e s p o n s i v e  
t o  E s t r a d i o l .  A c t a  A n a t  1 0 6  : 4 5 - 5 6 .

E c k e r t  R  L ,  R o r k e  E  A ,  K a t z e n e l l e n b o g e n  B  S ( 1 9 8 2 )  D e t e r m i n a t i o n  o f  
R a t e s  o f  S y n t h e s i s  a n d  T u r n o v e r  o f  t h e  O e s t r o g e n  R e c e p t o r  i n  M C P - 7  
C e l l s  U s i n g  a  D e n s i t y  S h i f t  T e c h n i q u e ,  i n :  P r o c e e d i n g s  6 4 t h  A n n u a l  
M e e t i n g  o f  T h e  E n d o c r i n e  S o c i e t y  ( a b s t r a c t  2 9 ) .

E d e r y  M ,  M c G r a t h  M ,  L a r s o n  L  &  N a n d i  S ( 1 9 8 4 )  C o r r e l a t i o n  B e t w e e n  I n  
V i t r o  G r o w t h  a n d  R e g u l a t i o n  o f  E s t r o g e n  a n d  P r o g e s t e r o n e  R e c e p t o r s  i n  
R a t  M a m m a r y  E p i t h e l i a l  C e l l s .  E n d o c r i n o l  1 1 5 : 1 6 9 1 - 1 6 9 7 .

E d w a r d s  D P ,  C h a m n e s s  G  C  & M c G u i r e  W L  ( 1 9 7 9 )  E s t r o g e n  a n d  
P r o g e s t e r o n e  R e c e p t o r  P r o t e i n s  i n  B r e a s t  C a n c e r .
B i o c h i m  B i o p h y s  A c t a  5 6 0 :  4 5 7 - 4 8 6 .
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E d w a r d s  D  P ,  M u r t h y  S  R  & M c G u i r e  W L  ( 1 9 8 0 )  E f f e c t s  o f  E s t r o g e n  a n d  
A n t i e s t r o g e n  o n  D N A  P o l y m e r a s e  i n  H u m a n  B r e a s t  C a n c e r .
C a n c e r  R e s  4 0 : 1 7 2 2 “ 1 7 2 6 .

E m m e r m a n  J  T ,  E n a m i  J ,  P l t e l k a  D  R  & N a n d i  S ( 1 9 7 7 )  H o r m o n a l  E f f e c t s  
o n  I n t r a c e l l u l a r  a n d  S e c r e t e d  C a s e i n  i n  C u l t u r e s  o f  M o u s e  M a m m a r y  
E p i t h e l i a l  C e l l s  o n  F l o a t i n g  C o l l a g e n  M e m b r a n e s .
P r o c  N a t l  A c a d  S c i  U S A  7 4 : 4 4 6 6 - 4 4 7 0 .

E n d e r s  A  C  & N e l s o n  D M  ( 1 9 7 3 )  P i n o c y t o t i c  A c t i v i t y  i n  t h e  U t e r u s  o f  
t h e  R a t .  A m  J  A n a t  1 3 8  : 2 7 7 - 2 9 9 .

E p i f a n o v a  0  I  ( 1 9 5 8 )  T h e  M i t o t i c  B e h a v i o u r  o f  t h e  E p i t h e l i u m  o f  t h e  
U t e r u s  a t  D i f f e r e n t  S t a g e s  o f  t h e  S e x u a l  C y c l e  i n  M i c e .
B u l l  E x p  B i o l  M e d  4 6 : 1 3 9 9 - 1 4 0 5 .

E p i f a n o v a  O I  ( 1 9 6 6 )  M i t o t i c  C y c l e s  i n  E s t r o g e n - T r e a t e d  M i c <  
R a d i o a u t o g r a p h i c  S t u d y .  E x p  C e l l  R e s  4 2 : 5 6 2 - 5 7 7 .

A

E r i c k s o n  C A & T r i n k a u s  J  P  ( 1 9 7 6 )  M i c r o v i l l i  a n d  B l e b s  a s  S o u r c e s  o f  
R e s e r v e  S u r f a c e  M e m b r a n e  d u r i n g  C e l l  S p r e a d i n g .
E x p  C e l l  R e s  9 9 : 3 7 5 - 3 8 4 .

F a g g  B  & M a r t i n  L  ( 1 9 7 9 )  O e s t r o g e n  C o n t e n t  o f  t h e  U t e r i n e  T i s s u e s  o f  
M i c e  a n d  T h e i r  R e l a t i o n s h i p  t o  E p i t h e l i a l  C e l l  P r o l i f e r a t i o n  a f t e r  
S u b c u t a n e o u s  a n d  I n t r a l u m i n a l  A d m i n i s t r a t i o n  o f  H o r m o n e s .
J  E n d o c r i n o l  8 3 : 2 9 5 - 3 0 2 .

F e r e n c z y  A  ( 1 9 7 6 )  S t u d i e s  o n  t h e  C y t o d y n a r a i c s  o f  H u m a n  E n d o m e t r i a l  
R e g e n e r a t i o n  I .  S c a n n i n g  E l e c t r o n  M i c r o s c o p y .
A m  J  O b s t e t  G y n e c o l  1 2 4 :  6 4 - 7 4 .

F e r e n c z y  A  ( 1 9 7 7 )  S u r f a c e  U l t r e s t r u c t u r a i  R e s p o n s e  o f  t h e  H u m a n
U t e r i n e  L i n i n g  E p i t h e l i u m  t o  H o r m o n a l  E n v i r o n m e n t .  A  S c a n n i n g  E l e c t r o n  
M i c r o s c o p i c  S t u d y .  A c t a  C y t o l  2 1  ; 5 6 6 - 5 7 2 .

F e r e n c z y  A  ( 1 9 8 0 )  T h e  F e m a l e  R e p r o d u c t i v e  S y s t e m ,  i n :  B i o m e d i c a l
R e s e a r c h  A p p l i c a t i o n s  o f  S c a n n i n g  E l e c t r o n  M i c r o s c o p y  V o l  2  T e d s )  
H o d g e s  G  M  & H a l l o w e s  R  C .  A c a d e m i c  P r e s s , L o n d o n .

F e r e n c z y  A ,  B e r t r a n d  G  & G e l f a n d  M  M  ( 1 9 7 9 )  P r o l i f e r a t i o n  K i n e t i c s  o f  
t h e  H u m a n  E n d o m e t r i u m  D u r i n g  t h e  N o r m a l  M e n s t r u a l  C y c l e .
A m  J  O b s t e t  G y n e c o l  1 3 3 : 8 5 9 - 8 6 7 .

F e r e n c z y  A ,  R i c h e r t  R  M ,  A g a t e  J r  F  J ,  P a r k e r s o n  M  L  & D e m p s e y  E  W
( 1 9 7 2 )  S c a n n i n g  E l e c t r o n  M i c r o s c o p y  o f  t h e  H u m a n  E n d o m e t r i a l  S u r f a c e  
E p i t h e l i u m .  F e r t  S t e r i l  2 3 : 5 1 5 - 5 2 1 .

F i n n  C  A  ( 1 9 7 7 )  T h e  I m p l a n t a t i o n  R e a c t i o n ,  i n :  B i o l o g y  o f  t h e  U t e r u s  
( e d  W y n n  R ,  P l e n u m  P r e s s ,  L o n d o n ) .

F i n n  C  A  & M a r t i n  L  ( 1 9 7 3 )  E n d o c r i n e  C o n t r o l  o f  G l a n d  P r o l i f e r a t i o n  i n  
t h e  M o u s e  U t e r u s .  B i o l  R e p r o d  8  : 5 8 5 - 5 8 8 .

F i s e r - S z a f a r z  B & S z a r f a r z  D  ( 1 9 8 4 )  D N A  a n d  P r o t e i n  C o n t e n t  a s
C e l l u l a r  B i o c h e m i c a l  P a r a m e t e r s .  A  D i s c u s s i o n  w i t h  T w o  E x a m p l e s  ; A c i d  
P h o s p h a t a s e  a n d  C a t h p e p s i n  D  i n  R a t  L i v e r  a n d  H e p a t o m a  a n d  A c i d  
P h o s p h a t a s e  i n  H u m a n  B r e a s t  N o r m a l  T i s s u e  a n d  A d e n o c a r c i n o m a .
A n a l  B i o c h e m  1 3 8 : 2 5 3 - 2 5 8 .

F l e m i n g  H  & G u r p i d e  E  ( 1 9 8 1 )  R a p i d  F l u c t u a t i o n s  i n  t h e  L e v e l s  o f  
S p e c i f i c  E s t r o g e n  B i n d i n g  S i t e s  i n  E n d o m e t r i a l  C e l l s  i n  C u l t u r e .  
E n d o c r i n o l  1 0 8 ; 1 7 7 4 - 1 7 5 0 .

F l e m i n g  H ,  N a r a i t  C  & G u r p i d e  E  ( 1 9 8 0 )  E s t r o g e n  R e c e p t o r s  i n  E p i t h e l i u m  
a n d  S t r o m a l  C e l l s  o f  H u m a n  E n d o m e t r i u m  i n  C u l t u r e .
J  S t e r o i d  B i o c h e m  1 2 : 1 6 9 - 1 7 4 .

F o l k m a n  J  & M o s c o n a  A  ( 1 9 7 8 )  R o l e  o f  C e l l  S h a p e  i n  G r o w t h  C o n t r o l .
N a t u r e  2 7 3  ; 3 4 5 - 3 4 9 .
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F o l k m a n  J  & T u c k e r  R  W ( 1 9 8 0 )  C e l l  C o n f i g u r a t i o n ,  S u b s t r a t u m  a n d  
G r o w t h  C o n t r o l ,  i n :  T h e  C e l l  S u r f a c e  : M e d i a t o r  o f  D e v e l o p m e n t a l  
P r o c e s s e s  ( e d s  S u b t e l n y  S  & W e s s e l l s  N  K ,  A c a d e m i c  P r e s s , N e w  Y o r k ) .

F r a n k e  W W ,  A p p e l h a n s  B ,  S c h m i d  E ,  F e u d e n s t e i n  C ,  O s b o r n  M  & W e b e r  K  
( 1 9 7 9 b )  I d e n t i f i c a t i o n  a n d  C h a r a c t e r i z a t i o n  o f  E p i t h e l i a l  C e l l s  i n  
M a m m a l i a n  T i s s u e s  b y  I m m u n o f l u o r e s c e n c e  M i c r o s c o p y  u s i n g  A n t i b o d i e s  
t o  P r e k e r a t i n .  D i f f e r e n t i a t i o n  1 5 : 7 - 2 5 .

F r a n k e  W W ,  S c h m i d  E ,  W e l l s t e e d  J ,  G r a n d  C ,  G i g i  O  & G e i g e r  B  ( 1 9 8 3 )  
C h a n g e  o f  C y t o k e r a t i n  F i l a m e n t  O r g a n i z a t i o n  d u r i n g  t h e  C e l l  C y c l e  : 
S e l e c t i v e  M a s k i n g  o f  a n  I m m u n o l o g i c  D e t e r m i n a n t  i n  I n t e r p h a s e  P t K 2  
C e l l s .  J  C e l l  B i o l  9 7  ; 1 2 5 5 - 1 2 6 0 .

F r a n k e  W W ,  S c h m i d  E , W i n t e r  S ,  O s b o r n  M  & W e b e r  K  ( 1 9 7 9 a )  W i d e s p r e a d  
O c c u r e n c e  o f  I n t e r m e d i a t e - S i z e d  F i l a m e n t s  o f  t h e  V i m e n t i n  T y p e  i n  
C u l t u r e d  C e l l s  f r o m  D i v e r s e  V e r t e b r a t e s .  E x p  C e l l  R e s  1 2 3 ;  2 5 - 4 6 .

F r e s h n e y  R  I  ( 1 9 8 3 )  C u l t u r e  o f  A n i m a l  C e l l s  A  M a n u a l  o f  B a s i c  
T e c h n i q u e  ( A l a n  R  L Ï i i “ î H c T " ' N i w “ Ÿ 5 r k T T ---------------------------------------------------------------

F r i d m a n  O ,  F l e m i n g  H  & G u r p i d e  E  ( 1 9 8 2 )  V a r i a b i l i t y  o f  L e v e l s  o f
S p e c i f i c  E s t r o g e n  B i n d i n g  i n  a  H u m a n  E n d o m e t r i a l  A d e n o c a r c i n o m a  C e l l  
L i n e .  J  S t e r o i d  B i o c h e m  1 6 : 6 0 7 - 6 1 2 .

F u c h s  E  & G r e e n  H  ( 1 9 8 0 )  C h a n g e s  i n  K e r a t i n  G e n e  E x p r e s s i o n  d u r i n g  
T e r m i n a l  D i f f e r e n t i a t i o n  o f  t h e  K e r a t i n o c y t e .  C e l l  1 9 : 1 0 3 3 - 1 0 4 2

F u l t o n  A  B , W a n  K  M  &  P e n m a n  S  ( 1 9 8 0 )  T h e  S p a t i a l  D i s t r i b u t i o n  o f  
P o l y r i b o s o m e s  i n  3 T 3  C e l l s  a n d  t h e  A s s o c i a t e d  A s s e m b l y  o f  P r o t e i n s  
i n t o  t h e  S k e l e t a l  F r a m e w o r k .  C e l l  2 0 : 8 4 9 - 8 5 7 .

G a b b i a n i  G ,  K a p a n e l  Y , B a r r a z o n e  P  & F r a n k e  W W ( 1 9 8 1 )  I m m u n o l o g i c a l  
I d e n t i f i c a t i o n  o f  I n t e r m e d i a t e  S i z e d  F i l a m e n t s  i n  H u m a n  N e o p l a s t i c  
C e l l s .  A m  J  P a t h o l  1 0 4 : 2 0 6 - 2 1 6 .

G a w l i t t a  W ,  O s b o r n  M  & W e b e r  K  ( 1 9 8 1 )  C o i l i n g  o f  I n t e r m e d i a t e
F i l a m e n t s  I n d u c e d  b y  M i c r o i n j e c t i o n  o f  a  V i m e n t i n - S p e c i f i c  A n t i b o d y  
D o e s  N o t  I n t e r f e r e  w i t h  L o c o m o t i o n  a n d  M i t o s i s .
E u r  J  C e l l  B i o l  2 6 : 8 3 - 9 0 .

G e i g e r  B ,  T o k u y a s u  K  T ,  D u t t o n  A  H  &  S i n g e r  S J  ( 1 9 8 0 )  V i n c u l i n ,  a n  
I n t r a c e l l u l a r  P r o t e i n  L o c a l i z e d  a t  S p e c i a l i z e d  S i t e s  W h e r e  
M i c r o f i l a m e n t  B u n d l e s  T e r m i n a t e  a t  C e l l  M e m b r a n e s .
P r o c  N a t l  A c a d  S c i  U S A  7 7 : 4 1 2 7 - 4 1 3 1 .

G e r m a i n  B  J ,  C a m p b e l l  P  S ,  A n d e r s o n  J  N  ( 1 9 7 8 )  R o l e  o f  t h e  S e r u m  
E s t r o g e n  B i n d i n g  P r o t e i n  i n  t h e  C o n t r o l  o f  T i s s u e  E s t r a d i o l  L e v e l s  
d u r i n g  P o s t n a t a l  D e v e l o p m e n t  o f  t h e  F e m a l e  R a t .

1 0 3 : 1 4 0 1 - 1 4 1 0 .

G e r s c h e n s o n  L  E ,  B e r l i n e r  J  & Y a n g  J  - J  ( 1 9 7 4 )  D i e t h y l s t i l b e s t r o l  a n d  
P r o g e s t e r o n e  R e g u l a t i o n  o f  C u l t u r e d  R a b b i t  E n d o m e t r i a l  C e l l  G r o w t h .  
C a n c e r  R e s  3 4 : 2 8 7 3 - 2 8 8 0 .

G e r s c h e n s o n  L  E ,  C o n n e r  E  & M u r a i  J  T  ( 1 9 7 7 )  R e g u l a t i o n  o f  t h e  C e l l  
C y c l e  b y  D i e t h y l s t i l b e s t r o l  a n d  P r o g e s t e r o n e  i n  C u l t u r e d  E n d o m e t r i a l  
C e l l s .  E n d o c r i n o l  1 0 0 ; 1 4 6 8 - 1 4 7 1 .

G e r s c h e n s o n  L  E ,  C o n n e r  E  A ,  Y a n g  J  - J  ( 1 9 7 9 )  H o r m o n a l  R e g u l a t i o n  o f  
P r o l i f e r a t i o n  i n  T w o  P o p u l a t i o n s  o f  R a b b i t  E n d o m e t r i a l  C e l l s  i n  
C u l t u r e .  L i f e  S c i e n c e s  2 4 : 1 3 3 7 - 1 3 4 4 .

G e r s c h e n s o n  L  E ,  D e P a o l i  J  R  & M u r a i  J  T  ( 1 9 8 1 )  I n h i b i t i o n  o f
E s t r o g e n - I n d u c e d  P r o l i f e r a t i o n  o f  C u l t u r e d  R a b b i t  U t e r i n e  E p i t h e l i a l  
C e l l s  b y  a  D e n s i t y - D e p e n d e n t  F a c t o r  P r o d u c e d  b y  t h e  S a m e  C e l l s .
J  S t e r o i d  B i o c h e m  1 4 : 9 5 9 - 9 6 9 .

G e r s c h e n s o n  L  E ,  G o r s k i  J  & P r e s c o t t  D  M  ( 1 9 8 4 )  I n d u c t i o n  o f  D N A
S y n t h e s i s  i n  C u l t u r e d  R a b b i t  U t e r i n e  C e l l s  b y  E s t r a d i o l  a n d  I n h i b i t i o n  
o f  t h e  E s t r o g e n  R e s p o n s e .  J  S t e r o i d  B i o c h e m  2 1 : 1 3 5 - 1 3 6 .
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G o w e r  D B  ( 1 9 7 9 )  S t e r o i d  H o r m o n e s  ( G r o o m  H e l m  L t d ,  L o n d o n ) .

G r a t z n e r  H  G  ( 1 9 8 2 )  M o n o c l o n a l  A n t i b o d y  t o  5 - B r o m o  a n d  5 -
l o d o d e o x y u r i d i n e : A  N e w  R e a g e n t  f o r  D e t e c t i o n  o f  D N A  R e p l i c a t i o n .  
S c i e n c e  2 1 8 : 4 7 4 - 4 7 5 .

Ï

G i g i  O ,  G e i g e r  B ,  E s h h a r  Z ,  M o l l  R ,  S c h m i d  E ,  W i n t e r  S ,  S c h i l l e r  D  L  & 
F r a n k e  W W ( 1 9 8 2 )  D e t e c t i o n  o f  a  C y t o k e r a t i n  D e t e r m i n a n t  C o m m o n  t o  
D i v e r s e  E p i t h e l i a l  C e l l s  b y  a  B r o a d l y  C r o s s - R e a c t i n g  M o n o c l o n a l  
A n t i b o d y .  E M B O J  1 : 1 4 2 9 - 1 4 3 7 .

G o l d m a n  R  D & K n i p e  D  M  ( 1 9 7 3 )  F u n c t i o n s  o f  C y t o p l a s m i c  F i b e r s  i n  
N o n - M u s c l e  C e l l  M o t i l i t y .
C o l d  S p r i n g  H a r b  S y m p  Q u a n t  B i o l  3 7 : 5 2 3 - 5 3 4 .

G o l d m a n  R  D ,  Y e r n e r  M  - J  & S c h l o s s  J  A  ( 1 9 7 6 )  L o c a l i z a t i o n  a n d
O r g a n i z a t i o n  o f  M i c r o f i l a m e n t s  a n d  R e l a t e d  P r o t e i n s  i n  N o r m a l  a n d  
V i r u s - T r a n s f o r m e d  C e l l s .  J  S u p r a m o l  S t r u c t  5 : 1 5 5 - 1 8 3 .

G o r d o n  S  R ,  E s s n e r  E  & R o t h s t e i n  A  ( 1 9 8 2 )  I n  S i t u  D e m o n s t r a t i o n  o f  
A c t i n  i n  N o r m a l  a n d  I n j u r e d  O c u l a r - T i s s u e  U s i n g
7 - N i t r o b e n Z " 2 - o x a - l j 3  D i a z o l e  P h a l l i c i d i n .  C e l l  M o t i l  2 : 3 4 3 - 3 5 4 ,

G o r s k i  J ,  T o f t  D ,  S h y a r a a l a  G ,  S m i t h  D  &  N o t i d e s  A  ( 1 9 6 8 )  H o r m o n e  
R e c e p t o r s  : S t u d i e s  o n  t h e  I n t e r a c t i o n  o f  E s t r o g e n  w i t h  t h e  U t e r u s .  
R e c e n t  P r o g  H o r m  R e s  2 4 : 4 5 - 8 0 .

G o r s k i  J  W e l s h o n s  W & S a k a i  D  ( 1 9 8 4 )  R e m o d e l l i n g  t h e  E s t r o g e n  R e c e p t o r  
M o d e l .  M o l  C e l l  E n d o c r i n o l  3 6  : 1 1 - 1 5  .

G o s p o d a r o w i c z  D ,  G o n z a l e z  R  &  F u j i i  D  K  ( 1 9 8 3 )  A r e  F a c t o r s  O r i g i n a t i n g  
f r o m  S e r u m ,  P l a s m a  o r  C u l t u r e d  C e l l s  I n v o l v e d  i n  t h e  G r o w t h - P r o m o t i n g  
E f f e c t  o f  t h e  E x t r a c e l l u l a r  M a t r i x  P r o d u c e d  b y  B o v i n e  C o r n e a l  
E p i t h e l i a l  C e l l s ?  J  C e l l  P h y s i o l  1 1 4 ; 1 9 1 - 2 0 2 .

G o s p o d a r o w i c z  D ,  G r e e n b e r g  G  & B i r d w e l l  C  R  ( 1 9 7 8 )  D e t e r m i n a t i o n  o f  
C e l l u l a r  S h a p e  b y  t h e  E x t r a c e l l u l a r  M a t r i x  a n d  I t s  C o r r e l a t i o n  w i t h  
t h e  C o n t r o l  o f  C e l l u l a r  G r o w t h .  C a n c e r  R e s  3 8 ; 4 1 5 5 - 4 1 7 1

G o s p o d a r o w i c z  D  &  1 1 1  C  R  ( 1 9 8 2 )  F a c t o r s  I n v o l v e d  i n  S u p p o r t i n g  t h e  
G r o w t h  a n d  S t e r o i d o g e n i c  F u n c t i o n  o f  B o v i n e  A d r e n a l  C o r t i c a l  C e l l s  
M a i n t a i n e d  o n  E x t r a c e l l u l a r  M a t r i x  a n d  E x p o s e d  t o  S e r u m - f r e e  M e d i u m .  
J  C e l l  P h y s i o l  1 1 3 : 3 7 3 - 3 8 4 .

G o t l i e b  A  I ,  H e g g e r n e s s  M  H ,  A s h  J  F  & S i n g e r  S J  ( 1 9 7 9 )
M e c h a n o c h e m i c a l  P r o p e r t i e s ,  C e l l  M o t i l i t y  a n d  C e l l - C e l l  C o n t a c t s  : 
T h e  L o c a l i z a t i o n  o f  M e c h a n o c h e m i c a l  P r o t e i n s  I n s i d e  C u l t u r e d  C e l l s  
a t  t h e  E d g e  o f  a n  I n  V i t r o  W o u n d .  J  C e l l  P h y s i o l  1 0 0 : 5 6 3 - 5 7 8 .

G r a y  J  W &  C o f f i n o  P  ( 1 9 7 9 )  C e l l  C y c l e  A n a l y s i s  b y  F l o w  C y t o m e t r y .  
M e t h  E n z y r a o l  5 2  : 2 3 3 - 2 4 7 .

G r e e n e  G  L ,  S o b e l  N  B ,  K i n g  W J  &  J e n s e n  E  V  ( 1 9 8 4 )  I m m u n o c h e m i c a l  
S t u d i e s  o f  E s t r o g e n  R e c e p t o r s .  J  S t e r o i d  B i o c h e m  2 0 : 5 1 - 5 6 ,

G r e e n  H  E ,  F u c h s  E  &  W a t t  F  ( 1 9 8 2 )  D i f f e r e n t i a t e d  S t r u c t u r a l  
C o m p o n e n t s  o f  t h e  K é r a t i n o c y t e s .
C o l d  S p r i n g  H a r b  S y m p  Q u a n t  B i o l  4 6 : 2 9 3 - 3 0 3 .

H a f e z  E  S  E  &  L u d w i g  H  ( 1 9 7 7 )  S c a n n i n g  E l e c t r o n  M i c r o s c o p y  o f  t h e  
E n d o m e t r i u m ,  i n ;  B i o l o g y  o f  t h e  U t e r u s  ( e d  W y n n  R  M .  P l e n u m  
P u b l i s h i n g ,  N e w  Y o r k J T  ---------------------------------------

H a l m e  J ,  T y r e e  B  & J e f f r e y  J  J  ( 1 9 8 0 )  C o l l a g e n a s e  P r o d u c t i o n  o f
P r i m a r y  C u l t u r e s  o f  R a t  U t e r i n e  C e l l s .  A r c h  B i o c h i m  B i o p h y s  1 9 9 : 5 1 - 6 0 .

H a m  R  G  & M c K e e h a n  W L  ( 1 9 7 9 )  M e d i a  a n d  G r o w t h  R e q u i r e m e n t s .
M d t h  E n z y m o l  5 2 : 4 4 - 9 3 .
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H a m m e r  R  E ,  S a m a r i a n  R ,  M i t c h e l l  J  A  ( 1 9 7 8 )  A l t e r a t i o n s  i n  S u r f a c e  
M o r p h o l o g y  o f  t h e  A n t i m e s o m e t r i a l  U t e r i n e  E p i t h e l i u m  o f  t h e  R a t :  
E f f e c t s  o f  O v a r i a n  S t e r o i d  h o r m o n e s .
S c a n n i n g  E l e c t r o n  M i c r o s c o p y  2 : 7 0 1 - 7 0 6 .

H a n d l e r  J  S ,  P r e s t o n  A  S &  S t e e l e  R  E  ( 1 9 8 4 )  F a c t o r s  A f f e c t i n g  t h e  
D i f f e r e n t i a t i o n  o f  E p i t h e l i a l  T r a n s p o r t  a n d  R e s p o n s i v e n e s s  t o  
H o r m o n e s .  F e d  P r o c  4 3 : 2 2 2 1 - 2 2 2 4 ,

H a r r i s  J  N  & G o r s k i  J  ( 1 9 7 8 )  E s t r o g e n  S t i m u l a t i o n  o f  D N A - D e p e n d e n t  
D N A  P o l y m e r a s e  A c t i v i t y  i n  I m m a t u r e  R a t  U t e r u s ,
M o l  C e l l  E n d o c r i n o l  1 0 : 2 9 3 - 3 0 5 .

H a y  E  D  ( 1 9 8 1 )  C o l l a g e n  a n d  E m b r y o n i c  D e v e l o p m e n t ,  i n :  C e l l  B i o l o g y  o f  
t h e  E x t r a c e l l u l a r  M a t r i x  ( e d  H a y  E  D ,  P l e n u m  P r e s s , N e w  Y o r k T .

H a y f l i c k  L  & M o o r h e a d  P  S ( 1 9 6 1 )  T h e  S e r i a l  C u l t i v a t i o n  o f  H u m a n  
D i p l o i d  C e l l  S t r a i n s .  E x p  C e l l  R e s  2 5 : 5 8 5 - 6 2 2 .

H e d m a n  K  V a h e r i  A  & W a r t i o v a a r a  J  ( 1 9 7 8 )  E x t e r n a l  F i b r o n e c t i n  o f  
C u l t u r e d  H u m a n  F i b r o b l a s t s  i s  P r e d o m i n a n t l y  a  M a t r i x  P r o t e i n .
J  C e l l  B i o l  7 6 : 7 4 8 - 7 6 0 .

H i l w i g  I  &  G r o p p  A  ( 1 9 7 2 )  S t a i n i n g  o f  C o n s t i t u t i v e  H e t e r o c h r o m a t i n , 
i n  M a m m a l i a n  C h r o m o s o m e s  w i t h  a  N e w  F l u o r o c h r o m e .
E x p  C e l l  R e s  7 5 : 1 2 2 - 1 2 6 .

H i l w i g  I  & G r o p p  A  ( 1 9 7 3 )  D e c o n d e n s a t i o n  o f  C o n s t i t u t i v e
H e t e r o c h r o m a t i n  i n  L  C e l l  C h r o m o s o m e s  b y  a  B i s b e n z i m i d a z o l e  
C o m p o u n d  ( " 3 3 2 5 8  H o e c h s t " ) .  E x p  C e l l  R e s  8 1 :  4 7 4 - 4 7 7 .

H i n e g a r d n e r  R  T  ( 1 9 7 1 )  A n  I m p r o v e d  F l u o r o m e t r i c  A s s a y  f o r  D N A .
A n a l  B i o c h e m  3 9 : 1 9 7 - 2 0 1 .

H o l l e y  R  W ( 1 9 7 5 )  C o n t r o l  o f  G r o w t h  o f  M a m m a l i a n  C e l l s  i n  C u l t u r e .
N a t u r e  2 5 8 :  4 8 7 - 4 9 0 .

H u n t e r  T  ( 1 9 8 4 )  T h e  P r o t e i n s  o f  O n c o g e n e s .  S c i  A m  2 5 1  ; 6 0 - 6 9 .

H y d e r  S  M  ( 1 9 8 3 )  T h e  M o l e c u l a r  M e c h a n i s m s  o f  S t e r o i d  H o r m o n e  A c t i o n ,
( P h D  T h e s i s ,  U n ï T i r s T t ÿ " 5 f “ G l i i g o w K ---------------------------------------------------------------------------------------

H y n e s  R  O ( 1 9 8 1 )  F i b r o n e c t i n  a n d  I t s  R e l a t i o n  t o  C e l l u l a r  S t r u c t u r e
a n d  B e h a v i o u r , i n : C e l l  B i o l o g y  o f  t h e  E x t r a c e l l u l a r  M a t r i x
( e d  H a y  E D ,  P l e n u m  P r e s s ,  N e w  Y o r k ) .

H y n e s  R  0  ( 1 9 8 2 )  P h o s p h o r y l a t i o n  o f  V i n c u l i n  i n  p p 6 0 s r c : W h a t  M i g h t
I t  A l l  M e a n .  C e l l  2 8 : 4 3 7 - 4 3 8 .

I k e d a  T ,  L i u  Q - F ,  D a n i e l p o u r  D ,  O f f i c e r  J  B ,  l i o  M ,  L e l a n d  F  E  & 
S i r b a s k u  D  A  ( 1 9 8 2 )  I d e n t i f i c a t i o n  o f  E s t r o g e n - I n d u c i b l e  G r o w t h  
F a c t o r s  ( E s t r o m e d i n s )  f o r  R a t  a n d  H u m a n  M a m m a r y  T u m o r  C e l l s  I n  
C u l t u r e .  I n  V i t r o  1 8 : 9 6 1 - 9 7 9 .

I k e d a  T  &  S i r b a s k u  D  A  ( 1 9 8 4 )  P u r i f i c a t i o n  a n d  P r o p e r t i e s  o f  a
M a m m a r y - U t e r i n e - P i t u i t a r y  T u m o r  C e l l  G r o w t h  F a c t o r  f r o m  P r e g n a n t  S h e e p  
U t e r u s .  J  B i o l  C h e m  2 5 9 :  4 0 4 9 - 4 0 6 1 .

J e n s e n  E  V ,  M o h l a  S ,  G o r e l l  T ,  T o n a k a  S & D e S o m b r e  E  R  ( 1 9 7 2 )
E s t r o p h i l e  t o  N u c l e o p h i l e  i n  T w o  E a s y  S t e p s  
J  S t e r o i d  B i o c h e m  3  ; 4 4 5 - 4 5 8 ,

J e n s e n  E  V ,  N u m a t a  M  S m i t h  S ,  S u z u k i  T ,  B r e c h e r  P  I  & D e S o m b r e  E  R  
( 1 9 6 9 )  E s t r o g e n - R e c e p t o r  I n t e r a c t i o n s  i n  T a r g e t  T i s s u e s  
D e v e l o p  B i o l  S u p p l  3 : 1 5 1 - 1 7 1 .

J e n s e n  E  V ,  S u z u k i  T ,  K a w a s h i m a  T ,  S t u r a p f  W E ,  J u n g b l u t  P  W & D e S o m b r e  
E  R  ( 1 9 6 8 )  A  T w o  S t e p  M e c h a n i s m  f o r  I n t e r a c t i o n  o f  E s t r a d i o l  w i t h  R a t  
U t e r u s .  P r o c  N a t l  A c a d  S c i  U S A  5 9 : 6 3 2 - 6 3 8 .

J o c k u s h  B  M  ( 1 9 8 3 )  P a t t e r n s  o f  M i c r o f i l a m e n t  O r g a n i z a t i o n  i n  
A n i m a l  C e l l s .  M o l  C e l l  E n d o c r i n o l  2 9 : 1 - 1 9 .
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J o h n s o n  M  & E v e r i t t  B  ( 1 9 8 0 )  E s s e n t i a l  R e p r o d u c t i o n  ( B l a c k w e l l  
S c i e n t i f i c  P u b l i c a t i o n s ,  O x f o r d ,  U K j .

J o h n s o n ~ W i n t  B  fit H o l l i s  S ( 1 9 8 2 )  A  R a p i d  I n  S i t u  D e o x y r i b o n u c l e i c  
A c i d  A s s a y  f o r  D e t e r m i n i n g  C e l l  N u m b e r  i n  C u l t u r e  a n d  T i s s u e .
A n a l  B i o c h e m  1 2 2 : 3 3 8 - 3 4 4 .

K a p u s c i n s k i  J  &  S k o c z y l a s  B  ( 1 9 7 7 )  S i m p l e  a n d  R a p i d  F l u o r i r a e t r i c  
M e t h o d  f o r  D N A  M i c r o a s s a y .  A n a l  B i o c h e m  8 3 : 2 5 2 - 2 5 7 .

K a r s e n t i  E ,  G u i l b e r t  B ,  B o r n e n s  M ,  A v r a m e a s  S ,  W h a l e n  R  & P a n t o l i n i  D  
( 1 9 7 8 )  D e t e c t i o n  o f  T u b u l i n  a n d  A c t i n  i n  V a r i o u s  C e l l  L i n e s  b y  a n  
I m m u n o p e r o x i d a s e  T e c h n i q u e .  J  H i s t o c h e m  C y t o c h e m  2 6 : 9 3 4 - 9 4 7 .

K a s s i d  A ,  S t r o b l  J  &  L i p p m a n  M  ( 1 9 8 2 )  A  N e w  F o r m  o f  N u c l e a r  E s t r o g e n  
R e c e p t o r  i n  M C F - 7  H u m a n  B r e a s t  C a n c e r  C e l l s ,  i n :  P r o c e e d i n g s  o f  6 4 t h  
A n n u a l  M e e t i n g  o f  T h e  E n d o c r i n e  S o c i e t y  ( a b s t r a c t  7 j ^ 4 j ,

K a s s i s  J  A  fit G o r s k i  J  ( 1 9 8 3 )  O n  t h e  M e c h a n i s m  o f  E s t r o g e n  R e c e p t o r  
R e p l e n i s h m e n t ;  R e c y c l i n g ,  R e s y n t h e s i s  a n d / o r  P r o c e s s i n g ,
M o l  C e l l  B i o c h e m  5 2 : 2 7 - 3 6 .

K a s s i s  J  A ,  S a k a i  D ,  W a l e n t  J  H  fit G o r s k i  J  ( 1 9 8 4 a )  P r i m a r y  C u l t u r e s  o f  
E s t r o g e n - R e s p o n s i v e  C e l l s  f r o m  R a t  U t e r i :  I n d u c t i o n  o f  P r o g e s t e r o n e  
R e c e p t o r s  a n d  a  S e c r e t e d  P r o t e i n .  E n d o c r i n o l  1 1 4 : 1 5 5 8 - 1 5 6 6 .

K a s s i s  J  A ,  W a l e n t  J  H  &  G o r s k i  J  ( 1 9 8 4 b )  E s t r o g e n  R e c e p t o r s  i n  R a t  
U t e r i n e  C e l l  C u l t u r e s :  E f f e c t s  o f  M e d i u m  o n  R e c e p t o r  C o n c e n t r a t i o n .  
E n d o c r i n o l  1 1 5  : 7 6 2 - 7 6 9 .

K a y e  A  M  ( 1 9 8 3 )  S e q u e n t i a l  R e g u l a t i o n  o f  G e n e  e x p r e s s i o n  b y  E s t r o g e n  
i n  t h e  D e v e l o p i n g  R a t  U t e r u s ,  i n ;  R e g u l a t i o n  o f  G e n e  E x p r e s s i o n  b y  
H o r m o n e s  ( e d  M c k e r n s  K  W ,  P l e n u m  P r e s s ,  L o n d o n ^ .

K a y e  A  M ,  S h e r a t z y  D  & L i n d n e r  H  R  ( 1 9 7 2 )  K i n e t i c s  o f  D N A  S y n t h e s i s  i n  
I m m a t u r e  R a t  U t e r u s  : A g e  D e p e n d e n c e  a n d  E s t r a d i o l  S t i m u l a t i o n ,
B i o c h i m  B i o p h y s  A c t a  2 6 1 :  4 7 5 - 4 8 6 .

K e i f a l l d e s  N  A  ( 1 9 7 5 )  B a s e m e n t  M e m b r a n e s  : S t r u c t u r a l  a n d  B i o s y n t h e t i c  
C o n s i d e r a t i o n s ,  J  I n v e s t  D e r m a t o l  6 5 : 8 5 - 9 2 .

K h o u r y  G  & G r u s s  P  ( 1 9 8 3 )  E n h a n c e r  E l e m e n t s .  C e l l  3 3  : 3 1 3 - 3 1 4 ,

K i m  K  H ,  R e i h n w a l d  J  G  &  F u c h s  E  V  ( 1 9 8 3 )  T i s s u e  S p e c i f i c i t y  o f  
E p i t h e l i a l  K e r a t i n s  : D i f f e r e n t i a l  E x p r e s s i o n  o f  m R N A * s  f r o m  T w o  
M u l t i g e n e  F a m i l i e s .  M o l  C e l l  B i o l  3 : 4 9 5 - 5 0 2 .

K i m u r a  J , O b a t a  T  &  O k a d a  H  ( 1 9 7 6 )  K i n e t i c  A n a l y s i s  o f  H o r m o n e  I n d u c e d  
M i t o s e s  i n  E p i t h e l i a l  C e l l s  o f  M o u s e  U t e r u s  a n d  V a g i n a .
E n d o c r i n o l  J P N  2 3 : 3 9 1 - 3 9 9 .

K i m u r a  J ,  O b a t a  T  & O k a d a  H  ( 1 9 7 8 )  S t e r o i d a l  C o n t r o l  M e c h a n i s m  o f
C e l l - P r o l i f e r a t i o n  i n  M o u s e  U t e r i n e  E p i t h e l i u m .  E n d o c r i n o l  J P N  2 5 : 7 - 1 2 .

K i n g  R  J  B ,  L a n e  G ,  S i d d l e  N ,  T a y l o r  R  W ,  T o w n s e n d  P  T  & W h i t e h e a d  M  I
( 1 9 8 1 )  A s s e s s m e n t  o f  O e s t r o g e n  a n d  P r o g e s t i n  E f f e c t s  o n  E p i t h e l i u m  a n d
S t r o m a  f r o m  P r e -  a n d  P o s t m e n o p a u s a l  E n d o m e t r i a .
J  S t e r o i d  B i o c h e m  1 5 : 1 7  5 - 1 8 1 ,

K i n g  R  J  B  T o w n s e n d  P  T ,  S i d d l e  N ,  W h i t e h e a d  M  I  &  T a y l o r  R  W ( 1 9 8 2 )
R e g u l a t i o n  o f  O e s t r o g e n  a n d  P r o g e s t e r o n e  R e c e p t o r  L e v e l s  i n  
E p i t h e l i u m  a n d  S t r o m a  f r o m  P r e -  a n d  P o s t m e n o p a u s a l  E n d o m e t r i a .
J  S t e r o i d  B i o c h e m  1 6 : 2 1 - 2 9 .

K i n g  W J  fit G r e e n e  G  L  ( 1 9 8 4 )  M o n o c l o n a l  A n t i b o d i e s  L o c a l i z e  O e s t r o g e n  
R e c e p t o r  i n  t h e  N u c l e i  o f  T a r g e t  C e l l s .  N a t u r e  3 0 7 : 7 4 5 - 7 4 7 .

K i r k  D & C l i n g a n  D  A  ( 1 9 8 0 )  N o r m a l  H u m a n  E n d o m e t r i u m  i n  C e l l  C u l t u r e  
I I I .  M e c h a n i s m ( s )  o f  E p i t h e l i a l  P o l y p l o i d i z a t i o n .
C e l l  B i o l  I n t  R e p  4 : 8 3 - 9 2 .
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K i r k  D  & I r w i n  J  C  ( 1 9 8 0 )  N o r m a l  H u m a n  E n d o m e t r i u m  i n  C e l l  C u l t u r e .
M e t h  C e l l  B i o l  2 1 8 : 5 1 - 7 7 .

K i r k  D ,  K i n g  R J B ,  H e y e s  J ,  P e a c h y  L ,  H i r s c h  P  J  fit T a y l o r  R  W ( 1 9 7 8 )  
N o r m a l  H u m a n  E n d o m e t r i u m  i n  C e l l  C u l t u r e  I ,  S e p a r a t i o n  a n d  
C h a r a c t e r i z a t i o n  o f  E p i t h e l i a l  a n d  S t r o m a l  C o m p o n e n t s  I n  V i t r o .
I n  V i t r o  1 4 : 6 5 1 - 6 6 2 .

K i r k l a n d  J  L ,  G a r d n e r  R  M ,  M u k k u  V  R ,  A k h t a r  M  & S t a n c e l  G  M  ( 1 9 8 1 )  
H o r m o n a l  C o n t r o l  o f  U t e r i n e  G r o w t h :  T h e  E f f e c t  o f  H y p o t h y r o i d i s m  o n  
E s t r o g e n - S t i m u l a t e d  C e l l  D i v i s i o n .  E n d o c r i n o l  1 0 8 : 2 3 4 6 - 2 3 5 1 .

K i r k l a n d  J  L ,  L a P o i n t e  L ,  J u s t i n  E  fit S t a n c e l  G  M  ( 1 9 7 9 )  E f f e c t  o f  
E s t r o g e n  o n  M i t o s i s  i n  I n d i v i d u a l  C e l l  T y p e s  o f  t h e  I m m a t u r e  R a t  
U t e r u s .  B i o l  R e p r o d  2 1 : 2 6 9 - 2 7 1 .

K i r k l a n d  J  L ,  M u k k a  V  R ,  H a r d y  M  &  S t a n c e l  G  M  ( 1 9 8 4 )  H o r m o n a l  C o n t r o l  
o f  U t e r i n e  G r o w t h ;  A l t e r a t i o n s  i n  L u m i n a l  E p i t h e l i a l  D e o x y r i b o n u c l e i c  
A c i d  S y n t h e s i s  a f t e r  I n t r a l u m i n a l  A p p l i c a t i o n  o f  E s t r o g e n .
E n d o c r i n o l  1 1 4  : 9 6 9 - 9 7 3 .

K i s s a n e  J  M  St R o b b i n s  E  ( 1 9 5 8 )  T h e  F l u o r o m e t r i c  M e a s u r e m e n t  o f
D e o x y r i b o n u c l e i c  A c i d  i n  A n i m a l  T i s s u e s  w i t h  S p e c i a l  R e f e r e n c e  t o  
t h e  N e r v o u s  S y s t e m .  J  B i o l  C h e m  2 3 3 : 1 8 4 - 1 8 8 .

K l y m k o w s k y  M  W ( 1 9 8 1 )  I n t e r m e d i a t e  F i l a m e n t s  i n  3 T 3  C e l l s  C o l l a p s e  
a f t e r  I n t r a c e l l u l a r  I n j e c t i o n  o f  M o n o c l o n a l  A n t i - i n t e r m e d i a t e  
F i l a m e n t  A n t i b o d y .  N a t u r e  2 9 1 : 2 4 9 - 2 5 1 .

K l y m k o w s k y  M  W , M i l l e r  R  H  fit L a n e  E  B  ( 1 9 8 3 )  M o r p h o l o g y ,  B e h a v i o u r  
a n d  I n t e r a c t i o n  o f  C u l t u r e d  E p i t h e l i a l  C e l l s  a f t e r  M o n o c l o n a l  
A n t i b o d y - I n d u c e d  D i s r u p t i o n  o f  K e r a t i n  F i l a m e n t  O r g a n i s a t i o n .
J  C e l l  B i o l  9 6 : 4 9 4 - 5 0 9 .

K n e i f e l  M  A ,  L e y t e s  S  P ,  F l e t c h e r  E ,  W e b e r  T ,  M a n g e l  W  F  &
K a t z e n e l l e n b o g e n  B  S ( 1 9 8 2 )  U t e r i n e  P l a s m i n o g e n  A c t i v a t o r  A c t i v i t y  : 
M o d u l a t i o n  b y  S t e r o i d  H o r m o n e s .  E n d o c r i n o l  1 1 1 : 4 9 3 - 4 9 9 .

K n o x  P  ( 1 9 8 0 )  T h e  A d h e s i o n  o f  C e l l s  t o  a  S o l i d  S u b s t r a t u m ,  i n :
B i o c h e m i s t r y  o f  C e l l u l a r  R e g u l a t i o n  V o l  4 ,  T h e  C e l l  S u r f a c e  ( e d  K n o x  P ,  
C R C  P r e s s  I n c ,  B o c a  R a t o n ,  F l o r i d a ,  U S A ) ,

K r e u g e r  W A ,  B o  W J  &  C h u n g  M  R  ( 1 9 7 8 )  T h e  E f f e c t s  o f  R e p e a t e d
E s t r o g e n  A d m i n i s t r a t i o n  o n  C e l l  D i v i s i o n  i n  t h e  L u m i n a l  E p i t h e l i u m  o f  
t h e  I m m a t u r e  R a t ,  B i o l  R e p r o d  1 9  : 3 8 5 - 3 8 8 .

K r e u g e r  W A ,  B o  W J  & G a r r i s o n  B  M  ( 1 9 7 4 )  T h e  E f f e c t  o f  D i f f e r e n t  
E s t r o g e n - P r o g e s t e r o n e  R a t i o s  o n  D N A  S y n t h e s i s  i n  t h e  R a t  U t e r u s .
A n a t  R e c  1 7 8 : 6 1 7 - 6 2 2 .

K u m a r  A  & D i c k e r m a n  H  W ( 1 9 8 3 )  S p e c i f i c i t y  o f  N u c l e i c  A c i d  S t r u c t u r e
f o r  B i n d i n g  S t e r o i d  R e c e p t o r s ,  i n ;  B i o c h e m i c a l  A c t i o n s  o f  H o r m o n e s  V o l  
1 0  ( e d  L i t w a c k  G ,  A c a d e m i c  P r e s s  I n c “ L 5 K d 5 n T 7 ---------------------------------------------------------------------

L a b a r c a  C  & P a i g e n  K  ( 1 9 8 0 )  A  S i m p l e ,  R a p i d , 
P r o c e d u r e ,  A n a l  B i o c h e m  1 0 2 : 3 4 4 - 3 5 2 .

a n d  S e n s i t i v e  D N A  A s s a y

L a n e  E  B  ( 1 9 8 2 )  M o n o c l o n a l  A n t i b o d i e s  P r o v i d e  S p e c i f i c
I n t r a m o l e c u l a r  M a r k e r s  f o r  t h e  S t u d y  o f  E p i t h e l i a l  T o n o f i l a m e n t
O r g a n i z a t i o n .  J  C e l l  B i o l  9 2 : 6 6 5 - 6 7 3 .

L a n e  E  B ,  G o o d m a n  S L  fit T r e j d o s i e w i c z  L  K  ( 1 9 8 2 )  D i s r u p t i o n  o f  t h e  
K e r a t i n  F i l a m e n t  N e t w o r k  d u r i n g  E p i t h e l i a l  C e l l  D i v i s i o n .
E M B O  J  1 : 1 3 6 5 - 1 3 7 2 .

L a t t  S  A  ( 1 9 7 3 )  M i c r o f l u o r o m e t r i c  D e t e c t i o n  o f  D e o x y r i b o n u c l e i c  A c i d  
R e p l i c a t i o n  i n  H u m a n  M e t a p h a s e  C h r o m o s o m e s .
P r o c  N a t l  A c a d  S c i  U S A  7 0 : 3 3 9 5 - 3 3 9 9 .

L a t t  S  A , G e o r g e  Y  S fit G r a y  J  W ( 1 9 7 7 )  F l o w c y t o m e t r i e  A n a l y s i s  o f
B r o m o d e o x y u r i d i n e  S u b s t i t u t e d  C e l l s  S t a i n e d  w i t h  3 3 2 5 8  H o e c h s t .
J  H i s t o c h e m  C y t o c h e m  2 5 : 9 2 7 - 9 3 4 .
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L a t t  S A  & S t e t t e n  G ( 1 9 7 6 )  S p e c t r a l  S t u d i e s  o n  3 3 2 5 8  H o e c h s t  a n d  
R e l a t e d  B i s b e n z i m i d a z o l e  D y e s  U s e f u l  f o r  F l u o r e s c e n t  D e t e c t i o n  o f  
D e o x y r i b o n u c l e i c  A c i d  S y n t h e s i s .  J  H i s t o c h e m  C y t o c h e m  2 4  : 2 4 - 3 3 .

L a t t  S  A  & W o h l l e b  J  C  ( 1 9 7 5 )  O p t i c a l  S t u d i e s  o f  t h e  I n t e r a c t i o n  o f  
3 3 2 5 8  H o e c h s t  w i t h  D N A ,  C h r o m a t i n ,  a n d  M e t a p h a s e  C h r o m o s o m e s .
C h r o m o s o m a  5 2 : 2 9 7 - 3 1 6 ,

L a u g i e r  C ,  P a g e a u x  J  - F ,  S o t o  A  M  &  S o n n e n s c h e i n  C  ( 1 9 8 3 )  M e c h a n i s m  o f  
E s t r o g e n  A c t i o n :  I n d i r e c t  E f f e c t  o f  E s t r a d i o l  1 7 ~ p  o n  P r o l i f e r a t i o n  o f  
Q u a i l  O v i d u c t  C e l l s .  P r o c  N a t l  A c a d  S c i  U S A  8 0 : 1 6 2 1 - 1 6 2 5 .

L a z a r i d e s  E  ( 1 9 8 0 )  I n t e r m e d i a t e  F i l a m e n t s  a s  M e c h a n i c a l  I n t e g r a t o r s  o f  
C e l l u l a r  S p a c e ,  N a t u r e  2 8 3 : 2 4 9 - 2 5 6 .

L e a k e  R  ( 1 9 8 0 )  M e t h o d o l o g y  o f  S t e r o i d  H o r m o n e  R e c e p t o r  D e t e r m i n a t i o n  
i n  B r e a s t  C a n c e r ,  i n :  P r o g e s t o g e n s  i n  t h e  M a n a g e m e n t  o f  H o r m o n e  
R e s p o n s i v e  C a r c i n o m a s  T e d  T a y l o r  R  W ,  T h e  M e d i c i n e  P u b l i s h i n g  
F o u n d a t i o n ,  U K } .

L e a k e  R  E  ( 1 9 8 1 )  P r o b l e m s  A s s o c i a t e d  w i t h  D o s e  R e s p o n s e  i n  S t e r o i d -  
H o r m o n e  A c t i v a t i o n  o f  S t r u c t u r a l  G e n e s .  M o l  C e l l  E n d o c r i n o l  2 1 : 1 - 1 3 .

L e l a n d  F  E *  l i o  M  &  S i r b a s k u  ( 1 9 8 1 )  H o r m o n e - D e p e n d e n t  C e l l  L i n e s , i n ;  
F u n c t i o n a l l y  D i f f e r e n t i a t e d  C e l l  L i n e s  ( e d  S a t o  G ,  A  R  L i s s  I n c ,  N e w  
Y o r k ) .
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L e a k e  R ,  M c N e i l l  W & B l a c k  M  ( 1 9 7 5 )  S t e r o i d s  a n d  t h e  C o n t r o l  o f  
D e o x y r i b o n u c l e i c  A c i d  S y n t h e s i s  i n  t h e  U t e r u s .
B i o c h e m  S o c  T r a n s  3 : 1 1 8 0 - 1 1 8 3 .

L e e  A  E  ( 1 9 7 2 )  C e l l  D i v i s i o n  a n d  D N A  S y n t h e s i s  i n  t h e  M o u s e  U t e r u s  
D u r i n g  C o n t i n u o u s  O e s t r o g e n  T r e a t m e n t .  J  E n d o c r i n o l  5 5 : 5 0 7 - 5 1 3 .

L e e  A  E ,  R o g e r s  L  A  &  T r i n d e r  G  ( 1 9 7 4 )  C h a n g e s  i n  C e l l  P r o l i f e r a t i o n  
R a t e  i n  M o u s e  U t e r i n e  E p i t h e l i u m  D u r i n g  C o n t i n u o u s  O e s t r o g e n  
T r e a t m e n t .  J  E n d o c r i n o l  6 1 :  1 1 7 - 1 2 1 .

"iV

L e e  L  D  & B a d e n  H  P  ( 1 9 7 6 )  O r g a n i z a t i o n  o f  t h e  P o l y p e p t i d e - C h a i n s  i n  
M a m m a l i a n  K e r a t i n .  N a t u r e  2 6 4  : 3 7 7 - 3 7 9 .

L e e  S  H  ( 1 9 8 2 )  U t e r i n e  E p i t h e l i a l  a n d  E o s i n o p h i l  E s t r o g e n  R e c e p t o r s  i n  
R a t s  D u r i n g  t h e  E s t r o u s  C y c l e .  H i s t o c h e m  7 4 : 4 4 3 - 4 5 2 .

L e e  S H  ( 1 9 8 4 )  V a l i d i t y  o f  a  H i s t o c h e m i c a l  E s t r o g e n  R e c e p t o r  A s s a y .
J  H i s t o c h e m  C y t o c h e m  3 2 : 3 0 5 - 3 1 0 .

L e h t o  V  - P ,  V i r t a n e n  I  & K u r k i  P  ( 1 9 7 8 )  I n t e r m e d i a t e  F i l a m e n t s  A n c h o r  
t h e  N u c l e i  i n  N u c l e a r  M o n o l a y e r s  o f  C u l a t u r e d  H u m a n  F i b r o b l a s t s .
N a t u r e  2 7 2 : 1 7 5 - 1 7 7 .

L e l a n d  F  E  fit S i r b a s k u  D  A  ( 1 9 8 3 )  U t e r i n e  D e r i v e d  G r o w t h  F a c t o r
A c t i v i t i e s  f o r  M a m m a r y  a n d  U t e r i n e  T u m o r  C e l l s  a r e  F o u n d  t o  C o i n c i d e ,  
P r o c  A m  A s s o c  C a n c e r  R e s  2 4 : 1 7 7 .

L e P e c q  J  - B  fit P a o l e t t i  G  ( 1 9 6 6 )  A  N e w  F l u o r o m e t r i c  M e t h o d  f o r  R N A  
a n d  D N A  D e t e r m i n a t i o n .  A n a l  B i o c h e m  1 7  : 1 0 0 - 1 0 7 .

L e r o y  F ,  L e j e u n e  B  fit G a l a n d  P  ( 1 9 8 1 )  R e g e n e r a t i o n  o f  U t e r i n e  
E p i t h e l i u m  a f t e r  E x p e r i m e n t a l  A b l a t i o n  i n  t h e  R a t .
C e l l  T i s s u e  K i n e t  1 4 : 1 5 3 - 1 6 1 .

L e r o y  F ,  V a n  H o e c k  J  fit B o g a e r t  C  ( 1 9 7 7 )  E f f e c t s  o f  U t e r i n e  D i s t e n t i o n  
a n d  O e s t r a d i o l  o n  C e l l  K i n e t i c s  i n  t h e  E n d o m e t r i a l  E p i t h e l i u m  o f  
O v a r i e c t o m i z e d  R a t s .  C e l l  T i s s u e  K i n e t  1 0 : 4 3 7 - 4 4 5 ,

L i n k i e  D  M  fit S i i t e r i  P  K  ( 1 9 7 8 )  A  R e - E x a m i n a t i o n  o f  t h e  I n t e r a c t i o n  o f  
E s t r a d i o l  w i t h  T a r g e t  C e l l  R e c e p t o r s  J  S t e r o i d  B i o c h e m  9 : 1 0 7 1 - 1 0 7 8 .



L i p p m a n  M  E ,  A l l e g r a  J  C  & S t r o b l  J  S ( 1 9 7 9 )  G r o w t h  R e q u i r e m e n t s  o f  a  
H u m a n  B r e a s t  C a n c e r  C e l l  L i n e  i n  S e r u m - F r e e  M e d i u m ,  i n :  H o r m o n e s  a n d  
C e l l  C u l t u r e  ( e d s  S a t o  G  & R o s s  R ,  C o l d  S p r i n g  H a r b  L a b ,  U S A ? .

L i p p m a n  M  E ,  B o l a n  G  &  H u f f  K  ( 1 9 7 6 )  T h e  E f f e c t s  o f  E s t r o g e n  a n d
A n t i e s t r o g e n s  i n  H o r m o n e  R e s p o n s i v e  B r e a s t  C a n c e r  i n  L o n g - T e r m  T i s s u e  
C u l t u r e .  C a n c e r  R e s  3 6 : 4 5 9 5 - 4 6 0 1 .

L i p p m a n  M  E ,  S t r o b l  J  &  A l l e g r a  J  C  ( 1 9 8 0 )  E f f e c t s  o f  H o r m o n e s  o n  
H u m a n  B r e a s t  C a n c e r  C e l l s  i n  T i s s u e  C u l t u r e ,  i n :  C e l l  B i o l o g y  o f  
B r e a s t  C a n c e r  ( e d s  M c G r a t h  C  M ,  B r e n n a n  M  J  & R i c h  M  A ,  A c a d e m i c  
P r e s s ,  L o n d o n ) .

L i s e n m a y e r  T  F  ( 1 9 8 1 )  C o l l a g e n ,  i n :  C e l l  B i o l o g y  o f  E x t r a c e l l u l a r  
M a t r i x  ( e d  H a y  E  D ,  P l e n u m  P r e s s ,  N e w  Y o r k ? .

L i s z c a c k  T  M ,  R i c h a r d s o n  G  S ,  M a c L a u g h l i n  D  T  & K o r n b l i t h  P  L  ( 1 9 7 7 )  
U l t r a s t u r u c t u r e  o f  H u m a n  E n d o m e t r i a l  E p i t h e l i u m  i n  M o n o l a y e r  C u l t u r e  
w i t h  a n d  w i t h o u t  S t e r o i d  H o r m o n e s .  I n  V i t r o  1 3 : 3 4 4 - 3 5 6 .

L o n i n g  T ,  C a s e l i t z  J ,  S e i f e r t  G ,  W e b e r  K  & O s b o r n  M  ( 1 9 8 2 )
I d e n t i f i c a t i o n  o f  L a n g e r h a n s  C e l l s :  S i m u l t a n e o u s  U s e  o f  A n t i s e r a  t o  
I n t e r m e d i a t e  F i l a m e n t s ,  T 6  a n d  H L A - D R  A n t i g e n s  o n  O r a l  M u c o s a .
V i r c h o w s  A r c h  [ P a t h o l  A n a t ]  3 9 8 : 1 1 9 - 1 2 8 .

L o t a n  R  ( 1 9 8 0 )  E f f e c t s  o f  V i t a m i n  A  a n d  i t s  A n a l o g s  ( R e t i n o i d s )  o n  
N o r m a l  a n d  N e o p l a s t i c  C e l l s ,  B i o c h i m  B i o p h y s  A c t a  6 0 5 : 3 3 - 9 1 .

L o v e  C  A  ( 1 9 8 2 )  T h e  M o l e c u l a r  B a s i s  o f  S t e r o i d  H o r m o n e  P r o m o t e d  
G r o w t h ,  ( P h D  t h e s i s .  U n i v e r s i t y  o f  G l a s g o w ) .

L u k o l a  A  & P u n n o n e n  R  ( 1 9 8 3 )  C h a r a c t e r i z a t i o n  o f  t h e  E f f e c t  o f  S o d i u m  
M o l y b d a t e  a n d  D i i s o p r o p y l f l u o r o p h o s p h a t e  o n  t h e  H u m a n  M y o m é t r i a l  
E s t r o g e n  a n d  P r o g e s t e r o n e  R e c e p t o r s .  J  S t e r o i d  B i o c h e m  1 8 : 2 3 1 - 2 3 5 .

L y t t l e  C  R  & D e S o m b r e  E  R  ( 1 9 7 7 )  U t e r i n e  P e r o x i d a s e  a s  a  M a r k e r  f o r  
E s t r o g e n  A c t i o n ,  P r o c  N a t l  A c a d  S c i  U S A  7 4 : 3 1 6 2 - 3 1 6 6 .

M a c P h e r s o n  I  A  &  S t o k e r  M  ( 1 9 6 2 )  P o l y o m a  T r a n s f o r m a t i o n  o f  H a m s t e r  
C e l l  C l o n e s  -  A n  I n v e s t i g a t i o n  o f  G e n e t i c  F a c t o r s  A f f e c t i n g  C e l l  
C o m p e t e n c e .  V i r o l  1 6 : 1 4 7 - 1 5 1 ,

M a e k a w a  T  &  T s u c h i y a  J  ( 1 9 6 8 )  A  M e t h o d  f o r  t h e  D i r e c t  E s t i m a t i o n  o f  
t h e  L e n g t h  o f  G l ,  S  a n d  G 2  p h a s e ,  E x p  C e l l  R e s  5 3 : 5 5 - 6 4 .

M a g i n  T  M ,  J o r c a n o  J  L  &  F r a n k e  W W ( 1 9 8 3 )  T r a n s l a t i o n a l  P r o d u c t s  o f  
m R N A ' s  C o d i n g  f o r  N o n - E p i d e r m a l  G y t o k e r a t i n s ,  E M B O  J  2 : 1 3 8 7 - 1 3 9 2 .

M a r t e l  D ,  M a l e t  C ,  G a u t r a y  J  P ,  P s y c h o y o s  A  ( 1 9 8 1 )  S u r f a c e  C h a n g e s  o f  
t h e  L u m i n a l  U t e r i n e  E p i t h e l i u m  d u r i n g  t h e  H u m a n  M e n s t r u a l  C y c l e  ; A  
S c a n n i n g  E l e c t r o n  M i c r o s c o p i c  S t u d y ,  i n :  T h e  E n d o m e t r i u m ,  H o r m o n a l
I m p a c t s  ( e d s  d e  B r u x  J  M ,  M o r t e l  R  &  G a u t r a y  J  P ,  P l e n u m  P r e s s , 
L o n d o n ? .

M a r t e l  D  fit P s y c h o y o s  A  ( 1 9 8 0 )  B e h a v i o u r  o f  U t e r i n e  S t e r o i d  R e c e p t o r s  
a t  I m p l a n t a t i o n .  P r o g  R e p r o d  B i o l  7 : 2 1 6 - 2 2 1 .

M a r t i n  L  fit C l a r i n g b o l d  P  J  ( 1 9 6 0 )  T h e  M i t o g e n i c  A c t i o n  o f  O e s t r o g e n s  
i n  t h e  V a g i n a l  E p i t h e l i u m  o f  t h e  O v a r i e c t o m i z e d  M o u s e .
J  E n d o c r i n o l  2 0 : 1 7 3 - 1 8 6 .

M a r t i n  L  fit F i n n  C  A  ( 1 9 6 8 )  H o r m o n a l  R e g u l a t i o n  o f  C e l l  D i v i s i o n  i n  
E p i t h e l i a l  a n d  C o n n e c t i v e  T i s s u e  i n  t h e  M o u s e  U t e r u s .
J  E n d o c r i n o l  4 1 : 3 6 3 - 3 7 1 .

M a r t i n  L  & F i n n  C  A  ( 1 9 7 0 )  I n t e r a c t i o n s  o f  O e s t r a d i o l  a n d  P r o g e s t e r o n e  
i n  t h e  M o u s e  U t e r u s .  J  E n d o c r i n o l  4 8 : 1 0 9 - 1 1 5 .

M a r t i n  L ,  F i n n  C  A  fit T r i n d e r  G  ( 1 9 7 3 a )  H y p e r t r o p h y  a n d  H y p e r p l a s i a  i n  
t h e  M o u s e  U t e r u s  a f t e r  O e s t r o g e n  T r e a t m e n t  : A n  A u t o r a d i o g r a p h i c  S t u d y ,  
J  E n d o c r i n o l  5 6 : 1 3 3 - 1 4 4 .
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M a r t i n  L ,  F i n n  C  A  & T r i n d e r  G  ( 1 9 7 3 b )  D N A  S y n t h e s i s  i n  t h e
E n d o m e t r i u m  o f  P r o g e s t e r o n e - T r e a t e d  M i c e .  J  E n d o c r i n o l  5 6 : 3 0 3 - 3 0 7 .

M a r t i n  L ,  D a s  R  M  & F i n n  C  A  ( 1 9 7 3 c )  T h e  I n h i b i t i o n  b y  P r o g e s t e r o n e  o f  
U t e r i n e  E p i t h e l i a l  P r o l i f e r a t i o n  i n  t h e  M o u s e .  J  E n d o c r i n o l  5 7 : 5 4 9 - 5 5 4

M a r t i n  P  M  fit S h e r i d a n  P  J  ( 1 9 8 0 )  I n t r a c e l l u l a r  D i s t r i b u t i o n  o f  
E s t r o g e n  R e c e p t o r s :  A  F u n c t i o n  o f  P r e p a r a t i o n .
E x p e r e n t i a  3 6 : 6 2 0 - 6 2 2 .

M a r t i n  P  M  St S h e r i d a n  P  J  ( 1 9 8 2 )  T o w a r d s  a  N e w  M o d e l  f o r  t h e  M e c h a n i s m  
o f  A c t i o n  o f  S t e r o i d s ,  J  S t e r o i d  B i o c h e m  1 6 : 2 1 5 - 2 3 0 .

M a u r e r  H  R  ( 1 9 8 1 )  P o t e n t i a l  P i t f a l l s  o f  - T h y m i d i n e  T e c h n i q u e s  t o
M e a s u r e  C e l l  P r o l i f e r a t i o n .  C e l l  T i s s u e  K i n e t  1 4 : 1 1 1 - 1 2 0 ,

M c A t e e r  J  A  fit D o u g l a s  W H  J  ( 1 9 7 9 )  M o n o l a y e r  C u l t u r e  T e c h n i q u e s .
M e t h  E n z y m o l  5 2  : 1 3 2 - 1 4 0 .

M c C o r m a c k  S A  fit G l a s s e r  S R  ( 1 9 8 0 )  D i f f e r e n t i a l  R e s p o n s e  o f  I n d i v i d u a l  
U t e r i n e  C e l l  T y p e s  f r o m  I m m a t u r e  R a t s  T r e a t e d  w i t h  E s t r a d i o l .  
E n d o c r i n o l  1 0 6 : 1 6 3 4 - 1 6 4 9 .

M c G r a t h  C  M  ( 1 9 8 3 )  A u g m e n t a t i o n  o f  t h e  R e s p o n s e  o f  N o r m a l  
M a m m a r y  E p i t h e l i a l  C e l l s  t o  E s t r a d i o l  b y  M a m m a r y  S t r o m a .
9 Ê D Ç Ê E  k e s  4 3 : 1 3 5 5 - 1 3 6 0 .

M c K e e h a n  W L  & H a m  R  G  ( 1 9 7 6 )  S t i m u l a t i o n  o f  C l o n a l  G r o w t h  o f  N o r m a l  
F i b r o b l a s t s  w i t h  S u b s t r a t a  C o a t e d  w i t h  B a s i c  P o l y m e r s .
J  C e l l  B i o l  7 1 : 7 2 7 - 7 3 4 .

M c K e e h a n  W L ,  M c K e e h a n  K  A ,  H a m m o n d  S L  fit H a m  R  G  ( 1 9 7 7 )  I m p r o v e d  
M e d i u m  f o r  C l o n a l  G r o w t h  o f  H u m a n  D i p l o i d  F i b r o b l a s t s  a t  L o w  
C o n c e n t r a t i o n s  o f  S e r u m  P r o t e i n .  I n  V i t r o  1 3 : 3 9 9 - 4 1 6 .

M c T a v i s h  F  C ,  N e l s o n  W J  fit T r a u b  P ( 1 9 8 3 )  S y n t h e s i s  o f  V i m e n t i n  i n  a  
R e t i c u l o c y t e  C e l l - F r e e  S y s t e m  P r o g r a m m e d  b y  P o l y ( A ) - R i c h  R N A  f r o m  
S e v e r a l  C e l l  L i n e s  a n d  R a t  L i v e r .  E u r  J  B i o c h e m  1 3 0 : 2 1 1 - 2 2 1 .

M e r k  F  B ,  K w a n  P  W L ,  S p i l m a n  S ,  T e r r a c i o  L  fit D o u g l a s  W H  ( 1 9 8 4 )  C e l l  
S u r f a c e  M o d i f i c a t i o n s  i n  t h e  E p i t h e l i u m  o f  R a t  V e n t r a l  P r o s t a t e  
D u r i n g  A d a p t i o n  t o  I n  V i t r o  C o n d i t i o n s .  I n  V i t r o  2 0 : 2 1 6 - 2 2 8 .

M i c h a l o p o u l o s  G fit P i t o t  H  C  ( 1 9 7 5 )  P r i m a r y  C u l t u r e  o f  P a r e n c h y m a l  
L i v e r  C e l l s  o n  C o l l a g e n  M e m b r a n e s  E x p  C e l l  R e s  9 4 : 7 0 - 7 8 ,

M i t c h i s o n  J  M  ( 1 9 7 1 )  T h e  B i o l o g y  o f  t h e  C e l l  C y c l e  ( C a m b r i d g e  
U n i v e r s i t y  P r e s s ,  U K ) .

M o l l  R ,  F r a n k e  W W ,  S c h i l l e r  D  L ,  G e i g e r  B  fit K r e p l e r  R  ( 1 9 8 2 )  T h e  
C a t a l o g  o f  H u m a n  C y t o k e r a t i n s : P a t t e r n s  o f  E x p r e s s i o n  i n  N o r m a l  
E p i t h é l i a ,  T u m o r s  a n d  C u l t u r e d  C e l l s .  C e l l  3 1  : 1 1 - 2 4 .

M o l l  R ,  L e v y  R ,  C z e r n o b i l s k y  B , H o h l w e g - M a j e r t  P ,  D a l i e n b a c h - H e 1 1 w e g  G 
fit F r a n k e  W W ( 1 9 8 3 )  C y t o k e r a t i n s  o f  N o r m a l  E p i t h é l i a  a n d  s o m e

M o o s e k e r  M  S  ( 1 9 8 3 )  A c t i n  B i n d i n g  P r o t e i n s  o f  T h e  B r u s h  B o r d e r .
C e l l  3 5 : 1 1 - 1 3 .

M u k k u  V  R ,  K i r k l a n d  J  L ,  H a r d y  M  f i t  S t a n c e l  G  M  ( 1 9 8 2 )  H o r m o n a l  C o n t r o l  
o f  U t e r i n e  G r o w t h  : T e m p o r a l  R e l a t i o n s h i p s  B e t w e e n  E s t r o g e n  
A d m i n i s t r a t i o n  a n d  D e o x y r i b o n u c l e i c  A c i d  S y n t h e s i s ,
E n d o c r i n o l  1 1 1  : 4 8 0 - 4 8 7 .

M u l l e r  R  E  fit W o t i z  H  H  ( 1 9 7 9 )  A n  I m p r o v e d  P r o c e d u r e  f o r  P r e p a r a t i o n  o f  
R a t  U t e r i n e  C e l l  S u s p e n s i o n s .  S t e r o i d s  3 3 ; 4 3 5 - 4 5 8 .

M u r a i  J  T ,  C o n t i  C  J , G i m e n e z - C o n t i  I  B ,  O r l i c k y  D  fit G e r s c h e n s o n  L  E
( 1 9 8 1 )  T e m p o r a l  R e l a t i o n s h i p  B e t w e e n  R a b b i t  U t e r i n e  E p i t h e l i u m  
P r o l i f e r a t i o n  a n d  U t e r o g l o b i n  P r o d u c t i o n ,  B i o l  R e p r o d  2 4 : 6 4 9 - 6 5 4 .
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N a l b a n d o v  A  V  ( 1 9 7 6 )  R e p r o d u c t i v e  P h y s i o l o g y  o f  M a m m a l s  a n d  B i r d s  ( W  H  
F r e e m a n  &  C o ,  S a n  F r a n c i s c o ) .

N e l s o n  W G  & S u n  T  - T  ( 1 9 8 3 )  T h e  5 0 -  a n d  5 8 - k D a l t o n  K e r a t i n  C l a s s e s  a s  
M o l e c u l a r  M a r k e r s  f o r  S t r a t i f i e d  S q u a m o u s  E p i t h é l i a  : C e l l  C u l t u r e  
S t u d i e s .  J  C e l l  B i o l  9 7 : 2 4 4 - 2 5 1 .

N e l s o n  W J  &  T r a u b  P  ( 1 9 8 1 )  P r o p e r t i e s  o f  a  C a + 4 -  A c t i v a t e d  P r o t e a s e  
S p e c i f i c  f o r  t h e  I n t e r m e d i a t e - S i z e d  F i l a m e n t  P r o t e i n  V i m e n t i n  i n  
E h r i c h - A s c i t e s  T u m o u r  C e l l s .  E u r  J  B i o c h e m  1 1 6 ; 5 1 - 5 7 .

N e l s o n  W J  &  T r a u b  P  ( 1 9 8 2 )  I n t e r m e d i a t e  ( l O n m )  F i l a m e n t  P r o t e i n s  a n d  
t h e  C a + +  - A c t i v a t e d  P r o t e i n a s e  S p e c i f  i c  f o r  V i m e n t i n  a n d  D e s m i n  i n  t h e  
C e l l s  f r o m  F i s h  t o  M a n  : A n  E x a m p l e  o f  E v o l u t i o n a r y  C o n s e r v a t i o n .
J  C e l l  S c i  5 7 : 2 5 - 4 9 .

N o t i d e s  A  C ,  L e r n e r  N ,  H a m i l t o n  D  E  ( 1 9 8 1 )  P o s i t i v e  C o o p é r â t ! v i t y  o f  
t h e  E s t r o g e n  r e c e p t o r .  P r o c  N a t l  A c a d  S c i  U S A  7 8 : 4 9 2 6 - 4 9 3 0 ,

O ’ F a r r e l l  P  Z ,  G o o d m a n  H  M ,  O ’  F a r r e l l  P  H  ( 1 9 7 7 )  H i g h  R e s o l u t i o n  T w o  
D i m e n s i o n a l  E l e c t r o p h o r e s i s  o f  B a s i c  a s  w e l l  a s  A c i d i c  P r o t e i n s ,
C e l l  1 2 : 1 1 3 3 - 1 1 4 2 .

O g a s a w a r a  Y ,  O k a m o t o  S ,  K i t a m u r a  Y  & M a t s u m o t o  K  ( 1 9 8 3 )  P r o l i f e r a t i v e  
P a t t e r n  o f  U t e r i n e  C e l l s  f r o m  B i r t h  t o  A d u l t h o o d  i n  I n t a c t ,  N e o n a t a l l y  
C a s t r a t e d  a n d / o r  A d r e n a l e c t o m i s e d  M i c e ,  A s s a y e d  b y  I n c o r p o r a t i o n  o f  
[ 1 2 5 ] - I o d o d e o x y u r i d i n e .  E n d o c r i n o l  1 1 3 : 5 8 2 - 5 8 7 .

O s b o r n  M  ( 1 9 8 3 )  I n t e r m e d i a t e  F i l a m e n t s  a s  H i s t o l o g i c  M a r k e r s  : A n  
O v e r v i e w .  J  I n v e s t  D e r m a t o l  8 1 : 1 0 4 5 - 1 0 7 5

O s b o r n  M  & W e b e r  K  ( 1 9 7 5 )  S i m i a n  V i r u s  4 0  G e n e  A  F u n c t i o n  a n d  
M a i n t e n a n c e  o f  T r a n s f o r m a t i o n .  J  V i r o l  1 5 : 6 3 6 - 6 4 4 .

P a g e  M  J ,  F i e l d  J  K ,  E v e r e t t  N  P  &  G r e e n  C  D  ( 1 9 8 3 )  S e r u m  R e g u l a t i o n  
o f  t h e  E s t r o g e n  R e s p o n s i v e n e s s  o f  t h e  H u m a n  B r e a s t  C a n c e r  C e l l  L i n e  
M C F - 7 .  C a n c e r  R e s  4 3 : 1 2 4 4 - 1 2 5 0 .

P a l m e r  S L ,  M c G r a t h  M  F  & A l l e n  W R  ( 1 9 8 4 )  K e r a t i n  P a t t e r n s  o f  N o r m a l  
R a t  M a m m a r y  E p i t h e l i a l  C e l l s  i n  C u t u r e  a r e  A l t e r e d  i n  R e s p o n s e  t o  
E G F  o r  M a m m o g e n i c  H o r m o n e s ,  I n  V i t r o  2 0 : 2 7 4 ,

P a p a n i c o l a o u  G  N ,  F r a n c e s  V  & M a d d i  B  A  ( 1 9 5 8 )  O b s e r v a t i o n s  o n  t h e  
B e h a v i o u r  o f  H u m a n  E n d o m e t r i a l  C e l l s  i n  T i s s u e  C u l t u r e .
A m  J  O b s t e t  G y n e c o l  7 6 : 6 0 1 - 6 1 8 .

P a r r  M  B  ( 1 9 8 0 )  E x o c y t o s i s  i n  t h e  U t e r i n e  E p i t h e l i u m  i n  E a r l y  
P r e g n a n c y .  P r o g  R e p r o d  B i o l  7 : 8 1 - 8 9 .

P a r r  M  B  &  P a r r  E  L  ( 1 9 7 4 )  U t e r i n e  L u m i n a l  E p i t h e l i u m  P r o t r u s i o n s  
M e d i a t e  E n d o c y t o s i s ,  N o t  A p o c r i n e  S e c r e t i o n s  i n  t h e  R a t .
B i o l  R e p r o d  1 1 : 2 2 0 - 2 3 3 .

P a s t e r n a k  C  A  ( 1 9 8 0 )  T h e  C e l l  S u r f a c e  a n d  T h e  C e l l  C y c l e ,  i n  :
B i o c h e m i s t r y  o f  C e l l u l a r  R e g u l a t i o n  V o l  4 ,  T h e  C e l l  S u r f a c e  ( e d  K n o x  
P .  C R C  P r e s s  I n c ,  B o c a  R a t o n ,  F l o r i d a ,  U S A )

P a t t e r s o n  J r  M  K  ( 1 9 7 9 )  M e a s u r e m e n t  o f  G r o w t h  a n d  V i a b i l i t y  o f  C e l l s  
i n  C u l t u r e .  M e t h  E n z y m o l  5 2  : 1 4 1 - 1 5 2 .

P a u l i n  D ,  N i c o l a s  J  F ,  Y a n i v  M ,  J a c o b  F , W e b e r  K  & O s b o r n  M  ( 1 9 7 8 )
A c t i n  a n d  T u b u l i n  i n  T e r a t o c a r c i n o m a  C e l l s  : A m o u n t  a n d  I n t r a c e l l u l a r  
O r g a n i z a t i o n  u p o n  C y t o d i f f e r e n t i a t i o n .  D e v  B i o l  6 6  : 4 8 8 - 4 9 9 .

P a v l i k  E  J  & K a t z e n e l l e n b o g e n  B  S  ( 1 9 7 8 )  H u m a n  E n d o m e t r i a l  C e l l s  i n  
P r i m a r y  C u l t u r e  : E s t r o g e n  I n t e r a c t i o n s  a n d  M o d u l a t i o n  o f  C e l l  
P r o l i f e r a t i o n .  J  C l i n  E n d o c r i n o l  M e t a b  4 7 : 3 3 3 - 3 4 4 .

P a y v a r  F , D e F r a n c o  D ,  F i r e s t o n e  G  L ,  E d g a r  B , W r a n g e  0 ,  O k r e t  S ,
G u s t a f s s o n  J  - A  &  Y a m a m o t o  K  R  ( 1 9 8 3 )  S e q u e n c e - S p e c i f i c  B i n d i n g  o f  
G l u c o c o r t i c o i d  R e c e p t o r  t o  M T V  D N A  a t  S i t e s  W i t h i n  a n d  U p s t r e a m  o f  
t h e  T r a n s c r i b e d  R e g i o n .  C e l l  3 5  : 3 8 1 - 3 9 2 ,
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P e c k  J r  E  J ,  D e L i b e r o  J ,  R i c h a r d s  R  & C l a r k  J  H  ( 1 9 7 3 )  I n s t a b i l i t y  o f  
t h e  U t e r i n e  E s t r o g e n  R e c e p t o r  U n d e r  I n  V i t r o  C o n d i t i o n s .
B i o c h e m i s t r y  1 2 : 4 6 0 3 - 4 6 0 8 .

P i e t r a s  R  J  & S z e g o  C  M  ( 1 9 7 5 )  S t e r o i d  H o r m o n e - R e s p o n s i v e ,  I s o l a t e d  
E n d o m e t r i a l  C e l l s ,  E n d o c r i n o l  9 6 : 9 4 6 - 9 5 4 .

P i e t r a s  R  J  & S z e g o  C  M  ( 1 9 7 9 )  E s t r o g e n  R e c e p t o r s  i n  U t e r i n e  P l a s m a  
M e m b r a n e  J  S t e r o i d  B i o c h e m  1 1 : 1 4 7 1 - 1 4 8 3 ,

P i k e  J  W ( 1 9 8 2 )  R e c e p t o r s  f o r  1 , 2 5 - D i h y d r o x y v i t a m i n  D 3  i n  C h i c k
P a n c r e a s :  A  P a r t i a l  C h a r a c t e r i z a t i o n ,  J  S t e r o i d  B i o c h e m  1 6 : 3 8 5 - 3 9 5 ,

P o l l a c k  R  & R i f k i n  D ( 1 9 7 5 )  A c t i n - C o n t a i n i n g  C a b l e s  W i t h i n  A n c h o r a g e  
D e p e n d e n t  R a t  E m b r y o  C e l l s  a r e  D i s s o c i a t e d  b y  P l a s r a i n  a n d  T r y p s i n ,
C e l l  6 : 4 9 5 - 5 0 6 .

P o u r r e a u - S c h n e i d e r  N ,  M a r t i n  P  M ,  C h a r p i n  C ,  J a c q u e m i e r  J ,  S a e z  S & j
N a n d i  S ( 1 9 8 4 )  H o w  C u l t u r e  C o n d i t i o n s  M o d u l a t e  t h e  M o r p h o f u n c t i o n a l  
D i f f e r e n t i a t i o n  o f  t h e  H u m a n  E s t r a d i o l - S e n s i t i v e  M a m m a r y  C e l l  L i n e  
( M C F - 7 ) ,  J  S t e r o i d  B i o c h e m  2 0 : 4 0 7 - 4 1 5 .

P r i a n i s h n i k o v  V  A  ( 1 9 7 8 )  O n  t h e  C o n c e p t  o f  S t e m  C e l l  a n d  a  M o d e l  o f  
F u n c t i o n a l - M o r p h o l o g i c a l  S t r u c t u r e  o f  t h e  E n d o m e t r i u m .
C o n t r a c e p t i o n  1 8 : 2 1 3 - 2 2 3 .

P r i c e  P  J  & G r e g o r y  E  A  ( 1 9 8 2 )  R e l a t i o n s h i p  B e t w e e n  I n  V i t r o  G r o w t h  
P r o m o t i o n  a n d  B i o p h y s i c a l  a n d  B i o c h e m i c a l  P r o p e r t i e s  o f  t h e  S e r u m  
S u p p l e m e n t .  I n  V i t r o  1 8 : 5 7 6 - 5 8 4 .

P s y c h o y o s  A  & M a n d o n  P  ( 1 9 7 1 )  S c a n n i n g  E l e c t r o n  M i c r o s c o p y  o f  t h e  
S u r f a c e  o f  t h e  R a t  U t e r i n e  E p i t h e l i u m  d u r i n g  D e l a y e d  I m p l a n t a t i o n .
J  R e p r o d  F e r t i l  2 6 : 1 3 7 - 1 3 8 .

P u c a  G  A ,  N o l a  E ,  M o l i n a r i  A  M ,  M e d i c i  N ,  D e l u c i a  D  & S i c a  V  ( 1 9 8 3 )
B i o c h e m i s t r y  a n d  B i o l o g y  o f  E s t r o g e n  R e c e p t o r :  I d e n t i f i c a t i o n  o f  
C y t o s k e l e t a l  B i n d i n g  S i t e s  f o r  R e c e p t o r  i n  a  M e m b r a n e  M o d e l ,  i n :
S t e r o i d s  a n d  E n d o m e t r i a l  C a n c e r  V o l u m e  2 5  ( e d s  J a s o n n i  V  M  e t  a l .
R a v e n  P r e s s ,  N e w  Y o r k ) ,

P u c k  T  T  ( 1 9 6 4 )  S t u d i e s  o f  t h e  L i f e  C y c l e  o f  M a m m a l i a n  C e l l s .
C o l d  S p r i n g  H a r b  S y m p  Q u a n t  B i o l  2 9  ; 1 6 7 - 1 7 6 .

Q u a r m b y  V  E  & K o r a c h  K  S  ( 1 9 8 4 )  I n f l u e n c e  o f  1 7 J ? - E s t r a d i o l  o n  P a t t e r n s  
o f  C e l l  D i v i s i o n  i n  t h e  U t e r u s .  E n d o c r i n o l  1 1 4 : 6 9 4 - 7 0 1 .

R a a m  S ,  N e m e t h  E ,  T a m u r a  H ,  0 ' B r i a i n  D  S  &  C o h e n  J  L  ( 1 9 8 2 )
I m m u n o h i s t o c h e m i c a l  L o c a l i z a t i o n  o f  E s t r o g e n  R e c e p t o r s  i n  H u m a n  
M a m m a r y  C a r c i n o m a  U s i n g  A n t i b o d i e s  t o  t h e  R e c e p t o r  P r o t e i n ,
E u r  J  C a n c e r  C l i n  O n c o l  1 8 : 1 - 1 2 .

R a m a e k e r s  F  C  S ,  P u t s  J  J  G ,  K a n t  A ,  M o e s k e r  O ,  J a p  P  H  K  & V o o i j s  G  P
( 1 9 8 2 )  A n t i b o d i e s  t o  I n t e r m e d i a t e  F i l a m e n t s  a s  a  T o o l  i n  T u m o r  
D i a g n o s i s  C e l l  B i o l  I n t  R e p  6 : 6 5 2 .

R a m a e k e r s  P C S ,  H o o g  D ,  K a n t  A ,  M o e s k e r  O ,  J a p  P  H  K  & V o o i j s  G  P
( 1 9 8 3 )  C o e x p r e s s i o n  o f  K e r a t i n  a n d  V i m e n t i n  T y p e  I n t e r m e d i a t e  
F i l a m e n t s  i n  H u m a n  M e t a s t a t i c  C a r c i n o m a  C e l l s .
P r o c  N a t l  A c a d  S c i  U S A  8 0 : 2 6 1 8 - 2 6 6 2 ,

R a m a e k e r s  F ,  P u t s  J ,  K a n t  A ,  M o e s k e r  O ,  J a p  P & V o o i j s  G  ( 1 9 8 1 )  U s e  o f  
A n t i b o d i e s  t o  I n t e r m e d i a t e  F i l a m e n t s  i n  t h e  C h a r a c t e r i z a t i o n  o f  
H u m a n  T u m o r s . G o l d  S p r i n g  H a r b  S y m p  Q u a n t  B i o l  4 6 : 3 3 1 - 3 3 9 .

R a m b o  C  0  &  S z e g o  C  M  ( 1 9 8 3 )  E s t r o g e n  A c t i o n  a t  E n d o m e t r i a l  M e m b r a n e s  :
A l t e r a t i o n s  i n  L u m i n a l  S u r f a c e  D e t e c t a b l e  w i t h i n  S e c o n d s .
J  C e l l  B i o l  9 7 : 6 7 9 - 6 8 5 .

R a o  G  S ( 1 9 8 1 )  M o d e  o f  E n t r y  o f  S t e r o i d  a n d  T h y r o i d  H o r m o n e s  i n t o  
C e l l s .  M o l  C e l l  E n d o c r i n o l  2 1  : 9 7 - 1 0 8 .
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R e i d  I .  M  & R o j k i n d  M  ( 1 9 7 9 )  N e w  T e c h n i q u e s  f o r  C u l t u r i n g
D i f f e r e n t i a t e d  C e l l s :  R e c o n s t i t u t e d  B a s e m e n t  M e m b r a n e  R a f t s ,
M e t h  E n z y m o l  5 2 ; 2 6 3 - 2 7 8 ,

R e n k a w i t z  R ,  S c h ü t z  G ,  v o n  d e r  A h e  D  & B e a t o  M  ( 1 9 8 4 )  S e q u e n c e s  i n  
t h e  P r o m o t e r  R e g i o n  o f  t h e  C h i c k e n  L y s o z y m e  G e n e  R e q u i r e d  f o r  
S t e r o i d  R e g u l a t i o n  a n d  R e c e p t o r  B i n d i n g ,  C e l l  3 7 : 5 0 3 - 5 1 0 ,

R i c h a r d s  G M  ( 1 9 7 4 )  M o d i f i c a t i o n  o f  t h e  D i p h e n y l a m i n e  R e a c t i o n  
G i v i n g  I n c r e a s e d  S e n s i t i v i t y  a n d  S i m p l i c i t y  i n  t h e  E s t i m a t i o n  o f  
D N A .  A n a l  B i o c h e m  5 7 : 3 6 9 - 3 7 6 .

R i n g o l d  G  M  ( 1 9 8 3 )  R e g u l a t i o n  o f  M o u s e  M a m m a r y  T u m o r  V i r u s  G e n e  
E x p r e s s i o n  b y  G l u c o c o r t i c o i d  H o r m o n e s ,
C u r r  T o g  M d c r o b i o l  I m m u n o l  1 0 6 : 7 9 - 1 0 3 ,

R o c h e f o r t  H  &  C h a l b o s  D  ( 1 9 8 4 )  P r o g e s t i n - S p e c i f i c  M a r k e r s  i n  H u m a n  
C e l l  L i n e s :  B i o l o g i c a l  a n d  P h a r m a c o l o g i c a l  A p p l i c a t i o n s .
M o l  C e l l  E n d o c r i n o l  3 6 : 3 - 1 0 .

R o d g e r s  N  T  & K a u f m a n  D  G  ( 1 9 8 1 )  T h e  M e a s u r e m e n t  o f  C y t o s o l i c  E s t r o g e n  
R e c e p t o r s  i n  H u m a n  E n d o m e t r i a l  T i s s u e  a n d  O r g a n  C u l t u r e s .
J  S t e r o i d  B i o c h e m  1 4 : 8 0 1 - 8 0 6 ,

R o o p  D  R )  H a w l e y - N e l s o n  P * C h e n g  C  K  & Y u s p a  S H  ( 1 9 8 3 )  K e r a t i n  G e n e  
E x p r e s s i o n  i n  M o u s e  E p i d e r m i s  a n d  C u l t u r e d  E p i d e r m a l  C e l l s .
P r o c  N a t l  A c a d  S c i  8 0  7 1 6 - 7 2 0 ,

R o s s  R  & K l e b a n o f f  S J  ( 1 9 6 7 )  F i n e  S t r u c t u r a l  C h a n g e s  i n  U t e r i n e  
S m o o t h  M u s c l e  a n d  F i b r o b l a s t s  i n  R e s p o n s e  t o  E s t r o g e n .
J  C e l l  B i o l  3 2 : 1 5 5 - 1 6 7 .

R o u s s e a u  G  G  ( 1 9 8 4 )  C o n t r o l  o f  G e n e  E x p r e s s i o n  b y  G l u c o c o r t i c o i d  
H o r m o n e s .  B i o c h e m  J  2 2 4 : 1 - 1 2 .

S a k a i  D  & G o r s k i  J  ( 1 9 8 4 a )  E s t r o g e n  R e c e p t o r  T r a n s f o r m a t i o n  t o  a  H i g h  
A f f i n i t y  S t a t e  w i t h o u t  S u b u n i t - S u b u n i t  I n t e r a c t i o n s .
B i o c h e m  2 3  : 3 5 4 1 - 3 5 4 7 ,

S a k a i  D  & G o r s k i  J  ( 1 9 8 4 b )  R e v e r s i b l e  D é n a t u r a t i o n  o f  t h e  E s t r o g e n  
R e c e p t o r  a n d  E s t i m a t i o n  o f  P o l y p e p t i d e  C h a i n  M o l e c u l a r  W e i g h t .  
E n d o c r i n o l  1 1 5 : 2 3 7 9 - 2 3 8 3 ®

S a n a n e s  N ,  W e i l l e r  S » B a u l i e u  E  ~ E  & L e  G o a s c o g n e  C  ( 1 9 7 8 )  I n  V i t r o  
D e c i d u a l i z a t i o n  o f  R a t  E n d o m e t r i a l  C e l l s .  E n d o c r i n o l  1 0 3 : 8 6 - 9 5 .

S a r f  M  fit G o r s k i  J  ( 1 9 7 1 )  C o n t r o l  o f  E s t r o g e n  B i n d i n g  C o n c e n t r â t  i o n  
U n d e r  B a s a l  C o n d i t i o n s  a n d  A f t e r  E s t r o g e n  A d m i n i s t r a t i o n .  
B i o c h e m i s t r y  1 0  : 2 5 5 7 - 2 5 6 3 .

B a t t l e r  C  A ,  M i c h a l o p o u l o s  G ,  S a t t 1 e r  A  fit P i t o t  ( 1 9 7 8 )  U l t r a s t r u c t u r e  
o f  A d u l t  R a t  H e p a t o c y t e s  C u l t u r e d  o n  F l o a t i n g  C o l l a g e n  M e m b r a n e s . 
C a n c e r  R e s  3 8 : 1 5 3 9 - 1 5 4 9 ,

S a t y a s w a r o o p  P  G *  B r e s s l e r  R  S , D e  l a  P e n a  M  M  fit G u r p i d e  E  ( 1 9 7 9 )  
I s o l a t i o n  a n d  C u l t u r e  o f  H u m a n  E n d o m e t r i a l  G l a n d s .
J  C l i n  E n d o c r i n o l  M e t a b  4 8 : 6 3 9 - 6 4 1 .

S a t y a s w a r o o p  P  G  fit M o r t e l  R  ( 1 9 8 1 )  E n d o m e t r i a l  C a r c i n o m a :  A n  
A b b e r a t i o n  o f  E n d o m e t r i a l  C e l l  D i f f e r e n t i a t i o n .
A m  J  O b s t e t  G y n e c o l  1 4 0 :  6 2 0 - 6 2 3 .

S c a t c h a r d  ( 1 9 4 9 )  T h e  A t t r a c t i o n  o f  P r o t e i n s  f o r  S m a l l  M o l e c u l e s  a n d  
I o n s .  A n n  N  Y  A c a d  S c i  5 1 : 6 6 0 - 6 7 2 .

S c h a t z  R »  L a u g i e r  C ,  S o t o  A  M  fit S o n n e n s c h e i n  C  ( 1 9 8 3 )  ( / - F e t o p r o t e i n  
S e r u m  L e v e l s  a n d  t h e  D e v e l o p m e n t  o f  E s t r o g e n  S e n s i t i v e  C e l l  
M u l t i p l i c a t i o n s  i n  t h e  H a m s t e r  U t e r u s .  B i o l  R e p r o d  2 8 : 1 1 4 8 - 1 1 5 4 .

S c h a t z  R ,  S o t o  A  M  fit S o n n e n s c h e i n  ( 1 9 8 4 )  E s t r o g e n - I n d u c e d  C e l l  
M u l t i p l i c a t i o n ;  D i r e c t  o r  I n d i r e c t  E f f e c t  o n  R a t  U t e r i n e  C e l l s ?  
E n d o c r i n o l  1 1 5  : 5 0 1 - 5 0 6 .
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S c h i l l e r  D  L »  F r a n k e  W W &  G e i g e r  B  ( 1 9 8 2 )  A  S u b f a m i l y  o f  R e l a t i v e l y
L a r g e  a n d  B a s i c  C y t o k e r a t i n  P o l y p e p t i d e s  a s  D e f i n e d  b y  P e p t i d e  M a p p i n g  
i s  R e p r e s e n t e d  b y  O n e  o r  S e v e r a l  P o l y p e p t i d e s  i n  E p i t h e l i a l  C e l l s .
E M B O  J  1 : 7 6 1 - 7 6 9 ,

S e g a l  S J ,  S c h e r  W ,  K o i d e  S S ( 1 9 7 7 )  E s t r o g e n s ^  N u c l e i c  A c i d s  a n d  
P r o t e i n  S y n t h e s i s  i n  U t e r i n e  M e t a b o l i s m ,  i n :  B i o l o g y  o f  t h e  U t e r u s  
( e d  W y n n  R ,  P l e n u m  P r e s s ,  L o n d o n ) ,

S e i b e r t  K ,  S h a f i e  S M ,  T r i c h e  T  J ,  W h a n g - P e n g  J  J ,  O ’ B r i e n  S J ,  T o n e y  
J  H ,  H u f f  K  K  & L i p p m a n  M  E  ( 1 9 8 3 )  C l o n a l  V a r i a t i o n  o f  M C F - 7  B r e a s t  
C a n c e r  C e l l s  I n  V i t r o  a n d  i n  A t h y m i c  N u d e  M i c e ,
C a n c e r  R e s  4 3 : 2 2 2 3 - 2 2 3 9 .

S h a f i e  S M  ( 1 9 8 0 )  E s t r o g e n  a n d  t h e  G r o w t h  o f  B r e a s t  C a n c e r :  N e w  
E v i d e n c e  S u g g e s t s  I n d i r e c t  A c t i o n ,  S c i e n c e  2 0 9 : 7 0 1 - 7 0 2 .

S h a n n o n  J  M ,  C u n h a  G  R ,  T a g u c h i  O ,  V a n d e r s l i c e  K  D  & G o u l d  S  F  ( 1 9 8 2 )  
A u t o r a d i o g r a p h i c  L o c a l i z a t i o n  o f  S t e r o i d  B i n d i n g  i n  H u m a n  T i s s u e  
L a b e l l e d  I n  V i t r o .  J  H i s t o c h e m  C y t o c h e m  3 0 : 1 0 5 9 - 1 0 6 5 .

S h e r i d a n  P  J ,  B u c h a n a n  J  M ,  A n s e l r a o  V  C  &  M a r t i n  P  M  ( 1 9 7 9 )
E q u i l i b r i u m ;  T h e  I n t r a c e l l u a r  D i s t r i b u t i o n  o f  S t e r o i d  R e c e p t o r s ,
N a t u r e  2 8 2 : 5 7 9 - 5 8 2 .

S h o e n b e r g  C  F  ( 1 9 7 7 )  T h e  C o n t r a c t i l e  M e c h a n i s m  a n d  U l t r a s t r u c t u r e  o f  
t h e  M y o m e t r i u m ,  i n :  B i o l o g y  o f  t h e  U t e r u s  ( e d  W y n n  R ,  P l e n u m  P r e s s  
I n c , N e w  Y o r k ) ,

S h y a m a l a  G  fit G o r s k i  J  ( 1 9 6 9 )  E s t r o g e n  R e c e p t o r s  i n  t h e  R a t  U t e r u s  
S t u d i e s  o n  t h e  I n t e r a c t i o n  o f  C y t o s o l  a n d  N u c l e a r  B i n d i n g  S i t e s .
J  B i o l  C h e m  2 4 4 : 1 0 9 7 - 1 1 0 3 ,

S i r b a s k u  D  A  ( 1 9 8 0 )  E s t r o m e d i n s :  U t e r i n e  D e r i v e d  G r o w t h  F a c t o r s  f o r  
E s t r o g e n - R e s p o n s i v e  T u m o r  C e l l s ,  i n :  C o n t r o l  M e c h a n i s m s  i n  A n i m a l  
C e l l s :  S p e c i f i c  G r o w t h  F a c t o r s  ( e d s  J i m e n e z - d e - A s u a  L  e t  a l ,  R a v e n  
P r e s s ,  N e w  Y o r k ) .

S i r b a s k u  D  A  & B e n s o n  R  H  ( 1 9 8 0 )  P r o p o s a l  o f  a n  I n d i r e c t  M e c h a n i s m  o f  
E s t r o g e n - I n d u c e d  M a m m a r y  T u m o r  C e l l  G r o w t h ,  i n :  C e l l  B i o l o g y  o f  
B r e a s t  C a n c e r  ( e d s  M c G r a t h  C  M ,  B r e n n a n  M  J  fit R i c h  M  A ,  A c a d e m i c  
P r e s s ,  L o n d o n ) .

S i r b a s k u  D  A  & L e l a n d  F  E  ( 1 9 8 2 )  E s t r o g e n - I n d u c i b l e  G r o w t h  F a c t o r s :
P r o p o s a l  o f  N e w  M e c h a n i s m s  o f  E s t r o g e n  P r o m o t e d  T u m o r  C e l l  G r o w t h ,  i n :  
B i o c h e m i c a l  A c t i o n s  o f  H o r m o n e s  V o l  9  ( e d  L i t w a c k  G ,  A c a d e m i c  P r e s s ,  
L o n d o n ) .

S m a l l  J  V  fit C e l l s  J  E  ( 1 9 7 8 )  D i r e c t  V i s u a l i z a t i o n  o f  t h e  l O n m  F i l a m e n t  
N e t w o r k  i n  W h o l e  a n d  E n u c l e a t e d  C u l t u r e d  C e l l s .  J  C e l l  S c i  3 1 : 3 9 3 - 4 0 9 .

S o n n e n s c h e i n  C  fit S o t o  A  M  ( 1 9 7 9 )  G r o w t h  I n h i b i t i o n  o f  E s t r o g e n -  
S e n s i t i v e  T u m o r  C e l l s  i n  N e w b o r n  R a t s .  P r o b a b l e  R o l e  o f  A l p h a -  
F e t o p r o t e i n .  J N C I  6 3 : 8 3 5 - 8 4 1 .

S o n n e n s c h e i n  C  fit S o t o  A  M  ( 1 9 8 0 )  B u t  . . .  A r e  E s t r o g e n s  P e r  S e  G r o w t h -  
P r o m o t i n g  H o r m o n e s ?  J N C I  6 4 : 2 1 1 - 2 1 4 .

S o n n e n s c h e i n  C ,  W e i l l e r  S ,  F a r o o k h i  R , S o t o  A  M  ( 1 9 7 4 )
C h a r a c t e r i z a t i o n  o f  a n  E s t r o g e n - S e n s i t i v e  C e l l  L i n e  E s t a b l i s h e d  f r o m  
N o r m a l  R a t  E n d o m e t r i u m .  C a n c e r  R e s  3 4 : 3 1 4 7 - 3 1 5 4 .

S o r g e r  T  fit G e r m i n a r i o  R  J  ( 1 9 8 3 )  A  D i r e c t  S o l u b i l i z a t i o n  P r o c e d u r e  
f o r  t h e  D e t e r m i n a t i o n  o f  D N A  a n d  P r o t e i n  i n  C u l t u r e d  F i b r o b l a s t  
M o n o l a y e r s .  A n a l  B i o c h e m  1 3 1 :  2 5 4 - 2 5 6 ,

S o r r e n t i n o  J  M ,  K i r k l a n d  W  L  & S i r b a s k u  D  A  ( 1 9 7 6 )  C o n t r o l  o f  C e l l  
G r o w t h  I .  E s t r o g e n - D e p e n d e n t  G r o w t h  I n  V i v o  o f  a  R a t  P i t u i t a r y  T u m o r  
C e l l  L i n e .  J N C I  5 6 :  1 1 4 9 - 1 1 5 4 .

1 64



S o t o  A  M  &  S o n n e n s c h e i n  C  ( 1 9 8 0 )  C o n t r o l  o f  G r o w t h  o f  E s t r o g e n -  
S e n s i t i v e  C e l l s :  R o l e  f o r  ( k - F e t o p r o t e i n .
P r o c  N a t l  A c a d  S c i  U S A  7 7 : 2 0 8 4 - 2 0 8 7 .

S o t o  A  M  & S o n n e n s c h e i n  C  ( 1 9 8 3 )  M e c h a n i s m  o f  E s t r a d i o l - 1 7 ^  ( E 2 )
A c t i o n  o n  t h e  P r o l i f e r a t i o n  o f  C l o n e d  M C F - 7  C e l l s .  J  C e l l  B i o l  9 7 : 3 9 3 a

S o t o  A  M  & S o n n e n s c h e i n  C  ( 1 9 8 4 )  M e c h a n i s m  o f  E s t r o g e n  A c t i o n :  T h e  
I n d i r e c t  N e g a t i v e  P a t h w a y .  P r o c  A m  A s s o c  C a n c e r  R e s  2 5 : 2 1 3 .

S o u l e  H  D ,  V a z q u e z  J ,  L a n g  A ,  A l b e r t  S  & B r e n n a n  M  ( 1 9 7 3 )  A  H u m a n  L i n e  
f r o m  a  P l e u r a l  E f f u s i o n  D e r i v e d  f r o m  a  B r e a s t  C a n c e r .  J N C I  5 1 : 1 4 0 9 - 1 4 1 5 .

S o u t t e r  W P  &  L e a k e  R  E  ( 1 9 7 8 )  O e s t r o g e n - D e p e n d e n t  S y n t h e s i s  o f  R N A  a n d  D N A  
i n  N o r m a l  E n d o m e t r i u m  a n d  i n  E n d o m e t r i a l  C a r c i n o m a ,  i n :  E n d o m e t r i a l  
C a n c e r  ( e d s  B r u s h  M  G ,  K i n g  R J B ,  B a i l l i e r e  T i n d a l l  ( p u b ? ,  L o n d o n ? .

S p e l s b e r g  T  C ,  L i t t l e f i e l d  B  A ,  S e e l k e  R ,  D a n i  G  M ,  T o y o d a  H ,  B o y d ™
L e i n e n  P ,  T h r a l l  C  &  K o n  Q L  ( 1 9 8 3 )  R o l e  o f  S p e c i f i c  C h r o m o s o m a l  
P r o t e i n s  a n d  D N A  S e q u e n c e s  i n  t h e  N u c l e a r  B i n d i n g  S i t e s  f o r  S t e r o i d  
R e c e p t o r s .  R e c e n t  P r o g r  H o r m  R e s  3 9 : 4 6 3 - 5 1 7 .

S p o r n  M  B & T o d a r o  G J  ( 1 9 8 0 )  A u t o c r i n e  S e c r e t i o n  a n d  M a l i g n a n t  
T r a n s f o r m a t i o n  o f  C e l l s .  N  E n g l  J  M e d  3 0 3 : 8 7 8 - 8 8 0 ,

S t a c k  G  &  G o r s k i  J  ( 1 9 8 3 )  T h e  O n t o g e n y  o f  E s t r o g e n  R e s p o n s i v e n e s s  
R e e x a m i n e d ;  T h e  D i f f e r e n t i a l  E f f e c t i v e n e s s  o f  D i e t h y l s t i b e s t r o l  a n d  
E s t r a d i o l  o n  U t e r i n e  D e o x y r i b o n u c l e i c  A c i d  S y n t h e s i s  i n  N e o n a t a l  R a t s ,  
E n d o c r i n o l  1 1 2 : 2 1 4 2 - 2 1 4 6 .

S t a c k  G  & G o r s k i  J  ( 1 9 8 4 )  D i r e c t  M i t o g e n i c  E f f e c t  o f  E s t r o g e n  o n  t h e  
P r e p u b e r a l  R a t  U t e r u s :  S t u d i e s  o n  I s o l a t e d  N u c l e i .
E n d o c r i n o l  1 1 5 : 1 1 4 1 - 1 1 5 0 .

S t e i n e r t  P  M ,  I d l e r  W W ,  C a b r a l  F ,  G o t t e s m a n  M  M  & G o l d m a n  R  D  ( 1 9 8 1 )
I n  V i t r o  A s s e m b l y  o f  H o m o p o l y m e r  a n d  C o p o l y m e r  F i l a m e n t s  f r o m  
I n t e r m e d i a t e  F i l a m e n t  S u b u n i t s  o f  M u s c l e  a n d  F i b r o b l a s t i c  C e l l s ,
P r o c  N a t l  A c a d  S c i  U S A  7 8 : 3 6 9 2 - 3 6 9 6 .

S t e i n e r t  P  M ,  I d l e r  W W &  Z i m m e r m a n  ( 1 9 7 6 )  S e l f - A s s e m b l y  o f  B o v i n e  
E p i d e r m a l  K e r a t i n  F i l a m e n t s  I n  V i t r o ,  J  M o l  B i o l  1 0 8 : 5 4 7 - 5 6 7

S t e n b a c k  F  ( 1 9 8 2 )  A d e n o c a r c i n o m a  o f  t h e  U t e r i n e  E n d o m e t r i u m ,  S u r f a c e  
U l t r a s t r u c t u r e  a s  a n  I n d i c a t o r  o f  M a l i g n a n t  P o t e n t i a l  a n d  E f f e c t  o f  
T r e a t m e n t .  S c a n n i n g  E l e c t r o n  M i c r o s c o p y  4 : 1 5 7 7 - 1 5 8 5 .

S t o r m s h a k  F ,  L e a k e  R ,  W e r t z  N  a n d  G o r s k i  J  ( 1 9 7 6 )  S t i m u l a t o r y  a n d  
I n h i b i t o r y  E f f e c t s  o f  E s t r o g e n  o n  U t e r i n e  D N A  S y n t h e s i s .
E n d o c r i n o l  9 9 : 1 5 0 1 - 1 5 1 1 .

S t u m p f  W E  ( 1 9 6 8 )  S u b c e l l u l a r  D i s t r i b u t i o n  o f  ^  H - E s t r a d i o l  i n  R a t  
U t e r u s  b y  Q u a n t i t a t i v e  A u t o r a d i o g r a p h y  -  A  C o m p a r i s o n  B e t w e e n  ^  H -  
E s t r a d i o l  a n d  ^  H - N o r e t h y o d r e l .  E n d o c r i n o l  8 3 : 7 7 7 - 7 8 2 .

S u n  T  - T , E i c h n e r  R ,  N e l s o n  W G ,  T s e n g  S C  G ,  W e i s s  R  A ,  J a r v i n e n  M  & 
W o o d c o c k - M i t c h e 1 1  J  ( 1 9 8 3 )  K e r a t i n  C l a s s e s  : M o l e c u l a r  M a r k e r s  f o r  
D i f f e r e n t  T y p e s  o f  E p i t h e l i a l  D i f f e r e n t i a t i o n .
J  I n v e s t  D e r m a t o l  8 1  ; 1 0 9 s - 1 1 5 s .

S u n  T j ^ - T ,  E i c h n e r  R ,  S c h e r m e r  A ,  C o o p e r  D ,  N e l s o n  W G  & W e i s s  R  A  ( i n  
P r e s s )  C l a s s i f i c a t i o n ,  E x p r e s s i o n ,  a n d  P o s s i b l e  M e c h a n i s m s  o f
E v o l u t i o n  o f  M a m m a l i a n  E p i t h e l i a l  K e r a t i n s  ; A  U n i f y i n g  M o d e l ,  i n :  iT a > 4 C C r C « , \ ‘S - ' l  •
T L / ' / j  P k c w L | . t X e d s  L e v i n e  A  e t  a j . .  C o l d  S p r i n g  H a r b  L a b ,  N e w  
' Y o r k ? ' . "  r  X  A a w

S u n  T  - T ,  S h i h  C  & G r e e n  H  ( 1 9 7 9 )  K e r a t i n  C y t o s k e l e t o n s  i n  E p i t h e l i a l  
C e l l s  o f  I n t e r n a l  O r g a n s .  P r o c  N a t l  A c a d  S c i  U S A  7 6 : 2 8 1 3 - 2 8 1 7 .

T a c h i  C ,  T a c h i  S  & L i n d n e r  H  R  ( 1 9 7 2 )  M o d i f i c a t i o n  b y  P r o g e s t e r o n e  o f  
O e s t r a d i o l “ I n d u c e d  P r o l i f e r a t i o n ,  R N A  S y n t h e s i s  a n d  O e s t r a d i o l  
D i s t r i b u t i o n  i n  t h e  R a t  U t e r u s .  J  R e p r o d  F e r t i l  3 1 : 5 9 - 7 6 .
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T a c h i  S ,  T a c h i  C  & L i n d n e r  H  ( 1 9 7 4 )  I n f l u e n c e  o f  O v a r i a n  H o r m o n e s  o n
F o r m a t i o n  o f  S o l i t a r y  C i l i a  a n d  B e h a v i o u r  o f  t h e  C e n t r i o l e s  i n  U t e r i n e  
E p i t h e l i a l  C e l l s  o f  t h e  R a t .  B i o l  R e p r o d  1 0 : 3 9 1 - 4 0 3 .

T a y l o r  R  W ( 1 9 8 3 )  T h e  T r e a m e n t  o f  E n d o m e t r i a l  C a r c i n o m a  w i t h
M e d r o x y p r o g e s t e r o n e  A c e t a t e ,  i n :  R o l e  o f  M e d r o x y p r o g e s t e r o n e  i n  
E n d o c r i n e  R e l a t e d  T u m o r s  V o l u m e  2  T e d s  C a m p i o  L  e t  a l .  R a v e n  P r e s s ,
N e w  Y o r k ) .

T c h e r n i t c h i n  A  ( 1 9 7 9 )  T h e  R o l e  o f  E o s i n o p h i l  R e c e p t o r s  i n  t h e  N o n -  
G e n o m i c  R e s p o n s e  t o  O e s t r o g e n s  i n  t h e  U t e r u s ,
J  S t e r o i d  B i o c h e m  1 1 : 4 1 7 - 4 2 4 ,

T o f t  D ,  S h y a m a l a  G  & G o r s k i  J  ( 1 9 6 7 )  A  R e c e p t o r  M o l e c u l e  f o r  
E s t r o g e n s :  S t u d i e s  U s i n g  a  C e l l - F r e e  S y s t e m .
P r o c  N a t l  A c a d  S c i  U S A  5 7 : 1 7 4 0 - 1 7 4 3 .

T o m a s e k  J  J ,  H a y  E  D  & F u j i w a r a  K  ( 1 9 8 2 )  C o l l a g e n  M o d u l a t e s  C e l l
S h a p e  a n d  C y t o s k e l e t o n  o f  E m b r y o n i c  C o r n e a l  F i b r o b l a s t s :
D i s t r i b u t i o n  o f  A c t i n ,  A l p h a  A c t i n  a n d  M y o s i n .  D e v  B i o l  9 2 : 1 0 7 - 1 2 2 .

T r a u b  P  &  N e l s o n  W J  ( 1 9 8 1 )  O c c u r e n c e  i n  V a r i o u s  M a m m a l i a n  C e l l s  a n d
T i s s u e s  o f  t h e  C a- f -4 -  A c t i v a t e d  P r o t e a s e  S p e c i f i c  f o r  t h e  I n t e r m e d i a t e
F i l a m e n t  P r o t e i n s  V i m e n t i n  a n d  D e s m i n ,  E u r  J  C e l l  B i o l  2 6 : 6 1 - 6 7 .

T s e n g  S  C  G ,  H a t c h e l l  D ,  H u a n g  J  - H  &  S u n  T  - T  ( 1 9 8 2 a )  S p e c i f i c
K e r a t i n s  a s  M o l e c u l a r  M a r k e r s  o f  K e r a t i n i z a t i o n .  J  C e l l  B i o l  9 5 : 2 3 1 a .

T s e n g  S C  G ,  J a r v i n e n  M ,  N e l s o n  W G ,  H u a n g  J  - W ,  W o o d c o c k - M i t c h e l l  J  & 
S u n  T  - T  ( 1 9 8 2 b )  C o r r e l a t i o n  o f  S p e c i f i c  K e r a t i n s  w i t h  D i f f e r e n t  
T y p e s  o f  E p i t h e l i a l  D i f f e r e n t i a t i o n :  M o n o c l o n a l  A n t i b o d y  S t u d i e s ,
C e l l  3 0 : 3 6 1 - 3 7 2 .

U m a n s  R  S W e i c h s e l b a u m  R  R ,  J o h n s o n  C  M  & L i t t l e  J  B  ( 1 9 8 2 )  E f f e c t s  
o f  S e r u m - F r e e  D e f i n e d  M e d i u m  o n  M C F - 7  N u c l e a r  E s t r o g e n - R e c e p t o r  
L e v e l s ,  M o l  C e l l  E n d o c r i n o l  2 8 : 9 1 - 9 8 ,

U m a n s  R  S W e i c h s e l b a u m  R  R ,  J o h n s o n  C  M  & L i t t l e  J  B  ( 1 9 8 4 )  E f f e c t s  o f  
E s t r a d i o l  C o n c e n t r a t i o n  o n  L e v e l s  o f  N u c l e a r  E s t r o g e n  R e c e p t o r s  i n  
M C F - 7  B r e a s t  T u m o r  C e l l s .  J  S t e r o i d  B i o c h e m  2 0 : 6 0 5 - 6 0 9 .

V a z q u e z - N i n  G  H ,  E c h e v e r r i a  O M  & P e d r o n  J  ( 1 9 7 9 )  E f f e c t s  o f  E s t r a d i o l  
o n  t h e  R i b o n u c l e o p r o t e i n  C o n s t i t u e n t s  o f  t h e  N u c l e u s  o f  C u l t u r e d  
E n d o m e t r i a l  E p i t h e l i a l  C e l l s .  B i o l  C e l l  3 5  ; 2 2 1 - 2 2 8 ,

V l a d i r a i r i s k y  F ,  C h e n  L ,  A m s t e r d a m  A ,  Z o r  U  & L i n d n e r  H  R  ( 1 9 7 7 )  
D i f f e r e n t i a t i o n  o f  D e c i d u a l  C e l l s  i n  C u l t u r e s  o f  R a t  E n d o m e t r i u m ,
J  R e p r o d  F e r t i l  4 9  : 6 1 - 6 8 .

V o n  H i p p e l  P  H ,  R e v z i n  A ,  G r o s s  C  & W a n g  A  C  ( 1 9 7 4 )  N o n - S p e c i f i c  D N A  
B i n d i n g  o f  G e n o m e  R e g u l a t i n g  P r o t e i n s  a s  a  B i o l o g i c a l  C o n t r o l  
M e c h a n i s m :  1 ,  T h e  L a c  O p e r o n ;  E q u i l i b r i u m  A s p e c t s .
P r o c  N a t l  A c a d  S c i  U S A  7 1 : 4 8 0 8 - 4 8 1 2 ,

V y t a s e k  R  ( 1 9 8 2 )  A  S e n s i t i v e  F l u o r o m e t r i c  A s s a y  f o r  t h e  
D e t e r m i n a t i o n  o f  D N A .  A n a l  B i o c h e m  1 2 0 : 2 4 3 - 2 4 8 .

W a l k e r  M  D  & K a y e  A  M  ( 1 9 8 1 )  m R N A  f o r  t h e  R a t  U t e r i n e  E s t r o g e n - I n d u c e d  
P r o t e i n .  J  B i o l  C h e m  2 5 6 : 2 3 - 2 6 .

W a y m o u t h  C  ( 1 9 7 4 )  T o  D i s a g g r e g a t e  o r  N o t  t o  D i s s a g r e g a t e .  I n j u r y  a n d  
C e l l  D i s a g g r e g a t i o n ,  T r a n s i e n t  o r  P e r m a n e n t .  I n  V i t r o  1 0  : 9 7 - 1 1 1 ,

W e i c h m a n  B  M  & N o t i d e s  A  C  ( 1 9 7 7 )  E s t r a d i o l - B i n d i n g  K i n e t i c s  o f  t h e  
A c t i v a t e d  a n d  t h e  N o n - A c t i v a t e d  E s t r o g e n  R e c e p t o r .
J  B i o l  C h e m  2 5 2 : 8 8 5 6 - 8 8 6 2 .

W e l s h o n s  W V ,  L e i b e r m a n  M  E  &  G o r s k i  J  ( 1 9 8 4 )  N u c l e a r  L o c a l i s a t i o n  o f  
U n o c c u p i e d  O e s t r o g e n  R e c e p t o r s .  N a t u r e  3 0 7  : 7 4 7 - 7 4 9 .

W e s t p h a l  U  ( 1 9 7 1 )  S t e r o i d - P r o t e i n  I n t e r a c t i o n s ,  M o n o g r  E n d o c r i n o l  
V o l u m e  4  ( S p r i n g e r - V e r l a g ,  B e r l i n ) ,

1 66



W h a r b u r t o n  M  J ,  H e a d  L  P  & R u d l a n d  P  S  ( 1 9 8 1 )  R e d i s t r i b u t i o n  o f
F i b r o n e c t i n  a n d  C y t o s k e l e t o n  P r o t e i n s  D u r i n g  t h e  D i f f e r e n t i a t i o n  o f  
R a t  M a m m a r y  T u m o u r  C e l l s  I n  V i t r o .  E x p  C e l l  R e s  1 3 2 : 5 7 - 6 6 .

W h i t e h e a d  R  H ,  B e r t o n c e l l o  I ,  W e b b e r  L  M  & P e d e r s o n  J  S  ( 1 9 8 3 )  A  N e w  
H u m a n  B r e a s t  C a r c i n o m a  C e l l  L i n e  ( P M C 4 2 )  w i t h  S t e m  C e l l  
C h a r a c t e r i s t i c s ,  I ,  M o r p h o l o g i c a l  C h a r a c t e r i z a t i o n .  J N C I  7 0 : 6 4 9 - 6 6 1 .

W h i t e h e a d  R  H ,  Q u i r k  S J ,  V i t a l i  A  A ,  F u n d e r  J  W ,  S u t h e r l a n d  R  L  &
M u r p h y  L  C  ( 1 9 8 4 )  A  N e w  H u m a n  B r e a s t  C a r c i n o m a  C e l l  L i n e  ( P M C 4 2 )  w i t h  
S t e m  C e l l  C h a r a c t e r i s t i c s .  I l l .  H o r m o n e  R e c e p t o r  S t a t u s  a n d  
R e s p o n s i v e n e s s ,  J N C I  7 3 :  6 4 3 - 6 4 7 .

W i e z s a e c k e r  M ,  H o s h i n o  T  & K o b a y a s h i  S ( 1 9 8 1 )  E f f e c t  o f  T r i t i a t e d  
T h y m i d i n e  o n  t h e  K i n e t i c s  a n d  V i a b i l i t y  o f  9 L  C e l l s  I n  V i t r o .
C e l l  T i s s u e  K i n e t  1 4 : 5 7 5 - 5 8 0 .

W i g l e y  C  B  &  S u m m e r h a y e s  I  C  ( 1 9 7 9 )  L o s s  o f  L E T S  P r o t e i n  i s  n o t  a
M a r k e r  f o r  S a l i v a r y  G l a n d  o r  B l a d d e r  E p i t h e l i a l  C e l l  T r a n s f o r m a t i o n .  
E x p  C e l l  R e s  1 1 8 : 3 9 4 - 3 9 8 .

W i k l u n d  J  A  & G o r s k i  J  ( 1 9 8 2 )  G e n e t i c  D i f f e r e n c e s  i n  E s t r o g e n - I n d u c e d  
D e o x y r i b o n u c l e i c  A c i d  S y n t h e s i s  i n  t h e  R a t  P i t u i t a r y  : C o r r e l a t i o n s  
w i t h  P i t u i t a r y  T u m o r  S u s c e p t i b i l i t y .  E n d o c r i n o l  1 1 1 : 1 1 4 0 - 1 1 4 9 .

W i l d e  C  J ,  H a s a n  H  R  & M a y e r  R  J  ( 1 9 8 4 )  C o m p a r i s o n  o f  C o l l a g e n  G e l s  
a n d  M a m m a r y  E x t r a c e l l u l a r  M a t r i x  a s  S u b s t r a t a  f o r  S t u d y  o f  T e r m i n a l  
D i f f e r e n t i a t i o n  i n  R a b b i t  M a m m a r y  E p i t h e l i a l  C e l l s ,
E x p  C e l l  R e s  1 5 1 : 5 1 9 - 5 3 2 ,

W i l l i a m s  D  & G o r s k i  J  ( 1 9 7 2 )  K i n e t i c  a n d  E q u i l i b r i u m  A n a l y s i s  o f
E s t r a d i o l  i n  U t e r u s  : A  M o d e l  o f  B i n d i n g  S i t e  D i s t r i b u t i o n  i n  U t e r i n e  
C e l l s -  P r o c  N a t l  A c a d  U S A  6 9 ;  3 4 6 4 - 3 4 6 8 .

W i l l i a m s  D  & G o r s k i  J  ( 1 9 7 3 )  P r e p a r a t i o n  &  C h a r a c t e r i s a t i o n  o f  F r e e  
C e l l  S u s p e n s i o n s  f r o m  I m m a t u r e  R a t  U t e r u s . B i o c h e m  1 2 : 2 9 7 - 3 0 6 .

W i l l i a m s  D  &  G o r s k i  J  ( 1 9 7 4 )  E q u i l i b r i u m  B i n d i n g  o f  E s t r a d i o l  b y  
U t e r i n e  C e l l  S u s p e n s i o n s  a n d  W h o l e  U t e r i  I n  V i t r o ,
B i o c h e m  1 3 : 5 5 3 7 - 5 5 4 2 .

W i l l i a m s  S  K ,  S a s a k i  A  W ,  M a t t h e w s  M  A  & W a g n e r  R  L  ( 1 9 8 0 )
Q u a n t i t a t i v e  D e t e r m i n a t i o n  o f  D e o x r i b o n u c l e i c  A c i d  f r o m  C e l l s  
C o l l e c t e d  o n  F i l t e r s .  A n a l  B i o c h e m  1 0 7  : 1 7 - 2 0 .

W i l l i n g h a m  M  L ,  Y a r a a d a  K  M ,  Y a m a d a  S S ,  P o u y s s e g u r  J  & P a s t a n  I  ( 1 9 7 7 )  
M i c r o f i l a m e n t  B u n d l e s  a n d  C e l l  S h a p e  a r e  R e l a t e d  t o  A d h e s i v e n e s s  t o  
S u b s t r a t u m  a n d  a r e  D i s s o c i a b l e  f r o m  G r o w t h  C o n t r o l  i n  C u l t u r e d  
F i b r o b l a s t s .  C e l l  1 0 : 3 7 5 - 3 8 0 ,

W i n t e r  S ,  J a r a s c h  E  - D ,  S c h m i d  E ,  F r a n k e  W W & D e n k  H  ( 1 9 8 0 )
D i f f e r e n c e s  i n  P o l y p e p t i d e  C o m p o s i t i o n  o f  C y t o k e r a t i n  F i l a m e n t s  
I n c l u d i n g  T o n o f i l a m e n t s  f r o m  D i f f e r e n t  E p i t h e l i a l  T i s s u e s  a n d  C e l l s ,  
E u r  J  C e l l  B i o l  2 2 : 3 7 1 .

W i s t  E  ( 1 9 7 9 )  T h e  R o l e  o f  D N A  P o l y m e r a s e s  ^ a n d  i f  i n  N u c l e a r  D N A  
S y n t h e s i s . B i o c h i m  B i o p h y s  A c t a  5 6 2 : 6 2 - 6 9 .

W o o d c o c k - M i  t c h e 1 1  J ,  E i c h n e r  R ,  N e l s o n  W G ,  S u n  T  - T  ( 1 9 8 2 )
I m m u n o l o c a l i z a t i o n  o f  K e r a t i n  P o l y p e p t i d e s  i n  H u m a n  E p i d e r m i s  U s i n g  
M o n o c l o n a l  A n t i b o d i e s .  J  C e l l  B i o l  9 5 : 5 8 0 - 5 8 8 ,

W o n g  A  J ,  P o l l a r d  T  D &  H e r m a n  I  M  ( 1 9 8 3 )  A c t i n  F i l a m e n t  S t r e s s
F i b e r s  I n  V a s c u l a r  E n d o t h e l i a l  C e l l s  I n  V i v o .  S c i e n c e  2 1 9 : 8 6 7 - 8 6 9 .

W r i g h t  N  A  & A p p l e t o n  D  R  ( 1 9 8 0 )  T h e  M e t a p h a s e  A r r e s t  T e c h n i q u e  A  
C r i t i c a l  R e v i e w ,  C e l l  T i s s u e  K i n e t  1 3 : 6 4 3 - 6 6 3 .

W y n n  R  M  ( 1 9 7 7 )  H i s t o l o g y  a n d  U l t r a s t r u c t u r e  o f  t h e  H u m a n  E n d o m e t r i u m ,  
i n :  B i o l o g y  o f  t h e  U t e r u s  ( e d  W y n n  R ,  P l e n u m  P r e s s  I n c ,  N e w  Y o r k ) ,
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Y a m a d a  K  M  & K e n n e d y  D  W ( 1 9 7 9 )  F i b r o b l a s t  C e l l u l a r  a n d  P l a s m a

F i b r o n e c t i n s  a r e  S i m i l a r  B u t  N o t  I d e n t i c a l .  J  C e l l  B i o l  8 0 ; 4 9 2 - 4 9 8 .

Y a m a d a  K  M  & O l d e n  K  ( 1 9 7 8 )  F i b r o n e c t i n s  -  A d h e s i v e  G l y c o p r o t e i n s  o f  
C e l l  S u r f a c e  a n d  B l o o d .  N a t u r e  2 7 5 : 1 7 9 - 1 8 4 .

Y a m a m o t o  K  R  & A l b e r t s  B  M  ( 1 9 7 6 )  S t e r o i d  R e c e p t o r s :  E l e m e n t s  f o r
M o d u l a t i o n  o f  E u k a r y o t i c  T r a n s c r i p t i o n .  A n n  R e v  B i o c h e m 4 5 : 7 2 2 - 7 4 6 .

Y a n g  N  S ,  K i r k l a n d  W ,  J o r g e n s e n  T  & F u r m a n s k i  P  ( 1 9 8 0 )  A b s e n c e  o f  
F i b r o n e c t i n  a n d  P r e s e n c e  o f  P l a s m i n o g e n  A c t i v a t o r  i n  b o t h  N o r m a l  
a n d  M a l i g n a n t  H u m a n  M a m m a r y  E p i t h e l i a l  C e l l s  I n  C u l t u r e .
J  C e l l  B i o l  8 4 : 1 2 0 - 1 3 0 .

Y a n i s h e v s k y  R  M  fit S t e i n  G  H  ( 1 9 8 1 )  R e g u l a t i o n  o f  t h e  C e l l  C y c l e  i n
E u k a r y o t i c  C e l l s .  I n t  R e v  C y t o l  6 9 :  2 2 3 - 2 5 9 .

Y u s p a  S  H  ( 1 9 8 3 )  R e t i n o i d s  a n d  T u m o r  P r o m o t i o n ,  i n :  D i e t ,  N u t i t i o n  a n d
C a n c e r :  F r o m  B a s i c  R e s e a r c h  t o  P o l i c y  I m p l i c a t i o n s .  T e d  R o e  D  A ,
A l a n  R  L i s s  I n c ,  N e w  Y o r k ) .

Z a v a  D  T  fit M c G u i r e  W L  ( 1 9 7 7 )  E s t r o g e n  R e c e p t o r ,  U n o c c u p i e d  S i t e s  i n
N u c l e i  o f  a  B r e a s t  T u m o r  C e l l  L i n e .  J  B i o l  C h e m  2 5 2 : 3 7 0 3 - 3 7 0 8 .

Z y l b e r b e r g  L  fit N i c o l a s  G  ( 1 9 8 2 )  U l t r a s t r u c t u r e  o f  S c a l e s  i n  a
T e l e o s t  ( C a r a s s i u s  a u r a t u s  L )  A f t e r  U s e  o f  R a p i d  F r e e z e - F i x a t i o n  
a n d  F r e e z e - S u b s t i t u t i o n .  C e l l  T i s s u e  R e s  2 2 3  : 3 4 9 - 3 6 7 .
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