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Synopsis

Due to the rapid development of spatial light modulators, optical materials and filter
design techniques; real time pattern recognition exploiting hybrid optical correlation
is increasingly attractive. The spatial light modulator (SLM) enables signal or image
patterns to be encoded as amplitude and/or phase modulation patterns across a
directed coherent optical beam. It is the vast computational potential of optlical
information processing that provides the molivation for the design of spatial filters

suitable for implementation on currently available SLMs.

A pood correlation filter should produce a sharp localised correlation peak in the
output plane, and be able to achieve this in the presence of noise in the input
plane. Thus optimisation is of great importance in oplical correlator systems. The
lower frequency compouents produce a broad correlation peak, whereas the higher
{requency-band procuces a sharp correlation peak that is sensitive to noise. This
suggests that a filter with a band-pass characteristic can be made tolerant to noise
and also give good localisation of the correlation peak. Here, spatial frequency band
tuning and adaptive filtering are developed for this purposc. Spatial frequency se-
lectivity is found to be very important for the design of a spatial filter, a compromise
between correlation peak sharpness and noise robustness is songht. Thus, the
tuneable photorefraclive filler is assessed and difference of Gaussian function filter
is developed. For different noise characteristics the spatial filter parameters must be
tuned to give optimised performance, tlis oplimisation process depends greatly on
the noise and target object spectral characteristics. Adaptive filter design is devel-
oped which integrates the phase only filter with the classical matched filter, where
a variable amplitude threshold value is set so that, at a particular spatial pixel
location, if the amplitude value is preater than the pre-set threshold, only phase
information is recorded; otherwise, both the phase and amplitude information are

encoded.

The development of the synthetic discriminant function filters as distortion tolerant
filters was motivated by the sensitivity of the spatial matched filters to distortions
in the input image such as in-plane rotations, out-of-plane rotations and scale vari-

ations. In applications it is very important that a spatial filter detects the target
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object from the input scene regardless of its orientation. The design of synthetic
discriminant function filters suitable for implementation on commercially available
SLM’s is an extremely important feature of current research in the area. Therefore,
based on the filter synthetic discriminant function (fSDF), a modified filter syn-
thetic discriminant function filter is developed. Via the filter modulation operator
N, the modified [SDF permits advantageous preprocessing of individual training set
images that are used in a lincar combination to construct the fSDF, which applics
a modulation operator M {o the synthetic discriminant function. A relaxation al-
gorithm is used to satisty the equal correlation peaks rule in the correlator output
plane. As Lhe filter modulation operators M and A" can be given any Functional
form, the MISDF design proposed herein is sufficiently general to be described as
a unified filter modulation SDF design. By considering the implementation of the
modified {SDF on currently available SLM’s, the binary phase-only encoded and the
multilevel phase and amplitude encaded modified 8D, which are snitable for the
binary mode SLM and the liquid crystal television respectively, are investigated and
evaluated. The evaluation is performed to better understand the image distortion

range that can be encoded using the modified fSDI filters.

The Wicuer filter, which has been used extensively for the image restoration and
signal processing, 18 developed for robust oplical paftern recognition and classifi-
cation. The Wicner filter is formmnlated to incorporate the in-class image (to be
detected) and the out-of-class noise image (to be rejected) into a single step filter
construction. A Wiener filter-SDJ 1s thus developed and investigated by applying

it to vehicle recognition and laser cutting process control.

The joint transform correlator (JTC) provides a popular alternative to the Van-
derLugt architecture. To improve its performance, a modified fringe-adjusted filter
based JTC is introduced and with a multi-object input shown to ameliorate the
noise sensitivity of the fringe-adjusted filter based JTC; this provides a solution
that overcomes the difficultics encountered with binary JTC techniques. In order
to permit the JTC to accommodate a high degree of image distortion, a SDF hased
modified fringe-adjusted JTC is developed and investigated to illustrate its ability

to deal with nolsy multi-class, multi-object inputs.
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Nomenclature

ACMF
ACR
ADF

coordinates in the space domain
origin coordinates in the space domain
coordinates in the frequency domain
coordinates in the frequency domain

sampling intervals in the space domain

sampling intervals in the frequency domain

complex conjugate operator
discrimination capability

standard deviation

wavelength of light

phase angle

Horner efliciency

focal length of Fourier transform lens
convolution operator

correlation operator

SLM amplitude coding domain
forward Fourier transform operator
inverse Fourier transform operator
modulation operator

modulation operator

SLM phase coding domain

amplitude-compensated matched filter
auto-correlation result

adaptive discriminant filter
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AMF
APC
API

BFP
BJTC
BPOF
BR
BSO

CGH
CJITC
CMF
CPI

DC
bC,
DOG
DFWM
DFT

ECP

FAT
FAFJTC
fSDF
FTP

¥Fr
FWHM

[F

LC
Imag] |
I0C

JI*S
JTC

amplitude modulated filter
armoured personnel carrier

aulo-correlation peak intensity

back focal plane

binary joint transforin correlation
binary phase-only filter

beam ratio

Bismuth Silicon Oxide

computer generated hologram
conventional joint transform. correlation
classical (complex) matched filter

correlation peak intensity

discrimination capability

worst, case diserimination capability
difference of Gaussian

degenerate four wave mixing

discrete Fourier transform
equal correlation peak

fringe-adjusted filter

fringe-adjusted filter joint transform correlator
filter synthetic discriminant function

Fourier transform property

Fourier transform

_full widih hall maximum

inverse filter
intra-in-class
imaginary part of a complex function

intra~-out-of-clasa

joint power spectrum

joint transform correlation




LOTV
LCLV

MACE
MFAF
MFAJTC
MISDF
MVSDF
MLAP

POF
PNI
PNO
PRMS
PSR
PSR,

Reall ]

SBWP
SDI
SLM
SNR

TMF
TPR

VLSI

WF

liguid crystal television

hiquid crystal light valve

minimum average correlation energy

modified fringe-adjusted filter

modified fringe-adjusted joint transform correlator
modified filter synthetic discriminant function
mininuin- variance synthetic discriminant function

multi-level phase and amplitude

phase-only filter

pixel number inside correlation peak at full width half maximuin
pixel number outside correlation peak at full width half maximum
peak to the root mean square ratio

peak to secondary peak ratio

worsl case peak to secondary peak ratio
real part of a complex function

space bandwidth product
synthetic discriminant function
spatial light modulator

signal to noise ratio

tenary matched filter

tuneable photo-refractive
very large scale integration

Wicner filter
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Chapter 1

Introduction

The ability of oplical elements and filters to implement a broad range of compu-
tationally intensive complex mathematical operations in parallel, and at the speed
of light, has great significance for the future development of hybrid optical/digital
computer architectures. For example a lens, Fig.1.1, is able to compute the Fourier
transform of a 512x512 data array in fractions of a nano-second, this is equivalent
to a throughput of about 2x10'® mathematical operations per second; this estimate
is based on the number of digital multiplications and additions required o perform
the same transform using the I'F'T algorithm. Significantly, when exploiting optical
compubational schemes the comnputational time does not increase if the data array
size increases; it is this potential thai has stimnulated and sustained international
research in the area. Until recently, the ability to use optical systems as a general
computational tool was severely constrained by the ability to get data into and out
of the system. Fortunately, recent developments in hardware (spatial light modu-
lators) have provided a potential solution to this problem, and spurred a [urry of
research activity in the field.

In 1964 VanderLugt proposed using a Fourier plane mask for pattern recognition [1].
"This architecture is usually referred to as a frequency plane correlator, as shown in
Fig.l.l. His system performed a cross correlation between two functions and is based
on the autocorrelation theorem and the Fourier transforra property of a lens using
monochromatic coherent light. VanderLugt’s insight was realising a way to wrile a

15
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Figure 1.1: General optical correlator

complex function (i.e. the Fourier transform of an input image or signal) onto an
energy sensitive medium, photographic film. The method proposed was holography,
which results in encoding a complex transform function of a reference object onto a
spatial carrier frequency. With the introduction of computer-generated holography
(CGH) [2, 3], it became possible to fabricate matched filters of mathematically
synthesised objects, but the CGH filter was still written onto photographic film,
and therefore could not be implemented in real time.

Real time implementations are critical for practical applications of optical correla-
tion. Due to the rapid development of spatial light modulators, optical materials
and filter design techniques, real time pattern recognition exploiting hybrid optical
correlation is increasingly attractive. The spatial light modulator (SLM) enables sig-
nal or image patterns to be encoded as amplitude and/or phase modulation patterns
across a directed coherent optical beam. It is the vast computational potential of
optical information processing that provides the motivation for the design of spatial

filters suitable for implementation on currently available SLMs.

Probably the most challenging SLM requirement is that of real time matched filter
modulation at the Fourier plane of a VanderLugt correlator. The matched filter
generally is a complex function, requiring independently controlled phase and am-
plitude spatial modulation. Most SLMs, such as the LCTV in its normal mode
of operation, only provide amplitude modulation which is usually accompanied by
incidental phase modulation that is not independently controllable.
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As stated above, practical application of the matched filter was limited because the
{ilter is complex, and no cffective means existed to implement such a filter in real
time. Caufield [4] and Horner [5] originally conceived the idea of using only the
phase of the Fourier signal to make a matched-type of [ilter. Horner and Gianino
fitst demonstrated the feasibility of this idea through computer simulations [6], and
named it the phase-only filter (POF); it gives a correlation peak that is anywhere
from 50 to 500 times higher than that from a classical matched spalial filter. An
optical filter which operates with pure phase modulation is very attractive as it does
not attenuate the light passing through it. In contrast, the amplitude portion of a
matched spatial filter attenuates the light since it is written on a positive device
such as film or an SLM, and the peak transmission cannot exceed 100 percent,
which usually occurs at the origin of the frequency plane. Also the light transmittance of
a holographically recorded matched Glter is [urther eroded by its poor diffraction
efficiency, particularly if one tries to implement it on a spatial light modulator.
Thus, the 100% light efficiency of the POF is a distinct advantage in a low-powered
optical correlator. However, the high {requency bias of the POI" adversely affects
ils signal-to-noise ratio (SNR} performance, making it very sensitive (o noise in the
input scene. A good correlation filter should not only produce a sharp localised
correlation peak in the output plane, but also be robust to noise in the input scene.
This optimisation is of great importance in an optical correlator system and is a

major focus of the research herein.

The concentration of most of the energy at low frequencies, for common objects, is
responsible for the broad correlation peaks generated by a classical matched spatial
filter; that is, it behaves as a low pass filter. The influence of the input image noise
11 the frequency plane of the correlator 1s greater for high spatial frequencies. Thus
the POF, which is an all pass filter, is very susceptible to noise in the correlator.
This suggests that a filter with a band-pass characteristic is likely to be tolerant to

noise and also give good localisation of the correlation peak.

Since convolution based edge enhancement is equivalent to a band pass filtering
operation in the frequency domain, optical processing exploiting a photo-refractive
raterial as a tuneable holographic filter provides a simple and effective method for

implementing low noisc {low noise in the sense that it does not introduce artefacts
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in the reciprocal domain) edge enhancement concurrently with correlation. This
approach was recently implemented as part of a matched spatial filter by Young
and Chatwin [7]; this method exploits selective erasure of spatial frequencies at
the Fourier iransform plane in the photo-refractive material Bismuth Silicon OQxide
(BSO). The use of the widely available BSO has several important consequences for

the overall system design.

In order to emphasise the importance of the BSO tuneable pholo-refractive (TPR)
filter, Chapter 3 investigates this tuneable bandpass type filter recorded in BSO and
evaluates its noise robustness. In addition, an approximately equivalent bandpass
filter, based on the difference of Gaussian (DOG) funciion is also reported and
compared with the TPR filter.

An alternative approach to the BSO TPR filter is to use commercially available
programmable SLMs which are limited to binary guantization of amplitude and/or
phase; this has been a popular approach in the past ten years which has intro-
duced binary phase-only filters for practical pattern recognition. However, this
approach only partially exploits the finesse of [ilters designed for processing images
with continuous phase and amplitude information. An optimal filter, that is tolerant
to noise in the input scene and able to produce high quality localised correlation
peaks, requires continuous phase and amplitude information. Implemeunting corre-
lation filters on a binary phase-only SLM compromises the correlation performance.
Recently, it was found that the liquid erystal tclevision (LCI'V), —for example
the Epson LCTV panels, which are part ol a cominercial video projecctor, — can
encode approximately continuous (i.e. multilevel) amplitude or phase information
from Fourier transformed images. The Seiko Epson I.CTV works quite well in the
amplitude mode if the attached film polarizers arc removed and replaced with high
quality external polarizers. When the usual polarizers are removed the phase mode
of operation can be operaled over the range of 0° to 540°, Thus, slightly modified
LCTVs can implement almost continuous functional representation of the designed
optimal filters, which usually require continuous amplitude and/or phase informa-
tion to be encoded. This technology led to the design of the adaptive discriminant
filter (ADF), which is reported in Chapter 4. The ADF is designed so as to oplimise
the sharpness of the correlation peak and the filter’s tolerance to noise in the input
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scene.

Matched spatial filters are sensitive to distortion of the input images relative to
the reference image. For example, in-plane rotations of several degrees, or scale
changes of several percent, typically result in a 50% reduction in the corrvelation peak
intensity. Filter sensitivity depends atrongly on specific parameters such as object
shape and the spatial frequency bandpass ol the correlation filter. In any practical
application not only must the expected distortions of targeted, or in-class, patterns
(objects) be accommodated (usually by virtue of a high correlation peak response),
but the filter should be robust to noise, and able to reject out-of-class objects (usually
by virtue of a relatively low correlation peak response). ‘L'he classical matched spatial
filter is the optimal solution for the case of a single in-class pattern with significant

background stochastic noise; a case having limited practical application.

A realistic and typical application is to recognise specified types of vehicle, regardless
of orientation, in scenes which include other vehicles (nontargeted) and natural or
man-made clutter such as trees, bushes, buildings, roads, etc. Random noise may
also be present in the input patterns as a result of the imaging system or viewing
conditions. Thus, the need to reject ont-of-class patterns places serious constraints

on the design of widened in-class responses (distortion invariance).

Many applications would benefit from the use of the space-invariant feature of
Iourier-based correlation to furnish a location estimate of each recognised target,
hased on correlation peak location in the outpui plane. This involves additional
trade-offs in filter design since, in general, optimisation of peak localisation (i.e.
achieving narrow peaks} is inconsistent with maximising classification accuracy (e.g.

achieving highest signal-to-noise ratio).

The synthetic discriminant function (SDI") [8] was a significant milestone in filters
designed to cope with target distortion problems. The SDF filter is a composite
filter in which the weights are set, using linear discrimination techniques, to yicld
specified on-axis correlation responses over the in-class and out-of-class training
image sets. In its original form, called the equal correlation peak (ECP) SDF, the

on-axis covariance matrix for the training set is formed and linear algebra techniques
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are applied to solve for composile filter weights which ensure equal-correlation-peak
responses for all the in-class training set images. Problems with sidelobe correlation
responses being larger than the desired on-axis response were addressed by the

correlalion-SDF filter which incorporates control of sidelobe responses not included
in the ECP formulation [9].

Variants of the SDF have been developed, several of which are called optimal linear
discriminant function filters [10]. Notable recent developments include the mini-
mum average correlation energy (MACE) SDF [11] and the minimum-variance SDF
(MVSDF) [12]. A generalised SDF formulation, which encompasses most of the

previous types as special cases, was recently reported [13].

Generally, these SDI filters are continuous complex-valued filter functions. How-
ever, at present, spatial light modulator technology does not readily support the
real time implementation of continuous complex-valued functions. Thus, the device
limitations must be incorporated into the SDF filter design. In this regard, the POF
and BPOF play an important role in real time implementations.

The phase-only concept is a very general principle that can be applied to any com-
plex filter function by merely retaining the phase (or binarizing it) and setting the
modulus to unity, as first proposed by Horner et al for the POF-SDT filter [14],
which i1s 1nplemented by couverting the continuous complex-valued ECP-SDF to
a phase-only type (or binary phase-only type). However, the POT-SDF does not
give equal correlation peaks over the entire in-class {raining image set; this limits
its practical application. To solve this problem, Jared and Enunis [15] developed an
ad hoc iterative technique, called the filier-SDF ({SDF) which adjusts the heights of
a composite transform, based on the training image set, so as to control the on-axis
correlation response of the POF-SDF or BPOT-SDF over the training image set, i.c.
it ensures that the SDT satisfies the cqual correlation peaks goal. The formulation
process is numerically relatively simple; however, convergence is not guaranteed.
Fortunately, it was successful in nearly all the cases studied. Thus this iteralive
relaxation algorithm is a powerful tool when designing SDI fillers with nonlinear
characteristics that satisly the ECP rule.
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Jared and Ennis’s idea was to ensure that the filter-encoding constraints imposed
by the actual device with which they arc implemented are taken into account al the
design stage of the SDF filter. Unlike the fully complex SDF filter, the {SDF filter
can be implemented on commercially available spatial light modulators and used in
an optical correlator; .. jj jg therefore of particular interest for real-time optical

pattern recognition systems employing rapidly updateable SLMs,

It is well known that, tor common objects, the concentration of most of the energy
in the central zone of the spectrum, i.e. low frequency components, is responsible
for poor correlation performance. There is no doubt that the conventional SDIF,
which is a linear combination of the training set images, is dominated by the lower
frequency components of individual training set images. The fSDF implements the
filter modulation counstraints (i.e. POF or BPOF) on Lhe conventional SDF and par-
tially amcliorates the problem; however, correlation performance is still inadequate.
To overcome this problem, Wang and Chatwin [16, 17] very recently gave further
cousideration to the filter-encoding constraint applied to the equal correlation peak
SDI* design. Their idea was to synthesise the SDI" from the linear combination
of a set of training images which are already filter modulated, i.e. pre-processed.
so that the constructed SDF' is dominated by the higher, not the lower, frequency
components of the individual training set images. This idea and its implementation
on commercially available devices (spatial light modulators) is fully elucidated in
Chapter 6.

Aun extremely important performance criterion for a correlation system is its ability
to discriminate between in-class and oul-of-class objects. Normally the discrimina-
tion capability of a filter depends on the sharpness of the correlation peak produced.
Thus, the CMTF, which is optimal for the recognition of objects in additive noise,
gives a low discrimination ability between an object of the class to be detected and
an out-of-class object which is to be rejected, especially when the objects are sim-
ilar. In order to overcome this problem, several methods [18, 19, 20] have been
proposed. An optimal filter, which maximises the discrimination capability, was
reported by Yaroslavsky [21] and gives better performance than thc POF. For this
reason, Chapter 7 introduces the Wiener filter, which has been successfully imple-

mented to enhance the filter discrimination ability. In this implementation, the
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Wiencr filter is formulated so as to incorporate the out-ol-class image, to be re-
jected, as the Wiener filter noise term. IMarthermore, an SDY filter constructed from
Jrete ) b] i’ . . ] . ‘ o

the propesed Wicner filter is also investigated by applying it to vehicle recognition

and laser cutting process control.

The joint transform correlator {JTC) provides a popular alternatiw‘: to the Vander-
Lugt architecture; Chapter 8 introduces some techniques to improve its plerformancia.
A modified fringe-adjusted filter (MFAF) bagsed JTC is introduced and (-mth multi-
object input) shown to ameliorate the noise sensitivity ol the fri.rfge-a.d]-usted filter
(FAF) based JTC; this provides a solution that overcomes the difficulties encoun-
tered with binary JTC tochniques. Tn order to allow the JTC to accommo‘da.te a
high degree of image distortion, Chapter 8 introduces a SDF based MFAEF-J'I'C and
demonstrates its ability to deal with noisy multi-class, multi-object inputs.

It should be noted that, in the simulations, to avoid aliasing the array size of an

image must be dimensioned to be at least twice that of the object arr

ay size. How-
ever, most of the simulations carried out in this thesis did not

strictly obey ihis law
so that there is evidence of cyclic wrap round in some of the vesults. Ii

that, for the filters developed in this thesis, this effect is small and
date the work.

1s Tortunate

does not invali-
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Chapter 2

Optical Pattern Recognition:
Fundamentals

2.1 Introduction

Due to ifs central importance in optical and digital image processing, this chapter
reviews the Fourler transform and some of its properties. This is followed by an
explanatiou of the Fourier transforming property of a lens, as this is frequently a
key element in optical processing systems. Cornplex spatial filtering and some basic,

but important, spatial filters arc then reviewed.

2.2 Fourier Transform

2.2.1 Continuous Fourier transform

One- and/or two-dimensional Fourier transforms are of fundamental importance
in optical and digital image processing as will become evident in the subsequent

chapters. Let f(2) be a continuous function of a real variable 2. The Fourier

25
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transform of f(x), denoted by F{f(x)}, is defined by the equation
+o0
F{f(x)} = Fu) = / f(z)exp|—j2nuz]dz (2.1)

where 3 = +/—1.

Given F(u), f{(z) can be obtained by using the inverse Fourier transform

+co

FUF(u)} = f(z) = / Flu)eaply2rua}du (2.2)

-0

Eqgs.{2.1) and (2.2), which are a Fourier transform pair, can be shown to exist if f(z)
is continuous and integrable and F(u) is integrable. These conditions are almost

always satisfied in practice.

Throughout this treatise, function f(x) is normally real. The Fourier transform of
a real function, however, is generally complex; that is

Fu) = R(u) + 7I(u) (2.3)

where (1) and I(u) are, respectively, the real and imaginary component of F(u).

It is often convenient to express Eq.(2.3) in exponential forin

F(u) = |F(u)|expli O(u)] (2.4)
where
| ()] = LB w) + T ()] (2.5)
and I
S(u) = tarfl[—(T—L-)—] (2.6)

{u)
The magnitude function [F'(u)| is called the Fourier spectrum of f(z), and ®{u) is
its phase angle. The squarc of the spectrum

P(u) = [F(u)f’ = B*(u) + I*(u) (2.7)

is commonly referred to as the power spectrum of f(z). The term spectral density

(intensity) is also commeonly used to denote the power spectrum.
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The variable u appearing in the Fourier transform is often called the frequency
variable. This name arises from the fact that, using Euler’s formula, the exponential

term, exp[—j2ruz], may be expressed in the form
expl—12wuz] = cos(2ruz) — j sin(2rux) (2.8)

Tf the integral in ¥Kq.(2.1) is interpreted as a summation of discrete terms, it is
cvident that F(u) is composed of an infinite sum of sine and cosine terms, and that

each value of u determines the frequency of the corresponding sine-cosine pair.

The Fourier transform can be extended to a function f(x,y) of two variables. If
f(z,y) is continuous and integrable, and F(u,v) is integrable, the followiﬁg Fourier

transform pair exists

+oco 4o

F{f(z,y)} = Flu,v) = f f flz,y)exp|—j2m(uz + vy)ldedy {(2.9)

baiv Rl ol
and

+0a foo

FHE ()} = fle,y) = f / Flu,v)expli2r(ux + vy)]dudv (2.10)

OO =D

where 1 and v are the frequency variables.

As in the one-dimensional case, the I'ourier spectrum, phase and power spectrum

are, respectively, given by the relations

|F(u,v)| = [R¥(u, v) + IP(u,v)}2 (2.11)
B (w2, ) = tan? I, v)
P(u,v) = tan™"| Tl U)] (2.12)
and
P(u,v) = |F(u,v)|* = R*(u,v) + *(u,v) (2.13)

2.2.2 Discrete Fourier transform

Suppose that a continuous function f(x) is discretised into a sequence { f(@p), f(zo)
AL), floo +2AL), ..., flzo + [N ~ 1]A,)} by taking N samples Az units apart,
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as shown in Fig.2.1. It will be convenient in subsequent developments to use z as

either a discrete or continnous variable, depending on the context of the discussion.
flz) = flzo 4+ zA,) (2.14)

where @ now assumes the discrete values 0,1,2,..., N — 1. In other words, the

sequence {f(0), f(1), ..., f(N ~1)} will be used to denote any N uniformly spaced

samples from a. corresponding continuous function.

{(x)

A f(}ﬁ-l-zAn )
(%) g 3(N-1)Ax ]
& i
e i+ A9 A

1

Ax o |
5 e %

Xo X X, Xna

Pigure 2.1: Sampling a continuous function

With the above notation in mind, the discrete Fourier transform paiv that applies

to sampled functions is given by

1 N-1 .
Flu) = N 2 flz)exp|—j2ruz/N] (2.15)
foru=20,1,2,,..,N—1, and
. N-1
f(z) =Y F(u)expl[j2ruz /N (2.16)
u=0

torz=10,1,2,...,N—~ 1.

The values v =0, 1,2,...,N—1 in the discrete Fourier transform given by Eq.(2.15)
correspond to samples of the continuous transform at values 0, A, 2A,, ..., (N —
1)A,. In other words, F(u) represents F(ul,). This notation is similar to that
used for the discrete f(x), with the exception that the samples of F{u) start at the
origin of the frequency axis. It can be shown that A, and A, are related by the

expression
1

By = NA,

(2.17)
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In the two-variable case the discrete Fourier transform pair is given bv the equations

M-1N-1

Fu,v) = 1W-N D37 fla,y)eapl—j2n(ux/M + vy /N (2.18)

T=0 y=0

foru=0,1,2,.... M—1,v=0,1,2,..., N~ 1, and

M—-1N-1

Ffloy)= . Y. F(u,v)explj2n(uz/M + vy/N)] (2.19)

u=0 w=0

forea=0,1,2,... M-, y=0,1,2,..., N -1.

Sampling of a continuous function is now a two-dimensional grid with divisions of
width A, and A, in the ¢ and y axis, respectively. As in the one-dimensional case,
the discrete function f(x, y) represents samples of the function f(zq+ Az, yo+y4d,)
forz =0,1,2,...,M~1,y=0,1,2,..., N — 1. Similar comments hold for #(u,v).
The sampling increments in the spatial and [requency domains are related by

1

and .
A, = ———. 21
NA (2.21)

When images are sampled in a square array in which M = N,

N—-1N-—1

Flev) = 2 0 3 f(z,y)eap~i2n(uz + vy)/N] (2.22)

r=0 y=0
for u,v =0,1,2,...,N—1, and

N-1N-1

flrg)= 22 3 Fu,v)eapljzn(uz + vog)/N] (2.23)

v=0 v=0

for 2,y =0,1,2,...,N — 1. Note that in this case a 1 /N term is included in both
expressions, Since F(u,v) and f(z,y) are a Fourier transform pair, the grouping
of these constant multiplicative terms is arbitrary. [n practice, images are typically
digitised in .square arrays, so the Iourier transform pair given in Egs.(2.22) and

(2.23) is of particular significance.

The Fourier spectrum, phase and power spectrum of one- and two-dimensional dis-
crete functions are also given by T%qs.(2.5) through (2.7) and Eqs.(2.11) through
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(2.13), respectively. The only difference is that the independent variables are dis-
crete.

Unlike the continnous case, we need not be concernaed about the existence of the dis-
crebe Fourier transform sincc in the discrete casc both £'(u) and F(u,v) always exist.
In the one-dimensional case, for example, this can be shown by direct substitution
of Eq.(2.16} into Fiq.(2.15)

N-1[N-1
Flu) = LI_NZ [Zﬂ F(r)ea:p[j?qrrm/N]cmp[—j?vru:c/N]]

n==

1 N-1 N-1
= ¥ S F(r) [E ea:p[j27r'r':17/N]exp[~—j27rua:/N]}

r=0 =0

- Pl (2.24)

Eq.{2.24) follows from the orthogovality condition

1‘5;1 (j2mre Nleap|—i2muz/N] = N, ifr=u (2.25)
a0 CTPLIERTE] N JTPL ] £MUE T ] 0, otherwise. ~e0

Note that a change of variable from u to r was made in Eq.(2.15) to clarify the
notation.

Substitution of 1£q.(2.15) inlo Eq.(2.16) would also yield an identity for f{z), thus
indicating that the FFourier transform pair given by these equations always exists, A

similar argument holds for the discrete, two-dimensional Fourier transform pair.

2.2.3 Properties of the Fourier transform

In this subsection the properties of the two-dimensional Fourier transform are demon-
strated; these properties also hold for the one-dimensional case. Table 2.1 gives a

summary of the properties; some of these properties are discussed in what follows.

1. Unigueness. For continuous functions, f(z,y) and £(u,v) are unique with
respect to one anaother. There is na loss of information if instead of pre-
serving the image, its Fourier transfori is preserved. This fact has been

utilized in an image data compression technique called transform coding.
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Separability. By definition, the Fourier transform kernel is separable, so

that it can be writien as a separable {rausforination in z and y, i.c.,

400 [+
Flu,v) = / [f flz,y)eap(—i2rzu)dz| exp(—j2xvy)dy (2.26)
This means the two-dimensional transform can be realized by a succession

of one-dimensional transforms along each of the spatial co-ordinates.

Frequency response and eigenfunclions of a shift inveriant system. An
eigenfunction of a system is defined as an input function that is reproduced
at the output with a possible change only in its amplitude. A fundamental
property of a linear shift invariant system is that its eigenfunctions are
given by the complex exponential exp{i27(uz + vy)]. Thus in Fig.2.2, for

any fixed (u,v), the output of the linear shift invariant system would be

+ca -Leo

g(z,y) = / f Me — 2,y —y Jexp[i2n(uz + vy )dz'dy’ (2.27)

Performing the change of variables & = ¢ — 2,4 = y — ¢ and simplifying
the result, yiclds
gle,y) = H(u, v)exp[i2r{uz + vy)] (2.28)

"The function H{u,v), which is the Fourier transform of the impulse re-
sponsc, is also called the frequency response of the system. It represents

the {complex) amplitude of the system response at spatial frequency (u,v).

h(x,y)

Tigure 2.2: Figenfunctions of a linear shift invariant system. © = cap{j2«(uz +vy)),
He = H{u,v) = Fourier transform of h{z,y).

4.

Convolution theorem. The Fourier transform of the conveolution of two

[unctions is the product of their Fourier transforms, i.e.,

g(z,y) = h(z,y)* flz,y) = Glu,v) = H(u,v}F(u,v) (2.29)
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where the symbol % denotes convolution. This theorem suggests that the
convolution of two functions way be evaluated by inverse Fourier trans-
forming the product of their Fourier transforms. The discrete version of
this theorem yields a fast transform based convolution algorithm.

The converse of the convolution theorem is that the Fourier transform of

the product of two functions is the convolution of their Fourier transforms.

The result of the convolution theorem can also be extended to spatial cross

correlation between two real functions h{w, y) and f{z,y), which is defined

as
+oo oo
clz,y) = hlz,y) © flz,y) = f fh(w,y}.f(a:+w,y+y Jde dy (2.30)

where the symbol (3 denotes cross correlation. A change of variables shows

that ¢(x,y) is also the convolution A{—=z,—y) * f(2,y), which yields
Clu,v) = H{(—u, —v)F(u,v) (2.31)

5. [funer product preservulion. Another important property of the Fourler
transform is that the inner product of two functions is equal to the inner

product of their Fourier transforms, i.e.,

+c0 oo H-co oo
= / j flz,y)h*(z,y)dedy = / f}' (w, ) H"(u,v)dudv  (2.32)
Setting 2 = f, we obtain the well-known Parseval energy conservation
formaula
00 oo +eo +oo
/ / |f(z,y)Pdedy = f ] | F(u, v){*dudv (2.33)

i.e., the total energy in the function is the same as in its Fourier transform.

6. Hankel transform. The Fourier transform of a circularly symmetric fune-
tion is also circularly symmetric and is given by what is called the Hankel
transform.
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Table 2.1: Properties of two-dimensional Fourier transform

Property Function f{z,y) | Fourier transform F(u, v)
Rotation fldz, +y) Ftu, £v)
Linearity a1 fi(2,y) + axfo(z,y) ar By (u, v} + aa Fa(u, v)
Conjugation T (z,y) F*(—u, —v)
Separahbility f1(z) fa(y) Fy(u)Fy(v)
Scaling flaz, by) f_("-i%’-'?/ﬁl
Shifting e+ 0,y & yo) cap(ty 27 (zou + yov)| F(u, v)
Modulation explLi2n{ne + £y)| (2. y) FluFn,vF§)
Convolution g(z,¥) = h{z,¥) * flz,y) Glu,v) = H(v,v) Plu,v)
Multiplication g{z,y) = bz, y)}f(z,y) Gu,v) = H(u,v) * Flu,v)
Cross corrclation |  ¢(z,y) = h(z,y) © f(z,y) Clu,v) = H(—u, —v)F(u,v)
+0a o0 I Fal e
Inner product |I= [ [ flz,y)h*(z,y)dady | L = [ [ F(u,v)H*(u,v)dudy
—00 —00 —~00 —0Q

2.3 Fourier Transform Property of a Lens

The optical Fourier transform proporty (FTP) of a lens is detailed in Refs [1][2],
so a rigorous treatment is not given here. The FTP of a lens is easily established
from the diffraction intcgral that describes the propagation of monochromatic light
in free space. The diffraction inlegral is central to the study of Fourier optics, and
virtually all optical phenomena can be explained mathematically in terms of it. The
diffraction integral can be represented by the angular spectrum of plane waves which
is the Fourier transform of the input. The FTP of a lens is usually derived assuming
an idealised lens between object and back focal planc (BFP) and the validity of
the stationary phase approximation for the Fourier transform configuration. The
diffraction integral is applied twice — from the object to the lens and from the lens
to the BFP. The light amplitude in the BFP is, apart from a constant and a quadratic
phase factor, the classical two-dimensional Fourier transform of the transmittance
of the diffracting object.

It is well-known that the diffraction integral takes the formi

Foo oo

1
r _ ol il /72 1 78
Lz(:c,y)_jAzf ng[zj,n)c.np[;k\/z + r2]dudv (2.34)

—00 =00
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where U,(z,y) is the complex amplitude of a plane wave in an zy-plane which is
orthogonal to the optical axis z. Uy({,n) denotes the object, U(z,y), at the distance
z == 0. k = 2% /) is the propagation number; and r == \/(l —£&)* 4+ (y —n)?. Using

the Fresnel approximation i.e.,
VIZFT = 24 (@O +(y )
24 (2 — €)% /22 4 (y — n)? /22, (2.35)

{

£q.(2.34) can be written as
400 =00

Ulw,y) =

tneap (i@~ € + (y — 01} dédn, (2.36)

which is a pivolal resull and is the [orm of the dillraction integral most often used in
Tourier optics. Its repeated application leads directly to the FTP of a lens. However,
the intermediate intcgrals arc rather cumbersome and therefore, {or simplicily, the

analysis is given in one-dimension. Hence, Eq.(2.36) is written as

7L2/2 oo
Un(e) = f Ul€ )("I,p[ (o) ]du (2.37)
X : ;
- 1 bt 1(x) 1

B(X)x)

---.
c
'~
=
SN

u (€

e oy A e 4a

—

| a :
)

Figure 2.3: Configuration for analysing the Fourier lransform property of a lens.
The fields adjacent to the various surfaces are indicated by dushed lines.

Cansider the (onc-dimensional) configuration shown in Fig.2.3. The field immedi-
ately after the object f(z) is Us(w) = B(z)f(x), where, for simplicity, B{z) is set

to 1, i.e., a unit amplitude plane wave travelling paralicl to the z-axis. Just before

the lens, a distance d away, the field 1s

U2(C) = Ka(d) Tf(m)emp (¢~ 2| da, (2.38)
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where 10q.(2.37) is used with d = z and
eykz/z

v J'\Z z=d

Ill(d)

(2.39)

The overall lens transmittance is P({)exp{—j{n/Af)(?], where P(() is the pupil
function associated with the lens aperture and can be generalised to include aber-

rations. ‘L'ypically, for an ideal, non-absorbing lens of diameter L,

P(() =rect(¢/L), (2.40)
where ¢ | /
) ¢y _ )1, when (< 1/2 o
L (L) o { 0, otherwise. (241)

Right after the lens the ficld Uy(() is given by
Ul0) = TGP (Oep (—i6"), (2.2
and the field in the back focal plane is
Us(6) = Ka(f) / Uil Ches [ :(6 - 0| dc. (243

Substituting Eq.(2.38) into Iq.(2.42) and then inserting Eq.(2.42) into Fq.(2.43)

enables us to write, after some manipulation,

) = Kl Pean | (1 - §)

!
+co
- / f(zc)efcp( is fa,g) Az, £)dz, (2.44)
where . ,
Az, ) = / P({)ezp {J;{j [C - (m + ?6)] }dC- (2.45)

Because P(() is a “slowly varying” function, for values of A that are typical of
the optical regime, the integral in Eq.(2.45) can be evaluated by the method of
stationary phase ([3], p.234). This gives

A, €) = \J1AdPz + (4/ ). (2.46)
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Inserting this result into Kq.(2.44) yields
1 d
U = —e 1= 2}
4 = 751 plig (1-9)¢

/ flz)P (a: + ]—cg) ezp (»} 2} ) dz, (2.47)

where the unimportant complex factors e?*4/?ei*//? are omitted. Eq.(2.47) is the
final result. Since £ can be written in terms of the spatial frequency u according to
£ = ulf, we can rewrite 1q.(2.47) as

]ivcwp [jm‘ (1 - %) uz/\f]

X / f(2)P(e + Mud)exp(—~j2ruz)de, (2.48)

Us(urf) = Us(uw) =

Thus, based on I5q.(2.48), some interesting conclusions can be drawn:

outsxde the mtegral vamshcs, thcreby an exact Fourier transforin 1eia,tlonbh1p exists
between the front and back focal planes of a lens. As can be seen from q.(2.48),
this is only true if the effect of the pupil is ignored.

(2) For d = 0, i.e., the object against the lens, the phase factor does not vanish, but
the ellect of the pupil vanishes it the physical extent of the object is smaller than the
lens aperture. Thus, it D is the maximum dimension of the object and D < L, then

up to a phase factor and a constant, a Fourier trans{form relation is indeed observed.

(3) For d # (0, the fidelity of the Fourier transform of the object will depend on the
spatial frequency u. For I} < L, the lens will act as a low-pass filter. From Eq.(2.48)
the following can be easily verified

for |u[ < &2 d , no attenuation of the spectrum; (2.49)
for &L o ju| < 21 partial attenuation of the spectruny; (2.50)
for fu] > L& total attenuation of the spectrum. (2.51)

The attenuation of high frequency components in the Fourier spectrum is known

as wvigneliing. As can be seen, vignetting is due to the finite lens aperture and
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can be minimised by making d small. Although a swall d does not eluninate the
gnadratic phasc factor in Eq.(2.48), the presence of the latter is of no consequence in
intensity (irradiance) spectrum measurements which only involve |T73(w)|?. Hence it
is preferred practice to place the sample as near to the lens as possible when making

spectral measurements; this reduces the low pass bias of the lens.

The two-dimensional form of Eq.(2.48) is,

+00 +00
~ 1 . d
Us(u) = j/\—fexp {ﬂr}f (1 - —f) (® + vz)] / / tz,y)
x.P(:z: + Adu, i + Adv)exp(—32n (uz + vy))dzdy, {2.52)

This assumes illumination by a unit amplitude monochromatic plane wave. If the
amplitude of the illumination were ', then this term would appear as a factor
in Eq.(2.52). Eq.(2.52) is extremely important for optical information {or pattern
recognition) processing, as it can be coded into a computer and used to simulate

the performance of such systems, it is thus an extremely useful design tool.

2.4 Complex Spatial Filtering

2.4.1 Coherent Optical Processor

As discussed in the above section, the ease with which a lens can perform the Fourier
transform of a two-dimensional distribution is certainly one of the most important
assets of coherent optical data processing. Perhaps even more important is the
fact that the spectrum of the input is physically accessible and therefore can be
manipulated simply by placing masks or optical filters in the Fourler transform
plane. The optical processor of Fig.2.4 is typically called a 4-F system. It is one of

several possible optical configurations that permit signal processing.

An input transparency of complex amplitude transmittance f(z,y) is placed in the
front focal plane of lens 1 and illuminated by a plane parallel beam of uniformn

intensity and zero phase. The amplitude distribution in the back focal plane of lens
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4

Laser Beam Input Filter
Expander 6. ¥) T(x.¥:)

Figure 2.4: Coherent opticel processor.

| is represented by the Fourier translorm F(u,v) of the input. Neglecting some
proportionality factors,

Flu,v)y = Flf(z,9)]
+co +o0

= /ff(u;,y)ewp[-—j.?w(um--{--vy)]dmdy (2.53)

—00 —~00

where (u, v) are the rectangular spatial frequencies of the input. 1f the wavelength of
the illuminating light is A, the relationship between the coordinates {zy,vy), (v, )

and X in the Fourier plane is given by

w=z;/Afi and v=ys/Afy (2.54)

where f; is the focal lenglh of lens 1. If a filter transparency of amplitude transmit-
tance T'(zy, yy) is placed in the back focal planc of lens 1, the amplitude distribution
jusl alter Lhe transparency becomes

Up(zg,ys) = Flzr,y)T(ws,y7) (2.35)
The second lens 2 of the processor performs a second Fourier transform of {/;(z;,ys),
leading to an amplitude distribution in its back focal plane given by

o(za, 1) = FHU(w', ), (2.56)

where v = w;/\fz = u/M, v' = ys/A\fo = v/M, and M = f,/f; is the lateral
magnification of the image system. Use of Eqs.(2.55) and (2.56) leads to the well
known relationship between input and output of a linear invariant coherent system.
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The output spectrum then becomes the product of the inpul spectrum with the
transfer function H(w,v) which is proportional to the amplitude transmittance of

the pupil mask T(zs,y;), i.e.,
L
Clu,v) = Flu,v)H(u,v), H(u,v) = T(Afu, Afo). (2.57)

Equivalently, the output can be represented as the convolution of the input — scaled
by a magnification factor M — with a point spread [unction (impulse response)
hiza, ya)

400 ~bkoc

e(23, ¥2) = / f F(May, My)h(zs — My, ys — My )dedys, (2.58)

where
(g, y2) = F T [H(u,2)], (2.59)

In abbreviated notation, the convolution product is denoted by the symbol %, thus
. Fq.(2.58) takes the form

e(z,y) = flz,y)*h(e,y). (2.60)

2.4.2 Complex spatial filtering

The coherent optical processor of Fig.2.4 is capable of performing a general linear
invariant transformation as expressed by Iqs.(2.57) and (2.58). This is possible,
of course, as long as the complex-valued filter transmittance T(zy,ys) can be con-
structed. Complex spatial filters have been found to be useful in many applications.
Various names have heen given to these filters according to the context in which they
are used: the terms holographic filters and Fowrier holograms refer to the technique
usually involved in filter production. In image enhancement, thicy might be called
inverse {ilters or deblurring filtcrs, while in pattern recognition, their most common

names are VanderLugt {ilters or matched spatial filters.

An interferometric technique widely used to record any conip]ex filter for which
the point spread function is known was introduced by VanderLugt [4]. It consists of

recording the interference pattern produced when the desirved filter function is mixed
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with a mutually coherent reference beam. This is essentially a Fourier holograin of
the oplical system point spread function. The process is similar to the modulation
technique in information theory where a complex-valued function (signal) can be
recorded as a real valued function on a carrier frequency as long as the sampling
theorem is salisfied; i.e., the carrier frequency must be at least twice as large as the

signal cut off frequency.

2.4.3 Holographic recording

The most straightforward technique for recording a complex valued holographic filter
is shown in Fig.2.5. A transparency of amplitude transmittance proportional to the
desired point spread function iz, y) is placed in the {ront {ocal plane of lens L and
illuminated by a monochromatic plane wave. The distribution in the back focal
plane is made to interfere with a mutually coherent plane parallel reference beam

'r tilted by an angle # with respect to the z¢-axis. The total complex amplitude
Ur iu plane Py is then

Ur(zy,ys) = Unlzs,yp) + H(zg,0), (2.61)

where
Ur(zs,y5) = R exp(—12mugay), (2.62)
R? is a measure of the reference-to-ob ject beam energy ratio, and uy is the carrier
spatial frequency given by '
g = sin /. (2.63)
The plane reference wave can also be regarded as the uniform spectrum of a point
source 8(xy - £g,y1) located at the coordinate (zp,0) in the object plane. In the
paraxial approximation,
Ty = Afug = fsin¢ (2.64)

From Jigs.(2.61) and (2.62), the total irradiance in plane Ps is given by
Iagys) = |Ur(zsun)l®

R+ [H(zsy0)l + R(z s, yy)exp(i2muozy)
+RH™(z s, y5)exp(—j2mugiy) {2.65)
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Figure 2.5: Interferometric arrangement for recording o holographic filter.

If the complex function H(xs,ys} is written as

H(zp,yp) = [H(zg,y5)lexplid(zs, ys)l (2.66)
the expression for the irradiance I(z,ys) can be rewritten as

Hapyp) = R +|H(apup)l
+2RH (ws,55) cos[2mugz s + 2y, )] (2.67)

This expression shows explicitly how the phase ¢{(z;, y;) is encoded as a modulation

of the spatial carrier.

A{ this poind, it s customary to assume that this wradiance is recorded linearly on
some suitable medium. High resolution photographic emulsions are often used for
their high information capacity and relative low cost. Linear recording implies that
the amplitude transmittance of the developed plate or film is proportional to the
irradiance, i.e.,

T(xs,yr) o< IH{zy,y5). {2.68)

Linear recording over aun extended dynamic range is extremely difficult to achieve
by photographic means. It is, however, useful to perform an analysis of this ideal
case.
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2.4.4 Coherent optical correlation

If a filter of amplitude transmittauce T'(25,y;) as described in Eq.(2.68) is placed
in the filter plane of a double-diffraction setnp such as that shown in Fig.2.4, the
resulting system is a processor with a transfer function proportional to Fq.(2.65)
or Bq.(2.67). With an amplitude distzibution f(z,y) in the input plane, using
Eqs.(2.58), (2.68), and {2.65), the amplitude distribution in the output plane is

Uz(f”z}yz) = f_]'[.F(u,v)T(u, v)]
4-c0 4-c0
= j fR?F'(u,v)axp[*jf%w(umr]—'nyg)]dudv

+00 o
+/ f|H(u,1))|2F(u,v)emp[—j27r(ufcg—i—vyg)]dudv

oo too

-|-/ fRH(u,v)F(u,v)e:np(jZamrcR) expl—i2n(uzy -+ vyr)ldudy

fade el lv el

J-00 oo
+ / f RH (u,v)F(u,v)eap(—i2nung) exp[—32r(uzy + vyy)|dude

(2.69)

By using clementary properties of the Fourier transform, Eq.{2.69) can also be writ-

Len as

Uz(Itz;yz) = sz(ﬂ«'zayz)
400 400 +oo +oo

+ / / f / R, (E + & — 2,7 + B ~ y2) [ (@, B)dEdndadf

—00 —CO —Oo —DO
4> -Fex:

+h [ [ bos+an= &ve — O f(Ededn
oo o0
+R / / h(€ — o + 2R, 1 — y2)f(€, 1)dldn (2.70)

or, in shorthand notation, as

Us(za,42) = R*f(z2,y2)
+f{ze, u2) * h{za, y2) * ™ (—z2, —y2)
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-+ Rf(Tih ?}2) * h(m“h 7/!.) * 6(:‘72 |- TR, 7/:2)
+ R f(wa, yo) * A" (—~zo, ~y2 ) * 6(z2 — TR, ¥2) (2.71)

£(x,¥)#h(X,¥)Hh(-X,-y)

: i RIGx,Y) ; .
RIGGY) *Wlx,y) | ' 1 Rf(x,y) #h{x,y)

] ' \

: l - x

LgrtLy Lig Lg:rl-Ll.

] H H

: Lyt2Ly 3

1 ': :

E‘ - Xp : Xp \

Y

Here “** means the convolution operation.

Figure 2.6: Qutput of an optical processor with a holographic filler,

In these expressions, *p = Mz is the abscissa of the point in the output plane
where the reference beam used to record the holographic filter wonld come to focus,
The different output terms are shown in Fig.2.6. The first two terms of Eq.(2.71)
are components centred at the origin of the output plane. The third term is the
convolution product of the input f{z,y) with the desired point spread function
k{23, y2). The convolution with the delta function shifts the term along the y-axis
and centres it at (—zg,0). The last term is the correlation of the input and the
point spread function centred at (xg,0) in the output plane. Clearly, if 5 is large
enough, the different terms can be separated in the output plane.

2.5 Matched Spatial Filters

According to the above description, correlalion and convolution are integral opera-

tions that depend on two input functions f(z,y) and h(z,y)
convolution : flzy)xh{a,y) = /jf(:c, y)h(a:l -2,y — y)dzdy  (2.72)

correlation : fle,y) O kz,y) = fff(:n,y)h"(m —a y—y )dedy  (2.73)

If both inputs are identical, i.c., f{,y} = h(z,y), the operations are often called

autocorrelation (ov antoconvolution). Otherwise, they are referred to as cross-
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correlation (or cross-convolution). For pattern recognition applications, the correla-
tion pcak height (at 2" = 0,4 = 0) is usually measured. In this case the important
facl is thal the normalised, modulus squared peak (pcak intensity) is always higher
for an autocorrelation than a cross-correlation. Therefore, the measured intensity
peak height in an optical correlation system can be used directly to recognise a spe-
cific input signal. The recognition process is, however, sensitive to changes in scale

and/or rotation of one or both input functions.

Due to the rapid development of the spatial light modulator, optical materials and {il-
ter design techniques, real time pattern recognition exploiting hybrid optical and/or
digital correlation offers several interesting solutions to the general problem of ob-
ject recognition. Thus, much effort has been devoted to designing spatial filters
suitable for implementation on currently available spatial light modulators, instead
of experimental holographic and/or computer generated holograms implemented in
photo-refractive materials or permanent recording media. In the following some
fundamental matched spatial filler designs are considered.

2.5.1 Classical matched filter

As 1s well-known in communication theory, the optimum filter, in the sense of signal-
to-noise ratio (SNR), for extracting (recognising) a known signal s(¢) {rom stationary
noise n(t), is a matched filter with a transfer function

H(u) = S*(u)/ 1V (u)|?, (2.74)

where S(u) is the signal spectrum, |N{u)[* is the noise spectral deusily, and £
is a constant. For the optical counterpart of this matched filter, one can simply
replace the temporal variables ¢ and u by their spatial equivalents (z,y) and (u,v),
respectively. An optical filter matched fo the input pattern (image) f(z,y) should
have a transfer function proportional to the complex conj.uga,te of the pattern (image)

spectrum
H(2,v) = kF*(u,v)/|N(u, v)|% (2.75)
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If the noise n(z,y) is white, then its power spectrum is a constant, i.e., |N(u, v)|* =
N¢. In this case, Bq.(2.75) becomes

H(u,v) = kI (u,v), (2.76)

This filter is called the classical matched filter (CMI') which yields the highest
possible outpul SNR, where SNR is delined as below,

v = L0007

— var{c(0,0)}’ (2.77)

where ¢(0,0) denotes the correlation output at the origin (in the absence of noise,
autocorrelation peak at the origin) and £{ } and var{ } denote the expected value

and the variance, respectively.

Although the CMF is optimal from SNR considerations, its optical implementation
suffers {rom several disadvantages. Firsily, because of the complex nature of the filter
transmittance, it cannot be conveniently represented by currently available real-time
devices. Also, the light throughput efficiency (i.c., Horner efficiency) of the CMF is
low, due to the fact that the normalised magnitude in Eq.(2.73) is less than one at
most frequencies. These problems led to the introduction of several related spatial
filtering schémes such as phase-only filter {POT), binary POF (BPOF), and ternary
matched filter (TMF) etc,

2.5.2 Phase-only matched filter

Hlorner and Gianino [5] suggested a phase-only filter consisting of the phase of the
CMF with nnity modulus. Writing Fiq.(2.76) as

H{u,v) = k|Flu,v)|exp[-id(u, v)] (2.78)
the POT is defined as
H(u,v) = expl-i¢(u,v)] (2.79)

where ¢(u,v) is the phase of F(u,v). The POF offers the potential of high light
efficiency (approaching 100%). It can also yicld sharper corrclation peaks with
higher peak to side lobe ratios than the CMF. This characteristic of the POF is
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a consequence of the large bandwidths inherent in Eq.(2.79), which can adversely
affect the SNR. The POT is implementable on existing spatial light modulators
(SLM) such as the liquid crystal television (LCTV).

The importance of the Fourier plane phase information 1s already well known from
image processing. Kinoform elements, which are also phase-only Fourier filters, allow
rather general image reconstruction. Therefore, the good performance of phase-only
matched filters is not surprising. Besides the improvement of the light efficiency, the
oulput peak structure for the recognition process is also usually enhanced. Obviously
the step [rom the matched filter Lo the phase-only matched filter can be described in
spatial fillering theory as application of a 1/|F(u,v)| filter. Since |F"{u,v)} usually
has a strong peak structure (high amplitude for low spatial frequencies and low
amplitude for high spatial frequencies), its inverse can be interpreted as a spatial
frequency high-pass filter. The result of the application of the phase-only matched
{ilter is therefore, in general, a conventional high-pass filtered correlation function.
For the case of an autocorrelation, the output peak is therefore strongly enhanced.
Hence, the peak to sidelobe ratio and the discrimination ability of the filter are
improved. On the other hand, this filter is more sensitive to modifications of the
inpul function such as rotation or scale change. Also, it is extremely sensitive to the
noise in the input scene, because the all-pass nature of the POF allows unattenuated

input noise to pass through the correlalor system,

2.5.3 Binary phase-only filter

Binarization of the POF is the next step required to develop rcal time correlation
type processors using currently available device technology. Devices such as the
magneto-optic spatial light modulator, when operated in the phase mode, have two
states: +1 and -1. Two state BPOFs have been shown to produce useful correlation
responses in the absence of noise [6}[{T}{8].

Binarization of the phase of the Fourier transform of real functions can be accom-
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plished in several ways. Horner et al. [7] proposed a BPOF dcfined by

H(u,v) { +1, ImiF{u,v)]>0

-1, otherwise.

= sgn[—F(x,v)] (2.80)

where the subscript ‘o’ is used to emphasise that this filter is effectively matched to
the odd part of the object function. Psaltis et al. [9) suggested the algorithm

e w = [ RelFw )] 20
Ho(u,v) = {_1,’ otherwise

= sgn|—F(u,v).] (2.81)
where the subscript ‘e’ corresponds to an effective match with the even part of the

object function. Cottrell et al. [8] suggested a binarizalion based on the Hartley
transform of the object function, given by

i

Hy(u,v) { L du,v) 20

—1, otherwise
= sgn[H(u,v)] (2.82)

where H(u,v) is the Hartley transform [10]. The Hartley transform of the function

f(z,y) is delined by

H(u,v) = ]/f(.b, y){cos{uz + vy) + sin(ux + vy)|dedy
= RelF(u,)]— Tm[F(u,v)]
= F.(u,v) + Fp(u,v), (2.83)

where F.(u,v) and F,(u,v) are the even and odd parts of the Fourier transform,

respectively.

T'he Hartley BPOF has Lhe attractive {eature that it is, in some sense, matched to
both the even and odd parts of the object function. Also, for purely even or odd
functions the Hartley BPOF reduces to the BPOF of Eq.(2.80) or (2.81), respec-
tively.

The advantages of using binary techniques ave that high fidelity SLMs work well in a

binary phase-only mode and can be used to synthesise the threshold filter. Advances
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in very large scale integration (VLSI) technology offers the possibility for consider-
able performance improvement in SLLM devices; thus large space-bandwidth-product
binary filters will give improved performance of BPOFs in terms of correlation peak
to sidelobe ratio, diffraciion efficiency, and correlation widtl. Correlation perfor-
mance is superior to that of the classical matched filter. An example of a binary
device operating in the phase-only mode is the magneto-optic SLM, which is clectri-
cally addressable and is available with up to 128 x 128 pixels, with 256 x 256 pixels
about to go into production.
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Chapter 3

Spatial Frequency Tuning for
Pattern Recognition by
Correlation

3.1 Introduction

The classical matched filter (CMT"} introduced by VanderLugt [1] produces a very
broad correlation peak in the output plane resulting in a low discriminatory ability
and a low correlation peak detectability. Therefore, it is desirable to modify the filter
so that it produces a narrow correlation peak in the output plane when addressed by
the desired target. The phase-only filter (POT') [2] which uses the phase information
of the reference image and the amplitude-compensated matched filter (ACMF) [3]
which uses both phase and amplitude information of the reference image have been
successfully exploited to produce a sharp correlation peak in the output plane, but
they are extremcly scnsitive to noisc in the input image. This chapter concentrates
on techniques which allow varying degrees of edge enhancement to be implemented
by the filter; this is shown to improve the discriminatory capability and correlation
peak detectabilily with respect to the classical matched filter. Furthermore, when
compared with the phase-only filter, it can give an enhanced output signal-to-noise
ratio by optimal tuning of the degree of edge enhancement (i.e. optimal spatial

frequency selection).

50
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Since convolution based edge enhancement is equivalent to a bandpass filtering op-
eration in the frequency domain, optical processing exploiting a pholorelractive
material as a tuneable holographic filter provides a simple and effective method for
implementing low noise (low noise in the sense that it does not introduce artefacts
in the reciprocal domain) edge enhancement concurrently with correlation. This ap-
proach has recently been implemented as part of a matched spatial filter by Young
and Chatwin [4]; this method exploits selective erasure of spatial frequencies at
{he Fourier transform plane in the photorefractive material Bismuth Silicon Oxide
{BSO). For want of a belter name this will be called the tuneable photorefractive
{TPR) filter [5]. The method successfully implements a low noise edge enhancement
operation. The POF, in contrast, is an all-pass filter in which the lack of attenuation
of the input image spectrum results in an edge enhancement. In this chapter, the
TPR filter and its characteristics are first introduced, and then an alternative cdg;:
enhancement technique which is called difference of Gaussian (DOG) filtering [5] is
discusgsed; results which compare the TPR and DOG filtering techniques are given.

This is followed by an examination of the noise robustness of the TPR filter [6].

3.2 Tuneable Photo-refractive (TPR) Filters

Jentral to a hybrid scheme is au eflective digital to optical interface. Several solu-
tions to this problem are currently being investigated and include: techniques based
on direct phase modulation of the coherent processing wavefront by a spatial light
modulator [7], the use of high resolution SLMs to act as dynamic holegrams [8) and
the use of photorefractive materials for a similar purpose {9](10]. The third alterna-
live was chosgen for implementation of an up-dateable correlator. This allows both
the mput and reference to be transferred to the optical system as space domain
images via the more readily available amplitude modulating SLMs. The use of the
widely available photorefractive material, Bismuth Silicon Oxide has several impor-
tant consequences for the overall systemn design. In this section, a brief description
ol the BSO based up-dateable correlator is given.
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3.2.1 TPR filter based correlator

The use of degencrate four wave mixing (DFWM) to implement real time corre-
lation between two images was first proposed by Pepper et al {9]. Much work on
the use of the photorefractive crystal Bismuth Silicon Oxide (BSO) has since been
done by Huignard et al who demonstrated a joint transform correlator configuration
employing non-degenerate four wave mixing in BSO [11]. An alternative NDFWM
configuration that more closely resembles a VanderLugt correlator was proposed
by Cooper el al [10] and further modelied by Nicholson et al [12]. This configura-
tion has certain inherent advantages over the JTC and was therefore adopted for a
hybrid up-dateable correlator demonstrator project: A Hybrid Optical/Electronic
Industrial Inspection System reported by Young and Chatwin in reference [13]. A
system diagram of the NDI'WM scheme used to implement the up-dateable cor-
relator is shown in Fig.3.1. The input and reference images are displayed on the
SLMs resulting in the field modulations, ui(z, y) and uy(z, ), of the ArT and HeNe
beans respectively. A volume hologram is written to the BSO by the interference of
Ui e, fy), the Tourier transform (F1') of u(z,y), and Us, a monochromatic plane
wave reference beam of tuneable strength, U,{f, f,), the FT of uq(x, y), is diffracted
from the TPR filter, which is the grating formed in the BSQ, to yield, after a [urther

I'T, the correlation between uy{z,y) and w2z, y) at the plane .

The systero configuration in Fig.3.1 resembles a VanderLugt correlator with the
reference and input image positions transposed. That is, the grating within the
BSO is formed by the input image Fourier transform and plane wave reference
beam rather than the reference image Fourier transform and planc wave. There are
two reasons for tlus. Firstly, the Bragg phase matching constraints of the volume
hologram formed in the BSO are much less severe for this plane wave reference heam,
allowing a larger effective field of view for a given lens [ number. Thus the spatial
invariance property of the correlation algorithm can be exploited since the unknown
image can be located anywhere within this input area. In contrast, the reference
temmplate must be exactly centred in the HeNe beam, any translation resulting in
loss of the correlation signal due to the rapid dephasing that occurs in this beam.
Secondly, there is an asymmetry in the speed requirements between the input and

refercnce Fourier transforms. In general, many reference templatcs must be searched
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Figure 3.1: Schematic of up-dateable photorefractive correlator
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to identify the unknown input. In the NDFWM configuration the reference template
can be up-dated as rapidly as the SLM and readout CCD can be operated, as the
reference Fourier {ransform simply diffracts from an existing grating in the BSO
formed once per input cycle [10]; thus, the relatively slow response time of the BSO

can be prevented from degrading the system response time.

As mentioned above, Bragg matching constraints impose a minimum f number on
the Fourier transform lenses that can be employed for a given input and reference
function spatial bandwidth product. The required [ number can be directly related
to the magnitude of the e-o effect in the phetorcfractive material. This is because
the resulting change in refractive index, induced in the material, governs how thick

the volume hologram must be to achieve the necessary diffraction efficiency.

The use of a HelNe read beam, in addition to having certain practical advantages,
simplifies the modelling of the correlator since the non-linear photo-refractive inter-
action occurs valy with the Art write beams. The HeNc heam is simply diffracted
from the static grating formed by the two Art beams, rather than writing a further
grating as in the case of DI'WM. Theoretical estimation of diffraction efliciency, and
its deterioration due to Bragg angle mismatch, is complicated by the high degree of
optical activity and electric field induced birefringence in BSO {14]. Thus, only rcl-
ative diffraction efficiencies are accounted for by considering the overall modulation
of the grating formed by Uy(f,, fy) and Us(f., f;)- This modulation spatially alters
the diffracted amplitude of Us( [z, f, ). giving rise to spatial filtering effects that may
be exploited in the operation of the correlator,

For the steady state and ignoring any beam coupling, the graling may be written
as [12]

M(fe, fys2) = 2 (fa fu)ewp(554 Wseap(=5=)

|03 (e, ) Pep(—cuz) + [UaPep(—auz) + alUs(fa, fy) Peap[—ar(d - 2)]

(3.1)

where e, and «, are the absorption coefficients of the write and read beams in BSO.

Since @, the quantum efficiency of the interaction of the HeNe beam with the grating
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is only about 0.06 of that of the Art beam, Eq.(3.1) reduces to

/ O 2UT (S ) Us ,
ﬁ/f(f_q;, fy) e |U] (}Im, (32)

where Us is a constant plane wave reference beam and Iy is its irradiance. Uy (f,, f,)

is the Tourier transform (FT) of the stored input image 44(z,y) as shown in Fig.3.1.

If the grating modulation is assumed to have a linear relation with the locally gener-
ated space charge field in the material, the amplitude of the diffracted field directly
behind the grating, Us(fs, f,), will be proportional to M { [, f,) and so can be writ-
ten

Ui(fxafv) = M(fmfy)Uz(fmfy)> (33)

where Uz(f., fy) is the FT of the stored reference nnage uy(2,y). The Fourier
transform of Uy(fo, f,) gives us(2, y), the weighted correlation between u,(z,y) and
uz(z,y). The spatial frequency weighting of the TPR. correlation operation can be
tuned by varying the amplitude of the plane wave refercnce beam Uy via the atten-
uator shown in Fig.3.1. The ratio between Uy, at zero spatial frequency, and Us is

defined as

Amplitude of Uy([fz, f) peak (at zero spatial frequency)

BR = : Ly (3.4)
Amplitude of plane wave reference beam Us

Note that since any experimentally measured value will be an irradiance, it must be

square rooled to give the correcsponding beam ratio (BR).

The 2-D Fourier transforms of images have large zero and low frequency components;
thus, if the beamn ratio is set to unity, values of {U;(f, f,)|* for all but the lowest
frequencies will be small compared to Is; cousequently, a good approximation to
Eq.(3.2) is

M(fo, fy) = EUT(for fu); (3.5)
When Us(fz, fyy) is diffracted from the grating (TPR holographic filter), the field
just behind the filter will be

Uti(.ﬁmfy) = kU‘r(fx:fy)UZ(fxafy)? (36)
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Thus with the BR sel to unity the BSO hologram {I'PR filter) will act as a classical
Matched filter. The correlation peak obtained will be broad and discrimination

between in-class and out-of-class images will be poor.

If the beam ratio is set to a much higher value by attenuating the plane wave
reference, for low frequencies where Uy (fe, £, )17 > [Usl? = Iz, Eq.(3.2) becomnes
2U5

M(fo, fu) = ATAA) (3.7)

(BR==32 was the highest value examined, i.e. an inteusity ratio of 1000). Under these
circumstances there is a small madulation of the grating in the central region of the
hologram and thus the low frequency components of Uy (fz, f,) are dillracted by the
grating with very low efficiency. At higher frequencies, where |{/1(f;, ;)| = |Us], the
modulation is nearer to unity, which results in the maximum diffraction efficiency
attainable from the volume hologram. As will be shown below, these modulalion
conditions lead to an effect that is very similar to a 2" differential pre-processing
operation on the input image prior to an all-pass correlation. This gives rise 1o
a high discriminatory correlation response but with the possibility of varying the
hologram frequency response by direct control from a reference beam attenuator,
see Fig.3.1. However, since the amplitude of the Art write beams is considerably
lower for the high frequency modulation conditions, a penalty has to be paid in that
the photorefractive response time will be slower and the TPR holographic filter will
take longer to write. When the beam ratio approaches infinity (i.e. Us approaches
zero), Eq.(3.2) actually becomes the inverse filter. This is a limiting case which is

not physically implementable.

An equivalent of the 2 differential operation in the space domain is multiplication
of the Tourier transform by —w?. Further, make the assumption that the amplitude
of the spectruin of the input image uq(z, y) has a [ractal, 1/w, frequency dependence
(this is a good approximation for natural images but less so far a more regularly
shaped geometric input). When the hologram is illuminated by a plane wave heam,
Uy fa, fy), the field emerging directly behind the filter, Us(fe, fy), may then be

written

_ 207 (far S UsUn(far £y) _ ZUUa{fo0 £i)
U&(fm,fy) = I;J-l(fx,fy)%2+|U3|2 - ;154, IU.%P
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F_L_EM] (3.8)

1 - |Ug|2w2

If the modulus of the bracketed term can be treated as a constant, Us(fy, f,) will
have a linear dependence on w which is equivalent to w* x 1/w and so its Fourier
transform will be the negative of the 2™ differential of w; («, ). This approximation
obviously depends on the second term in the denominator of Eq.(3.8) being small
compared to unity, which will only be true when |U3]? < w?, i.c. for high valnes of
BR. The higher the frequency content of the image, the lower [{3] must be set to
approximate the 27¢ differential operation. In practice |Us| cannot be set too low,
since the areas of the grating in which there is then significant modulation will have
a long formation time, Furthermore, it has been [ound that diminishing returns, in
terms of correlation discrimination, are achieved by increasing the value of the BR
too far.

Tnitially, the impulse response of the Fourier transform hologram written to the
BSO was calculated for different values of the beamn ratio to demonstrate the edge
enhancement possible with high values of BR. A simple square block image of size
32 % 32 pixels in a 128 x 128 array is used as the inpul object. The input plane
array, Pa, is set to zero apart from an on-axis pixel set to 253 to represent an impulse
function. Fourler transformation of this impulse function produces a plane wave that
addresses the hologram. 14ig.3.2 shows cross-sections through the field values of the
reconstructed square block image at plane Pyfor BR == 1.0, BR = 10.0, BR -: 20.0
and BR = 32.0. The cross-sections demonsirate that o zero crossing occurs at the
location of a step change in the input function, the change becoming progressively
more localised the higher the valuc of BR. The cross-sections resemble the negative
of the 2" differential of the step change, which verifies the explanation given in the
previous paragraph., As the BR can be controlled, in real time, from the variable
attenuator the TPR filter 1s tuneable via the selected BR value.

Low pass correlation gives tolerance to in-plane rotation for initial identification
purposcs; whereas, a high pass correlation yields a sharp and localised response
with a high level of discrimination and accurate determination of position. Thus
a valuable feature of the up-dateable channel is the ability to vary the bandpass

by adjusting the amplitude of the plane wave reference beam writing the Fourier
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Figure 3.2: Cross-sections through reconstruction field values of the TFR filter with
the BR indicated. These figures were obtuined from a square block image that was
band pass filtered using the TPR filter with various BR values and then reconstructed.

transform hologram to the BSO. A range of correlation responses can be generated
u this way to increase the {lexibility of the technique.

3.2.2 Performance of the TPR filter

The more violently the light distribution varies in the Fourier plane, the broader
the correlation peak in the output plane; the flatter the light distribution in the
Fourier plane, the sharper the correlation peak. If the filtered Fourier spectrum is a

uniform plane wave, the output will be the impulse response of the optical system,
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i.e. a sharp peak. Thus, in order to produce a narrow localised correlation peak
in the output plane, the matched filter should be modified to produce as uniform
a field distribution as possible behind the filter plane, depending on sensitivity re-
quirements. For the CMF and POF, the corresponding distributions in the Fourier
plane are A|Uy(fz, fy)|* (where A is a constant which ensures a maximum value of

unity) and |Uy(fz, fy)| respectively.

According to Eq.(3.2), when an image with the same features as the reference is
input into the correlator, the light distributions in the Fourier plane of the system

may be expressed as

: 2U3 ,
U. ws o) = Us(fz fo)I? 3.
1TPR(./ ftl) I(fl(_fl-.fy)lz + ]3| |(f fy)l (3 9)
where Uyppp(fz, fy) 1s the light distribution in the Fourier plane of the TPR filter

correlation system.

Figure 3.3: Test image defined on a 128% 128 array

The test image used is shown in Fig.3.3 and defined on a 128x128 pixel array;
it is normalised to unit energy. Fig.3.4a, 3.4c, 3.5a and 3.5¢ show the TPR filter
functions in the frequency domain using the test image of Fig.3.3 as a reference
image. The filter characteristics with BR set to 5, 10, 20 and 32, respectively, are
compared. From these figures, it can be concluded that with the increase of BR, the
low frequency components of the TPR filter are progressively more attenuated and
the higher frequency components are more enhanced. This illustrates how the band
pass filtering performance of the TPR filter can be tuned. Correspondingly, Fig.3.4b,
3.4d, 3.5b and 3.5d show auto-correlation field distributions for the input image of
ig.3.3 directly behind the TPR filter in the Fourier plane. The corresponding
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Fourier transforins, i.e. the auto-correlation results (ACR) of test image Fig.3.3, are
shown in Fig.3.6a, 3.6b, 3.6¢c and 3.6d, respectively. It can be seen that the choice
of beam ratios (BR) greatly affects the light distribution in the Fourier plane which
correspondingly affects the sharpness of the auto-correlation function. These results
illustrate how the TPR filter may be optimised by correct selection of the beam
ratio, BIR.

1 : : 15
BR=5 BR=5
0.8
1o} h
0.6
0.4}
5 L
0.2}
0 0 ,_W,AAJ L\A )
0 50 100 0 50 100
(@) (b)
1.6 - : 4
BR=10 BR=10
3 3
11
2} |
05 | :
M 1
0 0 -
0 50 100 0 50 100
(c) (d)

Figure 3.4: (o) and (¢) are the cross-sections through the TPR filter in the frequency
domain with BR set to 5 and 10 respectively. (b) and {d) are corresponding cross-
sections through the field values divectly behind the TPR filter.

It can also be seen from these results that as the TPR filter is biased towards progres-
sively higher spatial frequencies the total correlation plane energy falls. However,

the energy available is concentrated into a progressively morc localised correlation

il
2 o S
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Figure 3.5: (a) and (c) arc the cross-sections through the TPR filter in the frequency
domain with BR set to 20 and 32 respectively. (b) and (d) are corresponding cross-
sections through the field values directly behind the TPR filter.

response which results in the peak height increasing with BR.

3.3 Difference of Gaussian (DOG) Filters

For a TPR filter, finer control over the modulation function recorded in the photore-
fractive hologram may be required. This could he achieved by adaptively amplitude
modulating the reference beam Uz with an SLM; this would permit closer control
of the bandpass characteristics of the recorded hologram. A function particularly

suitable for such an implementation is the difference of Gaussian (DOG) filter {15]
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Maximum Correlation Peak = 0.0036
Total Output Energy = 0.5549
BR=5.0 |

(a)

Maximum Correlation Peak = 0.0042
Total Output Energy = 0.3255 ‘
BR =10.0 ‘

(b)

Iigure 3.6: Aulocorrelation resulls obtained using the inpul image 119.3.3 with lhe
BR set to 5, 10, 20 and 32 respectively
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Maximum Correlation Peak = 0.0048
Total Output Energy = 0.1780
BR =20.0

(c)

Maximum Correlation Peak = 0.0050
Total Output Energy = 0.1203
BR =32.0 '

(d)

Figure 3.6: Continued.
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which has been used previously for the recording of matched spatial filters [15]. In

the following section, application of the DOG filtering technique is discussed.

3.3.1 Theoretical aspects

The DOG filter is implemented by convolving a signal u,(2,y) with a difference of
Gaussian function g(z,y)

m(z,3) = gle, ) * (@, y) (3.10)

where the * denoles the two-dimensional convolution operation. The smooth band-
pass DOG function is generated by sublracting two Gaussian functions g¢;(z,y)
(i=1,2), defined as

1 3:2 + ,y'd
gilz,y) = r? P (— ol ) (3.11)
Hence, the DOG function s given by
9(z,9) = g1(z,¥) — g2(2, ) (3.12)

where (7(,07) are the selected standard deviations. Using the two-dinensional
Fourier transform, the DOG function can be expressed in the frequency domain
as |

Gfer f,) = exp [-20°02(f2 + f2)] — exp [~20%03(2 + £2)] (3.13)
[t can be shown that the DOG function is approximately equivaleni Lo a Laplacian
of a Gaussian function (LOG): g(&,y) &~ V2Gaussian(z,y) [15]. Fig.3.7 shows a
cross-section through a DOG function in the space domain with (o, 03) set to (0.1,

0.16), Iig.3.8 illustrates the corresponding function in the frequency domain.

A DOG filter which is malched to the tuning requirements of a stored referencc
image may be written as

;00

M([s fy) = ff g(z,y) * uy (2, y))ezp[—i2n(fox + fyy)|dedy

—00 — 00

= G{fe: ) {fa) i) (3.14)
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Figure 3.7: Cross-section through a DOG function in the space domain with (04, 03)
set to (0.1, 0.16)
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Figure 3.8: Cross-section through the Fourier transform of the DOG function shown
in ['g.3.7
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where U(fe, fy) 1s the Fourier transform of the signal u,(z,y) and G{f,, f;) is the
Fourier transform of the DOG function ¢z, y).

When applied to an image the operation may be thought of as a convolution of
the image with a (Gaussian blurring function followed by the 2*¢ differential of the
reduced resolution image. The larger the standard deviation of the Ganssian, the
greater is the reduction in the intensity gradients within the image leading to a
reduction in localisation of the edge information. When combined with a matched
filter, it is this property of the DOG filter that is useful in that it provides tolerance

to distortions of the target object from thal of the reference function stored in the
filter.

I"ig.3.9 shows cross-sections through the field values of the reconstruction of a square
block image for the values of (e, 03) indicated. Like the TPR filter, the cross-
sections demonstrate that a positive and a negative peak occurs at either side of
the cdge in the input function, whilst other areas exhibit a zero value. Thus the
DOG [unction enhances the edges of the input function uy(z,y) by implementing a
bandpass filler. From the figure, it can be seen that the bandpass with peak trans-
mission at low frequency, shown in Fig.3.9a, results in the broad edge enhancement
shown in Fig.3.9b. Conversely, the higher frequency bandpass, shown in Fig.3.9e,
results in the sharp edge enhancement shown in Fig.3.9f. Changing thc standard
deviations {0y, 02) of the DOG function changes the bandpass frequency content
and thus alters the edge localisation, so tuning the DOG filter to a different spatial
resolution.

3.3.2 Performance of the DOG filter

According to Eq.(3.14), when an image with the same features as the reference is
mput into the DOG filter based correlator, the light distributions in the Fourier

plane of the systemn may he expressed as

Uspos (o Fu) = G*(fos N (fus £, (3.15)
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Figure 3.9: (a), (¢) and {e) are cross-sections through the frequency domain DOG
Junclion with stendurd devialions (oy,07) set to (0.1, 0.16), (0.075, 0.1) and (0.05,
0.07) respectively. (b), (d) and (f) are cross-sections through the reconsirucied
square after it has been convolved with the adjacent DOG.




Chapter 3: Spaiial Frequency Tuning 68

where Uiy g (fay fy) 18 the light distribution in the Fouricer plane of the DOG filter
based correlation system.

The test immage used is shown in Fig.3.3 which is the same as that used for the
TPR filter. Fig.3.10a, 3.10c, and 3.10e show the DOG filter characteristics in the
frequency domain using the test image of Fig.3.3 as a relerence image. The standard
deviations {0y, 09) are set to (0.1, 0.16), (0.075, 0.1), and (0.05, 0.07), respcctively.
From comparing these figures, it can be concluded that the smaller the value of
(01,039), the more attenuated the low [requency componcents of the DOG filter are
and the more enhanced are the image high frequency components. This feature of
the DOG filter is similar to the TPR filtering operation, thus giving the ability to
tune the band pass of the DOG filter via fine control of (0}, 03). Correspondingly,
Fig.3.10b, 3.10d, and 3.10f show auto-corrclation field distributions of the input
image of Fig.3.3 directly behind the DOG filter in the Fourier plane. Their corre-
sponding Fourier transforms, i.e. the auto-correlation results of test image, I'ig.3.3,
are shown in Fig.3.11a, 3.11b, and 3.1lc, respectively. As with the TPR filter, it
cant also be seen that the choice of standard deviations (oy,02) greatly affects the
light distribution in the Fourier plane, which correspondingly affects the sharpness
of the auto-correlation function. These results illustrate how the DOQ filter can be

optimised by correct selection of {oy, o9).

3.4 Comparison of the TPR Filter with the DOG
Filter

Tt is important to discuss the difference between the POIY, DOG and TPR filters.
The POF 1s an all-pass type filter so it does not attenuate the spectrum of the
input object; however, compared to the CMF, it biases the response towards high
frequencies making it extremely sensitive to image mismatches. In contrast, the
DOG and the PR filter can be tuned to tolerate specific mismaich problems.
However, in addition the DOG and TPR filters both attenuate the response of the
correlator to low frequency regions of the input object spectrum. This has the

important effect of tending to inhibit false cross-correlation, since the matching of
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Figure 3.10: {a), (¢} and (¢) are the cross-sections through the DOG filter in the
frequency domain with (01,03) sel to (0.1, 0.16), (0.075, 0.1), und (0.05, 0.07),
respectively. (b), (d) and (f) arc the corresponding cross-sections through the field

values dirvectly behind ihe DOG filter.
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Maximum Correlation Peak = 0.00089
Total Output Energy = 0.1754
(0.1, 0.16)

(a)

Maximum Correlation Peak = 0.00069
Total Output Energy = 0.0875
(0.075, 0.1) |

(b)

[Migure 3.11: Autocorrelalion resulls oblained using the inpul image of 17g.3.3 with
(01,02) set to (0.1, 0.16), (0.075, 0.1), and (0.05, 0.07), respectively
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Maximum Correlation Peak = 0.00074
Total QOutput Energy = 0.0603
(0.05, 0.07)

o

\\\\\\\\\\\\\\\\\\\\\

(c)
Figure 3.11: Continued

low frequency components from non-target objects is prevented from passing through

the filter to the correlation plane, where it can only degrade the signal-to-noise ratio.

For an evaluation of the performance of different matched filters the following criteria
are used: correlation peak intensity (CPI), Horner efficiency (nH), the correlation
peak to the root mean square (PRMS) ratio and the number of pixels inside the
correlation peak (PNI) at the full width half maximum (FWHM) value. The nH is
defined as the ratio of the correlation peak energy to the energy in the input object,
which is a measure of the optical correlation efficiency of the filters. The PRMS
is defined as the ratio of the correlation peak response to the rms response outside
the FWHM region of the correlation peak, see Eq.(3.18); it gives an indication
of the sharpness of the correlation peak. The PNI measure is another important
performance measure of the correlation filter because it represents the detectability

of the correlation peak and the accuracy with which it may be located.

Table 3.1 shows the simulation results of TPR and DOG filters with appropriate

parameter settings selected. For comparison, it also gives the POF and CMF results
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Table 3.1: I'ilter performance measures

nH% | PRMS | PNI| CPI

TPR [BR=5.0] 1 0.358 | 12.74 | 129 | 0.0598
I'PR [BR=10.0] 0.421 | 16.95 | 49 | 0.0648
TPR [BR=32.0] 0.494 | 2949 | 13 | 0.0703

DOG [(&1,0,)=(0.1, 0.16)] | 0.0887 | 10.61 | 69 | 0.0298
DOG [(ey, 02)=(0.075, 0.1)] | 0.0688 | 12.20 | 37 | 0.0262

DOG [(ay,05)=(0.05,0.07)] | 0.073¢ | 14.81 | 13 |0.0272
POF 2124 1 19.78 | 131 0.15
CMF 0.033 | 5.0 | 581 | 0.018

Table 3.2: Comparison of discriminatory abiliiies for the four filters

TPR | DOG | POF | CMF
A% | 33.53 | 28.70 { 34.58 { 9.0

listed in the last two rows respectively. The table is arrauged in order of the degree
of edge enhancement for the DOG and TPR filters. It can be seen fror Table 3.1
that the DOG and TPR filters are almost equivalent filtering techniques, thus the
TPR filter is an extremely simple method of implementing a DOG like filter.

I'rom Table 3.1, it can be seen that, when cxploiting edge enhancement filters, the
sharper the edge enhancement the betler all the performance measures appear to
be. The edge enhancement filters can be tuned by changing the values of (ay,03) or
BR, subject to the filter performance requirement. Table 3.1 shows that all the edge
enhancement results give an improved correlation peak detectability when compared
with the CMI'. It can be seen from Table 3.1 that the DOG filter has a poorer PRMS
than the equivalent TPR filter. From Fig.3.6 and Fig.3.11, it can be seen that the
correlation output from DOG filtering has more extensive sidelobes than that of
TPR filtering which explains the poorer PRMS. By changing the values of (o4, 02)
and BR to the appropriate values, the modified edge enhancement filter can be funed
to give better PRMS performance than the POF. Tor example, when (o, o) are set
to (0.03,0.045) for the DOG filter and BR = 32.0 for the TPR filter, the PRMSs are
20.71 and 29.49, respectively, which are better than that of the POF, which is 19.78.

Table 3.2 shows the discriminatory capability of TPR and DOG filters compared
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with the POF and CMF; two very similar images, Fig.3.3 and Fig.3.12, were used in
the computer simulation. In the simulation, Fig.3.3 is used as the target image and
Fig.3.12 as the non-target image. The values of (oy,0;) and BR are set to (0.05,

0.07) and 32.0 respectively. Discriminatory ability A is defined as

_ |ACPI| - |CcCPI|

A
[ACPI|

100% (3.16)

where ACPI indicates the autocorrelation peak intensity, CCPI denotes the cross-
correlation peak intensity. It can be seen that the discriminatory capability of the
TPR and DOG filters is better than the CMF but worse than the POF.

Figure 3.12: Image used for the test of filter discrimination.

Simple geometric figures have been used to illustrate the useful properties of the
TPR filter; however, it is important to show that it also bestows these benefits for
recognition of real objects. Fig.3.13a and 3.13b depict the Bradley APC vehicle
and Abrams MI tank respectively. The APC vehicle is taken as the target image,
and the tank as the non-target image. When the values of (07,03) and BR are set
to (0.05, 0.07) and 32.0, respectively, performance is significantly better than that
for the simple geometric shapes, proving the general applicability of the TPR filter.
Fig.3.14a and 3.14b are the result of correlating the APC vehicle and the tank with
the TPR filter respectively; Fig.3.14c and 3.14d are the result of correlating the APC
vehicle and tank with the DOG filter respectively. Hence the TPR and DOG filters
can effectively discriminate the APC vehicle from the tank; values of A are 92.5% and
89.9% respectively. The correlation output using DOG filtering has more extensive
sidelobes, which results in a poorer PRMS than that delivered by the TPR filter;

this is because a cross-section through the DOG filter (i.e. cross-section orthogonal
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to the optical axis) is a circular annulus and hence does not provide homogeneous
frequency plane modulation. The TPR filter is not compromised by the geometry

of Fourier plane frequency distribution; it thus delivers better performance.

(a) (b)

Figure 3.13: Real images encoded at 128x 128 pizels: (a) Bradley APC vehicle, (b)
{brams MI tank.

3.5 Noise Robustness of TPR filters

If it is to recognise realistic targets, a good correlation filter should not only produce
sharp correlation peaks at the output plane and give good discrimination ability
between similar objects, but also be robust to noise in the input scene. In this

section, the noise robustness of the TPR filter is examined.

The influence of the input image noise in the frequency plane of the correlator is
greater for higher spatial frequencies. On the other hand, the concentration of most
of the energy at low frequencies, for common objects, is responsible for the broad
correlation peaks when a classical matched filter is used; that is, it behaves as a low
pass filter. The all pass type filter, such as the POF, and high pass type filter, such
as the inverse filter (IF) and the amplitude compensated matched filter (ACMF),
are very susceptible to noise in the correlator; thus they have a low resistance to
input scene noise. The TPR filter has been shown to act as a tuneable bandpass
type filter which gives a good compromise between discrimination ability and input

scene noise resistance.
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[igure 3.14: Correlation functions: (a) and (b) are from corrvelating the target and
non-target images with the TPR filter (BIT scl lo 32), respectively; (¢) and (d) arc
from correlating the target and non-target images with a DOG filtered version (with
(oy,0,) set to (0.05, 0.07)), respectively



Chapter 3: Spatial Frequency Tuning 76

\ o
Y \ .\\\‘ ::".“\\ RO
\\IES

‘J\ ,

| "“ ‘;:‘\‘\

A (I
."f\‘,‘f?.\h\“«.‘i“. -

(d)

Figure 3.14: Continued
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'I'he performance of the filter’'s resistance to noise in the input scene is generally
cxamined using the output signal to noise ratio (SNR,) defined as {16]
. 2 V1|2
S!V.{io . lb[ﬂ(.‘?}oj yo)”

T war{c{ze, o)}’ (3.17)

where £/, var and ¢ denote the ensemble average, the variance and correlation output
[unction respectively, and (o, yo) denotes the position ol the correlation peak. When
the input image is corrupted by noise, a good filter should not ounly give a high
signal-to-noise ratio at the output plane but also a sharp correlation peak with
good sidelobe suppression. The peak sharpness is characterised by the ratio of the
correlation peak height fo the root mean square (PRMS) of the region, A, outside
the central correlation area at half its peak intensity, defined as [17]

PRMS = lof@e, go)l (3.18)
{7 Tale(z,y)2}5 '

where N4 1s the number of pixels of the corresponding area in the correlation plane.

The degree of sidelobe suppression is assessed using the peak to secondary pcak
ratio (PSR) defined as [18]

Correlation Peak _ |{20, ?/o)l2

.l)kg'.R = y - ‘< 1
Secondary Peak MAXg{|e(e,y)|*}

(3.19)

where M AX denotes the output function maximum and the area B is consirained
to ¥ — zo > 3 pixels and ¥ — yo > 3 pixels. Noise in the input scene generally is
responsible for the production of sidelobes and undesirable peaks at the correlation
output plane; hence, the PSR gives an assessment of sidelobe disruption. Thus the
filter’s ability to accommodate the noise in the input scene, whilst still maintaining
good discrimination, is characterised by the three parameters: SNR,, PRMS, and
FSR.

The noise resistance perlormance ol the 'I'PR {ilter with variable BRs is exam-
ined using the Bradley APC vehicle shown in Fig.3.15a; the image is encoded at
a resolution of 128x128 pixels with grey levels variable from 0 to 255. This lmage
was corrupted using Gaussian white noise with a variable input signal-to-noise-ratio
(SN Ry) defined by the ratio of input signal energy to noise energy. Fig.3.15b shows
the image corrupted with 20legSNR; = —17.4dB. All images, including noisy im-

ages, were centred and normalised to unit energy. The maximum BR. value used
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Table 3.3: Quantitative comparison of filter performance

SNR,(dB) | PRMS | PSR CPI PNI | PNO
CMF 72.35 151 1115 [22%107> 1618 ©
TPR(BR=1.0) 67.27 1.69 | 1.21 | 7.1x107% 1089 | O
TPR(BR=5.0) 50.90 1.90 | 1.86 | 4.6x107* | 97 0
TPR(BR=10.0) 45.06 244 | 3.19 | 4.9%x10°* | 17 0
TPR(BR=20.0) 39.91 527 | 4.89 | 5.6x107%| 5 0
TPR(BR=32.0) 37.96 803 | 432 |70x107*| 3 0
POF 28.7 1.95 | 1.01 | 3.9x107* | 1 8

was 32, because this was the highest experimental value implemented which gives

an equivalent irradiance ratio of 1000.

(a)

Figure 3.15: (a) The noise free image of the Bradley APC vehicle. (b) The noise
corrupted image of the Bradley APC vehicle with 20log SNR; = —17.4dB.

Simulation results for the TPR filters with different BR values, together with the
POF and the CMF, are summarised in Table 3.3. The severely noise corrupted

image of Iig.3.15b was used as the correlator input,

In the table, CPI denotes the correlation peak intensity, PNI is the number of pixels
inside the correlation peak at the full width half maximum (FWHM) value, and
PNO is the number of pixels outside the correlation peak that are greater than or
equal to the FWHM value.

FFrom the table, it can be seen that as the BR increases, the SN R, of the TPR filter
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decreases but the values of the PRM § and PSR increase, except for the PSR value
for BR = 32; however, the value of PSR = 4.32, for BR = 32, is large enough to
indicatc good noise resistance. Although the CMF is robust to noise, indicated by
SNR. = 72.35dB, the other two measures of the PRM S and PSR indicate that it is
diflicult to precisely locate and recognise the desired image. It can be seen from the
table that the POF has the worst performance and is unable to accomimodate noise
in the input scene. If is concluded from the table that when the BR is tuned within
the range from 20.0 to 32.0, the TPR filter gives an excellent compromise between
noise resistance and discrimination ability. For this tuning range the SN R, varies
hetween 30.91dB and-37.96d13 which is clearly adequate to extract the desired signal from
the corrupted output function.

Table 3.3 also displays values for CPI, PN and PNO, these variables further clar-
ify the performance of the TPR [ilter. The NI quantifies the detection accuracy,
or the ability fo accurately locate the spatial position of the object in the input
scene, The PNQ quantifies the uniqueness of the peak in the correlation plane;
if the PNO > 0, the target is lost, or al leasl it can be said to reside at one of
several] locations. It can be seen from the table that although the I'OF lLas just
one pixel inside the corrclation pcak, it also has 8 pixels outside the correlation
peak; this is an intolerable ambiguity for any target recognition system. The TPR
filters with the BR tuned between 20 and 32.0 give 5 and 3 pixels in the correlation
peak respectively, allowing precise location of the input object; as the PN is zero
there is no ambiguity. Thus, the TPR filters, with a relatively high BR, are able to
accommodate noise in the input scene and give good discriminatiou performance;
they significantly ont-performed both the POF and the CMF.

The correlation functions of the TI’R filter with BR=32, POI" and CMF using an
input lmage corrupied with: 20logSN Ry = —17.4dB, are shown in Fig.3.16. The
TPR filter yields a sharp correlation peak that is easily isolated by thresholding at
50% of maximum, whereas the POF loses the targel. The CMI® gives a result similar
to the noise {ree input image autocorrelation, demonstrating excellent noise robust-
ness; however, it has a very broad correlation peak resulting in a poor discrimination

performance.
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The filter’s discrimination ability is tested by comparing correlation performance on
a target and non-target object of similar size and shape. This test is performed by
comparing the discrimination values of the TPR with BR=20 and 32, CMF and POF
for input images of both the Bradley APC vehicle, shown in Fig.3.15, and a similarly
scaled and oriented Abrams MI tank shown in Fig.3.17; Fig.3.17a is a noise free tank
image and Fig.3.17b is a noise corrupted tank image, with 20logSN R; = —17.4dB.
The discrimination capability (DC) of the filter is defined as:

DC = i , (3.20)

P

where P, is the intensity of the correlation peak for the target input and P,, is for
the non-target image input. In the simulations, the noise free image of Fig.3.15a
was used to construct the three filters; the Bradley APC vehicle was taken as the
target input image, and the Abrams MI tank as the non-target input image. The
discrimination results are quantified in Table 3.4; where all the correlation peak
intensities are normalised to the autocorrelation peak intensity of the TPR filter
with BR=20 with the noise free input image of Fig.3.15a. From Table 3.4, it can
be seen that when the input images are noise free the TPR filter gives excellent

discrimination: DC=9.88 and 13.33 for BR=20 and 32 respectively, values which are
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intermediate to those of the POF and the CMF. Furthermore, when the input images
are buried in noise the TPR filters, with BR=20 and 30, give a discrimination ability
of 2.10 and 1.43 respectively; whereas, the POF and CMF lose their discrimination

ability.

Table 3.4: Quantitative comparison of filter discrimination ability

Noise Free Case Noise Level -17.4dB
target | non-target | DC | target | non-target | DC
TPR (BR=20) | 1.00 0.1012 9.88 | 0.0512 0.0247 2.10

32

TPR (BR=32) | 1.3318 0.0999 13.33 || 0.0420 0.0294 [.43
CMF 0.0667 0.0461 1.45 | 0.0114 0.0158 0.73
POF 7.1730 0.5257 13.65 || 0.0731 0.0842 0.867

(a) (b)

Figure 3.17: Abrams MI tank images used as the non-target object input, (a) noise
free, (b) corrupted by noise with 20logSN R; = —17.4dB.

In conclusion, noise robustness of tuneable photo-refractive (TPR) filters, which can
be implemented for real time pattern recognition, has been assessed and compared
with phase-only and classical matched spatial filters. The bandpass selectivity of
the TPR filter results in sharp correlation peaks even when the input scene signal-
to-noise ratio is decreased significantly. The filters were found to give a good com-
promise between correlation peak sharpness and noise robustness. For a BR range
between 20 and 32 the TPR filter out-performed both the POF and the CMF. The
TPR filter has also been shown to give good discrimination between the target and

non-target objects.
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Chapter 4

Adaptive Filtering Technique

4.1 Introduction

A good correlation filter should produce sharp correlation peaks at the output plane;
be tolcrant to noise in the input scene; give good discrimination between similar
objects and have a high optical efficiency. As already mentioned in the previous
chapter, the classical matched filter [1] (CMF) is optimum for noise robustness but
has poor discrimination ability, as it generates very broad output correlation peaks
and has a poor optical efficiency. The phase only filter [2] (POF), implemented
by setting all the magnitudes to 1.0 and retaining the phase information, exhibits
cxcellent discrimination via very sharp ouiput corrclation peaks and a 100% optical
efficiency; however, 1t is extremely sensitive fo target distortions and noise in the
input scene as it enhances high spatial frequency information. Mu et al {3] proposed
including partial magnitude information to produce a filter that is somewhat like an
inverse filter because it encodes the low frequencies as a modified inverse filter and
the remaining spatial frequencies as a POF. However, Mu’s filter is more sensitive to
target distortions and noise in the input scene than the POF. These filters — inverse,
POF, and CMF ~ differ only in the manner in which magnitude information is
encoded into the filter.

To reduce the sensitivity to noise and target distortions, achieve good discrimination

85
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and optical efficiency, a new f{ilter is generated which integrates the phase only filter
with the classical matched filter; this is a strategy which attempts to combine the
advantages of both filters into a single robust filter [4]. A technique which optimises
filter performance to accommodate input scene noise is demonstrated, The results
show that the new filter delivers better overall performance than either the plase-
only filter or the classical matched filter.

4.2 Filter Synthesis

Let the Fourier transform of the reference object function f(z,y) be denoted by
Flu,v) = |#(u,v)lexpjp(u,v)]. A filter when introduced at the filter plane is
cxpected to produce the corvelation of the target input object at the output plane.
The CMF is thus given by the complex conjugate of the reference object Fourier
transform

Plu,v)emr = I™(u,v) = |F(u,v)|ezp[—7¢(u, v)], (4.1)

and the POT" i3 given by
F(u,v)por = TFw. o)l = exp[—j¢(u,v)}, (4.2)

where the asterisk * denotes the complex conjugate. It is well known that, for
comnon objects, the concentration of most of the energy at low spatial frequencies is
responsible for the broad correlation peaks resulting in low filter discrimination when
a CMF is used; that is, from Eq.(4.1), it behaves as a low pass filter. On the other
hand, the influence of the input scene noise is greater for high spatial frequencies in
the filter plane of the correlator; thus, as a low pass filter, the CMF automatically

suppresses the higher frequency distortions giving excellent noise robustness.

In contrast the POI" effectively attenuates lower frequencies and enhances higher
frequencies in the filter planc; thus for distortion free input images it delivers good
discrimmination ability with sharp output correlation peaks. llowever, as noise fre-
quently manifests itself as high frequency distortion in the filter plane the POF does

not perform well for input images corrupted by noise.
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To achieve sharp correlation peaks (i.e. good discrimination and localisation) with
good resistance to noise in the input images, it is necessary to attenuate the lower
spatial frequencies as well as to retain the higher spatial frequencies of the relerence
object. To this end, the POF and the CMI' may be infegrated as

Pl < | TS = eoiisual e lFu>
’ F stt,v) _ iF(::v)l exp[—jd(u,v)] otherwise
where
T = &|F(,v)|max (4.4)

and 0 < £ £ 1.0 and is a pre-set threshold parameter; |F(u,v)|mer denotes the
maxitum magnitude of the Fourler transform of the relerence image. Hence, if the
amplitude value of the Fourier transform of the reference image f(z,y), at the pixel
location (u,v), is grcater than the threshold value of 7, only the phase information
is recorded onto the filter; otherwise, both the phase and amplitude information,
with an amplification factor of %, are encoded onto the filter. Note also that the

parameter ¢ is useful in:

(1) overcoming the indeterminate condition when the value of |F(u, v)| approaches

ZET0.

(i1) ensuring that the filter gain js less than unity to mcet the requirement of the

optical implementation.

The parameter £ can be a constant or even a function of # and ». It is used to
either suppress the effect of noise or bandlimit the filter or both. For example,
an a priori knowledge of the noise spectrum in the input scene can be utilized to
formnlate &(u,v) so that part of the filter hehaves as a POF and the remainder as
a CMF. This filter would then be robust to noise but still give good discrimination

via sharp correlation peaks. For convenience, this is called an adaptive discriminant

filter (ADT).

The threshold factor 7 allows correlator performance to be tuned as a function of
the input noise condition. A large threshold value maintains the noise robustness of
the ADF as a classical matched filter. If 7 is greater than or equal to the maximum

value of |F(u, )|, the system would behave as a CMF which has the highest noise

.. RO
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resistance. A small value of 7 produces a sharp correlation peak at the output
plane provided that the input noise level is relatively low. The optimnum value of &
(equivalent to finding 7) is based on the balance between adequate sharpness of the

correlation peak and filter tolerance to noise.

Initial

Threshold
Value

Reference
Image

(e
Filter -

Construction
| N ——

j—
Input Cross
Image

Correlation

Noise
PSR: Seusitivity

Optimisation

Threshold
Valug
Adjustment

T ueal
PRMS Optinim

Optimum
Correlalor

Figure 4.1: Schematic diegram of iterative procedure for optinum filter construction

The optimum value of & depends not only on the degree of noise level in the input
image but also on the type of input image. Therefore, the threshold parameter ¢
in Bq.(4.4) is modified using an iterative scheme to evaluate an optimum value, see
Fig.4.1. The reference image is first Fourier transformed. The input image, with
known noise level, is also Fonrier transformed. The optimum filter construction

process is as tollows:
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(i)
(iit)
(iv)

(vii}

(viii)

Choose an initial threshold value (i.e. threshold parameter value of ) to ini-

tialise the construction process.
Construct the filter according to Eq.(4.3).
Cross-correlate the input image with the filter.

Mcasure the peak value and the sccond highest pcak value of the correlation
result, calculate the peak to secondary peak ratio (PSR) at the correlation
plane.

Adjust the threshold value and repeal processes (ii) to (iv) to maximise the
PER value.

Fine-tune the threshold value within the neighbourhood of the previously ob-
tained value and repeat processes (1) and (iii}.

Measure and calculate the peak sharpness defined as the ratio of peak to root

mean square of the output correlation function (PRMS).

Adjust the threshold value and repeat processes (ii), (iii) and (vil) until the

maximum PRMS is obtained.

The corresponding threshold value is the optimum value for the particular image

with its particular level of noise.

In the iteration, the PSR is defined by Eq.(3.19). The noisc in the input scenc

results in correlation peak sidelobes and undesired peaks at the correlation output

plane; thus, it is reasonable to use the 'SR as a measure of the filter resistance to
sidelobe disruption. The PRMS is defined by Eq.(3.18), it gives an assessment of
the correlation peak sharpness.

4.3 Performance Simulations and Results

simulations of the ADI are compared with the CMI" and POI"; the input image
was lhe Bradley APC vehicle, shown in Fig.4.2(a); it was encoded with a resolu-

tion of 128x128 pixels with grey levels variable from 0 to 255. This vehicle image
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was corrupted by Gaussian white noise with a variable input signal-to-noise ratio
(SNRy) defined as the ratio of input signal energy to noise energy. For example,
the images corrupted by 20logSN R; = 0.4dB, —13.6dB and —17.4dB are shown in
[ig.4.2(b), Fig.4.2(c), and Fig.4.2(d) respectively. All images including noisy images
are normalised to unit energy. As is evident from Fig.4.2, these images present a

difficult pattern recognition problem.

Figure 4.2: Input images with different noise levels (a) noise free, (b) 0./dB, (c)
-13.6dB and (d) -17.4dB

The noise free image of Fig.4.2(a) was used as the reference image to construct the
filters. In order to construct the ADFs the threshold parameter ¢ was given initial
values of 1072,107*,107° and 107®. The real part of the ADFs, in the frequency
domain, are displayed in Fig.4.3(a), 4.3(b), 4.3(c) and 4.3(d) respectively. It can be
seen that, as the parameter ¢ decreases, the extent of the ADF phase only region
increases; correspondingly, the classical matched filter recedes to the ADF high

frequency zones. The different noise levels in the space domain disrupt the filter
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fidelity requirements, to a greater or lesser extent, in the frequency domain; thus in
order to recognise the object buried in noise an optimum value of the parameter ¢
must be selected. To illustrate the effect of altering the parameter ¢, it is useful to
inspect the spatial image of the ADFs. Since the spatial image function r(z,y) can

be regarded as the impulse response of Eq.(4.3), it can be written as

- ) \ -
r(2,y) = F {F{u,9)aprk (4.5)
where F~! denotes the inverse Fourier transform. Thus the impulse response of the
ADFs shown in Fig.4.3 are displayed in Fig.4.4. Hence, the smaller the threshold
parameter £, the greater is the attenuation of low frequency image elements which
match the high power reference object features; thus, a type of optimised edge

enhancement is implemented.

Figure 4.3: Correlation filter with different threshold values ¢ = (a) 0.01, (b) 1074,
(¢) 10~° and (d) 107°

Next, correlate the filter functions F'(u,v) (Fig.4.3) of the ADFs with the input

image of Fig.4.2(d), which is severely corrupted by noise. The output correlation
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(a) (b)
(c) (d)

[igure 4.4: Impulse response of correlation filter with threshold values corresponding
to the values in Fig.4.3

functions obtained are shown in Fig.4.5(a), 4.5(b), 4.5(c) and 4.5(d) respectively. It
can be seen that a large threshold parameter ¢, for example ¢ = 0.01 in Fig.4.5(a),
gives a robust correlation result that is similar to that of the CMF, but has a very
broad correlation peak; a smaller threshold parameter ¢, for example ¢ = 107° in
Iig.4.5(d), gives a useless correlation result as it loses the target. A more optimum
value of €, for example ¢ = 10™* in Fig.4.5(b), not only gives a relatively sharp
correlation peak but demonstrates good resistance to severe noise in the input scene.
['his analysis suggests a strategy to find an optimum threshold parameter £ for

different noise levels in the input image; Fig.4.1 illustrates the optimisation strategy.

Exploiting this scheme the optimum threshold parameter ¢ was found to be 1074
for the noise corrupted image of Fig.4.2(d). For comparison, the real parts of this

optimum ADF, POF and CMF are displayed in Fig.4.6(a), 4.6(b) and 4.6(c) re
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Figure 4.6: Filters: (a) optimum ADF correlation filter (e

(c) CMF

Table 4.1:

(c)

95

= 10"1), (b) POF and

Quantitative comparision of filter performance

: SNR,(dB) | PRMS | PSR nH CPI PNI | PNO

Optimum ADF 42.78 3.51 2.58 | 70.86% | 2.8x10~% | 11 0
("‘Mlv"‘ 72.39 5l 1.15 | 7.03% | 2.2x107° | 1618 0
POF 28.70 1.95 .01 100% 3.9%x10~4 1 8
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(c)
Figure 4.7: Continued

spectively. The correlation outputs obtained with these three filters are illustrated
in Fig.4.7(a), 4.7(b) and 4.7(c). It can be seen that the CMF is extremely robust
to noise but produces a very broad output correlation peak that is similar to an
autocorrelation with a noise free input image; whereas the POF loses its target at
the output plane rendering it useless for noisy input images. The optimum ADF
delivers excellent overall correlation performance exploiting the advantageous char-
acteristics of the POF and CMF. The performance advantage is quantified by the
results tabulated in Table 4.1. The output signal to noise ratio (SN R,) is defined
by Eq.(3.17). nH is the Horner efficiency, CPI denotes the correlation peak inten-
sity, PNI is the number of pixels inside the correlation peak at the full width half
maximum (FWHM) value, and PNO is the pixel numbers outside the correlation

peak greater than or equal to the FWHM value.

The SNR,, defined by Eq.(3.17), gives a good indication of filter noise robustness
when the discriminant capability is incorporated. The PSR, defined by Eq.(3.19),
gives a further useful indication of noise robustness. The PRMS, defined by Eq.(3.18),

gives a good indication of correlation peak sharpness and discriminant capability. A
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filter’s ability to accommodate noise in the input image is quantified by these threc

melrics.

From ‘lable 4.1, the output SN R, value of the optimum ADI is 42.78d13, which is
intermediate to those of the POI" and the CMJ¥

: whereas the output ADF PRAMS and PSR
values are 3.51 and 2.38 respectively, which are greater than either the CMF or the
POF. The ¢l and CP1 values of the optimum ADF are between those for the CMI°
and POI" but nearer to that of the POT, which is useful for energy conservation which
13 one of the laclors determining system bandwidth. ‘The PNT metric indicales
the detection accuracy for the correlation peak which may be used to determine
the location of the input image. The PNO measure gives the uniqueness of the
peak at the correlation plane; if the ’AQ > 0, the object will not be detected
without ambignity. From the table, althongh the POT has just one pixel inside the
correlation peak, the 8 pixels outside the correlation peak result in an ambiguity
that makes reliable target detection lmpossible; the optimum ADF gives a better
compromise between the CMF and the POF for the PNI metric, and produces
only one peak at the output plane. Thus, the optimum ADF delivers a more useful

performance than either the CMF or the POF.

The filter’s discriminatlion ability is tested by comparing cerrelation performance on
a larget and nontarget object of similar size and shape. This test is performed by
comparing the discrimination values of the optimum ADI, CMF and POT for input
images of both the Bradley APC vehicle shown in Fig.4.2 and a similarly scaled and
oriented Abrams MI tank shown in I'ig.4.8; I'ig.4.8(a) is a noise free tank image
and Fig.4.8(b) is a noise corrupted tank image, with 20logSN Ry = —17.4dR. The
diserimination capability (DC) of the filter is defined as
13

DC = P_Z (4.6)

where P; is the intensity of the correlation peak for the target input and P, is
the same for the nontarget image input. In the simulations, the noise frce image of
Fig.4.2(a) was used to construct the three filters; the Bradley APC vehicle was taken

as the target input image, and the Abrams MI tank as the nontarget inpul image.
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Table 4.2: Quantitative comparision of filter’s discrimination ability

Noise Free (Case Noise Level -17.4dB

target | nontarget | DC | target | nontarget DC

Optinuum ADF | 1.00 0.1219 8.20 || 0.127 0.048 2.65
CMF 0.019 0.0131 l 1.45 || 0.0033 0.0045 0.73
POF 2.051 0.1503 | 13.65 | 0.0209 0.0241 0.867

The discrimination results are quantified in Table 4.2, where all the correlation peak
intensities are normalised to the autocorrelation peak intensity of the optimum ADF
(¢ = 10~*) with the noise free input image of Fig.4.2(a). From Table 4.2, it can be
seen that when the input images are noise free the optimum ADF gives excellent
discrimination, DC=8.20, which is intermediate to those of the POF and the CMF.
Furthermore, when the input images are buried in noise the optimum ADF gives a
discrimination ability of 2.56, whereas the POF and CMF lose their discrimination

ability.

(a) (b)

Figure 4.8: Abrams MI tank used as the nontarget image, (a) noise free image, (b)
noise corrupted image with 20logSNR; = —17.4dB.

4.4 Implementation

Threshold values for images with the different noise levels used herein were optimised

using the procedure illustrated in Fig.4.1. The resulting optimum threshold values
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B og threshoid

fog threshold €

input image noise level (dB)

Figure 4.9: Optimum threshold values vs. input image noise levels. x denotes noise

level values in the input scene, end y denotes the logarithm of oplimum threshold
values. R* = residual error square

are plotted in Fig.4.9; 15q.(4.7) gives the best-fit curve for this data
y = —6.1034 — 8.6113exp(—2z) + 1.8817exp(~3z%) (4.71)

Thus, this equation is used as the embedded model within the hybrid correlation sys-
tem for this vehicle recognition task. The system diagram is illustrated in Fig.4.10.
During the recognition process, the input image is fiest fed into the adaptive correla-
tion system. When the noise level within the image is known a priors, the optimum
threshold value is evaluated using Eq.(4.7), thus allowing an optimised filter to be
constructed and encoded onto the SI.Ms. When the noise level is unknown, the in-
put image is entered into the optimum threshold evaluation unit, the detail of which
1s given in IMig.4.1; an optimum threshold value is determined via feedback from the
output corrclation plane, the worst case requires five iterations. The reference im-
age is then fed into the adaptive correlation system and an optimum filter threshold
value 1s used to construct an optimised filter which is used {o update the SLMs; the

system can adapt to change in the input scene noise at video frame rates.
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4.5 Conclusion

An optimum adaptive filter which can accommodate noi?e ig the inpflt image has
been presented which integrates the phase-only filber with the ClZLSS.lCZl.l ma,t-ch.ed
filter. A variable amplitude threshold value is set so that, at a particular spatial
pixel location, if the amplitude value is greater than the pre-set threshold, 01113.r phase
information ig recorded; otherwise, both the phase and amplitude information are
encoded. An iterative procedure to achieve an optimum threshold value to construct
the filter is demonstrated. Computer simulation results show that the new filter
delivers hetter overall performance than either the phase only filter o‘r matched
spatial ilter. When reference images are encoded into the hybrid CO‘l'l'ela,tIOTl systjem
the amplitude threshold value is adjnsted by an integrated adaptive controller to

optimise noise resistance and discrimination abilily.

Comparing the results with that from ihe previous !
both the ADT and the TPR filters deliver similar performance. From Table 4.1
and Table 3.2, the TPR filter (with the BR sei to between 20 and 32) gives better
results than the optimum ADF. Generally speaking, the system employed with the
TPR filter would be fuster than that employed with the ADT filter because of the
all optical operations of the TPR, filtering system. On the otherhand, when high
quality amplitude-SI.Ms and phase-SLMs are commercially av

ailable, the ADT filter
employed system would be of benefit if one wants to improve Lhe system adaptivity
for handling noise input conditions.

hapter, it can be seen that



Chapter 4: Adaptive Filtering Technique 102

SLM Lensl AM-SLM PM-SLM Lens3

|
e
_ W

Opti

Known 'nt:re!s';::::i Optimum Filter
Value Construction
Evaluation

Unknown

~
l Iterative Optimum

o Threshold Value
Reference - g L Evaluation (See Figd.1)
Image ~
(v
Micro-Processor Based
Adaptive Correlation System

Where (O denotes the correlation operation

Figure 4.10: Hybrid correlation system diagram. AM-SLM denotes the amplitude
modulating spatial light modulator, and PM-SLM denotes the phase modulating spa-
tial light modulator.
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Chapter 5

Synthetic Discriminant Functions

(SDFs)

5.1 Introduction

Classical matched spatial filters [29] (CMFs) are optimal in the sense that they
deliver the maximrum oubpul signal-lo-noise (SNR) ratio, which is defined by the
ratio of the average output peak value to its standard deviation, in detecting a known
reference signal in additive (usually assumed to be white) noise [23]. However, the

CMF suflers from the following practical difficulties in optical paitern recognition.

(i) The oulput correlation peak produced by the CMF degrades rapidly with
image distortions due to scale mismatch, in-plane rotation, and out-of-plane

rotation etc.
(i) The CMF has a very low optical efliciency, or Horner efficiency.

(iii) Most available spatial light modulators (SLMs) cannot accommodate the full

complex frequency response required by CMFs.
(iv) The CMI cannot be used for multi-class pattern recognition.

Optical efficiency can be improved by using phase-only filters [14] (POTs), because
the frequency plane filter will then pass all the incident light. Real-time SLMs

104
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such as the magneto-optic SLM can bec ecmployed in the filter plane if the filters
are restricted to be binary phase-only filters [24] (BPOT's). Towever, they are not
capablc of providing distortion invariant pattern recognition or multi-class pattern

recognilbion.

To overcome the limitations of the CMI' and POLF, several new filter synthesis
techniques have been proposed. These filters use combinations of training images
that are designed to overcome the expected distortions. The intensity at the central
position of the cross correlation function can be specified for each training image
during synthesis; hence, by multiplexing and applying a variety of algorithms to the
filter, several object classes can be handled by the correlation filters. This type of
filter is given the generic name: synthetic discriminant function (SDF) filter. In
this approach, the filters are computed as linear combinations of the training set
reference images to give an equal central correlation amplitude lor each training set
image. However, the SDFs based on CMFs yield very broad correlation peaks in
the correlation plane, which give very poor discrimination between objects that are
similar and thus may result in false detection responses. In order to overcome these
difficulties, various modifications of the SDF algorithm lLave been successively tested
in the past ten years.

The purpose of this chapter is to present a brief review of the basic concepts of
correlation based, distortion invariant pattern recognition algorithms proposed in
the literature.

5.2 Historical Background

To appreciate the evolution of distortion invariant filter design, let’s consider the
problem of recognising the 26 uppercase letters in the English alphabet by using
optical correlators. An obvious first approach is to use 26 CMFs, each matched to a
different letter. The input image is correlated by using all 26 CMFs, the maximum
among these outputs indicates the input class. In practice, this simple method does
not work very well because of the great similarity between certain pairs of letters (e.g.
I and F, C and O). Caulfield and Maloney [5] suggested thal the discrimination
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between such similar pairs of lefters can be improved by processing the resulting
correlation cutputs. In particular, they suggested using linear combinations of the
correlation outputs. For example, the weights of these linear combinations are found
so that when E is in the inpuf, only one combination (corresponding to class E)
results in output 1, whereas all other combinations {corresponding to the remaining
25 classes) yield zero. This method improves the discrimination capability. However,
N correlations are required to recognise an input from a sct of IV training images.
Braunecker et al [2] suggested that this process was redundant and that only K

correlations are performed where & is the ceiling of loga V.

Hester and Casasent [13] suggested that this recognition process could be further
simplified by using a linear combination of reference images to create a composite
image and then cross correlating Lhe inputs with this one composite image. The
weights for the linear combinations are selected so that the cross correlation output
at the origin is the same for all images belonging to one class. This technique was
termed the synthetic discriminant function (SDF) approach. The SDF approach
requires only one cross correlation per input image. Once the linear combination
weights are obtained, the required SDI* can be synthesised in a digital computer or
in an optical laboratory by using multiple exposure holographic techniques. Since
its introduction in 1980, the SDF has been the focus of mucl research in the field

of optical pattern recognition.

5.3 Synthetic Discriminant Functions

In this section the technical details for the basic SDF [13] are described. This
basic filter is also known as the equal correlation peak {ECP) SDF and also as the

projection SDF. Some suggested modifications to this basic idea are then presented.
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5.3.1 Frequency plane correlator

Let t;(z,y),t2(2,y),...,tn(2,y) denote N training images representing possible dis-
tortions to a reference image t(z,y). Let T'(u,v) denote its two dimensional Fourier

transform as defined below

T(u,v) = //t(m,y)exp[—j?w(u:v+vy)]d:rdy, (5.1)

where u and v denote the spatial frequencies. The limits on all integrals in this
chapter are from —oo to 400 unless otherwise stated. The objective is to design a
composite image s(z, y) such that when S*(u,v) (the complex conjugate is indicated
by the superscript asterisk) is placed in plane P, of the frequency plane correlator
shown in Figure 5.1, the correlation peak height, in correlation plane P, is equal
for all N inputs ¢,(z,y),t2(z,y),...,tn(z,y) placed in plane P;.

INPUT FILTER CORRELATION

P' Ll P2 Lz P3
Figure 5.1: Schematic of the frequency plane correlator
The optical correlator system shown in Fig.5.1 is well known to researchers in optical
processing as the frequency plane correlator. When the input function f(z,y) is

placed in plane P, and a complex function S*(u,v) is placed in plane P,, the resulting

correlation output ¢(7;,7,) in plane P; is given by

e(1e57y) = //F(u,v)S'(u,v)exp[j27r(urr+v‘ry)]dudv.

= [ [s@w)f@+1y+n)dsdy,
= s(z,y)@f(a:,y), (5.2)

where © denotes a 2-D cross correlation. In this brief discussion, some important

details are omitted, such as holographic methods for synthesising the complex valued
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filter functions {29], the effect of lens focal length [11], requirements of the light
coherence, and other correlator architectures such as the joint-transform correlator

(32]: See the books by Goodman [11] and Yu {33] for further information on these
topics.

5.3.2 Equal correlation peak SDF

fn the ECP 8D design, the objective is to select a filter impulse response s{z,y)
go that the resulting cross correlation with all N-input training images is the same.
Clearly this is impossible. However, Hester and Casasent [13] suggested that only

the central optical axis values of these cross correlations be the same

S(x?y)G;‘t‘f(m'.-y)g‘rmzo,'ryzo = //3*(m,y)‘t,~(:g,y)d:cdy,
= ¢ i=1,2,3,...,N, (5.3)

where ¢ is a pre-specified constant. Such an s(z,¥) would yield the same constaut
value of ¢ at the origin {the location of the autocorrelation peak) with all N training
images, 1.e. t1(z,y),t2(2,%),...,tn(z,y). The hope is that when the input is a non-
(raining image, but from the same class, the cross correlation output at the origin
will be sufficiently close to this constant ¢ that it can be recognised. The success of
this approach depends on selecting the correct training set.

To enable it to be synthesised by multiple exposure techniques, Hester and Casasent
[13] assumed that s(x,y) is a linear combination of the N training images

S(x:y) = altl(xiy) + a’2t2(m:y) +.oot Q'N{'N(wr y): (54)

where the coeflicients @y, ay, . .., ay have (o be determined to satisly the constraints
in Bq.(5.3), Substituting Eq.(5.4) into Eq.(5.3), the following cquations are obtained

N
YRy =¢,  j=12,..,N, (5.5)
1==1

where

R = [ [ (@, n)tile,y)dody (5.6)
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is the inner product (i.e. the cross correlation at the origin) of the training images
ti(z,y) and t;(z,y). If the training linages are real, there is no need for the conjugate
in Eq.(5.6). Eq.(5.5) represents N complex linear equalions i IV complex unknowns,
G1,02,...,0n. When N is of reasonable size these equations can be solved by using
standard methods [15], such as Gaussian climination. When N is large, solving
these equations is problematic. The resuliing computational considerations will be

discussed in Sub-section 5.3.6.

The ECP SDF design does not consider the possibility of noise in the input plane.
Thus any random noise can degrade the correlation output severely and can there-
fore disrupt pattern recognition. Another problem is that s(z,y), which is a linear
combination of training images, is not matched to any of the training images ex-
actly. Thus, what is obtained in the correlation plane is always a cross correlation
and never an autocorrelation. Only when the phase of the Fourier transform of the
input image is completely removed by the phase filter can a correlation peak be
guaranteed to appear at the origin. In conventional correlators the output plane is
scanned for this peak, and its location indicates the position of the target in the
input scene, When the ECP SDI filter is used in the filter plane, the only guarantee
is that the cross correlations have a value of ¢ al the origin whenever the input
image is one of the N training images. A major problem arising here is that bigger
values may occur elsewhere in the output plane becaunse the controlled value ¢ may
not correspond to a peak; it may not even be ¢ because of random noise existing in
the input scene.

5.3.3 Two class problem

Ideally a filter should be capable of recognising any distorted version of the reference
image and reject all others. Unfortunately, this is impossible with a finite number
of filters. Therefore, the filter should be made to recognise the training images from
one clags (called in-class) and reject the training images from another class (called
out-of-class). Let py(z,y), p2(2,¥), ..., pu(®,y) denote the training images which
arc out-of-class. Then, in addition to the constraints in Eq.(5.3), s(x,¥) is chosen
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to satisly the following constraints

s{z,y) O pi(2, Y| re=0,ry=0 = 0, 1=1,2,..., M. (5.7)

The composite image s(z, y) is now assumed to be a linear combination of the train-
ing image set {{1(x,y),. .. .tn(z,y), 2z, y),-. oMz, y)}. In order to distinguish
hotween two classes, the expectation 1s that the outputl correlation peak will have a
value close to the constant ¢ for the in-class non-training images and close to zero

for the out-of-class images.

Obviously the above approach can be extended in theory to any number of classes.
To maintain a concise notation a single training image set {¢t1(z,y),....tn(2,y)}
can be used, with the understanding that these iraining images can come from any
class. The constants ¢; for constraints are also used, with the subscript 2 indif:a.ting

the constrainis corresponding to ¢;(x,y). Thus the equation can be rewritten as

N
ZGIR,'J' = G4, J == 1,2,..,,IV. (58)
i=1
This equation can be written compactly if the following matrix vector notation is
used. Let a be an N-dunensional columun veclor with a; as the 7th entry; similarly,
c is a column of size N with ¢; as its ith entry. Let R be an N x N square matrix

with R;; as the entry in the ¢th row and the jth column. Then

Ra*=c¢ (5.9

If R is invertible, a* is given by R™1c. It can be shown that R is invertible if,
and only if, the /¥ training vectors are degencrate. - The training image set
used must be tested (using the Gram-Schmidt procedure {16] or some other similar
method) to ensure this independence. Even when R is theoretically non-singular its
inversion is difficult, especially when the training images are quite similar to each
other. This and other issues related to training set seleclion will be discussed in the

next subsection.
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5.3.4 Training image set size

The success of the ECP SDP, in fact all composite filter designs, depends critically
upon the training image set being used. The {raining image set must be designed
to meet conflicting objectives; because this set must be descriptive of all expected
distortions of the target, it must contain many distorted versions of the target. In
contrast, N should be kept small so that the matrix size i3 small (for computational
convenience) and so that the matrix is not il conditioned as a result of training
images being too similar 1o each other. T'hese conflicting requirements are further
compounded by the fact that frequently the training set images do not cover the

full distortion range and the filter must be constructed using the few images that
are available.

Vijaya Kumar and Pochapsky [20] carried out a theoretical analysis to investigate the
effects of the training image set size N. They considered the ECP SDF consbructed
from N in-plane rotated versions of the reference image i(z, y). LThese rotations are
in equal increments of 2x /N rad. They also assumed that ¢(z,y) was derived from
a Gaussian random process [27] with a specified autocorrelation function {Gaussian
shaped or exponential shaped function). They did not use any particular image for
t(z,y). Using earlier results derived by Mostafavi and Smith [22], they obtained
theoretical expressions which incorporated N, the number of training images, and

the space bandwidih product (SBWP) of i{z, y), as parameters.

The theoretical analysis carried out by Vijaya Kumar and Pochapsky [20] shows
that when the training set size of /V increases, the worst-case signal to noise ratio
(SNR) across the entire distortion range increases. Although this analysis provides
a clearer understanding of the effects of N on the output SNR, it is not necessarily
advantageous to keep increasing N. Vijaya Kumar and Pochapsky [20] also tested
the worst case SNR as a function of N for different SBWPs. The SNR initially
increases with /V and then levels off, indicating no further improvement when a
larger training set is used. This method provides a systematic procedure for selecting
N for a given SBWP. As far as we are aware, this theoretical analysis has not been

generahised to other dislortions.
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When N becomes large, the ECP SDI' will essentially become the average of all
rotated versions of £(x,y) to yield the required distortion invariance. However,
for large &V, the composite image will be saturated with information and will not
provide any discrimination ability. ‘I'he theoretical analysis by Vijaya Kumar and
Pochapsky [20] is limited fo the problem of deteciing an image subject to distortions
and additive noise. A similar theoretical analysis must be carried oul to assess the
discrimination capability. Recently Caelli and Liu [3] used an adaptive approach to
lnvariant pattern recognition to demonstrate that the number of templates needed

for efficient pattern recognition is considerably lower than was previously thought.

5.3.5 Selection of training images

Once we have an approximale idca of the optimum number of training images, N,
we need to choose the specific training images to be used. One approach is to
distribute the & training images uniformly over the range of expected distortions.
For example, if in-plane rotation is the expected distortion, the training images can
be captured for every 10° of target rotation, i.e. 36 training images are used. This
has been the popular practice.

Tor other distortions such as out-of-plane rotations, the procedure of selecting uni-
formly sampled training images may not be appropriate. For example, more head-on
views of an ohject (such as a tank or aeroplane) may be needed vather than the side
views. This leads to the concept of selecting the training images based on a corre-

lation threshold 7. One procedure for this selection js as follows.

[irst, all available images are normalised to have unit energy. Then all available
images, with the total number of I, are cross correlated with ecach other. The
correlation peak values in these cross correlation outputs are stored in a symmetric
mabrix A with the dimensions of I, x L. Because all the images are normalised to
unit energy, diagonal entries of A are equal to 1 and off-diagonal entries will be
smallcr than 1. To start the training set selection process, let us arbitrarily put a
new image into the training set. Next find the smallest ofl-diagonal entry in the first

row of A. This entry represents the image that is least correlated with the image
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in the training set. This new image is added into the training set provided that
without its inclusion the cross corrclation peak falls below a preset threshold T,
this ensures that the new training set will give a cross correlation thatb exceeds 7.
If any of the correlations fall below T, the image must be added to the training set.
'T'his procedure is continued until all remaining images give a cross correlation peak
of 1., or higher, with at least one image in the training set. The higher the value

1., the greater the number of images required in the training set.

Another approach proposed by Hassebrook et al [12] suggests that the training set
be selected so that the resulting correlation matrix R s close to a Toeplitz matrix.
A Toeplitz [28] matrix is a square matrix with the same values {or all enlries in any
diagonal parallel to the main diagonal. Hassebrook ct af [12] showed that such a

training set would be convenjent in the filter design procedure.

5.3.6 Computational issues

As discussed above, the design of an ECP SDI requires the solution of N linear
equations in N variables. When ¥V is small, this solution is reasonably straightfor-
ward. However, in many realistic cases N can be latge. For example, consider the
problem of discriminating 10 classes of object where each object may be viewed at
any angle and over a range interval. If we sample the range at 10 places, the out-
of-plane view angle at 10 angles, and the in-plane rotation every 10°, the resulting
N will be 10 x 10 x 10 x 36 = 36,000. This N is too large for most direct solution

techmniques and indicates why it is important to keep the training set size small.

One approach suggested by Kumar [17] is to solve Eq.(5.8) iteratively. To simplify
our discussion, let us assume that the training images and the weights a1, az,...,an
are real. 1q.(5.8) gives N linear cquations with N unknowns {ay, ag, ..., anx}.
Kumar’s method represents each equation as a hyperplane in V-dimensional space,
with a1, as,...,anrepresented by the N axes. The N eduai;ions in [5q.(5.8) represent
N hyperplanes in an N dimensional hyper space. Il a unique solittion exists for
this problem, these hyperplanes intersect at a unique point corresponding to Lhat

solution. An example of this is shown in Fig.5.2 with N = 2.
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The iterative solution method is as follows. Leb us start with an initial guess ag for
the solution. This guess is then projected orthogonally onto hyperplane 1 to get the
next estimate a;, this vector a; is then projected otthogonally onto hyperplane 2 to
yield ay. This process is continued until ay is obtained, which is the projection onto
hyperplane N. This projection completes oue iteration. Next ay becomes the new
starting point and the process is repeated. This iterative process is halted when the

solution vector a does not change significantly from one iteration to the next.

d,

a,

Figure 5.2: Represeniation of the SDF equations using hyperplanes. Here the number
of training images N = 2

I'rom Fig.5.2 it can be seen that the convergence will be at its fastest when all hy-
perplanes are orthogonal to ecach other. When this is not the case, the hyperplanes
can be rearranged so that they are mutually orthogonal. The Gram-Schmidt proce-
dure [16} is a possible method for rearranging the hyperplanes. Ilowever, it can be
shown that rearranging the hyperplanes using the Gram-Schmidt procedure is just

as complex ag solving Eq.(5.8) directly. Thus this procedure is not recommended.

A computationally simpler procedure is to rearrange the hyperplanes so that hyper-
plane 1 is orthogonal to hyperplane 2, hyperplane 2 is orthogonal to hyperplane 3,
and so on. The last hyperplane N is made orthogonal to the first hyperplane 1, This
procedure is much simpler because it requires only NV pairwise orthogonalizations
instead of the IV%/2 pairwise orthogonalizations needed in the general case of forcing
all hyperplanes to be orthogonal to each other. Algorithmic details as well as an

example of the resulting computational advantages can be found elsewhere {17},

Other methods to deal with large IV have also been presented in the literature.

Casasent and Chang 7] suggested extracting principal components of training sets
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from each class to reduce the number of (raining images. Onc of the problems
with this practice is that forcing the principal components to yield cerlain cross
correlation outputs with a SDF filter is not equivalent to forcing the original training
images to yield the same cross correlation values.

5.4 Generalised Synthetic Discriminant 'unctions

The ECP SDT is designed to produce a value ¢; at the origin ol the output plane
when the 7th training image is used as the inpul. For the two class problem, this
constraint value ¢; is usually chosen as 1 for training images from onc class and as
0 for images from the other class. However, there are some practical problems in

nsing this filter for optical pattern recogaition.

The first problem is that the original ECP SDF design does not consider the possi-
hility of random noise in the input. In the presence of noise the output values will
not be exactly 1 and 0, even for training images. Thus, composite filters capable of
tolerating input noise must be designed. Minimum variance synthetic discriminant
functions (MVSDF), proposed by Kumar [18], are designed for this purpose. The
difficulty in using the MVSDF is that it generates large sidelobes in the correlation
plane. A new technique, proposed by Wang and Chatwin [30]{31] and called modi-
fied filter synthetic discriminant functions, tolerates input image noise and does not

suffer from these difficulties; this is discussed fully in Chapter 6.

‘I'he second problem with the ECP SDF is that they arc designed to control only one
point (the origin) in the correlation output plane. Correlalors are attractive because
they can not only detect a target, but also locate 1t. [f the input target is shifted
by a certain unknown distance from the origin, for a 4 f system the cross correlation
output is also shifted by that distance. The controlled centre values thus move
by an unknown amount. Because the other uncontrolled values in the correlation
output can be larger than 1, it is impossible to locate the shifted control point
in the presence of even a small amount of noise. Thus it is desirable to produce
correlation peaks at the origin (when the input is ceutred) that are sharp. The
minimum average correlation energy (MACE) filter, proposed by Mahalanobis et al
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[21], addresses this problem; this will be reviewed in Section 5.5.

The final problem with the ECP SDF is that ils underlying assumption — that
s{x,y) is a linear combination of the training images in Fq.(5.4) — i3 unnecessary.
Thali, assumption is useful when the SDF filters are synthesised in the optical labo-
ratory by using multiple exposure techniques. However, the SDF can be synthesised
using the digital computer, and thus there is no need for the limiting restriction of
Eq.(5.4). To see the limmitalions this restriction imposes, consider the case of N = 36
real images, each with 5127 pixels in them. If the restriction of 15q.(5.4) is not used,
an s(z,y) will be determined to simply satisfly Eq.(5.3). That means that there are
38 equations with 512% variables. Thus there are (512? — 36) undetermined variables
that can be used to achieve other objectives such as noise minimization, peak sharp-
ening, ete. By including the unnecessary restriction of Eq.(5.4), (5122 ~ 36) degrees
of freedom are thrown away. A general solution that includes all these degrees of

freedom is called the generalised synthetic discriminant function.

It is convenient to discrctise the images and use vector notation to introduce the
generalised SDF. Lel’s assume that the training images t((2,¥), ..., in(z,y) are
sampled to yield arrays with d pixels in them. Tet us also assume that they have
d-dimensional column vectors — ty,%s,...,ty — by representing the elements in
these training images as vectors. We will assume that scanning is [rom left to right
and from top Lo bottom. Similarly, let us use the d-dimensional coluinn vector s
to denote the composite image s{z,y). Then the consiraints in Eq.(5.3) can be

rewritien as

sty = ¢, t=1,2,..., NV, (5.10)

where the superscript 4 denotes the conjugate transpose, This equation can be
writlen even more compactly by using the data matrix T. This matrix T has the
vector tj as its ¢th column and is thus a d x N matrix. We will assume from now
on that d > N (i.e. the number of pixels in the training images is much larger than
the number of training images) and that the columns of this matrix are linearly

independent. Using this notation, 1¢q.(5.10) can be written as

Tts =c. (5.11)
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The FCP SDF assumes that the composite image s is of the following form
s = Ta, (5.12)

where a is the vector of coefficients defined before. Substituting £q.(5.12) into

%q.(5.11) and solving for a yields
a=(T"T) c", (5.13)

It is easy to verify thal Eq.(5.13) is identical to Eq.(5.9) once we realise that
R = T*T. Because R contains the inner products of various pairs of training im-
ages, il 1s known as the vector inner-product matrix or as the correlation maltrix.
The filter vector s can be obtained by substituting Eq.(5.13) info Eq.(5.12) to get

SECP = T(T+T)hlc*. (5.14)

It is trivial to verify that the ECP SDI® in Tiq.(5.14) satisfies the constraints in
Fy.(5.11). However, as discussed previously, the condition in Eq.(5.12) is unnec-
essary. A general expression for any s capable of satisfying Eq.(5.11) is given as
lollows

s = T(TTT) " c* + [Iq ~ T(TTT) 1 Tz, (5.15)
where Ig is the d X d identity matrix and % is any column vector with D complex
entries. It can be verified that the s in Eq.(5.15) satisfies the constraints in Fq.(5.11).
The ECP SDF is obtained when z=0, Because any vector z can be employed,
we have a multitude of solution vectors. In fact, the set of vectors of the form
iIqg — T(TTT)"*T*]z (considering all possible z vectors) can be shown to be a
vector space of dimensionality (d — V). The second term in Eq.(5.15) represents
filter vectors that are orthogonal to the data matrix T. The set of solution vectors is
not a vector space because 1l does not include the 0 vector. Many details about the
properties of this solution set are discussed by Bahri and Kumar [1j. The solution
vector in Eq.(5.15) is known as the generalised SDF.

5.5 Minimum Average Correlation Energy Filters

MAGCE filters are designed for good location accuracy and discrimination capability;
they produce sharp correlation peaks in the output plane. Let t1(z,y}, ..., tn(2,y)
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denote the N training images as before and let 7y (w,v), ..., Ty(u,v) denote their
two dimensional Fourier transforms, Let S*(u,v) denote the transmittance of the
filter function. Then, the filter is constrained to satisly the [ollowing

_/_/ﬂ(u,v)ﬁ'*(u, U)d’udv ==, 3= 11 27 . :‘Zv (5]6)

In addition, the MACE filter [21] minimizes the following average correlation plane
energy

1 N
E(we . NZ//“i(ﬂnTy)lngwdfy)

o Nl‘/ j |T; (2, ©)|* S (2, 0) | dudu, (5.17)

1=,
where Parseval’s theorem was nsed in deriving the above equation. By minimizing

Eoye, 1t attempts to reduce the sidelobes in the correlation plane. This is essentially

an indirect attempt at reducing the problem of correlation sidelobes.

To carry out the minimization of E,,., the usual vector notation is used. Let t;
denote the d-dimensional complex column vector oblained by sampling T:{(u,v).

Then the constraints in Eq.(5.16) can be rewritten as
T+ = ¢*, (5.18)

where T is a ¢ x N matrix with §; as its tth column. K., in Eq.(5.17) can be
expressed as

B = 8TD8, (5.19)
where D is a d x d diagonal matrix. The entries along the diagonal are obtained
by averaging |S;(u,v){%, i = 1,2,..., N and then scanning the average from left to

right and from top to bottom.

Minimizing E,.. in Eq.{5.19), subject to the constraints in £q.(5.18), leads to the
following filter

$mace = D IL(ITD-IT) e, (5.20)

The resulling minimum average energy is then given by

Epin = ¢ (TTD )¢ = cH(TTD- 1) Le. (5.21)
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[n many simulation studies, filters designed using this approach have preduced im-
pressively sharp correlation peaks. However, MACE filiers appear to have two
drawhbacks. The first is that there is no noise tolerance built into the filters. The
second, and most critical, is that the MACE filter sccms to be more sensitive Lo
wtra-clags variations than other composite filters [9], making it almost useless in

practical implementations; it actually approaches the behaviour of the inverse filter.

Ttecently, Casasent et al [10] proposed Gaussian MACE filters to reduce the sen-
sitivity of the MACE filters to intra-class variations. The idea behind Gaussian
MACE filters is to reduce the sharpness of the resﬁlting correlation peak and thus
improve 1ts noise tolerance, Other recent variations in MACE filter design include
the use of circular harmonic components [4]{8][25], and the inclusion of input noise
considerations [26]. When compared with the original MACE filter, these modifica-
tions give improved resistance to noise occurring in the inpul plane; little has been
implemented.in practical systems.

Tn this chapter, only the basic concepts of synthetic discriminant functions and
several other important filters, that are frequently referenced in this treatise, have
been reviewed. There are numerous other useful variations of SDF filters that are
not included in this chapter. For a good introduction to composite filter design for

optical correlators, Kumar’s paper [19] is extremely useful.
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Chapter 6

Modified Filter-SDF Filter and
its Real Time Implementation

6.1 Introduction

The development of synthetic discriminant function (SDF) filters [1]]2][3][4] as dis-
tortion tolerant filters was motivated by the sensitivity of the classical matched filter
[5] (CMF) to distortions in the input image such as in-plane rotations, oul-of-plane
rotations, and scale variations. These techniques of designing invariant filters for
optical correlators pre-suppose the use of continuous complex valued filters. Since
programmable gpatial light modulators (SL.Ms) capable of representing continuous
complex functions are only available as research devices that require characterisation
before they can be used, the utility of spatially invariant filters with actual device
performance requires investigation.

Because the distortion invariant filters must be encoded ou the available SLMs, it
is important to incorporate device constraints into the filter design. This necessity
provided the motivation to design composite phase only fillers (POFs) and binary
phase only filters (BPOFs). The obvious approach is to design a conventional SDF
and simply force it to be a phase-ouly or binary phase-only function [6]. However, it
was quickly realized [7] that phase-only or binary phase-only SDFs do not perform

123
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very well; these filters produce very sharp correlation peaks but do not satisfy the
equal correlation peaks (ECP) rule in the output plane. Thus, Jared et al [8] [9]
recently proposed an iterative relaxation algorithm, which enables the design of
phase-only SDI's and binary phase-only SDFs to satisfy the ECP rule. Their idea
was to ensure that the filter-encoding constraints are taken into account at the design
stage; this was called the filter SDF (fSDY). In contrast to fully complex CMFs
and conventional SPI's, f{SDT filters can be implemented on commercially available
spatial light modulators (SLMs) for use in an oplical correlator, and are therefore
of particular interest for veal-time optical pattern recognition systems employing
rapidly updateable SLMs.

It 1s well known that, for common objects, the concentration of most of the energy
in the central zone of the spectrum, i.e. low frequency components, is responsible
for the poor correlation performance. However, the fSDF implements the filter
modulation constraints (e.g. BPOLF) on the conventional SDF, which is a linear
combination of the training sct images. There is no doubt that the conventional SD
is dominated by the lower frequency components of individual training set images.
Thus, this degrades the correlation performance even when the filter modulation
constraints are implemented on the composite image. To solve this problem, Wang
and Chatwin [11] recently gave further cousideration to the filter-encoding constraint
apphed to the SDI' construction. The idea is to synthesize the SDF from the linear
combination of a set of training images which are already filter modulated, i.c. pre-
processed, so that the constructed SDF is dominated by the higher, not the lower,
frequency components of the individual training set image. The filter-encoding

constraint is then applied to the SDF. For convenience, this is called the modified
tSD¥ (MfSDF).

This chapter gives a full description of the MfSDI' design. In order to implement
the M{SDF filter, the constraints imposcd by the available SI.Ms must be incorpo-
rated into the MESDY design. ‘I'hus this chapter gives computer simulations of the
imnplementation of the MISDF filter on high speed binary SLMs. Tinally the use of
liquid crystal television (LCTV) SLMs to implement the MISDF filter is simulated.
The performance of the MISDF filter is investigated with various in-plane rotated

images from an in-class Bradley APC vehicle and an out-of-class Abrams MI tank.
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The evaluation was performed to better understand the image distortion range that
can be accommodated by the MESDF filter with the constraints imposed by available
SLMs.

6.2 Background — Filter SDF

The fSDF technique [8] [9] [10] begins with a set of centred training images, i,(z, y),
n = 0,1,..., k, spanning the desired distortion invariant feature range. This image
set is used to construct the fSDT, §'(z,y), for a given filter modulation, M. The
desired peak correlation response of s'(z,y) is a constant, ¢,, for each training image
ta(z,y)

//tn(w,y)s’*(a:, y)dady = t,(z,¥) @ &'(z,y) = ¢, (6.1)

where the integral is taken over the area of the input fleld. The function s'(z,y)

inciudes the filter modulation, M, through the equation
$(2,y) = F MFs(z,y)] (6:2)

where F is the Fourler transform operator., The purpose of the [SDE procedure
is to determine the function s{z,y) which solves 15q.(6.1) when given a particular
modulation function, M. The function s{x,y)} is chosen to be a linear combination
of the training images

&
S(Q:,y) = Z “ntn(ma y) (63)
n=()

A general £f5DF synthesis equation results from sabstituting Eqs.(6.3) and (6.2) into
Eg.(6.1)
k
talm, ) @ FTTMI[Y antale,y)] = ¢, (6.4)

=0

For the POFs and BPOFs, k5q.(6.4) is a system of nonlinear equations which may be
solved using an iterative procedure [12] based on the Newton-Raphson algorithru.
The filter coefficients, a = [ag, a1,...,as]", are constraincd to be rcal and are ini-

tialised to give the desired response vector, ¢ = [co, ¢, . .., x]7; the accuracy of the
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filter coefficients is improved using the iteration formula

m1

ol (6.5)

My

1 .
aitl = a + afe, — cof
where, 7 is the itcration number, « is a damping constant, and m}, is the modulus of

the peak correlation response of image #,(%, y) with the filter constructed with a'.

6.3 Modified Filter SDF (MfSDF)

When a highpass filter modulation of M is applied to the composite function s{e, y),
the higher frequency components of s(z,y) are enhanced. Unfortunately, these
higher frequency components are not optimally related to the high frequencies of
individual training set images. As a result this limits correlation performance such
as discrimination ability and correlation peak to secondary peak ratio (PSR). To
overcome this problem, the filter modulation must be applied to individual training

set images, thus the function s{z, y) is modified to be

k
s(z,y) = 3 _ anty(@,9), (6.6)

and
t;(.’c, y) = FINFit(z,y)] (6.7)

where N denotes filter modulation of individual training set images. The require-
ments of Egs.(6.1) and (6.2) are still met.

The general modified {SDF synthesis equation is now rewritten as

k
tol2, ) O F I MFL a, FTINFita(z,9)]} = ¢ (6.8)

n=0

Using the correlation theorem, a simple form of this equation can be written in the

frequency domain as

f f Tn(u,v)J\/i{Zk: an N To(u, v)]}dudv = ¢, (6.9)

n=0
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Training Image 1

Maodulated Training Image 1

Training Image 2

Modulated Training linage 2

Lincar

Modulator | Combination; Moduiator 2

Final M{SDF
Function

XL Y

=

Training Image (k-1

Modulated Training Tmage (k-1)

Modulated Training Image (k)

=

TFraining Image (k)

Figure 6.1: Flow charl of the MfS5DFE design procedure

where T, (x,v) is the Fourier transform of ¢,(2,y). Fig.6.1 gives a simple flow chart
of this MISDI" filter design procedure.

The filter modulation, M, N, can be specified to take on any desired form. When
both M and A are the classical matched filter modulation, the MfSDF reduces to
the conventional SDF design. When A is the classical matched filter modulation
(i.e. no modulation applied) and M is free to be defined, the MISDF reduces to
the ISDF design. Thus, the MfSDF is a more generalised filter modulation SDF,
where the computational search space is sufficiently constrained to allow an optimal
solution to be found in a reasonable time. The MfSDI" is a subset of the generalised
SDI's presented by Bahri and Kumar [1],

Whether or not the MfSDF produces ECP for all the training set images depends on
the choice of the modulation operators M and A, If the modulation operator, M, is
nonlinear, the ECP rule will be broken., For example, if POF or BPOF modulation
is implemented as the M operator the ECP rule will be corrupted and the resulting
spread in peak values will significantly lower the lowest correlation peak to secondary
peak ratio (worst-case discrimination PSR, given by ¥q.(6.19)) for the training set

linages.
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Consider producing a filter 5/(u,v) with a filter modulation operator that can be

written as a function of the phase of S(u,v), i.e. M is governed by phasc only

modulation
Su,v) = MIS(u,v)} =E(p), (6.10)
where the phase, S(u,)
U, v
P o207 6.11
15, v) (611

Assuming é(p) can be expanded in a Fourler series over the interval [—#, ], then

S'u,0) = E(u) = 3 fmezp(imp) (6.12)

Using Bq.(6.6), Eq.(6.12) can bc rewritten as

. — .Sk anT'(u v) ..
S, v) = faezp {zm n=l o . (6.13)
% [ anT 3, 0)]

Given a solution vector a = [ag,aq,...,ax]T, substitution of da, where d is an

arbitrary constant, into Eq.(6.13) gives

A @l (u, ) _
S'(u,v) = meTP |im n=0 B n) . 6.14
(wv) =21 p[ ][ an T, ) 19

Thus, if d is chosen to be the inverse of any expansion coefficient (i.e. d = 1/aq) and
is restricted to real values, 5'{u,v) becomes a function of & coefficients rather than
k + 1 coefficients. This results in a reduction of the dimensionality of E¢.(6.6) by
one. Therefore, for filter modulation operators that are solely a function of phase,
the filter response is determined not by the individual values of the coefficients but
rather the proportionality between the coefficients. As a result, the peak-correlation
response cannot be set to an absolute value, rather it is only possible to specify the
proportionality between the peak corrclation responses for a given set of training

umages.

'f'o solve the problem of this nonlinear system and determine the parameter vector a,
the iterative techniques must be used to find a coefficient vector a that yiclds equal

correlation peaks for all the training set images. The relaxation algorithm given by
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Eq.(6.5) was nsed with some success herein and by others [8] [9] [10} [13]; whilst
there 18 no theoretical guarantee that this algorithm will converge to a solution, it
was successful in nearly all cases studied. An alternative successive algorithm is
given by Bahri and Kumar [14].

The iteration procedure followed by the relaxation algorithuim is:

(i) Estimate the initial specified weighting coellicient parameter vector i.c. a¥ =
ad,al,....a?)" and the allowed largest correlation peak modulus variation
0s @1, k g
|v].

(i) Linear combination Lo produce the composite image s(z,y) from the A" mod-

ulated individual training images.

(i) Cross correlate the M modulated function s(z, y) with the individual training

images.

(tv) Calculate all correlation peak modulus values, i.e. ¢ = [, ¢, ..., ¢]T for

the modulated training images.

(v) Calculate the weighting coefficient vector a’ = [a}, ai, ..., ai]* according to

1q.(6.5).

(vi) I the largest variation of correlation peak modulus values exceeds the speci-

fied value |v{, go back to step (ii) and loop. If it does not exceed the specified
|, the iteration loop is stopped, and the final MISDF filter, which
satisfies the ECP rule, is found.

value

The simple flow chart of the above iterative procedure is given in Tig.6.2.

6.4 Data Base

The training image set used in the simulations of this chapter consists of in-plane
rotated images of the Bradley APC vehicle and Abramns MI tank, each image is
centred and normalised to unit energy. The APC vehicle and Abrams MI tank

were rotated from 0° to 180°% in increments of 1°, the images were encoded with a
()
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Specified Initial | Linear Cross
Vector @ Combination Correlation

Calculate the

No Correlation Peak Vector

Calculate the
Coefficient Vector @
According ta Eq.6.5

Where CPV = Correlation Peak Variation
Figure 6.2: Flow chart of the ilerative procedure to produce MfSDI' function

resolution of 128128 pixels, Views of the vehicle and tank at (°, 307, G0¢ and 90°
are piven in Fig.6.3 and Fip.6.4, respectively. Al 0° the Bradley APC vehicle is 90
pixels in length and 40 pixels high and the Abrams MI tank is 101 pixels in length
and 35 pixels high.

The simulations in this chapter were performed on a SUN Sparc computer. The
software automatically detects the resolution of the recorded images. Because the
image resolution used in this chapter is 128 x 128, the resolution of the discrete

Fourier transforms (DFT) used in the software is automatically set to 128 x 128.

6.5 Implementation Study of MfSDF Filters -
Using a Binary Spatial Light Modulator

Some [ilter modulation methods, such as 'OF, tuneable edge enhancement filters
{15] and nonlinear filters [16] etc. pre-suppose the use of continuous amplitude
and phase information of the objects in the oplical correlator. However, since pro-

grammable continuous amplitude and phase spatial light modulators are not cur-
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(a)

(e) (d)

Figure 6.3: FEzamples of the in-plane rotated images of the Bradley APC vehicle.
(a), (b), (c) and (d) are the vehicle views at 0°, 30°, 60° and 90°, respectively

rently available and also appear difficult to fabricate, the utility of such correlators
is severely limited. However, programmable SLMs limited to binary quantisation
of amplitude and/or phase are commercially available. Thus, the MfSDF can be
implemented for real time optical correlation with the filter modulator M set as
BPOF. This still leaves the modulation operator N free to be defined and it can
be given any kind of advantageous modulation; hence, this is a big advantage over
the fSDF approach. Therefore, it is possible to design a MfSDF with an optimal
choice of the modulation operator N to maximise the overall performance capabil-
ity of the filter, given the limitations of current SLMs. This approach is aimed at
hybrid correlation system arrangements, as suggested by Young et al [17]. Their
recently proposed high-speed hybrid optical/digital correlator system will employ
the MfSDF, with the M operator selected to be BPOF and the A operator free to

be defined.
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(a) (b)
(e) (d)
Figure 6.4: Ezxamples of the in-plane rotated images of the Abrams MI tank. (a),
(b), (¢) and (d) are the tank views at 0°, 30°, 60° and 90°, respectively

6.5.1 Simulation considerations

In general, it is possible to optimise the individual image filter performance for the
MISDF by tuning the band-pass implemented by the modulation operator A on
each image. As this is an extremely large simulation task it was decided to choose
the POF as the modulation operator N, as the POF has many of the desirable
features required of A'. This choice of operator gives a good indication of the
relative merits of the MfSDF over the fSDF. Thus, the SDF was constructed using
POF modulation of the individual training set images; hence, this gives a higher
weighting to image high frequency components. The modulation operator M was
specified to be a BPOF, as this may be implemented in real time on commercially
available SLMs. Thus the MfSDF was constructed from the POF-SDF by using the

relaxation algorithm, Eq.(6.5), to satisfy the ECP rule at the output plane.
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Table 6.1: Final coefficient parameters for BPOF/MfSDF

ap 451 [£%] az ag asy g a7 dy 2

0.50  0.4086 0.3468 0.4360 0.4280 0.3787 0.4067 0.3510 0.4220 0.4391

Ta this work, the performance of the filter distortion invariant range is considered.
As the exient of the distortion range increases, the number of training images nec-
essary to cover the distortion range increases. Generally, the PSE (i.e. peak to
secondary peak ratio) of a filter decreases as the filter is wwade increasingly more
distortion invariant. This behaviour has a direct impact on the design and ap-
plicability of optical pattcrn recognitiou systems. It is advantageous to design a
distortion invariant filter with training images spaced as widely ag possible, whilst
still maintaining an effective correlation peak to secondary peak ratio at the output
plane. This ensures successful system performance whilst minimizing the amount
of redundant information encoded into the SDFs. Furthermore, the computational
effort expended during the design process is directly reduced with fewer training

images.

6.5.2 Filter construction

i"1g.6.5 shows the stages in the filter design procedure [or the BPOF/MISDL con-
structed from the phase-only modulaied individual training set images, in which ten
in-plane rotated vehicle training set images are encoded, i.e. one image every 5°,
from 0° to 45”. A coefficient vector a = [ag, a1, ..., ax]7, that gives equal correlation
peaks for all training set images, was determined by using the iteration algorithm
given by Fig.6.2. The final weighting coeflicient paraineters for the ten training
images are listed in Table 8.1.

T"ig.6.5{a) shows the composite image S{w, v) in the frequency domain; it was con-
structed from the linear cernbination of the phase-only modulated training set im-
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(b)
Figure 6.5: Stages in the filter design procedure for the MfSDF-BPOF made from
the phase-only training set images in the frequency domain. (a), (b) and (¢) are
the composite image S(u,v), real part of the composite image S(u,v) and final binary
verston of MfSDF, respectively

ages

A.
S(u,v) = Z anNpor|Th(u,v)] (6.15)

n=0
From Fig.6.5(a), it is obvious that the higher frequency information is enhanced and
the lower frequency data is attenuated. Thus the higher frequencies of individual

training set images give a greater contribution to the composite image.

In order to produce the binary version of the MfSDF, the BPOF modulation con
straint is applied to the above composite image. In this work, BPOF was chosen to
be [18]

Si(uyv) = { T RelSCw )] >0

; 6.16
—1, otherwise (26

According to Eq.(6.16), there is a mapping between the complex values of S(u,v)
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to the set of values allowed by the binary spatial light modulator (0, 7) to produce
the filter S'(u,v) (i.e. Sy(u,v) herein). This mapping is illustrated by Fig.6.6.

S(u.v) S$'(u,v)

Re Re A

— | m

Figure 6.6: Mapping procedure from complex values of S(u,v) to the binary values

of (+1,-1)

The generalised BPOF's derived by Flannery et al [19] include the angle of a thresh-
olding line in the complex plane and the offset from a centre reference point of the
pattern transformed in constructing the filter, which may be used to optimally select
the thresholding line angle of the BPOF in the MfSDF construction. Eq.(6.16) was
selected for convenience; it is only one point of a continuum of threshold line angles,

i.e. line angle 6 = 0°.

According to Eq.(6.16), the real part of the composite image S(u,v) is of interest to
produce the BPOF/MfSDF. Fig.6.5(b) shows the real part of the composite image
in the frequency domain, which is clearly dominated by the higher frequencies of in-
dividual training set images. Furthermore, after the iteration to achieve ECPs for all
the training set images, it can be seen from Fig.6.5(a) and Fig.6.5(b) that the com-
posite image S(u,v) is a band-pass type image. Finally, the BPOF/MfSDF is shown
in Fig.6.5(c); this can be encoded onto a BPOF-SLM to implement reprogrammable

correlation at video frame rates.

For comparison, when the procedure is used to construct a BPOF/fSDF, for the

same ten training set images, the results are shown in Fig.6.7. The final coefficient
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Table 6.2: Final coefficient paramcters for BPOF/fSDF

(475 ay 2 (i3 Ctq s g ay ag dg

0.50 0.4011 0.3399 0.3631 0.3772 0.3456 0.3636 0.3287 0.3556 0.4226

parameters are listed in Table 6.2. Fig.6.7(a) and Fig.6.7(b) are the coposite im-
age S(u,v), which is a lnear combination of the ten training set images, and the
rcal part of the composite image S{u, v), respectively. The comparison illustrates
that the compaosite image S(u,v), of the I8DT, is dominated by the very low fre-
quency content of the individual training set images and has little energy at high
frequencies. The binary version of the tSDI° is shown in Iig.6.7(c). I'rom Fig.6.5(c)
and 1"g.6.7(c), it can be seen that the mid-band frequencies (between low and
high frequency) in the BPOI'/MI5DT" are richer and more complicated than that of
BPOL/ISDI, which undoubtedly results from the baudpass type composite image
S{u,v) shown in Fig.6.5(b); other than the mid-band frequency differences the two
filters are similar. This characteristic of the BPOF/MISDT improves correlation

performance.

1ig.6.8(a) and FFig.6.8(b) illustrate the impulse responses of the BPOF/MISDF and
BPOF/ESDF filters (i.e. Fig.6.5(c) and Fig.6.7(c}), respectively. From the impulse
responses, although both [ilters reject the low frequencies resulting in edge enhance-
ment, it can be seen that the BPOL'/MISDY filter encodes more detailed information
from the training images than does the BPOF/ESDE [ilter.

6.5.3 Distortion range of filters

Filters designed to be invariant to in-plane rotation, over distortion ranges up to
80°, are constructed using training images of the Bradley APC vehicle separated
by a rotation increment of 5%. For example, the BPOT/MISDT and BPOT/{SDEF
designed for invariance to in-plane rotation over a distortion range of 45 are con-
structed from ten training set images. After construction, filters are correlated with

images, spanning their eniire design range, at every 1° interval. The peak corre-
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(b)
igure 6.7: Stages in the filter design procedure for the fSDF-BPOF made directly
from training set images in the frequency domain. (a), (b) and (c) are the composite
image S(u,v), real part of the composite image S(u,v) and final binary version of
JSDF, respectively

(a) (b)
Figure 6.8: Impulse responses of the (a) BPOF/MfSDF and (b) BPOF/fSDF func-

tions
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lation intensity is measured for each input image, along with the peak clutter, or
secondary peak intensity. Thec peak response is defined to be the intensity of the

maximum correlation peak occurring at the output plane
CPI = Maz{|c(z,1)|*} = |c(x0, y0)|? (6.17)

where (®o,%o) is the position of the maximum correlation peak at the correlator
output plane. The secondary peak was defined to be the highest intensity point in
the correlation plane at points at least 3 pixels away from the correlation peak P;
with the additional condition that c(z, ¥) must be a local maximum at the secondary
peak

C = Maz{|c(z, )|},

such that v — ol >3, ly —yo| >3, and = — =0, (6.18)

¢ c
dx 3y
This guarantees that a smooth primary pcak base will not be counted as clutter. The
peak correlation and peak clutter responses {secondary peaks) were measured over
the specified distortion range for a given SDF. Fig.6.9(a) shows the peak correlation
and peak cluttcr responses for a BPOF/MISDF constructed from in-plane rotated
training images with a distortion range from (“ to 45°. The training images used are
5° apart. BPOT filters are extremely sensitive to distortion of the image; experience
has shown that a training set image separation of 5¢ is probably the maximum that
can be used for the cases studied. The 5° interval is adequate to ensure that for the
MISDI® the correlation peak intensity is adequately separated from the maximum
clutter peak. A similar graph for BPOF/{SDF is shown in Fig.6.9(b). From Fig.6.9,
it is clear that the BPOF/MISDI® filter is invariant to distortion over the range
from 0° to 45°, whereas the BPOF /fSDTF does not give complete invariance as one
of the peak clutter responses exceeds the mininnun correlation peak response. In
order to Turther illustrate this, F'ig.6.10 gives 3D plots of correlation functions most
likely to cause false alarms; Fig.6.10(a) and Fig.6.10(b} are the cases with the lowest
correlation peak and highest secondary peak, respectively, which occurred over the
range from 0¥ to 45° for the BPOF/MISDF, and FFig.6.10(c) and Fig.6.10(d) are the
same cases for the BPOT/{SDF, respectively.

The ratio CPI/C, Bq.(3.19), defines the correlation peal to secondary peak ratio




Chapter 6: Modified Filter-SDF Filter

Correlation Peak !ntensity (*0.01)

Coirelation Peak Intensity (*0.01)

6

|
=

@ e
o

L]

N
o
T T

1

.0

0

llllll'l"llII‘Il'l""‘l‘llllllIllllllllllr
—{3~~ Correlation Paak
—®— Spcondary Poak

Distortion Range {Deg.)

(@)

~ A Comalalion Peak

—@— Sccordary Poak

5 10 15 20 25 30 35 40 45
Distortion Range (Deg.)

(b)

139

Figurc 6.9: Peak correlation and peak clutier responses with a distortion range from

0° to 45°: (a) binary phase-only MfSDF and (b) binary phase-only fSDF
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Figure 6.10: The 3-D representations of the correlation functions which present the
highest possibility of erroneous correlation peak detection over the range from 0° to
45%; (a) and (b) are the cases of lowest correlation peak and highest second peak for
the BPOF/MfSDF respectively; (c) and (d) are the same cases for the BPOF/fSDF

respectively
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(PSR) [20]. The worsi-case ratio of PSR across the distortion range is

G])-['min
PSR, = Cllmin (6.19)

‘mar

this is used to qualify the rotation invariance of an SDF, where G Pl is the lowest
correlation peak value and C,,, denotes the highest secondary peak value across
the distortion range. If PSR, > 1 for an SDT, therc will be no ambiguity in
extracting the correlation peaks from clutter anywhere over the distortion range;
hence, a sitnple thresholder may be used to evaluate the correlation response to an
input image.

The PSR, data for the BPOF/MISDF and BI'OI'/{SDF with distortion ranges
up to 90° are displayed by Fig.6.11 and Fig.6.12 respectively. These results were
obtained by making a filter from the 0° and 5° training set images and testing it on
< images [rom 0°-5” at 1° intervals and finding the PSR, value, then making a filter
from the 0°, 5° and 10° training set images and testing it on images from 0°-10°
al 1° iutervals and finding the PSR,, value, then continuing this process up to 90°,
From Fig.6.11, it can be seen that the value of PSR, drops below 1 for a distortion
range of approximately 65°-70° for the BPOF/MISDF; whercas, Fig.6.12 shows that,
this occurs at about 45° for the BPOF/fSDF. Therefore, it can be concluded that
a BPOF/MISDF with A set to phase-only modulation gives distortion invariance
for n-planc rotations up to at least 65°, whereas, a BPOF/ISDI' only achieves
45° of rotation invariance. Thus, the M{SDF method can be designed to be a
distortion invariant filter with training images spaced at greater intervals than the
fSDFE, To achieve the distortion invariance over a 180° range, with the information
content minimised, the BPOF/MISDI® needs three filters; whereas, four filters are
necessary for the [SDF. Thus, the binary phase-only filter constructed utilising the
MESDF method is more suitable than the fSDF method for high-speed hybrid optical
correlation as proposed by Young and Chatwin [17].

To better understand the behaviour of the two filters, the average modulus of the
correlation peak and average SNR (i.c. average over the distortion range) are plotied
in ["ig.6.13 and Fig.6.14, respectively, as functions of the distortion ranges. A range
value of 0° corresponds to a filter malched to a single image. The SNR (signal to

noise ratio) is defined as the ratio of the correfation peak response to the rms response
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outside the 50% correlation peak intensity [21]. It can be seen from IFig.6.13 that the
BPOF/{SDF filters produce the higher peaks for every distortion range. llowever,
the loss in correlation peak height, of the BPOF/MISDT, is more than compensated
for by the increased sharpness of the correlation peaks, which can be seen from

Fig.6.14 to give a better SNR for every distortion range.
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Figure 6.13: Average modulus of the correlation peaks over distortion ranges up to

907

6.5.4 Target discrimination

The fine structure of the target object image translates into high frequency compo-
nents in the frequency domain which contribute greatly to the discrimination ability
of the filter. ‘The M{SDF design places a greater weighting on the higher frequencies
of individual training set images incorporated into the filter than does the fSDF.
Thus, it is important to verify that the MISDY fllers give better discrimination
between the target and a non-target object, of similar size and shape, than do the
fSDF filters. This tesi is perlormed by comparing the discrimination values of the
BPOF/MISDF and BPOF/{SDF to the input images of both Bradley APC vehicle

shown in Fig.6.3 and a similarly scaled and oriented Abrams MI tank shown in
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Figure 6.14: Average values of the signal to noise ratio (SNR)} over distortion ranges
up to 90°,

Fig.6.4. The discrimination capability of the filter is defined by Eq.(3.20). In the
stmulations, the Bradley APC vehicle is taken as the target input image and the
Abrams MI fank as the non-target input image. ‘L'he correlation peak responses of
the target and non-target images are evaluated from 0° to 90° at 5° increments of
rotation for both the BPOF/MISDFs and BPOF/fSDI's, the average values of the
filter discrimination metric are iflustrated by Fig.6.15(a). For instance, the discrim-
ination value at 10° is obtained by making a filter from the 0°, 5° and 10° training
set images and testing it on 0°, 5° and 10° input images {target and non-targel)
and then finding the average value of these three discrimination values. It can be
seen from Fig.6.15(a) that, with the exception of one marginal point at 30°, the
MESDF delivers superior discrimination performance. However, the inputs at 5° in-
tervals are only representative of the training set images, and not the full distortion
range. Thus, the filter discrimination ability was also tested at 1° intervals; the
results from averaging discrimination valucs are plotted in Fig.6.15(b). Hence, the
discrimination value at 10° was obtained by making a filter from the 0°, 5° and 10°
training set images and testing it on input images (target and non-target) from 0°
to 10° at 1¢ intervals and then finding the average value of these discrimination val-
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ues. Fig.6.15(b) shows that the MtSDY still delivers slightly better discrimination
performance over the whole distortion range than does the fSDI. If the training set

included images at 1° intervals, better discriminalion would result.

‘The correlation functions of target image and non-target image at a rotation an-
gle of 40° for both the BPOF/MISDF and BPOF/{SDF, designed for 40° in-plane
vehicle rotation invariance, are shown in Fig.6.16. ‘'hese correlation functions give
an excellent illustration of filter discrimination performance. In order to clearly
show the discrimination ability of the filters, all non-target correlation functions are

normalised to the target auto-correlation peak height.

6.5.5 Conclusions

Au initial investigation to compare the MESDF filter’s performance, with modulators
M and N being chosen to be BPOF and POF respectively, with that of the fSDF
filter has been completed. Computer simulations show that the BPOF/MISDF
filter can achieve distortion invariance to in-plane rotations up to at least 65°,
whereas the BPOF/fSDF filter only atlains 45°, in the case studied. Therefore, the
BPOF /M{SDI" method can be designed to be a distortion invariant filter with train-
ing images spaced at larger distorlion increments than the BPOI'/fSDF method.
Hence, the BPOF/MfSDF method needs less filters to cover a distortion invariant
range of 180° than does the BPOF/fSDF method. For the case studied, the com-
puler simulations also show that the BPOF /MISDF filter has a better signal to noise
ratio and target discrimination ability when compared with the BPOF/{SDF filter.
The slightly lower correlation peaks achieved with the MISDF filter correlations do
not cause any detection difficulty due to the good peak sharpness. The MfSDF
demonstrates better discrimination ability between target and non-target objects.
Thus overall, its performance is better than that of the fSDF.

The conclusions drawn above are only from a single set of tesis; thus, it is difficult
to generally quantify these two filters. This would require considerably more tesis.

The choice of the modulator A" to be POY was made to allow an initial investigation
of the MfSDF design for convenience, it is not the optimal choice. Further research is
required to obtain optimal performance from the MISDF filter, for example the TPR.
and ADF filters developed in Chapter 3 and Chapter 4 could be tested to further
enhance this SDF filter’s performance, and statistical justification by inclusion of
the intensive dilferent sets of test iinages.
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Figure 6.16: The 3-D representations of the correlation functions obtained from
correlating the target image and non-target image at the rotation angle of 40° with
both MfSDF and fSDF designed for 40° in-plane vehicle rotation invariance. (a) and
(b) are the results from the MfSDF filter for the target and nontarget input images
respectively; (c) and (d) are the results from the fSDF filter
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6.6 Implementation Study of MfSDF Filters Using
a Liquid Crystal Television as a Modulator

The usc of commercially available programmmable SLMs limited to binary quanti-
zation of amplitude and/or phase has been an attractive approach in the past ten
years. The last section demonstrated that it is possible to construct a MfSDF filter
limited to binary phase only modulation that will achieve a specified correlation
peak for a set of training images; significantly, this is very easy to implement using
binary SLMs. However, this approach only partially exploits the finesse of filters
designed for processing images with continuous phase and amplitude information.

Current spatial light modulator performance and spatial filter encoding with limited
modulation levels have been combined to create an implementable real-time optical
pattern recognition system concept. The binary phase-only filier (BPOF) is a good
example of a discrete-valued spatial filter that has been successtully implemented in
real-time optical correlators using commercially available SLMs [22]]23]. Recently,
the use of the liquid crystal television (LCTV) --- for example the Epson LCTV pan-
cls, which are part of a commercially available video projector — as SLMs in optical
correlator systems has become an incressingly common approach [24][25){26][27].
One of the salient features of this device is that it can encode multilevel spatial
phase and amplitude. Thus, if the filter includes the constraints imposed by the
LCTYV design, the performance predicted from simulation will more closely repre-

sent the optical correlator performance.

Thus, Wang and Chatwin [28] very recenily suggested that, in order to implement
the designed filter accurately, the mmultilevel constraints of the LCI'Vs should be
incorporated into the M{SDF filter design; furthermore, the [ilter may then be op-
timised to take account of the SLM lhmitations. The purpose of this section is

to quantify the performance of multilevel phase and amplitude (MLAP) encoded
MI5DF filters.
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6.6.1 Consideration of multilevel LCTV constraint

Recently, it has been reported that LCTV SLMs can encode multi-level discrete
amplitude and/or phase information, given a coding domain. The Seiko Epson
LCTV works quite well in the amplitude mode il the attached film polarizers are
removed and replaced with high quality external polarizers [29]. When the usual
polarizers are removed the phase mode of operation can be operated over the range
of 0° to 360° [25]. Thus, the combined use of phase and amplitude modcs of the
LCTVs can approach near-true conlinucus conditions for the M{SDF filter. For
implementation of an MESDF the available SLM discretisation resolution N must be
quantified. The phase and amplitude information of the pre-designed filter function
is then rcpresented, and constrained by, the N discrete levels — which to some

extent restricts the functional complexity of M.

The method for taking account of the constraints imposed by the LCTV SLM is to
apply an algorithm to the composite image from the lincar combination of modulated
training images, S(u,v), to produce a filter 5’'(u, v); where: §'(u,v) € (A4,P) and A
and P are defined by the specific characteristics of the amplitude and phase coding
domains allowed by the LCTV. There is a mapping between the continuous complex
values of S(u,v) to the set of quantified values allowed by (A, P) to produce the
filter $'{u,v). The filter is implemented using two LUTVs; one is for the quantified
amplitude encoding and the other is for the quantified phasc encoding. Fig.6.17

gives a simpitfied flow chart for this encoding procedure.

When mapping the continuous complex values of S(u,v) to the set ol quantified
values to produce the fiter §'(u,v), the phasc (0,2x) and amplitude are divided

into NV equal intervals respectively. Assume that S(u, v} has the form

S(u,v) = 15(u, v)| expljo(u, v)] (6.20)

Thus, when ¢(u,v) falls into a particular £’th interval, ¢(u,v) is assigned to be a

constant value ¢y, so that

k2
by =

(2k + D)
N

2k - )w

< dlu,v) <

(6.21)
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Continuous N Quantized
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S(u,v) > Filter
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Phase Phase Levels
Figure 6.17: Flow chart of the filler coding procedure
Likewise,
[AS, {AS. LH1)AS,
Sp= Homarppen M0mee < 150 4 < (_%Lz (6.22)

where A is a scaling factor and Sp., is the maximum amplitude of S{u,»). Thus,

at the particular position (u,v), the discrete value of the filter becomes
S (uyv) = S; explj il (6.23)

However, the procedure for mapping S{u,v) to S'(u,v) is not so easy because the
cornputed filter values can not be gnaranteed to fall into the dynamic range of
the modulator. To solve this problem, Juday [30] proposed that the filter values
are encoded onto the modulator so as to minimise the Euclidecan distance, in the
complex plane, between the computed filter values and the modulator’s realizable
values. Therefore, according to the characteristics of the .CTV SLMs, Eq.(6.23)
must be changed to
5'(u,v) = &15) explierdy] (6.24)
so that
et €P, @b e A (6.25)

where ¢;. and €; are the mapping factors when the computed filter values are encoded
onto the SLM employing the minimum Euclidean distance principle. An alternative
algorithm, to map the filter onto constrained modulation SLMs, is given by Laude
et al [31].
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1t should be noted that although the modulation operator M is chosen to be the con-
straint imposed by the LCTV SLM, the other modulation operator A/ in the MfSDE
filter design is still free to be defined. It can be given any type of advantageous
modulation; hence, the flexibility of the MESDI® filter design is not compromised.
Therefore, it is possible to find a MISDF with an optimal choice of the modulation
operator A to maximise the overall performance capabilities of the filter, when given
the limitations of current LCTV SLMs.

This approach is aimed at hybrid correlation system arrangements, as suggested by
Young el al [17]. Their recently proposed high-speed hybrid optical/digital correla-
tor system will utilise the MISDOF, with the M operator selected to be the constraing
imposed by the LCTV SLMs and the A operator selected to be an optimal modu-
lator.

6.6.2 Simulation considerations

In order to compare the performance of the filter, when applying the LCTV con-
straint, with that of the filter with the modwlation M specified as BPOF, the modu-
lation operator N was selected to be phasc-only which is the same as the last section
and a previous paper [11]. Thus, the SDF funclion s(z,y) was constructed using
POF modulation of the individual training set images. The modulation operator M
was specified to give phase and amplitude modulation within the performance limi-
tations of the LCTYV, as this may be implemented in real time on the commercially
available Epson LCIV SLM. Consistent with SLM performance, the multilevel, N
discrete levels of phase and amplitude (MLAP) information for the designed filter
was chosen to be 16 levels, 1.e. N = 16, in the simulations. Thus, the MfSDF was
constructed from the POF-SDF by limiling the phase and amphtude information
to 16 discrele levels and using the relaxation algorithm to satisfy the ECP rule for
each training image,

In this work, the following filler performance criteria are considered: distortion in-
variant range, discrimination sensitivity between in-class and out-of-class images,

traiuing image spacing, and abilily to accommodate the input image noise. Greater
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distortion invariant range with 100% discrimination capability designed into a single
filter (i.e. SDF filter) translates into fewer filters required to achieve object recogni-
tion over the specified range. Generally speaking, when the extent of the distoxtion
range increases, the number of training images necessary to cover the distortion
range increases, and the corrclation peak height decreases as the filter needs more
information from the training set images to be encoded in order to satisfy the ECP
rule for each training image. It is advantageous to design a distortion invariani
filter with training images spaced as widely as possible, whilst still maintaining an
effective correlation peak height and 100% discrimination capability. This ensures
successlul system performance whilst minimizing the amount of redundant informa-
tion encoded into the SDF filter. Furthermore, the computational effort expended

during the design process is reduced directly with fewer training images.

6.6.3 Distortion range of filters

Filters designed to be invariant to in-plane rotation, over distortion ranges up to
1807, are constructed using training images of the in-class Bradley APC vehicle and
out-of-class Abram MI tank separated by a rotation increment of 5°. The correlation
peaks are specified to give a constant value of ¢ [or the in-class training set images
and zero for the out-of-class training sct images at the central position in the output
plane. For example, the MfSDF designed for invariance to in-plane rotalion over a
distortion range of 45° are constructed from ten in-class and ten out-of-class training
set images. After construction, filters are correlated with images at every 19 interval,
spanning the entire design range of 45°. Fig.6.18(a) shows the peak correlation and
secondary peak responses for a MLAP/MISDF constructed from in-plane rotated
training images with a distortion range from 0° to 90°. The training images uscd are
5 apart. A similar graph for BPOF/MISDF is shown in [ig.6.18(h). From Fig.6.18,
it i clear that the MLAP/M{SDF filter is invariant to distortion over the range from
(1 to 90°; whereas, the BI?OF/MISDF does not give complete invariance as a few
secondary peak responses exceed the minimum correlation peak response. In order to
clearly show the correlation functions, I'ig.6.19(a) and Fig.6.19(b) give the best-case
and worst-case correlation functions for the MLAP/MISD¥, which oceur at 0° and

67° respectively. For comparison, the best-case and worst-case correlation functions




Chapter 6: Modified Filter-SDF Filter 155

from the BPOF/MISDF are given in Fig.6.19(c) and Fig.6.19(d), respeciively.

The PSR, data for the MLAP/MfSDF and BPOF/M{SDF with distortion ranges
up to 130° are displayed by Fig.6.20. These results were obtained by making a filter
from the 0° and 5° training set images and lesting it on images from 0° ~ 5° at
1° intervals and finding the PSR, value, then making a filter from the 0°, 5° and
10° training set images and testing il on wmages from 0¥ ~ 10° at 19 intervals and
finding the PSR, value, then continuing this process up to 130°. From Fig.6.20,
it can be seen that thc value of PSR, drops below 1 for a distortion range of
approximately 65° ~ 70° for the BPOF/MISDF; whereas, for the MLAP/MfSDT
it happens at 120° ~ 125° almost twice that of the BPOF/MISDF. Therefore,
it can be concluded that a MLAP/MfSDF with A set to phase-only modulation
gives distortion invariance for in-plane rotations up io at least 120°; whereas, a
BPOF/MISDF only achieves approximately §5° of rotation invariance. Thus, the
MISDF with a multilevel LCTV implementation can be designed to be a distortion
invariant filter with training images spaced at greater intervals than that with binary
encoding onto a binary SLM. To achieve distortion invariance over a 360° range, with
the information content minimised, the MLAP /M{SD¥ needs at most three filters;
whereas, six filters are necessary for the BPOF/MISDI". Thus, the effective use of
the phase and amplitude information in a filter constructed utilising the MISDF

method gives a more useful result than that using only phase information.

To better understand the behaviour of the two filters, the average moduli of the
correlation peak (i.e. average over the distortion range) arve plotted in Fig.6.21 as
a function of the distortion ranges. A range value of 0° corresponds to a filter
matched to a singlc image. I can be seen from Fig.6.21 that the BPOF/MISDY
filter produces higher peaks for distortion ranges greater than 20°. This is be-
cause the MLAP/M{SDF has to encode much more information {includes phase and
amplitude information) from the training set images into a single filter than does
the BPOF/MISDF when the distortion range is more than 20¢; this leads to a pre-
dictable loss in correlation peak height. Ilowever, this loss in correlation peak height

is compensated for by greatly increased distortion invariant ranges.
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Figure 6.18: Peak correlution and secondary correlaiion peak responses over a dis-
tortion range of 90°: (¢} MLAP/M{SDF and (b) BPOF/MSDF




Chapter 6: Modified Filter-SDF' Filter 15

Ut
~J

(b)

Figure 6.19: Best-case and worst-case correlation functions of the filter constructed

Jor a distortion range from 0° to 90° with the input images at 1° intervals, (a) and
(b) are the best-case and worst-case for MLAP/MfSDF respectively, (c) and (d) are
the best-case and worst-case for BPOF/MfSDF respectively
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6.6.4 Discrimination capability of filters

Although a filter may be distortion invariant over a certain distortion range, this
does nof, guarantee that it can discriminatbe the in-class images at any angle from the
out-of-class images with 100% reliability. As mentioncd in the last section, the fine
structure of the in-class training set images translate into high frequency compo-
nents in the frequency domain which contribute greatly to the discrimination ability
of filters. The BPOF/MISDF considers only the binary phase information from
the training set images; whereas the MLAP /MISDF applies the complex weighting
of the frequencies (i.c. both phase and amplitude information from the training
set images) to the filter, which is expected to give a better discrimination ability.
Therefore, it 1s important to verify that the MLAP/MISDF delivers better discrim-
ination between the in-class and out-of-class images over the distortion invariant
range of the filker. This test is performed by comparing the discrimination values
of MLAP/MISDF and BPOF/MfSDTF using the inpul images of both the in-class
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Figure 6.21: Average modulus of the correlation peak responses over the distortion
ranges up to 130°

Bradley APC vehicle and out-of-class Abram MI tank, shown in Fig.6.3 and Fig.6.4
respectively. Fig.6.22(a) shows the peak correlations for the in-class image inputs
and out-of-class image inputs for a MLAP /MISDF constructed from in-planc rotated
training set images with a distortion range from 0° to 907, in which the training set
images used are 5 apart. A similar graph for BPOF/MISDF is given in Fig.6.22(b).
Tt is clear from Fig.6.22 that the MLAP/MISDF filter delivers 100% discrimination
ability between the distorted in-class and out-of-class images, at any angle over the
distortion invariant filter range 0° to 90°; whereas, the BPOF/MfSDI® filter does
not achieve 100% discrimination.

In order to clearly show the discrimination correlation functions, Fig.6.23(a) and
I"ig.6.23(b) give the worst-case correlation functions for the MLAP/MISDF, which
occur at 2° for the n-class input and 60° for the out-of-class input respectively.
For comparison, the worst-case correlation functions from the BPOF/MISDF ate
given in Fig.6.23(c) for the in-class input and Fig.6.23(d) for the out-of-class input,
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respectively.

The [ilter discrimination capability is defined by Eq.(3.20) as
P _
DC = — 6.26
P (6.26)
A more conservative evaluation of the 100% discrimination ability of a SDF flter is
to consider the worst-case DC values across the distortion range,

. (P t}m'in
(Rn,t)maa:

where the critical D, is found from the ratio of the lowest in-class correlation

DC, (6.27)

peak to the highest out-of-class correlation peak measured at any angle (i.e. every
1¢ interval in this case) over the distortion ranges. If N, > 1 for an SDF there
will be no ambiguity in discriminating in-class images from ont-of-class images when
a simple thresholder is applied to evaluate the 100% discrimination ability of the
filter.

Fig.6.24 shows the worst-case discrimination values DC,, of MLAP/M{SDF mea-
sured at any angle within each distortion range up to 130°. For example, the data
point at 60° 11 Fig.6.24 is obtained [rom finding the minimized in-class correlation
peak, (P;)min, for all sixty-one in-class images and the maximized out-of-class corre-
lation peak, { Py )mas, for all sixty-one out-of-class images, and then taking the ratio
of (P)min t0 (Ppt)mae. It can be seen from Fig.6.24 that, for the MLAP/MISDF,
the value of DC, drops below one for a distortion range of 120° ~ 125° hence,
the MLAP/MISDF can be designed for an invariant distortion range of at least
120° whilst still maintaining 100% discrimination against the out-of-class targets
with training images spaced at 5°, whereas, for the BPOF/MISDF, the D, value
drops below one at a 60° distortion range, just half the value achieved by the
MLAP/MISDF method. It should be noted that although the BPOF/M{SDF can
achieve an invariant distortion range of 65°, from the conclusion of the previous sub-
section, it docs not guarantee 100% discrimination capability between the in-class
and out-of-class images; thus its effective invariant distortion range is 60°. This is an
issuc frequently not addressed by other authors. Therefore, the MLAP/MISDF de-

livers much better discrimination capability between in-class and out-of-class images
than does the BPOF/MISDF in the case studied.
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Figure 6.23: Worst-case discrimination correlation functions of the filter over the
range from 0° to 90°, (a) and (b) are from correlating the MLAP/MfSDF with the in-
class input at 2° orientation and the out-of-class input at 60° orientation respectively,
(¢) and (d) are from correlating the BPOF/MfSDF with the in-class input at 88°

orientation and the out-of-class input at 72° orientation respectively
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6.6.5 Training image spacing

Selection of the in-class training image spacing is important for overall system per-
formance. The training image spacing used in the design of a synthetic discriminant
function primarily depends on the distortion range required of the filter, and the
sensitivity of the filter to the slight distortions of the in-class images between the
training images. The primary objective is to design an SDF with training images
spaced as widely as possible, whilst still satisfying the invariance to distortion re-
quirement and the 100% discrimination capability between in-class and out-of-class
images. This cnsurcs that redundant information, from the training set images,
encoded into the SDI%s is minimized. Another practical consideration is that fewer

training set images translate into a more efficient design and construction proccss.

T'his test is performed by selecting several different training image spacings to dis-

cover which is optimum. The training image spacings used herein are 37, 5° and
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8°. The data resulting from these three different training image spacings are tab-
ulated in Table 6.3. Irowm Table 6.3, it can be seen that the smaller the training
image spacing, the greater the invariant distortion range the MILAP/MISDF can
accommodale. For the training image spacing of 8°, the MLAP/MISDF can only
achieve an invarlant distortion range of 72°. Turthermore, it is very sensitive to
slight distortions of the in-class images, as the highest and lowest corrclation peak
responses are 0.0235 and 0.0115 respectively; that is, a variation of 51% over the
image distortion range, which is significantly greater than that for a 5° and 3° image
spacing. Except for the lower average corrclation peak responses, the training image
spacings of 5° and 3¢ give better performance than that with an 8 spacing, see Ta-
ble 6.3. Significantly, the MLAP /MISDT constructed with a 5° separation between
training set images requires the same number of filters, to cover the [ull range of
3607 object distortion, as the one constructed with training set images spaced at 3°;
furthermore, it delivers a higher average correlation pcak than that for 3°,

The optimal angular training image spacing was taken to be the maximum value that
did not allow the peak correlation response to drop below the Rayleigh criterion [32]
(~40%) for the images between training set images. This is similar to the method
suggested by Gregory [32] and Jared [9]. This criterion places a constraint on the
minimum number of the training sei images required {or the maximum spacing
between training images in distortion space) to construct the filter. From Table 6.3,
this criterion suggests a spacing of 5° between training images as the peak correlation
response only drops by a maximum of 30% for images belween the training set
images; 51% for an 8° spacing docs not satisfy this criterion. A 14% fall for a 3°
spacing means that there is less variation over the distortion range, but this over
satisfles the Rayleigh criterion and does not give such a high ACPi.

Therefore, it can be concluded that training set images spaced at 5° are the optiinal
choice in this case. To further check this conclusion the MLAP/MfSDFs, designed
to cover the same distortion range, with a training image spacing of 5° and 3° were
also compared; the average peak correlation response for training images 3° and
59 apart were very similar. The advantage of using training images spaced at 3¢
is that the filter exhibits less variation in the peak correlation responses over the

distortion range than when using training images spaced 5° apart. However, this
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Table 6.3: Comparision of different training image spacings

TIS | IDR | 100% DC [ FER [ TIR [ LFR | ACPi | GV | ASP; | ACPo |
30 1710 1650 1650 55 3 0‘6r0.69 14% 0.470.56 0_,150.58

J0.59
52 | 120° 120° 1200 | 24 3 0.89397 | 30% | 0.58%7 | 059070
g | 72° 80° 72° 9 5 1.4233 1 51% | 0.82293 | 0,819:9¢
Legend:

T1S - Training image spacing

IDR - Largest invariant distortion range of filter

100% DC — Largest distortion range over which the filler can achieve 100% discrimination
FER - Final ellective range of filter when accounting for out-of-class target cross correla-
tion

TIR — Number of training images required to encode filter

LFR —~ Least number of filters required to cover [ull range of 360° target distortion

ACPi — Average correlation peak from in-class images tested at every 1°, where the sub-
script value is the minimum correlation peak response and the superscript valne is the
maximum correlation peak response

GV — Greatest variation of corrclation peak responses for images al any angle over the
distortion range. GV = (mazimum peak — minimum peak)/mazimum peak

ASPi — Average secondary peak from in-class images tested at every 17, wheve the super-
script value is the maximum secondary correlation peak

ACPo — Average correlation peak from out-of-class images tested at every 1°, where the
supcrscript value is the maximum correlation peak

Note: all values given in the columns of ACPi, ASPi and ACPo are multiplied by 100.0
compared with the actual values.

increage in filter performance must be weighed agaiust the increased computational
requirements of constructing a MLAP/MISDF with more training images.

6.6.6 Noise resistance of filter

A good SDF filter should not only deliver a large distortion imvariant range, with
100% discrimination between the in-class and out-of-class images, but also be robust
to noise appearing in the input image. In this sub-section, an examination of the
noise resistance of the MLAP/MISDF is given by comparing it with that of the
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(a)

(a)

Figure 6.25: (a) The intensity distribution of the MLAP/MfSDF filter constructed
for a distortion range from 0° to 60° with training images spaced at 5°; (b) and (c)
are its real and imaginary parts respectively, where the grey levels vary from 0 to
255. (d) is the BPOF/MfSDF constructed from the same training images but in
which the white pizels denote the values of 1 and black pizels denote the values of -1

BPOF/MfSDF, and the BPOF /fSDF suggested by Jared et al [8][9].

The noise resistance of the filter primarily depends on the type of filter. It is well
known that the influence of the input image noise in the frequency plane of the
correlator is greatest for the higher frequencies. Thus the low pass type of filters,
such as the CMF and classical SDF filter, are not greatly affected by the input image
noise but produce a very broad correlation peak at the output plane; whereas the
all pass type of filters, such as the BPOF and BPOF/SDF, are very susceptible to
noise in the correlator as they enhance the high frequencies and attenuate the low
frequencies of the input image. Fig.6.25(a) shows the intensity distribution of the

MLAP /M{SDF filter, in the frequency domain, designed for the invariant distortion
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range of 60° with training images spaced at 5° intervals, i.e. twelve in-plane rotated
Bradley APC vehicle in-class images and twelve in-plane rotated Abram MI tank
out-of-class images are encoded into the filter. Its real and imaginary parts are given
in Fig.6.25(b) and Fig.6.25(c), respectively; these figures clearly illustrate that the
MLAP/M{SDF filter is a band-pass type filter; it enhances the higher frequencies
and attenuates the lower frequencies, the information content is very rich in the
filter midband. From inspection there is no doubt that this filter, with a band-pass
characteristic, will possess relatively good noise resistance. For comparison, the
BPOF/MISDF is given in Fig.6.25(d) in which the white pixels denote values of 1
and black pixels denote the values of -1. As the amplitude of the BPOF/M{SDF
is unity everywhere, the energy is distributed equally over the whole filter plane;
hence, it is very sensitive to noise in the input image. Fig.6.26(a) and Fig.6.26(b)
illustrate the impulse responses of the MLAP /M{SDF and BPOF /MfSDF filters (i.e.

[ig.6.25(a) and Fig.6.25(d)), respectively.

(a) (b)
Figure 6.26: Impulse responses of the (a) MLAP/MfSDF and (b) BPOF/MfSDF

functions

The filter noise resistance performance is examined by using the in-plane rotated
images of the noise corrupted in-class Bradley APC vehicle and out-of-class Abram
MI tank; the ratio of image energy to noise energy is equal to 0.5 which means that
the images are severely corrupted by noise. The noise corrupted APC vehicle and
MI tank images were rotated from 0° to 90° in 1° steps. Views of the noise corrupted
APC vehicle and MI tank at 0° are given in Fig.6.27 and have the same resolution
as the noise free images shown in Fig.6.3 and Fig.6.4. When the noise corrupted

in-class image [ig.6.27(a) is correlated with the above constructed MLAP/M{SDF
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and BPOF/MISDF filter, i.e. Fig.6.25(a) and Fig.6.25(d), the resulting correlation
functions are given in Fig.6.28(a) and Fig.6.28(c) respectively. For comparison, the
correlation functions for noise free input are correspondingly given in Fig.6.28(b)
and Fig.6.28(d) respectively. It can be seen from these correlation functions that
the MLAP /MfSDF filter delivers much better noise resistance performance than that
of the BPOF/MISDF filter, the MLAP /M{SDF filter still yields a sharp correlation
peak at the central position that is easily isolated by a simple thresholding procedure;
whereas, the BPOF/MfSDF filter loses the target within the noise.

(b)

Figure 6.27: Views of (a) Bradley APC vehicle and (b) Abram MI tank at the
orientation angle of 0°, corrupted by noise with an image energy to noise enerqy
ratio of 0.5

I'ig.6.29(a) shows the in-class and out-of-class peak correlation responses, using
the noise corrupted in-class and out-of-class images as the input images, for a
MLAP/MISDF constructed from the noise free in-plane rotated training images
with a distortion range from 0° to 40°. The training images used are 5° apart. A
similar graph for the BPOF/MfSDF is shown in Fig.6.29(b). From Fig.6.29, it is
clear that the MLAP/M{SDF filter is invariant to the distortion range of 40° whilst
delivering a superior discrimination capability (the value of DC' > 1.6 everywhere)
between the in-class and out-of-class images in this noise corrupted case; whereas,
the BPOF/MfSDF does not give complete invariant distortion over this range as
several secondary correlation peaks and out-of-class correlation peaks exceed the

lowest in-class correlation peaks.

I"ig.6.30 illustrates the representative correlation functions from this test. Fig.6.30(a)
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Figure 6.28: Correlation functions from correlating the input images of Fig6-27(a)
and Fig6-3(a) with the filters of Fig6-25(a) and Fig6-25(d) respectively. (a) and (b)
are the results from correlating the filter Fig6-25(a) with the inputs of Fig6-27(a)
and Fig6-3(a) respectively; (c¢) and (d) are the results from correlating the filter
F'ig6-25(d) with the inputs of Fig6-27(a) and Fig6-3(a) respectively
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and Fig.6.30(b) are from correlating the MLAP /MfSNT with the inputs of in-class
image and out-of-class image at a 35° orientation, respectively; Fig.6.30(c) and
Fig.6.30(d) are from correlating the BPOT'/MISDF with the inputs of in-class image
and out-of-class image at a 35° orientation, respectively; cleatly, the performance of
the BPOF/M1SDF filter is inadequate,

The PSR, data for the MLAP/MISDF and BPOF/MISDF, with distortion ranges
up to 60°, are displayed by I'ig.6.31; the resulling graphs are similar to those in
I"ig.6.20, except that the input images used are the noise corrupted images shown in
Fig.6.27. From Fig.6.31, for the noise corrupted image inputs, the MLAP/MISDI®
still delivers distortion invariance, with 100% discrimination capability between the
in-class and out-of-class images, up to at least 45°; whercas, the BPOF/MISDF
achieves less than 15”. The noise resistance performance of the BPOFE/{SDTF filer
suggested by Jared et ¢l[8][9] was also tested; it delivers an even worse performance
than the BPOL/M{SDF. Thus overall, the MLAP/M{SDF filter has superior noise
resistance performance to either the BPOF/MISDT or BPOF/ISDF filters; it can
be concluded that the performance of the MLAP /M{SDF filter benefits significantly
[rom its band-pass characteristic, shown in Fig.6.25(a).

6.6.7 Conclusions

The commercially available liquid crystal television, which is able to encode the mul-
tilevel discrele amplitude and/or phase information, may be exploited to implement
the modified filter synthetic discriminant function design. The filter modulation
operator M is governed by the constraints imposcd by the LCTV, the other mod-
ulation operator A is still free to be defined; hence, the flexibility of the MISDF
filter design is not compromised. Thercfore, it is possible to find a MISDF with an
optimal choice of the modilation operator A to maximise the overal! performance
capabilities of the filter when given the limitations of the current LOCTV SEMs.

With the modulation operator A set to POF, the performance of the MLAP/-
MISDFE with the multilevel constraint iV = 16 has been studied via simulation. The

image sets studied were chosen to be practical objects, 1.e. the Bradley APC vehicle
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Figure 6.29: Correlation peak, secondary peak and oul-of-class correlution peak re-
sponses with « distorlion range from 0° to 40°, where ICCP means the in-class corre-
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Figure 6.31: The worst correlation peak response lo secondary peak response ratio
(PSR,) and the worst diserimination capability (DC,,) of filter between in-class and
out-of-class images over the distortion ranges from 0° lo 60°; (a) MLAFP/M{SDF
and (b) BPOF/M{SDF
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and Abram MI tank, to provide a challenging design test. ‘I'he evaluation was
performed to better understand the distortion range thal can be effectively covered

by the MLAP/MISDT's. With the training image spacing of 5°, the MLAP /M{SDF

filters can achieve distortion invariance to in-plane rotation possibily up to 120% whilst

still maintaining the 100% discrimination capability between in-class and out-of-class
images; whereas, the BPOF/MISDF filters - attain 60°, almost half the range of
the MLAP /MfSDF, in the case studied. Thus the MLAP/MISDF filters can greatly
inprove the correlator system speed as larger distortion range filters translate into
fewer correlations required to perform image identification. Based on the constraint
that a minimum number of training images will be required to assure that the peak
correlation response over the distortion range does not drop below tlie Rayleigh
criterion, a relatively good choice of training image spacing was shown to be about
5 for the case studied. The ability of the filter to resist noise in the input images
has also been investigated. The band-pass type characteristic of the MLAP/M{SDF
filters gives a much better ability to resist noise in the input images than does the
- BPOF/MISDF or BPOF/ISDF filter. When the input images were buried in a noise
background with the ratio of the object energy to noise energy equal to 0.5, the
MLAP/M{SDF filters still achieved an invariant distortion range of at least 45°,
whilst maintaining a superior discrimination capability between the noise corrupted
in-class and out-of-class images; whereas, only one-third of this range, i.e. 15°,
was attained by the BPOF /MISDT filters. To conclude, on the basis of the limited
number of experiments described here, it could be said that the MLAP/MESDT fil-
ters deliver much better performance thametther the BPOF/M{SDIE or BPOR/ISDF;
the MLAP/MiSDT benefits from its relatively richer phase and araplitude informa-
tion. However, it is recommendedithal fuithersimulations.are perlormed with. .dif-
ferent sets of images to examine the robustuess of the results: The MLAP /MISDF
fitter can dyna.micaliy track a vehicle or tank-as it moves along a random trajectory
in the input ficld by using a hybrid optical/digital correlator system. Views of the
object intermediate to those of the training set images are also recognized when

training images arc sufliciently close, Le. 5% apart.
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Chapter 7

The Wiener Filter and Its
Application to Optical
Correlation

7.1 Introduction

The classical mnatched spatial filter[1] (CMVY') is optimal for the recognition of objects
in additive noise but produces a broad corrclation peak in the output plane resulting
in a low discriminatory capability between an object of the class o be detected and
an out-of-class object which is to be rejected. In order to overcome this performance
lmitation, numerous methods{2]-[9] have been proposed. The phase-only filter[2]
(POF) which uses the phase information of the reference image, and the amplitude-
compensated matched filter[3][4] (ACMF), which uses hoth phase and amplitude
information of the reference image, have successfully produced a sharp correlation
peak in the ouiput plane of a correlation system; furthermore, when compared with
the CMF, they give good discriminatory capabilily between an in-class image, to
be detected, and an out-of-class image, to be rejected. An optimal ﬁltef, which
maximises the discrimination capability, was reported by Yaroslavsky[10}[11] and

gives better performance than the POF,

The commeon factor in this research is the implementation of spatial filters by record-
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ing all or part of the information contained in a set of patterns which are to be dis-
criminated from noise or from each other. A more exact statement of this approach
is that a filter should be designed to be matched to one or more of the possible input,
palterns and thus produce a suitable correlation [unction ai the output plane of a

correlation system.

An extremely useful approach to filter design is to start [rom the correlation plane
and define the desired output distribution; the synthetic discriminant function (SDF)
[12}-[15] may be implemented in this manner. To achieve the required output dis-
tribution a suitable spatial filter is generated by using numerical methods. The
initial results for conventional SDFs[16] indicated that their pattern classification
performance is inadequate because they produce a very broad corrclation peak at
the output plane and as a result they do not achieve a 100% success rate in dis-
criminaling one class of images frorn another, To solve this problem, Horner et
al[17] extended phasec-only filtering to SDF design; these filters do produce very
sharp correlation peaks but do not satisly the equal correlation peaks (ECP) rule
in the output plane. Another popular approach is the ruinimum average correlation
energy[15] (MACE) filter; this produces a sharp output correlation peak and maxi-
mizes the ratio of the squaved peak value of the correlation function to the average
correlation plane energy. However, the MACE filter is similar to the inverse filter
which is difficult to realise physically; furthermore, it is very sensitive to intra-class
variations|18].

In this chapter, the Wiener filter is applied to optical pattern recognition [24]; pre-
viously the Wiener filter has been successfully implemented for image restoration
and signal processing[11][19]. In this implementation the Wiener filter is formulated
so as to incorporate the outl-ol-class image, to be rejected, as the Wiener filter noise
term. The proposed Wiener filter has much better discriminatory capability for
the inter-class images than the POF and CMF. Furthermore, when an SDF is con-
structed from the proposed Wiener filter it is less sensitive to image distortions (e.g.
out-of-plane rotation in this case) whilst still providing good performance in the
output plane and achieving a 100% discrimination in detecting onc class of images
from another.
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7.2 Wiener Filter Based Correlation

7.2.1 Wiener filter formulation

The general model of an image formation system in which the point spread function

is random can be written as

+ +oo
o@y) = [ [ ple =z~ ) f(onm)dendy 4 nizy)
= plz,y)x flz,y) + nlz,y) (7.1)

where p(,y) is the random point spread function, f(z,y) is the object image func-
tion, n(x,y) denotes the detection noise which will include the out-of-class image;
¢{®,y) is the recorded image, and the sign * signifies the convolution operation. In
Eq.(7.1) it is assumed that the optical system is linear and shift-invariant,

Sappose that an estimate for f(z,y) denoted by f(z,y) is of the form

-~

Hz,y) = w(z,y)* g(z,y) (7.2)

Clearly, the problem is to find w(z, y) or equivalently its Fourier transform W (£, £, ).
The Wiener filter[19] is based on utilizing the least squares principle to find w(z, ).
Thus w(z,y) is found in such a way that the ervor

e = |f(a,9) ~ flz.9)] (7.3)

is a minimum. Using the orthogonality principle, this error is a minimum when
[flz,4) — (w(z, 9} * g(z,y))} © ¢"(2,y) = 0 (7-4)

Hence, using the correlation and convelution theorems, in Fourier space, the follow-

ing equations can be obtained

F(for )G (far fo} = WS, L)G(far L)G (far F) (7.5)




Chapter 7: Wiener Filter and Its Application to Optical Correlation 185

or
, G h)
Since
G(fas fu) = Plfas L) E oy f) + Nz, i) (7.7)

Therefore, the Wiener filter W(f,, f,) with correlated noise can he written as

P*(for PV IEFes SO A+ N*(Fur FYF(Fn £)
VP (For )P N E (far FOIE A+ IN(for F)E 4+ D £y)

W{fer fu) = (7.8)

where,

D(fas £y) = P{far F)F (For SN (far £} + N (o F)P™(fos £)F" (s ) (1.9)

where P, F' and N are the Fourier transforms of the point spread function p(z,y),
thc object image function f(z,y) and the noise image n{z,y), respectively. The

asterisk # means complex conjugate.

Eq.(7.8) is dexived incorporating the correlated noise. For this paftern recognition
application the correlated noise is excluded. However, the uncorrelated noise, i.e.
independent noise, is included in the ilter, hence the correlation of the noise with

the object function f(z,y) is zero and vice versa,

n*(z,y) @ fla,y) =0 (7.10)
and
(z,y) ©@n(z,y) =0 (7.11)
where O denotes the correlation operation. In the Fourier space, it follows that
N™(for ) ¥ (Jas J) =0 (7.12)
and
F(fas BIN [z, fy) = 0 (7.13)

Hence, D(f,, f,) = 0 and the Wiener filter W(f,, f,) reduces to

P*(fs, fu)
VP F)* + AN SO 1P (o )

W{(fu, fy) = (7.14)

Eq.(7.14) is the well-known Wiener filier transfer function. It has heen used fre-

quently for image restoration[11]{19]. 1t has the following properties:
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(i) As the noise tends to zero and so

N{fz, fy)| — 0, it reduces to the inverse
filter. Hence with minimal ncise, the Wiener filter behaves like the inverse

filter.

(i1) As the power of the object goes to zero (ie. as |I'(fz, fy)] — 0) the Wiener
filter produces zero modulation. This alleviates problems associated with the
zeros of [I( fy, fu)| and resulis in the Wiener filter being well conditioned.

7.2.2 Application to the optical correlation

The objective of this chapter is to apply this filter to optical pattern recognition.
The Wiener filter for optical patiern recognition is constructed by substituting the
object function f(x,y) for the point spread function p(x,y). Hence, lor optical

correlation, the Wiener filter is writien as

| P fy)
W my fy} = ; Z . 5 "
oo bo) = G T T I U f) T T 1 s )P

where F*( fy, f,) is the complex conjugate spectrum of the object to be detected (in-

(7.15)

class image), and |N(f5, f,) |? is the power spectrum of the object to be rejected (out-
ol-class image). Eq.(7.15) requires that the correlation filter based on the Wiener
approach is constructed by incorporating the out-of-class object into the filter. This
is significantly different from the POF and CMF in that a one step formulation
simultaneously encodes the in-class and out-of-class images into the filter. A further
advaniage of a WI produced in this manncr is that it is not indeterminate when

the function passcs through zero.

When the input image u{z,y), in-class or out-of-class, is input into the Wiener filler
based correlator, the amplitude of the diffracted field dircctly behiud the filter, U,

ulsy

- will be proportional to W{f,, f,) and so can be written as

Urm.i(fwa fv) = W(f:mfy) U(farafy) (7-16)

where U{fz, fy) is the Fourier transform of the input image u(z,y). The Fouarier
transform of Uy gives uyy, the weighted correlation function of u(z, y) with n(z,y)
and f(z,y).




Chapter 7: Wiener Filter and Its Application to Optical Correlation 18

(a) (b)

Figure 7.1: Characters used to produce the Wiener filter, (a) in-class image, (b)
out-of-class image

['o test the performance of the Wiener filter for optical pattern recognition, two sim-
ilar characters “C” and “O”, shown in Fig.7.1, were used for an initial simulation.
In order to assess its relative usefulness, the WE’s performance is compared with the
CMF and POF. In the simulation, the character “C” is taken as the in-class image
and “O” is the out-of-class image. After the Wiener filter W(f,, f,) is produced,
it is correlated with the input image given in Fig.7.2; Fig.7.3 gives the computed
intensities at the correlation output plane. Fig.7.3a, Fig.7.3b and Fig.7.3c are the
correlation results using the Wiener filter, CMF and POF respectively. Fig.7.3
clearly illustrates that the Wiener filter has much better discriminatory capabil-
ity than the POF whilst the CMF cannot discriminate between these two similar

characters at all.

Figure 7.2: Input image used in correlation
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(b)

Iigure 7.3: The computed intensities at the correlation output plane when the scenc
shown in Fig7.2 is input into the correlator; (a), (b) and (c) are the correlation
results using the Wiener filter, CMF and POF, respectively
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()

Figure 7.3: Continued

Table 7.1 gives a quantitative comparison of the relative performance of the Wiener
filter, POF and CMF respectively. DR denotes the discrimination ratio of the filter
which is defined as the ratio of the in-class correlation peak intensity to the out-of-
class correlation peak intensity; PNI is the number of pixels inside the correlation
peak at full width half maximum (FWHM); nH is the Horner efficiency and PRMS
1s defined by Eq.(3.18). From Table 7.1, it can be seen that the discrimination
ability of the Wiener filter is almost twice that of the POF and four times that of
the CMF. The Wiener filter PRMS is slightly better than that of the POF; however,
its energy efficiency is significantly worse than the POF and CMF. The low Horner
efficiency does not cause a problem as most of the light passing through the filter is

concentrated in the correlation peak.

Iig.7.4a illustrates the form of the Wiener filter in the frequency domain W ( f;, f,);
it is thresholded in order to clearly show the filter’s characteristics. From this figure
it is clear that the Wiener filter is a highpass-like filter that results in a weighted edge
enhancement of the images, Fig.7.4b illustrates the impulse response of the filter,

w(z,y). The reason for this can be seen from Eq.(7.15). The Fourier transforms of
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Table 7.1: Quantitative comparison of the filter performance

DR | PNI nH PRMS
WF | 3.91 4 0.04% | 28.05
POF | 192 | 2 100% | 27.44
CMF [ 1.04 | 29 |0.23% | 7.051

(a) (b)
I'igure 7.4: (a) The form of the Wiener filter in the Fourier domain W (f,, f,); (b)
The impulse response of the Wiener filter w(zx,y)

the two similar images have large zero and low frequency components. Thus, for
low frequencies, |F(f;, f,)| is nearly equal to |N(f., f,)|; for this condition a good

approximation to Eq.(7.15) is

F*(fz, fy)

W(fe, fy) = ————=
|F(fz, fy)* + 1

(7.17)

Thus there is little modulation in the central region of the Fourier plane; hence,
the WF automatically suppresses all the powerful low frequency components of the

images, which are virtually identical for images that are similar.

For the higher frequencies, the values of |F'(f., f,)

and |N(f., f,)| are much less

than one. Thus Eq.(7.15) reduces to

)

o ll'(/.~ ,/.y)

”v',./‘.ru/.x/) = —,f—~——-—7["*(~/1r‘ f:/) (7.18)
‘ IN(fz, fu)l” ‘

[1q.(7.18) shows that all the edge dissimilarities between the two images in the

space domain produce high frequency components with different magnitudes in the
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trequency domain, i.e. the edges that are similar are ymaffected whereas the mag-

nitude of the frequency components from the edges that are different are increased

for the in-class image and decreased [or the out-ofl-class image. The filter impulse

response, Fig.7.4b, illustrates this effect; the right side of the letter “C” — which is

the part that is dilferent from the letter “O” — is more enhanced than the left side.
Therefore, the out-of-class image is suppressed and the in-class image is emnphasised

resulting in a very good discriminatory capability.

7.3 Wiener Filter—Synthetic Discriminant Functions

According to the chapter 5, the synthetic discriminant function filter is designed to

provide equal central correlation peak values in the output plane for a given training

set of centred, in-class images. Suppose that a sel of Lraining images, t,.(z,7),
n = 0,1,..., &k, with the desired distortion invariant features is used to construct
the SDI' s(z,y). Tor each t,(z,y), the desired correlation response of s{z,¥) is a

constant ¢,, namely,

[ [ tatz) 5o, y)dwdy) = e, (7.19)
Typically, s{w,y) is constrained to be a linear combination of the set of training
images[12][16],

" ,
3(3:13/) = Z Ay t?t($1 "f) (720)
n=0

By substituting Eq.(7.20) into Eq.(7.19), the coeflicients a are shown to be
a=R™C (7.21)

where a = [ap, @1, v, Gn)T, C = [y, €15 oy ¢a] T, and Ris the correlation matrix having
elements Ry; = [ [t:(z,y)t}(z,y)dedy. The SDT s(z,y) is determined by solving
Eq.(7.21) and then substituting the coeflicients of vector a back inte Eq.(7.20).
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7.3.1 Wiener filter SDFs

The above SDI procedure is well known; when producing a Wiener [ilter synthetic
discriminant function (WF SDTF), the filter modulation in Eq.(7.16) must be incor-
porated into the SDI" construction process by modifying q.(7.19) and Eq.(7.20).
The filter must meet the requirement that

/fin(;c,y)w*(:c,y)dmdy = ¢y (7.22)

where w(z,y) is constrained to be a linear combination of the set of individual

Wiener filter functions wy{z,y) of the training image sel

k
w(z,y) =Y an wa(w,y) (7.23)
=0

As stated in the above sub-section, a general SDF synthesis equation is provided
by substituting Eq.(7.23) into Eq.{7.22). Unfortunately, the WF SDF made from
the original WF is not guaranteed to produce equal correlation peaks for all of the
in-class training images. The resulting spread in peak values can significantly lower
the ratio of the lowest in-class peak to the highest ont-of-class peak, which degrades
the overall performance capability of the [ilter. This difficulty — occurring in the
WF SDF synthesis - can be solved by iterative techniques [21], which do produce
equal correlation peaks for the in-class training images. The following equation was
uscd to iterate trial solution vectors,

A [c,,_ — ¢ |_p_;_}] n=0,1,..k (7.24)

il

where 7 is the iteration number, @ is a damping constant, and |pi | is the modulus of
the central corrclation response of training image t,(«,y) with the filter constructed
from vector a’. There is no theoretical guarantee that this algorithm will converge
to a solution, but it has been used with some success [21][22] and has couverged in
nearly all the cases studied herein.

The initial solution vector is taken to be the solulion of the conventional SDF
as this may be computed rapidly; this is then iterated to generate the WF SDF.
The iteration is stopped when all the peak correlation responses of training images
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to(x,y) fall within one percent of the mean value of the training set correlation

peaks, .
Maz(pl)— AVE
am(iﬁ_E <1% (7.25)
where
1 &
AV E = z Z i {7.26)
n=1

This is sufficiently accurate to satisfy the equal correlation peak height criteria.

As the in-clags images and the out-of-class images are simultaneously incorporated
into the one step Wiener filter formulation, the two class pattern recognition task
is achieved very efficiently. For example, if one vehicle nceds to be distinguished
from another vehicle with an iu-plane rotation and each vehicle is sampled at a
rotation angle of every 10° from 0° to 180°, the necessary number ol training set
images ‘&’ is only 18 for the WF SDF, whilst for the previous SDF methods, such as
CMF/SDF and POF/SDF etc. k must be 36 to achieve recognition between the two
vehicles, Thus the WF SDF requires 18 x 18 cross-correlation operations to produce
correlation matrix R whilst 36 x 36 are necessary for the other methods. Therefore,
the computational time, to synthesise the WF SDF, is approximately one quarter
of that required for the other methods. Tor comparison, the MACE filter, which
is extremely sensitive Lo distortions of the in-class images, requires a large increase
in the nuinber, &, of training set images. It needs approximately 360 training set
images to cope with a two-class pattern recognition task and an object rotation of
q0°.

7.4 Simulations and Results

The main issue studied in Lhese simulations is the performance of the WF SDT as
a function of the distortion range: in particular, assessment of whether the WF
SDF enhances either discrimination or PRMS in comparison to the conventional
SDF and the POU SDF when applied to the same image trvaining set. The greater

the allowable spacing in the training image sct, the fewer the number of images
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(c) (d)

|8

Figure 7.5: Fzamples of the out-of-plane rotated in-class training images of the
Bradley APC' vehicle. (a), (b), (¢) and (d) are at 0°, 60°, 120° and 180° aspect
angles respectively

that need to be encoded into the SDF and hence the lower the construction costs.
The measure used to evaluate the correlation output performance in this work is
the ability to correctly discriminate between the given in-class set of images and

out-of-class set of images.

The training set of images used in the simulations consists of out-of-plane rotated
images of the Bradley APC, which are the in-class images to be detected; the Abrams
MI tank, provides the out-of-class images to be rejected, over an orientation angle
range from 0° to 180°. Each image is centred and normalised to unit energy. A
total of 37 images of each in-class and out-of-class vehicle at 5° increments from
0? to 180° were encoded at a resolution of 128 x 128 pixels. The in-class and out

of-class training images at 0°, 60°, 120° and 180° are shown in Fig.7.5 and Fig.7.6,
respectively. As can be seen, each training image is significantly different, presenting

a difficult 2-class pattern recognition problem.
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(b)

(a)
(e) (d)

Figure 7.6: Eramples of the out-of-plane rotated in-class training images of the
Abrams MI tank. (a), (b), (¢c) and (d) are at 0°, 60°, 120° and 180° aspect angles

respectively

An accepted criterion for expressing the discrimination capability of the SDF fil
ters has not been defined to date. Comparison of the in-class peak correlation
responses to the out-of-class peak correlation responses appears to be the best prac
tical measure. In previous literature[22](23], the peak correlation has been termed
the intensity of the central correlation response (CCR). In actual experiments, only
the peak correlation response (PCR) in the output plane is of interest, and this
may not occur at the centre of the correlation plane for all the training set images
tested. In the present work, the peak correlation C'PI is defined as the intensity
of the maximum correlation response at the output plane. As any experimentally

measured value must be an intensity,

CPI = Maz{|c(i,)|*} (7.27)

[n order to determine the discrimination capability of the SDF filter, the threshold
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value ¢ - - for image identification — is chosen as the maximum value of the out-of-

class peak correlation iutensity,
3 . -
¢ = MaPL) (1.9
g=

where & is the number of oul-of-class training images, P?, is the ont-of-class peak
correlation intensity. Correlation peaks measured higher than ¢ are classified as

in-class nmages, whereas those lower than t are classified as out-of-class images.

It is desirable to design an SDF with training images spaced as widely as possible
whilst still satisfying the condition of 100% discrimination capability. This ensures
successful system performance whilst minimizing the amount of redundant informa-
tion encoded in the SDFs. In other words, for the case presented herein, the larger

the angular increment between training set images, the greater the efficiency.

The training image spacing used in the design of a synthetic discriminant function
depends on the sensitivity of the [ilter to the image distortions — i.e. relative to
the training images — of the in-class images and out-of-class images; these images
are called intra-in-class (IIC) images and intra-out-of-class (IOC) images. As the
images input to the correlator are assumed to be allowed in any orientation (in this
case, out-of-plane rotation), the corrclation peaks of the IIC images must still be
significantly higher than those of the IOC images. To this end, the threshold value

t for image recognition must be re-selected as,
N .
t= Mag{{ch} (729)
J:

where N is the total number of the out-of-class images (in this case, ¥ = 37). If

all in-class correlation peaks are above value t and all out-of-class correlation peaks

are below value ¢, the filter can be said to have a 100% discrimination capability.

To illustrate the relative sensitivity or discrimination ability of the WF SDFs to
tralning image spacing for the sef of real tank images, the correlation results for
filters covering 180° rotation range are shown in Fig.7.7 and Fig.7.8, with training
lmage spacings of 30° and 15° respectively. The SDT" filters, constructed from images
taken every 30° and 15° from 0° to 180° respectively, are correlated with in-class

and out-of-class images rotated at every 5°. It is very clear from these two figures

,,,,,,,,,,,,

b




Chapter 7: Wiener Filter and Its Application to Optical Correlation 197

-
[=]
(=]
¢ >

Corretation Peak Intensity Value

0 20 40 60 80 100 120 140 160 180
Distortion Range (Deg.)

Figure 7.7: Resulls of the WF SDF designed with training image spacing of 30° for
the distortion range 0° to 180°. IMP and OMPF are the in-class and out-of-class
mazsmum corrclation peaks, respectively

that the in-class maximum correlation peaks (IMP) are well above the out-of-class

maximum correlation peaks (OMP).

Thus the simple threshold algorithm, Eq.(7.29), can be applied to their correlation
planes to extract the peaks so as to determine that the iruage input to the correlator
belongs to the in-class image or the out-of-class image set. The threshold value #
ig illustrated as the dashed line in Tig.7.7, Fig.7.8, Iig.7.9 and Fig.7.10. Although
the WI" SDI? constructed with a training image spacing of 15* is much better than
that of 30°, the latter one can also achieve 100% discrimination. The tolerance
range of the WF SDF is greater than that illustrated. Hence, the WI SDI is fairly
insensitive {o the distortion of images and can be designed with very wide training

imagc spacing.

Tor comparison, the results for a conventional SDF and SD¥F/POF are shown in
Fig.7.9 and Fig.7.10; these are also made with a 15° spacing between training images.

It should be noted that the conventional SDF is a two-class pattern recognition
problem, i.e. assuming the correlation responses of in-class images to be 1 and those

S

e R,
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Figure 7.8: Results of the WF SDF designed with training image spacing of 15° for
the distortion range 0° to 180°. IMP and OMP are the in-class and out-of-class
MaTTMUMm correlati_on peaks, respectively.

of out-of-class images to be 0. The SDI*/POF is constructed from the conventional
SDF[17] and then oplimised using the iterative technique[21]{22] to achieve equal
correlation peaks for all training images. In the simulations, all correlation peaks
computed are the maximurn correlation response values in the correlation plane. As
can be seen from IMig.7.9 and Fig.7.10, the problems for the conventional SDF and
SDF/POF —— made using a 15° training image spacing — are apparent. Some of the
IMP peaks fall below the largest OMP peaks, i.e. the threshold value ¢; this gives
erroneous classification of these images. Hence some 1IC images will be categorised
as out-of-class images, whereas some IOC images will be identified to be in-class
images. In contrast, the results from the WF SDF made with 15° {raining image

spacing, shown in Fig.7.8, are clearly separated and will not give any falsc alarms.

Finally, the 3-D representation of the correlation functions obtained with the 15°
training image spacing for the WF SDT, conventional SDF and SDF/POF — for

the same in-class and out-of-class tank images — are shown in Fig.7.11. The figures
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Figure 7.9: Results of the conventional SDF designed with training image spacing
of 15° for the distortion range 0° to 180°. IMP and OMP are the in-class and
out-of-class mazimum correlation peaks, respectively
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Figure 7.10: Results of the POF/SDF designed with training image spacing of 15°
for the distortion range 0° to 180°, IMP and OMYP are the in-class and out-of-class
mazimum correlation peaks, respectively
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in the lefl columu are the in-class corrclations and the figures in the right column
are the out-of-class correlations. ‘l'hese correlation functions give an excellent illus-

tration of filter perlormance. All out-of-class corrclation functions are normalised to

their corresponding in-class training image’s correlation peak hcight to indicate the
discrimination ability of the filters. Fig.7.11 illustrates that the WF SDF gives the
sharpest correlation peak and minimal sidelobe distributions for the in-class training
immages, which results in better PRMS performance at the correlation plane. Fur-

thermore, it shows the very broad output distributions for the oul-of-class images.

7.5 Wiener Filter Applied to Laser Cutting Process
Control

Note: the work expressed in this seclion was carried out together with iy colleague,

Nr. Mingyaw Huang; thus only brief description is given. hare.,

In gas assisted laser cutting, melted and partly vaponsed metal liquid rapidly mix

with the assist gas jet and arc blown out from the workpiece lower kerf surface.

Characteristic spark cones are formed which are a function of the flow dynamics,
system thermodynamics, kerf geometry, and dross altachment conditions. High
intensity spark cones were produced during a good cut when no dross attachment

was evident on the workpiece lower surface. Sparser spark cones were generated

when drosg became attached to the workpiece lower surface and disturbed the flow,
In this cutiing process, spark cone images from a good quality cutting process and
a poor quality culting process are quite similar. They differ only in the scale of the
sparser spark lines; a good cut has few sparse spark lines, whereas a poor cut has
an extensive sparse spark structure. The Wiener filter based correlator, discussed

in this chapter, shows betller performance than several traditional filters, especially

n distinguishing similar patterns; thus, it is particularly suitable for assessing the

quality of the laser cutting process through the analysis of its spark cone image.

Fig.7.12 is a typical spark image generated from a gas assisted laser cutting process.
From Fig.7.12, it is found that the spark conc image normally consists of two sep-
arated sub-cones. An intense concentrated inner cone, and a lighter sparser outer
cone. The conditions of the dross attachment on the workpiece lower surface alters
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Figure 7.11: The 3-D rcpresentations of correlalion functions oblained with the 15°
training image spacing of WIF SDF ((a) and (b)), conventional SDI' ((¢) and (d)),
and POF/SDF ((e) and (f)) for the same in-class and out-of-class tank images
respectively. The figures (a), (c) and (e) are the in-class correlations; and (b), (d)
and (f) are the out-of-class correlations
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(i

Figure 7.12: A typical spark cone image from mild steel cutting process

the relative size of the two sub-cones.

Figure 7.13: Spark cone image of 2 mm mild steel cutting process good cul

I'ig.7.13 to Fig.7.17 are spark cone images from good quality cutting processes
of mild steel of different thicknesses. There is little or no dross attachment on
these workpiece lower surfaces. The figures run from Fig.7.13, “2mm”, to Fig.7.17,
“6mm”. From these figures, it can be seen, that the spark cones are very intense
and with nearly no sparse sparks in the outer layer of the cones.

I'ig.7.18 to Fig.7.21 are spark cone images for different dross attachment conditions
for 4mm mild steel. The figures run from Fig.7.18, dross free, to Fig.7.21. severe

dross attachment. From these figures, it can be seen that the smaller the sparse
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Figure 7.14: Spark cone image of 3 mm mild steel cutting process good cut

Figure 7.15: Spark cone image of 4 mm mald steel cutting process — good cut

Figure 7.16: Spark cone image of 5 mm mild steel cutting process — good cut
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Figure 7.17: Spark cone image of 6 mm mild steel cutting process good cut

spark region the cleaner the cut. There is a high degree of similarity between the
images of Fig.7.18 and Fig.7.19; however, one is for a clean cut and the other has
dross attached to the workpiece lower surface. It is for these circumstances that the

Wiener filter formulation is extremely useful.

Figure 7.18: Spark cone image of clean cut process mild steel

By using the clean cut spark cone image as the in-class image and the low dross cut
spark cone image as the out-of-class image, the WF for a specific thickness of mild
steel cutting process can be constructed using Eq.(7.15). The quality of the laser
cutting process can then be assessed by cross-correlating this filter with the process

image. A high correlation peak indicates a quality similar to the good cut. A lower
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Figure 7.19: Spark cone image of low dross cutting process

Figure 7.20: Spark cone image of medium dross cutting process

correlation peak indicates a poor cutting quality. Fig.7.22(a) is the result from a

} mm mild steel good cutting process, and Fig.7.22(b) results from a poor cutting

PTrocess.

As mentioned previously, spark cone images generated during poor cutting processes
may be similar to those for good cutting processes. Consequently, these images may
make it difficult for the filter to distinguish a good cut process from a poor one.
A solution to this problem is to combine a greater number of similar images from
poor cutting processes into the construction of the WF. Table 7.2 lists the relative
output peak heights of the cross-correlation between the process images and various

Wiener filters for 4 mm mild steel. In Table 7.2, the various filters were constructed
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Figure 7.21: Spark cone image of heavy dross cutting process

Table 7.2: Relative cross-correlation peaks heights

Filter GC PC:1 PC:2 PC:3 PC:4 PC:5 PC:6
WF-n2 1.0 0.058 0.161 0.022 0.175 0.186 0.321
{

7
WF-n3 1.0 0.095 0.154 0.118 0.024 0.148 0.302
WF-n4 1.0 0.097 0.166 0.171 0.187 0.021 0.342
WF-n5 1.0 0.101 0.166 0.158 0.171 0.367 0.018

GC = Good Cut: PC = Poor Cut
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Figure 7.22: Cross-correlation result using a WF filter — / mm mild steel: (a) from
good cutting process, (b) from poor cutting process
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by combining: two similar images from poor cutting processes as the noise image for
WF-n2, three similar noise images for WF-n3, and so on. The results are presented
graphically in Fig.7.23. The maximum out-of-class image (poor cutting process)
cross-correlation resulting from each filter is illustrated in Fig.7.24. By incorporating
five similar spark cone images from poor cutting processes into the filter construction,
the maximum cross-correlation output peak from the out-of-class image was 37% of
that from the in-class iinage; hence, discrimination is excellent, 1f was found that the
WT-n3 Wiener filter, constructed by incorporating three out-of-class images {poor
cut images), gave the best discrimination performance. This indicates that if too
many out-ol-class images are incorporated into the filter, the information content

saturates beyond the optimum discrimination level, and performance deteriorates.
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Figure 7.23: Relative cross-correlotion peak heighis

A single WI" will only control the cutting process for a single material thickness;
thus to produce a general filter capable of being used to control a range of material
thicknesses a number of WI filters must be multiplexed together, thatl is, one for
each material thickness. For this purpose, the WF-SDF was constructed from train-
ing sct images taken from the spark-cones generated by laser cutting of mild stecl
plate of thickness Imm, 2mm, 3mm, 4mm, 5mm and 6mm. The good-cut and poor-
cut images were intograted into the filter construction as described in Section 7.3.
The resulting coefficients obtained for the various mild steel cutting processes are
tabulated in Table 7.3. The coefficients were then used to construct the WF based
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Figure 7.24: Mazimum out-of-class to in-class image cross-correlation peak ratio

Table 7.3: WF based SDF filier weighting cocfficients

1 a2 Q3 oy ay ag
WE-SDF coeflicient 0.3828 0.7810 0.6430 0.7076 0.4057 0.5220

Mild steel thickness tmm 2mm 3mm 4dmm  5mm  6mm

SDF. The WL based SUI filter can thus be used in an optical correlator, as illus-
trated in Fig.7.25, to assess the quality of a mild steel laser cutting process [25]). The
WF-SDF reference image u1(«,y) is displayed on the Seiko-Epson-VPJ700-LCTV-
SLM. The grabbed process image uy(z,y) is displayed on the other VPJ700-SLM.
Hence the reference and input itnages are displayed on the SLMs resulting in the
ficld modulations ui(®,y) and us(x,y) of the Ar* and HeNe beams respectively. A
volume hologram is written to the BSO photo-refractive crystal by the interference
of Uy(u, v) (i.e. W(u,v)-SDF), the Fourier transform of u; (z,y) and Uy, a plane wave
reference beam of tuneable strength. Us{u,v), the Fourier transform of uq(x, y), is
diffracted from the WE-SDF filter, formed in the BSO, to yield, after a further
Fourier transform, the correlation between u(z,y) and wy(z, y) at the output, i.e.
uy(2,y). A high cross-correlation outpul peak, between the proccss image and the
filter, indicatcs good cut quality; Fig.7.26(a) illustrates the result. A low cross-
correlation output peak indicates that the quality of the process is poor; Fig.7.26(b)

llustrates the result.
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Figure 7.25: Schematic diagram of updateable correlator

7.5.1 Experimental result

Mild steel of different thickness was first cut without the SDF filter control system.
I'ig.7.27 shows the resulting kerf surfaces, which are of poor quality; this is because
the power and feedrate were constant for all samples. To avoid the over-heating
and consequent dross attachment on the thinner material, the feedrate should be
increased; or better still the feedrate should be controlled. Another batch of mild
steel was then cut with the SDF filter in place. Figure 7.28 illustratcs the improve-
ment in kerf quality when the SDF hased spark cone control system was activated.
The control system maxinuses the correlation peak height ui(z,y) by adjusting the

laser cutting feedrate via simple high speed multiple threshold detection algorithms.
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7.6 Conclusions

This chapter introduces a new application of the Wiener filter for pattern recognition
and classification. The Wiener filter 1s formulated so as to incorporate the noise
image, i.e. the out-of-class image to be rejected, into a one step filter construction.
Computer simulations indicate that the Wiener filter delivers superior discrimination
performance to that of the POT and CMT".

An SDF incorporating the Wiener filter (WF SDF) has been developed. The compu-
tational effort to produce a WI" SDI" is greatly reduced over that of the CMF/SDF
and POF/SDF, only needing approximately one quarter of the CPU time. Filters
tolerant to a larger distortion range translate into fewer correlations required to
perform image recognition, and this lowers the construction costs. When compared
with the conventional SDF and SDF/POF, the WF SDFs were shown to be capable
of a larger training image distortion spacing, morc than 30°, whilst still satisfying
the 100% discrimination capability over the 180° rotation range. This success results
[rom the fact that the WF incorporates the out-of-class image into a one step filter
design. 1t can be concluded that the WIF SDF is less sensitive to the distortions of
the detected images. The PRMS performance at the correlation plane for the WF
SDF is also much better than that for SDI'/POT. Tt has been demonstrated that the
WEF SDF is very effective in discriminating between images that are quite similar;
the filter will thus be efficient in discriminating between highly dissimilar objects

and background image noise in the form of a complex background scene.

The major disadvantage of the Wiener filter is its low light efficiency. However, as
most of the transmitted energy is concentrated in the correlation peak it should not
be difficult to detect the output signal,
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Figure 7.26: Cross-correlation result using a WF based SDF filter — 4 mm mild
steel: (a) from good cutting process, (b) from poor cutting process
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Figure 7.27: Kerf surfaces of different thickness, mild steel 6mm, 5mm, jmm, Imm,
2mm, Imm (without SDF filter imaging control system)
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Figure 7.28: Kerf surfaces of different thickness, mild steel 6mm, S5mm, 4mm, Imm
(with SDF filter imaging control system)
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Chapter 8

Joint Transform Correlation

8.1 Introduction

An alternative architecture to the Vanderlugt correlator for optical paitern recog-
nition is the optical joint transform correlator (JTC), proposed scveral ycars ago
by Weaver and Goodman [1]. In that setup bhoth the reference image and the
variable input object arc presented simultaneously at the input plane. The joint
transform, which is produced at the back focal plane of a lens, is recorded on a
square-law-detector {originally a photographic film). Its Fourier transform, gener-
ated in a second optical setup, produces the correlation between the reference and
input scenes in the first diffraction order. The JTC is advantageous because there
is no need for a matched filter to be accurately positioned. Its main disadvantage is
the need to share the available space-bandwidth product in the input plane between
the input object, the reference image, and a safety band (which ensures separation

of the correlation pattern from undesired terms at the output planc).

For practical pattern-recoguition applicatious, real-time square-law detection must
be employed. Thus, recent improvements in spatial light modulators {(SLMs) have
increased the popularity of the JTC. A real-time programmable JTC that uses a
magneto-optic device with a lignid crystal light valve (LCLV) was described by
Yu and Lu [2]. According to that implementation, input object functions to be
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correlated are loaded onto a magneto-optic device by using a programmable micro-
computer. A LCLV serves as a square-law detector, and at the same time it can be
read out with a coherent beam. Correlation between the input objects is obtained

by the Fourier transform of this coherent illumination read-out beam.

A real-time JTC scheme that uses a single inexpensive LCTV as a programmable
electronically addressed SLM for both the inpul and the joint transform planes
was suggested by Yu et al {3]. A microcomputer was employed to generate object
and reference patterns siinultaneously on the LCTV. A collimated coherent beam
was incident upon the LCTV, and after Fourier transforming (using a lens), the
joint transform of the input plane was obtained. The joint transform plane was
then detected by a CCD camera and recorded onto a video tape, which was then
replayed using the same LOTV. The correlation pattern was again detected by the

same CCD camera and then displayed on a TV manitor.

Javidi and Horner [4] proposed a joint transform image correlator that uses thresh-
olding at both the input and the Fourier planes. The grey-scale input signal, the
reference signal, and the joint Fourier-transform interference intensity are binarized
and thresholded to only two values. A single binary SLM with suitable electronics
for temporarily storing the joint transform signal was used for both input of the

joint 1mage scene and power spectrum encoding,

Javidi and Horner [4] compared, by computer simulalion, the performance of this
single SLM JTC with that of the classical JTC by assessing: light efliciency, the cor-
relation peak-to-sidelobe ratio, corrclation width, and cress correlation sensitivity.
Jawidi [5] further investigated the nonlincar JTC and provided analytical expressions
for the thresholded joint power spectrum. The effects of nonlinearity at the joint
transform plane — caused by the nonlinear characteristics of the SLM, as exhibited

on the correlation signal at the output plane — were studied.

Javidi and Wang [6] presented a mathematical analysis of the quantization effects
of the binarized joint power spectrum on the performance of the hardclipping bi-
nary JTC. The relationship between the severity of the Fourier plane quantization

and the dynamic range of the joint power spectrum was described. The nonlinear




Chapter 8: Joint Transform Correlation 221

compression followed by the quantization effects of the joint power spectrum on the
performance of the hard-clipping binary JTC were investigated. It was shown that
nonlinear compression or truncation in the Fourier plane, before quantization, can
improve the performance of the hard-clipping binary JTC at low quantization levels.
The severity of truncation can be adjusted analytically such that good binary JTC

performance is produced in the presence of a finite number of quantization levels.

Ficlding and Horner [7] proposed a one-focal-length hard-clipping binary JTC, which
uses a Fourler-plane de block. The use of a dc block relaxes the quantization problem
and ensures accurate capture of the joint power spectrum for binarization following
quantization with a standard 8-bit detector.

The performance of binary joint transform corrclation with realistic inpul scenes
has been studied by Hahn and Flannery [8], who addressed the effecls of variations
in threshold level, low frequency blocks, and spurious signals caused by regularly
spaced groups of multiple (identical) input targets. They introduced a new adap-
tive thresholding technique that alleviated the probiems encountered when constant

thresholds are used; it significantly improved performance.

A significant problem with a binary JTC is the substanlial computation time re-
quired for the determination of the threshold value used for binarizing the joint
power spectrumn (JPS); this is the main constraint on the system-processing speed.
Also the binarization process introduces harmonic correlation peaks in the output
plane, and a portion of the correlation plane energy is distributed among these
higher order harmonic terms. In addition, the higher order terms may vield false

alarms, thereby complicating the target-detection process.

Recently, Alarn and Karim [11] introduced a fringe-adjnsted-filter (FATF) based joint
transform correlator in which the JPS is multiplied by the FAF before applying
the inverse Fourier transform to yicld the correlation signal output. This technique
appears to be particularly attraciive as it avoids the problems associated with the
other techniques. However investigations discovered that the FAI based JTC is
very sensitive to noise in the input scene. Thus, in order to cnable the FAF based

JTC to accommoedate noise in the input scene, this chapter introduces a modified
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JTC, in which a modified fringe-adjusted filter (MFAF) is used, thus overcoming the
difficulties encountered in the binary JTC technique. This chapter then introduces
a SDF based modified fringe adjusted JTC which enables the JTC to accommodate
a high degree of image distortion.

8.2 Joint Transform Correlation

8.2.1 Basic concept

Input Image s | x Reference
t(x,y) Image r(x,y)

Collimati lnput
ol;r:sa e Bea_m Plane
Sph!ter Fourier
Plane
| Laser [ cCD,
SLM,
Computer ‘
Switching
| | Board
x<—1-
JPS Correlation
e Y / Peak
T g Mirror
arge
Zero-Order
‘ CCh, Terms
SLM, L2 Output
Plane

Figure 8.1: Schematic of the joint transform correlator

A real time fringe-adjusted JTC is shown in Fig.8.1, where the reference and in-

put images are displayed simultaneously in the input plane using a spatial light
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modulator (SLM). Assume that r(2,y -+ yo) denotes the reference image function
and #{z,y — yo) represents the input image function in the input plane, separated
by a distance 2y, along the y axis. The input joint image function f(z,y) can be
expressed as

fle,y) = v(z,y + yo) + t{z,y — yo) (8.1)

Lens L, in Fig.8.1 performs the Fourier transform of f(w,y}, given by
Plu,v) = Rlu,v)eap(joye) + T(u,v)eap(~jvyo) (8.2)

where R(u,v) and T'(u,v) are the Fourier transforms of r(z,y) and ¢(x,y), respec-
tively; u and v are mutually independent [requency domain variables scaled by a
factor 27 /Af, A is the wavelength of the collimating light, and f is the focal length
of the Fourier transforming lens Ly and Lg. The joint power spectrumn — which is
the intensity of the complex light distribution produced in the back focal plane of
Ly — is given by
[, 0)F = [B(w,v)]* + |T(u, )
+R(u,v)T"(u,v)exp(i2vys)

+ R (u, v)T' (v, v)exp(—J2vyo) (8.3)
and detected by a square law detector such as a CCD array or liquid crystal light
valve. In a classical JTC, the JPS, i.c. Eq.(8.3), is inverse Fourier {ranslormed by
lens Ly to yield the correlation signal. However, in a binary JT'C, the JPS is first
binarized by applying a nonlinear hard-clipping mask [9] at the Fourier plane belore
taking the inverse Fourier transform of the JPS

Lt | 2
|F (2, 0)|* = {+1) if [£(w,v)* > T (8.4)

—1, otherwise
where T is the JPS binarization threshold, defined by

T = median[|F(xu, v)}?]. (8.5)

In general, the threshold value is selected by making the histogram of the pixel
values of the JPS and then picking the median [9]). This process is normally time

consumning.

Recently, a JTC based on an amplitude-modulated filter (AMF) [10] was proposed
in. which the AMF is defined by
1

Happ(u,v) = TR o) (8.6)
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The JPS is multiplied by H.ns before the inverse l'ourier transform operation is
applied to produce the correlation output. This scheme is found to yield better
correlation performance than a binary JTC, However, the fact that |R{u,v)|~* may
create one or more poles may contribute to other serious problems. To overcome
problems occurring with poles in the AMF based JTC, Alam and Karim [11] pro-
posed a fringe-adjusted JI'C for which the fringe-adjusted filter (FAF) is defined
by
B{u,v)

Alu,v) + |R(w, v)|?

where A(u,v) and B{u,v) are either constants or functions. When B(u,v) is prop-

Hpap(u,v) =

(8.7)

erly selected, one can avoid having an optical gain greater than unity. With a very
small value of A(u,v), the pole problem is eliminated, whilst at the same time it
is possible to achieve very high autocorrelation peaks. The FAF is a rcal-valued
function because it involves enly the intensity and has no phase terms; a FAF is
therefore suitable for optical implementation. The computations required to pro-
duce the FAF may be completed before the input scene is introduced into the input
plane of the JT'C. Thus, the inclusion of the filter does not have any significant
detrimental effect on the processing speed of the system. However, an additional

spatial ight modulator is necessary to display the FAF Iunction, as shown in Fig.8.2.

A major problem limiting the performance of a FAF based JTC is that it is very
sensitive to noise in the input scene. It is well known that the influence of input scene
noise is greater for higher spatial frequencies in the Fourier plane of the correlator;
unfortunately it is the high frequencies that carry the discriminant information that
is vital for unambiguous input scene recognition. When A(u,v) in Eq.(8.7) is sct
to a small value, the FAF greatly enhances the high frequency components of the
JPS; whilst this iinproves the system performance for a noise free image, 1t reduces
performance for real images where noise is endemic.
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Figure 8.2: Schematic of the fringe-adjusted joint transform correlator
8.2.2 Input noise characterisation
Assume that the input scene consists of the reference object with additive noise
denoted by n(z,y), thus the input scene can be expressed as
t(z,y) = t(z,y) + n(z,y) (8.8)

The input joint image function f(z,y) now becomes

f(z,y) = r(z,y + yo) + t(z,y — o) + n(z,y — yo) (8.9)
Lens Ly, shown in Fig.8.1, performs the Fourier transform of Eq.(8.9), given by

F(u,) = R(u, v)exp(jvye) + T(u, v)exp(—jvyo) + N(u, v)eap(—jvyo)  (8.10)
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where N(u,v) denotes the Fourier transform of the noise function n(z,y). Thus the
JPS al the back focal plane of L, is then written as

P ) = 1B + T o)
+2Real { 1" (u,v)T (u,v)} cos(2vys)
+2Real {N(u,v)R"(u, v)} cos(2vyo)
+2Real { N (u,v)T*(u,v)} + | N (2, 0)|* (8.11)

From Eq.(8.11}, it can be seen that noise in the input scene contributes to the last
three terms of the output signal, which may adversely affect the correlation peak
quality. Comparing Eq.(8.11) with Eq.(8.8), it can be seen that noise in the input
scene plays an important role in the JPS which is recorded by a square law detector.
The amplitude of the noise is quite small and produces maximum modulation (or
interference) of the equally small amplitude higher {requency sector of the JPS.

The FAF accentuates the higher frequency values when A(u, v) is set to a small value,
this enhances the relative magnitude of the last three terms in Eq.(8.11) when the
mput scene is embedded in noise. Thus, [or real input images the FAF based JTC
will produce a relatively poor correlation peak at the output plane. Usually, the
Fourier transform of the reference image concentrates most of the energy at low
spatial frequencies with little energy in the high frequencies. This results in the
power spectrum of the reference image, i.e. |R(u,v)|?, having an cxtremely large
dynamic range. As {R(u,v)|* appears in the denominator of the FAF, Fq.(8.7), the
dynamic range problem is alleviated somewhat, but svstem performance does not

appear to be robust (o noise.

8.3 Modified Fringe-adjusted JTC

To overcome the above problems, a modified fringe-adjusted JTC was proposed by
Wang and Chatwin [13]. The modified fringe-adjusted filter (MFAF) is defined by
B(u,v)

A, v) + | B, v)}
Eq.(8.12) still retains the advantages of the FAF. When B(u, v) is properly selected,

an optical gain greater than unity can be avoided. The pole problem is also overcome

Hmfaf(u,‘v) = (8.12)
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when the value of A(u,v) is selected to be very small whilst still achieving very high
autocorrelation peaks at the output plane. Clearly the dynamic range of |R{u,v)|
ts much smaller than that of [R(%,v)[?, used in the FAF; thus the distribution of
energy in the JPS is better optimised to cope with noise. A MFAF based JTC is
therefore expected to deliver better noise robustness than one based on the FAF.

The real-valued MIFAF is more suitable to display on a spatial light modulator than
the FAF as it has a smaller dynamic range. The computations required to generate
the MFAF may bc completed sufficiently rapidly that its use does not limit the

processing speed of the system.

The modified fringe-adjusted JPS is obtained by multiplying the filter function by
the JPS. This multiplication is achieved in the same manner as the FATF based JTC
[11], illustrated in Fig.8.2. Thus the modified fringe-adjusted JPS may be expressed

as

G(u,v) = Hupgap(u,v)|F(u,v)]
B(u,v)
Alw,v) + [ £2{u,v)

+ 2Real{ R*(u, v)T(u,»)} cos(2vyo)] {8.13)

|[IR(uaviiz + [T (u, v)?

where the input image t{z,y) is assumed o be the noisc free case. If the input
object is embedded in background noise n(x, i), using Eq.(8.11), the modified fringe-
adjusted JPS is given by,

B(u,v)
A, v) + [R(, v)]
+2Real { R*(u, n)T (u,v)} cos(2vyg)
+2Real {N{u,v)R* (u,v)} cos(2vyq)
+2Real {N{u, v)T"(u,v)} + | N(u, v)|2] (8.14)

Glu,v) =

[lR(u, V))? -+ | T(u, v)}?

when B(u,v) = 1, and |R{u,v)| » A(u,v), and the reference is the same as the
input target, i.e. r(z,y) = t(z,y), Eq.(8.14) reduces to

Gluye) > 2G4 2R ) ooz + L0

+2Real{N(u,v)exp(—~ig,)}1 + cos(2vyy)] (8.15)
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where ¢, denotes the phase of the Fourier transform of the reference image. Taking
the inverse Fourier transform of Eq.(8.15) yields the output signal containing the
desired correlation patterns. If can be seen from 13q.(8.15) that the second term is

just like the phase-only filter [14], as
2R, v)lloos(2up0)] = cap(—ign)R(u,v)ezn(i2oy0)
+ [exp(—i¢n ) B{u, v)eep(i2vyo)]* (8.18)
This produces the two desired correlation peaks, with the same performance as the

phase-only filter, but with a separation distance of 4y, along the y axis. This is a
particularly attractive characteristic of the MFAT based JTC.

For the same condifion, the FAT based JTC is expressed as

[V (u, 'U)lz
[R(w, )2

— 2 7 .
+ oR)] Real{N{u,v)exp(—i¢d,)}[1+ cos(2vyg)]  (8.17)

G(u,v) = 2-+2cos(2vya) +

The second term is very atiraclive because it is actually an inverse filter. However,
since noise has its greatest effect at higher frequencies in the frequency domain,
it is evident from Eq.(8.17) that the noise effect in the last two terms is greatly
cnhanced because of the very small value of |R(u,v)|? at high frequencies (usually
|R(u,v}]*? < 1.0). The MFAF based JTC, Eq.(8.13), reduces the noise effect by
a factor of 1/|R(u,v)|{. Notice that 1/{R(w,v)| > 1.0 for the higher frequency
contponents.

From ¥q.(8.15), it can also be seen that a zero order and noise term will be present in
the output plane. Tt therefore would appear to be a simple matter to block the zero-
order term by using an optical stop in the output plane. However, when the input
image is corrupted by noise, the zero-order term will become more complicated; the
use of an optical stop may not be effective; along with simulation results further

explanation of this will be given in the next section.

Although the deleterious effect of noise on the JTC has been reduced by using the
MFAF rather than the FAF, the noise term, i.e. last two lerms of Eq.(8.15), may

still result in poor target detection when the input scene is embedded in severe
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background noise. To further reduce the noise effect in the output plane, and at
the same lime to eliminale the zero-order term, another architecture is suggested.
This is achieved by displaying the input scene at the input plane of the JTC in
the absence of the reference image and then recording the input-scene-only power
spectrumn, expressed as

o) = |T(s,0)eap(jogo) + N(w, v)ezp(~joyo)
= |T(u,v)|* + |N(w, v)|* + 2Real { N (u, v)T*(u,v)} (8.18)

and then displaying the reference image only to produce its power spectrum | R{u, v)|?.
When the input-scene-only power spectrum, Eq.(8.18), and the reference image
power spectrum, |R(u,v)|?, are subtracted from the noise corrupted JPS expressed

by Eq.(8.11), the resultant modified JPS can be expressed as

P(u,v) = [F{u,v)|” ~ [R(u,v)|* - [I{u,v)[?
= 2Real{T(u,v)RB"(u,v)}cos(2vyp)
+2Real { N{u, v)R*{u,v)} cos(2vya) (8.19)

where computation involving the reference image power spectrum [R(u, v)|* may be
completed before performing the joint transform correlation operation. The sub-
traction operation can be performed either optically [15} or electronically, using the
computer shown in Fig.8.2. When Eq.(8.19) is compared with Eq.{8.11), it can be
seen that the noise effect in the JTC is greatly reduced, although not completely
eliminated; furthermore, the large zero order term is completely removed. Using
simulation results the next section illustrates how the subtraction method greatly

improves the ability of the JTC to accommeodate noise in the input scene.

When this modified JPS, Eq.(8.19), is multiplied by the MFAF, i.e. Eq.(8.12), the
final modified fringe-adjusted JPS becomes

2B(u,v)
Alw,v) + | R, v)|
F-Real{ N (u, v) R* (v, v)} cos(2vye)] (8.20)

Plu,v) =

[Real{T (u,v)R*(u,v)} cos(2vyo)

Lens Ly in Fig.8.2 takes the inverse Fourier transform ol Eq.(8.20) to produce cor-

relation patterns with reduced noise terms at the output plane.
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Au alternative hybrid architecture for implementation of the modified fringe-adjusted
filter based JTC is shown in Fig.8.3, Three scparatc CCDs are used to capture: the
joint transform power spectrum, the power specirum of the input scene and power
spectrum of the reference image. These power spectra are sent to the computer
sitnultaneously in order to evaluate the MFAF-JPS. Providing the CCDs have a
large dynamic range, the power spectra of the input and reference images can be
electronically removed from the JPS by pixelwise subtraction, The modified fringe-
adjusted joint power spectrum is displayed on SLM,, Fig.8.3, which is then optically
addressed hy a monochromatic plane wave to produce the desired correlation pat-
terns at the output plane via the Fourier transforming lens L5 shown in Fig.8.3. The
computer, shown in Fig.8.3, can also be replaced by a custom designed high speed
microprocessor, so as to improve the processing speed of the system. Notice that
the MFAF can be produced directly from the power spectrum of the reference image
captured by CCD, and then electronically multiplied by the JPS; thus the reference

image can be updated in real time, thereby making this system more flexible.

8.3.1 Multi-object modified fringe-adjusted JTC

If the input scene contains n objects £1(z — @1,y — y1). t2(2 ~ @2,y — ¥2), . . . tafw —

Zny Y — Yn), and noise n(z,y - yo), the joint input image may be expressed as

iz, y) = vz, 4+ yo) + Etf(fﬂ — &4,y — %) +r{z, ¥ — yo) (8.21)

i=1

the corresponding JI’S is given by
|F(wo)* = [R(u,0)* + 3 |Ti(u, )|’
=1

+2Y " Real{T:(u,v) R*(u,v)} cos[uz; + v(yo + v:)}

=1
n n

+ Z Z Real{Ti{w, v)T; (u, v)} cosluz; -+ v(y: — yi)]

i=1 k=1

+2Real {N(u,v)R"(u,v)} cos(2vyo) + | N (u,v)i?
+23 " Real{N(u,v)T;(u,v}} cos[uzg + v(yo — 3:)] (8.22)

i=1
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Figure 8.3: Schematic of an alternative real time fringe-adjusted JTC

where ¢ # k and T;(u,v) denotes the Fourier transform of ¢;(z,y). The correlation
output will contain the following terms: autocorrelations of the reference and the
input objects, the cross correlations between the reference and the input objects,
the cross correlations between the different input objects and various noise terms.
The last four terms may produce false alarms in the correlation plane, especially
the noise terms. Such false alarms can be avoided, or reduced, by eliminating the
cross correlation terms between the different input objects and reducing the noise
terms. This can be achieved by subtracting the input-scene-only power spectrum

and reference object power spectrum from the JPS expressed by Eq.(8.22); this
results in

Plw) = ‘Zi Real{T;(u,v)R*(u,v)} cos[uz; + v(yo + v:)]

=1

+2Real { N(u,v)R*(u,v)} cos(2vyo) (8.23)
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When this modified JPS, Eq.(8.23), is multiplied by MFAT', i.e. Eq.(8.12}, the final
modified fringe-adjusted JPS for multiple input objects gives

_ 2B (u,v) i - . ‘ L
Glu,v) = o) 1 R o)) [E Real{Ti(u,v)R"(u,v)} cos[uz; + v(yo - ¥:)]
-Real {N(u, v) R (u,v)} cos(2vyo)] (8.24)

From Eq.(8.19) or Eq.(8.20) and Fq.(8.23) or Eq.(8.24), it is evident that noise
in the output plane is independent of the multiple objects in the input scene; it
comes only from the convolution of the reference object with the noise. This very
attractive result illustrates a method of reducing the deletericus ellect of noise on
the performance of the JTC system.

8.4 Results from Modified FAFJTC

To investigate the performance of the proposed modified [ringe-adjusted JTC, the
following three cases are considered: 1) an input scene with a single noise free object,
2) an input scene with a single severely noise corrupled object, and 3) an input scene
containing multiple objects in a noisy background. The results are compared with
the FAF based JT'C. For both the MFAT and FAT based JTCs, A(u,v) was taken to
be 1 X 1079 to overcome the pole problem, and B(u,v) was set to unity. In all cascs,
the correlation peak intensity was normaliscd with respect to the total energy of the
output plane; so that a perfect antocorrelation would use the full dynamic range of
the 256 grey levels (i.e. 8-bit) and all correlation outputs are fully resolved to give

a meaningful coruparison of the performance of the different filters investigated.

8.4.1 Input scene with noise free single object

For the single-object inpul scene, a 3048 pixel, noise free, image of a Bradley APC
vehicle was used as the reference image, as shown in Fig.8.4(a). The same vehicle,
with the same resolution, was taken as the target image. The two images were com-
bined and zero padded to form a 128x128 pixel array joini image. This joint input
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image was introduced to SLM; (shown in Fig.8.3) at the input plane, and then the
power spectra of the joint image, input image and reference image were captured by
CCD3, CCD; and CCDy, respectively, as shown in Fig.8.3. The computation of the
MFAF or FAF, the power spectrum subtraction, and the multiplication operations
are completed by the computer. The final modified fringe-adjusted JPS is inverse

Fourier transformed to yield the desired correlation output.

(a) (b)

Figure 8.4: Bradley APC images used in the simulation, (a) noise free APC image,
(b) noise corrupted APC image with the signal energy to the noise energy ratio of
0.21

The correlation output for the MFAF based JTC is shown in Fig.8.5(a), which shows
that the output correlation peaks are extremely well defined, showing that the target
can be detected without ambiguity. For comparison, the correlation output for the
FAF based JTC is also shown in Fig.8.5(b). It can be seen from Fig.8.5(a) and (b)
that the FAF based JTC delivers better performance than the MFAF based JTC
when the input scene has zero noise content. The performance is quantified by the
results tabulated in Table 8.1, where API denotes the autocorrelation peak intensity,
PSR is the correlation peak to secondary peak ratio, PRMS is defined by Eq.(3.18)
which is also the correlation peak to noise ratio, and PNI is the number of pixels

inside the correlation peak at the full width at half of its maximum value (FWHM).

From Table 8.1, it can be seen that the correlation peak quality of the FAF based
JTC is much better than that of the MFAF based JTC; this is because multiplication

of the FAF with the JPS greatly enhances the high frequency components of the
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(b)

Figure 8.5: 3-D plot of correlation output functions when the input scene is free of

noise, (a) from the MFAF based JTC, (b) from the FAF based JTC
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Table 8.1; Quantified results from an input scene with a noise frec single object

JTC type API PSR PRMS PNI
MFAF based JTC 11.90 2495 839.43 1
FAF based JTC 5425 100.54 60246 1

modified JPS. However, there is no doubt that, from Table 8.1 and Fig.8.5(a), the
MFAF based JTC delivers good correlation performance and very effectively detects

the target in the input scene. The PNI metric is [ound to be 1 which is equal to
that of the FAF based JTC.

8.4.2 Input scene with a single noisc corrupted object

An cffective correlation system should be able to accommodate noise in the input
scene; this means that if the target is embedded in a noisy background, the correlator
can still recognise the noise corrupted target. In this subsection, the noise robustness
of the MFAF based JTC is investigated and compared with that of the FAF based
JT'C. 'Fhe noisy input scene is shown in IFig.8.4(b}, in which a 30x48 pixel array of
the Bradley APC vehicle is severely corrupted by noise, the ratio of target signal
energy to noise energy is 0.21. It is evident from scrutinising Fig.8.4(b) that this is
a difficult pattern recognition problem.

First of all the MFAF based JTC, with no subtraction of the input image and
referernce image power spectra from the joint image power spectrum, is investigated.
T'ig.8.6(a) gives the 3-D plot of the correlation output from the MFAF based JTC.
From Fig.8.6(a), it can be seen that a large and broad zero-order term is present in
the output plane; the correlation peaks are embedded in a severcly noise corrupted
background, which makes their detection a difficult task. It is evident [rom Fig.8.6{a)
that the use of an optical stop to block the zero-order term would not be very
effective. For comparison, when the noisy image of Fig,8.4(b) is inpul into the FAF
based JTC, the 3-D plot of the oulpnut correlation function is shown in Fig.8.6(b).
Clearly the FAF based JTC is extremely sensitive to noise in the input scene, as the

correlation peaks are completely lost in the output plane noise. From TFig.8.6(a),
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Table 8.2: Quantified results from an input scene with a noisc corrupted single object

JTC type API PSR PRMS PNI
MFAL based JTC 0.691 3.20 44.51 1
IFAF based JTC  0.634 1.82 2040 1

the MIFAT" based J1'C produces two correlation pcaks at the output plane which,
although they are embedded in noise, are detectable.

When the power spectra of the input image and the reference image are subtracted
from the joint image power spectrum, the 3-D plot of the correlation output func-
tion for the MFAF based JTC is given in Fig.8.7(a), it gives an excellent result.
Compared with Fig.8.6(a), it is evident that the subtraction technique is extremely
usgeful in reducing the deleterious effect of noise on the JTC. Tt can also be seen from
['ig.8.7(a) that the zero order term is completely removed [rom the output plane and
that the correlation signal can be detected using a simple threshold detector. For
the same case, Fig.8.7(b) shows the 8-D plot of the correlation output function using
the AT based JTC. Two correlation peaks are evident in the output plane but they
are seriously corrupted by noise; this makes their detection quite difficult. It can
be concluded, from Fig.8.7(a) and 8.7(b), that the MFAF based JT'C is far more
robust to noise than the FAF based JTC. Furtherniore, the results prove that the
subtraction technique is very effective in reducing noise in the output correlation

plane.

The performance of both the MFAF and FAF based JTCs, I'ig.8.7(a) and 8.7(b),
is quantified by the resulls tabulated in Table 8.2. Irom Table 8.2, it can be seen
that when the target is severely corrupted by noise in the input scene, the autocor-
relalion peak intensity produced by the MIFAF bascd JTC (with a value of 0.691) is
approximatcly 10% higher that that produced by the FAF based JTC (with a value
of 0.634). The autocorrelation peak to secondary peak ratio and the correlation
peak to noise ratio from the MFAT based JTC is found to be almost twice that of
the FAT based JTC. Notice that the PSR value from the FAF based JTC is 1.82
which is less than 2.0, which means that the secondary peak intensity is greater

than half that of the correlation peak intensity. This may lead to false alarms if
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[Migure 8.6: 3-D plot of correlation output functions with no power speclra subtraction
when the input scene is noise corrupted, (a) from the MFAF based JTC, (b) from
the FAF based JTC
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IFigure 8.7: 3-D plot of correlation output functions wilh power spectra subtraction
from a noise corrupted input scene, (a) from the MFAF based JTC, (b) from the
FAF based JTC
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the thresholding value of a detector used to detect the correlation signal is set to
PSR=2.0, whereas the MFAF based JTC, with PSR= 3.20, will detect the target

without ambiguity.

8.4.3 Multi-object input scene with background noise

When the input scene contains noise free multiple objects, Fig.8.8 (only a 128 x192
pixel array is shown, this is zero padded to give a 256x256 pixel array for the
simulations), the MFAF based JTC delivers very good performance, the correlation
peak intensity from the target object is extremely well defined with only a very
small signal from the non-target objects; for brevity, this case is not reported herein.
This subsection concentrates on the MFAF based JTC, with a multiple-object input
which is severely corrupted by noise. The joint image input consists of a number
of tanks with the reference image separated from the input scene which contains
several different tanks; however, the input scene is severely corrupted by noise with
signal energy to noise energy ratio of 0.4, as shown in Fig.8.9. Note that one of the
objects in the input scene, which happens to be the object located at the bottom
left position, is identical to the reference vehicle, i.e. the Bradley APC vehicle, if

the input scene was not corrupted by noise.

Figure 8.8: Notse free multiple object input scene used in the simulation

When Fig.8.9 was used as the input to the MFAF based JTC, the final correlation

output is given by Fig.8.10(a). For comparison, Fig.8.10(b) gives the correlation
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igure 8.9: Noise corrupted multiple object input scene with signal energy to noise
enerqy ratio of 0.4 used in the simulation

Table 8.3: Quantified results from an input scene with multiple noise corrupted
objects

JTC type API PSR PRMS PNI
MFAF based JTC 0.283 3.29 72.66 |
FAF based JTC 0.230 1.80 29.80 ]

output from the FAF based JTC. From Fig.8.10, it can be seen that the MFAF
based JTC delivers a better ability to accommodate noise in the input scene than
the FAF based JTC. Table 8.3 gives the quantified results from Fig.8.10(a) and
I1g.8.10(b). It can be seen from this table that the target correlation peak intensity
produced by the MFAF based JTC is approximately 20% higher than that produced
by the FAF based JTC. The correlation peak intensity from the target object is 3.29
times that of the secondary peak intensity; hence, the MFAF based JTC can detect
the target from the noise corrupted multiple-object input scene, without ambiguity,
using a thresholding detector set to half the maximum correlation peak height,
whereas the PSR value for the FAF based JTC is only 1.80, which means that there
are several secondary peaks higher than half the value of the maximum correlation
peak; this may cause false alarms when detecting the target from the input scene

shown in Fig.8.9.

The PRMS metric quantifies the noise robustness of the correlator at the output

plane. From Table 8.3, the MFAF based JTC gives a PRMS of 72.66, which is
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(b)

Figure 8.10: 3-D plot of correlation output functions with power spectra subtraction
from a noise corrupted multi-object input scene, (a) from the MFAF based JTC, (b)
from the FAF based JTC
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approximately two and half times greater than that for the FAT bascd JTC (29.80).
Thus, the MFAT based JTC delivers a far greater capability to accommodate noise
in the input scene, with multiple objects, than the FAF based JTC.

In all cases, the full width of the correlation peak intensity at half of its maximum
is found to be 1x1 for both the MFAF and FAF based JTCs, either with the single
object input or with the multiple-object input. Heuce, the position of the target

object within the input scene can be located with high accuracy,

8.5 Synthetic Discriminant Function MFAJTC

Joint transform correlators preserve the shift invariant pattern recognition property,
but have high sensitivity to other distortions in the input image, such as in-plane
rotations, out-of-plane rotations, and scale variations. Therefore, it is expected that
the joint transform correlator is not able to provide a high degree of image distortion
invariance. In the VanderLugt-type correlators (matched filtering architectures),
synthetic discriminant function (SDF) filters [16],[17],{18],{19],[20],]21] have been
used to accommodate these distortions. However, SDT' filters normally consist of
both the amplitude and phase information from a training image set; this gives
rise to some difficulty in fabricating the filter. Turthermore, the SDF filter must
be aligned with the optical Fourier transform of the input image. These practical
issues limit its application for real time optical implementations. Recently, Javidi
[22] successfully applied the SDF to a JTC system in which the SDI' was used
as a relerence object in a bipolar nonlincar joint transforin correlator. His SDF
based binary JTC uses thresholding at both the input and the Fourier plane. The
greal advantage of this system is that there 1s no need to fabricate the matched
spatial filter a priori. A SDF based binary JTC [22] was [ound to be superior to a
classical SDF based JTC in terms of the correlation peak intensity, peak width, and
discrimination ability between the training set images and the nontarget images.
Whilst the system successfully manages to classify a single class of object, it does
not satisfy the equal correlation peaks (LECP) criterion, and fails with multi-class
problems. The fringe binarization of the joint power spectrum (JPS) in the SDF
based binary JTC is responsible for this difficulty.




................
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This scction introduces the application of the spatial synthetic discriminant function
to the MFAJTC, which not only delivers better correlation performance in terms
ol correlation peak intensity, peak width, and discrimination ability between one
class of images and another class of images, but also has the ability to function
successfully with multi-class problems and produce equal correlation peak heights

for images of the same class.

8.5.1 SDF-based JTC

The classical JTC is sensitive to distortions of the input image such as in-plane
rotation, out-of-plane rotation, and scale variations. To enable the JTC to accom-
modate these input image distortions, the synthetic discriminant function technique,
used in the VanderLugt-type correlators, can be applied to the JTC system in the
object space as long as the autocorrelation patterns produced by the first two terms
of £q.(8.3) are spatially separated from the desired cross-correlation patterns pro-
duced by the last two terms of Eq.(8.3). This requirement can be met if the distance
between the reference image and the input image at the input plane of the JTC is
sufficiently large; this assumes that the SLM has an adequate space bandwidth prod-
uct. Assume that a set of centred training images, r.(z,y), n = 1,..., k, spanning
the desired distortion invariant feature range is used to consiruct the spatial SDF
r{z,y) [16],[17],[19]; thus, the JTC reference image is synthesized from this training
set. The desired cross-correlation response of r(z,y + yo) 1s a constant, ¢,, for each

training image v (2, ¥ — yo), thus

f/Rn(u,v)R*(u, v)exp(—j2vye)dudv = c, (8.25)
or

/fR;(u,v)R(u,v)e:z:p[+j2vyo)dudv = Cp (8.26)
where R(u,v) and R,(u,v) are the Fourier transforms of the spatial SDF r(z,y)

and the nth training image r,(z,¥). Typically, r(z,¥) is constrained to be a linear

combination of the training mage set,

k
r(w,y) = Z_: anrn(T, ) (8.27)
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By substituting 1£q.(8.27) into Eq.(8.25) or Eq.(8.26), the coefficients a, {(n =
1,2,..., k) can be shown to be

a=Rc (8.28)

where a = [a1,az,...,a4]7, ¢ = [¢1,¢s,...,]7, and R is the correlation matrix

having elements

B fme(u v) 2} (v, v)exp(j2vy Jdudv (8.29)

Therefore, the SDI r{2,y) is determined by substituting the coefficients, obtained
by solving Eq.(8.28), back inte Lq.(8.27). The resultant spatial SDF r(x,y) is
displayed at the input plane of the JTC side by side with the input scene; this

provides a reference function with a high degree of distortion invariance.

One of the main problems with the classical JTC is the presence of a strong zero-
order peak in the output plane — that corresponds to the sum of the autocorre-
lations of the reference and the input signals — which almost overlaps the desired
correlation signals [23]. This may cause a problem in that the JTC is not able to
produce equal correlation peaks for all image mput distortions. This difficulty can
be alleviated by using a large space bandwidth product SLM to display the joint
image. Alternatively, this problem may be overcome using the hybrid architecture
shown in Fig.8.3; this arrangement subtracts the power spectra of the reference and
the input scenes, i.e. the first two terms of Bq.(8.3), from the power spectrum of the
joint image. Thus, if the inpuls to the JTC are the reference SDF r(z,y), generated
by solving Eq.{8.27) and Iq.(8.28), and the inpul scene #(2,y), the modified JPS
obtained using this system is

| Fnlu,0)f* = R{u )T (u, v)ewp(§2vyo) + B*(u, v)T(u, v)exp(—j2vyo)

. zanﬁn(u v)T™* (2, v)ezp(J2vy0)

n=1

k
+ 3 o R (u, )T {u, v)exp(—j20y0) (8.30)
n=1
From 15q.(8.30), it can be seen that the zero-order term at the output plane is
completely removed. Therefore, an SLM with a smaller space bandwidth product
SLM will meet the requiremnent that the two desired correlation signals are separated

in the output, plane.
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8.5.2 SDF-based modified fringe-adjusted JTC

The above SDF based JTC produces very broad cutput cross-correlation peaks af
the output plane and as a result it is difficult to locate the precise position of the
target in the input scene and discriminate one class of images from another. To solve
this problem, Javidi [22] proposed a SDF based binary JTC which uses thresholding
at both the input and the Fourier plane. A SDF based binary JTC was found to be
superior to a SDF based classical JTC in terms of the correlation peak intensity, peak
width, and discrimination ability belween the training image set and the nontarget
images. However, one of the main problems with the SDF based binary JTC is that
it docs not satisty the ECP rule for the same class of image inputs. Furthermore, it

may lose its discrimination ability for multi-class problems (more than 2 classes).

Very recently, in order to overcome the difficulties involved in the SD¥ based binary
JTC, Wang and Chatwin [24] proposed a SDF based fringe-adjusted JTC which
uses a modified {ringe-adjusted filter (MFAF) in the optical setup illustrated by
Fig.8.3. We already know that this MFAT is generated from the power spectrum of
the reference image captured by CCD,, shown in Fig.8.3 and defined by

B(uav)

H = )
(09) = o)+ 1w (8:31)
When the spatial SDF r(z,y) is utilised in this system, 159.(8.31) becomes
H(u,v) = B (ff’ v) (8.32)
Alu,v)+ |2 a,,,Rn(u,v)1
n=1

Thus the SDI based fringe-adjusted JPS is obtained by multiplying the function,
Eq.(8.32), by the JPS expressed by Eq.(8.30)

' k
Gluv) = Ble) |3 on s ()l 203)
Alu,v) + nz=)‘ anRn(u, v)| =t

&
+ 3 an i (u, o) T{u, v)cmp(-—j?nyo)] (8.33)

n=1
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When B{u,v) =1 and |R(u,v)| > A(x,v), Eq.(8.33) reduces to

& 4
Gluw) Y an T gy
E a'll-'Rn(qu)
n=1

m=1

*(u, 0)T(u,v)

+Z ar, m

m=1 5_‘ an B, {u,v)
n:]

ezp(—j2vyo)

= T"(u,v)expljd(u, v)lewp(j2uyo)
+7'(u, v)ewpl—j(u, v)]ezp(—~j2vyo) (8.34)

where ¢(u, v) denotes the phase of the Fourier transform of the reference SDF r(z, y).
According to the above section, taking the inverse Fourler transform of Eq.(8.34)
should produce ECPs for any i(z,y) belonging to the same class. Unfortunately,
the solution set of a, solved using Fq.(8.28), in the SDF based classical JTC is not
the solution in the SDI" based fringe-adjusted JTC. Our aim is that the SDF-based
modified fringe-adjusted JTC will produce the constant correlation peak, ¢;, for cach
training image (2, y), { = 1,2,...,k, l.e.

am R, (u,v)

Bi(u, v)exp(j2vy0) = ¢ (8.35)

¢

where I = 1,2,...,k Eq.(8.35) is a system of nonlinear equations which may be
solved using an iterative procedure [25] based on the Newton-Raphson algorithm.
The synthesis coefficients a for the SDF r(z,y) are constrained to be real, and the
accuracy of the coefficients is improved using the iterative formula

1

—] (8.36)

0

6 = aj + afe, - aof

where 1 is the iteration number, a is a damping constant, and m} is the modulus
of the peak correlation response of image input r(2,y — yo) with the spatial SDI?
r(x, 1+ yo) constructed with a’. 'This relaxation algerithm was used with success in
the SDF filter based correlator in Chapter 6 and Chapter 7. In the simulations, 12
iterations were found to be sufficient to achieve equal correlation peak heights (to

within 1% error) for all training set images.
g g
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Once the coefficients a are determined using the relaxation algorithm given by
Eq.(8.36), the spatial SDF »(z,y) is synthesised using £q.(8.27) and then displayed
side by side with the input scene on the input SLM; of Fig.8.3. The modified joint

image power spectrum is thus obtained by multiplying Eq.(8.32), (which is gener-
" ated from the power spectrum of the spatial SDT' r(z,y) captured by CCD, shown
in Fig.8.3) by the joint image power spectrum. This is then displayed on SLM; and
optically addressed by a plane, parallel laser beam, which will produce the desired

correlation signal at the output plane if the input image belongs to the desired class
of images.

8.5.3 SDF-based MFAJTC with multi-object input

If the input scene contains m objects ¢1(z — =1,y ~ y1), t2(z — @2,y — p2), -+,
L@ — Tmy ¥ — Y ), the joint input image of the SDF based JT'C may be expressed
as " m
o) = D aurale  90) + 3 e = a9 = ) (8.37)
ne= i=1

The corresponding JPS is given by

IPwo)} = R o)P + 3 [T, o)

g=]
i

+23 | Real{T:(u,v) R"(u,v)} cos[uz; + v{yo + y:)]

=1
mom

+3 Z: Real{T;{u,v)T;(u,v)} cos[uz; + v(y; —yx)] (8.38)

i=1 k=1

where 7 # k and
k
R(u,v)=FT {E anra{T, ¥ + yg)} , (8.39)
ne=l

and I'T' means Fourier transform operation. ‘I'he correlation output of I1q.(8.38) will
contain the following terms: autocorrelations of the reference spatial SDF r(z,y),
and the input objects #;(x,y}, ¢ = 1,2,...,m; the cross correlations between the
reference SDF¥ r(z,y) and the input objects t;(2,y), the cross correlations between
the different input objects. I'he last term may produce false alarms in the correlation

plane. Such false alarms can be avoided using the architecture shown in Fig.8.3,
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which subtracts the power spectrum of the mmulti-object scene captured by CCDy
[rom the JPS. Thus, the modified SDI'-based JPS results in

Plu,v) =23 Real{Ti(u,v)R*(u,v)} cos[uz; + v{yo + %:)] {8.40)
t=1
When this modified SDF-based .IPS, Eq.(8.10}, is multiplied by the SDF-based FAF,
i.e. Eq.(8.32), the final SDF-based modified fringc-adjusted JPS for the multiple
input objects gives
2B(u, =
G(u,v) = Ao vfiulggu,v)| > Real{T;(u, v)R"f(u, v)} cosfuz;+ v(yo +¥:)] (8.41)

i=1

Therefore, if the multi-object input scene contains the different classes of the desired
images, the SDF-based modified fringe-adjusted JTC will give different correlation
peak heights corresponding to the different class of images; for a particular class the
peak heights will be equal.

8.5.4 Results from SDF-based MFAJT'C

To investigate the performance of the proposed SDF-based MFAJTC, the following
two cases are considered: (1) an input scene with a single object from the training
image set, (2) an input scene containing multiple classes of object. The results are
compared with the SDF-based classical JTC (CJTC) and the SDF-based binary
JTC (BJTC). For the SDF-based MFAJTC, A(u,v) was taken to be 1 x 107¢ to
overcome the pole problem, and B(u, v) was set to unity. For the SDI*-based BITC,
tlie J°S median was used as the threshold for binarization.

The training image set used in the simulations consists of in-plane rotated images
of the Bradley APC vehicle. Each image is centred and normalised to unit energy.
The APC vehicle was rotated from 0° to 95° in increments of 5°, the images were
encoded with a resolution of 64x64 pixels. Views of the vehicle at 0°, 15°, 30°, 507,
70° and 90° are given in Fig.8.11.

The training image set, Bradley APC vehicle ranging from 0° to 95° in increments of

5°, is divided into two classes. The first class of image includes ten in-plane rofated
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Figure 8.11: Views of the Bradley APC vehicle (from left to right and top to bottom)
at 0°, 15°, 30°, 50°, 70° and 90°

images of the Bradley APC vehicle ranging from 0° to 45° with increments of 5°: the
rest of the in-plane rotated training image set belongs to the second class of images.
Thus, SDF reference image r(z,y) is constructed from these two classes of images,
with the correlation peak intensity from the first class of images being controlled
to be twice that of the second class of images. The spatial SDFs r(x,y) for the
MFAJTC, CJTC and BJTC are shown in Fig.8.12(a), (b) and (c), respectively; the
SDF r(z,y) is displayed in the input plane of the JTC side by side with the input

scene to produce the output correlation results.

Table 8.4 illustrates quantitative results from the correlation tests for the SDF-based
MFAJTC, CJTC and BJTC with the input scene from individual training set images,
respectively. It can be seen from this table that the SDF-based MFAJTC presents
reasonably good results; the equal correlation peak rule for the same class of images
is well satisfied; and from the PNI measure, the correlation peaks produced are
relatively narrow. Thus the two classes of image can be classified without ambiguity
using the SDF-based MFAJTC. For the SDF-based CJTC, as expected, the equal
correlation peak criterion for the same image class is well satisfied; however, the

correlation peaks are very broad and the peak to secondary peak ratio is lower.




Chapter 8: Joint Transform Correlation

(a)

(b)

(e

Figure 8.12: Spatial SDF reference function r(z,y) from (a) the fringe-adjusted JTC,
(b) the classical JTC and (c) the binary JTC

Table 8.4: Quantified results using individual training set images as the input scene

SDF-based MFAJTC

SDF-based CJTC

SDF-based BITC

Input CPI PSR PRMS PNI CPI PSR PRMS PNI CPI PSR PRMS PNI1
o” 19.72 157.69 1 1.00 1.18 24.32 205 89.30 12.29 370.97 1
20,09 160.37 2 1.00 1.23 23,78 217 90.49 9.78 376.15 1
107 19.93 159.17 3 1.03 1.26 24.08 215 71.82 4.62 295.71 1
152 19.87 158,75 3 1.02 1,25 23,78 222 97.52 11.95 106.82 1
20° 9.89 158.82 1 1.03 1.20 24.13 221 114.72 12.46 482.78 1
259 19.87 158.71 2 1.01 1.01 24.00 216 91.58 B.56 380.89 1
30° 19.84 158.78 1 1.02 1.18 24.98 201 97.72 9.40 407.65 1
19.97 160,17 1 1.01 1.17 25.78 179 119.53 12.29 504.27 1
10° 19.71 8 1 1.00 1.52 26.50 149 105.43 9.85 441.57 1
459 20.07 3 1 1.00 1.5 27.96 113 107.21 13.03 449.43 1
507 10.60 1 0.50 0.48 7. 802 14.83 1.44 '
55¢ 10.64 3 0.50 0.52 7.57 808 9.91 1.18 16
60° 10.67 2 0.5 0.56 7.93 804 9.90 0.91 17
65° 10.70 2 0.50 0.60 8.23 803 15.19 1.43 5
70° 10.62 6 0.50 0.64 8.49 808 11.03 1.09 15
75° 10.66 4 0.50 0.67 8.87 802 19.71 2,21 1
80° 10.69 5 0.50 0.69 9.15 796 15.72 1.74 3
85% 10,62 6 0.50 0.77 3,44 789 15.72 1.68 1
90° 10.66 7 0.50 0.79 9.59 778 10.05 0.88 30.67 )¢
959 10.69 1 0.50 0,82 9.72 750 20.22 2.15 81.1 1
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Notice that the SDF-based MFAJTC has a correlation peak iuteunsily average of
19.90 and 10.66 for the first class and the second class of images respectively, whereas
the SDF-based CJTC only gives 1.01 and 0.50 respectively. The PRMSs for the
SDF-based CITC are considerably less than those for the SDF-based MFAJTC.
The SDI'-based CITC has an average PSR of 1.25 and 0.65 for the first class and
the second-class of images respectively; whereas, the SDF-based MFAJTC delivers
a better average PSR of 2.85 and 1.82, respectively. Note that although the SDF-
based CJTC satisfies the equal correlation peaks criterton for the second class of
images, the sidelobe peaks are almost twice that of the desired correlation peak,

making them difficult to distinguish from the sidelobe noise.

For the SDF-based BJTC, it is evident from Table 8.4 that the correlalion peaks do
not satisly the ECP rule; the maximum variation of the correlation peaks is 40%
and 51% for the first class and second class of imagces respectively. It can be seen
from this table that, for the first class of images, the SDF-based BJ1'C delivers
better results than either the CJTC or the MFAJTC; however, it cannot classify
the second class of image as some correlation peaks are totally buried in the output
background noise. Thus overall, the SD¥-based MFAJTC delivers the best results.

The worst cases of the correlation outpuf from the 5DI-based MFAJTC, CJTC
and BJTC are shown in Fig.8.13. All the correlation results from the second class
of images are normalised to their corresponding correlation peak height from the
first class. It can be seen from these 3-D plots of the output correlations, that the
MFAJTC can classify the two classes of image with a relatively narrow correlation
peak even in the worst case (see IMig.8.13(a) and Fig.8.13(b)). However, correlations
from the SDF-based CJTC are not well localised and the desired correlation peak is
alimost half the height of the secondary peak (see T'ig.8.13{d)); the SDF¥-based BJTC

loses the correlation peak in the background noise for the second class of images (see
Fig.8.13(f)).
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Figure 8.13: The worst-case correlation results for the SDF-based MFAJTC: (a)
from first class set, (b) from second class set; the SDF-based CJTC: (c) from first
class set, (d) from second class set; and the SDF-based BJTC: (e) from first class
set, (f) from second class set; respectively
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Table 8.5: Quantified results from an input scene with multiple objects

first object second object third object
SDF type CPI PNI CPI PNI CPI PNI MLI
MFAJTC 6.49 1 6.60 1 3.28 2 1.70
CJTC 1.00 162 1.03 232 0.66 704 0.85
BJTC 25.04 1 18.13 1 3.51 2 5.49

Input scene with multiple objects

This subsection concentrates on the SDF-based MFAJTC with a multiple-object
input containing several different classes of object and a nontarget object. The
multiple-object input scene is shown in Fig.8.14 which contains: two objects from
the first class of images located at the right side of the figure (rightmost is object
| and just right of centre is object 2); one object (object 3) from the second class
of images located at the left side; bottom centre is a nontarget object (Abrams MI
tank, object 4). This multiple-object scene is displayed side by side with the SDF

reference scene r(z,y) to produce the correlation output.

Figure 8.14: Multiple-object input scene used in simulation

When Fig.8.14 was used as the input scene to the SDF-based MFAJTC, the final
correlation output is given by Fig.8.15(a). For comparison, the results from the

SDF-based CJTC and BJTC are shown in Fig.8.15(b) and Fig.8.15(¢), respectively.
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In terms of classilying the different objects and rejecting the nontarget object in
the multiple-object input scene, it can be seen from Fig.8.15 that the SDF-based
MFAJTC delivers the best results; whereas, discrimination problems occurred for the
SDE-based CITC and BJTC. Table 8.5 gives the guantified results from Fig.8.15(a),
(b) and (c). In the table, MLI refers to the maximum side lobe peak intensity, other
than that from the 1st, 2nd and 3rd objects, in the output plane; all the peak
values in the table are normalised to the correlation peak value produced by the
first object for the SDF-based CJTC. From Table 8.5, the SDF-based MFAJT'C
produced almost the same correlation peak heights, with PNI=1 pixel, for the 1st
and 2nd objects which are from the same class, and produced a half height correlation
peak (as designed) from the sccond class for the 3rd object with PNI= 2 pixels; the
maximum side lobe intensity {MLI) in the output plane is 1.70 which is 1.93 times
lower than that from the 3rd object. Thus, the SDI based MFAJI'C successfully
classifies the different desired objccts and rejects the nontarget object in the multiple
input scene when a thresholding detector is used. The SDF-based CJTC produced
correlation peaks that are very broad (minimum PNI= 162 pixels) making it difficult
to precisely locate the target in the input scene; furthermore, the maximumn side lobe
peak intensity, with a value of 0.85, (which is actually from the nontarget object
in the input scene) is 1.23 times that produced by the 3rd object with the value
of 0.66. Thus the SDF-based CJTC is unable to distinguish the 3rd object from
the nontarget object in the multiple object input scene. For the SDF-based BJTC,
not only are the correlation peaks produced by the same class of objects of unequal
height, but the correlation peak produced by the 3rd object is totally embedded in
the background noise. Thus overall, for the multi-object input scene, the SDF-based
MFAJTC dehivers better performance than either the SDF-based CJTC or BITC;
furthermore, the SDF based MFAJTC can be designed to control the correlation
peak height for a different class of objects so as to successtully recognise/classify

them and reject the nontarget object in the input scene.
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Figure 8.15: 3-D plot of correlation output functions with a multi-object input scene,
(a) from the SDF-based MFAJTC, (b) from the SDF-based CJTC. (c) from the
SDF-based BJTC, respectively
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Figure 8.15: Continued
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Chapter 9

General Conclusions

A good correlation [ilter should not only produce a sharp localised correlation pealk
in the output planc, but also be robust 1o neise in the input plane. This optimi-
sation is of great importance in optical correlator systems. It was found that the
filter performance is greatly influenced by the frequency band sclected in the spalial
filter design stage. Since convolution based edge enhancement is equivalent to a
bandpass filtering operation in the frequency domain, optical processing exploiling
a photorelractive material as a tuneable holographic filter provides a simple and
effective method for implementing low noise (low noise in the sense that it does not
introduce artefacts in the reciprocal domain) edge enhancement concurrently with
correlation. This approach could be implemented by the currently available photo-
refractive material Bismuth Silicon Oxide. The difference of (Gaussian function was
found to be a useful alternative approach to implement edge enhaccment. Chapter
3 reported that the TPR. filter and the DOG function were implemented as part of
matched spatial fillers (tuneable photo-refractive filter and DOG filter, respectively)
in optical correlation. The TPR and DOG filters attenuate the low frequencies of
the input ohjects and thus enhance the edges of the input function. The signifi-
cance ol the TPR and 1DOG filters is that they are tuneable, i.e. frequency band
selective, and can thereforc be constructed to satisfy the specific requirements of
the matched filter design. The simulation results demonstrate that the DOG [ilter
T

and the TPR filter deliver similar tuneable performance. The DOG filter can only

readily be implemented in the form of a static non-updateable filter which is useful

262
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for some applicalions but often iuconvenient. T'he TPR filter incorporates all the
advantages of the DOG filter and has the great benefit that it is tuneable in real
time. The overall influence of input noisc on the performance of TPR filters has been
examined in Chapter 3; the filters were found to give a good compromise between
the correlation peak sharpness and noise robustness even when the input scene wag
severcly corrupted by noise; both tuneable filters out-performed both the POF and
the CMF.

Chapter 4 introduced an optimised adapiive filter that can accornmodate noise in
the input image; it integrates the phase-only filter with the classical matched filter.
A variable amplitude threshold value is set so that, at a particular spatial pixel
location, if the amplitude value is greater than the pre-set threshold. only phase
information is recorded; otherwise, both the phase and amplitude information are
encoded. Au iterative procedure to achieve an optimum threshold value to coustruct
the filter was demonstrated. This filter could be implemented using two LCTV
ST.Ms in which one of them is employed as an amplitude encoder and another as
a phase encoder. Computer simulation results show that the new filter delivers
better overall performance than either the phase only filter or matched spatial filter.
When reference images are encoded into the hybrid correlation system the amplitude
threshold value is adjusted by an integrated adaptive controller to optimise noise

resistance and discrimination ability.

Ilmmediately after the overview of SDF design in Chapter 5, Chapter 6 introduced
a flexible tuning algorithm to the flter modulation constraiuts of SDI design. Difl-
fevent from the fSDF design, the MISDF design considers the filter modulation
constraint of A" on the individual training set images. The lincar combination im-
age Tunction of the filter modulaled training set images may therefore incorporate
the higher frequency components of the individual training set images. The final
composite image, i.e. the MISDFE filler, 1s then obtained by applying the filter
modulalion constraint M to the linear combination image function. As the filter
modulation operators M and N can be given any functional form, the MESDF design
proposed herein 1s sufficiently general to be described as a unified Lilier modulation
SDE design.




Chapter 9: General Conclusions 264

With the filter modulator M set to BPOF, the MfSDF can be implemented for real
time optical correlation using currently available programmmable SLMs. A significant
advantage of the BPOF/MISDF is that the filter modulation A is free to be defined
and can be used to apply any desirable modulation method. Therefore, it is possible
to construct a MISDI® with an optimal choice of the modulation operator A to
optimalise the overall performance capabilitics of the filter by incorporating the

limitations of the presently available SLMs.

An initial investigation (applying the MESDF to vehiclc recognition regardless of its
in-plane rotations) to compare its performance, with modulators M and A being
chosen to be BIPOF and POF respectively, with that of the fSDY filters has been comn-
pleted. Computer simulations show that the BPOF/MISDF filters can achieve dis-
tortion invariance to in-planc rotations up to at least 65, whereas the BPOF/ISDF
filters only attain 45%, in the case studied. Therefore, the BPOF/MISDF method can
be designed to be a distortion invariant filter with training images spaced at lavger
distortion increments than the BPOI'/fSDI method. Hence, the BPOF/MESDF
method needs less filters to cover a distortion invariant range of 180° than does the
BPOF/fSDF method. For the case studied, the computer simulations also show that
the BPOF/M{SDY filters give better signal to noise ratio and target discrimivation
ability than the BPOF/SDF filters. The slightly lower correlation peaks achieved
with the MISDI filter correlations does not cause any detection difficulty due to
the good peak sharpness. The MISDF demonstrates better discrimination ability

between target and non-target objects.

The use of the conunercially available and programmable SLMs limited to binary
quantization of amplitude and/or phase is an altractive approach. Ilowever, this
approach only partially exploits the filters designed for processing images with con-
tinuous amplitude and phase information. In order to overcome this problem, com-
mercially available liquid crystal television - which is able to encode multilevel
discrete amplitude and/or phase information facilitating image grey level represen-
tation -— has been cxploited to implement the modified filter synthetic discrimninant
function design. The filter modulation operator A4 is governed by the constraints
imposed by the LCTV, the other modulation operator A is still free to be de-
fined; hence, the flexibility of the MISDF filter design is not disrupted. Therefore,
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when the limitations of the current LOCTV SLM’s are specified it is possible to find
a MfSDEF with an optimal choice of the modulation operator A to maximise the

overall performance capabilitics of the filter.

With the modulation operator A sei to POF, the performance of the MLAP/M{SDT
with the multilevel constraint & = 16 has been sludied via simulation. The im-
age sets studied were chosen to be practical objects, i.e. Bradley APC vehicle
and MI tank, to provide a challenging design test. The evaluation was performed
to better understand the distortion range that can be effeclively covered by the
MLAP/MISDFs, With training image spacing of 5°, the MLAP/M{SDF filters can
achieve distortion invariance to in-plane rotation up to ab least 120° whilst still
maintaining the 100% discrimination capability between in-class and out-of-class
images, whereas the BPOF/MISDF filters only attain 60°, almost half range of the
MLAT/MISDF, in the case studied. Thus the MLAP/M{SDF filters can greatly
improve the correlator system speed as larger distortion range filtecs translate to
fewer correlations required to perform image identification. Based on the constraint
that a minimum number of training images will be required to assure that the peak
correlation response over the disfortion range does not drop below the Rayleigh
criteria, a relatively good choice of training image spacing was shown to be about

5.

The ability of the filter to accommodate noise in the input images has also been
investigated. The band-pass type characteristic of the MLAP/MfSDF filters gives a
much better ability to resisi. noise in the input images than the BPOF/MfSDF and
RPOF/ISDF filters. When the input images are burried in a noise background, with
the ratio of the object energy to noise energy equal to 0.5, the MLAP /MISDF filiers
can still achieve an invariant distortion range of at least 45° whilst maintaining supe-
rior discrimination capability between the noise corrupted in-class and out-of-class
images. Only one-third of this range, 1.c. 15°, was attained by the BPOT /MISDF {il-
ters. Thus overall, the MLAP/MISDT' filters deliver much better performance than
either the BPOT/MISDF or BPOF/{5DF, which benefits from the combination of
both amplitude and phase information of the filter. The MLAD/MISDF filter can
dynamically track a vehicle or tank as it moves along a random path across the

inpus feld by using a hybrid optical/digital correlator system. Views of the object
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intermediate to those of the training set images are also recognized when training

images are sufficiently close, i.e. 5° apart.
o o !

Chapter 7 introduced a new application of the Wiener filter for pattern recognition
and classification. The Wicper filter is formulated so as to incorporate the noise
image, i.e. the ont-of-clags image Lo be rejected, into a one step filter construction.
Computer simulations indicate that the Wiener filter delivers superior discrimina-
tion performance to that of the POF and CMIE. An SDI incorporating the Wiener
filter has been developed. The computational effort to produce a WF SDF is greatly
reduced over thab of ithe CMF/SDF and POF/SDF, only requiring approximately
one quarter of the CPU time. Filters tolerant to a larger distortion range translate
into fewer correlations required to perform image recognition and it lowers the con-
struction costs. When compared with the conventional SDI and SDF/POT, the WIF
SDFs were shown to be capable of a larger training image distortion spacing, more
than 30°, whilst still satislying the 100% discrimination capability over the 180°
rotation range. This success results froin the fact that the WF incorporates the
out-of-class image inte a one step filter design. It has been demonstrated that the
WEF SDF is very effective in discriminating between images that are quite similar;
the filter will thus be efficient in discriminating between highly dissimilar objects

and background image noise in the form of a complex background scenc.

The major disadvantage of the Wiener filter is its low light efficiency. However as
most of the transmitted energy is concentrated in the correlation peak it should not

be difficult to detect the output signal.

A popular alternative architecture to the VanderLugt correlator for optical pattern
recoguition is the optical joint transform correlator. To improve its performance, a
modified fringe-adjusted joint transform correlation filter, which can accomodate
noige in the input scene, has been developed in Chapter & The cffect of noise in
the input scene on the joint transform correlator, has been analysed and ¢uantified.
Il the JPS is modified, by subtracting the power spectra of the inpul jmage and
reference image from the joint power spectrum, the noise eflect iu the output plane
is independent of the objects in the input scene; it only results from the convolution

of the reference image with noise in the input scene. An architecture to implement
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the proposed modified fringe adjusted JTC in real time has been suggested.

The proposed MFAF based JTC is found to yield an unambiguous, intense, high
fidelity correlation peak for single and multi-object input scenes with either a noise
free or a severely noise corrupted input scene. When compared with the FATF hased
JTC, it has been shown that the MFAF based JTC delivers a better capability
to accommodate noise in the input scene. Furthermore, when the target object
13 severely corrupted by noise, the correlation peak intensity from the target image
using the MFAT based JTC is as least 10% higher than thai for the FAF based JTC,
this is true tor either single or multiple object input scenes. It is interesting that,
for the noise free casc, the FAF based JTC gives better correlation results than the

MFAF system; this highlights the importance of assessing [ilter noise performance.

In order to permit the JTC to accorumodate a high degree ol image distortion invari-
ance and classiy the diflerent objects from different classes of images, a SDF-bascd
fringe-adjusted JTC was developed. The spatial SDF reference function, which is
displayed side by side with the input scene, was choscn as a linear combination of
the training image set. An iterative algorithm has been suggested for obtaining the
linear combination coeflicients from the non-linear equations in the FAJTC svstem.
if the JPS is modified by subtracting the power spectra of the input image and
reference image from the joint power spectrum, equal corrclation peak heights for
the same class of images can be achieved efficiently; false alarins from the cross-

correlation of the different objects in the input scene can also be reduced.

The proposed SDF-based fringe-adjusted JTC is found to have the ability to identily
the different classes of images with equal correlation peak heights for the same class
of object. Whilst herein the dilferent classes of objects are the same object with
an in-plane rotation, each different class of object could actually be a different,
object. When compared with the SDF-based CITC and BJTC, the simulation
results show that the SDF-basc FAJTC delivers a better capability to recognise
multi-class images. Furthermore, when the input scene contains different object
clagges and out-ol-class objects, the SDF-hased FAJTC has been shown to efficiently
classily the different desired objects and reject the nontargel object in the input

scene, without ambiguity.
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9.1 Future Work

The wavelet transform is a powerlul method for multiresolution representation of
signal data. It has been applied to tasks such as image compression and recon-
struction, texture classification and feature extraction. The wavelet transform is an
adjustable linear analog bandpass filter for frequency analysis where the scale (ov
dilation) parameter is used to shift the passband centre frequency and to adjust the
size of the frequency window. This particular characteristic of the wavelet trans-
form provides another way to select the bandpass in the design of spatial matched
filters for use in the optical correlator. A narrow window can be obtained to give
precisc high frequency information of the target image and a wide window can be
obtained to investigate low frequency bchavior of the target image. Thus, models
established from the wavelet transforms should be incorporated into the design of
spatial matched fiiters (including the SDI? filters) to enhance the overall optical

correlator performance.

The fringe-adjusted technique was developed in the joint transform correlator to
modify the joint power speclrum before the inverse Fourler transform. This tech-
nique has been shown in Chapter 8 to be an useful approach. l[lowever, a disad-
vantage with this approach is the high dynamic range of the modified joint power
spectrum which results in a poor optical efliciency; it is also difficult to implement
this high dynamic range spectrum on currently available SLMs. ‘I'he joint power
spectrum is madulated by the Fourier phases of the reference image and the input
image; it 15 this phase information which contains the most useful fringe informa-
tion. Thus, a method should be developed to extract this phase information which
is burried in the joint power spectrum; then encode it onto a phase modulating SLM
i the second optical system. This method would have high optical efficiency, and

also solve the fringe dynamic range problemn encountered with the previous method.
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