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Abstract 

 Half-integer quadrupolar nuclei constitute more than 70% of the NMR-
active nuclei in the Periodic Table. Owing to the presence of anisotropic 
quadrupolar broadening, high-resolution methods are often required for 
complete spectral analysis of solid-state NMR spectra of half-integer 
quadrupolar nuclei. The DOR and DAS techniques require specialist probes 
whilst the MQMAS and STMAS methods are two-dimensional correlation 
experiments performed under MAS conditions. The MQMAS experiment has 
been widely used in materials investigations, whereas the STMAS counterpart 
is ideal for the study of NMR-insensitive nuclei.  

 This thesis is mainly concerned with the satellite transitions of half-
integer quadrupolar nuclei. Firstly, sensitivity enhancement schemes for the 
STMAS method are proposed and investigated both theoretically and 
experimentally using 23Na and 87Rb NMR of simple inorganic compounds, and 
the applicability and limiting factors of the novel methods are discussed. A 
recent addition to the aforementioned high-resolution techniques is the 
STARTMAS experiment. Further development of the STARTMAS approach is 
described, with respect to the spectral analysis, sensitivity enhancement, and 
implementation under fast MAS conditions, using 23Na, 87Rb and 69/71Ga NMR 
at B0 = 9.4 and 20.0 T. 

 A potential area of interest in which the intrinsic sensitivity advantage of 
the STMAS method can be exploited is the natural abundance 33S solid-state 
NMR. In the latter half of this thesis, ettringite, a cementitious mineral, is 
employed to demonstrate the feasibility of high-resolution 33S STMAS NMR at 
B0 = 9.4 and 20.0 T, with particular emphasis on the implementation of 33S 
STMAS experiments all performed at the natural abundance levels of the 33S 
nucleus. Additional investigations are then proposed and performed using 1H-
33S CP-MAS NMR experiments to probe the presence of dynamics in ettringite. 
Recently, quantum mechanical calculations of solid-state NMR parameters have 
gained popularity, aiding experimentalists to predict and interpret solid-state 
NMR spectra. Further investigations of first-principles calculations of solid-
state 33S NMR parameters are also presented in this thesis, to support the 
presence of dynamics around the S nuclei in ettringite. 
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1.  Introduction 

Chapter 1 offers some introductory comments, providing a historical 

foundation of solid-state NMR spectroscopy followed by a brief summary of 

research topics covered in each chapter of this thesis.  

1.1 A Brief History of NMR 

 Since the discovery in 1945, nuclear magnetic resonance (NMR) has 

steadily developed as an essential spectroscopic technique in various fields of 

analytical science. NMR spectra contain vital information about the local 

environment at the atomic level, and NMR spectroscopy has proved useful in 

elucidating problems concerning structures in various forms of matter (liquids, 

gels and solids). In solids, conventional analytical techniques such as diffraction 

studies require a long-range order in the crystal lattice, whilst this is not a 

prerequisite in solid-state NMR. Solid-state NMR spectroscopy, therefore, has a 

potential to yield invaluable structural information that can complement the 

structural information obtained by other means. In the following subsections, 

the development of solid-state NMR spectroscopy over the past seventy years is 
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briefly revisited in chronological order,1–4 with a particular focus on its 

methodological advance and application to materials science. 

1.1.1 Early Days 

 In 1945, the first successful NMR signals were obtained independently, 

by Purcell5 at Harvard University for protons in solid paraffin wax, and by 

Bloch6 at Stanford University for protons in liquid water. They later shared the 

Nobel Prize in Physics (1952) “for their discovery of new methods for nuclear 

magnetic precision measurements and discoveries in connection therewith.”7 

The early days of NMR developments were concerned with an understanding 

of relaxation processes with respect to molecular motion in liquids, solids and 

gases.3 In 1948, the usefulness of solid-state NMR spectroscopy as a structural 

investigation tool was demonstrated by Pake,8 using proton signals of a single 

crystal of gypsum (CaSO4·2H2O). The orientation dependence of the dipolar 

interaction of an isolated spin pair was shown to be 2 3(3cos 1)/| |θ − r  (where r 

is the vector joining the two proton nuclei and θ is the angle between the 

internuclear vector and the external magnetic field), and the proton separation 

in the water molecules was estimated to be 1.58 Å.8 

 Solid-state NMR of polycrystalline materials has similarly advanced. For 

example, the dipolar interaction of a polycrystalline system was given by the 

sum of 2 2 6jk jk(3cos 1) /| |θ − r  terms over all nuclear spin pairs (j, k).9 With the 

aid of the Arrhenius law of activation energies, the temperature dependence of 

NMR spectra was utilised to investigate dynamical behaviour of materials with 

the accessible range of timescales covering from 10−1 to 1011 Hz.2 Metals and 

alloys have also been studied by solid-state NMR spectroscopy. Early studies 

were performed on 63/65Cu resonances of the copper wire (of which the 

radiofrequency coil was made).10 Conducting electrons often provide an 

efficient relaxation mechanism in metallic materials,11 and a unique spectral 

feature in NMR of metals is that the resonance frequency is higher than that of 

the same species in non-metallic materials. This frequency shift was reported by 

Knight12 in 1949 and is now called the Knight shift.  

 Nuclei with a spin quantum number I > 1/2 are known as quadrupolar 
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nuclei. Quadrupolar nuclei exhibit characteristic features in solid-state NMR 

spectra, and in 1950, Pound13 laid the foundations of quadrupolar interactions. 

Using a single crystal of sodium nitrate (NaNO3), Pound showed that the 

quadrupolar interaction introduces 2I spectral lines in an NMR spectrum of a 

spin I quadrupolar nucleus. In 1952, Volkoff14 extended the discussion of 

quadrupolar NMR to single crystals with lower symmetry, and solid-state 

NMR of single crystals was shown to be useful as an indicator of the degree of 

imperfection caused by the presence of impurities or strains in the crystal 

lattice.2 Also, fast relaxation of quadrupolar NMR signals was attributed to the 

lattice vibration within crystals.15 For quadrupolar interactions whose 

magnitude is significantly large, nuclear quadrupole resonance (NQR) or zero-

field NMR has proved useful in the investigation of quadrupolar species such 

as 35Cl, 79/81Br, 127I nuclei.2 

 NMR experiments in the early days were performed using iron 

electromagnets that produce magnetic fields up to a few Tesla, and NMR 

signals were detected by continuous wave (CW) methods. In CW methods, the 

magnetic field is varied at a fixed radiofrequency until a resonance signal is 

observed. Since the 1960s, pulsed NMR methods have replaced the CW method, 

owing to the discovery of spin echoes by Hahn16 in 1950 and a proof shown by 

Lowe and Norberg17 in 1957 that an NMR spectrum is a Fourier transformation 

(FT) of free induction decay (FID). In pulsed FT NMR, all the nuclei are excited 

simultaneously, giving rise to an NMR signal. The NMR signal is detected in 

the form of FID, and the FT of the FID produces an NMR spectrum. The great 

saving in acquisition time via the pulsed FT-NMR method is an enormous 

contribution to the development of modern NMR spectroscopy.  

1.1.2 1960 – 1990 

 The late 1950s and the 1960s saw a striking methodological development 

in solid-state NMR, known as the magic angle spinning.18 Solids produce 

broader NMR signals than liquids and result in low resolution data that inhibits 

meaningful structural investigations. For example, the NMR linewidth of the 

proton signal in ice is about 105 Hz, whereas the linewidth of water is only 0.1 
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Hz.2 The difference in resolution is due to the motional averaging of anisotropic 

broadening, which naturally occurs in liquid systems owing to the random 

motion of molecules. In the late 1950s, rapid spinning of solid samples was 

proposed to narrow the linewidth, successfully producing a high-resolution 

solid-state NMR spectrum.19,20 Upon sample spinning, NMR interactions 

become orientationally dependent on 2(3cos 1) /2χ −  where χ is the angle 

between the spinning axis and the applied magnetic field, and this special angle 

(χ = 54.74°) is called the magic angle. For spin I = 1/2 systems, magic angle 

spinning is, in principle, capable of removing anisotropic broadenings due to 

dipolar coupling, chemical shift anisotropy and Knight shift, leaving a 

spectrum affected by isotropic chemical shifts and J couplings as in liquids.18 

 Since the first commercial NMR spectrometer became available from 

Varian (30 MHz) in 1952,3,4 the widespread use of commercial NMR 

instruments was further accelerated in the 1970s, and the continuous demand 

for strong and uniform magnetic fields for high-resolution NMR was met by 

the development of superconducting magnets. The first superconducting 

magnet NMR spectrometer was introduced in 1962 by Varian (220 MHz). In 

1969, the first commercial FT NMR spectrometer was produced by Bruker (90 

MHz), and this was then combined with superconducting magnets, producing 

the first commercial FT NMR spectrometer operating at 270 MHz in 1970. The 

pursuit for higher field strengths continued, achieving 360 MHz (Bruker) in 

1973, 500 MHz (Bruker) in 1979, 600 MHz (Bruker; Varian; Oxford Instruments) 

in 1987, and 750 MHz (Bruker; Varian; Oxford Instruments) in 1992.3,4 

 Multiple-pulse NMR has also developed since the discovery of spin 

echoes by Hahn16 in 1950. A variety of pulse sequences, such as WAHUHA21 

and MREV,22 has proved useful in 1H solid-state NMR. For 1H NMR of 

powdered materials, the spectral width of dipolar-broadened lines can be up to 

100 kHz, and magic angle spinning by itself is usually not able to reduce the 

homogeneously broadened linewidth. Multiple-pulse sequences were designed 

to remove broadening effects due to dipolar interactions while other 

broadening terms such as chemical shift anisotropy may still remain. This led to 

the development of combined rotation and multiple pulse spectroscopy 
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(CRAMPS) by Gerstein in 198123 to achieve 1H high-resolution spectra of 

polycrystalline materials by the simultaneous removal of dipolar coupling (via 

multiple-pulse methods) and chemical shift anisotropy (by magic angle 

spinning).  

 High-resolution 13C NMR spectra are readily obtained by the 

combination of double resonance techniques24,25 (cross-polarisation upon 1H 

decoupling) and magic angle spinning. The high-power 1H decoupling removes 

heteronuclear dipolar- and J-coupling interactions while polarisation transfer 

from 1H to 13C nuclei significantly enhances the 13C signals under suitable 

conditions (Hartmann-Hahn conditions)26. The residual broadenings due to 13C 

chemical shift anisotropy and weak homonuclear (13C-13C) dipolar interactions 

are then readily removed under MAS conditions. The combination of 1H 

decoupling, cross-polarisation and MAS (CP-MAS)27 is routinely used in 

modern solid-state NMR experiments involving spin I = 1/2 species such as 13C, 

15N, 29Si and 31P nuclei.   

 In the 1970s, the advent of multi-dimensional Fourier transform NMR 

has revolutionised the NMR methodology. The fundamental concept of two-

dimensional Fourier transform NMR was introduced by Jeener in 1971,2–4 and 

further development was carried out by Ernst and co-workers.28 The two-

dimensional approach can utilise forbidden transitions, such as multiple-

quantum transitions, which are not observable in conventional pulse-acquired 

experiments. Later, Ernst was awarded the Nobel Prize in Chemistry (1991) “for 

his contributions to the development of the methodology of high resolution 

nuclear magnetic resonance spectroscopy.”29 

1.1.3 1990 – Present 

 Following the successful establishment of solid-state NMR of spin I = 

1/2 nuclei as a structural investigation tool, methodological development of 

high-resolution NMR of quadrupolar nuclei has also accelerated since the late 

1980s. Solid-state NMR spectra of quadrupolar nuclei are often dominated by 

strong broadening effects, hampering the extraction of meaningful structural 

information. In 1980, double-quantum NMR under MAS conditions has yielded 
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high-resolution 2H (I = 1) spectra of powdered solids.30 Overtone NMR, in 

which the resonance conditions are at a multiple of the fundamental NMR 

frequency, has also proved useful to obtain high-resolution NMR of 

quadrupolar nuclei, as implemented by Tycko31 in 1986 for 14N (I = 1) nuclei. 

 Experimental methods to acquire high-resolution solid-state NMR 

spectra of half-integer quadrupolar nuclei are based on the removal of 

anisotropic broadening that arises from the second-order quadrupolar 

interaction. The second-order quadrupolar interaction contains two different 

orientation-dependent terms with respect to the external magnetic field, and the 

magic angle spinning by itself is not capable of completely removing the 

second-order broadening. The first successful demonstration of isotropic 

spectra of half-integer quadrupolar nuclei was shown by Samoson32 in 1988, by 

employing a sample rotation about two different axes simultaneously. This 

technique is known as the double rotation (DOR),33,34 and a similar principle 

was exploited by Llor35 and Mueller and co-workers,33,36 in which the sample 

rotation is performed sequentially at two different axes. This approach is called 

the dynamic angle spinning (DAS). In 1995, Frydman37 proposed two-

dimensional multiple-quantum magic angle spinning (MQMAS) experiments, 

which has significantly widened the use of half-integer quadrupolar nuclei in 

materials investigations owing to the ease in implementation under MAS 

conditions. Satellite transition magic angle spinning (STMAS) experiments was 

introduced by Gan in 2000,38 and its high sensitivity and ability to probe the 

dynamics and unusual spin interactions39 makes it a promising complementary 

approach to the MQMAS counterpart.   

 The versatility and power of modern NMR experiments largely owes to 

the development of superconducting magnets operating at high magnetic field 

strengths. Intrinsic sensitivity and resolution enhancement at higher fields are 

often advantageous, although 21–22 T was speculated to be the limit of 

achievable field strengths based on the conventional Nb-based superconducting 

technology.40–42 The pursuit for higher fields continues up until the present, and 

novel hybrid materials have demonstrated its NMR applications up to 45 T.41,42 

The field homogeneity and stability still need to be improved for high-
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resolution NMR experiments, and further developments are awaited over the 

next decade. Meanwhile, superconducting high-field spectrometers up to 23.5 T 

have become accessible to experimentalists.43  

 Since the first demonstration in the late 1950s, the magic angle spinning 

has become a regular and essential feature of solid-state NMR experiments. 

Line narrowing effects under MAS conditions are especially effective when the 

spinning frequency is of the same order of the interaction to be averaged,18 and 

the quest for fast spinning conditions has been relentless over the last fifty years. 

Spinners (rotors) are cylindrical containers made of strong, non-metallic and 

non-invasive materials, typically ceramics such as zirconia and silicon nitride, 

and the accompanying caps are made of polymers such as Kel-F and Vespel. A 

range of rotor diameters and corresponding MAS probes are commercially 

available (typically 1.3−7 mm for routine use). A recent milestone is the 

development of ultra-fast spinners: 0.75 and 0.7 mm rotors can reach up to 110 

kHz44 and 111 kHz45 spinning, respectively. Over the next decade or so, the 

combination of fast sample spinning and high magnetic field strengths is 

anticipated to become more accessible to solid-state NMR experimentalists.  

1.2 Thesis Overview 

 Four research topics covered in this thesis are concerned with high-

resolution solid-state NMR of half-integer quadrupolar nuclei, with a particular 

focus on the satellite transitions of spin I = 3/2 nuclei. Firstly, Chapter 2 reviews 

an essential theory of NMR phenomena in general terms, including quantum 

mechanical operator formalisms and major tensorial interactions encountered 

in spin dynamics of NMR. Chapter 3 presents a comprehensive review of the 

well-established theories of high-resolution solid-state NMR of half-integer 

quadrupolar nuclei, aiming to provide a sufficient ground for the research 

topics covered in the subsequent chapters. 

 Chapter 4 describes the novel sensitivity enhancement schemes for 

satellite transitions of half-integer quadrupolar nuclei developed in this thesis. 

Theoretical investigations are firstly performed, and potential experimental 
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approaches are then proposed. Using 23Na and 87Rb DQF-STMAS NMR under 

various experimental conditions, the sensitivity advantage of the proposed 

schemes is demonstrated for spin I = 3/2 nuclei. The applicability and 

limitations of the novel methods are then discussed, and some experimental 

parameters that affect the sensitivity of STMAS signals are also identified. 

 Chapter 5 focuses on the recent addition to high-resolution methods of 

half-integer quadrupolar nuclei, called satellite transitions acquired in real time 

magic angle spinning (STARTMAS) experiments. The STARTMAS experiment 

provides an ultrafast route to an isotropic spectrum of spin I = 3/2 nuclei. In 

this thesis, a summary of the theoretical basis of the STARTMAS approach is 

firstly given, with particular emphasis on the spectral analysis of two-

dimensional STARTMAS spectra. The sensitivity enhancement schemes 

developed in Chapter 4 are revisited in the context of STARTMAS approach, 

and the effectiveness is demonstrated using 23Na and 87Rb STARTMAS NMR at 

B0 = 9.4 T under 14286 Hz spinning. The desirable properties and limiting 

factors of the STMAS and STARTMAS experiments are identified upon 

acquisition of 23Na, 87Rb and 69/71Ga STARTMAS spectra of inorganic 

compounds with a range of quadrupolar coupling (CQ = 1−18 MHz) at B0 = 20.0 

T under 62.5 kHz spinning. 

 In Chapter 6, natural abundance 33S MAS, 33S STMAS, and 1H-33S CP-

MAS NMR of a cementitious material, ettringite, are presented. A potential area 

of research where the intrinsic sensitivity advantage of the STMAS method can 

be exploited is the investigation of NMR-insensitive half-integer quadrupolar 

nuclei. In this thesis, 33S solid-state NMR experiments are proposed to test the 

sensitivity limit of the STMAS approach. Feasibility of high-resolution 33S 

STMAS NMR is demonstrated at B0 = 9.4 and 20.0 T, with a particular focus on 

the implementation of STMAS experiments all performed at the natural 

abundance of 33S nuclei. For hydrous materials such as ettringite, 1H-33S CP-

MAS experiments may be employed as a structural investigation tool. 1H-23Na 

CP-MAS experiments are firstly performed at B0 = 9.4 T to explore the optimum 

experimental conditions for spin I = 3/2 systems, and the results are then 

extrapolated to implement 1H-33S CP-MAS NMR experiments at B0 = 9.4 and 
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20.0 T for ettringite and related sulfates. The presence of dynamics in ettringite 

is tentatively proposed on the basis of the experimental 33S MAS, 33S STMAS 

and 1H-33S CP-MAS NMR investigations. 

 Chapter 7 describes first-principles calculations of 33S NMR parameters 

in solids. Quantum mechanical calculations of 33S NMR parameters have been 

used to advantage to predict and interpret experimental NMR spectra. Further 

investigations of first-principles calculations of 33S NMR parameters are 

presented with respect to the establishment of 33S chemical shift reference and 

the effect of geometry optimisation schemes. A comparison of calculated and 

experimental 33S NMR parameters of ettringite and related sulfates is shown, 

aiming to evidence the presence of dynamics in ettringite. 
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2.  General Principles of NMR 

This chapter reviews the well-established theories of basic NMR experiments. 

The contents of the following sections are readily found in several textbooks on 

general NMR46–50 and solid-state NMR.51–53  

2.1 Fundamentals of NMR 

 Nuclear magnetic resonance (NMR) is a physical phenomenon in which 

nuclei absorb and re-emit electromagnetic radiation in the presence of an 

external magnetic field. The fundamental resonance frequency is dependent on 

the magnetic properties of isotopes and the strength of the applied magnetic 

field. The resonance condition may be modified from the fundamental 

frequency, giving rise to a range of resonance frequencies that are characteristic 

of the local atomic environment. NMR spectroscopy exploits the NMR 

phenomena as an analytical tool for structural investigation of materials that 

contain NMR-active isotopes, such as 1H, 2H, 6Li, 7Li, 10B, 11B, 13C, 14N, 15N, 17O, 

23Na, 27Al, 29Si and 31P nuclei, and its application can be found in a variety of 

disciplines in natural science.  
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2.1.1 Nuclear Magnetism 

 A nucleus possesses an intrinsic angular momentum, known as spin. The 

spin angular momentum (I) is a vector quantity, whose magnitude is quantised 

in units of ħ (= h/2π where h is the Planck constant) and a spin quantum 

number (I). The spin quantum number may take zero, or any positive integer or 

half-integer value. The magnitude of a spin angular momentum with a spin 

quantum number (I) is given by, 

 ( 1)= +I ℏ I I   (2.1) 

The projection of the spin angular momentum onto an arbitrary axis (the z axis) 

is expressed as, 

 = ℏz II m   (2.2) 

where mI is the magnetic quantum number, which takes values −I, −I + 1, … , I − 

1, I, resulting in 2I + 1 degenerate states. Nuclei with non-zero spin quantum 

numbers give rise to a nuclear magnetic dipole moment (µ). The magnetic 

dipole moment is a vector quantity, 

 = γIµ   (2.3) 

where γ is the gyromagnetic ratio of the nucleus. The quantised component of µ 

(along the z axis) is written as, 

 µ = γ = γ ℏz z II m   (2.4) 

The magnetic moment of a nucleus is parallel or antiparallel to the spin angular 

momentum, depending on the sign of the gyromagnetic ratio. 

2.1.2 The Zeeman Interaction 

 In the presence of an external magnetic field (B0), the degeneracy of the 

2I + 1 mI states is removed, producing a splitting in energy levels of the nucleus 

(Zeeman splitting). When the external magnetic field lies along the z axis, the 

energy of the resulting 2I + 1 mI states is given by, 

 0 0= −µ = −γ ℏIm z IE B m B   (2.5) 

The 2I + 1 mI states are equally spaced with an energy gap of 0.γℏB  Since the 

selection rule for an observable transition is ∆mI = ±1, the resonance condition  
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is given by,  

 0∆ = ν = γℏE h B   (2.6) 

and, consequently, 

 
0

0 0 0
2
γ

ν = ⇔ ω = γ
π

B
B   (2.7) 

where the fundamental frequency of the observable transition (Larmor 

frequency) is denoted as ν0 (in Hz) and ω0 (in rad s−1), respectively.  

2.1.3 The Vector Model 

 In the presence of an external magnetic field, a collection of nuclei spread 

themselves amongst the 2I + 1 mI energy levels. The population of each of the 

energy levels follows the Boltzmann distribution, and the ratio of populations 

of the two neighbouring energy levels is given by,  

 upper /

lower
e−∆= BE k Tn

n
  (2.8) 

where n is the number of spins in each level, kB is the Boltzmann constant and T 

is the temperature. The intensity of the observed transition is dependent on the 

population difference of the two energy levels. At thermal equilibrium, there is 

a slight excess of spins in the lower energy level. The slight excess of spins in 

the lower energy level is considered as a bulk magnetisation along the applied 

magnetic field. The bulk magnetisation of a sample (M) is described as a vector 

parallel to the applied field (B0) so that the bulk magnetisation obeys classical 

mechanics. The motion of the bulk magnetisation is such that, in the presence of 

an arbitrary magnetic field (B), the bulk magnetisation (M) is to rotate (precess 

or nutate) around the field direction at an angular frequency, ω = −γB.  

 In the simplest NMR experiment, an electromagnetic radiation in the 

radiofrequency region (radiofrequency pulse) is applied around the Larmor 

frequency (ω0). In the laboratory frame of the vector model, the external magnetic 

field (B0) lies along the z axis, and the applied radiofrequency field (B1) rotates 

in the xy plane at an angular frequency of ωrf. It is convenient to introduce a 

rotating frame, a reference frame that rotates about the z axis at the angular 
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frequency of ωrf. In the rotating frame, the axes are labelled x’, y’ and z’, 

respectively. The effect of the applied radiofrequency field is to move the bulk 

magnetisation vector away from the z’ axis so that the bulk magnetisation 

rotates about the applied field at an angular frequency, 

 1 1ω = −γB   (2.9) 

where γ is the gyromagnetic ratio of the nucleus affected by the radiofrequency 

pulse, and ω1 is the nutation frequency of the nucleus. The flip angle (β) of a 

radiofrequency pulse is defined (in radians) as, 

 1 p 1 pβ = ω τ = −γ τB   (2.10) 

where ω1 is the nutation frequency of the nucleus and τp is the duration of the 

radiofrequency pulse. The flip angle is the angle through which the bulk 

magnetisation precesses during the application of the radiofrequency pulse. 

The radiofrequency field strength (ν1) is calculated by 1 1 180/2 1/(2 )°ν = ω π = × τ  

where τ180° is the 180° pulse length experimentally observed for a given nucleus. 

The phase of a pulse defines the axis of the applied pulse, and a pulse of flip 

angle β with phase φ is denoted as βφ. By convention, a 90° pulse applied along 

the x’ axis rotates the bulk magnetisation to lie along the −y’ axis (i.e. a positive 

rotation is anticlockwise about the given axis).  

 If the radiofrequency pulse is applied on resonance (ω0 = ωrf), then the 

bulk magnetisation appears stationary after the pulse is turned off. If the 

radiofrequency pulse is applied off resonance (ω0 ≠ ωrf), then the bulk 

magnetisation begins to rotate around the z’ axis at a residual angular 

frequency, 

 0 0 rfΩ = ω − ω   (2.11) 

where Ω0 is the offset frequency. The bulk magnetisation returns to the thermal 

equilibrium state via two relaxation processes: Longitudinal (spin-lattice) 

relaxation is the recovery of the bulk magnetisation along the z’-axis and 

characterised by an exponential time constant T1. Transverse (spin-spin) relaxation 

is the loss of magnetisation in the x’y’ plane and characterised by an 

exponential time constant T2. 
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2.1.4 Fourier Transform NMR 

 In modern NMR experiments, a short and intense burst of 

electromagnetic radiation simultaneously excites all the nuclei. The oscillating 

and decaying bulk magnetisation induces an alternating current in a receiver 

coil, and the signal is detected via the voltage induced in the receiver coil. This 

signal is called the free induction decay (FID) and is the sum of the individual 

magnetisation from the various nuclei with characteristic frequencies, 

amplitudes and relaxation time constants. The raw FID signals (a few hundred 

MHz in frequency) is amplified in magnitude and scaled down in frequency 

(typically ≤ 1 MHz), yielding relative frequencies with respect to the 

fundamental frequency. The analogue FID signal (an oscillating electronic 

current) is then converted into a digital form (a series of binary numbers 

consisting of ‘zeros’ and ‘ones’) upon sampling at intervals ∆t. A technique 

called quadrature detection may be employed to obtain both the x (cosine) and y 

(sine) components of the FID using a receiver nominally with an arbitrary 

phase. This yields a superposition of complex time-domain data (s(t)), 
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  (2.12) 

where each component (l) has a characteristic amplitude (a), frequency (Ω), and 

relaxation rate constant (λ = 1/T2).  

 A Fourier transformation (FT) is then performed to convert the data from 

time-domain to frequency-domain: 

 
0

( ) ( )exp( i )S s t t dt
∞

Ω = − Ω∫   (2.13) 

Each spectral component in the frequency domain may be written as, 

 
{ }

{ }
0

0

( ) exp (i ) exp( i )

exp (i( ) )

l l l l

l l l

S a t t dt

a t dt

∞

∞

Ω = Ω − λ − Ω

= − Ω − Ω + λ

∫

∫
  (2.14) 
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The resulting complex frequency-domain data set consists of real and 

imaginary components (complex Lorentzian):  

 ( ) { ( ) i ( )}l l l lS a A DΩ = ∆Ω − ∆Ω   (2.15) 

where ∆Ω = Ω − Ωl and, 

 
2 2

( )
( )

l
l

l

A
λ∆Ω =

λ + ∆Ω
  (2.16) 

 
2 2

( )
( )

l

l

D
∆Ω∆Ω =

λ + ∆Ω
  (2.17) 

The real part A(∆Ω) yields an absorptive Lorentzian lineshape centred on the 

frequency Ω with the linewidth at half-height of 2λ (in rad s–1, or 1/(πT2) in Hz). 

The imaginary part D(∆Ω) gives rise to the corresponding dispersive Lorentzian 

lineshape. The real, absorptive part is usually displayed for better resolution. 

2.1.5 Phase Corrections 

 The amplitude (al) of an NMR signal is a complex number with an 

arbitrary phase:  

 exp(i )l l la a= φ   (2.18) 

where the magnitude la  is the intensity and φl is the phase of the signal. This 

phase shift (or phase error) is unavoidable owing to the spectrometer electronics 

and gives rise to a mixture of absorptive and dispersive Lorentzian lineshapes 

in the resulting spectrum. The pure absorptive lineshape becomes accessible via 

a mathematical manipulation of the frequency-domain data (phase correction): 

 (0) (1)
corr corr corr( ) ( )exp{ i )}S S (Ω = Ω − φ + φ Ω   (2.19) 

where the phase factors (0)
corrφ  and (1)

corrφ  are for zero- and first-order corrections, 

respectively. 

2.1.6 Data Processing  

 While Fourier transformation and phase corrections are essential features 

of NMR data processing, there are several mathematical operations that can be 

performed to improve sensitivity and resolution of the raw NMR signals. 
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 Weighting functions: When the NMR signals are acquired as a free 

induction decay, thermal noise from the receiver coil is inevitably recorded. The 

thermal noise accumulates and results in a poor signal-to-noise (S/N) ratio in 

the spectrum. The S/N ratio can be improved by discarding the last part of the 

FID where the genuine signal and unwanted noise are at the same level, or by 

applying a weighting function. A weighting function starts at 1 and gradually 

decays to zero. Multiplying the FID data points by a weighting function ensures 

that the noise component is reduced in magnitude while the genuine signal 

remains unaffected. A typical choice of a weighting function is exponential: 

 LB( ) exp( )W t t= −λ   (2.20) 

where λLB is a decay constant. The exponential line broadening factor is given 

with respect to the linewidth at half-height λLB/π (in Hz). The use of weighting 

functions broadens the spectral lines, and the peak height is decreased 

accordingly. 

 Zero filling: The resolution of an NMR peak may be enhanced by zero 

filling. Zero filling is the addition of a set of zeros at the end of the FID data 

points. Although zero filling does not improve the intrinsic resolution in the 

recorded signal, the spectral lines may be better defined upon zero filling. The 

use of zero filling inevitably increases the number of data points and may 

require longer processing time. 

2.1.7 Two-Dimensional NMR 

 The simplest two-dimensional NMR experiment consists of two pulses 

separated by a free precession period (t1), followed by the detection of the free 

induction decay in the acquisition period (t2). This entire process is repeated 

with several different values of t1, yielding a two-dimensional data set as a 

function of two time variables (t1 and t2). A Fourier transformation in t2 

followed by another Fourier transformation with respect to t1 produces a two-

dimensional spectrum as a function of two frequency variables, Ω1 and Ω2. The 

position of the resulting peaks in two-dimensional NMR spectra and 

subsequent spectral analysis yields relevant information depending on the 

pulse sequence employed for two-dimensional acquisition. 
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 The theory of two-dimensional experiments can be described in an 

analogous manner as one-dimensional experiments. In a one-dimensional 

experiment, a time-domain signal is converted to a frequency-domain data set: 

 FT( ) ( )→ Ωs t S   (2.21) 

where the time-domain signal s(t) decays with a rate constant λ (= 1/T2), 

 ( ) exp(i )exp( )s t t t= Ω −λ   (2.22) 

and, the frequency-domain signal S(Ω) contains both absorptive (A) and 

dispersive (D) Lorentzian components, 

 ( ) ( ) i ( )S A DΩ = Ω + Ω   (2.23) 

where zero offset frequency is assumed for simplicity (so that ∆Ω = Ω). In two-

dimensional experiments, a time-domain signal data set has the general form, 

 1 2 1 1 1 1 2 2 2 2( , ) exp( i )exp( )exp( i )exp( )s t t t t t t= − Ω −λ + Ω −λ   (2.24) 

where λn is the decay constant for each dimension. A Fourier transformation in 

the t2 dimension yields a data set of the form, 

 [ ]1 2 1 1 1 1 2 2( , ) exp( i )exp( ) ( ) i ( )S t t t A DΩ = − Ω −λ Ω + Ω   (2.25) 

The phase of the signal in the Ω2 dimension varies as a function of t1, and this is 

said to be phase-modulated. A second Fourier transformation, performed in the t1 

dimension, gives rise to a two-dimensional data set in the frequency domain: 

 

[ ] [ ]
{ }

{ }

1 2 1 1 2 2

1 2 1 2

1 2 1 2

( , ) ( ) i ( ) ( ) i ( )

( ) ( ) ( ) ( )

i ( ) ( ) ( ) ( )

S A D A D

A A D D

D A A D

Ω Ω = Ω + Ω ⋅ Ω + Ω

= Ω Ω − Ω Ω

+ Ω Ω + Ω Ω

  (2.26) 

The first component of the resulting signal (real part) possesses a mixture of 

doubly-absorptive and doubly-dispersive components. This yields an 

undesirable phase-twist lineshape in the resulting two-dimensional spectrum.  

 To avoid the phase-twist lineshape, an amplitude-modulated approach can 

be employed. In amplitude-modulated experiments, a time-domain signal may 

be expressed as, 

 
1 1

1 2 1 1 2 2 2 2
1 1

1 1 1 1 2 2 2 2

exp( i )1
( , ) exp( )exp( i )exp( )

exp( i )2
cos( )exp( )exp( i )exp( )

t
s t t t t t

t

t t t t

+ Ω 
= −λ + Ω −λ + − Ω 
= Ω −λ + Ω −λ

  (2.27) 
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The signal is cosine-modulated as a function of t1. A cosine Fourier 

transformation yields only an absorptive Lorentzian, and the resultant two-

dimensional frequency-domain signal has the form, 

 
[ ]

{ }
1 2 1 2 2

1 2 1 2

( , ) ( ) ( ) i ( )

( ) ( ) i ( ) ( )

S A A D

A A A D

Ω Ω = Ω ⋅ Ω + Ω

= Ω Ω + Ω Ω
  (2.28) 

The real part has a doubly-absorptive lineshape without a phase twist. In the 

amplitude modulation, the absolute sign of the frequency is not distinguished 

owing to the fact that 1 1 1 1cos( ) cos( ).Ω = −Ωt t  The amplitude modulation thus 

lacks the frequency discrimination present in the phase modulation. 

 One classic approach to achieve both the frequency discrimination and 

doubly-absorptive lineshape is States-Haberkorn-Ruben (SHR)54 method. In the 

SHR approach, a second two-dimensional data set is acquired by changing the 

phase of the first pulse by 90°. Upon Fourier transformation in the t2 dimension, 

the pair of time-domain signals becomes sine- and cosine-modulated with 

respect to t1:49 

 
[ ]
[ ]

cos 1 2 1 1 1 1 2 2

sin 1 2 1 1 1 1 2 2

( , ) cos( )exp( ) ( ) i ( )

( , ) sin( )exp( ) ( ) i ( )

S t t t A D

S t t t A D

Ω = Ω −λ Ω + Ω
Ω = Ω −λ Ω + Ω

  (2.29) 

A new data set is then constructed using the real parts of the cosine- and sine-

modulated data sets:  

 { }
SHR 1 2 1 1 1 1 2

1 1 1 1 2

1 1 1 1 2

( , ) cos( )exp( ) ( )

i sin( )exp( ) ( )

exp( i )exp( ) ( )

S t t t A

t t A

t t A

Ω = Ω −λ Ω
+ Ω −λ Ω

= + Ω −λ Ω
  (2.30) 

A Fourier transformation in the t1 dimension then yields, 

 
[ ]

{ }
SHR 1 2 1 1 2

1 2 1 2

( , ) ( ) i ( ) ( )

( ) ( ) i ( ) ( )

S A D A

A A D A

Ω Ω = Ω + Ω ⋅ Ω

= Ω Ω + Ω Ω
  (2.31) 

The real part of the resultant signal is doubly-absorptive, and the phase twist 

lineshape is avoided. 

 Another method to achieve frequency discrimination is the time-

proportional phase incrementation (TPPI), in which a single experiment is 

performed using the quadrature detection in both dimensions.55 The phase of 

the first pulse is incremented for each t1 increment, and the t1 increment is 
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halved with respect to non-TPPI approaches. This doubles the spectral width in 

t1 and avoids the folding of two symmetric spectral lines. A frequency shift of 

±1/(4∆t1) is expected in the F1 dimension and distinguishes the positive and 

negative frequency.56 

2.2 Quantum Mechanical Operator Formalism 

 In basic NMR experiments, the vector model is conveniently used to 

visualise the spin dynamics. The complexity of spin systems in solid-state NMR 

experiments, however, necessitates the use of quantum mechanical approaches. 

The following subsections summarise the key concepts of quantum mechanics 

that are relevant to solid-state NMR spectroscopy.47,51–53  

2.2.1 The Density Matrix Operator Formalism 

 The density matrix formalism is a rigorous but convenient quantum-

mechanical approach to describe the behaviour of an ensemble of spin states 

during an NMR experiment. In quantum mechanics, a macroscopic sample 

consists of a collection of spins, each with a characteristic wavefunction that 

represents an arbitrary spin state. A wavefunction (ψ) is specified by a linear 

combination of the elements in an orthogonal basis set (ψn) as, 

 ( ) ( )ψ = ψ∑ n n

n

t c t   (2.32) 

where cn(t) are time-dependent expansion coefficients. The ket notation ( ( )ψ t ) 

is a column vector whose elements are the expansion coefficients: 

 
1

2

( )
( ) ( )

 
 =  
 
 

ψ

⋮

c t

t c t   (2.33) 

For each ket notation, there is a corresponding bra notation: 

 ( ) ( )n n

n

t c t∗ψ = ψ∑   (2.34) 

where the asterisk (∗) denotes the complex conjugate. The bra notation ( ( )tψ  ) 

is a row vector given by, 
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 ( )†
1 2( ) ( ) ( )∗ ∗=ψ ⋯t c t c t   (2.35) 

where the dagger (†) denotes the matrix adjoint (the complex conjugate of the 

matrix transpose). An operator is a function that acts on a ket to give a new ket. 

When an operator ˆ( )A  results in a simple scaling of a ket ( ψ ),  

 ˆ ψ = ψA a   (2.36) 

then ψ  is called an eigenvector of Â  with an eigenvalue a. An operator can 

also be expressed in a matrix form (A). 

 A density operator ˆ( )ρi  is defined for each spin (i) as, 

 ˆ ( ) ( )ρ = ψ ψi t t   (2.37) 

and, in its matrix form (ρi), 

 ( )

†
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2 1 2

1 11 2

1 22 2
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 =  
 
 

ρ ψ ψ

⋯

⋮

…

⋯

⋮ ⋮ ⋱

  (2.38) 

The density operator of a macroscopic system ( ρ̂ ) is the ensemble average of 

the microscopic density operators: 

 ˆ ˆρ = ρ∑ i i
i

p   (2.39) 

where pi is the probability of finding a spin state ˆ .iρ  The elements (ρrs) of the 

macroscopic density matrix (ρ(t)) are given by, 

 ( ) ( ) ( )∗ρ =rs r st c t c t   (2.40) 

where the overbar indicates an ensemble average.  

 In quantum mechanics, although a result from a single observation is 

probabilistic, the average result from many observations (the expectation value) 

can be explicitly calculated. Suppose that an operator ˆ( )A  represents an 

observable quantity (A). The value of the experimentally observable quantity is 

calculated by taking the trace of the matrix product of the operators ρ and A as, 
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  (2.41) 

  In NMR phenomena, the operators that correspond to the classical 

angular momentum are the spin angular momentum operators ( ˆ ˆ,x yI I  and ˆ
zI ) of a 

given spin quantum number (I). The corresponding matrix representation (Ix, Iy 

and Iz) is given by a square matrix with dimension (2I + 1) × (2I + 1). The 

diagonal elements of the matrix forms of spin angular momentum operators are 

called the population of the spin states, whereas the off-diagonal elements are 

regarded as a superposition of spin states, termed coherence. At thermal 

equilibrium, the density operator is represented by, 

 (0) z=ρ I   (2.42) 

 An operator that determines the total energy (E) of a spin system is 

called the Hamiltonian ˆ( )H : 

 ˆ ˆ= = Ψ ΨE H H   (2.43) 

The evolution of the density operator over time under a given Hamiltonian is 

described by the Liouville-von Neumann equation: 

 
ˆ ˆ ˆi ,ρ  = − ρ 

d
H

dt
  (2.44) 

If the Hamiltonian is assumed to be time-independent, then the solution to this 

equation is given by, 

 ( ) exp( i ) (0)exp( i )= − +ρ H ρ Ht t t   (2.45) 

 The Hamiltonians in NMR phenomena are inherently related to the spin 

angular momentum operators. The Zeeman Hamiltonian is given by,  

 Z 0ˆ ˆ= ω zH I   (2.46) 
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while the effect of radiofrequency pulses is described as, 
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  (2.47) 

where ω1 is the angular frequency as a result of the applied radiofrequency field 

(B1) along the x and y axis. The matrix forms may also be encountered as, 

 Z 0= ωH Iz   (2.48) 
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1rf
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= ω

= ω

H I
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x
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y
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  (2.49) 

2.2.2 The Spherical Tensor Operator Formalism 

 The density matrix operator (ρ(t)) can be expressed as a linear 

combination of a basis set of operators (Tlp):57  

 
2

0

( ) ( )
= =−

=∑∑ρ T
I l

lp lp

l p l

t a t   (2.50) 

where the basis set operators (Tlp) are called irreducible spherical tensor operators, 

given by a (2I + 1) × (2I + 1) matrix for each of a spherical tensor of rank l and 

order p with l ≥ p ≥ −l, and alp(t) is the corresponding time-dependent coefficient. 

Tensors with p = 0 represent populations, whereas others represent a transition 

of a coherence order p = ∆mI (those with p = ±1 represent single-quantum 

transitions, those with p = ±2 represent double-quantum transitions, and so on). 

Spherical tensors are conveniently used to describe the effect of transformation 

under rotation specified by the Euler angles (α, β, γ): 

 new 1 old old

=

( , , ) ( , , ) ( , , )−
′ ′

′ −
= α β γ α β γ = α β γ∑T R T R T

l
l

lp lp lp p p
p l

D   (2.51) 

where the Wigner rotation matrix element ( , , )′ α β γl
p pD  is given by,  

 ( , , ) exp( ) ( )exp( )′ ′′α β γ = − α β − γl l
p p p pD ip d ip   (2.52) 

where ( )′ βl
p pd  is the reduced Wigner rotation matrix element.58 By convention, 

the density operator at thermal equilibrium is represented by, 

 1,0(0) =ρ T   (2.53) 
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with the coefficient alp(0) set to 1. The effect of a radiofrequency pulse with flip 

angle β and phase φ is to change the coherence order from p to p’ between states 

of equal rank l:59 

 
=

( )exp{ ( )}φβ
′ ′

′ −

′→ β − φ −∑T T
l

l
lp lp p p

p l

D i p p   (2.54) 

By convention, φ is defined as zero for a pulse along the y axis. 

 Quantum mechanical treatment of nuclear spin states reveals the 

existence of a mixture of spin states (coherences) that can be excited 

simultaneously. In practice, the selection of coherences is achieved by the use of 

coherence transfer pathways and phase cycling. A coherence transfer pathway is a 

diagram that shows the desired coherence orders to be present. The coherence 

transfer pathway starts at p = 0 and finishes at p = −1. To select the desired 

coherence while filtering out those unwanted, phase cycling is performed by 

recording a series of spectra upon changing the phase of the pulses, according 

to the following rules:  

1. For a change in coherence order ∆p by a pulse of phase φ, the phase of the 

receiver φR is given by −φ∆p. 

2. If a phase cycle uses N steps of 360°/N, then pathways ∆p ± nN, where n is 

an integer, are selected. 

Phase cycling imposes a minimum number of signal acquisition to be 

performed in an NMR experiment: to complete the cycling of all the necessary 

phases, the total number of signal acquisition must be an integer multiple of the 

minimum length of the phase cycling employed.  

2.3 Interactions in NMR 

 Principal examples of internal spin interactions in NMR are dipolar, 

quadrupolar, paramagnetic, chemical shift and J-coupling interactions.49,53 In 

the following subsections, the Cartesian tensor formalism is first introduced to 

describe internal spin interactions in general, and then the chemical shift and 

dipolar interactions are briefly reviewed. The quadrupolar interaction, the main 

focus of this thesis, is described in Chapter 3. 
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2.3.1 Tensors 

 All internal interactions in NMR phenomena are orientation-dependent 

and considered as possessing tensor properties. A tensor (R) describes a 

relationship between two vectors and is represented by a 3 × 3 matrix, 

 
 
 =  
 
 

R

xx xy xz

yx yy yz

zx zy zz

R R R

R R R

R R R

  (2.55) 

The tensor matrix is constructed from the three Cartesian (x, y, z) components 

from each vector. When tensors are antisymmetric (Rji ≠ Rij), nine distinct matrix 

elements are required, whereas only six distinct elements are necessary if the 

tensor is symmetric (Rji = Rij). 

 In practice, the off-diagonal elements of a tensor have a negligible effect 

on NMR spectra and can be ignored (Subsection 2.3.4). A set of three 

orthogonal axes can be chosen to construct a tensor matrix consisting only of 

diagonal elements:  
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  (2.56) 

This frame of reference is termed the principal axis system (PAS). The principal 

axes are the three particular directions, orthogonal to each other, for which the 

induced field is parallel to the external field.49 The diagonal elements 

PAS PAS PAS, ,XX ZZYYR R R  are called the principal values, and the principal values define 

three properties of an interaction with respect to the principal axes (X, Y, Z): 

 PAS PAS PAS
iso

1 ( )
3

= + +XX ZZYYR R R R   (2.57) 

 PAS
iso∆ = −R ZZR R   (2.58) 

 
PAS PAS−η =

∆
XX YY

R

R

R R   (2.59) 

where is Riso the isotropic value, ∆R is the anisotropy and ηR is the asymmetry of 

the interaction (an alternative definition for anisotropy exists).53 When 

PAS PAS PAS= ≠XX ZZYYR R R  (and ηR = 0), a tensor is called axially symmetric.  
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2.3.2 Nuclear Spin Interactions 

 A Hamiltonian that describes an interaction between any local field (Bloc) 

and a nuclear spin (I) is written as,52 

 
loc loc

loc loc loc

ˆ ˆ

ˆ ˆ ˆ( )

= −γ ⋅

= −γ + +

I B

x y zx y z

H

I B I B I B
  (2.60) 

using the Cartesian spin operators ( ˆ ˆ ˆ, ,x y zI I I ). The local field of interest (Bloc) is 

expressed as, 

 loc loc= ⋅B A J   (2.61) 

where Aloc is a coupling tensor that describes the nuclear spin interaction and its 

orientation dependence, and J is a vector describing the source of the local 

magnetic field (another nuclear spin in the case of dipolar interaction, or the 

external magnetic field in the case of chemical shielding, for example). A 

general form of a spin Hamiltonian that describes an interaction (A) that acts on 

a nuclear spin (I) is then written as, 

 A locˆ ˆ= ⋅ ⋅I A JH   (2.62) 

where −γ  is incorporated into the term ⋅loc .A J 52 

2.3.3 Interaction Tensors 

 When the Cartesian spin operators ( ˆ ˆ ˆ, ,x y zI I I ) describe nuclear spin 

systems, corresponding Cartesian second-rank tensors are employed to 

describe the orientation dependence of nuclear spin interactions.52 An example 

of a second-rank Cartesian tensor is the shielding tensor (σ), which describes 

the orientation-dependence between the local field induced by the shielding 

electrons (BS) and the applied magnetic field (B0): 

 
0

S 0 0

0

x
xx xy xz

y
yx yy yz

z
zx zy zz

B

B

B

 σ σ σ 
  = ⋅ = σ σ σ ⋅   

   σ σ σ   

B σ B   (2.63) 

A frame of reference in which the B0 field lies along the z axis is the laboratory 

frame. In the laboratory frame, 
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lab lab lab lab 0

lab lab lab lab labS 0 0

lab lab lab lab0 0

0
0

xx xy xz xz

yx yy yz yz

zx zy zz zz

B

B

B B

σ σ σ σ    
    = ⋅ = σ σ σ ⋅ = σ    

    σ σ σ σ    

B σ B   (2.64) 

The local field induced by the shielding electrons may have components that 

are not parallel to the z axis, even when the B0 field is applied along the z axis.52  

2.3.4 The Secular Approximation 

 Since the internal spin interactions are often smaller than the Zeeman 

interaction, the nuclear spin Hamiltonian is conveniently described in the 

Zeeman eigenbasis. As an example, the shielding Hamiltonian is given by,53 

 CS 0ˆ ˆ= γ ⋅ ⋅I σ BH   (2.65) 

In the laboratory frame, this can be written as,53 

 

( )

( )
( )

lab lab lab

lab lab labCS

lab lab lab 0

lab lab lab0 0 0

lab lab lab 0

0
ˆ ˆ ˆ ˆ, , 0

ˆ ˆ ˆ

ˆ ˆ ˆ

σ σ σ   
   = γ σ σ σ ⋅   

  σ σ σ   

= γ σ + σ + σ

= γ σ + σ + σ

xx xy xz

x y z yx yy yz

zx zy zz

x y zxz yz zz

x y zxz yz zz

H I I I

B

I B I B I B

I I I B

  (2.66) 

The ˆ
xI and ˆ

yI terms are off-diagonal, and consequently, 

 labCS 0ˆ ˆ= γ σz zzH I B   (2.67) 

More generally, a perturbing Hamiltonian can be divided into a component that 

commutes with the Zeeman Hamiltonian and that does not. The components of 

the Hamiltonian that do not commute with the Zeeman eigenstates have no 

effect on the NMR frequencies to first-order and can safely be discarded (secular 

approximation).53 

2.3.5 Chemical Shift 

 When a nucleus is placed in a magnetic field, its electrons begin a 

circular motion around the nucleus (precession) and create a local magnetic field 

that can either oppose or augment the external magnetic field. This effectively 

modifies the Larmor frequency (ω0) of the nucleus as,  
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0

0 0

0 CS

(1 )ω = −γ − σ
= −γ + γ σ
= ω − ω

B

B B   (2.68) 

where σ is a shielding parameter that gives rise to a small decrease (ωCS) in the 

resonance frequency with respect to the Larmor frequency (ω0). The shielding 

parameter is not a convenient measure of the local magnetic field as the 

shielding is defined with respect to the bare nucleus. Instead, chemical shifts (δ) 

are quoted in terms of the difference in resonance frequency with respect to the 

frequency of a reference compound: 

 ref 6

ref
10

ω − ωδ = ×
ω

  (2.69) 

where ωref is the frequency of the reference compound, and δ is the chemical 

shift in units of parts per million (ppm). The chemical shift is related to the 

shielding as, 

 ref 6

ref
10

1
σ − σδ = ×

− σ
  (2.70) 

The chemical shift is a measure of deshielding effect, and an increase in 

shielding (σ) leads to a decrease in chemical shift (δ). 

 The shielding Hamiltonian, as already mentioned, is written as, 

 CS 0ˆ ˆ= γ ⋅ ⋅I σ BH   (2.71) 

where σ is the chemical shielding tensor represented by a 3 × 3 matrix in the 

principal axis system as, 

 

PAS

PAS

PAS

0 0
0 0
0 0

σ 
 = σ 
 σ 

σ

XX

YY

ZZ

  (2.72) 

with the principal values to define the following properties,52 

 PAS PAS PASiso
1 ( )
3

σ = σ + σ + σXX ZZYY   (2.73) 

 PASS iso∆ = σ − σZZ   (2.74) 

 
PAS PAS

S
S

XX YYσ − ση =
∆

  (2.75) 

where σiso is the isotropic chemical shielding, ∆S is the anisotropy, and ηS is the 
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asymmetry of the chemical shielding tensor (an alternative definition for 

anisotropy PAS PAS PAS( ( ) /2)ZZ XX YY∆σ = σ − σ + σ  exists).53 The principal values of the 

corresponding chemical shift tensor (δ) are labelled PAS PAS PAS
11 22 33, ,δ δ δ  with 

PAS PAS PAS
11 22 33 ,δ ≥ δ ≥ δ and, 

 PAS PAS PASiso 11 22 33
1

( )
3

δ = δ + δ + δ   (2.76) 

 PASCS iso11∆ = δ − δ   (2.77) 

 
PAS PAS
33 22

CS
CS

δ − δη =
∆

  (2.78) 

where δiso is the isotropic chemical shift, ∆CS is the chemical shift anisotropy 

(CSA), and ηCS is the asymmetry of the chemical shift tensor.52 

 The first-order contribution to the energy levels from the chemical 

shielding Hamiltonian is given by the diagonal elements of the matrix HCS as, 

 
(1)

CSCS

lab 0

ˆ=

= γ σℏ

I I

I zz

E m H m

m B
  (2.79) 

The frequency shift due to the chemical shielding in the laboratory frame is 

then given by,52 

 
labCS 0

lab0

ω = γσ
= −ω σ

zz

zz

B
  (2.80) 

and, after the frame transformation, 

 2 2CS 0 iso 0 S S
1( , ) (3cos 1 sin cos2 )
2

ω θ ω = −ω σ − ω ∆ θ − + η θ φ   (2.81) 

where the angles θ and φ define the orientation of the external magnetic field 

(B0) in the PAS of the shielding tensor, and, in terms of chemical shift,52 

 2 2iso CS CS
1

( , ) (3cos 1 sin cos 2 )
2

δ θ ω = δ + ∆ θ − + η θ φ   (2.82) 

Owing to the presence of anisotropic components that are dependent on the 

crystallite orientations, a powder pattern may arise. Since the frequency 

contribution from the chemical shielding is proportional to the Larmor 

frequency (ω0), chemical shift anisotropy may have significant effects on solid-

state NMR spectra recorded at higher magnetic field strengths. 
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2.3.6 Dipolar Coupling 

 The magnetic moment of a nucleus itself creates a local magnetic field 

and modifies the local magnetic field experienced by other nuclei. This through-

space interaction is the dipolar coupling. Dipolar coupling occurs between 

nuclei of the same (homonuclear) or different (heteronuclear) species. 

 When a spin-S nucleus (S) is the source of the local magnetic field 

affecting a spin-I nucleus (I), the dipolar Hamiltonian between the two spins (I 

and S) is given by, 

 D ˆˆ ˆ 2= − ⋅ ⋅I D SH   (2.83) 

where D is the dipole coupling tensor in its principal axis system given by,53 

 
−ω 
 = −ω 
 +ω 

PAS
D

PAS
D

PAS
D

/2 0 0
0 /2 0
0 0

D   (2.84) 

with the dipolar coupling constant PAS
D( )ω  defined as,52 

 0 I SPAS
D 3

IS4
µ γ γω =

π
ℏ

r
  (2.85) 

where µ0 is the vacuum permeability, γI and γS are the gyromagnetic ratio of the 

I and S spins, and rIS is their internuclear distance. The dipolar coupling tensor 

is traceless ( PAS PAS PAS 0+ + =XX ZZYYD D D  and no isotropic component) and axially 

symmetric ( PAS PAS=XX YYD D  and ηD = 0).53 

 For a heteronuclear I = S = 1/2 spin pair, the dipolar Hamiltonian may 

be written as,52,53 

 het DD
ˆˆ ˆ2= − ω z zH I S   (2.86) 

where ωD is the dipolar coupling parameter given by,  

 
PAS
D 2D (3 cos 1)
2

ωω = θ −   (2.87) 

where θ is the angle between the B0 and I-S internuclear vector.  

 For a homonuclear I = S = 1/2 spin pair, the dipolar Hamiltonian may be 

written as,52,53 

 hom DD
ˆ ˆˆ ˆ ˆ[3 ]= −ω − ⋅I Sz zH I S   (2.88) 
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where ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ⋅ = + +I S x x y y z zI S I S I S . This succinct form is referred to as the secular (or 

truncated) form.52 The anisotropic term in the dipolar coupling parameter (ωD) 

gives rise to a characteristic pattern in solid-state NMR spectra of powder 

samples. For heteronuclear dipolar interactions, the Larmor frequencies are 

shifted by ±ωD, and the powder lineshape consists of axially symmetric powder 

patterns that are mirror images of one another with their “horns” separated by 

the magnitude PAS
D( )ω of the dipolar coupling.52 For homonuclear dipolar 

interactions, a many-spin system results in a strong mixing of degenerate 

Zeeman levels, producing a range of different transition frequencies. 

Consequently, the homonuclear-coupled spin system produces a broad, 

featureless (Gaussian) lineshape in solid-state NMR spectra.52 

 A technique (other than magic angle spinning (MAS) introduced in 

Chapter 3) that can be applied to remove the heteronuclear dipolar coupling is 

decoupling. A high-power, continuous irradiation around the Larmor frequency 

of one of the two nuclei (say, S) causes rapid transitions between the spin 

Zeeman states of the irradiated nucleus, leading to an effective averaging of the 

dipolar coupling. This results in the degeneracy of the spin states of the other 

nucleus (I), and consequently an isotropic peak is obtained for the observed (I) 

nucleus. 
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3.  Solid-State NMR of Half-Integer Quadrupolar Nuclei 

Solid-state NMR spectra of half-integer quadrupolar nuclei are dominated by 

strong, inhomogeneous broadening interactions, and the spectral lines spread 

over a wide range of frequency. This prominent broadening effect is due to the 

presence of quadrupolar coupling (or quadrupolar interaction) reviewed in detail in 

this chapter. Theoretical background of quadrupolar solid-state NMR can be 

found in several books51–53 and review articles,60 as well as in acclaimed 

publications of novel experimental approaches.  

3.1 Quadrupolar Coupling 

 All nuclei with the spin angular momentum quantum number I > 1/2 

possess a nuclear electric quadrupolar moment, in addition to the magnetic 

dipole moment possessed by spin I = 1/2 nuclei. The electric quadrupolar 

moment of a nucleus interacts with an electric field gradient present in the 

vicinity of the nucleus. This interaction between the local electric field gradient 

and the electric quadrupolar moment of a nucleus is the quadrupolar coupling. 

The strength of quadrupolar coupling depends on the magnitude of (i) the 
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electric quadrupole moment of a given nucleus (eQ) and (ii) the electric field 

gradient around the nucleus (eq), and the magnitude of quadrupolar coupling is 

characterised by the quadrupolar coupling constant, CQ (= e2qQ/h, where Q is the 

nuclear electric quadrupole moment and e is the charge of a proton). Although 

the electric quadrupole moment (eQ) is specific and constant for a given nucleus, 

the electric field gradient (eq) is generated by the distribution of other charges 

(nuclei and electrons) and may vary depending on the chemical environment. 

Since the electric field gradient arises at a site of non-cubic symmetry, the 

quadrupolar int, eraction is useful in characterising the geometry around the 

quadrupolar nucleus of interest.  

 The fundamental form of quadrupolar Hamiltonian is given by,52 

 Q
Qˆ ˆ ˆ

2 (2 1)
= ⋅ ⋅

−
I V I
ℏ

e
H

I I
  (3.1) 

where V is the electric field gradient tensor, Î  is the nuclear spin vector. The 

electric field gradient tensor is a three-dimensional Cartesian tensor expressed 

in its principal axis system (PAS) as,61 

 

PAS

PAS

PAS

0 0
0 0
0 0

 
 =  
 
 

V

XX

YY

ZZ

V

V

V

  (3.2) 

with the three principal values PAS PAS PAS( , , )XX ZZYYV V V defining the following 

parameters,  

 

PAS

PAS PAS
Q PAS

=

−η =

ZZ

XX YY

ZZ

eq V

V V

V

  (3.3) 

where PAS PAS PAS| | | | | |≥ ≥ZZ XXYYV V V  was assumed. The electric field gradient (EFG) 

tensor is traceless PAS PAS PAS( 0),XX ZZYYV V V+ + =  and thus the isotropic value is zero. 

The magnitude of the EFG tensor is given by eq, and the shape of its cross 

section is characterised by the asymmetry parameter (ηQ). The quadrupolar 

Hamiltonian in the PAS is written as,62  

 
2

PAS 2 2 2 2QQ
Qˆ ˆ ˆ ˆ ˆ3 ( )

4 (2 1) Z X Y

e q
H I I I I

I I
 = − + η − − ℏ

  (3.4) 
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where the spin angular momentum operators are given with respect to the 

principal axes. The quadrupolar splitting parameter ( PAS
Qω  in rad s−1 or PAS

Qν  in 

Hz) is defined as a measure of the magnitude of the quadrupolar interaction in 

the PAS: 

 Q QPAS PAS
Q Q

3 32 2
2 (2 1) 4 (2 1)

πω = = π ⋅ = πν
− −

C C

I I I I
  (3.5) 

Equation (3.4) can then be rewritten as,63 

 QPAS PAS 2 2 2 2
Q Q

1ˆ ˆ ˆ ˆ ˆ( )
3 3Z X YH I I I I

η = ω − + −  
  (3.6) 

 The quadrupolar Hamiltonian is described using time-independent 

perturbation theory: the Zeeman interaction is dominant in the total Hamiltonian, 

and the quadrupolar Hamiltonian is considered as a perturbation to the 

Zeeman Hamiltonian. The true total Hamiltonian is then constructed from the 

dominant Zeeman Hamiltonian by adding a contribution that is independent of 

the time. The total Hamiltonian for a quadrupolar nucleus consists of the 

Zeeman (HZ) and quadrupolar Hamiltonian in the laboratory frame ( LAB
QH  ): 

 LABZ Q= +H H H   (3.7) 

where Z 0 z= ωH I (the matrix forms of spin angular momentum operators are 

supplied in Appendix A). Only the secular terms that commute with the 

Zeeman Hamiltonian affect the energies of the total spin system. For systems in 

which the condition ω << ωPAS 0Q  is valid, perturbation up to second-order is 

sufficient to describe the quadrupolar effect.64,65   

 Transformation from the principal axis to the laboratory frame is 

performed using spherical tensor operators Tlp (supplied in Appendix B). 

Taking a spin I = 3/2 nucleus as an example,63,64 

 

Q

Q

PAS PAS
Q Q Q

Q

1 0 0
3

0 1 0
3

0 1 0
3

0 0 1
3

η 
 
 η− 

= ω  η − 
 η
 
 

H   (3.8) 
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Using spherical tensor operators, 

 −
η = ω + + 

 

QPAS PAS 2,0 2,2 2, 2Q Q2 ( )
6

H T T T   (3.9) 

Exploiting the properties of the spherical tensors under rotation from the PAS 

to the laboratory frame, the Hamiltonian in the laboratory frame is written as, 

 ( )
2

,02
LAB PAS 2,Q Q Q 2 2

2 ,2 , 2

( , , )
2

( , , ) ( , , )
6

′

′
′=− ′ ′ −

α β γ 
 = ω η + α β γ + α β γ 
 

∑H T
p

p

p p p

D

D D
  (3.10) 

where the Euler angles (α, β, γ) describe the transformation from the PAS to the 

laboratory frame, and ( , , )′ α β γl
p pD  is the Wigner rotation matrix element. The 

matrix form may be explicitly given by, 

 PASLAB
Q Q

A B C 0
B A 0 C

2
C 0 A B
0 C B A

+ +

− +

− +

− −

− 
 − = ω
 −
 

− 

H   (3.11) 

where 
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1
B ( , , ) ( , , ) ( , , )
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−

−
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+

η = α β γ + α β γ + α β γ  

η = α β γ + α β γ + α β γ  

η = α β γ + α β γ + α β γ  

η= α β γ + α β γ +

D D D

D D D

D D D

D D D( )

( )

2
2, 2

Q2 2 2
2,0 2,2 2, 2

( , , )

1C ( , , ) ( , , ) ( , , )
2 12

−

−
− − − −

 α β γ  

η = α β γ + α β γ + α β γ  
D D D

  (3.12) 

 Upon perturbation treatment of the quadrupolar interaction, the energy 

of a quadrupolar spin system can be expressed as,66 

 (0) (1) (2)= + +I
I I I

m m m mE E E E   (3.13) 

where the zeroth- ( (0)
ImE ) and first-order ( (1)

ImE ) contribution is obtained by 

evaluating the diagonal elements of the relevant Hamiltonian as, 

 (0)
Z= H

I
I ImE m m   (3.14) 
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 (1) LAB
Q= H

I
I ImE m m   (3.15) 

and, the second-order contribution ( (2)
ImE )66 is given by, 

 
LAB LAB
Q Q(2)

(0) (0)
′≠ ′

′ ′
=

−∑
H H

I

I I I I

I I I I

m
m m m m

m m m m
E

E E
  (3.16) 

3.1.1 First-Order Broadening 

 The first-order contribution to the Zeeman energy level is given by the 

diagonal elements of the quadrupolar Hamiltonian in the laboratory frame 

( (1) LAB
Q= H

I
I ImE m m ). The diagonal elements in Equation (3.11) arise from the 

spherical tensor T2,0 (with p’ = 0) in Equation (3.10), and the first-order 

contribution to the Zeeman splitting is explicitly written as, 

 

( )Q(1) PAS 2 2 2
0,0 0,2 0, 2Q

PAS
Q 2 2Q

Q

( , , ) ( , , ) ( , , )
6

(3cos 1 sin cos 2 )
2

−
η = ±ω α β γ + α β γ + α β γ 

 
ω

= ± β − + η β γ

= ±ω

Im
E D D D

  (3.17) 

where the quadrupolar splitting parameter (ωQ)67 is given with respect to the 

laboratory frame. The first-order contribution to a transition frequency between 

′↔I Im m  states is then given by, 

 (1) 2 2 Q( )′↔ ′ω = ± − ω
I I I Im m m m   (3.18) 

All symmetric transitions ( ± ↔ ∓I Im m ) are not perturbed by the first-order 

quadrupolar interaction.  

 Taking a spin I = 3/2 nucleus as an example, the first-order energy 

correction to the four Zeeman states is expressed as, 

 (1) (1) (1) (1)
Q3/2 3/2 1/2 1/2− −= = − = − = ωE E E E   (3.19) 

Consequently, there are six possible transitions for a spin I = 3/2 nucleus with 

transition frequencies of ω0, ω0 ± 2ωQ, 2ω0 ± 2ωQ and 3ωQ to first-order 

perturbation, corresponding to the central transition (mI = +1/2 ↔ −1/2), 

satellite transitions (mI = +1/2 ↔ +3/2, −1/2 ↔ −3/2), double-quantum 

transitions (mI = +1/2 ↔ −3/2, −1/2 ↔ +3/2), and triple-quantum transition (mI 
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= +3/2 ↔ −3/2), respectively. This is schematically illustrated in Figure 3.1. The 

central transition (CT) and triple-quantum transition (TQ) of spin I = 3/2 nuclei 

are not affected by the first-order, whereas the double-quantum (DQ) and 

satellite transitions (ST) are anisotropically broadened by the first-order 

quadrupolar interaction, giving rise to a characteristic powder pattern. Owing 

to the absence of an isotropic component in the quadrupolar splitting parameter 

(ωQ), the first-order broadened powder pattern is centred at ω0. For half-integer 

quadrupolar nuclei with I > 3/2, several sets of satellite and multiple-quantum 

transitions exist, and the satellite transitions are labelled ST1 (mI = ±1/2 ↔ ±3/2), 

ST2 (mI = ±3/2 ↔ ±5/2) and so on.  

3.1.2 Second-Order Broadening 

 When the magnitude of the quadrupolar interaction is sufficiently large, 

the second-order perturbation is also considered in addition to the first-order 

perturbation. The second-order contribution to a transition frequency between 

′↔I Im m  states is given by,63,64 

 

0 0 QPAS 2
(2) Q 2 2 Q

0 4 4 Q

( , , ) ( )
( )

( , , ) ( , , , )
( , , ) ( , , , )

′↔

′ η 
ω  ′ω = + α β γ η ω ′+ α β γ η  

I I

I I

I Im m

I I

A I m m Q

A I m m Q

A I m m Q

  (3.20) 

where ( , , )n
I IA I m m′  is the spin- and transition-dependent coefficient (supplied 

Figure 3.1 Energy level diagram of spin I = 3/2 nuclei, showing the effect of the (a) Zeeman (b) first-
order and (c) second-order quadrupolar interactions. 
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in Appendix D), and, 
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  (3.21) 

with the Wigner rotation matrix elements ( , , )′ α β γl
p pD  as defined in Equation 

(2.52). Since all the matrix elements in Equation (3.21) have p’ = 0 in the 

( , , )′ α β γl
p pD  terms, only two angles (β, γ) are required to describe the 

transformation from the PAS into the laboratory frame under static conditions. 

Furthermore, in the case of ηQ = 0, solely the angle β is sufficient to describe the 

transformation under static, second-order quadrupolar effects.68 

 In contrast to the first-order interaction, all the transitions are perturbed 

by the second-order quadrupolar interaction. The second-order contribution is 

often a magnitude smaller than the first-order contribution, owing to the PAS
Qω  

and PAS 2 0Q( ) /ω ω dependence of the first- and second-order contribution, 

respectively. The zeroth-order coefficient 0 0 Q( ( , , ) ( ))′ ηI IA I m m Q  is a constant, 

producing an isotropic frequency shift by an amount proportional to 

0 0 PAS 2Q 0Q( , , ) ( )( ) / ,I IA I m m Q′ η ω ω and this is termed the quadrupolar shift.39 

Consequently, observed peak positions have a contribution from the 

quadrupolar interaction as well as the inherent chemical shift. For powdered 

samples, characteristic lineshapes are expected owing to the presence of 

orientation-dependent terms, 2 Q( , , , )α β γ ηQ  and 4 Q( , , , ).Q α β γ η  This is 

illustrated in Figure 3.2a−f, using a series of second-order quadrupolar-

broadened central-transition powder lineshapes for a range of ηQ under static 

conditions. 

 Since the second-order contribution is inversely proportional to the 
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Larmor frequency (1/ω0), the contribution from the second-order quadrupolar 

interaction decreases as the external magnetic field strength increases. The use 

of high magnetic fields is thus particularly advantageous for the investigation 

of half-integer quadrupolar nuclei with large CQ values. Upon acquisition of 

solid-state NMR spectra at several different external field strengths, the field 

strength dependence of the second-order central-transition lineshape may also 

be utilised to extract accurate quadrupolar parameters. 

Figure 3.2 (a–f) Static and (g–l) MAS central-transition lineshapes of spin I = 3/2 nuclei. Simulations 
were performed using TopSpin with CQ = 2 MHz at ν0 = 130 MHz for various ηQ values of (a,g) 0.0 
(b,h) 0.2 (c,i) 0.4 (d,j) 0.6 (e,k) 0.8 (f,l) 1.0. Exponential line broadening of (a–f) 100 Hz and (g–l) 50 Hz 
was applied. The MAS spinning frequency of 10 kHz was employed. The displayed spectral width is 
15 kHz. 
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3.2 Magic Angle Spinning 

 The quadrupolar interaction often produces a broad, featureless 

lineshape in solid-state NMR spectra of half-integer quadrupolar nuclei 

acquired under static conditions. A widely recognised, routine technique to 

enhance the resolution of solid-state NMR spectra is the magic angle spinning 

(MAS).18 Magic angle spinning involves a rapid rotation of a sample in a 

cylindrical rotor about an axis inclined at an angle of 54.736° with respect to the 

external magnetic field (B0). Orientation-dependent NMR interactions that 

possess 2(3cos 1)θ −  dependence can be effectively time-averaged to its 

isotropic value under MAS conditions. For half-integer quadrupolar nuclei, 

only some parts of the anisotropic broadening terms are removed under MAS 

conditions, resulting in some sensitivity enhancement but not truly isotropic 

spectra. The origin of the partial line-narrowing effect under MAS conditions 

for half-integer quadrupolar nuclei is described in the subsections below.  

3.2.1 Effect of Sample Spinning 

 Under static conditions, only a single set of Euler angles was required to 

convert the PAS of the EFG tensor into the laboratory frame (LAB): 

 ( , , )PAS LABα β γ→R   (3.22) 

To describe the effect of sample spinning, two sets of Euler angles are required:  

 R(0, , ) (0, , )PAS ROTOR LAB
′ ′β γ χ −ω +ξ→ →R R t   (3.23) 

The coordinate axes in the principal axis system (PAS) are transformed into the 

laboratory frame (LAB) via an intermediate frame of reference, rotor-fixed frame 

(ROTOR). In the rotor-fixed frame, the z axis is given by the spinning axis, and 

the angle χ denotes the orientation of the spinning axis with respect to the 

external magnetic field. The initial crystallite orientation (at t = 0) about the 

spinning axis is given by the angle ξ, and the spinning frequency is denoted as 

ωR (in rad s−1) or νR (= ωR/2π in Hz). The first set of Euler angles (0, , )′ ′β γ  

defines the transformation from the principal axis frame (PAS) to the rotor-

fixed frame (ROTOR). Note that ′α = 0  is valid owing to the fact that the rotor-
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fixed frame is cylindrical. The second set R(0, , )χ − ω + ξt  describes the 

transformation from the rotor-fixed frame (ROTOR) into the laboratory frame 

(LAB). This is schematically illustrated in Figure 3.3. 

 The two-step transformation via an intermediate rotor-fixed frame is 

expressed in terms of the Wigner rotation matrix elements as, 

 R ,0, 0,
=

( , , ) (0, , ) (0, , )
−

′ ′α β γ = χ −ω + ξ β γ∑
l

l l l
q pp q

q l

D D t D   (3.24) 

This can be written in terms of the reduced Wigner rotation matrix elements 

(Equation (2.52)) as, 

 R ,0, 0,
=

( , , ) ( )exp{ i ( )} ( )exp{ i( )}
l

l l l
q pp q

q l

D d q t d p
−

′ ′α β γ = χ − −ω + ξ β − γ∑   (3.25) 

The time dependence arises from the Rexp{ i ( )}q t− −ω + ξ term that oscillates over 

time upon spinning at a frequency of ωR. Taking the 2
0,0D  term (l = 2 and p = 0) 

as an example, 

 

2 2 2R0,0 0, ,0
= 2

2
2 2R0, ,0

= 2

( , , ) (0, , ) (0, , )

( )exp{ i ( )}( ) ( )}

2

q q
q

q q
q

D D t D

d q t d

−

−

′ ′α β γ = χ −ω + ξ β γ

′= χ − −ω + ξ χ β

∑

∑
  (3.26) 

This is then expanded as, 

Figure 3.3 Schematic illustration of magic angle spinning (MAS) experiments. The angle χ defines the 
orientation of the rotor axis with respect to the external magnetic field (B0), the angle β’ describes the 
orientation of the principal axis system (PAS) of the electric field gradient (EFG) tensor with respect to 
the rotor axis, and the initial crystallite orientation (at t = 0) about the spinning axis is given by the 
angle ξ.  
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2 2 2
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( ) ( )exp{ i( )}

( ) ( )exp{ i( 2 2 )}

( ) ( )exp{ i( 2 2 )}

D d d

d d t

d d t

d d t
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− −

− −

′α β γ = χ β

′+ χ β − −ω + ξ

′+ χ β + −ω + ξ

′+ χ β − − ω + ξ

′+ χ β + − ω + ξ

  (3.27) 

Exploiting the symmetry properties of the reduced Wigner matrix elements  

2 2 2 2
1,0 0,1 0, 1 1,0( − −= − = = −d d d d  and 2 2 2 2

2,0 0,2 0, 2 2,0 ),− −= = =d d d d  

 

2 2 2
0,0 0,0 0,0

2 2 R1,0 1,0

2 2 R1,0 1,0

2 2 R2,0 2,0

2 2 R2,0 2,0

( , , ) ( ) ( )

( ) ( )exp{ i( )}

( ) ( )exp{ i( )}

( ) ( )exp{ i( 2 2 )}

( ) ( )exp{ i( 2 2 )}

D d d

d d t

d d t

d d t

d d t

′α β γ = χ β

′− χ β − −ω + ξ

′− χ β + −ω + ξ

′+ χ β − − ω + ξ

′+ χ β + − ω + ξ

  (3.28) 

and, using the Euler’s formula (exp{ i( )} cos( ) i sin( )),a b a b a b± + = + ± +  

 

2 2 2
0,0 0,0 0,0

2 2 R1,0 1,0

2 2 R2,0 2,0

( , , ) ( ) ( )

2 ( ) ( )cos( )

2 ( ) ( )cos( 2 2 )

′α β γ = χ β

′− χ β −ω + ξ

′+ χ β − ω + ξ

D d d

d d t

d d t

  (3.29) 

Using the explicit forms of the reduced Wigner rotation matrix elements 

(supplied in Appendix C),  

 

2 2 2
0,0

R

2 2 R

1( , , ) (3cos 1)(3cos 1)
4

3
(sin 2 )(sin 2 )cos( )

4
3 (sin )(sin )cos( 2 2 )
4

′α β γ = χ − β −

′− χ β −ω + ξ

′+ χ β − ω + ξ

D

t

t

  (3.30) 

The first term is independent of time while the latter two terms oscillate 

periodically at frequencies ωR and 2ωR. 

 Under infinitely fast spinning ( ),ω → ∞R  the time-dependent terms 

average to zero: 

 

2 2 2
0,0 0,0 0,0

2 2

( , , ) ( ) ( )

1 (3cos 1)(3cos 1)
4

′α β γ = χ β

′= χ − β −

D d d

  (3.31) 

This is equivalent to retaining q = 0 terms of the Wigner rotation matrix 
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elements. A similar expansion for 2
0, 2( , , )± α β γD  terms reveals that, 

 

2 2 2 2
0,2 0, 2 0,0 2,0

2 2 R1,0 2, 1

2 2 R1,0 2,1

2 2 R2,0 2, 2

2 2 R2,0 2,2
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2 ( ) ( )cos( 2 2 2 )

2 ( ) ( )cos( 2 2 2 )

D D d

d d t

d d t

d d t

d d t

−

−

−

′ ′α β γ + α β γ = χ β γ

′ ′− χ β −ω + ξ − γ

′ ′+ χ β −ω + ξ + γ

′ ′+ χ β − ω + ξ − γ

′ ′+ χ β − ω + ξ + γ

  (3.32) 

Under infinitely fast spinning, 

 

2 2 2 2
0,2 0, 2 0,0 0,0

2 2

( , , ) ( , , ) 2 ( ) ( )cos(2 )

1 (3cos 1)(3cos 1)cos(2 )
4

− ′ ′α β γ + α β γ = χ β γ

′ ′= χ − β − γ

D D d d

  (3.33) 

When χ = 54.736°, 2 2
0,0( ) (3cos 1) /2 0,χ = χ − =d  and hence the 2

0,0( , , )α β γD  and 

2 2
0,2 0, 2( , , ) ( , , )−α β γ + α β γD D  terms vanish under infinitely fast MAS conditions. 

The first-order contribution to the time-averaged transition frequency is then 

given by, 

 
{ }

{ }

2
0,0

(1) 2 2 PAS
Q Q 2 2

0,2 0, 2

2 2
0,0 0,0

2 2 PAS
QQ 2 2

0,0 0,2

( , , )
( )

( , , ) ( , , )
6

( ) ( )
( )

2 ( ) ( )cos(2 )
6

I I I Im m

I I

D

m m
D D

d d

m m
d d

′↔
−

 α β γ
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′χ β 
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 

  (3.34) 

Since 2
0,0(54.736 ) 0,d ° =  the first-order quadrupolar anisotropic broadening can 

be fully time-averaged under infinitely fast sample spinning at the magic angle. 

 To examine the effect of sample spinning on the second-order 

quadrupolar broadening terms, the time dependence of 4
0, ( , , )α β γpD  terms with 

p = 0, ±2 and ±4 needs to be considered in an analogous manner. Taking 

4
0,0( , , )α β γD  as an example, 

 

4 4 4
0,0 0,0 0,0

4 4 R1,0 1,0

4 4 R2,0 2,0

4 4 R3,0 3,0

4 4 R4,0 4,0

( , , ) ( ) ( )

2 ( ) ( )cos( )

2 ( ) ( )cos( 2 2 )

2 ( ) ( )cos( 3 3 )

2 ( ) ( )cos( 4 4 )

D d d

d d t

d d t

d d t

d d t

′α β γ = χ β

′− χ β −ω + ξ

′+ χ β − ω + ξ

′− χ β − ω + ξ

′+ χ β − ω + ξ

  (3.35) 
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The time-averaging under infinitely fast spinning retains only the first term, 

 4 4 4
0,0 0,0 0,0( , , ) ( ) ( )′α β γ = χ βD d d   (3.36) 

Similarly, the time-averaged contribution from the p = ±2 and ±4 terms are 

given by,  

 4 4 4 4
0,2 0, 2 0,0 2,0( , , ) ( , , ) 2 ( ) ( )cos(2 )− ′ ′α β γ + α β γ = χ β γD D d d   (3.37) 

 4 4 4 4
0,4 0, 4 0,0 4,0( , , ) ( , , ) 2 ( ) ( )cos(4 )− ′ ′α β γ + α β γ = χ β γD D d d   (3.38) 

The second-order contribution to the time-averaged transition frequency is then 

written as,69 
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  (3.39) 

where 
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  (3.41) 

Under fast sample rotation at χ = 54.736°, the χ = χ −2 2
0,0( ) (3cos 1) /2d  term 

vanishes, and consequently the contribution from the second-rank term 

2 2 2 Q0,0( , , ) ( ) ( , , )′ ′ ′χ β γ ηI IA I m m d Q  becomes zero. Since the fourth-rank term has an 

anisotropic contribution of the form 4 4 2
0,0( ) (35cos 30cos 1) /8d χ = χ − χ −  

(Appendix C), the anisotropic component of the fourth-rank term is zero only 

when χ = 30.556° or 70.124°, and there is no single spinning axis to remove the 

second- and fourth-rank anisotropic quadrupolar broadening simultaneously. 

Under magic angle spinning, therefore, the anisotropic broadening due to the 
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second-order quadrupolar interaction is only reduced in magnitude by a factor 

of about 3. This is illustrated in Figure 3.2g−l: the linewidth of the second-order 

broadened central-transition lineshape is narrowed under MAS conditions, and 

the anisotropic component due to the fourth-rank term yields a characteristic 

powder lineshape depending on the value of ηQ. 

3.2.2 Second-Order Quadrupolar Broadened Spectra 

 The central transitions are broadened only to second-order, and the 

second-order broadened linewidth is dependent on both the magnitude of the 

quadrupolar interaction and the strength of the external magnetic field 

( PAS 2 0Q( ) /ω ω ). The effect of varying PAS QQ ( 3 /2 (2 1))ω = π −C I I  is illustrated in 

Figure 3.4, with respect to the quadrupolar coupling constant (CQ) and the spin 

Figure 3.4 Simulated MAS central-transition lineshapes of spin (a,c,e) I = 3/2 and (b,d,f) I = 5/2 nuclei. 
Simulations were performed at (a,c,e) ν0 = 105.8 MHz and (b,d,f) ν0 = 104.3 MHz, varying CQ from (a,b) 
1 MHz to (e,f) 3 MHz. Exponential line broadening of 50 Hz was applied. The MAS spinning frequency 
was 10 kHz and the displayed spectral width is 8 kHz. 
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quantum number (I). The second-order broadened linewidth significantly 

increases as the magnitude of the quadrupolar interaction increases, reflecting 

the PAS 2
Q( )ω  dependence for a given external field strength. For a given 

magnitude of CQ, the linewidth is narrower for higher spins as the quadrupolar 

splitting parameter is inversely proportional to the spin quantum number. The 

zeroth-rank contribution ( 0 0 PAS 2Q 0Q( , , ) ( )( ) /I IA I m m Q′ η ω ω ) in the second-order 

quadrupolar broadening is inherently isotropic and not affected by sample 

spinning. This leads to a frequency shift (quadrupolar shift), as mentioned in the 

context of non-spinning conditions. 

3.2.3 Spinning Sidebands 

 Although, in principle, it is possible to fully remove the second-rank 

contribution under MAS conditions, the time averaging described in the 

previous section (Subsection 3.2.1) is achieved only when the spinning 

frequency is infinite. When this is not the case, as in many cases in practice, the 

powder lineshape splits into a series of spinning sidebands, consisting of 

relatively sharp peaks equally spaced at the spinning frequency.70,71 The overall 

envelope of the spinning sidebands reflects the lineshape to be observed under 

static condition, which is dependent on the value of ηQ.  

 To describe the occurrence of spinning sidebands, the time dependence 

of the Wigner rotation matrix elements R0, (0, , )χ −ω + ξl
qD t  needs to be explicitly 

treated in the reduced form. Revisiting the term 2
0,0( , , )α β γD  as an example, 
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  (3.42) 

The first term is zero at χ = 54.736°, while the latter two terms are periodic with 

zero mean value18 and oscillate at frequencies ωR and 2ωR upon sample 

spinning. The time dependence of these two terms gives rise to spinning 

sidebands when the spinning frequency is smaller or comparable to the 

magnitude of the static linewidth. For example, for satellite transitions with 
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first-order quadrupolar broadening and axial symmetry (ηQ = 0), the time 

dependence arises only from the 2
0,0( , , )D α β γ  term. The first-order quadrupolar 

splitting (1)( )′↔ω
I Im m  is directly proportional to the magnitude of the quadrupolar 

interaction PAS
Q( )ω  and is typically in a MHz scale. The spinning frequency is 

inevitably slower than the magnitude of the quadrupolar splitting, and, upon 

sample spinning, the first-order static powder pattern splits into a series of 

components that have the same phase separated by the spinning frequency (ωR). 

Consequently, satellite transitions are usually observable only under MAS 

conditions as a series of spinning sidebands that reflect the first-order 

quadrupolar broadened lineshape. 

 Quadrupolar broadening is categorised as inhomogeneous where each 

constituent of the static spectral lineshape originates from a crystallite of a 

particular orientation with respect to the external magnetic field, and each 

component has a finite intrinsic linewidth.18 The powder pattern of 

inhomogeneous systems immediately splits into a series of spinning sidebands 

even at slow spinning frequencies. In the case of homogeneous broadening, on 

the contrary, such as dipolar interaction, the spinning frequency needs to be 

comparable with the static linewidth to achieve an apparent line narrowing 

effect under MAS conditions.18 This is because of the criterion that, for effective 

time averaging under slow rotations, the interaction Hamiltonian must 

commute with the Zeeman Hamiltonian. For dipolar Hamiltonian, the non-

commuting terms become prominent and consequently require sufficiently fast 

spinning frequencies comparable to the static linewidth. Nonetheless, the recent 

development of fast MAS spinning is advantageous for 1H (I = 1/2) or 19F (I = 

1/2) nuclei, as the dipolar interaction that dominates their NMR spectra is of 

the order of kHz, and a significant enhancement in sensitivity and resolution 

can be achieved upon fast spinning. Although the maximum spinning speed 

practically attainable are not comparable to the magnitude of quadrupolar 

broadening, since the increase in sensitivity is immediately observable upon 

faster spinning, the use of fast MAS conditions is equally advantageous for the 

study of quadrupolar nuclei.  
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3.2.4 Rotor-Synchronisation 

 The occurrence of spinning sidebands is informative as the overall 

lineshape contains information about the quadrupolar parameters (CQ and ηQ). 

A technique called rotor-synchronisation is, nevertheless, occasionally found 

useful to obtain MAS spectra free of spinning sidebands and gain sensitivity.72 

Rotor-synchronisation can remove the first-order quadrupolar broadening so 

that the satellite transitions of half-integer quadrupolar nuclei are observed as a 

narrow, second-order broadened lineshape. To examine the effect of rotor-

synchronisation, suppose that the time-dependent term evolves over one rotor 

period from t = 0 to t = 2π/ωR. Taking the time-dependent part in 2
0,0( , , )D α β γ  

(Equation (3.42)) as an example,  
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cos2( ) 0

π ω

π ω

−ω + ξ =

−ω + ξ =

∫

∫

t
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  (3.43) 

The time dependence in the 2
0,0( , , )D α β γ   term is averaged to zero over one rotor 

period. This observation is, in general, equivalent to retaining only the 0,0
ld  (q = 

0) terms of the reduced rotation matrix elements (as in infinitely fast spinning). 

This time averaging occurs every rotor period at t = 2nπ/ωR with n being an 

integer. Upon rotor-synchronised signal acquisition in practice, the sampling of 

free induction decay is timed at the start of every rotor period (t = 2nπ/ωR), and 

the subsequent Fourier transformation produces a spectrum free of spinning 

sidebands. In the frequency domain, spinning sidebands are said to be aliased 

into an effective spectral width defined by the spinning frequency. It should be 

noted that, to remove the large first-order quadrupolar interaction and obtain 

an undistorted second-order quadrupolar broadened lineshape of satellite 

transitions, rotor-synchronisation requires a stable spinning frequency and an 

accurate calibration of the spinning axis to the magic angle.72  

3.3 Removal of Second-Order Quadrupolar Broadening 

 For half-integer quadrupolar nuclei subjected to the second-order 

quadrupolar interaction, truly isotropic spectra are obtained only when the 
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second- and fourth-rank anisotropic broadening terms are removed 

simultaneously (i.e. 2 4
0,0 0,0( ) ( ) 0χ χ =d = d ). The spinning angle χ needs to be 

54.736° to remove the second-rank term whereas the spinning angle χ must be 

either 30.556° or 70.124° to null the fourth-rank term, and there is no single 

spinning axis to remove both the second- and forth-rank terms simultaneously.  

 There are four major techniques available to achieve isotropic spectra of 

half-integer quadrupolar nuclei: double rotation (DOR),32 dynamic angle 

rotation (DAS),35,36 multiple-quantum magic angle spinning (MQMAS)37 and 

satellite transition magic angle spinning (STMAS)38 experiments. These four 

techniques are briefly reviewed in the rest of this chapter, with a particular 

focus on the STMAS approach. A recent addition to these well-established high-

resolution methods is the satellite transitions acquired in real time by magic 

angle spinning (STARTMAS)73,74 NMR, described in Chapter 5.  

3.3.1 Double Rotation and Dynamic Angle Spinning 

 Double rotation (DOR)32 and dynamic angle spinning (DAS)35,36 

experiments both utilise physical rotation of sample holders about two different 

angles to satisfy the condition 2 4
0,0 0,0( ) ( ) 0.χ χ =d = d  The DOR technique uses 

simultaneous spinning of a sample holder at two different angles, while the 

DAS involves sequential spinning at two different angles over a certain period 

of time.  

 The DOR method75 is a one-dimensional experiment that utilises the 

simultaneous spinning at two different angles. A sample is packed in an inner 

rotor, and the inner rotor is placed inside an outer rotor. The outer rotor is 

inclined at the magic angle (54.74°) whereas the inner rotor is set at 30.56° with 

respect to the spinning axis of the outer rotor. The resulting one-dimensional 

DOR spectrum consists of isotropic peaks and their spinning sidebands 

separated by the outer rotor spinning frequency. The DOR approach requires a 

specialist probe, and a major drawback is that sample spinning speed can be 

severely limited, resulting in a spectrum flanked with a series of spinning 

sidebands that hinder accurate spectral analysis. The presence of overlapping 
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sidebands is especially adverse when more than one crystallographically 

distinct sites are present. In addition, the sample volume inside the inner rotor 

is inherently small, leading to a loss of sensitivity, and the inevitably large 

diameter of the outer rotor precludes the use of high radiofrequency field 

strengths. Despite the limitations associated with the DOR approach, examples 

of high-resolution DOR spectra are found for a variety of quadrupolar species 

such as 11B (I = 3/2), 17O (I = 5/2), 23Na (I = 3/2), 27Al (I = 5/2), 55Mn (I = 5/2), 

71Ga (I = 3/2), 85Rb (I = 5/2) and 87Rb (I = 3/2) nuclei.75,76  

 The DAS approach77 is a two-dimensional experiment in which the 

sample holder is spun sequentially at two angles over two time periods, t1 and 

t2. The spinning angles are set such that, 

 
2 21 20,0 0,0
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( ) ( ) 0

( ) ( ) 0
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χ + χ =

md nd
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  (3.44) 

with m + n = 1. The most commonly used set of angles is χ1 = 37.38° and χ2 = 

79.19° with m = n = 0.5. The anisotropic broadening is fully refocused at a time 

t2 = (m/n)t1. If a second angle hopping to 54.74° is additionally performed, then 

not only the quadrupolar interaction but also the chemical shift anisotropy and 

dipolar couplings can be removed.77 Following a two-dimensional Fourier 

transformation, the resulting two-dimensional DAS spectrum shows a ridge 

lineshape with a gradient of m/n, and an isotropic spectrum is obtained by 

taking a projection along an axis perpendicular to the ridge lineshape. Shearing 

transformation (Subsection 3.4.2) may be applied to obtain an isotropic 

spectrum directly from a projection along the horizontal axis. Major drawbacks 

associated with the DAS method are that (i) a specialised probe is required to 

perform the instant hopping of spinning axis, and that (ii) a sufficiently long 

relaxation time is a prerequisite to prevent the magnetisation decay during the 

hopping. Nevertheless, the DAS experiment has been utilised to record high-

resolution spectra of 11B (I = 3/2), 17O (I = 5/2), 23Na (I = 3/2), 27Al (I = 5/2) and 

87Rb (I = 3/2) nuclei.77  
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3.3.2 Multiple-Quantum Magic Angle Spinning 

 Although both of the DOR and DAS techniques accomplish a high-

resolution NMR for half-integer quadrupolar nuclei, the requirement of 

specialist hardware and the limitations associated with spinning frequency, 

sample volume and attainable range of radiofrequency field strengths have 

been preventing the widespread use of these two methods. In 1995, multiple-

quantum magic angle spinning (MQMAS) experiments were proposed by 

Frydman and Harwood37 to remove the second-order quadrupolar broadening 

and obtain isotropic spectra of half-integer quadrupolar nuclei under MAS 

conditions. The MQMAS experiment involves a two-dimensional acquisition 

that correlates multiple- and single-quantum coherences. While two-

dimensional MQMAS spectra allow the separation of chemically distinct sites 

whose anisotropic lineshapes may significantly overlap in one-dimensional 

MAS spectra, the MQMAS approach requires only conventional MAS probes 

and rotors. Owing to the ease in practical implementation, the MQMAS 

experiment is often the choice of high-resolution methods in materials 

investigations. As an example, Figure 3.5a shows a two-dimensional 87Rb 

MQMAS spectrum of rubidium nitrate (RbNO3) along with the projections onto 

each axis. Three sharp peaks are observable in the isotropic dimension, 

corresponding to three crystallographically distinct Rb sites. MQMAS 

experiments have been widely employed in the study of materials containing a 

variety of half-integer quadrupolar nuclei such as 11B (I = 3/2), 17O (I = 5/2), 

23Na (I = 3/2), 25Mg (I = 5/2), 27Al (I = 5/2), 43Ca (I = 7/2), 45Sc (I = 7/2), 51V (I = 

7/2), 55Mn (I = 5/2), 59Co (I = 7/2), 63Cu (I = 3/2), 71Ga (I = 3/2), 87Rb (I = 3/2), 

93Nb (I = 9/2) nuclei.56,78–81 

 The anisotropic broadening in multiple- and single-quantum coherences 

arises solely from the second-order quadrupolar interaction. In the MQMAS 

approach, multiple-quantum (usually triple-quantum) coherences are excited 

and then allowed to evolve during the t1 period, and this is followed by a 

conversion to the observable central-transition coherence that evolves in the t2 

period. A two-dimensional Fourier transformation is then performed, resulting 

in a two-dimensional spectrum that contains a second-order quadrupolar 
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broadened central-transition lineshape in the F2 dimension (horizontal axis) and 

an isotropic spectrum along the F1 dimension (vertical axis). In the isotropic 

dimension of two-dimensional MQMAS spectra, a frequency shift from the true 

chemical shift is observed owing to the isotropic contribution of the second-

order quadrupolar interaction (Subsection 3.2.2).  

 The simplest MQMAS pulse sequence consists of two pulses (Figure 

3.6a). Taking a spin I = 3/2 nucleus as an example, the time-averaged frequency 

of the central transition (without chemical shift) is given by, 
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and the time-averaged frequency of the triple-quantum transition is given by, 
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Figure 3.5 Experimental 87Rb (a) MQMAS and (b) STMAS spectra of rubidium nitrate (RbNO3) 
recorded at B0 = 9.4 T along with F2 projection (top) and F1 projection (right), respectively. Split-t1 
shifted-echo pulse sequences (with double-quantum filtration in STMAS) were employed under 12.5 
kHz spinning using a 4 mm rotor. (a) 96 and (b) 128 transients were averaged with a recycle interval of 
0.2 s for each of 256 t1 increments of (a) 142.22 and (b) 151.11 µs. Total experiment time: (a) 1.5 hrs and 
(b) 2 hrs. The chemical shift scales were referenced to 1 M RbNO3 (aq). 
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Figure 3.6 MQMAS pulse sequences and coherence transfer pathways for (a) phase-modulated (b) 
amplitude-modulated z-filter (c) phase-modulated shifted-echo and (d) phase-modulated split-t1 
shifted-echo experiments. The solid and dotted lines in (a) and (c) are echo and antiecho pathways for 
spin I = 3/2 nuclei, respectively. 
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Since the triple-quantum coherences evolve in t1 and the central transition in t2, 

the time-domain signal for the two-pulse MQMAS sequence is given by,69  
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where any signal decaying effects are neglected for simplicity. The fourth-rank 

contribution may be fully refocused when the following condition is satisfied: 

 1 2 2 1
6 54 70
5 35 9

− + = ⇔ =t t t t   (3.48) 

Consequently, an isotropic echo forms at t2 = (7/9)t1. This position in t2 at which 

the isotropic echo emerges depends on the ratio of the fourth-rank coefficient of 

multiple-quantum coherences to that of the central transition, and this ratio is 

termed the MQMAS ratio,64 ( , , )′I IR I m m : 
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where the ′↔I Im m  transition corresponds to the multiple-quantum transition 

of a spin I nucleus. The MQMAS ratio for spin I = 3/2 to 9/2 nuclei is 

summarised in Appendix E. The MQMAS ratio determines the gradient along 

which the ridge lineshape appears in the two-dimensional MQMAS spectrum. 

For a spin I = 3/2 nucleus, for example, the anisotropically broadened ridge 

lineshape lies along a gradient of −7/9 whilst the analogous triple-quantum 

MAS spectrum of a spin I = 5/2 nucleus has a gradient of +19/12. An isotropic 

spectrum is obtained by projecting the ridge lineshape onto an axis orthogonal 

to the ridge lineshape, in an analogous manner used in the DAS method. 

 Among those available multiple-quantum coherences, the most sensitive 

MQMAS experiment utilises triple-quantum coherences. The two-pulse 

MQMAS pulse sequence (Figure 3.6a) can take two possible coherence transfer 

pathways: for spin I = 3/2 nuclei, for example, the −3 ↔ −1 pathway is called 

the echo pathway whereas the +3 ↔ −1 pathway is referred to as the antiecho 



 

54 

 

pathway.69 In the echo pathway, observation of a whole echo is possible as the 

echo formation is progressively delayed as the value of t1 increases. In the 

antiecho pathway, however, the echo formation is shifted earlier in time in the 

t2 acquisition window as the number of t1 increments increases, resulting in a 

signal truncation. Two-pulse MQMAS experiments are thus performed by 

taking the echo pathway into account. For spin I = 5/2 nuclei, the situation is 

reversed, and the echo pathway is the +3 ↔ −1 pathway. In general, if the 

MQMAS ratio is negative, the −p ↔ −1 pathway is the echo pathway, whereas, 

if the MQMAS ratio is positive, then the +p ↔ −1 pathway is the echo pathway.  

 The two-pulse MQMAS pulse sequence, in fact, results in an undesirable 

phase-twist lineshape and rarely used in practice. Instead, the amplitude-

modulated z-filter MQMAS pulse sequence (Figure 3.6b) selects both the +3 ↔ 

−1 and −3 ↔ −1 coherence transfer pathways simultaneously (amplitude-

modulated)82 such that both coherences evolve during the t1 period, and the 

conversion from the multiple-quantum to central transition is performed via a 

population state of p = 0 (known as z-filter).83 An absorptive lineshape is 

achieved owing to the fact that the conversion steps from multiple- to single-

quantum coherences are always of equal efficiency. The sensitivity is optimum 

when the last pulse is a central-transition selective 90° pulse with a reduced 

radiofrequency field strength.83 Two more approaches to avoid undesirable 

lineshape distortion are the acquisition of whole echo84 and the split-t1 

approach85 (Figure 3.6c,d). In this thesis, the principles of acquisition of whole 

echo and split-t1 approach are described in the context of STMAS method 

(Section 3.4). A thorough comparison of the MQMAS variations has been made 

previously,69 and the phase-modulated split-t1 version of the MQMAS 

experiments is known to be the most promising experimental approach.  

 One major limitation of the MQMAS experiment is the inefficient 

manipulation of multiple-quantum coherences, leading to inherently low 

signal-to-noise ratio. A large number of schemes have been successfully 

implemented to overcome the intrinsic insensitivity of the MQMAS approach,56 

although the complexity in establishing optimum experimental conditions 

should be particularly addressed. 
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3.4 Satellite Transition Magic Angle Spinning (STMAS) 

 A more recent development of the high-resolution techniques for half-

integer quadrupolar nuclei is the satellite-transition magic angle spinning 

(STMAS) experiment. Introduced by Gan38 in 2000, the STMAS method utilises 

the two-dimensional correlation of single-quantum satellite and central 

transitions under MAS conditions. In STMAS experiments, single-quantum 

satellite transition coherences are excited and then allowed to evolve during the 

t1 period, followed by a conversion to central-transition coherences that evolve 

in the t2 period. A two-dimensional Fourier transformation is then performed, 

resulting in a two-dimensional spectrum that contains second-order 

quadrupolar broadened central-transition lineshapes in the F2 dimension 

(horizontal axis) and an isotropic spectrum in the F1 dimension (vertical axis). 

As an example, Figure 3.5b shows a two-dimensional 87Rb STMAS spectrum of 

rubidium nitrate (RbNO3). The isotropic projection is similar to that of the 

MQMAS spectrum, and three sharp peaks corresponding to three 

crystallographically inequivalent Rb sites are unambiguously resolved.  

 Compared to the MQMAS approach, STMAS experiments are known to 

be more difficult to implement,39 owing to the stringent experimental 

conditions for successful acquisition of high-resolution spectra. Several 

publications are available, each of which describes and discusses the protocols 

of practical implementation of STMAS experiments,39,86–89 and the relevant 

contents are summarised in the following subsections. The STMAS method is 

known for the higher sensitivity than the MQMAS counterpart and has been 

implemented for a variety of quadrupolar species such as 11B (I = 3/2), 17O (I = 

5/2), 23Na (I = 3/2), 25Mg (I = 5/2), 27Al (I = 5/2), 39K (I = 3/2), 45Sc (I = 7/2), 

59Co (I = 7/2), 85Rb (I = 5/2), 87Rb (I = 3/2) and 93Nb (I = 9/2) nuclei.39,88,90 

3.4.1 Two-Pulse STMAS Experiments 

 As with MQMAS experiments, the simplest STMAS pulse sequence 

involves two pulses (Figure 3.7a). The first pulse excites satellite transitions that 

evolve in the t1 period, and the second pulse converts the satellite-transition 

coherences into central-transition coherences. This is then followed by signal 
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Figure 3.7 STMAS pulse sequences and coherence transfer pathways for (a) phase-modulated (b) 
amplitude-modulated z-filter (c) phase-modulated shifted-echo (d) phase-modulated split-t1 shifted-
echo and (e) double-quantum filtered (DQF) version of phase-modulated split-t1 shifted-echo 
experiments. The solid and dotted lines in (a) and (c) are echo and antiecho pathways for spin I = 3/2 
nuclei, respectively. 
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detection in the t2 acquisition period. Since the satellite transitions are affected 

by the first-order quadrupolar interaction, the large first-order quadrupolar 

broadening also needs to be fully refocused. To achieve this, the finite length of 

the first two pulses is taken into account upon rotor-synchronisation, such that 

t1 = nτR − (p1/2) − (p2/2), and the t1 increment is set to be equal to the rotor 

period (τR).86 The spectral width of the F1 isotropic dimension is consequently 

proportional to the spinning frequency.  

 The theory of the STMAS experiment can be numerically illustrated in an 

analogous manner to that of the MQMAS counterpart. Taking a spin I = 3/2 

nucleus, the time-averaged frequency of the satellite transition is given by, 

 

0 0PAS 2 Q(2) Q
ST 4 4 40 Q0,0

PAS 2
Q 0 4 4Q Q0,0

0

(3 /2, 1/2, 3 /2) ( )( )

(3 /2, 1/2, 3 /2) ( ) ( , , )

( ) 4 48
( ) ( ) ( , , )

5 35

A Q

A d Q

Q d Q

± ± η ω
ω =  

ω ′ ′+ ± ± χ β γ η  

ω  ′ ′= η − χ β γ η ω  

  (3.50) 

The frequency of the central transition was given in Equation (3.45) in the 

context of MQMAS approach. Since the satellite transition evolves in the t1 

period while the central transition evolves in the t2 period, the time-domain 

signal resulting from the two-pulse STMAS experiment is written as, 

 { } { }(2) (2)
1 2 1 2ST CT( , ) exp i exp is t t t t= + ω × + ω   (3.51) 

and, this can be explicitly written for spin I = 3/2 nuclei as, 
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The fourth-rank contribution may be eliminated when, 
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Consequently, an isotropic echo forms at t2 = (8/9)t1. The position at which an 

isotropic echo forms depends on the ratio of the fourth-rank terms of the central 
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and satellite transitions. In an analogous manner to the MQMAS approach, the 

STMAS ratio,39,88 ( , , ),′I IR I m m  is defined as, 
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where the ′↔I Im m  transition corresponds to the satellite transition of a spin I 

nucleus. Following a two-dimensional Fourier transformation, a two-

dimensional STMAS spectrum is obtained, in which a second-order broadened 

ridge lineshape lies along a gradient determined by the STMAS ratio. In this 

example of spin I = 3/2 systems, the STMAS ratio is −8/9 and the resulting 

STMAS spectrum displays a ridge lineshape along a gradient of −8/9. A 

projection onto an axis orthogonal to the ridge lineshape yields an isotropic 

spectrum free from the anisotropic broadening. 

 As introduced in the context of MQMAS experiments, determining the 

echo and antiecho pathways is crucial in two-pulse STMAS experiments. In 

general, if the STMAS ratio is negative, the −1 ↔ −1 pathway is the echo 

pathway, whereas, if the STMAS ratio is positive, then the +1 ↔ −1 pathway is 

the echo pathway. For the spin I = 3/2 system, the STMAS ratio is negative, and 

thus the −1 ↔ −1 pathway is the echo pathway (the solid line in Figure 3.7a). 

3.4.2 Three-Pulse STMAS Experiments 

 As mentioned in the context of the MQMAS method, the two-pulse 

STMAS sequence is rarely used in practice because of the presence of phase-

twist lineshape, which greatly reduces the resolution and hinders further 

spectral analysis. In an analogous manner to the MQMAS approach, a three-

pulse STMAS pulse sequence has been devised, and several further 

modifications have also been made.39 The STMAS pulse sequences discussed in 

the following paragraphs are summarised in Figure 3.7b–d.  

 The three-pulse STMAS pulse sequences in Figure 3.7b,c are known as 

the amplitude-modulated z-filter and phase-modulated shifted-echo, respectively, and 

both approaches achieve a pure absorptive lineshape without an unwanted 

phase-twist. The amplitude-modulation and z-filtering were developed in the 
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context of the MQMAS approach and have been equally applied to the STMAS 

experiment.39,86 In amplitude-modulated STMAS experiments, the phase 

cycling selects both p = +1 and −1 pathways with equal efficiency. The interval 

between the second and third pulse is set to be a few microseconds, and the 

final pulse is chosen to be selective for the central transition with a reduced 

radiofrequency field strength.39 Since the amplitude modulation lacks the sign 

discrimination in the t1 period and the resulting spectrum contains two 

resonances that are symmetric with respect to the horizontal axis along which 

F1 = 0 (in absolute frequency units),56 the use of hypercomplex approach (the 

States method, Subsection 2.1.7) is often accompanied.39,56  

 In the phase-modulated shifted-echo version of the three-pulse STMAS 

experiment,39,87 an echo interval (τ) is inserted between the second and third 

pulses so that a whole echo is acquired instead of a half-echo. Since the echo 

formation in t2 is delayed by the constant (τ), a symmetric whole echo can be 

observed in the t2 acquisition window. Taking a spin I = 3/2 as an example, the 

time-domain signal in the echo pathway evolves as, 

 { } { }(2) (2)
1 2 1 2ST CT( , ) exp i exp i ( )s t t t t= + ω × + ω − τ   (3.55) 

and the fourth-rank term is refocused when, 
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As the number of t1 increments increases, the whole-echo formation is 

progressively delayed in time in the t2 acquisition window. If the value of τ is 

suitably chosen so that no truncation of the whole echo occurs at t1 = 0, then a 

whole echo can be acquired for all values of t1. On the contrary, the time-

domain signal from the antiecho pathway evolves as, 

 { } { }(2) (2)
1 2 1 2ST CT( , ) exp i exp i ( )s t t t t= − ω × + ω − τ   (3.57) 

and the fourth-rank term is refocused when, 
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As the number of t1 increments increases, the antiecho forms progressively 

earlier in time in the t2 acquisition window, and the acquisition of whole echo 
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for all values of t1 requires a sufficiently long value of τ, resulting in a great loss 

of sensitivity. In practice, therefore, the echo pathway is selected upon phase 

cycling in phase-modulated shifted-echo experiments. 

 The whole echo acquired in the shifted-echo experiments is symmetrical 

and centred at t2 = τ when t1 = 0. To obtain a pure absorptive lineshape, a τ–

dependent first-order phase correction (equal to 2exp{ 2 }i Fπ τ ) is necessary. The 

first-order phase correction is applied such that, in the resulting frequency-

domain spectrum, the imaginary part is zero while the real part is purely 

absorptive.39 Consequently, a phase-modulated shifted-echo experiment yields 

a two-dimensional spectrum without an unwanted phase-twist. Although the 

signal-to-noise ratio is dependent on a factor 22 exp{ 2 }− τλ  where λ2 is the 

transverse relaxation rate (= 1/T2)56, an appropriate choice of the value of τ 

enables an acquisition of echo signals with sufficient signal intensity. In practice, 

the echo interval can be experimentally chosen to compromise between the 

signal truncation and loss of sensitivity. It should be noted that the symmetry 

properties of a whole echo may be lost when homogeneous broadening exceeds 

the inhomogeneous broadening.39,84,91 This is often the case with amorphous or 

disordered materials,68 and the amplitude-modulated z-filter approach may be 

found appropriate for such systems.  

 Both the amplitude-modulated z-filter and phase-modulated shifted-

echo approaches yield a pure absorptive lineshape and result in an identical 

two-dimensional spectrum in which the second-order broadened anisotropic 

lineshape appear as a ridge along a gradient determined by the STMAS ratio, 

and a projection along an axis perpendicular to the ridge lineshape yields an 

isotropic spectrum. The isotropic projection may be more conveniently obtained 

by performing a shearing transformation to the two-dimensional spectrum. The 

shearing transformation involves a tilting of the ridge lineshape so that the 

ridge lineshape lies parallel to the F2 (horizontal) axis. An isotropic spectrum is 

then directly obtained from a projection onto the new vertical axis F1’. In the 

sheared spectrum, the spectral position (F1’, F2) is related to that of the original, 

unsheared spectrum (F1, F2) as,39 
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where ( , , )I IR I m m′  is the STMAS (or MQMAS) ratio. The spectral width in the 

new F1′ dimension is reduced by a factor of 1 ( , , ) .′+ I IR I m m  The shearing 

transformation may cause small distortions of the ridge lineshape in two-

dimensional spectra, and thus the sheared spectrum is to be used only for the 

presentation of isotropic projection as a one-dimensional spectrum.39 

3.4.3 Split-t1 Approach 

 The shearing transformation can be avoided if a two-dimensional 

spectrum in which the second-order broadened lineshape lies along the 

horizontal axis is produced directly from a two-dimensional signal acquisition. 

To achieve this, a further modification has been made to the three-pulse 

sequences, known as the split-t1 approach.85,87 The split-t1 version of the phase-

modulated shifted-echo pulse sequence is shown in Figure 3.6d for MQMAS 

experiments and in Figure 3.7d for STMAS experiments, respectively. 

 Conventionally, only satellite transition (or multiple-quantum transition) 

coherences evolve during the t1 period. In the split-t1 approach, the t1 period is 

split into two evolution periods: satellite-transition (or multiple-quantum 

transition) coherences evolve during one of the split-t1 periods and the other 

period is used for central-transition evolution. Taking a spin I = 3/2 nucleus as 

an example, suppose that the t1 period is split into (9/17)t1 for satellite-

transition evolution and (8/17)t1 for central-transition evolution. The signal 

from the p = +1 ↔ −1 pathway evolves as, 
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Then the refocusing of the fourth-rank term occurs at,  
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for all values of t1, and the echo peak always appears at t2 = τ. A two-

dimensional Fourier transformation of such time-domain data set results in an 

undistorted two-dimensional lineshape in which the ridge directly appears 

along a gradient of zero (i.e. parallel to the F2 axis). The isotropic projection is 

then directly taken along the vertical axis without the need for additional 

spectral transformation.  

 To refocus the fourth-rank broadening, the t1 period needs to be split 

appropriately between the evolution periods of satellite- (or multiple-quantum) 

transition and central-transition coherences. The relative duration of the split-t1 

periods is determined by the STMAS (or MQMAS) ratio. The duration of the 

satellite-transition (or multiple-quantum) evolution period is given by  

1 /(1 ( , , ) )′+ I It R I m m  whereas the duration of the central transition evolution 

period is given by 11 ( /(1 ( , , ) ))′− + I It R I m m . Depending on the sign of the 

STMAS (or MQMAS) ratio, the central-transition evolution period is inserted 

either before or after the final pulse. For negative ratios, the t1 period of the 

central transition is placed before the final pulse (i.e. k″ = 0) while, for positive 

ratios, the second t1 period is inserted after the final pulse (i.e. k′ = 0). The 

coefficients (k, k′ and k″) of the split-t1 pulse sequences in Figure 3.6d and Figure 

3.7d are summarised in Appendix F. As with shearing transformation, the 

spectral width in the isotropic F1 dimension of the split-t1 approach is reduced 

by a factor of 1 ( , , ) .′+ I IR I m m  For spin I = 3/2 nuclei, for example, since the 

STMAS ratio is −8/9, the t1 period of the central transition is placed before the 

final pulse, and the spectral width of the isotropic dimension is reduced to 

(9/17)νR where νR is the spinning frequency (in Hz). For spin I = 5/2 nuclei, on 

the other hand, the STMAS ratio is +7/24, leading to the insertion of the t1 

period after the final pulse, and the F1 spectral width is scaled to (24/31)νR.  

 The split-t1 approach is advantageous over the conventional three-pulse 

experiments in several aspects:39 (i) there is no need for extra step for processing 

data (i.e. no need for shearing transformation), and thus the resulting two-
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dimensional spectrum contains undistorted ridge lineshape, and (ii) the length 

of the acquisition period can be kept to minimum as the echo stays at t2 = τ for 

all values of t2, and the noise introduced in t2 period is consequently reduced, 

resulting in an increased signal-to-noise ratio. The split-t1 approach is 

compatible with both the amplitude- and phase-modulated pulse sequences, 

and, in cases where the homogeneous broadening exceeds the inhomogeneous 

broadening (amorphous or disordered systems), the amplitude-modulated 

spilt-t1 pulse sequence may be the most promising method of choice. 

3.4.4 Suppression of Unwanted Coherence Transfer 

 All the STMAS experiments described above successfully produce a 

high-resolution, isotropic spectrum for half-integer quadrupolar nuclei through 

refocusing of the anisotropic second-order broadening terms. The resulting 

two-dimensional STMAS spectrum, however, contains unwanted autocorrelation 

peaks, a signal resulting from CT → CT coherence transfer pathways, in addition 

to the desired correlation peaks from the ST → CT transfer pathways. This is 

because the satellite-transition and central-transition coherences are both single-

quantum in nature, and single-quantum coherences are not distinguished by 

the use of phase cycling. The autocorrelation peaks are absent in MQMAS 

spectra as multiple-quantum coherences are differentiated from the single-

quantum central-transition coherences upon phase cycling, and only the signal 

from the MQ → CT transfer pathway appears in the two-dimensional MQMAS 

spectrum. The autocorrelation peak in the STMAS spectrum lies along a 

gradient of +1, and the presence of additional signals due to the CT → CT 

correlation does not offer any additional information but only results in 

crowding of the two-dimensional STMAS spectrum, hindering accurate spectral 

analysis of the isotropic projection.  

 There are several methods to remove this unwanted autocorrelation 

peaks. The easiest to implement is an insertion of a soft pulse (a long, selective 

pulse with a reduced radiofrequency field strength) prior to the STMAS pulse 

sequence, known as presaturation of the central transition.38,86 Upon 

presaturation, the population difference between the CT energy levels is made 
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null, effectively removing the CT → CT coherence evolution prior to the 

excitation of satellite-transition coherences. In theory, the population difference 

across the inner satellite transitions increases upon presaturation, resulting in 

an increase in the resultant STMAS signal intensity. In practice, however, a true 

presaturation is difficult to achieve under spinning conditions, and application 

of presaturation only results in reduced intensity of the autocorrelation peaks, 

rather than the complete removal of the unwanted autocorrelation peaks.39  

 Another method for the removal of the CT → CT correlation peaks is the 

half rotor-synchronisation.87 Half rotor-synchronisation uses the t1 increment set 

equal to a half of the rotor period (τR/2) and hence doubles the spectral width 

in the F1 dimension. The ST → CT signal is obtained only for every other t1 

increment (i.e. t1 = nτR/2 where n = 2, 4, 6, etc.) while the CT → CT signal is 

present at each value of the t1 increment. The resulting spectrum shows two sets 

of ST → CT correlation peaks, a centreband and a spinning sideband, and the 

spinning sideband is free from the CT → CT autocorrelation peaks. This 

approach is suitable only if the CT lineshape is independent of the spinning 

frequency (i.e. no central-transition spinning sidebands).39 Since the t1 

increment is halved upon half rotor-synchronisation, the experimental time to 

achieve the same resolution as the conventional full rotor-synchronisation may 

be doubled. 

  The third method for suppression of CT → CT correlation peaks 

involves an acquisition of two STMAS experiments, with and without accurate 

rotor-synchronisation.89 This is performed by changing the duration of the 

initial t1 period: the conventional rotor-synchronised acquisition yields both CT 

→ CT and ST → CT signals, whereas the STMAS experiment without rotor-

synchronisation produces a two-dimensional spectrum that contains only the 

unwanted CT → CT autocorrelation peaks. Subtraction of the CT → CT signals 

from the spectrum containing both CT → CT and ST → CT signals results in a 

two-dimensional spectrum that displays only ST → CT peaks. Acquisition of 

two sets of two-dimensional experiments, however, may be considered as a 

time-limiting factor. Although both the half rotor-synchronisation and the 

spectral subtraction are capable of achieving a sufficient removal of CT → CT 
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autocorrelation peaks, the inherent reduction of signal-to-noise ratio by a factor 

of two should be particularly addressed.39 

 For spin I > 3/2 nuclei, additional signals that originate from higher-

order STn → CT correlations may be present in the STMAS spectrum, leading to 

a further crowding of the two-dimensional spectrum. A suggested method of 

minimising the unwanted STn → CT and CT → CT signals exploits the 

difference in optimum pulse durations for each coherence transfer.88 By 

examining the echo intensity of a series of one-dimensional STMAS 

experiments with a sufficiently long t1 duration, the pulse length can be 

carefully chosen to minimise the unwanted signals without significantly 

affecting the intensity of the desired STn → CT coherences.39 

3.4.5 DQF-STMAS Experiments 

 The most successful method in the removal of unwanted autocorrelation 

peaks is the double-quantum filtration (DQF) combined with STMAS 

experiments. In 2003, Kwak and Gan92 proposed a modified version of three-

pulse STMAS experiments by adding a pulse between the first two pulses, 

making it a four-pulse sequence in total (Figure 3.7e). This additional pulse is a 

central-transition selective 180° pulse, and it serves as an inversion pulse for the 

central transition and converts the inner satellite transitions to the double 

quantum coherences. Rotor-synchronisation in the DQF-STMAS approach is 

performed by taking the lengths of the three pulses and a short delay (τ′) into 

account, and the duration of a t1 period is given by t1 = nτR − (p1/2) − p2 − τ′ − 

(p3/2). Phase cycling is employed to select the double quantum coherences 

while filtering out the unwanted single-quantum CT → CT coherences. 

Conversion of the satellite transitions to double quantum coherences is 

sufficiently efficient (about 80% of the three-pulse experiment)39,92 to minimise 

the sensitivity loss due to the presence of an additional conversion step. It 

should be noted, however, that the conversion efficiency is dependent on the 

magnitude of the quadrupolar interaction and is particularly low for small CQ 

values. On comparison with other methods, nevertheless, the success in 

filtering out the CT → CT coherences makes the DQF-STMAS experiment a 
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promising method of choice for the removal of the autocorrelation peaks. 

 The DQF version of STMAS experiments has several additional 

advantages39 in performing STMAS experiments: (i) no extra pulse length 

optimisation is required owing to the fact that the additional pulse is of the 

same nature (CT-selective 180° pulse) as the final pulse, (ii) the double-quantum 

filtration suppresses not only CT → CT coherences but also higher-order STn → 

CT transfers, and (iii) one-dimensional version of DQF-STMAS experiments 

(the first row of a two-dimensional experiment) can be utilised to perform 

efficient pulse optimisation and spinning axis calibration (Subsection 3.4.7). 

3.4.6 Spectral Analysis  

 Both MQMAS and STMAS approaches are based on the same principle, 

the removal of the second-order anisotropic quadrupolar broadening. Two-

dimensional MQMAS and STMAS spectra are thus analysed in a similar 

manner and yield essentially identical information.87,91,93 The appearance of the 

two-dimensional spectrum is dependent on the quadrupolar parameters (CQ, ηQ, 

and isotropic shifts). The isotropic projection is useful in determining the 

number of distinct sites present in the system, whereas cross-sections along the 

ridge lineshape can be extracted for one-dimensional spectral fitting. This is 

illustrated in Figure 3.8 using 87Rb STMAS spectra of RbNO3. The cross-section 

of each of the three ridge lineshapes was extracted, and one-dimensional 

spectral fitting was performed for each site by varying the quadrupolar 

parameters (CQ, ηQ and δCS). The F2 projection may also be used to improve the 

accuracy of the fitting parameters overall. 

 Two-dimensional approaches are advantageous over one-dimensional 

DOR-type methods as the resultant spectrum retains information about both 

anisotropic and isotropic contributions correlated in two separate dimensions. 

In two-dimensional MQMAS and STMAS spectra, the centre-of-gravity analysis 

can also be performed to extract quadrupolar parameters. The centre-of-gravity 

position depends on the isotropic chemical shift (δCS) and isotropic quadrupolar 

shift (δQ).84 The isotropic quadrupolar shift originates from the second-order 

frequency shift (expressed in units of ppm),39 
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The signals from distinct sites with differing quadrupolar parameters spread 

along two distinct axes, which are termed the chemical shift (CS) axis and the 

quadrupolar shift (QS) axis, respectively. For example, distinct ridge lineshapes 

with a different magnitude of quadrupolar interaction spread along the QS axis, 

whereas a distribution of similar isotropic chemical shifts yields a ridge 

lineshape significantly broadened along the CS axis.  

 For an unsheared spectrum, the ridge lineshape lies along an axis 

determined by the MQMAS and STMAS ratio. Taking a spin I = 3/2 nucleus as 

an example, the spectral position of the centre-of-gravity (δ1, δ2) in a two-

dimensional STMAS spectrum is given by,  
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Figure 3.8 Experimental 87Rb (I = 3/2) STMAS spectra of rubidium nitrate (RbNO3) recorded at B0 = 9.4 
T: (a) F2 projection and (b) F2 cross-sections along with simulated lineshapes. Simulations were 
performed using TopSpin for three crystallographically distinct Rb sites: CQ = 1.7, 1.7, 1.8 MHz, ηQ = 
0.6, 0.2, 0.9 and δCS = −31, −27, −28 ppm. Double-quantum filtered version of split-t1 shifted-echo pulse 
sequences were employed under 12.5 kHz spinning using a 4 mm rotor. 128 transients were averaged 
with a recycle interval of 0.2 s for each of 256 t1 increments of 151.11 µs. Total experiment time: 2 hrs. 
The chemical shift scales were referenced to 1 M RbNO3 (aq).  
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The CS and QS axes are determined by the gradient δ1/δ2. For spin I = 3/2 

nuclei, the CS axis is given by +1 (= δCS/δCS) and the QS axis by −2 (= 

(4/5)δQ/((−2/5)δQ)). By rearranging,  
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As the centre-of-gravity position (δ1, δ2) is extracted from the two-dimensional 

spectrum, the values of chemical shift (δCS) and quadrupolar shift (δQ) are then 

unambiguously determined. In general, the centre-of-gravity position in an 

unsheared spectrum is given by, 
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For all spin quantum numbers (I), the slope of the CS axis in STMAS spectra lies 

along +1 (= δCS/δCS) axis whereas in MQMAS approach, the slope of the CS axis 

lies along one of {+3, +5, +7, +9} axes depending on the {3Q, 5Q, 7Q, 9Q} 

coherences used. The gradient of the QS axis is given by the MQMAS or 

STMAS ratio ( 0 0( , , ) / ( , 1/2, 1/2)′ ± ∓I IA I m m A I ). The peak position and the 

numerical value of the CS axis and the QS axis in unsheared MQMAS and 

STMAS spectra are summarised in Appendix H for all spin quantum numbers.   

 A two-dimensional spectrum obtained as a result of shearing 

transformation or split-t1 approach displays a ridge lineshape parallel to the F2 

axis. This allows an immediate extraction of the isotropic spectrum by a direct 

projection onto the F1 axis. Taking a spin I = 3/2 as an example, the spectral 

position in a sheared or split-t1 two-dimensional STMAS spectrum is given by, 
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The equation that defines the δ2 position is identical to that of an unsheared 

spectrum. In a sheared or split-t1 spectrum, the CS axis lies along a gradient of 

+1 (= δCS/δCS) and the QS axis lies along a gradient of −10/17 (= 
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(4/17)δQ/((−2/5)δQ)). By rearranging,  

 

1 2
CS

1 2
Q

17 10
7

85( )
54

δ + δδ =

δ − δδ =
  (3.67) 

The centre-of-gravity position (δ1, δ2) extracted from the sheared or split-t1 two-

dimensional spectrum is then utilised to determine the values of δCS and δQ. In 

general, the centre-of-gravity position of the sheared or split-t1 two-dimensional 

spectrum is given by,39 
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where the chemical shift scaling factor χCS is defined as, 
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where p is the order of the coherence transfer pathway used (p = +1 for STMAS 

and p = {+3, +5, +7, +9} for MQMAS). The CS axis lies along a gradient given by 

the chemical shift scaling factor CS( , , ) ,I II m m′χ  and the QS axis along the 

0 0{(A ( , , ) /A ( , 1/2, 1/2)) R( , , )} /(1 R( , , ) )′ ′ ′± − +∓I I I I I II m m I I m m I m m  axis in the 

sheared or split-t1 two-dimensional spectrum. The peak position and the 

numerical value of the CS axis and the QS axis in sheared or split-t1 MQMAS 

and STMAS spectra are summarised in Appendix H for all spin quantum 

numbers. A schematic illustration of the CS and QS axes in sheared or split-t1 

two-dimensional MQMAS and STMAS spectra is given in Figure 3.9 for spin I = 

3/2 and 5/2 nuclei. In sheared or split-t1 experiments, the CS and QS axes in 

triple-quantum MAS spectra are coincident with those of STMAS spectra for 

spin I = 5/2, 7/2 and 9/2 systems.  

 Cross-sections along the second-order broadened anisotropic ridge 

lineshape in a two-dimensional spectrum may be extracted for one-dimensional 

spectral fitting to obtain quadrupolar parameters. The second-order broadened 

central-transition linewidth and lineshape are dependent on the magnitude of 
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CQ and ηQ (Figure 3.2 and 3.4). Although it is not possible to directly obtain the 

value of CQ and ηQ from the value of δQ obtained from the centre-of-gravity 

analysis, the use of a composite parameter, quadrupolar product, may be found 

useful. The quadrupolar product (PQ in Hz) is given by,39 
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By calculating the two quadrupolar products of different origin, the 

quadrupolar parameters obtained from the centre-of-gravity analysis and the 

one-dimensional spectral fitting are expected to reach an agreement in terms of 

the magnitude of PQ with a certain degree of accuracy.  

 Although the use of two-dimensional, high-resolution spectra may 

enable the separation of crystallographically distinct sites that overlap in one-

dimensional MAS spectra, quantitative analysis should be made with particular 

caution. This is because the multiple-quantum excitation and conversion 

processes and the excitation of satellite-transition coherences are both strongly 

dependent on the magnitude of quadrupolar interaction. The efficiency of CT-

Figure 3.9 Schematic illustration of chemical shift (CS) and quadrupolar shift (QS) axes for sheared or 
split-t1 version of two-dimensional (a,c) MQMAS and (b,d) STMAS spectra of spin (a,b) I = 3/2 and 
(c,d) I = 5/2 nuclei. 
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selective pulses is also sensitive to the position of the carrier frequency in the 

direct (F2) dimension as well as the magnitude of the quadrupolar interaction. 

The intensity of isotropic peaks may not be sufficiently quantitative for systems 

where a range of the magnitude of quadrupolar interaction exists. Two-

dimensional MQMAS and STMAS experiments are, nevertheless, an essential 

part of solid-state NMR studies of half-integer quadrupolar nuclei and often 

performed for complete spectral analysis, following a preliminary observation 

of overlapping, multiple sites in the corresponding one-dimensional spectrum. 

3.4.7 Practical Considerations 

 Although both MQMAS and STMAS experiments are based on the same 

principle, the MQMAS approach has been more popular in materials 

investigations and routinely used for a wide variety of half-integer quadrupolar 

nuclei. This is because STMAS experiments impose strict instrumental 

conditions for the successful acquisition of isotropic spectra. Satellite transitions 

are affected by the first-order quadrupolar interaction, as well as the second-

order interaction that affects all other transitions, and the large first-order 

quadrupolar broadening is fully refocused only when both the magic angle 

spinning and rotor-synchronisation is achieved with great accuracy. Modern 

NMR spectrometers equipped with commercially available probes and high-

quality rotors are, however, capable of performing STMAS experiments as 

routinely as the MQMAS counterpart. Technical points to note in successful 

implementation of STMAS experiments39,89,94,95 are discussed in the following 

paragraphs, with respect to (a) accurate adjustment of spinning axis to the 

magic angle, (b) retention of the spinning axis over the course of experiments, 

(c) stability of the spinning frequency and accurate rotor-synchronisation, and 

(d) necessity of additional sample, if any, for efficient spinning angle calibration.  

 (a) Spinning axis calibration 

 The magic angle needs to be set with great accuracy, typically at 

54.736 ± 0.003°.39,89 As an example, Figure 3.10 shows experimental 85/87Rb 

STMAS spectra of rubidium nitrate (RbNO3) recorded at the magic angle 
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Figure 3.10 Experimental (a) 87Rb (I = 3/2) and (b) 85Rb (I = 5/2) STMAS spectra of rubidium nitrate 
(RbNO3) recorded at B0 = 9.4 T, off the magic angle (top) and at the magic angle (bottom), respectively. 
Double-quantum filtered version of split-t1 shifted-echo pulse sequences were employed under (a) 12.5 
kHz (b) 14286 Hz spinning using a 4 mm rotor. 128 transients were averaged with a recycle interval of 
(a) 0.2 s (b) 0.5 s for each of (a) 43 (b) 256 (c) 84 (d) 128 t1 increments of (a) 151.11 µs (b) 90.42 µs. The 
chemical shift scales were referenced to 1 M RbNO3 (aq).  
 
 
 
 

(bottom) and off the magic angle (top). The spinning axis adjustment procedure 

has been well-established, and suitable samples for efficient angle calibration 

have also been suggested in the literature.39,88,89 In theory, any samples 

containing half-integer quadrupolar nuclei can be employed for accurate 

spinning axis calibration as long as the quadrupolar interaction is large enough 

to result in a second-order broadened lineshape in the MAS dimension. 

Conventionally, 85/87Rb STMAS experiments have been found useful for the 

accurate spinning axis calibration, owing to the high sensitivity, high efficiency 

and wide applicability to a variety of probes with different tuning ranges. A 

probe with a fine MAS tuning thread may be recommended to ease the 

spinning axis calibration procedure, although it is not a strict requirement. In 

practice, efficient spinning axis calibration may be performed sequentially by (i) 

maximising the number of satellite-transition spinning sidebands in a one-

dimensional MAS spectrum, (ii) maximising an echo intensity of a one-

dimensional version of DQF-STMAS experiment with a sufficiently long t1 

evolution period, and (iii) recording two-dimensional STMAS spectra as a final 

check for complete removal of the splitting in isotropic dimension. 

(b) Retaining the spinning axis over the course of experiments  

 Since typical two-dimensional STMAS experiments may take from a few 

hours to a few days, the spinning axis needs to remain unchanged for the 
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duration of the experiment once the required accuracy to the magic angle is 

achieved. When a spinning frequency is altered, a significant change in the 

spinning angle may arise.39 Spinning axis calibration should thus be performed 

at the desired spinning frequency and sample temperature. To minimise the 

degradation of spinning axis off the magic angle, (i) the mechanical tuning and 

matching acts should not affect the spinning axis setting, (ii) the mechanical 

movement of the probe should be kept to minimum, and (iii) a continuous, 

stable supply of compressed air needs to be ensured for the duration of two-

dimensional signal acquisition.  

(c) Spinning frequency stability and rotor-synchronisation 

 The spinning frequency is required to be stable to 1 part in 104 or 

better.39,86,89 This is equivalent to, for example, the spinning frequency stability 

of ± 1 Hz for nominal 10 kHz spinning. This spinning stability is essential for 

rotor-synchronised MAS experiments to refocus the large first-order 

quadrupolar interaction. In two-dimensional STMAS experiments, rotor-

synchronisation occurs in the indirect t1 dimension, and the resulting spectral 

width is directly proportional to the spinning frequency. This restricts the 

attainable range of F1 spectral width to the available spinning frequencies, and 

the use of higher spinning frequencies may thus be found advantageous for 

species with large quadrupolar interactions. Since there is no frequency filtering 

in the indirect dimension, no loss in signal-to-noise ratio is expected upon t1 

aliasing, unlike the aliasing in t2.39 In contrast to MQMAS experiments in which 

the duration of the initial t1 period can be as short as a few µs, the duration of 

the initial t1 period in STMAS experiments needs to be an integer multiple of 

the rotor period. For accurate rotor synchronisation, the finite length of applied 

pulses and instrumental delay also needs to be taken into account.39,86,89  

(d) Additional sample and pneumatic ejection and insertion system 

 Where possible, the magic angle should be set on the sample of interest 

to avoid possible problems upon changing rotors.39 This is because the act of 

changing rotors (especially moving the probe) may significantly alter the 

spinning axis and the required accuracy to the magic angle may easily be lost. 
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Modern spectrometers are often equipped with pneumatic ejection and 

insertion system, and if the rotors are ejected and inserted pneumatically 

(without mechanical movement of the probe), then very little alteration of the 

spinning axis is expected.39 This holds true especially for small diameter rotors 

(≤ 2.5 mm) or with relatively short insert tubes (for magnets with B0 ≤ 14.1 T, for 

example). With larger diameter rotors or longer insert tubes, the impact of 

dropping a rotor down an insert tube on the spinning angle is significant, and 

the magic angle setting may be lost upon sample changing. A small amount of 

bearing gas may be applied upon dropping a rotor to cushion the rotor as it hits 

the probe.39 The required amount of bearing pressure is dependent on the rotor 

diameter, the length of the insert tube and the quality of the probe, and a quick 

investigation of the condition in which the magic angle is retained may be 

helpful for a given system. If the sample ejection-insertion fails to retain the 

accurate magic angle, it is possible to fill part of the rotor with a suitable sample 

for spinning axis calibration (RbNO3, for example).39 This should be performed 

with caution, however, as (i) both samples need to be chemically non-invasive 

to each other, (ii) the volume (and sensitivity) of both samples is significantly 

reduced, and (iii) the sample under investigation is not fully retrievable. 

 In 2002–2003, a modified version of the conventional three-pulse STMAS 

sequence was devised, which was termed self-compensated for angle misset 

(SCAM) STMAS experiments.94,95 The SCAM-STMAS approach is capable of 

self-compensating for angle missets of up to ± 1° and is also tolerant to spinning 

frequency fluctuations. Successful acquisition of high-resolution SCAM-STMAS 

spectra was demonstrated for 23Na (I = 3/2), 87Rb (I = 3/2), 27Al (I = 5/2) and 

59Co (I = 7/2) nuclei. Despite that the SCAM-STMAS signals suffer a great 

signal loss compared to conventional approaches, SCAM-STMAS experiments 

may be useful when (i) the presence of species with large quadrupolar coupling 

prohibits accurate setting of the magic angle, or (ii) the inherent design of 

probeheads is not suitable for accurate calibration and retention of the magic 

angle.95 
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3.4.8 Advantages over MQMAS 

 Owing to the obstacles associated with the technical requirements, 

STMAS experiments have been less popular compared to the MQMAS 

counterpart. The modern NMR spectrometers equipped with conventional 

MAS probe are, however, of sufficient quality to satisfy the stringent 

experimental conditions required for successful acquisition of high-resolution 

STMAS spectra, and hence STMAS approaches should become more accessible 

to experimentalists, especially for the investigation of samples for which the 

MQMAS acquisition is found unsuccessful. Although the two experiments are 

based on the same principle, they are not strictly identical, and the differences 

are worth taking into consideration when performing high-resolution 

experiments in materials investigations. Six major differences between MQMAS 

and STMAS approaches are discussed in the following paragraphs: (a) 

sensitivity, (b) signal-to-noise ratio, (c) resolution, (d) cross-term interactions, 

(e) higher-order interactions and (f) motional broadening. 

(a) Sensitivity 

 STMAS is known for higher sensitivity than the MQMAS counterpart, 

yielding higher signal intensity when compared under the same experimental 

conditions (total experiment time and maximum duration of the t1 and t2 

periods).39 A signal enhancement factor of 3 is readily observed upon 

comparison of MQMAS and STMAS spectra, and this corresponds to a time-

saving factor of 32 = 9. Depending on the spin quantum number and the 

magnitude of quadrupolar interactions, STMAS sensitivity enhancement of 3–5 

has been reported.39,88 The sensitivity advantage of the STMAS method is 

attributed to a combination of several factors based on the difference in the 

nature of coherences involved (single-quantum for STMAS and triple-quantum 

for MQMAS for highest sensitivity). Firstly, the fact that there are two satellite 

transitions as opposed to one triple-quantum transition leads to an STMAS 

signal advantage of a factor of 2.39 Secondly, the efficiency of coherence 

transfers under spinning conditions is crucially different between MQMAS and 

STMAS experiments,39,88 both of which are inevitably performed under 

spinning conditions. Under static conditions, numerical calculations showed 
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little difference between the coherence transfer efficiencies involved in the two 

approaches. Under spinning conditions, however, multiple-quantum excitation 

decreases as the MAS rate increases, whereas satellite transition excitation is 

independent of the MAS rate. Experimental investigations confirmed no strong 

dependence of the STMAS signals on the MAS rate used, whereas a significant 

decreases in MQMAS signals was observed at MAS rates higher than 10 kHz 

for both excitation and conversion processes. This leads to a relative STMAS 

sensitivity increase for a given spinning frequency. Furthermore and more 

crucially, the excitation and conversion profiles are considerably different 

between MQMAS and STMAS approaches when analysed as a function of 

applied radiofrequency field strengths.39,90 In STMAS, the signal intensity 

increases as the radiofrequency field strength increases for both excitation and 

conversion processes, and the use of highest achievable radiofrequency field 

strength yields maximum sensitivity. MQMAS signals, on the contrary, show a 

different profile for excitation and conversion processes: the conversion 

efficiency is optimum at the highest radiofrequency field strength, whereas the 

maximum excitation efficiency is achieved with slightly reduced 

radiofrequency field strengths. The inappropriate use of radiofrequency field 

strengths for the excitation of multiple-quantum coherences may have led to a 

relative sensitivity increase of the STMAS signals when two sets of spectra were 

compared. Overall, the inherent complexity in manipulating multiple-quantum 

coherences under different experimental conditions is likely to have contributed 

to an apparently large sensitivity advantage of the STMAS approach over the 

MQMAS counterpart. 

(b) Signal-to-noise ratio 

 The presence of thermal noise is inevitable in the t2 acquisition, and both 

MQMAS and STMAS experiments acquire the thermal noise in a similar 

manner. However, a notable difference in the amount of the t1 noise is usually 

observed when the isotropic spectra obtained from two-dimensional MQMAS 

and STMAS experiments are compared.39 The t1 noise arises from an 

instrumental (amplitude or phase) change or instability that occurs between 

one t1 increment and the next t1 increment. Although the t1 noise is instrumental 
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in origin and present in both experiments, the effect on STMAS spectra is more 

adverse as the instability in the spinning frequency leads to imperfection in the 

rotor-synchronised t1 acquisition and hence the incomplete aliasing of spinning 

sidebands. The spinning stability, however, can be ensured by the combined 

use of modern spectrometers equipped with a stable supply of compressed air 

(or nitrogen), an MAS controller and good quality rotors.   

(c) Resolution 

 The establishment of a unified presentation of two-dimensional MQMAS 

and STMAS spectra has been discussed in the literature.39,91,93 Two-dimensional 

MQMAS and STMAS spectra presented in this thesis are plotted using the 

following convention.39 Firstly, the horizontal F2 axis is plotted such that the 

frequency increases from right to left, and the vertical F1 axis is plotted such 

that the frequency increases from top to bottom. For unsheared or non-split-t1 

experiments, the absolute frequency in the F1 dimension is calculated with 

respect to the Larmor frequency, as in the F2 dimension. For example, the 

chemical shift (CS) axis lies along the diagonal (δ1 = δ2) axis with a gradient of 

+1 in unsheared or non-split-t1 STMAS spectra, whereas a gradient of +3 is 

expected in unsheared or non-split-t1 triple-quantum MAS spectra. In sheared 

or split-t1 spectra, the absolute frequency in the F1 dimension is calculated with 

respect to the scaled Larmor frequency, ′χ ωm mCS 0( , , )I II  where ′χ m mCS( , , )I II  is 

the chemical shift scaling factor. Taking spin I = 3/2 systems as an example, in 

sheared or split-t1 STMAS spectra, the CS axis lies along a gradient of and has a 

gradient of ′χ = +m mCS( , , ) 1I II  while the CS axis in sheared or split-t1 triple-

quantum MAS spectra lies along a gradient of +17/8. The spectral resolution is 

given by the ratio of peak separation to linewidth, and consequently the 

spectral resolution in the isotropic projection is affected by the value of the 

chemical shift scaling factor. For spin I = 3/2 systems, for example, suppose that 

two peaks in an isotropic spectrum are 100 Hz apart. In a sheared or split-t1 

STMAS spectrum, the peak separation corresponds to (+1) × (100 Hz) = 100 Hz, 

whereas, in the MQMAS counterpart, the peak separation is scaled as (+17/8) × 

(100 Hz) = 212.5 Hz. When the sheared or split-t1 approaches are used, the 
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MQMAS spectrum yields twice as high resolution as the STMAS counterpart. In 

practice, however, homogeneous and inhomogeneous components are always 

present, in addition to the intrinsic linewidth of the isotropic peaks, and the 

gain in resolution may be much less than that expected from the difference in 

the chemical shift scaling factor.39 Since the isotropic resolution obtained from 

the STMAS experiment is strongly dependent on the accuracy of the magic 

angle setting,39 accurate spinning axis calibration needs to be performed to 

achieve maximum resolution.  

(d) Cross-term interactions 

 Typical NMR interactions, such as heteronuclear dipolar coupling and 

chemical shift anisotropy (CSA), quadrupolar interactions, and their 

corresponding effects upon solid-state NMR spectra are usually treated 

independently as a perturbation to the Zeeman interaction. The quadrupolar 

interaction can cross-correlate with the dipolar and CSA interactions, giving 

rise to additional anisotropic broadenings.39,96,97 These cross-correlation terms 

are second-order in nature and may not be removed under MAS conditions, 

resulting in an additional anisotropic broadening in isotropic STMAS spectra.  

 The cross terms between the quadrupolar and CSA interactions are (i) 

proportional to the magnitude of the quadrupolar coupling and the magnitude 

of the CSA, (ii) dependent on the relative orientation of the two tensors, and (iii) 

independent of the external field strengths.39 Quadrupolar-CSA cross terms 

affect only satellite transitions but not the symmetric transitions, and hence 

their effects are absent in MQMAS spectra. When the magnitude of the CSA is 

sufficiently large, a doublet splitting may be observed in isotropic STMAS 

spectra, and the splitting increases as the satellite-transition order of interest 

increases. For example, a 59Co (I = 7/2) STMAS spectrum of cobalt 

acetylacetonate (Co(acac)3) resulted in a significant splitting (200 Hz) in the 

isotropic dimension, owing to the large CSA (≈ 700 ppm) that correlates with a 

moderate quadrupolar coupling (CQ = 5.53 MHz).96  

 Quadrupolar-dipolar cross-term interactions, on the contrary, may 

appear in both MQMAS and STMAS spectra.39,97 If the heteronuclear dipolar-
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coupled partner is a spin S = 1/2 nucleus, then only the STMAS spectrum is 

affected (although this cross-term has not yet been experimentally observed). If 

the heteronuclear dipolar-coupled partner is another quadrupolar nucleus, then 

the second-order cross-term affects all the transitions, and a splitting may be 

observed in the isotropic dimension of both MQMAS and STMAS spectra. The 

magnitude of the quadrupolar-dipolar cross-term is proportional to 

PAS(S) (IS) (S)
D 0Q( )/ω ω ω  where S is the partner quadrupolar nucleus, and the splitting 

increases as the order of the satellite transition increases. Owing to the inverse 

dependence on the external field strength, the splitting is more prominent at 

lower field strengths. For example, a 11B STMAS spectrum of triethanolamine 

borate (B(OCH2CH2)3N) recorded at B0 = 9.4 T contains an asymmetric (2:1) 

doublet that originates from the quadrupolar-dipolar cross term between 11B (I 

= 3/2) and 14N (S = 1) with (IS)
Dω /2π of 620 Hz.39 

(e) Higher-order interactions 

 A third-order perturbation to the Zeeman interaction needs to be taken 

into account when the quadrupolar interaction is significantly large.39,95,98 The 

third-order contribution does not affect the central and multiple-quantum 

transitions and hence is absent in MQMAS spectra. Satellite transitions are 

affected by the third-order interaction, and a splitting in the isotropic 

dimension may be observed. The splitting is proportional to PAS 3 2
0Q( ) /ω ω  and, 

although the magnitude is much smaller than the first- and second-order 

interactions, the splitting significantly increases as the quadrupolar interaction 

increases or the external field strength decreases. For example, a series of 27Al 

STMAS spectra of andalusite (Al2SiO5) was recorded with varying degree of 

accuracy in the magic angle setting,39,98 and, even when the spinning axis is 

accurately set to the magic angle, a considerable splitting (1 kHz) in the 

isotropic dimension remained. This is because of the third-order broadening of 

the large quadrupolar interaction (CQ = 15.3 MHz) in one of the two distinct Al 

species.39 The third-order contribution increases as the spin quantum number 

increase, and, for a given value of PAS
Q ,ω  the splitting is more prominent for 

higher spin quantum numbers. 
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(f) Motional broadening 

 Some STMAS spectra contain strongly broadened isotropic peaks when 

compared to the MQMAS counterpart that unambiguously produces sharp 

peaks.39,99,100 In some cases, the broadening is too severe to be practically 

observed in the STMAS spectrum. For example, 17O MQMAS and STMAS 

spectra were recorded on three magnesium silicates, forsterite (Mg2SiO4.), 

hydroxyl-chondrodite (2Mg2SiO4. Mg(OH)2) and hydroxyl-clinohumite 

(4Mg2SiO4.Mg(OH)2).99 Although no difference was observed between the 

MQMAS and STMAS spectra of forsterite, the STMAS spectra of chondrodite 

and clinohumite resulted in a significant broadening of isotropic peaks. Also, 

variable-temperature (314–346 K) 27Al STMAS spectra of two as-synthesised 

forms of AlPO-14 revealed a progressive line broadening of isotropic peaks for 

all Al species in the aluminophosphate framework.100 

 The origin of this line broadening in isotropic STMAS spectra is the 

motion in solids.39,99 In MQMAS experiments, the symmetric multiple-quantum 

and central transitions are broadened only to second-order, and the spinning 

frequency is likely to exceed the static linewidth of such second-order 

broadened lineshape so that the successful time-averaging is achieved. On the 

contrary, satellite transitions used in STMAS experiments are also broadened to 

first-order, and the spinning frequency is less than the static linewidth of the 

first-order broadened satellite transition lineshape. Under this slow-spinning 

regime, a motional change in the orientation of quadrupolar (EFG) tensors can 

interrupt the formation of an echo, reducing the echo intensity in the time 

domain and broadening the isotropic peaks in the frequency domain.39 The 

maximum broadening of STMAS isotropic peaks occurs when λ ∼ PAS
Qω /2π 

where λ is the rate constant of the motional reorientation (occurring in the 

timescale of 1/λ). Since the PAS
Qω /2π term is typically of the order of MHz, a 

strong broadening is expected when the motional timescale is the order of 

microseconds. Any microsecond-timescale motions that can modulate the EFG 

tensor of quadrupolar nuclei can be revealed in isotropic STMAS spectra, either 

the motion of the quadrupolar nucleus itself or any movement of atoms or 

molecules in the immediate environment of the quadrupolar nucleus. In the 
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case of 17O STMAS spectra of chondrodite and clinohumite, the motion of 

nearby protons was suggested to be the source of the EFG tensor reorientation 

of 17O nuclei,39 whereas, for the AlPO-14 systems, the microsecond dynamics is 

likely to have originated from the motion of the guest molecules incorporated 

in the pores of the rigid aluminophosphate framework.100 

 Although the presence of dynamics, which results in a significant 

broadening in the isotropic STMAS peaks, hinders an acquisition of good 

signal-to-noise ratio in a reasonable experimental time, the ability of STMAS 

experiments to probe local dynamics of half-integer quadrupolar nuclei makes 

it an invaluable tool to obtain structural information that may not be accessible 

by any other means. Acquisition and comparison of a pair of MQMAS and 

STMAS spectra, therefore, may be found useful for systems in which the 

presence of motion is suspected (for example, when temperature-dependent 

broadening of satellite-transition spinning sidebands are observed upon 

preliminary investigations using one-dimensional MAS spectra). 

 



 

82 

 

4.  Sensitivity Enhancement of Satellite Transitions 

The next four chapters describe the four distinct research topics covered in this 

thesis. This chapter is concerned with the establishment of sensitivity 

enhancement schemes for satellite transitions of half-integer quadrupolar nuclei 

in the context of high-resolution NMR. The applicability and limitations of the 

novel schemes are discussed, on the basis of the results obtained from the 

theoretical and experimental investigations presented in this chapter.  

4.1 Introduction 

 Half-integer quadrupolar nuclei account for 75% of the stable magnetic 

nuclides in the Periodic Table, and both MQMAS37 and STMAS38 experiments 

hold great promise for obtaining high-resolution spectra of half-integer 

quadrupolar nuclei.39,101 Although MQMAS and STMAS approaches are based 

on the same principle (removal of second-order anisotropic broadening), the 

MQMAS experiment has been popular owing to its robustness and ease in 

practical implementation, whereas the STMAS experiment is known for its high 

sensitivity accompanied with stringent experimental conditions. Owing to the 
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inherent difficulty in manipulating the multiple-quantum (MQ) coherences, the 

use of MQMAS experiments is often limited to NMR-sensitive nuclei. To 

overcome the sensitivity disadvantage inherent in multiple-quantum 

approaches, a number of signal enhancement schemes for MQMAS 

experiments have been proposed and successfully implemented:56 efficient 

reconversion of multiple-quantum coherences to single-quantum central-

transition (CT) coherences is achieved using double frequency sweep (DFS),102 

fast amplitude modulation (FAM-I,103 FAM-II,104 and FAM-N105), soft pulse 

added mixing (SPAM),106 and hyperbolic secant (HS)107 pulses. The resulting 

sensitivity, however, is only as good as or often lower than that of the STMAS 

approach, and the inherently high sensitivity of the STMAS method, which 

originates from the ease in manipulating single-quantum satellite-transition 

(ST) coherences,39,88,90 makes the STMAS approach more advantageous for the 

investigation of NMR-insensitive nuclei.  

 In this chapter, the inherent sensitivity advantage of the satellite-

transition coherences over multiple-quantum coherences is further exploited by 

investigating the possible signal enhancement of the satellite transitions in the 

context of high-resolution NMR. Firstly, theoretical investigations are 

performed to obtain maximum possible enhancement factors with respect to the 

conventional single-pulse excitation. Novel signal enhancement schemes are 

then proposed for spin I = 3/2 systems on the basis of (i) a population transfer 

via manipulation of the central-transition coherences and (ii) an efficient 

excitation of satellite-transition spinning sidebands. Pulse sequences to achieve 

the efficient excitation and potential enhancement of satellite transitions are 

developed to be compatible with the high-resolution STMAS approach, and 

experimental investigations are performed using the double-quantum filtered 

version (DQF)92 of the STMAS experiments for the ease of spectral analysis. The 

effectiveness of the proposed enhancement schemes is tested using 23Na (I = 

3/2) and 87Rb (I = 3/2) NMR of simple inorganic solids. The applicability and 

limitations of the novel schemes are discussed, and some experimental 

parameters that affect the sensitivity of the STMAS signals are also identified. 
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4.2 Theoretical Investigations  

 Signal enhancement of central-transition (CT) coherences of half-integer 

quadrupolar nuclei108 has been achieved via population transfer of spin states 

between relevant energy levels. Major experimental approaches include 

double-frequency sweep (DFS),102 rotor-assisted population transfer (RAPT)109 

and hyperbolic secant (HS)110 pulses. The population of each energy level, 

which is governed by the Boltzmann distribution, is manipulated to achieve the 

largest population difference between the CT energy levels (mI = +1/2 ↔ mI = 

−1/2). In the literature, sensitivity enhancement factors are conceptually 

calculated by the population difference between the CT energy levels, and the 

enhancement factor is given with respect to the signal intensity obtained upon 

application of a CT-selective pulse. As an example, a schematic representation 

of the population distribution for spin I = 3/2 systems is shown in Figure 4.1. 

At thermal equilibrium (Figure 4.1a), the CT population difference is given by 2. 

After an inversion of the satellite transition (ST) population states (Figure 4.1b), 

the population difference becomes 6. The resulting CT signal from the ST 

inversion consequently produces a three-fold increase compared to the signal 

obtained by an application of a CT-selective pulse at thermal equilibrium. For 

spin I = 5/2 systems, on the other hand, two inversion processes of ST 

population (ST2 followed by ST1) result in a five-fold increase of the CT signal 

upon comparison with the intensity obtained by an application of a CT-

selective pulse. This can be generalised, for spin I = n/2 systems, as an n-fold 

increase in signal intensity achieved by a sequence of inversion of ST 

population states followed by an application of a CT-selective pulse. In an 

analogous manner, when the population difference of the ST energy levels is 

nulled (Figure 4.1c), a four-fold CT signal increase is expected for spin I = 3/2 

systems. 

 This treatment of CT signal enhancement based on the population 

difference holds true only for systems with significantly large CQ values, in 

which the maximum attainable radiofrequency field strength is comparable or 

smaller than the magnitude of the second-order broadened CT lineshape. For 

systems with moderate quadrupolar coupling interactions, however, an 
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absolute maximum CT signal intensity is obtained by an application of a non-

selective pulse with high radiofrequency field strengths. Enhancement factors 

experimentally obtained under this optimum conditions are consequently 

smaller than that calculated with respect to the signal obtained by an 

application of a CT-selective pulse. For systems with moderate quadrupolar 

coupling interactions, therefore, the nomenclature such as “the n-fold 

enhancement” is not strictly applicable and leads to a false impression on the 

effectiveness of signal enhancement schemes. In this thesis, the universal bound 

approach111 is employed to calculate the enhancement factors with respect to 

the signal intensity obtained by an application of a non-selective pulse 

(Subsection 4.2.2). The universal bound approach is more realistic and useful 

for establishing signal enhancement schemes for systems with moderate 

quadrupolar coupling interactions. 

4.2.1 General Computational Details 

 Mathematica was used for simple matrix calculations of spin I = 3/2, 5/2, 

7/2 and 9/2 systems. Time-domain simulations of NMR signals were 

performed using a home-written Fortran 90 code for spin I = 3/2 and 5/2 

Figure 4.1 Schematic representation of the energy level diagram and corresponding population 
distribution for an ensemble of spin I = 3/2 nuclei: (a) at thermal equilibrium, (b) after inversion of 
satellite transitions and (c) after saturation of satellite transitions. The central-transition population 
difference is arbitrarily represented as (a) 2 (b) 6 and (c) 4. The signal enhancement expected upon 
application of a CT-selective pulse is (b) three-fold and (c) two-fold increase with respect to the signal 
intensity obtained at thermal equilibrium in (a). 
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systems (an example code supplied in Appendix M). The input parameters are 

quadrupolar coupling constant CQ (in Hz), spinning speed ωR (rad s−1 or νR = 

ωR/2π in Hz), radiofrequency field strength ω1 (rad s−1 or ν1 = ω1/2π in Hz) and 

pulse lengths τp (in µs). Axial symmetry (ηQ = 0) was assumed for simplicity. 

The angles β‘ and φ are incremented over a full sphere (0 ≤ β‘ < 180° and 0 ≤ φ < 

360°), and the time increment ∆t was optimised to be 25 ns for both spin I = 3/2 

and 5/2 systems. Further computational details are given in the figure legends. 

4.2.2 Universal Bound 

 In 1989, Sørensen111 developed a mathematical device, the universal 

bound, to describe spin dynamics of NMR. In NMR experiments, a pulse (or a 

sequence of pulses) is used to manipulate the nuclear spin states, and the effect 

of a pulse on a spin state is described by density operators (Section 2.2). The 

universal bound approach provides theoretical maxima of transfer efficiency 

between arbitrary spin states, as well as the corresponding pulse sequence to 

achieve the maximum transfer efficiency. 

 Suppose that an initial spin state is described by a density matrix 

operator σi and then transformed to a final state σf: 

 i f→σ σ   (4.1) 

The final state can be a sum of several components,  

 f = + +σ A B …a b   (4.2) 

where aA, bB, … are orthogonal operators with corresponding coefficients. 

From matrix algebra, 

 f f

† †

Tr{ } Tr{ }
, ,

Tr{ } Tr{ }
= =σ A σ B

A A B B
…a b   (4.3) 

where A†, B†, … represent the adjoint (conjugate transpose). Taking the 

component A as an example, diagonalisation of σi and A yields, 

 
D 1 D 1i ii i

D 1 D 1

− −

− −

= ⇔ =
= ⇔ =

σ T σ T σ Tσ T

A S AS A SA S
  (4.4) 

where the diagonalised matrices D
iσ  and DA  contain eigenvalues along the 

diagonal in descending order from top left to bottom right, and the columns of 
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T and S are the corresponding eigenvectors. According to the universal bound, 

the maximum possible value of the coefficient (amax) is given by, 

 
D D
imax

†

Tr{ }
Tr{ }

= σ A

A A
a   (4.5) 

A pulse sequence that leads to the maximum efficiency can be obtained as 

follows. Suppose that the final state is described by a single spin state A: 

 i →σ Aa   (4.6) 

Diagonalisation of σi and A gives, 

 
D 1 D 1i ii i

D 1 D 1

′ ′− −

′ ′− −

= ⇔ =
= ⇔ =

σ W σ W σ Wσ W

A Z AZ A ZA Z
  (4.7) 

where the diagonalised matrices D
i

′σ and D′A contain eigenvalues along the 

diagonal without restrictions on the ordering, and the columns of W and Z are 

the corresponding eigenvectors. Further diagonalisation yields, 

 
D 1 D D D 1
i i i i

D 1 D D D 1

( ) ( )
( ) ( )

′ ′− −

′ ′− −

′ ′ ′ ′= ⇔ =
′ ′ ′ ′= ⇔ =

σ W σ W σ W σ W

A Z A Z A Z A Z
  (4.8) 

For the maximum transfer efficiency (i.e. a = amax), comparing Equation (4.3) 

and (4.5) gives, 

 D Df iTr{ } Tr{ }=σ A σ A   (4.9) 

Using Equations (4.7) and (4.8) and unitary transformations, 

 

D Df i
1 D 1 D

i
1 1 1 1i

1 1 1 1i

Tr{ } Tr{ }
Tr{( ) ( ) }
Tr{( ) ( ) }
Tr{ ( ) ( ) }

′ ′− −

− − − −

− − − −

=
′ ′ ′ ′=
′ ′ ′ ′=
′ ′ ′ ′=

σ A σ A

W σ W Z A Z

W W σ WW Z Z AZZ

ZZ W W σ WW Z Z A

  (4.10) 

Hence,  

 1 1 1 1f i( ) ( )− − − −′ ′ ′ ′=σ ZZ W W σ WW Z Z   (4.11) 

Comparing Equation (4.11) with the solution to Liouville-von Neumann 

Equation, ( ) e (0)e− += H Hσ σi t i tt  (where i(0) ),=σ σ  the desired pulse sequence is 

represented in its matrix form by, 

 i 1 1e ( )− − −′ ′≡H ZZ W Wt   (4.12) 

Since the initial state σi is the spin state at thermal equilibrium represented by 
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T10 or Iz, both of which are already diagonalised and ordered (Appendix A and 

B, respectively), 

 1 1( )− −′ ′= = = =W W W W I   (4.13) 

where I is a unit matrix, and, thus, 

 ie− ′≡H ZZt   (4.14) 

Application of a sequence of pulses corresponding to Z′ followed by Z gives the 

target operator with its maximum coefficient amax.  

4.2.3 Enhancement Schemes for I = 3/2 

 The universal bound approach can be used to obtain the maximum 

possible coefficient of any coherence transfers for any value of spin quantum 

numbers. An enhancement factor is then calculated from the ratio of the 

maximum possible coefficient (amax) with respect to that of a single-pulse 

experiment. In the following paragraphs, the procedure to obtain a possible 

enhancement factor of satellite transitions (ST) with respect to a single pulse 

experiment is numerically illustrated for a spin I = 3/2 system. Either the 

density matrix or tensor operator formalism can be employed, both of which 

gives rise to an identical result. In the following example, the density operator 

formalism is used, and the analogous procedure using the tensor operator 

formalism is supplied in Appendix I.  

 The initial state σi is given by the spin angular momentum operator Iz 

that represents the spin state at thermal equilibrium. For a spin I = 3/2 system, 

 i

3 0 0 0
0 1 0 01
0 0 1 02
0 0 0 3

 
 
 = =
 −
 − 

σ Iz   (4.15) 

Since Iz is diagonal and the matrix elements are ordered (descending from top 

left to bottom right), W = W−1 = W’ = (W’)−1 = I (a unit matrix) and D Di i i
′= =σ σ σ . 

The maximum efficiency of transfer to satellite transition coherences is obtained 

when the final state is composed of only satellite transition coherences. The 

matrix representation of the target operator that consists of satellite transitions 
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for spin I = 3/2 systems is given by, 

 

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 
 
 =
 
 
 

A   (4.16) 

where the presence of elements {A12, A21} and {A43, A34} indicates the two 

satellite transitions of a spin I = 3/2 system. To diagonalise A, eigenvalues are 

found to be [1, 1, −1, −1], and the corresponding eigenvectors are 

{ }1/ 2[ 1,1,0,0 ,{0,0,1,1}, { 1,1,0,0}, {0,0, 1,1}],− −  respectively. Among those 

possible arrangements, a pair of AD’ and Z is given by, 

 D

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

′

 
 −
 =
 
 − 

A   (4.17) 

 

1 1 0 0
1 1 0 01
0 0 1 12
0 0 1 1

− 
 
 =

− 
 
 

Z   (4.18) 

Similarly, eigenvalues of AD’ are [1, 1, −1, −1] and the corresponding 

eigenvectors are [{1, 0, 0, 0}, {0, 0, 1, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}]. A pair of possible 

arrangements for AD (with its eigenvalues in descending order along the 

diagonal) and Z’ is, 

 D

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
 
 =

− 
 − 

A   (4.19) 

 

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 
 

′  =
 
 
 

Z   (4.20) 

The maximum possible coefficient is calculated as,  

 
D D
imax

†

Tr{ }
1.0

Tr{ }
a = =σ A

A A
  (4.21) 

The corresponding coefficient for a single-pulse experiment is obtained by the 
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elements of Ix that correspond to satellite transitions. For spin I = 3/2 systems, 

 

0 3 0 0

3 0 2 01
2 0 2 0 3

0 0 3 0

x

 
 
 =  
 
 
 

I   (4.22) 

and the maximum coefficient is 3 /2  (either one of {1,2}, {2,1}, {4,3}, {3,4} 

elements). The possible signal enhancement of ST coherences for spin I = 3/2 

systems is then given by 1/( 3 /2) 1.155,=  and thus a maximum signal 

enhancement of 15.5% is expected with respect to the signal obtained from a 

single-pulse experiment.112 The possible enhancement factors (%) for ST1 and 

CT coherences of half-integer quadrupolar nuclei are summarised in Table 4.1, 

and the relevant coefficients necessary to calculate the possible enhancement 

are supplied in Appendix J. It should be noted that the effects due to relaxation 

and pulse imperfections are not taken into account, and the outcome is to be 

only treated as the upper limiting case under idealised experimental conditions. 

 The sequence of spin states that leads to the maximum enhancement of 

15.5% for satellite transitions of spin I = 3/2 systems is then given by, 

 

ie

1 1 0 0 1 0 0 0
1 1 0 0 0 0 1 01
0 0 1 1 0 1 0 02
0 0 1 1 0 0 0 1

− ′≡
−   

   
   ≡ ⋅
   −
   
   

H ZZt

  (4.23) 

Table 4.1 Possible enhancement factors of the satellite transitions and central transitions with respect to 
single-pulse excitation calculated using universal bound approach.  
 

 Possible enhancement 

I ST1 CT 

3/2 15.5% 50% 

5/2 41.4% 66.7% 

7/2 54.9% 75% 

9/2 63.3% 80% 
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This corresponds to an inversion of central transition (Z′) followed by a 

selective excitation of satellite transitions (Z). The pulse sequence to achieve the 

maximum possible enhancement thus consists of a CT-selective inversion pulse 

followed by an ST-selective pulse, as schematically illustrated in Figure 4.2a.  

4.2.4 Effect of Radiofrequency Pulses 

 Further theoretical investigations are performed by considering the effect 

of radiofrequency pulses on an arbitrary spin system, aiming to support the 

numerical results and proposed enhancement schemes obtained by the 

universal bound approach. The effect of radiofrequency pulses can be described 

by either density matrix or tensor operator formalism, and the density operator 

formalism is used in the following paragraphs. 

 Suppose that a radiofrequency pulse is applied along the y axis as, 

 rf 1= ωH Iy   (4.24) 

and a pulse flip angle is defined as β = ω1τp (in radians). An arbitrary initial 

state to which the pulse is applied is denoted as X. Revisiting the solution to the 

Liouville-von Neumann equation, rf rfi i( ) e (0)e ,t tt − += H Hσ σ and combined with 

Equation (4.24), the solution to the Liouville-von Neumann equation becomes a 

function of the flip angle β as, 

Figure 4.2 Schematic representation of signal enhancement schemes for satellite transitions of spin I = 
3/2 nuclei: (a) an inversion of central transition followed by a selective excitation of satellite transitions 
and (b) a saturation of central transition followed by a non-selective excitation of satellite transitions. 
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 i i( ) e ey y− β + ββ = I Iσ X   (4.25) 

Consequently, the effect of a pulse on an arbitrary state X is described by 

evaluating Equation (4.25) as a function of the flip angle β. A quantity that 

corresponds to the experimentally observable signal intensity along the x axis is 

obtained by calculating the expectation value as, 

 { }ˆ Tr ( )= βσ Ix xI   (4.26) 

This expectation value yields a quantity proportional to the overall signal 

intensity. To separate the contributions from the central- and satellite-transition 

coherences, the spin angular momentum Ix is decomposed as, 
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       = +         

= +

I

I I

  (4.27) 

The expectation values are then individually calculated as, 

 
{ }
{ }

(ST) (ST)

(CT) (CT)

ˆ Tr ( )
ˆ Tr ( )

x x

x x

I

I

= β

= β

σ I

σ I
  (4.28) 

Suppose that the initial state X is at thermal equilibrium and given by Iz. The 

resulting signal along the x axis is proportional to the expectation value, 

 
(ST)

(CT)

ˆ 3sin
ˆ 2 sin

x

x

I

I

= β

= β
  (4.29) 

A plot of this expectation value as a function of the flip angle (in degrees) is 

given in Figure 4.3a. As expected from the vector model, the pulse causes the 

signal to oscillate as a function of the flip angle, and the maximum signal 

intensity is attained when β = 90° (or π/2 in radians) for both CT and ST 

coherences (in the absence of quadrupolar interactions). The maximum 

amplitude is 3 for ST and 2 for CT, and the ST amplitude is larger because there 

are two possible ST transitions for spin I = 3/2 systems.  
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 From the universal bound approach, the theoretical maximum 

enhancement of 15.5% for satellite transitions of spin I = 3/2 nuclei was 

obtained by a CT inversion followed by an ST-selective excitation (Subsection 

4.2.3). This can also be verified upon consideration of the effect of 

radiofrequency pulses, as follows. The initial state X is given by, 

Figure 4.3 Expectation value of satellite-transition (blue) and central-transition (red) coherences of spin 
I = 3/2 systems as a function of pulse flip angle of the final excitation pulse. The initial spin state is 
either (a,b) at thermal equilibrium or (c,d) after inversion of central transition or (e,f) after 
presaturation of central transition or (g,h) after application of a selective 90° pulse to central transition. 
The subsequent excitation is either (a,c,e,g) non-selective or (b,d,f,h) selective to satellite transition. 
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X   (4.30) 

where the population of CT coherences is already inverted with respect to the 

thermal equilibrium state. To describe the effect of an ST-selective pulse along 

the y axis, the spin angular momentum Iy is decomposed as, 
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  (4.31) 

The solution to the Liouville-von Neumann equation is then given by, 

 (ST) (ST)i i( ) e e− β + ββ = I Iσ Xy y   (4.32) 

The expectations values for ST and CT coherences are calculated as, 
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  (4.33) 

Figure 4.3d displays the corresponding plot of expectation value as a function 

of the flip angle (β). The CT signal is zero because the excitation pulse is only 

effective on ST coherences. The maximum value for ST coherence (= 3.4641) 

with respect to that originated from the thermal equilibrium state (= 3.0000) 

yields an enhancement factor of 15.5% (3.4641/3.0000 = 1.155), and this is in 

agreement with the maximum enhancement predicted by the universal bound 

approach (Subsection 4.2.3). The maximum enhancement is achieved with an 

optimum flip angle (β) of 52.0° for the ST-selective pulse, and this is shorter 

than the optimum pulse flip angle applied to ST coherences at the thermal 

equilibrium state (β = 90°). 
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4.2.5 Potential Experimental Approaches for I = 3/2 

 Although the theoretical investigations (Subsection 4.2.3 and 4.2.4) 

demonstrated that the maximum enhancement of 15.5% is expected upon CT 

inversion followed by an ST-selective excitation, the ST selectivity may not be 

perfectly achievable in practice and may inhibit the direct observation of 15.5% 

signal increase with respect to the single pulse experiment. Here, possible 

enhancement schemes that employ a non-selective pulse and produce a signal 

enhancement to a similar extent to 15.5% are explored. Several combinations of 

the nature of the excitation pulse and initial states X are summarised in Table 

4.2. The four initial states X are (a) thermal equilibrium, (b) inversion of CT, (c) 

presaturation of CT and (d) CT-selective 90°, and the matrix forms of these 

states are also given in Table 4.2. The presaturation of CT is the state where the 

CT population is saturated such that the CT signal is effectively zero. The CT-

selective 90° state is similar to the presaturation state except that the observable 

CT coherence exists along the x axis. The nature of the excitation pulse is either 

ST-selective or non-selective, and the matrix forms are given in Equation (4.31).  

 The calculated enhancement factors for these combinations of the 

excitation pulse and initial states are also summarised in Table 4.2, and there 

are several points to note. Firstly, comparing the effect of a non-selective and 

ST-selective pulse applied at thermal equilibrium, a non-selective pulse results 

in a larger ST signal amplitude. This is possibly related to the fact that the 

population levels are shared between CT and ST coherences, and a 

simultaneous disturbance of the CT and ST population states results in an 

effective increase in the ST population difference. Secondly, there are four cases 

where the ST signal shows a reduction in amplitude with respect to that of the 

non-selective pulse applied at thermal equilibrium state, despite that the 

manipulation of CT coherences leads to an increased population difference 

between the ST energy levels. This implies that the consideration of 

enhancement factors based on the population difference is not always 

applicable. Finally, there are two cases that ambiguously result in signal 

enhancement, one of which has already been predicted by the universal bound 

approach and gives the theoretical maximum for ST enhancement (15.5%), and 
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the other involves a non-selective pulse applied after a CT-selective 90° pulse 

and gives rise to an enhancement factor of 10.5% (= 3.316/3.000 = 1.105). The 

plot of this signal intensity as a function of flip angle is given Figure 4.3g, and 

the optimum flip angle for the non-selective pulse is shortened to 54.7° 

compared to 90° of the thermal equilibrium state (Figure 4.3a).  

 In the above theoretical investigations, enhancement schemes are 

developed only for satellite transitions of spin I = 3/2 nuclei, using the 

universal bound approach and considering the effect of radiofrequency pulses. 

The same approach can be employed to explore the ST enhancement schemes 

for any transitions of half-integer quadrupolar nuclei. It should be noted, 

however, that the pulse sequences to achieve the maximum possible ST signal 

enhancements for higher spin quantum numbers are more complicated113 and 

Table 4.2 Matrix representations of initial spin states and maximum coefficients of expectation value of 
the satellite transition coherences of spin I = 3/2 systems for eight possible combinations of initial spin 
states and the nature of the subsequent excitation pulse. 
 

 Matrix representation 
of initial spin state 

Maximum coefficient of 〈Ix〉 

Enhancement factor 

 Non-selective excitation ST-selective excitation 

Thermal 
equilibrium 

3 0 0 0
0 1 0 01
0 0 1 02
0 0 0 3

 
 
 
 −
 − 

 
3.000 

 
(1.000) 

3 ( 1.7321)=  
 

0.577 

Inversion of CT 

3 0 0 0
0 1 0 01
0 0 1 02
0 0 0 3

 
 − 
 
 − 

 
2.667 

 
0.889 

2 3 ( 3.4641)=  
 

1.155 

Presaturation of CT 

3 0 0 0
0 0 0 01
0 0 0 02
0 0 0 3

 
 
 
 
 − 

 
2.449 

 
0.816 

3 3
( 2.598)

2
=  

 
0.866 

CT-selective 90° 

3 0 0 0
0 0 1 01
0 1 0 02
0 0 0 3

 
 
 
 
 − 

 
3.316 

 
1.105 

3 3
( 2.598)

2
=  

 
0.866 
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difficult to implement. Further theoretical investigations and experimental 

implementation of signal enhancement schemes for higher spin quantum 

numbers are envisaged and will be reported elsewhere.   

4.2.6 Efficient Excitation of Satellite Transitions 

 Signal enhancement schemes considered so far assume that ST 

coherences are uniformly excited. This is not always possible in practice, as the 

ST excitation performed using a conventional rectangular pulse (Figure 4.4a) 

suffers from the sinc wiggle excitation profile (Figure 4.4b) that limits the 

attainable excitation width in the frequency domain. Shaped pulses such as 

Gaussian114,115 (Figure 4.4c) may circumvent the non-uniform excitation of the 

rectangular pulse because the excitation profile of a Gaussian pulse is also 

Gaussian (Figure 4.4d). For both rectangular and Gaussian shaped pulses, 

however, the attainable excitation width depends on the minimum pulse length 

determined by the experimental instruments. Also, the selective excitation of ST 

coherences may not be perfectly attainable because the ST lineshape breaks into 

a number of spinning sidebands under MAS conditions and the centreband of 

the CT lineshape lies close to the centreband of the ST lineshape. Previously, a 

train of short pulses in the manner of delays alternating with nutations for tailored 

excitation (DANTE)116–118 was proposed to perform uniform excitation of (i) 14N 

(I = 1) spinning sidebands subjected to first-order quadrupolar interactions (CQ 

= 1.18–3.2 MHz),119–121 (ii) 19F (I = 1/2) spinning sidebands that spread over 1 

MHz owing to hyperfine couplings in paramagnetic samples,122 and (iii) 

selective observation of 6Li (I = 1) spinning sidebands that consist of three 

distinct Li sites.123 The pulse sequence and excitation profile of the DANTE 

approach is schematically illustrated in Figure 4.4e,f. The pulse length (τp), total 

number of pulses (K) and the spinning frequency or one rotor period (τR) 

determines the shape of the excitation profile for DANTE-type pulse sequence. 

If these experimental parameters are appropriately chosen so that the DANTE 

excitation profile is matched to the ST spinning sideband pattern of half-integer 

quadrupolar nuclei, an efficient and selective excitation of ST spinning 

sidebands may be possible. In the rest of the theoretical investigations, a two-
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pulse (K = 2) excitation scheme is employed in a rotor-synchronised manner, 

aiming to achieve an efficient and selective excitation of ST coherences in a 

simplest possible way (as justified by the experimental investigations in 

Subsection 4.3.4). 

4.2.7 Constructing Time-Independent Hamiltonians 

 In this section, efficient ST excitation schemes under MAS conditions are 

Figure 4.4 (a,c,e) The pulse shape in the time domain and (b,d,f) corresponding excitation profile in the 
frequency domain of (a,b) rectangular, (c,d) Gaussian and (e,f) DANTE pulses. The duration of a pulse 
is denoted by τp, and one rotor period is denoted by τR. 
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investigated using time-domain simulations of NMR signals based on the time-

independent Hamiltonian theory. An example simulation code for the time-

domain simulation of spin I = 3/2 systems is supplied in Appendix M.   

 From the solution of the Liouville-von Neumann equation, the time-

dependent density operator describing a system at time t was given by, 

 i i(t) e (0)e− += H Hσ σt t   (4.34) 

where σ(0) is the spin state at t = 0, and H is the Hamiltonian that describes a 

spin system between 0 and t. The Hamiltonian H is assumed to be constant over 

an infinitesimal time increment (∆t) between ta and tb (time-independent 

Hamiltonian), and the corresponding matrix exponential is denoted as the 

propagator U(tb, ta),124  

 
i b a

i †b a

e ( , )
e ( , )

− τ
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=
=
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H
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t t

t t
  (4.35) 

where † denotes a matrix transpose (complex conjugate). The propagator U(tb, 

ta) is numerically constructed from an appropriate Hamiltonian basis set. First, 

the Hamiltonian H is diagonalised as,124  

 †diag =H X HX   (4.36) 

where Hdiag consists of the eigenvalues of H placed along the diagonal, and the 

corresponding eigenvectors constitute the columns of X. The propagator is then 

written as,124 
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( , ) e
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=
=

XH X

H

U

X X

t t
  (4.37) 

where the properties of invertible A (AA−1 = I and exp(ΑΒΑ−1) = A exp(B) A−1) 

are utilised. 

 A schematic illustration of the time-domain simulation used in this thesis 

is shown in Figure 4.5. The time increment is given by a multiple of the fixed 

interval ∆t, starting from t = 0 until tn = n∆t for integers n being the total 

number of points to calculate. To describe the presence and absence of an 

applied radiofrequency field, two Hamiltonians are denoted as Hon, and Hoff: 

Hon under the influence of a radiofrequency pulse and Hoff in the absence of the 

radiofrequency pulse. The corresponding propagators are denoted as Uon and 
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Uoff. The pulse length τp and the rotor period τR (= 1/νR) are also an integer 

multiple of the fixed interval ∆t. 

4.2.8 Time-Domain Simulations of Satellite Transitions 

 Time-domain simulation codes were written for spin I = 3/2 and 5/2 

systems, according to the time-independent Hamiltonian theory described in 

the previous subsection. In the following numerical calculations of NMR signals 

that correspond to satellite transitions, axial symmetry (ηQ = 0) is assumed for 

the ease of calculations, and only the first-order contributions are taken into 

account. This is because, although satellite transitions are affected by both the 

first-order and second-order quadrupolar interactions, the contribution from 

the second-order term to the time domain signal can be considered less 

important in terms of the magnitude. 

 The initial state σ(0) is the thermal equilibrium state given by Iz 

(Appendix A). When a radiofrequency pulse is applied, the effective 

Hamiltonian Hon consists of two terms, 

 on Q 1= ω + ωH I Iz x   (4.38) 

where the first term represents the quadrupolar contribution and the second 

term describes the effect of radiofrequency pulse applied along the x axis. When 

the radiofrequency pulse is absent, 

Figure 4.5 Schematic illustration of the time-domain FID simulation for (a) a single-pulse and (b) two-
pulse excitation of satellite-transition coherences. The maximum intensity of the first full echo is 
analysed as a function of pulse flip angle (β = ω1τp).  
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 off Q= ωH Iz   (4.39) 

where the first-order quadrupolar contribution ωQ for ηQ = 0 is given by, 

 PAS 2
Q 0,0Q ( , , )ω = ω α β γD   (4.40) 

with, for I = 3/2, 

 Q QPAS
Q

3
2 (2 1) 2

π πω = =
−

C C

I I
  (4.41) 

and for I = 5/2, 

 Q QPAS
Q

3 3
2 (2 1) 20

π πω = =
−

C C

I I
  (4.42) 

The explicit form of the second-rank Wigner rotation matrix elements under 

spinning conditions was given as (Equation (3.30)), 

 

2 2 2
0,0
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2 2
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1( , , ) (3cos 1)(3cos 1)
4

3
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4
3 (sin )(sin )cos( 2 2 )
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′α β γ = χ − β −

′− χ β −ω + ξ

′+ χ β − ω + ξ

D

t

t

  (4.43) 

where ωR is a spinning frequency (in rad s−1), χ is the angle between the 

spinning axis and the external field, β’ is the angle that defines the 

transformation from the principal axis frame (PAS) to the rotor-fixed frame 

(ROTOR), and ξ is the initial crystallite orientation (at t = 0) about the spinning 

axis. Consequently, the Hamiltonian evolves over time as a function of CQ, χ, β’, 

ξ, ωR and ω1. Under MAS conditions, χ is set to 54.736°.  

 A quantity that is proportional to the experimentally observable satellite-

transition signals is obtained by taking the trace of the matrix product, 

 
{ }
{ }

(ST) (ST)
x

(ST) (ST)
y

ˆ Tr ( )

ˆ Tr ( )

=

=

σ I

σ I

x

y

I t

I t
  (4.44) 

where (ST)Ix  and (ST)Iy  are the matrices representing the satellite transitions, 

 (ST)

0 3 0 0
3 0 0 01

2 0 0 0 3
0 0 3 0

x

 
 
 =
 
 
 

I   (4.45) 
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 (ST)

0 3 0 0
3 0 0 0i
0 0 0 32
0 0 3 0

 −
 
 =

− 
 
 

Iy   (4.46) 

for spin I = 3/2 nuclei, for example. In powder samples, a large proportion of 

the randomly oriented crystallites are oriented near the equator (β’ = π/2) of a 

sphere than at the poles (β’ = 0 or π). To account for the probability of finding a 

particular crystallite orientation relative to the external magnetic field, a 

weighting function is applied as a function of β’ as,125 

 
{ }
{ }

(ST) (ST)

(ST) (ST)

Î Tr ( ) sin

Î Tr ( ) sin

′= β

′= β

σ I

σ I

x x

y y

t

t
  (4.47) 

The magnitude of these two components is considered to be proportional to the 

experimentally observed free induction decay (FID) as, 

 
2 2(ST) (ST)ˆ ˆ( ) ≅ +x ys t I I   (4.48) 

 The magnitude of the ST signal was analysed as a function of a pulse flip 

angle, varying (i) the spinning rate (νR) and (ii) the magnitude of quadrupolar 

coupling constant (CQ). The results of spin I = 3/2 systems are summarised in 

Figure 4.6a–d for the single-pulse and two-pulse excitation, respectively. In the 

existing theoretical study performed in the context of STMAS experiments,90 the 

optimum pulse flip angle of the ST excitation pulse was reported to be 90° for 

spin I = 3/2 nuclei (and 70° for spin I = 5/2 nuclei). This was confirmed by the 

time-domain simulations in Figure 4.6a (results not shown for spin I = 5/2 

nuclei). For the single-pulse excitation, the optimum flip angle is nearly 

independent of the spinning frequency (Figure 4.6a), whereas shorter pulse 

lengths may be preferred by large CQ values (Figure 4.6c). In Figure 4.6e, the 

maximum amount of ST coherence obtained upon single-pulse excitation is 

plotted as a function of the applied radiofrequency field strength (ν1). The 

maximum amount of ST coherence increases as the applied radiofrequency 

field strength increases (up to ν1 = 200 kHz), implying that, for efficient 

excitation of ST coherences, the use of higher applied field strengths (ν1) is 

recommended for increased sensitivity. 
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 For the two-pulse rotor-synchronised excitation of ST coherences, the 

optimum flip angle is approximately 45° for spin I = 3/2 nuclei (Figure 4.6b) 

and 35° for spin I = 5/2 nuclei (results not shown). This is, as expected, half of 

the optimum pulse length of the single-pulse excitation (90° and 70°, 

respectively). Although the spinning frequency does not affect the optimum flip 

angle (Figure 4.6b), large CQ values may favour shorter pulse lengths (Figure 

4.6d). This observation implies that the prediction and determination of 

optimum pulse lengths may become complicated in the presence of multiple 

Figure 4.6 Numerical calculations of ST coherence (in arbitrary units) for spin I = 3/2 systems upon 
(a,c,e) single-pulse excitation and (b,d,f) two-pulse excitation. Effects of changing (a,b) spinning 
frequency and (c,d) quadrupolar coupling constant are plotted as a function of pulse flip angle. In (e,f), 
the maximum ST coherence obtained for a given radiofrequency field strength is plotted as a function 
of the applied radiofrequency field strength (using CQ = 2 MHz under 10 kHz spinning).  
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sites with a various magnitude of quadrupolar coupling. If the sample of 

interest contains nuclei with potentially large CQ values, then the use of shorter 

flip angle (30° for spin I = 3/2 nuclei, for example) may be recommended so 

that the large CQ site is more selectively enhanced with respect to the 

conventional single-pulse excitation.  

 It should be noted that the numerical results of the time-domain 

simulations (Figure 4.5) are given in arbitrary units, and a direct comparison of 

intensity between the single-pulse and two-pulse excitation was avoided. This 

is because spin-spin (T2) relaxation is not taken into account in the simulation, 

whereas, in real samples, if the T2 relaxation time is comparable to the length of 

the two-pulse excitation (one rotor period, τR), the signal may decay 

significantly during the application of the two pulses. This results in an 

apparent loss of effective enhancement, leading to an inevitable discrepancy 

between the simulated and experimental results. 

4.3 Experimental Investigations 

 Experimental investigations were performed on the basis of the results 

from the theoretical investigations (a population transfer via manipulation of 

the central-transition coherences and an efficient excitation of satellite-transition 

spinning sidebands) to achieve sensitivity enhancement of satellite transitions 

for spin I = 3/2 nuclei. Sensitivity enhancement schemes were implemented 

under DQF-STMAS experiments for the ease of spectral analysis, and 23Na and 

87Rb NMR of inorganic compounds were employed at B0 = 9.4 T under 14286 

Hz spinning. Some follow-up studies were performed at B0 = 20.0 T under 62.5 

kHz spinning for spin I = 3/2 nuclei and also at B0 = 9.4 T for spin I = 5/2 nuclei.  

4.3.1 General Experimental Details 

 Experiments were performed using a Bruker Avance spectrometer 

equipped with a B0 = 9.4 T superconducting magnet, operating at the Larmor 

frequency (ν0) of 105.8 MHz for 23Na (I = 3/2), 130.9 MHz for 87Rb (I = 3/2) and 

104.3 MHz for 27Al (I = 5/2) nuclei, respectively. Sodium nitrite (NaNO2, Sigma-
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Aldrich, 97% purity), sodium acetate (CH3COONa, Sigma-Aldrich, 99% purity), 

sodium sulfate (Na2SO4, East Anglia Chemicals, 99% purity), sodium oxalate 

(Na2C2O4, BDH Chemicals, 99.9% purity), sodium phosphate monobasic 

(NaH2PO4, Sigma-Aldrich, 99% purity), sodium phosphate dibasic (Na2HPO4, 

Sigma-Aldrich, 99% purity), sodium citrate tribasic dihydrate (Na3C6H5O7·2H2O, 

Sigma-Aldrich, 99% purity), rubidium nitrate (RbNO3, Sigma-Aldrich, 99.7% 

purity), rubidium sulfate (Rb2SO4, Sigma-Aldrich, 99.8% purity), aluminum 

lactate ([CH3CH(OH)COO]3Al, Strem Chemicals, 95% purity) and aluminum 

acetylacetonate ((C5H7O2)3Al, Sigma-Aldrich, 99% purity) powder samples 

were used as purchased. All powder samples were packed into 4 mm ZrO2 

rotors, and spinning stability of 14286 ± 2 Hz was maintained throughout by 

the use of conventional setup (Kel-F caps, a standard MAS probe, and 

compressed air). Accurate adjustment of spinning axis to the magic angle was 

performed prior to any STMAS investigations, using the sample of interest itself 

(by maximising the echo intensity of one-dimensional version of DQF-STMAS 

experiments in the time domain, followed by an acquisition of two-dimensional 

spectra to ensure no splitting in the isotropic dimension). Two-dimensional 

STMAS and MQMAS spectra of the aforementioned powder samples are 

supplied in Appendix K. Some follow-up experiments were performed at B0 = 

20.0 T, operating at the Larmor frequency (ν0) of 224.90 MHz for 23Na (I = 3/2) 

and 278.20 MHz for 87Rb (I = 3/2) nuclei, respectively. Spinning stability of 62.5 

kHz ± 3 Hz was achieved by the use of conventional MAS setup (1.3 mm ZrO2 

rotors, Kel-F caps, a standard MAS probe and compressed air). Spinning axis 

calibration was performed on the sample of interest, in an analogous manner to 

the B0 = 9.4 T experiments. Two-dimensional STMAS spectra recorded at B0 = 

20.0 T under 62.5 kHz spinning on RbNO3, Rb2SO4 and Na2HPO4 are supplied 

in Appendix K. Further experimental details are given in the figure legends. 

4.3.2 Signal Enhancement for Spin I = 3/2 Systems 

 The theoretical investigations (Subsection 4.2.5) revealed that the 

maximum possible enhancement of 15.5% for satellite transitions of spin I = 3/2 

nuclei is achieved by performing a CT inversion followed by an ST-selective 
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excitation. Also, application of a CT-selective 90° pulse followed by a non-

selective pulse results in a potential ST enhancement of 10.5%. Since both pulse 

sequences consist of two pulses, the following discussion is divided into two 

parts: (i) CT coherence manipulation by the first pulse, and (ii) the second pulse 

for excitation, either an ST-selective or non-selective pulse. 

(i) CT coherence manipulation 

 A CT-selective pulse (also termed soft pulse) is a pulse of relatively long 

duration with low power input, giving rise to a radiofrequency field strength of 

a few kHz. The optimum pulse length is readily found by applying a series of 

pulses with variable pulse lengths at a fixed power level. For central transitions 

of half-integer quadrupolar nuclei under the effect of quadrupolar interactions, 

the resultant nutation frequency is scaled by I + 1/2 (ωCT = (I + 1/2)ω1)126 with 

respect to the nutation frequency with no quadrupolar interaction (or liquid 

samples). For spin I = 3/2 nuclei, for example, the optimum 90° pulse length for 

the second-order broadened CT lineshape is half of the optimum 90° pulse 

length observed with zero CQ sites or on liquid samples. For the CT selectivity, 

two different types of pulse shape were tested, rectangular and Gaussian114,115 

(corresponding pulse shapes and excitation profiles were given in Figure 4.4) in 

anticipation of improved CT selectivity by the use of a Gaussian shaped pulse. 

Preliminary experimental investigations, however, resulted in no apparent 

improvement in CT selectivity by the use of a Gaussian shaped pulse. This is 

because the CT lineshape typically spreads over a few kHz, and the centreband 

of the ST spinning sidebands lies in proximity to the CT lineshape. Only the 

rectangular shaped pulses were thus retained in the subsequent experimental 

investigations for the ease of implementation.   

(ii) Excitation of ST coherence 

 A non-selective pulse (hard pulse) is a pulse of short length with high 

power input and is conveniently used to excite ST coherences. Pulse length 

optimisation is easily performed by examining the ST signal intensity as a 

function of pulse length at a fixed (highest attainable) power level. The 

optimum pulse flip angle for ST excitation is given with respect to the flip angle 
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with zero CQ or liquid samples (90° for spin I = 3/2, 70° for spin I = 5/2).74 In 

the theoretical investigations, the use of a train of short pulses in the manner of 

delays alternating with nutations for tailored excitation (DANTE),119,120 was 

proposed for an ST-selective excitation. An optimum experimental condition 

for ST selectivity was investigated by varying the pulse duration and the 

number of pulses (Figure 4.4e,f). It was experimentally found, however, that the 

ST-selective excitation using DANTE cannot be achieved without sacrificing the 

excitation efficiency for each of the ST spinning sidebands. This can be 

attributed to the inherent complication that arises from the presence of multiple 

parameters in the DANTE-type approach. To narrow the linewidth of each 

comb of the excitation profile for sufficient ST selectivity, the optimum number 

of pulses (K) is inevitably increased, and this is also accompanied by the 

considerable decrease in the optimum pulse length (τp) to be an effective 90° 

pulse (for I = 3/2) overall. The shortest pulse length that can behave as an 

effective rectangular pulse is limited by the instrumental setup (observed to be 

0.4 µs in our systems). Owing to this incomplete ST-selective excitation, the 

suggested pulse sequence (a CT-inversion followed by a selective ST excitation) 

resulted in signal intensity only similar to that excited by a simple rectangular 

pulse, and no apparent enhancement was obtained. The alternative approach, a 

CT-selective 90° pulse followed by a non-selective pulse (with the predicted 

enhancement of 10.5%) was thus pursued instead, in the subsequent 

experimental investigations. In fact, the DANTE-type pulse sequence can also 

be used to advantage for non-selective excitation of ST coherences, effectively 

increasing the excitable frequency range compared to that of the single-pulse 

excitation. If the pulse excitation profile of DANTE-type pulse sequence is 

reasonably matched to the ST spinning sidebands, an efficient excitation of ST 

coherences is anticipated. By examining the pulse excitation profile in Figure 

4.4e,f, the simplest way of achieving this is by the use of two pulses (K = 2) with 

shortest pulse lengths with highest radiofrequency field strengths attainable (as 

verified by the experimental results, Section 4.3.4). 

 Experimental investigations of the proposed ST signal enhancement 

schemes were first performed by recording one-dimensional DQF-STMAS 



 

108 

 

spectra that correspond to the first row of the two-dimensional DQF-STMAS 

experiments, rather than the two-pulse sequence used in the theoretical 

investigation, for the ease of spectral analysis. This is then followed by an 

acquisition of a series of two-dimensional DQF-STMAS spectra to check and 

confirm the enhancement in the isotropic dimension. Figure 4.7 displays 

corresponding pulse sequences and coherence transfer pathways of the DQF-

STMAS experiments modified according to the proposed enhancement schemes. 

Figure 4.7a is the conventional DQF-STMAS pulse sequence (“Conventional”), 

Figure 4.7b is the two-pulse ST excitation in a rotor-synchronised manner 

(“D2p1”), and Figure 4.7c,d incorporates the CT-selective 90° pulse at the 

beginning of the DQF-STMAS pulse sequences in Figure 4.7a (“Conventional”) 

and Figure 4,7b (“D2p1”), respectively. Additional pulse sequences are shown 

in Figure 4.7e,f, in which the third pulse (p3) that converts the DQ coherence to 

single-quantum CT coherence is replaced by the two-pulse manipulation in a 

rotor-synchronised manner (“D2p3”). This is based on a speculation that, since 

both the DQ and ST coherences are affected by the first-order quadrupolar 

interactions, an efficient manipulation of DQ coherences may be achieved by 

the use of DANTE-type approach. 

4.3.3 23Na and 87Rb DQF-STMAS Spectra of NaNO2 and RbNO3 

 To test the effectiveness of the proposed sensitivity enhancement 

schemes, experimental investigations were performed at B0 = 9.4 T under 14286 

Hz spinning, using 23Na DQF-STMAS signals of NaNO2 (single site, CQ = 1.1 

MHz)127 and 87Rb DQF-STMAS signals of RbNO3 (three sites, CQ = 1.68, 1.72 

and 1.94 MHz)84 as model systems. Figure 4.8 summarises the results in terms 

of (i) absolute signal intensity, (ii) enhancement factor, and (iii) optimum flip 

angle, as a function of applied radiofrequency field strengths (ν1 = γB1/2π). 

(i) Absolute signal intensity 

 It is known that higher applied radiofrequency field strengths (B1) are 

ideal for effective excitation of ST coherences,90 and Figure 4.8a,b shows that 

this holds true for the proposed enhancement schemes. The absolute signal 
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Figure 4.7 Double-quantum filtered (DQF) split-t1 phase-modulated shifted-echo STMAS pulse 
sequences combined with sensitivity enhancement schemes: (a) conventional, (b) two-pulse excitation, 
(c) application of CT-selective 90° pulse, (d) application of CT-selective 90° pulse and two-pulse 
excitation, and (e) two-pulse conversion of DQ to CT and (f) all inclusive. 
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intensity decreases as the applied field strength decreases, although there is a 

cross-over at which the use of sensitivity enhancement schemes at lower field 

strengths results in a larger signal intensity than that of conventional 

acquisition at higher field strengths. This is where the use of enhancement 

schemes may be justified, as the ratio of the applied field strength to the 

quadrupolar splitting parameter (ν1/νQ) is expected to follow a similar intensity 

profile. For a fixed or given applied field strength, the proposed sensitivity 

enhancement schemes are more advantageous for nuclei with larger 

quadrupolar coupling constants. 

 It should be noted that the first pulse (p1) and third pulse (p3) show a 

different behaviour as a function of the applied field strengths, despite that the 

manipulated coherences (ST and DQ) are affected by the large first-order 

interaction. The first pulse (“Conventional P1”) is more sensitive to the 

magnitude of the applied field strength (steeper decay towards lower field 

strengths when ν1 < 100 kHz) than the third pulse (“Conventional P3” decays 

only when ν1 < 75 kHz). It should also be pointed out that the use of two-pulse 

manipulation for the DQ-CT conversion (“D2p3”) resulted in a slight reduction 

of signal intensity when high field strengths (ν1 > 100 kHz) were employed. 

(ii) Enhancement factor 

 Signal enhancement factors in Figure 4.8c.d are given with respect to the 

signal intensity obtained by the conventional single-pulse acquisition. At the 

highest applied field strength attainable for each nucleus (ν1 ≈ 160 kHz for 23Na 

and ν1 ≈ 125 kHz for 87Rb), signal enhancement of 15–23% and 25–31% was 

obtained for 23Na and 87Rb, respectively. The observed signal enhancement 

upon application of a CT-selective 90° pulse followed by non-selective 

excitation (“R” and “R + D2p1”) is larger than the theoretical prediction of 

10.5%. This can be attributed to the fact that, in the theoretical investigations, 

the enhancement was mathematically obtained with respect to a spin state that 

corresponds to a perfect excitation of all available coherences, whereas, in 

practice, this cannot be physically achieved. The reduced magnitude of the 

reference intensity, to which the enhanced signals are compared, leads to an 
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apparent increase in the enhancement factor obtained from the experimental 

results. As mentioned in the context of (i) absolute signal intensity, the 

enhancement factor is significantly greater at lower applied field strengths, 

implying that the sensitivity enhancement schemes may be found more ideal 

for nuclei with larger quadrupolar coupling constants.   

 (iii) Optimum flip angle 

 The optimum flip angle of ST excitation is approximately 90° for spin I = 

Figure 4.8 Plots of (a,b) STMAS signal intensity, (c,d) enhancement factor and (e,f) optimum pulse flip 
angle as a function of applied field strengths. The signal intensity was obtained from one-dimensional 
version of (a,c,e) 23Na DQF-STMAS spectra of sodium nitrite (NaNO2) and (b,d,f) 87Rb DQF-STMAS 
spectra of rubidium nitrate (RbNO3). The corresponding pulse sequences are shown in Figure 4.7. 128 
transients were averaged with a recycle interval of (a) 1 s (b) 0.5 s. Spinning frequency was 14286 Hz in 
all experiments.  
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3/2 systems.90 Upon two-pulse application in a rotor synchronised manner, the 

optimum pulse length is expected to be half of the optimum length of the 

corresponding single pulse. This was experimentally observed (Figure 4.8e,f) in 

the high B1 field strength region for each nucleus (ν1 > 100 kHz), where the 

optimum pulse length of “D2p1” is half of that “Conventional P1”. Upon 

application of a CT-selective 90° pulse followed by non-selective excitation (“R” 

and “R + D2p1”), a good agreement with the theoretical optimum (54.7°) was 

also observed in the high B1 field strength region for both nuclei (ν1 > 100 kHz).  

 For lower field strengths (ν1 < 100 kHz), the optimum flip angle steadily 

decreases as the applied field strength decreases, and this is consistent with the 

results of numerical calculations (Figure 4.6c,d). Figure 4.9 illustrates the 

comparison between the experimental and numerical results in terms of the 

signal intensity obtained as a function of the flip angle for the single-pulse and 

two-pulse excitation schemes, respectively. For both excitation schemes, two 

sets of signal intensity, obtained at radiofrequency field strengths (ν1) of 50 and 

100 kHz, are plotted as a function of flip angle (Figure 4.9a,b). Corresponding 

experimental results, taken from one-dimensional 87Rb DQF-STMAS spectra of 

RbNO3 (CQ = 1.68–1.94 MHz), and numerical calculations performed with CQ = 

2 MHz are also displayed (Figure 4.9c–f). A good agreement was observed 

between the experimental and numerical results of signal intensity profile with 

respect to the optimum flip angle, making the use of enhancement schemes 

more applicable to compounds for which experimental pulse optimisation is 

not possible (although a rough estimate of the magnitude of quadrupolar 

interaction may be needed for best sensitivity).  

 To ensure that the signal enhancement observed in the one-dimensional 

DQF-STMAS signal is reflected in the isotropic dimension of two-dimensional 

STMAS spectra, two-dimensional 23Na and 87Rb DQF-STMAS experiments were 

performed on NaNO2 and RbNO3. Figure 4.10 displays a series of one-

dimensional DQF-STMAS spectra and the isotropic dimension of two-

dimensional DQF-STMAS spectra recorded using the sensitivity enhancement 

schemes. A set of spectra obtained at a radiofrequency field strength of 50 kHz 

was selected for an illustrative purpose. The isotropic dimension of two-
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dimensional DQF-STMAS spectra unambiguously resulted in signal 

enhancement, as observed in the corresponding one-dimensional spectra. 

4.3.4 Multiple-Pulse Excitation and Dephasing Effects 

 In addition to the two-pulse excitation of ST coherences, three-pulse and 

Figure 4.9 Pulse flip angle profile of (a,c,e) single-pulse excitation and (b,d,f) two-pulse excitation of ST 
coherences from (a,b) numerical calculations and (c–f) experimental results using one-dimensional 87Rb 
DQF-STMAS spectra of RbNO3. Applied radiofrequency field strengths (ν1) of 100–120 kHz and 50–54 
kHz were employed. (a,b) CQ = 2 MHz and (c–f), CQ = 1.68–1.94 MHz (three Rb sites in RbNO3). 
Spinning frequency was (a,b) 10 kHz and (c-f) 14286 Hz. The vertical scale was arbitrarily adjusted. 
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four-pulse excitation schemes were also tested experimentally using one-

dimensional 87Rb DQF-STMAS spectra of RbNO3. Figure 4.11 shows the 

corresponding DQF-STMAS pulse sequences, along with a comparison of 

intensity and lineshape of one-dimensional 87Rb DQF-STMAS spectra obtained 

using single-pulse (“Conventional”), two-pulse (“D2p1”), three-pulse (“D3p1) 

and four-pulse (“D4p1”) excitation schemes. The three-pulse and four-pulse 

excitation resulted in a slight loss of signal intensity compared with the two-

Figure 4.10 Selected experimental results of sensitivity-enhanced STMAS signals: (a) 23Na DQF-STMAS 
spectra of sodium nitrite (NaNO2) and (b) 87Rb DQF-STMAS spectra of rubidium nitrate (RbNO3). The 
corresponding pulse sequences are shown in Figure 4.7. Non-enhanced signals from conventional 
(single-pulse excitation) pulse sequence is displayed using dashed lines. For one-dimensional spectra, 
128 transients were averaged with a recycle interval of (a) 1 s (b) 0.5 s. For two-dimensional spectra, 
128 transients were averaged for each of (a) 196 (b) 256 t1 increments of 132.22 µs with a recycle interval 
of (a) 0.6 s (b) 0.5 s. Spinning frequency was 14286 Hz in all experiments. ST excitation pulse lengths of 
(a) 1.6–3.2 µs (ν1 ≈ 50 kHz) and (b) 1.2–2.2 µs (ν1 ≈ 50 kHz), ST conversion pulse lengths of (a) 1.2–2.2 µs 
(ν1 ≈ 50 kHz) and (b) 0.9–1.6 µs (ν1 ≈ 50 kHz), and CT-selective 90° and 180° pulse lengths of (a) 11 µs 
and 20 µs (ν1 ≈ 12.5 kHz) and (b) 11 µs and 22 µs (ν1 ≈ 12.5 kHz) were used. 
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pulse excitation. This is most likely to be attributed to the signal loss due to the 

dephasing of ST coherences upon rotor-synchronised application of excitation 

pulses. In the DANTE-type approach used in this thesis, a multiple-pulse 

Figure 4.11 Double-quantum filtered (DQF) split-t1 phase-modulated shifted-echo STMAS pulse 
sequences upon (a) conventional single-pulse excitation, (b) two-pulse excitation, (c) three-pulse 
excitation and (d) four-pulse excitation. (e) One-dimensional version of 87Rb DQF-STMAS spectra of 
rubidium nitrate (RbNO3) obtained via multiple-pulse excitation. 128 transients were averaged with a 
recycle interval of 0.5 s under 14286 Hz spinning. 
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application requires a longer evolution period, during which the phase of ST 

coherence needs to remain coherent. For example, in the case of 87Rb NMR of 

RbNO3 with CQ = 2.0 MHz at B0 = 9.4 T under 14286 Hz spinning, more than 

two rotor periods (2 × 70 µs = 140 µs) are not tolerated, and the best 

enhancement was achieved using the two-pulse excitation scheme. The signal 

loss due to dephasing is expected to be pronounced when (i) the magnitude of 

quadrupolar coupling is large or (ii) the spinning frequency is slow. This is 

separately discussed in the following paragraphs to identify the limit to which 

the two-pulse rotor-synchronised excitation can be safely employed. 

(i) The magnitude of quadrupolar coupling 

 When the magnitude of quadrupolar coupling is large, the signal loss 

due to dephasing may cancel out the signal increase upon efficient excitation of 

ST coherences. To test the limit of the two-pulse excitation at B0 = 9.4 T under 

14286 Hz spinning with respect to the magnitude of quadrupolar coupling 

constants (CQ), additional experimental investigations were performed using a 

series of Na- and Rb-containing compounds. One-dimensional 23Na and 87Rb 

DQF-STMAS spectra were recorded (not shown) using Na2SO4 (CQ = 2.5 MHz), 

NaC2O4 (CQ = 2.5 MHz), NaH2PO4 (CQ = 1.6–2.4 MHz), Na2HPO4 (CQ = 1.3–3.8 

MHz) and Rb2SO4 (CQ = 2.5–5.3 MHz). Any Na or Rb sites with CQ > 2 MHz 

resulted in no enhancement upon two-pulse rotor-synchronised excitation of ST 

coherences at B0 = 9.4 T under 14286 Hz spinning, despite that the application 

of a CT-selective 90° pulse followed by a non-selective pulse did produce the 

expected enhancement (up to 25%). A further, short investigation was 

performed at B0 = 20.0 T under 62.5 kHz spinning, using one-dimensional 23Na 

DQF-STMAS spectra of Na2HPO4 (CQ = 1.3–3.8 MHz) and 87Rb DQF-STMAS 

spectra of Rb2SO4 (CQ = 2.5–5.3 MHz). Despite the failure at B0 = 9.4 T under 

14286 Hz spinning, a signal enhancement was unambiguously observed for 

both Na2HPO4 and Rb2SO4 at B0 = 20.0 T under 62.5 kHz spinning, even when 

the two-pulse excitation scheme was employed (54–122%). This is attributed to 

the fact that the rotor period under 62.5 kHz spinning (τR = 1/62.5 kHz = 16 µs) 

is more than four times shorter than that of 14286 Hz spinning (τR = 1/14286 Hz 

= 70 µs), and the loss of signal during one rotor period is less pronounced under 
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faster spinning. This signal loss, which is dependent on the magnitude of 

quadrupolar coupling and spinning frequency, is revisited in the context of 

STARTMAS experiments (in Chapter 5), and the limit at B0 = 20.0 T under 62.5 

kHz spinning is investigated using larger CQ values (up to 17.8 MHz).  

(ii) Spinning frequencies 

 Even with the conventional single-pulse excitation (in the absence of 

rotor-synchronised multiple-pulse excitation), the signal loss due to dephasing 

may be observed in STMAS spectra if the spinning frequency is particularly 

slow. This is because of the prerequisite that the ST evolution period needs to 

be rotor-synchronised in STMAS experiments. Under slow spinning, the signal 

loss is expected to be particularly noticeable for quadrupolar nuclei with large 

CQ values or in the presence of additional dephasing effects. This is illustrated 

in Figure 4.12, using a series of one-dimensional 87Rb and 23Na MAS, MQMAS 

and DQF-STMAS spectra of RbNO3 and CH3COONa. No apparent signal loss is 

observed in 87Rb MQMAS signals, whereas 87Rb DQF-STMAS signals resulted 

in a significant signal loss under slow spinning (νR < 10 kHz), especially for the 

largest CQ (1.94 MHz) site. The signal loss is particularly severe when the 

quadrupolar nucleus is under the effect of additional dephasing effects such as 

dipolar coupling. This is evident in the 23Na DQF-STMAS of CH3COONa 

(Figure 4.12b), in which 23Na nuclei are likely to be dipolar-coupled to 1H nuclei. 

The signal loss in the 23Na DQF-STMAS spectra is significant at slower spinning 

frequencies, and even a slight loss in the MQMAS signals was also observed (νR 

< 10 kHz). It should be noted that the use of 1H decoupling can prevent the 

singularity loss due to the dipolar coupling (the 23Na MAS spectrum recorded 

at 14286 Hz spinning was reproducible with the aid of 1H decoupling under 4 

kHz spinning). Although the STMAS/MQMAS intensity ratio is slightly 

reduced at lower spinning frequencies, the absolute signal intensity is still 

higher in DQF-STMAS spectra than MQMAS spectra, and the sensitivity 

advantage of the STMAS approach is apparent even under slow spinning. 

These precautions were taken into considerations in the 33S STMAS 

investigations (in Chapter 6) performed on hydrous systems at slow spinning 

frequencies (5–6.4 kHz). 
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4.3.5 Recycle Interval and Presaturation of Central Transitions  

 It should be particularly noted that the proposed signal enhancement 

schemes (the two-pulse excitation and the application of a CT-selective 90° 

pulse followed by a non-selective pulse) are successful only when the recycle 

interval is set to be equivalent or longer than the value of spin-lattice relaxation 

time (T1) of the sample of interest. For example, for an MAS signal with T1 ≈ 3 s, 

the use of 1 s recycle delay results in no enhancement while the use of 3 s 

recycle delay shows the expected enhancement. Different origins of this 

enhancement dependence on the recycle interval are discussed separately, upon 

(i) two-pulse excitation and (ii) application of a CT-selective 90° pulse. 

Figure 4.12 One-dimensional 87Rb and 23Na MAS, STMAS and MQMAS spectra of (a) rubidium nitrate 
(RbNO3) and (b) sodium acetate (CH3COONa) recorded at B0 = 9.4 T as a function of spinning 
frequency. Split-t1 phase-modulated shifted-echo version of triple-quantum MQMAS and double-
quantum filtered (DQF) STMAS spectra were employed. For MAS spectra, 8 transients were averaged 
with a recycle interval of (a) 0.5 s and (b) 3 s. For STMAS and MQMAS spectra, 384 transients were 
averaged with a recycle interval of (a) 0.5 s and (b) 1 s. 
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(i) The two-pulse excitation 

 The pulse excitation profile of DANTE-type pulse sequence was shown 

in Figure 4.4f, and the efficient ST excitation was achieved by the use of 

appropriate parameters so that each comb that comprises the expected 

excitation profile reasonably matches the ST spinning sidebands. At thermal 

equilibrium, each spinning sideband has an associated frequency to which the 

excitation profile can be matched, and an efficient excitation of the ST spinning 

sidebands can be achieved by the use of DANTE-type approach using 

appropriate parameters. When shorter recycle delays (than the spin-lattice 

relaxation time T1) are used, the subsequent sets of pulses are applied to spin 

states in which the ST spinning sidebands may not have the same associated 

frequency as the thermal equilibrium state. The principle behind this excitation 

scheme that the pulse excitation profile is matched to the spinning sideband 

envelope is invalid under these conditions, leading to no effective enhancement 

when a recycle delay significantly shorter than the value of T1 is used.  

(ii) The application of a CT-selective 90° pulse 

 The CT-selective 90° pulse induces an effective saturation of the 

population difference in the CT energy levels, which consequently increases the 

population difference in the neighbouring ST energy levels. If a recycle delay 

shorter than that of spin-relaxation time (T1) was used, the subsequent signal 

acquisition is performed on a spin state that is not at thermal equilibrium but 

partly saturated in the population difference of all the energy levels. 

Application of another CT-selective pulse may completely null the CT 

population difference once again, but the ST population difference is now 

smaller than that of the thermal equilibrium state, resulting in no effective 

enhancement in the subsequent signal acquisition. The return to thermal 

equilibrium by the use of longer recycle delays (than the value of T1 of the 

sample of interest) prevents the saturation of ST coherences upon signal 

accumulation so that the expected signal enhancement is obtained from each of 

the successive acquisition of ST signals. 

 Along with the recycle interval dependence of the proposed sensitivity 
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enhancement schemes, it was experimentally observed that, when shorter 

recycle intervals than the T1 relaxation time of the sample of interest are used, 

conventional STMAS spectra (in the absence of sensitivity enhancement 

schemes) show an additional sensitivity advantage over the MQMAS 

equivalent. This is illustrated in Figure 4.13, using 23Na (I = 3/2) and 27Al (I = 

5/2) DQF-STMAS and MQMAS signals of several inorganic compounds 

exhibiting a range of quadrupolar coupling and spin-lattice relaxation time (T1). 

The STMAS/MQMAS intensity ratio is plotted as a function of repetition delay. 

Figure 4.13 Plots of STMAS/MQMAS intensity ratio as a function of repetition delay: the repetition 
delay is a sum of recycle interval and acquisition time (D1 + AQ in Bruker’s notation), and the 
STMAS/MQMAS intensity ratio was obtained via one-dimensional split-t1 phase-modulated shifted-
echo version of triple-quantum MQMAS and double-quantum filtered (DQF) STMAS spectra. In all 
experiments, 384 transients were averaged under 14286 Hz spinning at B0 = 9.4 T. (a) Sodium nitrite 
(NaNO2, CQ = 1.1 MHz, T1 < 1 s), (b) sodium acetate (CH3COONa, CQ = 1.35 MHz, T1 ≈ 3 s), (c) sodium 
phosphate dibasic (Na2HPO4, CQ = 1.3–3.8 MHz, T1 ≈ 5 s), (d) sodium citrate tribasic dihydrate 
(Na3C6H5O7·2H2O, CQ = 1.6–1.9 MHz, T1 ≈ 3 s), (e) sodium sulfate (Na2SO4, CQ = 2.5 MHz, T1 ≈ 5 s), (f) 
sodium oxalate (Na2C2O4, CQ = 2.5 MHz, T1 ≈ 4 s), (g) aluminum lactate ([CH3CH(OH)COO]3Al, CQ = 
5.0 MHz, T1 ≈ 1 s) and (h) aluminum acetylacetonate ((C5H7O2)3Al, CQ = 3.0 MHz, T1 ≈ 3 s). 
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An increase in STMAS/MQMAS intensity ratio (by 5–50%) was obtained when 

the recycle delay is much shorter than the value of T1 of the sample of interest. 

The observed STMAS/MQMAS intensity ratio ranges from 2.5 to 5.0, 

depending on the magnitude of CQ and the presence of 1H nuclei (dipolar 

coupling). This sensitivity advantage of STMAS over MQMAS at short recycle 

intervals is likely to be attributed to the effective presaturation of CT coherences 

upon successive signal accumulation, which affects only ST energy levels but 

not the symmetric multiple-quantum (usually triple-quantum) transitions used 

in MQMAS experiments. As mentioned in the previous paragraph, when the 

population difference between CT energy levels is not fully recovered by the 

end of a recycle interval, an effective presaturation of CT coherences is induced 

upon the subsequent signal acquisition. The effective saturation of CT energy 

levels results in an increased population difference in the neighbouring ST 

energy levels, leading to an increase in the observed STMAS signal while the 

MQMAS intensity remains unaffected. In the literature, a range of 

STMAS/MQMAS intensity ratio (a factor of 3–5)39,88 has been reported, and this 

variation has been attributed to the difference and complications in the 

optimum experimental conditions of STMAS and MQMAS signal acquisition 

(Subsection 3.4.8). Our experimental investigations imply that the recycle delay 

dependence of the STMAS/MQMAS intensity ratio may also have been one of 

the factors that had led to the variation in the numerical values of relative 

sensitivity advantage of STMAS over MQMAS signals reported in the past.  

4.4 Conclusions 

 Sensitivity enhancement of satellite transitions was investigated using 

theoretical tools (the universal bound calculations and time-domain simulations 

based on the time-independent Hamiltonian theory) and experimental signal 

acquisition (23Na and 87Rb DQF-STMAS NMR) for spin I = 3/2 systems. 

Application of two rectangular pulses in a rotor-synchronised manner was 

proposed to achieve an efficient excitation of ST coherences. Because of the 

signal loss due to dephasing during the rotor period, there exists a limit in the 

magnitude of CQ that can be exploited in this manner (CQ < 2 MHz at 9.4 T 
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under 14286 Hz spinning, for example). Theoretical investigations based on the 

universal bound yielded a theoretical maximum enhancement of 15.5% for ST 

coherence of spin I = 3/2 systems, which can be achieved by a CT-inversion 

followed by an ST-selective excitation. The ST-selective pulse was, however, 

experimentally found to be difficult to implement, and, instead, a theoretical 

enhancement of 10.5% was pursued using a CT-selective 90° pulse followed by 

a non-selective pulse. Expected enhancement was obtained at the highest 

radiofrequency (ν1 > 100 kHz) attainable for each of 23Na and 87Rb nuclei. For 

the proposed enhancement schemes to be successful, the recycle delay needs to 

be set equal or longer than the value of spin-lattice relaxation time (T1) of the 

sample of interest. Additional sensitivity advantage of the STMAS approach 

over the MQMAS counterpart was also identified in terms of the recycle delay, 

which has not been discussed in the literature. Sensitivity enhancement of ST 

coherences, developed using DQF-STMAS experiments in this chapter, is 

revisited in the context of STARTMAS experiments in the next chapter (Chapter 

5), demonstrating that the proposed schemes are also compatible with the 

STARTMAS approach. 
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5.  High-Resolution STARTMAS NMR of Spin I = 3/2 
Nuclei  

5.1 Introduction 

 To obtain high-resolution spectra of half-integer quadrupolar nuclei, 

there are four well-established techniques currently available: double rotation 

(DOR),32 dynamic angle spinning (DAS),35 multiple-quantum MAS (MQMAS)37 

and satellite-transition MAS (STMAS).38 The DOR and DAS methods are based 

on mechanical manipulation of spinning axis at two different angles with 

respect to the static magnetic field and consequently require specialist probes 

on which the accessible ranges of sample volume, spinning rates and 

radiofrequency field strengths are limited. In contrast, the MQMAS and STMAS 

techniques are two-dimensional correlation experiments performed on 

standard MAS probes. The MQMAS experiments have been more routinely 

used and applied for a variety of materials investigations56 owing to the ease of 

implementation, whereas the STMAS experiments have been proved to be 

advantageous for the study of NMR-insensitive nuclei.90 Since the MQMAS and 

STMAS signals are acquired in a two-dimensional manner, data sampling in the 
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indirect dimension is required to achieve a desired resolution in the isotropic 

dimension. Consequently, the time required for the indirect acquisition can be a 

time-limiting factor in two-dimensional MQMAS and STMAS approaches. 

 In 2006–2008, a novel method, called STARTMAS (satellite transitions 

acquired in real time MAS), demonstrated successful acquisition of high-

resolution, isotropic spectra for spin I = 3/2 nuclei.73,74 The STARTMAS method 

exploits the efficient coherence transfer between satellite and double-quantum 

transitions to refocus the anisotropic broadening of the second-order 

quadrupolar interaction. The STARTMAS signals are acquired as a one-

dimensional time-domain data set, and re-ordering of the one-dimensional data 

into a two-dimensional array is followed by a two-dimensional Fourier 

transformation, yielding a two-dimensional spectrum that yields isotropic 

peaks along the vertical axis. The STARTMAS approach, therefore, provides an 

"ultrafast" route to high-resolution, two-dimensional spectra of spin I = 3/2 

nuclei in the time required to record one-dimensional spectra. Like MQMAS 

and STMAS experiments, STARTMAS experiments are performed on standard 

MAS probes, making use of fast spinning frequencies and high radiofrequency 

field strengths. By combining the STARTMAS pulse sequence with the 

MQMAS or STMAS pulse sequences, three-dimensional spectra that correlate 

isotropic spectra of two distinct quadrupolar nuclei can be obtained in the time 

required for recording two-dimensional spectra.68  

 As with STMAS experiments, STARTMAS experiments require stringent 

experimental conditions, such as accurate spinning axis calibration and 

spinning stability. Modern NMR spectrometers equipped with commercially 

available probes and rotors are, however, of sufficient quality and capable of 

meeting such requirements. The STARTMAS approach, therefore, has a great 

potential for the investigation of spin I = 3/2 species such as 9Be, 11B, 23Na, 35Cl, 

39K, 69Ga, 71Ga and 87Rb nuclei. Compared to MQMAS or STMAS spectra, the 

isotropic resolution may appear worse in STARTMAS spectra. This loss of 

resolution is due to the aliasing of isotropic peaks into a very small effective 

spectral width.73,74 Since the isotropic STARTMAS spectral width is 

proportional to the spinning frequency, higher spinning frequencies are 
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preferable in the STARTMAS approach. Recent technical developments in fast 

MAS probes are thus advantageous for STARTMAS experiments. To date, 

STARTMAS experiments have only been demonstrated on simple inorganic 

salts containing 23Na and 87Rb nuclei. Further progress on the development of 

STARTMAS experiments is required for the widespread use and future 

applications of STARTMAS NMR in materials investigations.  

 In this thesis, high-resolution STARTMAS NMR investigations of spin I 

= 3/2 nuclei are performed with respect to (i) technical considerations in 

successful acquisition of STARTMAS isotropic spectra, (ii) spectral analysis of 

two-dimensional spectra, (iii) sensitivity enhancement of STARTMAS signals 

and (iv) implementation under fast MAS conditions at high magnetic fields. In 

the first half of this chapter, the theoretical basis of the STARTMAS acquisition 

and implementation of STARTMAS experiments are reviewed. Experimental 

investigations are performed at B0 = 9.4 and 20.0 T at a spinning frequency of 

14286 Hz and 62.5 kHz, respectively. Theoretical investigations are performed 

using time-domain simulations of STARTMAS signals. The results are 

presented for 23Na, 87Rb and 69/71Ga nuclei. 

5.2 Theoretical Background  

 The quadrupolar interaction for spin I = 3/2 nuclei is treated as a 

perturbation to the Zeeman interaction to first- and second-order, and the 

frequency (in rad s−1) of a transition under the effect of chemical shift and 

quadrupolar interactions may be written as, 

 ω = ω + ω + ω + ω(1) (2)
0 CS Q Q   (5.1) 

where ω0 is the Larmor frequency, ωCS is the contribution from the chemical 

shift, and ω(1)
Q  and ω(2)

Q  are the contribution from the first- and second-order 

quadrupolar interaction, respectively. The quadrupolar splitting parameter in 

the principal axis system, ωPAS
Q  (in rad s−1), is defined as, 

 QPAS
Q

3
2 (2 1)

πω =
−

C

I I
  (5.2) 
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where CQ is the quadrupolar coupling constant (in Hz), and for a transition 

′↔I Im m  under spinning conditions, the time-averaged first-order contribution 

is given by,  

 (1) 2 2 PAS 2 2
0,0 0,0Q( ) ( ) ( )′↔ ′ ′ω = ± − ω χ β

I I I Im m m m d d   (5.3) 

while the second-order contribution is given by, 
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 ′ 
ω  ′ ′ω = + χ β ω  ′ ′+ χ β 

  (5.4) 

where 0,0
nd  are the reduced Wigner rotation matrix elements (Appendix C), the 

angle ′β  defines the transformation from the principal axis frame to the rotor-

fixed frame, and ( , , )′n
I IA I m m  are the spin- and transition-dependent 

coefficients (Appendix D). Axial symmetry (ηQ = 0) has been assumed for 

simplicity. Under MAS conditions (χ = 54.736°), the first-order contribution and 

the second-rank term of the second-order contribution may be fully removed, 

whereas the fourth-rank term of the second-order contribution remains as,  
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ω =  ′ ′+ ° βω  

  (5.5)  

yielding the second-order quadrupolar broadened anisotropic lineshape. 

5.3 The STARTMAS Experiment  

 The STARTMAS approach exploits the satellite ( 1/2, 3 /2′= ± = ±I Im m ) 

and double-quantum ( 1/2, 3 /2′= = ±∓I Im m ) transitions for spin I = 3/2 nuclei 

to fully refocus the fourth-rank term of the second-order quadrupolar 

interaction under MAS conditions. The time-averaged frequency for satellite-

transition (ST) and double-quantum (DQ) coherences is explicitly written as, 

 
PAS 2

(2) Q 4 4
0,0 0,0ST

0

( ) 4 48 (54.736 ) ( )
5 35

d d
ω  ′ω = − ° β ω  

  (5.6) 
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Suppose that the ST and DQ coherences evolve in an arbitrary period, given by 

τST and τDQ, respectively. The resultant time-domain signal is then given by, 

 

(2) (2)
ST DQ ST DQST DQ

PAS 2
Q 4 4 ST0,0 0,0

0

PAS 2
Q 4 4 DQ0,0 0,0

0
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τ   (5.8) 

The residual second-order anisotropic broadening is refocused when the two 

evolution periods are appropriately defined so that, 

 ST DQ
48 6 0
35 35

− + τ =τ   (5.9) 

In other words, the two evolution periods are in the ratio of 1:8 (= τST:τDQ).73,74 

5.3.1 Pulse Sequence and Coherence Transfer Pathway 

 The pulse sequence and coherence transfer pathway for the STARTMAS 

experiment used in this thesis are shown in Figure 5.1. The first pulse excites 

satellite-transition (ST) coherences, and this is followed by a train of central-

transition (CT) selective inversion pulses so that the coherences alternate 

between satellite-transition and double-quantum (DQ) coherences. A unit of 

duration τ (the STARTMAS cycle) consists of appropriate evolution periods for 

ST and DQ coherences, τ = (1/18)τ + (16/18)τ + (1/18)τ (ignoring the finite 

pulse lengths) for which the total duration of the ST and DQ evolution period 

per STARTMAS cycle is set as τST = τ/9 and τDQ = 8τ/9, respectively. As the 

ratio of ST:DQ evolution period within the STARTMAS cycle is 1:8 (= τST:τDQ), 

the residual anisotropic broadening due to the second-order quadrupolar 

interaction is refocused at the end of each STARTMAS cycle. 

  Satellite transitions are under the effect of the first-order quadrupolar 

interaction, as well as the second-order quadrupolar interaction. For complete 

removal of the large first-order broadening under MAS conditions, the 

STARTMAS cycle needs to be rotor-synchronised (τ = nτR). A fully isotropic 

echo then forms at the end of the STARTMAS cycle, free of both first- and 

second-order quadrupolar broadening effects. The observable ST signals are 
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detected at the end of each STARTMAS cycle within an acquisition window 

between the two CT-selective pulses, and the STARTMAS cycle is looped until 

the desired resolution is achieved. As with other double-quantum filtered 

(DQF) approaches (such as DQF-STMAS92 and DQF-SATRAS72), the phase 

cycling of the first two pulses and of the receiver phases is designed to ensure 

the removal of unwanted CT coherences excited by the first hard pulse.73 As in 

STMAS experiments, the finite length of each pulse is included in the free 

precession intervals in the STARTMAS pulse sequence.  

5.3.2 Construction of One-Dimensional Spectra 

 Several data sampling schemes and subsequent processing methods 

have been suggested for STARTMAS acquisition.73 Data points can be acquired 

(i) continuously throughout the STARTMAS loops, (ii) only during the central 

portion of the satellite-transition acquisition window or (iii) singly at the peaks 

of the isotropic echoes. The continuous sampling scheme (i) yields a one-

dimensional spectrum that represents the first-order broadened satellite-

transition lineshape. When the interrupted sampling scheme (ii) is employed, 

data points that correspond to each isotropic echo are extracted and placed 

sequentially as a one-dimensional vector, reducing the total number of data 

points from that of the raw data. Fourier transformation of such one-

dimensional time-domain data sets yields a DOR-like spectrum, consisting of 

isotropic peaks accompanied by a manifold of spinning sidebands that 

Figure 5.1 The STARTMAS pulse sequence for spin I = 3/2 nuclei used in this thesis. The pulse phases 
are φ1 = 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, φ2 = 0°, φ3 = 180°, with the receiver phase φR = 0°, 90°, 
180°, 270°. The STARTMAS loop consists of two STARTMAS cycles and is repeated N/2 times where N 
N is the total number of isotropic echoes.  
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represent the first-order broadened lineshape. Because of the reduction in the 

number of points in the time-domain data set, the overall spectral width in (ii) 

is scaled by a factor of x/9 compared to that of the full sampling in (i), where x 

is the fraction of the satellite-transition acquisition window that was used for 

processing. This results in an ambiguous labelling of the frequency axis, and 

identification of the centreband requires at least two sets of data sets obtained at 

slightly different spinning frequencies. The singly sampling scheme (iii) utilises 

only the points at the centre of each isotropic echo where all the anisotropic 

interactions are refocused. Fourier transformation of the set of such isotropic 

points yields an isotropic spectrum without any sidebands, and the resulting 

isotropic spectral width (SWiso) in the F1 dimension is given by, 

 ν= = =
τ τ

R
iso

R

1 1
SW

n n
  (5.10) 

Although the singly sampling scheme yields an isotropic spectrum, it 

disregards the anisotropic information inherently present in the series of 

isotropic echoes that may be useful in elucidating quadrupolar parameters.73  

5.3.3 Construction of Two-Dimensional Spectra 

 The most promising approach for STARTMAS data acquisition and 

processing combines the features of all the schemes above. The data acquisition 

may be performed either continuously as in (i) or only during the satellite-

transition acquisition window as in (ii) (Figure 5.2a). Data points that 

correspond to the satellite-transition acquisition window are then extracted as a 

one-dimensional vector and re-ordered to form a two-dimensional array, with 

the first echo forming the first row, the second echo forming the second row, 

and so on. The successive “stacked” echoes are labelled t2 and t1, respectively 

(Figure 5.2b). The neighbouring data points in t2 are separated by the 

spectrometer sampling time (∆t ~ 0.5 µs for 2 MHz spectral width, for example) 

while the data points in t1 are separated by the duration of the STARTMAS 

cycle (τ, typically a few hundred µs). The time-domain signal in t2 is modulated 

by the full quadrupolar broadening, whereas only the isotropic terms affect the 

time-domain signal in t1. The two-dimensional time-domain data set is then 
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Fourier-transformed to produce a two-dimensional spectrum (Figure 5.2c) in 

which the first-order broadened satellite-transition lineshape appears in the F2 

dimension while the F1 dimension yields an isotropic spectrum.128 The spectral 

width in F2 is typically of the order of MHz (given by 1/∆t), whereas the 

spectral width in F1 is of the order of kHz (given by 1/τ). The two-dimensional 

approach has two apparent advantages: (i) higher sensitivity owing to the 

aliasing of all sidebands in the isotropic spectrum, and (ii) enabling extraction 

of quadrupolar parameters from the anisotropic F2 dimension.  

 As with the MQMAS and STMAS methods, the isotropic chemical and 

quadrupolar shifts evolve independently during the free evolution periods. For 

the ST and DQ evolution periods (τST:τDQ = τ/9:8τ/9), the isotropic contribution 

to the modulation frequency is given by, 
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Figure 5.2 Schematic illustration of processing one-dimensional STARTMAS data set in a two-
dimensional manner: (a) One-dimensional acquisition of STARTMAS isotropic echoes is followed by 
(b) re-ordering of the isotropic echoes into two-dimensional array. (c) A two-dimensional Fourier 
transformation produces a two-dimensional STARTMAS spectrum in which the F2 dimension displays 
first-order broadened satellite-transition lineshape and the F1 dimension yields an isotropic spectrum. 
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The modulation frequency at the end of the STARTMAS cycle is given by,74  

 

(ST) (DQ)
iso iso iso

PAS 2
Q

CS
0

( )17 4
9 9

ω = ω + ω
ω

= ω +
ω

  (5.13) 

The frequency of the ST coherences in the direct dimension is given by,   

 
PAS 2
Q(ST) CS
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( )4
5

ω
ω = ω +

ω
  (5.14) 

In the two-dimensional presentation of STARTMAS spectra, the chemical shift 

(CS) axis lies along +17/9 ( (ST)iso /ω ω  = (17/9)/(1)), and the quadrupolar shift 

(QS) axis lies along +5/9 ( (ST)iso /ω ω  = (4/9)/(4/5)). Unlike STMAS or MQMAS 

spectra, the use of CS and QS axes upon centre-of-gravity analysis is not 

practical because of the magnitude difference between the F1 (kHz) and F2 

(MHz) axes. This necessitates the development of different approaches in 

spectral analysis to extract quadrupolar parameters from two-dimensional 

STARTMAS spectra (Subsection 5.4.7).  

5.3.4 Correction of Artefacts 

 Upon signal acquisition, STARTMAS data points are first converted to 

an ASCII format using an AU program in TopSpin, and subsequent spectral 

processing is performed externally using MATLAB codes. The processing codes 

for two-dimensional representation of STARTMAS signals take into account the 

following techniques to obtain artefact-free STARTMAS spectra.74 

 Baseline corrections: Upon Fourier transformation with respect to t2, any 

DC offsets (displacement of mean amplitude from zero, inherently instrumental 

in origin) may cause zero-frequency artefacts. Suppression of such artefacts can 

be achieved by baseline correction of the t2 time-domain data set, by utilising 

the first or last few points of each row in which the genuine STARTMAS signal 

is absent. The baseline correction may also be performed in the t1 dimension, as 

any artefacts generated by pulse ringdown or pulse imperfection (incomplete 

CT inversion, for example) may be modulated with respect to the evolution in t1 

and give rise to artefacts in the isotropic dimension. 

 Missing first data point: The first STARTMAS echo cannot be acquired 
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because of the presence of an excitation pulse of finite length and the possible 

presence of pulse ringdown, both of which are purely instrumental. To 

compensate for the absence of the data set for t1 = 0, a row of zeros is inserted as 

the first row of a two-dimensional data set after the first Fourier transformation 

with respect to t2. The insertion of zeros can introduce severe baseline distortion 

in the F1 dimension, which can be removed by applying the F1 baseline 

correction in the frequency domain. 

 Spinor behaviour: When two CT-selective 180° pulses are applied with the 

same phase to ST coherences, phase inversion (a sign-change) of isotropic 

echoes occurs and results in a frequency shift of SWiso/2 in the F1 dimension 

(spinor behaviour).129 To avoid this, the phase of the CT-selective inversion pulses 

is shifted by 180° with respect to one another in an alternate matter (180°, 0°, 

180°, 0° and so on).73 This corresponds to a net flip angle of 0°, rather than 360°, 

and avoids the unwanted frequency shift. The spinor effect may also be 

removed during spectral processing by multiplying the time-domain data by −1 

in alternate rows. In the STARTMAS experiments performed in this thesis, the 

spinor effect is removed by the pulse phase shift, whereas simulated 

STARTMAS signals are phase-corrected at the processing stage. 

5.4 Implementing STARTMAS Experiments 

 As in STMAS experiments, STARTMAS experiments require stringent 

experimental conditions for successful acquisition of high-resolution, isotropic 

spectra. In addition, since a train of CT-selective 180° pulses is applied in 

STARTMAS acquisition, the resulting resolution, sensitivity and reproducibility 

of STARTMAS spectra are crucially dependent on the quality of the CT-

selective 180° pulse employed. Some practical notes on STARTMAS signal 

acquisition are given in the following subsections. 

5.4.1 Technical Considerations 

 Technical requirements such as spinning stability and accurate 

calibration of spinning axis to the magic angle are inherently present in 
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STARTMAS acquisition. This is to refocus the large first-order quadrupolar 

broadening that affect both the double-quantum and satellite-transition 

coherences used in the STARTMAS approach. The spinning axis calibration 

may be performed by 87Rb DQF-STMAS experiments on RbNO3 or Rb2SO4, or 

using 23Na DQF-STMAS experiments of simple inorganic salts (T1 is usually 

longer for 23Na than 87Rb nuclei). In the STARTMAS investigations performed 

in this thesis, spinning axis calibration was performed using the sample of 

interest itself prior to the acquisition of STARTMAS signals. 

 The first pulse in the STARTMAS pulse sequence (Figure 5.1) excites 

satellite transition coherences. As in STMAS approach, efficient excitation of ST 

coherences is achieved by the use of high radiofrequency field strengths.90 The 

STARTMAS pulse lengths may be efficiently calibrated using one-dimensional 

version of the DQF-STMAS experiments, by optimising the first and second (or 

fourth) pulse lengths of the DQF-STMAS pulse sequence with appropriate 

radiofrequency field strengths, making use of the identical nature of the pulses 

used in DQF-STMAS and STARTMAS pulse sequences (an ST excitation pulse 

followed by a conversion pulse to DQ coherences). 

5.4.2 General Experimental Details 

 Experiments were performed on Bruker Avance spectrometers equipped 

with B0 = 9.4 and 20.0 T magnets. Conventional MAS setup (zirconia rotors, 

Kel-F caps, standard MAS probes and compressed air) was employed 

throughout. Larmor frequencies (at B0 = 9.4 and 20.0 T) of 23Na (105.84 and 

224.90 MHz), 87Rb (130.92 and 278.20 MHz), 71Ga (122.03 and 259.88 MHz) and 

69Ga (96.04 and 204.06 MHz) were used. Powdered samples of sodium chloride 

(NaCl, BDH Chemicals, 99.9% purity), sodium nitrite (NaNO2, Sigma Aldrich, 

97% purity), sodium phosphate dibasic (Na2HPO4, Sigma Aldrich, 99% purity), 

rubidium chloride (RbCl, Sigma Aldrich, 99% purity), rubidium nitrate (RbNO3, 

Sigma Aldrich, 99.7% purity), rubidium sulfate (Rb2SO4, Sigma Aldrich, 99.8% 

purity) were used as purchased. Gallium sulfate (Ga2SO4) powder sample was 

courtesy of Professor Sharon E. Ashbrook’s group (University of St Andrews) 

and used as purchased (Sigma Aldrich, 99.99% purity) without further 
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purification or dehydration. Gallium oxides (α-Ga2O3 and β-Ga2O3) were 

previously synthesised by Professor Richard I. Walton’s group (University of 

Warwick).130 23Na NMR spectra were referenced to 1 M NaCl(aq) using NaCl(s) 

as a secondary reference (7.2 ppm),131 87Rb NMR spectra were referenced to 1 M 

RbNO3(aq) using RbCl(s) as a secondary reference (128 ppm),132 and 69/71Ga 

NMR spectra were referenced to 1 M Ga(NO3)3(aq) using Ga2SO4(s) as a 

secondary reference (−87 ppm for the small CQ site).133  

 Prior to STARTMAS signal acquisition, spinning axis calibration was 

performed for each compound using a one-dimensional version of DQF-

STMAS experiments by maximising the intensity of an echo that corresponds to 

a particular row in t1 of the two-dimensional acquisition. Pulse length 

optimisation was also performed on each compound, using one-dimensional 

DQF-STMAS signals that correspond to the first row of two-dimensional DQF-

STMAS acquisition. ST excitation pulse lengths of 1.2–2.6 µs were used with the 

highest radiofrequency field strength attainable (110–160 kHz with 4 and 1.3 

mm probes and a 1 kW amplifier). Quadrature detection was employed with a 

sampling period (∆t) of 0.5 µs, yielding an F2 spectral width (1/∆t) of 2 MHz, 

along with an analogue filter with a bandwidth of 4 MHz. The F1 spectral width 

(SWiso) of two-dimensional STARTMAS spectra is given by νR/n, where νR is 

the spinning frequency, producing SWiso (n = 9) of 1587 Hz for νR = 14286 Hz 

and 6944 Hz for νR = 62.5 kHz, and SWiso (n = 18) of 3472 Hz for νR = 62.5 kHz. 

For n = 9 STARTMAS experiments under 14286 Hz spinning at B0 = 9.4 T, CT-

selective 180° pulse durations of 20–24 µs (corresponding to the radiofrequency 

field strength (ν1) of 10 kHz) were used, resulting in the STARTMAS acquisition 

window of 50–52 µs. For n = 9 STARTMAS experiments under 62.5 kHz 

spinning at B0 = 20.0 T, CT-selective 180° pulse lengths of 3–8 µs (ν1 ≈ 30–70 

kHz) were used, resulting in the STARTMAS acquisition window of 8–13 µs. 

For n = 18 STARTMAS experiments under 62.5 kHz spinning at B0 = 20.0 T, a 

CT-selective 180° pulse length of 8 µs (ν1 ≈ 30 kHz) were used, resulting in the 

STARTMAS acquisition window of 24 µs. For sensitivity enhancement, CT-

selective 90° pulse lengths were estimated from the CT-selective 180° pulse 

length, and the subsequent excitation pulse duration was optimised for each 
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nucleus on the sample of interest (typically 0.4–1.6 µs) using the one-

dimensional DQF-STMAS signals. Further experimental details are provided in 

the appropriate legend. 

5.4.3 General Computational Details 

 The raw experimental STARTMAS data set was first converted into an 

ASCII format using an AU program on Bruker XWINNMR or TopSpin. All the 

subsequent processing and time-domain simulations of STARTMAS data sets 

were performed externally using MATLAB software.134 The MATLAB codes for 

STARTMAS NMR were originally written by Dr M. J. Thrippleton and minor 

modifications were made in this thesis. Experimental STARTMAS data sets 

were processed in a two-dimensional manner, during which baseline 

corrections, insertion of zeros for the first row, and zero filling (to improve S/N 

ratio) were applied where appropriate. Typical STARTMAS data sets consist of 

a 1024 × 256 two-dimensional array. Simulations of STARTMAS signals were 

performed in time domain upon construction of time-independent Hamiltonian 

for spin I = 3/2 nuclei under the effect of first- and second-order quadrupolar 

interactions. Stepwise integration of the Liouville-von Neumann equation is 

performed upon summation over a finite number of crystallite orientations 

generated by ZCW schemes.125 The STARTMAS simulation takes into account 

the experimental hardware setup such as finite pulse lengths, radiofrequency 

field strengths, rotor-synchronisation, and a finite number of STARTMAS 

cycles. This type of computational approach is virtually identical to the 

experimental acquisition, and the subsequent processing procedure is identical 

except for the phase correction that ensures the removal of the spinor effect 

(Subsection 5.3.4). Exponential line-broadening function was applied where 

necessary with respect to t1 after the first Fourier transformation in the t2 time 

domain.  Computational time taken for a STARTMAS simulation varies from 1 

min to 2.5 hrs, depending on (i) the number of orientations for powder 

averaging, (ii) the number of STARTMAS cycles, (iii) the number of distinct 

sites and (iv) computational power of the hardware used. Further details on 

spectral processing and STARTMAS simulations are given in the figure legend.  
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5.4.4 Effect of Varying Offset Frequency 

 Since the isotropic STARTMAS spectral width (SWiso) is proportional to 

the MAS frequency νR (SWiso = νR/n, where n = 9 or 18), severe aliasing of 

isotropic peaks into the very small effective spectral width may occur, making 

the isotropic resolution appear worse than that of the MQMAS or STMAS 

spectra. Figure 5.3 shows a series of 23Na STARTMAS (n = 9) spectra of NaNO2 

recorded with various offset frequencies (O1). Owing to intensive aliasing of 

isotropic peaks into a very small effective spectral width (SWiso = 14286/9 = 

1587 Hz), even a small variation in offset frequency results in a significant 

change in the appearance of the two-dimensional spectra, making the spectral 

processing and subsequent spectral analysis more complicated. This adverse 

effect is less pronounced in two-dimensional MQMAS or STMAS spectra as, for 

example, the split-t1 or sheared STMAS isotropic spectral width is given by 

14286 × (9/17) = 7563 Hz, which is 4.8 times larger than that of STARTMAS 

spectra. In the presence of multiple sites, it may be recommended to record 

several STARTMAS spectra with different offset frequencies and determine the 

offset frequency that leads to isotropic signals appearing in the middle of the 

isotropic dimension or least overlapping isotropic peaks. Since a train of CT-

selective pulses is applied in the STARTMAS approach, the offset position 

should preferably lie on or close to the second-order broadened CT lineshape 

for best sensitivity. As the isotropic STARTMAS spectral width is proportional 

to the MAS frequency, the effect of varying offset frequency is less pronounced 

at higher spinning frequencies (Subsection 5.4.6). 

 It should also be noted that a “spike” inevitably arises at the centre of 

two-dimensional STARTMAS spectra as a result of imperfections in the 

instrumental setup. This is indicated in Figure 5.3e as “zero frequency artefact”. 

Since the time-domain signal that gives rise to this unwanted spike is more 

pronounced when the genuine STARTMAS signal is absent, it can easily be 

reduced in magnitude by an appropriate choice of the number of echoes 

retained for spectral processing. This approach is used in Figure 5.3a–d and the 

rest of experimental STARTMAS spectra shown in this thesis. 
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5.4.5 Effect of Varying CT-selective 180° Pulse Lengths 

 Since a train of CT-selective 180° pulses is used in the STARTMAS pulse 

sequence, the quality of CT-selective pulses employed for STARTMAS 

acquisition is crucial for efficient conversion between ST and DQ coherences 

and consequently determines the sensitivity, resolution and reproducibility of 

STARTMAS spectra. As the STARTMAS acquisition window is rotor-

synchronised, the CT-selective 180° pulse length needs to be appropriately 

chosen so that the STARTMAS acquisition window is sufficiently long enough 

to accommodate an isotropic echo without signal truncation. Figure 5.4 

illustrates the effect of varying CT-selective 180° pulse lengths from 8 to 40 µs, 

using simulated 23Na STARTMAS (n = 9) spectra at B0 = 9.4 T under 14286 Hz 

Figure 5.3 Effect of varying offset frequencies on STARTMAS spectra: Experimental 23Na STARTMAS 
(n = 9) spectra of sodium nitrite (NaNO2) recorded at B0 = 9.4 T under 14286 Hz spinning with various 
offset frequencies (O1). The displayed spectral width is 2 MHz in F2 dimension and 1587 Hz in F1 
dimension. 256 transients were averaged with a recycle interval of 0.5 s. Total experimental time was 
2.5 min for each spectrum. 
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spinning for a single site with CQ = 2.5 MHz. The loss of CT selectivity at higher 

radiofrequency field strengths (ν1 > 20 kHz) results in an intensity decrease in 

both F1 and F2 dimension. Since the CT-selective pulses in the STARTMAS 

pulse sequences are applied in a sequential manner, unlike applying at the 

thermal equilibrium state for each row of two-dimensional DQF-STMAS 

acquisition, the signal loss due to insufficient CT selectivity is more pronounced 

in STARTMAS spectra than DQF-STMAS spectra. 

 The use of CT-selective pulse lengths of 20–40 µs may be appropriate at 

slower spinning frequencies (νR = 14286 Hz) as the STARTMAS acquisition 

window is 70 µs for n = 9, and 140 µs for n = 18 STARTMAS experiments, 

respectively, and thus the CT-selective 180° pulse length of 20–40 µs can be 

incorporated without signal truncation. The use of higher spinning frequencies, 

however, inevitably reduces the length of STARTMAS acquisition window and 

increases the risk of signal truncation by an inappropriate choice of CT-selective 

180° pulse lengths. Under 62.5 kHz spinning, for example, the STARTMAS 

Figure 5.4 Effect of varying CT-selective 180° pulse lengths on STARTMAS spectra. Time-domain 
simulations of 23Na STARTMAS (n = 9) signals were performed for various CT-selective 180° pulse 
lengths with corresponding radiofrequency field strengths at B0 = 9.4 T under 14286 Hz spinning. A 
single site with quadrupolar parameters of CQ = 2.5 MHz and ηQ = 0.7 was used. The displayed 
spectral width is 2 MHz in F2 dimension and 1587 Hz in F1 dimension. 
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acquisition window is 16 µs for n = 9 and 32 µs for n = 18 STARTMAS 

experiments, and this severely restricts the usable range of CT-selective 180° 

pulse lengths (5–10 µs). The risk of signal truncation is greater for small CQ sites 

for which broader STARTMAS echoes are expected, and also a severe loss of 

signal intensity is unavoidable owing to the loss of CT selectivity. Large 

quadrupolar coupling, on the other hand, results in a narrow STARTMAS echo, 

and the corresponding CT lineshape is broad enough for the short pulse length 

(5–10 µs) to be an effective CT-selective 180° pulse. The risk of signal truncation 

can be minimised for large CQ sites, widening the applicability of STARTMAS 

experiments to advantage to nuclei with large quadrupolar coupling under fast 

MAS conditions. Since the optimum CT-selective 180° pulse length is 

dependent on the magnitude of the second-order broadened CT lineshape 

PAS 2 0Q(( ) / )ω ω , CT-selective 180° pulse optimisation may need to be performed 

using the sample of interest to yield the highest sensitivity for a given external 

field strength. In practice, the CT-selective 180° pulse length can be 

conveniently optimised using one-dimensional DQF-STMAS experiments, 

making use of the identical nature of the first two pulses. 

5.4.6 Effect of Varying MAS Frequencies  

 Figure 5.5a,b illustrates the effect of varying spinning frequencies on 

two-dimensional STARTMAS spectra, using simulated 23Na STARTMAS (n = 9) 

spectra under 14.286 and 62.5 kHz spinning, respectively. Under 14286 Hz 

spinning, the STARTMAS isotropic spectral width is given by SWiso = 14286/9 

= 1587 Hz for n = 9, whereas, under 62.5 kHz spinning, SWiso = 6944 Hz. The 

isotropic spectral width is increased by a factor of 4.4 (= 62.5 kHz/14.286 kHz). 

Higher spinning frequencies are thus ideal to minimise the adverse effect of 

severe aliasing, and recent technical developments in high-spinning MAS 

probes and high-quality rotors are advantageous for STARTMAS acquisition. It 

should be noted again that, because of the rotor synchronisation requirements, 

the STARTMAS acquisition window decreases as the spinning frequency 

increases, and the range of CT-selective 180° pulse lengths that can be used 

under fast spinning is severely limited (Subsection 5.4.5). STARTMAS 
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experiments under fast spinning conditions are thus more suitable for 

investigations of nuclei with a large quadrupolar coupling and inevitably at 

high magnetic fields for increased sensitivity. The applicability and limitations 

of STARTMAS experiments under fast spinning conditions are demonstrated in 

this thesis (Subsections 5.5.4 and 5.5.5), using 23Na, 87Rb and 69/71Ga NMR with 

a range of quadrupolar coupling constants (CQ = 1–18 MHz). 

5.4.7 Spectral Analysis 

 In the two-dimensional presentation of STARTMAS spectra, first-order 

broadened anisotropic lineshapes appear in the F2 dimension (typically in MHz 

scale), and corresponding isotropic peaks appear in the F1 dimension (typically 

in kHz scale). Unlike STMAS or MQMAS spectra, the use of centre-of-gravity 

analysis based on the interplay of chemical shift (CS) and quadrupolar shift 

(QS) axes is not useful in extracting quadrupolar parameters from STARTMAS 

spectra because of the magnitude difference in the correlated dimensions of the 

STARTMAS approach. Figure 5.6 schematically illustrates the CS and QS axes 

of STARTMAS spectra. A large uncertainty is expected in the F2 dimension 

upon centre-of-gravity analysis of two-dimensional STARTMAS spectra. In 

addition, accurate extraction of quadrupolar parameters is inherently 

Figure 5.5 Effect of varying spinning frequencies on STARTMAS spectra. Time-domain simulations of 
23Na STARTMAS (n = 9) signals were performed at B0 = 9.4 T under (a) 14286 Hz and (b) 62.5 kHz 
spinning. A single Na site with quadrupolar parameters of CQ = 2.5 MHz and ηQ = 0.7 was used, with a 
CT-selective 180° pulse of 8 µs and a corresponding radiofrequency field strength of 34 kHz. The 
displayed spectral width is 2 MHz in F2 dimension and, for F1 dimension, 1587 Hz (14286 Hz spinning) 
and 6944 Hz (for 62.5 kHz spinning), respectively.  
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complicated owing to the hardware limitation (probe and filter bandwidth) that 

obscures the characteristic anisotropic lineshapes in the F2 dimension, as well as 

that the severe aliasing into very small spectral width in the isotropic F1 

dimension leads to a possible loss of resolution.  

 To extract meaningful quadrupolar parameters from two-dimensional 

STARTMAS spectra, a step-by-step analysis is proposed in this thesis, as 

follows. Step 1: From conventional MAS spectra and the F2 dimension of two-

dimensional STARTMAS spectra, a rough estimate of quadrupolar parameters 

(δCS, CQ and ηQ) is obtained. Step 2: A series of one-dimensional STARTMAS 

isotropic spectra (F1) are simulated for the estimated range of δCS and CQ, and 

then compared with experimental isotropic spectra, yielding a set of δCS and CQ 

value of best fit (by means of a simple maximum point search). Step 3: Using 

the best-fit set of δCS and CQ, one-dimensional, first-order broadened F2 

lineshapes are simulated for the estimated range of ηQ, and then compared with 

the experimental F2 lineshape, yielding a value ηQ of best-fit. Step 4: Finally, a 

two-dimensional STARTMAS spectrum is simulated to confirm the agreement 

between the simulated and experimental STARTMAS spectra in both the F2 and 

F1 dimension. In the following subsections, the spectral analysis is illustrated 

with respect to the (i) anisotropic F2 dimension and (ii) isotropic F1 dimension, 

using 23Na STARTMAS spectra of NaNO2 (single site, CQ = 1.1 MHz, ηQ = 0.1) 

and 87Rb STARTMAS spectra of RbNO3 (three sites, CQ = 1.7–2.0 MHz, ηQ = 0.2–

1.0) for various combinations of quadrupolar parameters. Some precautionary 

notes are also given with respect to (iii) the use of absolute frequency units in 

STARTMAS spectra upon spectral analysis. 

Figure 5.6 Schematic illustration of chemical shift (CS) and quadrupolar shift (QS) axes for two-
dimensional presentation of STARTMAS spectra. 
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(i) Anisotropic F2 dimension 

 The first-order broadened anisotropic satellite-transition lineshape in the 

F2 dimension of two-dimensional STARTMAS spectra contains invaluable 

information on the magnitude and asymmetry of the quadrupolar interaction. 

Figure 5.7 displays four sets of simulated and experimental spectra of the first-

order broadened ST lineshape, using quadrupolar parameters for a single site of 

NaNO2 and three distinct sites of RbNO3, respectively. For small quadrupolar 

coupling (< 2 MHz), the expected ST lineshape is obtained without loss of 

singularity or spectral distortion. This may not be the case, however, for larger 

quadrupolar coupling, and the resultant lineshape may appear as a broad, 

featureless peak (for example, Rb2SO4 (CQ = 2.5–5.3 MHz) in Figure 5.15), 

making it difficult to extract information on quadrupolar parameters 

exclusively from the STARTMAS spectra. The first-order quadrupolar 

interaction is independent of the external field strength, and it is the hardware 

setup, such as the finite pulse length and the limited probe and filter bandwidth, 

that precludes the acquisition of an undistorted first-order broadened lineshape. 

For large quadrupolar coupling, a rough estimate of the possible range of 

quadrupolar parameters (δCS, CQ and ηQ) needs to be obtained with the aid of 

one-dimensional MAS spectra that exhibit second-order broadened CT 

lineshape. The estimated range of possible quadrupolar parameters is then 

utilised to extract a set of quadrupolar parameters upon subsequent spectral 

analysis of two-dimensional STARTMAS spectra.  

(ii) Isotropic F1 dimension 

 Figure 5.8 shows a series of STARTMAS isotropic spectra at B0 = 9.4 T 

under 14286 Hz spinning simulated for the possible range of quadrupolar 

parameters (CQ and δCS) of NaNO2 and RbNO3. Experimental STARTMAS 

isotropic spectra are then compared to the series of simulated spectra to yield a 

set of quadrupolar parameters of best-fit. In an analogous manner to the well-

known STMAS approach, the two overlapping Rb signals (Figure 5.8c) have 

different ST lineshapes along the F2 dimension (Figure 5.7b), and consequently 

all three Rb sites are resolved in the two-dimensional STARTMAS spectrum.  
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 Owing to the aliasing of isotropic peaks into a small effective spectral 

width (SWiso = 14286/9 = 1587 Hz in Figure 5.8a–c), the presence of multiple 

sites inevitably complicates the appearance of isotropic spectra, and an 

appropriate offset position may need to be determined upon signal acquisition 

(Subsection 5.4.4). Experimental observations as to when aliasing occur for 

which peaks may be found useful in extracting accurate quadrupolar 

Figure 5.7 Experimental and simulated lineshapes in the F2 dimension of two-dimensional STARTMAS 
spectra for various combinations of quadrupolar parameters: (a) 23Na STARTMAS (n = 9) spectrum of 
sodium nitrite (NaNO2) and (b) 87Rb STARTMAS (n = 9) spectrum of rubidium nitrate (RbNO3) at B0 = 
9.4 T under 14286 Hz spinning. The displayed spectral width is 2 MHz. 
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parameters. As demonstrated in the series of isotropic STARTMAS spectra 

(Figure 5.8), even a very small change in the quadrupolar parameters results in 

an obvious frequency shift in the isotropic dimension. This consequently leads 

to an apparently different point of aliasing, contributing to an increase in the 

accuracy of extracted quadrupolar parameters. Alternatively, higher spinning 

frequencies may be preferably used for the ease of spectral analysis in the 

isotropic dimension. 

 (iii) Absolute frequency units 

 In this thesis (and all the existing studies),73,74 two-dimensional 

STARTMAS spectra are plotted in frequency units (Hz), rather than in ppm 

scale. Two reasons behind the use of frequency units are (i) the F2 spectral 

width is as large as a few MHz, making the conversion to ppm scale 

insignificant and (ii) owing severe aliasing in the F1 dimension, the isotropic 

peaks do not necessarily appear at the expected position, making the use of 

ppm scale misleading (this can also occur in STMAS or MQMAS spectra). 

Reproducibility issues may arise with respect to the appearance of two-

dimensional STARTMAS spectra, especially right after N2 filling, during which 

Figure 5.8 A series of isotropic 23Na and 87Rb STARTMAS spectra simulated at B0 = 9.4 T under 14286 
Hz spinning, along with experimental isotropic 23Na and 87Rb STARTMAS spectra of sodium nitrite 
(NaNO2) and rubidium nitrate (RbNO3). The displayed spectral width is 1587 Hz. 
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momentary fluctuations of the external magnetic field alter the position of 

isotropic peaks. This slight fluctuation in the external magnetic field is more 

pronounced in STARTMAS spectra than in STMAS or MQMAS spectra, owing 

to the very small effective spectral width in the isotropic dimension. In the 

STARTMAS signal simulations used as a part of the spectral analysis, a fixed 

Larmor frequency is used as an input parameter, assuming a constant external 

field strength, and thus a small fluctuation in the external field inevitably gives 

rise to an increase in the uncertainty of the extracted quadrupolar parameters. 

In addition, the absolute frequency of a reference compound needs to be 

explicitly stated as an input parameter in the simulation code. It is, therefore, 

prerequisite to obtain a reference frequency experimentally (as in STMAS or 

MQMAS spectra), prior to or right after STARTMAS acquisition, to perform 

subsequent spectral analysis on two-dimensional STARTMAS spectra. 

5.5 Sensitivity Enhancement of STARTMAS NMR 

 Although the STARTMAS approach produces two-dimensional spectra 

in much shorter time than STMAS experiments, the sensitivity of STARTMAS 

signals may not be any better than that of STMAS signals. This is because both 

methods utilise satellite-transition (ST) coherences created by an initial hard 

pulse, and the sensitivity is dependent on the excitation efficiency of ST 

coherences under the effect of large first-order quadrupolar interactions. Since 

the first-order quadrupolar interaction is independent of the external field 

strength, the sensitivity limiting factor is the hardware setup, such as the finite 

pulse length and the limited probe and filter bandwidth, which prevents an 

efficient excitation of ST spinning sidebands in both STMAS and STARTMAS 

approaches. Sensitivity enhancement of ST coherences was investigated in this 

thesis (Chapter 4) in the context of DQF-STMAS experiments with respect to (i) 

an efficient excitation of first-order broadened ST lineshape by the use of two 

pulses in a rotor-synchronised manner and (ii) a population transfer from 

central-transition (CT) coherences. In this section, the enhancement schemes are 

demonstrated to be compatible with the STARTMAS pulse sequence. 

Experimental STARTMAS investigations are performed at B0 = 9.4 T under 
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14286 Hz and B0 = 20.0 T under 62.5 kHz spinning, and 23Na, 87Rb and 69/71Ga 

NMR of inorganic crystalline compounds are employed for a range of 

quadrupolar coupling (CQ = 0.6–17.8 MHz). The applicability and limitations of 

the proposed enhancement schemes are discussed in the context of STARTMAS 

experiments, with a particular focus on the interplay between spinning 

frequencies, the magnitude of quadrupolar coupling, and external field 

strengths, as revealed in the context of DQF-STMAS experiments (Section 4.3). 

5.5.1 Sensitivity Enhancement Schemes 

 Figure 5.9 displays the modified STARTMAS pulse sequences based on 

Figure 5.9 The STARTMAS pulse sequence combined with sensitivity enhancement schemes: (a) 
conventional, (b) two-pulse excitation, (c) application of CT-selective 90° pulse, (d) two-pulse ST 
excitation and application of CT-selective 90° pulse. 
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the efficient excitation of ST spinning sidebands by the two-pulse excitation in a 

rotor-synchronised manner (“D2p1”) and application of a CT-selective 90° 

pulse followed by a non-selective pulse (“R”) that results in a theoretical 

enhancement of 10.5%. The combination of the two-pulse excitation and the CT 

population transfer (“R + D2p1”) is expected to yield the largest sensitivity 

enhancement, as observed in the context of DQF-STMAS experiments.  

5.5.2 23Na and 87Rb STARTMAS at B0 = 9.4 T under 14286 Hz Spinning 

 At B0 = 9.4 T under 14286 Hz spinning, 23Na and 87Rb STARTMAS 

investigations were performed on NaNO2 (CQ = 1.1 MHz), Na2HPO4 (CQ = 1.3–

3.8 MHz), RbNO3 (CQ = 1.7–2.0 MHz) and Rb2SO4 (CQ = 2.5–5.3 MHz). 

(i) 23Na STARTMAS at B0 = 9.4 T under 14286 Hz Spinning 

 Figure 5.10 displays a series of 23Na STARTMAS spectra of NaNO2 

recorded using the proposed sensitivity enhancement schemes at B0 = 9.4 T 

under 14286 Hz spinning. With the use of high B1 field strengths (ν1 > 100 kHz), 

expected signal enhancement (10–17%) was observed in the isotropic dimension 

of two-dimensional STARTMAS spectra. This is consistent with the theoretical 

prediction and the experimental observation made for relatively small CQ 

values in the context of DQF-STMAS experiments (Subsection 4.3.3). 

Comparison of the F2 dimension of two-dimensional STARTMAS spectra 

reveals that the ST lineshape spreads over 1 MHz, and that the use of 

conventional single-pulse (“Conventional”) fails to excite the spectral region 

towards the edges of the ST lineshape. This region is unambiguously excited 

when the two-pulse excitation scheme (“D2p”) is employed, confirming that the 

signal enhancement observed in the isotropic dimension originates from the 

efficient excitation of the ST lineshape. This efficient excitation of the ST 

lineshape is also evident upon CT coherence manipulation (“R”), in which the 

optimum pulse length is shortened from 90° to 54.7°, leading to an effective 

excitation of a larger spectral region. On comparison with the simulated ST 

lineshape in Figure 5.7a, the proposed enhancement schemes successfully 

reproduce the expected ST lineshape, especially the singularities towards the 
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edges of the ST lineshape, enabling an accurate extraction of asymmetry 

parameters. 

(ii) 87Rb STARTMAS at B0 = 9.4 T under 14286 Hz spinning 

 Figure 5.11 displays a series of 87Rb STARTMAS spectra of RbNO3 

recorded using the proposed sensitivity enhancement schemes at B0 = 9.4 T 

under 14286 Hz spinning. The isotropic dimension reveals the expected signal 

enhancement (16–35%) with the use of high B1 field strengths (ν1 > 100 kHz). 

Although an F2 projection is shown in Figure 5.11 to display the overall 

enhancement, F2 cross-section can be extracted to yield asymmetry parameters 

for each of three Rb sites (as demonstrated in Figure 5.7). As in the 23Na 

STARTMAS spectra of NaNO2, efficient excitation of the ST lineshape was 

achieved especially for the region towards the edge of the ST lineshape, and the 

largest enhancement was obtained by the combination of the two-pulse 

excitation and application of a CT-selective 90° pulse.  

Figure 5.10 Experimental 23Na STARTMAS (n = 9) spectra of sodium nitrite (NaNO2) recorded at B0 = 
9.4 T under 14286 Hz spinning using the pulse sequences in Figure 5.9. The displayed spectral width is 
2 MHz in F2 dimension and 1587 Hz in F1 dimension. In the F2 projection of (b–d), the lineshape from 
(a) is overlaid (dashed lines). 1024 transients were averaged with a recycle interval of 0.5 s. Total 
experimental time was 9 mins for each experiment. ST excitation pulse lengths of 0.8–2.6 µs (ν1 ≈ 110 
kHz) and CT-selective 90° and 180° pulse lengths of 11 and 20 µs (ν1 ≈ 12.5 kHz) were used, 
respectively. 
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 (iii) Numerical results of sensitivity enhancement schemes 

 Figure 5.12 summarises the numerical results obtained under the 

proposed sensitivity enhancement schemes from the 23Na STARTMAS spectra 

of NaNO2 and 87Rb STARTMAS spectra of RbNO3 at B0 = 9.4 T under 14286 Hz 

spinning, with respect to (i) absolute signal intensity and (ii) enhancement 

factor, respectively. In consistent with the experimental results obtained in the 

context of DQF-STMAS approaches (Figure 4.8), the absolute signal intensity 

decreases as the applied field strength decreases, and there is a cross-over at 

which the use of sensitivity enhancement schemes at lower B1 field strengths 

results in a larger signal intensity than that of conventional acquisition at higher 

B1 field strengths. It should be noted that, for a given B1 field strength, the 

enhancement factor obtained from isotropic STARTMAS spectra (Figure 

5.12c,d) is not as large as that obtained using the corresponding DQF-STMAS 

spectra (Figure 4.8c,d). The discrepancy in the enhancement factor between 

DQF-STMAS and STARTMAS signals is likely to be attributed to the difference 

Figure 5.11 Experimental 87Rb STARTMAS (n = 9) spectra of rubidium nitrate (RbNO3) recorded at B0 = 
9.4 T under 14286 Hz spinning using the pulse sequences in Figure 5.9. The displayed spectral width is 
2 MHz in F2 dimension and 1587 Hz in F1 dimension. In the F2 projection of (b–d), the lineshape from 
(a) is overlaid (dashed lines). 1024 transients were averaged with a recycle interval of 0.5 s. Total 
experimental time was 9 mins for each experiment. ST excitation pulse lengths of 0.8–1.8 µs (ν1 ≈ 100 
kHz) and CT-selective 90° and 180° pulse lengths of 11 and 22 µs (ν1 ≈ 11 kHz) were used, respectively. 
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in the manner in which the two-dimensional signals are obtained. In two-

dimensional STMAS experiments, signal averaging is performed for each row 

of t1 until the desired resolution is achieved in the isotropic dimension 

(typically 48–256 t1 rows). In STARTMAS experiments, on the contrary, signal 

averaging is performed on a series of STARTMAS echoes that already give rise 

to the desired resolution (all rows in t1 simultaneously). The number of 

occasions at which the two-pulse excitation and CT-coherence manipulation 

can take place (i.e. the beginning of pulse sequence) is inevitably reduced in 

STARTMAS acquisition, resulting in a smaller enhancement factor than that of 

the STMAS equivalent. This is, however, the very fundamental principle by 

which a significant time-saving is achieved in the STARTMAS approach and 

should not necessarily be regarded as adverse.  

Figure 5.12 Plots of STARTMAS isotropic signal intensity and enhancement factor as a function of 
applied field strengths. The pulse sequences in Figure 5.9 were used for (a,c) 23Na STARTMAS (n = 9) 
of sodium nitrite (NaNO2) and (b,d) 87Rb STARTMAS (n = 9) of rubidium nitrate (RbNO3) at B0 = 9.4 T 
under 14286 Hz spinning. 1024 transients were averaged with a recycle interval of 0.5 s. The optimum 
pulse length for the ST excitation pulse was extrapolated from the DQF-STMAS equivalent, and CT-
selective 90° and 180° pulse lengths of (a,c) 11 and 20 µs (ν1 ≈ 12.5 kHz) and (b,d) 11 and 22 µs (ν1 ≈ 11 
kHz) were used. For RbNO3, the result from one of the three Rb sites (CQ = 2.0 MHz, ηQ = 0.9, and δiso = 
−28 ppm) is displayed. 
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 In the sensitivity enhancement investigations performed in the context of 

DQF-STMAS experiments (Subsection 4.3.4), any Na or Rb sites with CQ > 2 

MHz resulted in no enhancement upon two-pulse excitation of ST coherences at 

B0 = 9.4 T under 14286 Hz spinning, despite that the application of a CT-

selective 90° pulse followed by a non-selective pulse did produce the expected 

enhancement (up to 25%). This enhancement dependence on the magnitude of 

CQ was also observed in the analogous set of 23Na and 87Rb STARTMAS spectra 

(not shown) recorded on NaNO2 (CQ = 1.1 MHz), Na2SO4 (CQ = 2.5 MHz), 

NaC2O4 (CQ = 2.5 MHz), NaH2PO4 (CQ = 1.6–2.4 MHz), Na2HPO4 (CQ = 1.3–3.8 

MHz), RbNO3 (CQ = 1.7–2.0 MHz) and Rb2SO4 (CQ = 2.5–5.3 MHz). Any Na or 

Rb sites with CQ > 2 MHz resulted in no enhancement of STARTMAS signals 

upon two-pulse excitation at B0 = 9.4 T under 14286 Hz spinning (Further 

investigations in Subsection 5.5.4). 

5.5.3 69/71Ga STARTMAS at B0 = 9.4 T under 14286 Hz Spinning 

 Gallium has two NMR-active isotopes, 71Ga (I = 3/2, ν0 = 122.03 MHz at 

B0 = 9.4 T, 40% natural abundance) and 69Ga (I = 3/2, ν0 = 96.04 MHz at B0 = 9.4 

T, 60% abundance). Both isotopes have good sensitivity like 23Na and 87Rb 

nuclei, and the difference in the quadrupolar moment (Q = 10.7 fm2 for 71Ga 

and Q = 17.1 fm2 for 69Ga)135 makes the comparison of second-order 

quadrupolar-broadened 69/71Ga NMR spectra equivalent to performing a multi-

field study on one of the isotopes.136 The use of 69/71Ga NMR thus has a great 

potential as a structural investigation tool in materials science, and high-

resolution methods such as MQMAS, STMAS and STARTMAS are necessary 

for complete spectral analysis of half-integer quadrupolar 69/71Ga nuclei. 

(i) 69/71Ga MAS and DQF-STMAS at B0 = 9.4 T under 14286 Hz spinning 

 At B0 = 9.4 T under 14286 Hz spinning, 69/71Ga NMR investigations were 

performed using Ga2(SO4)3 as a model compound. Prior to STARTMAS 

acquisition, 69/71Ga MAS and DQF-STMAS spectra were recorded, using a 

conventional single-pulse and a split-t1 phase-modulated shifted-echo DQF-

STMAS pulse sequence (Figure 3.7e). Figure 5.13a–d displays the one-
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dimensional 69/71Ga MAS and two-dimensional 69/71Ga DQF-STMAS spectra of 

Ga2(SO4)3 acquired at B0 = 9.4 T under 14286 Hz spinning. For 71Ga NMR, the 

iterative fitting of the second-order broadened CT lineshape in the one-

dimensional MAS spectrum and the centre-of-gravity analysis of the two-

dimensional 71Ga DQF-STMAS spectrum yielded a consistent set of 

quadrupolar parameters, as summarised in Table 5.1 (the end of the chapter) 

along with the quadrupolar parameters reported in previous studies. It should 

be noted that the magnitude of CQ obtained from the Ga2(SO4)3 sample in this 

study (CQ = 0.6–4.2 MHz) is twice as large as that of the previous study (CQ = 0–

1.9 MHz).133 This is possibly because of the different extent of hydration in the 

Ga2(SO4)3 powder samples used in NMR investigations. Gallium sulfates are 

hygroscopic, and, in the previous study, dehydration was ensured (heated to 

100°C)133 prior to NMR measurements, whereas no dehydration was performed 

in this study. Since a well-defined second-order CT lineshape was obtained 

from the as-purchased sample used in this study, the sample was retained for 

further investigations without dehydration (in fact, large CQ values were 

preferably sought for the subsequent high-field (B0 = 20.0 T) experiments, and, 

in hindsight, large CQ values also contributed to variations in CQ to demonstrate 

the applicability and limitations of STMAS and STARTMAS approaches).  

 For 69Ga NMR, the magnitude of quadrupolar coupling is expected to be 

1.6 times as large as that of 71Ga equivalent (Q(69Ga)/Q(71Ga) = 1.6), and this 

was confirmed by the one-dimensional 69Ga MAS spectrum of Ga2(SO4)3 in 

Figure 5.13b, yielding a consistent set of quadrupolar parameters (note that the 

larger CQ site is only visible upon expansion of the relevant region, owing to the 

significant difference in the magnitude of CQ). The set of 69Ga quadrupolar 

parameters is summarised in Table 5.1 (the end of the chapter) along with the 

quadrupolar parameters reported in previous studies. As in 71Ga NMR, the 

magnitude of quadrupolar coupling observed in this study (CQ = 0.9–6.4 MHz) 

is twice as large as the reported values in the previous study (CQ = 0–2.9 

MHz).133 In the 69Ga DQF-STMAS spectrum of Ga2(SO4)3 recorded at B0 = 9.4 T 

under 14286 Hz spinning (Figure 5.13d), the large CQ site (CQ = 6.4 MHz) is 

absent, implying that there is a limit in the magnitude of CQ that can be 
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exploited in shifted-echo STMAS acquisition. The limit in CQ exists presumably 

because of the loss of signal intensity during the echo delay (typically a few 

hundred µs to a few ms) or during the rotor-synchronised evolution period (τR 

= 1/(14286 Hz) = 70 µs for STMAS, for example) inherent in STMAS approaches 

to refocus the large first-order quadrupolar broadening. Considering that the 

large Rb site (CQ = 5.3 MHz) was unambiguously observed in 87Rb DQF-STMAS 

spectra of Rb2SO4 at B0 = 9.4 T under 14286 Hz spinning (supplied in Appendix 

K), the limit of shifted-echo STMAS acquisition in terms of the magnitude of CQ 

Figure 5.13 (a,c,e) 71Ga and (b,d,f) 69Ga MAS, STMAS and STARTMAS (n = 9) spectra of gallium sulfate 
(Ga2(SO4)3) recorded at B0 = 9.4 T under 14286 Hz spinning. In (a,b), (a) 8 and (b) 1024 transients were 
averaged with a recycle interval of 0.5 s. The displayed spectral width is (a) 18 kHz and (b) 14 kHz. In 
(c,d), double-quantum filtered (DQF) version of split-t1 phase-modulated STMAS pulse sequence was 
used. (a) 1024 and (b) 512 transients were averaged with a recycle interval of 0.5 s for each of (c) 70 and 
(d) 134 t1 increments of 132.22 µs. An echo delay was chosen to be (c) 500 µs and (d) 6 ms (to minimise 
signal truncation for the small CQ site as the absence of the large CQ site was confirmed by several 
attempts using short echo delays). Total experimental time was (c) 10 hrs and (d) 10.5 hrs. In (e,f), 2048 
transients were averaged with a recycle interval of 0.5 s. Total experimental time was 19 mins for each 
spectrum. The displayed spectral width is 2 MHz in the F2 dimension and 1587 Hz in the F1 dimension. 
ST excitation pulse lengths of (c,e) 1.4 µs (ν1 ≈ 125 kHz) and (d,f) 2.6 µs (ν1 ≈ 100 kHz) and CT-selective 
90° and 180° pulse lengths of (c,e) 2.75 and 5.5 µs (ν1 ≈ 62.5 kHz) and (d,f) 10 and 20 µs (ν1 ≈ 12.5 kHz) 
were used, respectively.  
 
 
 
 



 

154 

 

is likely to lie above CQ = 5.3 MHz but below CQ = 6.4 MHz at B0 = 9.4 T under 

14286 Hz spinning, assuming that there is no additional interaction that gives 

rise to rapid dephasing of ST echoes in Ga2(SO4)3. 

(ii) 69/71Ga STARTMAS at B0 = 9.4 T under 14286 Hz spinning 

 Figure 5.13e,f displays 69/71Ga STARTMAS spectra of Ga2(SO4)3 recorded 

at B0 = 9.4 T under 14286 Hz spinning. Only a single peak was observed in each 

of the 69/71Ga STARTMAS spectra for different reasons. In the 71Ga STARTMAS 

spectrum (Figure 5.13e), the larger CQ site (CQ = 4.9 MHz) is present as a single 

peak while the smaller CQ site (CQ = 0.6 MHz) is significantly broadened, 

causing a baseline distortion. This is because of the inefficient conversion 

between DQ and ST coherences for small CQ values, and this is, in fact, evident 

in the series of simulated 23Na STARTMAS spectra (Figure 5.8) for a range of CQ 

values, in which a significant broadening is observed for CQ less than 1 MHz. 

To minimise the adverse broadening effect due to the presence of small CQ sites, 

a short CT-selective 180° pulse (ν1 ≈ 62.5 kHz) was chosen to be more selective 

for large CQ values upon acquisition of the 71Ga STARTMAS spectrum of 

Ga2(SO4)3 in Figure 5.13e. In the 69Ga STARTMAS spectrum (Figure 5.13f), on 

the contrary, only the smaller CQ site (CQ = 0.9 MHz) appears as a single peak 

while the larger CQ site (CQ = 6.4 MHz) is absent. This is because of the severe 

dephasing of isotropic echoes during the first STARTMAS cycle (τ = 70 × 9 = 

630 µs), in consistent with the observation that the large CQ site is absent in the 

corresponding 69Ga DQF-STMAS spectra (Figure 5.13d). For the best sensitivity, 

a long CT-selective 180° pulse (ν1 ≈ 12.5 kHz) was chosen to be optimum for the 

small CQ site upon acquisition of the 69Ga STARTMAS spectrum of Ga2(SO4)3.  

 The sensitivity enhancement schemes were also tested using 69/71Ga 

STARTMAS experiments of Ga2(SO4)3 performed at B0 = 9.4 T under 14286 Hz 

spinning (spectra not shown). Upon application of a CT-selective 180° pulse 

(“R”), the 71Ga STARTMAS signals yielded the expected enhancement factor 

(17%) for the observable site (CQ = 4.2 MHz), whereas no enhancement was 

observed upon two-pulse excitation (“D2p”) because of the rapid dephasing of 

ST echoes for this large CQ site. The 69Ga STARTMAS signals yielded only a 

marginal enhancement (a few %) as expected for the significantly small CQ site 
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(CQ = 0.9 MHz). These observations in the 69/71Ga STARTMAS spectra of 

Ga2(SO4)3 are consistent with the observation made in the context of 23Na and 

87Rb STARTMAS investigations performed under the proposed enhancement 

schemes at B0 = 9.4 T under 14286 Hz spinning (Subsection 5.5.2). 

5.5.4 23Na and 87Rb STARTMAS at B0 = 20.0 T under 62.5 kHz Spinning 

 In the STARTMAS investigations performed at B0 = 9.4 T under 14286 Hz 

spinning (Subsections 5.5.2 and 5.5.3), the success in STARTMAS signal 

acquisition and sensitivity enhancement was observed to be dependent on the 

magnitude of quadrupolar broadening, and the loss of signal was proposed to 

be due to the dephasing of ST echoes during the rotor-synchronised evolution 

period. To confirm the dependence on the magnitude of quadrupolar coupling 

constant and spinning frequency, further STARTMAS experiments were 

performed at B0 = 20.0 T under 62.5 kHz spinning, for a similar set of 

compounds with a range of quadrupolar coupling constants. 23Na, 87Rb and 

69/71Ga NMR investigations were performed on Na2HPO4 (CQ = 1.3–3.8 MHz), 

RbNO3 (CQ = 1.7–2.0 MHz), Rb2SO4 (CQ = 2.5–5.3 MHz), Ga2(SO4)3 (CQ = 0.6–6.4 

MHz). An additional sample, a 1:1 molar mixture of α-Ga2O3 and β-Ga2O3 (CQ = 

8.2–17.8 MHz), was employed to test the limit of CQ that can be exploited in 

STMAS and STARTMAS acquisitions at B0 = 20.0 T under 62.5 kHz spinning. 

(i) 21Na STARTMAS at B0 = 20.0 T under 62.5 kHz spinning 

 Figure 5.14 displays a series of 23Na STARTMAS spectra of Na2HPO4 (CQ 

= 1.3–3.8 MHz) recorded at B0 = 20.0 T under 62.5 kHz spinning using the 

proposed sensitivity enhancement schemes. It should be noted that the two Na 

sites with small CQ values (CQ = 1.4–2.1 MHz) and similar δiso values (δiso = 5.0–

6.0 ppm) coincide at B0 = 20.0 T and appear as a single peak (as observed in the 

corresponding 23Na DQF-STMAS spectrum, supplied in Appendix M). The 

peak intensity in the isotropic dimension appears higher for the larger CQ site 

than for the small CQ sites because of the inefficient conversion between DQ 

and ST coherences for small CQ sites. Using the proposed sensitivity 

enhancement schemes, signal enhancement of 18–64% was observed in the 
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isotropic dimension using the highest B1 field strength attainable (ν1 ≈ 100 kHz) 

for 23Na nuclei. Comparison of the F2 dimension reveals that the ST lineshape 

spreads more than 1 MHz for the smaller CQ sites and nearly 2 MHz for the 

large CQ site. The use of the two-pulse excitation (“D2p”) resulted in an efficient 

excitation of the ST lineshape, especially the spectral region towards the edges 

of the ST lineshape. The CT-coherence manipulation (“R”) also succeeded in an 

effective excitation of a larger spectral width. As expected, the largest 

enhancement was observed by the combined use of the two-pulse excitation 

and application of a CT-selective pulse (“R + D2p”). For the large CQ sites (CQ = 

2.1–3.7 MHz), the two-pulse excitation in a rotor-synchronised manner had 

resulted in no enhancement at B0 = 9.4 T under 14286 Hz spinning (Subsection 

5.5.2), whereas an apparent enhancement was observed at B0 = 20.0 T under 

62.5 kHz spinning. This is because the loss of signal during one rotor period is 

less pronounced under 62.5 kHz spinning (τR = 1/62.5 kHz = 16 µs) than under 

14286 Hz spinning (τR = 1/14286 Hz = 70 µs), in good agreement with the 

Figure 5.14 Experimental 23Na STARTMAS (n = 18) spectra of sodium phosphate dibasic (Na2HPO4) 
recorded at B0 = 20.0 T under 62.5 kHz spinning using the pulse sequences in Figure 5.9. The displayed 
spectral width is 2 MHz in F2 dimension and 3472 Hz in F1 dimension. In the F2 slices of (b–d), the 
lineshape from (a) is overlaid (dashed lines). 256 transients were averaged with a recycle interval of 3 s. 
Total experimental time was 12 mins for each experiment. ST excitation pulse lengths of 0.6–1.4 µs (ν1 ≈ 
100 kHz) and CT-selective 90° and 180° pulse lengths of 4 and 8 µs (ν1 ≈ 28 kHz) were used, 
respectively. 
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observation made in the context of DQF-STMAS experiments (Subsection 4.3.3). 

(ii) 87Rb STARTMAS at B0 = 20.0 T under 62.5 kHz spinning 

 Figure 5.15 displays a series of 87Rb STARTMAS spectra of Rb2SO4 (CQ = 

2.5–5.3 MHz) recorded at B0 = 20.0 T under 62.5 kHz spinning using the 

proposed sensitivity enhancement schemes. In the isotropic dimension, signal 

enhancement of 14–28% was observed for the small CQ site (CQ = 2.5 MHz) 

while signal enhancement of 39–97% was observed for the large CQ site (CQ = 

5.3 MHz), using the highest B1 field strength attainable (ν1 ≈ 110 kHz) for 87Rb 

nuclei. At B0 = 9.4 T under 14286 Hz spinning (Subsection 4.3.3), the use of two-

pulse excitation in a rotor-synchronised manner resulted in no enhancement, 

whereas an apparent enhancement was observed at B0 = 20.0 T under 62.5 kHz 

spinning. This is consistent with the observation made in the 23Na STARTMAS 

investigations of Na2HPO4. As expected, the largest enhancement was observed 

by the combined use of the two-pulse excitation and application of a CT-

Figure 5.15 Experimental 87Rb STARTMAS (n = 9) spectra of rubidium sulfate (Rb2SO4) recorded at B0 
= 20.0 T under 62.5 kHz spinning using the pulse sequences in Figure 5.9. The displayed spectral width 
is 2 MHz in F2 dimension and 1587 Hz in F1 dimension. In the F2 slices of (b–d), the lineshape from (a) 
is overlaid (dashed lines). 4096 transients were averaged with a recycle interval of 0.5 s. Total 
experimental time was 35 mins for each experiment. ST excitation pulse lengths of 0.6–1.8 µs (ν1 ≈ 110 
kHz) and CT-selective 90° and 180° pulse lengths of 2.5 and 5 µs (ν1 ≈ 42.5 kHz) were used, 
respectively. 
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selective pulse. At B0 = 20.0 T under 62.5 kHz spinning, the rotor-synchronised 

two-pulse excitation of ST spinning sidebands is indeed successful for values of 

CQ as large as 5.3 MHz, resulting in a significant enhancement (up to 97%) of 

isotropic STARTMAS signals. 

5.5.5 69/71Ga STARTMAS at B0 = 20.0 T under 62.5 kHz Spinning 

 To investigate a limit in the magnitude of CQ that can be exploited at B0 = 

20.0 T under 62.5 kHz spinning in (i) a shifted-echo type acquisition (STMAS 

and STARTMAS) and (ii) the rotor-synchronised two-pulse excitation of ST 

spinning sidebands, 69/71Ga NMR experiments were performed at B0 = 20.0 T 

under 62.5 kHz spinning on Ga2(SO4)3 (CQ = 0.6–6.4 MHz) and a 1:1 molar 

mixture of α-Ga2O3 and β-Ga2O3 (CQ = 8.2–17.8 MHz). The 69/71Ga quadrupolar 

parameters obtained in this thesis are all summarised in Table 5.1 (the end of 

chapter) along with the values reported in the existing studies.133,137  

(i) 69/71Ga MAS, DQF-STMAS and STARTMAS of Ga2(SO4)3  

 Figure 5.16a–d displays 69/71Ga MAS and DQF-STMAS spectra of 

Ga2(SO4)3 recorded prior to STARTMAS investigations at B0 = 20.0 T under 62.5 

kHz spinning. The iterative fitting of the second-order broadened CT lineshape 

and centre-of-gravity analysis of the two-dimensional DQF-STMAS spectra 

yielded a consistent set of quadrupolar parameters over the two isotopes (69Ga 

and 71Ga) and two external field strengths (B0 = 9.4 T and 20.0 T) as summarised 

in Table 5.1. In the 69/71Ga MAS spectra, the nutation frequency of the two 

distinct sites was observed to be significantly different at B0 = 20.0 T, owing to 

the scaling factor (ωCT = (I + 1/2)ω1) of the CT nutation frequency126 in the 

presence of quadrupolar interactions (the larger CQ site nutates approximately 

twice as fast as the small CQ site). In the 69/71Ga DQF-STMAS acquisition, the 

echo delay was chosen to be optimum for the large CQ site (τ = 0.5–1.0 ms) for 

best sensitivity, and consequently the smaller CQ site resulted in severe signal 

truncation. The two isotropic peaks in the 69Ga DQF-STMAS spectrum coincide 

at B0 = 20.0 T because of the interplay between chemical shift (CS) and 

quadrupolar shift (QS) in the isotropic dimension (Figure 3.9, Subsection 3.4.6). 



 

159 

 

 Figure 5.16e,f shows 71Ga (n = 18) and 69Ga (n = 9) STARTMAS spectra of 

Ga2(SO4)3, respectively, recorded at B0 = 20.0 T under 62.5 kHz spinning. Only a 

single site is observed in each spectrum for different reasons. In the 71Ga 

STARTMAS spectrum (Figure 5.16e), only the larger CQ site (CQ = 4.9 MHz) is 

present as a single peak, whereas the smaller CQ site (CQ = 0.6 MHz) resulted in 

a significant linewidth broadening, causing a baseline distortion. This is 

because of the inefficient conversion between DQ and ST coherences for small 

CQ values, as described in the context of 69/71Ga NMR investigations at B0 = 9.4 

Figure 5.16 Experimental (a,c,e) 71Ga and (b,d,f) 69Ga MAS, STMAS and STARTMAS (n = 18, 9) spectra 
of gallium sulfate (Ga2(SO4)3) recorded at B0 = 20.0 T under 62.5 kHz spinning. In (a,b), (a) 16 and (b) 64 
transients were averaged with a recycle interval of (a) 0.5 s and (b) 0.2 s. The displayed spectral width 
is (a) 17 kHz and (b) 28.5 kHz. In (c,d), double-quantum filtered (DQF) version of split-t1 phase-
modulated STMAS pulse sequence was used. (a) 128 and (b) 1024 transients were averaged with a 
recycle interval of (c) 0.2 s and (d) 0.5 s for each of (c) 70 and (d) 56 t1 increments of 60.44 µs. An echo 
delay of (c) 1 ms and (d) 500 µs was chosen, respectively. Total experimental time was (c) 0.5 hrs and 
(d) 8.2 hrs. In (e,f), 1024 transients were averaged with a recycle interval of 0.5 s. Total experimental 
time was 9 mins for each spectrum. The displayed spectral width is 2 MHz in the F2 dimension and 
1587 Hz in the F1 dimension. ST excitation pulse lengths of (c,e) 1.4 µs (ν1 ≈ 140 kHz) and (d,f) 1.6 µs (ν1 
≈ 140 kHz), and CT-selective 90° and 180° pulse lengths of (c,e) 3 and 6.5 µs (ν1 ≈ 40 kHz) and (d,f) 2 
and 4 µs (ν1 ≈ 50 kHz) were used, respectively.  
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T (Subsection 5.5.3). In the 69Ga STARTMAS spectrum (Figure 5.16f), on the 

other hand, only the smaller CQ site (CQ = 0.9 MHz) appears as a single peak 

while the larger CQ site (CQ = 6.4 MHz) is seemingly absent. This is because of 

the severe baseline distortion due to the presence of the small CQ site, hindering 

the observation of the larger CQ site. 

 The sensitivity enhancement schemes were also tested using 69/71Ga 

STARTMAS signals of Ga2(SO4)3 at B0 = 20.0 T under 62.5 kHz spinning  

(spectra not shown). With the use of highest B1 field strength attainable (ν1 ≈ 

140 kHz) for 69/71Ga nuclei, only a slight signal enhancement (a few %) was 

observed in the isotropic dimension, despite that the F2 lineshape did show a 

sign of efficient excitation of a larger spectral region, and also that the 

corresponding one-dimensional DQF-STMAS spectra (second-order broadened 

CT lineshape) did result in a significant signal enhancement (30–50%) upon 

application of the proposed enhancement schemes. The apparent loss of 

enhancement in the isotropic STARTMAS signals is due to the severe baseline 

distortion in the presence of particularly small CQ sites at high fields, inhibiting 

the quantitative comparison of the isotropic dimension of the 69/71Ga 

STARTMAS spectra of Ga2(SO4)3 recorded at B0 = 20.0 T. 

(ii) 69/71Ga MAS, DQF-STMAS and STARTMAS of α-Ga2O3 and β-Ga2O3  

 Figure 5.17a–h shows a set of experimental and simulated 69/71Ga MAS 

and experimental DQF-STMAS spectra of a 1:1 molar mixture of α-Ga2O3 and β-

Ga2O3 recorded prior to STARTMAS investigations at B0 = 20.0 T under 62.5 

kHz spinning. The iterative fitting of the second-order broadened CT lineshape 

and centre-of-gravity analysis of the two-dimensional DQF-STMAS spectra 

yielded a consistent set of quadrupolar parameters over the two isotopes, as 

summarised in Table 5.1. It should be noted that the largest CQ site (CQ(69Ga) = 

17.8 MHz) is absent in the 69Ga DQF-STMAS spectrum, despite the high 

sensitivity in the conventional MAS spectra (single-pulse and spin-echo, in 

Figure 5.17b,d, respectively). The absence of STMAS signals for the largest CQ 

site is presumably because of the rapid dephasing during the echo delay (50 µs) 

plus the finite length of rotor-synchronised evolution time (τR = 1/(62.5 kHz) = 
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16 µs), making a shifted-echo acquisition unsuitable for large CQ sites. The limit 

of the magnitude of CQ in the shifted-echo STMAS approach is likely to lie 

between CQ = 13.0 and 17.8 MHz at B0 = 20.0 T under 62.5 kHz spinning, 

whereas the limit at B0 = 9.4 T under 14286 Hz spinning was observed to lie 

between CQ = 5.3 and 6.4 MHz (Subsection 5.5.3).  

Figure 5.17 (a–d, g–j) Experimental and (e,f) simulated (a,c,e,g,i) 71Ga and (b,d,f,h,j) 69Ga MAS, STMAS 
and STARTMAS (n = 9) spectra of a 1:1 molar mixture of α- and β-Ga2O3 recorded at B0 = 20.0 T under 
62.5 kHz spinning. In (a–d), 512 transients were averaged with a recycle interval of 3 s. The displayed 
spectral width is (a,c,e) 195 kHz and (b,d,f) 430 kHz. Exponential line broadening of (e) 500 Hz and (f) 
1 kHz was applied. In (g,h), double-quantum filtered (DQF) version of split-t1 phase-modulated 
STMAS pulse sequence was used. (g) 1024 and (h) 512 transients were averaged with a recycle interval 
of 1 s for each of (g) 64 and (h) 24 t1 increments of 30.22 µs. An echo delay of (g) 200 µs and (h) 50 µs 
was chosen, respectively. Total experimental time was (g) 9 hrs and (h) 14.5 hrs. The displayed spectral 
width in the F1 dimension is 33 kHz in (g,h). In (i,j), 2048 transients were averaged with a recycle 
interval of 1 s. Total experimental time was 35 mins for each spectrum. The displayed spectral width is 
2 MHz in the F2 dimension and 6944 Hz in the F1 dimension. ST excitation pulse lengths of (g,i) 1.2 µs 
(ν1 ≈ 140 kHz) and (h,j) 1.2 µs (ν1 ≈ 140 kHz), and CT-selective 180° pulse lengths of (i) 3.5 µs (ν1 ≈ 70 
kHz) and (j) 3 µs (ν1 ≈ 70 kHz) were used.  
 
 
 



 

162 

 

 Figure 5.17i,j displays 69/71Ga (n = 9) STARTMAS spectra of a 1:1 molar 

mixture of α-Ga2O3 and β-Ga2O3 recorded at B0 = 20.0 T under 62.5 kHz 

spinning. In the 71Ga STARTMAS spectrum (Figure 5.17i), two Ga sites with a 

similar quadrupolar coupling (CQ = 8.2–8.4 MHz) and similar chemical shifts 

(δiso = 40–52 ppm) are not resolved and appear as a single peak. This loss of 

resolution is likely to be because of the dephasing of STARTMAS echoes during 

the first STARTMAS cycle (τ = 16 µs × 9 = 144 µs), whereas this is less 

pronounced in the STMAS approach with much shorter ST evolution periods 

(τR = 16 µs). The inevitable use of short CT-selective 180° pulses (3 µs) with high 

B1 field strengths (ν1 ≈ 70 kHz) is more favoured by larger CQ sites, preventing 

the quantitative comparison of signal intensity in the isotropic dimension of the 

71Ga STARTMAS spectrum. A similar behaviour was observed in the 69Ga 

STARTMAS spectrum (Figure 5.17j), in which two peaks with CQ = 13.0 MHz 

are not resolved in the isotropic STARTMAS spectrum. The largest CQ site (CQ = 

17.8 MHz) is absent in the 69Ga STARTMAS spectrum (as in the 69Ga DQF-

STMAS spectrum), owing to the severe dephasing during the first STARTMAS 

cycle. It should be mentioned that, for CQ as large as 8.2 MHz, the F2 cross-

section results in a featureless lineshape due to the limited probe and filter 

bandwidth, making the extraction of asymmetry parameters impractical. This 

necessitates a comprehensive analysis of 69/71Ga MAS and STARTMAS spectra 

to extract a reliable set of quadrupolar parameters. 

 The sensitivity enhancement of 71Ga STARTMAS signals was attempted 

using a 1:1 molar mixture of α-Ga2O3 and β-Ga2O3 at B0 = 20.0 T under 62.5 kHz 

spinning (spectra not shown). No signal enhancement was observed in the 

isotropic dimension, presumably because the rapid dephasing of STARTMAS 

echoes for large CQ sites results in more complicated phasing upon spectral 

processing, consequently making the quantitative comparison unreliable, and 

further investigations using one-dimensional DQF-STMAS spectra revealed 

some practical issues. For the two-pulse excitation in a rotor-synchronised 

manner (“D2p”), the corresponding DQF-STMAS spectra resulted in signal 

enhancement (up to 50%), although the enhancement was observed to be 

dependent on the position of offset. For successful excitation of ST spinning 
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sidebands, the ST spinning sidebands need to be reasonably matched to each 

comb of the pulse excitation profile (Figure 4.4f). Since the second-order 

broadened CT lineshapes of the 1:1 molar mixture of α-Ga2O3 and β-Ga2O3 

spread over 70 kHz (Figure 5.17a), this makes the matching condition highly 

sensitive to the offset position under 62.5 kHz spinning. For the application of a 

CT-selective 90° pulse followed by a non-selective pulse (“R”), the 

corresponding DQF-STMAS spectra also resulted in an expected signal 

enhancement (15%). When the combination of two-pulse excitation and 

manipulation of CT coherence was attempted, only a slight enhancement (10%) 

was observed in the one-dimensional DQF-STMAS spectra, despite that the 

exclusive use of the two-pulse excitation had resulted in a significant 

enhancement (up to 50%). This apparent loss of enhancement is due to the 

limited pulse length that can be practically treated as an effective rectangular 

pulse. The optimum pulse length of conventional single-pulse ST excitation 

steadily decreases as the magnitude of CQ increases (Figure 4.6c). Upon 

application of a CT-selective 90° pulse, the optimum pulse length is reduced to 

60% (= (54.7°/90°) × 100%) of the optimum length of the single pulse excitation 

(Subsection 4.2.5). This is further reduced by a factor of two upon two-pulse 

excitation in a rotor-synchronised manner (Figure 4.6d). With the use of highest 

B1 field strength attainable (ν1 ≈ 140 kHz) for 71Ga nuclei, the optimum pulse 

length was found to be 1.2 µs for single-pulse excitation, 0.6–0.8 µs for two-

pulse excitation, 1.0 µs upon application of a CT-selective 90° pulse, and 0.6 µs 

for the combination of two-pulse excitation and a CT-selective 90° pulse. It is 

likely that the optimum pulse length for the combination of two-pulse 

excitation and a CT-selective 90° pulse is shorter than the observed 0.6 µs, 

which may no longer be considered as an effective rectangular pulse and hence 

resulted in no further signal enhancement.  

5.6 Conclusions 

 Further research on high-resolution STARTMAS NMR of spin I = 3/2 

nuclei was shown, with respect to (i) practical considerations in implementing 
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STARTMAS spectra, (ii) spectral analysis of two-dimensional STARTMAS 

spectra, (iii) sensitivity enhancement of STARTMAS signals and (iv) 

demonstration under fast MAS conditions at high magnetic fields. 

Experimental investigations were performed using 23Na, 87Rb and 69/71Ga NMR 

of inorganic compounds with a range of quadrupolar coupling (CQ = 1–18 

MHz) to evidence the applicability and limitations of STARTMAS approaches 

at B0 = 9.4 T under 14286 Hz spinning and B0 = 20.0 T under 62.5 kHz spinning. 

For optimum sensitivity, an appropriate choice of an offset frequency and CT-

selective 180° pulse lengths was shown to be crucial. To extract quadrupolar 

parameters (δCS, CQ and ηQ) from two-dimensional STARTMAS spectra, a step-

by-step spectral analysis was proposed to be performed with the aid of a series 

of simulated STARTMAS spectra. The signal enhancement schemes, developed 

in the context of DQF-STMAS experiments in this thesis (Chapter 4), were 

shown to be compatible with the STARTMAS pulse sequence and yielded the 

expected enhancement in isotropic STARTMAS spectra. Fast MAS conditions at 

high magnetic field strengths were demonstrated to be ideal for the 

STARTMAS investigations of nuclei with large quadrupolar interactions, 

although there exists a limit in the magnitude of quadrupolar coupling that can 

be exploited in shifted-echo type approaches such as STARTMAS and shifted-

echo STMAS experiments. Further improvements in acquisition and processing 

of STARTMAS signals are envisaged, so that STARTMAS NMR is routinely 

employed as a complementary approach to STMAS or MQMAS NMR in 

materials investigations. 
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Table 5.1 Summary of 69/71Ga quadrupolar parameters of Ga2(SO4), α-Ga2O3 and β-Ga2O3.  
 

 δiso 
(ppm) 

CQ 
/ MHz ηQ δ1 

(ppm) 
δ2 

(ppm) 
δCS 

(ppm) 
δQ 

(ppm) 
PQ 

/MHz 

Ga2SO4         

(i) 71Ga         

('06)133      −87 ± 0.1      0      0     0 

      −98 ± 1   1.9 ± 0.1   0.2 ± 0.2     1.93 ± 0.13  

MAS   −86.8 ± 0.1 0.60 ± 0.05   0.2 ± 0.2     0.61 ± 0.06 

 −100.0 ± 0.2 4.20 ± 0.05   0.3 ± 0.05     4.26 ± 0.07 

STMAS         

9.4 T    −86.4 ± 0.1   −87.2 ± 0.1   −86.7 ± 0.05   1.26 ± 0.32 0.54 ± 0.07 

    −81.5 ± 0.1 −131.5 ± 1.0 −100.0 ± 0.25  78.70 ± 3.15 4.33 ± 0.09 

20.0 T    −86.8 ± 0.1   −87.1 ± 0.1   −86.9 ± 0.04    0.47 ± 0.32 0.67 ± 0.26 

    −96.7 ± 0.1 −107.5 ± 0.1 −100.7 ± 0.06  17.08 ± 0.24 4.28 ± 0.03 

(ii) 69Ga         

('06)133      −87 ± 0.1      0      0     0 

      −98 ± 1   2.9 ± 0.2   0.2 ± 0.2     2.94 ± 0.24 

MAS   −86.7 ± 0.1 0.90 ± 0.02 0.20 ± 0.20     0.91 ± 0.03 

 −100.5 ± 0.5 6.40 ± 0.05 0.30 ± 0.05     6.50 ± 0.08 

STMAS         

9.4 T    −88.7 ± 0.1   −92.2 ± 0.2   −89.99 ± 0.01    5.51 ± 0.47 0.90 ± 0.40 

    N/A N/A N/A N/A N/A 

20.0 T    −86.3 ± 0.1   −87.3 ± 0.2   −86.70 ± 0.01    1.58 ± 0.48 1.01 ± 0.15 

    −85.3 ± 0.1 −126.2 ± 1.0 −100.45 ± 0.30   64.38 ± 1.73 6.55 ± 0.90 

α-Ga2O3         

(i) 71Ga         

('06)133        56 ± 7   8.2 ± 0.1 0.08 ± 0.04     8.21 ± 0.11 

MAS        52 ± 0.5 8.20 ± 0.05 0.10 ± 0.05     8.22 ± 0.06 

STMAS a      66.5 ± 0.1     27.3 ± 1.0     51.98 ± 0.02    61.70 ± 0.31 8.15 ± 0.03  

(ii) 69Ga         

('06)133        50 ± 7 13.0 ± 0.2 0.08 ± 0.04     13.02 ± 0.21 

MAS        52 ± 2 13.0 ± 0.1 0.10 ± 0.05     13.03 ± 0.23 

STMAS a    112.1 ± 0.5   −53.3 ± 5.0     50.84 ± 1.54 260.35 ± 8.66 13.17 ± 0.22 

         

β-Ga2O3         

(i) 71Ga         

('95)137        40   8.3 0.08       8.31 

     200 11.0 0.85     12.25 

('06)133       50 ± 10   8.2 ± 0.1 0.12 ± 0.08       8.23 ± 0.13 

     200 ± 50 11.0 ± 0.5 0.90 ± 0.1     12.42 ± 0.86  

MAS       40 ± 0.5   8.4 ± 0.1 0.10 ± 0.05       8.42 ± 0.11 

     210 ± 1.0 11.0 ± 0.1 0.90 ± 0.05     12.40 ± 0.26 

STMAS a      54.9 ± 0.2   13.7 ± 1.0   39.64 ± 0.09   64.85 ± 0.47   8.35 ± 0.03 

    243.6 ± 0.2 150.7 ± 2.0 209.19 ± 0.61 146.23 ± 3.46 12.54 ± 0.15 

(ii) 69Ga         

('95)137      40 13.4 0.08     13.41 

    200 17.5 0.85     19.49 

('06)133      50 ± 10 13.0 ± 0.2 0.12 ± 0.08     13.05 ± 0.24 

    200 ± 50 17.4 ± 0.8 0.90 ± 0.1     19.65 ± 1.37 

MAS      40 ± 1.0 13.0 ± 0.1 0.10 ± 0.05     13.03 ± 0.12 

    210 ± 5.0 17.8 ± 0.2 0.90 ± 0.10     19.84 ± 0.45 

STMAS a    101.7 ± 0.5 −66.3 ± 5.0 39.48 ± 1.54 264.44 ± 8.66 13.27 ± 0.22 

    N/A N/A N/A N/A N/A 

a 69/71Ga STMAS spectra recorded at B0 = 20.0 T. 
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6.  Natural Abundance 33S STMAS NMR of Ettringite 

6.1 Introduction 

 Despite the prevalence of sulfur in nature and materials science, 33S 

solid-state NMR studies have been relatively inaccessible to experimentalists 

until very recently.138 This scarcity of 33S solid-state NMR studies is mainly due 

to the low natural abundance of 33S nuclei (0.76%). The 33S isotope is the only 

NMR-active isotope of sulfur, and the cost of isotopic enrichments makes the 

use of 33S NMR less appealing compared to the studies of other NMR-active 

nuclei. In addition, owing to the low gyromagnetic ratio (γ) of 33S nuclei, 33S is 

categorised as low-γ nuclei (Larmor frequency (ν0) of 30.7 MHz at B0 = 9.4 T). 

This makes it highly difficult to obtain an acceptable signal-to-noise (S/N) ratio 

even upon acquisition of basic 33S solid-state NMR spectra. Furthermore, 33S is a 

half-integer quadrupolar nucleus (I = 3/2) subjected to anisotropic broadenings 

due to quadrupolar interactions. The presence of large quadrupolar interactions 

additionally hinders the efficient gain of S/N ratio per unit time. Cross 

polarisation (CP),24,25 a well-established sensitivity enhancement technique for I 

= 1/2 systems, has been less frequently applied to I > 1/2 systems owing to the 
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inefficient magnetisation transfer to I > 1/2 nuclei. Recently, high-field NMR 

spectrometers have been developed to advantage to overcome some limitations 

associated with low-γ quadrupolar nuclei. Not only that the intrinsic NMR 

sensitivity increases at higher magnetic fields, but also the significant reduction 

in the linewidth due to the second-order quadrupolar broadening (proportional 

to 1/ν0) makes the use of high magnetic fields particularly advantageous for the 

study of NMR-insensitive half-integer quadrupolar nuclei.  

 The main purpose of this chapter is to demonstrate the feasibility of 

natural abundance 33S STMAS NMR experiments at B0 = 9.4 T and 20.0 T, with a 

particular emphasis on the successful implementation of the STMAS method all 

performed at the natural abundance of 33S nuclei. A thorough review of existing 

33S solid-state NMR studies is firstly given, and technicalities with respect to the 

implementation of 33S STMAS experiments are then discussed. This is followed 

by the application of the 33S STMAS experiment to the structural investigation 

of a cementitious mineral, ettringite (Ca6Al2(SO4)3(OH)12·26H2O). Furthermore, 

following a brief review of CP-MAS NMR, experimental 1H-23Na (I = 3/2) CP-

MAS spectra at B0 = 9.4 T are presented. 1H-33S CP-MAS spectra of hydrous 

sulfates (ettringite, CaSO4·2H2O and AlNH4(SO4)2·12H2O) are then shown, 

which were acquired at B0 = 9.4 and 20.0 T using the suitable experimental 

setup extrapolated from the 1H-23Na CP-MAS results. The 1H MAS and 1H-33S 

CP-MAS behaviour of hydrous sulfates is compared to highlight the difference 

that can be attributed to the presence of dynamics in ettringite. 

6.2 Natural Abundance 33S MAS NMR in Solid State 

 33S solid-state NMR investigations are relatively scarce in quantity, and, 

at the time of writing, only one-dimensional spectra have been reported.138 

Most of the existing 33S solid-state NMR studies were performed at the natural 

abundance of 33S nuclei, strongly reflecting the obstacles associated with 33S 

isotopic enrichments. The earliest 33S solid-state NMR study dates back to 

1968,139 and the subsequent early studies were performed under the influence 

of zero or low magnetic fields on sulfides, such as sphalerite (ZnS) and 
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pyrrhotite (Fe1−xS),139 paramagnetic α–MnS,140 ferromagnetic EuS in 

unenriched141 (and 33S-enriched)142 forms, and ZnS polymorphs.143–145 In 1986, 

Eckert and Yesinowski146 reported an extensive study of static 33S solid-state 

NMR recorded at B0 = 11.74 T on a total of 27 inorganic compounds including 

sulfides, sulfates and alums. Only one more publication revealed, which 

investigated the temperature dependence of static 33S solid-state NMR of H2S,147 

before the first 33S MAS spectrum was reported in 1996.148 In this study, the 

natural abundance 33S MAS spectra were recorded at B0 = 14.1 T on sulfides, 

sulfates and alums. This was followed by intensive 33S MAS NMR studies of 

sulfides149 and sulfates150 recorded at B0 = 17.6 T and thiosulfates at B0 = 14.1 

T.151 Temperature dependence and sign change of 33S quadrupolar coupling 

constants (CQ) were investigated at B0 = 14.1 T in two alums,152 during which 

the spinning sideband manifold of satellite transitions had been observed. 33S 

chemical shift anisotropy (CSA) parameters have also been reported for two 

tetrathiometallates.153 The existing 33S MAS NMR studies performed at 

moderate magnetic field strengths (B0 ≤ 14.1 T) are dominated by the 

investigation of simple inorganic compounds, owing to the ease of recording 33S 

NMR spectra of S sites in a highly symmetric environment with small values of 

CQ. For anhydrous sulfates, long T1 relaxation times have been reported149,150 as 

an additional limiting factor that hinders an efficient signal averaging to 

achieve a reasonable S/N ratio necessary for accurate spectral analysis.  

 During the last decade, the development of sensitivity enhancement 

techniques for half-integer quadrupolar nuclei and the widespread use of high-

field spectrometers have been expanding the use of solid-state 33S NMR as a 

reliable tool for structural investigations. The first high-field 33S NMR study 

was carried out at B0 = 19.6 T on cementitious materials containing 33S nuclei as 

sulfates.154 Central-transition (CT) sensitivity enhancement techniques via 

population transfer have been successfully implemented for 33S nuclei,155,156 and 

observation of three distinct S sites with CQ values of up to 1 MHz was possible 

at B0 = 14.1 T. The quadrupolar Carr Purcell Meiboom Gill (QCPMG) pulse 

sequence is known to achieve high S/N ratio by accumulating signal intensity 

into a sharp spikelet manifold, and, following the success in sensitivity 
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enhancement of 33S-enriched disordered silicates combined with population 

transfer techniques,157 the QCPMG pulse sequence has been commonly 

employed in high-field solid-state 33S NMR studies.157–163 For example, 33S NMR 

signal acquisition using QCPMG pulse sequence at the highest field available 

(B0 = 21.1 T) has enabled the observation of significantly large CQ values (9−16 

MHz) for a single S site at the natural abundance of 33S nuclei.160–162  

 First-principles calculations of 33S NMR parameters accompany most of 

the latest solid-state 33S NMR studies159–164 to predict and guide assignment of 

the experimental spectra. The prior knowledge of the magnitude of 

quadrupolar broadening combined with the signal acquisition at high magnetic 

fields have expanded the range of the magnitude of quadrupolar interactions 

accessible by experimental solid-state 33S NMR. The value of CQ as large as 43 

MHz was predicted and experimentally observed in elemental sulfur (α-S8) 

with the aid of the combination of 33S isotropic enrichment, QCPMG sensitivity 

enhancement and first-principles NMR calculations.161  

 In solid-state NMR of half-integer quadrupolar nuclei with overlapping 

quadrupolar-broadened lineshapes, high-resolution methods such as dynamic 

angle spinning (DAS),32 double rotation (DOR),35 multiple-quantum magic 

angle spinning (MQMAS),37 and satellite transition magic angle spinning 

(STMAS)38 NMR experiments are often performed for complete spectral 

analysis. While the DAS and DOR methods require specialist probes in which 

the accessible range of sample volume, spinning frequencies and 

radiofrequency field strengths is limited, the MQMAS and STMAS experiments 

are performed using conventional MAS probes. The STMAS method is known 

to be difficult to implement,39 owing to the stringent experimental requirements 

for successful acquisition of isotropic spectra. One area where MQMAS 

experiments have had limited applications is the study of low-γ quadrupolar 

nuclei. This is because the efficiency of the reconversion of multiple- to single-

quantum coherences considerably decreases unless high radiofrequency field 

strengths (ν1) are employed,165 which is intrinsically difficult to achieve for low-

γ nuclei. A number of efficient reconversion schemes has been successfully 

implemented, such as double frequency sweep (DFS),102 fast amplitude 
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modulate (FAM-I,103 FAM-II,104 and FAM-N105), soft pulse added mixing 

(SPAM),106 and hyperbolic secant (HS)107 pulses, although the complexity of 

pulse optimisation procedure should be particularly addressed. The STMAS 

method, on the contrary, exhibits intrinsic sensitivity advantage over the 

MQMAS equivalent, owing to the single-quantum nature of satellite transitions. 

Enhancement factors of more than 3 are commonly observed for NMR-sensitive 

nuclei such as 23Na (I = 3/2), 87Rb (I = 3/2) and 27Al (I = 5/2). Previously, the 

suitability of the STMAS method for the study of low-γ nuclei has been 

discussed,90 with the aid of numerical calculations and experimental 

demonstrations using 39K (I = 3/2, ν0 = 18.7 MHz at B0 = 9.4 T, 93% natural 

abundance) and 25Mg (I = 5/2, ν0 = 24.5 MHz at B0 = 9.4 T, 10% natural 

abundance) STMAS experiments at B0 = 9.4 T. The limit to which the sensitivity 

advantage of the STMAS method can be exploited is yet to be determined, by 

means of some extreme case studies, such as 33S at natural abundance (I = 3/2, 

ν0 = 30.7 MHz at B0 = 9.4 T, 0.76% natural abundance). 

6.3 Ettringite 

 Ettringite (Ca6Al2(SO4)3(OH)12·26H2O) is a hydrous sulfate that occurs 

naturally as a mineral and also synthetically during the production of cements. 

Its crystal structure (Figure 6.1) is known from diffraction studies,166–169 and 27Al 

MAS NMR studies170 have been reported previously, which yielded 27Al 

quadrupolar parameters for a single Al site (CQ = 0.36 MHz and ηQ = 0.19). 

Although two crystallographically different Al sites are expected according to 

the diffraction studies, the two Al sites are likely to be indistinguishable owing 

to the small value of CQ (due to the highly symmetric environment of the 

octahedrally coordinated Al sites). There are two existing 33S solid-state NMR 

studies of ettringite,154,155 both of which were acquired at the natural abundance 

of 33S nuclei, one at B0 = 19.6 T using conventional single-pulse acquisition,154 

and the other at B0 = 14.1 T employing a CT sensitivity enhancement 

technique.155 These two studies disagree in the number of crystallographically 

distinct S sites reported: the higher B0 field study simulates a spectrum with a 
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single site154 while the lower B0 field study simulates a spectrum with three S 

sites155 in accordance with the diffraction studies. The main purpose of this 

chapter is to apply the high-resolution 33S STMAS method to ettringite and 

resolve the ambiguity over the number of crystallographically different S sites 

suggested in the existing 33S solid state NMR studies. Additional 1H MAS and 

1H-33S CP-MAS investigations are also performed on ettringite and related 

systems to reveal the possible presence of dynamics in ettringite, which has not 

been addressed previously. 

6.4 Implementing Natural Abundance 33S STMAS NMR Experiments 

 The intrinsic insensitivity of 33S nuclei makes it less attractive compared 

to other NMR-active nuclei. The following subsections describe some technical 

points to consider upon successful implementation of 33S STMAS experiments 

at B0 = 9.4 T and 20.0 T, all performed at the natural abundance of 33S nuclei.  

6.4.1 General Experimental and Computational Details 

 The natural ettringite crystal was part of a mineralogical collection and 

Figure 6.1 Crystal structure of ettringite viewed along (a) the z axis and (b) the y axis, and (c) a 
simplified representation of a unit cell of ettringite displaying three crystallographically distinct S sites 
within the sulfate/water column. The crystallographic data was taken from the existing X-ray powder 
diffraction study (a = 11.229 Å, c = 21.478 Å, α = β = 90.0°, γ = 120.0°, volume = 2345 Å3, 250 atoms in a 
unit cell).168 
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courtesy of Dr John Faithfull (Hunterian Museum, University of Glasgow). The 

identity and purity of the natural sample were confirmed by powder X-ray 

diffraction168 and 27Al MAS NMR experiments170 performed prior to 33S NMR 

investigations. The synthetic ettringite powder sample was courtesy of Mr Luis 

Baquerizo (Holcim Ltd., Switzerland). Powder samples of sodium sulfate 

(Na2SO4, East Anglia Chemicals, 99% purity), potassium sulfate (K2SO4, Sigma 

Aldrich, 99.99% purity), gypsum (CaSO4·2H2O, Sigma Aldrich, 98% purity) and 

aluminum ammonium sulfate dodecahydrate (AlNH4(SO4)2·12H2O, Sigma 

Aldrich, 99% purity) were used as purchased. 

 Solid-state 33S and 85Rb NMR spectra were acquired using Bruker 

Avance spectrometers equipped with B0 = 9.4 and 20.0 T magnets, at Larmor 

frequencies (ν0) of 30.71 and 65.26 MHz (33S), and 38.63 and 82.09 MHz (85Rb), 

respectively. Powdered samples were packed into 4 or 7 mm ZrO2 rotors, and 

conventional MAS probes were employed. Spinning frequencies (νR = 1/τR) of 

14286 Hz and 5–6.4 kHz were used for 4 and 7 mm rotors, respectively. A 

maximum 33S radiofrequency field strength (ν1 = 1/(4τ90°)) of 56 kHz was 

attainable with a 1 kW radiofrequency amplifier (using 33S MAS signal of 

AlNH4(SO4)2·12H2O). A conventional single-pulse and spin-echo (90°–τ1–180°–

τ2) experiments were performed to record one-dimensional 33S MAS spectra. In 

the spin-echo experiment (Figure 6.2a), rotor synchronisation and subtraction of 

receiver dead time (τD) were employed (τ1 = τR − (p1)/2 – (p2)/2 and τ2 = τR − 

(p2)/2 − τD) to minimise phase distortions. Two-dimensional 33S STMAS spectra 

were recorded using a phase-modulated split-t1 shifted-echo pulse sequence47 

(Figure 6.2b). Prior to 33S STMAS experiments, accurate spinning axis 

calibration was performed using double-quantum filtered (DQF) version48 

(Figure 6.2c) of a phase-modulated split-t1 shifted-echo 85Rb (I = 5/2) STMAS 

experiments on RbNO3. Typical echo delays (τ) of 2–4 ms and 4–12 ms were 

required for 85Rb and 33S STMAS experiments, respectively. Solid-state 1H-23Na 

and 1H-33S CP-MAS spectra were acquired at Larmor frequencies (ν0) of 105.84 

MHz (23Na) and 30.71 MHz (33S) at B0 = 9.4 T, and 65.26 MHz (33S) at B0 = 20.0 T. 

Sodium citrate tribasic dihydrate (Na3C6H5O7·2H2O, Sigma-Aldrich, 99%) and 

sodium acetate (CH3COONa, Sigma-Aldrich, 99%) were used as purchased. 
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Powdered samples were packed into 4 mm (23Na) and 7 mm (33S) ZrO2 rotors, 

and a conventional CP pulse sequence (Figure 6.2d) was used without 1H 

decoupling (a comparison of 33S MAS spectra of ettringite at B0 = 9.4 T with and 

without 1H decoupling showed no significant difference). The 33S chemical shift 

scales are given with respect to solid CS2 (δiso = 333 ppm) calibrated using 

Figure 6.2 Pulse sequences used in this study for (a) spin-echo, (b) three-pulse 33S STMAS (c) double-
quantum filtered (DQF) 85Rb STMAS and (d) 1H-23Na and 1H-33S CP-MAS experiments.  
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AlNH4(SO4)2·12H2O(s) as a secondary reference (δiso = 331 ppm).13 One-

dimensional spectral fitting and simulations of one-dimensional 33S MAS 

spectra were performed using a solid lineshape analysis (SOLA) software on 

Bruker TopSpin 3.2. Frequency-domain simulations of two-dimensional 33S 

STMAS spectra were performed using home-written Fortran codes (an example 

source code is supplied in Appendix M). Further computational and 

experimental details are provided in the figure captions. 

6.4.2 Technical Considerations 

 Compared to MQMAS experiments, STMAS experiments are known to 

be technically demanding owing to the stringent conditions required upon 

experimental setup.39 In the following paragraphs, a protocol for successful 

implementation of natural abundance 33S STMAS experiments at B0 = 9.4 and 

20.0 T is described upon consideration of (i) the choice of rotor diameter and 

radio frequency field strength, (ii) STMAS pulse length optimisation, (iii) 

spinning axis calibration. 

(i) Rotor diameter and radiofrequency field strengths 

 For natural abundance 33S STMAS signal acquisition to be successful, 

satellite transitions need to be excited as efficiently as possible while the sample 

volume inside the rotor is to be maximised. Among those available probes that 

tune to 33S Larmor frequency (7, 4 and 2.5 mm in this study), the use of smaller 

diameter rotors is not ideal, owing to the significantly reduced amount of 

sample volume inside the rotor (typical sample volume of 400, 100, and 10 µL is 

expected for 7, 4 and 2.5 mm, respectively). In the following 33S NMR 

experiments presented in this thesis, 4 and 7 mm rotors were thus chosen for 

better sensitivity. The natural ettringite powder sample was packed into a 4 mm 

rotor, owing to the limited amount of mineralogical sample available, whereas 

the synthetic ettringite powder sample was packed into a 7 mm rotor. An 

efficient manipulation of ST coherences is achieved with high radiofrequency 

(ν1) field strengths,90 which is inherently difficult to achieve with low γ-nuclei or 

with larger diameter rotors. The use of highest power input attainable (with a 1 
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kW radiofrequency amplifier) was, therefore, ensured to achieve an efficient 

excitation of ST coherences for increased sensitivity. 

(ii) STMAS pulse length optimisation 

 The phase-modulated split-t1 shifted-echo STMAS pulse sequence 

(Figure 6.2b) was used in all the 33S STMAS experiments performed in this 

study. The pulse sequence consists of three pulses87 and has been claimed to be 

the most sensitive, basic implementation of MQMAS and STMAS pulse 

sequences.90 The double-quantum filtered (DQF) version (Figure 6.2c) simplifies 

the resulting spectrum by the removal of CT-CT autocorrelation peaks. It 

should be noted, however, that the DQ filtration is inefficient for small CQ 

values39 (< 1 MHz for spin I = 3/2 nuclei, for example), and, since the optimum 

flip angle of 90° for the ST excitation (p1) corresponds to 180° of ‘solid’ samples 

for spin I = 3/2 systems, the CT-CT autocorrelation peaks are expected to be 

small for 33S nuclei. Consequently, the three pulse sequence was employed for 

better sensitivity in the 33S STMAS investigations performed in this study. 

 For NMR-sensitive nuclei (such as 23Na, 87Rb and 27Al), it is often 

possible to optimise the pulse duration experimentally and obtain the highest 

S/N ratio for the sample of interest. For insensitive nuclei such as 33S, however, 

it is impractical to perform STMAS pulse length optimisation, unless 33S-

enriched samples suitable for STMAS experiments are readily available. 

Previously, numerical calculations have been performed90 and concluded that, 

for spin I = 3/2 systems, the optimum flip angle for the first ST excitation pulse 

(p1) is 90°, whereas the optimum flip angle for the second ST reconversion 

pulse (p2) is 60°. The third pulse (p3) is known as a CT-selective 180° pulse. The 

flip angles for the first two pulses are those on liquid samples (or solid samples 

with virtually no quadrupolar interactions) while the third pulse is that of solid 

samples under the influence of quadrupolar interactions (where the effective 

pulse duration is scaled by I + 1/2 with respect to that of liquid samples). For 

the determination of 33S radiofrequency field strengths and pulse durations, 33S 

MAS signals of AlNH4(SO4)2·12H2O (Figure 6.3a,b) were chosen, owing to the 

negligible value of CQ (resulting in linewidth at half height of 18 Hz) and short 

T1 relaxation time (0.27 s),150 which makes it an ideal setup sample for 33S MAS 
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experiments. For the first two STMAS pulses, 33S radio frequency field strengths 

(ν1) of 56 kHz were employed, whereas, for the CT-selective 180° pulse, ν1(33S) = 

15 kHz with a reduced power input was found appropriate. The lengths of the 

three pulses (p1, p2 and p3) were experimentally determined to be 4.5, 3.0 and 

17.0 µs for all of our 33S STMAS experiments, as summarised in Table 6.1. 

(iii) Spinning axis calibration 

 In STMAS experiments, an accurate setting of spinning axis to the magic 

angle to the precision of 54.736 ± 0.003° is a prerequisite.39 Prior to 33S STMAS 

signal acquisition, the double-quantum filtered (DQF) version92 (Figure 6.2c) of 

the phase-modulated split-t1 85Rb (I =5/2) STMAS experiments were performed 

on RbNO3 to perform the accurate spinning axis calibration. As demonstrated 

in Figure 6.3c,d, the splitting is minimised as the required accuracy is attained. 

For efficient spinning axis calibration, only one-dimensional version of the 

DQF-STMAS spectrum that corresponds to a particular row in t1 dimension was 

acquired (more details in the next paragraph) while the spinning axis was being 

varied step by step, and, at a point where the echo intensity was maximum, a 

two-dimensional DQF-STMAS spectrum was recorded as a final check. There 

are several advantages associated with the use of 85Rb DQF-STMAS signals of 

RbNO3: 85Rb is highly NMR-sensitive and readily observable  (72% natural 

abundance), the 85Rb Larmor frequency is close enough to 33S to lie in the 

tunable range of an MAS probe (ν0(85Rb) = 38.6 MHz and ν0(33S) = 30.7 MHz at 

B0 = 9.4 T, and ν0(85Rb) = 82.1 MHz and ν0(33S) = 65.2 MHz at B0 = 20.0 T), the 

efficient 85Rb spin-lattice relaxation (T1 = 60 ms)132 adds a considerable time 

Table 6.1 Summary of optimised pulse lengths used for three-pulse 33S STMAS experiments.   
 

Pulse lengths / µs p1 p2 p3 

 Non-selective 90° Non-selective 60° CT-selective 180° 

Experimental 4.5  17.0 

Theoretical  3.0  

 4.5 3.0 17.0 
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saving in the stepwise adjustment of the spinning axis, the magnitude of 

quadrupolar interactions is sufficiently large (PQ = 3.66–4.70 MHz for I = 5/2)171 

to observe the effect of angle misset even at B0 = 20.0 T, and the DQF version of 

the STMAS pulse sequence simplifies the spectrum by the removal of CT-CT 

autocorrelation peaks and higher-order correlation peaks.92  

 For efficient spinning axis calibration, one-dimensional version of the 

DQF-STMAS spectrum that corresponds to a particular row in t1 was recorded 

while the spinning axis was being varied. Maximising the echo intensity for an 

arbitrary row in t1 that gives rise to a desired resolution saves a considerable 

amount of time, compared to the acquisition of a more time-consuming two-

dimensional spectrum each time the spinning axis is varied. For example, if the 

splitting is to be minimised within 250 Hz, the total duration of t1 increments is 

1/((31/24)*250 Hz) = 3.10 ms, and this corresponds to the 35th row under 14286 

Hz spinning (τR = 70 µs) or the 13th row under 5 kHz spinning (τR = 200 µs). At 

the point where the echo intensity was maximum, a two-dimensional DQF-

Figure 6.3 (a,b) 33S MAS spectra of AlNH4(SO4)2·12H2O recorded at B0 = (a) 9.4 T and (b) 20.0 T. (a) 1024 
and (b) 64 transients were averaged with a recycle interval of (a) 0.5 s and (b) 1 s under 5 kHz spinning. 
The displayed spectral width is (a) 3 kHz and (b) 6.5 kHz. (c,d) 85Rb (I = 5/2) DQF-STMAS spectra of 
RbNO3 recorded at B0 = (c) 9.4 T and (d) 20.0 T with the spinning axis off the magic angle (top) and at 
the magic angle (bottom). 128 transients were averaged with a recycle interval of 0.2 s for each of (c) 65 
(top) 86 (bottom) (d) 20 (top) 36 (bottom) t1 increments of (c) 201.82 µs and (d) 258.35 µs under (c) 6.4 
kHz and (d) 5 kHz spinning. Phase-modulated split-t1 DQF-STMAS pulse sequence in Figure 6.2c was 
employed with k = 24/31, k′ = 0, k″ = 7/31 and the echo delay (τ) of (c) 2 ms and (d) 4 ms. 
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STMAS spectrum was recorded to ensure the absence of splitting in the 

isotropic dimension. It should be noted that the residual splitting due to third-

order quadrupolar interactions (proportional to 1/(ν0)2) may be present, 

especially for I = 5/2 nuclei such as 85Rb at low magnetic field strengths.39,98 

 Once the precise magic angle is achieved and the rotor is pneumatically 

ejected, insertion of another rotor down the insert tube may knock the spinning 

axis away from the magic angle. To minimise the possible loss of the magic 

angle, a flow of bearing or eject gas may be applied upon changing the rotor to 

cushion the impact of the rotor and retain the precise magic angle setting.39 

From our experience, although this method works well at B0 = 9.4 T irrespective 

of the rotor diameter and at B0 = 20.0 T with 4 mm rotors (or smaller), the magic 

angle setting tends to be easily lost when a 7 mm rotor is inserted at B0 = 20.0 T. 

This is presumably because the length of the insert tube is longer at B0 = 20.0 T 

than at B0 = 9.4 T, and the impact of a heavy 7 mm rotor travelling a longer 

distance is formidable. Consequently, in the 33S STMAS investigations 

performed in this study, the synthetic ettringite powder sample was layered 

with the RbNO3 powder sample, avoiding ejection and insertion procedure 

upon spinning axis calibration. To maximise the 33S signal sensitivity, RbNO3 

was first packed into a 7 mm rotor at the bottom (about 20% of the total 

volume), and the rest was filled with the synthetic ettringite powder sample so 

that the ettringite sample covers most of the coil for highest sensitivity. Upon 

comparison of three 33S MAS spectra of ettringite, in which the first two were 

recorded with a 4 and 7 mm rotor full of natural and synthetic ettringite 

powder samples, respectively, while the third rotor contains RbNO3 at the 

bottom in addition to the synthetic ettringite, the resulting 33S MAS lineshapes 

were confirmed to be identical, apart from the difference in sensitivity that is 

proportional to the sample volume of ettringite. 

6.4.3 Sensitivity of Natural Abundance 33S STMAS NMR at B0 = 20.0 T 

 The phase-modulated split-t1 shifted-echo STMAS pulse sequence allows 

the acquisition of pure absorption lineshape and avoids acoustic ringing 

particularly pronounced for low-γ nuclei.90 Since the STMAS signal is acquired 
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as a symmetrical whole-echo, an echo interval (τ) of sufficient length is needed 

to avoid signal truncations.39,87 In practice, the length of an appropriate τ 

interval for two-dimensional STMAS acquisition can be estimated from one-

dimensional MAS signals of the sample of interest recorded using the spin echo 

pulse sequence (Figure 6.2a). While the spin echo experiment exploits a half 

echo rather than a whole echo, the pulse sequence itself can be considered 

equivalent to the last two pulses of the STMAS pulse sequence if a sufficiently 

long value of τ1 is employed to record a whole echo (and τ2 is set to be 0). This 

approach is advantageous as it has greater sensitivity than using the first row of 

the two-dimensional STMAS pulse sequence. For example, at B0 = 20.0 T, we 

acquired several 33S spin echo MAS spectra of ettringite (each of which takes 

only a few hours) with various τ1 values (3–12 ms) to determine the optimum 

length of τ delay that avoids apparent signal truncation while retaining 

sufficient sensitivity. It should be noted that, at B0 = 9.4 T, a short τ delay (4 ms) 

was chosen to be used for maximum sensitivity, despite the optimum length 

being possibly longer than 8 ms, upon consideration of the fact that the effect of 

signal truncation was not obvious in the resulting spectrum owing to the 

inherently low S/N ratio.  

 Since 33S STMAS spectra have never been reported in the literature (at 

the time of writing), a demonstration of the feasibility of natural abundance 33S 

STMAS acquisition was first aimed at B0 = 20.0 T using a model system. The 

model system is a 1:1 molar mixture of sodium sulfate (Na2SO4) and potassium 

sulfate (K2SO4), which was chosen upon consideration of the application of the 

STMAS method to ettringite, all of which contain SO4 groups with relatively 

small quadrupolar coupling constants. The one-dimensional 33S MAS spectrum 

for each sulfate has been reported previously,150 and the suggested 33S 

quadrupolar parameters are summarised in Table 6.2. Both sulfates have 

similar isotropic shifts (δiso = 341–336 ppm) and small quadrupolar coupling 

constants (CQ = 0.66–0.97 MHz). A simulated 33S MAS spectrum of the sulfate 

mixture at B0 = 20.0 T (Figure 6.4a) indicates the presence of overlapping 

second-order broadened lineshape, validating the acquisition of high-resolution 

spectra. The presence of the overlapping lineshapes was confirmed by the 
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experimental 33S MAS spectrum recorded at B0 = 20.0 T (Figure 6.4b). Figure 

6.4c shows a simulated two-dimensional 33S STMAS spectrum of the sulfate 

mixture at B0 = 20.0 T using the quadrupolar parameters previously reported 

for each sulfate. The two STMAS ridges are expected to separate in the F1 

isotropic dimension, and this was confirmed by the experimental 33S STMAS 

spectrum of the sulfate mixture recorded at B0 = 20.0 T, as shown in Figure 6.4d. 

Table 6.2 Summary of 33S quadrupolar parameters of sulfates used in this study: aluminum ammonium sulfate 
dodecahydrate (AlNH4(SO4)2·12H2O, “alum”), sodium sulfate (Na2SO4), potassium sulfate (K2SO4) and 
ettringite (Ca6Al2(SO4)3(OH)12·26H2O). 

 

 δiso 
(ppm) 

CQ 
/ kHz ηQ T1 

/ s 
δ1 

(ppm) 
δ2 

(ppm) 
δCS 

(ppm) 
δQ 

(ppm) 
PQ 

/kHz 

“alum”          

('04)150 331 N/A N/A 0.27     N/A 

          

Na2SO4          

('04)150 341 660 0.13 30     662 

('08)155 340.1 655 ± 5 0.07 ± 0.05      656 ± 6 

 340.2 655 ± 5 0.01 ± 0.05      655 ± 5 

('13)163 340.1 ± 1.0 655 ± 50 0.0 ± 0.1      655 ± 50 

STMASa     342.1 ± 0.05 338.1 ± 0.2 340.6 ± 0.1 6.1 ± 0.5 655 ± 20 

          

K2SO4          

('04)150 337 970 0.50 16     1010 

('08)155 336.0 963 ± 5 0.41 ± 0.05      990 ± 12 

 336.2 969 ± 5 0.41 ± 0.05      996 ± 12 

('13)163 335.7 ± 0.5 959 ± 30 0.42 ± 0.05      988 ± 37 

STMASa     339.8 ± 0.05 330.6 ± 0.5 336.4 ± 0.2 14.5 ± 0.9 992 ± 30 

          

Ettringite          

('06)154 331 700 0.45      723 

('08)155 329.6 810 0.97      928 

 329.8 591 0.72      640 

 331.3 516 0.50      537 

MAS 331.8 620 0.1      621 

 332.1 660 0.3      670 

 331.0 800 0.1      801 

STMAS          

20.0 T     333.1 329.5 331.8 5.7 621 

     333.7 329.5 332.1 6.6 671 

     333.2 327.2 331.0 9.4 802 

9.4 T     337.8 322.0 331.9 24.8 612 

     339.0 320.5 332.1 29.1 663 

     341.0 314.0 331.0 42.5 801 

a 33S STMAS spectra recorded at B0 = 20.0 T. 
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From the peak positions in the two-dimensional STMAS spectrum, the centre-

of-gravity analysis was performed using appropriate equations for split-t1 

experiments of spin I = 3/2 systems,39 

 δ = δ + δCS 1 2(17 10 ) /7   (6.1) 

 δ = δ − δQ 1 285( ) /54   (6.2) 

 3Q 0 Q2 (2 1) (3 10 )= − ω δ π ×P I I   (6.3) 

 2Q Q QC 1 ( /3)P = + η   (6.4) 

The quadrupolar parameters obtained by the two-dimensional centre-of-gravity 

analysis are summarised in Table 6.2, along with the values from previous 

studies. The isotropic chemical shifts (δCS) and quadrupolar products (PQ) are in 

good agreement with the previous studies for both sulfates. Although a total 

acquisition time of three days was required to record the two-dimensional 33S 

STMAS spectrum of the sulfate mixture, the major time-limiting factor was the 

long T1 relaxation time of these anhydrous sulfates (T1 = 30 s for Na2SO4 and 16 

s for K2SO4),150 rather than the insensitivity of 33S nuclei at B0 = 20.0 T. 

Figure 6.4 (a,c) Simulated and (b,d) experimental (a,b) 33S MAS  and (c,d) 33S STMAS spectra of a 1:1 
molar mixture of sodium sulfate (Na2SO4) and potassium sulfate (K2SO4) at B0 = 20.0 T under 14286 Hz 
spinning (τR = 70 µs) using a 4 mm rotor. In (a,c), 33S quadrupolar parameters of δiso = 341 ppm, CQ = 
660 kHz, ηQ = 0.1 for Na2SO4 and δiso = 336 ppm, CQ = 970 kHz, ηQ = 0.5 for K2SO4 were used. In (b), a 
spin echo pulse sequence (Figure 6.2a) was employed, and ν1(33S) = 15 kHz was chosen for CT 
selectivity for both pulses. 4928 transients were averaged with a relaxation interval of 30 s with total 
experimental time of 41 hrs. Exponential line broadening of 50 Hz was applied in both (a) and (b). In 
(c), the Lorentzian function with full width at half maximum of 25 Hz was applied. In (d), 192 
transients were averaged for each of 67 t1 increments of 132.22 µs with a relaxation interval of 20 s. An 
echo delay (τ) of 12 ms was used. Total experimental time was 72 hrs. No weighting function was 
applied in (d). 
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6.5 Natural Abundance 33S MAS and STMAS NMR of Ettringite 

 Our 33S NMR investigation of ettringite consists of three systems, 

depending on the nature of the sample (natural or synthetic), the rotor diameter 

(4 or 7 mm) and the external magnetic field strength (B0 = 9.4 or 20.0 T). This is 

summarised in Table 6.3. For each system, a set of three experiments (single 

pulse, spin echo, and STMAS) was performed. Previously, two NMR studies 

reported natural abundance 33S MAS spectra of ettringite,154,155 one at B0 = 19.6 

T using conventional single-pulse acquisition,154 and the other at B0 = 14.1 T 

employing CT sensitivity enhancement techniques.155 The higher field study 

simulated a spectrum with a single site154 while the lower field study proposed 

the presence of three S sites,155 and their suggested quadrupolar parameters are 

summarised in Table 6.2. Both studies employed a relaxation interval of 1 s, and 

this efficient T1 relaxation of 33S signals was qualitatively verified by our 

investigation at B0 = 20.0 T (in which the use of 0.2 s as a recycle interval gave 

rise to 10% loss in sensitivity compared to the use of 0.4 s). 

 Figure 6.5 displays the 33S MAS (single pulse and spin echo) and STMAS 

spectra of ettringite recorded on synthetic ettringite using a 7 mm rotor at B0 = 

20.0 and 9.4 T, respectively. The equivalent set of experimental spectra was 

obtained on natural ettringite sample at B0 = 20.0 T using a 4 mm rotor (not 

shown), and all the spectra were found identical to those recorded on a 

synthetic sample, except for the sensitivity difference due to the limited amount 

of the sample inside the rotor. It should be noted that, despite the higher 

sensitivity, conventional single pulse acquisition results in severe baseline 

distortion, especially at lower magnetic field strengths (as evident in Figure 

6.5f), whereas spin echo spectra show less pronounced baseline distortion, 

Table 6.3 Three systems of ettringite used in 33S NMR investigations in this thesis. 
 

B0 Rotor diameter Sample nature 

20.0 T 4 mm Natural 

 7 mm Synthetic 

9.4 T 7 mm Synthetic 
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although the signal intensity is much lower than that of the single-pulse 

spectrum owing to the signal decay during the echo delay. 

 Spectral analysis was performed step by step, starting with the two-

dimensional 33S STMAS spectra (Figure 6.5d,i) in which the centre-of-gravity 

Figure 6.5 (a,b,d,f,g,i) Experimental and (c,e,h,j) simulated 33S MAS  and 33S STMAS spectra of 
ettringite at (a,b) B0 = 20.0 T under 6.4 kHz spinning (τR = 156.25 µs), (d) under 5 kHz spinning (τR = 
200 µs), and (f,g,i) B0 = 9.4 T under 6.4 kHz spinning (τR = 156.25 µs). A 7 mm rotor filled with synthetic 
ettringite was employed in (a,b,f,g,i) whereas a 7 mm rotor was layered with RbNO3 and synthetic 
ettringite in (d). (a,f) Single-pulse and (b,g) spin-echo pulse sequence were used with ν1(33S) = 12.5-36 
kHz. (a,b) 92160 and (f,g) 524288 transients were averaged with a relaxation interval of (a,b) 0.6 s and 
(f,g) 0.25 s. Total experimental time was (a,b) 16 hrs and (f,g) 44.5 hrs for each. (c,h) TopSpin 3.2 was 
employed to simulate 33S MAS spectra using 33S quadrupolar parameters summarised in Table 6.1. (d,i) 
Three-pulse STMAS pulse sequence (Figure 6.2b) was used with an echo delay (τ) of (d) 6 ms and (i) 
and 4 ms. (d) 11040 and (i) 40960 transients were averaged for each of (d) 64 and (i) 85 t1 increments of 
(d) 377.78 µs and (i) 295.14 µs with a relaxation interval of (d) 0.45 s and (i) 0.25 s. Total experimental 
time was (d) 92.5 hrs and (i) 262 hrs. No weighting function was applied in (a,b,d,f,g,i). Exponential 
line broadening of 20 Hz was applied in (c,h) and the Lorentzian function with full width at half 
maximum of 10 Hz was applied in (e,j).  
 
 
 
 



 

184 

 

analysis was performed using appropriate equations for split-t1 experiments39 

(Equations (6.1)–(6.3)). Further refinement of the quadrupolar parameters was 

made using an iterative fitting of one-dimensional MAS spectra with the aid of 

a lineshape analysis software. This approach yielded a consistent set of 

quadrupolar parameters at B0 = 9.4 and 20.0 T for three crystallographically 

distinct S sites, as summarised in Table 6.2 (although these parameters should 

be treated as a tentative assignment, as discussed in Subsection 6.6.4). One-

dimensional 33S MAS spectra and two-dimensional 33S STMAS spectra were 

then simulated using these quadrupolar parameters, as shown in Figure 6.5c,h 

(MAS) and 6.5e,j (STMAS), respectively. 

 Using two sets of quadrupolar parameters for three distinct S sites, one 

suggested previously155 and the other obtained in this study, six sets of spectral 

simulations were then performed. In Figure 6.6, F2 (MAS) and F1 (isotropic) 

projections of simulated 33S STMAS spectra at B0 = 20.0, 14.1 and 9.4 T are 

displayed, along with the experimental isotropic projections obtained at B0 = 9.4 

and 20.0 T. Upon comparison of the simulated F2 and F1 projections at different 

magnetic field strengths, the isotopic projections yield a significant difference, 

despite that the quadrupolar parameters are not distinctly different and the 

corresponding MAS lineshapes appear less discriminating at any field strengths. 

This is because of the interplay of quadrupolar shifts and chemical shifts that 

can be realised only when two-dimensional spectra were acquired. For example, 

for I = 3/2 split-t1 experiments, the QS axis lies along the −10/17 axis while the 

CS axis lies along the +1 axis.39 Consequently, a slight change in quadrupolar 

parameters results in a considerable difference in the appearance of isotropic 

spectra, even when the corresponding MAS spectra produce a very similar 

lineshape. In the case of overlapping second-order broadened CT lineshapes, 

the spectral fitting of one-dimensional MAS spectra becomes nontrivial and 

misleading, even when the S/N ratio is sufficiently high. Since the second-order 

quadrupolar broadening is inversely proportional to the external magnetic field 

strength, a set of quadrupolar parameters obtained in multi-field studies needs 

to be consistent over different field strengths. Acquisition of high-resolution, 

isotropic spectra at several magnetic field strengths, thus, enables the extraction 
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of quadrupolar parameters without ambiguities, especially in the presence of 

multiple sites with overlapping second-order broadened CT lineshapes.  

 Application of line broadening functions is useful upon processing of 

NMR spectra of low-sensitive nuclei (where the S/N ratio is intrinsically low), 

although it should be applied with great caution as it may obscure the 

singularities that aid an accurate spectral fitting, especially in the presence of 

multiple sites. In the experimental 33S MAS spectra of ettringite recorded in this 

study (Figure 6.5a,b,f,g), no exponential line broadening functions were applied, 

as opposed to the previous studies where a large line broadening (up to 50 

Hz)154,155 was applied. Care has to be taken, therefore, when reporting a set of 

quadrupolar parameters obtained from iterative fitting of one-dimensional 

MAS spectra of overlapping second-order broadened CT lineshapes, as the 

application of intensive line broadening functions may inadvertently introduce 

greater uncertainty in the resulting quadrupolar parameters.  

Figure 6.6 Simulated F2 (MAS) and F1 (isotropic) projections of two-dimensional 33S STMAS spectra of 
ettringite at B0 = 20.0, 14.1 and 9.4 T, along with experimental isotropic projections recorded at B0 = 20.0 
and 9.4 T. 33S quadrupolar parameters (δiso, CQ and ηQ) were taken from (a–c) the previous 33S NMR 
study155 and (d–f) this study, as summarised in Table 6.2. The Lorentzian function with full width at 
half maximum of 10 Hz was applied in all the simulated spectra. 
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6.6 1H-X (I = 3/2) CP-MAS NMR Experiments 

 The aim of the rest of this chapter is to demonstrate the feasibility and 

applicability of cross polarisation (CP) transfer from 1H (I = 1/2) nuclei to the 

central transition (CT) of 33S (I = 3/2) nuclei in materials investigations. Our 

model system, ettringite (Ca6Al2(SO4)3(OH)12·26H2O), is a hydrous sulfate, and 

the high water content makes it an ideal compound for 1H-33S CP-MAS 

investigations. Upon spectral analysis of the 33S MAS and STMAS spectra of 

ettringite (Section 6.5), motional averaging of the second-order broadened CT 

lineshape was suspected, which possibly originates from the presence of 

dynamics of the surrounding water molecules. Since the presence of motion 

inhibits an efficient CP transfer, apparent CP signals are not expected for 

systems in which the presence of dynamics is suspected. To compare and 

contrast the difference in 1H-33S CP-MAS behaviour, two additional samples, 

AlNH4(SO4)2·12H2O (single S site, δiso = 331 ppm, CQ = 0.53 MHz)150 and 

gypsum (CaSO4·2H2O, single S site, δiso = 327 ppm, CQ = 0.77 MHz and ηQ = 

0.77),150 were employed as a standard crystalline sample. Both samples have (i) 

only a single S site, (ii) small CQ values and (iii) water molecules in the 

proximity of S nuclei. The long 33S spin-lattice relaxation time of gypsum (T1 ≈ 

12 s)150 suggests that there is no potential source of motion around the S nuclei 

(which may otherwise lead to efficient relaxation), and 1H-33S CP signals are 

thus expected under appropriate experimental conditions. On the contrary, the 

short 33S spin-lattice relaxation time of AlNH4(SO4)2·12H2O (T1 ≈ 0.27 s)150 

implies the presence of motion around the S nuclei, as in ettringite, and hence 

1H-33S CP signals may not be observed. 

 In the following subsections, a brief review of CP-MAS NMR is firstly 

given, and this is followed by experimental 1H-23Na CP-MAS investigations of 

simple inorganic compounds performed at B0 = 9.4 T, and 1H MAS and 1H-33S 

CP-MAS investigations of hydrous sulfates performed at B0 = 9.4 and 20.0 T. 

6.6.1 1H-X (I = 1/2) CP-MAS NMR 

 Cross polarisation (CP)24,25 is a well-established sensitivity enhancement 

technique for spin I = S = 1/2 systems. In CP experiments, the magnetisation of 
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abundant spins (I) is transferred to dilute spins (S) through simultaneous 

application of a pulse (contact pulse) on both spins, leading to a state called spin-

locking. Under static conditions, an efficient magnetisation transfer occurs when 

the nutation frequencies of I (ω1I) and S (ω1S) spins are equivalent, 

 1I 1Sω = ω   (6.5) 

and, this is known as Hartmann-Hahn matching26 conditions. Under MAS 

conditions, the optimum matching condition is given by, 

 1I 1S Rω = ω ± ωn   (6.6) 

where n is an integer (typically 1 or 2) and ωR is the spinning frequency. The 

maximum enhancement factor of CP experiments with respect to non-CP 

equivalent can be written as,172 

 S I

S0 S

M 1
M 1

∞ γ= ⋅
γ + µ

  (6.7) 

with, 

 S

I

( 1)N
N ( 1)

+µ = ⋅
+

S S

I I
  (6.8) 

where MS∞ and MS0 are the magnetisation with and without CP, γI and γS are the 

gyromagnetic ratio of the I and S spins, and NI and NS are the number of the I 

and S spins, respectively. In typical CP experiments of spin I = S = 1/2 systems 

such as 1H-13C, 1H-15N, and 1H-29Si, the natural abundance of 1H nuclei 

(proportional to NI) is several magnitude greater than that of the S nuclei 

(proportional to NS), and consequently µ ≈ 0. The maximum enhancement 

factor for spin I = S = 1/2 systems under static conditions is thus simplified as, 

 S I

S0 S

M
M

∞ γ=
γ

  (6.9) 

For example, in 1H-13C CP experiments (in which γI = 26.75 × 107 rad s−1 T−1 and 

γI = 6.73 × 107 rad s−1 T−1),135 an enhancement factor of 4 is theoretically expected. 

Since the magnetisation transfer upon CP is mediated by dipolar coupling, the 

I-S spin pair needs to be relatively close in space. Larger enhancements are thus 

usually observed for S spins in proximity to I spins, although the efficiency of 

spin-locking is dependent on the length of the contact pulse (τCP), and longer 
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contact pulses can transfer magnetisation from distant I spins. Since the 

repetition delay in CP experiments is determined by the T1 relaxation time of 

the abundant I spins, a great time saving is often achieved in 1H-13C or 1H-29Si 

CP experiments as the T1 relaxation time of 13C and 29Si nuclei is often longer 

than that of 1H nuclei.52 

6.6.2 1H-X (I > 1/2) CP-MAS NMR 

 Possibilities of CP from spin I = 1/2 nuclei to spin S > 1/2 quadrupolar 

nuclei have also been explored in the literature.173–182 The Hartmann-Hahn 

matching condition no longer holds for S > 1/2, and, in powdered samples 

under MAS conditions, a more complex matching behaviour is expected 

because of the many possible crystallite orientations present in powder samples 

and the time-dependence introduced upon sample spinning. This makes the 

implementation of CP-MAS experiments for spin S > 1/2 quadrupolar nuclei 

more challenging than that of spin S = 1/2 systems.183,184  

 Under static conditions, there are S(2S + 1) possible transitions for the S 

spin (ω1S) to match the nutation frequency of the I spin (ω1I). Among these S(2S 

+ 1) transitions, the I-S dipolar Hamiltonian restricts the number of possible 

matching nutation frequencies available for CP to (S + 1/2)2. The matching 

condition is then given by,181,182  

 ω = ω ω ω≪1I 1S Q 1S( )p   (6.10) 

 1S
1I Q 1S1Q

( )
−

ωω = ⋅ ω ω
ω

≫
p

p
k   (6.11) 

with, 

 
(1 )

2

( /2)!2
( 1)! ( /2)!

− += ⋅
− −

p S p
k

p S p
  (6.12) 

where p is the coherence order (pQ) with p = 1, 3, 5, 7 and 9 (where p = 1 for 

single-quantum transitions, p = 3 for triple-quantum transitions and so on). For 

example, the matching condition for CP from spin I = 1/2 nuclei to the central 

transition (p = 1) of spin S > 1/2 nuclei under static conditions is given by,  

 ω = ω ω ω≪1I 1S Q 1S( )   (6.13) 
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 1I 1S Q 1S( 1/2) ( )ω = + ω ω ω≫S   (6.14) 

For the Q 1Sω ω≫  regime in Equation (6.14), the nutation frequency of spin I = 

1/2 nuclei (ω1I) is matched to the well-known, scaled central-transition nutation 

frequency (ωCT) of half-integer quadrupolar nuclei under the effect of 

quadrupolar interactions ( CT 1S( 1 /2)ω = + ωS ).126 For triple-quantum (p = 3) 

coherences, the matching condition (for spin S = 3/2 system) is given by, 

 1I 1S Q 1S3 ( )ω = ω ω ω≪   (6.15) 

 
31S

1I Q 1S2Q

3
( )

8
ωω = ⋅ ω ω
ω

≫   (6.16) 

Comparing of Equations (6.14) and (6.16) in which the quadrupolar interaction 

is significantly large ( ω ω≫Q 1S ), the CP to central transition is independent of 

the quadrupolar splitting and crystalline orientation, whereas the CP to triple-

quantum transition is dependent on the crystalline orientation and strongly 

anisotropic. In the intermediate range (ωQ ≈ ω1S), the matching condition is not 

theoretically well-defined.174,182  

 In addition to the establishment of suitable matching conditions for 

quadrupolar nutation frequencies, the efficiency of spin locking is crucial in CP 

transfer between spin I = 1/2 and S > 1/2 nuclei.175 Under static conditions, the 

spin locking is relatively effective,175 whereas under spinning conditions, the 

efficiency of spin locking is easily lost because of the time dependence 

introduced to the relevant Hamiltonians (quadrupolar and I-S dipolar). In 1992, 

to categorise the spin-locking phenomena under spinning conditions, the 

adiabaticity parameter (α) was proposed by Vega:174,175 

 
2
1S

PAS RQ2
ωα =

ω ω
  (6.17) 

There are two extreme conditions in which efficient spin locking may occur 

when  α≪ 1   (sudden passage) or when α≫ 1  (slow or adiabatic passage). Spin 

locking is least efficient in the intermediate regime (α ≈ 1), and the efficiency of 

spin locking decreases upon sample spinning (at frequency of ωR) and results in 

a sudden drop in signal intensity when,179 
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ω = ω ω
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≪
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S
  (6.18) 

 1S
Q 1S

R
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1/2
ω = ω ω
ω +

≫
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S
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where n is an integer. For spin S = 3/2 systems, for example, a signal loss at 

1S R Q 1S( )ω = ω ω ω≪n  and 1S R Q 1S( /2) ( )ω = ω ω ω≫n  is expected. Furthermore, 

if the second-order quadrupolar interaction is too large to be effectively 

averaged by magic angle spinning, spectral distortions in powder spectra may 

occur. Fast sample spinning and weak radiofrequency field strengths are thus 

often used in quadrupolar (I = 1/2 to S > 1/2) CP-MAS experiments.182 

 Owing to the complicated magnetisation transfer from spin I = 1/2 to 

spin S > 1/2 quadrupolar nuclei, only a limited number of applications of 

quadrupolar CP-MAS NMR to materials investigations are found in the 

literature: For single-quantum CP transfer, 1H-11B (S = 3/2, 80.1% 

abundance),182,185 1H-17O (S = 5/2, 10–50% enriched),180,181,186 1H-23Na (S = 3/2, 

100% abundance),174,180,181,187 1H-27Al (S = 5/2, 100% abundance),180–182,188–191 1H-

43Ca (S = 5/2, 50% enriched),192 1H-45Sc (S = 7/2, 100% abundance),181 and 1H-

95Mo (S = 5/2, 95% enriched)193 studies have been reported. CP transfer to 

multiple-quantum coherences has been performed using 1H-23Na (3Q),180,181,194 

1H-27Al (3Q and 5Q),181,191,195 1H-17O (3Q and 5Q, 35% enriched),180,181 1H-45Sc 

(3Q, 5Q and 7Q)181 and 19F-23Na (3Q)195 systems. The combination of CP with 

two-dimensional MQMAS experiments has also been reported for 1H-23Na 

(3Q),194 1H-27Al (3Q)181,191,196 and 19F (I = 1/2, 100% abundance)-23Na197 systems. 

 Since the sensitivity gain is inversely proportional to the gyromagnetic 

ratio of the S spin (γS), sensitivity enhancements are rarely observed for NMR-

sensitive nuclei such as 23Na and 27Al nuclei. The inverse dependence on the 

gyromagnetic ratio, however, makes the use of CP more advantageous for the 

study of low-γ nuclei. For example, a signal enhancement factor of about 4 has 

been observed on static 1H-17O (S = 5/2, ν0 = 54.2 MHz at B0 = 9.4 T, 35% 

enriched) CP spectra of brucite (Mg(OH)2).180 Also, 1H-17O CP experiments have 

been employed as a spectral editing tool, utilising the contact-time dependence 

of CP signals between protonated and unprotonated oxygen species.181 
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6.6.3 1H-23Na CP-MAS NMR of Simple Inorganic Compounds   

 Prior to 1H-33S CP-MAS investigations, a series of 1H-23Na CP-MAS 

experiments were performed at B0 = 9.4 T using simple inorganic crystalline 

compounds, aiming to find appropriate matching conditions of 1H-23Na CP 

transfer for given experimental parameters (magnitude of CQ, spinning 

frequencies and radiofrequency field strengths). Compared to NMR-insensitive 

33S nuclei, the use of NMR-sensitive 23Na nuclei (S = 3/2, ν0 = 105.8 MHz at B0 = 

9.4 T, 100% abundance) makes the establishment of matching conditions 

possible at moderate magnetic field strengths. In the following 1H-23Na CP-

MAS investigations performed at B0 = 9.4 T, sodium acetate (CH3COONa, a 

single Na site,196 CQ = 1.35 MHz) and sodium citrate tribasic dihydrate 

(Na3C6H5O7·2H2O, three Na sites, PQ = 1.6–1.9 MHz)181 were employed as a 

model compound. The results were then extrapolated for 1H-33S CP-MAS 

experiments performed at B0 = 9.4 and 20.0 T (Subsection 6.6.3). 

 Figure 6.7 shows a series of 1H-23Na CP-MAS spectra recorded at B0 = 9.4 

T under 4 kHz spinning on sodium acetate and sodium citrate tribasic 

dihydrate as a function of applied 23Na radiofrequency field strengths. 1H 

radiofrequency field strengths were also varied to find the optimum condition 

that yields the highest intensity with least spectral distortion. The adiabaticity 

parameter (α) was calculated using Equation (6.17) for a given value of 23Na 

field strengths for each compound. As theoretically expected, no signal was 

observed in the intermediate regions ( 0.4α ≈ ) while two extreme regions 

( 1α≫  and 1α≪ ), in which a CP transfer is theoretically anticipated, can be 

unambiguously identified in both systems. For a given value of 1H field 

strengths, higher 23Na field strengths resulted in larger intensity. This is because 

of the reasonably small values of CQ (< 2 MHz for spin S = 3/2 nuclei) used in 

this study, which inherently favours larger adiabaticity parameters, resulting in 

more efficient CP transfer under the slow or adiabatic regime ( 1).α≫  It should 

be noted that minor distortions in spectral lineshape are observed in all the 1H-

23Na CP-MAS signals, although this could be attributed to the absence of 1H 

decoupling under slow spinning (Subsection 4.3.4). For a given value of 23Na 

radiofrequency field strengths, the use of moderate 1H field strengths (ν1(1H) = 
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20–30 kHz) yielded the highest intensity in both samples. On the basis of these 

observations, high 33S radiofrequency field strengths with moderate 1H 

radiofrequency field strengths were chosen to be used in the subsequent 1H-33S 

CP-MAS investigations. 

Figure 6.7 Experimental 1H-23Na CP-MAS spectra of (a) sodium citrate dihydrate (Na3C6H5O7·2H2O) 
and (b) sodium acetate (CH3COONa) for a series of applied radiofrequency field strengths with respect 
to 1H (column) and 23Na (rows). 8 transients were averaged with a relaxation interval of 3 s. The 
optimum contact time (τCP) of (a) 1 and (b) 2 ms was employed under 4 kHz spinning using a 4 mm 
rotor. No 1H decoupling was applied. (a) PQ = 1.6–1.9 MHz (with CQ = 1.8 MHz used to estimate the 
value of α) and (b) CQ = 1.35 MHz (used to estimate the value of α), and 0.78 MHz (minor impurity). 
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6.6.4 1H-33S CP-MAS NMR of Hydrous Sulfates at Natural Abundance 

 A qualitative comparison of three hydrous sulfates, ettringite, 

AlNH4(SO4)2·12H2O and gypsum (CaSO4·2H2O), was performed using 1H MAS 

and 1H-33S CP-MAS experiments. Since the efficiency of polarisation transfer is 

dependent on the spatial proximity of the dipolar-coupled nuclei and the extent 

to which the spin-locking is maintained, the comparison of 1H MAS and 1H-33S 

CP-MAS behaviour between ettringite and related systems is expected to 

provide information that may confirm the presence of dynamics in ettringite.  

 Figure 6.8 shows 1H MAS spectra of ettringite, AlNH4(SO4)2·12H2O and 

gypsum, recorded prior to 1H-33S CP-MAS investigations at B0 = 9.4 T under 6.4 

kHz spinning. The three 1H MAS spectra show a significant difference in the 

appearance: the 1H MAS spectra of ettringite (Figure 6.8a) and 

AlNH4(SO4)2·12H2O (Figure 6.8b) indicate the presence of a centreband flanked 

with spinning sidebands, whereas the 1H MAS spectrum of gypsum (Figure 

6.8c) gives rise to a broad peak that splits into spinning sidebands. The 1H spin-

lattice (T1) relaxation time was found to be dependent on the external magnetic 

field strength (longer T1 at higher B0 fields), and the magnetisation recovery is 

fastest in ettringite (T1 < 1 s at B0 = 9.4 T), slowest in AlNH4(SO4)2·12H2O (T1 > 

15 s at B0 = 9.4 T), and modest in gypsum (T1 ≈ 1 s at B0 = 9.4 T). The difference 

in the 1H MAS behaviour (spectral appearance and 1H T1 relaxation time) 

implies that the nature of dynamics that involves water molecules is not 

identical and rather complicated in these three hydrous sulfates.  

 Following the 1H MAS investigations, 1H-33S CP-MAS experiments were 

performed at B0 = 9.4 and 20.0 T on ettringite, AlNH4(SO4)2·12H2O and gypsum 

at the natural abundance of 33S nuclei. The 33S spin-lattice (T1) relaxation time of 

hydrous sulfates is known to be shorter than that of anhydrous sulfates (for 

example, T1 = 0.27 s for AlNH4(SO4)2·12H2O and T1 = 12 s for gypsum, and T1 = 

30 s for Na2SO4).150 For gypsum and AlNH4(SO4)2·12H2O, the long 1H T1 

relaxation time is a potential S/N limiting factor in 1H-33S CP-MAS experiments 

(T1 > 5 s at B0 = 20.0 T for gypsum). Ettringite has a shorter 1H T1 relaxation time 

(T1 < 1 s), although the presence of multiple sites may inhibit an efficient S/N 

gain per unit time. In Figure 6.9, a series of 1H-33S CP-MAS spectra of gypsum 
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(CaSO4·2H2O) recorded at B0 = 9.4 and 20.0 T are shown, in which 1H-33S CP 

signals were unambiguously observed. Despite several many attempts under 

various experimental conditions (spinning frequencies, contact time pulse 

lengths, ν1 field strengths and 1H decoupling), however, no 1H-33S CP-MAS 

signal was obtained for ettringite (attempted at B0 = 9.4 and 20.0 T) and 

AlNH4(SO4)2·12H2O (attempted only at B0 = 9.4 T, not at B0 = 20.0 T due to the 

combination of long 1H T1 relaxation time expected at high B0 fields and the 

limited amount of spectrometer time available).  

 The unsuccessful acquisition of 1H-33S CP-MAS signals of ettringite and 

AlNH4(SO4)2·12H2O may be attributed to the efficient relaxation of 33S MAS 

signals due to the presence of some dynamics around S nuclei, which inhibits 

the magnetisation transfer from the 1H nuclei to 33S nuclei. Considering the 1H 

MAS behaviour and structural resemblance (the number of water molecules in 

the unit cell of ettringite and AlNH4(SO4)2·12H2O is larger than that of gypsum), 

the origin of 33S efficient relaxation in ettringite and AlNH4(SO4)2·12H2O is 

likely to be the collective motion of water molecules in these highly hydrous 

sulfates, rather than the motion of sulfate tetrahedra themselves. The collective 

motion of water molecules may also lead to the averaging of the dipolar 

interaction, apparently inhibiting the 1H-33S CP transfer. It is known that 

STMAS spectra can be used as a probe of dynamics on the microsecond 

Figure 6.8 Experimental 1H MAS spectra of (a) ettringite, (b) AlNH4(SO4)2·12H2O, and (c) gypsum 
(CaSO4·2H2O) recorded at B0 = 9.4 T. 8 transients were averaged with a relaxation interval of (a) 1 s, (b) 
64 s and (c) 5 s. Spinning frequency was 6.4 kHz using a 7 mm rotor. The displayed spectral width is 
200 kHz. 
 
 
 
 



 

195 

 

timescale around the half-integer quadrupolar nuclei of interest,99 in which the 

isotropic linewidths of two-dimensional STMAS spectra result in a significant 

broadening in the presence of µs dynamics. Upon comparison of the sensitivity 

of the 33S STMAS spectra between the sulfate mixture (where no motion is 

expected) and ettringite (Figure 6.4 and 6.5), isotropic line-broadening was not 

observed, and hence the µs dynamics is presumed to be absent in ettringite. 

Considering the particularly fast 1H and 33S T1 relaxation and insignificant 

quadrupolar broadening (which can be the result of motional averaging), faster 

dynamics than the µs timescale is more likely to be present. It has been shown 

that motionally averaged MAS lineshapes result in a significant change in the 

appearance of the second-order broadened CT lineshape,198 even with a simple 

motion such as C2 or C3 rotations of a tetrahedron, making the spectral fitting 

of MAS spectra with a set of ordinary quadrupolar parameters unreliable. It 

should be emphasised, therefore, that the quadrupolar parameters obtained in 

this study (Table 6.2) should be treated only as a tentative and qualitative 

Figure 6.9 Experimental (a,e) 33S MAS and (b–d,f,g) 1H-33S CP-MAS spectra of gypsum (CaSO4·2H2O) 
recorded at B0 = (a–d) 9.4 T and (e–f) 20.0 T. In all experiments, ν1(33S) of 56 kHz, contact time of 2 ms, 
and no 1H decoupling was used. In (a), 8192 transients were averaged with a relaxation interval of 10 s. 
In (b-d), 15360 transients were averaged with a relaxation interval of 5 s, using spinning frequency of 
(b,c) 3 kHz and (d) 4 kHz and (b,d) ν1(1H) = 25 kHz and (c) ν1(1H) = 36 kHz. Total experimental time 
was 21.5–23 hrs for each spectrum. In (e–g), (e,f) 4096 and (g) 5120 transients were averaged with a 
relaxation interval of 10 s, using ν1(1H) = 20 kHz and spinning frequency of (e,f) 4 kHz and (g) 3 kHz. 
Total experimental time was 11.5–14 hrs for each spectrum. Exponential line broadening of (a-d) 50 Hz 
and (e–g) 20 Hz was applied. 
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assignment, and, in the presence of motion, the quadrupolar product (PQ) may 

be re-labelled “effective quadrupolar product” (effPQ).199,200 The presence of 

dynamics in ettringite is further investigated in this thesis using first-principles 

calculations of 33S NMR parameters (Chapter 7). Further experimental studies 

such as 2H MAS investigations of deuterated samples, 1H-23Na CP-MAS 

experiments in the presence of motions, or molecular dynamics (MD) 

simulations of the three hydrous sulfates, will also be of great interest. 

6.7 Conclusions 

 The feasibility of high-resolution 33S STMAS NMR experiments at B0 = 

9.4 and 20.0 T was demonstrated using ettringite, with particular emphasis on 

the implementation of 33S STMAS experiments all performed at the natural 

abundance of 33S nuclei (0.76%). It may be estimated that, using two-

dimensional 33S STMAS experiments at the natural abundance of 33S nuclei, the 

magnitude of CQ up to 1 MHz can be unambiguously observed for crystalline 

compounds within realistic experimental time (several days to a week). 

Although the use of high magnetic field strengths is highly advantageous for 

the study of low-γ nuclei, care should be taken to interpret the resulting two-

dimensional spectra that exhibit overlapping second-order broadened CT 

lineshapes, and a particular attention should be paid to the interplay of 

quadrupolar and chemical shifts. In this study, acquisition of isotropic spectra 

at several different field strengths enabled the extraction of a consistent set of 

33S quadrupolar parameters for multiple S sites in ettringite. On the basis of 

additional 1H MAS and 1H-33S CP-MAS investigations of hydrous sulfates 

(ettringite, gypsum and AlNH4(SO4)2·12H2O), the modulation of dipolar 

interaction due to water dynamics was compared. The fast 1H and 33S T1 

relaxation and small 33S quadrupolar broadening suggest the presence of fast 

dynamics in ettringite, potentially faster than the µs timescale, which may have 

caused a motional averaging of the second-order CT lineshape in the 33S MAS 

spectrum of ettringite recorded at an ambient temperature. (This proposition is 

further supported by the results of first-principles calculations of 33S NMR 

parameters described in the next chapter). 
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7.  First-Principles Calculations of 33S NMR Parameters 

Latest solid-state NMR studies are often accompanied by first-principle 

calculations of NMR parameters to predict and guide assignment of 

experimental NMR spectra. In this final chapter, first-principle calculations of 

33S NMR parameters are performed on a model system (Na2SO4 and K2SO4) and 

ettringite to further investigate the presence of dynamics in ettringite.  

7.1 Introduction 

 First-principles calculations have gained popularity over the last decade, 

expanding its application to calculations of NMR parameters in solid state. The 

first-principle NMR calculations can act as a guide prior to experimental 

acquisition or as an aid in spectral interpretation thereafter. For half-integer 

quadrupolar nuclei, for example, the prior knowledge of the magnitude of 

quadrupolar coupling is particularly useful for experimentalists to choose an 

appropriate method of NMR signal acquisition for a given external magnetic 

field strength and spectrometer time, and also to extract quadrupolar 

parameters upon retrospective spectral analysis of the quadrupolar broadened 
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lineshapes. Although first-principles calculations are generally known to be 

computationally expensive, the recent development of computational 

approaches in efficient quantum mechanical calculations has accelerated the 

widespread use of first-principle calculations of solid-state NMR parameters. 

 The aim of this final chapter is to support the presence of dynamics in 

ettringite, which was proposed by the experimental 33S NMR investigations 

presented in this thesis (Chapter 6), by first-principle calculations of 33S NMR 

parameters of a model system (Na2SO4 and K2SO4) and ettringite. Since the 

calculations are performed on a rigid system, an apparent disagreement is 

expected between the experimental and calculated quadrupolar parameters of 

ettringite, whereas a good agreement is anticipated for model systems (Na2SO4 

and K2SO4) in the absence of water molecules as a potential source of dynamics. 

In the following sections, a brief review of the theoretical background of first-

principles NMR calculations is firstly given, along with practicalities associated 

with the calculations of solid-state NMR parameters using CASTEP code. This 

is followed by the establishment of 33S chemical shift reference performed on 

the model system prior to the calculations of 33S NMR parameters on ettringite. 

7.2 Theoretical Background 

 A brief summary of essential concepts in CASTEP calculations of solid-

state NMR parameters is given in the following subsections. The theoretical 

basis of quantum mechanics involved in first-principle calculations of NMR 

parameters can be found in relevant publications201–210 and review articles.211–218  

7.2.1 Density Functional Theory 

 Fundamental properties of materials can be predicted if the ground state 

energy of electrons in the system is determined by solving the Schrödinger 

equation, 

 ˆ Ψ = ΨH E   (7.1) 

In the Kohn-Sham formalism201 of density functional theory (DFT), the ground 

state density ρ(r) of electrons at a point r in space is utilised to calculate the 
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ground state energy. The ground state density ρ(r) is written in terms of a set of 

wavefunctions Ψn(r) of non-interacting electrons as, 
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where the summation is performed over the N non-interacting electrons within 

the system. These non-interacting, one-electron wavefunctions Ψn(r) can be 

obtained from the Schrödinger-like Kohn-Sham equation, 
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where the first term in the brackets describes the kinetic energy, the second 

term is the Columbic interaction between nuclei and electrons, the third term 

accounts for the mean-field of non-interacting electrons (the Hartree potential), 

and the fourth term is the so-called exchange-correlation potential.214  

7.2.2 The Pseudopotential Approximation 

 Owing to the dependence of both Equation (7.2) and (7.3) on the density 

ρ(r), the Kohn-Sham equation is solved iteratively, starting from an 

approximation of ρ(r) built from atomic orbitals, until self-consistency of ρ(r) is 

attained.214 Such calculations are computationally demanding because of the 

large number of electrons involved. In the so-called pseudopotential approach, 

the core electrons are constrained in its atomic configurations (the frozen core 

approximation), and only the valance electrons are explicitly treated, achieving a 

significant reduction in the number of electrons to be computed. The 

corresponding electron-nuclei interactions are given by an effective potential 

(pseudopotentials), which results in a further decrease in computational cost.213 It 

should be noted that the exact form of exchange-correlation potential ( XCV̂ ) is 

unknown and is still an area of ongoing research. In the local density 

approximation (LDA), for example, the density at position r depends only on the 

local density at that point. Although the LDA is known for its simplicity and 

low computational cost, the more accurate and common approach is one of the 
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generalised gradient approximation (GGA), introduced by Perdew, Burke and 

Ernzerhof (GGA-PBE)204, which takes the gradient of the density into account. 

7.2.3 The Bloch’s Theorem 

 The periodic nature of crystalline solids can be exploited for efficient 

calculations, and to achieve this, the Bloch's Theorem is utilised.215 For a 

nucleus in a periodic system placed at a point r in space, the density and the 

potential acting upon it are considered to be both periodic: 

 
( ) ( )

ˆ ˆ( ) ( )

ρ + = ρ

+ =

r L r

r L rV V
  (7.4) 

where L is a lattice vector in the real space. This is schematically illustrated in 

Figure 7.1a,b. If the density is periodic, then, from Equation (7.2), the 

magnitude of the wavefunction is also periodic. Since the wavefunction is 

complex, the periodicity of the wavefunction can be represented as, 

 i .( ) e ( )Ψ = k rr rn nu   (7.5) 

where eik.r describes an arbitrary phase factor, and the periodicity is contained 

in un (r) as, 

 ( ) ( )+ =r L rn nu u   (7.6) 

The periodicity in un (r) can be expressed as Fourier series in terms of a basis 

function (plane waves), 

 i .( ) ( )e=∑ G r

G

r Gn nu c   (7.7) 

where G is the wavevectors in the reciprocal space, eiG.r is the plane wave 

travelling perpendicular to G with the corresponding coefficient cn(G). Since 

G.L = 2π, the periodicity is retained in the reciprocal space defined by the 

wavevectors G (Figure 7.1c). Consequently, the Kohn-Sham wavefunction is 

expressed in the reciprocal space as, 

 i( ).( ) ( )e +Ψ =∑ k G r

G

r Gn nc   (7.8) 

where the unique values of k lie in the reciprocal unit cell (the first Brillouin zone, 

Figure 7.1d). The coefficient cn(G) is determined by solving Equation (7.3). 
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 In principle, the Kohn-Sham wavefunction in Equation (7.8) needs to be 

integrated over all k. It is, however, sufficient to approximate the integral by a 

finite sampling of k as, 
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leading to a concept of the number of k-points (or k-point sampling). In addition, 

the coefficient cn(G) becomes negligible as G increases, and the summation over 

G in Equation (7.8) can be truncated, introducing a concept of the cutoff energy 

(Ecut): 
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For a given system, only the wavefunctions that satisfy this condition are 

computed. The quality of the plane wave basis set is then easily optimised by 

varying the input parameters (the number of k-points and the value of Ecut) 

until a desired accuracy is reached.213 

Figure 7.1 Schematic illustrations of a unit cell and atomic positions in the (a,b) real and (c,d) reciprocal 
space. In (b), the atoms under periodic boundary conditions are highlighted. In (d), the first Brillouin 
zone (grey) is expanded, in which the triangular zone is sampled by a uniform mesh of k-points.   
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7.2.4 Computation of NMR Parameters 

 For half-integer quadrupolar nuclei, calculations of NMR parameters 

consist of (i) computation of shielding tensors and (ii) computation of electric 

field gradient (EFG) tensors.205–207 The components of the EFG tensor are 

relatively easily computed from the charge density as, 

 3
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where α and β denote the Cartesian coordinates (x, y, z) and δαβ is the 

Kronecker delta function (δij = 0 if i ≠ j and δij = 1 if i = j). After diagonalisation 

of the EFG tensor, the eigenvalues (Vxx, Vyy and Vzz with zz yy xxV V V≥ ≥ ) yield 

the quadrupolar coupling constant CQ and the asymmetry parameter ηQ as,215 
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 For diamagnetic materials placed in a uniform external magnetic field 

(B0), an orbital motion of electrons induces electronic currents throughout the 

system. The density of the induced electronic current j(r’) gives rise to an 

induced magnetic field (the Biot-Savart law) as,213 
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The shielding tensor σ(r) is then given by the ratio between the induced 

magnetic field (Bind) and the applied magnetic field (B0): 
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The shielding tensor calculation is essentially the computation of the induced 

current within the system. Diagonalisation of the shielding tensor yields the 

isotropic absolute shielding (σiso),  

 iso
1

Tr{ }
3

σ = σ   (7.16) 

The absolute shielding (σiso) is related to the isotropic chemical shift (δiso) via a 
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reference shielding (σref), 

 iso ref isoδ = σ − σ   (7.17) 

Assuming the linear relationship in Equation (7.17), the reference shielding 

(σref) can be obtained either by calculations of simple compounds with well-

known chemical shifts or by evaluating the line of best-fit from a set of 

calculations of several compounds.213  

7.2.5 The GIPAW Method 

 Since the fundamental origin of NMR phenomena lies in the electronic 

shielding at the nucleus, the frozen core approximation in the pseudopotential 

approach (Subsection 7.2.2.) may not be physically valid for calculations of 

NMR parameters. In order to include the contribution from the core electrons, 

the projector augmented wave (PAW) method was devised in 1993.203 The PAW 

approach modifies the pseudopotential by reconstructing the all-electron 

wavefunction in the core region from the pseudo-wavefunctions, re-

establishing the true density in the core region for accurate NMR calculations. 

The all-electron PAW method is, however, computationally expensive for first-

principles calculations to be applied in materials science. In 2001, the gauge 

including projected augmented wave (GIPAW) approach was introduced by 

Pickard and Mauri.206 The GIPAW method enables an efficient all-electron 

calculation by utilising the presence of a uniform magnetic field in NMR 

phenomena. In 2007, a generalised form of pseudopotentials under the GIPAW 

formalism (ultrasoft pseudopotentials)207 was introduced, aiming to further reduce 

the computational cost of solid-state NMR calculations without a significant 

loss of accuracy. The GIPAW method has been implemented in several software 

packages, including CASTEP.212 

7.2.6 Convergence 

 In practice, the cut-off energy (Ecut) and the number of k-points are the 

key input parameters for end users. These values can be infinitely large, 

although the accuracy of calculations may not improve any further after a 

certain limit is achieved (converged)217 while the computation time increases 
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steadily. In order for first-principles calculations to yield reliable results within 

computationally accessible time, the optimum value of Ecut and the number of 

k-points with respect to the calculated physical quantity of interest may need to 

be found. The optimum values are determined by running a convergence test 

either on the system of interest itself or using a system that is similar to the 

system of interest. For NMR calculations of half-integer quadrupolar nuclei, for 

example, the convergence may be checked with respect to the absolute 

shielding (σiso), quadrupolar coupling constant (CQ) and asymmetry parameter 

(ηQ), by running NMR calculations for a range of cut-off energy and the number 

of k-points. For 33S NMR calculations presented in this thesis, the convergence 

was tested with respect to the 33S NMR parameters of sodium sulfate (Na2SO4) 

and potassium sulfate (K2SO4), and the results are summarised in Appendix L. 

The cut-off energy (Ecut) of 40–50 Ry and 12 k-points were found to be sufficient 

for these systems (more details in Subsection 7.3.1). 

7.2.7 Geometry Optimisation 

 An initial structure, described by the positions of atoms and unit cell size, 

is a prerequisite for NMR calculations. The structural parameters are usually 

taken from experimental diffraction data. Since NMR phenomena are sensitive 

to the local environment of the nucleus of interest, the accuracy of NMR 

calculations depends on the accuracy of the structural model used. In some 

cases, experimental error components in diffraction measurements may 

significantly alter the resulting NMR parameters.218 It is possible to optimise the 

structural components (geometry optimisation) prior to NMR calculations. 

Geometry optimisation may be especially necessary for structures obtained by 

X-ray diffraction studies because of the greater uncertainty in the positions of 

light atoms that might affect NMR parameters significantly. 

 Upon geometry optimisation, DFT calculations may result in an 

expansion of the unit cell.208 This is due to the absence of terms that describe 

intermolecular interactions (van der Waals forces) in the exchange-correlation 

functional. To overcome this expansion, the lattice parameters may be set to be 

fixed to those obtained by the diffraction measurements so that only the atomic 
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positions are varied upon geometry optimisation. It should be noted, however, 

that thermal expansion or contraction of a unit cell may have already occurred 

at ambient temperatures at which experimental measurements were performed, 

leading to a potential disagreement between the calculated and experimental 

NMR parameters. 

 Recently, semi-empirical dispersion correction (SEDC) schemes have 

been developed to include the intermolecular interactions into DFT calculations 

and improve the accuracy of NMR calculations.208 The SEDC schemes modify 

the Kohn-Sham equation (Equation (7.3)) by adding an empirical dispersion 

correction. Two SEDC schemes, G06209 and TS,210 have been shown to be 

compatible with the GGA-PBE functional, and its applications to NMR 

calculations have been demonstrated using aluminophosphates:208 upon 

structural optimisation, the interactions between the framework and template 

molecules were taken into account by the dispersion corrections, leading to a 

better agreement between the calculated and experimental NMR parameters. 

 It should be noted that, while diffraction measurements rely on the 

presence of a long-range ordering in solids, such ordering is not a prerequisite 

in NMR measurements. If there is any local disorder or dynamics present in the 

solid system, structural information obtained from experimental measurements 

(diffraction or NMR) is only about the time-averaged structure that is 

dependent on the timescale of the measurements performed. Since the 

calculations are performed on a rigid structure (at 0 K), care has to be taken 

when comparing the results of calculations with those obtained experimentally. 

7.2.8 General Computational Details 

 All calculations were performed using CASTEP DFT code (version 

6.1),212 implemented with the gauge-including projector augmented wave 

(GIPAW)206 approach. The generalised gradient approximation (GGA) PBE204 

functional was used along with ultrasoft pseudopotentials.207 The convergence 

criteria for structural optimisation were a total energy of 1 × 10−4 eV per atom, 

an ionic force of 0.05 eV Å−1 and an ionic displacement of 1 × 10−3 Å. 

Calculations were performed on a 4–8 core node with 2–4 GB memory per core 
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installed at the School of Chemistry in the University of Glasgow. Calculation 

wallclock times varied from a few minutes to several days. Further 

computational details are given in the corresponding legend. 

7.3 33S Chemical Shift Reference 

 Six publications exist, at the time of writing, on first-principles 

calculations of 33S NMR parameters using CASTEP code.159–164 The first study159 

was carried out in 2009 on layered transition metal disulfides. Chemical shift 

anisotropy (CSA) parameters were reported as well as the quadrupolar 

parameters. In 2010, Moudrakovski160 reported an intensive comparison of 33S 

NMR parameters between CASTEP and Gaussian 98, using potassium sulfates 

(K2SO4, KHSO4, K2S2O7 and K2S2O8). No geometry optimisation was performed 

in this work, which could have potentially improved the accuracy of the 

CASTEP 33S NMR calculations. The largest CQ predicted by CASTEP 33S NMR 

calculations is 40 MHz on elemental sulfur (α-S8),161 and this was 

experimentally verified at B0 = 21.1 T on a 33S-enriched (> 99.9%) sample in 2010. 

In 2011, 33S NMR parameters were employed to assess the accuracy of several 

reported crystal structures of taurine.164 33S NMR was also a part of the 

combined study of multinuclear NMR and first-principles calculations on 

MgSO4 polymorphs published in 2011.162 In this study, NMR parameters based 

on the single crystal XRD structure resulted in a better agreement than that of 

the neutron powder diffraction. The most recent publication reports a thorough 

investigation of anhydrous sulfates163 by the combined use of 33S solid-state 

NMR, first-principles calculations and single crystal XRD measurements. The 

accuracy of CASTEP 33S NMR calculations were examined using 28 initial 

structures of 15 different sulfates (multiple structures have been reported in the 

existing diffraction studies for some of the sulfates). Geometry optimisation was 

also performed with fixed unit cell parameters on some of the initial structures, 

resulting in 43 sets of calculated 33S NMR parameters to be analysed.163  

 The reference shielding (σref) for 33S chemical shifts has been reported 

several times in the existing studies. The primary attempt in 2010 yielded a 
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value of σref = 416.4 ppm from the correlation between the experimental 

chemical shift and calculated shielding of 23 inorganic compounds (sulfides, 

sulfates and thiosulfates).160 This was then updated in 2011 to σref = 434.1 

ppm162 and reproduced in the latest study in 2013.163 Although the 

recommended reference shielding was 434.1 ppm in this study, if the sulfates 

are exclusively evaluated, then a reference shielding value of 425.8 ppm was 

also evident. It should also be noted that the linear correlation analysis in this 

study was performed using selected structures that showed the best agreement 

with the experimental results with respect to the magnitude of quadrupolar 

coupling constants (CQ).163 

7.3.1 CASTEP 33S NMR Calculations of Na2SO4 and K2SO4 

 Prior to 33S NMR calculations of ettringite, 33S NMR calculations were 

first performed on model systems, sodium sulfate (Na2SO4) and potassium 

sulfate (K2SO4). Experimental 33S NMR parameters of the model sulfates have 

been reported previously,150 and a high-resolution 33S NMR study was 

performed in this thesis (Subsection 6.4.3). In 2010, a CASTEP 33S NMR 

calculation of K2SO4 was reported,161 and this was followed by a comprehensive 

study performed on anhydrous sulfates in 2013,163 in which 33S NMR 

parameters of Na2SO4 were calculated using two initial structures taken from 

existing diffractions studies while the 33S NMR parameters of K2SO4 were 

evaluated upon geometry optimisation.163 The 33S quadrupolar parameters 

reported in these previous studies are summarised in Table 7.1. 

 In the following calculations of 33S NMR parameters of the model 

sulfates, initial structures were taken from the existing diffraction studies of 

Na2SO4219 and K2SO4,220 respectively. Firstly, convergence tests were performed 

for each sulfate with respect to the number of k-points and cutoff energy (Ecut), 

and the results were analysed in terms of the absolute shielding (σiso), 

quadrupolar coupling constant (CQ) and asymmetry parameter (ηQ), as 

summarised in Appendix L. As expected, the calculated NMR parameters 

reached a certain limit (converged), as the value of Ecut and number of k-points 

was increased, while the calculation time continued to increase. The optimum 
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value of the number of k-points and Ecut was found to be 12 k-points and 50 Ry 

for Na2SO4, and the 12 k-points and 40-50 Ry for K2SO4, respectively. 

 Using the number of k-points and Ecut determined upon convergence 

tests, 33S NMR calculations of Na2SO4 and K2SO4 were performed using three 

approaches: (i) without geometry optimisation, (ii) with geometry optimisation 

and constraining unit cell parameters, and (iii) with geometry optimisation and 

allowing unit cell parameters to vary. The results are summarised in Table 7.1, 

along with the experimental and calculated results from the previous studies. 

For Na2SO4, the calculated values of CQ (0.63–0.69 MHz) are in good agreement 

with the experimental results (CQ = 0.63 MHz), irrespective of the use of 

geometry optimisation, implying that the input structures based on diffraction 

measurements are of sufficient quality for NMR calculations. For K2SO4, 

geometry optimisation resulted in slightly smaller values of CQ (0.83–0.86 MHz), 

although this is still in good agreement with the experimental values (CQ = 0.96 

MHz). It should be noted that the calculated values of ηQ give rise to a poor 

agreement in both sulfates, and this is because, by definition, the value of ηQ is 

sensitive to the uncertainty in each of the three components of the EFG tensor 

(Equation (7.12)), rather than a single component as in CQ (Equation (7.13)). 

Upon geometry optimisation without lattice constraints, a slight expansion of 

the unit cell (4−6%) was also observed in both sulfates. Inclusion of dispersion 

correction schemes208 may be envisaged, although no further investigations 

were performed because the extent of expansion was insignificant for these 

simple inorganic sulfates. 

 The effect of geometry optimisation was found to be most apparent on 

the absolute shielding (σiso), and a variation in the calculated absolute shielding 

(calcσiso) was as large as 10 ppm (82–93 ppm for Na2SO4 and 88–108 ppm for 

K2SO4). To convert the absolute shielding to experimentally observable 

chemical shifts, a reference shielding (σref) needs to be established for the 

nucleus of interest (Subsection 7.2.4). Conventionally, a reference shielding is 

obtained either by NMR calculations of simple compounds with well-known 

chemical shifts or evaluating a line of best-fit from a set of calculated results 

performed on multiple compounds.213 The latter approach has been used for 33S 
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chemical shift reference, using sulfides and sulfates, yielding a value of σref = 

434.1 ppm.162,163 It should be noted that the 33S chemical shift region that was 

evaluated upon the linear correlation analysis covered over 600 ppm, ranging 

from −300 ppm (for sulfides) to 300 ppm (for sulfates). In this thesis, a slightly 

different value of σref was chosen to be used: the reference shielding values 

based on two geometry-optimised structures of each sulfate (σref = 426.6, 423.5, 

428.2 and 424.2 ppm) were selected and averaged to yield σref = 425.7 ppm. This 

was justified by the observation that a relatively good agreement of CQ was 

obtained from the geometry-optimised structures in both sulfates, and also that 

Table 7.1 Summary of experimental and calculated 33S quadrupolar parameters of Na2SO4 and K2SO4: isotropic chemical 
shifts (expδiso and calcδiso), isotropic shielding (calcσiso), quadrupolar coupling constants (expCQ and calcCQ) and asymmetry 
parameters (expηQ and calcηQ). Changes in unit cell dimension upon geometry optimisation is given in terms of volume 
change (%) with respect to the initial structure taken from diffraction studies of Na2SO4 (a = 9.829 Å, b = 12.302 Å, c = 
5.868 Å, α = β = γ = 90.0°, volume = 709.5 Å3, 56 atoms in a unit cell)219 and K2SO4 (a = 7.476 Å, b = 10.071 Å, c = 5.763 Å, 
α = β = γ = 90.0°, volume = 433.9 Å3, 28 atoms in a unit cell).220 Cutoff energies (Ecut) of 50 Ry and 40 Ry were used for 
Na2SO4 and for K2SO4, respectively, with k-point spacing of 0.04 Å−1 (corresponding to 12 k-points). The linear 
relationship expδiso = σref − calcσiso was assumed. For 33S STMAS (20.0 T), the value of expδiso was taken from δCS of the two-
dimensional STMAS analysis (Table 6.2). In the ('13)163 study, σref = 434.1 ppm was employed for the conversion of calcσiso 
to calcδiso. 
 

 
expδiso 
(ppm) 

calcσiso 
(ppm) 

σref 
(ppm) 

calcδiso 
(ppm) 

expCQ 
/MHz 

calcCQ 

/MHz 
expηQ calcηQ 

Unit cell 
volume 

Na2SO4          

('04)150 341    0.660  0.13   

('08)155 340.1    0.655 ± 0.005  0.07 ± 0.05   

 340.2    0.655 ± 0.005  0.01 ± 0.05   

('13)163 340.1 ± 1.0    0.655 ± 0.05  0.0 ± 0.1   

('13)163 ('64)  81.66 (434.1) 352.4  0.495  0.73  

('13)163 ('75)  93.51 (434.1) 340.6  0.697  0.26  
33S STMAS (20.0 T) 340.6         

(i) No optimisation  93.2 433.8   0.69  0.30 100% 

(ii) Fixed cell  86.0 426.6   0.65  0.36 100% 

(iii) Relaxed cell  82.9 423.5   0.63  0.44 104% 
          

K2SO4          

('04)150 337    0.970  0.50   

('08)155 336.0    0.963 ± 0.005  0.41 ± 0.05   

 336.2    0.969 ± 0.005  0.41 ± 0.05   

('13)163 335.7 ± 0.5    0.959 ± 0.030  0.42 ± 0.05   

('10)160  103.9 (416.4) 314.9  0.924  0.35  

('13)163 ('95)  103.92 (434.1) 330.2  0.924  0.35  

('13)163 ('95, Fixed)  92.39 (434.1) 341.7  0.788  0.53  
33S STMAS 336.4         

(i) No optimisation  107.9 444.3   1.12  0.24 100% 

(ii) Fixed cell  91.8 428.2   0.83  0.42 100% 

(iii) Relaxed cell  87.8 424.2   0.86  0.38 106% 
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the reference shielding value of 425.7 ppm is in agreement with the previously 

reported value of 425.8 ppm that was obtained exclusively from the sulfate 

region.163 In the following 33S NMR calculations of ettringite, therefore, σref = 

425.7 ppm was employed, instead of σref = 434.1 ppm suggested in the literature. 

7.4 CASTEP 33S NMR Calculations of Ettringite 

 In 2010, a first-principles CASTEP 33S NMR calculation of ettringite 

(Ca6Al2(SO4)3(OH)12·26H2O) was reported as a part of 33S chemical shift 

reference establishment.160 In this study, however, only a single site was 

presented with calcσiso = 112 ppm and expδiso = 331 ppm (for σref = 434.1 ppm), 

although three crystallographically distinct S sites are expected from the 

diffraction studies.166–169 No information on quadrupolar parameters was 

supplied in this study, necessitating further investigations of 33S NMR 

calculations of ettringite for complete spectral analysis by 33S solid-state NMR. 

In addition, the presence of dynamics around the S nuclei in ettringite, a 

tentative proposition made in this thesis, is to become more evident with the 

aid of first-principles calculations of 33S NMR parameters.  

 The results of 33S NMR calculations of ettringite performed in this thesis 

are summarised in Table 7.2, along with the experimental results from previous 

33S MAS NMR studies154,155 and high-resolution 33S STMAS NMR performed in 

this thesis (Section 6.5). The initial structure was taken from the existing X-ray 

diffraction (XRD) data.168 Five sets of 33S NMR calculations of ettringite were 

proposed and performed in this thesis: (i) without geometry optimisation (“No 

optimisation”), (ii) with geometry optimisation and fixed unit cell parameters 

(“Fixed cell”), (iii) with geometry optimisation, allowing unit cell parameters to 

vary (“Relaxed cell”), (iv) with geometry optimisation under TS scheme (unit 

cell parameters varied), and (v) with geometry optimisation under G06 scheme 

(unit cell parameters varied). The expansion of the unit cell was analysed in 

terms of the volume change (in %) with respect to the initial structure taken 

from the XRD data. A minor expansion of the unit cell was observed with (iii) 

Relaxed cell (103%), which is typical for the GGA-PBE functional known to 
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overestimate the bond length,214,221 and a negligible contraction of unit cell was 

observed with the (iv) TS (99%) and (v) G06 (98%) schemes. This implies that 

long-range, intermolecular interactions are insignificant in ettringite, despite the 

presence of many water molecules that are potentially connected via an 

extensive hydrogen bonding network throughout the unit cell. 

Table 7.2 Summary of experimental and calculated 33S quadrupolar parameters of ettringite: isotropic chemical shifts 
(expδiso and calcδiso), isotropic shielding (calcσiso), quadrupolar coupling constants (expCQ and calcCQ) and asymmetry 
parameters (expηQ and calcηQ). Changes in unit cell dimension upon geometry optimisation is given in terms of 
volume change (%) with respect to the initial structure (taken from the existing XRD data168). Geometry optimisation 
for (ii) Fixed cell was performed sequentially using cutoff energy (Ecut) of 40 Ry and k-point spacing of 0.1 Å−1 
(corresponding to 2 k-points) followed by the use of k-point spacing of 0.05 Å−1 (corresponding to 5 k-points), which 
resulted in no change in the 33S NMR parameters. For (iii)-(v), consequently, geometry optimisation was performed 
using cutoff energy of 40 Ry and k-point spacing of 0.1 Å−1 (corresponding to 2 k-points). For 33S NMR calculations, 
cutoff energy of 40 Ry and k-point spacing of (i) 0.03 Å−1 (corresponding to 10 k-points) and (ii–v) 0.05 Å−1 
(corresponding to 5 k-points) were employed (it should be noted that the use of 0.1 Å−1 (corresponding to 2 k-points) 
showed no difference in the calculated 33S NMR parameters). The linear relationship expδiso = σref − calcσiso was 
assumed with σref = 425.7 ppm. For 33S STMAS (20.0 T), the value of expδiso was taken from δCS of the two-dimensional 
STMAS analysis (Table 6.2). In the ('10)160 study, σref = 434.1 ppm was proposed for the conversion of calcσiso to calcδiso. 
 

 
expδiso 
(ppm) 

calcσiso 
(ppm) 

calcδiso 
(ppm) 

expCQ 
/MHz 

calcCQ 

/MHz 
expηQ calcηQ 

Unit cell 
volume 

Experimental         

MAS ('06)154 331   0.700  0.45   
         
MAS ('08)155 331.3   0.516  0.50   
 329.8   0.591  0.72   
 329.6   0.810  0.97   
         
STMAS (20.0 T) 331.8   0.620  0.10   
 332.1   0.660  0.30   
 331.0   0.800  0.10   
         

Calculated         
('10)160  (331) 112 (322.1)      
         
(i)   No optimisation  96.8 328.9  3.84  0.02 100% 
  90.8 334.9  1.64  0.22  
  93.1 332.6  3.11  0.03  
         
(ii)  Fixed cell  94.5 331.2  1.30  0.08 100% 
  94.1 331.6  1.50  0.51  
  96.3 329.4  0.62  0.26  
         
(iii) Relaxed cell  91.2 334.5  1.28  0.22 103% 
  91.6 334.1  1.61  0.48  
  93.0 332.7  0.46  0.20  
         
(iv) TS  96.4 329.3  1.39  0.22 99% 
  95.6 330.1  1.29  0.50  
  97.8 327.9  0.58  0.49  
         
(v)  G06  95.0 330.7  1.52  0.23 98% 
  95.0 330.7  1.43  0.43  
  96.1 329.6  0.98  0.37  
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 Figure 7.2 summarises the effect of geometry optimisation with respect 

to the change in structural parameters (Figure 7.2a,b) and quadrupolar 

parameters (Figure 7.2c–e). Without geometry optimisation of the input 

structure, a value of CQ as large as 4 MHz (CQ = 1.64–3.84 MHz) has resulted 

(Figure 7.2d), whereas, upon geometry optimisation, the magnitude of CQ has 

considerably decreased to lie in the range of CQ = 0.46–1.61 MHz. This 

significant reduction in CQ can be explained in terms of the change in the local 

environment of the S nuclei, and the structural analysis of S-O bond lengths and 

S-O-S bond angles are shown in Figure 7.2a,b. Without geometry optimisation, 

the S-O bond lengths range over 0.06 Å from 1.44 to 1.51 Å, whereas, after 

geometry optimisation, all the S-O bond lengths are 1.49 Å within the accuracy 

of ± 0.01 Å. Similarly, the S-O-S bond angle initially ranged from 106° to 113° 

over 7°, and, after geometry optimisation, the theoretically expected S-O-S 

angle of a perfect tetrahedron (109.5°) was attained within the accuracy of ± 0.7°. 

This implies that, upon geometry optimisation, the sulfate (SO4) tetrahedra 

Figure 7.2 (a,b) Structural analysis of ettringite with respect to (a) S-O bond lengths and (b) O-S-O bond 
angles before and after geometry optimisation with “Fixed” and “Relaxed” unit cell. (c–e) Effects of 
geometry optimisation on calculated 33S NMR parameters of ettringite: (c) isotropic chemical shift, (d) 
quadrupolar coupling constant and (e) asymmetry parameter. 
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were approaching perfect tetrahedral symmetry. The effect of geometry 

optimisation was also evident in the magnitude of force exerted on the S atoms: 

in the initial structure, the maximum force of 3.06–4.49 eV Å−1 was observed for 

S atoms (along the z axis), and this was considerably reduced to 0.008–0.02 eV 

Å−1 after the geometry optimisation. 

 For the calculated absolute shielding (calcσiso), no obvious trend was 

observed (Figure 7.2c), and the converted chemical shifts (calcδiso) lie in the range 

of 328–335 ppm (with the use of σref = 425.7 ppm), which is in agreement with 

the experimentally observed range (expδiso = 329–332 ppm). It may be noted that, 

upon geometry optimisation, two of the three S sites (S1 and S2) have resulted 

in relatively similar isotropic shifts, and also that one of the three S site (S3) has 

resulted in a particularly small CQ value (CQ = 0.5–1.0 MHz) compared to the 

other two S sites (CQ = 1.3–1.6 MHz). 

 To illustrate the difference in 33S NMR parameters between experimental 

and calculated values, three sets of simulated 33S MAS and 33S STMAS spectra 

at B0 = 20.0 T are displayed in Figure 7.3. Previously suggested 33S quadrupolar 

parameters for a single site and three sites were used in Figure 7.3a,d and 7.3b,e, 

respectively, while in Figure 7.3c,f, the calculated 33S quadrupolar parameters 

from (ii) “Fixed cell” were employed. The corresponding set of simulated 

spectra using the 33S quadrupolar parameters obtained in this thesis was 

displayed in Figure 6.5c,e in the context of experimental 33S NMR investigations. 

These sets of quadrupolar parameters are not mutually inconsistent, owing to 

the presence of at least one S site with a particularly small value of CQ (< 1.0 

MHz). A notable difference between experimental and calculated 33S 

quadrupolar parameters of ettringite is the presence of two S sites with 

significantly larger values of CQ in the calculated results, which is 

unambiguously absent in the experimental 33S MAS and 33S STMAS spectra (the 

high S/N ratio in the 33S MAS spectrum in Figure 6.5c safely excludes the 

possibility of insufficient 33S signal accumulation). Upon spectral analysis of the 

experimental 33S MAS and STMAS spectra of ettringite (Section 6.5), it was 

speculated that the 33S quadrupolar parameters were motionally averaged at 

the ambient temperature at which the experimental 33S NMR measurements 
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were performed. Motional averaging can reduce the width of the central-

transition (CT) lineshape, and the extent to which the CT lineshape is modified 

is dependent on the nature of motions,198,222 which is too complicated to identify 

by a simple, retrospective spectral analysis. Also, it was mentioned, in the 

context of experimental 33S NMR investigations, that two-dimensional STMAS 

spectra are sensitive to dynamics on the microsecond timescale, leaving the 

isotropic STMAS linewidths significantly broadened,100 and that the 33S STMAS 

spectra of ettringite do not show any broadening in the isotropic linewidths, 

and thus the possibility of dynamics on the µs timescale might be safely 

eliminated. Upon thorough consideration of these experimental and 

computational observations (efficient 33S T1 and 1H T1 relaxation, narrowing of 

33S MAS lineshape at room temperature compared to that of the calculated 

results at 0 K, and the absence of µs dynamics), relatively fast dynamics, 

potentially faster than the µs timescale, may be present in ettringite at ambient 

temperatures. The likely source of the dynamics is the cooperative motion of 

water molecules that extends to the entire structure with no net intermolecular 

Figure 7.3 Simulated (a–c) 33S MAS and (d–f) 33S STMAS spectra of ettringite at B0 = 20.0 T. In (a,b,d,e), 
quadrupolar parameters were taken from the previous studies in which (a,d) a single S site154 and (b,e) 
three S sites155 were proposed. In (c,f), quadrupolar parameters were taken from the CASTEP 33S NMR 
calculations of (ii) Fixed cell in Table 7.2. In (a–c), one-dimensional central-transition lineshape 
simulation was performed using a software on Bruker TopSpin 3.2, In (d–f), frequency-domain 
simulation of two-dimensional STMAS signals was performed using a home-written Fortran code, and 
subsequent spectral plotting was performed using Mathematica. 
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forces. The nature of the motion in ettringite is envisaged to be characterised by 

means of 2H NMR of deuterated samples or molecular dynamics (MD) 

simulations and will be reported elsewhere. 

7.5 Conclusions 

 First-principles CASTEP 33S NMR calculations were performed on three 

sulfates, sodium sulfate (Na2SO4), potassium sulfate (K2SO4) and ettringite 

(Ca6Al2(SO4)3(OH)12·26H2O). The 33S chemical shift establishment was revisited, 

using Na2SO4 and K2SO4 as model systems, and the use of a reference shielding 

obtained exclusively from the sulfate region was proposed and used in this 

thesis. A set of 33S NMR calculations was performed on ettringite, investigating 

the effect of geometry optimisation with the use of semi-empirical dispersion 

correction schemes. The structural and spectral analysis of the calculated 33S 

NMR parameters of ettringite unambiguously support the presence of 

dynamics around the S nuclei in ettringite, a tentative proposition made based 

on the experimental 33S solid-state NMR study (Chapter 6). The origin of the 

dynamics was proposed to be a collective motion of water molecules, and 

further experimental and computational investigations are envisaged to 

confirm and identify the nature of motion in ettringite. 

 
 



 

216 

 

Concluding Remarks 

 Four research topics covered in this thesis were mainly concerned with 

high-resolution solid-state NMR of half-integer quadrupolar nuclei, with a 

particular focus on satellite transitions of spin I = 3/2 nuclei. The first two 

chapters described the development of novel sensitivity enhancement schemes 

for the satellite transitions of spin I = 3/2 systems. Theoretical and experimental 

investigations were thoroughly performed, using 23Na, 87Rb and 69/71Ga STMAS 

and STARTMAS NMR with a range of quadrupolar coupling (CQ = 1−18 MHz) 

at B0 = 9.4 T under 14286 Hz spinning and at B0 = 20.0 T under 62.5 kHz 

spinning. The applicability and limitations of the novel methods were discussed, 

and the desirable properties and limiting factors of the STMAS and STARTMAS 

approaches were also identified. Further research such as signal enhancement 

schemes for higher spin quantum numbers (I > 5/2) and improvements in 

acquisition and processing of STARTMAS signals may be envisaged. 

 In the latter half of this thesis, natural abundance 33S MAS, 33S STMAS, 

and 1H-33S CP-MAS NMR and first-principles calculations of 33S NMR 

parameters of a cementitious material, ettringite (Ca6Al2(SO4)3(OH)12·26H2O), 
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were presented. Firstly, the feasibility of high-resolution 33S STMAS NMR was 

demonstrated at B0 = 9.4 and 20.0 T, with particular emphasis on the 

implementation of STMAS experiments all performed at the natural abundance 

of 33S nuclei. Upon acquisition of 1H-33S CP-MAS spectra of related sulfates 

(ettringite, gypsum (CaSO4·2H2O) and AlNH4(SO4)2·12H2O), the modulation of 

dipolar coupling due to water dynamics was compared and contrasted, and the 

presence of dynamics in ettringite was tentatively proposed on the basis of the 

experimental 33S MAS, 33S STMAS and 1H-33S CP-MAS NMR investigations. In 

addition, further research on first-principles calculations of 33S NMR 

parameters were performed in this thesis, with respect to the establishment of 

33S chemical shift reference and the effect of geometry optimisation schemes. A 

comparison of calculated and experimental 33S NMR parameters of ettringite 

and related sulfates was shown to support the presence of dynamics in 

ettringite. The nature of the motion in ettringite is envisaged to be characterised 

by means of further investigations such as 2H NMR of deuterated ettringite 

samples or molecular dynamics (MD) simulations. 
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Appendices 

A. Matrix Representations of Spin Angular Momentum Operators 
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I = 5/2 
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I = 9/2 
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B. Matrix Representations of Spherical Tensor Operators 
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1 0 0 0 0 0 0 02 2
0 1 0 0 0 0 0 0

−

−

 
 − =
 −
 
 

−   
   
   = =
   
   −   

   
   
   = =
   
   
   

T

T T

T T
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I = 5/2 

1,0

1,1 1, 1

5 0 0 0 0 0
0 3 0 0 0 0
0 0 1 0 0 01
0 0 0 1 0 070
0 0 0 0 3 0
0 0 0 0 0 5

0 0 0 0 0 00 5 0 0 0 0
5 0 0 0 0 00 0 8 0 0 0

0 0 0 3 0 0 0 8 0 0 0 01 1
0 0 3 0 0 00 0 0 0 8 035 35
0 0 0 8 0 00 0 0 0 0 5

0 0 0 0 0 0 0 0 0 0 5 0

−

 
 
 
 = − 
 −
 − 

   −
   

−   
−   = =   −   

   −
   
   

T

T T

  
 
 
I = 7/2 

 

1,0

1,1

7 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 1 0 0 0 01
0 0 0 0 1 0 0 0168
0 0 0 0 0 3 0 0
0 0 0 0 0 0 5 0
0 0 0 0 0 0 0 7

0 7 0 0 0 0 0 0
0 0 2 3 0 0 0 0 0
0 0 0 15 0 0 0 0
0 0 0 0 4 0 0 01
0 0 0 0 0 15 0 084
0 0 0 0 0 0 2 3 0
0 0 0 0 0 0 0 7
0 0 0 0 0 0 0 0

 
 
 
 
 =  −
 −
 

− 
 − 

 −
 

− 
 −
 −=
 −
 −
 −

 

T

T

1, 1

0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0
0 2 3 0 0 0 0 0 0
0 0 15 0 0 0 0 01
0 0 0 4 0 0 0 084
0 0 0 0 15 0 0 0
0 0 0 0 0 2 3 0 0
0 0 0 0 0 0 7 0

−








 
 
 
 
 
 =
 
 
 
 
 
 

T
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I = 9/2 

1,0

1,1

9 0 0 0 0 0 0 0 0 0
0 7 0 0 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 01
0 0 0 0 0 1 0 0 0 0330
0 0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 0 5 0 0
0 0 0 0 0 0 0 0 7 0
0 0 0 0 0 0 0 0 0 9

0 3 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0 0
0 0 0 21 0 0 0 0 0 0
0 0 0 0 2 6 0 0 0 0 0
0 0 0 0 01

165

 
 
 
 
 
 

=  −
 

− 
− 

 −
 − 

−
−

−
−

=

T

T

1, 1

5 0 0 0 0
0 0 0 0 0 0 2 6 0 0 0
0 0 0 0 0 0 0 21 0 0
0 0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0
0 0 21 0 0 0 0 0 0 0
0 0 0 2 6 0 0 0 0 0 01
0 0 0 0 5 0 0 0 0 02
0 0 0 0 0 2 6 0 0 0 0
0 0 0 0 0 0 21 0 0 0
0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0

−

 
 
 
 
 
 − 
 −
 − 

− 
 −
 
 

=T

3 0

 
 
 
 
 
 
 
 
 
 
 
 
 
   
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C. Reduced Wigner Rotation Matrix Elements 

 
l = 1  

  

1 1
1, 1 1,1

1 1
1,1 1, 1

1 1 1 1
0,1 1,0 0, 1 1,0

1
0,0

1( ) ( ) (1 cos )
2
1( ) ( ) (1 cos )
2

1
( ) ( ) ( ) ( ) sin

2
( ) cos

− −

− −

− −

β = β = − β

β = β = + β

β = β = − β = − β = β

β = β

d d

d d

d d d d

d

  

 
l = 2 

  

2 2 4 2
2,2 2, 2

2 2 2 2
2,1 1,2 2, 1 1, 2

2 2 2 2 2
2,0 0,2 2,0 0, 2

2 2 2 2
2, 1 1, 2 2 ,1 1,2

1
( ) ( ) cos ( ) (1 cos )

2 4
1

( ) ( ) ( ) ( ) sin (1 cos )
2

3 6
( ) ( ) ( ) ( ) sin (1 cos 2 )

8 8
1

( ) ( ) ( ) ( ) s
2

− −

− − − −

− −

− − − −

ββ = β = = + β

β = − β = − β = β = − β + β

β = β = β = β = β = − β

β = β = − β = − β = −

d d

d d d d

d d d d

d d d d

2 2 4
2, 2 2,2

2 2
1,1 1, 1

2 2
1, 1 1,1

2 2 2 2
1,0 0, 1 0,1 1,0

2 2
0,0

in (1 cos )

( ) ( ) sin ( )
2

1
( ) ( ) (1 2 cos )(1 cos )

2
1

( ) ( ) (1 2 cos )(1 cos )
2

3 6
( ) ( ) ( ) ( ) sin cos sin 2

2 4
1

( ) (3 cos 1)
2

− −

− −

− −

− −

β − β

ββ = β =

β = β = − − β + β

β = β = + β − β

β = β = − β = − β = − β β = − β

β = β − =

d d

d d

d d

d d d d

d
1

(3cos 2 1)
4

β +   

 
l = 4 

   

4 4 2
0,0

4 4 2
0,1 1,0

4 4 4 2
0,2 2 ,0

4 4 3
0,3 3,0

4 4 4 2
0,4 4,0

1
( ) (35 cos 30 cos 3)

8
5 5

( ) ( ) cos sin (7 cos 3) (2 sin 2 7 sin 4 )
4 32
10

( ) ( ) (14 cos 8cos 6)
128
35

( ) ( ) cos sin
4

70
( ) ( ) (cos 4 cos 3)

128

β = β − β +

β = − β = β β β − = β + β

β = β = − β − β −

β = − β = β β

β = β = β − β +

d

d d

d d

d d

d d
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D. Spin- and Transition-Dependent Coefficients   

    A ( , , )′n
I II m m  

I Im  ′Im   A0 A2 A4 

3/2 −1/2 +1/2 (CT) −2/5 −8/7 54/35 

 ±1/2 ±3/2 (ST) 4/5 4/7 −48/35 

 −1/2 +3/2 
(DQ) 2/5 −4/7 6/35 

 +1/2 −3/2 

 −1/2 ±3/2 (TQ) 6/5 0 −6/5 

       

5/2 −1/2 +1/2 (CT) −16/15 −64/21 144/35 

 ±1/2 ±3/2 (ST1) 2/15 −4/3 6/5 

 −3/2 +3/2 (TQ) −4/5 −40/7 228/35 

 ±3/2 ±5/2 (ST2) 56/15 80/21 −264/35 

 −5/2 +5/2 (5Q) 20/3 40/21 −60/7 

       

7/2 −1/2 +1/2 (CT) −2 −40/7 54/7 

 ±1/2 ±3/2 (ST1) −4/5 −4 24/5 

 −3/2 +3/2 (TQ) −18/5 96/7 606/35 

 ±3/2 ±5/2 (ST2) 14/5 8/7 −138/35 

 −5/2 +5/2 (5Q) 2 80/7 66/7 

 ±5/2 ±7/2 (ST3) 44/5 68/7 −648/35 

 −7/2 +7/2 (7Q) 98/5 8 138/5 

       

9/2 −1/2 +1/2 (CT) −16/5 −64/7 432/35 

 ±1/2 ±3/2 (ST1) −2 −52/7 66/7 

 −3/2 +3/2 (TQ) −36/5 24 156/5 

 ±3/2 ±5/2 (ST2) 8/5 −16/7 24/35 

 −5/2 +5/2 (5Q) 4 −200/7 228/7 

 ±5/2 ±7/2 (ST3) 38/5 44/7 −486/35 

 −7/2 +7/2 (7Q) 56/5 16 −24/5 

 ±7/2 ±9/2 (ST4) 16 128/7 −240/7 

 −9/2 +9/2 (9Q) 216/5 144/7 −2335/35 
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E. MQMAS, STMAS and STARTMAS Ratios  

For MQMAS and STMAS experiments, 
4

4

( , , )
( , , )

( , 1/2, 1/2)
′′ =

± ∓

I I
I I

A I m m
R I m m

A I
. 

 

For STARTMAS experiments, 
4

4

( , 1/2, 3 /2)
( , , )

( , 1/2, 3 /2)
±′ =

± ±
∓

I I
A I

R I m m
A I

. 

 
I Im  ′Im   IR( , , )′I II m m  

3/2 ±1/2 ±3/2 (ST) −8/9 

 ±3/2 ±3/2 (TQ) −7/9 

   (STARTMAS) −1/8 

     

5/2 ±1/2 ±3/2 (ST1) 7/24 

 ±3/2 ±3/2 (TQ) 19/12 

 ±3/2 ±5/2 (ST2) −11/6 

 ±5/2 ±5/2 (5Q) −25/12 

     

7/2 ±1/2 ±3/2 (ST1) 28/45 

 ±3/2 ±3/2 (TQ) 101/45 

 ±3/2 ±5/2 (ST2) −23/45 

 ±5/2 ±5/2 (5Q) 11/9 

 ±5/2 ±7/2 (ST3) −12/5 

 ±7/2 ±7/2 (7Q) −161/45 

     

9/2 ±1/2 ±3/2 (ST1) 55/72 

 ±3/2 ±3/2 (TQ) 91/36 

 ±3/2 ±5/2 (ST2) 1/18 

 ±5/2 ±5/2 (5Q) 95/36 

 ±5/2 ±7/2 (ST3) −9/8 

 ±7/2 ±7/2 (7Q) 7/18 

 ±5/2 ±7/2 (ST4) −25/9 

 ±7/2 ±7/2 (9Q) −31/6 
 
In general, if the ratio is negative, the −p ↔ −1 pathway is the echo pathway, while if the ratio is positive, 
then the +p ↔ −1 pathway is the echo pathway.  
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F. Coefficients for Split-t1 MQMAS and STMAS Pulse Sequences 

I Im  ′Im   k k′ k″ 

3/2 ±1/2 ±3/2 (ST) 9/17 8/17 0 

 ±3/2 ±3/2 (TQ) 9/16 7/16 0 

       

5/2 ±1/2 ±3/2 (ST1) 24/31 0 7/31 

 ±3/2 ±3/2 (TQ) 12/31 0 19/31 

 ±3/2 ±5/2 (ST2) 6/17 11/17 0 

 ±5/2 ±5/2 (5Q) 12/37 25/37 0 

       

7/2 ±1/2 ±3/2 (ST1) 45/73 0 28/73 

 ±3/2 ±3/2 (TQ) 101/146 0 45/146 

 ±3/2 ±5/2 (ST2) 45/68 23/68 0 

 ±5/2 ±5/2 (5Q) 9/20 0 11/20 

 ±5/2 ±7/2 (ST3) 5/17 12/17 0 

 ±7/2 ±7/2 (7Q) 45/206 161/206 0 

       

9/2 ±1/2 ±3/2 (ST1) 72/127 0 55/127 

 ±3/2 ±3/2 (TQ) 36/127 0 91/127 

 ±3/2 ±5/2 (ST2) 18/19 0 1/19 

 ±5/2 ±5/2 (5Q) 36/131 0 95/131 

 ±5/2 ±7/2 (ST3) 8/17 9/17 0 

 ±7/2 ±7/2 (7Q) 18/25 0 7/25 

 ±5/2 ±7/2 (ST4) 9/34 25/34 0 

 ±7/2 ±7/2 (9Q) 6/37 31/37 0 
 
A coherence pathway of +p → +1 → −1 is always selected. To select an echo pathway, the CT evolution 
period is placed before the final pulse (i.e. k″ = 0) for negative MQMAS or STMAS ratios, while the CT 
evolution period is placed after the final pulse (i.e. k′ = 0) if the MQMAS or STMAS ratio is positive. 
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G. Chemical Shift Scaling Factors for MQMAS, STMAS and STARTMAS 
Experiments  

CS
( , , )

( , , )
1 ( , , )

′−′χ =
′+

I I
I II

I I

p R I m m
I m m

R I m m
 

 
where p = {3, 5, 7, 9} for MQMAS, p = 1 for STMAS, and p = 2 for STARTMAS 

experiments. 

I Im  ′Im   CS( , , )′χ I II m m  

3/2 ±1/2 ±3/2 (ST) 1 

 ±3/2 ±3/2 (TQ) 17/8 

   (STARTMAS) 17/9 

     

5/2 ±1/2 ±3/2 (ST1) 17/31 

 ±3/2 ±3/2 (TQ) 17/31 

 ±3/2 ±5/2 (ST2) 1 

 ±5/2 ±5/2 (5Q) 85/37 

     

7/2 ±1/2 ±3/2 (ST1) 17/73 

 ±3/2 ±3/2 (TQ) 17/73 

 ±3/2 ±5/2 (ST2) 1 

 ±5/2 ±5/2 (5Q) 17/10 

 ±5/2 ±7/2 (ST3) 1 

 ±7/2 ±7/2 (7Q) 238/103 

     

9/2 ±1/2 ±3/2 (ST1) 17/127 

 ±3/2 ±3/2 (TQ) 17/127 

 ±3/2 ±5/2 (ST2) 17/19 

 ±5/2 ±5/2 (5Q) 85/131 

 ±5/2 ±7/2 (ST3) 1 

 ±7/2 ±7/2 (7Q) 119/25 

 ±5/2 ±7/2 (ST4) 1 

 ±7/2 ±7/2 (9Q) 85/37 
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H. Isotropic Shifts in MQMAS, STMAS and STARTMAS Spectra 

In unsheared two-dimensional spectra, the peak positions in the F1 and F2 dimensions are given by 
01 CS Q( , , )′δ = δ + δI Ip A I m m , and 02 CS Q( , 1/2, 1/2)δ = δ + ± δ∓A I , the anisotropic ridge lineshape lies 

along an axis (A) given by the MQMAS or STMAS ratio, ( , , )′I IR I m m , the chemical shift axis lies along an 
axis given by the coherence order (|p|), and the quadrupolar shift axis lies along a gradient determined 
by the ratio 0 0( , , )/ ( , 1/2, 1/2).′ ± ∓I IA I m m A I  
 

   Unsheared 

I   Peak position A CS QS 

3/2 δ2 (CT) δCS + (−2/5)δQ    

 δ1 (ST) δCS + (4/5)δQ −8/9 1 −2 

  (TQ) 3δCS + (6/5)δQ  −7/9 3 −3 

       

5/2 δ2 (CT) δCS + (−16/15)δQ    

 δ1 (ST1) δCS + (2/15)δQ 7/24 1 −1/8 

  (TQ) 3δCS + (−4/5)δQ 19/12 3 3/4 

  (ST2) δCS + (56/15)δQ −11/6 1 −7/2 

  (5Q) 5δCS + (20/3)δQ −25/12 5 −25/4 

       

7/2 δ2 (CT) δCS + (−2)δQ    

 δ1 (ST1) δCS + (−4/5)δQ 28/45 1 2/5 

  (TQ) 3δCS + (−18/5)δQ 101/45 3 9/5 

  (ST2) δCS + (14/5)δQ −23/45 1 −7/5 

  (5Q) 5δCS + 2δQ 11/9 5 −1 

  (ST3) δCS + (44/5)δQ −12/5 1 −22/5 

  (7Q) 7δCS + (98/5)δQ −161/45 7 −49/5 

       

9/2 δ2 (CT) δCS + (−16/5)δQ    

 δ1 (ST1) δCS + (−2)δQ 55/72 1 5/8 

  (TQ) 3δCS + (−36/5)δQ 91/36 3 9/4 

  (ST2) δCS + (8/5)δQ 1/18 1 −1/2 

  (5Q) 5δCS + 4δQ 95/36 5 −5/4 

  (ST3) δCS + (38/5)δQ −9/8 1 −19/8 

  (7Q) 7δCS + (56/5)δQ 7/18 7 −7/2 

  (ST4) δCS + 16δQ −25/9 1 −5 

  (9Q) 9δCS + (216/5)δQ −31/6 9 −27/2 
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In sheared or split-t1 MQMAS and STMAS spectra, the peak positions are given by  

( )0 01 CS CS Q( , , ) ( ( , , ) ( , , ) ( , 1/2, 1/2))/(1 ( , , ) )′ ′ ′ ′δ = χ δ + − ⋅ ± + δ∓I I I I I I I II m m A I m m R I m m A I R I m m  and 

02 CS Q( , 1/2, 1/2)δ = δ + ± δ∓A I , the anisotropic ridge lineshape lies along the F2 dimension (A = 0), the 

chemical shift (CS) axis lies along a gradient given by the chemical shift scaling factor CS( , , ) ,′χ I II m m  

whereas the quadrupolar shift (QS) axis lies along a gradient determined by the ratio 
0 0(( ( , , )/ ( , 1/2, 1/2)) ( , , ))/(1 ( , , ) ).′ ′ ′± − +∓I I I I I IA I m m A I R I m m R I m m  

 

   Sheared or split-t1 

I   Peak position CS QS 

3/2 δ2 (CT) δCS + (−2/5)δQ   

 δ1 (ST) δCS + (4/17)δQ 1 −10/17 

  (TQ) (17/8)δCS + (1/2)δQ  17/8 −5/4 

      

STARTMAS δ2 (ST) δCS + (4/5)δQ   

 δ1 (DQ) (17/9)δCS + (4/9)δQ 17/9 5/9 

      

5/2 δ2 (CT) δCS + (−16/15)δQ   

 δ1 (ST1) (17/31)δCS + (32/93)δQ 17/31 −10/31 

  (TQ) (17/31)δCS + (32/93)δQ 17/31 −10/31 

  (ST2) δCS + (32/51)δQ 1 −10/17 

  (5Q) (85/37)δCS + (160/111) δQ 85/37 −50/37 

      

7/2 δ2 (CT) δCS + (−2)δQ   

 δ1 (ST1) (17/73)δCS + (20/73)δQ 17/73 −10/73 

  (TQ) (17/73)δCS + (20/73)δQ 17/73 −10/73 

  (ST2) δCS + (20/17)δQ 1 −10/17 

  (5Q) (17/10)δCS + 2δQ 17/10 −1 

  (ST3) δCS + (20/17)δQ 1 −10/17 

  (7Q) (238/103)δCS + (280/103)δQ 238/103 −140/103 

      

9/2 δ2 (CT) δCS + (−16/5)δQ   

 δ1 (ST1) (17/127)δCS + (32/127)δQ 17/127 −10/127 

  (TQ) (17/127)δCS + (32/127)δQ 17/127 −10/127 

  (ST2) (17/19)δCS + (32/19)δQ 17/19 −10/19 

  (5Q) (85/131) δCS + (448/131)δQ 85/131 −140/131 

  (ST3) δCS + (32/17)δQ 1 −10/17 

  (7Q) (119/25) δCS + (224/25)δQ 119/25 −14/5 

  (ST4) δCS + (32/17)δQ 1 −10/17 

  (9Q) (85/37)δCS + (160/37)δQ 85/37 −50/37 
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I. Tensor Operator Formalism for Enhancement of Satellite Transitions 

 The initial state σi is given by the matrix representation of the tensor 

operator T1,0 that represents the spin state at thermal equilibrium. Taking a spin 

I = 3/2 system as an example, 

 i 1,0

3 0 0 0
0 1 0 01
0 0 1 020
0 0 0 3

 
 
 = =
 −
 − 

σ T   (1.1) 

Since Iz is diagonal and the elements are ordered, descending from top left to 

bottom right, W = W−1 = W’ = (W’)−1 = I (a unit matrix) and thus, D Di i i .′= =σ σ σ  

The target operator (A) is identical to that give in density operator formalism: 

 

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 
 
 =
 
 
 

A   (1.2) 

The maximum coefficient is then calculated as, 

 
D D
imax

†

Tr{ } 1
Tr{ } 5

= =σ A

A A
a   (1.3) 

 In the tensor operator formalism, the effect of a single pulse on an initial 

state T1,0 is described by,  

 1 1 11,0 1,0 1,1 1, 10,0 1,0 1,0( ) ( ) ( )d d dφβ
−−→ β + β + βT T T T   (1.4) 

where the reduced rotation matrix elements are given by, 

 

1
0,0

1
1,0

1
1,0

( ) cos

1
( ) sin

2
1

( ) sin
2−

β = β

β = − β

β = β

d

d

d

  (1.5) 

Since the observable coherence is single-quantum, the elements of 1 1,11,0( )β Td  or 

1 1, 11,0( ) −β Td  that correspond to satellite transitions is considered as the 

coefficient for a single-pulse experiment. For spin I = 3/2 systems, the 
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maximum coefficient for a single-pulse experiment is given by, 

 
1 3 3

.
2 10 20

⋅ =   (1.6) 

Consequently, the possible enhancement is given by,  

 1 3 1.155.
5 20

=   (1.7) 

This is identical to the result obtained by the density operator formalism. 
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J. Coefficients for Sensitivity Enhancement Calculations 

  Density operator formalism 

I  ST1 CT 

3/2 amax 1 3/2 = 1.5 
 Single pulse (1 /2) 3⋅  = 0.866 (1 /2) 2⋅  = 1 

 Enhancement 15.5% 50% 
    

5/2 amax 2 5/2 = 2.5 

 Single pulse (1 / 2) 2 2⋅  = 1.414 (1 /2) 3⋅  = 1.5 

 Enhancement 41.4% 66.7% 

    
7/2 amax 3 7/2 = 3.5 

 Single pulse (1 /2) 15⋅  = 1.936 (1 /2) 4⋅  = 2 

 Enhancement 54.9% 75% 
    

9/2 amax 4 9/2 = 4.5 

 Single pulse (1 / 2) 2 6⋅  = 2.449 (1 /2) 4⋅  = 2.5 

 Enhancement 63.3% 80% 
 
 

  Tensor operator formalism 

I  ST1 CT 

3/2 amax 1 / 5  = 0.447 3 /2 5  = 0.671 

 Single pulse ( 3 / 20) (1 / 2)⋅ = 0.387 (2 / 10) (1 / 2 )⋅ = 0.447 

 Enhancement 15.5% 50% 

    

5/2 amax 2 2 / 35  = 0.478 5 / 14  = 0.598 

 Single pulse (2 2 / 35) (1 / 2 )⋅ = 0.338 (3 / 35) (1 / 2)⋅ = 0.359 

 Enhancement 41.4% 66.7% 

    
7/2 amax 3 / 14  = 0.463 7 / 2 6  = 0.540 

 Single pulse ( 15 / 84) (1 / 2)⋅  = 0.299 (4 / 84) (1 / 2 )⋅  = 0.309 

 Enhancement 54.9% 75% 

    
9/2 amax 4 2 / 165  = 0.440 3 3 / 110  = 0.495 

 Single pulse (2 6 / 165) (1 / 2)⋅  = 0.270 (5 / 165) (1 / 2)⋅  = 0.275 

 Enhancement 63.3% 80% 
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K. Two-Dimensional MQMAS and STMAS Spectra of Selected Compounds  
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L. Convergence Test of 33S Quadrupolar Parameters for Na2SO4 and K2SO4 
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M. Selected Examples of Fortran and MATLAB Codes 

(a) A Fortran simulation code of time-domain NMR signals for spin I = 3/2 
systems used in Chapter 4 (Page 1 of 4). 
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(a) A Fortran simulation code of time-domain NMR signals for spin I = 3/2 
systems used in Chapter 4 (Page 2 of 4).  
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(a) A Fortran simulation code of time-domain NMR signals for spin I = 3/2 
systems used in Chapter 4 (Page 3 of 4).  
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(a) A Fortran simulation code of time-domain NMR signals for spin I = 3/2 
systems used in Chapter 4 (Page 4 of 4).  
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(b) A MATLAB processing code of experimental STARTMAS NMR signals 
used in Chapter 5 (Page 1 of 2).  
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(b) A MATLAB processing code of experimental STARTMAS NMR signals 
used in Chapter 5 (Page 2 of 2).  
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(c-1) A MATLAB simulation code of STARTMAS NMR signals used in Chapter 
5 (to define input parameters).  

 
 
(c-2) A MATLAB simulation code of STARTMAS NMR signals used in Chapter 

5 (to define the pulse sequence).  
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(d) A Fortran simulation code of frequency-domain STMAS NMR signals 
used in Chapter 6 and 7 (Page 1 of 5).  
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(d) A Fortran simulation code of frequency-domain STMAS NMR signals 
used in Chapter 6 and 7 (Page 2 of 5).  
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(d) A Fortran simulation code of frequency-domain STMAS NMR signals 
used in Chapter 6 and 7 (Page 3 of 5).  
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(d) A Fortran simulation code of frequency-domain STMAS NMR signals 
used in Chapter 6 and 7 (Page 4 of 5).  
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(d) A Fortran simulation code of frequency-domain STMAS NMR signals 
used in Chapter 6 and 7 (Page 5 of 5).  
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