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SUMMARY

Lymphocytes respond to antigen receptor stimulation in a maturation stage- 

dependent manner. Thus, wheieas mature lymphocytes become activated and proliferate 

in response to antigen receptor crosslinking, immature lymphocytes become 

unresponsive or undergo apoptosis. Initial studies, however, failed to identify any 

differences in the signals generated immediately following the crosslinking of antigen 

receptors on mature and immature lymphocytes: protein tyrosine kinase activation, 

inositol phospholipid hydrolysis and the mobilisation of calcium. Recent reports have 

indicated a key role for the stimulated hydrolysis of phosphatidylcholine in the control of 

a variety of cellular responses including membrane trafficking, the respiratory burst, 

proliferation and apoptosis. This investigation has focused on the role of 

phosphatidylcholine hydrolysis in the regulation of lymphocyte activation, maturation and 

apoptosis. Two key enzymes which mediate the hydrolysis of phosphatidylcholine are 

phospholipase D and phospholipase A2 .

Phosphatidylcholine-specific phospholipase D has been found to play a role in the 

transduction of intracellular signals initiated by mitogenic stimulation of a variety of cell 

types. This investigation has identified a number of differentially-regulated phospholipase 

D activities which may play key roles in mediating the transduction of mitogenic and 

antiproliferative signals in B cells. Initial pharmacological studies identified multiple 

phosphatidylcholine-specific phospholipase D activities, which were regulated by protein 

kinase C-, tyrosine phosphorylation- and G protein-dependent mechanisms, in B cells. 

However, it was found that stimulation of B cells with anti-Ig antibodies did not induce 

activation of phosphatidylcholine-specific phospholipase D, indicating that the B cell 

antigen receptor is not coupled to phosphatidylcholine-specific phospholipase D in these 

cells. Moreover, phosphatidylcholine-specific phospholipase D was not stimulated 

following crosstalk between surface immunoglobulin, interleukin-4 receptors, Class IE 

molecules, and other T cell interacting coreceptors such as CD40, conditions designed to 

mimic T cell-dependent B cell activation. However, further investigation identified an as
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yet undefined phospholipase D activity which could be stimulated via sig on B cells, and 

phospholipid labelling studies indicated that this could be a phosphatidylinositol-specific 

phospholipase D activity. Further investigation of the role of phosphatidylcholine-specific 

phospholipase D found that stimulation of B cells with adenosine trisphosphate induced 

phosphatidylcholine-specific phospholipase D activation. As adenosine trisphosphate was 

found to suppress B cell proliferation, this suggests that a phosphatidylcholine-specific 

phospholipase D activity(ies) could be involved in the transduction of negative, anti­

proliferative signals in B lymphocytes. Further investigation of a role for 

phosphatidylcholine-specific phospholipase D in negative signalling in B cells found that 

the lipid second messengers sphingosine and ceramide, which are implicated in the 

regulation of apoptosis in many cell types and exert potent anti-proliferative effects on B 

cells, induced the activation of phosphatidylcholine-specific phospholipase D in B cells. 

These results therefore indicate that phosphatidylcholine-specific phospholipase D is not 

involved in the transduction of signals regulating the initiation or maintenance of antigen- 

driven B cell proliferative responses, and could indicate a role for phosphatidylcholine- 

specific phospholipase D in the negative modulation of B cell activation.

Phospholipase A2 has been implicated in the control of proliferation and apoptosis 

in a number of cells types, and this investigation has generated a number of findings 

which indicate a key role for cytosolic phospholipase A% in lymphocyte maturation. 

Firstly, cytosolic phospholipase A2  is expressed by B and T cells in a maturation state- 

specific manner. Western blotting studies demonstrated that mature lymphocytes, and a 

number of cell lines representing this maturation state, do not express cytosolic 

phospholipase A2 . In contrast, cytosolic phospholipase A2  was found to be expressed in

immature murine splenocytes, murine thymocytes, T3 murine thymoma cells and WEHI 

231 murine immature B cells, although not in the pre-B cell lines 697, 207 and REH. 

Secondly, the antigen receptors on immature B and T cells were found to be coupled to 

cytosolic phospholipase A2  activation, indicating that arachidonate release may be

involved in the antigen receptor-mediated induction of growth arrest and/or apoptosis. 

Pharmacological studies supported this, demonstrating that certain agents which induce



apoptosis (eg. ionomycin in T3 cells) activate cytosolic phospholipase A2 , whereas those 

which do not induce apoptosis (eg. phorbol ester in all the immature lymphocytes 

investigated) failed to induce arachidonate release.Tliirdly, stimulation of WEHI 231 

immature B cells with specific stimuli known to rescue these cells from sIgM-mediated 

apoptosis, including interleukin-4, CD40 crosslinking and lipopolysaccharide, did not 

stimulate cytosolic phospholipase A2  activity. Moreover, interleukin-4 was found to

block anti-Ig-mediated release of arachidonate, suggesting that these stimuli may effect B 

cell rescue from apoptosis through the inhibition of intracellular signals such as cytosolic 

phospholipase A2  activation. The findings of this investigation therefore strongly

implicate the antigen receptor-mediated release of arachidonate in the induction of growth 

arrest and/or apoptosis. Furthermore, sphingomyelinase, a signal transducer which has 

been shown to be activated by released arachidonate in other cell types, was found to be 

temporally downstream of cytosolic phospholipase A2  activation following crosslinking 

of the antigen receptors on WEHI 231 immature B cells.
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1 . INTRODUCTION

The experiments described in this thesis have investigated the role(s) of lipid 

signalling in the maturation and proliferation of B lymphocytes. However, where 

appropriate, parallel studies have also been performed on T cells in order to determine 

whether such lipid signals play a universal role in lymphocyte development. Therefore, 

since many of the signals resulting from ligation of the antigen receptors on B and T cells 

are essentially similar, this introduction focuses almost exclusively on the intracellular 

signals involved in the regulation of maturation, activation, and apoptosis in B cells.

1 .1  The function of B lymphocytes in the humoral immune response.

B lymphocytes are the principal cellular mediators of the specific humoral immune
:

response to infection. In this context, they perform both recognition and effector 

functions within the immune system. Thus, B cells recognise and respond to specific 

antigen via clonally distributed antigen receptors, and recognition of foreign antigen by 

mature B cells leads to their activation, proliferation and differentiation, ultimately 

culminating in the development of antibody-secreting plasma cells. The physiological 

function of secreted antibodies is to neutralise and initiate the elimination of foreign 

antigen by several phagocytic effector mechanisms.

Activation of B cells by foreign antigen can also lead to the development of 

memory B cells, which serve as a repository of immunological memory and are 

responsible for the secondary humoral immune response to antigen. Memory B cells 

respond to their specific antigen more rapidly than naive resting B cells, and their 

activation results in differentiation to plasma cells, secreting antibody with increased

affinity for antigen. Thus, repeated challenge of the immune system with an antigen (eg. 

from an endemic pathogen) will induce an humoral immune response which increases in 

rapidity and efficacy with each subsequent infection. It is this phenomenon which forms 

the basis for vaccination against specific pathogens.

-



1 .2  B cell development, maturation and activation.

B lymphocytes anse from pluripotent hematopoietic stem cells in the bone 

marrow, via a number of stages comprising well defined precursor B cell phenotypes. 

This is a complex process integrating signals generated by a number of soluble factors 

(including cytokines) and specific immunoregulatory receptors on several cell types, 

often in specialised environments (reviewed by Cushley and Harnett, 1993) (1). This 

phase of B cell development is termed the antigen-independent phase, and culminates in 

the development of immature B cells expressing functional antigen receptors (sig) of the 

IgM isotype, with each clone expressing receptors specific for only one antigen epitope. 

The cellular and molecular events of antigen-independent B cell maturation are 

summarised in Figure 1.

The antigen-independent phase is followed by the antigen-dependent phase of B 

cell maturation which occurs in the periphery, predominantly in secondary lymphoid 

organs such as the spleen and tonsils. This phase involves the selection of appropriate B 

cell clones by antigen, leading to (i) cellular anergy and/or apoptosis of immature B cells 

(2-4), (ii) activation and proliferation of mature B cells or (iii) rescue of germinal centre 

cells from cell suicide followed by differentiation into antibody-secreting plasma cells or 

memory B cells (reviewed by Cushley & Harnett, 1993; and MacLennan, 1994) (1, 5). 

Thus, the first stage of antigen-dependent B cell maturation involves the negative 

selection of IgM+ immature lymphocytes, resulting in the anergy or deletion of 

autoreactive B cell clones. This mechanism gives rise to a self-tolerant naive mature B cell 

population expressing both sIgM and sIgD, and is followed by a process of positive 

antigenic selection, in which the appropriate B cell clones become activated, proliferate 

and differentiate to generate antibody-secreting plasma cells or memory B cells. These 

selected cells may express immunoglobulins of the A, E or G isotype, according to the 

requirements of the particular response to antigen (5). In contrast, unless mature B cells 

are selected by antigen, they have been found to die by apoptosis with a half-life of 3-4 

days These mechanisms of B cell generation and selection account for the dynamic nature 

and plasticity of the immune system: the generation of a population of B cells capable of



responding to a vast array of different antigens, the deletion of autoreactive B cells, and 

the constant renewal of the pool of B lymphocytes capable of recognising and responding 

to foreign antigen.

1 . 2 .1  The role of germinal centres In the development of memory B cells

Memory B cells develop in secondary lymphoid organs such as lymph nodes, the 

spleen, tonsils and Peyer’s patches. The generation of memory cells from naive resting B 

cells occurs via a number of discrete stages and is mediated by stimuli derived from a 

number of other cell types, including T cells (5). Resting B cells circulate in the blood, 

and migrate across high endothelial venules to sites of trapped antigen in the secondary 

lymphoid organs (6 ). Those B cells bearing antigen receptors specific for trapped antigen 

enter the T cell-rich paracortical regions of the secondary lymphoid tissues, where the 

captured Ag are processed by proteolysis and presented as peptide fragments in the 

context of class B MHC molecules. Recognition of MHC-bound Ag fragments induces 

the activation of specific T helper (Tjj) cells, resulting in the expression of T cell

coreceptors and the release of cytokines. These stimuli induce the activated B cells to 

migrate into B cell follicles (5).

Follicles consist of a network of follicular dendritic cells (FDCs) (1), which 

specialise in binding unprocessed antigen in immune (Ag-Ab) complexes and in inducing 

B cell proliferation and diffeientiation. Following entry into the FDC network, the slg+ B 

cells proliferate exponentially, filling the network. This proliferation gives rise to a dark 

zone on the edge of the developing germinal centre (GC). The B cells then differentiate to 

centrocytes, which lose expression of sig and introduce mutations into their Ig V-region 

genes as they continue to proliferate (1). This process is known as somatic mutation, and 

gives rise to sig with altered antigen binding properties. As the centrocytes proliferate, 

they give rise to centroblasts, non-proliferating cells which express the mutated 

immunoglobulin genes as sig, before migrating into the light zone of the germinal centre, 

which possesses a dense network of FDCs, and some T cells (5). The centrocytes then 

undergo a process of positive selection, in which they compete for the
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Figure 1. A ntigen-Independent B cell m atu ra tion  and the role of the pre- 

BCR. Developing B cell precursors go through a series of discrete stages, comprising 

distinct cellular phenotypes. During this process developing B cells rearrange their 

immunoglobulin genes to allow the production of functional antibody molecules. The 

gene for immunoglobulin \i heavy chain is the first to be rearranged (in two maturation 

stages encompassing pro-B to Pre-B2). The rearranged gene is then expressed and forms 

a complex with two surrogate light chains, called and VpreBl* ^5 has a domain that is 

homologous to immunoglobulin constant regions, and VpreBl is homologous to Ig 

variable domains. “Knock-out” experiments have shown that these molecules are 

required for expression of p-chain at the B cell surface, and it is likely that X5 and VpreBl 

are involved in receptor assembly. Another possibility is that À5 and VpreBl mediate the 

cell-cell contact needed by B cells in the bone marrow for full development. The p-%5- 

VpreBl complex also associates with Ig-a and Ig-p, and this complex is termed the pre- 

BCR (B cell antigen receptor). The expression of the pre-BCR has been found to be 

required for progression from the pre-Bl to the pre-B2 stage. Following expression of 

the pre-BCR, the immunoglobulin light chains (k or X) are rearranged. The expression of 

functional light chains as components of the B cell antigen receptor is then required for 

the development of immature B cells which can exit the bone marrow.
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antigen bound on the surface of the FDCs. Those centrocytes expressing antigen 

receptors with the highest affinity for antigen survive, as the result of sig crosslinking by 

antigen, and the remainder die by apoptosis (5). The surviving centrocytes also require T 

cell-derived signals for longterm survival. Antigen captured by specific binding to sIg is 

internalised by the centrocytes, then processed and presented in the context of class II 

MHC. If the antigen is recognised by T helper cells, then the B cells receive a signal via 

CD40 following its ligation by CD40L (7), which is expressed on the surface of the 

activated T cells. If they do not receive this signal the B cells die by apoptosis. The 

selected centrocytes may then differentiate to memory cells or plasmablasts (which further 

differentiate to nondividing plasma cells following migration to sites of infection). The 

generation of memory cells appears to require IL-4, BL-10 and other cytokines, in 

addition to CD40 crosslinking In contrast, the generation of plasmablasts appears to take 

place in the apical light zone, and is mediated by FDCs providing stimulation of B cells 

via IL-1, CD23 or other surface receptors (8 ). Such a tightly regulated mechanism has 

presumably evolved to prevent the development of autoreactive memory B cells during 

somatic mutation. (See Figure 2).

Typically, B cells undergoing differentiation in germinal centres undergo 

immunoglobulin class switching from IgM to IgA, IgE, or IgG (5). The isotype 

expressed usually depends on the secondary lymphoid organ in which the memory cell or 

plasmablast develops. Thus, B cells leaving the follicles of Peyer's patches or mesenteric 

lymph nodes are almost all committed to IgA expression (5,9,10). In contrast, memory 

B cells or plasmablasts leaving tonsil, spleen, or peripheral lymph nodes are mainly 

committed to IgG production with some expressing IgA, and very few expressing IgM 

(8 ). The time at which class switching occurs is not clear, however, in human tonsils 

most centroblasts have already deleted their heavy chain genes, indicating that switch 

signals are often delivered prior to the selection of centrocytes (5). Some specific signals 

have been identified which induce the production of specific Ig isotypes by B ceUs: i) the 

combination of soluble CD23 and IL-1 induces differentiation of centrocytes to IgG- 

secreting plasmablasts (8); ii) IL-2 induces a specific subpopulation of CD5+ IgM+
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Figure 2. The role of germinal centres In the development of memory B 

cells and plasmablasts.



germinal centre B cells to become IgM-expressing plasmablasts (11) and iii) co-culture of 

B cells with FDCs and T cells (secreting IL-4), plus stimulation with IL-1, induces their 

proliferation and the production of IgGl and IgE (12).

The function of germinal centre formation is therefore to generate memory B 

cells, expressing antigen receptors with increased affinity for antigen and Ig of an isotype 

suited to the specific requirements of the specific humoral response to infection.

1 . 2 . 2  Models of B cell activation.

Antigens were originally classified according to their ability or inability to 

stimulate specific antibody production in athymic individuals, (ie. individuals incapable 

of T cell production), and are thus termed thymus-independent (TI) or thymus-dependent 

(TD) antigens (13,14). TI antigens are typically large molecules consisting of repeating 

immunogenic epitopes, which efficiently crosslink sig and induce B cell proliferation and 

antibody production without a requirement for T cell help. The vast majority of proteins, 

however, are thymus-dependent antigens which crosslink sig relatively inefficiently, and 

require the presence of T cells for the induction of B cell proliferation and antibody 

production. The study of receptor crosslinking by specific antigens is very problematic, 

due to the variation in antigen specificity of B cell receptors. As a result of this, the 

crosslinking of sig with anti-Ig antibodies has been used extensively as an experimental 

model for antigen receptor crosslinking by specific antigens. Crosslinking of the B cell 

antigen receptor (BCR) with relatively high concentrations of anti-Ig has been found to 

induce the proliferation of B cells, and is used as a model for the activation of B cells by 

TI-2 antigens.

1 .2 .2 . 1  Thymus-independent antigens

There are many antigens which will stimulate antibody production in the absence 

of T cells, and these are termed thymus-independent (TI) antigens. Tl-antigens have been 

subdivided into two types:
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Figure 3. Antigen-dependent B cell activation. Engagement of the antigen 

receptors on immature B cells results in cellular anergy or apoptosis. Crosslinking by 

antigen of the B cell receptors (BCR) on mature B cells results in their activation and 

proliferation, and if a mature B cell clone is not selected by antigen it dies with a half-life 

of 3-4 days. Further antigenic stimulation of activated B cells can result in their direct 

differentiation to IgM-secreting plasma cells. Th cell-dependent stimulation of activated B 

cells leads to the development of germinal centres in secondary lymphoid organs which 

mediate the development of B cells bearing sig of higher affinity for antigen, and 

typically of a different isotype (IgG, IgE or IgA). These cells differentiate to produce 

memory cells or antibody-secreting plasma cells.
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i) TI-1 antigens, which are completely T cell-independent, are usually 

polyclonal mitogens for B cells. At high concentrations, they induce the 

proliferation of multiple B cell clones, irrespective of their antigenic specificity, 

and without necessarily binding to antigen receptors(15). This suggests that B cell 

activation by Tl-antigens occurs independently of the antigen receptor. However, 

at lower concentrations (10 to 100-fold lower) TI-1 antigens bind to and stimulate 

specific B cells only. The classic example of a TI-1 antigen is lipopolysaccharide 

(LPS), which is a component of the cell walls of several gram-negative bacteria. 

Thus, at concentrations of 10 pg/ml or higher, LPS binds to and activates the 

majority of B cell clones in vitro. However, at significantly lower concentrations 

LPS only stimulates B cells expressing appropriate antigen receptors. It is 

proposed that a portion of LPS may directly stimulate B cells, possibly by 

mimicking the action of a lipid second messenger. B cell responses to TI-1 

antigens are typical of those that would be expected in the absence of T cell help 

and cytokines. For example, LPS induces the proliferation of B cells and the 

secretion of high levels of IgM (and IgG3), but does not stimulate class switching 

to other isotypes, affinity maturation or development of memory B cells(l).

ii) TI-2 antigens induce the production of specific antibodies in vivo in 

athymic mice, but will not stimulate antibody production in vitro in the absence of 

T cells. Most TI-2 antigens are polysaccharides composed of repeating antigenic 

epitopes, eg. dextrans and pneumococcal polysaccharides( 15). These antigens 

only stimulate specific B cells via antigen receptors and do not function as 

polyclonal mitogens. Although TI-2 antigens cannot be processed by B cells and 

presented with class II MHC, they do appear to require small numbers of T cells 

for full B cell activation and the production of antibodies, possibly because certain 

cytokines are required. Like the responses to TI-1 antigens, most TI-2 antigens 

elicit the production of only IgM antibodies, although some do induce class

12



switching to other isotypes, possibly by stimulating the production of specific

cytokines.

The activation of B cells by TI-2 antigens is mimicked experimentally by the 

crosslinking of B cell antigen receptors with mitogenic concentrations of anti-Ig 

antibodies. B cell activation by polyclonal mitogens is typically modelled experimentally 

by stimulation of B cells with LPS (50 itg/ml).

1 .2 .2 . 2  T cell-dependent B ceil activation.

Crosslinking of sig using submitogenic concentrations of anti-Ig in the presence 

of T cell-derived cytokines and ligands has been employed as an experimental model for 

B cell stimulation by TD antigens. This model has been used in many studies 

characterising the T cell-derived signals which are required, in addition to antigen 

receptor crosshnking, for the activation of B cells and the production of antibodies. 

Limited sig crosslinking, mediated by TD antigens or submitogenic concentrations of 

anti-Ig, induces abortive activation of B cells. This stimulates the internalisation of 

captured Ag, which are processed by proteolysis and presented as peptide fragments in 

association with MHC class II molecules, promoting the "cognate" recognition of the 

antigen by MHC class B-restricted T cells (ie. CD4+ T helper (Tjj) cells) (1). B cells

tlierefore also function as antigen-presenting cells (APC). Such recognition of presented 

antigen results in activation of the cognate T cells, leading to the production of cytokines 

and upregulation of expression of specific receptors on the T cell surface (6 ). Interaction 

with appropriate counterstructures on the antigen-presenting B cell, which is the 

preferential recipient of such signals due to its proximity, leads to T cell-dependent B cell 

activation and differentiation into plasma cells (1,6). Experiments reconstituting T cell- 

dependent B cell activation in vitro have identified many of the principal T cell-derived 

signals required for the activation of B cells (1). For example, submitogenic 

concentrations of anti-Ig were found to be co-mitogenic for B cells with the T cell-derived 

cytokine, IL-4. This led to the hypothesis that T cell-derived signals may interact with

13



signals generated via the B cell antigen receptor, possibly to "prime" B cells for additional 

signals generated during B-T cell co-operation. Indeed, Cambier and coworkers 

demonstrated that crosslinking of MHC class II molecules on IL-4/anti-Ig-primed murine 

B cells, is sufficient to induce the proliferation of resting B cells (16). Moreover, further 

addition of cytokines (IL-4 and IL-5) was observed to induce differentiation of such B 

cells into antibody-secreting plasma cells (16). This model of T cell-dependent B cell 

activation was supported by reconstitution experiments which showed that incubation of 

B cells with fixed, pre-activated T cells or T cell membranes, in the presence of IL-4 and 

IL-5, was sufficient to induce B cell proliferation and differentiation to antibody-secreting 

cells(17-19).

The finding that MHC class H crosslinking is involved in the T cell-dependent 

activation of B cells, serves to underline the fact that the specific response of B cells to 

TD antigens is inextricably linked to their function as antigen-presenting cells (APCs). 

Further investigation has identified a number of additional B-T cell contact-dependent 

signals that mediate the bidirectional signals occurring during T cell-dependent B cell 

activation and maturation (see Figure 4) (6 ). One of the most important of these appears 

to be the crosslinking of CD40, a glycoprotein (45-50 kDa) related to the receptor for 

tumour necrosis factor (TNF)-a, which is expressed on the surface of late pre-B cells, 

immature B cells, mature B cells and some accessory cells. The T cell counterstructure 

for CD40 is the CD40 ligand (CD40L) (gp39), a TNF family member which is expressed 

on the surface of activated T cells. Crosslinking of CD40 has been shown to promote B 

cell proliferation, prevent apoptosis of germinal centre B cells and promote Ig isotype 

switching (1,5). Other receptors involved in B cell-T cell bidirectional signalling include 

CD80 (B7/BB1) which is expressed on the surface of B cells activated by BCR or CD40 

crosslinking. The interaction of CD80 with CD28, its coreceptor on T cells, stimulates T 

cells to express CD40L and to make the cytokines needed to induce Ig class switching in 

B cells. Thus, there is bidirectional B-T cell contact-dependent signalling mediating the 

activation of both cells, and this can be initiated by the prior activation of either cell by 

antigen receptor crosslinking. This complex mechanism of bi-directional signalling is

14
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Figure 4. B-T cell contact-dependent bi-directional signalling. Recognition 

of antigen by B cells via sig results in antigen processing and the presentation of peptide 

fragments in the context of MHC Class H molecules. Recognition of presented peptide by 

T cells leads to their activation and expression of CD40L. Crosslinking of class II 

molecules activates B cells and induces expression of CD80 (B7/BB1). Engagement by 

CD40L and CD80 of their respective counterstructures, CD40 on B cells and CD28 on T 

cells, amplifies the initial reaction and stimulates B and/or T cell proliferation. This bi­

directional signalling also induces T cells to make the cytokines required by B cells for Ig 

class switching.
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summarised in Figure 4. In addition there are a number of coreceptors of the B cell 

receptor which appear to act to reduce the threshold of antigen required for B cell 

activation. These include CD19/CD21 (20,21), CD22 (22) and CD38 (23), as well as 

CD54 which interacts with counterstructures on T cells (CD 11 a/18) (6 ) possibly 

stabilising and modulating lineage-specific signalling.

1 .3  The B cell antigen receptor as a transmembrane signal transducer.

1 . 3 .1  Structure of the B cell antigen receptor.

Recent studies have defined the BCR as a multiprotein complex comprising a 

clonatypic antigen binding component, sig, and its accessory signal transducing 

molecules, Ig-a and Ig-p (reviewed by Cambier et ah, 1994 (24); Pleiman et a/., 1994 

(25); DeFranco, 1995 (26)). Surface immunoglobulin consists of homodimeiic heavy 

chains that are each covalently associated with a light chain, forming a symmetrical four 

chain structure with two antigen binding sites. There are five classes of immunoglobulin, 

IgM, IgD, IgG, IgA and IgE, and although all of these can be expressed as B cell antigen 

receptors, only IgM and IgD are expressed on mature naive B cells, which constitute the 

vast majority (>90%) of all peripheral B cells. Analysis of pm and 8 m heavy chain 

structure predicts that each heavy chain forms a single transmembrane-spanning domain 

with a short cytoplasmic tail. There are two algorithms which have been used to predict 

BCR structure: Kyte & Doolittle (1982) (27) predicted a charged cytoplasmic tail of only 

three amino acids - KVK- for p, whereas Klein, Kanehisa and Delisi (1985) (28) 

predicted a cytoplasmic tad of 11 residues. The other Ig isotypes were predicted to have 

longer cytoplasmic tails when expressed as sig: whereas Kyte and Doolittle predicted that 

sIgG and sIgE would each have tails of 28 residues, and that sig A would have a tail of 

14 amino acids, Klein, Kanehisa and Delisi predicted tads of 36 residues for sIgG and 

sIgE, and 22 for sIgA. These cytoplasmic domains are clearly too small to possess any
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intrinsic catalytic activity, suggesting that BCR transmembrane signalling is probably 

mediated via the interaction of sig with accessory signal transducing molecules.

Recent studies have found that sig associates with a protein complex comprising 

two glycoproteins expressed as a disulphide-bonded heterodimer (29, 30). This 

heterodimer is composed of the Ig-p (CD79b), which is encoded by the B29 gene, and 

the Ig-a chain (CD79a), which is encoded by the mb-\ gene (31). Both molecules have 

only been found to be expressed in B cells (24-26, 32). Ig-a and Ig-p are transmembrane 

glycoproteins which are structurally very similar to the T cell CD3 y, 5, and e chains and 

can associate with all classes of sig. The stoichiometry of the complex formed between 

the clonotypic sig chains and the Ig-a/ Ig-p heterodimer remains to be defined, but a ratio 

of 1:2 has been suggested by the bilateral symmetry of sig (see Figure 5).

Ig-a and Ig-P have been implicated in antigen receptor assembly and intracellular 

trafficking, internalisation and signal transduction (24-26, 32). Studies involving 

mutational analysis have indicated that Ig-a and Ig-p associate with the CH3 and/or CH4 

domains and the transmembrane spanning region of p  (29, 31). A polar patch within the 

transmembrane-spanning region,-TTAST- has been identified which signals retention in 

the ER unless Ig-a and Ig-p are also expressed (33). It has been proposed that the 

engagement of this site by Ig-o/Ig-p facilitates transport of the assembled receptor 

through the ER. Thus, interactions between sIg and the Ig-a/Ig-p heterodimer are 

required for receptor assembly and transport to the plasma membrane. Interestingly, 

however, IgD and certain IgG sub-classes can be expressed at the cell surface in the 

absence of the Ig-a protein, although the functional significance of this is not yet known 

(24, 34).

Both Ig-a and Ig-p have sizeable intracellular domains (61 and 48 amino acids 

respectively), and, although these domains do not possess any intrinsic catalytic activity, 

there is considerable evidence tliat they are involved in signal transduction via B cell 

antigen receptors. Firstly, chimeric receptors of CD8 , IgM or FcyRII expressing the 

cytoplasmic tails of Ig-a and Ig-p are effective signal transducers (24, 35). Moreover, 

Ig-a and Ig-p chimeras were found to differ in their ability to activate specific BCR-
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coupled signalling events, suggesting some compartmentalisation of signalling functions 

between the two proteins. Secondly, Ig-a and Ig-P possess motifs which are also found 

in the cytoplasmic domains of a variety of multimeric receptors including the TCR Ç chain 

and CD3 y, 6 , and e complex components (24,36). This motif consists of the conserved 

sequence, D/E-Xy-D/E-X2 -Y-X2 -L/I-X7 -Y-X2 -L/I, and has been termed the 

"immunoreceptor tyrosine-based activation m otif (ITAM) (37). ITAM motifs have been 

demonstrated to recruit cytoplasmic signal transducers and are capable of transducing 

signals leading to the activation of protein tyrosine phosphorylation and calcium 

mobilisation (24). Phosphorylation of the tyrosine residues within the ITAM motif 

appears to be the critical event regulating sighal transduction via these accessory 

molecules: even conservative mutations (eg Y > P) abrogate receptor-mediated signalling 

(25).

However, in addition to the proposed role for the Ig-a/Ig-p heterodimer, the C- 

terminus of pm has been implicated in BCR signal transduction. Recently, analysis of p 

mutants has found that point mutations in a sequence of polar amino acids in the C- 

terminus of p can abrogate anti-Ig antibody-induced signalling without affecting Ig-o/Ig- 

p binding (24). This region was predicted, using the algorithm of Klein et al. (28), to lie 

in the 11 residue cytoplasmic domain of m and therefore to be capable of interaction with 

cytoplasmic effector proteins. Thus, sig may couple to a signal transducer(s) through 

dhect interaction, as well as indirectly through the Ig-o/Ig-p heterodimer (24, 34).

1 .3 .2  Signalling via the B cell antigen receptor.

One of the most immediate events following the ligation of B cell antigen 

receptors is the activation of mulitple protein tyrosine kinases (PTK). These include 

members of the Src family: Fyn, Lyn, Blk and Lck, and the more distantly related kinase, 

Syk (24, 25, 38-42). Although there is some debate as to the precise sequence of 

activation of these PTKs, recent kinetic studies have indicated that, following ligation of 

the BCR, increased activity of Src family members Blk, Lyn and Fyn precedes that of 

Syk, suggesting that the activation of Src kinases may initiate BCR signal propagation
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Figure 5. The B cell antigen receptor. Surface immunoglobulin is composed of a 

homodimer, each component consisting of a |ii heavy chain and a light chain (X or k). sig 

associates with a disulphide-linked hertodimer composed of Ig-a and Ig-p.
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(43), These Src-related kinases associate with the BCR in unstimulated cells via 

interaction of their N-terminal domains with nonphosphorylated Ig-a, One of the first 

events to occur following BCR ligation is the tyrosine phosphorylation of ITAM motifs 

which leads to a dramatic increase in the binding and activity of Src-related PTKs (24, 

25, 34, 36). This is associated with a reorientation of the kinases and is mediated via the 

interactions of their Src homology domain 2 (SH2) regions with the phosphorylated 

tyrosine residues of the ITAM motif. Further evidence for the involvement of Src 

tyrosine kinases, rather than Syk, in the initiation of BCR signal transduction includes:

i) crosslinking of the antigen receptors on T cells, which may prove analogous to 

stimulation via the BCR, induced the activation of Src family PTKs more rapidly 

than syk or ZAP-70 (a related PTK) (44, 45).

ii) the targeted disruption of Lyn in a chicken B cell line, which express only this 

member of the Src family, results in a severe decrease in BCR signalling and a 

disruption of the tyrosine phosphorylation and activation of Syk, suggesting that 

Lyn acts upstream of Syk (46);

iii) stimulation of the BCR when it is expressed in AtT20 - a non-lymphoid B ceU 

line which expresses Lyn but not Syk, results in the normal tyrosine 

phosphorylation of Ig-a and Ig-P, but very few other signalling events, 

suggesting that Lyn will phosphorylate ITAM motifs, but that an additional 

component, possibly Syk, is required for the transduction of downstream signals 

(47).

One model for the sequential activation of PTKs following BCR ligation, 

proposed by DeFranco (1995) (26), suggests that the phosphorylation of the ITAM 

motifs by Src kinases such as Lyn or Fyn results in the binding of Syk, which is already 

associated with the resting receptor complex, to the phosphorylated ITAM motifs (via its
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two SH2 domains). Src kinases, which are also recruited to the phosphorylated ITAM 

motifs, then phosphoiylate and activate Syk, which in turn tyrosine phosphorylates 

downstream target proteins. The association of Syk with the resting receptor complex has 

been demonstrated using immunoprécipitation of sig. It was also found that if the 

receptor complex was stripped of Ig-a and Ig-p using a nonionic detergent (eg. NP-40) 

then Syk remained associated with sig, indicating that Syk associates with this 

component of the resting BCR, possibly via the polar region in the cytoplasmic tail of pm 

(24, 38) (Syk lacks both hydrophobic sequences and a myristoylation site, indicating that 

it probably cannot associate independently with the plasma membrane or with the 

transmembrane portion of sig). Recent studies have sugggested that tyrosine kinases, 

such as Srcs and Syk, recognise substrate peptides differentially and hence are likely to 

recruit different effector molecules. Each PTK could therefore activate distinct 

downstream pathways, and it is possible that the relative levels of the various PTKs 

could dictate the responses of B cells to BCR ligation, possibly in a maturation stage- 

specific manner (24).

There arc a number of signalling pathways activated downstream of PTK activity 

following ligation of the BCR. One of the these involves the tyrosine phosphorylation 

and activation of PtdInsP2 -specific PLC-y, which appears to require Syk in cooperation

with Lyn (24, 34). However, G-protein antagonist (GDPpS) and reconstitution studies 

indicate that this regulation is additionally and proximally regulated by a pertussis toxin- 

sensitive G protein(s) (reviewed by Harnett & Rigley, 1992) (48). The precise 

mechanism of PLC-y activation, and the respective roles of PTK activities and 

heterotrimeric G proteins, remains unclear. The PLC-y-mediated hydrolysis of PtdInsP2  

results in the generation of inositol trisphosphate (IP3 ) and diacylglycerol (DAG). IP3 

mobilises intracellular calcium stores, resulting in a rise in the concentration of Ca^+ in 

the cytosol and activation of calcium-calmodulin kinase II (CamKH). There is evidence to 

suggest that CamKII phosphorylates the Ets-1 DNA binding protein (24), possibly 

modifying its transcription regulating activity. DAG is an activator of various protein



kinase C (PKC) isoforms. The PKC isoforms which are expressed in B cells include a , 

p, 6 , and ri of which a , p, and Ô are DAG regulated (49). PKC has been found to 

modify the activity of the transcription factor AP I, which is implicated in the early 

response of lymphocytes to activation through the antigen receptor (50).

Another cytoplasmic signalling pathway activated by BCR ligation involves 

phosphatidylinositol 3-kinase, which phosphorylates the 3 position on the inositol ring of 

inositol phosholipids (reviewed by Cantley, 1991) (51). It has been demonstrated that 

ligation of the BCR leads to the tyrosine phosphorylation and subsequent activation of 

PI3-K, and to an increase in its association with Lyn (52). One of the products of PI3-K, 

PtdlnsP^, activates PKCÇ, a PKC isoform which is not regulated by DAG. The 

activation of PKC^ leads to phosphorylation and inactivation of IkB which regulates the 

activity of the transcription factor NFkB (53).

Finally, BCR ligation is followed by activation of the low molecular weight G 

protein p2 H^s within 1-2 min (54). Ras activation appears to be regulated not only by the 

ubiquitous Grb2-Sos system, but also by Vav, a haemotopoietic GTP-exchange factor 

which is rapidly tyrosine phosphorylated, and presumably activated, following ligation of 

the BCR (24, 55). Ras activity is also regulated by Ras GTPase activating protein (GAP) 

which is also rapidly phosphorylated following sig crosslinking (56). Ras activation 

leads to modulation of c-raf activity and initiation of the sequential phosphorylation of 

mitogen-activated protein (MAP)-kinase kinase, and MAP-kinase (57,58). This pathway 

has been implicated in the regulation of a variety of cellular responses in many cell types 

by its targeting of protein kinases (eg. ribosomal S6  kinase), other signal transducers (eg. 

phospholipase A^ (PLA2 )) and regulators of gene expression such as c-jun, c-fos, and c-

myc, which have been implicated in the control of mitogenesis, apoptosis and 

differentiation in a number of cell types.
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Figure 6. Signal transduction from the B cell antigen receptor.
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1 .4  Coreceptors and the modulation of BCR signalling.

The biological consequences of modulation of B cell activation by T cell-derived 

stimuli was discussed in section 1.2.2.2. Here, the signalling mechanisms initiated and 

modulated by these stimuli and B cell counterstructures are described.

1. 4 .1  The role of CD22 in BCR signalling.

CD22 is a B cell-restricted glycoprotein of Mr 135 kDa, which has been 

impUcated as an intrinsic component of the BCR (22): only CD22+ B cells are capable of 

signalling through the antigen receptor and many studies have demonstrated the co- 

immunoprecipitation of sig and CD22. Moreover, crosslinking of sig induces the rapid 

tyrosine phosphorylation of CD22, which contains a number of YXXL sequences similar 

to ITAM motifs (24,59, 60). Furthermore, ligation of CD22 enhances and lowers the 

threshold of sig-mediated signalling. However, CD22 does not cocap with sig and only 

1-2% of the available CD22 co-immunoprecipitates with the BCR, suggesting CD22 may 

also have BCR-independent signalling functions. CD22 is therefore probably better 

described as a co-receptor for the BCR. Although the precise details of how CD22 

signalling modulates BCR responses are unclear, tyrosine phosphorylation of CD22 has 

been observed to induce recruitment of PI-3-K, Lyn, Syk, PLC-y, and p i20. p l20  has 

not yet been identified, but it is found in association with Syk and PLC-y, and may 

therefore serve as a "bridge" for BCR-CD22 crosstalk (23, 62). CD22 has been identified 

as a lectin, which binds glycoconjugates containing a 2 ,6 -linked sialic acid on 

lymphocytes. The sIg-mediated tyrosine phosphorylation of CD22 also induces the 

recruitment and activation of SHP (protein tyrosine phosphatase (PTP)-IC) which 

suppresses signalling via sig (63). Furthermore, the ligation of CD22 to prevent its 

coaggregation with sig, as may occur when B cells are in a lymphoid environment, 

lowers by 100-fold the threshold at which sig activates the B cell. Thus, CD22 may act 

as a represser of B cell activation, which is alleviated following interaction with a2,6- 

linked sialic acid on T cells, generating a bias for the sig-mediated activation of B cells in 

secondary lymphoid organs (63).
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1 .4 .2  The role of CD19/ CD21 in augmenting B cell stimulation via the 

BCR.

The CD19/CD21 complex is a multimeric receptor consisting of CD 19, CD21, 

TAPA and Leul3, and its ligation can reduce the threshold of sig-mediated B cell 

activation by up to two orders of magnitude (20, 21, 24, 64). CD21, which is the 

complement receptor 2 (CR2), is a 140 kDa protein consisting of an extracellular domain 

comprising 15 short consensus repeats, a single transmembrane spanning domain, and a 

34 amino acid cytoplasmic tail. CD21 is also a receptor for iC3b, C3dg, CD23, IFN-a 

and EB V, suggesting that this complex may sense immune complexes bound to Ag or 

cells expressing CD23. Thus, concomitant crosslinking of the BCR by Ag, and CD21 by 

iC3b bound to the Ab in an immune complex, will lead to enhanced activation of B cells 

through the antigen receptor (24). This co-crosslinking could serve to inform the B cell 

that the antigen being bound via its sig has already elicited an humoral immune response, 

in the form of secreted Ab. CD21 itself does not appear to transduce signals directly, and 

this function is thought to be carried out by two other components of the complex: CD 19 

and TAPA (24, 65, 6 6 ). CD19 is a 95 kDa glycoprotein of the Ig superfamily, and has a 

cytoplasmic domain of 243 amino acids; TAPA (CD81) is a 20 kDa serpentine protein 

containing 4 transmembrane spanning domains. CD 19 contains nine tyrosine residues 

within its cytoplasmic domain, six of which are flanked by acidic residues, suggesting 

that they are likely to be tyrosine kinase phosphorylation sites (24). Several of these 

potential phosphorylation sites are characteristic of binding sites for the SH2 domains of 

cytoplasmic signal transducers. Indeed, the likely importance of these sites is 

demonstrated by the fact that CD 19 is highly tyrosine phosphorylated following sig 

ligation, facilitating recruitment and possibly activation of the Src-PTKs Lyn and Yes, as 

well as PI-3-K and GAP. Fyn and PLC-y can also associate with CD 19, although this 

may not be direct, as CD 19 does not contain consensus binding sites for either effector 

(20). Although these findings highlight the role of BCR-CD19/CD22 crosstalk, the 

signalling capacity of CD 19 is not dependent on the co-expression of sig, and ligation of 

CD 19 induces signals such as tyrosine phosphorylation and calcium mobilisation in the
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absence of BCR crosslinking (20). Moreover, CD19 is functionally active on B cell 

precursors which lack cell surface expression of sig, and it is tyrosine phosphorylated 

following ligation of CD40 or CD72.

In contrast to the role for CD19/CD22 in the amphfication of signals via the 

antigen receptor, ligation of this complex prior to sig-ligation abrogates signalling via the 

BCR, which could be due to the desensitisation of sig-coupled signals (67). 

Furthermore, this negative signalling does not appear to be mediated by the CD 19 

cytoplasmic tail, but via its transmembrane domain, which is important for interactions 

with TAPA. These findings are consistent with a role for TAPA in mediating negative 

signals which was suggested by the fact that TAPA was first identified as the target of an 

anti-proliferative antibody, TAPA-1 (20).

1 . 4 .3  The role of CD20 in regulation of cell cycle progression.

CD20 is a 33k Da cell surface molecule with four membrane-spanning domains as 

well as cytoplasmic N- and C-terminal domains. CD20 is expressed as a homodimer or 

homotetramer on the cell surface and generally associates with several other membrane 

proteins, possibly as a component of a multimeric receptor complex (6 8 ). The expression 

of CD20 is restricted to B cell precursors and mature B cells, and is lost following B cell 

differentiation to plasma cells. It has been suggested that CD20 is a component of a 

signalling complex involved in the regulation of B cell growth. Transfection studies have 

demonstrated that CD20 forms a calcium channel, which can be regulated by PKC and 

CamKII, and it is thought that CD20 may modulate BCR-mediated cell cycle progression

I

by altering calcium-dependent homeostasis. Ligation of CD20 can also induce activation 

of ser/thr and tyr-kinases, possibly indicating other intrinsic functions for this protein, or

the activation of these kinases following calcium mobilisation. Thus, CD20 may play an
■■

important role in the modulation of BCR-mediated B cell activation (6 8 ).
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1 . 4 .4  The roïe of CD45 in co-ordinating tyrosine phosphorylation in B 

cell activation.

CD45 is the major lymphocyte membrane tyrosine phosphatase, and some 

evidence suggests that it may be a component of the BCR complex (62). CD45 

expression is required for full BCR signalling, and a number of proteins, incuding Ig- 

ot/Ig“P, CD19/CD21 and CD22, are substrates for this phosphatase. Moreover, B cells 

purified from CD45 knockout mice were not stimulated to proliferate following 

incubation with a mitogenic concentration of anti-Ig (24,69). These findings indicate that 

a pool of nonphosphorylated effector molecules is required for the transduction of signals 

following stimulation via the BCR. In contrast, prior ligation of CD45, which could 

inactivate this protein phosphatase, abrogates sig signalling, suggesting that CD45 may 

also be involved in positive signalling. Indeed, recent evidence has shown that CD45 

dephosphoylates Lyn kinase (at a C-terminal tyrosine), inducing its activation. Thus, 

CD45 may be involved in both positive and negative regulation of BCR-signalling (62).

1 . 4 .5  MHC class II molecules in T cell-dependent B cell activation.

As discussed previously in section 1.2.2.2, the crosslinking of MHC class II 

molecules following cognate recognition of bound antigen fragments by the antigen 

receptors on CD4+ T cells, plays a role in the T cell-dependent activation of B cells, and 

augments the activation of B cells induced by sIg crosslinking and T cell-derived 

cytokines such as IL-4. MHC class H molecules have been shown to be differentially 

coupled to different intracellular signals depending on the activation state of the B cell 

(70, 71), Thus, whereas the crosslinking of MHC class II molecules on naive mature B 

cells induces the generation of cAMP, and the séquestration of PKC in a detergent- 

insoluble compartment (events which are antagonistic to B cell activation), ligation of 

class II molecules on B cells, preactivated by anti-Ig and IL-4, induces PTK-mediated 

activation of PLC-y, mobilisation of Ca^+, activation of PKC and proliferation (71,72). 

The cognate recognition of presented antigen fragments, and resultant MHC class II
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crosslinking, therefore only induces activation of B cells if they have previously received 

signals via the antigen receptor, as the result of cognate interaction with specific antigen.

1 . 4 ,6  The role of IL-4 in modulating signalling via the BCR.

IL-4 elicits various responses from a range of B cell maturation stages including i) 

sustained growth of pre-B cells, ii) the promotion of the early activation of quiescent B 

lymphocytes, iii) an increase in the expression of MHC class II molecules and low- 

affinity Fc receptors and iv) directed isotype switching in activated B cell blasts (1,73). 

Interestingly, IL-4 has been found to induce different signals in human and murine B 

lymphocytes. Thus, in human B cells the IL-4 receptor (IL-4R) is coupled to transient 

PLC activation followed by sustained generation of cAMP (74), whereas these signals 

are not oberved following stimulation of murine B cells with IL-4. However, IL-4 

stimulation of murine B cells can reduce the threshold of sig-mediated PKC activation by 

promoting its translocation to the plasma membrane (75), and the IL-4R is coupled to the 

PTK-mediated activation of PI-3-K, possibly via the novel docking protein, 4PS (76). 

Moreover, an unknown protein (Mr 42 kDa) is phosphorylated in murine membrane 

preparations in the presence of IL-4. (77,78)

The IL-4R has been cloned and identified as a multimeric HRS (haemopoietin 

receptor signalling) receptor, comprising an IL-4-specific 140 kDa glycoprotein ligand 

binding receptor and the common HRS signal transducing subunits, yc, which are shared 

by the IL-2, IL-4, IL-7, IL-9, IL-13, and IL-15 receptor complexes (79). IL-4 regulation 

of gene transcription appears to involve the Janus kinases (Jak) 1 and 3. These 

phosphorylate STATS (signal transducers and activators of transcription), such as IL- 

4NAF and STF-IL-4. The Jak-STAT pathway of HRS-mediated regulation of gene 

transcription is reviewed by Darnell, 1994 (80). In addition, the IL-4 up-regulation of 

MHC class n  expression appears to be regulated by a specific DNA binding protein, NF- 

BRE (81).
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1 . 4 .7  CD40 as a signal transducer.

As has already been discussed in sections 1.2.1 and 1.2.2.2, the ligation of CD40 

on B cells can i) drive resting cells into cycle; ii) reduce their threshold for sig signalling; 

hi) rescue germinal centre B cells (centrocytes) from apoptosis and iv) induce growth 

arrest or apoptosis in transformed cell lines and lymphomas (reviewed by Durie et al., 

1994 (82)). Some preliminary investigations have examined the molecular mechanisms 

underlying these effects. Lyn (PTK) activation appears to be important for all CD40- 

mediated signals (83); and CD40 is coupled to cAMP generation in resting B cells, and to 

PLC-y and PI-3-K in activated B cells (82). These findings suggest that this receptor may 

mediate activation state-dependent responses of B cells to T cell help.

1 .5  Signal transduction in slg-mediated growth arrest and apoptosis in 

B cells, and differences between sIgM- and sIgD-mediated signals.

Crosslinking of sig on immature B cells can induce clonal anergy or deletion.

This has been found to depend on the degree of antigen receptor crosslinking. Thus, high 

doses of antigen or crosshnking antibodies induces the loss of B cells through apoptosis, 

whereas lower doses merely induce a state of unresponsiveness (84). Immature B cells 

express only the IgM isotype of surface immunoglobulin, whereas mature B cells, which 

proliferate in response to antigen receptor crosslinking, express both sIgM and sIgD. 

Furthermore, sIgD expression is down-regulated following receptor crosslinking and 

although all classes of Ig can be expressed in a secretory form, secretory IgD is virtually 

absent from serum (85),. These observations have led to the prediction that sIgD plays a 

unique role in the differentiation and activation of mature B cells. Studies involving the 

differential crosslinking of sIgM and sIgD on immature B lymphoma cells using specific 

antibodies have supported this hypothesis: sIgM crosslinking was found to induce 

growth arrest and apoptosis, whereas sIgD crosslinking did not (86-89). These findings
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have led to a search for differential signals generated following crosslinking of sIgM and 

sIgD.

Early investigations did not identify any differences in the signals generated 

immediately following crosslinking of the antigen receptors on mature and immature B 

cells. Thus, BCR crosslinking on either mature or immature B cells was found to induce 

tyrosine phosphorylation of target proteins (90-92), the activation of PLC-y, and the 

resultant generation of DAG, IP3  and calcium influx. However, further studies found

that, whereas BCR crosslinking on mature B cells resulted in the activation of PKC 

following its recruitment to the plasma membrane, this was greatly reduced in immature 

B cells (93). Furthermore, immature B cells were found to be protected from slgM- 

mediated growth arrest and apoptosis by stimulation with PMA, a PKC activator (94), 

indicating that PKC activation is antagonistic to the antigen-driven negative selection of 

lymphocytes.

Initial findings therefore suggested that the differential responses of immature and 

mature B cells to antigen receptor crosslinking could be due to “rewiring” of sig coupling 

to downstream signalling elements in maturation stage-specific manner, rather than the 

generation of different immediate signals following sig crosslinking. However, recent 

studies conducted by Reth and coworkers on immature murine B lymphoma cells have 

identified proteins specifically associated with sIgM or sIgD (85, 95), perhaps providing 

a basis for the differential responses to sIgM and sIgD crosslinking. It was found that the 

sIgM antigen receptors of B cells are associated with three proteins of Mr 32, 37, and 41 

kDa, which were termed BAP (BCR associated protein) 32, 37, and 41, respectively 

(95). These proteins were not found to be associated with sIgD. Amino acid sequencing 

identified BAP 32 as prohibitin, a finding which was corroborated by western blotting, 

and also demonstrated a high degree of sequence homology between BAP 37 and BAP 

32. Prohibitin has been strongly implicated in the inhibition of proliferation, which would 

be consistent with a role in sIgM-mediated signalling in immature B cells. Both BAP 

32/prohibitin and BAP 37 were found to possess ser/ thr kinase phosphorylation sites 

and a motif, NPXY, close to the carboxy terminus. This motif is often found in the
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cyoplasmic domains of transmembrane proteins and is required for the coated pit- 

mediated internalization of the low density lipoprotein receptor, suggesting that BAP 32 

and BAP 37 may be involved in the internalization of sIgM-BCR. BAP 42, only low 

levels of which were associated with sIgM-BCR, was not further characterised.

Two novel transmembrane proteins which associate preferentially with sIgD in B 

cells: BAP 29 and BAP 31 have also recently been identified (85). Although these 

proteins had no significant sequence homology with BAP 32 and BAP 37, they were 

predicted to have a similar structure. Interestingly, studies using the expression of sIgM 

chimeras in pre-B cells, and sIgD chimeras in myeloma cells, found that the specificity of 

sIgM interaction with BAP 32/prohibitin and BAP 37, or sIgD interaction with BAP 29 

and BAP 31, was determined by the transmembrane domain of each sig isotype. Both 

sIgM and sIgD have also been found to associate with the Ig-ot/Ig-p heterodimer via their 

transmembrane domains. These findings are therefore consistent with the proposal by 

Reth that the a-helix, which constitutes the transmembrane domain of sIgM or sIgD, has 

two faces: one which is conserved between the two sig isotypes and is responsible for 

the interaction with Ig-0(/Ig-p; and the other face which is class-specific and is 

responsible for the interaction of sIgM or sIgD with specific effector molecules such as 

BAPs. Recent reports have also demonstrated considerable differences between the 

tyrosine phosphorylation events following sIgM and sIgD crosslinking. Crosslinking of 

sig on sIgD-expressing B cells was found to induce much more prolonged protein 

tyrosine phosphorylation than that observed following sig crosslinking on sIgM+ B cells 

(both sIgM and sIgD were of identical antigen specificity, on a transfected B cell line of 

mature phenotype) (96). Thus, anti-IgM-mediated protein tyrosine phosphorylation was 

found to be maximal at 1 min following receptor crosslinking, and declined after 60 min; 

whereas anti-IgD-mediated protein tyrosine phosphorylation was found to be maximal at 

60 min following receptor crosslinking, and declined after 240 min (96). Further 

investigation, employing chimeric sig molecules, demonstrated that the membrane- 

proximal and/or transmembrane regions of sIgD were required for induction of sustained 

protein tyrosine phosphorylation. This finding suggested that the difference in signals

I
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generated via sIgM and sIgD could be dependent on the direct interaction of the two sig 

isotypes with different effector molecules such as BAPs.

Recently, several investigators have reported significant differences in a number 

of signalling pathways activated following antigen receptor crosslinking on mature and 

immature lymphocytes. Many investigators have studied B lymphomas of immature 

phenotype, such as W EHI231 and CH31 which undergo growth arrest and apoptosis in 

response to sig crosslinking, as a model for antigen-mediated negative selection of 

immature B cells. The study of BCR-mediated signalUng in these cells has provided 

considerable insight into the molecular events underlying sIgM-mediated growth arrest 

and apoptosis.

Pharmacological studies employing specific inhibitors of protein tyrosine kinases, 

such as tyrphostin and genistein, have indicated that sIgM-mediated growth arrest and 

apoptosis of immature B cells requires protein tyrosine kinase activity. Further studies 

have investigated the roles of specific PTK activities. Firstly, the ability of CH31 B- 

lymphoma clones to undergo anti-IgM-induced apoptosis correlated with the activation of 

blk kinase (97). Moreover, antisense oligonucleotides specific for blk were able to block 

sIgM-mediated cell cycle arrest and apoptosis in these cells (91). Another study, using 

Fyn-specific antisense oligonucleotides in the BCXj lymphoma, has implicated a role for

Fyn in sIgM-mediated growth arrest, but not apoptosis (92).Secondly, a pl60 protein, 

which co-precipitates with kinase activity(ies) acting on serine, threonine and tyrosine 

residues, has been isolated from B cells. Crosslinking of the BCR on BAL17 human 

mature B lymphocytes was found to induce an increase in the kinase activity associated 

with p i 60 (98). In contrast, crosslinking of sig on neonatal murine splenic B cells or 

WEHI 231 immature B cells, was found to induce the transient loss of kinase activity 

associated with pl60. Moreover, the reduction in pl60-associated kinase activity was 

found to be dependent on an increase in tyrosine phosphatase activity induced by the 

crosslinking of sig on WEHI 231 cells. Finally, another investigation analysed the 

signalling events following crosslinking of the antigen receptors on a WEHI 231 subline 

resistant to anti-IgM-mediated growth arrest and apoptosis (99). It was found that the
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expression of p75HSl, a substrate for p53/p56^y^, was reduced in the resistant WEHI 

231 cells, possibly indicating a role for this protein (and for lyn) in sIgM-mediated 

apoptosis.

WEHI 231 sublines have also been used to investigate the role of lipid signals in 

the regulation of apoptosis in B lymphocytes. One lipid second messenger-generating 

pathway imphcated in the regulation of apoptosis in a number of cell types involves the 

hydrolysis of sphingomyelin by sphingomyelinase and the resultant release of ceramide. 

This pathway has been found to be activated following the crosslinking of sIgM on 

WEHI 231 cells (100). The level of ceramide in cells is also regulated by the hydrolytic 

enzyme ceramidase. An inhibitor of this enzyme, rt-oleoyl-ethanolamine, was used to 

select WEHI 231 sublines which were low ceramide producers and resistant to anti-Ig. 

Thus, WEHI 231 cells resistant to «-oleoyl-ethanolamine did not produce ceramide in 

response to sig crosslinking and did not undergo apoptosis. This strongly implicates the 

ceramide pathway in the control of apoptosis in immature lymphocytes, and this is 

discussed further in chapter 4.

Studies have also strongly suggested a role for the mobilisation of Ca^+ in the 

induction of apoptosis in human immature B cells (101). Incubation of group 1 Burkitt's 

lymphoma cells or B 104 lymphoma cells with anti-Ig or ionomycin (a calcium ionophore) 

was found to induce apoptosis in these cells. This indicated that stimulated calcium influx 

could be involved in the sIg-mediated induction of apoptosis. Furthermore, blockade of 

calcineurin, a ser/thr phosphoprotein phosphatase, or inhibition of phosphatase 2B by 

cyclosporin A, was found to protect these immature B cells against Ca^'^-mediated 

apoptosis. These findings implicate sustained mobilisation of calcium and the Ca^+- 

dependent activation of downstream effectors in the control of apoptosis in immature B 

cells.

The above investigations have therefore demonstrated that a number of 

intracellular signals, including tyrosine phosphorylation, calcium mobilisation and 

ceramide production, are required for sIgM-mediated growth arrest and apoptosis in B 

cells. Several of these signals were found to be qualitatively and quantitatively different in
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cells which undergo apoptosis in response to sig crosslinking and those which do not. 

Furthermore, studies on the association of sIgM and sIgD with potential signal 

transducers have suggested a possible molecular basis for the generation of different 

signal via these two sig isotypes.

Several studies have suggested a role for the transcription factor Myc in the 

downstream regulation of growth arrest and apoptosis in immature B lymphomas. 

Crosslinking of sIgM on WEHI 231 cells has been found to induce a transient increase in 

c-myc transcription, followed by a drop to below detectable levels of c-myc message 

within a few hours (102). Interestingly, stimulation of sIgM+sIgD+ transfected immature 

B lymphomas with anti-IgM Ab was found to induce a similar pattern of changes in c- 

myc expression (103). In contrast, although anti-IgD Ab also induced a transient increase 

in c-myc message levels, the decline in Myc levels did not fall below basal levels. 

Moreover, whilst anti-IgM antibodies induced apoptosis in these cells, anti-IgD 

antibodies did not (89,103, 104). These findings indicate that it is not likely to be the 

transient increase, but rather the dramatic suppression to below basal levels of Myc which 

may possibly lead to the induction of apoptosis. Indeed, addition of antisense 

oligonucleotides against c-myc which were found to stabilize Myc levels, rather than 

abolish expression, prevented the induction of growth arrest and apoptosis induced by 

anti-IgM Ab, suggesting that maintenance or elevation of Myc levels protects against 

induction of apoptosis.

WEHI 231 and CH31 immature B lymphomas are constitutively proliferating cell 

lines. Analysis of the cell cycle-dependence of the induction of growth arrest and 

apoptosis conducted by Scott and coworkers has provided further insight into the 

molecular mechanisms underlying these processes (2 , 87, 88,105). sIgM-mcdiated 

growth arrest and apoptosis in these cells only occurs when the cells are in early Gj

phase (2). Thus, treatment of CH31 or WEHI 231 cells with anti-IgM antibodies was 

found to lead to a loss of cells in S phase and an accumulation of cells in G j phase, prior 

to apoptosis (2, 87, 8 8 , 105). This indicates that crosslinking of sIgM in G% phase 

prevents the further cell cycle progression of immature B lymphoma cells, and initiates
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the sequence of events leading to apoptosis. These findings therefore suggested that 

cellular effectors whose activity is regulated in a cell cycle-dependent manner may be 

involved in the sIgM-mediated induction of apoptosis in B cells. This possibility has been 

supported by investigation of the role of the retinoblastoma gene product, pRB, in the 

regulation of apoptosis in B cells. pRB is a nuclear phosphoprotein whose 

phosphorylation state is regulated in a cell cycle-dependent manner. The 

hypophosphorylated form of pRB suppresses growth and is found in the G% phase of the

cell cycle, when it is tightly associated with the nuclear membrane (106). The 

hypophosphorylated form of pRB binds to the transcription factor E2F, thereby 

inhibiting transcription of cellular genes containing E2F binding sites, and preventing S- 

phase entry (107). Phosphorylation of pRB on ser/thr residues, probably via cdc2 or 

related kinases, then occurs in mid-late G% (108, 109). The phosphorylated form of pRB

persists until mitosis when it is dephosphorylated to the growth suppressive form (1 1 0 ). 

A recent report established that pRB phosphorylation is inhibited in B lymphomas 

following addition of anti-IgM in early G j, but not at later points in the cell cycle (111).

This finding clearly implicates pRB in the mediation of sIgM-mediated growth arrest and 

possibly apoptosis.

1 .5 .1  Gene expression in slgM-mediated apoptosis in B ceils,

A number of genes have been identified which are expressed in various cell types, 

following apoptotic stimulation. These genes were identified using subtractive 

hybridisation and include RP-8, PD-1, bad, bax, nur77, /CE-related genes and p53 (112, 

113). Indeed, the appearance of nur77 message has been detected in WEHI 231 cells, 

following treatment with anti-IgM, indicating that the transcription (and presumably 

translation of mRNA) of specific genes is induced by apoptotic stimuli (113). In contrast, 

Ishida et al. found that RNA synthesis was not required for apoptosis in WEHI 231 

(114), although it was required for T cell apoptosis. This finding suggests that message, 

and possibly the proteins, necessary for the induction of apoptosis are already present in

35



WEHI 231 cells. This is not necessarily imcompatable with the finding that nur77 

transcription is activated following sIgM crosslinking, as expression of this gene may not 

be required for apoptosis in WEHI 231 cells.

1 .5 .2  Protection of B cells from sIgM-mediated apoptosis.

It has been found that a number of stimuli inhibit the anti-IgM-induced apoptosis 

of immature B cells. These include T cell-derived stimuli (115): i) contact with Tjj2

membranes (3, 101,102), ii) EL-4 or IL-5 (3), and iii) CD40 crosslinking have been 

reported to inhibit anti-IgM-induced growth arrest and apoptosis of CH31 and WEHI 231 

ceUs (116-119). Also, PMA has been found to inhibit induced apoptosis in these cells 

(94), possibly indicating a role for PKC activation in the protection of B cells from 

apoptosis by specific stimuli. Moreover, EPS, a polyclonal B cell activator, has been 

found to markedly inhibit the induction of apoptosis in murine B cells (120).

A novel family of proteins, which protect B cells from apoptosis, has recently 

been identified. The first member of this family to be isolated was Bcl-2 (reviewed by 

Nunez et a., 1994 (121)), an integral membrane protein that has been located to the outer 

mitochondrial membrane, perinuclear membrane and smooth endoplasmic reticulum 

(ER). The pattern of Bcl-2 expression by B cells appears to be tightly regulated (121). 

Bcl-2 is highly expressed at the earliest stages of B cell development (pro-B cells) and in 

mature B cells. In contrast, Bcl-2 expression is downregulated at the pre-B/IgM+IgD" 

stages and in germinal centre B cells. Thus, B cells express Bcl-2 at stages of maturation 

where they are relatively resistant to apoptosis, and downregulate Bcl-2 expression at 

stages where they are prone to apoptosis. Furthermore, the susceptibility to 

glucocorticoid-induced cell death in B cells has been found to correlate with the level of 

Bcl-2 expression. This suggests that the maturation stage-specific expression of Bcl-2 

may play a role m modulating the susceptibiUty of B cells to apoptosis and facilitate the 

appropriate selection events during B lymphocyte development. This hypothesis has been 

supported by the finding that Bcl-2 expression is upregulated in GC B cells following the
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crosslinking of sig and ligation of CD40 (122). However, studies in sIgM+sIgD" 

immature B lymphocytes and lymphomas have found that overexpression of Bcl-2 does 

not protect these cells from anti-IgM-induced apoptosis(123,124), suggesting that sXgM- 

mediated apoptosis may involve signalling through a pathway not regulated by Bcl-2. 

However, the activity of Bcl-2 (which is an anti-oxidant) is regulated by an inhibitor, 

bax, and it is therefore possible that high levels of bax expression in immature B cells 

may prevent the inhibition of anti-IgM-induced apoptosis (125).

Further investigation has recently identified another gene involved in the 

regulation of apoptosis: Bcl-x (121). This gene has been found to have a high degree of 

sequence homology with Bcl-2, and gives rise to two gene products by alternative 

mRNA splicing: Bcl-xp, and Bcl-Xg, the long and short forms of Bcl-x, respectively. Bcl- 

XL was found to inhibit apoptosis in IL-3-dependent cells following growth factor 

deprivation. In contrast, Bcl-Xg, which differs from Bcl-x^ in that it lacks an internal

sequence of very high sequence homology to Bcl-2, has been found to facilitate 

programmed cell death, and is implicated as an inhibitor of both Bcl-2 and bcl-XL (121). 

The mechanism of this inhibition is unknown, but the sequence homology of Bcl-Xg with 

Bcl-2 and Bcl-x^suggests that it may inhibit their interaction with regulator and/or

effector molecules, possibly via some sort of competition mechanism. A recent study, 

investigating the role of Bcl-xp, in WEHI 231 immature B lymphoma (126), found that

overexpression of this protein rendered these cells refractory to anti-Ig-mediated 

apoptosis. Furthermore, CD40 crosslinking, which has been found to protect WEHI 231 

from sIgM-mediated apoptosis, was found to induce the expression of B c1 -x l in these 

cells, strongly indicating a role for B c1 -x l in the T cell-mediated protection of immature B

cells from antigen-driven apoptosis. Whde the precise mechanism(s) underlying the 

effects of Bcl-2 and Bc1-xl remains unknown, it has been postulated that these proteins

may regulate the mobilisation of calcium from intracellular stores. This would be 

consistent with the role established for these proteins in the inhibition of apoptosis, as a 

prolonged increase in cytosolic Ca^+ levels has been strongly implicated as a signal for 

the induction of apoptosis. Investigation of this possibility involved the stimulation of
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WEHI 231 cells with thapsigargin, which is an inhibitor of the Ca^+-ATPase located on 

the ER membrane, and a potent inducer of apoptosis. Ligation of CD40, or the 

overexpression of Bcl-x^, was found to protect WEHI 231 cells from thapsigargin- 

mediated apoptosis (126), This finding strongly suggests a role for the BcLxl, and 

possibly Bcl-2, in the regulation of Ca^"^ mobilisation from the ER and possibly other 

intracellular stores.

These findings indicate that the regulation of apoptosis in B cells is a complex 

process, involving a number of stimuli which can induce or abrogate the induction of 

growth arrest and/or cell death, and integrating specific intracellular signals and molecular 

events and the regulated expression of specific genes.

1 .6  Investigation of the role of lipid signalling in lymphocyte

activation, maturation and cell death.

Many of the downstream signals involved in apoptosis such as Bcl-x and pRb are 

currently being elucidated in other laboratories. However, the signalling elements 

responsible for transducing early receptor events are not. Investigation of signals 

generated via B cell antigen receptors has found that sig crosslinking induces a much 

greater activation of PKC in mature B cells than in immature B cells. Together with the 

finding that PMA, a pharmacological activator of PKC, protects immature B cells from 

sIgM-mediated growth arrest and apoptosis (94), these results have therefore suggested 

that differential PKC activation may play a key role in the differential responses to sig 

crosslinking observed in mature and immature B cells. The mechanistic basis for the 

differential activation of PKC in mature and immature B cells is at present poorly 

understand but could lie at the level of PKC itself: for example the maturation-dependent 

expression of specific PKC isoforms (49). Alternatively, the differences observed in 

PKC activation could be due to differences in the production of PKC activating signals, 

which are usually lipid second messengers. These are typically generated by the
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Figure 7. Enzymatic hydrolysis of Phosphatidylcholine.
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stimulated hydrolysis of specific lipid species by hydrolytic enzymes, such as 

phospholipase s.

The earliest signalling events detected following B cell receptor crosslinking 

include the activation of PtdlnsP^-PLC-y and the resultant generation of I11SP3 and 

diacylglycerol (DAG), an activator of certain PKC isoforms. This pathway appears to 

similarly activated in both mature and immature B cells, suggesting that the antigen 

receptors at one (or both) of these maturation stages may be coupled to additional lipid 

signalling pathways in order to transduce differential responses. It has recently become 

apparent that other phospholipid classes besides inositol phospholipids, such as 

phosphatidylcholine (PtdCho), are hydrolysed and may give rise to DAG and other 

biologically active lipids in response to a wide range of agonists (127-130). Two 

candidate pathways for a central role in cellular responses involve the hydrolysis of 

phosphatidylcholine (or phosphatidylethanolamine) by phospholipase D (PLD) or 

phospholipase A% (PLA2 ) (127-130).. The products of the hydrolytic cleavage of 

PtdCho by these enzymes are summarised in Figure 7. PLD-catalysed PtdCho cleavage 

gives rise to phosphatidic acid (PtdCho) and choline. PtdOH is a putative second 

messenger which has been implicated in the regulation of a number of cellular processes 

such as the respiratory burst in neutrophils and mitogenesis in a number of cell types 

(127-130).It has also been found to modulate a number of intracellular signals such as 

PKC and ras activation. These functions are discussed more fully in the introduction to 

Chapter 3. The hydrolysis of PtdCho by PLA2  generates lysophosphatidylcholine (LPC) 

and fatty acid, paiticularly arachidonate. A role for LPC as an intracellular second 

messenger is not well-established, however, LPC has been shown to modulate the 

activation of PKC by DAG and may play a role in cellular differentiation(128,131, 132). 

Arachidonate has a well-established role as a precursor for eicosanoid, intercellular 

inflammatory mediators, and is strongly implicated as an intracellular second messenger 

in the regulation of signal transducing elements such as PKC and sphingomyelinase (61, 

128,133), and may be involved in the regulation of mitogenesis or apoptosis in a number
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of cell types. The occurrence and functions of stimulated PLA2  activation are discussed 

in the introduction to Chapter 4.

1 .7  Aims and objectives

The aims and objectives of this investigation were to:

i) identify PLD and PLA2  activity in B cells;

ii) determine whether either phospholipase is coupled to the antigen receptors or 

other receptors on B cells;

iii) determine whether PLD or PLA2  plays a role in the transduction of maturation 

stage-specific signals, leading to either proliferation or anergy/apoptosis.
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2 Materials and Methods

2 .1  Materials

Amersham International, 

Buckinghamshire

Amicon Ltd.,

Upper Mill, 

Stonehouse, 

Gloucester GLIO 2BJ

[5,6,8,9,11,12,14,15-^H] arachidonic acid 

(213 Ci/mmol);

myo-[^H]inositol (87 Ci/mmol); 

[9,10(n)-2H] myristic acid (49 Ci/mmol); 

[9,10(n)-^H] oleic acid (10 Ci/mmol);

[6 -^H]thymidine (5 Ci/ mmol); 

[32p]phosphoric acid (200 mCi/ mmol); 

[1-14°C] stearic acid (54 mCi/ mmol);

L- 3 -phosphatidylcholine , l ,2 ,-D l(l-^4 °C)j 

[methyl-^H]choline chloride (82 Ci/ mmol); 

(l(3)-^H)glycerol (3.1 Ci/mmol); 

Phosphoryl [methyl-14°C] choline, 

ammonium salt (56mCi/ mmol);

[ 1 ethan-1 -ol-2-amine hydrochloride (34

Ci/ mmol);

ECL wetem Blotting Reagents;

HRP-linked antibodies.

Centricon filters
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University of Glasgow, 

University Ave, 

Glasgow G12 8 QQ

Male B ALB/c mice were bred and housed in 

the animal facility and used at 4 (immauire) or 

12-16 (mature) weeks of age.

Dr. R. Callard,

Institute of Child Health, 

London

human pre-B cell lines, 207, 697 and REH

Du Pont (UK) Ltd, 

Diagnostics and Biotechnoloty 

Systems,

Wedgwood Way,

Stevenage,

Hertfordshire SGI 4QN

[9,10(n)-3H]-palmitic acid (39 Ci/mmol)

ECACC, 

Forton Down

Human B cell lines: Daudi and Ramos Human

T cell line: Jurkat

Murine B cell line: WEHI 231

Pertussis toxin
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Fisons Scientific Equipment, 

Bishops Meadow Road, 

Loughborough, 

Leicestershire LEI 1 ORG

rabbit anti-human cPLA2 peptide Ab raised 

against a C-terminal peptide (amino acids 727- 

749) coupled to KLH

Gibco,

Paisley,

Scotland,

RPMI-1640 

F-10 (HAM)

Fetal Calf Serum 

HEPES 

penicillin 

strepomycin

MEM non-essential amino acids 

glutamine

hnmunex Corp., 

51 University St., 

Seattle,

Washington 98101

Murine rIL-4

Jackson Immunoresearch 

Laboratories, inc., 

Stratech Scientific Ltd, 

Bedfordshire

Rabbit anti-human Ig Ab (F(ab')2  fragments) 

Rabbit anti-mouse Ig Ab (F(ab')2  fragments)
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Lipid products, 

Nutfield Nurseries, 

Crabhill Lane,

S. Nutfield,

Surrey RHl 5PG

phosphatidylbutanoi

Packard,

Uigersmaweg 47, 

9731 BK, 

Groningen,

The Netherlands

Ultima-Flo scintillant

Dr. R.M.E. Parkhouse 

Institute for Animal Health, 

Ash Road,

Pirbright,

Surrey GU24 ONF

anti-Thy-1 Ab (NIMR-1)

Pharmingen, 

Cambridge Bioscience, 

Cambridge,

United Kingdom

anti-CD3 Ab

HTC-labelled anti-CD4 Ab 

PE-labelled anti-CD8 a  Ab 

FITC-labelled anti-human CD 19 Ab 

PE-labelled anti-human CD3 mAh
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Pierce and Warriner,

44 Upper Northgate St., 

Chester CHI 4EF

Scottish Antibody Production 

Unit (SAPU),

Law Hospital,

Carluke,

Lanarkshire,

Scotland ML8 5ES

Sera-Lab,

Crawley Down, 

Sussex RHIO 4FF

Sigma Chemical Company, 

Poole,

Dorset,

United Kingdom

NHS-Biotin 

protein G

sheep red blood cells

Guinea Pig Complement

ammonium persulphate

arachidonate

avidin

bovine serum albumin (BS A) 

ceramide 

Dowex (8  X 100) 

ficoll-hypaque

FITC-labelled anti-mouse Ig Ab

goat anti-mouse Ig antibodies (polyvalent)
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Whatman LabSales Ltd, 

St Leonard's Rd,

20/20 Maidstone, 

KentME16 0LS

Yorkhill Children's Hospital, 

Glasgow

ionomycin

lipopolysaccharide (LPS)

pepstatin

percoll

Phorbol 12-myristate 13-acetate 

phospholipase D (from cabbage) 

phytohaemagluttinin (PHA) 

protein A-sepharose 

protein G-sepharose 

Quantum Red Streptavidin 

sphingosine 

TEMED 

trypan blue

unlabelled lipid standards 

ortliovanadate

t.Lc. plates:

LKD5F 

LKD6F 

Silica gel-60

Human tonsils

All other reagents were supphed by Fisons or BDH and were of the highest grade available.
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2 .2  Purification and Culture of Lymphocytes

2 . 2 . 1  Preparation of Murine Splenic B lymphocytes

Small, dense B cells were prepared from the spleens of 12-16 week old 

(mature;>90% slg+) or 4 week old (immature) male Balb/C mice (134, 135). Spleens were 

excised from the mice, and the cells dispersed by pressing through a gauze mesh (Sigma) 

into RPMI-1640 medium. Cell debris was removed from the suspension by centrifugation 

(30g, room temp) for 5 min. The cell suspension was then layered onto a cushion of Ficoll- 

Hypaque (3 ml) in 13 ml polystyrene tubes (3 spleens/ tube) and centrifuged (440g, room 

temp) for 15 min. Mononuclear cells were recovered from the ficoU-medium interface and 

washed twice in RPMI-1640 by centrifugation (630g, room temp) for 10 min, T cells were 

depleted by incubation with anti-Thy-1 Ab (NIMR-1) and guinea pig complement at 37°C 

for 45 min. NIMR-1 (working stock: 1 in 300 dilution of 1 ml ascites) was added at 0.1 ml/ 

spleen; lyophilised GPC was reconstituted in distilled water and added at 0.25 ml/ spleen; 

and the suspension was made up to a total volume of 3 ml/ spleen with RPMI-1640. The 

cells were then pelleted by centrifugation (630g, room temp) for 10 min, resuspended in 

RPMI-1640 and washed twice by centrifugation (630g, room temp) for 10 min. They were 

then separated by percoll gradient centrifugation. Percoll (100%) was prepared by the 

addition of 2ml x 10 strength PBS to 18 ml percoll, and dilutions (85%, 65%, 50%) were 

prepared by addition of 1 x PBS. These were then layered (2.5 ml aliquots) in 13 ml 

polystyrene tubes to form a discontinuous gradient onto which the B cells were loaded 

(approx. 3 spleens/ tube in 2 ml medium), and the tubes were centrifuged (1230g, room 

temp) for 20 min. High-density "resting" B cells were harvested from the 85%-65% 

interface and low-density "in vivo" activated B cells from the 65%-50% interface. Cells were 

then resuspended in RPMI-1640, washed twice by centrifugation (630g, room temp) for 10 

min, and then once by centrifugation (270g, room temp) for 10 min. During the final wash 

an ahquot (100 pi) of cells was removed, an equal volume of trypan blue (0.4%) was added 

and the cells were counted using an haemocytometer.
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2 . 2 .2  Preparation of Murine Thymocytes

4 week old male Balb/c mice were sacrificed by sagital overdose, and thymic tissue 

was removed from the mice and pressed through steel gauze to obtain a single cell 

suspension in RPMI-1640. The suspension was then layered onto Ficoll-Hypaque cushions 

(3 ml) in 13 ml polystyrene tubes (3 thymi/ tube) and centrifuged (440g, room temp) for 15 

min. Thymocytes were recovered from the interface, washed twice in RPMI-1640 by 

centrifugation (630g, room temp) for 10 min, and then separated on a discontinuous percoll 

gradient (gradient 85%-65%-50%) as described above in section 2.2.1. Thymocytes were 

recovered from the 85%-65% interface and washed three times in RPMI-1640. During the 

final wash the cells were counted using an haemocytometer (136).

2 .2 .3  Preparation of Murine Splenocyte PHA-blasts

Spleens were removed from mice as described in section 2.2.1, and the cells 

dispersed and depleted of erythrocytes by centrifugation through Ficoll-Hypaque. The 

splenocytes recovered were then resuspended (10^/ ml) in RPMI-1640 supplemented with 

glutamine (2 pM), 2-mercaptoethanol (50 pM), penicillin (100 U/ml), streptomycin (100 

pg/ml) and 10% FCS, and cultured in the presence of PHA (50 pg/ml) overnight at 37°C in 

a 5% (v/v) CO2  atmosphere at 95% humidity. Following incubation the cells were separated

on a discontinuous percoll gradient of 85%-50% as described above. Cells were recovered 

from the 85%-50% interface, resuspended in RPMI-1640 and washed twice by 

centrifugation (630g, room temp) for 10 min. They were counted as described above using 

an haemocytometer during the second wash. The purified splenocyte-blasts were then 

resuspended and fixed by incubation with paraformaldehyde (0.4%, final concentration) for 

5 min at room temperature. The reaction was quenched by the addition of 2 volumes of L- 

lysine (0.2M) and the fixed splenocyte-blasts were pelleted by centrifugation (440g, room 

temp) for 10 min. They were then washed twice by centrifugation and resuspended (10^/ ml) 

in the appropriate medium.
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2 . 2 . 4  Preparation of Human Tonsillar B Lymphocytes

Human tonsils were obtained from Yorkhill Childrens' Hospital, Glasgow. Each 

tonsil was rinsed twice and diced in 15 ml RPMI-1640 in a petri dish (137). The diced lumps 

were then pressed through gauze using a syringe plunger. The spill was transferred to a 50 

ml Falcon tube and the debris allowed to settle out under gravity for about 5 min. The 

supernatant was then transferred to a fresh tube and the cells pelleted by centrifugation 

(440g, room temp) for 10 min. Cells were resuspended in RPMI-1640 (20 ml/ tonsil), then 

layered onto cushions of Ficoll-Hypaque (3 ml) and centrifuged (440g, room temp) for 15 

min. Lymphocytes were removed from the interface and washed twice in RPMI-1640. 

Human tonsillar B cells were separated from tonsillar T cells using a technique known as 

"rosetting". This involved incubation of the tonsillar cells with AET-coated sheep red blood 

cells to which human T cells adhere, forming a "rosette" or clump. Rossetted T cells were 

then depleted by centrifugation. In brief, cells were counted using an haemocytometer, 

resuspended (at 10^/ ml) in RPMI-1640 and 10% volume of AET-SRBC (prepared as 

described below in section 2.2.4.1) was added. The suspension was pelleted (120g, room 

temp) for 5 min and 1 ml FCS was pipetted gently onto the pellet. This was incubated on ice 

for 30 min. The pellet was then resuspended by gentle rocking and the entire suspension was 

transferred to a 10 ml cushion of Ficoll, before centrifugation (440g, room temp) for 20 min 

at room temperature. B cells were harvested from the interface and washed three times in 

RPMI-1640. (T cells could be recovered from the rosette by the addition of a few drops of 

distilled water to lyse the red blood cells, followed by rapid washing in media). They were 

then layered onto a three-step percoll gradient (85%-65%-50%) and spun (1230g, room 

temp) for 20 min. The cells were washed twice in RPMI-1640 and resuspended in RPMI- 

1640 plus 10% FCS. B cells were counted during the final wash (137).

2 . 2 . 4 . 1  AET treatment of sheep red blood cells

Sheep erythrocytes were coated with 2-aminoethylisothiouronium bromide (AET). 5 

ml of sheep erythrocytes (SAPU) were centrifuged (440g, room temp) for 10 min, then 

resuspended in 10 ml RPMI-1640 and washed twice again. At the same time 102 mg of AET
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was dissolved in 10 ml distilled H2 O, adjusted to pH 9.0 with 5M NaOH and filter 

sterilised. AET solution (4 ml) was added to the erythrocytes and the suspension was 

incubated at 37°C for 20 min. The cells were then washed 5 times in RPMI-1640 by 

centrifugation (630g, room temp) for 10 min and resuspended in a final volume of 9 ml. The 

treated SRBCs could be stored for up to a week at 4°C, and before use they were diluted 

1:5.

2 .2 .5  Cell C ultu re

The human B cell lines Ramos, Daudi and EDR, human tonsillar B cells, and Jurkat 

human T cells were cultured (2 x 10^ - 10^/ml) in RPMI-1640 supplemented with glutamine 

(2 mM), penicillin (100 U/ml), streptomycin (100 |ig/ml) and 10% PCS. W EHI231 murine 

B cells (2 X 10^ -10^/ ml), murine splenic B cells (10^/ ml) and murine thymocytes (lOV 

ml) were cultured in RPMI-1640 supplemented with glutamine (2 mM), 2-mercaptoethanol 

(50 jiM), penicillin (100 U/ml), streptomycin (100 fig/ml) and 8 % PCS. All were incubated 

at 37°C in 5% humidified CO2 .

2 . 2 , 6  M easurem ent of DNA synthesis.

Por measurement of DNA synthesis, murine splenic B cells (2 x 10^/ well), WEHI 231 

cells (10^/ well) or EDR cells (3 x 10^/ well) were cultured in triplicate in round bottom 

microtitre plates in RPMI-1640 medium supplemented with glutamine (2 mM), sodium 

pyruvate (1 mM), non-essential amino acids, 2-mercaptoethanol (50 jxM), penicillin (100 

U/ml), streptomycin (100 |ig/ml) and 5% PCS, in the presence of the appropriate agonist in 

a total volume of 200p,l. Cells were cultured at 37°C in a 5% (v/v) CO2  atmosphere at 95%

humidity for 24, 48 or 72 hours. [^H]thymidine (0.5 (iCi/ well) was added 4 hours prior to 

harvesting of the cells with an automated cell harvester (Skatron). Incorporated label was 

estimated by liquid scintillation counting (135).
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2 .3  Phospholipid Signalling Assays

2 .3 .1  Analysis of Phospholipid Labelling by [^H]fatty acids

Radiolabelling of cellular phospholipids can be achieved by the incubation of cells with 

radiolabelled fatty acids which are incorporated as the acyl chains of phospholipids. There is 

variation between the acyl chains of different phospholipid species, and specific fatty acids 

will be preferentially incorporated into particular phospholipids. The labelling of cellular 

phospholipids by different fatty acids was studied to provide information for the design of 

signalling assays involving radiolabelling of phospholipids (138).

Murine splenic B cells were resuspended (1.5 x 10^/ml) in RPMI-1640 

supplemented with glutamine (2 mM), 2-mercaptoethanol (50 jiM), penicillin (100 

U/ml), streptomycin (100 jig/ml) and 10% PCS. Cells (0.3 ml aliquots) were cultured in 

24-well plates and labelled with [^HJpalmitate, [^HJarachidonate, [^HJmyristate, or 

[^HJoleate (3 fiCi/ well) and incubated at 37°C for either 4 or 18 hours at 37°C in a 5%

(v/v) CO2  atmosphere at 95% humidity. Methanol (500 |il) was then added to each well 

and the disrupted cell suspension removed to glass vials. Chloroform (500 |il) and 

methanol (500 jil) were added to each tube, which was vortexed, and the samples were
'

left to extract on ice for 10 minutes. Phase separation was achieved by the addition of 500 

|il chloroform and 600 p,l water followed by vortexing and centrifugation (270g, 4°C) for 

5 min. Aliquots (900 p.1) of the lower organic phase were removed to glass vials and
• ;

dried in vacuo. Each sample was redissolved in chloroform: methanol (25 jLil; 2: 1, by 

vol.), supplemented with the non-radioactive standards Ptdlns, PtdCho, PtdEth, and 

PtdOH (20 [Xg of each/ tube) and applied to a pre-activated Silica-gel 60 plates. Prior to 

use, silica-gel 60 plates (20 x 20cm, 250mm thick; Merck, Darmstadt, Germany) were 

activated by soaking in 1 mM EDTA, air-drying and heating at 120“C for 1 hour. Plates 

were developed in a paper-lined tank, pre-equilibrated with the solvent chloroform: 

acetone: methanol: glacial acetic acid: water (80: 30:26: 24:14, by vol.). The 

phospholipids were detected by iodine vapour, and the radioactivity associated with the
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Figure 8. The structures of myristate, palmitate, oleate and arachidonate.
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spots corresponding to Ptdlns, PtdCho, PtdEth, and PtdOH determined by scraping and 

liquid scintillation counting (138).

2 . 3 . 2  Phospholipase D T ransphosphatidy lation  Assay

Hydrolysis of phospholipids by PLD results in the release of a water-soluble polar 

head group and the lipid, phosphatidic acid. However, in the presence of primary alcohols 

such as butanol, phospholipase D catalyzes a transphosphatidylation reaction in which the 

phosphatidyl moiety of the susbstrate is transferred to the alcohol, producing the 

corresponding phosphatidylalcohol (Figure 9). This reaction serves as a definitive 

accumulation assay for PLD activity as phosphatidylaclohols are not readily metabolised by 

cells and are not formed by alternative pathways (139, 140).

Detection of PtdBut formation upon cellular stimulation is achieved by radiolabelling 

either the alcohol or phospholipid substrate of the transphosphatidylation reaction. 

Radiolabelled primary alcohols, such as [^HJbutan-l-ol, are used to study total cellular PLD 

activity because [^H]phosphatidylalcohols are formed irrespective of the PLD substrate 

specificity. The use of radiolabelled phospholipids often gives an indication as to the substrate 

specificity of PLD. The majority of such studies have focused on the PLD-mediated 

hydrolysis of PtdCho (generally labelled by incubation with the fatty acid [^Hjpalmitate, 

unless otherwise stated). However, a number of investigators have also demonstrated the 

PLD-mediated hydrolysis of other phosopholipids, such as Ptdlns and PtdEth, and have 

identified these as separate, independently regulated PLD activities.

Murine splenic B cells or human tonsillar B cells (5 x lO^cells/ ml) were labelled 

in RPMI-1640 medium containing 10% dialysedFCS and [^H]-palmitate,

[^H]arachidonate, [^HJmyristate, [^H]stearate or [^Hjoleate (1 |aC i/10^ cells) for 4 

hours. Alternatively, murine B cells (10^/ml), prepared under asceptic conditions, were 

pre-incubated overnight in RPMI-1640 medium supplemented with glutamine (2 mM), 

penicillin (100 U/ml), streptomycin (100 |ig/ml), 2-mercaptoethanol (50 |iM) and 10%

FCS in the presence of [^H]-palmitate (1 jiCi/ 10^ cells) and the indicated agonist, as
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Figure 9. Phosphatidy ltransferase  Assay for phospholipase D activity.

Under physiological conditions, phospholipase D catalyses the hydrolysis of PtdCho and 

other phospholipids. However, primary alcohols, such as butan-l-ol, are preferential 

nucleophiUc acceptors over water for the phosphatidyl group. Therefore, in the presence 

of primaiy alcohols, phospholipase D catalyses the transphosphatidylation of 

phospholipids. These products are not formed by any other pathway in whole cells, and 

their formation can therefore be used as a marker for phospholipase D activity.
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cells were then washed and resuspended (3 x 10^ cells/ ml) in RPMI-1640 containing 20 mM 

described in the appropriate Figure legend. Labelled HEPES, 0.1% BSA, and 0.3% butan-l- 

ol and equilibrated at 37°C for 15 min prior to stimulation. Alternatively, in order to measure 

total phospholipid-PLD activity, unlabelled cells were resuspended (3 x 10^/ ml) in RPMI- 

1640 containing 20 HEPES, 0.1% BSA, and [^H]butan-l-ol (20 }iCi/ ml) and then incubated 

at 37°C for 15 min prior to stimulation.

Cellular stimulation was initiated by the addition of cells (100 pi; 3 x 10^/ ml) to glass 

vials containing 50 pi stimulus (x 3 concentration), followed by incubation in a waterbath at 

37°C. After the indicated time, incubations were terminated by the addition of chloroform: 

methanol (750 pi; 1: 2, by vol.) and the samples left to extract on ice for approximately 10 

min. Phase separation was achieved by the addition of chloroform (250 pi) and water (300 

pi), followed by vortexing and centrifugation (270g, 4°C) for 5 min. An ahquot (450 pi) of 

the lower chloroform phase was then removed and dried down in glass vials in vacuo. 

Whatman LK5DF tic plates were activated at 120C for 30 min and allowed to cool on the 

bench. Each dried sample was redissolved in chloroform: methanol (25 pi; 19: 1, by vol) and 

applied to an individual lane of the tic plate, followed by a further 25 pi wash of each vial. 

Unlabelled PtdBut (30 pg) was also spotted on each lane. The plate was then developed in the 

organic phase of the solvent 2,2,4-trimethylpentane: ethyl acetate: acetic acid: water (5: 11:2: 

10, by vol.), using an unlined, non-equilibrated chromatography tank. The position of PtdBut 

was identified by exposure of the plate to iodine vapour and the appropriate area was scraped 

from each lane. The radioactivity associated with [^H]PtdBut was determined by liquid 

scintiUation counting (141).

2 . 3 . 2 . 1  Preparation of [I'^CJphosphatidyibutanol Standard

For some PLD assays, [^HjPtdBut was located by its co-migration with a 

[l^cjPtdBut standai'd run on a separate lane of the tic plate. The [l^cjPtdBut standard was 

prepared by incubating [l^CjPtdCho-containing micelles with a PLD activity extracted from 

cabbage.
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Micelles were prepared as follows: [l^cjPtdCho was dried down under N2  in a clean

glass tube. SDS (5 mM) in buffer A (100 pi; O.IM sodium acetate, pH 5.6) was then added 

and the tube was sonicated in a waterbath for 10 min. CaCl2  (375 mM) in buffer A (100 pi),

butan-l-ol (75 pi) and buffer A (625 pi) were then added to the micelle preparation, and the 

PLD reaction initiated by the addition of cabbage PLD (100 units). After incubation at 30C for 

3 hours, the reaction was terminated by the addition of chloroform: methanol (3 ml; 2: 1, by 

vol) and the sample was left on ice to extract for 10 min. Phase separation was achieved by the 

addition of chloroform (1 ml) and water (1 ml), vortexing and centrifugation (270g, 4°C) for 

5 min. The entire lower organic phase was then removed to a clean glass tube and dried down 

under N2  and redissolved in chloroform: methanol (200 pi; 19: 1, by vol). This was then

applied to two lanes of an activated LK5DF tic plate: 10 pi on lane 1 and 190 pi on lane 2; and 

the plate was developed in the upper organic phase of the solvent 2,2,4-trimethylpentane: ethyl 

acetate: acetic acid: water (5: 11: 2: 10, by vol.), using an unlined, non-equilibrated 

chromatography tank. The position of [l"^C]PtdBut was then determined by scraping and 

hquid scintillation counting individual fractions of lane 1. The appropriate fractions were then 

scraped from lane 2 and the silica removed to a clean glass tube. Chloroform: methanol (1 ml; 

19: 1, by vol) was added to the silica, and the tube was shaken and left to stand on the bench 

for 5 min. The entire contents of the tube were then removed to a scintered glass funnel under 

vacuum which was draining into a fresh tube. The sihca was washed with chloroform: 

methanol (1 ml; 19:1, by vol) and again with chloroform (1 ml). The collected [^‘̂ CJPtdBut 

solution was then aliquotted to smaller glass vials, dried down under N2  and stored at -20°C.

2 . 3 .3  Analysis of the water-soluble products of phosphatidylcholine and 

phosphatidylethanolamine breakdown.

The hydrolysis of PtdCho by PLC produces diacylglycerol (DAG) and choline 

phosphate (ChoP), whereas PtdCho-specific PLD activity generates phosphatidic acid 

(PtdOH) and choline (Cho). ChoP and Cho are water-soluble products which can be separated
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by ion-exchange chromatography, and their release in [^H]choline-labelled ceUs can therefore 

be used as a marker for the activation of PtdCho-specific PLC or PLD activity (139,140).

The PLD-catalysed hydrolysis of phosphatidylethanolamine (PtdEtn), which has been 

demonstrated in some cells, results in the generation of PtdOH, and ethanolamine.

Ethanolamine (Em) which can be separated from ethanolamine phosphate (EtnP) on ion- 

exchange columns in a manner identical to that described for choline and choline phosphate.
■s

The release of Etn of can thus serve as a marker for PtdEtn-specific PLD activity.

Murine splenic B cells or human tonsillar B cells were resuspended (5 x 10^/ ml) in 

RPMI-1640 supplemented with 10% dialysed FCS and labelled with [^Fllmethylcholine at 

37°C for 4 hours. Human Jurkat T cells were resuspended (10^/ml) in RPMI-1640 

supplemented with glutamine (2 mM), penicillin (l(X)U/ml), streptomycin (100 fxg/ml) and 

10% FCS and labelled with [^Hjmethylcholine or [^H]ethanolamine (1 p C i/10^ cells) 

overnight. Cells were then washed three times by centrifugation (630g, room temp) for 10 

min, and resuspended (3 x 10^/ ml) in RPMI-1640 plus 0.1% BSA and 10 mM HEPES. In 

pulse-chase experiments cells were washed by centrifugation (630g, room temp) for 10 min

and resuspended in (10^/ml) in RPMI-1640 supplemented with glutamine (2 mM), penicillin 

(100 U/ml), streptomycin (1(X) pg/ml) and 10% FCS, and incubated at 37°C for 1 hour. They

were then washed and resuspended prior to stimulation as described above.

Cellular stimulation was initiated by the addition of cells (100 pi; 3 x 10^/ ml) to glass 

vials containing 50 pi of stimulus (x 3 concentration) and vials were incubated in a waterbath 

at 37°C for the appropriate time. Reactions were terminated by the addition of chloroform: 

methanol (750 pi, 1:2, by vol.) and the samples were extracted on ice for approximately 10 

min. Phase separation was achieved by the addition of chloroform (250 pi) and distilled water 

(300 pi). Vials were then capped, vortexed and centrifuged (270g, 4°C) for 5 min. Samples 

could be stored overnight at -20°C.

An aliquot (750 pi) was removed fi-om the upper methanolic/ aqueous phase of each 

sample and diluted to 5 pi with distilled water. The samples were then loaded onto Dowex 

columns (prepared as described below) which were washed with a further 2  mi distilled water.
■
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The run-through was collected as the glycerophosphocholine (GroPCho) (or 

glycerophosphoethanolamine, GroPEth) fraction. The ChoP (or EthP) fraction was eluted 

with 150 mM KCl (10 ml), and the Cho (or Eth) fraction was eluted with IM KCl (4 ml). The 

radioactivity associated with these fractions was then determined by hquid scintillation 

counting (139, 140).

2 . 3 . 3 . 1  Preparation of Dowex Columns.

Dowex-50-WH+ (100-200 ml) was washed three times in 3-4 volumes of distilled 

water, and then three times in 5 volumes of IM HCl. Finally, the Dowex was washed with 

several volumes of distiUed water until the washings were of constant pH (between 4.5 and 

5.5). The Dowex was then stored in an equal volume of distilled water at 4°C.

Columns (1ml Dowex) were prepared in glass wool plugged Pasteur pipettes. Elution 

profiles of PtdCho- and PtdEth-specific PLC and PLD products were validated by analysis of 

the elution of radiolabelled standards from identical columns. These standards were prepared 

in the same way as samples (i.e. phases were split by achieving the ratio 1: 1: 0.9 of 

chloroform: methanol: aqueous and the methanolic/aqueous phase was used), and comprised 

[^HJcholine (or [^Hjethanolamine) (10 pCi), [l^cjcholine phosphate (2 pCi), or a mixture of 

both standards. Percentage recovery was estimated by expressing the level of eluted Cho and 

ChoP as a percentage of the radiolabel found in identically prepared samples (750 pi).

2 . 3 .4  Analysis of Inositol Phospholipid hydrolysis

The hydrolysis of inositol phospholipids by phospholipase C results in the release of 

diacylglycerol (DAG) and inositol phosphates (IPs). Preincubation of cells with LiCl prevents 

degradation of IP i to inositol and hence causes IPs to accumulate, providing a measure of

total IPs formation (142). Inositol phosphates can be purified on Dowex-formate columns, 

and this technique was used to determine their release upon stimulation of [^HJinositol- 

labelled cells in the presence of lithium. In addition, [^Hjinositol phospholipids (Ptdlns, 

PtdlnsPi, and PtdInsP2 ) were separated and quantified by thin-layer chromatography (tic)

(142).
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2 . 3 . 4 . 1  Determination of Inositol Phosphates formation

B cells (10^/ ml) were resuspended in F-10 (HAM) medium containing 20 mM 

HEPES and 1% dialysed serum, and labelled with [^H]inositol (100 pCi/ ml) at 37°C for 4 

hours. The labelled cells were then washed twice by centrifugation (630g, room temp) for 10 

min, resuspended (3 x 10^/ ml) in RPMI-1640 containing 20 mM HEPES, 0.1% BSA, and 

10 mM LiCl and incubated at 37°C for 15 min.

Cellular stimulation was initiated by the addition of cells (100 pi; 3 x 10^/ ml) to glass 

vials containing 50 pi stimulus (x 3 concentration) in the above medium. Incubations were 

terminated by the addition of chloroform: methanol (750 pi; 1: 2, by vol.) and the samples left 

to extract on ice for approximately 10 min. Phase separation was achieved by the addition of 

chloroform (250 pi) and water (300 pi). Samples were then capped, vortexed and centrifuged 

(270g, 4°C) for 5 min. Samples could be stored overnight at -20°C.

An aliquot (750 pi) was removed from the upper aqueous/ methanol phase of each 

sample and loaded onto a Dowex-formate column (prepared as described below). The column 

was then washed with 6  ml of distilled water to elute free inositol and this was discarded, 

Glycerophosphoinositides (GPIs) were eluted using 60 mM sodium formate/ 5 mM sodium 

tetraborate ( 6  ml), and this fraction was also discarded. Total inositol phosphates (IP%, IP^, 

and IP3 ) were then eluted with IM  ammonium formate/O.IM formic acid (3 ml), and the 

associated radioactivity was determined by liquid scintillation counting. [^HJInositol 

phosphate released was expressed as a percentage of the total [^Hjinositol incorporated into 

cellular lipids. Total incorporation or [^HJinositol was approximated by counting aliquots of 

the lower lipid/ organic phase of unstimulated cells.

2 . 3 . 4 . 1 . 1  Preparation of Dowex-formate and separation columns

Dowex-chloride 8 x 100 (100 g) was weighed out into a large beaker, washed twice in 

5 volumes of distilled water to remove broken beads and then with 20 volumes of 2M NaOH. 

The treated Dowex was then washed with 10 volumes of distilled water, followed by 5 

volumes of IM formic acid. The Dowex-formate was washed with 50 volumes of distilled
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water (until pH was constant at around 5.5), resuspended in an equal volume of distilled water 

and stored at 0-4°C.

Separation columns were prepared by plugging pasteur pipettes with glass wool and 

adding 1 ml of Dowex slurry. These dowex columns were washed with 4 ml of distilled water 

prior to use.

2 . 3 . 4 . 2  Determination of [^HJinositol phospholipid levels

Resting B cells were labelled with inositol (2.5 pCi/ 10^ cells) for 4 hours at 37°C, 

stimulated with the appropriate ligand and the reactions quenched by two-phase separation as 

outlined above. An aliquot (450 pi) was removed from the lower chloroform phase of each 

sample and dried down in a glass vial in vacuo. Silica-gel 60 plates (20 x 20 cm, 250 mm 

thick; Merck, Darmstadt, Germany) were activated by soaking in a solution of 1.2% oxalic 

acid in methanol: water (3:2), air-drying and heating at 120“C for 1 hour. Each dried sample 

was then dissolved in chloroform: methanol (25 pi; 2: 1, by vol.) and applied to an activated 

Silica-gel 60 tic plate, along with 2 0  pg each of unlabelled Ptdlns, PtdlnsP, and PtdInsP2 -

The plates were developed in a paper-lined tank, pre-equilibrated with the solvent chloroform: 

acetone: methanol: glacial acetic acid: water (80: 30:26: 24: 14, by vol.). They were then 

exposed to iodine vapour and [^H]PtdIns, [^H]PtdInsP and [^H]PtdInsP2  were located by

visualisation of the unlabelled standards. The radioactivity associated with these fractions was 

then determined by scraping and liquid scintillation counting.

2 .3 .5  Phospholipase A2 Assay

PLA2  catalyses the hydrolysis of the ester bond at the 2 -position of the glycerol

backbone of a phospholipid, generating a fatty acid and a lysophospholipid (Figure 7). A 

number of phospholipids are substrates for PLA2 , including PtdCho and Ptdlns, and their

hydrolysis usually results in the release of arachidonic acid. Exogenously added arachidonic 

acid is readily incorporated into phospholipids by whole cells; and the detection of 

l^H] arachidonate release by tic analysis upon stimulation of [^Hlarachidonate-labelled cells is 

the method by which PLA2  activation is determined in this study.
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Murine splenic B cells or thymocytes (5 x 10^/ ml) were resuspended in RPMI-1640 

supplemented with 1 0 % dialysed fetal calf serum and cultured in the presence of 

[^H]arachidonate (0.5 pCi/ 10^ cells) at 37°C for 4 hours. WEHI 231 cells (2  x 10^/ ml), 

grown in RPMI-1640 supplemented with glutamine (2 mM), 2-mercaptoethanol (50 pM), 

penicillin (100 U/ml), streptomycin (100 pg/ml) and 10% FCS, were labelled overnight with 

[^H]arachidonate (0.25 |aCi/ 10^ cells). Cells were then washed twice and resuspended (3 x 

lO V m l) in RPMI-1640 plus 0.1% BSA and 10 mM HEPES.

Cellular stimulation was immediately initiated by the addition of cells (100 |al) to glass 

vials containing 50 pi of stimulus (x 3 concentration) and vials were incubated in a waterbath 

at 37°C for the appropriate time. Reactions were terminated by the addition of ice cold 

methanol: glacial acetic acid (500 pi; 100: 1.5, by vol.) and the vials were incubated on ice for 

approximately 10 min. Chloroform (250 pi) was ad(kd to each vial and the samples incubated 

on ice for a further 10 min. Phase separation was then achieved by the addition of chloroform 

(250 pi) and water (300 pi), vortexing and centrifugation (270g, 4°C) for 5 min.

Whatman LK5DF tic plates were activated by heating at 120°C for 15 min and allowed 

to cool on the bench. An aliquot (450 pi) of the lower chloroform phase was removed from 

each sample to a clean glass vial, spiked with unlabelled arachidonate (30 mg) and dried down 

in vacuo. Each dried sample was redissolved in chloroform: methanol (25 pi; 2: 1, by vol) and 

applied to a pre-absorbant strip of the t.l.c. plate along with a further wash of the vial. The 

plate was then developed in a paper-lined tank pre-equilibrated with the solvent hexane: diethyl 

ether: formic acid (80:20: 2, by vol.). Arachidonate was located by exposure of the plate to 

iodine vapour and the radioactivity associated with each sample was then determined by 

scraping and liquid scintillation counting (138,143).

2 .4  Purification and preparation of antibodies

2 .4 .1  Purification of antibody from cellular supernatant

Bet-2 (rat anti-mouse chain, IgM H chain) and anti-murine lA^ antibodies were 

purified from tissue culture supernatant, using the following procedure:

6 2



A column, consisting of a glass wool-stoppered Pasteur pipette containing 1 ml of or Protein 

G-speharose (capacity: 35 mg/ml)) was prepared, and this was connected to a reservoir 

made from a 50 ml syringe. PBS (5 ml) was then run through to wash away the ethanol in 

the protein buffer. Tissue culture supernatant (<500 ml,assuming a maximum of 20 pg/ml of 

antibody) was then run through the column, and the flow-through retained. The columns 

were washed with PBS until the level of eluted protein (as measured at A2 8 0 ) had returned

to baseline.The bound antibody was eluted using 0.5 ml aliquots of 0.2M acetic acid which 

were collected in vials containing an equal volume of IM Tris buffer. The elution was 

followed and the amount of protein estimated by measuring A2 8 O OD of 1.4 being

approximately equivalent to 1 mg/ml of protein). The appropriate fractions were then pooled 

and dialysed in PBS overnight, filtered sterilised and stored in 1 ml aliquots at 4°C (134, 

144).

2 .4 . 2  Biotinylation of purified antibody with NHS-biotin

Antibody solution was diluted with sodium bicarbonate solution (minimal dilution, 

final conc. 50 mM) (pH 8.5) in a clean test tube. NHS-biotin (0.3 mg) was then dissolved in 

DMSO (10 pi) and added to the solution of Ig which was incubated at room temperature for 

30 min. Excess biotin was then removed by centrifugation of the solution at l,000g for 20 

min in a Centricon-30 Microconcentrator (Amicon). After centrifugation the sample was

diluted in 0.1 M sodium phosphate (pH 7.0). This process was repeated twice. Final protein 

concentration was determined by A2 gQ.

2 . 4 . 3  Purification of FGK anti-CD40 antibody using ammonium sulphate 

precipitation and S-sepharose.

Equal volumes of saturated ammonium sulphate solution and tissue culture 

supernatant were mixed and the immunoglobulin fraction allowed to precipitate overnight at 

4°C. The precipitated immunoglobuhn was harvested by centrifugation at 10,000 rpm and 

then dialysed exhaustively against malonate buffer (per litre: malonic acid sodium salt (6.5 

g), malonic acid (1.2 g), betaine (1 g)). A column consisting of a glass wool-stoppered 20
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ml syringe was then filled with 5 ml S sepharose gel. The antibody solution was loaded onto 

the column which was then washed with malonate buffer until the eluant A28O had reached a 

basal level. The antibody was then eluted using the malonate buffer containing 0.5M NaCl, 

the profile of the elution being followed using A^gQ. The antibody solution was then 

extensively dialysed against PBS, filter-sterilised, and stored at 0-4"C.

2 .5  SDS-PAGE and Western Blot analysis of cPLA% expression.

In order to detect the expression of cPLA^ in lymphocytes, cellular extracts were 

separated by SDS-PAGE, then transferred to nitrocellulose and probed using antibodies 

raised against specific peptides to C-terminal or internal sequence of cPLA%.

2 .5 .1  Preparation of cell lysates.

Cell were washed three times in modified RIPA buffer (50 mM Tris-HCL buffer, pH

7.4 containing 150 mM NaCl; 1 mM EGTA; 1 mM PMSF; 1 mM NagVOz^ and 1 mM NaF)

before resuspension and solubilisation in RIPA lysis buffer containing 1% (v/v) NP-40; 

0.25% (w/v) sodium deoxycholate and Ig/m l each of antipain, aprotinin, chymostatin, 

leupeptin and pepstatin for 15 min on ice. Following solubilisation, cells were microfuged 

AT 16,000 rpm for 30 min at 4°C and resulting supernatants stored at -20°C for analysis of 

CPLA2  expression.

2 . 5 . 2  SDS-PAGE

The following solutions were prepared prior to the preparation of SDS-polyacrylamide gels:

i) Acrylamide (30% solution):30 g acrylamide, 0.8 g methylene bisacrylamide, 

made up to 10 0  ml with distilled H2 O

ii) 1.5M Tris-HCl, pH 8 .8

iii) 0.5M Tris-HCl, pH 6 .8

iv) 10% SDS (or sodium lauryl sulphate)

v) 10% Ammonium persulphate:prepared fresh

vi) Tank buffer:(per litre) 3 g Tris (free base), 14.4 g glycine, 10 ml 10% SDS.
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(Made up at x 5 stock)

vii) Sample buffer (x 3 stock): 10 ml 0,5M TrisHCl (pH 6 .8 ), 10 ml 10% SDS,

10 ml Glycerol, 2 ml 0.5% Bromophenol Blue, 1% (v/v) mercaptoethanol

7.5% polyacrylamide gels were prepared as follows:

30% acrylamide (7.5 ml), H^O (14.3 ml) and TrisHCl (pH 8 .8) (7.5 ml) were mixed in a 

side arm conical flask and degassed. This was decanted to a beaker with a stirrer, and SDS 

(0.3 ml), 10% ammonium persulphate (150 |il) and TEMED (10 |il) were added to initiate 

polymerisation. Gels were poured, overlayed with H2 O and allowed to set for approximately

30 mins. The layer of water was removed and the stacking gel (3% polyacrylamide) prepared 

and poured as follows. 30% acrylamide solution (1.5 ml), H2 O (9.45 ml) and 0.5M

TrisHCl (pH 6 .8 ) (3.75 ml) were mixed and degassed. Then 10% SDS (150 p i ) , 10% 

ammonium persulphate (150 pi) were added and polymerisation initiated with TEMED (10 

pi). The stacking gel was poured, a well comb was inserted and the gel allowed to set for 

approximately 30 minutes. The comb was removed and the wells overlayed with H2 O. The

positions of the wells were identified with a marker pen.

Samples were denatured in the appropriate volume of sample buffer by heating for 2 

min in a boiling water bath. Then 100 pg protein was loaded into each weU. Molecular 

weight Rainbow markers (10 pi) were also loaded onto one or two wells. The samples were 

electrophoresed into the stacking gel at 50V and then resolved in the separating gel at 200V 

for 2 hours in an ice-cooled PAGE apparatus.

2 . 5 .3  Transfer of resolved proteins to nitrocellulose

SDS-PAGE-resolved proteins were transferred to nitrocellulose using a semi-dry 

blotter (Sartorius). Graphite plates were rinsed with distilled H2 O. Three sheets of filter

paper were cut to the size of the gel, soaked in buffer (pH 9.2): 48 mM Tris; 39 mM 

Glycine; 1.3 mM SDS and 20% methanol, and placed on the cathode (lower) plate. The gel 

was placed on the filters and any air bubbles were removed with a buffer-wetted gloved 

finger. Nitrocellulose was soaked in the above buffer and placed on the gel, and any air
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bubbles were removed. Three sheets of buffer-soaked filter paper were placed on top of the 

gel/ filter sandwich. The anode plate was replaced and the transfer run at up to 4mA/ cm^ 

(constant current) for 30 min at room temperature. 60V was not exceeded, in order not to 

blow the plates.

2 .5 .4  Western Blot analysis of cPLA^ expression

Samples were resolved by 7.5% SDS-PAGE (as described in section 2.5.1), and 

then transferred to nitrocellulose filters by semi-dry blotting (as described in section 

2.5.2). Following blocking with 10% non-fat milk overnight, the filters were incubated 

for 2 hours with a rabbit anti-human cPLA2  peptide antibody ( ViooO dilution of serum)

raised against a C-tenninal peptide (amino acids 727-749) coupled to KLH. All antibody 

solutions were diluted in 10% marvel/PBS/Tween-20 (0.1%). The filters were then 

washed in marvel/PBS/Tween-20 five times for 20 min. Immunoreactivate CPLA2  was 

visualised by developing with a donkey anti-rabbit Ig-HRP antibody (Viooo dilution) 

and the ECL system (Amersham Intemation pic).
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3 Investigation of the role of phospholipase D in B cell signalling.

Phospholipase D (PLD) activities catalyse the hydrolysis of phosphodiester bonds 

distal to the glycerol backbone of phospholipids, generating phosphatidic acid (PtdOH) 

and a free polar head group (Figure 7) (128). PtdOH has been identified as a putative 

lipid second messenger and has been implicated in the modulation of a range of biological 

responses such as the respiratory burst in neutrophils, granule secretion by mast cells, 

insuHn secretion in the pancreas, and mitogenic responses in BALB/c fibroblasts and 

natural killer cells (128). PLD activation is therefore involved in a diverse array of cellular 

responses and this is reflected in the variety of cellular signalling elements which PtdOH 

has been reported to modulate. These include activation of certain Protein kinase C 

(PKC) isoforms, Ras-like G-proteins (including Ras, Rho, and Rac), the mobilisation of 

calcium, and expression of the proto-oncogenes c~fos and c-myc. (128, 145).

PtdOH may also play a role in cellular responses via its conversion by PtdOH 

phosphohydrolase (PPH) to diacylglycerol (DAG) (139, 140), an activator of most PKC 

isoforms (Figure 7). In many cells, the PPH-mediated hydrolysis of PtdOH is 

responsible for the sustained production of DAG and prolonged activation of PKC 

needed for a mitogenic response. PtdOFI may also act via its lysoderivative, lysoPtdOH 

(LPA) (146-148) which has been shown to be a potent mitogen for several cell systems 

and mediates its effects via pertussis toxin-sensitive G-protein receptors coupled to the 

mobilisation of calcium and downstream activation of the Ras-MAP kinase cascade 

(148). The effects of PLD activation can therefore be mediated not only through the direct 

effects of PtdOH on downstream signalling events but also via its subsequent metabolism 

and resultant generation of other lipid messengers such as LPA and DAG.
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3 .1  Phospholipid specificity and subcellular localisation of 

phospholipase D activities.

In the vast majority of studies PtdCho has been identified as the preferred 

substrate for receptor-coupled PLD signalling (reviewed by Exton, 1994) (128). 

However, in several systems PLD has been demonstrated to hydrolyse phospholipids 

other than PtdCho. For example, stimulation of NIH 3T3 fibroblasts with platelet-derived 

growth factor (PDGF) results in the PLD-catalysed hydrolysis of both PtdCho and 

phosphatidylethanolamine (PtdEtn) (149,150). Moreover, exclusive breakdown of 

PtdEtn by PLD is observed in glial cells following stimulation with fetal calf serum and 

PMA (151). Yet another study has provided evidence for the existence of two, 

independently regulated PLD activities in Madin-Darby Canine Kidney (MDCK) cells 

(152): in this system, bradykinin stimulation results in the PLD-catalysed hydrolysis of 

Ptdlns, whereas stimulation with PMA induces the activation of PtdCho-PLD. These 

types of study provide strong evidence for the existence of distinct, differentially 

regulated PLD isozymes within a single cell type. Moreover, mammalian PLD activities 

have been found to exist in both membrane-bound and cytosoHc forms: whilst the 

membrane-bound forms appear to exhibit strict specificity for PtdCho whereas the 

cytosolic forms have been shown to hydrolyse PtdCho, PtdEtn or Ptdlns (128, 145, 

153-161).

Interestingly, no lipid second messenger functions have, as yet, been 

demonstrated for the flree polar head groups choline, ethanolamine and inositol which are 

released upon the PLD-mediated hydrolysis of phospholipids. It therefore appears that 

their generation is not the basis of any differential effects induced by the PLD-catalysed 

hydrolysis of specific phospholipids. However, since PtdCho, PtdEtn and Ptdlns differ 

in their acyl chain composition, their hydrolysis results in the production of distinct 

PtdOH species, each potentially performing a unique second messenger function. For 

example, only the stearoyl-arachidonyl species of PtdOH has been postulated to activate 

ras proteins (162). This activation of ras is the result of a combination of PtdOH 

inhibiting GTPase activating protein (GAP) and activating GTPase inhibiting protein
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(GIP). In summary, the downstream effect of the activation of a particular PLD isozyme 

may therefore depend on its subcellular localisation and its phospholipid substrate 

specificity.

3 .2  The regulation of receptor coupling to phospholipase D.

Activation of PLD can be mediated via both G protein-coupled receptors (GREs) 

and receptor tyrosine kinases (RTKs) (128, 129, 145). However, the precise 

mechanisms underlying the coupling of receptors to distinct phospholipase D activities 

have not been elucidated. Studies to date using pharmacological activators and inhibitors 

indicate that receptor-PLD coupling may be mediated by multiple intracellular signals 

including protein phosphorylation, calcium mobilisation, and G-protein activation. Very 

little information is available concerning the regulation of PtdEtn- and Ptdlns-specific 

PLD activities. Therefore, unless specified most of the discussion below refers only to 

PtdCho-specific PLD activities.

3 . 2 . 1  Role of protein tyrosine phosphorylation

Phospholipase D activation has been demonstrated in a number of cell types in 

response to stimulation with growth factors such as PDGF and EGF. Growth factors 

bind to and activate intrinsic receptor tyrosine kinases (RTKs) and this raises the question 

of the role of tyrosine phosphorylation in the regulation of PLD activity. It would appear 

that in several cases receptor-mediated activation of PLD is dependent on tyrosine kinase 

activity (128, 129, 145, 163, 164). For example, activation of PLD in EGF-stimulated 

fibroblasts is abrogated by PTK-inhibitors but unaffected by PKC inhibitors (165). 

Furthermore, pervanadate, an inhibitor of protein tyrosine phosphatases (PTPs), will 

activate PLD in human neutrophils and other cell types (145). At present it is not clear if 

these effects are due to direct interaction between RTKs and PLDs or occur as a result of 

other signals more proximal to the receptor. Tyrosine phosphorylation is also reported to 

be involved in the fMLP-mediated activation of PLD in neutrophils (166). As the fMLP
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In many systems, agonist-mediated stimulation of PLD activity is preceded by the 

activation of PtdInsP2 -PLC-'y, leading to the generation of DAG and IP3 , and the

resultant mobilisation of Ca^"^ and activation of PKC. For example, stimulation of rat

7 0

receptor does not possess intrinsic tyrosine kinase activity, this suggests that both RTKs *

and non-receptor PTKs may be involved in the regulation of PLD activity.

3 ,2 .2  Role of G proteins in PLD regulation

G protein-coupled receptors (GREs), such as « 2  receptors on rat-1 fibroblasts
I

and endothelin receptors on mesangial cells, are also found to be coupled to PLD activity 

(167). Activation of PLD upon stimulation of rat-1 fibroblasts with a 2 -agonists is

inhibited by pertussis toxin, which ADP-ribosylates Gi-like G proteins, suggesting the

involvement of heterotrimeric G proteins in the regulation of PLD activity (167). This is 

supported by the finding tliat the non-hydrolysable GTP analogue guanosine 5'[y thio] 

triphosphate (GTPyS) will stimulate PLD activation in permeabilized cells such as 

neutrophils (145). However, several laboratories have recently reported the involvement 

of small GTP-binding proteins in the regulation of PLD activity. These include members 

of the ADP Ribosylation Factor (ARF) family(157-159,168) (136-138, 168), which are 

required for the ADP-ribosylation of G-type G proteins by cholera toxin, and a 

membrane-associated member of the Rho family (156). However, the precise mechanism 

by which these G proteins regulate PLD activation is still unclear.

G proteins have also been shown to interact with other intracellular signals in the 

regulation of PLD activity: pervanadate and GTPyS were reported to activate PLD 

synergistically in phagocytic leucocytes, indicating crosstalk between G proteins and 

protein tyrosine phosphorylation to generate maximal PLD activation (163). It is not 

clear, however, whether G proteins couple to PLD directly or indirectly through a 

mechanism such as calcium mobilisation.

3 .2 .3  The role o f phosphoinositide breakdow n and protein  kinase C 

activation in the activation of PLD.



fibroblasts with a-thrombin or endothelin is reported to induce PLD activation, which is 

preceded by the activation of PLC-y (145). This suggests that receptor-mediated PLD 

activation may be dependent on signals generated by the hydrolysis of phosphoinositides, 

such as the activation of PKC. Indeed, stimulation of most cells with phorbol esters, 

which are pharmacological activators of PKC, will induce activation of PLD, indicating 

that PLD may be regulated either directly or indirectly by PKC (128, 129,145). This is 

supported by findings that PKC inhibitors, or chronic phorbol ester treatment to 

downregulate PKC levels, will inliibit both PMA-mediated and endothelin-induced PLD 

activation in rat-1 fibroblasts. More direct evidence of PKC involvement in PLD 

activation was provided by a study in which over-expression of PK C -al in rat-1 

fibroblasts was found to enhance the activation of PLD in response to PMA, endothelin 

or a-thrombin (145, 169).

In contrast, in receptor systems such as EGF stimulation of Swiss 3T3 cells (via a 

RTK) (165) and angiotensin stimulation of vascular smooth muscle cells (via a GRE) 

(145), agonists will induce the activation PLD in the absence of phosphoinositide 

hydrolysis. Moreover, in other receptor systems, including a-thrombin stimulation of 

human platelets (145), PLD activation is reported to be insensitive to both PKC inhibition 

and chronic phorbol ester treament. In addition, the evidence that PKC is the sole target 

for PMA is weakening, and it has been suggested that PMA interacts directly with 

phospholipase D. Indeed, addition of PMA to membrane preparations from HL60 cells 

has been reported to directly stimulate PLD activity. Therefore, although PLC-y-mediated 

signals may play a role in the coupling of some receptors to PLD activation, there are 

clearly receptors which couple to PLD through mechanisms other than the hydrolysis of 

phosphoinositides and PKC activation.
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3 . 2 . 4  The role of Ca^+ mobilisation in the regulation of PLD activity.

In a variety of receptor systems PLD activation can be blocked by chelation of 

extracellular calcium (152,170-172). Moreover, in many cells Ca^+ ionophores such as 

ionomycin are good activators of PLD (128, 170), suggesting a possible role for calcium 

influx in the receptor-mediated activation of PLD. In neutrophils, for example, phorbol 

esters and calcium ionophores act synergistically to activate PLD (173, 174). This may be 

consistent with the finding that cytochalasin B is required for the fMet-Leu-Phe-mediated 

activation of PLD in these cells, as in cytochalasin B-treated neutrophils, the chemotactic 

peptide, fMet-Leu-Phe induces a prolonged influx of calcium from the external medium, 

rather than the transient mobilisation of calcium from intracellular stores observed in 

untreated cells. However, it should be noted that cytochalasin B is also found to disrupt 

the cytoskeletal network, and its role in the fMLP-mediated activation of PLD may 

therefore be more complex than the priming of neutrophils for calcium influx (173-175). 

Nevertheless, such findings may suggest a role for the influx of extracellular calcium, as 

opposed to the mobilisation of calcium firom intracellular stores, in the activation of PLD. 

Studies in partially purified PLD preparations have also provided evidence for the 

involvement of calcium in the regulation of PLD. For example, PLD activity in a 

preparation from rat brain has been found to be enhanced by the addition of Ca^+ (176). 

Câ "*" has also been found to be required for GTPyS-mediated stimulation of PLD in 

granulocyte homogenates (168)

In contrast, there are a number of PLD activities which do not appear to require 

calcium for activity (128,129, 145). Receptor systems in which PLD activation occurs in 

the absence of Ca^+ mobilisation include stimulation of rat tail artery with norepinephrine 

and stimulation of mesangial cells with vasopressin (177). Also, in several partially 

purified preparations, including hepatocyte membranes and spermatozoal extracts, 

exogenous Ca^+ is not required for PLD activity. Moreover, PMA-mediated activation of 

PLD in intact cells is usually unaffected by the chelation of extracellular and intracellular 

Ca2+with EGTA (165).
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There is also evidence, however, for the inhibition of PLD by Ca^+. For 

example, a PLD preparation from rat brain synaptosomes, which was found to function 

optimally at a pH of 7.2 and was stimulated by oleate (4 mM) and Mg^+ (<1 mM), was 

also stimulated by "low" concentrations of Câ "*" (<0.4 mM) (176). This PLD activity, 

however, was totally inhibited by higher concentrations of Ca^"^ (2 mM). However, it is 

very unlikely that the enzyme would encounter such a high concentration of Ca^+ in the 

cytosol, and so the physiological relevance of this finding is debatable. Nevertheless, 

other preparations of PLD have exhibited inhibition by calcium: a preparation of a 

membrane-bound PLD activity fi-om rat brain, which required the detergent Triton X-100 

for activity, was inhibited by Ca^+ and Mg^+ at all concentrations tested (178); 

furthermore, a PLD activity inhibited by Ca^+ and Mg^+ has also been identified in 

amniotic membranes (179).

These reports from intact cells, membranes and partially purified preparations of 

PLD therefore indicate the possible existence of multiple PLD activities which can be 

differentially regulated by Ca^+: ie. calcium-dependent, calcium-independent and 

calcium-inhibited forms of PLD.

3 . 2 . 5  Role of sphingolipid second messengers

The lipid second messengers (LSMs) sphingosine and ceramide, which are 

formed as a result of sphingomyelin hyrolysis by sphingomyelinase (Figure 10), are 

implicated in the regulation of a number of cellular processes including differentiation, 

mitogenesis, and particularly, the induction of apoptosis (61, 180-182). Ceramide has 

been reported to induce the activation of a novel ceramide-activated protein kinase 

(CAPK) and the protein phosphatase 2A (PP2A) (181). Sphingosine is thought to 

mediate its effects, at least in part, through its conversion to sphingosine-1-phosphate 

(SPP) (183,184). Both ceramides and sphingosine/SPP are reported to modulate the 

activity of phospholipase D (149,180, 184-192).

Pre-incubation of rat fibroblasts with cell-permeable ceramides was found to 

inhibit the activation of PtdCho-PLD by PMA or GTPyS, as well as the induction of
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DNA synthesis induced by PtdOH or LPA (180,190, 193). In contrast, exogenously 

added sphingosine or sphingosine-l-phosphate has been found to induce activation of 

PtdCho-PLD in a variety of cell types (128, 194), in addition to other reported effects 

such as the mobilisation of calcium. Moreover, the activation of a PtdEtn-selective 

phospholipase D has also been reported in multidrug-resistant MCF-7 human breast 

carcinoma cells upon their stimulation by sphingosine, PMA or H2 O2  (191).

These findings indicate that sphingolipid-derived second messengers may play a 

physiological role in the receptor-coupled activation of PLD activity, although the 

mechanisms of this regulation are, as yet, unknown.

3 .2 .6  F our m ajo r classes o f P tdC ho-PLD  activity.

The precise details of receptor coupling of these various phospholipase D 

activities, indicated by pharmacological manipulation, have not as yet been delineated. 

Investigations have been hampered by the fact that no PLD species have been cloned, 

and by the lack of defined, as opposed to partially purified, PLD preparations available: 

currently, there is only a single report of purification to homogeneity of a PLD activity 

(190 kDa) (195). However, recent evidence obtained in in vitro reconstitution studies of 

partially purified PLD preparations, has substantially rationalised the wealth of 

conflicting pharmacological data and has suggested the existence of four major classes of 

PtdCho-PLD activity differing in their cofactor requirements:

(Î) oleate-dependent PLD(s): a PLD activity, solubilized fi’om rat brain membranes 

by Triton X-100 and reconstituted in lipid vesicles, was found to be optimally active at 

neutral pH and absolutely dependent on sodium oleate for activity (optimal conc. 4 mM). 

This PLA activity could be further activated by Mg^+ and Ca^+ (158, 176).

(ii) P td InsP 2  and ARF -dependent PLD enzymes: another PLD activity,

solubilized from rat brain and separated from the oleate-dependent species by HPLC, 

was found to require PtdInsP2  for activity (optimal conc. SpM) (157). This PtdInsP2 -
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dependent PLD was dramatically activated by the addition of the low molecular weight G 

protein, ADP ribosylation factor (ARF) 1 and GTP7S. Moreover, in contrast to the 

oleate-dependent PLD isolated from rat brain, this PLD activity was completely inhibited 

by the addition of oleate (03 mM). The PtdInsP2 /  ARF-dependent PLD could be

activated by recombinant ARFs 1, 5 or 6  and, interestingly, this activation was found to 

be enhanced if myristoylated ARFs were used, suggesting that membrane association of 

these proteins is important for activation of PLD (158). Furthermore, similarly regulated 

PLD activities have also been found in HL60 cells (activated by ARFs 1 and 3) (159). 

ARFs have been strongly implicated in the process of vesicular budding from the Golgi 

membrane, suggesting that PLD activation may also be involved in this process, and the 

identification of ARF-activated PLD activity in Golgi-eniiched membranes from CHO 

cells, lends further weight to this hypothesis (161). Furthermore, PLD activation by 

ARF and GTPyS in these cells was blocked by brefeldin A, a drug which blocks ARF 

binding to Golgi membranes. As a result of these findings, it has been proposed that 

alterations in lipid content by such ARF-regulated PLDs may play an important role in 

vesicular dynamics.

(iii) Rho-activated PLD(s): reconstitution of a GTPyS-activated PLD in human 

neutrophil lysates was found to require protein factors from the plasma membrane and 

the cytoplasm (156). The GTP binding protein which activates this PLD activity was 

located in the plasma membrane, and was found to have a low Mg^+ requirement and to 

be insenstive to aluminium fluoride treatment. This suggested the PLD activity was likely 

to be regulated by a low Mr G protein, and this was supported by the finding that a GDP 

dissociation stimulator, which stimulates the exchange of GDP for GTP on such proteins 

(enhancing their activation), stimulated GTP-dependent PLD activation. Furthermore, 

Rho GDP dissociation inhibitor, which binds to and inhibits Rho family G proteins, was 

found to inhibit GTP-mediated PLD activation, indicating that this neutrophil PLD 

activity may be regulated by a membrane-associated Rho family G protein.
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(iv) PLD (s) dependent on the levels and  activation status of PLC-y: PDGF- 

mediated activation of PtdInsP2 -PLC and PLD was studied in TRMP canine kidney 

epithelial cells, which were overexpressing wild type, or one of several mutant, PDGF 

receptors (154). These receptors had specific mutations abolishing their ability to bind 

various intracellular signalling proteins. This investigation established that PDGF- 

mediated activation of PLD is dependent on the ability of the PDGF receptor to bind 

PtdInsP2 ~PLC-l but not other signalling proteins including Ras GAP, PI3-kinase, and

Syp, an SH2-containing phosphotyrosine phosphatase. Furthermore, overexpression of 

PLC-yl in NIH 3T3 fibroblasts has been shown to lead to a 10-fold increase in the 

activation of PLD upon stimulation of the cells with PDGF (155). Down-regulation of 

PKC by prolonged treatment with phorbol ester was found to completely inhibit the 

PDGF-mediated activation of PLD in these cells, suggesting that PLD activation may 

occur downstream of the RTK-mediated phosphorylation and activation of PLC-yl, and 

subsequent PtdInsP2  hydrolysis and PKC activation.

Overall, these reports establish the existence of a number of distinct PLD 

subtypes in mammalian cells which appear to differ in their coupling to cell surface 

receptors, subcellular localisation and phospholipid substrate specificities. Differential 

activation of these PLD subtypes may therefore generate specific PtdOH species in 

distinct subcellular compartments, eliciting unique downstream effects.

3 .3  Phospholipase D in lym phocytes

3 .3 .1  Phospholipase D in T lym phocytes

There is very little data on the role of PLD in B and T cells. However, 

investigation of PLD activation in T cells has primarily involved the use of Jurkat human 

T cells, a proliferating leukemic T cell line. Phospholipase D activity can be detected 

using a number of techniques: 1) the release of phospholipid head groups such as choline 

and ethanolamine (Figure 7); 2) the release of PtdOH (this is readily interconverted with
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DAG by the enzymes PPH and DAG kinase (Figure 9), complicating the interpretation of 

changes in its levels) and 3) the transphosphatidylation reaction by which PLD catalyses 

exchange of the phospholipid head group for a primary alcohol, generating a 

phosphatidylalcohol (relatively stable and not formed by any other process in whole cells)

(Figure 9). This final assay has been used by a couple of groups, who have identified 

one or more PLD activities in T cells.

Stewart and coworkers (1991) (196) were the first to demonstrate TCR-coupled 

PLD activity in T cells: stimulation of [32p]orthophosphate-labelled Jurkat cells with anti- 

CD3 antibodies or PMA resulted in the generation of [^^PjPtdOH or 

[^^PJphosphatidylethanol (PtdEth) in the presence of ethanol. They also showed that 

addition of exogenous PtdOH to Jurkat cells induced the mobilisation of [Ca^+], in the 

absence of phosphoinositide hydrolysis. Interestingly, an unrelated study has reported 

that T cell receptor-mediated Ca^+ mobilisation involves both inositol-1,4,5- 

trisphosphate-dependent and inositol-1,4,5-trisphosphate-independent effector 

mechanisms, cosistent with a role for TCR-PLD in calcium mobilisation during T cell 

activation. However, preparations of PtdOH have been shown to be contaminated with 

trace amounts of LPA (148, 197), which appear, at least in some cases, to be sufficient 

to induce the responses previously ascribed to exogenously added PtdOH, and may cast 

doubt on the validity of a proposed role for PtdOH in the mobilisation of calcium.

Further work by Stewart et al. suggested a role for PKC in antigen receptor-PLD 

coupling, as down-regulation of PKC by prolonged phorbol ester treatment abrogated 

anti-CD3-induced PLD activation (188). However, it is difficult to draw concrete 

conclusions from this finding as there is evidence that PLD activity itself may be 

compromised by prolonged exposure to phorbol ester. These researchers also reported 

the activation of PLD upon incubation of Jurkat cells with sphingosine (169, 188).

Investigation of such PLD activation in [^^P] orthophosphate-labelled Jurkat T 

cells did not give any indication as to the phospholipid substrate specificity of the TCR- 

coupled PLD. However, studies in [^HJpalmitate-labelled Jurkat T cells have indicated 

that the antigen receptor is coupled to a PtdCho-hydrolysing PLD activity (146). (Studies

1
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on [^H]palmitate-labelling of cells have found that it is primarily incorporated into 

PtdCho). This finding is consistent with reports on other cell types that calcium- 

mobilising receptors are usually coupled to the activation of PtdCho-PLD.

PLD has also been implicated in the coupling of the T cell antigen receptor to 

activation of the transcription factor AP-1 (146), one of the key early events in T 

lymphocyte activation, AP-1 activation was found to be induced upon stimulation of 

Jurkat cells with anti-CD3, or upon addition of exogenous PtdOH. Moreover, anti-CD3- 

mediated activation of AP-1 was inhibited by ethanol, which inhibits the PLD-dependent 

formation of PtdOH and DAG by promoting transphosphatidylation, and by wortmannin, 

which has been reported to inhibit receptor-PLD coupling. Interestingly, the activation of 

AP-1 by anti-CD3 was not inhibited by neomycin, an inhibitor of phosphoinositide 

hydrolysis, indicating that both PLD activation and AP-1 activation may be independent 

of the activation of PLC-y. However, both PtdOH- and anti-CD3-mediated activation of 

AP-1 were blocked by PKC inhibition or PKC down-regulation. These results may 

therefore indicate that antigen receptor-mediated activation of AP-1 is dependent on the 

activation of PKC downstream of PLD activity.

Characterisation of the TCR-coupled PtdCho-PLD activity in Jurkat cells, and 

primary murine and human T cells has also been carried out in this laboratory (M.M, 

Harnett and P. Reid, unpublished results). In agreement with the previous reports, 

crosslinking of the antigen receptors on [^HJpalmitate-labelled Jurkat cells, primary 

murine splenic T cells, or human tonsillar T cells, resulted in the activation of PtdCho- 

PLD. Moreover, investigation of the dose-dependence of anti-CD3-mediated PLD 

activation indicated that antigen receptor coupling to PLD is not dependent on, and indeed 

bears an inverse relationship to, the induction of phosphoinositide hydrolysis: PLD 

activation was found to be induced by concentrations of anti-CD3 significantly below 

those required for the induction of inositol phosphates formation, and was found to be 

desensitised at anti-CD3 concentrations which induce maximal production of IPs. Studies 

involving PTK/PTPase inhibitors, Jurkat cell lines overexpressing Ick and the 

reconstitution of CD3-coupled PtdCho-PLD activity in streptolysin-O permeabilised
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Jurkat cells suggested that, although T cells contained G protein regulated PLD activity, 

coupling of the T cell receptor to PtdCho-PLD(s) is likely to be predominantly mediated 

by protein tyrosine kinase- and Ca^+-dependent mechanisms.

These characterisations of PLD activity in T cells therefore indicate that PtdCho- 

PLD may play a role in the TCR-mediated activation of T cells. However, investigation 

of PtdCho-PLD signalling in thymocytes found that crosslinking of the antigen receptors 

or incubation of thymocytes with the calcium ionophore ionomycin, stimuli which can 

induce apoptosis in these cells, led to the activation of PtdCho-PLD in these cells (M.M. 

Hamett and P. Reid, unpublished results). This indicates that PtdCho-PLD is unlikely to 

play a pivotal role in T cell activation, but may suggest that PtdCho-PLD is involved in 

cell cycle progression leading either to activation or activation-induced cell death.

3 , 3 . 2  Phospholipase D in B lymphocytes

Valentine et al. (1992) reported the involvement of phosphatidic acid and 

diacylglycerols in the sig-mediated activation of protein kinase C in human B 

lymphocytes (198). Crosslinking of sig on resting tonsillar B cells was found to induce 

production of PtdOH and DAG, accompanied by the translocation and activation of PKC. 

Interestingly, these authors reported that several proliferating B cell lines had reduced 

PKC activation following crosslinking of sIgM, compared to the level of activation 

observed in primary quiescent cells. This reduction in PKC activation correlated with the 

absence or reduced production of PtdOH or DAG following stimulation of the antigen 

receptor: PKC activation was only observed under conditions in which sIg crosslinking 

induced both PtdOH and DAG generation. These results may indicate desensitisation of 

DAG/ PtdOH production and PKC activation in proliferating cell.

In a related study, Valentine and coworkers (1992) reported that ligation of 

surface IgM activates a phospholipase D activity to form PtdOH (198). These findings 

may therefore indicate that the induction of PLD activity upon sig crosslinking is 

involved in the activation of PKC for the initiation, rather than the maintenance, of B ceU 

proliferation. Consistent with this, PLD stimulation was observed in [^H]butanol-
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labelled EBV-transformed human B cells upon stimulation with PMA, anti-Ig, or the 

calcium ionophore A23187 (199). This evidence supported the coupling the antigen 

receptors on human B cells to PLD activation.

These studies have demonstrated the existence of phospholipase D in 

lymphocytes and the coupling the antigen receptors to PLD activities in both B and T 

cells. It was therefore decided to investigate the role of PLD activity in B lymphocyte 

signalling and its coupling to B cell antigen receptors.

3 .4  Aims and objectives.

This investigation focused on the identification, characterisation and coupling of 

phospholipase D activities in murine B cells. In particular, the aims of this investigation 

were:

i) to identify and characterise phospholipase D activity(ies) in murine B cells

ii) to investigate the coupling of PLD to the antigen receptors and other receptors 

on murine B cells

iii) to determine the mechanism(s) of receptor-PLD coupling and the regulation of 

PLD activity in murine B cells

iv) to assess whether PLD(s) play a maturation stage-dependent role(s) in B cell 

biology.
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RESULTS

3 .5  Identification of PtdCho-PLD activity in murine B cells.

The initial aims of this study were to 1) identify PLD activity in murine B cells 

and 2) investigate the coupling of this activity to the antigen receptors on B cells. PtdCho- 

PLD activity is the most studied, and probably the easiest studied PLD activity, so the 

early experiments focused on the role of PtdCho-PLD in B cell activation.

3 . 5 . 1  Measurement of phospholipase D activity.

The most direct method for the detection of PLD activity is to measure the 

products of PLD-catalysed phospholipid hydrolysis: polar head groups and PtdOH 

(Figure 7). The generation of polar head groups such as choline and ethanolamine from 

their respective phospholipids can be taken as a fairly direct measure of PLD activity. 

However, PtdOH is readily interconverted with diacylglycerol (DAG) by the action of 

phosphatidate phosphohydrolase (PPH) and DAG kinase, thus complicating the 

interpretation of changes in the levels of these two second messengers. Fortunately, PLD 

activity can be definitively monitored using its ability to catalyse a transphosphatidylation 

reaction in the presence of a primary alcohol (Figure 9). This exchanges the headgroup of 

the phospholipid for the alcohol, generating phosphatidylalcohols which are relatively 

stable to degradation, and are not produced by any other mechanism in whole cells.

3.5.2 Analysis of B cell phospholipid labelling by [^Hlfatty acids.

Many phospholipid signalling assays, including the phospholipase D 

transphosphatidylation assay, involve the labelling of cellular phospholipids by 

incubation of cells with radiolabelled fatty acids. With a view to the design of PtdCho- 

specific assays, the relative labelling of different phospholipid species by specific fatty 

acids was investigated in murine B cells. Resting murine splenic B cells were incubated 

with [^HJpalmitate, [^HJmyristate, [^HJoleate or [^Hjarachidonate (1 pCi/ml) for 4 or 

18 hours, and [^H]-incorporation into PtdCho, Ptdlns, PtdEtn and PtdOH was
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determined (Figure 11). This study demonstrated that all four fatty acids used were 

preferentially incorporated into PtdCho which is the predominant fatty acid in B cell 

membranes. There was, however, low but significant incorporation of [^HJfatty acids 

into PtdEtn. In addition, both [^Hlpalmitate and arachidonate achieved a much 

higher degree of incorporation into cellular phospholipids than [^Hjmyristate or 

[^Hjoleate, indicating that these fatty acids would be most appropriate for studying the 

PLD-catalysed hydrolysis of PtdCho. [^H]palmitate was used in the majority of such 

experiments because it is considerably cheaper than [^H]arachidonate and because it had 

already been used by a number of researchers to study PtdCho-specific PLD in other 

cells.

3 . 5 . 3  PMA or pervanadate stimulate PtdCho-PLD activity in murine B 

cel ls.

In most cell types studied, activation of PtdCho-PLD has been observed 

following stimulation of cells with PMA, a pharmacological activator of PKC, and this 

was investigated in B lymphocytes. Stimulation of [^Hjpalmitate-labeUed resting murine 

B cells with PMA (0-500 ng/ml) in the presence of 0.3% butan-l-ol strongly stimulated 

[^HJPtdBut formation (Figure 12). Stimulation of [^Hjpalmitate-labelled B cells with 

PMA thus constitutes a reliable positive control for the induction of PtdCho-PLD activity 

and was used in all of the experiments described below. In addition, the tyrosine 

phosphatase inhibitor, pervanadate (pV) (0.5 mM) stimulated PtdCho-PLD activity in B 

cells, presumably via a PTK-dependent mechanism (Figure 12). Interestingly, incubation 

of B cells with saturating amounts of PMA (100 ng/ml) and pV (0.5 mM) led to the 

additive stimulation of [^HJPtdBut generation (Figure 12), indicating the activation of 

two distinct PtdCho-PLD activities under independent control.
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3 . 5 . 4  sig on murine B cells is not coupled to the activation of PtdCho- 

PLD.

The preliminary findings detailed above demonstrate the existence of PtdCho- 

PLD activities in murine B cells and support their regulation by PKC- and PTK- 

dependent mechanisms. Stimulation of B cells via the antigen receptor has been shown to 

induce tlie activation of several PKC isoforms and the tyrosine phosphorylation of target 

proteins (1, 24). These results, in conjunction with the findings in T lymphocytes, 

therefore suggested that PtdCho-PLD activation in B cells might be coupled to signalling 

through the antigen receptor. However, crosslinking of sig on [^HJpalmitate- or 

[^HJarachidonate-labelled resting murine splenic B cells, using a mitogenic concentration 

(50 pg/ml) of anti-Ig antibodies, did not stimulate the formation of [^H]PtdBut (Figure

13), under conditions in which PMA did activate PLD. [^HJpahnitate-labelled murine B 

cells were stimulated with anti-Ig (50 pg/ml) for periods of 15 sec - 60 min, but no 

activation of PtdCho-PLD was observed (data not shown). It was possible that antigen 

receptor coupling to PtdCho-PLD was desensitised by the high concentrations (50 pg/ml) 

of crosslinking antibodies used to mimic optimal stimulation (as in T lymphocytes), or 

that PtdCho-PLD could be differentially coupled tc the two sig isoforms present on the 

mature B lymphocyte: sIgM and sIgD. However, stimulaticn of [^Fljpalmitiite-labelled 

resting B cells with a range of anti-Ig concentrations (0.05-50g/ ml), or with anti- or anti- 

mAbs (50 pg/ml), did not stimulate PtdCho-PLD activity (Figure 13). Moreover, 

lipopolysaccharide (LPS) (50 pg/ml), which induces polyclonal B cell activation and 

proliferation, also failed to stimulate PtdCho-PLD activity (Figure 13). Similar results 

were obtained following stimulation of in vivo activated murine splenic B cells (Figure

14), and the human lymphoblastoid cells lines EDR (Figure 14), Daudi and Ramos 

(Figure 15). These investigations were made under conditions in which anti-Ig induced 

release of [^HJInsPs from [^H]inositol-labelled Daudi or Ramos cells (Figure 15), 

indicating that they were still responsive to stimulation via sig. Taken together, these 

findings suggest it is unlikely that (i) the antigen receptors on B cells are coupled to
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PtdCho-PLD in a cell cycle-dependent manner or (ii) PtdCho-PLD plays a role in the 

maintenance of antigen-driven B cell proliferation.

3 .5 .5  Analysis of PtdCho breakdown in lymphocytes.

Since it was rather surprising that sig, a calcium-mobilising receptor, was not 

found to be coupled to PtdCho-PLD under the above conditions, it was important to rule 

out the possibility that the absence of detectable [^HjPtdBut formation by B cells in 

response to stimulation with anti-Ig might be because [^HJpalmitate and 

[^H] arachidonate are not incoiporated into the appropriate pool of PtdCho. It was 

therefore decided to use other techniques to examine potential PtdCho hydrolysis. These 

techniques should also detect hydrolysis of PtdCho by phospholipase C as well as PLD 

(139, 140).

As discussed previously, the hydrolysis of PtdCho by PLD or PLC results in the 

release of the polar head groups choline (Cho) or choline phosphate (ChoP), respectively 

(Figure 7). Therefore, levels of Cho and ChoP were analysed by ion-exchange 

chromatography in [^HJmethylcholine-labelled murine splenic or human tonsillar B cells, 

stimulated with anti-Ig or PMA for 10 min. No significant changes in either [^HjCho or 

[^H]ChoP were observed in response to anti-Ig or PMA (data not shown). This was 

puzzling because PMA stimulates PtdCho-PLD activity in B cells, and should therefore 

induce the release of choline. Analysis of basal levels of Cho and ChoP revealed large 

cellular pools of both metabolites that were likely to prevent detection of the relatively 

small PLD- or PLC-mediated changes in Cho or ChoP concentrations. In an attempt to 

circumvent this problem, the intracellular and extracellular levels of [^H]Cho and 

[^HJChoP were analysed, using pulse-chased labelled B cells. However, no significant, 

reproducible changes were observed in the intracellular levels of [^HjCho or [^HjChoP 

(Figure 16) (although PMA did induce the formation of choline very weakly and 

inconsistently), and a rapid rise in the extracellular levels of both metabolites (Figure 16) 

in all samples (including control) perhaps indicated rapid non-specific metabolite release 

following addition of cells to the reaction vial. As no release of choline was detected upon
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stimulation of B cells with PMA these results suggest insufficient labelling by 

[^Hlmethylcholine of the hormone-sensitive pool of PtdCho.

To test this hypothesis Cho and ChoP levels were also determined in Jurkat cells - 

a proliferating human T leukemic cell line - as these cells should be labelled to equilibrium 

by incubation with [^Hlmethylcholine overnight. Stimulation of Jurkat cells with PMA 

has been shown to induce PtdCho-PLD activation, and should therefore induce the 

release of choline. However, as in murine and human primary B cells, no significant rise 

in either [^H]Cho or [^HJChoP was detected upon PMA stimulation, and high basal 

levels of both metabolites were observed (Figure 17). It was therefore concluded that the 

measurement of [^H]Cho and [^HJChoP levels by ion-exchange chromatography is not 

appropriate for the study of PtdCho hydrolysis in lymphocytes. This is probably because 

the hormone-sensitive pools of PtdCho label poorly with [^HJmethylcholine, leaving 

high intracellular pools of choline and choline phosphate. Similarly, PtdCho levels were 

then examined in [^2p]orthophosphate-labelled EDR human B cells, in an attempt to 

detect any agonist-mediated [^^P]PtdCho hydrolysis. Unfortunately, there was no 

detectable decrease in [^^PjPtdCho upon stimulation of EDR cells with anti-Ig or PMA 

(Figure 18).

PtdCho constitutes approximately 40% of the B cell membrane phospholipids and 

a large proportion of tis PtdCho is likely to be hormone-insensitive ; it thus appears likely 

that any PLD-catalysed hydrolysis of PtdCho in lymphocytes must be relatively small and 

cause undetectable changes in PtdCho levels - labelled via fatty acids, polar head groups 

or [^^P] orthopho sphate.

Thus, although the analyses of PtdCho hydrolysis were inconclusive, no 

evidence was found to support coupling of the antigen receptor to PtdCho-PLD activity in 

murine B cells. In addition to these findings, no evidence for the existence of PtdCho- 

PLC was detected in either [^HJmethylcholine- or [32p]orthophosphate-labelled B cells. 

However, although the lack of reproducibility in the ability to detect [^ETjcholine release 

upon cellular stimulation with PMA could perhaps indicate that the PLD activity measured
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in [^Hjpalmitate-labellcd cells is not a PtdCho-hydrolysing activity, this possibility is 

highly unlikely as the [% ]fatty acid labelling studies in B cells indicate that [^HJpalmitate 

is very preferentially incorporated into PtdCho. Furthermore, no hydrolysis of any other 

phospholipid has been detected upon stimulation of [^H]fatty acid- or 

[32p]Qrthophosphate-labelled murine B cells with PMA (data not shown), and the 

considerable evidence for the PMA-mediated induction of PtdCho-PLD in other cells, 

suggests that PMA very probably activates PtdCho-PLD in B cells.

3 .6  Investigation of non-PtdCho-hydrolysing phospholipase D in B 

ce lls .

3 .6 .1  The B cell antigen receptor is coupled to a non-PtdCho-specific 

PLD.

The findings detailed above indicate that the B cell antigen receptor is not coupled 

to PtdCho-PLD activity. However, in addition to PtdCho-specific PLD activity, both 

PtdEtn- and Ptdlns-hydolysing PLD activities have been identified in other cell types 

(152, 184,189,191, 192, 200-203). In order to determine whether the antigen receptors
:

on B cells were coupled to PLD activity, B cells were mitogenically stimulated in the 

presence of [^H]butan-l-ol (20 pCi/ml) to "trap" PtdBut products of all PLD activities, 

irrespective of phospholipid substrate specificity. Interestingly, under these conditions, 

stimulation of B cells with anti-Ig (50 pg/ml) was found to induce a rapid accumulation 

of [^H]PtdBut (Figure 19) which appeared to desensitise over a period of approximately 

10 min. In addition, PMA stimulation of B cells also resulted in the accumulation of 

[^HjPtdBut (Figure 19). Taken together with the data on [^Hjpalmitate-labelled B cells, 

these findings suggest that the antigen receptors on B cells are coupled to one or more 

non-PtdCho-hydrolysing PLD activities. Therefore, in an attempt to identify the substrate 

specificity of sig-coupled PLD, the hydrolysis of other phospholipids in B cells was 

investigated.
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3 . 6 . 2  Crosslinking of sig  does not induce hydrolysis of PtdEtn or release 

of ethanolamine.

Phosphatidylethanolamine (PtdEtn) is a substrate for PLD in several other cell 

types (184,189,191, 192, 200-203), and its possible role in B cells as a substrate for 

sig-coupled PLD was investigated. [^Hiethanolamine-labelled resting B cells were 

stimulated with anti-Ig (50 pg/ml) or PMA (100 ng/ml) for 5 min. However, no 

significant hydrolysis of [^HJPtdEtn was observed in response to either stimulus (Figure 

20). This was consistent with the findings in [^^Pjorthophosphate-labelled EDR human 

B cells, which showed no reduction in [32p]PtdEtn levels in response to stimulation with 

anti-Ig or PMA (data not shown). In addition, levels of [^HjEm and [^Hjethanolamine 

phosphate ([^HJEtnP) were determined by ion-exchange chromatography (Figure 20).

No release of either metabolite was detected upon stimulation of B cells with anti-Ig or 

PMA for up to 5 min. These results indicate that it is unlikely that PtdEtn is hydrolysed 

by PLD (or PLC) upon stimulation of B cells with anti-Ig or PMA.

3 . 6 . 3  Crosslinking of sig induces Ptdlns hydrolysis in murine B cells.

The PLD-catalysed hydrolysis of phosphatidylinositol has also been demonstrated 

in other cell types (152), and in order to investigate Ptdlns as a potential substrate for sig- 

coupled PLD, Ptdlns levels were analysed in stimulated murine B cells. Preliminary 

experiments using the radiolabelled fatty acids [^HJpalmitate, [%4] arachidonate, and 

stearate to label Ptdlns were unsuccessful (results not shown), probably due to a 

low level of fatty acid incorporation and combined with the low levels of inositol 

containing phospholipids in membranes (approximately 0.5% of the membrane 

phospholipid). Similar inconclusive results were obtained in cells in which Ptdlns was 

labelled with [^H]glycerol- or [32p]orthophosphate (results not shown). However, 

studies in [^Hjinositol-labelled cells demonstrated that anti-Ig antibodies (50 fxg/ml) 

induce a substantial hydrolysis of Ptdlns (Figure 21) in B cells. This finding indicates 

that Ptdlns is a potential candidate substrate for sig-coupled PLD activity.
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The identification of distinct phospholipase D activities within B cells is consistent 

with findings in other cell types. For example, Huang et al. demonstrated the existence of 

two, differentially regulated PLD activities in Madin-Darby canine kidney (MDCK) cells 

(152) a Ptdlns-specific PLD activated rapidly and transiently upon stimulation of the cells 

with bradykinin and a PtdCho-specific PLD activated in a more prolonged manner upon 

stimulation of the cells with phorbol ester. Our findings concerning PLD activity 

therefore suggest a situation in B cells which may be analogous to that found in MDCK 

cells.

3 ,7  Investigation of PtdCho-PLD coupling in the murine B cell.

The finding that B cell antigen receptors are not coupled to PtdCho-PLD was 

surprising considering the results obtained in murine T cells, and because most calcium 

mobilising receptors will activate PtdCho-PLD (128,129,145). However, these findings 

highlight a significant difference between signalling through the T and B cell receptors, as 

well as the possibility of investigating a novel role for PtdCho-PLD in B cells. In other 

cell types PtdCho-PLD has typically been implicated in positive and/ or mitogenic 

signalling events such as Bombesin stimulation of Swiss 3T3 cells and the induction of 

the respiratory burst in neutrophils (128, 129, 145). Thus, investigation of PtdCho-PLD 

coupling in B cells focused initially on positive immunostimuli which are co-stimulatory 

with the ligation of antigen receptors in the induction of B cell activation.

3.7.1 A role for PtdCho-PLD in T cell-dependent B cell activation?

Stimulation of B cells with anti-Ig antibodies alone is probably analogous to 

polyclonal activation of B cells by type-2 T cell-independent antigens (TI-2 Ag), which 

are generally large molecules of repeating epitopes capable of effectively crosslinking sig. 

However, the vast majority of soluble antigens are T cell-dependent and hence, both 

cytokine-directed (eg. IL-4) and B-T cell contact-mediated (eg. MHC class n, CD40) 

signals are required, in addition to those via the antigen receptors, for full B cell 

activation (1), It was therefore decided to determine whether sig, or any of these
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additionally recruited receptor-mediated signals, were coupled to PtdCho-PLD activity 

during T cell-dependent B cell activation.

The T cell-derived cytokine IL-4 augments the activation of B cells via the antigen 

receptor (1, 204). For instance, sub-mitogenic concentrations of anti-Ig will induce DNA 

synthesis if added to murine B cells in the presence of IL-4 (Figure 22). It was decided to 

investigate whether stimulation of cells with both anti-Ig and IL-4 would induce PtdCho- 

PLD activation. However, stimulation of murine B cells with IL-4 (1-lOOOU/ ml), either 

alone or in combination with anti-Ig (5 |ig/ ml), failed to induce PtdCho-PLD activation 

over a time period of 60 min (Figure 23), whereas PMA (100 ng/ ml) did activate PLD.

The generation of antibody secreting cells from resting B cells not only requires 

signalling through the antigen receptor, lymphokines and direct Th cell contact, but also 

requires these signals in the correct sequence for full activation. For example, Cambier 

and coworkers (72), investigating the role of B-T cell cooperation in B cell activation, 

showed that ligation of MHC Class II molecules on quiescent B cells by anti-la 

antibodies induces the production of cyclic AMP, and the sequestration of PKC in a 

detergent-insoluble compartment within the cell: these events appear to be antagonistic to 

B cell proliferation. However, cells which had been primed with anti-Ig and IL-4 (for 4

h), responded to MHC Class II ligation with the generation of inositol phosphates, 

calcium mobilisation and proliferation. The "priming" of B cells with specific stimuli can 

therefore lead to "rewiring" of the coupling of cell surface receptors to second messenger 

systems, and it was decided to address whether it was possible to induce coupling of 

PtdCho-PLD to a number of different stimuli through the priming of B cells. Firstly, B 

cells were incubated overnight with a number of stimuli which had already been 

investigated: anti-Ig (50 pg/ml), IL-4 (100 U/ml), anti-Ig (5 pg/ml) plus IL-4 (100 

U/ml), or LPS (50 jig/ml). Further stimulation of the primed cells with anti-Ig (50 

pg/ml), IL-4 (100 U/ml), anti-Ig (5 pg/ml) plus IL-4 (100 U/ml) or LPS (50 pg/ml), 

however, did not induce PtdCho-PLD activation (Figure 24), although activation of 

PtdCho-PLD was observed in all cases upon stimulation with PMA (100 ng/ml). 

Secondly, the coupling of Class II molecules to PtdCho-PLD activity was investigated in
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resting, in vivo activated, and primed cells: i) resting B cells were stimulated with anti- 

la^; ii) in vivo activated B cells were stimulated with anti-la*  ̂either alone or in 

combination with anti-Ig (50 pg/ml), IL-4 (100 U/ml) or anti-Ig (5 pg/ml) plus IL-4 (100 

U/ml); and iii) anti-Ig/ IL-4-primed B cells were stimulated with anti-la^ either alone or in 

combination with anti-Ig (50 pg/ml) or IL-4 (100 U/ml). In these experiments, the Class 

n  molecules on [^Hjpalmitate-labelled B cells were stimulated, either by crosslinking of 

biotinylated anti-la^ antibodies (anti-Ia<l mAb's 39-10-8 and 34,5-3, final conc. 1(X) 

pg/ml) by avidin (25 pg/ml) or by incubation on plates precoated with anti-la^ 

antibodies. No activation of PtdCho-PLD could be detected under any of these conditions 

(Figure 25), however, PLD activation was observed in all cases upon stimulation with 

PMA.

B-T cell cooperation is mediated through a number of B cell surface receptors and 

their T cell counterstructures, in addition to the interaction via MHC Class II molecules 

and the T cell receptor (1, 6,24, 205, 206), Ligation of MHC Class II molecules alone 

may therefore be insufficient to generate some of the signals which are induced in B cells 

by cognate B-T cell interaction, ie. the ligation of other receptors, or simultaneous 

recruitment of several receptors, may be required. One preliminary study examined 

CD40-coupled signalling events, including the possibility of CD40-mediated PtdCho- 

PLD activation. CD40 is a B cell surface receptor which is ligated by the CD40 ligand on 

T cells. It has been shown to play an essential role in the development of antibody- 

secreting plasma cells, and its crosslinking is found to promote B cell proliferation, 

prevent apoptosis of germinal-centre B cells and promote immunoglobulin class 

switching. However, stimulation of resting murine B cells (Figure 26) or the human B 

cell line, EDR (results not shown), with appropriate anti-CD40 antibodies did not induce 

PtdCho-PLD activation in these cells. It was then decided that if PtdCho-PLD in B cells 

were activated by T cell-dependent signals, this might require the simultaneous ligation of 

a number of B cell surface molecules, such as might be mediated by activated T cell 

membranes. Snow and coworkers had showed that incubation with fixed activated T cell 

blasts will induce cAMP production and changes in gene expression in B cells (205). It
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was therefore decided to study the effect of contact with intact fixed PHA-activated T 

cells on the activation of PtdCho-PLD in B cells. Resting B cells, or B cells primed with

anti-Ig (50 pg/ml), IL-4 (100 U/ml), or anti-Ig (5 M-g/ml) plus IL-4 (100 U/ml), were 

stimulated with PHA-primed T cell blasts in the presence or absence of IL-4 (lOOu/ ml). 

No activation of PtdCho by B-T cell contact was observed under conditions in which 

PMA (100 ng/ml) stimulated [^H]PtdBut production (Figure 27).

Finally, a preliminary study investigated the effects of various growth factors or 

hormones, or cytokines which are known to be involved in T cell-dependent B cell 

differentiation and/or proliferation and have been shown to activate PLD in other cell 

types (128, 149, 155, 165, 186, 200, 207-215). However, PDGF (50 ng/ml), LPA (1 

pM), IL-3 (25 or 250 U/ml), IL-13 (10 or 100 ng/ml), IL-10 (10 or 100 U/ml), IL-2 (20 

or 2000 U/ml), TNF-a (0.1 or 10 pg/ml) and IL-1 (0.1 or 1 pg/ml) failed to induce 

activation of PtdCho-PLD in [^HJpalmitate-labelled resting murine B cells, under 

conditions in which PMA (1(X) ng/ml) did (results not shown).

The above findings indicate that PtdCho-PLD signalling does not play a role in 

the T cell-dependent activation of B cells. Taken together with the data on antigen 

receptor coupling, this suggests that PtdCho-PLD does not play a role in either the 

initiation or maintenance of antigen-driven mature B cell proliferation.

3 . 7 . 2  PtdCho-PLD does not play a role in transducing apoptotic or 

anergic signals via the antigen receptor in immature B cells.

In contrast to mature cells, immature B cells respond to antigen by becoming 

anergic or undergoing apoptosis, presumably resulting in the unresponsiveness or 

deletion of autoreactive clones (87, 8 8 , 115). Thus, incubation of W EHI231 cells (a 

proliferating immature B cell line) with anti-Ig will induce growth arrest (Figure 28) and 

apoptosis. The biochemical mechanisms underlying the contrasting responses of mature 

and immature lymphocytes to antigen receptor crosslinking have yet to be elucidated, and 

it was decided to investigate the possibility that PtdCho-PLD is involved in tiie 

transduction of signals from sig on immature B cells under conditions which induce



apoptosis. However, ligation of the antigen receptors on [^Hjpahnitate-labeUed immature 

splenic (IS) B cells (4 week old mice) or WEHI 231 cells did not induce stimulation of 

PtdCho-PLD activity (Figure 29). In addition, no stimulation of PtdCho activity could be 

detected following stimulation of immature splenic B cells or WEHI 231 cells with LPS 

(Figure 29). PMA (100 ng/ml) induced PtdCho-PLD activation in both IS and WEHI 231 

B cells (Figure 29), indicating the expression and activation of PtdCho-PLD(s) in these 

cells.

The findings in both immature and mature B cells therefore indicate that PtdCho- 

PLD does not appear to play a role in the transduction of signals from the B cell antigen 

receptor or upon polyclonal B cell stimulation by LPS, Furthermore, PtdCho-PLD 

activity does not appear to be involved in the T cell-mediated activation of B cells. In 

view of these findings, it was decided to examine the coupling of PtdCho-PLD to other 

stimuli, including those which negatively modulate B cell activation and proliferation.

3 .7 .3  A role for PtdCho-PLD in the transduction of anti-proliferative 

signals in mature B cells.

Nucleotides act as intercellular messengers and exert a widespread influence on 

cellular function through a variety of cell surface receptors (216). ATP, which exerts its 

effects through P2 -purinoceptors, has been reported to exhibit immunomodulatory effects

on human B cell activation and proliferation (217-219). In view of these reports, the 

effect of ATP on murine B cell activation was examined, and it was found that ATP 

profoundly inhibits anti-Ig- and LPS-mediated DNA synthesis in resting murine B cells 

(Figure 30). P2 -purinoceptors regulate cellular function via G proteins and are coupled to 

PtdInsP2 -PLC and calcium mobilisation. P2 -purinoceptors have also been shown to be

coupled to PtdCho-PLD activation in a number of cell types (216, 220). It was therefore 

decided to investigate the coupling of P2 -purinoceptors to PtdCho-PLD in murine B

cells. Stimulation of [^H]palmitate-labelled murine resting splenic B cells with ATP (1.6 

nM-5 mM) induced generation of [^HjPtdBut (Figure 31), with maximal stimulation at 

200 pM ATP. Moreover, PMA appeared to stimulate PtdCho-PLD in an additive manner
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with both suboptimal and saturating concentrations of ATP (Figure 31). This indicates 

that PMA and ATP may induce the activation of distinct PtdCho-PLD activities.

The coupling of P2 -purinoceptors to PtdCho-PLD via G proteins was also

investigated in B cells. B cells were pretreated with pertussis toxin which catalyses the 

ADP-ribosylation of Gi-like G proteins, inactivating them. Interestingly, preheatment of 

resting murine B cells (Figure 32), or Ratnos and Daudi B cells (data not shown), with 

pertussis toxin led to an increased basal production of [^HjPtdBut, suggesting that 

PtdCho-PLD activity may normally be under the negative control of a Gi-coupled 

receptor on B cells (Figure 32). In addition to the elevated level of [^HJPtdBut generation 

resulting from pertussis toxin treatment, ATP further stimulated [^H]PtdBut in an 

additive manner (Figure 32), indicating the activation of two distinct PtdCho-PLD 

activities under independent control. This does not preclude G protein coupling of P2 - 

purinoceptors to PtdCho-PLD activation, as P2 -purinoceptors have been shown to be 

coupled to Gj, Gq or Gq-type G proteins (216), but appears to rule cut the involvement 

of pertussis toxin-sensitive G proteins, although they clearly play a role in the regulation 

of another, distinct PtdCho-PLD activity in B cells.

The involvement of protein tyrosine phosphorylation in P2 -purincceptor coupling

to PtdCho-PLD was also investigated. Pretreatment of murine B cells with the selective 

tyrosine kinase inhibitors, genistein and tyrphostin led to an increase in basal [^HJPtdBut
;

production, and to a greatly enhanced ATP-mediated signal (Figure 32). The findings are 

consistent with the existence of several, differentially regulated PtdCho-PLD activities

within murine B cells.

These data, together with the proliferation assay which showed that ATP inibits

DNA synthesis in B cells (Figure 30), suggest that, in murine B cells, PtdCho-PLD

activities may be involved in the transduction of negative signals which are antagonistic to 

Stimulation via the antigen receptor. To further examine this hypothesis, the effects of the 

lipid second messengers (LSMs) sphingosine, ceramide and arachidonate on B cell 

activation and cellular signalling, were examined. Sphingosine and ceramide are
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metabolites of the Sphingomyelinase cycle which have been found to play a role in
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growth arrest and the induction of apoptosis in a variety of cell types (221,222). Both 

have also been implicated in the regulation of phospholipase D activity (149,180,184- 

192). Arachidonate, which is generated upon the hydrolysis of phospholipids, 

predominantly PtdCho, by phospholipase A2 , has also been implicated in the

transduction of apoptotic signals via ceramide production in several cell types (61). 

Moreover, it has also been found to modulate the activity of a number of intracellular 

signalling elements, particularly protein kinase C (133). Ceramide, sphingosine and 

arachidonate, were indeed found to inhibit basal and anti-Ig-induced DNA synthesis in 

murine B cells (Figure 30), and thus, it was decided to investigate their effect on PtdCho- 

PLD activation. Incubation of [^HJpalmitate-labelled resting murine B cells with 

sphingosine or C2-ceramide (40 nM-25 pM) was found to induce significant production 

of [^HJPtdBut (max stimulation was observed at 40 nM ceramide, 200 nM sphingosine), 

whereas arachidonate (40 nM-25 |tM) induced only weak, but significant activation of 

PtdCho-PLD (Figure 33), perhaps reflecting its rapid turnover by cells. Interestingly, 

stimulation of B cells with both sphingosine (20 pM) and a saturating concentration of 

PMA (100 ng/ml), induced no activation of PtdCho-PLD above that induced by the PMA 

alone (Figure 21). This probably indicates that either both sphingosine and PMA induce 

activation of the same PtdCho-PLD enzyme, or that, in addition to stimulating at least one 

PtdCho-PLD, PMA is antagonistic to the sphingosine-mediated induction of PtdCho- 

PLD. These findings further support the hypothesis that a PtdCho-PLD activity or 

activities are involved in the transduction of negative, anti-proliferative signals in murine 

B lymphocytes.

I
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DISCUSSION

3 .8  The role of phospholipase D in B lymphocyte signalling.

One of the central problems yet to be resolved in B lymphocyte signalling is how 

the antigen receptors transduce differential signals in a maturation state-dependent 

manner. Whereas ligation of the antigen receptors on mature B cells can lead to 

proliferation and differentiation into antibody producing cells, the majority of immature B 

lymphocytes respond by becoming anergic or undergoing apoptosis (24). Many of the 

earliest signalling events detected following B cell receptor ligation appear to be similar in 

both mature and immature lymphocytes, suggesting that the antigen receptors on mature 

immunocompetent lymphocytes may be coupled to additional, as yet undefined, 

signalling pathways in order to transduce proliferative responses. Activation of 

phospholipase D isoforms, with the resultant generation of distinct PtdOH lipid second 

messengers, has been proposed to play a central role in the transduction of a variety of 

cellular responses including membrane trafficking, the respiratory burst, exocytosis and 

proliferation (128, 129,139, 140, 145). It was therefore decided to investigate the role of 

phospholipase D activities in mitogenic signalling of B lymphocytes via the antigen 

receptors.

The initial studies of PLD in B cells focused on a phosphatidylcholine- 

hydrolysing PLD activity, because PtdCho-PLD is the most common, the best 

characterised, and probably the easiest to study of the various PLD activities identified in 

numerous cell types (128, 129, 145). Moreover, the antigen receptors on T cells had 

already been reported to be coupled to PtdCho-PLD (146, 188, 196) (M.M, Harnett and 

P. Reid, unpublished results). Preliminary pharmacological studies demonstrated that one 

or more PtdCho-PLD pathways can be activated by stimulation of murine B cells with 

PMA or pervanadate (Figure 12), suggesting the regulation of PtdCho-PLD activity by 

tyrosine phosphorylation- and protein kinase C-dependent pathways. As the antigen 

receptors on B cells are coupled to both the tyrosine phosphorylation of target proteins
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and the activation of specific PKC isoforms, these findings indicated that PtdCho-PLD 

might well be activated via the antigen receptors on B cells. However, extensive 

investigation demonstrated that the antigen receptors on mature B cells are not coupled to 

PtdCho-PLD following mitogenic stimulation with anti-Ig antibodies (Figure 13). These 

findings were supported by studies on "m vivo"' activated murine B cells (Figure 14), and 

the human B cell lines, EDR (Figure 14), Ramos (Figure 15) and Daudi (Figure 15), 

which showed that the antigen receptors on these cells are also not coupled to PtdCho- 

PLD. Further work involved the stimulation of B cells under conditions designed to 

mimic T cell-dependent activation of B cells, and examined the possibility of "rewiring" 

receptor coupling to PtdCho-PLD by the priming of B cells with a number of stimuli 

known to induce B cell activation. However, these investigations failed to demonstrate 

any activation of PtdCho-PLD upon stimulation of resting B cells, or B cells, variously 

primed with anti-Ig, IL-4, LPS, or anti-MHC class II antibodies, either alone or in 

appropriate combinations (Figures 23-25). Furthermore, crosslinking of CD40 on resting 

B cells (Figure 26), or treatment of resting or primed B cells with fixed activated T cells 

also failed to induce activation of PtdCho-PLD (Figure 26). Taken together, these 

findings suggest that PtdCho-PLD does not play a role in either the initiation or the 

maintenance of antigen-driven B cell proliferation.

Studies in immature splenic B cells, and WEHI 231 immature B cells, 

demonstrated that sig is not coupled to PtdCho-PLD in immature B cells (Figure 29) and 

thus does not appear to transduce sig-directed apoptotic signals in these cells. Taken 

together with the findings in mature B cells, these findings therefore indicate that PtdCho- 

PLD is not involved in maturation state-dependent signalling from sig.

Contrasting with the reports on PtdCho-PLD activity in T lymphocytes, these 

findings highlight a potentially important difference between the signals generated via B 

and T cell antigen receptors, although the functional significance of this is not yet known. 

Thus, delineation of the precise details of the receptor coupling and regulation of specific 

PLD activities in B and T cells, might give into insight into the intracellular signals which



are required to be generated for activation of B and T cells, as well as die stimuli which 

are required to initiate them in a physiological immune response.

The investigation of phospholipase D in [^H] fatty acid-labelled murine B cells 

thus failed to demonstrate the coupling of B cell antigen receptors to PtdCho-PLD 

activity. However, studies using [^HJbutanol for the transphosphatidylation assay 

revealed that the antigen receptors on resting murine B cells are coupled to a non-PtdCho- 

specific PLD following mitogenic stimulation with anti-Ig antibodies (Figure 19). A 

similar PLD activity was recently reported to be coupled to mitogenic stimulation of the 

antigen receptors on EBV-transformed human B cells (199). Although the specificity of 

the sig-coupled PLD activity in murine B cells has not yet been defined, labelling studies 

have ruled out a role for a PtdEth-specific PLD (Figure 20) and suggest that Ptdlns may 

be the PLD substrate in murine B cells (Figure 21). A precedent for such a role for 

Ptdlns-PLD in cellular activation has been set by the report that Bradykinin similarly 

stimulates a rapid and transient Ptdlns-PLD response in Madin-Darby canine kidney 

(MDCK) cells (152). This is interesting because Bradykinin, which is a vasoactive 

peptide, has been shown to stimulate a number of intracellular signals in its target cells 

which are also generated via antigen receptors on lymphocytes, such as phosphoinositide 

hydrolysis and calcium mobilisation. Bradykinin has also been shown to stimulate PLA2 -

mediated arachidonate release, a signal which the investigation reported in Chapter 4 has 

shown to be stimulated by the crosslinking of antigen receptors on immature 

lymphocytes. These findings may therefore suggest similar mechanisms of receptor 

coupling to Ptdlns-PLD in B cells and MDCK cells.

The study in MDCK cells also reported the late (2 nun), sustained activation of 

PtdCho-PLD activity stimulation of these cells with Bradykinin, or PMA. Bradykinin 

thus induces the specific PLD-catalysed hydrolysis of PtdCho and Ptdlns in MDCK 

cells, suggesting the existence of two, differentially regulated bradykinin-coupled PLD 

activities within a single cell type. This possibility was confirmed by further work
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involving the use of cell-free PLD assay systems, which demonstrated that MDCK cells 

express two PLD subtypes, differing in a number of characteristics:

i) A PtdCho-PLD activity which was identified in cellular fractions representing 

the plasma membrane and nucleus, had no requirement for Ca^+, and was 

substantially enhanced by detergents such as Triton X-100;

ii) A Ptdlns-PLD activity located in the cytosol, which was activated by Ca^+ 

(optimal concentration IfxM), and was unaffected by detergent

These results prompt some interesting questions regarding the activation and 

functions of PLD activities in B and T lymphocytes. The studies of PtdCho-PLD 

signalling in lympocytes have already indicated that different signals are generated via the 

antigen receptors on B and T cells (ie. a putative Ptdlns-PLD in B cells, and PtdCho-PLD 

in T cells). However, it is possible that the antigen receptors on T cells are coupled to a 

PLD activity similar to the putative Ptdlns-PLD which is activated via antigen receptors 

on B cells. Although, a TCR-coupled Ptdlns-PLD activity might have been detected in 

the PLD studies involving [3^P]orthophosphate labelling of Jurkat T cells. The labelling 

studies described in section 3.5.2 suggest that Ptdlns-PLD would probably not be 

detectable in [^Hjpalmitate-labelled T cells. Moreover, the studies by Stewart and 

coworkers (188,196) did not indicate the sustrate specificity(ies) of the PLD activity(ies) 

which was activated by TCR crosslinking. Thus, T cell receptors could be differentially 

coupled to distinct PLD activities, in a manner analogous to Bradykinin stimulation of 

MDCK cells. This suggestion is somewhat speculative, however the identification of a 

non-PtdCho-PLD which is activated via the antigen receptors on B cells does raise the 

possibility that a Ptdlns-PLD may play a role in antigenic activation of T cells via the
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PtdCho-PLD has typically been found to be activated by mitogenic/ cell activating 

stimuli such TCR crosslinking (146, 188, 196) or stimulation of Swiss 3T3 fibroblasts 

with bombesin (223). However, this investigation has shown that ATP, and the lipid 

second messengers sphingosine and ceramide (and to a lesser extent arachidonate), which 

inhibit murine B cell activation (Figure 30), stimulate PtdCho-PLD activation in B cells 

(Figures 31-33). These findings therefore suggest that PtdCho-PLD(s) may play a role in 

transducing anti-proliferative signals via P2 -purinoceptors, and possibly other

immunomodulatory receptors, in mature, immunocompetent B cells. This appears to be 

the first report that PtdCho-PLD pathways may play a role in the negative regulation of 

cellular proliferation.

At present there is no definitive information regarding the regulation of the ATP- 

stimulated PtdCho-PLD, or indeed the sig-coupled non-PtdCho-PLD in B cells. 

However, the data on PtdCho-PLD regulation by pharmacologocial agents have 

highlighted some novel and interesting features of PtdCho-PLD regulation in B cells. 

Firstly, in apparent contrast to earlier studies reporting that pertussis toxin (167, 224) and 

tyrosine kinase inhibitors (225) inhibited agonist-stimulated PLD in neutrophils, 

fibroblasts and RBL cells, it was found that pretreatment of murine B cells with pertussis 

toxin (4h) and the tyrosine kinase selective inhibitors, genistein and tyrpho:;tin (1 h) 

stimulate both basal and ATP (enhanced in an additive manner)-stimulated PtdCho-PLD 

activity (Figure 32). It was also found that pertussis toxin pretreatment stimaJates basal 

PtdCho-PLD activity in Daudi and Ramos B cells (results not shown) suggesting that, in 

B cells, PtdCho-PLD may be subject to negative control in a manner analogous to the 

receptor/Gi-mediated supression of cAMP levels observed in many cell types.

The finding that the antigen receptors on B cells are not coupled to PtdCho-PLD 

was initially rather surprising as (i) many of the receptors known to couple to PtdCho- 

PLD are, like the antigen receptors, calcium-mobilising receptors and capable of 

transducing mitogenic signals (128, 129) and (ii) in common with many studies on a 

wide range of cell types (128,163, 226), PMA (presumably acting via PKC) and the 

tyrosine kinase inhibitor, pV stimulate one or more PtdCho-PLD activities in B cells.
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results which, at first sight, are perhaps inconsistent with sig-coupling to PTK and PKC, 

but not PtdCho-PLD activation following mitogenic stimulation of B cells via the antigen 

receptors (24, 25, 34). However, since the data also suggest that PtdCho-PLD activity in 

B cells is likely to be under the negative control of a Gi-like G-protein and/or tyrosine 

kinase-mediated signals (Figure 32), regulatory elements which are rapidly activated 

following ligation of the antigen receptors on B cells (24, 25,34,48), these perhaps 

unexpected results presumably reflect the complex crosstalk between particular Gi-like G- 

proteins, src-related PTKs, PKC isoforms and PtdCho-PLD activities expressed in B 

cells. Taken together with the findings that ATP, sphingosine and ceramide, reagents 

which can all inhibit sig-mediated DNA synthesis (Figure 30), can also stimulate 

PtdCho-PLD activity (Figures. 31-33), these data suggest that PtdCho-PLD may be 

deleterious for slg-driven B cell activation and that antigen receptor-coupled G-protein 

and/or tyrosine kinase-mediated signals may indeed act to suppress PtdCho-PLD activity.

The immunoregulatory role of P2 -purinoceptors on B cells is, at present, unclear 

but it is well established that ATP suppresses lymphocyte cytoxicity and proliferation 

(217-219). A possible role for the response of B cells to exogenous ATP is suggested by 

the physiological sources of extracellular nucleotides which include damaged cells, as 

well as platelets, endothelial cells and neurons (216). Damaged, necrotic or apoptotic 

cells could release their internal components into the extracellular space, and this could 

result in the recognition of these antigens by B cells expressing the appropriate antigen 

receptors. The existence of mature B cells expressing antigen receptors which would 

recognise such self antigens is possible because immature B lymphocytes might not 

encounter such intracellular self proteins during the maturation stage involving induction 

of anergy and deletion of autoreactive lymphocyte clones, and these B cells might 

therefore survive and mature. The release of intracellular proteins into the extracellular 

space could therefore result in the generation of an B cell autoimmune response. The 

binding of released ATP to purinoceptors on B cells might therefore constitute an
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important signal for the suppression of B cell responses to autoantigens upon their release 

from damaged cells.

Previous studies have demonstrated that ATP-specific P2 Z receptors are 

expressed on human B cells and coupled to PtdInsP2 -PLC and mobilisation of calcium 

(227). In addition, ATP-stimulation of P2 “Purinoceptors has also been shown to induce 

the expression of c-fos^ c-myc, and the DL-2R and transferrin receptors in human B cells 

(227). However, since sig is coupled to the generation of similar signals in B cells these 

data suggested that the anti-proliferative effects of ATP were likely to be due to additional 

transduction events. Interestingly, P2 -purinoceptors have been shown to be additionally

coupled to PtdCho-PLD in a number of cell types (216,220). This study has 

demonstrated that ATP stimulates PtdCho-PLD in murine B cells and that such coupling 

of the P2  purinoceptors to PtdCho-PLD may, at least in part, provide a biochemical role

for the transduction of ATP-mediated anti-proliferative signals in murine B cells.

Interestingly, lipid second messengers, such as sphingosine and ceramide, which 

can inhibit murine B cell activation, also stimulate PtdCho-PLD activation (Figure 33). In 

contrast to these results, it had previously been reported that sphingosine, when used as 

an inhibitor of PKC, could block agonist-stimulated PtdCho-PLD in a number of cell 

types (128) and that the antiproliferative effects of ceramide may be due, at least in part, 

to the supression of PtdCho-PLD activation stimulated by mitogens or growth factors in 

fibroblast cells (180, 190, 193). However, these apparent discrepancies may be quite 

simply resolved as (i) in these earlier studies, cells had been pretreated for 2-24 h with 

much higher concentrations of ceramide (5-50 |uM) and these results may simply reflect 

that such pretreatment inhibits PLD. Alternatively, since these pretreatments were carried 

out in the absence of primary alcohols, they may mask ceramide-mediated activation and 

subsequent desensitisation of PLD which would therefore occur without the resultant 

early accumulation of trapped [^HJphosphatidylalcohol; ii) ceramide has also been
■i

proposed to target PKCÇ (221), a PKC isoform which is expressed (49, 228) and may
'

stimulate PtdCho-PLD in B cells and iii) in addition to the studies reporting that

i
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sphingosine blocks agonist-stimulated PLD activity (128), sphingosine has also been 

shown to stimulate PLD activity in neutrophils [eg. (190)]: however, at present it is not 

clear whether these stimulatory effects are due to sphingosine or conversion to 

sphingosine-1-phosphate, a hpid second messenger which has previously been shown to 

stimulate PLD activity in fibroblasts (229).

The mechanisms underlying the contrasting biological responses to activation of 

PLD isoforms in B cells (and other cell types) are currently unknown. However, the 

studies outlined above highlight recent findings that PtdCho- and Ptdlns-specific PLD 

activities generate distinct PtdOH species (differing in their fatty acid composition) in 

different cellular compartments and with potentially differential downstream effector 

mechanisms. For example, only the steroyl-arachidonyl- species of PtdOH has been 

shown to prolong Ras activation by inhibiting the conversion of activated GTP-bound 

Ras to its inactive GDP-bound form by stimulating GTPase inhibiting protein (GIP) and 

inhibiting GTPase activating protein (GAP)(128, 129, 139, 140, 145, 154-156, 158- 

161, 168, 176, 230, 231) (119, 120, 123, 124, 133-135, 137-140, 142, 156, 213,

214). This may provide a biochemical rationale for the observations that whilst the 

putative Ptdlns-PLD plays a role in mitogenic signalling in B cells, PtdCho-speciflc 

PLD(s) may be involved in the transduction of anti-proHferative signals via P2- 

purinoceptors, and possibly other immunomodulatory receptors, in mature, 

immunocompetent B cells.

3 .9  S um m ary .

This investigation has identified multiple differentially-regulated PLD activities 

which may play key roles in mediating the transduction of mitogenic and antiproliferative 

signals in B cells:
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i) pharmacological studies identified multiple PtdCho-PLD activities in B cells: 

these PtdCho-PLD activitites were regulated by PKC-, tyrosine phosphorylation- 

and G protein-dependent mechanisms.

ii) anti-Ig antibodies do not induce activation of PtdCho-PLD in mature or 

immature B cells indicating that the BCR is not coupled to PtdCho-PLD in these 

cells. However, further investigation identified an as yet undefined PLD activity 

which could be stimulated via sIg on B cells. Phospholipid labelling studies 

indicated that this could be a Ptdlns-specific PLD activity.

iii) stimulation of B cells with a number of stimuli to mimic T cell-dependent B 

cell activation failed to activate PtdCho-PLD.

iv) stimulation of B cells with ATP, presumably via P2-purinoceptors, stimulated 

PtdCho-PLD activation. As ATP has been found to suppress B cell proliferation, 

this suggests that a PtdCho-PLD activity (ies) could be involved in the 

transduction of negative, anti-proliferative signals in B lymphocytes.

v) further investigation of a role for PtdCho-PLD in negative signalling in B cells 

found that the lipid second messengers sphingosine and ceramide, which are 

implicated in the regulation of apoptosis in many cell types, induced the activation 

of PtdCho-PLD in B cells. Arachidonate, a hpid second messenger implicated in 

the regulation of both mitogenesis and apoptosis, also induced significant, but 

weak activation of PtdCho-PLD.

In conclusion, these results indicated that PtdCho-PLD is not involved in the 

transduction of signals regulating the initiation or maintenance of antigen-driven B cell 

proliferative responses, has implicated a role for PtdCho-PLD in the negative modulation
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of B cell activation. In contrast, a putative Ptdlns-PLD activity has been identified which 

may mediate the sig-dependent activation of intracellular signalling elements such as Ras.

3 .10  Future Perspectives.

Further investigation of the receptor-coupling of PLD enzymes in B cells will give 

a better indication of the precise role of these activities in the generation of downstream 

events and the regulation of B lymphocyte activation. There are a number of methods by 

which this coupling could be investigated:

i) butanol could be used to further examine the mechanisms (ie. G protein, 

Ptdlns, etc) by which sig couple to the putative Ptdlns-PLD activity in B cells. 

Knowledge of the regulation of this PLD activity, and comparison with reports on 

PLD enzymes from other systems, might give clues as to its identity in terms of 

substrate specificity and subcellular localisation.

ii) The species of PtdOH generated by the stimulation of B cells with different 

agonists or pharmacological agents can be analysed. The particular species of 

PtdOH formed can be determined by the preparation and separation of 

dinitrobenzoylated derivatives of PtdOHs by reverse phase HPLC and analysis by 

GLC/ mass spectroscopy. Comparison with acyl chains of phospholipids should 

definitively identify the lipid source of receptor coupled PtdOH formation. This 

work is currently being carried out in collaboration with M. Wakelara, 

Birmingham.

iii) the activation of specific PKC isoforms can also be analysed, in order to give 

clues as to the specific PtdOH signals required for the activation of PKC 

enzymes, and also for the identification of PKC isoforms which may be activated 

downstream of PLD activities. This can be achieved by assessing
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autophosphorylation of PKC isoform-specific immunoprecipitates (isoform 

specific antibodies are available).

v) the role of GTP-binding proteins in the regulation of PLD activity in B cells 

could be further investigated by the addition of recombinant ARP and Rho to 

permeabilised B cells.

iv) the potential physiological role of ceramides and sphingosine in the regulation 

of PtdCho-PLD and the transduction of receptor-mediated signals could be 

investigated by determining whether the generation of these lipid second 

messengers is stimulated by signals which also activate PtdCho-PLD.

iv) P^-purinoceptors typically couple to downstream effectors via heterotrimeric 

G proteins. A role for pertussis toxin-sensitive (Gi-like) proteins in the coupling 

of P2“puiinoceptors to PtdCho-PLD has already been exluded. P2 -purinoceptor- 

PLD coupling could be further investigated by examining the sensitivity of ATP 

stimulation of PtdCho-PLD to cholera toxin, which would indicate whether it is 

regulated by a Ga-like protein or not. However, the failure of cholera toxin to

block the ATP stimulation of PtdCho-PLD would not exclude the possibility that 

P2-purinoceptors are coupled to PtdCho-PLD via a Gq-like protein. This could be

investigated by incubating permeabilised B cells with anti-Gq antibodies to block 

any coupling prior to stimulation with ATP.

I
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Figure 11. [^HJFatty acids are preferentially incorporated into PtdCho in 

murine B cells. Murine splenic B cells were incubated with [^H] arachidonate, 

[^HJoleate, [^HJmyristate, or [^Hjpalmitate for (A) 4 or (B) 18 hours and the 

incorporation of these [^H]fatty acids into phospholipids was measured by tic analysis as 

described in the "Materials and Methods" section. The results are expressed as means 

where n=3.

I

■]
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Figure 12. P tdCho-PLD  is activated  by stim ulation of B cells with PMA 

or pervanadate. Murine B cells, pie-labelled with [^Hjpalmitate, were stimulated, in 

panel A: with PMA (0-500ng/ml); or in panel B: with pervanadate (pV; 0.5 mM), PMA 

(100 ng/ml), or pV (0.5 mM) plus PMA (100 ng/ml), for 30 min. [^HJPtdBut was 

measured using tic analysis as described in the methods section. The results are 

expressed as means ± SD, n=3.
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analysis as described in the methods section. The results are expressed as means ± SD 

from single representative experiments where n-3.

Figure 13. The antigen receptors on murine B cells are not coupled to 

PtdCho-PLD. In panel A: murine B cells, prelabelled with [^HIarachidonate or 

[^Hjpalmitate, were stimulated with anti-Ig (50 M-g/ml) or PMA (100 ng/ml); in panels B 

and C: [^HJpalmitate-labelled B ceUs were stimulated (panel B) with anti-Ig (50 pg/ml), 

anti-IgM (50 pg/ml), anti-IgD (50 pg/ml), LPS (50 pg/ml) or PMA (100 ng/ml); or 

(panel C) with anti-Ig (0.05-50 pg/ml) or PMA (100 ng/ml). Cells were stimulated for 30 

min at 37C in the presence of 0.3% butanol and [^HJPtdBut was measured using tic
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Figure 14. Crosslinking of sig on in vivo activated murine B cells or EDR 

human B cells does not induce activation of PtdCho-PLD. Panel A: in vivo 

activated murine splenic B cells were pre-labelled with [^H]palmitate and stimulated with 

anti-Ig (50 |ig/ml) or PMA (1(X) ng/ml) for 30 min. Panel B: EDR cells were pre-labelled 

with [^H]palmitate overnight and stimulated with anti-Ig (5 or 50 pg/ml), LPS (50 

pg/ml), or PMA (100 ng/ml) for 30 min. [^HjPtdBut was measured as described in 

"Materials and Methods". The results are expressed as means ± SD, n=3.

1 1 0



PMA

Anti-Ig

Control

Anti-Ig

Control

[•^HJPtdBut (dpm)

% IP's released

PMA

Anti-Ig

Control

1500

^HjPtdBut (dpm)

Anti-Ig

Control

1 2

% IP’s released



Figure 15. P roduction  of inositol phosphates, bu t not PtdCho-PLD  

activation, is induced by crosslinking of the antigen receptors on Ramos 

and Daudi hum an B cells. In panels A and B Ramos B cells were labelled with 

[^mpalmitate (panel A) or [^Hlinositol (panel J5), and stimulated (panel A) with anti-Ig 

(25 M-g/ml) or PMA (1(X) ng/ml); or (panel B) with anti-Ig (25 P-g/ml); for 30 min. In 

panel C andD Daudi B cells were labelled with [^Hjpalmitate (panel A) or [^H]inositol 

(panel B), and stimulated (panel A) with anti-Ig (25 pg/ml) or PMA (100 ng/ml); or 

(panel B) with anti-Ig (25 pg/ml); for 30 min. [^HjPtdBut, or [^H]inositol phosphates, 

were measured as described in "Materials and Methods". The results are expressed as 

means ± SD, n=3.
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Figure 16. Intracellular and extracellular levels of choline and choline

phosphate in m urine B cells. Resting murine splenic B cells were labelled with 

[^Hjmethylcholine for 4 h and stimulated with anti-Ig (50 pg/ml) or PMA (100 ng/ml) 

for up to 5 min. Reactions were terminated and samples separated into intracellular and 

extracellular fractions as described in Materials and Methods. [^H]Cho and [^H]ChoP 

were then separated and measured to give intracellular and extracellular [^H]Cho (panels 

A and B, respectively), and intracellular and extracellular [^HjChoP (panels C and D, 

respectively). The results are expressed as means ± SD, n=3.
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Figure 17. Total choline and choline phosphate levels in Ju rk a t hum an T 

cells. Jurkat cells were pre-labelled with [^H]methylcholine overnight and stimulated

with PMA (lOOng/ml) for up to 20 min. [^H]Cho (panel A) and [3H]ChoP (panel B) i
i

were separated and measured as described in Materials and Methods. The results are |
I

expressed as means ± SD, n=3.
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Figure 18. Measurement of PtdCho levels in stimulated EDR human B 

cells. EDR human B cells were pie-labelled with [^^P]orthophosphate overnight and 

stimulated with anti-Ig (50 pg/ml) or PMA (1(X) ng/ml) for 1, 5, or 15 min. 

Phospholipids were then separated by tic and [^^P]PtdCho levels determined as 

described under "Materials and Methods". The data are expressed as means ± SD, n=3.
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Figure 19. The antigen receptors on m urine B cells a re  coupled to PLD 

activation. Murine splenic B cells were incubated with [^HJbutan-l-ol (20 |LiCi/ml) and 

stimulated with anti-Ig (50 |xg/ml) for the indicated time, or with PMA (100 ng/ml) for 10 

min. [^HJPtdBut measured using tic analysis as described under "Materials and 

Methods". The data are expressed as means ±  SD, n=3.
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Figure 20. PMA stim ulation o r sig  crosslinking on m urine B cells does 

not induce hydrolysis of PtdE tn. Resting murine splenic B cells were pre-labelled 

with [^HJethanolamine for 4 h and stimulated with anti-Ig (50 p-g/ml) or PMA (1(30 

ng/ml) for the indicated time. [^H]PtdEtn levels (panel A), or [^HQEtn and [^H]PEtn 

levels (panels B and C, respectively) were then determined as described in Materials and 

Methods. The results are expressed as means ± SD, n=3.
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Figure 21. The antigen receptors on m urine B cells a re  coupled to 

phosphatidylinositol breakdown. B cells were radiolabelled with [^HJinositol and 

stimulated with anti-Ig (50 pg/ml) for 10 min. [^HJPtdlns hydrolysis was measured as 

described in the methods section. The data are expressed as means ± SD, n=3.
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Figure 22. Anti-Ig, LPS or anti-Ig plus IL-4 induce DNA synthesis in 

m urine B cells. Murine B cells (lO^/ml) were cultured in the presence of anti-Ig (50 

P-g/ml), LPS (50 p-g/ml), or anti-Ig (5 p.g/ml) plus IL-4 (lO-KXX) U/ml) and

thymidine uptake determined after 72 h as described in the methods section: data are 

presented as means ± SD, n=3.
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Figure 23. The IL-4 receptors on m urine B cells are  not coupled to 

PtdC ho-PLD  when ligated w ith rIL -4 alone, o r following crosstalk with 

sig-derived signals. Murine splenic B cells were pre-labelled with [^HJpalmitate for 

4 h and stimulated, in panel A, with anti-Ig (5 pg/ml), IL-4 (100 U/ml), anti-Ig (5 

|ag/ml) plus IL-4 (100 U/ml), or PMA (100 ng/ml) for 30 min; or in panel B with anti-Ig 

(5 pg/ml) plus EL-4 (100 U/ml) for 30 sec, 1, 5 or 10 min, or PMA (100 ng/ml) for 10 

min. [^HJPtdBut was measured as described in the "Materials and Methods" section. The 

results are expressed as means ± SD, n=3.
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Figure 24. "Prim ing" of B cells with a  variety of stim uli does not appear 

to a lter coupling of PtdCho-PLD. Resting murine B cells were pre-labelled with 

[^KQpalmitate and concurrently pre-incubated with anti-Ig (50 |Xg/ml), EL-4 (100 U/ml), 

anti-Ig (5 pg/ml) plus IL-4 (100 U/ml), or LPS (50 pg/ml) overnight. Primed cells were 

then stimulated with anti-Ig (50 |ig/ml), IL-4 (100 U/ml), anti-Ig (5 pg/ml) plus IL-4 

(100 U/ml), LPS (50 pg/ml), or PMA (100 ng/ml), for 30 min. [^HJPtdBut was 

measured as described in the "Materials and Methods" section. The results are expressed 

as means ± SD, n=3.
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Figure 25. C rosslinking of M HC class II  molecules does not activate 

PtdCho-PLD in B cells. In panel A: resting murine splenic B cells were pre-labelled 

with [^Hjpalmitate for 4 hours and stimulated with biotinylated anti-la (100 |ig/ml) 

(before crosslinking with avidin) or PMA (1(X) ng/ml), for 30 min. In panel B: in vivo 

activated murine splenic B cells were pre-labelled with [^Hlpalmitate for 4 hours and 

stimulated with biotinylated anti-la (1 0 0  |ig/ml) (before crosslinking with avidin) in the 

presence or absence of anti-Ig (50 p.g/ml), IL-4 (100 U/ml) or anti-Ig (5 pg/ml) plus IL-4 

(100 U/ml), or with PMA (100 ng/ml), for 30 min. In panel C: resting murine B cells 

were pre-labelled with [^Hjpalmitate and concurrently incubated with anti-Ig (5 pg/ml) 

plus IL-4 (100 U/ml) overnight. They were then stimulated with biotinylated anti-la (100 

|ig/ml) (before reaction initiated by crosslinking with avidin) in the presence or absence 

of anti-Ig (50 pg/ml) or IL-4 (100 U/ml), or with PMA (100 ng/ml), for 30 min. 

[3H]PtdBut was measured as described in the methods section. The results are 

expressed as means ± SD, n=3.
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Figure 26. C rosslinking of CD40 does not activate PtdC ho-PLD  in m urine 

B cells. Resting murine B cells were pre-labelled with [^HJpalmitate for 4 h and 

stimulated with anti-CD40 antibody (FGK-45) (10 p-g/ml) or PMA for 30 min. 

[^HJPtdBut was measured as described in the methods section. The results are 

expressed as means ± SD, n=3.
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Figure 27. Contact with activated T cells does not activate PtdCho-PLD  in 

B cells. In panel A: resting murine B cells were prelabelled with [^Hjpalmitate for 4 h; 

in panel B: resting murine B ceUs were pre-labelled with [^Hlpalmitate and concurrently 

incubated with anti-Ig (50 p.g/ml), IL-4 (1(X) U/ml), or anti-Ig (5 |ig/ml) plus IL-4 (1(X) 

U/ml), overnight. B cells were then stimulated with PHA-blasts (10? cells/ml) in the 

presence or absence of IL-4 (100 U/ml), or PMA (100 ng/ml), for 30 min. [^HjPtdBut 

was measured as described in the methods section. The results are expressed as means ± 

SD, n=3.
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Figure 28. C rosslinking of sIg on W EH I 231 im m ature B cells induces 

growth arrest, WEHI 231 cells (2.5 x 10^/ml) were cultured in the presence of anti-Ig 

(50 pg/ml - 50 |ig/ml). [^H]thymidine uptake was determined after 72 h as described in 

the methods section. Data are presented as means ± SD, n-3.
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Figure 29. The antigen receptors on immature B cells and the WEHI 231 

immature B cell lymphoma cell line are not coupled to PtdCho-PLD. In

panels A and B: murine splenic B cells from 4 week old mice were pre-labelled with 

[^H]palmitate for 4 h and stimulated (in panel A) with anti-Ig (0.5 pg/ml), anti-IgM (0.5 

pg/ml), anti-IgD (0.5 pg/ml), LPS (50 pg/ml) or PMA (100 ng/ml); or (m panel B) with 

anti-Ig (50 pg/ml), anti-IgM (50 pg/ml), anti-IgD (50 pg/ml), or PMA (100 ng/ml) for 30 

min. In panel C: WEHI 231 cells were pre-labelled with [^H]palmitate for 16 h and then 

stimulated with anti-Ig (0.5 or 50 pg/ml), LPS (50 pg/ml), or PMA (100 ng/ml) for 30 

min. [^H]PtdBut was measured as described under "Materials and Methods". The results 

ate expressed as means ± SEM.
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Figure 30. ATP, sphingosine, ceram ide and arach idonate  have inhibitory  

effects on slg-m ediated DNA synthesis in B cells. Murine B cells ( 5 x 

10^/ml) were cultured in the presence of: panel A: anti-Ig (50 p-g/ml), LPS (50 pg/ml), 

ATP (0.2 mM), anti-Ig (50 pg/ml) plus ATP (0.2 mM), or LPS (50 pg/ml) plus ATP 

(0.2 mM); panel B: anti-Ig (50 pg/ml), LPS (50 pg/ml), sphingosine (20 pM) ± anti-Ig 

(50 pg/ml) or LPS (50 pg/ml), or ceramide (20 pM) ± anti-Ig (50 pg/ml) or LPS (50 

pg/ml); panel C: murine B cells ( 10^/ml) were cultured in the presence of arachidonate 

(20 pM), anti-Ig (50 pg/ml), or arachidonate (20 pM) plus anti-Ig (50 pg/ml).

thymidine uptake was determined after 72 h as described in the methods section. 

Data are presented as means ± SD, n=3.
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Figure 31. ATP induces PtdCho-PLD  activation in m urine B cells. In panel 

A: murine B cells were prelabelled with [^H]palmitate and stimulated with ATP (2 pM-5 

fO-M) +/- PMA (100 ng/ml) for 30 min. In panel B: stimulation of B cells with ATP (2 

p.M-5 |iM) is represented on a more appropriate scale. [^HJPtdBut was measured as 

described in "Materials and Methods". The data are expressed as means ± SD, n=3.
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Figure 32. Analysis of coupling of P2-purinoceptors to P tdCho-PLD  in 

murine B cells. In panel A: B cells were prelabelled with [^HJpalmitate in the presence 

or absence of pertussis toxin (1 pg/ml) for 4 h and stimulated with ATP (1 pM) for 30 

min; control cells were also treated with PMA (100 ng/ml). In panel B: B cells were 

pretreated with medium, genistein (0.5 pM) or tyrphostin (0.1 pM) for the final hour of 

[^Hjpalmitate-labelling (4 h), and stimulated with ATP (1 pM) for 30 min; control cells 

were also treated with PMA (100 ng/ml). In panel C: B cells were pre-labelled with 

[^HJpalmitate for 4 h and stimulated with pV (0.5 or 5 pM) ± ATP (1 pM) for 30 min. 

[^HjPtdBut was measured as described in "Materials and Methods". The results are 

expressed as means + SD, n=3.
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Figure 33. Sphingosine and  C eram ide induce activation of P tdCho-PLD  in 

m urine B cells. Resting murine B cells wem pre-labelled with [^H]palmitate and 

stimulated with: panel A: sphingosine (40 nM-25 pM), C2-ceramide (40 nM-25 pM) or 

arachidonate (40 nM-25 pM) for 30 min; panel B: sphingosine (25 pM), PMA (100 

ng/ml) or sphingosine (25 pM) plus PMA (100 ng/ml) for 30 min. [^H]PtdBut was 

measured as described in 'Materials and Methods". The results are expressed as means ± 

SD, n=3.
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4 Investigation of the role of cytosolic phospholipase in

lymphoycte signalling.

Phosphatidylcholine (PtdCho) is hydrolysed by PLA2  in response to a wide

range of growth factors and mitogens (143, 232, 233). Agonist-induced PtdCho 

hydrolysis by phospholipase A2  generates lyso-PtdCho (LPC) and a fatty acid (usually

arachidonate). Although little is known about the functions of LPC, it may augment the 

activation of PKC by DAG, whereas arachidonate has a well-established role as a 

precursor for the intercellular inflammatory mediators, eicosanoids. In addition, 

arachidonate (as well as other fatty acids) has been increasingly recognised as a potential 

lipid second messenger. Indeed, arachidonate has been shown to be a co-mitogen for 

Swiss 3T3 cells (143) and has been implicated in the regulation of a number of signal 

transducing elements, including PLC-y, sphingomyelinase, p21ras GAP and certain PKC 

isoforms such as PKC-a, -p and -y (143, 232, 234). These findings suggested that the 

generation of arachidonate by phospholipase A2  could play a role in antigen receptor- 

mediated signals in lymphocyte proliferation and differentiation.

4.1 The properties of PLA 2  enzymes.

Phospholipase A2 -mediated hydrolysis of PtdCho and release of arachidonate

appears to be important both for the transduction of intracellular signals and the 

production of intercellular inflammatory mediators (127,128). In addition, PLA2

enzymes may also play a role in phospholipid digestion and metabolism (235). Two main 

classes of PLA2  have been identified. These have no apparent sequence homology and

differ significantly in other properties:

i) a family of "secretory" PLA2 S (sPLA2 s) of Mr approximately 14 kDa (235). 

These enzymes were originally identified as extracellular enzymes, but have 

increasingly been found in non-secretory locations, such as rat liver
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mitochondria. sPLA^s require millimolar concentrations of Ca^+ for full activity, 

a finding consistent with the proposal that sPLA^ enzymes function mainly in the 

extracellular space.

ii) cytoplasmic PLA2 S (cPLA2 s) are predicted to have a molecular weight of 85 

kDa (233, 235-237). These enzymes, however, migrate with an apparent Mr of 

100-110 kDa on SDS-PAGE: this anomalous migration has been proposed to be 

due to proline-rich regions in the protein. cPLA2 S are found to be active at

micromolar Câ **" concentrations and are resistant to disulphide reducing agents, 

such as dithiothreitol, properties consistent with activity in the low-[Ca2+], 

reducing environment of the cytosol (128,235).

Another key difference between the two classes of PLA2  activity is that sPLA2 S

are not selective for any particular fatty acid species at the sn-2  position of the 

phospholipid substrate, whereas CPLA2  enzymes exhibit a high degree of selectivity for 

specific acyl chains at the sn-2  position (235). Until recently cPLA2  has always been

considered to be specific for arachidonate: however, a recent report has suggested there 

may be CPLA2  activities selective for other fatty acids, as an oleate-selective CPLA2

which is regulated by GTP and protein tyrosine phosphorylation has been identifiedin 

HL60 and U937 myeloid cells (233).
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4 .2  Roles for CPLA2 and SPLA2 in intracellular signalling and

eicosanoid production.

Although both classes of PLA2  may be involved in the production of arachidonate 

for eicosanoid generation, it is generally accepted that it is the cytosolic PLA2 S which

transduce receptor-coupled arachidonate generation leading to activation of signalling 

cascades. For example, overexpression of the two forms of PLA2  in Chinese hamster 

ovary (CHO) cells, has demonstrated that CPLA2 , but not SPLA2 , mediates the second 

messenger-like release of arachidonate in response to agonists such as ATP, thrombin.
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calcium ionophores and phorbol esters (128). This investigation has therefore focused on 

the role of cPLA^ activity in lymphocyte cellular signalling.

4.2.1 Arachidonate as a signalling precursor.

The supply of arachidonate is thought to be the rate limiting step in the agonist- 

stimulated production of eicosanoids (Figure 34) (238, 239), and there is evidence to 

suggest that either of the cytoplasmic and secretory forms of PLA2  may be responsible

for this in different receptor systems. For example, the stimulation of arachidonate release 

and thromboxane B2  production in platelets by thrombin has been found to be inhibited 

by the arachidonate analogue, AACOCF3 , which is a tight-binding and selective inhibitor 

of CPLA2 , but not SPLA2  (240,241). Furthermore, platelets which had been induced to 

secrete 60% of their total SPLA2  were found to produce normal amounts of thromboxane 

B2  when stimulated with thrombin. These results therefore suggest that CPLA2  is likely

to be responsible for the thrombin-stimulated release of arachidonate required as a 

precursor substrate for the production of thromboxane B2  by platelets. In contrast,

SPLA2  is stongly implicated in the generation of arachidonate for the agonist-induced 

production of prostaglandin E2  in macrophages (233). Thus, transfection of the 

macrophage-like P388D1 cells with antisense cDNA to SPLA2  was found to markedly 

decrease PLA2  activity in cell homogenates and almost abolished the stimulation of 

arachidonate release and prostaglandin E2  production by platelet activating factor (PAF) 

(242). Thus, both cytoplasmic and secretory forms of PLA2  appear to be involved in the 

release of arachidonate for the agonist-stimulated generation of eicosanoids.

4 . 2 . 2  Functions of lysophosphatidic acid.

Lysophosphatidic acid (LPA) is formed from PtdOH by the action of an as yet 

undefined PLA2 , and is a putative lipid second messenger which can exert pleiotropic

effects on cells and tissues when added exogenously (147, 148,243), including smooth 

muscle contraction, the stimulation of DNA synthesis in Rat-1 fibroblasts, formation of 

actin stress fibres in Swiss 3T3 cells, and changes in cellular morphology. LPA is
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Figure 34. The production of eicosanoids from  arachidonic acid. The 

enzymatic pathways for production of various eicosanoids are depicted. The structures of 

two eicosanoids, thromboxane A2 and prostaglandin E2 , are also shown.

PG, prostaglandin; TX, thromboxane.
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believed to mediate its effects on cells through G protein-coupled receptors (GRE) (244), 

and its binding to leceptors has been shown to initiate a number of intracellular signalling 

events, including PtdInsP2  hydrolysis, the mobilisation of intracellular Ca^+ and the

activation of Ras-like small G proteins (147,148).

It would appear that the principal source of LPA is likely to be via the action of 

secretory PLA2  rather than cPLA2 - Studies on a nonpancreatic SPLA2  have indicated that

this enzyme is responsible for the hydrolysis of phospholipids and the production of LPA 

in membrane microvesicles, platelets and whole cells challenged with inflammatory 

stimuli such as a-Toxin or LPS (245).

4 .3  Regulation of cPLA% activity.

4 . 3 . 1  Receptor-mediated activation of CPLA2.

Various studies have demonstrated the activation of cytosolic PLA2  via both G 

protein-coupled receptors (GREs) and receptor tyrosine kinases (RTKs) (128). Further 

investigation, involving the use of pharmacological activators and inhibitors, 

reconstitution studies and the cloning of a gene encoding CPLA2  have aided in the 

delineation of the pathways by which these receptors couple to CPLA2 , and considerable 

progress has recently been made in determining the mechanisms by which CPLA2  activity 

is regulated.

A number of studies have reported the regulation of CPLA2  activity by receptor 

protein tyrosine kinases (RTKs) (246-249). For example, epidermal growth factor 

(EGF), which mediates its effects on cells through a RTK, has been found to induce 

CPLA2  activation in glomerular mesangial cells (246, 247). When CPLA2  was purified

fi-om EGF-stimulated glomerular mesangial cells, its activation was found to be stable to 

solubilisation with detergent, indicating that the EGF-induced activation of CPLA2  may

be mediated by a mechanism involving direct modification of the enzyme, such as 

phosphorylation. EGF stimulation of CPLA2  was also insensitive to PKC down-

regulation, suggesting that such phosphorylation is likely to involve a PKC-independent
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mechanism. Moreover, activation of CPLA2  did not occur upon EGF stimulation of cells

transfected with a kinase inactive mutant of the EGF receptor (EGF-R), suggesting the 

involvement of this activity in EGF-mediated CPLA2  activation. Furthermore, TGF-a

(250) which can bind to the EGF-R and activate its tyrosine kinase activity, was found to 

activate CPLA2  in a mouse keratinocyte line. This activation was shown to be blocked by

antibodies to the EGF-R, or by tyrphostin, a PTK inhibitor. These findings indicate a 

role for tyrosine kinase activities, and in particular the intrinsic activity of RTKs, in the 

growth factor-mediated activation of cPLA2 - It has been proposed that RTKs may 

activate CPLA2  via MAP-kinase, which is activated by a kinase cascade initiated by 

agonist binding to many RTKs.

There is also evidence for G protein-dependent coupling of several receptors to 

CPLA2  activation in several systems (128). Firstly, the non-hyrolysable guanine 

nucleotide analogue, GTPyS was found to stimulate basal and agonist-induced CPLA2 

activation in a number of permeabilised cells including neutrophils, platelets, and Swiss 

3T3 fibroblasts (143). This effect was also inhibited by the non-hydrolysable GDP 

analogue, GDPps, which locks G proteins in their inactive conformation. Secondly, 

ADP-ribosylation of specific G proteins, by pertussis toxin (Gi-like proteins) or cholera 

toxin (G-like proteins), has been shown to block agonist-mediated CPLA2  activation in 

different receptor systems: pertussis toxin blocked stimulation of CPLA2  activity in

human neutrophils via fMetLeuPhe or ATP (251,252); and cholera toxin was found to 

block the activation of CPLA2  which is observed upon stimulation of outer rod segments

with light or GTPyS (128). Finally, expression studies have supported the proposed role 

for G proteins in the regulation of agonist-mediated CPLA2  in certain receptor systems 

(253-256). In one study, expression of an 0Cg_i chimera with the C-terminal 38 residues 

of ttg replaced by those of 0 4 2 » which acts as a dominant negative form of (X\2 in CHO 

cells, was found to inhibit a-thrombin and ATP stimulation of CPLA2  activity (253-255).

Another study involved the transfection of NIH 3T3 fibroblasts with wild type or mutant 

Gj2 (with reduced GTPase activity, to prolong activation) (256). Enhanced activation of
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rather than indirectly via other signalling elements.
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cPLA2  was observed in cells transfected with the mutant, as opposed to the wild type G

protein, when the cells were stimulated with serum. These studies imply the involvement 

of C4 2  in the regulation of CPLA2  by these agonists.

The above reports clearly establish the coupling of receptors to CPLA2  via G 

proteins: but, they do not determine whether this coupling is direct or mediated by other 

signalling elements. There are several additional lines of evidence indicating that the 

activation of CPLA2  can be mediated through the direct coupling of G proteins to CPLA2 ,

sy.,::
i) Bombesin stimulation of Swiss 3T3 fibroblasts has been found to induce 

the activation of CPLA2  in a biphasic manner (143). The first phase of this

activation is very rapid: arachidonate release was detected following stimulation of 

the cells with bombesin for 2 seconds, reaching a peak at 10 sec and declining to 

basal levels within 1 min. This phase was found to be potentiated by GTPyS, 

which also stimulated basal arachidonate release, and to be inhibited by GDPpS. 

Furthermore, activation of CPLA2  by bombesin in this phase was insensitive to a)

thapsigargin (which induces calcium release), b) PKC downregulation by phorbol 

ester pretreatment, c) staurosporine, a selective PKC inhibitor in these cells, and 

d) the chelation of extracellular Ca^+. These results suggest that CPLA2  activation 

is not downstream of PtdInsP2 -PLC-mediated release of Ca^"^ and PKC

activation. Moreover, the rapidity of activation tends to indicate direct coupling of 

G proteins to CPLA2 . In contrast, the second phase of CPLA2  activation, in which

arachidonate release was detected within 1-2  min of stimulation and sustained for 

up to 60 min, was blocked by the chelation of extracellular Ca^"^ and was shown 

to involve phosphorylation of CPLA2 . These findings therefore suggest that 

CPLA2  can be activated by at least two distinct intracellular signalling pathways.
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ii) The stimulation of CPLA2  activity in outer rod segments by light or 

GTPyS was found to require the G protein, transducin (128). Importantly, the 

addition of transducin py subunits was found to activate CPLA2  in vitro,

indicating that these may be the primary effector molecules in the G protein- 

mediated activation of this enzyme. This possibility was supported by further in 

vitro studies which showed that, although transducin a  subunits could induce 

slight stimulation of CPLA2  activity by themselves, they inhibited py-induced 

CPLA2  activation.

iii) Antibodies to G protein py subunits were found to differentially inhibit 

histamine and thrombin-stimulated CPLA2  activation in permeabilised platelets:

histamine stimulation of arachidonate release was inhibited, whereas thrombin- 

induced CPLA2  activation was unaffected (257). Antibodies to Gj or Gq were

observed to inhibit both responses (258).

The studies described above support the G protein-dependent regulation of 

CPLA2  reported in various receptor systems. They also suggest that G protein py

subunits may be responsible for mediating this activation, at least in some systems. 

Furthermore, these findings have clearly suggested a direct role for G proteins in receptor 

coupling to CPLA2  activation in some systems.

4 . 3 . 2  The regulation of CPLA2 activity by protein kinases and calcium.

The precise details of receptor coupling to CPLA2  activity independently of direct

G protein coupling are not known, however, a number of studies have demonstrated 

roles for calcium mobilisation and protein kinase-mediated phosphorylation of CPLA2  in 

the agonist-induced activation of CPLA2  (128, 259, 260).

Cytosolic PLA2  is phosphorylated by a number of protein kinases which are

involved in the regulation of cell proliferation including PKC (261). Stimulation of cells 

with PMA has been shown to induce the phosphorylation and activation of CPLA2  in
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vivo, and in vitro studies have demonstrated the direct phosphorylation of CPLA2  by 

PKC (262). Moreover, another investigation found that the down regulation of PKC-a, 

but not PKC-p (263), in MDCK cells led to the suppression of PMA-induced

arachidonate release, indicating a specific role for this PKC isozyme in the regulation of 

CPLA2 . These findings therefore suggested that the PMA-induced activation of CPLA2  

might be mediated by direct PKC-mediated phosphorylation of CPLA2 .

Another protein kinase, which has also been shown to be involved in the 

regulation of CPLA2  activity is mitogen activated protein (MAP)-kinase (260, 264). More

specifically, this enzyme is the p42^^^ ̂  isoform of the MAP-kinase family, which 

includes three other members: p40^^^, p44^^^ and p46^^^"^; (p42^^^ ̂  will be 

referred to as MAP-kinase from this point). MAP-kinase is activated, via phosphorylation 

of both tyrosyl- and threonyl-regulatory sites in the enzyme, by a signalling cascade 

initiated by the stimulation of cells with mitogenic stimuli such as PDGF, EGF, and 

thrombin, agonists which are also found to induce activation of CPLA2 . Furthermore, 

MAP-kinase has been observed to phosphorylate and activate CPLA2  in vitro, indicating

that the MAP-kinase-mediated direct phosphorylation of this enzyme may be involved in 

agonist-induced stimulation of CPLA2  activity and arachidonate release.

The cloning of a gene for CPLA2 , (236, 237) and structure-function studies on

the enzyme, have rationalised the pharmacological evidence concerning the protein 

kinase-mediated phosphorylation and resultant activation of cPLA2 . MAP-kinase was 

observed to phosphorylate CPLA2  at a specific seiine residue (Ser-505) in vitro and in

vivo, inducing activation of the enzyme and the resultant production of arachidonate. 

Mutation of this residue to alanine was found to abolish MAP-kinase-mediated 

phosphorylation of CPLA2  and to greatly decrease the activation of CPLA2  observed upon

stimulation of transfected cells with mitogenic agonists such as thrombin (260). In 

contrast, PKC was observed to phosphorylate CPLA2  in vitro on sites which are distinct

from the MAP-kinase phosphorylation site. Treatment of cells with PMA, however, was 

found to induce phosphorylation of CPLA2  at Ser-505, the MAP-kinase phosphorylation

site. This finding suggests that, in vivo, protein kinase C mediates the phosphorylation
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and activation of CPLA2  indirectly, possibly via the activation of MAP-kinase. Activation 

of cAMP-dependent protein kinase (PKA) has also been reported to activate PLA2  in 

vivo. However, although PKA was found to phosphorylate CPLA2  in vitro, this did not

result in any change in its activity. Any role for PKA-catalysed phosphorylation in the 

regulation of CPLA2  therefore remains unclear.

In addition to regulation by protein kinases, CPLA2  is rapidly activated by

increases in the concentration of cytosolic Ca^"^ (236, 265). This has now been found to 

involve the Ca^+-induced translocation of CPLA2  to the plasma membrane, a process

which is thought to be mediated by the Ca^+-dependent lipid binding (CalB) domain 

located at the amino terminus of CPLA2 . This domain has also been found in other signal 

transducing elements such as PKC, Ras GAP, and PtdInsP2 -PLC, and has been

implicated in their recruitment to the plasma membrane and subsequent activation. As a 

result of these findings, a complex model of CPLA2  activation has been proposed by Lin

et al. (1993) (260), involving the synergistic actions of Ca^+ and MAP-kinase signals, 

both of which appear to be required for full activation (Figure 35).

4.4 Physiological functions of agonist-stimulated PtdCho hydrolysis by 

CPLA2.

In contrast to other unsaturated free fatty acids (FFAs), arachidonate is present at 

very low basal levels in cells and is subject to very rapid turnover (133). This may be 

related to its function as an intracellular messenger (ie. its cellular levels may be tightly 

regulated in a manner analogous to other second messengers such as IP3 , DAG or

cAMP), or it may reflect the fact that arachidonate can be metabolised very rapidly to 

generate eicosanoids (238,239). Other unsaturated FFAs, and in particular oleate (see 

section 4.4.1), have also been implicated in intracellular signalling: oleate, since it is not 

metabolised as rapidly as arachidonate, has often been used in experiments to examine the 

effects of FFAs on biological responses (133).
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Figure 35. Model for the activation of CPLA2 In this model, proposed by Lin 

and coworkers (260), rapid activation of CPLA2 is mediated by the phosphorylation of 

CPLA2 by MAP-kinase and the Ca^+-dependent recmitment of CPLA2 to the plasma 

membrane. Receptor stimulation results in the activation of phospholipase C and tlie 

formation of InsPg and DAG. Mobilisation of Ca^+ then occurs as a result of the action 

of InsPs or the activation of receptor-coupled calcium channels. This induces the 

recmitment of CPLA2 to the plasma membrane, which is mediated by the Ca^+-dependent 

lipid-binding domain (CalB) located at the amino terminus of CPLA2 . MAP-kinase 

activation also occurs as a result of receptor stimulation, via PKC-dependent or 

-independent pathways. The activated MAP-kinase can then phosphorylate CPLA2 at Ser- 

505, inducing its activation.

ER - endoplasmic reticulum.
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4 . 4 . 1  Potential role of FFAs in mitogenic signalling.

FFAs have been proposed to regulate the activation of protein kinase C via a 

mechanism which is distinct from that requiring Ca^+ and DAG, or phorbol esters (133). 

Twelve isoforms of PKC have been identified to date and these have been classified into 

three main categories: Ca^+-dependent PKCs (cPKCs) (a, pi, pll, y); Ca^+- 

independent novel PKCs (nPKCs) (Ô, e, 0, q, |i); and atypical PKCs (aPKCs) (i, X, Q 

(266, 267). Studies on the effect of FFAs on different PKC isoforms in vivo have 

demonstrated that nPKCs are activated by exogneously added FFAs in the range 5-10 

|iM, whereas cPKCs are activated by FFAs in the range 50-100 |0.M (268). This finding 

suggests that FFAs are most likely to play a physiological role in the activation and 

regulation of the Ca^+-indepehdent isoforms of protein kinase C (nPKCs). The 

regulation of the atypical PKC isoforms by FFAs has not yet been investigated. The

activation of PKCs by FFAs is reported to be independent of PtdSer, calcium, and DAG, I

I

in vitro (133, 269, 270) Further studies have shown that oleate is unable to inhibit the 

binding of phorbol esters to PKC, indicating that that FFAs bind PKCs at a site which is 

distinct from the phorbol ester/DAG binding site. Moreover, in contrast to such classical 

PKC activators, FFAs preferentially activate soluble rather than membrane-bound PKC, 

and this activation appears to be mediated by free, and not membrane-partitioned, FFAs 

(270). Free fatty acids such as arachidonate may therefore regulate the activation of 

cytosolic, rather than membrane-bound, protein kinase C, resulting in the 

phosphorylation of target proteins without the requirement for their recruitment to the 

plasma membrane. The existence of such a mechanism, as well as the 

DAG/PtdSer/Ca^+-dependent mechanism, would enable the differential regulation of the 

ser/thr phosphorylation of cytosolic and plasma membrane proteins by PKC.

Arachidonate has also been reported to activate other cellular signalling 

transducers which have been implicated in mitogenic signalling, such as phospholipases: 

arachidonate and oleate have been reported to activate a PtdlnsP^-PLC in microsomes

prepared from the MCF-7 cell line (133, 239), Moreover, FFAs, particularly 

arachidonate, have been reported to induce activation of a novel protein which can

I
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activate PLC-y and PLC-S isoforms, and which may be involved in the EGF-mediated 

activation of PLC-y in hepatocytes (271). Furthermore, FFAs have also been shown to 

activate both PtdCho-PLD (272) and PPH in vitro. Other proposed roles for FFAs in the 

regulation of cellular activation include: i) the regulation of ion channels (133); ii) the 

inhibition of Ras GAP (ie. prolonging the activation of Ras) (273) and iii) the inhibition 

of cyclic AMP-dependent protein kinase (PKA) (133). Thus, arachidonate and other 

FFAs may play a role in the regulation of a wide range of intracellular signals, although 

the precise mechanistic details of these regulatory functions are, at present unknown.

4 . 4 . 2  Functions of lysophosphatidylcholine.
■ t

The other product of the PLA2 -catalysed hydrolysis of PtdCho is lysoPtdCho 

(LPC) (128). LPC is a putative lipid second messenger which has also been proposed to 

potentiate the activation of PKC isoforms by DAG (274-277). Thus, LPC has been 

reported to enhance the activation of the PKC isoforms a , p, y, and induced by DAG, in 

vitro (132). Consistent with this finding, exogenously added LPC has been reported to 

enhance the activation of T cells (274), and the differentiation of HL60 cells to 

macrophages, resulting from the addition of permeant species of DAG (131). The 

mechanism (s) underlying LPC activation of PKC is, as yet, poorly defined, but LPC 

may also have non specific regulatory effects on proteins, due to its detergent-like 

properties. It is therefore unclear whether the observed effects of LPC in vitro indicate a 

physiological signalling role for this putative lipid second messenger.

4 . 4 .3  Arachidonate as a transducer of differentiation or apoptotic signals.

A recent study by Jayadev et al. (1994) (61) has suggested a key role for 

arachidonate generation in the Tumor Necrosis Factor-a (TNF-a)-mediated activation of 

sphingomyelinase (SMase) in HL60 monocytic cells. SMase hydrolyses sphingomyelin 

(SM) to generate the lipid second messenger, ceramide, which has been widely proposed 

to play a role in the regulation of proliferation and apoptosis (61, 180-182,222). 

Stimulation of HL60 cells with TNF-a (30 nM) was found to induce the hydrolysis of
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approximately 30% of cellular SM within 45- 60 min. Such SM hydrolysis was preceded 

by the generation of arachidonate, suggesting a possible role for released arachidonate in 

the activation of SMase. Furthermore, exogenously added arachidonate was found to 

stimulate SM hydrolysis and the generation of ceramide within 20 min, ie. more rapidly 

than TNF-a, providing further circumstantial evidence that aracliidonate-mediated 

activation of SMase is downstream of TNF-a receptor ligation. Other FFAs, particularly 

oleate, were found to have a similar effect on SMase activity when added exogenously, 

indicating that the effects of arachidonate on SMase activity were not due to its 

metabolism to eicosanoids. These findings were further supported by the finding that 

eicosatriynoic acid (ETI), a non-hydolysable analogue of arachidonate, also induced SM 

hydrolysis in these cells. Furthermore, the methyl ester and alkyl analogues of fatty acids 

did not activate SMase, indicating that the activation of this enzyme by fatty acids is likely 

to be due to a specific effect of these lipid second messengers, rather than nonspecific 

effects membrane-directed of fatty acids, on the plasma membrane. Furthermore, 

melittin, a potent PLA2  activator, stimulated SM hydrolysis in vivo, but failed to induce

direct activation of SMase in vitro, indicating that its effects are likely to be mediated 

indirectly, via PLA2 . Moreover, in vitro studies showed that a neutral cytosolic SMase

activity prepared from HL60 cells could be activated by arachidonate (10-100 |liM) in a 

dose-dependent manner, indicating that the activation of SMase is directly coupled to 

arachidonate generation. Finally, arachidonate was found to exert anti-proliferative effects 

on HL60 cells, as were ceramide and TNF-a, suggesting that the TNF-a-induced 

suppression of proliferation and inducation of apoptosis in HL60 cells may be mediated 

via the activation of PLA2  and subsequent arachidonate-induced activation of SMase.

4 .5  Aims and objectives.

The reports described above indicate that CPLA2  could be involved in the 

transduction of mitogenic, differentiation or apoptotic signals. CPLA2  has been shown to 

be regulated by at least two distinct mechanisms, i) by direct interaction with G proteins, 

or ii) downstream of MAP-kinase and calcium mobilisation. Thus, since many of the
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cellular signals implicated in the regulation of CPLA2  are initiated by the ligation of 

antigen receptors on B and T cells, cytosolic PLA2  represents a good potential candidate 

for the transduction of intracellular signals via the antigen receptors on lymphocytes. 

The objectives of this investigation were as follows:

i) to identify and characterise CPLA2  activity in B and T cells;

ii) to determine whether the antigen receptors, or other surface receptors, on B 

and T cells are coupled to CPLA2  activation;

iii) to characterise the mechanisms of antigen receptor coupling to CPLA2  

activation, and the regulation of CPLA2  activity;

iv) to examine the expression of CPLA2  throughout lymphocyte maturation to 

determine whether CPLA2  is expressed and activated in a maturation stage- 

specific manner;

iv) to investigate the role(s) of CPLA2  in mitogenic, differentiation or anti- 

proliferative/apoptotic signalling in lymphocytes.
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RESULTS

4.6 cPLA2 expression and activation in mature lymphocytes.

The initial aim was to investigate the role of CPLA2  in mature B and T cell 

activation. The work described in this section was carried out in collaboration with 

Stewart and Wakelam (now at Birmingham University), and with Courtney, Fleming, 

Reid, and Harnett (this laboratory). Thus, only the key results of the work on mature 

lymphocytes are presented here. The full results are currently submitted for publication.

4 .6 .1  CPLA2 activity in mature B and T cells.

Crosslinking of the antigen receptors on murine splenic B cells (sig), using a 

mitogenic concentration (50 jig/ml) of anti-Ig antibodies, did not stimulate the release of 

[^m  arachidonate from prelabelled cells (Figure 36) over a short (15-60 sec) (data not 

shown) or a longer (10 min) (Figure 36) stimulation. Under comparable conditions, anti- 

Ig induced release of [^HJInsPs from [^H]inositol-labelled cells, indicating that these 

cells were still responsive to stimulation via sIg (results not shown). Furthermore, PMA, 

which can activate CPLA2  via MAP-kinase in most cell types, also failed to induce the

release of [^H]arachidonate from these cells (Figure 36A). Similar results were obtained 

following crosslinking of the antigen receptors on the human B lymphoblastoid cell lines, 

Daudi and Ramos (results not shown), even when the incubation period was extended to 

30 min. These findings indicate that the antigen receptors on mature B cells are not 

coupled to CPLA2  activation.

In order to determine whether there was a differential coupling of the antigen 

receptors to PLA2  activation in B and T cells, arachidonate release following T cell

activation was investigated (Figure 36B): activation of the antigen receptors (TCR) on the 

human leukaemic T cell line, Jurkat, with optimally stimulatory concentrations of anti- 

CD3 antibodies did not induce [^H]arachidonate release. Moreover, PMA also failed to 

stimulate arachidonate generation over a 30 min time period (results not shown). In 

contrast, anti-CD3 and PHA did induce the release of [^HJInsPs from [^Hjinositol-

145



labelled cells (results not shown) indicating that these cells were responsive to stimuation 

via the TCR and associated molecules.

The recent identification of an oleate-selective PLA2  activity in myeloid cells,

which is subject to regulation by GTP and tyrosine phosphorylation (233), raised the 

possibility that the antigen receptors on B and T cells could be coupled to a non- 

arachidonate-selective CPLA2  activity. However, studies in [^HJoleate-labelled Daudi B

cells (Figure 37A) and Jurkat T cells (Figure 37B) showed that the antigen receptors on B 

and T cells are also not coupled to an oleate-selective PLA2 .

4.6.2 CPLA2 expression in mature lymphocytes.

These findings raised the possibility that mature B and T cells might not express 

CPLA2 . Western blot analysis of a range of lymphocyte cell lysates (100 pg/lane),

prepared from murine splenic B and T cell lines (Figure 38A), human tonsillar B and T 

cells (Figure 38B) and human B and T cell lines (Figure 38A and B) demonstrated that 

CPLA2  expression could not be detected in these cells. In contrast, CPLA2  expression in a

partially purified preparation of the enzyme (5 |ig/lane) and HL60 lysates (40 p,g/lane) 

was strongly recognised by this anti-cPLA2  reagent.

Further studies investigated the possibility that certain cytokines known to 

upregulate CPLA2  expression in fibroblasts (278) and/or to induce lymphocyte 

proliferation/differentiation (279), might induce expression of CPLA2  in mature

lymphocytes. However, incubation of Jurkat T cells or Daudi B cells with the cytokines 

IL-1, IL-2, IL-4, IL-10, TNF- or EL-13 for up to 3 days did not induce CPLA2

expression in these cells in vitro (results not shown).

These results therefore indicate that CPLA2  is not expressed by mature 

lymphocyte cells or cell lines, and suggest that the upregulation of CPLA2  expression 

does not play a role in T or B cell activation during an immune response.
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4 .7  Arachidonate has an anti-proliferative effect on B cells.

Taken together, the above data strongly suggested that CPLA2  activation, and

resultant arachidonate generation, does not play a role in the transduction of proliferative 

signals in B or T cells. Indeed, addition of exogenous arachidonate (20 pM) was found 

to inhibit basal and anti-Ig-stimulated DNA synthesis of murine splenic B cells by 40- 

50% (Figure 39). As discussed above, arachidonate has been reported to play a central 

role in the TNF-a-mediated sphingomyelinase activity leading to induction of anti­

proliferative and/or differentiation signals in monocytes (61). This finding could therefore 

suggest a role for the production of arachidonate in anti-proliferative and/or apoptotic 

signalling in lymphocytes.

As already discussed, ligation of the antigen receptors on the majority of 

immature B and T (thymocytes) cells, in vivo, induces apoptosis in order to delete 

autoreactive clones and prevent inappropriate activation by autoantigens. Thus, in order 

to investigate whether CPLA2  may play a role in the processes underlying B or T cell 

maturation and/or apoptosis, it was decided to investigate CPLA2  expression and 

activation at earlier stages of lymphocyte ontogeny.

4.8 CPLA2 in immature lymphocytes.

The initial aims of this investigation were to i) determine whether CPLA2  is

expressed at the early stages of lympocyte maturation, ie. in pre-B cells or in immature B 

and T cells, and ii) determine whether CPLA2 , if expressed, can be activated by antigen 

receptor hgation, or by pharmacological stimuli known to activate CPLA2  in other cells.

4 .8 .1  CPLA2 is expressed by immature lymphocytes.

Cytosolic PLA2  expression was examined in a range of human pre-B cell lines:

697 cells, 207 cells and REH cells; and in immature murine splenic lymphocytes (B and 

T cells) and murine thymocytes. Western blot analysis, using specific anti-cPLA2  C- 

terminal peptide antibodies, was used to assess the relative levels of CPLA2  in tlie 

appropriate cell lysates (100 pg/lane). Cytoplasmic PLA2  was not expressed by any of
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the pre-B cell lines, but was strongly expressed in both murine thymocytes and immature 

murine splenic lymphocytes (Figure 40). This was a particularly interesting finding 

becaused it demonstrated the expression of CPLA2  in lymphocytes at a maturation stage

in which they may undergo apoptosis in response to antigen receptor crosslinldng.

4 .8 .2  CPLA2 activity in thymocytes and immature splenic B cells.

Crosslinldng of the antigen receptors on thymocytes has been found to induce 

apoptosis, and cytosolic PLA2  has been proposed to play a role in the transduction of 

apoptotic signals in some receptor systems, eg. TNF-a stimulation of HL60 monocytic 

cells. Therefore, in view of the finding that thymocytes express CPLA2 , it was decided to 

determine whether the antigen receptors on thymocytes are coupled to CPLA2  activation. 

Ligation of the antigen receptors on prelabelled thymocytes with anti-CD3 or Con A 

stimulated substantial generation of [^H]arachidonate release within 30 min (Figure 41), 

strongly indicating the coupling of the antigen receptors on these cells to CPLA2

activation. In an attempt to determine whether arachidonate is being released as an 

intracellular messenger in thymocytes, some further experiments (carried out in 

collaboration with A. Wise in this laboratory) involved the separation of intracellular and 

extracellular pools of [^H]arachidonate prior to analysis. This was achieved by the 

pelleting of thymocytes to separate them from the extracellular medium, following 

termination of reactions by the addition of ice-cold PBS. Kinetic analysis showed that, 

after an initial lag phase of at least 1 min, ligation of the antigen receptors with Con A or 

anti-CD3 stimulated substantial intracellular generation of [^H]arachidonate witliin 10 

min (Figure 42A and B). In addition, the calcium ionophore, ionomycin (1 pM), which 

can also induce apoptosis in titymocytes, similarly stimulated intracellular 

[^H]arachidonate release in murine thymocytes, following a lag phase of at least 1 min 

(Figure 42C). Moreover, ionomycin and Con A were found to stimulate rises in 

extracellular [^H]arachidonate within 10 min (Figure 43). The kinetics of 

[^H]arachidonate generation following ligation of the antigen receptor, and the effects of 

pharmacological agents on CPLA2  activity, were consistent with CPLA2  activation being
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downstream of MAP~kinase activation rather than by direct TCR/CD3 -cPLA2  coupling. 

These data therefore stongly indicate that the antigen receptors are coupled to CPLA2

activation in murine thymocytes.

Western blots had also shown the expression of CPLA2  by immature murine 

splenic lymphocytes (B and T cells) (Figure 40), suggesting that CPLA2  could be

expressed by immature B lymphocytes. The possibility that the antigen receptors on 

immature splenic (IS) murine B cells are coupled to CPLA2  activation was therefore

investigated. However, stimulation of [^HJarachidonate-prelabelled IS B cells with anti- 

Ig (0.5-50 pg/ml) for 30 min did not stimulate the release of arachidonate (Figure 

44). Moreover, stimulation of IS B cells with PMA, or LPS which has been implicated in 

priming and/or activation of CPLA2  in other cells, did not induce the release of

[^HJarachidonate at 5,15 or 30 min (Figure 44, and results not shown). However, the 

difference between the zero time and unstimulated levels of [^H] arachidonate generation 

observed at 30 min (Figure 44) did indicate a high basal level of arachidonate release by 

IS B cells, suggesting that CPLA2  is constitutively and fully activated in these IS B cells.

Interpretation of these results has been complicated by the fact that IS B cells are a 

heterogenous population comprising a number of maturation states. ITius, antigen 

receptor crosslinldng may result in proliferation or apoptosis, depending on the precise 

maturation state of any given cell. Indeed, it has been demonstrated that the crosslinldng 

of sig on B cells from 4 week old mice stimulates significant DNA synthesis, indicating 

that at this age a large proportion of B lymphocytes are mature and can be activated by 

antigen receptor crosslinldng (280). Moreover, approximately 84% of B cells from the 

spleens of 4 week old mice were found to be sIgM+sIgD+, indicating that they had a 

mature phenotype (280). It was therefore decided to investigate CPLA2  expression and 

antigen receptor coupling to CPLA2  in homogenous immature T and B cell populations by 

using immature thymoma and B lymphoma cell lines.
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4 .9  cPLA2 expression and activation in T3 thymoma cells.

T3 thymoma cells, which are derived from a double-positive (CD4+CD8+) 

thymocyte, have been demonstrated to undergo growth arrest upon crosslinking of the 

antigen receptors with Con A (50 pg/ml) or PHA (50 pg/ml) (Figure 45A), or following 

incubation with ionomycin (0.1 pg/ml) (Figure 45B). These agents have also been 

shown to induce apoptosis in these cells (R. Zamoyska, NIMR, London; personal 

communication). However, growth arrest was not observed in response to crosslinking 

of the antigen receptors with soluble anti-CD3 antibodies (.(X)l-1 fxg/ml) or stimulation 

with PMA (Figure 45B). (Results from Figure 45: personal communication A. Michie).

The failure of anti-CD3 to induce growth arrest in T3 cells, however, was probably due 

to insufficient crosslinking of the antigen receptors (R. Zamoyska, personal 

communication). These findings confirmed that the antigen receptors on these 

proliferating thymoma cells were coupled to intact signalling pathways, and that T3 

thymoma cells would be suitable for investigating the transduction of apoptotic signals 

via the TOR in immature T cells.

Western blotting of anti-cPLA2  immunoprecipitates from T3 cell lysates 

demonstrated that these cells express cytoplasmic PLA2  (Figure 46), and it was decided 

to investigate the coupling of the antigen receptors on T3 cells to CPLA2  activation.

Stimulation of prelabelled T3 cells with Con A or ionomycin induced a rapid (within 1 

min) release of [^H]arachidonate which was sustained for at least 30 min (Figure 47). In 

contrast, PMA stimulation failed to induce the production of [^H] arachidonate within 30
■

min (Figure 47). These initial results suggested that the activation of CPLA2  might be
'

associated with stimulation of T3 cells by agents which induce apoptosis. Indeed, further 

studies examining intracellular and extracellular release of [^H]arachidonate, 

demonstrated that anti-CD3 antibodies, which did not induce growth arrest in the studies 

detailed above but which have been found to induce growth arrest and apoptosis when 

used in immobilised forms (R. Zamoyska, personal communication), stimulated the rapid 

and sustained release of intracellular [^H] arachidonate, in a manner similar to Con A 

(Figure 48 A and B). Ionomycin also stimulated sustained release of intracellular
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[^H]arachidonate in a linear manner for at least 30 min (Figure 48C), whereas PMA 

again failed to induce [^H] arachidonate production (Figure 48A, B and C). This could 

indicate that altliough the influx of extracellular calcium is sufficient for the activation of 

cPLA2  in these cells, the phorbol-ester mediated activation of PKC is not sufficient for 

cPLA2  activation in the absence of calcium-induced translocation of cPLA2  to the plasma 

membrane.

These findings clearly support the coupling of the antigen receptors on immature 

T lymphocytes to the activation of CPLA2 , and suggest that the release of arachidonate

may be involved, at least in part, in the transduction of growth arrest and/or apoptotic 

signals in these cells.

4 .1 0  CPLA2 expression and activation in WEHI 231 immature murine B 

ce lls .

The possibility that immature B cells express CPLA2 , and that B ceU antigen 

receptors are coupled to this activity in such cells, was investigated in the immature B 

lymphoma, WEHI 231. Many investigators have reported that WEHI 231 cells undergo 

growth arrest and apoptosis in response to crosslinking of sIg with anti-Ig (87, 8 8 ), and 

this was reconfirmed by a DNA synthesis assay showing that stimulation of WEHI 231 

cells with anti-Ig antibodies (>0.1 pg/ml) inhibited DNA synthesis in a dose-dependent 

manner (Figure 49A). In contrast, stimulation of WEHI 231 cells with LPS (50 pg/ml), a 

polyclonal B cell activator, was found to stimulate an increase in the rate of DNA 

synthesis (Figure 49B).

Western blot analysis demonstrated the expression of CPLA2  by WEHI 231 cells

(Figure 50), and in view of this, the coupling of the antigen receptors on these cells to 

CPLA2  activation was investigated. WEHI 231 cells, pielabelled with [^H]arachidonate,

were stimulated with anti-Ig at concentrations that i) did not significantly affect DNA 

synthesis (0.0125 pg/ml); ii) induced about 50% inhibition of DNA synthesis (0.125 

pg/ml); and iii) essentially induced complete abrogation of DNA synthesis in these cells 

(1.25 pg/ml) (Figure 51 A). Interestingly, WEHI 231 cells exhibited a time-dependent



basal release of arachidonate, indicating a measure of constitutive CPLA2  activation, at 

least in some of these cells. No stimulated arachidonate generation could be detected 

following ligation of the antigen receptors with anti-Ig at concentrations (0.0125 pg/ml) 

which did not induce growth arrest (Figure 51 A). However, under conditions in which 

anti-Ig (0.125-1.25 pg/ml) abrogated DNA synthesis in WEHI 231 cells, crosslinking of 

the antigen receptors induced a substantial, and sustained (for up to at least 60 min) 

generation of [^H]arachidonate (Figure 51 A). This finding suggested the association of 

[3h] arachidonate release with the induction of growth arrest and/or apoptosis by antigen 

receptor crosslinldng on WEHI 231 cells. However, a preliminary characterisation of the 

concentration-dependence of anti-Ig-stimulated CPLA2  activity demonstrated that, at

higher concentrations of anti-Ig (> 5 pg/ml), stimulation of [^H]arachidonate release 

became desensitised (Figure 5IB). This finding could possibly contradict a role for 

CPLA2  in the transduction of growth arrest (and apoptotic) signals as these higher

concentrations of anti-Ig also induce apoptosis in WEHI 231 cells. However, this 

desensitisation of anti-Ig-induced CPLA2  activation was observed in an experiment only

measuring a single time point of 30 min, and a simpler explanation is that higher 

concentrations of anti-Ig will induce a greater, but more rapid and transient release of 

arachidonate, leading to activation of downstream signals and more rapid desensitisation 

of receptor-coupling, possibly as the result of a negative feedback mechanism. Thus, 

arachidonate levels could peak and decline before 30 min, resulting in no apparent release 

of l^H]arachidonate. It would therefore be necessary to investigate the time- and 

concentration-dependence of anti-Ig-mediated CPLA2  activation to determine whether this

is the case.

These investigations also showed that stimulation of WEHI 231 cells with PMA 

(100 ng/ml) or ionomycin (1 pM), did not induce the release of [^H] arachidonate, under 

conditions in which anti-Ig (0.5 pg/ml) did stimulate CPLA2  (Figure 52A). This indicated

that neither calcium influx nor PKC activation were sufficient on their own to induce 

CPLA2  activation in WEHI 231 cells. Further investigation could involve the co-
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stimulation of WEHI 231 cells with PMA and ionomycin to determine whether CPLA2  

activation requires both Ca^+ influx and phosphorylation in WEHI 231 cells.

4 .1 0 .1  The effects of a CPLA2 inhibitor on DNA synthesis and

arachidonate release in WEHI 231 cells.

As already discussed in section 4.2.1, studies on the role and activation of PLA2  

in platelets have involved the use of the arachidonate analogue, AACOCF3 , which is a 

tight-binding inhibitor of cytosolic PLA2 , but not secretory PLA2  (240, 241). This

inhibitor was found to block agonist-induced arachidonate and eicosanoid production in 

platelets, suggesting that CPLA2  is responsible for the production of arachidonate as a

substrate for the eicosanoid cascade in these cells. It was thus decided to investigate the 

effects of arachidonate and this CPLA2  inhibitor on anti-Ig-induced growth arrest in 

WEHI 231 cells. Interestingly, AACOCF3  (0-50 pM) did not inhibit the growth arrest 

induced by anti-Ig (0.5 or 5 pg/ml), but induced growth arrest itself in a dose-dependent 

manner (Figure 53B). WEHI 231 cells were also incubated with arachidonate (50 nM-50 

pM) for 72 h before DNA synthesis was determined. Arachidonate inhibited DNA 

synthesis in WEHI 231 cells, but only at concentrations >16 pM (Figure 54), which was 

consistent with the finding that arachidonate (20 pM) induced growth arrest in mature B
;

cells. In contrast, at lower concentrations arachidonate (0.16-16 pM) stimulated a small,
:

but significant increase in DNA synthesis (Figure 54).

Since AACOCF3 did not block anti-Ig-mediated growth arrest it was decided to 

investigate the effects of AACOCF3 on anti-Ig-mediated activation of CPLA2  in immature

B cells. WEHI 231 cells, prelabelled with [^Hjarachidonate, were incubated with 

AACOCF3 (0-20 pM) in the presence or absence of anti-Ig (0.25 pg/ml) (Figure 53A). 

Interestingly, AACOCF3  (0.1-20 pM) appeared to inhibit basal archidonate release but

had no effect upon anti-Ig-stimulated arachidonate release. This finding may indicate that 

AACOCF3  will only inhibit CPLA2  activity if it binds the enzyme prior to activation, 

perhaps explaining why AACOCF3 did not inhibit anti-Ig-mediated growth arrest in 

WEHI 231 B cells (although any effect might be masked by its cytotoxic properties).
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because anti-Ig and AACOCF3  were added simultaneously, and the arachidonate 

analogue probably did not induce inhibition of CPLA2 . Further experiments would be

needed to examine these possibilities. In addition, it is possible the observed effects of 

AACOCF3 were due to its mimicking the effects of arachidonate.

4 .1 0 .2  The effects of stimuli which protect WEHI 231 cells from 

anti-Ig-induced apoptosis on cPLA^ activity.

A number of stimuli have been reported to abrogate the growth arrest and 

apoptosis induced in WEHI 231 cells by antigen receptor crosslinking (3, 115, 120, 

281). These include i) the T cell-derived cytokine, IL-4 (120); ii) crosslinking of GD40 

molecules on B cells (116-119) (mediated in vivo by CD40 ligand on activated T cells);

iii) the polyclonal B cell activator, LPS (120); and iv) phorbol esters, such as PMA 

(116). PMA stimulation of WEHI 231 cells had already been investigated, and no 

activation of CPLA2  was observed. The effects of the other stimuli on CPLA2  activity in

WEHI 231 cells were examined: WEHI 231 cells, prelabelled with [^HJarachidonate, 

were stimulated with IL-4 (10-200 U/ml), anti-CD40 (0.1-10 pg/ml), or LPS (50 pg/ml) 

for 30 min. However, none of these stimuli induced the release of [^H]arachidonate 

under conditions in which anti-Ig (0.5 pg/ml) did, suggesting that arachidonate release is 

unlikely to play a role in the transduction of protective and/or mitogenic signals in WEHI 

231 cells (results not shown). The effect of IL-4 on the activation of CPLA2  by anti-Ig

was also examined in order to determine whether stimuli which inhibit negative growth 

responses and apoptosis in immature B cells might also inhibit the activation of cPLA2 -

WEHI 231 cells, prelabelled with [^H]arachidonate, were stimulated with IL-4 (0-200 

U/ml) in the presence or absence of anti-Ig (0.3 pg/ml) for 30 min. The basal level of

arachidonate release was unaffected by IL-4, but IL-4 was found to inhibit anti-Ig- 

mediated [^H]arachidonate release in a dose-dependent manner (Figure 55A  and B). The 

inhibition of the anti-Ig-mediated activation of CPLA2  in WEHI 231 cells by IL-4 could

therefore be important in the inhibition of anti-Ig-induced growth arrest and programmed 

cell death in these cells. These findings support the hypothesis that the production of
£
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arachidonate by CPLA2  is involved in the transduction of anti-proliferative signals 

induced by the crosslinldng of antigen receptors on immature lymphocytes. It would 

therefore be useful to examine the effects of the other protective stimuli, CD40 

crosslinldng, LPS and PMA, on anti-Ig-mediated arachidonate release.

4 .11  Anti-Ig stimulates ceramide generation in WEHI 231 cells.

Recently, reports have demonstrated a role for the agonist-induced release of 

arachidonate in the activation of sphingomyelinase and the resultant hydrolysis of 

sphingomyelin and release of ceramide (61). This pathway is strongly implicated in the 

transduction of apoptotic signals in a number of cell types (61, 180-182, 2 2 2 ), and it was 

therefore decided to investigate the possibility that the antigen receptors on WEHI 231 

cells are coupled to the activation of sphingomyelinase (this work was carried out in 

collaboration with S. Gardner, this laboratory). WEHI 231 cells were stimulated with 

anti-Ig for 15 or 30 min, and ceramide mass levels were determined using an in vitro 

DAG-kinase assay which catalyses the transfer of the y-phosphate of [y-^^P]ATP to 

ceramide to generate [^^PJceramide phosphate, which was then determined by thin layer 

chromatography analysis. Anti-Ig stimulation of WEHI 231 cells was found to induce the 

production of ceramide within 30 min (Figure 56), but not 15 min (data not shown) in a 

dose-dependent manner (0.(X)1-1(X) pg/ml). These findings suggest that SMase activation 

and ceramide production could be involved in the transduction of anti-proliferative signals 

upon ligation of the antigen receptors on immature B cells. The finding that anti-Ig- 

mediated ceramide release is temporally downstream of CPLA2  activation also suggests

that the stimulated release of arachidonate could play a role in the activation of SMase in 

these cells, in a manner analogous to that observed for TNF-a-signalling in HL60 

monocytic cells.
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DISCUSSION

4.12  Cytosolic PLA2 in mature lymphocytes.

The results presented here demonstrate that the antigen receptors on mature B and 

T cells are not coupled to either an arachidonate-selective CPLA2  activity or to an oleate- 

selective PLA2  activity following mitogenic stimulation (Figures 36 and 37). Moreover, 

CPLA2  does not appear to be expressed in mature tonsillar splenic B and T cells or in a 

number of B and T cell lines representing mature lymphocytes (Figure 38). These data 

suggest that arachidonate, or other free fatty acids, are unlikely to play a role as lipid 

second messengers in transducing proliferative signals in mature, immunocompetent B or 

T cells.

These results were initially rather surprising as arachidonate generation has been 

implicated in the regulation of signal transduction events leading to proliferation in a 

number of cell types (143,232,234) and because many of the receptors known to couple 

to CPLA2  are, like the antigen receptors on B and T cells, calcium-mobilising receptors

(278). In addition, whilst several groups had reported an inability to detect eicosanoid 

formation by human lymphocyte preparations and cell lines (282-284), others (285-287) 

had previously reported arachidonate release and PLA2  activation from B and T cell lines 

stimulated with receptor ligands or pharmacological activators, such PMA and/or calcium 

ionophores. However, the apparent discrepancies with these earlier published studies 

may be easily resolved since these authors have described arachidonate release from 

either an antigen-specific CD4+ T cell clone (286) or human EBV-transformed human B 

cell lines, including the SKW6.4 B cell line (285, 287). Whilst the results of this 

investigation indicate that simply culturing Jurkat T cells, in vitroy with IL-2 for up to 3 

days does not induce cPLA2  expression (data not shown), it is possible that induction of 

antigen-specific T cell clones followed by their repeated stimulation and culture with 

antigen and IL-2 may induce cPLA2  expression in these T cells. Moreover, examination 

of CPLA2  expression in B cell lines, has shown that certain EB V-transformed cells, 

including SKW and EDR cells, do indeed express cPLA2  (data not shown), suggesting 

that EBV-mediated deregulation of cellular proliferation may overcome, or lie distal, to
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any potentially deleterious effects of cPLA2  activation on B cell proliferation. However, 

expression of cPLA2  does not appear to be a ubiquitous feature of EB V-transformed B 

cells as we have found that other EBV-transformed B cell lines (including Daudi B cells) 

do not appear to express cPLA2 . Moreover, investigation of CPLA2  activity in EDR cells

has demonstrated that arachidonate generation is not induced following antigen receptor 

crosslinking, or stimulation with PMA, IL-4 (alone or in combination with anti-Ig), LPS 

or ATP (results not shown), suggesting that transformation may have uncoupled CPLA2

from the antigen receptors in these cells.

Recent findings that inflammatory mediators such as IL-1 and TNF-a, which can 

promote lymphocyte proliferation and differentiation, dramatically upregulate cPLA2  

expression and activity in fibroblasts (278,279), raised the possibility that, although 

cPLA2  does not appear to be expressed in resting B and T cells or proliferating 

lymphocyte cell lines (Figure 38), it may play a role in lymphocyte activation during an 

immune response. However, culture of B and T cell lines with these cytokines did not 

induce cPLA2  expression, at least in vitro (results not shown). Although the precise 

profile of cPLA2  expression has not been defined, it is clear that it is expressed by a wide 

variety of ceU lineages including kidney mesangial cells, fibroblasts, epithelial cells, 

macrophages and platelets (278,288-292). Thus, taken together with the increasing 

evidence that fatty acids, such as arachidonic acid, can mediate anti-proliferative or even 

cytolytic effects in a number of cell types (61, 233, 293, 294), including B cells (Figure 

39), the lack of expression of cPLA2  in B and T cells suggested that CPLA2  activity 

could be (i) deleterious for lymphocyte survival and proliferation and (ii) involved in 

antiproliferative responses such lymphocyte differentiation and/or apoptosis.

4 .1 3  cP L Â 2  expressioi- and activation in Im m ature B and  T cells.

As a result of the finding that CPLA2  is not expressed by mature lymphocytes, 

and that arachidonate release may be involved in negative signalling in lymphocytes, it 

was decided to screen a range of pre-B cell lines, thymocytes, immature (4 week old) 

splenic lymphocytes, murine T3 thymoma cells, and the immature murine B lymphoma,
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WEHI 231, for cPLA2  expression. Although cPLA2  was not expressed in pre-B cells, it 

was highly expressed in thymocytes, lymphocytes prepared from immature murine 

spleens (Figure 40), murine T3 thymoma cells, (Figure 46) and WEHI 231 cells (Figure 

50), suggesting that cPLA2  may transduce maturation stage-specific signals.

4 . 13 .1  cPLA2 activity in murine thymocytes and T3 thymoma cells.

Investigation initially focused on the use of primary murine thymocytes. Ligation 

of the antigen receptors on murine thymocytes with anti-CD3 or Con A stimulated the 

intracellular release of arachidonate (Figure 42), demonstrating tliat the antigen receptors 

on these cells are coupled to CPLA2  activation. Incubation of these cells with ionomycin,

a calcium ionophore, also stimulated the release of arachidonate (Figure 42). Taken 

together with the time course of cPLA2  activation, the results suggest that the TCR may 

be coupled to CPLA2 , at least in part, through the mobilisation of calcium and the Ca^+- 

dependent recruitment of CPLA2  to the plasma membrane. Preliminary findings indicated 

that PMA does not induce CPLA2  activation in these cells, suggesting that PKC activation 

is not sufficient for, or not involved in, CPLA2  activation in these cells.

It was then decided to investigate antigen receptor-cPLA2  coupling in T3 murine 

thymoma cells, which also been found to express CPLA2 , because these cells represent a 

more homogeneous immature T cell population. T3 cells have been found to un(fcrgo 

apoptosis in response to antigen receptor crosslinking by Con A and following 

stimulation with ionomycin or hydrocortisone, but not PMA (R. Zamoyska, personal 

communication). Proliferation assays had also shown that growth arrest is induced in 

these cells in response to Con A, PHA or ionomycin (Figure 45), but not anti-CD3 

(0.001-1 pg/ml) (A. Michie, personal communication). However, the failure of anti-CD3 

to induce growth arrest in T3 cells was apparently because insufficient TCR crosslinldng 

is mediated by soluble anti-CD3 Ab (R. Zamoyska, personal communication). These 

cells were therefore appropriate for the study of apoptotic signals in immature T cells.

Following these findings and reports, it was decided to investigate TCR-CPLA2

coupling in T3 cells. Interestingly, stimulation of T3 cells with Con A (50 pg/ml), anti-
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CD3 (1 pg/ml) or ionomycin (1 pM) stimulated rapid and sustained release (for at least 

30 min) of arachidonate, whereas PMA (1(X) ng/ml) induced no arachidonate generation. 

These findings strongly support the findings in thymocytes that the antigen receptors on 

immature T cells are coupled to cPLA2  activation. The results obtained with stimulation

of T3 cells with ionomycin and PMA were also very interesting because i) sustained 

calcium release has been implicated in the induction of apoptosis in a number of cell 

types, and ionomycin has been shown to induce apoptosis in T3 cells, and ii) phorbol 

esters have been shown to inhibit apoptosis in several cell types, including T3 thymoma 

cells. Furthermore, it has been found that PKC is not activated following crosslinking of 

the antigen receptors on immature lymphocytes to the same extent as that observed in 

mature lymphocytes (93), and it is possible that PKC activation is inhibitory to the 

induction of apoptosis. These results therefore support the proposal that arachidonate 

generation may be involved in the induction of apoptosis of immature lymphocytes, as 

only stimuli known to induce apoptosis were found to stimulate CPLA2  activity.

The analysis of CPLA2  activation in T3 cells also found that Con A or anti-CD3 

induced a much more rapid release of arachidonate (within 1 min), than ionomycin (>1 

min, <10 min). This could simply be because antigen receptor crosslinking induces a 

number of signals in addition to Ca^"^ influx (such as MAP-kinase activation), and 

therefore induces a more rapid activation of CPLA2  than the ionomycin-mediated influx of

Ca^+ does on its own. It is also possible, however, that the antigen receptors on 

immature T cells are coupled to CPLA2  activity via alternative pathways (eg. G proteins), 

which would elicit more rapid activation of CPLA2 . It would therefore be appropriate to 

investigate the coupling of the TCR to CPLA2  via both Ca^+/protein kinase-dependent

and G protein-dependent pathways.

Overall, the findings demonstrate the expression of CPLA2  and coupling of 

antigen receptors to PLA2  activation, in murine thymocytes and T3 thymoma cells. These 

results therefore indicate that the generation of arachidonate may be involved in the 

transduction of apoptotic signals via the antigen receptors on immature T cells.

i- 'ï"
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4 .1 3 .2  cP L A 2  activity in im m ature m urine B cells.

Western blots also showed that CPLA2  is also expressed in murine immature 

splenic lymphocytes from 4 week old mice (B and T cells), indicating that CPLA2  could 

be expressed (and possibly activated via the antigen receptors) in immature B cells in a 

manner analogous to that observed for immature T cells. However, investigation of 

antigen receptor coupling in IS B cells showed that antigen receptor crosslinking, or 

stimulation with PMA or LPS, did not induce the release of arachidonate above that 

observed in unstimulated cells (Figure 44). However, comparison of the level of 

[^Hjarachidonate release in unstimulated cells at zero time and following culture for 30 

min, indicated that the there was an extremely high basal level of arachidonate release, 

suggesting that, if arachidonate release constitutes a signal for the induction of anergy or 

apoptosis, then some of these B cells might be spontaneously undergoing this process, 

possibly as the result of prior encounter with self antigen or their removal from their 

physiological environment. Another problem associated with investigating the coupling 

of the antigen receptors to CPLA2  activity in IS B cells is that the spleens of 4 week old

mice contain a rather mixed population of B cells of varying maturation states. Indeed, 

other workers have found that splenic B cells from 4 week old mice proliferate in 

response to antigen receptor crosslinking, and a large proportion (approximately 84%) 

are IgM+IgD++, indicating that they are mature B cells (280). Interestingly, the results 

suggested that stimulation of IS B cells with anti-Ig or LPS might induce a slight 

suppression of arachidonate release, possibly indicating that mitogenic stimulation of 

IgD+ B cells may suppress CPLA2  activity.

As a result of these complications it was decided to study CPLA2  activation in 

WEHI 231 B lymphoma cells, which had also been found to express CPLA2  (Figure 50). 

These cells have been reported to undergo apoptosis in response to sig crosslinldng with 

anti-Ig antibodies, and proliferation assays demonstrated that anti-Ig (>50 ng/ml) 

inhibited DNA synthesis (Figure 49). Moreover, stimulation with LPS (50 pg/ml), which 

has been reported to promote proliferation and to abrogate anti-Ig-induced growth arrest
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and apoptosis in WEHI 231 cells, was found to promote DNA synthesis (Figure 49), 

demonstrating that these cells are responsive to this polyclonal B cell activator.

The antigen receptor coupling and regulation of CPLA2  activity was then

investigated in WEHI 231 lymphoma cells. Stimulation of WEHI 231 cells with anti-Ig at 

concentrations below that which induce apoptosis (ie. <0 .1  pg/ml) did not induce the 

release of arachidonate, whereas stimulation with anti-Ig concentrations which suppress 

DNA synthesis by 50% (0.125 pg/ml) or completely inhibit DNA synthesis (1.25 pg/ml) 

was found to induce significant release of arachidonate at 5 (results not shown), 10, 30 

and 60 min (Figure 51), indicating that the antigen receptors on WEHI 231 B cells are 

coupled to CPLA2  activation, and that arachidonate generation could be involved in the

transduction of growth arrest and/or apoptotic signals in immature B cells. However, 

further investigation of the concentration-dependence of the anti-Ig-induced arachidonate 

generation demonstrated that stimulation of WEHI 231 cells with substantially higher 

concentrations of anti-Ig (5, 50 pg/ml) resulted in an apparent densensitisation of CPLA2

activation (Figure 51), despite the fact that these concentrations of anti-Ig induce growth 

arrest and apoptosis in WEHI 231 cells. However, since the coupling of sig to CPLA2

under conditions of extensive crosslinking were only investigated at a single time point of 

30 min, it is possible that CPLA2  is deactivated by negative feedback once downstream

signals have been fully activated by arachidonate. Such a situation might suggest that 

sustained arachidonate release is not required for the maintenance, but only for the 

initiation, of the cellular events leading to the induction of apoptosis in WEHI 231 cells. 

Further investigation of the regulation of CPLA2  activity in WEHI 231 cells found

that arachidonate release was not stimulated by ionomycin (1 pM) or PMA (1(X) ng/ml). 

This could indicate that calcium influx and PKC activation are not sufficient on their own 

to induce CPLA2  activation. Indeed, PMA has been found to rescue cells (including 

WEHI 231 cells) from growth arrest and apoptosis (94), and so activation of CPLA2  by 

PMA would not be predicted if arachidonate release is a signal for the inhibition of 

growth or induction of apoptosis. Reports also suggest that the antigen receptors on 

immature lymphocytes may be uncoupled from the full activation of PKC, indicating that
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sIg-cPLA2  coupling is likely to be mediated by alternative pathways such as the ras-raf- 

MAP-kinase cascade. It is possible that sig on immature B cells may couple to CPLA2  

activity via alternative mechanisms, such as the G protein-dependent activation of CPLA2

induced by bombesin in Swiss 3T3 cells (143). However, it is also possible that 

activation of CPLA2  in WEHI 231 cells simply requires both Ca^+ influx and PKC

activation, signals resulting from sig crosslinking.

Overall, the results therefore demonstrate the expression of CPLA2  by immature B

cells, and the coupling of the antigen receptors on these cells to arachidonate release in a 

manner analogous to that observed in immature T cells, suggesting that this signalling 

pathway may be important for the induction of anergy and/or apoptosis in these 

lymphocytes.

4 . 13 .3  The effects of stimuli which protect WEHI 231 cells from 

apoptosis on the activation of CPLA2 .

Further studies carried out in WEHI 231 cells examined the effects on CPLA2  

activity of number of stimuli which have been shown to abrogate anti-Ig-mediated growth 

arrest (3, 115, 120, 281). Stimulation of WEHI 231 cells with IL-4, CD40 crosslinking 

or LPS failed to induce activation of cPLA2 - Furthermore, preliminary findings indicated 

that such stimuli might inhibit the anti-Ig-induced activation of CPLA2  in WEHI 231 

cells. IL-4 was found to inhibit anti-Ig-mediated release of arachidonate in a dose- 

dependent manner, although it had no effect on basal arachidonate release, suggesting 

that this cytokine probably has no direct inhibitory effect on CPLA2  activity, but

modulates an upstream signal initiated by the crosslinking of sig. These preliminary 

results suggest that the inhibition of anti-Ig-mediated signals, such as activation of 

CPLA2 , by IL-4 (and possibly other stimuli), may be important for the protection of

WEHI 231 cells from anti-Ig-induced growth arrest and apoptosis. The findings are 

therefore consistent with a role for arachidonate release in the transduction of negative 

signals in lymphocytes.
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4 . 13 . 4  The effects of an arachidonate analogue on DNA synthesis 

and cPLA2 activity in WEHI 231 cells.

Further studies investigated the effects of the direct inhibition of CPLA2  activity

on anti-Ig-mediated growth arrest and arachidonate release in WEHI 231 cells. These 

employed the use of an arachidonate analogue, AACOCF3 , which has been shown to 

inhibit CPLA2  but not SPLA2  activity (240, 241). Firstly, WEHI 231 cells were 

incubated with anti-Ig (0, 0.05,0.5, or 5 pg/ml) in the presence of AACOCF3  (0-50 

pM) and the effects on DNA synthesis were determined. Tire effects of arachidonate (0- 

50 pM) on WEHI 231 DNA synthesis were also examined. The results were somewhat 

surprising: AACOCF3 inhibited DNA synthesis in WEHI 231 cells in a dose-dependent

manner, whereas arachidonate (0.16-16 pM) induced a small, but significant increase in 

DNA synthesis, only inhibiting DNA synthesis at higher concentrations (50 pM). 

Although these results could suggest that low levels of released arachidonate could be 

involved in mitogenic, rather than apoptotic, signalling, it is possible that exogenously 

added arachidonate will have different effects to stimulated release of arachidonate by 

cells. Moreover, the different effects of arachidonate and AACOCF3 may be due to the 

fact that, unlike arachidonate, AACOCF3  is probably not metabolised by cells (240, 

241), resulting in the sustained presence of AACOCF3 , as compared to the removal of

arachidonate through its metabolism by the cells, and/or conversion of arachidonate to 

other molecules such as eicosanoids. AACOCF3 appeared to reduce the concentration

dependence for anti-Ig in the induction of growth arrest in WEHI 231 cells. Thus, in 

WEHI 231 cells incubated with a concentration of anti-Ig (0.5 pg/ml) which markedly 

inhibited growth on its own, addition of AACOCF3 induced total growth inhibition at a

concentration of 5-16 pM; whereas WEHI 231 cells which were incubated with no anti- 

Ig or a "sub-apoptotic" concentration of anti-Ig (0.05 pg/ml), required AACOCF3  at a

concentration of 50 pM for thé total inhibition of DNA synthesis. Furthermore, the 

results from the experiments examining the effects of AACOCF3  on anti-Ig-mediated 

cPLA2  activation suggest that it is unlikely that AACOCF3  inhibited arachidonate release 

during the DNA synthesis assay. In any case, the cytotoxic effects would probably mask

163



any effects of AACOCF3  on cell proliferation resulting from the inhibition of cPLA2

arachidonate release in the control of growth and apoptosis in WEHI 231 cells.
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activity. These results are inconclusive regarding the role of CPLA2  activation and

4.14  The coupling of the antigen receptors on WEHI 231 B cells to the 

sphingomyelinase pathway.

A preliminary study was carried out (in collaboration with S. Gardner in this 

laboratory), to determine whether crosslinking of the antigen receptors on immature B 

cells results in the activation of sphingomyelinase, which catalyses the hydrolysis of 

sphingomyelin and the release of ceramide, another hpid second messenger implicated in 

the control of apoptosis in several cell types (61,180-182, 222). Stimulation of WEHI 

231 cells with anti-Ig (0.(X) 1-100 pg/ml) induced the release of ceramide in dose- 

dependent manner within 30 min, although no ceramide production was observed by 15 

min. Other workers have previously shown that WEHI 231 cells generate ceramide in 

response to antigen receptor crosslinking. However, this was only observed 8 h after the 

initiation of sig crosslinking. These discrepancies may be resolved by the fact that the 

other study involved the determination of ceramide levels in [^H]palmitate-labelled WEHI 

231 cells. In contrast, the DAG-kinase assay is a highly sensitive mass assay and should 

detect the production of ceramide from all species of sphingomyelin. However, taken 

together these findings indicate that antigen receptor crosslinking on immature B cells 

stimulates ceramide production which is sustained for several hours. The results also 

demonstrate that, following sig crosslinking, sphingomyelinase activation is temporally 

downstream of CPLA2  activation, suggesting that, as with TNF-a stimulation of HL60
-

monocytes (61), the stimulated release of arachidonate may activate sphingomyelinase.

Further studies to investigate this possibility could involve examination of the effects of 

exogenous arachidonate, and arachidonate analogues such as AACOCF3  and ETl, on

sphingomyelinase activity in WEHI 231 cells and other immature lymphocytes.

Interestingly, in mutant WEHI 231 cells, which do not undergo growth arrest or 

apoptosis in response to sIgM crosslinking, crosslinldng of the antigen receptors has
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been found to be uncoupled from SMase activation and ceramide generation (295).

Further investigation of the uncoupling of the antigen receptors on these cells from 

SMase activation and the induction of growth arrest/ apoptosis could involve studies on 

sIgM coupling to CPLA2  activation.

4 .1 5  Sum m ary .

This investigation has generated a number of findings which indicate a key role 

for CPLA2  in lymphocyte maturation:

7 !

i) CPLA2  is expressed by B and T cells in a maturation state-specific manner.

Western blotting studies demonstrated that mature lymphocytes, and a number of 

cell lines representing this maturation state, do not express CPLA2 . In contrast, 1

CPLA2  was found to be expressed in immature murine splenocytes, murine 

thymocytes, T3 murine thymoma cells and WEHI 231 murine immature B cells, 

although not in the pre-B cell lines 697, 207 and REH.

iii) Pharmacological studies demonstrated that certain agents which induce 

apoptosis (eg. ionomycin in T3 cells) activate CPLA2 , whereas those which do

not induce apoptosis (eg. PMA in all the immature lymphocytes investigated) 

failed to induce arachidonate release.

iv) stimulation of WEHI 231 immature B cells with specific stimuli known to 

rescue these cells from sIgM-mediated apoptosis, including IL-4, CD40 

crosslinking and LPS, did not stimulate CPLA2  activity. Moreover, EL-4 was

found to block anti-Ig-mediated release of arachidonate, suggesting that these
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ii) the antigen receptors on immature B and T cells were found to be coupled to
’

CPLA2  activation, indicating that arachidonate release may be involved in the 

antigen receptor-mediated induction of growth arrest and/or apoptosis.

Î
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stimuli may effect B cell rescue from apoptosis through the inhibition of 

intracellular signals such as cPLA^ activation.

v) the antigen receptors on WEHI 231 cells were found to be coupled to the 

downstream activation of sphingomyelinase and the resultant generation of 

ceramide.

The findings of this investigation have therefore demonstrated a role for CPLA2  in 

maturation state-specific signalling in lymphocytes. The antigen receptor-mediated release 

of arachidonate has also been strongly implicated in the induction of growth arrest and/or 

apoptosis. Furthermore, sphingomyelinase, a signal transducer which has been shown to 

be activated by released arachidonate in other cell types, has been found to be temporally 

downstream of cPLA2  activation following crosslinldng of the antigen receptors on 

WEHI 231 immature B cells. Taken together, these results suggest that the sig-coupled 

activation of cPLA2  and SMase may be analogous to that observed in the TNF-a receptor 

system.

4 .1 6  F u tu re  perspectives.

The investigation of CPLA2  expression and activation in lymphocytes has clearly 

established a role for CPLA2  in maturation state-dependent signalling via the antigen 

receptor in immature B and T cells. These findings have suggested a role for the 

stimulated release of arachidonate in the induction of growth arrest and/or apoptosis. 

However, there is as yet, no conclusive evidence for a role for CPLA2  in negative

selection of lymphocytes, and a number of questions remain unanswered as to the 

receptor coupling and regulation of CPLA2  activity, as well as the downstream effects of

stimulated arachidonate release.
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i) C oupling m echanism .

The crosslinking of the antigen receptors on B or T cells leads to the rapid and 

sustained production of arachidonate. However, the mechanism(s) by which the antigen 

receptors on lymphocytes couple to CPLA2  has not been determined. The most obvious 

mechanism, established in other cell types, involves the phosphorylation of CPLA2  by

MAP-kinase and its calcium-dependent recruitment to the plasma membrane (260).

However, although ionomycin, a calcium ionophore, was found to activate CPLA2  in 

immature T cells, there is no evidence for the calcium-dependent activation of CPLA2  in
'

immature B cells. Another possibility is that the lymphocyte antigen receptors may couple 

to CPLA2  activation via a G-protein-dependent mechanism (possibly in addition to the

Ca^+ZMAP-kinase-dependent pathway). There are a number of experiments which could
' I

be conducted to define the coupling mechanism(s) in B and T cells:

i) a more detailed time course (ie. at shorter time points) to determine the precise
...

lag between TCR or sig crosslinldng, or ionomycin stimulation, and CPLA2  

activation in T3 and WEHI 231 cells.
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ii) analysis of the effects of the guanine nucleotide analogues GTPyS and GDPpS 

on CPLA2  activation following TCR or BCR crosslinking on permeabilised T3 or 

WEHI 231 cells, respectively. Determination of whether cPLA2  is activated 

subsequent to PtdInsP2 -PLC: dose response on intact cells or in the presence of 

neomycin in permeabilised cells.

I

iii) analysis of the effects of G protein ADP-ribosylation, by pertussis toxin (Gp 

like proteins) or cholera toxin (GaTike proteins), on the rapid-phase of CPLA2  

activation following TCR or BCR crosslinking crosslinking.

I
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iv) analysis of the Ca^'^-dependence of of CPLA2  activation in T3 and WEHI 231 

cells, using chelation of extracellular calcium or intracellular calcium (in 

permeabilised cells).

v) analysis of the effects of protein kinase (PTK and PKC) inhibitors on antigen 

receptor-mediated cPLA2  activation in immature B and T cells.

ii) Rescue from growth arrest.

The investigation also demonstrated that IL-4 inhibits sIg-cPLA2  coupling in

WEHI 231 cells. It is possible that other stimuli which rescue B cells from anti-Ig 

induced apoptosis could inhibit anti-Ig-mediated CPLA2  activation. Thus, it would be

interesting to examine the effects of CD40 crosslinking, LPS and PMA on anti-Ig- 

induced CPLA2  activation. It would also be useful to determine whether these stimuli 

have any effect on CPLA2  expression.

iii) The role of arachidonate and prostaglandins in lymphocyte 

proliferation and apoptosis.

DNA synthesis assays demonstrated differences between the effects of exogenous 

arachidonate and its analogue, AACOCF3 , on the proliferation of WEHI 231 cells.

Indeed, at low concentrations arachidonate slightly stimulated DNA synthesis, and there 

are a number of possible reasons for this. Arachidonate can be converted to eicosanoids, 

whereas AACOCF3  does not appear to be metabolised. The production of these

intracellular inflammatory mediatoi^ by WEHI 231 cells could have an autocrine effect, 

possibly inducing the increase in proliferation observed upon incubation with 

arachidonate (0.16-16 jiM). Indeed it has been reported that murine fetal thymic lobes 

will convert exogenous arachidonate to 6 -keto prostaglandin F j (PGFi), PGE2 , and 

PGF2 , which were found to promote proliferation of such cells, although their 

production has also been implicated in the negative modulation of growth responses to 

lymphokines such as IL-1 in thymocytes. [^H]arachidonate could be added exogenously
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to WEHI 231 cells and then the formation of [^H]eicosanoids could be analysed using 

HPLC. These cells could also be stimulated with anti-Ig to determine whether antigen 

receptor crosslinking induces any changes in the formation of eicosanoids. In addition, 

the effects of eicosanoids such as PGE2  on WEHI 231 cell proliferation could be

determined.

iv) Signals downstream of arachidonate generation.

In addition to antigen receptor-mediated arachidonate release, sig crosslinldng 

was found to induce the production of ceramide in WEHI 231 cells. This pathway has 

been found to be activated following TNF-a-stimulated arachidonate release by CPLA2  in

■K
3

HL60 monocytes. The role of arachidonate generation in coupling sig on B cells to
■■■

downstream signals, such as sphingomyelin hydrolysis, could be analysed. WEHI 231 

cells could be stimulated with exogenous arachidonate, AACOCF3  or ETI, and the

generation of ceramide measured using the DAG-kinase assay. The involvement of

arachidonate in the regulation of such pathways might indicate that the primary role of

anti-Ig-induced arachidonate release is as an intracellular second messenger, rather than
'

as a precursor for eicosanoid biosynthesis. The effect of specific eicosanoids (if they are 

produced by WEHI 231 cells from exogenous arachidonate) on this pathway could also 

be examined. The sustained production of ceramide following sig crosslinking on WEHI
.

231 cells has also been reported by other researchers. The temporal relationship between 

arachidonate and ceramide generation following antigen receptor crosslinking suggests 

that released arachidonate may directly activate sphingomyelinase and indirectly to the 

induction of growth arrest and/or apoptosis. The above experiments, as well as further 

investigation of the anti-Ig-mediated production of ceramide would help to substantiate 

this possibility. This investigation has also demonstrated the activation of PtdCho-PLD 

activity in B cells following addition of exogenous ceramide. This raises the possibility 

that the anti-Ig-stimulated release of ceramide could activate PtdCho-PLD in immature B 

cells, but over a much longer time course than was previously examined. Such activation 

would be consistent with a role for PtdCho-PLD in negative signalling in B cells.

■;ss
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v) Demonstration of a causal link between cPLA2 activation and growth 

arrest/apoptosis.

Some other reports have suggested another possible strategy for investigating the 

role of cPLÂ2  in the transduction of negative signals from sig on WEHI 231 cells.

Growth arrest of WEHI 231 cells has been used to examine the cell cycle-dependence of 

anti-Ig-mediated growth inhibition. WEHI 231 cells were growth-arrested and 

synchronized in G2 M phase using nocodazole (2 ), which was then removed allowing

them to progress and enabling the analysis of their sensitivity to anti-Ig at different points 

in the cell cycle. It was found that WEHI 231 cells are sensitive to anti-Ig growth 

inhibition immediately following cell division, as the cells enter G% phase, but not after

that, suggesting that antigen receptor crosslinldng modulates some key intracellular 

events at that point. Interestingly, a report on the cell cycle-dependence of CPLA2

activation in HeLa cells (296), demonstrated that incubation of interphase-arrested HeLa 

cells with histamine, thapsigargin or ionomycin led to the release of arachidonate, 

whereas CPLA2  activation was totally inhibited in metaphase-arrested cells. It might 

therefore be worthwhile to examine the cell cycle-dependence of CPLA2  activation by 

anti-Ig in WEHI 231 cells. If anti-Ig-induced arachidonate release constitutes an apoptotic 

signal in these cells, then it is likely that periods where anti-Ig will induce arachidonate 

release and growth arrest would coincide. Such a finding would not prove the 

involvement of CPLA2  in the transduction of apoptotic signals from antigen receptors on

immature lymphocytes, but it would lend considerable weight to that hypothesis.

Further studies investigating the role of arachidonate release in the induction of 

apoptosis in immature T cells, wül involve the characterisation of the regulation of CPLA2

activity in a number of mutant T3 cell lines. These mutants, all of which have been found 

to express CPLA2  (Figure 46), were derived from T3 murine thymoma cells on the basis

of their resistance to apoptosis induced by ionomycin (I1-6A10,13-2F7), concanavalin A 

(C3-6H12), or hydrocortisone (H1-5F12). The examination of whether these stimuli, or 

indeed antigen receptors, are uncoupled from specific intracellular signals, particularly
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cPLA2  activation, would give further insight into the signals involved in the induction of 

apoptosis in immature lymphocytes.

Finally, work in progress (in collaboration with M. Wakelam, Birmingham) will 

provide a much more definitive answer to the question of whether CPLA2  activation is

involved in the induction of growth arrest or apoptosis in immature lymphocytes. The 

cloning of the gene encoding CPLA2  has enabled the synthesis of a dominant negative 

CPLA2  gene which can be used to suppress cPLA2  activity in cells. The transfection of

cells with this gene will therefore permit analysis of the requirement of these cells for 

CPLA2  and downstream signal events such as ceramide generation in the induction of

specific cellular responses such as growth arrest and apoptosis. Both WEHI 231 murine
.

B lymphoma cells and T3 murine thymoma cells constitute appropriate cell lines in which 

to conduct such a study. Moreover, it will be possible to prepare CPLA2  deletion mutants

of various lymphocyte ceU lines which will allow further study of its function in these 

cells.
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Figure 36. The antigen receptors on B and T cells a re  not coupled to 

cPLA i activation. Murine splenic B cells, purified as described under "Materials and 

Methods" were radiolabelled and in panel A, stimulated with anti-Ig (50 |ig/ml), PMA (1 

}lg/ml) or medium (control) for 10 min. In panel By Jurkat T cells, treated as described 

under "Materials and Methods" were radiolabelled with [^HJarachidonate and stimulated 

with anti-CD3 (1 Jig/ml;) or medium for the indicated time. Arachidonic acid was 

measured by tic analysis as described. The results are expressed as means ± SEM from 

single typical experiments where n=3.
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as means ± SEM from single typical experiments where n=3.
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Figure 37. The antigen receptors on B and T cells are not coupled to 

oleate-specific CPLA2 activity. Human Daudi B and Jurkat T cell lines, treated as

described under "Materials and Methods" were radiolabelled with pHJoleate. In panel A 

Daudi B cells were stimulated with anti-Ig (25 pg/ml), PMA (1 pg/ml) or medium; in 

panel B, Jurkat T cells were stimulated with PHA (50 |ig/ml), PMA (1 |ig/ml) or 

medium. Oleic acid was measured by tic analysis as described. The results are expressed
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Figure 38. Cytosolic PLA 2  is not expressed by m ature  B or T 

lymphocytes. Ceil lysates were prepared and immunoblotted as described in "Materials 

and Methods". In panel A, lanel: partially purified CPLA2; lane 2: murine splenic resting 

B cells; lane 3: murine splenic resting T cells; lane 4: Daudi B cells; lane 5: HL60 ceils; 

lane 6 : Jurkat T cells; lane 7: Ramos B cells; lane 8 : partially purified CPLA2. In panel B, 

lanel: partially purified CPLA2 ; lane 2: human tonsillar resting T cells; lane 3: human 

tonsillar in vivo activated T cells; lane 4: human tonsillar in vivo activated B cells; lane 5: 

Daudi B cells; lane 6 : HL60 cells; lane 7: Jurkat T cells; lane 8 : Ramos B cells; lane 9: 

partially purified CPLA2 . All lymphocyte cell lysates were loaded as 100 pg/lane whereas 

HL60 lysates were 40 pg/lane and partially purified CPLA2  samples were 5 p-g/lane.
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Figure 39. Exogenous arachidonate  inhibits basal and an ti-Ig  stim ulated 

DNA synthesis in m urine B cells. Murine splenic B cells, purified as described 

under "Materials and Methods" were cultured (5 x lO^/ml) in the presence of anti-Ig (50 

pg/ml), arachidonate (20 pM), or anti-Ig (50 pg/ml) plus arachidonate (20 pM).

thymidine uptake was determined after 72 h as described in the methods section. 

Data are presented as means ± SD where n=3.
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Figure 40. Cytosolic PLA 2  is expressed by m urine thym ocytes and 

im m ature splenocytes. Cell lysates were prepared and immunoblotted as described in 

"Materials and Methods". In lane 1: 697 pre-B cells; lane 2: 207 pre-B cells; lane 3: REH 

pre-B cells; lane 4: partially purified CPLA2 ; lane 5: immature murine lymphocytes; lane 

6 : murine thymocytes. All lymphocyte cell lysates were loaded as 100 pg/lane whereas 

partially purified CPLA2 samples were 5  pgAane.
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Figure 41. cP L A i is activated via the antigen receptors on m urine 

thymocytes. Murine thymocytes, treated as described under "Materials and Methods" 

were radiolabelled with [^H] arachidonic acid and stimulated with anti-CD3 (1 pg/ml) or 

ConA (50 pg/ml) for 30 min at 37°C. Arachidonic acid was measured by tic analysis as 

described. The results are expressed as means ±  SEM from single typical experiments 

where n=3.
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Figure 42. Intracellular arachidonate release is stimulated in murine 

thymocytes by antigen receptor crosslinking or ionomycin. M urine 

thymocytes, treated as described under "Materials and Metliods" were radiolabelled with 

arachidonic acid. Intracellular levels of [^H] arachidonic acid were measured in 

murine thymocytes following stimulation, in panel A with ConA (50 pg/ml); in panel B 

with anti-CD3 (1 pg/ml); or in panel C with ionomycin (1 pM); for 10 min. Arachidonic 

acid was measured by tic analysis as described. The results are expressed as means ± 

SEM from single typical experiments where n=3.
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Figure 43. Con A and ionomycin induce the release of ex tracellu lar 

arachidonate by m urine thymocytes. Murine thymocytes, treated as described 

under "Materials and Methods" were radiolabelled with [^H]arachidonic acid, and 

extracellular levels of [^H]arachidonic acid were measured following stimulation with 

ConA (50 |ig/ml) or with ionomycin (1 pM) for 10 min. Arachidonic acid was measured 

by tic analysis as described. The results are expressed as means ± SEM from single 

typical experiments where n - 3 .
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Figure 44. CPLA2  is not activated in m urine Im m ature splenic B ceils 

upon stim ulation with anti-Ig, LPS or PMA. Immature murine splenic B cells, 

purified as described under "Materials and Methods”, were radiolabelled with 

pH]arachidonic acid and stimulated with anti-Ig (0.5-50 (ig/ml), LPS (50 p-g/ml) or 

PMA (ICX) ng/ml) for 30 min. Arachidonic acid was measured by tic analysis as 

described. The results are expressed as means ± SEM from single typical experiments 

where n=3.
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Figure 45. G row th a rre s t is induced in T3 m urine thym om a cells by 

antigen receptor crosslinking or stim ulation with ionomycin. T3 murine 

thymoma cells, treated as described under "Materials and Methods", were cultured (2.5 x 

10^/ml), in panel A in the presence of PHA (O-KX) |ig/ml), or concanavalin A (0-100 

|ig/ml); in panel B with PMA (0.(X)1-1 |xg/ml), ionomycin (0.01-10 pg/ml), or anti-CD3 

(0.01-10 pg/ml). [^H]thymidine uptake was determined after 72 h as described in the 

methods section. Data are presented as means ± SD where n=3.
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Figure 46. Cytosolic PLA 2  is expressed in T3 m urine thym om a cells. Cell 

lysates were prepared, immunoprecipitated and then blotted as described in "Materials 

and Methods". In the top panel, lane 1: T3 murine thymoma cells (100 pg); lane 2: 

partially purified CPLA2 (5 pg). In the bottom panel, lane 1: T3 murine thymoma cells 

(100 pg); lane 2:13 cells (l(X)pg); lane 3: H I cells (1(X) pg); lane 4: C3 cells (100 pg),
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Figure 47. S tim ulation of T3 thym om a cells with Con A o r ionomycin 

induces release of arachidonate. Murine T3 thymoma cells, treated as described 

under "Materials and Methods", were radiolabelled with [^H]arachidonic acid and 

stimulated with Con A (50 jag/ml), PMA (100 ng/ml) or ionomycin (1 fxM) for the 

indicated time. Arachidonic acid was measured by tic analysis as described. The results 

are expressed as means ± SEM from single typical experiments where n=3.

t

#1

I
I

f
- f

i
1 8 3



A

E 8 0 0 0 -
c lTJ

Controlg 6 0 0 0 “
 V   ConA

■•"O--" PMA

-q
'sz
^ 4 0 0 0 -

-O
CO 2 0 0 0 -

0 5 1 0 1 5 20 2 5 3 0

B

E
CL

2 ,
0
0Co“U

jzÜ
E
0

X
CO

Time (min)

1 0 5 0 0

9 0 0 0 -

7 5 0 0 -
Control

6 0 0 0  V   PMA

O  anti-CD34 5 0 0 -

3 0 0 0

1 5 0 0
0 5 1 0 1 5 20 2 5 3 0

Time (min)

E
CL

TJ

8 0 0 0 - ,

B
0 6 0 0 0 -
Co

T3 .

sz
Ü
0 4 0 0 0 -
0

X
c o _ 2 0 0 0 -

Control

o   PMA

■"■O— lonomycin

10  15  . 2 0
Time (min)



Figure 48. Sustained intraceU ular arachidonate  release is induced upon 

stim ulation of T3 thym om a cells w ith Con A, anti-CD 3, o r ionomycin.

Miuine T3 thymoma cells, treated as described under "Materials and Methods", were 

radiolabelled with [^H]arachidonic acid. Intracellular levels of [^Hjarachidonic acid were 

measured following stimulation, in panel A with with Con A (50 pg/ml) or PMA (1(X) 

ng/ml); in panel B with anti-CD3 (1 fig/ml) or PMA (100 ng/ml); and in panel C with 

ionomycin (1 fiM) or PMA (1(X) ng/ml); for the indicated time. Arachidonic acid was 

measured by tic analysis as described. The results are expressed as means ± SEM from 

single typical experiments where n=3.
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Figure 49. Crosslinking of sig on WEHI 231 immature B cells induces 

growth arrest. DNA synthesis is stimulated by LPS. In panel A WEHI 231 

cells (5 X 10‘̂ /ml) were cultured in the presence of anti-Ig (5 x lO’^ - 50 |ig/nil); in panel 

B WEHI 231 cells (lO^/ml) were cultured in the presence of LPS (50 p-g/ml).

[^H] thymidine uptake was determined after 72 h as described in the methods section. 

Data are presented as means ± SD.

185



cPLA „H

1 2  3 4



Figure 50. CPLA2 is expressed in WEHI 231 immature murine B cells.

Cell lysates were prepared and immunoblotted as described in "Materials and Methods". 

In lane 1: partially purified CPLA2 ; lane 2: WEHI 231 immature murine B cells; lane 3: 

mature murine splenic B cells; lane 4: immature murine splenocytes. All lymphocyte cell 

lysates were loaded as 1 0 0  pg/lane whereas partially purified cPLA^ samples were 5 

jiig/lane.
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Figure 51. C rosslinking of the antigen receptors on W EH I 231 B cells 

stim ulates the release of arachidonate. WEHI-231 cells were radiolabelled with 

[^HJarachidonic acid, and stimulated [^Hjarachidonic acid generation was measured, in 

panel A following ligation of the antigen receptors with anti-lg at final concentrations of

0.0125 jLig/ml, 0.125 pg/ml or 1.25 jJ.g/ml for the indicated times; in panel B following 

stimulation with anti-lg (0.05-50 jig/ml) for 30 min. The results are expressed as means 

± SEM from single typical experiments where n=3.
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Figure 52. Stim ulation of WEHI 231 cells with PMA, ionomycin or LPS 

does not stim ulate the release of arachidonate . WEHI-231 cells were 

radiolabelled with [3H]arachidonic acid and stimulated, in panel A with anti-lg (0.5 

jig/ml) or PMA (100 ng/ml); in panel B with anti-lg (0.05 or 0.5 pg/ml), LPS (50 

)ag/ml), or ionomycin (1 |iM); for 30 min. Arachidonic acid was measured by tic analysis 

as described. The results are expressed as means ± SEM from single typical experiments 

where n-3.
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Figure 53. The arachidonate analogue AACOCF3 Inhibits basal 

arachidonate generation and DNA synthesis in WEHI 231 B cells. In panel 

A WEHI-231 cells were radiolabelled with [^H] arachidonic acid and stimulated, with 

anti-lg (0.5 |ag/ml) or medium in the presence of AACOCF3  (0-20 pM) for 30 min.

Arachidonic acid was measured by tic analysis as described. The results are expressed as 

means ± SEM from single typical experiments where n-3. In panel B WEHI 231 cells (5 

X 104/ml) were cultured, in the presence of anti-lg (0, 0.05,0.5 or 5 pg/ml) in the 

presence of AACOCF3  (0-50 pM). [^H]thymidine uptake was determined after 72 h as 

described in the methods section. Data are presented as means ± SD, n=3.
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Figure 54. Effects of arachidonate on DNA synthesis in WEHI 231 cells.

WEHI 231 cells (5 x lO^/ml) were cultured, in the presence of arachidonate (0-50 p,M) or 

AACOCF3 (0-50 jiM). [^HJthymidine uptake was determined after 72 h as described in

the methods section. Data are presented as means ± SD, n=3.
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Figure 55. IL-4 inhibits the anti-Ig-m ediated release of arach idonate  in 

W EHI 231 B cells. In panels A and B WEHI-231 cells were radiolabelled with 

[3H]arachidonic acid and stimulated, with anti-lg (0.32 |Xg/ml) or medium in the presence 

of EL-4 (0-200 U/ml) for 30 min. Arachidonic acid was measured by tic analysis as 

described. The results are expressed as means ± SEM from single typical experiments 

where n=3.
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Figure 56. Anti-lg stimulâtes the generation of ceramide in W EH I 231 B 

cells, WEHI 231 B cells were stimulated with anti-lg (0-100 fig/ml) for 30 min. Cellular 

lipids were extracted and ceramide levels were measured using the DAG-kinase assay and 

tic analysis. The results are expressed as means ± SEM from single typical experiments 

where n=3.
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GENERAL DISCUSSION

5. Key roles for lipid signalling pathways in lymphocyte activation, 

maturation and cell death?

Lymphocytes respond to antigen receptor stimulation in a maturation stage- 

dependent manner. Thus, whereas mature lymphocytes become activated and proliferate 

in response to antigen receptor crosslinking, immature lymphocytes become 

unresponsive or undergo apoptosis. This investigation has focused on the role of 

phosphatidylcholine hydrolysis, and in particular on two key enzymes which mediate the 

hydrolysis of phosphatidylcholine, phospholipase D and phospholipase A2 , in the 

regulation of such maturation state-dependent lymphocyte responses. The findings 

presented in this thesis implicate key roles for these lipid signalling pathways in the 

regulation of lymphocyte activation, maturation and cell death.

PtdCho-PLD has been found to play a role in the transduction of intracellular 

signals initiated by mitogenic stimulation of a variety of cell types. However, it was 

found that stimulation of B cells, via sIg, did not induce activation of PtdCho-PLD, 

indicating that the B cell antigen receptor is not coupled to PtdCho-PLD in these cells.
.

Moreover, PtdCho-PLD was not stimulated under conditions designed to mirmc T cell- 

dependent B cell activation. In contrast, following mitogenic stimulation, a putative
V,

Ptdlns-PLD could be stimulated via sig on B cells. Interestingly, stimulation of B cells 

with ATP, arachidonate, ceramide and sphingosine induced PtdCho-PLD activation. As 

these reagents was found to suppress B cell proliferation, these findings suggest that 

PtdCho-PLD could be involved in the transduction of negative, anti-proliferative signals 

in B lymphocytes.

PLA2 has been implicated in the control of proliferation and apoptosis in a 

number of cells types, and this investigation has generated a number of findings which 

indicate a key role for CPLA2  in lymphocyte maturation. Firstly, CPLA2  is expressed by

B and T cells in a maturation state-specific manner: CPLA2 is not expressed in mature B
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and T cells but is expressed in immature murine splenocytes, muiine thymocytes, T3 

murine thymoma cells and WEHI 231 murine immature B cells, although not in the pre-B 

cell lines 697, 207 and REH. Secondly, the antigen receptors on immature B and T cells 

are coupled to CPLA2  activation under conditions leading to the induction of growth

arrest and/or apoptosis. Thirdly, stimulation of WEHI 231 immature B cells with specific 

stimuli known to rescue these cells from sIgM-mediated apoptosis, including IL-4, CD40 

crosslinking and LPS, did not stimulate CPLA2  activity. Moreover, IL-4 was found to

block sig-coupled arachidonate generation, suggesting that B cell rescue from apoptosis 

could be effected via inhibition of CPLA2  activation. Furthermore, sphingomyelinase, a

signal transducer which has been shown to be activated by arachidonate in other cell 

types, was found to be activated temporally downstream of cPLA2  following 

crosslinking of the antigen receptors on WEHI 231 immature B cells. The findings of this 

investigation therefore strongly suggest that antigen receptor-mediated release of 

arachidonate is a key event in regulation and transduction of growth arrest and/or 

apoptosis in immature B cells.

In conclusion, the studies outlined above suggest that PtdCho-signalling 

pathways may transduce anti-proliferative and/or apoptotic signals throughout 

lymphocyte development: Models outlining the putative signalling mechanisms 

underlying the transduction of such antiproliferative signals in immature and B cells are 

presented in Figs. 57 and 58.
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Figure 57. Model of phospholipase D signalling in mature B cells.

The antigen receptors on B cells are coupled to a putative Ptdlns-PLD activity and 

potential consequent activation of PKC isoforms involved in the transduction of 

mitogenic signals. In addition, since the steroyl-arachidonoyl species of PtdOH (derived 

predominantly from Ptdlns) has been found to induce the activation of Ras, BCR- 

coupling to Ptdlns-PLD may play a role in the BCR-mediated activation of the 

RasMAPkinase pathway, and consequent downstream signalling events resulting in the 

induction of B cell proliferation. In contrast, stimulation of B cells with ATP, 

presumably via a P^-purinoceptor, or by addition of exogenous ceramide or sphingosine, 

results in the activation of PtdCho-specific PLD (PC-PLD), suggesting that this enzyme 

may be involved in the transduction of negative, anti-proliferative signals in B cells. The 

downstream targets of PtdOH-derived from such PtdCho-PLD activity, are at present 

unknown, but, it is possible that PtdCho-PLD may play a directly antagonistic role to 

Ptdlns-PLD-mediated signals by negatively modulating the activation of a number of 

mitogenic signals such as PKC and/or elements of the RasMAPkinase pathway.
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Figure 58. Model of anti-proliferative pathw ay transduced  by CPLA2 in 

im m ature  B cells.

CPLA2 activation is proposed to play a key role in the transduction of growth 

arrest and/or apoptosis in immature B cells. Crosslinking of the antigen receptors results 

in the activation of CPLA2 and the release of arachidonate, which may induce the 

activation of downstream signalling elements including SMase. SMase is indeed activated 

following BCR crosslinking, and this results in the production of ceramide. Ceramide 

has been implicated in the regulation of a number of signalling elements including 

PtdCho-PLD, PKCÇ, ceramide-activated protein phosphatase (CAP?) and ceramide- 

activated protein kinase (CAPK) and may also be involved in the modulation of Bc1-Xl 

expression and activity. Bc1-Xl protects immature B cells from BCR-mediated apoptosis 

and may regulate the activation of negative signalling elements such as cPLA^, possibly 

by inhibiting the mobilisation of calcium which is required for the activation of this 

enzyme. This proposal is consistent with the finding that rescue from sig-mediated 

gi’owth arrest by coligation of receptors such as CD40 results in the upregulation of Bel- 

Xl- Finally, signalling elements such as PtdCho-PLD, PKCÇ, CAPP and/or CAPK may 

couple ceramide generation to downstream signalling elements such as NF-kB, Rb and 

Myc which have been proposed to play key roles in the regulation of cell differentiation, 

proliferation and apoptosis.
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